Science.gov

Sample records for gas flow resistance

  1. Gas compression in lungs decreases peak expiratory flow depending on resistance of peak flowmeter.

    PubMed

    Pedersen, O F; Pedersen, T F; Miller, M R

    1997-11-01

    It has recently been shown (O. F. Pedersen T. R. Rasmussen, O. Omland, T. Sigsgaard, P. H. Quanjer. and M. R. Miller. Eur. Respir. J. 9: 828-833, 1996) that the added resistance of a mini-Wright peak flowmeter decreases peak expiratory flow (PEF) by approximately 8% compared with PEF measured by a pneumotachograph. To explore the reason for this, 10 healthy men (mean age 43 yr, range 33-58 yr) were examined in a body plethysmograph with facilities to measure mouth flow vs. expired volume as well as the change in thoracic gas volume (Vb) and alveolar pressure (PA). The subjects performed forced vital capacity maneuvers through orifices of different sizes and also a mini-Wright peak flowmeter. PEF with the meter and other added resistances were achieved when flow reached the perimeter of the flow-Vb curves. The mini-Wright PEF meter decreased PEF from 11.4 +/- 1.5 to 10.3 +/- 1.4 (SD) l/s (P < 0.001), PA increased from 6.7 +/- 1.9 to 9.3 +/- 2.7 kPa (P < 0.001), an increase equal to the pressure drop across the meter, and caused Vb at PEF to decrease by 0.24 +/- 0.09 liter (P < 0.001). We conclude that PEF obtained with an added resistance like a mini-Wright PEF meter is a wave-speed-determined maximal flow, but the added resistance causes gas compression because of increased PA at PEF. Therefore, Vb at PEF and, accordingly, PEF decrease. PMID:9375314

  2. Gas-Liquid flow characterization in bubble columns with various gas-liquid using electrical resistance tomography

    NASA Astrophysics Data System (ADS)

    Jin, Haibo; Yuhuan, Han; Suohe, Yang

    2009-02-01

    Electrical resistance tomography (ERT) is an advanced and new detecting technique that can measure and monitor the parameters of two-phase flow on line, such as gas-liquid bubble column. It is fit for the industrial process where the conductible medium serves as the disperse phase to present the key bubble flow characteristics in multi-phase medium. Radial variation of the gas holdup and mean holdups are investigated in a 0.160 m i. d. bubble column using ERT with two axial locations (Plane 1 and Plane 2). In all the experiments, air was used as the gas phase, tap water as liquid phase, and a series of experiments were done by adding KCl, ethanol, oil sodium, and glycerol to change liquid conductivity, liquid surface tension and viscosity. The superficial gas velocity was varied from 0.02 to 0.2 m/s. The effect of conductivity, surface tension, viscosity on the mean holdups and radial gas holdup distribution is discussed. The results showed that the gas holdup decrease with the increase of surface tension and increase with the increase of viscosity. Meanwhile, the settings of initial liquid conductivity slightly influence the gas holdup values, and the experimental data increases with the increase of the initial setting values in the same conditions.

  3. Gas-water two-phase flow characterization with Electrical Resistance Tomography and Multivariate Multiscale Entropy analysis.

    PubMed

    Tan, Chao; Zhao, Jia; Dong, Feng

    2015-03-01

    Flow behavior characterization is important to understand gas-liquid two-phase flow mechanics and further establish its description model. An Electrical Resistance Tomography (ERT) provides information regarding flow conditions at different directions where the sensing electrodes implemented. We extracted the multivariate sample entropy (MSampEn) by treating ERT data as a multivariate time series. The dynamic experimental results indicate that the MSampEn is sensitive to complexity change of flow patterns including bubbly flow, stratified flow, plug flow and slug flow. MSampEn can characterize the flow behavior at different direction of two-phase flow, and reveal the transition between flow patterns when flow velocity changes. The proposed method is effective to analyze two-phase flow pattern transition by incorporating information of different scales and different spatial directions. PMID:25304040

  4. Observing the drop of resistance in the flow of a superfluid Fermi gas.

    PubMed

    Stadler, David; Krinner, Sebastian; Meineke, Jakob; Brantut, Jean-Philippe; Esslinger, Tilman

    2012-11-29

    The ability of particles to flow with very low resistance is characteristic of superfluid and superconducting states, leading to their discovery in the past century. Although measuring the particle flow in liquid helium or superconducting materials is essential to identify superfluidity or superconductivity, no analogous measurement has been performed for superfluids based on ultracold Fermi gases. Here we report direct measurements of the conduction properties of strongly interacting fermions, observing the well-known drop in resistance that is associated with the onset of superfluidity. By varying the depth of the trapping potential in a narrow channel connecting two atomic reservoirs, we observed variations of the atomic current over several orders of magnitude. We related the intrinsic conduction properties to the thermodynamic functions in a model-independent way, by making use of high-resolution in situ imaging in combination with current measurements. Our results show that, as in solid-state systems, current and resistance measurements in quantum gases provide a sensitive probe with which to explore many-body physics. Our method is closely analogous to the operation of a solid-state field-effect transistor and could be applied as a probe for optical lattices and disordered systems, paving the way for modelling complex superconducting devices. PMID:23192151

  5. Gas flow control valve

    SciTech Connect

    Phlipot, J.R.; Pinkston, S.R.; Nurre, H.

    1988-02-09

    A compact gas flow control valve is described comprising a valve body having a first, rotor cavity-defining portion and a second cover portion covering the rotor cavity, at least one of the body portions including inlet means communicating with the rotor chamber for receiving gas under pressure for providing the gas to the rotor chamber, at least one of the body portions including outlet means for delivery of the gas by the flow control valve, a rotor within the rotor cavity, the rotor including a flat surface, a flow control plate carried by the rotor, the flow control plate covering and lying against the flat surface of the rotor, the rotor having ports opening through the rotor surface, the ports being of sufficiently large size as not to limit the flow of the gas therethrough. The flow control plate comprises a thin, flat metal disc provided with gas flow control orifices extending therethrough and spaced circumferentially around the disc and in registry with respective ones of the ports, the rotor being of substantially greater thickness than the disc, the gas flow control being of different sizes and passage means for providing communication between the outlet means and at least a selected one of the flow control plate origices, selector means for orienting the rotor to permit flow only through selected flow control plate orifices and a corresponding rotor port for delivery by the outlet means.

  6. INHIBITION OF VANCOMYCIN-RESISTANT ENTEROCOCCUS BY IN VITRO CONTINUOUS-FLOW CULTURES OF HUMAN STOOL MICROFLORA WITH AND WITHOUT ANAEROBIC GAS SUPPLEMENTATION

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aims: An in vitro continuous-flow competitive exclusion (CFCE) culture model of human stool microflora was used to examine whether supplemental anaerobic gas is necessary for maintenance of anaerobes and inhibition of vancomycin-resistant Enterococcus (VRE). Methods and Results: CFCE culture...

  7. Gas flow through rotameters

    NASA Technical Reports Server (NTRS)

    Levin, H.; Escorza, M. M.

    1983-01-01

    Using data available for small rotameters that use spherical floats in gas flow, a linear relationship is derived. It is noted that the relationship provides a good fit for variable volumetric flow, density, and viscosity at constant flow height. With low Reynolds numbers (Re being less than 1), the product of the variable volumetric flow and the viscosity becomes constant; at high Reynolds numbers (Re being greater than 2000), the product of the variable volumetric flow and the square root of the density becomes constant. It is pointed out that the equation given here can be used to obtain an indirect calibration with any gas of known density and viscosity. The constancy of the product of the variable volumetric flow and viscosity at low variable volumetric flows is seen as suggesting the development of simple, inexpensive gas viscometers using rotameter technology.

  8. Paraelectric gas flow accelerator

    NASA Technical Reports Server (NTRS)

    Sherman, Daniel M. (Inventor); Wilkinson, Stephen P. (Inventor); Roth, J. Reece (Inventor)

    2001-01-01

    A substrate is configured with first and second sets of electrodes, where the second set of electrodes is positioned asymmetrically between the first set of electrodes. When a RF voltage is applied to the electrodes sufficient to generate a discharge plasma (e.g., a one-atmosphere uniform glow discharge plasma) in the gas adjacent to the substrate, the asymmetry in the electrode configuration results in force being applied to the active species in the plasma and in turn to the neutral background gas. Depending on the relative orientation of the electrodes to the gas, the present invention can be used to accelerate or decelerate the gas. The present invention has many potential applications, including increasing or decreasing aerodynamic drag or turbulence, and controlling the flow of active and/or neutral species for such uses as flow separation, altering heat flow, plasma cleaning, sterilization, deposition, etching, or alteration in wettability, printability, and/or adhesion.

  9. Upgrade of the gas flow control system of the resistive current leads of the LHC inner triplet magnets: Simulation and experimental validation

    SciTech Connect

    Perin, A.; Casas-Cubillos, J.; Pezzetti, M.; Almeida, M.

    2014-01-29

    The 600 A and 120 A circuits of the inner triplet magnets of the Large Hadron Collider are powered by resistive gas cooled current leads. The current solution for controlling the gas flow of these leads has shown severe operability limitations. In order to allow a more precise and more reliable control of the cooling gas flow, new flowmeters will be installed during the first long shutdown of the LHC. Because of the high level of radiation in the area next to the current leads, the flowmeters will be installed in shielded areas located up to 50 m away from the current leads. The control valves being located next to the current leads, this configuration leads to long piping between the valves and the flowmeters. In order to determine its dynamic behaviour, the proposed system was simulated with a numerical model and validated with experimental measurements performed on a dedicated test bench.

  10. Corrugated mesh flow channel and novel microporous layers for reducing flooding and resistance in gas diffusion layer-less polymer electrolyte fuel cells

    NASA Astrophysics Data System (ADS)

    Tanaka, Shiro; Shudo, Toshio

    2014-12-01

    Electrode flooding at the cathode impedes the increase in power density of polymer electrolyte fuel cells (PEFCs), limiting their use at high current densities. Liquid water can accumulate in the pores of the gas-diffusion layer (GDL), deteriorating performances significantly. This paper reports a novel fuel-cell structure for the reduction of electrode flooding utilizing corrugated mesh as gas-flow channels and gas diffusers placed directly onto the microporous layer (MPL) without a conventional GDL in between. The polarization curve of the corrugated-mesh fuel cell shows a lower flooding tendency at a high current density; however, the high-frequency resistance (HFR) of this fuel cell increases significantly as a result of fewer contact points between the corrugated mesh and MPL. In addition, MPL conductivity and rigidity are investigated in efforts to reduce the flow-channel pattern resistance. The rigidity of the MPL has a small effect on the reduction in HFR, which may be caused by an improved pressure distribution on the catalyst layer.

  11. Gas flow meter and method for measuring gas flow rate

    DOEpatents

    Robertson, Eric P.

    2006-08-01

    A gas flow rate meter includes an upstream line and two chambers having substantially equal, fixed volumes. An adjustable valve may direct the gas flow through the upstream line to either of the two chambers. A pressure monitoring device may be configured to prompt valve adjustments, directing the gas flow to an alternate chamber each time a pre-set pressure in the upstream line is reached. A method of measuring the gas flow rate measures the time required for the pressure in the upstream line to reach the pre-set pressure. The volume of the chamber and upstream line are known and fixed, thus the time required for the increase in pressure may be used to determine the flow rate of the gas. Another method of measuring the gas flow rate uses two pressure measurements of a fixed volume, taken at different times, to determine the flow rate of the gas.

  12. Gas Flow Detection System

    NASA Technical Reports Server (NTRS)

    Moss, Thomas; Ihlefeld, Curtis; Slack, Barry

    2010-01-01

    This system provides a portable means to detect gas flow through a thin-walled tube without breaking into the tubing system. The flow detection system was specifically designed to detect flow through two parallel branches of a manifold with only one inlet and outlet, and is a means for verifying a space shuttle program requirement that saves time and reduces the risk of flight hardware damage compared to the current means of requirement verification. The prototype Purge Vent and Drain Window Cavity Conditioning System (PVD WCCS) Flow Detection System consists of a heater and a temperature-sensing thermistor attached to a piece of Velcro to be attached to each branch of a WCCS manifold for the duration of the requirement verification test. The heaters and thermistors are connected to a shielded cable and then to an electronics enclosure, which contains the power supplies, relays, and circuit board to provide power, signal conditioning, and control. The electronics enclosure is then connected to a commercial data acquisition box to provide analog to digital conversion as well as digital control. This data acquisition box is then connected to a commercial laptop running a custom application created using National Instruments LabVIEW. The operation of the PVD WCCS Flow Detection System consists of first attaching a heater/thermistor assembly to each of the two branches of one manifold while there is no flow through the manifold. Next, the software application running on the laptop is used to turn on the heaters and to monitor the manifold branch temperatures. When the system has reached thermal equilibrium, the software application s graphical user interface (GUI) will indicate that the branch temperatures are stable. The operator can then physically open the flow control valve to initiate the test flow of gaseous nitrogen (GN2) through the manifold. Next, the software user interface will be monitored for stable temperature indications when the system is again at

  13. Oxygen transport resistance at gas diffusion layer - Air channel interface with film flow of water in a proton exchange membrane fuel cell

    NASA Astrophysics Data System (ADS)

    Koz, Mustafa; Kandlikar, Satish G.

    2016-01-01

    Water present as films on the gas diffusion layer-air channel interface in a proton exchange membrane fuel cell (PEMFC) alters the oxygen transport resistance, which is expressed through Sherwood number (Sh). The effect of multiple films along the flow length on Sh is investigated through 3D and stationary simulations. The effects of air Péclet number, non-dimensional film width, length, and spacing are studied. Using the simulation results, non-dimensional correlations are developed for local Sh within a mean absolute percentage error of 9%. These correlations can be used for simulating PEMFC performance over temperature and relative humidity ranges of 20-80 °C and 0-100%, respectively. Sh on the film side can be up to 31% lower than that for a dry channel, while a film may reduce the interfacial width by up to 39%. The corresponding increase in transport resistance results in lowering the voltage by 5 and 8 mV respectively at a current density of 1.5 A cm-2. However, their combined effect leads to a voltage loss of 20 mV due to this additional mass transport resistance. It is therefore important to incorporate the additional resistance introduced by the films while modeling fuel cell performance.

  14. High gas flow alpha detector

    DOEpatents

    Bolton, R.D.; Bounds, J.A.; Rawool-Sullivan, M.W.

    1996-05-07

    An alpha detector for application in areas of high velocity gas flows, such as smokestacks and air vents. A plurality of spaced apart signal collectors are placed inside an enclosure, which would include smokestacks and air vents, in sufficient numbers to substantially span said enclosure so that gas ions generated within the gas flow are electrostatically captured by the signal collector means. Electrometer means and a voltage source are connected to the signal collectors to generate an electrical field between adjacent signal collectors, and to indicate a current produced through collection of the gas ions by the signal collectors. 4 figs.

  15. High gas flow alpha detector

    DOEpatents

    Bolton, Richard D.; Bounds, John A.; Rawool-Sullivan, Mohini W.

    1996-01-01

    An alpha detector for application in areas of high velocity gas flows, such as smokestacks and air vents. A plurality of spaced apart signal collectors are placed inside an enclosure, which would include smokestacks and air vents, in sufficient numbers to substantially span said enclosure so that gas ions generated within the gas flow are electrostatically captured by the signal collector means. Electrometer means and a voltage source are connected to the signal collectors to generate an electrical field between adjacent signal collectors, and to indicate a current produced through collection of the gas ions by the signal collectors.

  16. Oscillatory electrohydrodynamic gas flows

    SciTech Connect

    Lai, F.C.; McKinney, P.J.; Davidson, J.H.

    1995-09-01

    Prior numerical solutions of electrohydrodynamic flows in a positive-corona, wire-plate electrostatic precipitator are extended to reveal steady-periodic electrohydrodynamic flows. Previously, only steady solutions were reported. The present study includes results for flows with Reynolds numbers from 0 to 4,800 and with dimensionless electric number ranging from 0.06 to {infinity}. Results indicate that two regimes of low frequency oscillatory flow occur. The first regime is characterized by a single recirculating vortex that oscillates in strength between one and five Hertz. The second regime is characterized by two counter-rotating vortices that oscillate in strength at a frequency near one Hertz.

  17. Gas flow through rough microchannels in the transition flow regime.

    PubMed

    Deng, Zilong; Chen, Yongping; Shao, Chenxi

    2016-01-01

    A multiple-relaxation-time lattice Boltzmann model of Couette flow is developed to investigate the rarified gas flow through microchannels with roughness characterized by fractal geometry, especially to elucidate the coupled effects of roughness and rarefaction on microscale gas flow in the transition flow regime. The results indicate that the surface roughness effect on gas flow behavior becomes more significant in rarefied gas flow with the increase of Knudsen number. We find the gas flow behavior in the transition flow regime is more sensitive to roughness height than that in the slip flow regime. In particular, the influence of fractal dimension on rarefied gas flow behavior is less significant than roughness height. PMID:26871175

  18. Heat resistant process gas line

    SciTech Connect

    Venable, C.R. Jr.

    1987-05-12

    A method is described of forming a heat resistant gas transfer line comprising a tubular metal outer shell, a tubular inner liner formed of prefired refractory rings joined together by shiplap joints having expansion gaps, and an intermediate liner comprising bubble alumina concrete filing the annular space between the inner liner and the outer shell. The method comprises placing on the inside lower surface of the outershell bubble alumina concrete forms capable of supporting the refractory rings in the desired location within the outer shell, securing decomposable rings to the refractory rings in the area where the shiplap joints are to be so that a suitable expansion gap will be provided in the shiplap joints when the combustible rings are destroyed.

  19. Gas flow in barred potentials

    NASA Astrophysics Data System (ADS)

    Sormani, Mattia C.; Binney, James; Magorrian, John

    2015-05-01

    We use a Cartesian grid to simulate the flow of gas in a barred Galactic potential and investigate the effects of varying the sound speed in the gas and the resolution of the grid. For all sound speeds and resolutions, streamlines closely follow closed orbits at large and small radii. At intermediate radii shocks arise and the streamlines shift between two families of closed orbits. The point at which the shocks appear and the streamlines shift between orbit families depends strongly on sound speed and resolution. For sufficiently large values of these two parameters, the transfer happens at the cusped orbit as hypothesized by Binney et al. over two decades ago. For sufficiently high resolutions, the flow downstream of the shocks becomes unsteady. If this unsteadiness is physical, as appears to be the case, it provides a promising explanation for the asymmetry in the observed distribution of CO.

  20. Physical mechanisms of flow resistance in textured microchannels

    NASA Astrophysics Data System (ADS)

    Game, Simon; Papageorgiou, Demetrios; Keaveny, Eric; Hodes, Marc

    2015-11-01

    Transport in microchannels can be enhanced by replacing flat, no-slip boundaries with boundaries etched with longitudinal grooves containing an inert gas, resulting in an effective slip flow. Various physical considerations which are often omitted from mathematical models play a significant role in the behaviour of this flow. Such considerations include: gas viscosity, meniscus curvature, finite channel cross-sections, molecular slip on the gas/liquid or gas/solid interfaces. Using a computationally efficient, multi-element, Chebyshev collocation method, we are able to quantify and combine each of these physical effects. We have shown that for physically realistic parameter values, including each of these effects significantly alters the volumetric flow rate, and hence these effects should not be ignored. Using this framework, we hope to manipulate these effects in order to minimise the flow resistance of the channel.

  1. Gene flow from glyphosate-resistant crops.

    PubMed

    Mallory-Smith, Carol; Zapiola, Maria

    2008-04-01

    Gene flow from transgenic glyphosate-resistant crops can result in the adventitious presence of the transgene, which may negatively impact markets. Gene flow can also produce glyphosate-resistant plants that may interfere with weed management systems. The objective of this article is to review the gene flow literature as it pertains to glyphosate-resistant crops. Gene flow is a natural phenomenon not unique to transgenic crops and can occur via pollen, seed and, in some cases, vegetative propagules. Gene flow via pollen can occur in all crops, even those that are considered to be self-pollinated, because all have low levels of outcrossing. Gene flow via seed or vegetative propagules occurs when they are moved naturally or by humans during crop production and commercialization. There are many factors that influence gene flow; therefore, it is difficult to prevent or predict. Gene flow via pollen and seed from glyphosate-resistant canola and creeping bentgrass fields has been documented. The adventitious presence of the transgene responsible for glyphosate resistance has been found in commercial seed lots of canola, corn and soybeans. In general, the glyphosate-resistant trait is not considered to provide an ecological advantage. However, regulators should consider the examples of gene flow from glyphosate-resistant crops when formulating rules for the release of crops with traits that could negatively impact the environment or human health. PMID:18181145

  2. Laser cross-flow gas system

    DOEpatents

    Duncan, David B.

    1992-01-01

    A method and laser apparatus are disclosed which provide for a cross-flow of gas near one end of a laser discharge tube. The cross-flow of gas causes a concentration gradient which affects diffusion of contaminants in the discharge tube towards the cross-flow of the gas, which contaminants are then withdrawn from the discharge tube.

  3. Natural gas flow through critical nozzles

    NASA Technical Reports Server (NTRS)

    Johnson, R. C.

    1969-01-01

    Empirical method for calculating both the mass flow rate and upstream volume flow rate through critical flow nozzles is determined. Method requires knowledge of the composition of natural gas, and of the upstream pressure and temperature.

  4. HVOF gas flow field characteristics

    SciTech Connect

    Swank, W.D.; Fincke, J.R.; Haggard, D.C.; Irons, G.

    1994-12-31

    The effects of combustion chamber pressure and fuel/oxygen mixture ratio on the characteristics of a high pressure, supersonic HVOF gun are examined experimentally and theoretically. The measured temperature, velocity and entrained air fraction are obtained from an enthalpy probe/mass spectrometer system. Predictions of combustion chamber flame temperature and composition are calculated with an equilibrium combustion model. Nozzle and barrel exit conditions are calculated using a one-dimensional rocket performance model. The calculations are bounded by the assumption of frozen and equilibrium compositions. Comparisons between measurements and the predictions indicate that the flow field is far from chemical equilibrium. The aerodynamic force available for accelerating a particle is primarily controlled by the chamber pressure while the composition and temperature of the gas surrounding the particles is controlled by the mixture ratio.

  5. Spark gap switch with spiral gas flow

    DOEpatents

    Brucker, John P.

    1989-01-01

    A spark gap switch having a contaminate removal system using an injected gas. An annular plate concentric with an electrode of the switch defines flow paths for the injected gas which form a strong spiral flow of the gas in the housing which is effective to remove contaminates from the switch surfaces. The gas along with the contaminates is exhausted from the housing through one of the ends of the switch.

  6. Swirling flow of a dissociated gas

    NASA Technical Reports Server (NTRS)

    Wolfram, W. R., Jr.; Walker, W. F.

    1975-01-01

    Most physical applications of the swirling flow, defined as a vortex superimposed on an axial flow in the nozzle, involve high temperatures and the possibility of real gas effects. The generalized one-dimensional swirling flow in a converging-diverging nozzle is analyzed for equilibrium and frozen dissociation using the ideal dissociating gas model. Numerical results are provided to illustrate the major effects and to compare with results obtained for a perfect gas with constant ratio of specific heats. It is found that, even in the case of real gases, perfect gas calculations can give a good estimate of the reduction in mass flow due to swirl.

  7. Advances in gas-liquid flows 1990

    SciTech Connect

    Kim, J.M. . Nuclear Reactor Lab.); Rohatgi, U.S. ); Hashemi, A. )

    1990-01-01

    Gas-liquid two-phase flows commonly occur in nature and industrial applications. Rain, clouds, geysers, and waterfalls are examples of natural gas-liquid flow phenomena, whereas industrial applications can be found in nuclear reactors, steam generators, boilers, condensers, evaporators, fuel atomization, heat pipes, electronic equipment cooling, petroleum engineering, chemical process engineering, and many others. The household-variety phenomena such as garden sprinklers, shower, whirlpool bath, dripping faucet, boiling tea pot, and bubbling beer provide daily experience of gas-liquid flows. The papers presented in this volume reflect the variety and richness of gas-liquid two-phase flow and the increasing role it plays in modern technology. This volume contains papers dealing with some recent development in gas-liquid flow science and technology, covering basic gas-liquid flows, measurements and instrumentation, cavitation and flashing flows, countercurrent flow and flooding, flow in various components and geometries liquid metals and thermocapillary effects, heat transfer, nonlinear phenomena, instability, and other special and general topics related to gas-liquid flows.

  8. Apparatus for focusing flowing gas streams

    DOEpatents

    Nogar, N.S.; Keller, R.A.

    1985-05-20

    Apparatus for focusing gas streams. The principle of hydrodynamic focusing is applied to flowing gas streams in order to provide sample concentration for improved photon and sample utilization in resonance ionization mass spectrometric analysis. In a concentric nozzle system, gas samples introduced from the inner nozzle into the converging section of the outer nozzle are focused to streams 50-250-..mu..m in diameter. In some cases diameters of approximately 100-..mu..m are maintained over distances of several centimeters downstream from the exit orifice of the outer nozzle. The sheath gas employed has been observed to further provide a protective covering around the flowing gas sample, thereby isolating the flowing gas sample from possible unwanted reactions with nearby surfaces. A single nozzle variation of the apparatus for achieving hydrodynamic focusing of gas samples is also described.

  9. Flow rate measuring devices for gas flows

    NASA Astrophysics Data System (ADS)

    Bonfig, K. W.

    1985-07-01

    Flowrate measuring devices are described: volume meter with fixed or mobile walls; turbine meter; throttling procedure; ultrasonic and Doppler methods; vortex method; rotary flowmeter; and swinging body flow measuring procedure. Flowrate can also be measured from the force exerted on bodies immersed in a fluid or based on thermodynamical principles. The characteristics and operating envelope of each device/method are given.

  10. Liquid/Gas Flow Mixers

    NASA Technical Reports Server (NTRS)

    Fabris, Gracio

    1994-01-01

    Improved devices mix gases and liquids into bubbly or foamy flows. Generates flowing, homogeneous foams or homogeneous dispersions of small, noncoalescing bubbles entrained in flowing liquids. Mixers useful in liquid-metal magnetohydrodynamic electric-power generator, froth flotation in mining industry, wastewater treatment, aerobic digestion, and stripping hydrocarbon contaminants from ground water.

  11. Slip length measurement of gas flow.

    PubMed

    Maali, Abdelhamid; Colin, Stéphane; Bhushan, Bharat

    2016-09-16

    In this paper, we present a review of the most important techniques used to measure the slip length of gas flow on isothermal surfaces. First, we present the famous Millikan experiment and then the rotating cylinder and spinning rotor gauge methods. Then, we describe the gas flow rate experiment, which is the most widely used technique to probe a confined gas and measure the slip. Finally, we present a promising technique using an atomic force microscope introduced recently to study the behavior of nanoscale confined gas. PMID:27505860

  12. Slip length measurement of gas flow

    NASA Astrophysics Data System (ADS)

    Maali, Abdelhamid; Colin, Stéphane; Bhushan, Bharat

    2016-09-01

    In this paper, we present a review of the most important techniques used to measure the slip length of gas flow on isothermal surfaces. First, we present the famous Millikan experiment and then the rotating cylinder and spinning rotor gauge methods. Then, we describe the gas flow rate experiment, which is the most widely used technique to probe a confined gas and measure the slip. Finally, we present a promising technique using an atomic force microscope introduced recently to study the behavior of nanoscale confined gas.

  13. Distribution of gas flow in internally manifolded solid oxide fuel-cell stacks

    NASA Astrophysics Data System (ADS)

    Boersma, R. J.; Sammes, N. M.

    In internally manifolded fuel-cell stacks, there is a non-uniform gas flow distribution along the height of the system. To gain an insight into this distribution an analytical model has been developed. In the model, the stack is viewed as a network of hydraulic resistances. Some of these resistances are constant, while some depend upon the gas velocity and can be determined from the literature. The model consists of equations for the network with counter-current flow in the manifold channels. Only the most important resistances are included, i.e., the resistances due to splitting and combining the flows in the manifold channels, and the resistance in the gas channels of the active cell area. The ratio between the average flow and the flow in the upper cell can be solved from the model. In this manner, a very useful tool for separatorplate design is obtained.

  14. Cleanouts boost Devonian shale gas flow

    SciTech Connect

    Not Available

    1991-02-04

    Cleaning shale debris from the well bores is an effective way to boost flow rates from old open hole Devonian shale gas wells, research on six West Virginia wells begun in 1985 has shown. Officials involved with the study say the Appalachian basin could see 20 year recoverable gas reserves hiked by 315 bcf if the process is used on a wide scale.

  15. A method of determining combustion gas flow

    NASA Technical Reports Server (NTRS)

    Bon Tempi, P. J.

    1968-01-01

    Zirconium oxide coating enables the determination of hot gas flow patterns on liquid rocket injector face and baffle surfaces to indicate modifications that will increase performance and improve combustion stability. The coating withstands combustion temperatures and due to the coarse surface and coloring of the coating, shows the hot gas patterns.

  16. Fluorescent particles enable visualization of gas flow

    NASA Technical Reports Server (NTRS)

    Wilson, A. J.

    1968-01-01

    Fluorescent particles enable visualization of the flow patterns of gases at slow velocities. Through a transparent section in the gas line, a camera views the visible light emitted by the particles carried by the gas stream. Fine definition of the particle tracks are obtained at slow camera shutter speeds.

  17. Erosion-resistant coatings for gas turbine compressor blades

    NASA Astrophysics Data System (ADS)

    Muboyadzhyan, S. A.

    2009-06-01

    The effect of ion-plasma coatings made from high-hardness metal compounds on the erosion and corrosion resistance and the mechanical properties of alloy (substrate) + coating compositions is comprehensively studied. The effects of the thickness, composition, deposition conditions, and design of coatings based on metal nitrides and carbides on the relative gas-abrasive wear of alloy + coating compositions in a gas-abrasive flux are analyzed. The flux contains quartz sand with an average fraction of 300-350 μm; the abrasive feed rate is 200 g/min; and the angles of flux incidence are 20° (tangential flow) and 70° (near-head-on attack flow). Alloy + coating compositions based on VN, VC, Cr3C2, ZrN, and TiN coatings 15-30 μ m thick or more are shown to have high erosion resistance. A detailed examination of the coatings with high erosion resistance demonstrates that a zirconium nitride coating is most appropriate for protecting gas turbine compressor blades made of titanium alloys; this coating does not decrease the fatigue strength of these alloys. A chromium carbide coating is the best coating for protecting compressor steel blades.

  18. Interaction of a surface glow discharge with a gas flow

    SciTech Connect

    Aleksandrov, A. L. Schweigert, I. V.

    2010-05-15

    A surface glow discharge in a gas flow is of particular interest as a possible tool for controlling the flow past hypersonic aircrafts. Using a hydrodynamic model of glow discharge, two-dimensional calculations for a kilovolt surface discharge in nitrogen at a pressure of 0.5 Torr are carried out in a stationary gas, as well as in a flow with a velocity of 1000 m/s. The discharge structure and plasma parameters are investigated near a charged electrode. It is shown that the electron energy in a cathode layer reaches 250-300 eV. Discharge is sustained by secondary electron emission. The influence of a high-speed gas flow on the discharge is considered. It is shown that the cathode layer configuration is flow-resistant. The distributions of the electric field and electron energy, as well as the ionization rate profile in the cathode layer, do not change qualitatively under the action of the flow. The basic effect of the flow's influence is a sharp decrease in the region of the quasineutral plasma surrounding the cathode layer due to fast convective transport of ions.

  19. Heavy Gas Dispersion Incompressible Flow

    Energy Science and Technology Software Center (ESTSC)

    1992-01-27

    FEM3 is a numerical model developed primarily to simulate heavy gas dispersion in the atmosphere, such as the gravitational spread and vapor dispersion that result from an accidental spill of liquefied natural gas (LNG). FEM3 solves both two and three-dimensional problems and, in addition to the generalized anelastic formulation, includes options to use either the Boussinesq approximation or an isothermal assumption, when appropriate. The FEM3 model is composed of three parts: a preprocessor PREFEM3, themore » main code FEM3, and two postprocessors TESSERA and THPLOTX.« less

  20. Heavy Gas Dispersion Incompressible Flow

    Energy Science and Technology Software Center (ESTSC)

    1992-02-03

    FEM3 is a numerical model developed primarily to simulate heavy gas dispersion in the atmosphere, such as the gravitational spread and vapor dispersion that result from an accidental spill of liquefied natural gas (LNG). FEM3 solves both two and three-dimensional problems and, in addition to the generalized anelastic formulation, includes options to use either the Boussinesq approximation or an isothermal assumption, when appropriate. The FEM3 model is composed of three parts: a preprocessor PREFEM3, themore » main code FEM3, and two postprocessors TESSERA and THPLOTX. The DEC VAX11 version contains an auxiliary program, POLYREAD, which reads the polyplot file created by FEM3.« less

  1. The digital control of anaesthetic gas flow.

    PubMed

    Boaden, R W; Hutton, P

    1986-04-01

    The theory and construction of a prototype digital gas flow controller are described. Using eight preset needle valves, it has the ability to deliver any flow from 50 to 12750 ml/minute in steps of 50 ml/minute. Under given conditions, the accuracy of this device is very high and its variation in performance with pipeline supply pressures is quantified. The required flow is requested from a BBC 'B' microcomputer which is interfaced with the equipment via a program written in Basic and the 1MHz bus port. The possible uses and potential of a microcomputer-controlled flow regulator in anaesthesia and intensive care are discussed. PMID:2939766

  2. Flowmeter for gas-entrained solids flow

    DOEpatents

    Porges, Karl G.

    1990-01-01

    An apparatus and method for the measurement of solids feedrate in a gas-entrained solids flow conveyance system. The apparatus and method of the present invention include a vertical duct connecting a source of solids to the gas-entrained flow conveyance system, a control valve positioned in the vertical duct, and a capacitive densitometer positioned along the duct at a location a known distance below the control valved so that the solid feedrate, Q, of the gas entrained flow can be determined by Q=S.rho..phi.V.sub.S where S is the cross sectional area of the duct, .rho. is the density of the solid, .phi. is the solid volume fraction determined by the capacitive densitometer, and v.sub.S is the local solid velocity which can be inferred from the konown distance of the capacitive densitometer below the control valve.

  3. Controlling Gas-Flow Mass Ratios

    NASA Technical Reports Server (NTRS)

    Morris, Brian G.

    1990-01-01

    Proposed system automatically controls proportions of gases flowing in supply lines. Conceived for control of oxidizer-to-fuel ratio in new gaseous-propellant rocket engines. Gas-flow control system measures temperatures and pressures at various points. From data, calculates control voltages for electronic pressure regulators for oxygen and hydrogen. System includes commercially available components. Applicable to control of mass ratios in such gaseous industrial processes as chemical-vapor depostion of semiconductor materials and in automotive engines operating on compressed natural gas.

  4. Optimization of solver for gas flow modeling

    NASA Astrophysics Data System (ADS)

    Savichkin, D.; Dodulad, O.; Kloss, Yu

    2014-05-01

    The main purpose of the work is optimization of the solver for rarefied gas flow modeling based on the Boltzmann equation. Optimization method is based on SIMD extensions for ×86 processors. Computational code is profiled and manually optimized with SSE instructions. Heat flow, shock waves and Knudsen pump are modeled with optimized solver. Dependencies of computational time from mesh sizes and CPU capabilities are provided.

  5. Rarefied gas flow through nanoscale tungsten channels.

    PubMed

    Ozhgibesov, M S; Leu, T S; Cheng, C H

    2013-05-01

    The aim of this work is to investigate argon flow behaviors through the channels with three types of boundary conditions. Current work deals with numerical simulations of rarefied gas flow through nano-channels using the Molecular Dynamics method. Taking into account that this method is very time consuming, we implemented all the simulations using CUDA capable graphic cards. We found that the well-known and relatively simple Maxwell model of boundary conditions is able to reproduce gas flow through a tungsten channel with irregularities and roughness, while it results in a significant error in the case of a smooth metal surface. We further found that the flow rate through a relatively short channel correlates nonlinearly with the channel's length. This finding is in contrast with the results available in extant literature. Our results are important for both numerical and theoretical analyses of rarefied gas flow in micro- and nano-systems where the choice of boundary conditions significantly influences flow. PMID:23528809

  6. Decentralized, continuous-flow gas anchor

    SciTech Connect

    Podio, A.L.; McCoy, J.N.; Woods, M.D.

    1995-12-31

    A novel gas separator design has been developed and successfully tested in several beam pumped wells which were subject to severe gas interference. This paper presents a detailed description of various designs to cover various ranges of fluid production for the most common sizes of completions (4-1/2 to 7 inch casing) and rates from 120 to 825 barrels of liquid per day. The new design is based on two innovations: decentralization of the gas separator in the casing, insures that a minimum amount of gas enters the separator; and the presence of two ports located on the narrow side of the annulus and placed a significant distance apart allow continuous flow of fluids into and out of the separator during both the upstroke and downstroke of the pump. These innovations have resulted in a gas separator efficiency much greater than that of conventional designs.

  7. Fabrication of a gas flow device consisting of micro-jet pump and flow sensor

    NASA Astrophysics Data System (ADS)

    Tanaka, Katsuhiko; Dau, Van T.; Otake, Tomonori; Dinh, Thien X.; Sugiyama, Susumu

    2008-12-01

    A gas-flow device consisting of a valveless micro jet pump and flow sensor has been designed and fabricated using a Si micromachining process. The valveless micro pump is composed of a piezoelectric lead zirconate titanate (PZT) diaphragm actuator and flow channels. The design of the valvless pump focuses on a crosss junction formed by the neck of the pump chamber and one outlet and two opposite inlet channnels. The structure allows differences in the fluidic resistance and fluidic momentum inside the channels during each pump vibration cycle, which leads to the gas flow being rectified without valves. Before the Si micro-pump was developed, a prototype of it was fabricated using polymethyl methacrylate (PMMA) and a conventional machining techinique, and experiments on it confirmed the working principles underlying the pump. The Si micro-pump was designed and fabricated based on these working principles. The Si pump was composed of a Si flow channel plate and top and botom covers of PMMA. The flow channels were easily fabricated by using a silicon etching process. To investigate the effects of the step nozzle structure on the gas flow rate, two types of pumps with different channel depths (2D- and 3D-nozzle structures) were designed, and flow simulations were done using ANSYS-Fluent software. The simulations and excperimental data revealed that the 3D-nozzle structure is more advantageous than the 2D-nozzle structure. A flow rate of 4.3 ml/min was obtained for the pump with 3D-nozzle structure when the pump was driven at a resonant frequency of 7.9 kHz by a sinusoidal voltage of 40Vpp. A hot wire was fabricated as a gas-flow sensor near the outlet port on the Si wafer.

  8. Flux flow pinning and resistive behavior in superconducting networks

    SciTech Connect

    Teitel, S.

    1990-10-01

    We have studied the behavior of superconducting networks in terms of XY and Coulomb gas models. The dynamics of frustrated Josephson junction arrays has been simulated, with a view toward understanding the effects of vortex correlations on flux flow resistance. Randomness has been introduced, and its effects on the superconducting transition, and vortex mobility, have been studied. A three dimensional network has been simulated to study the effects of vortex line entanglement in high temperature superconductors. Preliminary calculations are in progress. The two dimensional classical Coulomb gas where charges map onto vortices in the superconducting network, has been simulated. The melting transitions of ordered charge (vortex) lattices have been studied, and we find clear evidence that these transitions do not have the critical behavior expected from standard symmetry analysis.

  9. Continuous-Flow Gas-Phase Bioreactors

    NASA Technical Reports Server (NTRS)

    Wise, Donald L.; Trantolo, Debra J.

    1994-01-01

    Continuous-flow gas-phase bioreactors proposed for biochemical, food-processing, and related industries. Reactor contains one or more selected enzymes dehydrated or otherwise immobilized on solid carrier. Selected reactant gases fed into reactor, wherein chemical reactions catalyzed by enzyme(s) yield product biochemicals. Concept based on discovery that enzymes not necessarily placed in traditional aqueous environments to function as biocatalysts.

  10. 21 CFR 868.2885 - Gas flow transducer.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Gas flow transducer. 868.2885 Section 868.2885...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Monitoring Devices § 868.2885 Gas flow transducer. (a) Identification. A gas flow transducer is a device intended for medical purposes that is used to convert gas...

  11. 21 CFR 868.2885 - Gas flow transducer.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Gas flow transducer. 868.2885 Section 868.2885...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Monitoring Devices § 868.2885 Gas flow transducer. (a) Identification. A gas flow transducer is a device intended for medical purposes that is used to convert gas...

  12. 21 CFR 868.2885 - Gas flow transducer.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Gas flow transducer. 868.2885 Section 868.2885...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Monitoring Devices § 868.2885 Gas flow transducer. (a) Identification. A gas flow transducer is a device intended for medical purposes that is used to convert gas...

  13. 21 CFR 868.2885 - Gas flow transducer.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Gas flow transducer. 868.2885 Section 868.2885...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Monitoring Devices § 868.2885 Gas flow transducer. (a) Identification. A gas flow transducer is a device intended for medical purposes that is used to convert gas...

  14. Respiratory flow-resistive load compensation during sleep.

    PubMed

    Santiago, T V; Sinha, A K; Edelman, N H

    1981-04-01

    We studied ventilation, arterial blood gas tensions, and the ventilatory and airway occlusion pressure responses to hypercapnia of eight cats during wakefulness, quiet (slow-wave) sleep, and active (rapid-eye-movement) sleep. Responses to hypercapnia were measured before and during added airway resistance. Ventilation decreased, and arterial PCO2 increased during both slow-wave and rapid-eye-movement sleep. Unloaded ventilatory and airway occlusion pressure responses to hypercapnia decreased during slow-wave and rapid-eye-movement sleep as well. Flow-resistive loading caused awake cats to increase their occlusion pressure response to hypercapnia, thereby preserving their ventilatory responses. In contrast, during both slow-wave and rapid-eye-movement sleep, cats showed no augmentation of the occlusion pressure response and concomitant decrease of the ventilatory response to hypercapnia with the load. Thus, sleep was associated with loss of flow-resistive load compensation. It is postulated that, in an appropriate setting, this phenomenon could serve a protective function by decreasing the chances for progression from partial to complete upper airway obstruction during sleep. PMID:6784623

  15. Gas-solid flow in vertical tubes

    SciTech Connect

    Pita, J.A.; Sundaresan, S. )

    1991-07-01

    This paper reports on a computational study of fully-developed flow of gas-particle suspensions in vertical pipes which was carried out, using the model proposed recently by Sinclair and Jackson, to understand the predicted scale-up characteristics. It was shown that the model can capture the existence of steady-state multiplicity wherein different pressure gradients can be obtained for the same gas and solids fluxes. A pronounced and nonmonotonic variation of the pressure gradient required to achieve desired fluxes of solid and gas with tube diameter was predicted by the model, and this is explained on a physical basis. The computed results were compared with the experimental data. The model manifests an unsatisfactory degree of sensitivity to the inelasticity of the particle-particle collisions and the damping of particle-phase fluctuating motion by the gas.

  16. SSME hot gas manifold flow comparison test

    NASA Technical Reports Server (NTRS)

    Cox, G. B., Jr.; Dill, C. C.

    1988-01-01

    An account is given of the High Pressure Fuel Turbopump (HPFT) component of NASA's Alternate Turbopump Development effort, which is aimed at the proper aerodynamic integration of the current Phase II three-duct SSME Hot Gas Manifold (HGM) and the future 'Phase II-plus' two-duct HGM. Half-scale water flow tests of both HGM geometries were conducted to provide initial design data for the HPFT. The results reveal flowfield results and furnish insight into the performance differences between the two HGM flowpaths. Proper design of the HPFT can potentially secure significant flow improvements in either HGM configuration.

  17. Effect of gas flow swirling on coating deposition by the cold gas-dynamic spray method

    NASA Astrophysics Data System (ADS)

    Kiselev, S. P.; Kiselev, V. P.; Zaikovskii, V. N.

    2012-03-01

    The effect of gas flow swirling on the process of coating deposition onto a target by the cold gas-dynamic spray method is studied experimentally and numerically. Flow swirling is found to change the gas flow field and to reduce the gas flow rate under typical conditions of cold gas-dynamic spray. In a non-swirled flow, the shape of the deposited spot is similar to a sharp cone. In contrast, the deposited spot in a swirled flow is shaped as a crater without particles at the center of this crater. It is found that this effect is caused by centrifugal forces acting on particles in a swirled gas flow.

  18. Gas-Liquid Flow in Pipelines

    SciTech Connect

    Thomas J. Hanratty

    2005-02-25

    A research program was carried out at the University of Illinois in which develops a scientific approach to gas-liquid flows that explains their macroscopic behavior in terms of small scale interactions. For simplicity, fully-developed flows in horizontal and near-horizontal pipes. The difficulty in dealing with these flows is that the phases can assume a variety of configurations. The specific goal was to develop a scientific understanding of transitions from one flow regime to another and a quantitative understanding of how the phases distribute for a give regime. These basic understandings are used to predict macroscopic quantities of interest, such as frictional pressure drop, liquid hold-up, entrainment in annular flow and frequency of slugging in slug flows. A number of scientific issues are addressed. Examples are the rate of atomization of a liquid film, the rate of deposition of drops, the behavior of particles in a turbulent field, the generation and growth of interfacial waves. The use of drag-reducing polymers that change macroscopic behavior by changing small scale interactions was explored.

  19. Inspiratory flow and intrapulmonary gas distribution

    SciTech Connect

    Rehder, K.; Knopp, T.J.; Brusasco, V.; Didier, E.P.

    1981-01-01

    The effect of flow of inspired gas on intrapulmonary gas distribution was examined by analysis of regional pulmonary /sup 133/Xe clearances and of total pulmonary /sup 133/Xe clearance measured at the mouth after equilibration of the lungs with /sup 133/Xe. Five awake healthy volunteers (24 to 40 yr of age) and another 5 healthy, anesthetized-paralyzed volunteers (26 to 28 yr of age) were studied while they were in the right lateral decubitus position. The awake subjects were studied at 3 inspiratory flows (0.4, 0.7, and 1.0 L/s) and the anesthetized-paralyzed subjects at 4 inspiratory flows (0.2, 0.5, 1.1, and 1.6 L/s). Interregional differences in /sup 133/Xe clearances along the vertical axis were significantly less during anesthesia-paralysis and mechanical ventilation than during spontaneous breathing in the awake state. No differences in the regional or total pulmonary /sup 133/Xe clearances were detected at these different flows in either of the two states, i.e., the difference between the awake and anesthetized-paralyzed states persisted.

  20. Permeable Gas Flow Influences Magma Fragmentation Speed.

    NASA Astrophysics Data System (ADS)

    Richard, D.; Scheu, B.; Spieler, O.; Dingwell, D.

    2008-12-01

    Highly viscous magmas undergo fragmentation in order to produce the pyroclastic deposits that we observe, but the mechanisms involved remain unclear. The overpressure required to initiate fragmentation depends on a number of physical parameters, such as the magma's vesicularity, permeability, tensile strength and textural properties. It is clear that these same parameters control also the speed at which a fragmentation front travels through magma when fragmentation occurs. Recent mathematical models of fragmentation processes consider most of these factors, but permeable gas flow has not yet been included in these models. However, it has been shown that permeable gas flow through a porous rock during a sudden decompression event increases the fragmentation threshold. Fragmentation experiments on natural samples from Bezymianny (Russia), Colima (Mexico), Krakatau (Indonesia) and Augustine (USA) volcanoes confirm these results and suggest in addition that high permeable flow rates may increase the speed of fragmentation. Permeability from the investigated samples ranges from as low as 5 x 10-14 to higher than 9 x 10- 12 m2 and open porosity ranges from 16 % to 48 %. Experiments were performed for each sample series at applied pressures up to 35 MPa. Our results indicate that the rate of increase of fragmentation speed is higher when the permeability is above 10-12 m2. We confirm that it is necessary to include the influence of permeable flow on fragmentation dynamics.

  1. 21 CFR 868.2885 - Gas flow transducer.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Gas flow transducer. 868.2885 Section 868.2885 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Monitoring Devices § 868.2885 Gas flow transducer. (a) Identification. A gas flow transducer is a device intended...

  2. Gas-flow experiments in the transition region

    SciTech Connect

    Santeler, D.J. )

    1994-07-01

    A special gas-flow facility was designed and constructed for the purpose of accurately measuring UF[sub 6] gas flow through a variety of gas-flow restrictions. The facility was used to measure the gas flow through 15 different orifices and 20 short tubes over a nominal pressure range from 0.002 to 100 Torr. The intent of the experiments was to confirm a new theoretical approach to gas flow through short tubes in the transition range between laminar viscous flow and molecular flow. The theoretical approach previously discussed [Santeler, J. Vac. Sci. Technol. A [bold 4], 338, 348 (1986)] (1986) became a part of the basis for several computer programs used for calculating gas flow in vacuum systems. A number of interesting results in turbulent flow were observed during the experiments and are discussed in the paper. The results of the experiments confirmed the proposed model and were used to evaluate specific parameters of the proposed equations.

  3. Power formula for open-channel flow resistance

    USGS Publications Warehouse

    Chen, Cheng-lung

    1988-01-01

    This paper evaluates various power formulas for flow resistance in open channels. Unlike the logarithmic resistance equation that can be theoretically derived either from Prandtl's mixing-length hypothesis or von Karman's similarity hypothesis, the power formula has long had an appearance of empiricism. Nevertheless, the simplicity in the form of the power formula has made it popular among the many possible forms of flow resistance formulas. This paper reexamines the concept and rationale of the power formulation, thereby addressing some critical issues in the modeling of flow resistance.

  4. Hypervelocity atmospheric flight: Real gas flow fields

    NASA Technical Reports Server (NTRS)

    Howe, John T.

    1990-01-01

    Flight in the atmosphere is examined from the viewpoint of including real gas phenomena in the flow field about a vehicle flying at hypervelocity. That is to say, the flow field is subject not only to compressible phenomena, but is dominated by energetic phenomena. There are several significant features of such a flow field. Spatially, its composition can vary by both chemical and elemental species. The equations which describe the flow field include equations of state and mass, species, elemental, and electric charge continuity; momentum; and energy equations. These are nonlinear, coupled, partial differential equations that were reduced to a relatively compact set of equations of a self-consistent manner (which allows mass addition at the surface at a rate comparable to the free-stream mass flux). The equations and their inputs allow for transport of these quantities relative to the mass-averaged behavior of the flow field. Thus transport of mass by chemical, thermal, pressure, and forced diffusion; transport of momentum by viscosity; and transport of energy by conduction, chemical considerations, viscosity, and radiative transfer are included. The last of these complicate the set of equations by making the energy equation a partial integrodifferential equation. Each phenomenon is considered and represented mathematically by one or more developments. The coefficients which pertain are both thermodynamically and chemically dependent. Solutions of the equations are presented and discussed in considerable detail, with emphasis on severe energetic flow fields. For hypervelocity flight in low-density environments where gaseous reactions proceed at finite rates, chemical nonequilibrium is considered and some illustrations are presented. Finally, flight where the flow field may be out of equilibrium, both chemically and thermodynamically, is presented briefly.

  5. Hypervelocity atmospheric flight: Real gas flow fields

    NASA Technical Reports Server (NTRS)

    Howe, John T.

    1989-01-01

    Flight in the atmosphere is examined from the viewpoint of including real gas phenomena in the flow field about a vehicle flying at hypervelocity. That is to say, the flow field is subject not only to compressible phenomena, but is dominated by energetic phenomena. There are several significant features of such a flow field. Spatially, its composition can vary by both chemical and elemental species. The equations which describe the flow field include equations of state and mass, species, elemental, and electric charge continuity; momentum; and energy equations. These are nonlinear, coupled, partial differential equations that have been reduced to a relatively compact set of equations in a self-consistent manner (which allows mass addition at the surface at a rate comparable to the free-stream mass flux). The equations and their inputs allow for transport of these quantities relative to the mass-average behavior of the flow field. Thus transport of mass by chemical, thermal, pressure, and forced diffusion; transport of momentum by viscosity; and transport of energy by conduction, chemical considerations, viscosity, and radiative transfer are included. The last of these complicate the set of equations by making the energy equations a partial integrodifferential equation. Each phenomenon is considered and represented mathematically by one or more developments. The coefficients which pertain are both thermodynamically and chemically dependent. Solutions of the equations are presented and discussed in considerable detail, with emphasis on severe energetic flow fields. Hypervelocity flight in low-density environments where gaseous reactions proceed at finite rates chemical nonequilibrium is considered, and some illustrations are presented. Finally, flight where the flow field may be out of equilibrium, both chemically and thermodynamically, is presented briefly.

  6. Resistance of Metallic Screens in a Cryogenic Flow

    NASA Astrophysics Data System (ADS)

    Fischer, Alexander; Stief, Malte

    The propellant behaviour in cryogenic upper stages tanks imposes challenging requirements on the design, especially for future upper stages designed for multiple restarts and long ballistic flight phases. The main challenge is the supply of the propellants to the feed system prior to the engine reignition. During the entire mission the engine requires a gaseous and bubble free liquid supply of propellant at the required thermodynamic conditions. The current research focus is to prepare the initial steps for the maturation of the Propellant Management Device (PMD) technology for cryogenic tank systems. Main components of such a PMD are metallic screens. The metallic screens are used as barrier for any gas bubbles within the fluid stream approaching the space craft engines. The screen characteristics are of fundamental importance for the PMD and feed system design. The paper presents a summary on available experimental screen data with regard to the flow resistance and gives a comparison with theoretical and empirical predictions found in literature. The lack on comparable data with regard to space craft applications and the need on further research with cryogenic flows is demonstrated. The DLR Institute of Space Systems is preparing various cryogenic tests to collect the desired information about the flow properties of such metallic screens. The planned test setup and the foreseen experiments will be presented.

  7. Modeling of heavy-gas effects on airfoil flows

    NASA Technical Reports Server (NTRS)

    Drela, Mark

    1992-01-01

    Thermodynamic models were constructed for a calorically imperfect gas and for a non-ideal gas. These were incorporated into a quasi one dimensional flow solver to develop an understanding of the differences in flow behavior between the new models and the perfect gas model. The models were also incorporated into a two dimensional flow solver to investigate their effects on transonic airfoil flows. Specifically, the calculations simulated airfoil testing in a proposed high Reynolds number heavy gas test facility. The results indicate that the non-idealities caused significant differences in the flow field, but that matching of an appropriate non-dimensional parameter led to flows similar to those in air.

  8. Gas-Dynamic Transients Flow Networks

    Energy Science and Technology Software Center (ESTSC)

    1987-09-01

    TVENT1P predicts flows and pressures in a ventilation system or other air pathway caused by pressure transients, such as a tornado. For an analytical model to simulate an actual system, it must have (1) the same arrangement of components in a network of flow paths; (2) the same friction characteristics; (3) the same boundary pressures; (4) the same capacitance; and (5) the same forces that drive the air. A specific set of components used formore » constructing the analytical model includes filters, dampers, ducts, blowers, rooms, or volume connected at nodal points to form networks. The effects of a number of similar components can be lumped into a single one. TVENT1P contains a material transport algorithm and features for turning blowers off and on, changing blower speeds, changing the resistance of dampers and filters, and providing a filter model to handle very high flows. These features make it possible to depict a sequence of events during a single run. Component properties are varied using time functions. The filter model is not used by the code unless it is specified by the user. The basic results of a TVENT1P solution are flows in branches and pressures at nodes. A postprocessor program, PLTTEX, is included to produce the plots specified in the TVENT1P input. PLTTEX uses the proprietary CA-DISSPLA graphics software.« less

  9. Flows of gas through a protoplanetary gap.

    PubMed

    Casassus, Simon; van der Plas, Gerrit; Sebastian Perez, M; Dent, William R F; Fomalont, Ed; Hagelberg, Janis; Hales, Antonio; Jordán, Andrés; Mawet, Dimitri; Ménard, Francois; Wootten, Al; Wilner, David; Hughes, A Meredith; Schreiber, Matthias R; Girard, Julien H; Ercolano, Barbara; Canovas, Hector; Román, Pablo E; Salinas, Vachail

    2013-01-10

    The formation of gaseous giant planets is thought to occur in the first few million years after stellar birth. Models predict that the process produces a deep gap in the dust component (shallower in the gas). Infrared observations of the disk around the young star HD 142527 (at a distance of about 140 parsecs from Earth) found an inner disk about 10 astronomical units (AU) in radius (1 AU is the Earth-Sun distance), surrounded by a particularly large gap and a disrupted outer disk beyond 140 AU. This disruption is indicative of a perturbing planetary-mass body at about 90 AU. Radio observations indicate that the bulk mass is molecular and lies in the outer disk, whose continuum emission has a horseshoe morphology. The high stellar accretion rate would deplete the inner disk in less than one year, and to sustain the observed accretion matter must therefore flow from the outer disk and cross the gap. In dynamical models, the putative protoplanets channel outer-disk material into gap-crossing bridges that feed stellar accretion through the inner disk. Here we report observations of diffuse CO gas inside the gap, with denser HCO(+) gas along gap-crossing filaments. The estimated flow rate of the gas is in the range of 7 × 10(-9) to 2 × 10(-7) solar masses per year, which is sufficient to maintain accretion onto the star at the present rate. PMID:23283173

  10. Ethylene Trace-gas Techniques for High-speed Flows

    NASA Technical Reports Server (NTRS)

    Davis, David O.; Reichert, Bruce A.

    1994-01-01

    Three applications of the ethylene trace-gas technique to high-speed flows are described: flow-field tracking, air-to-air mixing, and bleed mass-flow measurement. The technique involves injecting a non-reacting gas (ethylene) into the flow field and measuring the concentration distribution in a downstream plane. From the distributions, information about flow development, mixing, and mass-flow rates can be dtermined. The trace-gas apparatus and special considerations for use in high-speed flow are discussed. A description of each application, including uncertainty estimates is followed by a demonstrative example.

  11. Gas flow characteristics of a time modulated APPJ: the effect of gas heating on flow dynamics

    NASA Astrophysics Data System (ADS)

    Zhang, S.; Sobota, A.; van Veldhuizen, E. M.; Bruggeman, P. J.

    2015-01-01

    This work investigates the flow dynamics of a radio-frequency (RF) non-equilibrium argon atmospheric pressure plasma jet. The RF power is at a frequency of 50 Hz or 20 kHz. Combined flow pattern visualizations (obtained by shadowgraphy) and gas temperature distributions (obtained by Rayleigh scattering) are used to study the formation of transient vortex structures in initial flow field shortly after the plasma is switched on and off in the case of 50 Hz modulation. The transient vortex structures correlate well with observed temperature differences. Experimental results of the fast modulated (20 kHz) plasma jet that does not induce changes of the gas temperature are also presented. The latter result suggests that momentum transfer by ions does not have dominant effect on the flow pattern close to the tube. It is argued that the increased gas temperature and corresponding gas velocity increase at the tube exit due to the plasma heating increases the admixing of surrounding air and reduces the effective potential core length. With increasing plasma power a reduction of the effective potential core length is observed with a minimum length for 5.6 W after which the length extends again. Possible mechanisms related to viscosity effects and ionic momentum transfer are discussed.

  12. Applications of resistive heating in gas chromatography: a review.

    PubMed

    Jacobs, Matthew R; Hilder, Emily F; Shellie, Robert A

    2013-11-25

    Gas chromatography is widely applied to separate, identify, and quantify components of samples in a timely manner. Increasing demand for analytical throughput, instrument portability, environmental sustainability, and more economical analysis necessitates the development of new gas chromatography instrumentation. The applications of resistive column heating technologies have been espoused for nearly thirty years and resistively heated gas chromatography has been commercially available for the last ten years. Despite this lengthy period of existence, resistively heated gas chromatography has not been universally adopted. This low rate of adoption may be partially ascribed to the saturation of the market with older convection oven technology, coupled with other analytical challenges such as sampling, injection, detection and data processing occupying research. This article assesses the advantages and applications of resistive heating in gas chromatography and discusses practical considerations associated with adoption of this technology. PMID:24216193

  13. Laboratory measurement and interpretation of nonlinear gas flow in shale

    NASA Astrophysics Data System (ADS)

    Kang, Yili; Chen, Mingjun; Li, Xiangchen; You, Lijun; Yang, Bin

    2015-11-01

    Gas flow mechanisms in shale are urgent to clarify due to the complicated pore structure and low permeability. Core flow experiments were conducted under reservoir net confining stress with samples from the Longmaxi Shale to investigate the characteristics of nonlinear gas flow. Meanwhile, microstructure analyses and gas adsorption experiments are implemented. Experimental results indicate that non-Darcy flow in shale is remarkable and it has a close relationship with pore pressure. It is found that type of gas has a significant influence on permeability measurement and methane is chosen in this work to study the shale gas flow. Gas slippage effect and minimum threshold pressure gradient weaken with the increasing backpressure. It is demonstrated that gas flow regime would be either slip flow or transition flow with certain pore pressure and permeability. Experimental data computations and microstructure analyses confirm that hydraulic radius of flow tubes in shale are mostly less than 100 nm, indicating that there is no micron scale pore or throat which mainly contributes to flow. The results are significant for the study of gas flow in shale, and are beneficial for laboratory investigation of shale permeability.

  14. Effect of flow twisting on hydraulic resistance and heat exchange

    NASA Astrophysics Data System (ADS)

    Suslov, V. Ya.; Makarov, N. A.

    1989-02-01

    On the basis of dimensional analysis through a differentiated approach to the dimensions of length we have obtained formulas for the effect of flow twisting in a circular tube on the hydraulic resistance and exchange of heat.

  15. Effect of nonsymmetrical flow resistance upon orifice impedance resistance

    NASA Technical Reports Server (NTRS)

    Posey, J. W.; Compton, K. J.

    1974-01-01

    A nonreactive orifice in an infinite baffle is analyzed. The pressure difference delta across the orifice varies sinusoidally with amplitude 1.0 and average value -P. The orifice resistance, delta p is discontinuous at zero velocity and exhibits the constant values R sub + and R sub - for u 0 and u 0, respectively. The resultant velocity has power in all harmonics of the excitation frequency. A quasi-linear resistance is defined and found to be relatively insensitive to the presence or absence of a resonant backing cavity; however, it does vary from 1.33 R sub + to 0.67 R sub + for a resistance ratio R sub +/R sub - between 0.5 and 2.0.

  16. Computer program for natural gas flow through nozzles

    NASA Technical Reports Server (NTRS)

    Johnson, R. C.

    1972-01-01

    Subroutines, FORTRAN 4 type, were developed for calculating isentropic natural gas mass flow rate through nozzle. Thermodynamic functions covering compressibility, entropy, enthalpy, and specific heat are included.

  17. A Gas-Kinetic Scheme for Reactive Flows

    NASA Technical Reports Server (NTRS)

    Lian,Youg-Sheng; Xu, Kun

    1998-01-01

    In this paper, the gas-kinetic BGK scheme for the compressible flow equations is extended to chemical reactive flow. The mass fraction of the unburnt gas is implemented into the gas kinetic equation by assigning a new internal degree of freedom to the particle distribution function. The new variable can be also used to describe fluid trajectory for the nonreactive flows. Due to the gas-kinetic BGK model, the current scheme basically solves the Navier-Stokes chemical reactive flow equations. Numerical tests validate the accuracy and robustness of the current kinetic method.

  18. Gas flow means for improving efficiency of exhaust hoods

    DOEpatents

    Gadgil, A.J.

    1994-01-11

    Apparatus is described for inhibiting the flow of contaminants in an exhaust enclosure toward an individual located adjacent an opening into the exhaust enclosure by providing a gas flow toward a source of contaminants from a position in front of an individual to urge said contaminants away from the individual toward a gas exit port. The apparatus comprises a gas manifold which may be worn by a person as a vest. The manifold has a series of gas outlets on a front face thereof facing away from the individual and toward the contaminants to thereby provide a flow of gas from the front of the individual toward the contaminants. 15 figures.

  19. Gas flow means for improving efficiency of exhaust hoods

    DOEpatents

    Gadgil, Ashok J.

    1994-01-01

    Apparatus for inhibiting the flow of contaminants in an exhaust enclosure toward an individual located adjacent an opening into the exhaust enclosure by providing a gas flow toward a source of contaminants from a position in front of an individual to urge said contaminants away from the individual toward a gas exit port. The apparatus comprises a gas mani-fold which may be worn by a person as a vest. The manifold has a series of gas outlets on a front face thereof facing away from the individual and toward the contaminants to thereby provide a flow of gas from the front of the individual toward the contaminants.

  20. Simulation of gas particle flow in a HVOF torch

    SciTech Connect

    Chang, C.H.; Moore, R.L.

    1995-12-31

    A transient two-dimensional numerical simulation of Inconel spraying in an HVOF torch barrel has been performed. The gas flow is treated as a continuum multicomponent chemically reacting flow, while particles are modeled using a stochastic particle spray model, fully coupled to the gas flow. The calculated results agree well with experimental data, and show important statistical aspects of particle flow in the torch.

  1. Compressible flow computer program for gas film seals

    NASA Technical Reports Server (NTRS)

    Zuk, J.; Smith, P. J.

    1975-01-01

    Computer program, AREAX, calculates properties of compressible fluid flow with friction and area change. Program carries out quasi-one-dimensional flow analysis which is valid for laminar and turbulent flows under both subsonic and choked flow conditions. Program was written to be applied to gas film seals.

  2. Compatibility of gas and flow sensor technology fabrication

    NASA Astrophysics Data System (ADS)

    Sabate, Neus; Gracia, Isabel; Cane, Carles; Puigcorbe, Jordi; Cerda, Judith; Morante, Joan Ramon; Berganzo, Javier

    2003-04-01

    The requirements of flow measurement and control in the home-appliances field lead to the need of a measurement system able to monitor the flow and the quality of gas. The integration of a set of sensors with different functionalities on a single chip arises as an advantageous solution. In this paper, the description of the structures and technologies required for the gas, flow and temperature sensor devices is presented prior to the complete description of the process flow for the full on-chip compatibilization. In this sense, semiconductor gas sensors and thermal flow sensors have arisen as the best candidates to address the compatibilization.

  3. Flow resistance of ice slurry in bends and elbow pipes

    NASA Astrophysics Data System (ADS)

    Niezgoda-Żelasko, B.; Żelasko, J.

    2014-08-01

    The present paper covers the flow of ice slurry made of a 10.6% ethanol solution through small-radius bends and elbow pipes. The paper presents the results of experimental research on the flow resistances of Bingham-fluid ice slurry in bends and elbows. The research, performed for three pipe diameters and a relative bend radius of 1<=D/di<=2, has made it possible to take into consideration the influence of friction resistances as well the of the flow geometry on the total local resistance coefficients. The study attempts to make the local resistance coefficient dependent on the Dean number defined for a generalized Reynolds number according to Metzner-Reade

  4. Mass flow sensor utilizing a resistance bridge

    NASA Technical Reports Server (NTRS)

    Fralick, Gustave C. (Inventor); Hwang, Danny P. (Inventor); Wrbanek, John D. (Inventor)

    2004-01-01

    A mass flow sensor to be mounted within a duct and measures the mass flow of a fluid stream moving through the duct. The sensor is an elongated thin quartz substrate having a plurality of platinum strips extending in a parallel relationship on the strip, with certain of the strips being resistors connected to an excitation voltage. The resistors form the legs of a Wheatstone bridge. The resistors are spaced a sufficient distance inwardly from the leading and trailing edges of the substrate to lie within the velocity recovery region so that the measured flow is the same as the actual upstream flow. The resistor strips extend at least half-way through the fluid stream to include a substantial part of the velocity profile of the stream. Certain of the resistors detect a change in temperature as the fluid stream moves across the substrate to provide an output signal from the Wheatstone bridge which is representative of the fluid flow. A heater is located in the midst of the resistor array to heat the air as it passes over the array.

  5. The Steady Flow Resistance of Perforated Sheet Materials in High Speed Grazing Flows

    NASA Technical Reports Server (NTRS)

    Syed, Asif A.; Yu, Jia; Kwan, H. W.; Chien, E.; Jones, Michael G. (Technical Monitor)

    2002-01-01

    A study was conducted to determine the effects of high speed grazing air flow on the acoustic resistance of perforated sheet materials used in the construction of acoustically absorptive liners placed in commercial aircraft engine nacelles. Since DC flow resistance of porous sheet materials is known to be a major component of the acoustic resistance of sound suppression liners, the DC flow resistance of a set of perforated face-sheets and linear 'wiremesh' face-sheets was measured in a flow duct apparatus (up to Mach 0.8). Samples were fabricated to cover typical variations in perforated face-sheet parameters, such as hole diameter, porosity and sheet thickness, as well as those due to different manufacturing processes. The DC flow resistance data from perforated sheets were found to correlate strongly with the grazing flow Mach number and the face-sheet porosity. The data also show correlation against the boundary layer displacement thickness to hole-diameter ratio. The increase in resistance with grazing flow for punched aluminum sheets is in good agreement with published results up to Mach 0.4, but is significantly larger than expected above Mach 0.4. Finally, the tests demonstrated that there is a significant increase in the resistance of linear 'wiremesh' type face-sheet materials.

  6. Device accurately measures and records low gas-flow rates

    NASA Technical Reports Server (NTRS)

    Branum, L. W.

    1966-01-01

    Free-floating piston in a vertical column accurately measures and records low gas-flow rates. The system may be calibrated, using an adjustable flow-rate gas supply, a low pressure gage, and a sequence recorder. From the calibration rates, a nomograph may be made for easy reduction. Temperature correction may be added for further accuracy.

  7. Oxford Miniature Vaporiser output with reversed gas flows.

    PubMed

    Donovan, A; Perndt, H

    2007-06-01

    This study was undertaken to investigate and calibrate the isoflurane output of an Oxford Miniature Vaporiser (OMV) draw-over vaporiser with reversed gas flows. Plenum or Boyles type machines have gas flowing left to right through the apparatus. Draw over anaesthesia systems, in contrast, traditionally have the carrier gas, air plus oxygen, flowing right to left through the vaporiser. There are a number of variations in the external design of the OMV vaporiser: 1) a back bar mounted draw-over vaporiser with 23-mm taper and left to right gas flow, 2) the Tri-Service with 22-mm taper and left to right gas flow, and 3) the traditional draw-over OMV with right to left gas flow with a variety of tapers. Non-uniformity leads to a variety of possible connections. The predictable output of the OMV vaporiser assumes the correct direction of gas flows for the device. There are many second hand right to left OMV vaporisers for sale to developing countries where the nuances of vaporiser orientation add unnecessarily to the desired simplicity of anaesthesia. A simple calibration scale for reversed gas flows through the OMV vaporiser would be useful. PMID:17506742

  8. Upscaling the overland flow resistance coefficient for vegetated surfaces

    NASA Astrophysics Data System (ADS)

    Kim, J.; Ivanov, V. Y.; Katopodes, N.

    2011-12-01

    Estimation of hydraulic resistance for overland flows plays a crucial role in modeling rainfall-runoff, flood routing, and soil erosion processes. The resistance affects not only the accurate calculations of flow variables, but also the predictions of their derivative outcomes. In particular, resistance is highly spatially variable and controlled by local flow conditions and bed characteristics in hillslopes vegetated with patches of shrubs or woody plants. Numerous studies sought general ways of relating hydraulic resistance to roughness coefficients. A typical approach in determining the Darcy-Weisbach friction factor (f) is to relate it to the Reynolds number (Re). The case is applicable when flow completely submerges roughness elements. On the other hand, when the surface covered with stones, organic litter, or vegetation is not fully submerged by the flow, the f-Re relationship does not hold. Flow dimensionless variables other than Re may become predominant in determining the resistance. There is little information on how to determine the roughness coefficient of vegetated hillslopes of arbitrary scale as a function of flow variables and bed characteristics. Although many field or laboratory studies have attempted to address the problem, most of them were carried out in channels and over a limited range of possible flow conditions. The objective of this study was to investigate the upscaling properties of the resistance coefficient by resolving the details of the flow process at an extremely fine-scale. The domain was conceptualized as a sloped plane with a number of "obstacles" of centimeter scale (i.e., representing vegetation stems) that have infinitely long height. A number of simulations were designed with a numerical model resolving the two-dimensional form of Saint-Venant equations representing the propagation of dynamic wave. The simulations explored how the resistance coefficient varied with different vegetation covers, domain slopes, flow rates and

  9. Gas/liquid flow measurement using coriolis-based flow meters

    SciTech Connect

    Liu, K.T.; Nguyen, T.V.

    1991-07-09

    This patent describes a method of determining total mass flow rate and phase distribution of individual components in a flowing gas/liquid stream. It comprises flowing at least a first gas/liquid stream through a Coriolis-based flow meter, the first gas/liquid stream having a first known total mass flow rate and component phase distribution; obtaining a first apparent total mass flow rate output and a first apparent density output from the Coriolis- based mass flow meter; correlating the first known total mass flow rate and phase distribution with the first apparent mass flow rate output and the first apparent density output obtained from the Coriolis-based mass flow meter to determine a set of correlation equations; flowing a second gas/liquid stream through the Coriolis-based mass flow meter; obtaining a second apparent mass flow rate output and a second apparent density output from the Coriolis-based mass flow meter; calculating a total mass flow rate and a component phase distribution of the second gas/liquid stream based on the correlation equations and the second apparent mass flow rate output and the second apparent density output.

  10. Maxwell, electromagnetism, and fluid flow in resistive media

    NASA Astrophysics Data System (ADS)

    Narasimhan, T. N.

    Common wisdom has it that Darcy [1856] founded the modern field of fluid flow through porous media with his celebrated 1856 experiment on the steady flow of water through a sand column. For considerable time, Darcy's empirical observation, in conjunction with Fourier's [1807] heat equation, was used to analyze fluid flow in porous media simply by mathematical analogy. Hubbert [1940] is credited with placing Darcy's work on sound hydrodynamic foundations. Among other things, he defined an energy potential, interpreted permeability in the context of balancing impelling and resistive forces, and derived an expression for the refraction of flow lines. In 1856, James Clerk Maxwell constructed a theory for the flow of an incompressible fluid in a resistive medium as a metaphor for comprehending the emerging field of electromagnetism [Maxwell, 1890].

  11. Equations for Adiabatic but Rotational Steady Gas Flows without Friction

    NASA Technical Reports Server (NTRS)

    Schaefer, Manfred

    1947-01-01

    This paper makes the following assumptions: 1) The flowing gases are assumed to have uniform energy distribution. ("Isoenergetic gas flows," that is valid with the same constants for the the energy equation entire flow.) This is correct, for example, for gas flows issuing from a region of constant pressure, density, temperature, end velocity. This property is not destroyed by compression shocks because of the universal validity of the energy law. 2) The gas behaves adiabatically, not during the compression shock itself but both before and after the shock. However, the adiabatic equation (p/rho(sup kappa) = C) is not valid for the entire gas flow with the same constant C but rather with an appropriate individual constant for each portion of the gas. For steady flows, this means that the constant C of the adiabatic equation is a function of the stream function. Consequently, a gas that has been flowing "isentropically",that is, with the same constant C of the adiabatic equation throughout (for example, in origination from a region of constant density, temperature, and velocity) no longer remains isentropic after a compression shock if the compression shock is not extremely simple (wedge shaped in a two-dimensional flow or cone shaped in a rotationally symmetrical flow). The solution of nonisentropic flows is therefore an urgent necessity.

  12. Real-Time Measurement of Vehicle Exhaust Gas Flow

    SciTech Connect

    Hardy, J.E.; Hylton, J.O.; Joy, R.D.; McKnight, T.E.

    1999-06-28

    A flow measurement system was developed to measure, in real-time, the exhaust gas flow from vehicies. This new system was based on the vortex shedding principle using ultrasonic detectors for sensing the shed vortices. The flow meter was designed to measure flow over a range of 1 to 366 Ips with an inaccuracy of ~1o/0 of reading. Additionally, the meter was engineered to cause minimal pressure drop (less than 125mm of water), to function in a high temperature environment (up to 650oC) with thermal transients of 15 oC/s, and to have a response time of 0.1 seconds for a 10% to 90!40 step change. The flow meter was also configured to measure hi-directional flow. Several flow meter prototypes were fabricated, tested, and calibrated in air, simulated exhaust gas, and actual exhaust gas. Testing included gas temperatures to 600oC, step response experiments, and flow rates from O to 360 lps in air and exhaust gas. Two prototypes have been tested extensively at NIST and two additional meters have been installed in exhaust gas flow lines for over one year. This new flow meter design has shown to be accurate, durabIe, fast responding, and to have a wide rangeabi~ity.

  13. Thermoacoustic compression based on alternating to direct gas flow conversion

    NASA Astrophysics Data System (ADS)

    Sun, D. M.; Wang, K.; Xu, Y.; Shen, Q.; Zhang, X. J.; Qiu, L. M.

    2012-05-01

    We present a remarkable thermoacoustically driven compression effect based on the conversion of gas flow from an alternating state to a direct state. The alternating gas flow is generated by the thermoacoustic effect in thermoacoustic engines, whereas direct gas flow is achieved by means of the flow rectification effect of check valves. A demonstrative thermoacoustic compressor consisting of two standing-wave thermoacoustic engines, two reservoirs, and three check valves is constructed for experimental investigation. With nitrogen as a working gas and an initial pressure of 2.4 MPa in all components, a usable pressure difference of 0.4 MPa is achieved, with the average gas pumping rate reaching 2.85 Nm3/h during the first 3 s of the compression process. The simple mechanical structure and thermally driven nature of the compressor show potential in gas compression, power generation, and refrigeration applications.

  14. Cerebral blood flow links insulin resistance and baroreflex sensitivity.

    PubMed

    Ryan, John P; Sheu, Lei K; Verstynen, Timothy D; Onyewuenyi, Ikechukwu C; Gianaros, Peter J

    2013-01-01

    Insulin resistance confers risk for diabetes mellitus and associates with a reduced capacity of the arterial baroreflex to regulate blood pressure. Importantly, several brain regions that comprise the central autonomic network, which controls the baroreflex, are also sensitive to the neuromodulatory effects of insulin. However, it is unknown whether peripheral insulin resistance relates to activity within central autonomic network regions, which may in turn relate to reduced baroreflex regulation. Accordingly, we tested whether resting cerebral blood flow within central autonomic regions statistically mediated the relationship between insulin resistance and an indirect indicator of baroreflex regulation; namely, baroreflex sensitivity. Subjects were 92 community-dwelling adults free of confounding medical illnesses (48 men, 30-50 years old) who completed protocols to assess fasting insulin and glucose levels, resting baroreflex sensitivity, and resting cerebral blood flow. Baroreflex sensitivity was quantified by measuring the magnitude of spontaneous and sequential associations between beat-by-beat systolic blood pressure and heart rate changes. Individuals with greater insulin resistance, as measured by the homeostatic model assessment, exhibited reduced baroreflex sensitivity (b = -0.16, p < .05). Moreover, the relationship between insulin resistance and baroreflex sensitivity was statistically mediated by cerebral blood flow in central autonomic regions, including the insula and cingulate cortex (mediation coefficients < -0.06, p-values < .01). Activity within the central autonomic network may link insulin resistance to reduced baroreflex sensitivity. Our observations may help to characterize the neural pathways by which insulin resistance, and possibly diabetes mellitus, relates to adverse cardiovascular outcomes. PMID:24358272

  15. Suppression of turbulent resistivity in turbulent Couette flow

    SciTech Connect

    Si, Jiahe Sonnenfeld, Richard G.; Colgate, Arthur S.; Westpfahl, David J.; Romero, Van D.; Martinic, Joe; Colgate, Stirling A.; Li, Hui; Nornberg, Mark D.

    2015-07-15

    Turbulent transport in rapidly rotating shear flow very efficiently transports angular momentum, a critical feature of instabilities responsible both for the dynamics of accretion disks and the turbulent power dissipation in a centrifuge. Turbulent mixing can efficiently transport other quantities like heat and even magnetic flux by enhanced diffusion. This enhancement is particularly evident in homogeneous, isotropic turbulent flows of liquid metals. In the New Mexico dynamo experiment, the effective resistivity is measured using both differential rotation and pulsed magnetic field decay to demonstrate that at very high Reynolds number rotating shear flow can be described entirely by mean flow induction with very little contribution from correlated velocity fluctuations.

  16. Suppression of turbulent resistivity in turbulent Couette flow

    NASA Astrophysics Data System (ADS)

    Si, Jiahe; Colgate, Stirling A.; Sonnenfeld, Richard G.; Nornberg, Mark D.; Li, Hui; Colgate, Arthur S.; Westpfahl, David J.; Romero, Van D.; Martinic, Joe

    2015-07-01

    Turbulent transport in rapidly rotating shear flow very efficiently transports angular momentum, a critical feature of instabilities responsible both for the dynamics of accretion disks and the turbulent power dissipation in a centrifuge. Turbulent mixing can efficiently transport other quantities like heat and even magnetic flux by enhanced diffusion. This enhancement is particularly evident in homogeneous, isotropic turbulent flows of liquid metals. In the New Mexico dynamo experiment, the effective resistivity is measured using both differential rotation and pulsed magnetic field decay to demonstrate that at very high Reynolds number rotating shear flow can be described entirely by mean flow induction with very little contribution from correlated velocity fluctuations.

  17. Breakup of Droplets in an Accelerating Gas Flow

    NASA Technical Reports Server (NTRS)

    Dickerson, R. A.; Coultas, T. A.

    1966-01-01

    A study of droplet breakup phenomena by an accelerating gas flow is described. The phenomena are similar to what propellant droplets experience when exposed to accelerating combustion gas flow in a rocket engine combustion zone. Groups of several dozen droplets in the 100-10 750-micron-diameter range were injected into a flowing inert gas in a transparent rectangular nozzle. Motion photography of the behavior of the droplets at various locations in the accelerating gas flow has supplied quantitative and qualitative data on the breakup phenomena which occur under conditions similar to those found in large rocket engine combustors. A blowgun injection device, used to inject very small amounts of liquid at velocities of several hundred feet per second into a moving gas stream, is described. The injection device was used to inject small amounts of liquid RP-1 and water into the gas stream at a velocity essentially equal to the gas velocity where the group of droplets was allowed to stabilize its formation in a constant area section before entering the convergent section of the transparent nozzle. Favorable comparison with the work of previous investigators who have used nonaccelerating gas flow is found with the data obtained from this study with accelerating gas flow. The criterion for the conditions of minimum severity required to produce shear-type droplet breakup in an accelerating gas flow is found to agree well with the criterion previously established at Rocketdyne for breakup in nonaccelerating flow. An extension of the theory of capillary surface wave effects during droplet breakup is also presented. Capillary surface waves propagating in the surface of the droplet, according to classical hydrodynamical laws, are considered. The waves propagate tangentially over the surface of the droplet from the forward stagnation point to the major diameter. Consideration of the effects of relative gas velocity on the amplitude growth of these waves allows conclusions to be

  18. Flux-flow resistivity of three high-temperature superconductors

    SciTech Connect

    Cha, Y.S.; Evans, D.J.; Hull, J.R.; Seol, S.Y.

    1996-10-01

    Results of experiments on flux-flow resistivity (the relationship of voltage to current) of three high-temperature superconductors are described. The superconductors are a melt-cast BSCCO 2212 rod, a single filament BSCCO powder-in-tube (PIT) tape, and a multifilament PIT tape. The flux-flow resistivity of these superconductors was measured at three temperatures: 77 K (saturated liquid nitrogen), 87 K (saturated liquid argon), and 67 K (subcooled liquid nitrogen). Implications of the present results for practical applications are discussed.

  19. Gulf Coast, Arkoma gas increasing flow through Lebanon hub

    SciTech Connect

    True, W.R.

    1992-03-09

    Construction projects will hit stride this year for moving more U.S.-produced gas into the Northeast. Combined with projects recently completed, under way, or planned for Canadian gas at least 3 bcfd more gas will flow into New York, New Jersey, and the New England states within the next 3 years. This article looks at two major clusters of projectors to move U.S. Gulf Coast and Arkoma gas through the expanding Lebanon, Ohio, hub.

  20. Velocity Inversion In Cylindrical Couette Gas Flows

    NASA Astrophysics Data System (ADS)

    Dongari, Nishanth; Barber, Robert W.; Emerson, David R.; Zhang, Yonghao; Reese, Jason M.

    2012-05-01

    We investigate a power-law probability distribution function to describe the mean free path of rarefied gas molecules in non-planar geometries. A new curvature-dependent model is derived by taking into account the boundary-limiting effects on the molecular mean free path for surfaces with both convex and concave curvatures. In comparison to a planar wall, we find that the mean free path for a convex surface is higher at the wall and exhibits a sharper gradient within the Knudsen layer. In contrast, a concave wall exhibits a lower mean free path near the surface and the gradients in the Knudsen layer are shallower. The Navier-Stokes constitutive relations and velocity-slip boundary conditions are modified based on a power-law scaling to describe the mean free path, in accordance with the kinetic theory of gases, i.e. transport properties can be described in terms of the mean free path. Velocity profiles for isothermal cylindrical Couette flow are obtained using the power-law model. We demonstrate that our model is more accurate than the classical slip solution, especially in the transition regime, and we are able to capture important non-linear trends associated with the non-equilibrium physics of the Knudsen layer. In addition, we establish a new criterion for the critical accommodation coefficient that leads to the non-intuitive phenomena of velocity-inversion. Our results are compared with conventional hydrodynamic models and direct simulation Monte Carlo data. The power-law model predicts that the critical accommodation coefficient is significantly lower than that calculated using the classical slip solution and is in good agreement with available DSMC data. Our proposed constitutive scaling for non-planar surfaces is based on simple physical arguments and can be readily implemented in conventional fluid dynamics codes for arbitrary geometric configurations.

  1. Energy requirements for methods improving gas detection by modulating physical properties of resistive gas sensors

    NASA Astrophysics Data System (ADS)

    Trawka, M.; Kotarski, M.

    2016-01-01

    One of the most important disadvantage of resistive gas sensors is their limited gas selectivity. Therefore, various methods modulating their physical properties are used to improve gas detection. These methods are usually limited to temperature modulation or UV light irradiation for the layers exhibiting photocatalytic effect. These methods cause increased energy consumption. In our study we consider how much energy has to be supplied to utilize such methods and what kind of additional information can be gathered. We present experimental results of selected resistive gas sensors, including commercial and prototype constructions, and practical solutions of modulating their physical properties.

  2. Gas flow driven by thermal creep in dusty plasma

    SciTech Connect

    Flanagan, T. M.; Goree, J.

    2009-10-15

    Thermal creep flow (TCF) is a flow of gas driven by a temperature gradient along a solid boundary. Here, TCF is demonstrated experimentally in a dusty plasma. Stripes on a glass box are heated by laser beam absorption, leading to both TCF and a thermophoretic force. The design of the experiment allows isolating the effect of TCF. A stirring motion of the dust particle suspension is observed. By eliminating all other explanations for this motion, we conclude that TCF at the boundary couples by drag to the bulk gas, causing the bulk gas to flow, thereby stirring the suspension of dust particles. This result provides an experimental verification, for the field of fluid mechanics, that TCF in the slip-flow regime causes steady-state gas flow in a confined volume.

  3. Resistive Oxygen Gas Sensors for Harsh Environments

    PubMed Central

    Moos, Ralf; Izu, Noriya; Rettig, Frank; Reiß, Sebastian; Shin, Woosuck; Matsubara, Ichiro

    2011-01-01

    Resistive oxygen sensors are an inexpensive alternative to the classical potentiometric zirconia oxygen sensor, especially for use in harsh environments and at temperatures of several hundred °C or even higher. This device-oriented paper gives a historical overview on the development of these sensor materials. It focuses especially on approaches to obtain a temperature independent behavior. It is shown that although in the past 40 years there have always been several research groups working concurrently with resistive oxygen sensors, novel ideas continue to emerge today with respect to improvements of the sensor response time, the temperature dependence, the long-term stability or the manufacture of the devices themselves using novel techniques for the sensitive films. Materials that are the focus of this review are metal oxides; especially titania, titanates, and ceria-based formulations. PMID:22163805

  4. Flow regimes, bed morphology, and flow resistance in self-formed step-pool channels

    NASA Astrophysics Data System (ADS)

    Comiti, F.; Cadol, D.; Wohl, E.

    2009-04-01

    We used a mobile bed flume with scaled grain size distribution, channel geometry, and flow to examine morphology and hydraulics of stepped channels. We hypothesized that (1) step geometry and flow resistance differs significantly as a function of the range of grain sizes present, (2) a transition from nappe to skimming flow occurs in stepped channels with mobile beds for conditions similar to stepped spillways, and (3) the partitioning of flow resistance changes significantly when flow passes from nappe to skimming conditions. Results support each of these hypotheses and help to illuminate the complexity of V-Q relationships in stepped channels, in which a dramatic decrease in flow resistance and increase in velocity accompany the transition from nappe to skimming flow near step-forming events. Therefore, a single flow resistance equation applicable to both ordinary and large floods may not be ideal in stepped channels. Nonetheless, models based on dimensionless velocity and unit discharge appear more robust compared to those based on the Darcy-Weisbach friction factor.

  5. New technology directly measures mass flow of gas

    SciTech Connect

    Hahn, D.T.

    1995-12-31

    According to recent industry surveys and solicitations by organizations such as the Gas Research Institute and Small Business Innovation Research, a need exists for a gas flowmeter with {plus_minus}0.5% or better accuracy, that does not need to be calibrated for specific gas properties, and requires no periodic maintenance. Over the past 18 years, Coriolis mass flowmeters have provided these features for liquid flow applications, and have won a significant share of the liquid flow measurement market. Coriolis meters continue to be the fastest growing technology in the world market for flow measurement. Coriolis mass flowmeters have not, however, had much success in penetrating the gas flow measurement market due to some limitations involved with measuring the low density fluids associated with low pressure gas flow measurement. A new type of Coriolis mass flowmeter has been developed which utilizes a unique new method of creating and measuring the requisite Coriolis forces. This new technology; radial mode Coriolis mass flow measurement, has several inherent features that make it perfectly suited to measuring the mass flow of gas.

  6. A methodological approach of estimating resistance to flow under unsteady flow conditions

    NASA Astrophysics Data System (ADS)

    Mrokowska, M. M.; Rowiński, P. M.; Kalinowska, M. B.

    2015-10-01

    This paper presents an evaluation and analysis of resistance parameters: friction slope, friction velocity and Manning coefficient in unsteady flow. The methodology to enhance the evaluation of resistance by relations derived from flow equations is proposed. The main points of the methodology are (1) to choose a resistance relation with regard to a shape of a channel and (2) type of wave, (3) to choose an appropriate method to evaluate slope of water depth, and (4) to assess the uncertainty of result. In addition to a critical analysis of existing methods, new approaches are presented: formulae for resistance parameters for a trapezoidal channel, and a translation method instead of Jones' formula to evaluate the gradient of flow depth. Measurements obtained from artificial dam-break flood waves in a small lowland watercourse have made it possible to apply the method and to analyse to what extent resistance parameters vary in unsteady flow. The study demonstrates that results of friction slope and friction velocity are more sensitive to applying simplified formulae than the Manning coefficient (n). n is adequate as a flood routing parameter but may be misleading when information on trend of resistance with flow rate is crucial. Then friction slope or friction velocity seems to be better choice.

  7. Gas flow analysis in melting furnaces

    SciTech Connect

    Kiss, L.I.; Bui, R.T.; Charette, A.; Bourgeois, T.

    1998-12-01

    The flow structure inside round furnaces with various numbers of burners, burner arrangement, and exit conditions has been studied experimentally with the purpose of improving the flow conditions and the resulting heat transfer. Small-scale transparent models were built according to the laws of geometric and dynamic similarity. Various visualization and experimental techniques were applied. The flow pattern in the near-surface regions was visualized by the fluorescent minituft and popcorn techniques; the flow structure in the bulk was analyzed by smoke injection and laser sheet illumination. For the study of the transient effects, high-speed video photography was applied. The effects of the various flow patterns, like axisymmetric and rotational flow, on the magnitude and uniformity of the residence time, as well as on the formation of stagnation zones, were discussed. Conclusions were drawn and have since been applied for the improvement of furnace performance.

  8. Gas/oil/water flow measurement by electrical capacitance tomography

    NASA Astrophysics Data System (ADS)

    Li, Yi; Yang, Wuqiang; Xie, Cheng-gang; Huang, Songming; Wu, Zhipeng; Tsamakis, Dimitrios; Lenn, Chris

    2013-07-01

    In the oil industry, it is important to measure gas/oil/water flows produced from oil wells. To determine oil production, it is necessary to measure the water-in-liquid ratio (WLR), liquid fraction and some other parameters, which are related to multiphase flow rates. A research team from the University of Manchester and Schlumberger Gould Research have developed an experimental apparatus for gas/oil/water flow measurement based on a flow-conditioning device and electrical capacitance tomography (ECT) and microwave sensors. This paper presents the ECT part of the developed apparatus, including the re-engineering of an ECT sensor and a model-based image reconstruction algorithm, which is used to derive the WLR and the thickness of the liquid layer in oil-continuous annular flows formed by the flow-conditioning device. The ECT sensor was tested both at Schlumberger and on TUV-NEL's Multiphase Flow Facility. The experimental results are promising.

  9. Resistive flow in a weakly interacting Bose-Einstein condensate.

    PubMed

    Jendrzejewski, F; Eckel, S; Murray, N; Lanier, C; Edwards, M; Lobb, C J; Campbell, G K

    2014-07-25

    We report the direct observation of resistive flow through a weak link in a weakly interacting atomic Bose-Einstein condensate. Two weak links separate our ring-shaped superfluid atomtronic circuit into two distinct regions, a source and a drain. Motion of these weak links allows for creation of controlled flow between the source and the drain. At a critical value of the weak link velocity, we observe a transition from superfluid flow to superfluid plus resistive flow. Working in the hydrodynamic limit, we observe a conductivity that is 4 orders of magnitude larger than previously reported conductivities for a Bose-Einstein condensate with a tunnel junction. Good agreement with zero-temperature Gross-Pitaevskii simulations and a phenomenological model based on phase slips indicate that the creation of excitations plays an important role in the resulting conductivity. Our measurements of resistive flow elucidate the microscopic origin of the dissipation and pave the way for more complex atomtronic devices. PMID:25105631

  10. Remotely Sensed, catchment scale, estimations of flow resistance

    NASA Astrophysics Data System (ADS)

    Carbonneau, P.; Dugdale, S. J.

    2009-12-01

    Despite a decade of progress in the field of fluvial remote sensing, there are few published works using this new technology to advance and explore fundamental ideas and theories in fluvial geomorphology. This paper will apply remote sensing methods in order to re-visit a classic concept in fluvial geomorphology: flow resistance. Classic flow resistance equations such as those of Strickler and Keulegan typically use channel slope, channel depth or hydraulic radius and some measure channel roughness usually equated to the 50th or 84th percentile of the bed material size distribution. In this classic literature, empirical equations such as power laws are usually calibrated and validated with a maximum of a few hundred data points. In contrast, fluvial remote sensing methods are now capable of delivering millions of high resolution data points in continuous, catchment scale, surveys. On the river Tromie in Scotland, a full dataset or river characteristics is now available. Based on low altitude imagery and NextMap topographic data, this dataset has a continuous sampling of channel width at a resolution of 3cm, of depth and median grain size at a resolution of 1m, and of slope at a resolution of 5m. This entire data set is systematic and continuous for the entire 20km length of the river. When combined with discharge at the time of data acquisition, this new dataset offers the opportunity to re-examine flow resistance equations with a 2-4 orders of magnitude increase in calibration data. This paper will therefore re-examine the classic approaches of Strickler and Keulagan along with other more recent flow resistance equations. Ultimately, accurate predictions of flow resistance from remotely sensed parameters could lead to acceptable predictions of velocity. Such a usage of classic equations to predict velocity could allow lotic habitat models to account for microhabitat velocity at catchment scales without the recourse to advanced and computationally intensive

  11. Phase-locked measurements of gas-liquid horizontal flows

    NASA Astrophysics Data System (ADS)

    Zadrazil, Ivan; Matar, Omar; Markides, Christos

    2014-11-01

    A flow of gas and liquid in a horizontal pipe can be described in terms of various flow regimes, e.g. wavy stratified, annular or slug flow. These flow regimes appear at characteristic gas and liquid Reynolds numbers and feature unique wave phenomena. Wavy stratified flow is populated by low amplitude waves whereas annular flow contains high amplitude and long lived waves, so called disturbance waves, that play a key role in a liquid entrainment into the gas phase (droplets). In a slug flow regime, liquid-continuous regions travel at high speeds through a pipe separated by regions of stratified flow. We use a refractive index matched dynamic shadowgraphy technique using a high-speed camera mounted on a moving robotic linear rail to track the formation and development of features characteristic for the aforementioned flow regimes. We show that the wave dynamics become progressively more complex with increasing liquid and gas Reynolds numbers. Based on the shadowgraphy measurements we present, over a range of conditions: (i) phenomenological observations of the formation, and (ii) statistical data on the downstream velocity distribution of different classes of waves. EPSRC Programme Grant, MEMPHIS, EP/K0039761/1.

  12. Heat flow anomalies in oil- and gas-bearing structures

    SciTech Connect

    Sergiyenko, S.I.

    1988-02-01

    The main features of the distribution of heat flow values in oil, gas and gas-condensate fields on the continents have been discussed by Makarenko and Sergiyenko. The method of analysis used made it possible to establish that the presence of hydrocarbons in formations leads to high heat-flow, regardless of the age of folding of the potentially oil- and gas-bearing zones. Only in regions adjacent to marginal Cenozoic folded mountain structures and in zones of Cenozoic volcanism is the world average higher, by 2.5 to 10%, than in the oil- and gas-bearing structures in those regions. The earlier analysis of the distribution of heat flow values in oil and gas structures was based on 403 measurements. The author now has nearly doubled the sample population, enabling him substantially to revise the ideas on the distribution of heat flow values and the development of the thermal regime of local oil and gas structures. He notes that the method previously used, comparing heat flow values on young continental platforms with values in local oil and gas structures, makes it possible to estimate the thermal effect of the presence of oil and gas. This conclusion stems from the fact that the overwhelming majority of heat flow measurements were made on various kinds of positive structural forms, and distortions of the thermal field caused by thermal anisotropy phenomena are equally characteristic of both productive and nonproductive structures. As a result, for the first time a continuous time series of heat flow measurements over oil and gas structures in various tectonic regions, with ages of consolidation ranging from the Precambrian to the Cenozoic, was established. 26 references.

  13. Electrical resistance sensors record spring flow timing, Grand Canyon, Arizona.

    PubMed

    Adams, Eric A; Monroe, Stephen A; Springer, Abraham E; Blasch, Kyle W; Bills, Donald J

    2006-01-01

    Springs along the south rim of the Grand Canyon, Arizona, are important ecological and cultural resources in Grand Canyon National Park and are discharge points for regional and local aquifers of the Coconino Plateau. This study evaluated the applicability of electrical resistance (ER) sensors for measuring diffuse, low-stage (<1.0 cm) intermittent and ephemeral flow in the steep, rocky spring-fed tributaries of the south rim. ER sensors were used to conduct a baseline survey of spring flow timing at eight sites in three spring-fed tributaries in Grand Canyon. Sensors were attached to a nearly vertical rock wall at a spring outlet and were installed in alluvial and bedrock channels. Spring flow timing data inferred by the ER sensors were consistent with observations during site visits, with flow events recorded with collocated streamflow gauging stations and with local precipitation gauges. ER sensors were able to distinguish the presence of flow along nearly vertical rock surfaces with flow depths between 0.3 and 1.0 cm. Laboratory experiments confirmed the ability of the sensors to monitor the timing of diffuse flow on impervious surfaces. A comparison of flow patterns along the stream reaches and at springs identified the timing and location of perennial and intermittent flow, and periods of increased evapotranspiration. PMID:16961484

  14. Electrical resistance sensors record spring flow timing, Grand Canyon, Arizona

    USGS Publications Warehouse

    Adams, E.A.; Monroe, S.A.; Springer, A.E.; Blasch, K.W.; Bills, D.J.

    2006-01-01

    Springs along the south rim of the Grand Canyon, Arizona, are important ecological and cultural resources in Grand Canyon National Park and are discharge points for regional and local aquifers of the Coconino Plateau. This study evaluated the applicability of electrical resistance (ER) sensors for measuring diffuse, low-stage (<1.0 cm) intermittent and ephemeral flow in the steep, rocky spring-fed tributaries of the south rim. ER sensors were used to conduct a baseline survey of spring flow timing at eight sites in three spring-fed tributaries in Grand Canyon. Sensors were attached to a nearly vertical rock wall at a spring outlet and were installed in alluvial and bedrock channels. Spring flow timing data inferred by the ER sensors were consistent with observations during site visits, with flow events recorded with collocated streamflow gauging stations and with local precipitation gauges. ER sensors were able to distinguish the presence of flow along nearly vertical rock surfaces with flow depths between 0.3 and 1.0 cm. Laboratory experiments confirmed the ability of the sensors to monitor the timing of diffuse flow on impervious surfaces. A comparison of flow patterns along the stream reaches and at springs identified the timing and location of perennial and intermittent flow, and periods of increased evapotranspiration.

  15. Flowing gas, non-nuclear experiments on the gas core reactor

    NASA Technical Reports Server (NTRS)

    Kunze, J. F.; Cooper, C. G.; Macbeth, P. J.

    1973-01-01

    Variations in cavity wall and injection configurations of the gas core reactor were aimed at establishing flow patterns that give a maximum of the nuclear criticality eigenvalue. Correlation with the nuclear effect was made using multigroup diffusion theory normalized by previous benchmark critical experiments. Air was used to simulate the hydrogen propellant in the flow tests, and smoked air, argon, or Freon to simulate the central nuclear fuel gas. Tests were run both in the down-firing and upfiring directions. Results showed that acceptable flow patterns with volume fraction for the simulated nuclear fuel gas and high flow rate ratios of propellant to fuel can be obtained. Using a point injector for the fuel, good flow patterns are obtained by directing the outer gas at high velocity long the cavity wall, using louvered injection schemes. Recirculation patterns were needed to stabilize the heavy central gas when different gases are used.

  16. High temperature, low expansion, corrosion resistant ceramic and gas turbine

    DOEpatents

    Rauch, Sr., Harry W.

    1981-01-01

    The present invention relates to ZrO.sub.2 -MgO-Al.sub.2 O.sub.3 -SiO.sub.2 ceramic materials having improved thermal stability and corrosion resistant properties. The utilization of these ceramic materials as heat exchangers for gas turbine engines is also disclosed.

  17. Gas flow dependence of atmospheric pressure plasma needle discharge characteristics

    NASA Astrophysics Data System (ADS)

    Qian, Muyang; Yang, Congying; Liu, Sanqiu; Chen, Xiaochang; Ni, Gengsong; Wang, Dezhen

    2016-04-01

    In this paper, a two-dimensional coupled model of neutral gas flow and plasma dynamics is presented to explain the gas flow dependence of discharge characteristics in helium plasma needle at atmospherics pressure. The diffusional mixing layer between the helium jet core and the ambient air has a moderate effect on the streamer propagation. The obtained simulation results present that the streamer shows the ring-shaped emission profile at a moderate gas flow rate. The key chemical reactions which drive the streamer propagation are electron-impact ionization of helium neutral, nitrogen and oxygen molecules. At a moderate gas flow rate of 0.5 slm, a significant increase in propagation velocity of the streamer is observed due to appropriate quantity of impurities air diffuse into the helium. Besides, when the gas flow rate is below 0.35 slm, the radial density of ground-state atomic oxygen peaks along the axis of symmetry. However, when the gas flow rate is above 0.5 slm, a ring-shaped density distribution appears. The peak density is on the order of 1020 m-3 at 10 ns in our work.

  18. On mechanisms of choked gas flows in microchannels

    NASA Astrophysics Data System (ADS)

    Shan, Xiaodong; Wang, Moran

    2015-10-01

    Choked gas flows in microchannels have been reported before based solely on experimental measurements, but the underlining physical mechanism has yet to be clarified. In this work, we are to explore the process via numerical modeling of choked gas flows through a straight microchannel that connects two gas reservoirs. The major theoretical consideration lies in that, since the gas in microchannels may not be necessarily rarefied even at a high Knudsen number, a generalized Monte Carlo method based on the Enskog theory, GEMC, was thus used instead of direct simulation Monte Carlo (DSMC). Our results indicate that the choked gas flows in microchannels can be divided into two types: sonic choking and subsonic choking, because the sonic point does not always exist even though the gas flows appear choked, depending on the inlet-outlet pressure ratio and the length-height ratio of the channel. Even if the gas flow does not reach a sonic point at the outlet region, the effective pressure ratio (pi /po) acting on the channel becomes asymptotically changeless when the pressure ratio on the buffer regions (pi‧/po‧) is higher than a certain value. The subsonic choking may caused by the expansion wave or the strong non-equilibrium effect at the outlet.

  19. 10. Photograph of a line drawing. 'PROCESS FLOW SCHEMATIC, GAS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. Photograph of a line drawing. 'PROCESS FLOW SCHEMATIC, GAS PRODUCER PROCESS, BUILDING 10A.' Holston Army Ammunition Plant, Holston Defense Corporation. August 29, 1974. Delineator: G. A. Horne. Drawing # SK-1942. - Holston Army Ammunition Plant, Producer Gas Plant, Kingsport, Sullivan County, TN

  20. Flammable gas interlock spoolpiece flow response test plan and procedure

    SciTech Connect

    Schneider, T.C., Fluor Daniel Hanford

    1997-02-13

    The purpose of this test plan and procedure is to test the Whittaker electrochemical cell and the Sierra Monitor Corp. flammable gas monitors in a simulated field flow configuration. The sensors are used on the Rotary Mode Core Sampling (RMCS) Flammable Gas Interlock (FGI), to detect flammable gases, including hydrogen and teminate the core sampling activity at a predetermined concentration level.

  1. Sub-surface gas flow in porous bodies

    NASA Astrophysics Data System (ADS)

    Teiser, Jens; Schywek, Mathias; de Beule, Caroline; Wurm, Gerhard

    2015-11-01

    Gas flow within porous media is of importance for various bodies in the Solar System. It occurs within the Martian soil, might be significant in the porous interiors of comets and also within dusty planetesimals in the Solar Nebula. In regimes of low atmospheric pressure, thermal creep leads to an efficient gas flux if temperature gradients are present, e.g. by solar insolation. This flow can lead to erosion or supports the exchange of volatiles within a porous body. Experiments showed that this gas flux dominates over diffusive gas transport under Martian conditions with gas velocities on the order of cm/s. Results from the Rosetta spacecraft suggest that eolian processes occur on comets which might be related to thermal creep gas flow. Here, we present new results of microgravity experiments on a thermally induced gas flow. Gas velocities and their dependence on the atmospheric pressure for different gases (Helium and air) are studied as well as the influence of the geometry of the pores.

  2. System for controlling the flow of gas into and out of a gas laser

    DOEpatents

    Alger, Terry; Uhlich, Dennis M.; Benett, William J.; Ault, Earl R.

    1994-01-01

    A modularized system for controlling the gas pressure within a copper vapor or like laser is described herein. This system includes a gas input assembly which serves to direct gas into the laser in a controlled manner in response to the pressure therein for maintaining the laser pressure at a particular value, for example 40 torr. The system also includes a gas output assembly including a vacuum pump and a capillary tube arrangement which operates within both a viscous flow region and a molecular flow region for drawing gas out of the laser in a controlled manner.

  3. Lagrangian solution of supersonic real gas flows

    SciTech Connect

    Loh, Chingyuen; Liou, Mengsing )

    1993-01-01

    This paper details the procedure of the real gas Riemann solution in the Lagrangian approach originally proposed by Loh and Hui for perfect gases. The extension to real gases is nontrivial and requires substantial development of an exact real-gas Riemann solver for the Lagrangian form of conservation laws. The first-order Gudonov scheme is enhanced for accuracy by adding limited anti-diffusive terms according to Sweby. Extensive calculations were made to test the accuracy and robustness of the present real gas Lagrangian approach, including complex wave interactions of different types. The accuracy for capturing 2D oblique waves and slip line is clearly demonstrated. In addition, we also show the real gas effect in a generic engine nozzle.

  4. Turbulent Mixing and Flow Resistance over Dunes and Scours

    NASA Astrophysics Data System (ADS)

    Dorrell, R. M.; Arfaie, A.; Burns, A. D.; Eggenhuisen, J. T.; Ingham, D. B.; McCaffrey, W. D.

    2014-12-01

    Flows in both submarine and fluvial channels are subject to lower boundary roughness. Lower boundary roughness occurs as frictional roughness suffered by the flow as it moves over the bed (skin friction) or drag suffered by the flow as it moves past a large obstacle (form drag). Critically, to overcome such roughness the flow must expend (lose) energy and momentum. However, whilst overcoming bed roughness the degree of turbulent mixing in the flow may be enhanced increasing the potential energy of the flow. This is of key importance to density driven flows as the balance between kinetic energy lost and potential energy gained (through turbulent diffusion of suspended particulate material) may critically affect the criterion for autosuspension. Moreover, this effect of lower boundary roughness may go as far as helping to explain why, even on shallow slopes, channelized submarine density currents can run out over ultra long distances. Such effects are also important in fluvial systems, where they will be responsible for maximizing or minimizing sediment capacity and competence in different flow environments. Numerical simulations are performed at a high Reynolds number (O (106)) for a series of crestal length to height ratio (c/h) at a fixed width to height ratio (w/h). Here, we present key findings of shear flow over a range of idealized bedform shapes. We show how the total basal shear stress is split into skin friction and form drag and identify how the respective magnitudes vary as a function of bedform shape and scale. Moreover we demonstrate how said bedforms affect the balance of energy lost (frictional) and energy gained (turbulent mixing). Overall, results demonstrate a slow reduction in turbulent mixing and flow resistance with decreasing bedform side slope angle. This suggests that both capacity and competence of the flow may be reduced through decrease in of the potential energy of the flow as a result of change in slope angles.

  5. Coupling compositional liquid gas Darcy and free gas flows at porous and free-flow domains interface

    NASA Astrophysics Data System (ADS)

    Masson, R.; Trenty, L.; Zhang, Y.

    2016-09-01

    This paper proposes an efficient splitting algorithm to solve coupled liquid gas Darcy and free gas flows at the interface between a porous medium and a free-flow domain. This model is compared to the reduced model introduced in [6] using a 1D approximation of the gas free flow. For that purpose, the gas molar fraction diffusive flux at the interface in the free-flow domain is approximated by a two point flux approximation based on a low-frequency diagonal approximation of a Steklov-Poincaré type operator. The splitting algorithm and the reduced model are applied in particular to the modelling of the mass exchanges at the interface between the storage and the ventilation galleries in radioactive waste deposits.

  6. Driver gas flow with fluctuations. [shock tube turbulent bursts

    NASA Technical Reports Server (NTRS)

    Johnson, J. A., III; Jones, W. R.; Santiago, J.

    1980-01-01

    A shock tube's driver gas can apparently provide flow with turbulent bursts. The fluctuations are interpreted using a boundary layer model of contact surface flow and results form a kinetic theory of turbulence. With this, a lower limit of 4 on the ratio of maximum to minimum turbulent intensities in contact surface instabilities has been estimated.

  7. Peak flowmeter resistance decreases peak expiratory flow in subjects with COPD.

    PubMed

    Miller, M R; Pedersen, O F

    2000-07-01

    Previous studies have shown that the added resistance of a mini-Wright peak expiratory flow (PEF) meter reduced PEF by approximately 8% in normal subjects because of gas compression reducing thoracic gas volume at PEF and thus driving elastic recoil pressure. We undertook a body plethysmographic study in 15 patients with chronic obstructive pulmonary disease (COPD), age 65.9 +/- 6.3 yr (mean +/- SD, range 53-75 yr), to examine whether their recorded PEF was also limited by the added resistance of a PEF meter. The PEF meter increased alveolar pressure at PEF (Ppeak) from 3.7 +/- 1.4 to 4.7 +/- 1.5 kPa (P = 0.01), and PEF was reduced from 3.6 +/- 1.3 l/s to 3.2 +/- 0.9 l/s (P = 0.01). The influence of flow limitation on PEF and Ppeak was evaluated by a simple four-parameter model based on the wave-speed concept. We conclude that added external resistance in patients with COPD reduced PEF by the same mechanisms as in healthy subjects. Furthermore, the much lower Ppeak in COPD patients is a consequence of more severe flow limitation than in healthy subjects and not of deficient muscle strength. PMID:10904063

  8. Progress in Creating Stabilized Gas Layers in Flowing Liquid Mercury

    SciTech Connect

    Wendel, Mark W; Felde, David K; Riemer, Bernie; Abdou, Ashraf A; D'Urso, Brian R; West, David L

    2009-01-01

    The Spallation Neutron Source (SNS) facility in Oak Ridge, Tennessee uses a liquid mercury target that is bombarded with protons to produce a pulsed neutron beam for materials research and development. In order to mitigate expected cavitation damage erosion (CDE) of the containment vessel, a two-phase flow arrangement of the target has been proposed and was earlier proven to be effective in significantly reducing CDE in non-prototypical target bodies. This arrangement involves covering the beam "window", through which the high-energy proton beam passes, with a protective layer of gas. The difficulty lies in establishing a stable gas/liquid interface that is oriented vertically with the window and holds up to the strong buoyancy force and the turbulent mercury flow field. Three approaches to establishing the gas wall have been investigated in isothermal mercury/gas testing on a prototypical geometry and flow: (1) free gas layer approach, (2) porous wall approach, and (3) surface-modified approach. The latter two of these approaches show success in that a stabilized gas layer is produced. Both of these successful approaches capitalize on the high surface energy of liquid mercury by increasing the surface area of the solid wall, thus increasing gas hold up at the wall. In this paper, a summary of these experiments and findings is presented as well as a description of the path forward toward incorporating the stabilized gas layer approach into a feasible gas/mercury SNS target design.

  9. Cylindrical Couette flows of a rarefied gas with evaporation and condensation: Reversal and bifurcation of flows

    NASA Astrophysics Data System (ADS)

    Sone, Yoshio; Sugimoto, Hiroshi; Aoki, Kazuo

    1999-02-01

    A rarefied gas between two coaxial circular cylinders made of the condensed phase of the gas is considered, where each cylinder is kept at a uniform temperature and is rotating at a constant angular velocity around its axis (cylindrical Couette flows of a rarefied gas with evaporation or condensation on the cylinders). The steady behavior of the gas, with special interest in bifurcation of a flow, is studied on the basis of kinetic theory from the continuum to the Knudsen limit. The solution shows profound variety: reversal of direction of evaporation-condensation with variation of the speed of rotation of the cylinders; contrary to the conventional cylindrical Couette flow without evaporation and condensation, bifurcation of a flow in a simple case where the state of the gas is circumferentially and axially uniform.

  10. Degradation in the efficiency of glass Resistive Plate Chambers operated without external gas supply

    NASA Astrophysics Data System (ADS)

    Baesso, P.; Cussans, D.; Thomay, C.; Velthuis, J.; Burns, J.; Quillin, S.; Stapleton, M.; Steer, C.

    2015-06-01

    Resistive plate chambers (RPC) are particle detectors commonly used by the high energy physics community. Their normal operation requires a constant flow of gas mixture to prevent self-poisoning which reduces the chamber's capability to detect particles. We studied how quickly the efficiency of two RPCs drops when operated in sealed mode, i.e. without refreshing the gas mixture. The test aim is to determine how RPCs could be used as particle detectors in non-laboratory applications, such as those exploiting muon tomography for geological imaging or homeland security. The two sealed RPCs were operated in proportional mode for a period of more than three months, and their efficiencies were recorded continuously and analysed in 8-hours intervals. The results show that the efficiency drops on average by 0.79 ± 0.01 % every 24 hours of operation and returns close to the initial value after purging the old gas mixture and flushing the chambers with fresh gas.

  11. Internal flows of relevance to gas-turbines

    NASA Astrophysics Data System (ADS)

    McGuirk, J. J.; Whitelaw, J. H.

    An attempt is made to formulate the best combination of equations, numerical discretization, and turbulence modeling assumptions for internal aerodynamic flows relevant to gas turbines. Typical of the problems treated are the solution of the three-dimensional, time-averaged Navier-Stokes equations for laminar and turbulent flow in 90-deg bends, and the relative advantages obtainable from parabolized forms in bends, in S-type intake ducts, in turbine blade passages, and in forced mixers. In the present discussion of the influence of numerical assumptions on the calculation of isothermal flow in gas turbine combustors, emphasis is given to the assessment and removal of numerical errors.

  12. DYNAMIC MODELING STRATEGY FOR FLOW REGIME TRANSITION IN GAS-LIQUID TWO-PHASE FLOWS

    SciTech Connect

    X. Wang; X. Sun; H. Zhao

    2011-09-01

    In modeling gas-liquid two-phase flows, the concept of flow regime has been used to characterize the global interfacial structure of the flows. Nearly all constitutive relations that provide closures to the interfacial transfers in two-phase flow models, such as the two-fluid model, are often flow regime dependent. Currently, the determination of the flow regimes is primarily based on flow regime maps or transition criteria, which are developed for steady-state, fully-developed flows and widely applied in nuclear reactor system safety analysis codes, such as RELAP5. As two-phase flows are observed to be dynamic in nature (fully-developed two-phase flows generally do not exist in real applications), it is of importance to model the flow regime transition dynamically for more accurate predictions of two-phase flows. The present work aims to develop a dynamic modeling strategy for determining flow regimes in gas-liquid two-phase flows through the introduction of interfacial area transport equations (IATEs) within the framework of a two-fluid model. The IATE is a transport equation that models the interfacial area concentration by considering the creation and destruction of the interfacial area, such as the fluid particle (bubble or liquid droplet) disintegration, boiling and evaporation; and fluid particle coalescence and condensation, respectively. For the flow regimes beyond bubbly flows, a two-group IATE has been proposed, in which bubbles are divided into two groups based on their size and shape (which are correlated), namely small bubbles and large bubbles. A preliminary approach to dynamically identifying the flow regimes is provided, in which discriminators are based on the predicted information, such as the void fraction and interfacial area concentration of small bubble and large bubble groups. This method is expected to be applied to computer codes to improve their predictive capabilities of gas-liquid two-phase flows, in particular for the applications in

  13. Equations and simulations for multiphase compressible gas-dust flows

    NASA Astrophysics Data System (ADS)

    Oran, Elaine; Houim, Ryan

    2014-11-01

    Dust-gas multiphase flows are important in physical scenarios such as dust explosions in coal mines, asteroid impact disturbing lunar regolith, and soft aircraft landings dispersing desert or beach sand. In these cases, the gas flow regime can range from highly subsonic and nearly incompressible to supersonic and shock-laden flow, the grain packing can range from fully packed to completely dispersed, and both the gas and the dust can range from chemically inert to highly exothermic. To cover the necessary parameter range in a single model, we solve coupled sets of Navier-Stokes equations describing the background gas and the dust. As an example, a reactive-dust explosion that results in a type of shock-flame complex is described and discussed. Sponsored by the University of Maryland through Minta Martin Endowment Funds in the Department of Aerospace Engineering, and through the Glenn L. Martin Institute Chaired Professorship at the A. James Clark School of Engineering.

  14. Vacuum rated flow controllers for inert gas ion engines

    NASA Technical Reports Server (NTRS)

    Pless, L. C.

    1987-01-01

    Electrical propulsion systems which use a gas as a propellant require a gas flowmeter/controller which is capable of operating in a vacuum environment. The presently available instruments in the required flow ranges are designed and calibrated for use at ambient pressure. These instruments operate by heating a small diameter tube through which the gas is flowing and then sensing the change in temperature along the length of the tube. This temperature change is a function of the flow rate and the gas heat capacity. When installed in a vacuum, the change in the external thermal characteristics cause the tube to overheat and the temperature sensors are then operating outside their calibrated range. In addition, the variation in heat capacity with temperature limit the accuracy obtainable. These problems and the work in progress to solve them are discussed.

  15. Gas-Particle Interactions in a Microgravity Flow Cell

    NASA Technical Reports Server (NTRS)

    Louge, Michel; Jenkins, James

    1999-01-01

    We are developing a microgravity flow cell in which to study the interaction of a flowing gas with relatively massive particles that collide with each other and with the moving boundaries of the cell. The absence of gravity makes possible the independent control of the relative motion of the boundaries and the flow of the gas. The cell will permit gas-particle interactions to be studied over the entire range of flow conditions over which the mixture is not turbulent. Within this range, we shall characterize the viscous dissipation of the energy of the particle fluctuations, measure the influence of particle-phase viscosity on the pressure drop along the cell, and observe the development of localized inhomogeneities that are likely to be associated with the onset of clusters. These measurements and observations should contribute to an understanding of the essential physics of pneumatic transport.

  16. Real life experience with multipath ultrasonic gas flow meters

    SciTech Connect

    Sakariassen, R.

    1996-12-31

    Multipath ultrasonic gas flow meters are to be considered as newcomers among flow meters for large, high pressure gas flows. Although the advantages of this type of meters are many and obvious, the metering community is still hesitating to go for it mainly because of lack of experience. The objective of this paper is to present the experience of Statoil after more than six years experience with multipath ultrasonic gas flow meters. Their experience includes laboratory testing and operation in the field for a variety of designs and dimensions. This paper presents the accuracy achieved by such meters including comparison between ultrasonic meters and orifice metering systems in operation, the unique possibilities that this type of meter offers for on-line verification of performance and installation effects. Of particular interest should be noted that in the vicinity of low-noise control valves, such meters could stop functioning completely if no precautions are taken.

  17. Lagrangian solution of supersonic real gas flows

    NASA Technical Reports Server (NTRS)

    Loh, Ching-Yuen; Liou, Meng-Sing

    1993-01-01

    The present extention of a Lagrangian approach of the Riemann solution procedure, which was originally proposed for perfect gases, to real gases, is nontrivial and requires the development of an exact real-gas Riemann solver for the Lagrangian form of the conservation laws. Calculations including complex wave interactions of various types were conducted to test the accuracy and robustness of the approach. Attention is given to the case of 2D oblique waves' capture, where a slip line is clearly in evidence; the real gas effect is demonstrated in the case of a generic engine nozzle.

  18. Intercooler flow path for gas turbines: CFD design and experiments

    SciTech Connect

    Agrawal, A.K.; Gollahalli, S.R.; Carter, F.L.

    1995-10-01

    The Advanced Turbine Systems (ATS) program was created by the U.S. Department of Energy to develop ultra-high efficiency, environmentally superior, and cost competitive gas turbine systems for generating electricity. Intercooling or cooling of air between compressor stages is a feature under consideration in advanced cycles for the ATS. Intercooling entails cooling of air between the low pressure (LP) and high pressure (BP) compressor sections of the gas turbine. Lower air temperature entering the HP compressor decreases the air volume flow rate and hence, the compression work. Intercooling also lowers temperature at the HP discharge, thus allowing for more effective use of cooling air in the hot gas flow path. The thermodynamic analyses of gas turbine cycles with modifications such as intercooling, recuperating, and reheating have shown that intercooling is important to achieving high efficiency gas turbines. The gas turbine industry has considerable interest in adopting intercooling to advanced gas turbines of different capacities. This observation is reinforced by the US Navys Intercooled-Recuperative (ICR) gas turbine development program to power the surface ships. In an intercooler system, the air exiting the LP compressor must be decelerated to provide the necessary residence time in the heat exchanger. The cooler air must subsequently be accelerated towards the inlet of the HP compressor. The circumferential flow nonuniformities inevitably introduced by the heat exchanger, if not isolated, could lead to rotating stall in the compressors, and reduce the overall system performance and efficiency. Also, the pressure losses in the intercooler flow path adversely affect the system efficiency and hence, must be minimized. Thus, implementing intercooling requires fluid dynamically efficient flow path with minimum flow nonuniformities and consequent pressure losses.

  19. Cascading Tesla Oscillating Flow Diode for Stirling Engine Gas Bearings

    NASA Technical Reports Server (NTRS)

    Dyson, Rodger

    2012-01-01

    Replacing the mechanical check-valve in a Stirling engine with a micromachined, non-moving-part flow diode eliminates moving parts and reduces the risk of microparticle clogging. At very small scales, helium gas has sufficient mass momentum that it can act as a flow controller in a similar way as a transistor can redirect electrical signals with a smaller bias signal. The innovation here forces helium gas to flow in predominantly one direction by offering a clear, straight-path microchannel in one direction of flow, but then through a sophisticated geometry, the reversed flow is forced through a tortuous path. This redirection is achieved by using microfluid channel flow to force the much larger main flow into this tortuous path. While microdiodes have been developed in the past, this innovation cascades Tesla diodes to create a much higher pressure in the gas bearing supply plenum. In addition, the special shape of the leaves captures loose particles that would otherwise clog the microchannel of the gas bearing pads.

  20. Gas-Liquid Flows and Phase Separation

    NASA Technical Reports Server (NTRS)

    McQuillen, John

    2004-01-01

    Common issues for space system designers include:Ability to Verify Performance in Normal Gravity prior to Deployment; System Stability; Phase Accumulation & Shedding; Phase Separation; Flow Distribution through Tees & Manifolds Boiling Crisis; Heat Transfer Coefficient; and Pressure Drop.The report concludes:Guidance similar to "A design that operates in a single phase is less complex than a design that has two-phase flow" is not always true considering the amount of effort spent on pressurizing, subcooling and phase separators to ensure single phase operation. While there is still much to learn about two-phase flow in reduced gravity, we have a good start. Focus now needs to be directed more towards system level problems .

  1. Droplet breakup in accelerating gas flows. Part 1: Primary atomization

    NASA Technical Reports Server (NTRS)

    Zajac, L. J.

    1973-01-01

    An experimental study of the effects of an accelerating gas flow on the atomization characteristics of liquid sprays was conducted. The sprays were produced by impinging two liquid jets. The liquid was molten wax, while the gas was nitrogen. The use of molten wax allowed for a quantitative measure of the resulting dropsize distribution. The effects of the accelerating gas flow on the formation of the spray were examined. The results of this study indicate that the parameters that most affect the resulting dropsize are the injector parameters of orifice diameter and injection velocity, the maximum gas velocity, and the distance from the injector face at which the maximum gas velocity is attained. Empirical correlations for both the mass median dropsize and the dropsize distribution are presented. These correlations can be readily incorporated into existing computer codes for the purpose of calculating rocket engine combustion performance.

  2. Flow field thermal gradient gas chromatography.

    PubMed

    Boeker, Peter; Leppert, Jan

    2015-09-01

    Negative temperature gradients along the gas chromatographic separation column can maximize the separation capabilities for gas chromatography by peak focusing and also lead to lower elution temperatures. Unfortunately, so far a smooth thermal gradient over a several meters long separation column could only be realized by costly and complicated manual setups. Here we describe a simple, yet flexible method for the generation of negative thermal gradients using standard and easily exchangeable separation columns. The measurements made with a first prototype reveal promising new properties of the optimized separation process. The negative thermal gradient and the superposition of temperature programming result in a quasi-parallel separation of components each moving simultaneously near their lowered specific equilibrium temperatures through the column. Therefore, this gradient separation process is better suited for thermally labile molecules such as explosives and natural or aroma components. High-temperature GC methods also benefit from reduced elution temperatures. Even for short columns very high peak capacities can be obtained. In addition, the gradient separation is particularly beneficial for very fast separations below 1 min overall retention time. Very fast measurements of explosives prove the benefits of using negative thermal gradients. The new concept can greatly reduce the cycle time of high-resolution gas chromatography and can be integrated into hyphenated or comprehensive gas chromatography setups. PMID:26235451

  3. Resistance to Water Flow in the Sorghum Plant 1

    PubMed Central

    Meyer, Wayne S.; Ritchie, Joe T.

    1980-01-01

    Knowledge of the location and magnitude of the resistance to water flow in a plant is fundamental for describing whole plant response to water stress. The reported magnitudes of these resistances vary widely, principally because of the difficulty of measuring water potential within the plant. A number of interrelated experiments are described in which the water potential of a covered, nontranspiring leaf attached to a transpiring sorghum plant (Sorghum bicolor [L.] Moench) was used as a measure of the potential at the root-shoot junction. This allowed a descriptive evaluation of plant resistance to be made. The water potentials of a covered, nontranspiring leaf and a nonabsorbing root in solution, both attached to an otherwise actively transpiring and absorbing plant, were found to be similar. This supported the hypothesis that covered leaf water potential was equilibrating at a point shared by the vascular connections of both leaves and roots, i.e. the nodal complex of the root-shoot junction or crown. The difference in potential between a covered and exposed leaf together with calculated individual leaf transpiration rates were used to evaluate the resistance between the plant crown and the exposed leaf lamina called the connection resistance. There was an apparent decrease in the connection resistance as the transpiration rate increased; this is qualitatively explained as plant capacitance. Assuming that the covered leaf water potential was equal to that in the root xylem at the point of water absorption in the experimental plants with relatively short root axes, calculated radial root resistances were strongly dependent on the transpiration rate. For plants with moderate to high transpiration rates the roots had a slightly larger resistance than the shoots. PMID:16661138

  4. About the statistical description of gas-liquid flows

    SciTech Connect

    Sanz, D.; Guido-Lavalle, G.; Carrica, P.

    1995-09-01

    Elements of the probabilistic geometry are used to derive the bubble coalescence term of the statistical description of gas liquid flows. It is shown that the Boltzmann`s hypothesis, that leads to the kinetic theory of dilute gases, is not appropriate for this kind of flows. The resulting integro-differential transport equation is numerically integrated to study the flow development in slender bubble columns. The solution remarkably predicts the transition from bubbly to slug flow pattern. Moreover, a bubbly bimodal size distribution is predicted, which has already been observed experimentally.

  5. Gas mass transfer for stratified flows

    SciTech Connect

    Duffey, R.B.; Hughes, E.D.

    1995-07-01

    We analyzed gas absorption and release in water bodies using existing surface renewal theory. We show a new relation between turbulent momentum and mass transfer from gas to water, including the effects of waves and wave roughness, by evaluating the equilibrum integral turbulent dissipation due to energy transfer to the water from the wind. Using Kolmogoroff turbulence arguments the gas transfer velocity, or mass transfer coefficient, is then naturally and straightforwardly obtained as a non-linear function of the wind speed drag coefficient and the square root of the molecular diffusion coefficient. In dimensionless form, the theory predicts the turbulent Sherwood number to be Sh{sub t} = (2/{radical}{pi}) Sc{sup 1/2}, where Sh{sub t} is based on an integral dissipation length scale in the air. The theory confirms the observed nonlinear variation of the mass transfer coefficient as a function of the wind speed; gives the correct transition with turbulence-centered models for smooth surfaces at low speeds; and predicts experimental data from both laboratory and environmental measurements within the data scatter. The differences between the available laboratory and field data measurements are due to the large differences in the drag coefficient between wind tunnels and oceans. The results also imply that the effect of direct aeration due to bubble entrainment at wave breaking is no more than a 20% increase in the mass transfer for the highest speeds. The theory has importance to mass transfer in both the geophysical and chemical engineering literature.

  6. Gas mass transfer for stratified flows

    SciTech Connect

    Duffey, R.B.; Hughes, E.D.

    1995-06-01

    We analyzed gas absorption and release in water bodies using existing surface renewal theory. We show a new relation between turbulent momentum and mass transfer from gas to water, including the effects of waves and wave roughness, by evaluating the equilibrium integral turbulent dissipation due to energy transfer to the water from the wind. Using Kolmogoroff turbulence arguments the gas transfer velocity, or mass transfer coefficient, is then naturally and straightforwardly obtained as a non-linear function of the wind speed drag coefficient and the square root of the molecular diffusion coefficient. In dimensionless form, the theory predicts the turbulent Sherwood number to be Sh{sub t} = (2/{radical}{pi})Sc{sup 1/2}, where Sh{sub t} is based on an integral dissipation length scale in the air. The theory confirms the observed nonlinear variation of the mass transfer coefficient as a function of the wind speed; gives the correct transition with turbulence-centered models for smooth surfaces at low speeds; and predicts experimental data from both laboratory and environmental measurements within the data scatter. The differences between the available laboratory and field data measurements are due to the large differences in the drag coefficient between wind tunnels and oceans. The results also imply that the effect of direct aeration due to bubble entrainment at wave breaking is no more than a 20% increase in the mass transfer for the highest speeds. The theory has importance to mass transfer in both the geo-physical and chemical engineering literature.

  7. Two parametric flow measurement in gas-liquid two-phase flow

    NASA Astrophysics Data System (ADS)

    Chen, Z.; Chen, C.; Xu, Y.; Zhao, Z.

    The importance and current development of two parametric measurement during two-phase flow are briefly reviewed in this paper. Gas-liquid two-phase two parametric metering experiments were conducted by using an oval gear meter and a sharp edged orifice mounted in series in a horizontal pipe. Compressed air and water were used as gas and liquid phases respectively. The correlations, which can be used to predict the total flow rate and volumetric quality of two-phase flow or volumetric flow rate of each phase, have also been proposed in this paper. Comparison of the calculated values of flow rate of each phase from the correlations with the test data showed that the root mean square fractional deviation for gas flow rate is 2.9 percent and for liquid flow rate 4.4 percent. The method proposed in this paper can be used to measure the gas and liquid flow rate in two-phase flow region without having to separate the phases.

  8. Axial flow positive displacement worm gas generator

    NASA Technical Reports Server (NTRS)

    Murrow, Kurt David (Inventor); Giffin, Rollin George (Inventor); Fakunle, Oladapo (Inventor)

    2010-01-01

    An axial flow positive displacement engine has an inlet axially spaced apart and upstream from an outlet. Inner and outer bodies have offset inner and outer axes extend from the inlet to the outlet through first, second, and third sections of a core assembly in serial downstream flow relationship. At least one of the bodies is rotatable about its axis. The inner and outer bodies have intermeshed inner and outer helical blades wound about the inner and outer axes respectively. The inner and outer helical blades extend radially outwardly and inwardly respectively. The helical blades have first, second, and third twist slopes in the first, second, and third sections respectively. The first twist slopes are less than the second twist slopes and the third twist slopes are less than the second twist slopes. A combustor section extends axially downstream through at least a portion of the second section.

  9. Turbine exhaust diffuser with region of reduced flow area and outer boundary gas flow

    DOEpatents

    Orosa, John

    2014-03-11

    An exhaust diffuser system and method for a turbine engine. The outer boundary may include a region in which the outer boundary extends radially inwardly toward the hub structure and may direct at least a portion of an exhaust flow in the diffuser toward the hub structure. At least one gas jet is provided including a jet exit located on the outer boundary. The jet exit may discharge a flow of gas downstream substantially parallel to an inner surface of the outer boundary to direct a portion of the exhaust flow in the diffuser toward the outer boundary to effect a radially outward flow of at least a portion of the exhaust gas flow toward the outer boundary to balance an aerodynamic load between the outer and inner boundaries.

  10. Flow resistance dynamics in step-pool stream channels: 1. Large woody debris and controls on total resistance

    USGS Publications Warehouse

    Wilcox, A.C.; Wohl, E.E.

    2006-01-01

    Flow resistance dynamics in step-pool channels were investigated through physical modeling using a laboratory flume. Variables contributing to flow resistance in step-pool channels were manipulated in order to measure the effects of various large woody debris (LWD) configurations, steps, grains, discharge, and slope on total flow resistance. This entailed nearly 400 flume runs, organized into a series of factorial experiments. Factorial analyses of variance indicated significant two-way and three-way interaction effects between steps, grains, and LWD, illustrating the complexity of flow resistance in these channels. Interactions between steps and LWD resulted in substantially greater flow resistance for steps with LWD than for steps lacking LWD. LWD position contributed to these interactions, whereby LWD pieces located near the lip of steps, analogous to step-forming debris in natural channels, increased the effective height of steps and created substantially higher flow resistance than pieces located farther upstream on step treads. Step geometry and LWD density and orientation also had highly significant effects on flow resistance. Flow resistance dynamics and the resistance effect of bed roughness configurations were strongly discharge-dependent; discharge had both highly significant main effects on resistance and highly significant interactions with all other variables. Copyright 2006 by the American Geophysical Union.

  11. Instrument Induced Linear Flow Resistance In Öresund

    NASA Astrophysics Data System (ADS)

    Green, M.; Stigebrandt, A.

    Previous studies of the flow resistance in Öresund indicate the presence of a linear rela- tionship between sea-level and flow rate. The linear term is superposed on the common quadratic relationship from bottom friction and form drag. In previous works, cross- stream geostrophy or generation of internal waves have explained the linear term. The present analysis is based on two different flow-rate data sets. The first set was the same data set used in earlier studies showing the linear term. It consists of data from RCM7 and S4. The second set was taken with ADCP. The observations were fitted to two different strait flow models. The first model had a quadratic flow resistance term only, whereas the second had both a quadratic and a linear term. In addition to the current data, sea-level observations from both ends of the strait were used. The analyses showed that the linear term is significant in the first data set but not in the second. This result holds regardless of season and part of data set and current meter and sea-level gauge combination. The only explanation is that it is an artefact caused by non-linear current meter response by the RCM7 and S4 instruments. These meters underestimate the velocity if it is higher than approximately 50 cm/s, which often is the case in Öresund. Published papers support this statement. The linear term is thus an artefact generated by the instruments, and unfortunately not a feature of the physics of the strait flow.

  12. Do tropical wetland plants possess convective gas flow mechanisms?

    PubMed

    Konnerup, Dennis; Sorrell, Brian K; Brix, Hans

    2011-04-01

    • Internal pressurization and convective gas flow, which can aerate wetland plants more efficiently than diffusion, are common in temperate species. Here, we present the first survey of convective flow in a range of tropical plants. • The occurrence of pressurization and convective flow was determined in 20 common wetland plants from the Mekong Delta in Vietnam. The diel variation in pressurization in culms and the convective flow and gas composition from stubbles were examined for Eleocharis dulcis, Phragmites vallatoria and Hymenachne acutigluma, and related to light, humidity and air temperature. • Nine of the 20 species studied were able to build up a static pressure of > 50 Pa, and eight species had convective flow rates higher than 1 ml min(-1). There was a clear diel variation, with higher pressures and flows during the day than during the night, when pressures and flows were close to zero. • It is concluded that convective flow through shoots and rhizomes is a common mechanism for below-ground aeration of tropical wetland plants and that plants with convective flow might have a competitive advantage for growth in deep water. PMID:21175639

  13. Hybrid continuum-molecular modelling of multiscale internal gas flows

    NASA Astrophysics Data System (ADS)

    Patronis, Alexander; Lockerby, Duncan A.; Borg, Matthew K.; Reese, Jason M.

    2013-12-01

    We develop and apply an efficient multiscale method for simulating a large class of low-speed internal rarefied gas flows. The method is an extension of the hybrid atomistic-continuum approach proposed by Borg et al. (2013) [28] for the simulation of micro/nano flows of high-aspect ratio. The major new extensions are: (1) incorporation of fluid compressibility; (2) implementation using the direct simulation Monte Carlo (DSMC) method for dilute rarefied gas flows, and (3) application to a broader range of geometries, including periodic, non-periodic, pressure-driven, gravity-driven and shear-driven internal flows. The multiscale method is applied to micro-scale gas flows through a periodic converging-diverging channel (driven by an external acceleration) and a non-periodic channel with a bend (driven by a pressure difference), as well as the flow between two eccentric cylinders (with the inner rotating relative to the outer). In all these cases there exists a wide variation of Knudsen number within the geometries, as well as substantial compressibility despite the Mach number being very low. For validation purposes, our multiscale simulation results are compared to those obtained from full-scale DSMC simulations: very close agreement is obtained in all cases for all flow variables considered. Our multiscale simulation is an order of magnitude more computationally efficient than the full-scale DSMC for the first and second test cases, and two orders of magnitude more efficient for the third case.

  14. Hybrid continuum–molecular modelling of multiscale internal gas flows

    SciTech Connect

    Patronis, Alexander; Lockerby, Duncan A.; Borg, Matthew K.; Reese, Jason M.

    2013-12-15

    We develop and apply an efficient multiscale method for simulating a large class of low-speed internal rarefied gas flows. The method is an extension of the hybrid atomistic–continuum approach proposed by Borg et al. (2013) [28] for the simulation of micro/nano flows of high-aspect ratio. The major new extensions are: (1) incorporation of fluid compressibility; (2) implementation using the direct simulation Monte Carlo (DSMC) method for dilute rarefied gas flows, and (3) application to a broader range of geometries, including periodic, non-periodic, pressure-driven, gravity-driven and shear-driven internal flows. The multiscale method is applied to micro-scale gas flows through a periodic converging–diverging channel (driven by an external acceleration) and a non-periodic channel with a bend (driven by a pressure difference), as well as the flow between two eccentric cylinders (with the inner rotating relative to the outer). In all these cases there exists a wide variation of Knudsen number within the geometries, as well as substantial compressibility despite the Mach number being very low. For validation purposes, our multiscale simulation results are compared to those obtained from full-scale DSMC simulations: very close agreement is obtained in all cases for all flow variables considered. Our multiscale simulation is an order of magnitude more computationally efficient than the full-scale DSMC for the first and second test cases, and two orders of magnitude more efficient for the third case.

  15. Development of Resistive Electrode Gas Electron Multiplier (RE-GEM)

    NASA Technical Reports Server (NTRS)

    Yoshikawa, A.; Tamagawa, T.; Iwahashi, T.; Asami, F.; Takeuchi, Y.; Hayato, A.; Hamagaki, H.; Gunji, T.; Akimoto, R.; Nukariya, A.; Hayashi, S.; Ueno, K.; Ochi, A.; Oliveria, R.

    2012-01-01

    We successfully produced Resistive-Electrode Gas Electron Multiplier (RE-GEM) which has resistive electrodes instead of the metal ones which are employed for the standard GEM foils. RE-GEM has a resistive electrode of 25 micron-thick and an insulator layer of 100 micron-thick. The hole structure of RE-GEM is a single conical with the wider and narrower hole diameters of 80 micron and 60 micron, respectively. A hole pitch of RE-GEM is 140 micron. We obtained the maximum gain of about 600 and the typical energy resolution of about 20% (FWHM) at an applied voltage between the resistive electrodes of 620 V, using a collimated 8 keV X-rays from a generator in a gas mixture of 70% Ar and 30% CO2 by volume at the atmospheric pressure. We measured the effective gain as a function of the electric field of the drift region and obtained the maximum gain at an drift field of 0.5 kV/cm.

  16. Computation of layers in Eulerian gas flow

    NASA Astrophysics Data System (ADS)

    Hemker, P. W.

    A mixed defect-correction iteration process (MDCP) is applied for the implicit numerical solution of steady Euler flows. Without stability problems, MDCP can be applied with a straightforward 2nd order scheme such as central differences. A nearly monotonous representation of the thin layers is obtained by application of a 2nd order scheme with a proper flux-limiter. When combined with nonlinear multigrid (FAS) cycles, a few FAS-MDCP iteration steps are sufficient to determine the two solutions up to truncation-error accuracy.

  17. A systematic analysis of a flow-switching modulator for comprehensive two-dimensional gas chromatography.

    PubMed

    Laclair, Russell W; Bueno, Pedro A; Seeley, John V

    2004-04-01

    A simple flow-switching device has been designed for use as a comprehensive two-dimensional gas chromatography modulator. The device is constructed from fused silica tubing, t-unions, and a solenoid valve. A series of experiments were conducted to determine the influence of primary flow, secondary flow, modulation time, and device dimensions on the performance of the modulator. The flow-switching device was found to produce pulses with widths near the theoretical minimum. High-performance was maintained over a wide range of modulation times. The flow-switching device did not introduce extra broadening along the primary retention axis. However, the modulator performance was optimal only over a narrow range of primary to secondary flow ratios. The ideal flow ratio is determined by the dimensions of the tubes that connect the t-unions. A simple flow resistance model has been developed that can predict the dimensions that will produce optimal results for a specified primary to secondary flow ratio. Thus, it is possible to construct a device that operates near the theoretical limit without numerous alterations. Under optimal conditions, the flow switching modulator generates peaks that are narrower than those produced by a diaphragm valve. PMID:15335074

  18. Gas, liquids flow rates hefty at Galveston Bay discovery

    SciTech Connect

    Petzet, G.A.

    1998-01-19

    Extended flow tests indicate a large Vicksburg (Oligocene) gas, condensate, and oil field is about to be developed in western Galveston Bay. Internal estimates indicates that ultimate recovery from the fault block in which the discovery well was drilled could exceed 1 tcf of gas equivalent of proved, possible, and probable reserves. The paper discusses the test program for this field and other prospects in the Galveston Bay area.

  19. Time-Resolved Rayleigh Scattering Measurements in Hot Gas Flows

    NASA Technical Reports Server (NTRS)

    Mielke, Amy F.; Elam, Kristie A.; Sung, Chih-Jen

    2008-01-01

    A molecular Rayleigh scattering technique is developed to measure time-resolved gas velocity, temperature, and density in unseeded gas flows at sampling rates up to 32 kHz. A high power continuous-wave laser beam is focused at a point in an air flow field and Rayleigh scattered light is collected and fiber-optically transmitted to the spectral analysis and detection equipment. The spectrum of the light, which contains information about the temperature and velocity of the flow, is analyzed using a Fabry-Perot interferometer. Photomultipler tubes operated in the photon counting mode allow high frequency sampling of the circular interference pattern to provide time-resolved flow property measurements. Mean and rms velocity and temperature fluctuation measurements in both an electrically-heated jet facility with a 10-mm diameter nozzle and also in a hydrogen-combustor heated jet facility with a 50.8-mm diameter nozzle at NASA Glenn Research Center are presented.

  20. Prediction of strongly-heated internal gas flows

    SciTech Connect

    McEligot, D.M. ||; Shehata, A.M.; Kunugi, Tomoaki |

    1997-12-31

    The purposes of the present article are to remind practitioners why the usual textbook approaches may not be appropriate for treating gas flows heated from the surface with large heat fluxes and to review the successes of some recent applications of turbulence models to this case. Simulations from various turbulence models have been assessed by comparison to the measurements of internal mean velocity and temperature distributions by Shehata for turbulent, laminarizing and intermediate flows with significant gas property variation. Of about fifteen models considered, five were judged to provide adequate predictions.

  1. Gas flow between coaxial tubes: impedance to gas flow in an endotracheal tube increases with a catheter within.

    PubMed

    Magee, Patrick T

    2012-06-01

    The insertion of a suction catheter or a bronchoscope down an endotracheal tube increases the resistance to gas flow down the tube. The extent to which this occurs depends on the relative diameters of the endotracheal tube and the coaxially introduced catheter. This study utilises a laboratory model to quantify this effect, using a steady flow down an annulus between two tubes whose long axes lie co-axially. Two diameters of an endotracheal tube were modelled to represent flow down adult and neonatal endotracheal tubes; these were of internal diameter (d(o)) 6.3 mm and 3.2 mm, and of length (L) 555 mm. A steady flow of air was generated to pass through the model 'endotracheal' tube. Flowrates were calculated to give Re of approximately 5000 for the larger endotracheal tube, and of approximately 1300 for the smaller. These values correspond to clinically appropriate flowrates in adult and neonatal patients, respectively. The pressure drop deltaPo down the endotracheal tube was measured initially without any obstruction, using a calibrated pressure transducer. Catheters of diameter (d(i)) 0.8 mm, 1.6 mm, and 3.2 mm were introduced into the larger diameter endotracheal tube, while catheters of 0.8 mm and 1.6 mm were introduced into the smaller one, and flow was restored to its original value. The pressure drops deltaP down the endotracheal tubes were measured with the catheters introduced a length 'x' into the tube, to x = L/2 and to x = L. Results are compared with a theoretical calculation on the basis of laminar flow for concentric tubes. If a sampling tube or suction catheter is used down the length of an infant's endotracheal tube, the results show that for most values of do/di, there is a significant rise in deltaP/deltaPo. Where a flexible bronchoscope is used down an endotracheal tube or a telescope down a rigid bronchoscope, the value of deltaP/deltaP(o) may also increase unacceptably where d(o)/d(i) is low. The results show that for equal d(o)/d(i), and

  2. Response time correlations for platinum resistance thermometers in flowing fluids

    NASA Technical Reports Server (NTRS)

    Pandey, D. K.; Ash, R. L.

    1985-01-01

    The thermal response of two types of Platinum Resistance Thermometers (PRT's), which are being considered for use in the National Transonic Wind Tunnel Facility, were studied. Response time correlations for each PRT, in flowing water, oil and air, were established separately. A universal correlation, tau WOA = 2.0 + 1264, 9/h, for a Hy-Cal Sensor (with a reference resistance of 100 ohm) within an error of 20% was established while the universal correlation for the Rosemount Sensor (with a reference resistance of 1000 ohm), tau OA = 0.122 + 1105.6/h, was found with a maximum percentage error of 30%. The correlation for the Rosemount Sensor was based on air and oil data only which is certainly not sufficient to make a correlation applicable to every condition. Therefore, the correlation needs more data to be gathered in different fluids. Also, it is necessary to state that the calculation of the parameter, h, was based on the available heat transfer correlations, whose accuracies are already reported in literature uncertain within 20-30%. Therefore, the universal response constant correlations established here for the Hy-Cal and Rosemount sensors are consistent with the uncertainty in the input data and are recommended for future use in flowing liquids and gases.

  3. Dynamic Modeling Strategy for Flow Regime Transition in Gas-Liquid Two-Phase Flows

    SciTech Connect

    Xia Wang; Xiaodong Sun; Benjamin Doup; Haihua Zhao

    2012-12-01

    In modeling gas-liquid two-phase flows, the concept of flow regimes has been widely used to characterize the global interfacial structure of the flows. Nearly all constitutive relations that provide closures to the interfacial transfers in two-phase flow models, such as the two-fluid model, are flow regime dependent. Current nuclear reactor safety analysis codes, such as RELAP5, classify flow regimes using flow regime maps or transition criteria that were developed for steady-state, fully-developed flows. As twophase flows are dynamic in nature, it is important to model the flow regime transitions dynamically to more accurately predict the two-phase flows. The present work aims to develop a dynamic modeling strategy to determine flow regimes in gas-liquid two-phase flows through introduction of interfacial area transport equations (IATEs) within the framework of a two-fluid model. The IATE is a transport equation that models the interfacial area concentration by considering the creation of the interfacial area, fluid particle (bubble or liquid droplet) disintegration, boiling and evaporation, and the destruction of the interfacial area, fluid particle coalescence and condensation. For flow regimes beyond bubbly flows, a two-group IATE has been proposed, in which bubbles are divided into two groups based on their size and shapes, namely group-1 and group-2 bubbles. A preliminary approach to dynamically identify the flow regimes is discussed, in which discriminator s are based on the predicted information, such as the void fraction and interfacial area concentration. The flow regime predicted with this method shows good agreement with the experimental observations.

  4. Correlations predict gas-condensate flow through chokes

    SciTech Connect

    Osman, M.E.; Dokla, M.E. )

    1992-03-16

    Empirical correlations have developed to describe the behavior of gas-condensate flow through surface chokes. The field data were obtained from a Middle East gas-condensate reservoir and cover a wide range of flow rates and choke sizes. Correlations for gas-condensate systems have not been previously available. These new correlations will help the production engineer to size chokes for controlling production of gas-condensate wells and predicting the performance of flowing wells under various conditions. Four forms of the correlation were developed and checked against data. One form correlates choke upstream pressure with liquid production rate, gas/liquid ratio, and choke size. The second form uses gas production rate instead of the liquid rate. The other two forms use the pressure drop across the choke instead of upstream pressure. All four of the correlations are presented in this paper as nomograms. Accuracy of the different forms was checked with five error parameters: root-mean-square error, mean-absolute error, simple-mean error, mean-percent-age-absolute error, and mean-percentage error. The correlation was found to be the most accurate when pressure-drop data are used instead of choke upstream pressure.

  5. Structural support bracket for gas flow path

    DOEpatents

    None

    2016-08-02

    A structural support system is provided in a can annular gas turbine engine having an arrangement including a plurality of integrated exit pieces (IEPs) forming an annular chamber for delivering gases from a plurality of combustors to a first row of turbine blades. A bracket structure is connected between an IEP and an inner support structure on the engine. The bracket structure includes an axial bracket member attached to an IEP and extending axially in a forward direction. A transverse bracket member has an end attached to the inner support structure and extends circumferentially to a connection with a forward end of the axial bracket member. The transverse bracket member provides a fixed radial position for the forward end of the axial bracket member and is flexible in the axial direction to permit axial movement of the axial bracket member.

  6. Influence of flowing helium gas on plasma plume formation in atmospheric pressure plasma

    SciTech Connect

    Yambe, Kiyoyuki; Konda, Kohmei; Ogura, Kazuo

    2015-05-15

    We have studied atmospheric pressure plasma generated using a quartz tube, helium gas, and a foil electrode by applying RF high voltage. The atmospheric pressure plasma in the form of a bullet is released as a plume into the atmosphere. The helium gas flowing out of quartz tube mixes with air, and the flow channel is composed of the regions of flowing helium gas and air. The plasma plume length is equivalent to the reachable distance of flowing helium gas. Although the amount of helium gas on the flow channel increases by increasing the inner diameter of quartz tube at the same gas flow velocity, the plasma plume length peaks at around 8 m/s of gas flow velocity, which is the result that a flow of helium gas is balanced with the amount of gas. The plasma plume is formed at the boundary region where the flow of helium gas is kept to the wall of the air.

  7. Laser absorption phenomena in flowing gas devices

    NASA Technical Reports Server (NTRS)

    Chapman, P. K.; Otis, J. H.

    1976-01-01

    A theoretical and experimental investigation is presented of inverse Bremsstrahlung absorption of CW CO2 laser radiation in flowing gases seeded with alkali metals. In order to motivate this development, some simple models are described of several space missions which could use laser powered rocket vehicles. Design considerations are given for a test call to be used with a welding laser, using a diamond window for admission of laser radiation at power levels in excess of 10 kW. A detailed analysis of absorption conditions in the test cell is included. The experimental apparatus and test setup are described and the results of experiments presented. Injection of alkali seedant and steady state absorption of the laser radiation were successfully demonstrated, but problems with the durability of the diamond windows at higher powers prevented operation of the test cell as an effective laser powered thruster.

  8. Flow mechanism of Forchheimer's cubic equation in high-velocity radial gas flow through porous media

    SciTech Connect

    Ezeudembah, A.S.; Dranchuk, P.M.

    1982-01-01

    Formal derivation of Forchheimer's cubic equation is made by considering the kinetic energy equation of mean flow and dimensional relations for one-dimensional, linear, incompressible fluid flow. By the addition of the cubic term, this equation is regarded as a modified Forchheimer's quadratic equation which accounts for the flow rates obtained beyond the laminar flow condition. The cubic equation spans a wide range of flow rates and regimes. For suitable use in gas flow studies, this equation has been adapted, modified, and corrected for the gas slippage effect. The physical basis of the cubic term has been established by using boundary layer theory to explain the high-velocity, high-pressure flow behavior through a porous path. Gamma, the main parameter in the cubic term, is related directly to a characteristic, dimensionless shape factor which is significant at higher flow rates. It is inversely related to viscosity, but has no dependence on the gas slippage coefficient in the higher flow regime. 25 references.

  9. Influence of argon gas flow on mechanical and electrical properties of sputtered titanium nitride thin films

    NASA Astrophysics Data System (ADS)

    Khojier, Kaykhosrow; Savaloni, Hadi; Shokrai, Ebrahim; Dehghani, Zohreh; Dehnavi, Naser Zare

    2013-07-01

    Titanium nitrides have good mechanical, tribological, electrical, biomedical, and optical properties; therefore, they are used to harden and protect cutting and sliding surfaces, as semiconductor devices, and as a nontoxic exterior for biomedical applications. The dependence of the mechanical and electrical properties of titanium nitride thin films deposited on silicon substrates by direct-current reactive magnetron sputtering technique on argon gas flow (in the range of 8 to 20 sccm) was investigated. The crystallographic structure of the films was studied by X-ray diffraction (XRD), while surface morphology was studied using atomic force microscopy (AFM). Mechanical and electrical properties of these films were investigated by nanoindentation test and a four-point probe instrument, respectively. The XRD patterns showed titanium nitride (TiN) formation with a face-centered cubic structure for all samples. It was also observed that (111) crystallographic direction was the preferred orientation for TiN thin films which became more pronounced with increasing argon gas flow. The AFM images showed a granular structure for TiN layers. The hardness, crystallite/grain size (obtained from XRD and AFM), and surface roughness increased with the flow of argon gas, while elastic modulus and dislocation density in the films decreased. The study on electrical properties showed that the dependence of voltage with current for all samples was linear, and film resistivity was increased with argon gas flow.

  10. Disturbed flow and flow accelerated corrosion in oil and gas production

    SciTech Connect

    Efird, K.D.

    1998-12-31

    The effect of fluid flow on corrosion of steel in oil and gas environments involves a complex interaction of physical and chemical parameters. The basic requirement for any corrosion to occur is the existence of liquid water contacting the pipe wall, which is primarily controlled by the flow regime. The effect of flow on corrosion, or flow accelerated corrosion, is defined by the mass transfer and wall shear stress parameters existing in the water phase that contacts the pipe wall. While existing fluid flow equations for mass transfer and wall shear stress relate to equilibrium conditions, disturbed flow introduces non-equilibrium, steady state conditions not addressed by these equations, and corrosion testing in equilibrium conditions cannot be effectively related to corrosion in disturbed flow. The problem in relating flow effects to corrosion is that steel corrosion failures in oil and gas environments are normally associated with disturbed flow conditions as a result of weld beads, preexisting pits, bends, flanges, valves, tubing connections, etc. Steady state mass transfer and wall shear stress relationships to steel corrosion and corrosion testing are required for their application to corrosion of steel under disturbed flow conditions. A procedure is described to relate the results of a corrosion test directly to corrosion in an operation system where disturbed flow conditions are expected, or must be considered.

  11. Modeling of Liquid Flow in a Packed Bed in the Presence of Gas Flow

    NASA Astrophysics Data System (ADS)

    Singh, V.; Gupta, G. S.; Sarkar, S.

    2007-06-01

    Liquid metal and slag descend through a porous coke matrix in the lower part of an iron making blast furnace. The size of the raceway is an important factor in determining the gas penetration into the bed, which pushes the liquid toward the deadman region. This, in turn, affects the gas flow in the bed. The current study tries to explain theoretically the effect of cavity size hysteresis on gas-liquid distribution in a packed bed. The liquid flow has been modeled considering it to be discrete in nature. The turbulent nature of gas flow has been modeled using the k-ɛ model for turbulent flow. The model results have been verified on a structured package. It is observed that the liquid is pushed away further from the nozzle-side wall in the case of decreasing gas velocity than increasing gas velocity at the same inlet gas velocity. The implications of the current study to the dropping zone of a blast furnace have been discussed.

  12. Hot Gas Flows in T Tauri Stars

    NASA Astrophysics Data System (ADS)

    Ardila, David R.; Herczeg, G.; Gregory, S. G.; Ingleby, L.; France, K.; Brown, A.; Edwards, S.; Linsky, J.; Yang, H.; Valenti, J. A.; Johns-Krull, C. M.; Alexander, R.; Bergin, E. A.; Bethell, T.; Brown, J.; Calvet, N.; Espaillat, C.; Hervé, A.; Hillenbrand, L.; Hussain, G.; Roueff, E.; Schindhelm, E.; Walter, F. M.

    2013-01-01

    We describe observations of the hot gas 1e5 K) ultraviolet lines C IV and He II, in Classical and Weak T Tauri Stars (CTTSs, WTTSs). Our goal is to provide observational constraints for realistic models. Most of the data for this work comes from the Hubble proposal “The Disks, Accretion, and Outflows (DAO) of T Tau stars” (PI Herczeg). The DAO program is the largest and most sensitive high resolution spectroscopic survey of young stars in the UV ever undertaken and it provides a rich source of information for these objects. The sample of high resolution COS and STIS spectra presented here comprises 35 stars: one Herbig Ae star, 28 CTTSs, and 6 WTTSs. For CTTSs, the lines consist of two kinematic components. The relative strengths of the narrow and broad components (NC, BC) are similar in C IV but in He II the NC is stronger than the BC, and dominates the line profile. We do not find correlations between disk inclination and the velocity centroid, width, or shape of the CIV line profile. The NC of the C IV line in CTTSs increases in strength with accretion rate, and its contribution to the line increases from ˜20% to ˜80%, for the accretion rates considered here (1e-10 to 1e-7 Msun/yr). The CTTSs C IV lines are redshifted by ˜20 km/s while the CTTSs He II are redshifted by ˜10 km/s. Because the He II line and the C IV NC have the same width in CTTSs and in WTTSs, but are correlated with accretion, we suggest that they are produced in the stellar transition region. The accretion shock model predicts that the velocity of the post-shock emission should be 4x smaller than the velocity of the pre-shock emission. Identifying the post-shock emission with the NC and the pre-shock with the BC, we find that this is approximately the case in 11 out of 23 objects. The model cannot explain 11 systems in which the velocity of the NC is smaller than the velocity of the BC, or systems in which one of the velocities is negative (five CTTSs). The hot gas lines in some systems

  13. Design and Uncertainty Analysis for a PVTt Gas Flow Standard

    PubMed Central

    Wright, John D.; Johnson, Aaron N.; Moldover, Michael R.

    2003-01-01

    A new pressure, volume, temperature, and, time (PVTt) primary gas flow standard at the National Institute of Standards and Technology has an expanded uncertainty (k = 2) of between 0.02 % and 0.05 %. The standard spans the flow range of 1 L/min to 2000 L/min using two collection tanks and two diverter valve systems. The standard measures flow by collecting gas in a tank of known volume during a measured time interval. We describe the significant and novel features of the standard and analyze its uncertainty. The gas collection tanks have a small diameter and are immersed in a uniform, stable, thermostatted water bath. The collected gas achieves thermal equilibrium rapidly and the uncertainty of the average gas temperature is only 7 mK (22 × 10−6 T). A novel operating method leads to essentially zero mass change in and very low uncertainty contributions from the inventory volume. Gravimetric and volume expansion techniques were used to determine the tank and the inventory volumes. Gravimetric determinations of collection tank volume made with nitrogen and argon agree with a standard deviation of 16 × 10−6 VT. The largest source of uncertainty in the flow measurement is drift of the pressure sensor over time, which contributes relative standard uncertainty of 60 × 10−6 to the determinations of the volumes of the collection tanks and to the flow measurements. Throughout the range 3 L/min to 110 L/min, flows were measured independently using the 34 L and the 677 L collection systems, and the two systems agreed within a relative difference of 150 × 10−6. Double diversions were used to evaluate the 677 L system over a range of 300 L/min to 1600 L/min, and the relative differences between single and double diversions were less than 75 × 10−6. PMID:27413592

  14. A Two-Dimensional Compressible Gas Flow Code

    Energy Science and Technology Software Center (ESTSC)

    1995-03-17

    F2D is a general purpose, two dimensional, fully compressible thermal-fluids code that models most of the phenomena found in situations of coupled fluid flow and heat transfer. The code solves momentum, continuity, gas-energy, and structure-energy equations using a predictor-correction solution algorithm. The corrector step includes a Poisson pressure equation. The finite difference form of the equation is presented along with a description of input and output. Several example problems are included that demonstrate the applicabilitymore » of the code in problems ranging from free fluid flow, shock tubes and flow in heated porous media.« less

  15. Review of coaxial flow gas core nuclear rocket fluid mechanics

    NASA Technical Reports Server (NTRS)

    Weinstein, H.

    1976-01-01

    Almost all of the fluid mechanics research associated with the coaxial flow gas core reactor ended abruptly with the interruption of NASA's space nuclear program because of policy and budgetary considerations in 1973. An overview of program accomplishments is presented through a review of the experiments conducted and the analyses performed. Areas are indicated where additional research is required for a fuller understanding of cavity flow and of the factors which influence cold and hot flow containment. A bibliography is included with graphic material.

  16. Large-Flow-Area Flow-Selective Liquid/Gas Separator

    NASA Technical Reports Server (NTRS)

    Vasquez, Arturo; Bradley, Karla F.

    2010-01-01

    This liquid/gas separator provides the basis for a first stage of a fuel cell product water/oxygen gas phase separator. It can separate liquid and gas in bulk in multiple gravity environments. The system separates fuel cell product water entrained with circulating oxygen gas from the outlet of a fuel cell stack before allowing the gas to return to the fuel cell stack inlet. Additional makeup oxygen gas is added either before or after the separator to account for the gas consumed in the fuel cell power plant. A large volume is provided upstream of porous material in the separator to allow for the collection of water that does not exit the separator with the outgoing oxygen gas. The water then can be removed as it continues to collect, so that the accumulation of water does not impede the separating action of the device. The system is designed with a series of tubes of the porous material configured into a shell-and-tube heat exchanger configuration. The two-phase fluid stream to be separated enters the shell-side portion of the device. Gas flows to the center passages of the tubes through the porous material and is then routed to a common volume at the end of the tubes by simple pressure difference from a pumping device. Gas flows through the porous material of the tubes with greater ease as a function of the ratio of the dynamic viscosity of the water and gas. By careful selection of the dimensions of the tubes (wall thickness, porosity, diameter, length of the tubes, number of the tubes, and tube-to-tube spacing in the shell volume) a suitable design can be made to match the magnitude of water and gas flow, developed pressures from the oxygen reactant pumping device, and required residual water inventory for the shellside volume.

  17. Empirical slip and viscosity model performance for microscale gas flows.

    SciTech Connect

    Gallis, Michail A.; Boyd, Iain D.; McNenly, Matthew J.

    2004-07-01

    For the simple geometries of Couette and Poiseuille flows, the velocity profile maintains a similar shape from continuum to free molecular flow. Therefore, modifications to the fluid viscosity and slip boundary conditions can improve the continuum based Navier-Stokes solution in the non-continuum non-equilibrium regime. In this investigation, the optimal modifications are found by a linear least-squares fit of the Navier-Stokes solution to the non-equilibrium solution obtained using the direct simulation Monte Carlo (DSMC) method. Models are then constructed for the Knudsen number dependence of the viscosity correction and the slip model from a database of DSMC solutions for Couette and Poiseuille flows of argon and nitrogen gas, with Knudsen numbers ranging from 0.01 to 10. Finally, the accuracy of the models is measured for non-equilibrium cases both in and outside the DSMC database. Flows outside the database include: combined Couette and Poiseuille flow, partial wall accommodation, helium gas, and non-zero convective acceleration. The models reproduce the velocity profiles in the DSMC database within an L{sub 2} error norm of 3% for Couette flows and 7% for Poiseuille flows. However, the errors in the model predictions outside the database are up to five times larger.

  18. Long arc stabilities with various arc gas flow rates

    NASA Astrophysics Data System (ADS)

    Maruyama, K.; Takeda, K.; Sugimoto, M.; Noguchi, Y.

    2014-11-01

    A new arc torch for use in magnetically driven arc device was developed with a commercially available TIG welding arc torch. The torch has a water-cooling system to the torch nozzle and has a nozzle nut to supply a swirling-free plasma gas flow. Its endurance against arc thermal load is examined. Features of its generated arc are investigated.

  19. Back-Pressure Regulator for Large Gas Flows

    NASA Technical Reports Server (NTRS)

    Theodore, E. A.; Chin, F.

    1985-01-01

    Cost reduced, and safety enhanced. Pipe exit partially obstructed by conical throat plug. When pressure in pipe falls below (or rises above) desired back pressure, plug automatically moved in (or out). Applications of system lie in environmental testing or production facilities requiring large gas flows at low pressures.

  20. Pockels-effect cell for gas-flow simulation

    NASA Technical Reports Server (NTRS)

    Weimer, D.

    1982-01-01

    A Pockels effect cell using a 75 cu cm DK*P crystal was developed and used as a gas flow simulator. Index of refraction gradients were produced in the cell by the fringing fields of parallel plate electrodes. Calibration curves for the device were obtained for index of refraction gradients in excess of .00025 m.

  1. Turbulence modeling of gas-solid suspension flows

    NASA Technical Reports Server (NTRS)

    Chen, C. P.

    1988-01-01

    The purpose here is to discuss and review advances in two-phase turbulent modeling techniques and their applications in various gas-solid suspension flow situations. In addition to the turbulence closures, heat transfer effect, particle dispersion and wall effects are partially covered.

  2. Measuring gas flow rates in the Milky Way

    NASA Astrophysics Data System (ADS)

    Wakker, Bart

    2010-09-01

    Gas flows out of and into the Milky Way are a crucial element in its evolution. Supernovae heat gas in the disk and lift it into the halo. Tidal streams and instabilities in the hot Galactic corona result in an inflow of low-metallicity gas. These flows can be observed in the form of the high-velocity clouds {HVCs}. Their location, brightness, distances, ionization structure and metallicities can be used to determine the conditions in the gaseous disk and halo as well as the rate of mass flow corresponding to the different processes. So far, sufficient information to derive an associated mass flow rate is available for just 5 HVCs. We propose to observe 20 AGNs toward most of the other HVC complexes as well as toward a few small clouds, in order to derive a metallicity for almost every HVC complex, which will complement distance measurements that have been or will be obtained in our ongoing program. Combining all the data, we can derive {a} the rate of the circulation of gas between disk and halo, constraining the Galactic supernova rate and {b} the accretion rate of low-metallicity material that feeds star formation over 10 Gyr, which will constrain both models of galactic chemical evolution and models of the conditions in the hot galactic corona.

  3. Effects of argon gas flow rate on laser-welding.

    PubMed

    Takayama, Yasuko; Nomoto, Rie; Nakajima, Hiroyuki; Ohkubo, Chikahiro

    2012-01-01

    The purpose of this study was to evaluate the effects of the rate of argon gas flow on joint strength in the laser-welding of cast metal plates and to measure the porosity. Two cast plates (Ti and Co-Cr alloy) of the same metal were abutted and welded together. The rates of argon gas flow were 0, 5 and 10 L/min for the Co-Cr alloy, and 5 and 10 L/min for the Ti. There was a significant difference in the ratio of porosity according to the rate of argon gas flow in the welded area. Argon shielding had no significant effect on the tensile strength of Co-Cr alloy. The 5 L/min specimens showed greater tensile strength than the 10 L/min specimens for Ti. Laser welding of the Co-Cr alloy was influenced very little by argon shielding. When the rate of argon gas flow was high, joint strength decreased for Ti. PMID:22447067

  4. 40 CFR 89.416 - Raw exhaust gas flow.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... procedure has been incorporated by reference. See § 89.6.) and calculation of the exhaust gas flow as follows: GEXHW = GAIRW + GFUEL(for wet exhaust mass) or VEXHD = VAIRD + (−.767) × GFUEL(for dry exhaust volume) or VEXHW = VAIRW + .749 × GFUEL(for wet exhaust volume) (b) Exhaust mass calculation from...

  5. 40 CFR 89.416 - Raw exhaust gas flow.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... procedure has been incorporated by reference. See § 89.6.) and calculation of the exhaust gas flow as follows: GEXHW = GAIRW + GFUEL(for wet exhaust mass) or VEXHD = VAIRD + (−.767) × GFUEL(for dry exhaust volume) or VEXHW = VAIRW + .749 × GFUEL(for wet exhaust volume) (b) Exhaust mass calculation from...

  6. Energy structure of MHD flow coupling with outer resistance circuit

    NASA Astrophysics Data System (ADS)

    Huang, Z. Y.; Liu, Y. J.; Chen, Y. Q.; Peng, Z. L.

    2015-08-01

    Energy structure of MHD flow coupling with outer resistance circuit is studied to illuminate qualitatively and quantitatively the energy relation of this basic MHD flow system with energy input and output. Energy structure are analytically derived based on the Navier-Stocks equations for two-dimensional fully-developed flow and generalized Ohm's Law. The influences of applied magnetic field, Hall parameter and conductivity on energy structure are discussed based on the analytical results. Associated energies in MHD flow are deduced and validated by energy conservation. These results reveal that energy structure consists of two sub structures: electrical energy structure and internal energy structure. Energy structure and its sub structures provide an integrated theoretical energy path of the MHD system. Applied magnetic field and conductivity decrease the input energy, dissipation by fluid viscosity and internal energy but increase the ratio of electrical energy to input energy, while Hall parameter has the opposite effects. These are caused by their different effects on Bulk velocity, velocity profiles, voltage and current in outer circuit. Understanding energy structure helps MHD application designers to actively adjust the allocation of different parts of energy so that it is more reasonable and desirable.

  7. Numerical simulations of high Knudsen number gas flows and microchannel electrokinetic liquid flows

    NASA Astrophysics Data System (ADS)

    Yan, Fang

    Low pressure and microchannel gas flows are characterized by high Knudsen numbers. Liquid flows in microchannels are characterized by non-conventional driving potentials like electrokinetic forces. The main thrust of the dissertation is to investigate these two different kinds of flows in gases and liquids respectively. High Knudsen number (Kn) gas flows were characterized by 'rarified' or 'microscale' behavior. Because of significant non-continuum effect, traditional CFD techniques are often inaccurate for analyzing high Kn number gas flows. The direct simulation Monte Carlo (DSMC) method offers an alternative to traditional CFD which retains its validity in slip and transition flow regimes. To validate the DSMC code, comparisons of simulation results with theoretical analysis and experimental data are made. The DSMC method was first applied to compute low pressure, high Kn flow fields in partially heated two dimensional channels. The effects of varying pressure, inlet flow and gas transport properties (Kn, Reynolds number, Re and the Prandtl number, Pr respectively) on the wall heat transfer (Nusselt number, Nu) were examined. The DSMC method was employed to explore mixing gas flows in two dimensional microchannels. Mixing of two gas streams (H2 and O2) was considered within a microchannel. The effect of the inlet-outlet pressure difference, the pressure ratio of the incoming streams and the accommodation coefficient of the solid wall on mixing length were all examined. Parallelization of a three-dimensional DSMC code was implemented using OpenMP procedure on a shared memory multi-processor computer. The parallel code was used to simulate 3D high Kn number Couette flow and the flow characteristics are found to be very different from their continuum counterparts. A mathematical model describing electrokinetically driven mass transport phenomena in microfabricated chip devices will also be presented. The model accounts for the principal physical phenomena affecting

  8. In Situ Control of Gas Flow by Modification of Gas-Solid Interactions

    NASA Astrophysics Data System (ADS)

    Seo, Dongjin; Ducker, William A.

    2013-10-01

    The boundary condition for gas flow at the solid-gas interface can be altered by in situ control of the state of a thin film adsorbed to the solid. A monolayer of ocatadecyltrichlorosilane (OTS) reversibly undergoes a meltinglike transition. When the temperature of an OTS-coated particle and plate is moved through the range of OTS “melting” temperatures, there is a change in the lubrication force between the particle and plate in 1 atm of nitrogen gas. This change is interpreted in terms of a change in the flow of gas mediated by the slip length and tangential momentum accommodation coefficient (TMAC). There is a minimum in slip length (290 nm) at 18°C, which corresponds to a maximum in TMAC (0.44). The slip length increases to 590 nm at 40°C which corresponds to a TMAC of 0.25. We attribute the decrease in TMAC with increasing temperature to a decrease in roughness of the monolayer on melting, which allows a higher fraction of specular gas reflections, thereby conserving tangential gas momentum. The importance of this work is that it demonstrates the ability to control gas flow simply by altering the interface for fixed geometry and gas properties.

  9. A Mathematical Model of Coupled Gas Flow and Coal Deformation with Gas Diffusion and Klinkenberg Effects

    NASA Astrophysics Data System (ADS)

    Liu, Qingquan; Cheng, Yuanping; Zhou, Hongxing; Guo, Pinkun; An, Fenghua; Chen, Haidong

    2015-05-01

    The influence of gas diffusion behavior on gas flow and permeability evolution in coal seams is evaluated in this paper. Coalbed methane (CBM) reservoirs differ from conventional porous media and fractured gas reservoirs due to certain unique features, which lead to two distinct gas pressures: one in fractures and the other in the coal matrix. The latter pressure, also known as the sorption pressure, will be used in calculating sorption-based volume changes. The effective stress laws for single-porosity media is not suitable for CBM reservoirs, and the effective stress laws for multi-porosity media need to be applied. The realization of the above two points is based on the study of the two-phase state of gas migration (involving Fickian diffusion and Darcy flow) in a coal seam. Then, a general porosity and permeability model based on the P-M model is proposed to fit this phenomenon. Moreover, the Klinkenberg effect has been taken into account and set as a reference object. Finally, a coupled gas flow and coal deformation model is proposed and solved by using a finite element method. The numerical results indicate that the effects of gas diffusion behavior and Klinkenberg behavior can have a critical influence on the gas pressure, residual gas content, and permeability evolution during the entire methane degasification period, and the impacts of the two effects are of the same order of magnitude. Without considering the gas diffusion effect, the gas pressure and residual gas content will be underestimated, and the permeability will be overestimated.

  10. Computational complexity and length of recorded data for fluctuation enhanced sensing method in resistive gas sensors

    NASA Astrophysics Data System (ADS)

    Lentka, Ł.; Smulko, J.

    2016-01-01

    This paper considers complexity and accuracy of data processing for gas detection using resistance fluctuation data observed in resistance gas sensors. A few selected methods were considered (Principal Component Analysis - PCA, Support Vector Machine - SVM). Functions like power spectral density or histogram were used to create input data vector for these algorithms from the observed resistance fluctuations. The presented considerations are important for proposing relatively cheap and mobile gas detection devices of limited computations abilities and utilizing fluctuation enhanced gas sensing method.

  11. Modeling of two-layer liquid-gas flow with account for evaporation

    NASA Astrophysics Data System (ADS)

    Goncharova, O. N.; Rezanova, E. V.; Lyulin, Yu. V.; Kabov, O. A.

    2015-09-01

    Two-layer gas-liquid flows and evaporation intensity at the interface were studied. The influence of gas flow rate, longitudinal gradient of temperature, the Soret effect on the nature of flow and transfer processes was demonstrated. Experimental and theoretical results were compared; they show dependence of evaporation at the interface on gas flow rates.

  12. Analytical and Numerical Modeling of Strongly Rotating Rarefied Gas Flows

    NASA Astrophysics Data System (ADS)

    Pradhan, Sahadev; Kumaran, Viswanathan

    2015-11-01

    Centrifugal gas separation processes effect separation by utilizing the difference in the mole fraction in a high speed rotating cylinder caused by the difference in molecular mass, and consequently the centrifugal force density. These have been widely used in isotope separation because chemical separation methods cannot be used to separate isotopes of the same chemical species. More recently, centrifugal separation has also been explored for the separation of gases such as carbon dioxide and methane. The efficiency of separation is critically dependent on the secondary flow generated due to temperature gradients at the cylinder wall or due to inserts, and it is important to formulate accurate models for this secondary flow. The widely used Onsager model for secondary flow is restricted to very long cylinders where the length is large compared to the diameter, the limit of high stratification parameter, where the gas is restricted to a thin layer near the wall of the cylinder, and it assumes that there is no mass difference in the two species while calculating the secondary flow. There are two objectives of the present analysis of the rarefied gas flow in a rotating cylinder. The first is to remove the restriction of high stratification parameter, and to generalize the solutions to low rotation speeds where the stratification parameter may be O(1), and to apply for dissimilar gases considering the difference in molecular mass of the two species. Secondly, we would like to compare the predictions with molecular simulations based on the direct simulation Monte Carlo (DSMC) method for rarefied gas flows, in order to quantify the errors resulting from the approximations at different aspect ratios, Reynolds number and stratification parameter.

  13. Gas/vapor and fire-resistant transformers

    NASA Astrophysics Data System (ADS)

    Moore, C. L.; Dakin, T. W.; Stewart, W. A.; Kothman, R. E.; Woods, E. E.; Voytik, P.; Hollister, R. H.; Yannucci, D. A.; Michel, G. P.; Stubblefield, T. W.

    1980-06-01

    The development of fire and explosion resistant, oilless, power transformers that can be produced at an acceptable cost while eliminating or reducing environmental concern is discussed. A gas insulated vapor cooled system was described for the 2500 kVA 95 BIL unit. An immersed system utilizing perchloroethylene (C2Cl4) with 25% transformer oil, was used for the 1000 kVA, 200 BIL network transformer and the 5000 kVA 200 BIL substation transformer. The materials and systems developed provide safer fire resistant transformers at near the cost of oil insulated units but with greatly reduced dependence on the petroleum industry. The testing procedures and results are reported for each of the transformers and the toxicity of materials is addressed.

  14. Flow modulation comprehensive two-dimensional gas chromatography-mass spectrometry using ≈4mLmin(-1) gas flows.

    PubMed

    Franchina, Flavio A; Maimone, Mariarosa; Tranchida, Peter Q; Mondello, Luigi

    2016-04-01

    The main objective of the herein described research was focused on performing satisfactory flow modulation (FM), in comprehensive two-dimensional gas chromatography-mass spectrometry (GC×GC-MS), using an MS-compatible second-dimension gas flow of approx. 4mLmin(-1). The FM model used was based on that initially proposed by Seeley et al. [3]. The use of limited gas flows was enabled through fine tuning of the FM parameters, in particular the duration of the re-injection (or flushing) process. Specifically, the application of a long re-injection period (i.e., 700ms) enabled efficient accumulation-loop flushing with gas flows of about 4mLmin(-1). It was possible to apply such extended re-injection periods by using different restrictor lengths in the connections linking the modulator to the auxiliary pressure source. FM GC×GC-MS applications were performed on a mixture containing C9-10 alkanes, and on a sample of essential oil. GC×GC-MS sensitivity was compared with that attained by using conventional GC-MS analysis, in essential oil applications. It was observed that signal intensities were, in general, considerably higher in the FM GC×GC-MS experiments. PMID:26968229

  15. Flow field simulation of gas-water two phase flow in annular channel

    NASA Astrophysics Data System (ADS)

    Ji, Pengcheng; Dong, Feng

    2014-04-01

    The gas-water two-phase flow is very common in the industrial processes. the deep understanding of the two-phase flow state is to achieve the production equipment design and safe operation. In the measurement of gas-water two-phase flow, the differential pressure sensor is widely used, and some measurement model of multiphase flow have been concluded. The differential pressure is generated when fluid flowing through the throttling components to calculate flow rate. This paper mainly focuses on two points: 1. The change rule of the parameters include velocity, pressure, phase fraction as the change of time, when the phase inlet velocity is given. 2. Analysis the distribution of the parameters above-mentioned at a certain moment under the condition of different water inlet velocity. Three-dimensional computational fluid dynamics (CFD) approach was used to simulate gas-water two-phase flow fluid in the annular channel, which is composed of horizontal pipe and long- waist cone sensor. The simulation results were obtained from FLUENT software.

  16. Droplet breakup in accelerating gas flows. Part 2: Secondary atomization

    NASA Technical Reports Server (NTRS)

    Zajac, L. J.

    1973-01-01

    An experimental investigation to determine the effects of an accelerating gas flow on the atomization characteristics of liquid sprays was conducted. The sprays were produced by impinging two liquid jets. The liquid was molten wax and the gas was nitrogen. The use of molten wax allowed for a quantitative measure of the resulting dropsize distribution. The results of this study, indicate that a significant amount of droplet breakup will occur as a result of the action of the gas on the liquid droplets. Empirical correlations are presented in terms of parameters that were found to affect the mass median dropsize most significantly, the orifice diameter, the liquid injection velocity, and the maximum gas velocity. An empirical correlation for the normalized dropsize distribution is also presented. These correlations are in a form that may be incorporated readily into existing combustion model computer codes for the purpose of calculating rocket engine combustion performance.

  17. Parallel magnetic resonance imaging of gas-liquid flows

    NASA Astrophysics Data System (ADS)

    Mueller, Christoph; Penn, Alexander; Pruessmann, Klaas P.

    2015-03-01

    Gas-liquids flows are commonly encountered in nature and industry. Experimental measurements of gas-liquid flows are challenging since such systems can be visually opaque and highly dynamic. Here we report the implementation of advanced magnetic resonance imaging (MRI) strategies allowing us to probe the dynamics (voidage and velocity measurements) of gas-liquid flows with ultra-fast acquisition speeds. Specifically, parallel MRI which exploits the spatial encoding capabilities of multiple receiver coils was implemented. To this end a tailored, 16 channels MR receive array was constructed and employed in the MR acquisition. A magnetic susceptibility matched gas-liquid system was set-up and used to probe the motion, splitting and coalescence of bubbles. The temporal and spatial resolution of our acquired data was 5 ms and 3.5 mm x 3.5 mm, respectively. The total field of view was 200 mm x 200 mm. We will conclude with an outlook of further possible advances in MRI that have the potential to reduce substantially the acquisition time, providing flexible gains in temporal and spatial resolution.

  18. Incorporation of Interstitial Gas Effects on Granular Flows

    NASA Astrophysics Data System (ADS)

    Hrenya, Christine; Garzo, Vicente; Tenneti, Sudheer; Subramaniam, Shankar

    2013-11-01

    Numerous examples of granular flows exist in which the role of the interstitial gas cannot be ignored. A range of approaches have been taken to incorporate these effects into continuum descriptions. Early efforts simply added a mean drag law to the momentum balance. This ad hoc approach was followed by more rigorous treatments in which an instantaneous drag was incorporated directly into the kinetic equation. Analytical expressions for the resulting continuum description were obtained in the Stokes limit, but not possible higher Reynolds numbers. In the current effort, DNS-based simulations are used to develop a model for the instantaneous drag force that is applicable to a wide range of Reynolds number. This model, based on the Langevin equation, is incorporated into the Enskog equation in order to derive a continuum description for the gas-solid flow. In the limit of Stokes flow, the additional terms arising in the conservation equation are found to match those of previous analytical treatments. Furthermore, the impact of gas on the solid-phase constitutive relations, which was ignored in analytical treatments, is determined. The parameter space examined is consistent with that found in circulating fluidized beds. For such systems, the results indicate a non-negligible impact of the gas phase on the shear viscosity and the Dufour coefficient.

  19. Going with the flow: using gas clouds to probe the accretion flow feeding Sgr A*

    NASA Astrophysics Data System (ADS)

    McCourt, Michael; Madigan, Ann-Marie

    2016-01-01

    The massive black hole in our Galactic centre, Sgr A*, accretes only a small fraction of the gas available at its Bondi radius. The physical processes determining this accretion rate remain unknown, partly due to a lack of observational constraints on the gas at distances between ˜10 and ˜105 Schwarzschild radii (Rs) from the black hole. Recent infrared observations identify low-mass gas clouds, G1 and G2, moving on highly eccentric, nearly co-planar orbits through the accretion flow around Sgr A*. Although it is not yet clear whether these objects contain embedded stars, their extended gaseous envelopes evolve independently as gas clouds. In this paper we attempt to use these gas clouds to constrain the properties of the accretion flow at ˜103 Rs. Assuming that G1 and G2 follow the same trajectory, we model the small differences in their orbital parameters as evolution resulting from interaction with the background flow. We find evolution consistent with the G-clouds originating in the clockwise disc. Our analysis enables the first unique determination of the rotation axis of the accretion flow: we localize the rotation axis to within 20°, finding an orientation consistent with the parsec-scale jet identified in X-ray observations and with the circumnuclear disc, a massive torus of molecular gas ˜1.5 pc from Sgr A*. This suggests that the gas in the accretion flow comes predominantly from the circumnuclear disc, rather than the winds of stars in the young clockwise disc. This result will be tested by the Event-Horizon Telescope within the next year. Our model also makes testable predictions for the orbital evolution of G1 and G2, falsifiable on a 5-10 year time-scale.

  20. Heat transfer and flow characteristics on a gas turbine shroud.

    PubMed

    Obata, M; Kumada, M; Ijichi, N

    2001-05-01

    The work described in this paper is an experimental investigation of the heat transfer from the main flow to a turbine shroud surface, which may be applicable to ceramic gas turbines. Three kinds of turbine shrouds are considered with a flat surface, a taper surface and a spiral groove surface opposite to the blades in an axial flow turbine of actual turbo-charger. Heat transfer measurements were performed for the experimental conditions of a uniform heat flux or a uniform wall temperature. The effects of the inlet flow angle, rotational speed, and tip clearance on the heat transfer coefficient were clarified under on- and off-design flow conditions. The mean heat transfer coefficient was correlated to the blade Reynolds number and tip clearance, and compared with an experimental correlation and measurements of a flat surface. A comparison was also made for the measurement of static pressure distributions. PMID:11460639

  1. Flow and heat transfer for gas flowing in microchannels: a review

    NASA Astrophysics Data System (ADS)

    Rostami, A. A.; Mujumdar, A. S.; Saniei, N.

    Microchannels are currently being used in many areas and have high potential for applications in many other areas, which are considered realistic by experts. The application areas include medicine, biotechnology, avionics, consumer electronics, telecommunications, metrology, computer technology, office equipment and home appliances, safety technology, process engineering, robotics, automotive engineering and environmental protection. A number of these applications are introduced in this paper, followed by a critical review of the works on the flow and heat transfer for gas flowing in microchannels. The results show that the flow and heat transfer characteristics of a gas flowing in microchannels can not be adequately predicted by the theories and correlations developed for conventional sized channels. The results of theoretical and experimental works are discussed and summarized along with suggestions for future research directions.

  2. Dissolved gas exsolution to enhance gas production and transport during bench-scale electrical resistance heating

    NASA Astrophysics Data System (ADS)

    Hegele, P. R.; Mumford, K. G.

    2015-05-01

    Condensation of volatile organic compounds in colder zones can be detrimental to the performance of an in situ thermal treatment application for the remediation of chlorinated solvent source zones. A novel method to increase gas production and limit convective heat loss in more permeable, potentially colder, zones involves the injection and liberation of dissolved gas from solution during heating. Bench-scale electrical resistance heating experiments were performed with a dissolved carbon dioxide and sodium chloride solution to investigate exsolved gas saturations and transport regimes at elevated, but sub-boiling, temperatures. At sub-boiling temperatures, maximum exsolved gas saturations of Sg = 0.12 were attained, and could be sustained when the carbon dioxide solution was injected during heating rather than emplaced prior to heating. This gas saturation was estimated to decrease groundwater relative permeability to krw = 0.64. Discontinuous gas transport was observed above saturations of Sg = 0.07, demonstrating the potential of exsolved CO2 to bridge vertical gas transport through colder zones.

  3. Dual exposure interferometry. [gas dynamics and flow visualization

    NASA Technical Reports Server (NTRS)

    Smeets, G.; George, A.

    1982-01-01

    The application of dual exposure differential interferometry to gas dynamics and flow visualization is discussed. A differential interferometer with Wallaston prisms can produce two complementary interference fringe systems, depending on the polarization of the incident light. If these two systems are superimposed on a film, with one exposure during a phenomenon, the other before or after, the phenomenon will appear on a uniform background. By regulating the interferometer to infinite fringe distance, a resolution limit of approximately lambda/500 can be obtained in the quantitative analysis of weak phase objects. This method was successfully applied to gas dynamic investigations.

  4. Regulation of ice stream flow through subglacial formation of gas hydrates

    NASA Astrophysics Data System (ADS)

    Winsborrow, Monica; Andreassen, Karin; Hubbard, Alun; Plaza-Faverola, Andreia; Gudlaugsson, Eythor; Patton, Henry

    2016-05-01

    Variations in the flow of ice streams and outlet glaciers are a primary control on ice sheet stability, yet comprehensive understanding of the key processes operating at the ice-bed interface remains elusive. Basal resistance is critical, especially sticky spots--localized zones of high basal traction--for maintaining force balance in an otherwise well-lubricated/high-slip subglacial environment. Here we consider the influence of subglacial gas-hydrate formation on ice stream dynamics, and its potential to initiate and maintain sticky spots. Geophysical data document the geologic footprint of a major palaeo-ice-stream that drained the Barents Sea-Fennoscandian ice sheet approximately 20,000 years ago. Our results reveal a ~250 km2 sticky spot that coincided with subsurface shallow gas accumulations, seafloor fluid expulsion and a fault complex associated with deep hydrocarbon reservoirs. We propose that gas migrating from these reservoirs formed hydrates under high-pressure, low-temperature subglacial conditions. The gas hydrate desiccated, stiffened and thereby strengthened the subglacial sediments, promoting high traction--a sticky spot--that regulated ice stream flow. Deep hydrocarbon reservoirs are common beneath past and contemporary glaciated areas, implying that gas-hydrate regulation of subglacial dynamics could be a widespread phenomenon.

  5. Factors affecting gas migration and contaminant redistribution in heterogeneous porous media subject to electrical resistance heating

    NASA Astrophysics Data System (ADS)

    Munholland, Jonah L.; Mumford, Kevin G.; Kueper, Bernard H.

    2016-01-01

    A series of intermediate-scale laboratory experiments were completed in a two-dimensional flow cell to investigate gas production and migration during the application of electrical resistance heating (ERH) for the removal of dense non-aqueous phase liquids (DNAPLs). Experiments consisted of heating water in homogeneous silica sand and heating 270 mL of trichloroethene (TCE) and chloroform (CF) DNAPL pools in heterogeneous silica sands, both under flowing groundwater conditions. Spatial and temporal distributions of temperature were measured using thermocouples and observations of gas production and migration were collected using front-face image capture throughout the experiments. Post-treatment soil samples were collected and analyzed to assess DNAPL removal. Results of experiments performed in homogeneous sand subject to different groundwater flow rates showed that high groundwater velocities can limit subsurface heating rates. In the DNAPL pool experiments, temperatures increased to achieve DNAPL-water co-boiling, creating estimated gas volumes of 131 and 114 L that originated from the TCE and CF pools, respectively. Produced gas migrated vertically, entered a coarse sand lens and subsequently migrated laterally beneath an overlying capillary barrier to outside the heated treatment zone where 31-56% of the original DNAPL condensed back into a DNAPL phase. These findings demonstrate that layered heterogeneity can potentially facilitate the transport of contaminants outside the treatment zone by mobilization and condensation of gas phases during ERH applications. This underscores the need for vapor phase recovery and/or control mechanisms below the water table during application of ERH in heterogeneous porous media during the co-boiling stage, which occurs prior to reaching the boiling point of water.

  6. Factors affecting gas migration and contaminant redistribution in heterogeneous porous media subject to electrical resistance heating.

    PubMed

    Munholland, Jonah L; Mumford, Kevin G; Kueper, Bernard H

    2016-01-01

    A series of intermediate-scale laboratory experiments were completed in a two-dimensional flow cell to investigate gas production and migration during the application of electrical resistance heating (ERH) for the removal of dense non-aqueous phase liquids (DNAPLs). Experiments consisted of heating water in homogeneous silica sand and heating 270 mL of trichloroethene (TCE) and chloroform (CF) DNAPL pools in heterogeneous silica sands, both under flowing groundwater conditions. Spatial and temporal distributions of temperature were measured using thermocouples and observations of gas production and migration were collected using front-face image capture throughout the experiments. Post-treatment soil samples were collected and analyzed to assess DNAPL removal. Results of experiments performed in homogeneous sand subject to different groundwater flow rates showed that high groundwater velocities can limit subsurface heating rates. In the DNAPL pool experiments, temperatures increased to achieve DNAPL-water co-boiling, creating estimated gas volumes of 131 and 114 L that originated from the TCE and CF pools, respectively. Produced gas migrated vertically, entered a coarse sand lens and subsequently migrated laterally beneath an overlying capillary barrier to outside the heated treatment zone where 31-56% of the original DNAPL condensed back into a DNAPL phase. These findings demonstrate that layered heterogeneity can potentially facilitate the transport of contaminants outside the treatment zone by mobilization and condensation of gas phases during ERH applications. This underscores the need for vapor phase recovery and/or control mechanisms below the water table during application of ERH in heterogeneous porous media during the co-boiling stage, which occurs prior to reaching the boiling point of water. PMID:26638038

  7. Visualization and velocity measurement of unsteady flow in a gas generator using cold-flow technique

    NASA Astrophysics Data System (ADS)

    Kuppa, Subrahmanyam

    1990-08-01

    Modeling of internal flow fields with hot, compressible fluids and sometimes combustion using cold flow techniques is discussed. The flow in a gas generator was modeled using cold air. The experimental set up was designed and fabricated to simulate the unsteady flow with different configurations of inlet tubes. Tests were run for flow visualization and measurement of axial velocity at different frequencies ranging from 5 to 12 Hz. Flow visualization showed that the incoming flow was a complex jet flow confined to a cylindrical enclosure, while the outgoing flow resembled the venting of a pressurized vessel. The pictures show a complex flow pattern due to the angling of the jet towards the wall for the bent tube configurations and straightened flows with straight tube and other configurations with straighteners. Velocity measurements were made at an inlet Re of 8.1 x 10(exp 4) based on maximum velocity and inlet diameter. Phase averaged mean velocities were observed to be well defined during charging and diminished during venting inside the cylinder. For the straight tube inlet comparison with a steady flow measurement of sudden expansion flow showed a qualitative similarity of the mean axial velocity distribution and centerline velocity decay during the charging phases. For the bent tube inlet case the contour plots showed the flow tendency towards the wall. Two cells were seen in the contours for the 8 and 12 Hz cases. The deviation of the point of occurrence of maximum velocity in a radial profile was found to be about 6.5 degrees. Entrance velocity profiles showed symmetry for the straight tube inlet but were skewed for the bent tube inlet. Contour plots of the phase averaged axial turbulence intensity for bent tube cases showed higher values in the core and near the wall in the region of impingement. Axial turbulence intensity measured for the straight tube case showed features as observed in an axisymmetric sudden expansion flow.

  8. Simultaneous flow of gas and water in a damage-susceptible argillaceous rock

    NASA Astrophysics Data System (ADS)

    Nguyen, T. S.

    2011-12-01

    A research project has been initiated by the Canadian Nuclear Safety Commission (CNSC) to study the influence of gas generation and migration on the long term safety of deep geological repositories for radioactive wastes. Such facilities rely on multiple barriers to isolate and contain the wastes. Depending on the level of radioactivity of the wastes, those barriers include some or all of the following: corrosion and structurally resistant containers, low permeability seals around the emplacements rooms, galleries and shaft, and finally the host rock formations. Large quantities of gas may be generated from the degradation of the waste forms or the corrosion of the containers. The generated gas pressures, if sufficiently large, can induce cracks and microcracks in the engineered and natural barriers and affect their containment functions. The author has developed a mathematical model to simulate the above effects. The model must be calibrated and validated with laboratory and field experiments in order to provide confidence in its future use for assessing the effects of gas on the long term safety of nuclear wastes repositories. The present communication describes the model and its use in the simulation of laboratory and large scale in-situ gas injection experiments in an argillaceous rock, known as Opalinus clay, from Mont Terri, Switzerland. Both the laboratory and in-situ experiments show that the gas flow rate substantially increases when the injection pressure is higher than the confining stress. The above observation seems to indicate that at high gas injection pressures, damage could possibly be induced in the rock formation resulting in an important increase in its permeability. In order to simulate the experiments, we developed a poro-elastoplastic model, with the consideration of two compressible pore fluids (water and gas). The bulk movement of the pore fluids is assumed to obey the generalized Darcy's law, and their respective degree of saturation is

  9. Design and Initial Development of Monolithic Cross-Flow Ceramic Hot-Gas Filters

    SciTech Connect

    Barra, C.; Limaye, S.; Stinton, D.P.; Vaubert, V.M.

    1999-06-06

    Advanced, coal-fueled, power generation systems utilizing pressurized fluidized bed combustion (PFBC) and integrated gasification combined cycle (IGCC) technologies are currently being developed for high-efficiency, low emissions, and low-cost power generation. In spite of the advantages of these promising technologies, the severe operating environment often leads to material degradation and loss of performance in the barrier filters used for particle entrapment. To address this problem, LoTEC Inc., and Oak Ridge National Laboratory are jointly designing and developing a monolithic cross-flow ceramic hot-gas filter. The filter concept involves a truly monolithic cross-flow design that is resistant to delamination, can be easily fabricated, and offers flexibility of geometry and material make-up. During Phase I of the program, a thermo-mechanical analysis was performed to determine how a cross-flow filter would respond both thermally and mechanically to a series of thermal and mechanical loads. The cross-flow filter mold was designed accordingly, and the materials selection was narrowed down to Ca{sub 0.5}Sr{sub 0.5}Zr{sub 4}P{sub 6}O{sub 24} (CS-50) and 2Al{sub 2}O{sub 3}-3SiO{sub 2} (mullite). A fabrication process was developed using gelcasting technology and monolithic cross-flow filters were fabricated. The program focuses on obtaining optimum filter permeability and testing the corrosion resistance of the candidate materials.

  10. Nonequilibrium condensation in high-speed gas flows

    SciTech Connect

    Ryzhov, Y.A.; Pirumov, U.G.; Gorbunov, V.N. )

    1989-01-01

    Nonequilibrium condensation is an important aspect of weather forecasting, aerosol formation, and the design of jet propulsion engines, steam turbines and nuclear reactors. It has recently taken on a new significance with the development of technologies such as the production of fine powders, cluster spraying, the development of laser media and isotope separation. This book discusses the general theory of condensation in high speed gas flows, and the new theoretical, experimental and numerical methods necessary for solving the partial differential equations governing the flows.

  11. Visualization of unsteady gas/vapor expansion flows

    NASA Astrophysics Data System (ADS)

    Schnerr, G. H.; Adam, S.

    1997-09-01

    High speed expansion flows of pure vapors or gas/vapor mixtures are important to many technical applications, e.g. to steam turbines, jet engines, and for safety control of pressurized power plants. The sudden cooling of the fluid flow leads to condensation and nonequilibrium two-phase flow with instabilities and periodic shock formation at mean frequencies of about 1 kHz. Modelling and control of this dynamical problem is not only important with respect to erosion, it also may cause flutter excitation and serious demolition of technical facilities. In numerical simulations, the time dependent 2-D Euler equations coupled to four equations describing the process of homogeneous nucleation and droplet growth are solved by a MUSCL-type finite volume method. The results are compared with experiments carried out in an atmospheric supersonic wind tunnel. By application of this numerical method to internal flows (nozzles) we found different modes of instabilities including bifurcations. At the stability limit a sharp frequency minimum was found for symmetric oscillations in slender nozzles. It separates oscillation modes where the oncoming subsonic flow remains unchanged from the oscillatory state where a shock monotonically moves upstream into the oncoming flow. For different nozzles we detected a new unsymmetric oscillation mode with a complex system of upstream moving oblique shocks. Here the frequency curve shows the typical structure of a bifurcation problem, which is definitely not controlled by viscous effects but by instabilities of the interaction of flow and phase transition process.

  12. PREFACE: 1st European Conference on Gas Micro Flows (GasMems 2012)

    NASA Astrophysics Data System (ADS)

    Frijns, Arjan; Valougeorgis, Dimitris; Colin, Stéphane; Baldas, Lucien

    2012-05-01

    The aim of the 1st European Conference on Gas Micro Flows is to advance research in Europe and worldwide in the field of gas micro flows as well as to improve global fundamental knowledge and to enable technological applications. Gas flows in microsystems are of great importance and touch almost every industrial field (e.g. fluidic microactuators for active control of aerodynamic flows, vacuum generators for extracting biological samples, mass flow and temperature micro-sensors, pressure gauges, micro heat-exchangers for the cooling of electronic components or for chemical applications, and micro gas analyzers or separators). The main characteristic of gas microflows is their rarefaction, which for device design often requires modelling and simulation both by continuous and molecular approaches. In such flows various non-equilibrium transport phenomena appear, while the role played by the interaction between the gas and the solid device surfaces becomes essential. The proposed models of boundary conditions often need an empirical adjustment strongly dependent on the micro manufacturing technique. The 1st European Conference on Gas Micro Flows is organized under the umbrella of the recently established GASMEMS network (www.gasmems.eu/) consisting of 13 participants and six associate members. The main objectives of the network are to structure research and train researchers in the fields of micro gas dynamics, measurement techniques for gaseous flows in micro experimental setups, microstructure design and micro manufacturing with applications in lab and industry. The conference takes place on June 6-8 2012, at the Skiathos Palace Hotel, on the beautiful island of Skiathos, Greece. The conference has received funding from the European Community's Seventh Framework Programme FP7/2007-2013 under grant agreement ITN GASMEMS no. 215504. It owes its success to many people. We would like to acknowledge the support of all members of the Scientific Committee and of all

  13. Gaseous sodium sulfate formation in flames and flowing gas environments

    NASA Technical Reports Server (NTRS)

    Stearns, C. A.; Miller, R. A.; Kohl, F. J.; Fryburg, G. C.

    1977-01-01

    Formation of Na2SO4(g) in flames and hot flowing gas systems was studied by high pressure, free-jet expansion, modulated molecular beam mass spectrometric sampling. Fuel-lean CH4-O2 flames doped with SO2, H2O and NaCl yielded the gaseous Na2SO4 molecule in residence times of less than one millisecond. Intermediate species NaSO2(g) and NaSO3(g) were also observed and measured. Composition profiles were obtained for all reaction products. Nonflame flowing gas experiments showed that Na2SO4 and NaSO3 gaseous molecules were formed at 1140 C in mixtures of O2, H2O(g), SO2 and NaCl(g). Experimental results are compared with calculated equilibrium thermodynamic predictions.

  14. Emission control valve with gas flow shut-off

    SciTech Connect

    Betterton, J.T.; Glover, A.H.; McKee, T.S.; Romanczuk, C.S.

    1990-03-06

    This patent describes, in an internal combustion engine, a crankcase gas flow control device located between the engine crankcase and the engine fuel-air induction. It comprises: a hollow housing, an apertured member supported at its outer edge by the housing. The apertured member forming an inlet and having an annular seating surface about the inlet aperture which faces the interior of the housing; a rod extending through the housing coaxially with the apertured inlet. The inlet forming member has a central boss portion engaging and supporting an end of the rod; a valve element in the housing and encircling the rod, the valve having a closed end normally seated against the seating surface to block gas flow through the inlet aperture; a coil type spring having one end axially fixed to the rod and another end engaging the valve element for yieldably urging the closed end against the seating surface.

  15. Resistive Network Optimal Power Flow: Uniqueness and Algorithms

    SciTech Connect

    Tan, CW; Cai, DWH; Lou, X

    2015-01-01

    The optimal power flow (OPF) problem minimizes the power loss in an electrical network by optimizing the voltage and power delivered at the network buses, and is a nonconvex problem that is generally hard to solve. By leveraging a recent development on the zero duality gap of OPF, we propose a second-order cone programming convex relaxation of the resistive network OPF, and study the uniqueness of the optimal solution using differential topology, especially the Poincare-Hopf Index Theorem. We characterize the global uniqueness for different network topologies, e.g., line, radial, and mesh networks. This serves as a starting point to design distributed local algorithms with global behaviors that have low complexity, are computationally fast, and can run under synchronous and asynchronous settings in practical power grids.

  16. Flow Analysis of a Gas Turbine Low- Pressure Subsystem

    NASA Technical Reports Server (NTRS)

    Veres, Joseph P.

    1997-01-01

    The NASA Lewis Research Center is coordinating a project to numerically simulate aerodynamic flow in the complete low-pressure subsystem (LPS) of a gas turbine engine. The numerical model solves the three-dimensional Navier-Stokes flow equations through all components within the low-pressure subsystem as well as the external flow around the engine nacelle. The Advanced Ducted Propfan Analysis Code (ADPAC), which is being developed jointly by Allison Engine Company and NASA, is the Navier-Stokes flow code being used for LPS simulation. The majority of the LPS project is being done under a NASA Lewis contract with Allison. Other contributors to the project are NYMA and the University of Toledo. For this project, the Energy Efficient Engine designed by GE Aircraft Engines is being modeled. This engine includes a low-pressure system and a high-pressure system. An inlet, a fan, a booster stage, a bypass duct, a lobed mixer, a low-pressure turbine, and a jet nozzle comprise the low-pressure subsystem within this engine. The tightly coupled flow analysis evaluates aerodynamic interactions between all components of the LPS. The high-pressure core engine of this engine is simulated with a one-dimensional thermodynamic cycle code in order to provide boundary conditions to the detailed LPS model. This core engine consists of a high-pressure compressor, a combustor, and a high-pressure turbine. The three-dimensional LPS flow model is coupled to the one-dimensional core engine model to provide a "hybrid" flow model of the complete gas turbine Energy Efficient Engine. The resulting hybrid engine model evaluates the detailed interaction between the LPS components at design and off-design engine operating conditions while considering the lumped-parameter performance of the core engine.

  17. Theory of Gas Injection: Interaction of Phase Behavior and Flow

    NASA Astrophysics Data System (ADS)

    Dindoruk, B.

    2015-12-01

    The theory of gas injection processes is a central element required to understand how components move and partition in the reservoir as one fluid is displacing another (i.e., gas is displacing oil). There is significant amount of work done in the area of interaction of phase-behavior and flow in multiphase flow conditions. We would like to present how the theory of gas injection is used in the industry to understand/design reservoir processes in various ways. The tools that are developed for the theory of gas injection originates from the fractional flow theory, as the first solution proposed by Buckley-Leveret in 1940's, for water displacing oil in porous media. After 1960's more and more complex/coupled equations were solved using the initial concept(s) developed by Buckley-Leverett, and then Welge et al. and others. However, the systematic use of the fractional flow theory for coupled set of equations that involves phase relationships (EOS) and phase appearance and disappearance was mainly due to the theory developed by Helfferich in early 80's (in petroleum literature) using method of characteristics primarily for gas injection process and later on by the systematic work done by Orr and his co-researchers during the last two decades. In this talk, we will present various cases that use and extend the theory developed by Helfferich and others (Orr et al., Lake et al. etc.). The review of various injection systems reveals that displacement in porous media has commonalities that can be represented with a unified theory for a class of problems originating from the theory of gas injection (which is in a way generalized Buckley-Leverett problem). The outcome of these solutions can be used for (and are not limited to): 1) Benchmark solutions for reservoir simulators (to quantify numerical dispersion, test numerical algorithms) 2) Streamline simulators 3) Design of laboratory experiments and their use (to invert the results) 4) Conceptual learning and to investigate

  18. One-dimensional flows of an imperfect diatomic gas

    NASA Technical Reports Server (NTRS)

    1959-01-01

    With the assumptions that Berthelot's equation of state accounts for molecular size and intermolecular force effects, and that changes in the vibrational heat capacities are given by a Planck term, expressions are developed for analyzing one-dimensional flows of a diatomic gas. The special cases of flow through normal and oblique shocks in free air at sea level are investigated. It is found that up to a Mach number 10 pressure ratio across a normal shock differs by less than 6 percent from its ideal gas value; whereas at Mach numbers above 4 the temperature rise is considerable below and hence the density rise is well above that predicted assuming ideal gas behavior. It is further shown that only the caloric imperfection in air has an appreciable effect on the pressures developed in the shock process considered. The effects of gaseous imperfections on oblique shock-flows are studied from the standpoint of their influence on the life and pressure drag of a flat plate operating at Mach numbers of 10 and 20. The influence is found to be small. (author)

  19. Compression Shocks in Two-Dimensional Gas Flows

    NASA Technical Reports Server (NTRS)

    Busemann, A.

    1949-01-01

    The following are arguments on the compression shocks in gas flow start with a simplified representation of the results of the study made by Th. Meyer as published in the Forschungsheft 62 of the VDI, supplemented by several amplifications for the application.In the treatment of compression shocks, the equation of energy, the equation of continuity, the momentum equation, the equation of state of the particular gas, as well as the condition Of the second law of thermodynamics that no decrease of entropy is possible in an isolated system, must be taken into consideration. The result is that, in those cases where the sudden change of state according to the second law of thermodynamics is possible, there always occurs a compression of the gas which is uniquely determined by the other conditions.

  20. Liquid and liquid–gas flows at all speeds

    SciTech Connect

    LeMartelot, S.; Nkonga, B.; Saurel, R.

    2013-12-15

    All speed flows and in particular low Mach number flow algorithms are addressed for the numerical approximation of the Kapila et al. [1] multiphase flow model. This model is valid for fluid mixtures evolving in mechanical equilibrium but out of temperature equilibrium and is efficient for material interfaces computation separating miscible and non-miscible fluids. In this context, the interface is considered as a numerically diffused zone, captured as well as all present waves (shocks, expansion waves). The same flow model can be used to solve cavitating and boiling flows [2]. Many applications occurring with liquid–gas interfaces and cavitating flows involve a very wide range of Mach number, from 10{sup −3} to supersonic (and even hypersonic) conditions with respect to the mixture sound speed. It is thus important to address numerical methods free of restrictions regarding the Mach number. To do this, a preconditioned Riemann solver is built and embedded into the Godunov explicit scheme. It is shown that this method converges to exact solutions but needs too small time steps to be efficient. An implicit version is then derived, first in one dimension and second in the frame of 2D unstructured meshes. Two-phase flow preconditioning is then addressed in the frame of the Saurel et al. [3] algorithm. Modifications of the preconditioned Riemann solver are needed and detailed. Convergence of both single phase and two-phase numerical solutions are demonstrated with the help of single phase and two-phase steady nozzle flow solutions. Last, the method is illustrated by the computation of real cavitating flows in Venturi nozzles. Vapour pocket size and instability frequencies are reproduced by the model and method without using any adjustable parameter.

  1. Bodyplethysmography in healthy children. Measurement of intrathoracic gas volume and airway resistance.

    PubMed

    von der Hardt, H; Leben, M

    1976-12-01

    In 94 healthy children, 6-15 years of age, the intrathoracic gas volume at resting expiratory level (TVG) was measured by means of a pressure corrected flow body plethysmograph and compared to functional residual capacity (FRC), measured simultaneously to TGV by means of the Helium dilution technique. TGV is 1.9% (+/- 11.7% SD) smaller than FRC, this difference being not significant (P greater than 0.05). A predicted equation for TGV (in ml) in correlation to standing height (in cm) is published in boys and girls. In 82 healthy children, 6-15 years of age, airway resistance (Raw) was measured plethysmographically. Raw(in cmH2O/1/s) is smaller, the larger is the child (r = -0.57; P less than 0.01), the residual standard deviation around the regression line is considerable (29%) and corresponding to the value, published previously for total pulmonary flow resistance. Difficulties in the evaluation of recorded resistance curves as well as calculation and lung volume correction of the Raw-value are discussed. PMID:1001324

  2. A mixing layer theory for flow resistance in shallow streams

    NASA Astrophysics Data System (ADS)

    Katul, Gabriel; Wiberg, Patricia; Albertson, John; Hornberger, George

    2002-11-01

    A variety of surface roughness characterizations have emerged from nineteenth and twentieth century studies of channel hydraulics. When the water depth h is much larger than the characteristic roughness height ks, roughness formulations such as Manning's n and the friction factor f can be explicitly related to the momentum roughness height zo in the log-law formulation for turbulent boundary layers, thereby unifying roughness definitions for a given surface. However, when h is comparable to (or even smaller than) ks, the log-law need not be valid. Using a newly proposed mixing layer analogy for the inflectional velocity profile within and just above the roughness layer, a model for the flow resistance in shallow flows is developed. The key model parameter is the characteristic length scale describing the depth of the Kelvin-Helmholtz wave instability. It is shown that the new theory, originally developed for canopy turbulence, recovers much of the earlier roughness results for flume experiments and shallow gravel streams. This study is the first to provide such a unifying framework between canopy atmospheric turbulence and shallow gravel stream roughness characterization. The broader implication of this study is to support the merger of a wealth of surface roughness characterizations independently developed in nineteenth and twentieth century hydraulics and atmospheric sciences and to establish a connection between roughness formulations across traditionally distinct boundary layer types.

  3. Study of interfacial behavior in cocurrent gas-liquid flows

    SciTech Connect

    McCready, M.J.

    1990-01-01

    We have examined the mechanism of formation of solitary waves on gas-liquid flows and found, that these form from existing periodic waves which have sufficiently large ({approximately}1.5 to 2 depending upon fluid properties) amplitude to liquid layer-thickness ratios. The exact process for the wave shape change is not understood but it does not seem to be related to the wave steepness (amplitude/wavelength) or to separation of gas flow over the waves. The observed confinement of solitary waves to low liquid Reynolds numbers results because the necessary large precursor waves do not form if the wave speed dispersion is too large or if the wavelength of the dominant waves is too short, as occurs for higher Re{sub L}. Measurements of interface tracings and calculations of power spectra and bispectra as a function of flow distance for conditions close to neutral stability reveal that the initially, linearly unstable mode is stabilized by formation of overtones which are linearly stable and can dissipate energy. As a result, a stable wave field can occur. Mode equations, which include quadratic nonlinearities, can model this process to the extent of producing some degree of quantitative predictions for the amplitudes of the wave modes. However, a complete picture of the wave field must include sidebands as well because these are observed for some flow conditions. 34 refs., 12 figs., 2 tabs.

  4. Granular flow in Dorfan Impingo filter for gas cleanup

    SciTech Connect

    Hsiau, S.S.; Smid, J.; Tsai, H.H.; Kuo, J.T.; Chou, C.S.

    1999-07-01

    Inside a two-dimensional model of the louvered Drofan Impingo panel with transparent front and rear walls, the velocity fields of filter granules without gas cross flow were observed. The PE beads with diameter of 6 mm were used as filter granules. The filter bed was filled with beads continuously and circulated until the granular flows inside the panel reached the steady state condition. In the moving granular bed, there is a central fast flowing core of filter granules surrounded by large quasi-stagnant zones located close to the louver walls. The existence of quasi-stagnant zones may result in the dust plugging problems. The velocity fields of filter granules are plotted for three different louver geometries.

  5. Modeling of information flows in natural gas storage facility

    NASA Astrophysics Data System (ADS)

    Ranjbari, Leyla; Bahar, Arifah; Aziz, Zainal Abdul

    2013-09-01

    The paper considers the natural-gas storage valuation based on the information-based pricing framework of Brody-Hughston-Macrina (BHM). As opposed to many studies which the associated filtration is considered pre-specified, this work tries to construct the filtration in terms of the information provided to the market. The value of the storage is given by the sum of the discounted expectations of the cash flows under risk-neutral measure, conditional to the constructed filtration with the Brownian bridge noise term. In order to model the flow of information about the cash flows, we assume the existence of a fixed pricing kernel with liquid, homogenous and incomplete market without arbitrage.

  6. A gas flow indicator for portable life support systems

    NASA Technical Reports Server (NTRS)

    Bass, R. L., III; Schroeder, E. C.

    1975-01-01

    A three-part program was conducted to develop a gas flow indicator (GFI) to monitor ventilation flow in a portable life support system. The first program phase identified concepts which could potentially meet the GFI requirements. In the second phase, a working breadboard GFI, based on the concept of a pressure sensing diaphragm-aneroid assembly connected to a venturi, was constructed and tested. Extensive testing of the breadboard GFI indicated that the design would meet all NASA requirements including eliminating problems experienced with the ventilation flow sensor used in the Apollo program. In the third program phase, an optimized GFI was designed by utilizing test data obtained on the breadboard unit. A prototype unit was constructed using prototype materials and fabrication techniques, and performance tests indicated that the prototype GFI met or exceeded all requirements.

  7. Two relaxation time lattice Boltzmann model for rarefied gas flows

    NASA Astrophysics Data System (ADS)

    Esfahani, Javad Abolfazli; Norouzi, Ali

    2014-01-01

    In this paper, the lattice Boltzmann equation (LBE) with two relaxation times (TRT) is implemented in order to study gaseous flow through a long micro/nano-channel. A new relation is introduced for the reflection factor in the bounce-back/specular reflection (BSR) boundary condition based on the analytical solution of the Navier-Stokes equations. The focus of the present study is on comparing TRT with the other LBE models called multiple relaxation times (MRT) and single relaxation time (SRT) in simulation of rarefied gas flows. After a stability analysis for the TRT and SRT models, the numerical results are presented and validated by the analytical solution of the Navier-Stokes equations with slip boundary condition, direct simulation of Monte Carlo (DSMC) and information preservation (IP) method. The effect of various gases on flow behavior is also investigated by using the variable hard sphere (VHS) model through the symmetrical relaxation time.

  8. Breakdown parameter for kinetic modeling of multiscale gas flows.

    PubMed

    Meng, Jianping; Dongari, Nishanth; Reese, Jason M; Zhang, Yonghao

    2014-06-01

    Multiscale methods built purely on the kinetic theory of gases provide information about the molecular velocity distribution function. It is therefore both important and feasible to establish new breakdown parameters for assessing the appropriateness of a fluid description at the continuum level by utilizing kinetic information rather than macroscopic flow quantities alone. We propose a new kinetic criterion to indirectly assess the errors introduced by a continuum-level description of the gas flow. The analysis, which includes numerical demonstrations, focuses on the validity of the Navier-Stokes-Fourier equations and corresponding kinetic models and reveals that the new criterion can consistently indicate the validity of continuum-level modeling in both low-speed and high-speed flows at different Knudsen numbers. PMID:25019910

  9. 40 CFR 92.117 - Gas meter or flow instrumentation calibration, particulate measurement.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Gas meter or flow instrumentation... ENGINES Test Procedures § 92.117 Gas meter or flow instrumentation calibration, particulate measurement. (a) Sampling for particulate emissions requires the use of gas meters or flow instrumentation...

  10. 40 CFR 92.117 - Gas meter or flow instrumentation calibration, particulate measurement.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Gas meter or flow instrumentation... ENGINES Test Procedures § 92.117 Gas meter or flow instrumentation calibration, particulate measurement. (a) Sampling for particulate emissions requires the use of gas meters or flow instrumentation...

  11. 40 CFR 92.117 - Gas meter or flow instrumentation calibration, particulate measurement.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Gas meter or flow instrumentation... ENGINES Test Procedures § 92.117 Gas meter or flow instrumentation calibration, particulate measurement. (a) Sampling for particulate emissions requires the use of gas meters or flow instrumentation...

  12. 40 CFR 92.117 - Gas meter or flow instrumentation calibration, particulate measurement.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Gas meter or flow instrumentation... ENGINES Test Procedures § 92.117 Gas meter or flow instrumentation calibration, particulate measurement. (a) Sampling for particulate emissions requires the use of gas meters or flow instrumentation...

  13. 40 CFR 92.117 - Gas meter or flow instrumentation calibration, particulate measurement.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Gas meter or flow instrumentation... ENGINES Test Procedures § 92.117 Gas meter or flow instrumentation calibration, particulate measurement. (a) Sampling for particulate emissions requires the use of gas meters or flow instrumentation...

  14. Erosion-Resistant Nanocoatings for Improved Energy Efficiency in Gas Turbine Engines

    SciTech Connect

    2009-06-01

    This factsheet describes a research project whose goal is to test and substantiate erosion-resistant (ER) nanocoatings for application on compressor airfoils for gas turbine engines in both industrial gas turbines and commercial aviation.

  15. Gas diffusion optic flow calculation and its applications in gas cloud infrared imaging

    NASA Astrophysics Data System (ADS)

    Liu, Shao-hua; Luo, Xiu-li; Wang, Ling-xue; Cai, Yi

    2015-11-01

    Motion detection frequently employs Optic Flow to get the velocity of solid targets in imaging sequences. This paper suggests calculate the gas diffusion velocity in infrared gas leaking videos by optic flow algorithms. Gas target is significantly different from solid objects, which has variable margin and gray values in diffusion. A series of tests with various scenes and leakage rate were performed to compare the effect of main stream methods, such as Farneback algorithm, PyrLK and BM algorithm. Farneback algorithm seems to have the best result in those tests. Besides, the robustness of methods used in uncooled infrared imaging may decline seriously for the low resolution, big noise and poor contrast ratio. This research adopted a special foreground detection method (FDM) and spectral filtering technique to address this issue. FDM firstly computes corresponding sample sets of each pixel, and uses the background based on the sets to make a correlation analysis with the current frame. Spectral filtering technique means get two or three images in different spectrum by band pass filters, and show a better result by mixing those images. In addition, for Optic Flow methods have ability to precisely detect directional motion and to ignore the nondirectional one, these methods could be employed to highlight the gas area and reduce the background noise. This paper offers a credible way for obtaining the diffusion velocity and resolves the robust troubles in practical application. In the meanwhile, it is an exploration of optic flow in varied shape target detection.

  16. Computer modeling of gas flow and gas loading of rock in a bench blasting environment

    SciTech Connect

    Preece, D.S.; Baer, M.R. ); Knudsen, S.D. )

    1991-01-01

    Numerical modeling can contribute greatly to an understanding of the physics involved in the blasting process. This paper will describe the latest enhancements to the blast modeling code DMC (Distinct Motion Code) (Taylor and Preece, 1989) and will demonstrate the ability of DMC to model gas flow and rock motion in a bench blasting environment. DMC has been used previously to model rock motion associated with blasting in a cratering environment (Preece and Taylor, 1990) and in confined volume blasting associated with in-situ oil shale retorting (Preece, 1990 a b). These applications of DMC treated the explosive loading as force versus time functions on specific spheres which were adjusted to obtain correct face velocities. It was recognized that a great need in explosives modeling was the coupling of an ability to simulate gas flow with the rock motion simulation capability of DMC. This was accomplished by executing a finite difference code that computes gas flow through a porous media (Baer and Gross, 1989) in conjunction with DMC. The marriage of these two capabilities has been documented by Preece and Knudsen, 1991. The capabilities that have been added recently to DMC and which will be documented in this paper include: (1) addition of a new equation of state for the explosive gases; (2) modeling of gas flow and sphere loading in a bench environment. 8 refs., 5 figs.

  17. On the dependence of structural and sensing properties of sputtered MoO3 thin films on argon gas flow

    NASA Astrophysics Data System (ADS)

    Khojier, K.; Savaloni, H.; Zolghadr, S.

    2014-11-01

    Nitrogen and carbon oxides (CO, NO and NO2), released from combustion facilities and automobiles, are known to be extremely harmful to the human body and also are the main cause of air pollution. Therefore, effective methods to monitor and suppress the carbon and nitrogen oxides have been highly demanded for atmospheric environmental measurements and controls. It is known that molybdenum oxide (MoO3) can be a good semiconductor material for use as a gas sensor in monitoring CO, NO and NO2. In this paper we report the structural characteristics and sensing properties of the sputtered MoO3 thin films as a function of argon gas flow. MoO3 thin films were deposited by DC reactive magnetron sputtering technique on glass substrates at different argon gas flows in the range of 5-20 sccm. X-ray diffraction (XRD) analysis was used for studying crystallographic structure. XRD results showed that all of our films were of polycrystalline structure and of α-MoO3 stable orthorhombic phase. Results also showed that crystallite size increases while compressive nano-strain in the structure of the films decreases with increasing the argon gas flow. Atomic force microscope and the field emission scanning electron microscope studies showed granular structures for all samples, which increased in size consistent with the XRD results, with argon gas flow, while the surface roughness of the films also increased with argon gas flow. Chemical composition study showed optimum reaction between oxygen and molybdenum atoms for films produced at 15 sccm flow of argon gas. The electrical response of samples was measured in the vacuum and the CO environments in the temperature range of 150-350 K. All samples showed Ohmic behavior and the electrical resistances of the films measured in the CO environment were lower than those measured in vacuum. This study showed that the sensing ability of MoO3 for CO improves with increasing the argon gas flow.

  18. Flow transport and gas mixing during invasive high frequency oscillatory ventilation.

    PubMed

    Alzahrany, Mohammed; Banerjee, Arindam; Salzman, Gary

    2014-06-01

    A large Eddy simulation (LES) based computational fluid dynamics study was performed to investigate gas transport and mixing in patient specific human lung models during high frequency oscillatory ventilation. Different pressure-controlled waveforms (sinusoidal, exponential and square) and ventilator frequencies (15, 10 and 6Hz) were used (tidal volume=50mL). The waveforms were created by solving the equation of motion subjected to constant lung wall compliance and flow resistance. Simulations were conducted with and without endotracheal tube to understand the effect of invasive management device. Variation of pressure-controlled waveform and frequency exhibits significant differences on counter flow pattern, which could lead to a significant impact on the gas mixing efficiency. Pendelluft-like flow was present for the sinusoidal waveform at all frequencies but occurred only at early inspiration for the square waveform at highest frequency. The square waveform was most efficient for gas mixing, resulting in the least wall shear stress on the lung epithelium layer thereby reducing the risk of barotrauma to both airways and the alveoli for patients undergoing therapy. PMID:24656889

  19. Long-term flow monitoring of submarine gas emanations

    NASA Astrophysics Data System (ADS)

    Spickenbom, K.; Faber, E.; Poggenburg, J.; Seeger, C.

    2009-04-01

    One of the Carbon Capture and Storage (CCS) strategies currently under study is the sequestration of CO2 in sub-seabed geological formations. Even after a thorough review of the geological setting, there is the possibility of leaks from the reservoirs. As part of the EU-financed project CO2ReMoVe (Research, Monitoring, Verification), which aims to develop innovative research and technologies for monitoring and verification of carbon dioxide geological storage, we are working on the development of submarine long-term gas flow monitoring systems. Technically, however, these systems are not limited to CO2 but can be used for monitoring of any free gas emission (bubbles) on the seafloor. The basic design of the gas flow sensor system was derived from former prototypes developed for monitoring CO2 and CH4 on mud volcanoes in Azerbaijan. This design was composed of a raft floating on the surface above the gas vent to collect the bubbles. Sensors for CO2 flux and concentration and electronics for data storage and transmission were mounted on the raft, together with battery-buffered solar panels for power supply. The system was modified for installation in open sea by using a buoy instead of a raft and a funnel on the seafloor to collect the gas, which is then guided above water level through a flexible tube. Besides some technical problems (condensed water in the tube, movement of the buoys due to waves leading to biased measurement of flow rates), this setup provides a cost-effective solution for shallow waters. However, a buoy interferes with ship traffic, and it is also difficult to adapt this design to greater water depths. These requirements can best be complied by a completely submersed system. To allow unattended long-term monitoring in a submarine environment, such a system has to be extremely durable. Therefore, we focussed on developing a mechanically and electrically as simple setup as possible, which has the additional advantage of low cost. The system

  20. Shape of gas flow paths causes power law tailing

    NASA Astrophysics Data System (ADS)

    Kawanishi, T.; Sakami, A.; Hayashi, Y.

    2004-12-01

    In soil and/or groundwater remediation, we often see prolonged tailings: continuous outflow of low concentration pollutants for very long time, and in many cases power low behavior of late-time time-concentration curves. We considered that this kind of tailing can be caused by the shape of the gaseous flow introduced in saturated/unsaturated porous media. When gas is introduced to porous media, like air-sparging or soil vapor extraction, the shape of the gas flow path would be tree-like, or to some extent "fractal." So, there would be a distribution of the distance that a solute would have to travel by diffusion before getting to a gas/water interface, and we might expect that the distribution of this "diffusion distance" would be power-law-like. In order to see if tailing can be caused by this mechanism, simple column experiments were carried out. A column, 64 mm in inner diameter and 240 mm in height, was prepared and was packed with 1mm diameter glass beads. Nitrogen gas containing 5 % CO2 and 5% He was supplied from the bottom of the column, and after the water in the column is approximately saturated with CO2, the sparging gas was changed to pure nitrogen. The CO2 and He concentrations in the effluent gas was monitored and recorded. As the result, we saw tailing: the double-log plots of the concentration vs. time relationship was practically linear, and the absolute value of the slope in the double-log charts were 1.28, 0.95 and 0.83 according to the gas flow rates of 40, 80 and 120 ml/min, respectively. Slope less than 1.00 showed that these tailings cannot be explained by Freundlich-type adsorption behavior. Model analysis showed that this power low time-concentration behavior with the slope of approximately -1.0 can be explained by the power law distribution of diffusion distance \\textit{a} with PDF p(\\textit{a}) proportional to \\textit{a}^{-1}.

  1. Viewing inside Pyroclastic Flows - Large-scale Experiments on hot pyroclast-gas mixture flows

    NASA Astrophysics Data System (ADS)

    Breard, E. C.; Lube, G.; Cronin, S. J.; Jones, J.

    2014-12-01

    Pyroclastic density currents are the largest threat from volcanoes. Direct observations of natural flows are persistently prevented because of their violence and remain limited to broad estimates of bulk flow behaviour. The Pyroclastic Flow Generator - a large-scale experimental facility to synthesize hot gas-particle mixture flows scaled to pyroclastic flows and surges - allows investigating the physical processes behind PDC behaviour in safety. The ability to simulate natural eruption conditions and to view and measure inside the hot flows allows deriving validation and calibration data sets for existing numerical models, and to improve the constitutive relationships necessary for their effective use as powerful tools in hazard assessment. We here report on a systematic series of large-scale experiments on up to 30 ms-1 fast, 2-4.5 m thick, 20-35 m long flows of natural pyroclastic material and gas. We will show high-speed movies and non-invasive sensor data that detail the internal structure of the analogue pyroclastic flows. The experimental PDCs are synthesized by the controlled 'eruption column collapse' of variably diluted suspensions into an instrumented channel. Experiments show four flow phases: mixture acceleration and dilution during free fall; impact and lateral blasting; PDC runout; and co-ignimbrite cloud formation. The fully turbulent flows reach Reynolds number up to 107 and depositional facies similar to natural deposits. In the PDC runout phase, the shear flows develop a four-partite structure from top to base: a fully turbulent, strongly density-stratified ash cloud with average particle concentrations <<1vol%; a transient, turbulent dense suspension region with particle concentrations between 1 and 10 vol%; a non-turbulent, aerated and highly mobile dense underflows with particle concentrations between 40 and 50 vol%; and a vertically aggrading bed of static material. We characterise these regions and the exchanges of energy and momentum

  2. Gas mixture studies for streamer operated Resistive Plate Chambers

    NASA Astrophysics Data System (ADS)

    Paoloni, A.; Longhin, A.; Mengucci, A.; Pupilli, F.; Ventura, M.

    2016-06-01

    Resistive Plate Chambers operated in streamer mode are interesting detectors in neutrino and astro-particle physics applications (like OPERA and ARGO experiments). Such experiments are typically characterized by large area apparatuses with no stringent requirements on detector aging and rate capabilities. In this paper, results of cosmic ray tests performed on a RPC prototype using different gas mixtures are presented, the principal aim being the optimization of the TetraFluoroPropene concentration in Argon-based mixtures. The introduction of TetraFluoroPropene, besides its low Global Warming Power, is helpful because it simplifies safety requirements allowing to remove also isobutane from the mixture. Results obtained with mixtures containing SF6, CF4, CO2, N2 and He are also shown, presented both in terms of detectors properties (efficiency, multiple-streamer probability and time resolution) and in terms of streamer characteristics.

  3. Rock matrix and fracture analysis of flow in western tight gas sands

    SciTech Connect

    Morrow, N.R.; Brower, K.R.; Kilmer, N.H.; Ward, J.S.

    1984-01-01

    The presence of natural fractures is often cited as a key factor in gas production for both fractured and unfractured wells. Numerous vertical fractures have been found in cores recovered in the Multi-Well Project. The cores show that by far the majority of fractures become filled with calcite cement. However, calcite-filled fractures are not necessarily a seal to gas flow. As part of this project, flow measurements are being made along and across selected fractured samples as a function of overburden pressure for a minimum of five core samples. Comparative measurements will be made on unfractured neighboring cores. Permeability measurements will be made at a minimum of four levels of water saturation for each of at least six samples to assess the effect of water content on permeabilities in fractured systems. The effects of chemical treatments on mineralized fractures will be studied to assess whether such treatments lead to permeability enhancement of formation damage. Permeability to gas will be measured at various levels of water saturation established by equilibration of core samples in humidity chambers. Electrical resistivity at various levels of water saturations and confining pressures will also be measured. Special attention will be given to water distribution within the rock pore space. circumstances under which water can act to inhibit gas production and the pressure differences necessary to overcome capillary seals formed by water will also be investigated. Capillary pressure measurements will be made using a high-speed centrifuge.

  4. Magnetic roller gas gate employing transonic sweep gas flow to isolate regions of differing gaseous composition or pressure

    DOEpatents

    Doehler, Joachim

    1994-12-20

    Disclosed herein is an improved gas gate for interconnecting regions of differing gaseous composition and/or pressure. The gas gate includes a narrow, elongated passageway through which substrate material is adapted to move between said regions and inlet means for introducing a flow of non-contaminating sweep gas into a central portion of said passageway. The gas gate is characterized in that the height of the passageway and the flow rate of the sweep gas therethrough provides for transonic flow of the sweep gas between the inlet means and at least one of the two interconnected regions, thereby effectively isolating one region, characterized by one composition and pressure, from another region, having a differing composition and/or pressure, by decreasing the mean-free-path length between collisions of diffusing species within the transonic flow region. The gas gate preferably includes a manifold at the juncture point where the gas inlet means and the passageway interconnect.

  5. Resistance formulas in hydraulics-based models for routing debris flows

    USGS Publications Warehouse

    Chen, Cheng-lung; Ling, Chi-Hai

    1997-01-01

    The one-dimensional, cross-section-averaged flow equations formulated for routing debris flows down a narrow valley are identical to those for clear-water flow, except for the differences in the values of the flow parameters, such as the momentum (or energy) correction factor, resistance coefficient, and friction slope. Though these flow parameters for debris flow in channels with cross-sections of arbitrary geometric shape can only be determined empirically, the theoretical values of such parameters for debris flow in wide channels exist. This paper aims to derive the theoretical resistance coefficient and friction slope for debris flow in wide channels using a rheological model for highly-concentrated, rapidly-sheared granular flows, such as the generalized viscoplastic fluid (GVF) model. Formulating such resistance coefficient or friction slope is equivalent to developing a generally applicable resistance formula for routing debris flows. Inclusion of a nonuniform term in the expression of the resistance formula proves useful in removing the customary assumption that the spatially varied resistance at any section is equal to what would take place with the same rate of flow passing the same section under conditions of uniformity. This in effect implies an improvement in the accuracy of unsteady debris-flow computation.

  6. Gas-flame deposition of corrosion-resistant coatings

    SciTech Connect

    Lakhotkin, Yu.V.; Kuz`min, V.P.; Nikolaev, V.N.

    1995-07-01

    A technology has been developed for the gas-flame deposition of corrosion-resistant coatings. The coatings have a number of potential uses: for regulating valves and stop valves on oil and gas pipelines; for important friction elements subject to abrasive and corrosive wear during service; for hard-alloy cutting plates and tools made of high-speed steel that are used to machine metal, wood, stone, and glass; for dies and die plates used to shape metals. The technology makes is possible to obtain coatings of tungsten carbide on products made of hard alloys, structural and high-speed steels, copper, and nickel. The process is conducted at a temperature of 450-550{degrees}C. Deposition rate is 100-500 {mu}m/h. Coating thickness ranges up to 500 {mu}m. The microhardness of the coating can reach 3500 kg/mm{sup 2} (35 kN/mm{sup 2}), which is 2-3 times greater than the microhardness of hard alloys, titanium nitride, and galvanic chromium. Adhesion approaches 15-20 kg/mm{sup 2}. The coatings are resistant to corrosion in acidic and alkaline media and hydrogen sulfide. The most promising application of the technology is for important friction elements subject to corrosive wear during service. Tests of pipeline valves and bushings in corrosive media showed that service life is increased by a factor between ten and a hundred. The inventors of the method own the rights to this technology in the Russian Federation.

  7. 42 CFR 84.93 - Gas flow test; open-circuit apparatus.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Gas flow test; open-circuit apparatus. 84.93...-Contained Breathing Apparatus § 84.93 Gas flow test; open-circuit apparatus. (a) A static-flow test will be performed on all open-circuit apparatus. (b) The flow from the apparatus shall be greater than 200...

  8. 42 CFR 84.93 - Gas flow test; open-circuit apparatus.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 1 2011-10-01 2011-10-01 false Gas flow test; open-circuit apparatus. 84.93...-Contained Breathing Apparatus § 84.93 Gas flow test; open-circuit apparatus. (a) A static-flow test will be performed on all open-circuit apparatus. (b) The flow from the apparatus shall be greater than 200...

  9. Effect of mild atherosclerosis on flow resistance in a coronary artery casting of man

    NASA Technical Reports Server (NTRS)

    Back, L. H.; Cho, Y. I.; Crawford, D. W.; Cuffel, R. F.

    1984-01-01

    An in-vitro flow study was conducted in a mildly atherosclerotic main coronary artery casting of man using sugar-water solutions simulating blood viscosity. Steady flow results indicated substantial increases in pressure drop, and thus flow resistance at the same Reynolds number, above those for Poiseuille flow by 30 to 100 percent in the physiological Reynolds number range from about 100 to 400. Time-averaged pulsatile flow data showed additional 5 percent increases in flow resistance above the steady flow results. Both pulsatile and steady flow data from the casting were found to be nearly equal to those from a straight, axisymmetric model of the casting up to a Reynolds number of about 200, above which the flow resistance of the casting became gradually larger than the corresponding values from the axisymmetric model.

  10. Measurement of flow diverter hydraulic resistance to model flow modification in and around intracranial aneurysms

    PubMed Central

    Szikora, István; Paál, György

    2014-01-01

    Flow diverters (FDs) have been successfully applied in the recent decade to the treatment of intracranial aneurysms by impairing the communication between the flows in the parent artery and the aneurysm and, thus, the blood within the aneurysm sac. It would be desirable to have a simple and accurate computational method to follow the changes in the peri- and intraaneurysmal flow caused by the presence of FDs. The detailed flow simulation around the intricate wire structure of the FDs has three disadvantages: need for high amount of computational resources and highly skilled professionals to prepare the computational grid, and also the lack of validation that makes the invested effort questionable. In this paper, we propose a porous layer method to model the hydraulic resistance (HR) of one or several layers of the FDs. The basis of this proposal is twofold: first, from an application point of view, the only interesting parameter regarding the function of the FD is its HR; second, we have developed a method to measure the HR with a simple apparatus. We present the results of these measurements and demonstrate their utility in numerical simulations of patient-specific aneurysm simulations. PMID:24936307