Science.gov

Sample records for gas holdup bubble

  1. Investigation of Gas Holdup in a Vibrating Bubble Column

    NASA Astrophysics Data System (ADS)

    Mohagheghian, Shahrouz; Elbing, Brian

    2015-11-01

    Synthetic fuels are part of the solution to the world's energy crisis and climate change. Liquefaction of coal during the Fischer-Tropsch process in a bubble column reactor (BCR) is a key step in production of synthetic fuel. It is known from the 1960's that vibration improves mass transfer in bubble column. The current study experimentally investigates the effect that vibration frequency and amplitude has on gas holdup and bubble size distribution within a bubble column. Air (disperse phase) was injected into water (continuous phase) through a needle shape injector near the bottom of the column, which was open to atmospheric pressure. The air volumetric flow rate was measured with a variable area flow meter. Vibrations were generated with a custom-made shaker table, which oscillated the entire column with independently specified amplitude and frequency (0-30 Hz). Geometric dependencies can be investigated with four cast acrylic columns with aspect ratios ranging from 4.36 to 24, and injector needle internal diameters between 0.32 and 1.59 mm. The gas holdup within the column was measured with a flow visualization system, and a PIV system was used to measure phase velocities. Preliminary results for the non-vibrating and vibrating cases will be presented.

  2. Gas holdup in cyclone-static micro-bubble flotation column.

    PubMed

    Li, Xiaobing; Zhu, Wei; Liu, Jiongtian; Zhang, Jian; Xu, Hongxiang; Deng, Xiaowei

    2016-04-01

    The present work has been carried out to investigate the effect of process variables on gas holdup and develop an empirical equation and a neural network model for online process control of the gas holdup based on the operating variables. In this study, the effect of process variables (nozzle diameter, circulation pressure, aeration rate, and frother dosage) on gas holdup in a cyclone-static micro-bubble flotation column of an air/oily wastewater system was investigated. Gas holdup was estimated using a pressure difference method and an empirical equation was proposed to predict gas holdup. A general regression neural network (GRNN) model was also introduced to predict gas holdup for the cyclone-static micro-bubble flotation column. The predictions from the empirical equation and the GRNN are in good agreement with the experiment data for gas holdup, while the GRNN provides higher accuracy and stability compared with that of the empirical equation. PMID:26293176

  3. Theoretical prediction of gas hold-up in bubble columns with Newtonian and non-Newtonian fluids

    SciTech Connect

    Kawase, Y.; Moo-Young, M.

    1987-05-01

    A theoretical model for gas hold-up in bubble columns with Newtonian and non-Newtonial fluids has been developed on the basis of the concept of a characteristic turbulent kinematic viscosity in bubble columns. Gas hold-ups in a 40-L bubble column and a 1000-L pilot plant fermenter with Newtonian fluids (water, glycerine, dextrose, and fermentation media) and non-Newtonian fluids((carboxymethyl) cellulose, carboxypolymethylene, and polyacrylamide) were measured. Predictions were compared with the present data and other experimental data and correlations available in the literature, over a wide range of conditions. A satisfactory agreement was found.

  4. Gas holdup and solids dispersion in a three-phase slurry bubble column

    SciTech Connect

    Bukur, D.B.; Patel, S.A.; Daly, J.G. )

    1990-11-01

    Studies with three-phase systems in bubble columns have shown that the effect of solids on gas holdup depends on a variety of factors. Important among these are: liquid properties and particle properties such as density, size and concentration in the slurry, and wettability. Most of these studies have been made with cold flow systems; and the data at high temperatures and pressures, i.e., with systems of potential industrial importance, are rare. The objective of this paper is to obtain hydrodynamic data at elevated temperatures using a three-phase system of importance to FTS. In particular, the effects of solids type, size and concentration on gas holdup and axial solids dispersion were investigated. Two types of solids used, iron oxide and silica, simulate typical catalysts and supports, respectively, employed in FTS. A wider range of gas velocities (up to 0.12 m/s) than those used by Deckwer et al, ({lt}0.04 m/s) was employed in this study. Additionally, data were obtained from experiments conducted with slurry circulation (continuous mode of operation), whereas all the previous studies with molten waxes were conducted in the batch mode of operation (without liquid flow).

  5. Influences of suspended fine particles on gas holdup and mass transfer characteristics in a slurry bubble column

    SciTech Connect

    Sada, E.; Kumazawa, H.; Lee, C.H.

    1986-05-01

    In this work, slurries with suspended fine particles (whose size is smaller than 10 ..mu..m) of lower than 1 wt. % were used to provide an insight into the solid-bubble interaction in a bubble column. The liquid property and the gas sparging system as well as the particle size were varied; the effects of these variables on the gas holdup and the volumetric liquid-side mass transfer coefficient were determined experimentally and are here discussed quantitatively.

  6. Evaluation of micro-bubble size and gas hold-up in two-phase gas liquid columns via scattered light measurements

    NASA Astrophysics Data System (ADS)

    Aslan, Mustafa M.; Crofcheck, Czarena; Tao, Daniel; Pinar Mengüç, M.

    2006-10-01

    In this paper, potential use of an elliptically polarized light scattering (EPLS) method to monitor both bubble size and gas hold-up in a bubble-laden medium is explored. It is shown that with the use of the new EPLS system, normalized scattering matrix elements (Mij's) measured at different side and back-scattering angles can be used to obtain the desired correlations between the bubble sizes and input flow parameters for a gas liquid (GL) column, including gas flow rate and surfactant concentrations. The bubble size distributions were first evaluated experimentally using a digital image processing system for different gas flows and surfactant concentrations. These images showed that the bubbles were not necessarily spherical. We investigated the possibility of modeling the bubbles as effective spheres. The scattering matrix elements were calculated using the Lorenz Mie theory and the results were compared against the experimentally determined values. It was observed that the change in the bubble size yields significant changes in M11, M33, M44, and M34 profiles. An optimum single measurement angle of θ=120 was determined for a gas velocity range of 0.04 0.35 cm/s (ID=4.5cm). The choice of the optimum angle depends on frit pore size, column diameter, gas pressure, and surfactant concentration. These results suggest that a simplified version of the present EPLS system can effectively be used as a two-phase flow sensor to monitor bubble size and liquid hold-up in industrial systems.

  7. Influence of electrolyte concentration on holdup, flow regime transition and local flow properties in a large scale bubble column

    NASA Astrophysics Data System (ADS)

    Besagni, Giorgio; Inzoli, Fabio

    2015-11-01

    We experimentally investigate the influence of the electrolyte concentration on holdup, flow regime transition and local flow properties in a large scale bubble column, with air and water as working fluids. The column is 0.24 m inner diameter, 5.3 m height and the air is introduced by a spider sparger up to a superficial gas velocity of 0.2 m/s. The influence of five NaCl concentrations are investigated by using gas holdup and optical probe measurements. The gas holdup measurements are used for analysing the flow regime transition between the homogeneous and the transition regime and the optical probe is used for studying the local flow characteristics at different radial positions. The presence of NaCl - up to a critical concentration - increases the gas holdup. The increase in the gas holdup is due to the inhibition of the coalescence between the bubbles and, thus, the extension of the homogeneous regime. The results are in agreement with the previous literature on smaller bubble columns.

  8. Bubble and bubble wake characteristics in a gas-liquid-solid fluidized bed

    SciTech Connect

    Kreischer, B.E.

    1989-01-01

    A light transmittance technique involving a dual optical fiber probe was used to measure the local solids holdup in a three-dimensional gas-liquid-solid fluidized bed. The bubble could be clearly identified in the same signal, thus permitting the simultaneous determination of the local solids holdup profile in the wake of a single bubble and the rise velocity and chord length of the bubble. The solids holdup behavior was studied in the wake of single bubbles rising in a liquid-solid fluidized bed for different liquid velocities, particle sizes, and bubble sizes. The wake solids holdup was found to decrease with decreasing mean solids holdup in the bed, to be essentially independent of the bubble Reynolds number over the range investigated in this study (4000 < Re{sub b} < 8000), and to decrease with increasing particle size. In freely bubbling bed at low gas holdups ({epsilon}{sub g} < 0.03), both the solids holdup in the wake and the particulate phase solids holdup were measured. The light transmittance probe developed for the single bubble system was also used for these measurements. Axial variations in the particulate solids holdup indicated that the relative wake solids holdup increased with axial distance from the distributor. The best agreement between the single bubble measurements and the measurements in the freely bubbling bed occurred in the bubble formation region. And finally, a simple model of the bubble wake was developed based on equations available in the literature for a spherical vortex to predict both the wake size and the relative wake solids holdup. The predictions showed good agreement with the experimentally observed values.

  9. Solids holdup in the wake of a single bubble in a liquid-solid fluidized bed

    SciTech Connect

    Kreischer, B.; Moritomi, H.; Fan, L.S. . Dept. of Chemical Engineering)

    1988-01-01

    The wake structure behind large bubbles rising in a three-dimensional fluidized bed was investigated through measurements of the local solids holdup. A dual light transmittance probe allowed the measurement of the local solids concentration both in the bed and immediately above the bed surface. 160, 326, 460, and 760 micron glass beads were used as the fluidized solids and the large single bubbles were of spherical-cap shape. The light transmittance probe proved effective in measuring the solids concentration profile behind a single bubble for both 160 and 326 micron glass bead systems. The solids holdup profile was found to depend on position within the wake relative to the central axis and a stable wake size could be identified. The ratio of the average solids holdup in the wake to the mean solids holdup was found to decrease with a decrease in the mean solids holdup in the liquid-solid fluidized bed, but this decrease was less extensive for beds of smaller size particles. Comparison of the in-bed wake solids holdup data with visual observation of the single bubble immediately above the bed surface show good agreement. Observed stable wake size data is in reasonable agreement with published data for two-dimensional fluidized beds.

  10. Hydrodynamic flow regimes, gas holdup, and liquid circulation in airlift reactors

    SciTech Connect

    Abashar, M.E.; Narsingh, U.; Rouillard, A.E.; Judd, R.

    1998-04-01

    This study reports an experimental investigation into the hydrodynamic behavior of an external-loop airlift reactor (ALR) for the air-water system. Three distinct flow regimes are identified--namely homogeneous, transition, and heterogeneous regimes. The transition between homogeneous and heterogeneous flow is observed to occur over a wide range rather than being merely a single point as has been previously reported in the literature. A gas holdup correlation is developed for each flow regime. The correlations fit the experimental gas holdup data with very good accuracy (within {+-}5%). It would appear, therefore, that a deterministic equation to describe each flow regime is likely to exist in ALRs. This equation is a function of the reactor geometry and the system`s physical properties. New data concerning the axial variation of gas holdup is reported in which a minimum value is observed. This phenomenon is discussed and an explanation offered. Discrimination between two sound theoretical models--namely model 1 (Chisti et al., 1988) and model 2 (Garcia Calvo, 1989)--shows that model 1 predicts satisfactorily the liquid circulation velocity with an error of less than {+-} 10%. The good predictive features of model 1 may be due to the fact that it allows for a significant energy dissipation by wakes behind bubbles. Model 1 is now further improved by the new gas holdup correlations which are derived for the three different flow regimes.

  11. Gas Generation and Hold-Up in Hanford Waste Treatment Plant Process Streams Containing Anti-Foam Agent (AFA)

    SciTech Connect

    Arm, Stuart T.; Poloski, Adam P.; Stewart, Charles W.; Meyer, Perry A.; Kurath, Dean E.

    2007-06-29

    The Waste Treatment and Immobilization Plant (WTP) is being designed and built to pretreat and vitrify defense wastes stored at the DOE Hanford Site near Richland, Washington. Some of the WTP process streams are slurries that exhibit non-Newtonian rheological behavior. Such streams can accumulate hazardous quantities of thermally and radiolytically generated flammable gases. Experiments were performed in a bubble column to measure gas hold-up under various conditions to better understand flammable gas behavior in WTP processes. The two non-Newtonian slurries tested were kaolin-bentonite clay and a chemical surrogate of pretreated high-level waste (HLW) from Hanford Tank AZ-101. The addition of solutes, whether a salt or anti-foaming agent (AFA) decrease the bubble coalescence rate leading to smaller bubbles, lower bubble rise velocity and higher gas holdup. Gas holdup decreased with increasing yield stress and consistency. The impact of AFA on gas holdup in kaolin-bentonite clay was less than in simulated HLW, presumably because the AFA adsorbed onto the clay particles, rendering it unavailable to retard coalescence.

  12. EFFECTS OF ALTERNATE ANTIFOAM AGENTS, NOBLE METALS, MIXING SYSTEMS AND MASS TRANSFER ON GAS HOLDUP AND RELEASE FROM NONNEWTONIAN SLURRIES

    SciTech Connect

    Guerrero, H; Mark Fowley, M; Charles Crawford, C; Michael Restivo, M; Robert Leishear, R

    2007-12-24

    Gas holdup tests performed in a small-scale mechanically-agitated mixing system at the Savannah River National Laboratory (SRNL) were reported in 2006. The tests were for a simulant of waste from the Hanford Tank 241-AZ-101 and featured additions of DOW Corning Q2-3183A Antifoam agent. Results indicated that this antifoam agent (AFA) increased gas holdup in the waste simulant by about a factor of four and, counter intuitively, that the holdup increased as the simulant shear strength decreased (apparent viscosity decreased). These results raised questions about how the AFA might affect gas holdup in Hanford Waste Treatment and Immobilization Plant (WTP) vessels mixed by air sparging and pulse-jet mixers (PJMs). And whether the WTP air supply system being designed would have the capacity to handle a demand for increased airflow to operate the sparger-PJM mixing systems should the AFA increase retention of the radiochemically generated flammable gases in the waste by making the gas bubbles smaller and less mobile, or decrease the size of sparger bubbles making them mix less effectively for a given airflow rate. A new testing program was developed to assess the potential effects of adding the DOW Corning Q2-3183A AFA to WTP waste streams by first confirming the results of the work reported in 2006 by Stewart et al. and then determining if the AFA in fact causes such increased gas holdup in a prototypic sparger-PJM mixing system, or if the increased holdup is just a feature of the small-scale agitation system. Other elements of the new program include evaluating effects other variables could have on gas holdup in systems with AFA additions such as catalysis from trace noble metals in the waste, determining mass transfer coefficients for the AZ-101 waste simulant, and determining whether other AFA compositions such as Dow Corning 1520-US could also increase gas holdup in Hanford waste. This new testing program was split into two investigations, prototypic sparger-PJM tests and modeling being conducted at the Pacific Northwest National Laboratory (PNNL), and small-scale agitation tests and evaluations of effects waste and AFA ingredients have on gas retention and mass transfer being conducted at SRNL. Only work conducted at SRNL is reported here. Key results are: (1) The unexpected gas holdup behavior reported in 2006 for a small-scale agitation system is confirmed. The gas holdup data from small-scale and bench-scale impeller-type mixing systems reported herein show very different trends than the behavior exhibited by the prototypic sparger-PJM mixing system tested in the PNNL APEL facility. Results obtained from testing this 1/4-scale prototypic mixing system will be reported by PNNL. The reason for this difference in holdup behavior between the two different mixing systems is not known at this time. Consequently, data from the small mechanical agitation systems should not be extrapolated to prototypic plant conditions. (2) Bench-scale and small-scale tests conducted with Dow Corning 1520-US AFA show it to be a viable replacement to Dow Corning Q2-3183A AFA. This alternative AFA will, however, require significantly higher dosage (concentration) to perform the same antifoam function. (3) Addition of noble metals to the AZ-101 waste simulant does not produce a catalytic gas retention effect with the AFA. The Gas holdup is similar whether or not noble metals are present in the AZ-101 simulant. (4) Mass transfer tests were performed in a large (0.76 m diameter) bubble column filled to 1.3, 3.4, and 7.4 m elevations with water and the AZ-101 waste simulant. Mass transfer coefficients for air bubbles emanating from a prototypic 0.051 m diameter sparger were obtained from the transient decay of dissolved oxygen concentration in the initially saturated fluids. Adding AFA to water reduces the mass transfer coefficient slightly. AFA addition reduces the mass transfer coefficient for AZ-101 simulant more than it does for water because the shear strength of the simulant allows for larger bubble sizes, and larger bubbles have smaller surface area for mass transfer than small bubbles for the same void volume.

  13. Gas bubble detector

    NASA Technical Reports Server (NTRS)

    Mount, Bruce E. (Inventor); Burchfield, David E. (Inventor); Hagey, John M. (Inventor)

    1995-01-01

    A gas bubble detector having a modulated IR source focused through a bandpass filter onto a venturi, formed in a sample tube, to illuminate the venturi with modulated filtered IR to detect the presence of gas bubbles as small as 0.01 cm or about 0.004 in diameter in liquid flowing through the venturi. Means are provided to determine the size of any detected bubble and to provide an alarm in the absence of liquid in the sample tube.

  14. Performance of the gas bubble column in molten salt systems

    SciTech Connect

    Sada, E.; Katoh, S.; Nakanishi, A.; Yamanishi, T.; Yoshii, H.

    1984-01-01

    Experimental data on the gas holdup and the mean bubble size in a bubble column with a single nozzle was obtained for gas-molten salt systems of a eutectic mixture of LiCl (58 mol %)-KCl (42 mol %) and molten NaNO/sub 3/. The liquid-phase mass transfer coefficient K /SUB L/ was evaluated from the specific surface area a and the volumetric coefficient K /SUB L/ a data for oxygen and carbon dioxide absorption into molten NaNO/sub 3/. The dimensionless correlations of the performance of bubble columns for aqueous solutions can be extended to the gas-molten salt systems.

  15. Gas-Liquid flow characterization in bubble columns with various gas-liquid using electrical resistance tomography

    NASA Astrophysics Data System (ADS)

    Jin, Haibo; Yuhuan, Han; Suohe, Yang

    2009-02-01

    Electrical resistance tomography (ERT) is an advanced and new detecting technique that can measure and monitor the parameters of two-phase flow on line, such as gas-liquid bubble column. It is fit for the industrial process where the conductible medium serves as the disperse phase to present the key bubble flow characteristics in multi-phase medium. Radial variation of the gas holdup and mean holdups are investigated in a 0.160 m i. d. bubble column using ERT with two axial locations (Plane 1 and Plane 2). In all the experiments, air was used as the gas phase, tap water as liquid phase, and a series of experiments were done by adding KCl, ethanol, oil sodium, and glycerol to change liquid conductivity, liquid surface tension and viscosity. The superficial gas velocity was varied from 0.02 to 0.2 m/s. The effect of conductivity, surface tension, viscosity on the mean holdups and radial gas holdup distribution is discussed. The results showed that the gas holdup decrease with the increase of surface tension and increase with the increase of viscosity. Meanwhile, the settings of initial liquid conductivity slightly influence the gas holdup values, and the experimental data increases with the increase of the initial setting values in the same conditions.

  16. Bubble size and gas-liquid interfacial area measurements using molten paraffin waxes in bubble columns

    SciTech Connect

    Bukur, D.B.; Patel, S.A.; Daly, J.G.; Raphael, M.L.

    1987-01-01

    Experiments were conducted in 0.05 m ID and 0.23 m ID by 3 m tall bubble columns with different types of molten waxes as the liquid medium and nitrogen as the gas, under processing conditions typical or Fischer-Tropsch synthesis over iron catalysts (i.e. gas velocities up to 0.15 m s, and temperatures between 200 and 270/sup 0/C) to estimate gas liquid interfacial area from measured values of average gas hold-up and Sauter mean bubble diameter. The gas hold-up was estimated from visual observations of the expanded and static liquid heights, and the Sauter was estimated from bubble size measurements obtained by photography and dynamic gas disengagement. The paraffin wax (FT-300) used in the authors' studies is non-coalescing and has a tendency to foam. The amount of foam is greater for runs conducted in the order of increasing gas velocities, than in runs with decreasing velocities. Thus, two values of hold-up are possible and the start-up procedure determines which one will be attained. At higher gas velocities (> 0.05 m/s) the foam disappears and a transition to the slug flow, churn-turbulent regime takes place. Reactor waxes are coalescing in nature and do not produce foam. Despite similar hold-ups for the different waxes at higher gas velocities, the Sauters are significantly different and this is reflected in the specific gas-liquid interfacial areas, with larger values obtained with the paraffin wax compared to values with reactor waxes.

  17. PARAMETRIC EFFECTS OF ANTI-FOAM COMPOSITION, SIMULANT PROPERTIES AND NOBLE METALS ON THE GAS HOLDUP AND RELEASE OF A NON-NEWTONIAN WASTE SLURRY SIMULANT

    SciTech Connect

    Guerrero, H; Charles Crawford, C; Mark Fowley, M

    2008-08-07

    Gas holdup tests were performed in bench-scale and small-scale mechanically-agitated mixing systems at the Savannah River National Laboratory (SRNL) for a simulant of waste from the Hanford Tank 241-AZ-101. These featured additions of DOW Corning Q2-3183A anti-foam agent. Results indicated that this anti-foam agent (AFA) increased gas holdup in the waste simulant by about a factor of four and, counter-intuitively, that the holdup increased as the non-newtonian simulant shear strength decreased (apparent viscosity decreased). Such results raised the potential of increased flammable gas retention in Hanford Waste Treatment and Immobilization Plant (WTP) vessels mixed by air sparging and pulse-jet mixers (PJMs) during a Design Basis Event (DBE). Additional testing was performed to determine the effects of simulant properties, composition of alternate AFAs, and presence of trace noble metals. Key results are that: (1) Increased gas holdup resulting from addition of Q2-3183A is due to a decrease in surface tension that supports small bubbles which have low rise velocities. (2) Dow Corning 1520-US AFA shows it to be a viable replacement to Dow Corning Q2-3183A AFA. This alternative AFA, however, requires significantly higher dosage for the same anti-foam function. (3) Addition of noble metals to the AZ-101 waste simulant does not produce a catalytic gas retention effect with the AFA.

  18. Heated Gas Bubbles

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Fluid Physics is study of the motion of fluids and the effects of such motion. When a liquid is heated from the bottom to the boiling point in Earth's microgravity, small bubbles of heated gas form near the bottom of the container and are carried to the top of the liquid by gravity-driven convective flows. In the same setup in microgravity, the lack of convection and buoyancy allows the heated gas bubbles to grow larger and remain attached to the container's bottom for a significantly longer period.

  19. Large-Scale Testing of Effects of Anti-Foam Agent on Gas Holdup in Process Vessels in the Hanford Waste Treatment Plant

    SciTech Connect

    Mahoney, L.A.; Alzheimer, J.M.; Arm, S.T.; Guzman-Leong, C.E.; Jagoda, L.K.; Stewart, C.W.; Wells, B.E.; Yokuda, S.T.

    2008-07-01

    The Hanford Waste Treatment and Immobilization Plant (WTP) will vitrify the radioactive wastes stored in underground tanks. These wastes generate and retain hydrogen and other flammable gases that create safety concerns for the vitrification process tanks in the WTP. An anti-foam agent (AFA) will be added to the WTP process streams. Previous testing in a bubble column and a small-scale impeller-mixed vessel indicated that gas holdup in a high-level waste chemical simulant with AFA was as much as 10 times higher than in clay simulant without AFA. This raised a concern that major modifications to the WTP design or qualification of an alternative AFA might be required to satisfy plant safety criteria. However, because the mixing and gas generation mechanisms in the small-scale tests differed from those expected in WTP process vessels, additional tests were performed in a large-scale prototypic mixing system with in situ gas generation. This paper presents the results of this test program. The tests were conducted at Pacific Northwest National Laboratory in a 1/4-scale model of the lag storage process vessel using pulse jet mixers and air spargers. Holdup and release of gas bubbles generated by hydrogen peroxide decomposition were evaluated in waste simulants containing an AFA over a range of Bingham yield stresses and gas generation rates. Results from the 1/4-scale test stand showed that, contrary to the small-scale impeller-mixed tests, holdup in the chemical waste simulant with AFA was not so greatly increased compared to gas holdup in clay without AFA. The test stand, simulants, scaling and data-analysis methods, and results are described in relation to previous tests and anticipated WTP operating conditions. (authors)

  20. Mechanisms of gas bubble retention

    SciTech Connect

    Gauglitz, P.A.; Mahoney, L.A.; Mendoza, D.P.; Miller, M.C.

    1994-09-01

    Retention and episodic release of flammable gases are critical safety concerns regarding double-shell tanks (DSTs) containing waste slurries. Previous investigations have concluded that gas bubbles are retained by the slurry that has settled at the bottom of the DST. However, the mechanisms responsible for the retention of these bubbles are not well understood. In addition, the presence of retained gas bubbles is expected to affect the physical properties of the sludge, but essentially no literature data are available to assess the effect of these bubbles. The rheological behavior of the waste, particularly of the settled sludge, is critical to characterizing the tendency of the waste to retain gas bubbles. The objectives of this study are to elucidate the mechanisms contributing to gas bubble retention and release from sludge such as is in Tank 241-SY-101, understand how the bubbles affect the physical properties of the sludge, develop correlations of these physical properties to include in computer models, and collect experimental data on the physical properties of simulated sludges with bubbles. This report presents a theory and experimental observations of bubble retention in simulated sludge and gives correlations and new data on the effect of gas bubbles on sludge yield strength.

  1. Large-Scale Testing of Effects of Anti-Foam Agent on Gas Holdup in Process Vessels in the Hanford Waste Treatment Plant - 8280

    SciTech Connect

    Mahoney, Lenna A.; Alzheimer, James M.; Arm, Stuart T.; Guzman-Leong, Consuelo E.; Jagoda, Lynette K.; Stewart, Charles W.; Wells, Beric E.; Yokuda, Satoru T.

    2008-06-03

    The Hanford Waste Treatment Plant (WTP) will vitrify the radioactive wastes stored in underground tanks. These wastes generate and retain hydrogen and other flammable gases that create safety concerns for the vitrification process tanks in the WTP. An anti-foam agent (AFA) will be added to the WTP process streams. Prior testing in a bubble column and a small-scale impeller-mixed vessel indicated that gas holdup in a high-level waste chemical simulant with AFA was up to 10 times that in clay simulant without AFA. This raised a concern that major modifications to the WTP design or qualification of an alternative AFA might be required to satisfy plant safety criteria. However, because the mixing and gas generation mechanisms in the small-scale tests differed from those expected in WTP process vessels, additional tests were performed in a large-scale prototypic mixing system with in situ gas generation. This paper presents the results of this test program. The tests were conducted at Pacific Northwest National Laboratory in a ¼-scale model of the lag storage process vessel using pulse jet mixers and air spargers. Holdup and release of gas bubbles generated by hydrogen peroxide decomposition were evaluated in waste simulants containing an AFA over a range of Bingham yield stresses and gas gen geration rates. Results from the ¼-scale test stand showed that, contrary to the small-scale impeller-mixed tests, gas holdup in clay without AFA is comparable to that in the chemical waste simulant with AFA. The test stand, simulants, scaling and data-analysis methods, and results are described in relation to previous tests and anticipated WTP operating conditions.

  2. Radiolytic Bubble Gas Hydrogen Compositions

    SciTech Connect

    Hester, J.R.

    2001-08-28

    Radioactive waste solids can trap bubbles containing hydrogen that may pose a flammability risk if they are disturbed and hydrogen is released. Whether a release is a problem or not depends, among other things, on the hydrogen composition of the gas. This report develops a method for estimating the hydrogen composition of trapped bubbles based on waste properties.

  3. Radiolytic Bubble Gas Hydrogen Compositions

    SciTech Connect

    Hester, J.R.

    2003-02-05

    Radioactive waste solids can trap bubbles containing hydrogen that may pose a flammability risk if they are disturbed and hydrogen is released. Whether a release is a problem or not depends, among other things, on the hydrogen composition of the gas. This report develops a method for estimating the hydrogen composition of trapped bubbles based on waste properties.

  4. Study on bubble sizes in a down-flow liquid jet gas pump

    NASA Astrophysics Data System (ADS)

    Wu, Y. L.; Xiang, Q. J.; Li, H.; Chen, S. X.

    2012-11-01

    In this paper the liquid jet gas pump as an important gas-liquid contactor is investigated on bubble sizes. Its internal mixed effect is influenced by gas holdup, bubble size distribution and interfacial area. To improve the mixed effect, experiment investigations have been carried out in a modified down-flow liquid jet gas pump with special emphasis on gas distribution. The mixing tube and diffuser are made of transparent Perspex for visual observation. Bubble diameters in the diffuser have been measured by photographic and capillary method at different operating conditions. Under the same Reynolds number of orifice, about 80% of the bubble diameters range from 0.6 mm to 1.3 mm, which has no obvious effect on the gas-liquid flow rate ratio. The average bubble diameter increases by the decrease of Orifice Reynolds number at the same gas-liquid flow rate ratio (lower gas-liquid rate ratio), the maximal bubble size can reach 3 mm. With the decrease of gas-liquid flow rate ratio, gas gathers together in the wall and the stream appears non uniform, the sampling test shows that the bubble diameters have a small diminution. It is found experimentally that the bubble diameters are strongly dependent on Orifice Reynolds number and the bubble distribution is affected by gas-liquid flow rate ratio

  5. The influence of polymeric membrane gas spargers on hydrodynamics and mass transfer in bubble column bioreactors.

    PubMed

    Tirunehe, Gossaye; Norddahl, B

    2016-04-01

    Gas sparging performances of a flat sheet and tubular polymeric membranes were investigated in 3.1 m bubble column bioreactor operated in a semi batch mode. Air-water and air-CMC (Carboxymethyl cellulose) solutions of 0.5, 0.75 and 1.0 % w/w were used as interacting gas-liquid mediums. CMC solutions were employed in the study to simulate rheological properties of bioreactor broth. Gas holdup, bubble size distribution, interfacial area and gas-liquid mass transfer were studied in the homogeneous bubbly flow hydrodynamic regime with superficial gas velocity (U G) range of 0.0004-0.0025 m/s. The study indicated that the tubular membrane sparger produced the highest gas holdup and densely populated fine bubbles with narrow size distribution. An increase in liquid viscosity promoted a shift in bubble size distribution to large stable bubbles and smaller specific interfacial area. The tubular membrane sparger achieved greater interfacial area and an enhanced overall mass transfer coefficient (K La) by a factor of 1.2-1.9 compared to the flat sheet membrane. PMID:26857370

  6. Gas hold-up and oxygen mass transfer in three pneumatic bioreactors operating with sugarcane bagasse suspensions.

    PubMed

    Esperança, M N; Cunha, F M; Cerri, M O; Zangirolami, T C; Farinas, C S; Badino, A C

    2014-05-01

    Sugarcane bagasse is a low-cost and abundant by-product generated by the bioethanol industry, and is a potential substrate for cellulolytic enzyme production. The aim of this work was to evaluate the effects of air flow rate (QAIR), solids loading (%S), sugarcane bagasse type, and particle size on the gas hold-up (εG) and volumetric oxygen transfer coefficient (kLa) in three different pneumatic bioreactors, using response surface methodology. Concentric tube airlift (CTA), split-cylinder airlift (SCA), and bubble column (BC) bioreactor types were tested. QAIR and %S affected oxygen mass transfer positively and negatively, respectively, while sugarcane bagasse type and particle size (within the range studied) did not influence kLa. Using large particles of untreated sugarcane bagasse, the loop-type bioreactors (CTA and SCA) exhibited higher mass transfer, compared to the BC reactor. At higher %S, SCA presented a higher kLa value (0.0448 s−1) than CTA, and the best operational conditions in terms of oxygen mass transfer were achieved for %S < 10.0 g L−1 and QAIR > 27.0 L min−1. These results demonstrated that pneumatic bioreactors can provide elevated oxygen transfer in the presence of vegetal biomass, making them an excellent option for use in three-phase systems for cellulolytic enzyme production by filamentous fungi. PMID:24078146

  7. Shadow imaging in bubbly gas-liquid two-phase flow in porous structures

    NASA Astrophysics Data System (ADS)

    Altheimer, Marco; Häfeli, Richard; Wälchli, Carmen; Rudolf von Rohr, Philipp

    2015-09-01

    Shadow imaging is used for the investigation of bubbly gas-liquid two-phase flow in a porous structure. The porous structure is made of Somos WaterShed XC 11122, a clear epoxy resin used in rapid prototyping. Optical access is provided by using an aqueous solution of sodium iodide and zinc iodide having the same refractive index as the structure material (). Nitrogen is injected into the continuous phase at volumetric transport fractions in the range of resulting in a hold-up of . The obtained images of overlapping bubble shadows are processed to measure the bubble dimensions. Therefore, a new processing sequence is developed to determine bubble dimensions from overlapping bubble shadows by ellipse fitting. The accuracy of the bubble detection and sizing routine is assessed processing synthetic images. It is shown that the developed technique is suitable for volumetric two-phase flow measurements. Important global quantities such as gas hold-up and total interfacial area can be measured with only one camera. Operation parameters for gas-liquid two-phase flows are determined to improve mass and heat transfer between the phases.

  8. Slurry bubble column hydrodynamics

    NASA Astrophysics Data System (ADS)

    Rados, Novica

    Slurry bubble column reactors are presently used for a wide range of reactions in both chemical and biochemical industry. The successful design and scale up of slurry bubble column reactors require a complete understanding of multiphase fluid dynamics, i.e. phase mixing, heat and mass transport characteristics. The primary objective of this thesis is to improve presently limited understanding of the gas-liquid-solid slurry bubble column hydrodynamics. The effect of superficial gas velocity (8 to 45 cm/s), pressure (0.1 to 1.0 MPa) and solids loading (20 and 35 wt.%) on the time-averaged solids velocity and turbulent parameter profiles has been studied using Computer Automated Radioactive Particle Tracking (CARPT). To accomplish this, CARPT technique has been significantly improved for the measurements in highly attenuating systems, such as high pressure, high solids loading stainless steel slurry bubble column. At a similar set of operational conditions time-averaged gas and solids holdup profiles have been evaluated using the developed Computed Tomography (CT)/Overall gas holdup procedure. This procedure is based on the combination of the CT scans and the overall gas holdup measurements. The procedure assumes constant solids loading in the radial direction and axially invariant cross-sectionally averaged gas holdup. The obtained experimental holdup, velocity and turbulent parameters data are correlated and compared with the existing low superficial gas velocities and atmospheric pressure CARPT/CT gas-liquid and gas-liquid-solid slurry data. The obtained solids axial velocity radial profiles are compared with the predictions of the one dimensional (1-D) liquid/slurry recirculation phenomenological model. The obtained solids loading axial profiles are compared with the predictions of the Sedimentation and Dispersion Model (SDM). The overall gas holdup values, gas holdup radial profiles, solids loading axial profiles, solids axial velocity radial profiles and solids shear stress radial profiles are correlated using several widely used empirical correlations that are modified and improved to better represent present data.

  9. Etiology of gas bubble disease

    SciTech Connect

    Bouck, G.R.

    1980-11-01

    Gas bubble disease is a noninfectious, physically induced process caused by uncompensated hyperbaric pressure of total dissolved gases. When pressure compensation is inadequate, dissolved gases may form emboli (in blood) and emphysema (in tissues). The resulting abnormal physical presence of gases can block blood vessels (hemostasis) or tear tissues, and may result in death. Population mortality is generally skewed, in that the median time to death occurs well before the average time to death. Judged from mortality curves, three stages occur in gas bubble disease: (1) a period of gas pressure equilibrium, nonlethal cavitation, and increasing morbidity; (2) a period of rapid and heavy mortality; and (3) a period of protracted survival, despite lesions, and dysfunction that eventually terminates in total mortality. Safe limits for gas supersaturation depend on species tolerance and on factors that differ among hatcheries and rivers, between continuous and intermittent exposures, and across ranges of temperature and salinity.

  10. Inferring bubble size distributions from resistance probe measurements in gas-liquid, gas-slurry and three phase systems

    SciTech Connect

    Clark, N.N.; Seiss, R.; Turton, R.

    1988-01-01

    Resistance probes measure the presence or absence of a conducting fluid at a point in multiphase flows. Although resistance probes are often used to determine local gas holdup in gas-liquid, gas-slurry and gas-liquid-solid flows, they are seldom used to find the bubble size distribution in the flow. This is due to the fact that the distribution of time intervals measured by the probe due to the passage of bubbles is not readily translated into a bubble size distribution. Even if a bubble rise velocity is known, the resulting distribution of bubble chord lengths cut by the probe has a lower mean and wider range than the size distribution. However, with enough data and a knowledge of the bubble shape it is possible to back transform to a size distribution. The current work deals with the case when the bubble shape is not a constant but changes with bubble size. Shape descriptors have been obtained from photographs of bubbles in water. Using these descriptors and probability density functions, a forward transform is developed to yield an expected chord length distribution for a given distribution of bubble sizes. The more important backward transform is accomplished numerically through a triangular matrix solution. Monte Carlo simulations demonstrate the correctness of this approach and are also used to show that the back transform can be unstable if too few data or too many size divisions in the matrix are used. 21 refs., 9 figs.

  11. Characterization of gas transfer and mixing in a bubble column equipped with a rubber membrane diffuser

    PubMed

    Poulsen; Iversen

    1998-06-20

    Gas transfer and mixing were characterized in a 32-L bubble column reactor equipped with a commercially available rubber membrane diffuser. The performance of the membrane diffuser indicates that the slits in the membrane are best described as holes with elastic lids, acting as valves cutting off bubbles from the gas stream. The membrane diffuser thus functions as a one-way valve preventing backflow of liquid. Our design of the bottom plate of the reactor enabled us to optimize the aeration by changing the tension of the membrane. We thereby achieved mass transfer coefficients higher than those previously reported in bubble columns. A strong dependence of mass transfer on gas holdup and bubble size was indicated by estimates based on these two variables. The microalga, Rhodomonas sp. , sensitive to chemical and physical stress, was maintained for 8 months in continuous culture with a productivity identical to cultures grown in stirred tank reactors. Copyright 1998 John Wiley & Sons, Inc. PMID:10099301

  12. Avoiding gas bubble formation during freeze substitution.

    PubMed

    Fisher, D B

    1991-01-01

    Gas bubbles frequently are formed during freeze substitution, especially when tissues are warmed to room temperature. The problem arises largely from the extreme solubility of CO2 in the freeze substitution solvent. Gas bubbles may be minimized by briefly transferring the tissue to freshly chilled solvent before warming to room temperature. PMID:1790241

  13. A Method of Calculating the Second Dimension Hold-up Time for Comprehensive Two-dimensional Gas Chromatography

    PubMed Central

    Koo, Imhoi; Zhao, Yaping; Zhang, Jun; Kim, Seongho; Zhang, Xiang

    2012-01-01

    A method of calculating the second dimension hold-up time for comprehensive two-dimensional gas chromatographic (GC×GC) data was developed by incorporating the temperature information of the second dimension column into the calculation model. The model was developed by investigating the relationship between the coefficients in each of six literature reported nonlinear models and the relationship between each coefficient and the second dimension column temperature. The most robust nonlinear function was selected and further used to construct the new model for calculation of the second dimension retention time, in which the coefficients that have significant correlation with the column temperature are replaced with expressions of column temperature. An advantage of the proposed equation is that eight parameters could explain the second dimension hold-up time as well as retention time corresponding to n-alkanes and column temperature in the entire chromatographic region, including the chromatographic region not bounded by the retention times of n-alkanes. To optimize the experimental design for collecting the isothermal data of n-alkanes to create the second dimension hold-up time model, the column temperature difference and the number of isothermal experiments should be considered simultaneously. It was concluded that a total of 5 or 6 isothermal experiments with temperature difference of 40 or 50 °C are enough to generate an accurate model. The test mean squared error (MSE) of those conditions ranges from 0.0428 to 0.0532 for calculation of the second dimension hold-up time for GC×GC data. PMID:22964052

  14. Holdup of the liquid slug in two phase intermittent flow

    SciTech Connect

    Barnea, D.; Brauner, N.

    1985-01-01

    A physical model for the prediction of gas holdup in liquid slugs in horizontal and vertical two phase pipe slug flow is presented. This model can also be used to yield the transitio between elongated bubbles and slug flow within the intermittent flow pattern. In addition a previously published model for predicting the stable slug length in vertical upward slug flow is extended here for the case of horizontal slug flow.

  15. Validation of high-resolution gamma-ray computed tomography for quantitative gas holdup measurements in centrifugal pumps

    NASA Astrophysics Data System (ADS)

    Bieberle, André; Schäfer, Thomas; Neumann, Martin; Hampel, Uwe

    2015-09-01

    In this article, the capability of high-resolution gamma-ray computed tomography (HireCT) for quantitative gas-liquid phase distribution measurements in commercially available industrial pumps is experimentally investigated. The object of interest thereby operates under two-phase flow conditions. HireCT System comprises a collimated 137Cs isotopic source, a radiation detector arc with a multi-channel signal processing unit, and a rotary unit enabling CT scans of objects with diameters of up to 700 mm. The accuracy of gas holdup measurements was validated on a sophisticated modular test mockup replicating defined gas-liquid distributions, which are expected in impeller chambers of industrial centrifugal pumps under two-phase operation. Stationary as well as rotation-synchronized CT scanning techniques have been analyzed, which are both used to obtain sharply resolved gas phase distributions in rotating structures as well as non-rotating zones. A measuring accuracy of better than 1% absolute for variously distributed static gas holdups in the rotating frame has been verified with the modular test mockup using HireCT.

  16. BUBBLE DYNAMICS AT GAS-EVOLVING ELECTRODES

    SciTech Connect

    Sides, Paul J.

    1980-12-01

    Nucleation of bubbles, their growth by diffusion of dissolved gas to the bubble surface and by coalescence, and their detachment from the electrode are all very fast phenomena; furthermore, electrolytically generated bubbles range in size from ten to a few hundred microns; therefore, magnification and high speed cinematography are required to observe bubbles and the phenomena of their growth on the electrode surface. Viewing the action from the front side (the surface on which the bubbles form) is complicated because the most important events occur close to the surface and are obscured by other bubbles passing between the camera and the electrode; therefore, oxygen was evolved on a transparent tin oxide "window" electrode and the events were viewed from the backside. The movies showed that coalescence of bubbles is very important for determining the size of bubbles and in the chain of transport processes; growth by diffusion and by coalescence proceeds in series and parallel; coalescing bubbles cause significant fluid motion close to the electrode; bubbles can leave and reattach; and bubbles evolve in a cycle of growth by diffusion and different modes of coalescence. An analytical solution for the primary potential and current distribution around a spherical bubble in contact with a plane electrode is presented. Zero at the contact point, the current density reaches only one percent of its undisturbed value at 30 percent of the radius from that point and goes through a shallow maximum two radii away. The solution obtained for spherical bubbles is shown to apply for the small bubbles of electrolytic processes. The incremental resistance in ohms caused by sparse arrays of bubbles is given by {Delta}R = 1.352 af/kS where f is the void fraction of gas in the bubble layer, a is the bubble layer thickness, k is the conductivity of gas free electrolyte, and S is the electrode area. A densely populated gas bubble layer on an electrode was modeled as a hexagonal array of dielectric spheres. Accurately machined lucite spheres were placed one at a time in one end of a hexagonal cell which simulated the unit cell of such an array. The resistance as a function of gas bubble layer packing density sharply increased as close packing was approached. Because the interaction of the fields around bubbles closely spaced in the direction perpendicular to the current dominates the added resistance, and because there is a tri-modal distribution of bubble sizes in a bubble layer, the Distribution Model of Meredith and Tobias (16), derived for three dimensional gas dispersions, approximately predicted the conductivity of a bubble layer at void fractions greater than 0.3. At moderate-to-high current densities, the bubble layer in a cell having an interelectrode gap of half a centimeter could increase the ohmic resistance by as much as 20 percent.

  17. Experimental investigation of bubble column hydrodynamics: Effect of elevated pressure and superficial gas velocity

    NASA Astrophysics Data System (ADS)

    Ong, Booncheng

    Bubble column reactors are widely used in the chemical and biochemical industries. They were reactors of choice in syngas conversion to clean fuels and chemicals. Most of the current applications of bubble column reactors in the chemical process industry require operation at high-pressure conditions. Further, to enhance the volumetric productivity, high gas flow rates are employed. The fundamental description of bubble column hydrodynamics under these conditions is very complex and complete understanding has not yet been established in spite of concerted research efforts. In order to improve our ability to quantify phenomena in bubble columns, it is essential that precise and quality experimental information is available to advance the state of the art in bubble column design and operation. In this study, measurements of gas holdup from Computed Tomography, and of time-averaged liquid velocity and turbulence from Computer Automated Radioactive Particle Tracking are obtained in a 6.4″ diameter stainless steel bubble column at elevated pressure and at high superficial gas velocity with different gas spargers. It is shown quantitatively that deep in the churn-turbulent regime, gas holdup and liquid recirculation increase with pressure and superficial gas velocity while sparger effects are predominantly confined to the distributor zone. Additionally, an increase in pressure results in the reduction of turbulent normal stresses and eddy diffusivities most likely due to a reduction in bubble size. Based on the experimental data obtained from this study, a correction factor to the correlation of Zehner (1986) for predicting the centerline liquid velocity is developed to account for pressure effect on liquid recirculation. The correction factor indicates an one-eighth power dependency on gas density. Comparison of the experimentally estimated eddy viscosity with the model of Ohnuki and Akimoto (2001) suggests that the contribution of bubble-induced turbulence to the effective eddy viscosity is small as compared to that from the shear-induced turbulence. Though further studies are required to comprehend the pressure effects on larger diameter column, this study provides the first detail hydrodynamic data set at high pressure and very high superficial gas velocity.

  18. Structure of nanoscale gas bubbles in metals

    SciTech Connect

    Caro, A. Schwen, D.; Martinez, E.

    2013-11-18

    A usual way to estimate the amount of gas in a bubble inside a metal is to assume thermodynamic equilibrium, i.e., the gas pressure P equals the capillarity force 2γ/R, with γ the surface energy of the host material and R the bubble radius; under this condition there is no driving force for vacancies to be emitted or absorbed by the bubble. In contrast to the common assumption that pressure inside a gas or fluid bubble is constant, we show that at the nanoscale this picture is no longer valid. P and density can no longer be defined as global quantities determined by an equation of state (EOS), but they become functions of position because the bubble develops a core-shell structure. We focus on He in Fe and solve the problem using both continuum mechanics and empirical potentials to find a quantitative measure of this effect. We point to the need of redefining an EOS for nanoscale gas bubbles in metals, which can be obtained via an average pressure inside the bubble. The resulting EOS, which is now size dependent, gives pressures that differ by a factor of two or more from the original EOS for bubble diameters of 1 nm and below.

  19. Structure of nanoscale gas bubbles in metals

    NASA Astrophysics Data System (ADS)

    Caro, A.; Schwen, D.; Martinez, E.

    2013-11-01

    A usual way to estimate the amount of gas in a bubble inside a metal is to assume thermodynamic equilibrium, i.e., the gas pressure P equals the capillarity force 2γ/R, with γ the surface energy of the host material and R the bubble radius; under this condition there is no driving force for vacancies to be emitted or absorbed by the bubble. In contrast to the common assumption that pressure inside a gas or fluid bubble is constant, we show that at the nanoscale this picture is no longer valid. P and density can no longer be defined as global quantities determined by an equation of state (EOS), but they become functions of position because the bubble develops a core-shell structure. We focus on He in Fe and solve the problem using both continuum mechanics and empirical potentials to find a quantitative measure of this effect. We point to the need of redefining an EOS for nanoscale gas bubbles in metals, which can be obtained via an average pressure inside the bubble. The resulting EOS, which is now size dependent, gives pressures that differ by a factor of two or more from the original EOS for bubble diameters of 1 nm and below.

  20. Gas holdup, power consumption, and oxygen absorption coefficient in a stirred-tank fermentor under foam control.

    PubMed

    Yasukawa, M; Onodera, M; Yamagiwa, K; Ohkawa, A

    1991-09-01

    For a laboratory stirred-tank fermentor (STF) with foaming system of 0.5M sulfite solution containing an anionic soft detergent, the performing of a foam-breaking apparatus with a rotating disk (FARD)fitted to the STF was evaluated. The gas holdup in a mechanical foam-control system (MFS), i.e., the stirred-tank fermentor with the rotating disk foambreaker, was confirmed to be larger than that in a nonfoaming system (NS), i.e., the STF with an antifoam agent added. The agitation power in the mechanical foam control system was found to be smaller compared with the agitation power in the nonfoaming system, due to the increased gas holdup. Comparison of the oxygen absorption coefficient between the mechanical foam control system and the nonfoaming system in terms of the specific power input also demonstrated the superiority of the mechanical foam control system, not only in oxygen transfer performance but also in power input economy. PMID:18604881

  1. Gas bubble dynamics in soft materials.

    PubMed

    Solano-Altamirano, J M; Malcolm, John D; Goldman, Saul

    2015-01-01

    Epstein and Plesset's seminal work on the rate of gas bubble dissolution and growth in a simple liquid is generalized to render it applicable to a gas bubble embedded in a soft elastic solid. Both the underlying diffusion equation and the expression for the gas bubble pressure were modified to allow for the non-zero shear modulus of the medium. The extension of the diffusion equation results in a trivial shift (by an additive constant) in the value of the diffusion coefficient, and does not change the form of the rate equations. But the use of a generalized Young-Laplace equation for the bubble pressure resulted in significant differences on the dynamics of bubble dissolution and growth, relative to an inviscid liquid medium. Depending on whether the salient parameters (solute concentration, initial bubble radius, surface tension, and shear modulus) lead to bubble growth or dissolution, the effect of allowing for a non-zero shear modulus in the generalized Young-Laplace equation is to speed up the rate of bubble growth, or to reduce the rate of bubble dissolution, respectively. The relation to previous work on visco-elastic materials is discussed, as is the connection of this work to the problem of Decompression Sickness (specifically, "the bends"). Examples of tissues to which our expressions can be applied are provided. Also, a new phenomenon is predicted whereby, for some parameter values, a bubble can be metastable and persist for long times, or it may grow, when embedded in a homogeneous under-saturated soft elastic medium. PMID:25382720

  2. Mixing and phase hold-ups variations due to gas production in anaerobic fluidized-bed digesters: influence on reactor performance

    PubMed

    Buffiere; Fonade; Moletta

    1998-10-01

    The influence of mixing and phase hold-ups on gas-producing fluidized-bed reactors was investigated and compared with an ideal flow reactor performance (CSTR). The liquid flow in the anaerobic fluidized bed reactor could be described by the classical axially dispersed plug flow model according to measurements of residence time distribution. Gas effervescence in the fluidized bed was responsible for bed contraction and for important gas hold-up, which reduced the contact time between the liquid and the bioparticles. These results were used to support the modeling of large-scale fluidized-bed reactors. The biological kinetics were determined on a 180-L reactor treating wine distillery wastewater where the overall total organic carbon uptake velocity could be described by a Monod model. The outlet concentration and the concentration profile in the reactor appeared to be greatly influenced by hydrodynamic limitations. The biogas effervescence modifies the mixing characteristics and the phase hold-ups. Bed contraction and gas hold-up data are reported and correlated with liquid and gas velocities. It is shown that the reactor performance can be affected by 10% to 15%, depending on the mode of operation and recycle ratio used. At high organic loading rates, reactor performance is particularly sensitive to gas effervescence effects. Copyright 1998 John Wiley & Sons, Inc. PMID:10099403

  3. Wall-To-Bulk Mass Transfer in a Gas Liquid Upflow Bubble Column

    NASA Astrophysics Data System (ADS)

    Raju, G. M. J.; Ramesh, K. V.; Sarma, G. V. S.

    2013-09-01

    Experiments have been carried out to investigate the effect of liquid and gas velocities, viscosity and gas hold-up on wall-to-bulk mass transfer coefficient in a gas-liquid upflow bubble column using limiting current technique. The system chosen was an electrolyte as liquid phase and inert nitrogen as gas phase. The electrolyte was an equimolar solution of potassium ferricyanide and potassium ferrocyanide of 0.01 N with 0.5 N sodium hydroxide as indifferent electrolyte. To vary the viscosity carboxy methyl cellulose sodium salt (CMC) in 0.1, 0.2 and 0.4 wt% was added to the electrolyte. The reaction considered was the reduction of ferricyanide ion. The experiments were carried out at constant temperature of 25 °C at which the physical property values of the electrolyte were known from literature. The mass transfer coefficient was computed from the measured limiting current. It was found that the mass transfer coefficient was relatively independent of liquid velocity with in the range covered in the present experiment. The kL increased with increasing gas velocity and gas holdup. The kL was observed to decrease with increasing CMC concentration. The entire experimental data have been correlated in terms of Colburn j-factor, Reynolds number and modified Froude number.

  4. Inert gas bubbles in bcc Fe

    NASA Astrophysics Data System (ADS)

    Gai, Xiao; Smith, Roger; Kenny, S. D.

    2016-03-01

    The properties of inert gas bubbles in bcc Fe is examined using a combination of static energy minimisation, molecular dynamics and barrier searching methods with empirical potentials. Static energy minimisation techniques indicate that for small Ar and Xe bubbles, the preferred gas to vacancy ratio at 0 K is about 1:1 for Ar and varies between 0.5:1 and 0.9:1 for Xe. In contrast to interstitial He atoms and small He interstitial clusters, which are highly mobile in the lattice, Ar and Xe atoms prefer to occupy substitutional sites and any interstitials present in the lattice soon displace Fe atoms and become substitutional. If a pre-existing bubble is present then there is a capture radius around a bubble which extends up to the 6th neighbour position. Collision cascades can also enlarge an existing bubble by the capture of vacancies. Ar and Xe can diffuse through the lattice through vacancy driven mechanisms but with relatively high energy barriers of 1.8 and 2.0 eV respectively. This indicates that Ar and Xe bubbles are much harder to form than bubbles of He and that such gases produced in a nuclear reaction would more likely be dispersed at substitutional sites without the help of increased temperature or radiation-driven mechanisms.

  5. Hydrodynamic studies of Fischer-Tropsch bubble-column systems

    SciTech Connect

    Gupte, K.; Kuo, J.C.W.; Leib, T.M.; Smith, J.

    1984-08-01

    Scoping hydrodynamic studies of slurry Fischer-Tropsch bubble-column reactors were performed using small hot-flow non-reacting bubble-columns. Various liquid mediums were studied including actual reactor-waxes from our pilot plant runs. Results indicate that different waxes can produce vastly different gas holdups under similar conditions. The type of gas distributor has a major effect on holdup and bubble size in certain waxes and photographs are presented to illustrate this. The effect of pressure and gas type are negligible.

  6. A new method for the measurement of solids holdup in gas-liquid-solid three-phase systems

    SciTech Connect

    Wenge, F.; Chisti, Y.; Moo-Young, M.

    1995-03-01

    Gas-liquid-solid multiphase systems are commonly encountered in the chemical process industry, in bio-processing, and in environmental pollution abatement devices. A method for the measurement of gas and solids holdups in gas-liquid-solid multiphase devices is developed and tested. The method depends on measurements of hydrostatic pressures in the three-phase dispersion followed by interruption of gas flow, complete gas disengagement, and a second pressure measurement in the resulting two-phase solid-liquid slurry, over a short period of time (< 30 s). The proposed method is compared with results obtained with physical sampling of the multiphase flow in vertical up- and down-flow in a large airlift reactor (0.243 m diameter, 7.825 m overall height, 2.44 riser-to-downcomer cross-sectional area ratio). Applicability of the technique to slurries of glass beads in tap water is demonstrated for various sizes and concentrations of beads over a range of gas flow rates (0.070--0.150 {times} 10{sup {minus}3} m bead diameter, 2,500 kg/m{sup 3} solids density, 0.02--0.17 m/s superficial gas velocity).

  7. Heat transfer and bubble dynamics in bubble and slurry bubble columns with internals for Fischer-Tropsch synthesis of clean alternative fuels and chemicals

    NASA Astrophysics Data System (ADS)

    Kagumba, Moses Odongo O.

    Synthesis gas, a mixture of CO and H2 obtained from coal, natural gas and biomass are increasingly becoming reliable sources of clean synthetic fuels and chemicals and via Fischer-Tropsch (F-T) synthesis process. Slurry bubble column reactor is the reactor of choice for the commercialization of the F-T synthesis. Even though the slurry bubble column reactors and contactors are simple in structures, their design, scale-up, operation, and performance prediction are still challenging and not well understood due to complex interaction of phases. All the studies of heat transfer have been performed without simultaneously investigating the bubble dynamics adjacent to the heat transfer surfaces, particularly in slurry with dense internals. This dissertation focuses on enhancing the understanding of the role of local and overall gas holdup, bubble passage frequency, bubble sizes and bubble velocity on the heat transfer characteristics by means of a hybrid measurement technique comprising an advanced four-point optical probe and a fast response heat transfer probe used simultaneously, in the presence and absence of dense internals. It also seeks to advance a mechanistic approach for estimating the needed parameters for predicting the heat transfer rate in two phase and three phase systems. The results obtained suggest that the smaller diameter internals gives higher heat transfer coefficient, higher local and overall gas holdup, bubble passage frequency and specific interfacial area but smaller bubble sizes and lower axial bubble velocities. The presence of dense internals enhances the heat transfer coefficient in both the large and smaller columns, while increased column diameter increases the heat transfer coefficient, axial bubble velocity, local and overall gas holdup, bubble chord lengths and specific interfacial area. Addition of solids (glass beads) leads to increased bubble chord lengths and increase in axial bubble velocity, but a decrease in local and overall gas holdup, a decrease in bubble passage frequency and decrease in the heat transfer coefficient. Further, a mechanistic assessment of the dependence of the heat transfer coefficient on the bubble dynamics shows that the contact time needed in the heat transfer coefficient estimation is indeed a function of the bubble passage frequency and local gas holdup. Hence the variation of the heat transfer coefficient with contact time is via bubble passage frequency and local gas phase holdup, which are related with sizes and velocity.

  8. Mathematical model of gas bubble evolution in a straight tube.

    PubMed

    Halpern, D; Jiang, Y; Himm, J F

    1999-10-01

    Deep sea divers suffer from decompression sickness (DCS) when their rate of ascent to the surface is too rapid. When the ambient pressure drops, inert gas bubbles may form in blood vessels and tissues. The evolution of a gas bubble in a rigid tube filled with slowly moving fluid, intended to simulate a bubble in a blood vessel, is studied by solving a coupled system of fluid-flow and gas transport equations. The governing equations for the fluid motion are solved using two techniques: an analytical method appropriate for small nondeformable spherical bubbles, and the boundary element method for deformable bubbles of arbitrary size, given an applied steady flow rate. A steady convection-diffusion equation is then solved numerically to determine the concentration of gas. The bubble volume, or equivalently the gas mass inside the bubble for a constant bubble pressure, is adjusted over time according to the mass flux at the bubble surface. Using a quasi-steady approximation, the evolution of a gas bubble in a tube is obtained. Results show that convection increases the gas pressure gradient at the bubble surface, hence increasing the rate of bubble evolution. Comparing with the result for a single gas bubble in an infinite tissue, the rate of evolution in a tube is approximately twice as fast. Surface tension is also shown to have a significant effect. These findings may have important implications for our understanding of the mechanisms of inert gas bubbles in the circulation underlying decompression sickness. PMID:10529918

  9. Enhancement of Oxygen Mass Transfer and Gas Holdup Using Palm Oil in Stirred Tank Bioreactors with Xanthan Solutions as Simulated Viscous Fermentation Broths

    PubMed Central

    Mohd Sauid, Suhaila; Huey Ling, Tan; Veluri, Murthy V. P. S.

    2013-01-01

    Volumetric mass transfer coefficient (kLa) is an important parameter in bioreactors handling viscous fermentations such as xanthan gum production, as it affects the reactor performance and productivity. Published literatures showed that adding an organic phase such as hydrocarbons or vegetable oil could increase the kLa. The present study opted for palm oil as the organic phase as it is plentiful in Malaysia. Experiments were carried out to study the effect of viscosity, gas holdup, and kLa on the xanthan solution with different palm oil fractions by varying the agitation rate and aeration rate in a 5 L bench-top bioreactor fitted with twin Rushton turbines. Results showed that 10% (v/v) of palm oil raised the kLa of xanthan solution by 1.5 to 3 folds with the highest kLa value of 84.44 h−1. It was also found that palm oil increased the gas holdup and viscosity of the xanthan solution. The kLa values obtained as a function of power input, superficial gas velocity, and palm oil fraction were validated by two different empirical equations. Similarly, the gas holdup obtained as a function of power input and superficial gas velocity was validated by another empirical equation. All correlations were found to fit well with higher determination coefficients. PMID:24350269

  10. Enhancement of oxygen mass transfer and gas holdup using palm oil in stirred tank bioreactors with xanthan solutions as simulated viscous fermentation broths.

    PubMed

    Mohd Sauid, Suhaila; Krishnan, Jagannathan; Huey Ling, Tan; Veluri, Murthy V P S

    2013-01-01

    Volumetric mass transfer coefficient (kLa) is an important parameter in bioreactors handling viscous fermentations such as xanthan gum production, as it affects the reactor performance and productivity. Published literatures showed that adding an organic phase such as hydrocarbons or vegetable oil could increase the kLa. The present study opted for palm oil as the organic phase as it is plentiful in Malaysia. Experiments were carried out to study the effect of viscosity, gas holdup, and kLa on the xanthan solution with different palm oil fractions by varying the agitation rate and aeration rate in a 5 L bench-top bioreactor fitted with twin Rushton turbines. Results showed that 10% (v/v) of palm oil raised the kLa of xanthan solution by 1.5 to 3 folds with the highest kLa value of 84.44 h(-1). It was also found that palm oil increased the gas holdup and viscosity of the xanthan solution. The kLa values obtained as a function of power input, superficial gas velocity, and palm oil fraction were validated by two different empirical equations. Similarly, the gas holdup obtained as a function of power input and superficial gas velocity was validated by another empirical equation. All correlations were found to fit well with higher determination coefficients. PMID:24350269

  11. Resistance due to gas bubbles in aluminum reduction cells

    NASA Astrophysics Data System (ADS)

    Cooksey, Mark A.; Taylor, Mark P.; Chen, John J. J.

    2008-02-01

    The contribution of gas bubbles to electrical resistance in aluminum reduction cells is becoming increasingly important as smelters attempt to reduce energy consumption. A prime example is the widespread introduction of slotted anodes to encourage faster gas bubble release from under the anodes. However, quantification of the bubble resistance is difficult, which makes evaluation of process changes problematic. Studies of the effect of bubbles on electrical resistance in industrial cells, laboratory-scale electrolysis experiments, and physical models are reviewed in this paper.

  12. Suppression of cavitation inception by gas bubble injection: a numerical study focusing on bubble-bubble interaction.

    PubMed

    Ida, Masato; Naoe, Takashi; Futakawa, Masatoshi

    2007-10-01

    The dynamic behavior of cavitation and gas bubbles under negative pressure has been studied numerically to evaluate the effect of gas bubble injection into a liquid on the suppression of cavitation inception. In our previous studies, it was demonstrated by direct observation that cavitation occurs in liquid mercury when mechanical impacts are imposed, and this will cause cavitation damage in spallation neutron sources, in which liquid mercury is bombarded by a high-power proton beam. In the present paper, we describe numerical investigations of the dynamics of cavitation bubbles in liquid mercury using a multibubble model that takes into account the interaction of a cavitation bubble with preexisting gas bubbles through bubble-radiated pressure waves. The numerical results suggest that, if the mercury includes gas bubbles whose equilibrium radius is much larger than that of the cavitation bubble, the explosive expansion of the cavitation bubble (i.e., cavitation inception) is suppressed by the positive-pressure wave radiated by the injected bubbles, which decreases the magnitude of the negative pressure in the mercury. PMID:17995108

  13. Density of decompression bubbles and competition for gas among bubbles, tissue, and blood.

    PubMed

    Van Liew, H D; Burkard, M E

    1993-11-01

    We used numerical solutions of a system of equations to simulate gas exchanges of bubbles after a decompression, with particular attention to the effect of number of bubble formation sites per unit of tissue. If many bubbles grow, they deplete the excess dissolved gas in the tissue. The consequences are as follows: 1) the many individual bubbles do not become as large as they would if fewer were competing for gas; 2) more gas is evolved when there are many sites; 3) the bubbles are absorbed sooner than the bigger bubbles that grow with few sites; 4) after diffusion into many bubbles causes N2 partial pressure in the tissue to fall immediately to a low level, N2 partial pressure in the tissue and the exiting blood remain "clamped" to this low level because dissolved N2 removed by blood is replenished by diffusion out of the bubbles; and 5) as long as many bubbles persist, the long-term removal of inert gas from the total system (tissue plus bubbles) follows a straight-line time course rather than an exponential course. PMID:8307888

  14. EXPERIMENTS AND SIMULATIONS WITH LARGE GAS BUBBLES IN MERCURY TOWARDS ESTABLISHING A GAS LAYER TO MITIGATE CAVITATION DAMAGE

    SciTech Connect

    Wendel, Mark W; Riemer, Bernie; Felde, David K; Ruggles, Arthur; Karnowski, Thomas Paul

    2006-01-01

    One of several options that shows promise for protecting solid surfaces from cavitation damage in liquid metal spallation targets, involves introducing an interstitial gas layer between the liquid metal and the containment vessel wall. Several approaches toward establishing such a protective gas layer are being investigated at the Oak Ridge National Laboratory including large bubble injection, and methods that involve stabilization of the layer by surface modifications to enhance gas hold-up on the wall or by inserting a porous media. It has previously been reported that using a gas layer configuration in a test target showed an order-of-magnitude decrease in damage for an in-beam experiment. Video images that were taken of the successful gas/mercury flow configuration have been analyzed and correlated. The results show that the success was obtained under conditions where only 60% of the solid wall was covered with gas. Such a result implies that this mitigation scheme may have much more potential. Additional experiments with gas injection into water are underway. Multi-component flow simulations are also being used to provide direction for these new experiments. These simulations have been used to size the gas layer and position multiple inlet nozzles.

  15. Hydrodynamic design of multiphase bubble-column reactors: An experimental and theoretical study

    SciTech Connect

    Mikkilineni, S.

    1988-01-01

    An understanding of three phase flow hydrodynamics and flow pattern are necessary for the design and scaleup of bubble column reactors. Gas phase residence time is an important parameter that depends on superficial gas velocity and gas holdup in the bubble column. This work emphasized the study of three phase flow hydrodynamics including flow patterns and holdup of three phases and gas phase residence time. The effects of solid particle size, solid concentration, density of solids, viscosity of slurry, gas distributor and column diameter and height on hydrodynamics were studied. A key finding is that gas holdup increases with increasing solids concentration up to approximately three weight percent. As solid concentration increases further gas holdup steadily decreases. The residence time distribution using solids showed the same shape as in two phase flow for solid concentrations up to ten weight percent. Beyond ten weight percent, the shape of the residence time curve using a porous plate gas distributor is similar to that of sieve plate due to rapid coalescence of gas bubbles right at the gas distributor. Both linear and non linear regression analysis were performed on gas holdup and residence time as a function of superficial gas velocity and other variables in all three flow patterns. The outcome of this research will yield a better understanding of residence time, interfacial area, and the transition from one flow pattern to another in the operating region of interest to direct coal liquefaction reactors.

  16. Acoustic waves in bubbly liquids for two kinds of gas bubbles with phase transitions

    NASA Astrophysics Data System (ADS)

    Gubaidullin, D. A.; Gafiyatov, R. N.

    2014-11-01

    The propagation of acoustic waves in a mixture of liquid with vapor-gas bubbles is studied. The dispersed phase consists of two fractions of the bubbles differing on gas structure and radii (a two-fractional mixture). The phase transitions take place at each of the fractions. The volume content of the bubbles is the low (about 1%). The dispersion relation, unified for plane, cylindrical and spherical waves is obtained. It is shown that a presence of the second fraction in the structure of a disperse phase of the bubbles changes significantly a dispersion and a dissipation of acoustic waves.

  17. Standards for holdup measurement

    SciTech Connect

    Zucker, M.S.

    1982-01-01

    Holdup measurement, needed for material balance, depend intensively on standards and on interpretation of the calibration procedure. More than other measurements, the calibration procedure using the standard becomes part of the standard. Standards practical for field use and calibration techniques have been developed. While accuracy in holdup measurements is comparatively poor, avoidance of bias is a necessary goal.

  18. Preasymptotic development of vapor and vapor-gas bubbles

    SciTech Connect

    Ilyin, I.N.; Grivtsov, V.P.; Yaundalder, S.R.

    1990-01-01

    Using an optical technique, the existence of the minimum growth rate during the initial stage of the development of vapor and vapor-gas bubbles is established. In this paper models of the development of vapor and the vapor- gas bubbles in the preasymptotic and subcritical stages are suggested.

  19. Gas nuclei, their origin, and their role in bubble formation.

    PubMed

    Blatteau, Jean-Eric; Souraud, Jean-Baptiste; Gempp, Emmanuel; Boussuges, Alain

    2006-10-01

    Gas bubbles are the primary agent in producing the pathogenic effects of decompression sickness. Bubble formation during decompression is not simply the consequence of inert gas supersaturation. Numerous experiments indicate that bubbles originate as pre-existing gas nuclei. Radii are on the order of 1 microm or less. Heterogeneous nucleation processes are involved in generating these gas entities. Musculoskeletal activity could be the main promoter of gas nuclei from stress-assisted nucleation. The half-life and faculty for nuclei to initiate bubble formation during decompression depend on many factors. Oxygen window and surface tension are involved in resolving bubbles. Two factors have been proposed to stabilize gas nuclei against dissolution: gas nuclei trapped in hydrophobic crevices and gas nuclei coated with surface-active molecules such as surfactants. Diffusion and surface tension could play an important role in the formation of gas nuclei crevices. However, while the concept of in vivo hydrophobic crevices remains a theoretical possibility, none have yet been identified in tissues and/or in microcapillaries. Moreover, while surfactants seem present in numerous tissues and could play a role in gas nuclei stabilization, they could also be involved in bubble elimination. The understanding of such mechanisms is of primary importance to neutralize nuclei and for modeling bubble growth. Here we present in a single document a summary of the original findings and views from authors in this field. PMID:17042253

  20. Gas Bubble Formation in Stagnant and Flowing Mercury

    SciTech Connect

    Wendel, Mark W; Abdou, Ashraf A; Riemer, Bernie; Felde, David K

    2007-01-01

    Investigations in the area of two-phase flow at the Oak Ridge National Laboratory's (ORNL) Spallation Neutron Source (SNS) facility are progressing. It is expected that the target vessel lifetime could be extended by introducing gas into the liquid mercury target. As part of an effort to validate the two-phase computational fluid dynamics (CFD) model, simulations and experiments of gas injection in stagnant and flowing mercury have been completed. The volume of fluid (VOF) method as implemented in ANSYS-CFX, was used to simulate the unsteady two-phase flow of gas injection into stagnant mercury. Bubbles produced at the upwards-oriented vertical gas injector were measured with proton radiography at the Los Alamos Neutron Science Center. The comparison of the CFD results to the radiographic images shows good agreement for bubble sizes and shapes at various stages of the bubble growth, detachment, and gravitational rise. Although several gas flows were measured, this paper focuses on the case with a gas flow rate of 8 cc/min through the 100-micron-diameter injector needle. The acoustic waves emitted due to the detachment of the bubble and during subsequent bubble oscillations were recorded with a microphone, providing a precise measurement of the bubble sizes. As the mercury flow rate increases, the drag force causes earlier bubble detachment and therefore smaller bubbles.

  1. Instabilities in a Liquid-Fluidized Bed of Gas Bubbles

    NASA Astrophysics Data System (ADS)

    Vera, M. U.; Saint-Jalmes, A.; Durian, D. J.

    2000-03-01

    Gas bubbles in an aqueous foam can be unjammed, or fluidized, by introducing a forced flow of the continuous liquid phase at a sufficiently high rate. We observe that the resulting bubble dynamics are spatially inhomogeneous, exhibiting a sequence of instabilities vs increasing flow rate. First irregular swirls appear, then a single convective roll, and finally a series of stratified convection rolls each with a different average bubble size.

  2. Measurement Of Gas Bubbles In Mercury Using Proton Radiography

    SciTech Connect

    Riemer, Bernie; Bingham, Philip R; Mariam, Fesseha G; Merrill, Frank E

    2007-01-01

    An experiment using proton radiography on a small mercury loop for testing gas bubble injection was conducted at the Los Alamos Neutron Science Center (LANSCE) in December 2006. Small gas bubble injection is one of the approaches under development to reduce cavitation damage in the U.S. Spallation Neutron Source mercury target vessel. Several hundred radiograph images were obtained as the test loop was operated over range of conditions that included two jet type bubble generators, two needle type bubble generators, various mercury flow speeds and gas injection rates, and use of helium, argon and xenon. This paper will describe the analysis of the radiograph images and present the obtained bubble measurement data.

  3. Gas distribution effects on waste properties: Viscosities of bubbly slurries

    SciTech Connect

    Gauglitz, P.A.; Shah, R.R.; Davis, R.L.

    1994-09-01

    The retention and episodic release of flammable gases are critical safety concerns for double-shell tanks that contain waste slurries. The rheological behavior of the waste, particularly of the settled sludge, is critical to characterizing the tendency of the waste to retain gas bubbles. The presence of gas bubbles is expected to affect the rheology of the sludge, but essentially no literature data are available to assess the effect of bubbles. Accordingly, the objectives of this study are to develop models for the effect of gas bubbles on the viscosity of a particulate slurry, develop an experimental method (capillary rheometer), collect data on the viscosity of a bubbly slurry, and develop a theoretical basis for interpreting the experimental data from the capillary rheometer.

  4. Dysbaric gas bubble disease in dogs. IV. Acclimatization to diving

    SciTech Connect

    Kunkle, T.D.; Morita, A.; Beckman, E.L.

    1986-01-01

    Acclimatization to diving was documented to occur in dogs. An increase in the number of repetitive dives which could be tolerated, as well as a decrease in the total number of pulmonary artery venous gas emboli resulting from individual dives were observed. The results from the experimental subject ''Jason'' indicate that acclimatization involves a reduction in the number of bubbles, and not an increase in the ability of the body to tolerate bubbles. Acclimatization is principally a physical rather than a physiological event. Bubbles forming in vivo must grow from nuclei of some sort. If these nuclei are stable, discrete structure that are destroyed when they grow into gross bubbles, then repetitive diving might markedly reduce by attrition the number of such bubble micronuclei. This would result in fewer bubbles being formed during subsequent dives, thus leading to the observed acclimatization effect. 7 refs., 3 figs., 4 tabs.

  5. Bubble coalescence dynamics and supersaturation in electrolytic gas evolution

    SciTech Connect

    Stover, R.L. |

    1996-08-01

    The apparatus and procedures developed in this research permit the observation of electrolytic bubble coalescence, which heretofore has not been possible. The influence of bubble size, electrolyte viscosity, surface tension, gas type, and pH on bubble coalescence was examined. The Navier-Stokes equations with free surface boundary conditions were solved numerically for the full range of experimental variables that were examined. Based on this study, the following mechanism for bubble coalescence emerges: when two gas bubbles coalesce, the surface energy decreases as the curvature and surface area of the resultant bubble decrease, and the energy is imparted into the surrounding liquid. The initial motion is driven by the surface tension and slowed by the inertia and viscosity of the surrounding fluid. The initial velocity of the interface is approximately proportional to the square root of the surface tension and inversely proportional to the square root of the bubble radius. Fluid inertia sustains the oblate/prolate oscillations of the resultant bubble. The period of the oscillations varies with the bubble radius raised to the 3/2 power and inversely with the square root of the surface tension. Viscous resistance dampens the oscillations at a rate proportional to the viscosity and inversely proportional to the square of the bubble radius. The numerical simulations were consistent with most of the experimental results. The differences between the computed and measured saddle point decelerations and periods suggest that the surface tension in the experiments may have changed during each run. By adjusting the surface tension in the simulation, a good fit was obtained for the 150-{micro}m diameter bubbles. The simulations fit the experiments on larger bubbles with very little adjustment of surface tension. A more focused analysis should be done to elucidate the phenomena that occur in the receding liquid film immediately following rupture.

  6. Model of gas bubble breakup in a turbulent liquid flow

    SciTech Connect

    Sosinovich, V.A.; Tsyganov, V.A.; Kolovandin, B.A.; Puris, B.I.

    1995-10-01

    A system of equations for evolution of the size spectrum of gas bubbles as a result of their breakup in an isotropic turbulent damped flow of an incompressible liquid is derived and solved numerically.

  7. Venous gas embolism - Time course of residual pulmonary intravascular bubbles

    NASA Technical Reports Server (NTRS)

    Butler, B. D.; Luehr, S.; Katz, J.

    1989-01-01

    A study was carried out to determine the time course of residual pulmonary intravascular bubbles after embolization with known amounts of venous air, using an N2O challenge technique. Attention was also given to the length of time that the venous gas emboli remained as discrete bubbles in the lungs with 100 percent oxygen ventilation. The data indicate that venous gas emboli can remain in the pulmonary vasculature as discrete bubbles for periods lasting up to 43 + or - 10.8 min in dogs ventilated with oxygen and nitrogen. With 100 percent oxygen ventilation, these values are reduced significantly to 19 + or - 2.5 min.

  8. How Bubbly Mixtures Foam and Foam Control Using a Fluidized Bed

    NASA Astrophysics Data System (ADS)

    Guitian, Jose; Joseph, D. D.; Mata, Clara

    1997-11-01

    In hydrocracking and other foaming reactors, the foam rises to the top because it has a higher gas fraction than the bubbly mixture from which it comes. The high gas hold-up in foams is undesirable in chemical reactors. To study foams we built a cold slit bubble reactor which when used with aqueous anionic surfactants gives rise to foam. We discovered a critical condition for foaming; when the gas velocity exceeds a critical value which depends on the liquid velocity, a foam interface appears at the top of the reactor, with foam above and bubbly mixture below. The interface is very sharp and it moves down the reactor as the gas velocity is increased at a constant liquid velocity. The foam may be destroyed by increasing the liquid velocity. The reactor partitions into two phase, two phase flow with bubbly mixture below and foam above. The bubbly mixture is dispersed gas in water plus surfactant; the phase above is a foam through which large gas bubbles rise. Constant state theories and semiempirical correlations are presented. Foaming may be strongly suppressed by fluidizing hydrophilic particles in the bubbly mixture below the foam. The suppression is achieved by increasing the liquid hold-up by bed expansion; by increasing the wetted area of solid surface (walls and particles) and by decreasing the gas hold-up by increasing the effective density of the liquid-solid mixture. Even greater suppression of foaming can be achieved by fluidizing hydrophobic particles.

  9. Production of Gas Bubbles in Reduced Gravity Environments

    NASA Technical Reports Server (NTRS)

    Oguz, Hasan N.; Takagi, Shu; Misawa, Masaki

    1996-01-01

    In a wide variety of applications such as waste water treatment, biological reactors, gas-liquid reactors, blood oxygenation, purification of liquids, etc., it is necessary to produce small bubbles in liquids. Since gravity plays an essential role in currently available techniques, the adaptation of these applications to space requires the development of new tools. Under normal gravity, bubbles are typically generated by forcing gas through an orifice in a liquid. When a growing bubble becomes large enough, the buoyancy dominates the surface tension force causing it to detach from the orifice. In space, the process is quite different and the bubble may remain attached to the orifice indefinitely. The most practical approach to simulating gravity seems to be imposing an ambient flow to force bubbles out of the orifice. In this paper, we are interested in the effect of an imposed flow in 0 and 1 g. Specifically, we investigate the process of bubble formation subject to a parallel and a cross flow. In the case of parallel flow, we have a hypodermic needle in a tube from which bubbles can be produced. On the other hand, the cross flow condition is established by forcing bubbles through an orifice on a wall in a shear flow. The first series of experiments have been performed under normal gravity conditions and the working fluid was water. A high quality microgravity facility has been used for the second type and silicone oil is used as the host liquid.

  10. Interaction of a shock with elliptical gas bubbles

    NASA Astrophysics Data System (ADS)

    Georgievskiy, P. Yu.; Levin, V. A.; Sutyrin, O. G.

    2015-07-01

    The interaction of a shock with spherical and elliptical bubbles of light or heavy gas is numerically studied using the axisymmetric Euler equations. A model with a single heat capacity ratio is implemented, where bubbles are modeled by areas of the same gas with lower or higher density. Details of the general shock refraction patterns—diverging and converging—are described. The formation and development of secondary, focusing shocks are discussed. A computational parameter study for different Atwood numbers , shock strengths , where is the Mach number, and bubble geometries is performed. A basic classification for the shock focusing (cumulation) regimes is suggested, with the division of the internal, external and transitional focusing regimes determined by the position of the shock focusing point relative to the bubble. It is shown that the focusing pattern is governed not only by the Atwood number but also heavily by the Mach number and bubble shape. The qualitative dependence of cumulative intensity on bubble geometry is determined. The theoretical possibility of realizing an extremely intense shock collapse with a relatively small variation in bubble shape is demonstrated for the heavy-bubble scenario.

  11. The role of gas in ultrasonically driven vapor bubble growth

    NASA Astrophysics Data System (ADS)

    Shpak, Oleksandr; Stricker, Laura; Versluis, Michel; Lohse, Detlef

    2013-04-01

    In this paper we study both experimentally and theoretically the dynamics of an ultrasound-driven vapor bubble of perfluoropentane (PFP) inside a droplet of the same liquid, immersed in a water medium superheated with respect to the PFP boiling point. We determine the temporal evolution of the bubble radius with ultra-high speed imaging at 20 million frames per second. In addition, we model the vapor-gas bubble dynamics, based on a Rayleigh-Plesset-type equation, including thermal and gas diffusion inside the liquid. We compare the numerical results with the experimental data and find good agreement. We underline the fundamental role of gas diffusion in order to prevent total recondensation of the bubble at collapse.

  12. Decompression-induced bubble formation in salmonids: comparison to gas bubble disease.

    PubMed

    Beyer, D L; D'Aoust, B G; Smith, L S

    1976-12-01

    The relationship of gas bubble disease (GBD) in fish to decompression-induced bubble formation was investigated with salmonids. Acute bioassays were used to determine equilibration times for critical effects in fish decompressed from depths to 200 fsw. It was found that equilibration of critical tissues was complete in 60-90 min. Salmonids and air-breathers are sensitive to decompressions at similar levels of supersaturation if elimination of excess gas following decompression is unrestricted. However, if elimination is restricted, bubble formation and growth increase accordingly. Tests with mixtures of He-O2, Ar-O2, N2-O2 (80% inert gas: 20% O2) and pure oxygen demonstrated that gas solubility as well as supersaturation (delta P), pressure ratio (initial pressure: final pressure), and absolute pressure must be considered in setting tolerance limits for any decompression. Gases with higher solubility are more likely to produce bubbles upon decompression. Oxygen, however, does not follow this relationship until higher pressures are reached, probably owing to its function in metabolism and in binding with hemoglobin. Tissue responses observed in both GBD and decompressed fish involved similar pathological effects at acute exposures. The circulatory system was consistently affected by bubbles that occluded vessels and blocked flow through the heart. PMID:10897859

  13. Proton Radiography Experiment to Visualize Gas Bubbles in Mercury

    SciTech Connect

    Riemer, Bernie; Felde, David K; Wendel, Mark W; Mariam, Fesseha G; Merrill, Frank E

    2007-01-01

    An experiment to visualize small gas bubbles injected into mercury flowing in a test loop using proton radiography was conducted at the Los Alamos Neutron Science Center (LANSCE) in December 2006. Radiograph images of bubbles were obtained through two mercury thicknesses: 22 mm and 6 mm. Two jet bubblers and two needle bubblers were operated individually over a range of mercury flow speeds (0 - 1 m/s) and gas injection rates (0.1 - 500 sccm). Helium was most commonly used but Argon and Xenon were injected for limited test conditions. The smallest discernable bubbles were about 0.24 mm in diameter. Resolution was limited by image contrast which was notably improved with 6 mm of mercury thickness. Analysis of the radiograph images from jet bubbler conditions provided data on bubble size distribution and total bubble void fraction. In a few cases radiographs captured a large fraction of the injected gas, but generally 20 to 90% of injected gas was not captured in the images. In all more than 400 radiographs were made during the experiment in addition to several movies. Sound recordings of needle bubbler operation were also made and used to quantify bubble formation rate and size; these results are compared to theoretical predictions. This paper describes the experiment goals, scope and equipment; key results are presented and discussed.

  14. Optically stimulated sound from gas bubbles in water

    NASA Astrophysics Data System (ADS)

    Unger, Bruce Thomas

    1987-03-01

    Gas bubbles in water were illuminated by pulses of laser light and the resulting acoustic emissions from the bubbles recorded. Single and multiple pulses were used to observe the impulse and quasi-steady state acoustic responses of the bubble, respectively. The primary photoacoustic mechanism appears to be optical radiation pressure rather than thermal heating. Bubbles were supported by a variety of methods, each method providing similar acoustic responses. Signal magnitudes are compared to theoretical projections derived from estimates of the radiation pressure and the dynamics of bubbles, with the result that a simple version of the theory underestimates the magnitude of the observed signals. Signals from bubbles are also compared to signals from thermal sources which were modeled as conventional thermoacoustic sources. The principal thermoacoustic source was a dyed drop of oil illuminated by modulated laser light. The thermoacoustic sources were used for alignment and calibration purposes. An appendix discusses an additional effect of optical radiation pressure: the suspension (or trapping) of a gas bubble in a continuous focused laser beam.

  15. Optically Stimulated Sound from Gas Bubbles in Water.

    NASA Astrophysics Data System (ADS)

    Unger, Bruce Thomas

    Gas bubbles in water were illuminated by pulses of laser light and the resulting acoustic emissions from the bubbles were recorded. Single and multiple pulses were used to observe the impulse and quasi-steady-state acoustic responses of the bubble, respectively. The primary photoacoustic mechanism appears to be optical radiation pressure rather than thermal heating. Bubbles were supported by a variety of methods, each method providing similar acoustic responses. Signal magnitudes are compared to theoretical projections derived from estimates of the radiation pressure and the dynamics of bubbles, with the result that a simple version of the theory underestimates the magnitude of the observed signals. Signals from bubbles are also compared to signals from thermal sources which were modeled as conventional thermoacoustic sources. The principal thermoacoustic source was a dyed drop of oil illuminated by modulated laser light. The thermoacoustic sources were used for alignment and calibration purposes. An appendix discusses an additional effect of optical radiation pressure: the suspension (or trapping) of a gas bubble in a continuous focused laser beam.

  16. Plasma formation inside deformed gas bubbles submerged in water

    NASA Astrophysics Data System (ADS)

    Sommers, Bradley; Foster, John

    2012-10-01

    Plasma formation in liquids produces highly reactive products that may be desirable for a variety of applications, including water purification and waste processing. The direct ignition of plasma in these environments, however, is limited by the large breakdown strength of liquids, which imposes severe voltage and energy requirements on the design of practical devices. One way to address this issue is by first igniting plasma in gas bubbles injected into the water. These bubbles provide an environment with higher reduced electric field (E/N) that is more suitable for plasma formation. If the same bubbles can be excited into strong distortions of their shape and volume, then it is possible to further alter E/N, both by field enhancement at the bubble's highly distorted dielectric interface (via E) and by fluctuations in its internal gas pressure (via N). This principle is investigated by trapping a single bubble at the node of a 26.4 kHz underwater acoustic field and driving it into violent oscillations using an A.C electric field. A third high voltage needle is placed nearby and used to ignite plasma in the bubble at various points during its oscillation. The bubble response is captured using a high speed camera capable of up to 30,000 frames per second.

  17. Transient Flow Dynamics in Optical Micro Well Involving Gas Bubbles

    NASA Technical Reports Server (NTRS)

    Johnson, B.; Chen, C. P.; Jenkins, A.; Spearing, S.; Monaco, L. A.; Steele, A.; Flores, G.

    2006-01-01

    The Lab-On-a-Chip Application Development (LOCAD) team at NASA s Marshall Space Flight Center is utilizing Lab-On-a-Chip to support technology development specifically for Space Exploration. In this paper, we investigate the transient two-phase flow patterns in an optic well configuration with an entrapped bubble through numerical simulation. Specifically, the filling processes of a liquid inside an expanded chamber that has bubbles entrapped. Due to the back flow created by channel expansion, the entrapped bubbles tend to stay stationary at the immediate downstream of the expansion. Due to the huge difference between the gas and liquid densities, mass conservation issues associated with numerical diffusion need to be specially addressed. The results are presented in terms of the movement of the bubble through the optic well. Bubble removal strategies are developed that involve only pressure gradients across the optic well. Results show that for the bubble to be moved through the well, pressure pulsations must be utilized in order to create pressure gradients across the bubble itself.

  18. Studies on pressure response of gas bubbles contributions of condensed droplets in bubbles generated by a uniform nucleation

    NASA Technical Reports Server (NTRS)

    Matsumoto, Y.

    1988-01-01

    The response of a tiny gas bubble under reduced pressure is investigated in its relation to cavitation. Equations of motion are formulated for gas mixtures inside the bubble and numerical calculations performed for several examples. The conclusions are as follows: (1) at the onset of bubble growth, the gas mixture inside it adiabatically expands and the temperature decreases. Condensed droplets appear inside the gas mixture due to a uniform nucleation and the temperature recovers, thus the motion of the bubble is apparently isothermal; (2) the evaporation and condensation coefficient largely affects bubble motions (maximum radius, period and rate of attenuation of the bubble oscillation) including the uniform contraction; (3) the oscillation period of the bubble is longer as the equilibrium bubble radius is larger when the surrounding pressure decreases stepwise. In this circumstance the temperature inside the bubble is kept constant due to condensation evaporation phenomena and is nearly isothermal; and (4) when the surrounding pressure decreases in a stepwise fashion, the critical pressure bubble radius relation becomes closer to that for the isothermal process if the bubble radius is larger than 8 microns.

  19. Hydrodynamics of the three-phase slurry Fischer-Tropsch bubble column reactors

    SciTech Connect

    Bukur, D.B.; Daly, J.G.; Patel, S.A.

    1990-09-01

    This report describes results of a study on hydrodynamics of three-phase bubble columns for Fischer-Tropsch synthesis. Experiments were conducted in two stainless bubble columns of 0.05 m and 0.21 m in diameter and 3 m tall, at 265{degrees}C and atmospheric pressure using nitrogen gas and two types of liquid medium (hydrotreated reactor wax designated FT-300, and raw reactor wax from fixed bed rectors at SASOL). The effects of solids types (iron oxide and silica), concentration (0--30 wt %), size (0--5 {mu}m and 20--44 {mu}m), slurry (liquid) velocity (up to 0.02 m/s) on the gas holdup and axial solids concentration profiles, were investigated. Phase volume fractions were determined using conventional (differential pressure measurements together with determination of slurry concentration along the column) and novel (dual energy nuclear density gauge) experimental techniques. Bubble size distribution and the Sauter mean bubble diameter were obtained using the dynamic gas disengagement (DGD) method. Flow regime transitions in both columns were determined using statistical analysis of both pressure and density fluctuations. Correlations for prediction of gas holdups and axial solids dispersion coefficient have been developed from experimental data obtained in this study. Data needed for calculation of the gas-liquid interfacial area (average gas holdup and Sauter mean bubble diameter) have been presented and can be used to estimate the mass transfer rate in slurry bubble column reactors. 105 refs., 19 figs., 38 tabs.

  20. Measurements of Gas Bubble Size Distributions in Flowing Liquid Mercury

    SciTech Connect

    Wendel, Mark W; Riemer, Bernie; Abdou, Ashraf A

    2012-01-01

    ABSTRACT Pressure waves created in liquid mercury pulsed spallation targets have been shown to induce cavitation damage on the target container. One way to mitigate such damage would be to absorb the pressure pulse energy into a dispersed population of small bubbles, however, measuring such a population in mercury is difficult since it is opaque and the mercury is involved in a turbulent flow. Ultrasonic measurements have been attempted on these types of flows, but the flow noise can interfere with the measurement, and the results are unverifiable and often unrealistic. Recently, a flow loop was built and operated at Oak Ridge National Labarotory to assess the capability of various bubbler designs to deliver an adequate population of bubbles to mitigate cavitation damage. The invented diagnostic technique involves flowing the mercury with entrained gas bubbles in a steady state through a horizontal piping section with a glass-window observation port located on the top. The mercury flow is then suddenly stopped and the bubbles are allowed to settle on the glass due to buoyancy. Using a bright-field illumination and a high-speed camera, the arriving bubbles are detected and counted, and then the images can be processed to determine the bubble populations. After using this technique to collect data on each bubbler, bubble size distributions were built for the purpose of quantifying bubbler performance, allowing the selection of the best bubbler options. This paper presents the novel procedure, photographic technique, sample visual results and some example bubble size distributions. The best bubbler options were subsequently used in proton beam irradiation tests performed at the Los Alamos National Laboratory. The cavitation damage results from the irradiated test plates in contact with the mercury are available for correlation with the bubble populations. The most effective mitigating population can now be designed into prototypical geometries for implementation into an actual SNS target.

  1. Experimental characterization of slurry bubble-column reactor hydrodynamics

    SciTech Connect

    Shollenberger, K.A.; Torczynski, J.R.; Jackson, N.B.; O`Hern, T.J.

    1997-09-01

    Sandia`s program to develop, implement, and apply diagnostics for hydrodynamic characterization of slurry bubble column reactors (SBCRs) at industrially relevant conditions is discussed. Gas liquid flow experiments are performed on an industrial scale. Gamma densitometry tomography (GDT) is applied to measure radial variations in gas holdup at one axial location. Differential pressure (DP) measurements are used to calculate volume averaged gas holdups along the axis of the vessel. The holdups obtained from DP show negligible axial variation for water but significant variations for oil, suggesting that the air water flow is fully developed (minimal flow variations in the axial direction) but that the air oil flow is still developing at the GDT measurement location. The GDT and DP gas holdup results are in good agreement for the air water flow but not for the air oil flow. Strong flow variations in the axial direction may be impacting the accuracy of one or both of these techniques. DP measurements are also acquired at high sampling frequencies (250 Hz) and are interpreted using statistical analyses to determine the physical mechanism producing each frequency component in the flow. This approach did not yield the information needed to determine the flow regime in these experiments. As a first step toward three phase material distribution measurements, electrical impedance tomography (EIT) and GDT are applied to a liquid solid flow to measure solids holdup. Good agreement is observed between both techniques and known values.

  2. Three-phase gas-liquid-solid foaming bubble reactors and self-lubricated transport of bitumen froth

    NASA Astrophysics Data System (ADS)

    Mata, Clara E.

    Two distinct topics in multi-phase flow of interest of the oil industry are considered in this thesis. Studies of three-phase gas-liquid-solid foaming bubble reactors and self-lubricated transport of bitumen froth are reported. Applications of foams and foaming are found in many industrial processes such as flotation of minerals, enhanced oil recovery, drilling in oil reservoirs, and refining processes. However the physics of foaming and defoaming are not fully understood. Foams trap gas and are not desirable in some processes such as oil refining. Previously, it has been found that foaming may be strongly suppressed in a cold slit bubble reactor by fluidizing hydrophilic particles in the bubbly mixture below the foam. In this work, we fluidized hydrophobic and hydrophilic versions of two different sands in a cold slit foaming bubble reactor. We found that the hydrophobic sands suppress the foam substantially better than their hydrophilic counterparts. To study the capacity of foams to carry particles, we built a new slit foaming bubble reactor, which can be continuously fed with solid particles. Global gas, liquid, and solid holdups were measured for given gas and liquid velocities and solid flow rates. This research provides the fundamental ground work for the identification of flow types in a slit three-phase foaming bubble reactor with continuous injection of particles. Bitumen froth is produced from the oil sands of Athabasca, Canada. When transported in a pipeline, water present in the froth is released in regions of high shear (at the pipe wall). This results in a lubricating layer of water that allows bitumen froth pumping at greatly reduced pressures and hence the potential for savings in pumping energy consumption. Experimental results establishing the features of this self lubrication phenomenon are presented. The pressure gradient of lubricated flows closely follow the empirical law of Blasius for turbulent pipe flow with a constant of proportionality about 10 to 20 times larger than that for water alone. We used Reichardt's model for turbulent Couette flow to predict the effective thickness of the lubricating layer of water. The agreement with direct measurements is satisfactory. Mechanisms for self lubrication are considered.

  3. Gas bubble dynamics model for shallow volcanic tremor at Stromboli

    NASA Astrophysics Data System (ADS)

    Ripepe, Maurizio; Gordeev, Evgenii

    1999-05-01

    Volcanic tremor at Stromboli (Aeolian islands, Italy) is correlated to small infrasonic transients [Ripepe et al., 1996] which repeat almost rhythmically in time in a range between 0.8 and 1.2 s. We demonstrate that infrasonic transients are associated to small gas bubble (0.5 m) burstings which produces no transients in the seismic signal. Tremor ground displacement attenuates with the inverse of the distance from the craters indicating that the source is shallow. Short-term energy release shows that infrasonic and seismic signals are linked to the same dynamical process, while at the long-term scale it is evident that the two signals are controlled by two distinctive mechanisms. We suggest that the possible physical model acts in two steps: first, gas coalescence and, then, gas bursting. In our model, the seismic signal is related to the coalescence of a gas bubble from a layer of small bubbles, while the infrasonic signal is linked to the bursting of the bubble when it reaches the magma surface. Gas bubbles could form by free coalescence in magma or could be forced to coalesce by a structural barrier. We calculate that forced coalescence induces in magma a pressure change (104 Pa) 2 orders of magnitude higher than free coalescence, and it explains best the tremor ground displacement (10-5 m) recorded at Stromboli. Moreover, forced coalescence evidences the role of a structural barrier, such as a dike, in volcanic tremor source dynamics. In this gas dynamic process, the delay time of 1-2 s between infrasonic pulses could reflect the gas nucleation interval of basaltic magma [Thomas et al., 1993; Manga, 1996]. We propose that the source function for the shallow volcanic tremor at Stromboli could be the viscoelastic reaction of the magma to the pressure decrease induced by gas bubble growth rate under constant depressurization. The spectrum of our source function is controlled by the time duration of the pressure pulse, which represents the viscoelastic relaxation time of the magma and gas bubble growth rate. The predicted asymptotic decay of the frequency contents fits the spectral behavior of the volcanic tremor ground displacement recorded at Stromboli. We show that the same spectral behavior can be found in ground displacement spectra of volcanic tremor recorded on different volcanoes.

  4. Gas Bubble Pinch-off in Viscous and Inviscid Liquids

    NASA Astrophysics Data System (ADS)

    Taborek, P.

    2005-11-01

    We have used high-speed video to analyze pinch-off of nitrogen gas bubbles in fluids with a wide range of viscosity. If the external fluid is highly viscous (ηext>100 cP), the radius is proportional to the time before break, τ, and decreases smoothly to zero. If the external fluid has low viscosity (ηext<10 cP), the neck radius scales as &1/2circ; until an instability develops in the gas bubble which causes the neck to rupture and tear apart. Finally, if the viscosity of the external fluid is in an intermediate range, an elongated thread is formed which breaks apart into micron-sized bubbles. 100,000 frame-per-second videos will be presented which illustrate each of these flow regimes.

  5. Acoustic techniques for localizing holdup

    SciTech Connect

    Vnuk, D.

    1996-09-01

    Material that does not come out of a process as product or waste is called holdup. When this is fissile material, its location and quantity must be determined to improve safeguards and security as well as safety at the facility. The most common method for detecting and measuring holdup is with radiation based techniques. When using them, one must consider equipment geometry, geometry of holdup, and effects of background radiation when converting the radiation measurement into a fissile material quantity. We are developing complementary techniques that use tiny acoustic transducers, which are unaffected by background radiation, to improve holdup measurements by aiding in determining the above conversion factors for holdup measurements. Thus far, we have applied three techniques, Acoustic Interferometry, Pulse Echo, and bending Wave Propagation, of which the latter appears most effective. This paper will describe each of these techniques and show how they may ultimately reduce costs and personnel radiation exposure while increasing confidence I and accuracy of holdup measurements.

  6. Effect of dense heat exchanging internals on the hydrodynamics of bubble column reactors using non-invasive measurement techniques

    NASA Astrophysics Data System (ADS)

    Al Mesfer, Mohammed Khloofh

    Given their efficiency and capital cost reduction, bubble/slurry bubble column reactors are the reactors of choice for Fischer-Tropsch (FT) synthesis, offering clean alternative fuels and chemicals. FT synthesis is an exothermic process that requires many heat exchanging tubes in order to remove heat efficiently and maintain the desired temperature and isothermal operating condition. The impact of the heat exchanging tubes (internals) on the hydrodynamics is not fully understood. Reliably designing and scaling up bubble column reactors requires proper understanding of hydrodynamics, as well as heat and mass transfer parameters. The main objective of this work is to advance the understanding of the effect of internals (25% covered cross-sectional area to meet FT needs) on hydrodynamics (gas holdup distribution, 3D liquid velocity, Reynolds stresses, turbulent kinetic energy, eddy diffusivity, etc.) in bubble columns. Single-source gamma-ray Computed Tomography (CT) and Radioactive Particle Tracking (RPT) were used for the first time to study the effect of dense internals and gas velocity on the phase holdup distribution and radial profiles, liquid velocity field and turbulent parameter profiles. The main findings obtained for the first time in this study can be summarized as follows: The presence of internals at a given superficial gas velocity causes: An increase in gas holdup and the axial centerline liquid velocity. A sharp decrease in turbulence parmeters. The increase in superficial gas velocity in the presence of internals causes: An increase in gas holdup, axial centerline liquid velocity and turbulent parameters.

  7. Sandia support for PETC Fischer-Tropsch research: Experimental characterization of slurry-phase bubble-column reactor hydrodynamics

    SciTech Connect

    Jackson, N.B.; Torczynski, J.R.; Shollenberger, K.A.; O`Hern, T.J.; Adkins, D.R.

    1996-06-01

    Sandia`s program to develop, implement, and apply diagnostics for hydrodynamic characterization of slurry bubble-column reactors (SBCRs) at industrially relevant conditions is discussed. Gas-liquid flow experiments are performed in an industrial-scale 48 cm ID stainless steel vessel. Gamma-densitometry tomography (GDT) is applied to make spatially resolved gas holdup measurements. Both water and Drakeol 10 with air sparging are examined at ambient and elevated pressures. Gas holdup increases with gas superficial velocity and pressure, and the GDT values are in good agreement with values from differential pressure measurements. Other diagnostic techniques are also discussed.

  8. Blind Deconvolution on Underwater Images for Gas Bubble Measurement

    NASA Astrophysics Data System (ADS)

    Zelenka, C.; Koch, R.

    2015-04-01

    Marine gas seeps, such as in the Panarea area near Sicily (McGinnis et al., 2011), emit large amounts of methane and carbon-dioxide, greenhouse gases. Better understanding their impact on the climate and the marine environment requires precise measurements of the gas flux. Camera based bubble measurement systems suffer from defocus blur caused by a combination of small depth of field, insufficient lighting and from motion blur due to rapid bubble movement. These adverse conditions are typical for open sea underwater bubble images. As a consequence so called 'bubble boxes' have been built, which use elaborate setups, specialized cameras and high power illumination. A typical value of light power used is 1000W (Leifer et al., 2003). In this paper we propose the compensation of defocus and motion blur in underwater images by using blind deconvolution techniques. The quality of the images can be greatly improved, which will relax requirements on bubble boxes, reduce their energy consumption and widen their usability.

  9. Holdup measurements under realistic conditions

    SciTech Connect

    Sprinkel, J.K. Jr.; Marshall, R.; Russo, P.A.; Siebelist, R.

    1997-11-01

    This paper reviews the documentation of the precision and bias of holdup (residual nuclear material remaining in processing equipment) measurements and presents previously unreported results. Precision and bias results for holdup measurements are reported from training seminars with simulated holdup, which represent the best possible results, and compared to actual plutonium processing facility measurements. Holdup measurements for plutonium and uranium processing plants are also compared to reference values. Recommendations for measuring holdup are provided for highly enriched uranium facilities and for low enriched uranium facilities. The random error component of holdup measurements is less than the systematic error component. The most likely factor in measurement error is incorrect assumptions about the measurement, such as background, measurement geometry, or signal attenuation. Measurement precision on the order of 10% can be achieved with some difficulty. Bias of poor quality holdup measurement can also be improved. However, for most facilities, holdup measurement errors have no significant impact on inventory difference, sigma, or safety (criticality, radiation, or environmental); therefore, it is difficult to justify the allocation of more resources to improving holdup measurements. 25 refs., 10 tabs.

  10. Shock wave in a bubble flow with high gas content

    NASA Astrophysics Data System (ADS)

    Danilov, I.; Son, E.

    2011-06-01

    In this paper, we experimentally measure the shock wave width in a gas-fluid dispersive medium using the hot-film CTA, a speed video camera, PIV and a shadowgraph. We develop a method for determining the velocity of an optically nontransparent flow on various parts of the laboratory installation. The bubble breadown in a shock wave is confirmed experimentally.

  11. An analysis of the thermodynamics of gas atoms in very small bubbles

    NASA Astrophysics Data System (ADS)

    Winter, P. W.; Macinnes, D. A.

    1983-02-01

    Using analytic techniques we show that the thermodynamics of gas in very small bubbles shows marked deviation from that anticipated by applying the thermodynamics of a macroscopic fluid to gas in small bubbles. We discuss the significance of these deviations in the light of the predicted importance of thermal resolution from bubbles to the lattice in the evolution of fission gas.

  12. Heat transfer between immiscible liquids enhanced by gas bubbling

    NASA Astrophysics Data System (ADS)

    Greene, G. A.; Schwarz, C. E.; Klages, J.; Klein, J.

    1982-08-01

    The phenomena of core-concrete interactions impact upon containment integrity of light water reactors (LWR) following postulated complete meltdown of the core by containment pressurization, production of combustible gases, and basemat penetration. Experiments were performed with nonreactor materials to investigate one aspect of this problem, heat transfer between overlying immiscible liquids whose interface is disturbed by a transverse non-condensable gas flux emanating from below. Hydrodynamic studies were performed to test a criterion for onset of entrainment due to bubbling through the interface and subsequent heat transfer studies were performed to assess the effect of bubbling on interfacial heat transfer rates, both with and without bubble induced entrainment. Non entraining interfacial heat transfer data with mercury-water/oil fluid pairs were observed to be bounded from below within a factor of two to three by the Szekeley surface renewal heat transfer model.

  13. Breakdown Voltage Scaling in Gas Bubbles Immersed in Liquid Water

    NASA Astrophysics Data System (ADS)

    Gucker, Sarah; Sommers, Bradley; Foster, John

    2013-09-01

    Radicals produced by the interaction of plasma with liquid water have the capacity to rapidly oxidize organic contaminants. This interaction is currently being investigated as a means to purify water. Direct plasma creation in water typically requires very high voltages to achieve breakdown. Igniting plasma in individual gas bubbles in liquid water on the other hand requires much less voltage. Furthermore, the use of an electrode-less plasma initiation in such bubbles is attractive in that it eliminates electrode erosion thereby circumventing the contamination issue. The breakdown physics of isolated bubbles in liquid water is still poorly understood. In this work, we investigate the relationship between applied voltage for breakdown and the associated pd. This is achieved by locating the breakdown voltage over a range of bubble sizes. This approach allows for the generation of a Paschen-type breakdown curve for isolated bubbles. Such a relationship yields insight into breakdown mechanics and even streamer propagation through water. This material is based upon work supported by the National Science Foundation (CBET 1033141) and the National Science Foundation Graduate Student Research Fellowship under Grant No. DGE 0718128.

  14. Gas bubbles in marine mud-How small are they?

    NASA Astrophysics Data System (ADS)

    Reed, Allen H.; Briggs, Kevin B.

    2003-10-01

    Free gas in marine mud poses a challenging problem in the realm of ocean acoustics as it readily attenuates (i.e., scatters or absorbs) energy, such that objects lying below the gassy sediment are acoustically masked. Gas-laden sediments were located in 10- to 120-m water depth adjacent to the South Pass of the Mississippi River in East Bay using a 12-kHz transducer and the Acoustic Sediment Classification System. Several cores were collected in this region for physical property measurements. Some of the cores were x-rayed on medical and industrial computed tomography (CT) scanners. Volumetric CT images were used to locate gas bubbles, determine shapes and sizes to within the limits of the CT resolution. Free gas in the East Bay sediments was relegated to worm tubes as well as isolated pockets as was the case in Eckernförde Bay sediments [Abegg and Anderson, Mar. Geol. 137, 137-147 (1997)]. The primary significance of the present work is that gas bubbles have been determined to exist in the tens of μm size range, which is significantly smaller than the smallest bubbles that were previously resolved with medical CT (~440 μm) with NRL's HD-500 micro-CT System. [Work supported by ONR and NRL.

  15. Porosity formation and gas bubble retention in laser metal deposition

    NASA Astrophysics Data System (ADS)

    Ng, G. K. L.; Jarfors, A. E. W.; Bi, G.; Zheng, H. Y.

    2009-11-01

    One of the inherent problems associated with laser metal deposition using gas-assisted powder transfer is the formation of porosity, which can be detrimental to the mechanical properties of the bulk material. In this work, a comprehensive investigation of porosity is carried out using gas atomised Inconel 718 powder. In the analysis, a clear distinction is made between two types of porosity; namely lack of fusion and gas porosity. The results show that the two types of porosity are attributed by different factors. The gas porosity, which is more difficult to eliminate than the lack of fusion, can be as high as 0.7%. The study shows that the gas porosity is dependent on the process parameters and the melt pool dynamics. The flotation of entrapped gas bubbles was analysed, showing that in a stationary melt pool the gas would be retained by Marangoni-driven flow. The overall Marangoni-driven flow of the melt pool is in the order of five times higher than the flotation effect, and this is the reason why the melt pool geometry would tend to dominate the flow direction of the gas bubbles. Through optimisation, the gas porosity can be reduced to 0.037%.

  16. Comparison of Holdup Measurement Techniques

    SciTech Connect

    Lousteau, Angela L; Stooksbury, John C; Cleveland, Steven L

    2012-01-01

    The measurement of uranium holdup, the residual material left in process equipment such as pipes or ducts, is an integral element of material control and accountability. Not only are the measurements important for accountability, they are also important for criticality safety. The goal in measuring holdup is to quantify the amount of material in the pipes to verify that all material is accounted for (inventory in [inventory out + holdup] = 0) and to ensure that the amount of material heldup is not a criticality risk. There are a number of ways to measure holdup in process equipment; however, this paper will evaluate only two methods (i.e., Holdup Measurement System 4 (HMS-4) and In Situ Object Counting Software (ISOCS)) for specific measurement scenarios. The comparison will use measurements of well-known reference materials in various configurations and will examine the results, uncertainties, repeatability, time required, portability, and cost of each system.

  17. Calculation and Analysis of Liquid Holdup in Lower Blast Furnace by Model Experiments

    NASA Astrophysics Data System (ADS)

    Xiong, Wei; Bi, Xue-Gong; Wang, Guo-Qiang; Yang, Fu

    2012-06-01

    A hydromechanics experiment on the countercurrent flow of gas and liquid simulating the flow conditions in the lower blast furnace was carried out. A cold model of a packed bed with various packing materials and liquids was used to study the holdup of liquid. Correlations for static holdup, dynamic holdup, and total holdup were obtained. A good agreement was found between the calculated and experimental data. A mathematical model simulating the flow fields was applied to study the effect of liquid holdup in blast furnace. The results of the model calculation show that static holdup is the determinant of the total holdup of molten materials when the blast furnace works in stable condition. The slag phase generally reaches flooding holdup ahead of the hot metal. The radial distribution of gas flow is almost not influenced by the holdup of molten materials, but it has a greater influence on the pressure drop. The size of coke has far greater influence on static holdup than liquid properties does. The study is useful for acquiring a deeper understanding of the complex phenomena in the blast furnace and for determining appropriate operational actions under different production conditions.

  18. HUBBLE PICTURES SHOW HOT GAS BUBBLE EJECTED BY YOUNG STAR

    NASA Technical Reports Server (NTRS)

    2002-01-01

    These images taken with the Hubble Space Telescope's Wide Field and Planetary Camera 2 reveal the evolution of bubbles of glowing gas being blown out from the young binary star system XZ Tauri. Gas from an unseen disk around one or both of the stars is channeled through magnetic fields surrounding the binary system and then is forced out into space at nearly 300,000 miles per hour (540,000 kilometers per hour). This outflow, which is only about 30 years old, extends nearly 60 billion miles (96 billion kilometers). Hubble first discovered this unique bubble in 1995, and additional observations were made between 1998 and 2000. These images show that there was a dramatic change in its appearance between 1995 and 1998. In 1995, the bubble's edge was the same brightness as its interior. However, when Hubble took another look at XZ Tauri in 1998, the edge was suddenly brighter. This brightening is probably caused by the hot gas cooling off, which allows electrons in the gas to recombine with atoms, a process that gives off light. This is the first time that astronomers have seen such a cooling zone 'turn on.' These images provide an unprecedented opportunity to study the development of a very recent outflow from young (about 1 million years old) stars. Credits: NASA, John Krist (Space Telescope Science Institute), Karl Stapelfeldt (Jet Propulsion Laboratory), Jeff Hester (Arizona State University), Chris Burrows (European Space Agency/Space Telescope Science Institute)

  19. Phase-field simulation of irradiated metals Part II : Gas bubble kinetics.

    SciTech Connect

    Millett, P. C.; El-Azab, A.; Wolf, D.

    2011-01-01

    The phase-field model developed in Part I of this work is expanded to include fission gas generation, diffusion, and segregation within bubbles nucleated both homogeneously and heterogeneously along grain boundaries. Illustrative results are presented that characterize bubble growth and shrinkage, as well as the bubble density, size and nucleation rate as a function of the irradiation conditions. Finally, intergranular bubble characteristics such as shape, pinning energy and bubble density are investigated.

  20. Progression and severity of gas bubble trauma in juvenile salmonids

    USGS Publications Warehouse

    Mesa, M.G.; Weiland, L.K.; Maule, A.G.

    2000-01-01

    We conducted laboratory experiments to assess the progression and to quantify the severity of signs of gas bubble trauma (GBT) in juvenile chinook salmon Oncorhynchus tshawytscha and steelhead Oncorhynchus mykiss exposed to different levels of total dissolved gas (TDG), and we attempted to relate these signs to the likelihood of mortality. When fish were exposed to 110% TDG for up to 22 d, no fish died, and there were few signs of GBT in the lateral line or gills. Bubbles in the fins, however, were relatively common, and they progressively worsened over the experimental period. When fish were exposed to 120% TDG for up to 140 h, chinook salmon had an LT20 (time necessary to kill 20% of the fish) ranging from 40 to 120 h, whereas steelhead had LT20s ranging from 20 to 35 h. In steelhead, bubbles in the lateral line, fins, and gills displayed poor trends of worsening over time, showed substantial interindividual variability, and were poorly related to mortality. In chinook salmon, only bubbles in the lateral line showed a distinct worsening over time, and the severity of bubbles in the lateral line was highly correlated with mortality. When fish were exposed to 130% TDG for up to 11 h, LT20s for chinook salmon ranged from 3 to 6 h, whereas those for steelhead ranged from 5 to 7 h. In chinook salmon, bubbles in the lateral line and fins, but not those in the gills, showed distinct trends of worsening over time. In steelhead, bubbles in the lateral line displayed the most significant trend of progressive severity. In both species at 130% TDG, the severity of all GBT signs was highly correlated with mortality. The progressive nature of GBT and the methods we developed to examine fish for GBT may be useful for monitoring programs that aim to assess the severity of dissolved gas supersaturation exposures experienced by fish in the wild. However, the efficacy of such programs seems substantially hindered by problems associated with (1) the variable persistence of GBT signs; (2) the inconsistent relation of GBT signs to mortality; (3) the insufficient knowledge of the relation between exposure history and GBT sign development for fish in the wild; and (4) an extreme amount of interindividual variation in terms of susceptibility to GBT.

  1. Modeling biogenic gas bubbles formation and migration in coarse sand

    NASA Astrophysics Data System (ADS)

    Ye, S.

    2011-12-01

    Shujun Ye Department of Hydrosciences, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210093, China; sjye@nju.edu.cn Brent E. Sleep Department of Civil Engineering, University of Toronto, Toronto, ON, M5S 1A4 CANADA; sleep@ecf.utoronto.ca Methane gas generation in porous media was investigated in an anaerobic two-dimensional sand-filled cell. Inoculation of the lower portion of the cell with a methanogenic culture and addition of methanol to the bottom of the cell led to biomass growth and formation of a gas phase. The formation, migration, distribution and saturation of gases in the cell were visualized by the charge-coupled device (CCD) camera. Gas generated at the bottom of the cell in the biologically active zone moved upwards in discrete fingers, so that gas phase saturations (gas-filled fraction of void space) in the biologically active zone at the bottom of the cell did not exceed 40-50%, while gas accumulation at the top of the cell produced gas phase saturations as high as 80%. Macroscopic invasion percolation (MIP) at near pore scale[Glass, et al., 2001; Kueper and McWhorter, 1992]was used to model gas bubbles growth in porous media. The nonwetting phase migration pathway can be yielded directly by MIP. MIP was adopted to simulate the expansion, fragmentation, and mobilization of gas clusters in the cell. The production of gas, and gas phash saturations were simulated by a continuum model - compositional simulator (COMPSIM) [Sleep and Sykes, 1993]. So a combination of a continuum model and a MIP model was used to simulate the formation, fragmentation and migration of biogenic gas bubbles. Key words: biogenic gas; two dimensional; porous media; MIP; COMPSIM

  2. Use of optical probes to characterize bubble behavior in gas-solid fluidized beds

    SciTech Connect

    Mainland, M.E.; Welty, J.R. . Dept. of Mechanical Engineering)

    1995-02-01

    Optical probes are used to study gas-solid fluidized-bed hydrodynamics. The probes each consisting of a light source and photodetector separated by a gap are suitable for use at combustion-level temperatures. The methodology to process the signal for calculation of bubble properties such as bubble frequency, local bubble residence time, bubble velocity, pierced length, bubble size, and visible bubble flow is presented. The signal processing technique is independent of bed operating conditions. The probe signal processing methodology is validated by comparing calculated bubble properties based on the probe signal with properties observed on videotapes of a 2-D bed.

  3. Bubbles

    NASA Astrophysics Data System (ADS)

    Prosperetti, Andrea

    2004-06-01

    Vanitas vanitatum et omnia vanitas: bubbles are emptiness, non-liquid, a tiny cloud shielding a mathematical singularity. Born from chance, a violent and brief life ending in the union with the (nearly) infinite. But a wealth of phenomena spring forth from this nothingness: underwater noise, sonoluminescence, boiling, and many others. Some recent results on a "blinking bubble" micropump and vapor bubbles in sound fields are outlined. The last section describes Leonardo da Vinci's observation of the non-rectlinear ascent of buoyant bubbles and justifies the name Leonardo's paradox recently attributed to this phenomenon.

  4. Warm Pressurant Gas Effects on the Liquid Hydrogen Bubble Point

    NASA Technical Reports Server (NTRS)

    Hartwig, Jason W.; McQuillen, John B.; Chato, David J.

    2013-01-01

    This paper presents experimental results for the liquid hydrogen bubble point tests using warm pressurant gases conducted at the Cryogenic Components Cell 7 facility at the NASA Glenn Research Center in Cleveland, Ohio. The purpose of the test series was to determine the effect of elevating the temperature of the pressurant gas on the performance of a liquid acquisition device. Three fine mesh screen samples (325 x 2300, 450 x 2750, 510 x 3600) were tested in liquid hydrogen using cold and warm noncondensible (gaseous helium) and condensable (gaseous hydrogen) pressurization schemes. Gases were conditioned from 0 to 90 K above the liquid temperature. Results clearly indicate a degradation in bubble point pressure using warm gas, with a greater reduction in performance using condensable over noncondensible pressurization. Degradation in the bubble point pressure is inversely proportional to screen porosity, as the coarsest mesh demonstrated the highest degradation. Results here have implication on both pressurization and LAD system design for all future cryogenic propulsion systems. A detailed review of historical heated gas tests is also presented for comparison to current results.

  5. PHASE-FIELD SIMULATION OF IRRADIATED METALS: PART II: GAS BUBBLE KINETICS

    SciTech Connect

    Paul C Millett; Anter El-Azab

    2011-01-01

    We present a phase-field model for inert gas bubble formation and evolution in irradiated metals. The model evolves vacancy, self-interstitial, and fission gas atoms through a coupled set of Cahn-Hilliard and Allen-Cahn equations, capturing the processes of defect generation, recombination, annihilation at GB sinks, as well as intragranular and intergranular bubble nucleation and growth in polycrystalline microstructures. Illustrative results are presented that characterize bubble growth and shrinkage, as well as the bubble density, size and nucleation rate as a function of varying irradiation conditions. Finally, intergranular bubble characteristics such as shape, pinning energy on GB motion, and bubble density are investigated.

  6. Evolution of bubble length distributions in three-phase fluidized beds

    SciTech Connect

    Lee, S.L.P.; Soria, A.; de Lasa, H.I. )

    1990-11-01

    Three-phase fluidization is an operation that has been applied to many chemical processes. The performance of a three-phase fluidized bed reactor is highly influenced by the bubble behavior. For example, gas bubbles affect bed expansion, bed mixing, gas holdup, particle entrainment, and mass transfer among the three phases. Therefore, the knowledge of the gas holdup, bubble velocity, bubble size, and its distribution, is very important in order to understand the behavior of this type of reactor. The aim of this present paper is the description of the steady-state evolution process of the average value and the distribution of bubble lengths in a column with solid particles whose diameter is smaller than the so-called critical particle size, which is around 3 mm for the air-water-glass beads system. Bubble length distributions are obtained from in situ fiber optic probe measurements throughout the fluidized bed. The evolution of bubble length distributions is studied under various operating conditions. The bubble flow regimes are identified objectively by studying, under steady-state operation, the bubble length mappings (functions of both axial and radial positions) in the fluidized bed.

  7. A computational model of gas bubble evolution in liquid filled straight tubes

    NASA Astrophysics Data System (ADS)

    Himm, Jeff; Halpern, David

    1996-11-01

    Deep sea divers suffer from decompression sickness (DCS) when their rate of ascent to the surface is too quick. When the ambient pressure drops, inert gas bubbles are usually formed in blood vessels and tissues of divers. It is believed that the existence of gas bubbles is the cause of DCS that manifests itself as itching, joint pain, and neurological abnormalities. While models of gas bubbles in tissues are relatively well developed, the mechanism of bubble growth in the circulation is far less well understood. The existence of gas bubbles may affect gas exchange in small blood vessels by blocking the flow of blood. Gas bubble evolution in the circulation is investigated using an analytical method for small bubbles and the boundary element method for bubbles whose effective radius is close to the tube radius. The concentration field for the dissolved gas surrounding the bubble is solved numerically using finite differences. The bubble volume is adjusted over time according to the mass flux at the surface. It is shown that the effect of increasing the flow rate is to enhance bubble evolution, up to a factor of two compared with the evolution in tissue where there is no flow. This work was supported by the Naval Medical Research and Development Command work unit 62233N.MM33P30.0041509.

  8. In-water gas combustion in linear and annular gas bubbles

    NASA Astrophysics Data System (ADS)

    Teslenko, V. S.; Drozhzhin, A. P.; Medvedev, R. N.; Batraev, I. S.

    2014-08-01

    A new pulsed-cyclic method of in-water gas combustion was developed with separate feed of fuel gas and oxygen with the focus on development of new technologies for heat generators and submerged propellers. The results of calorimetric and hydrodynamic measurements are presented. In-water combustion of acetylene, hydrogen, and propane was tested with the operation frequency of 2-2.5 Hz and with a linear injector. The combustion dynamics of combustion of stoichiometric mixture with propane (C3H8+5O2) was studied for a bubble near a solid wall; the produced gas bubble continues expansion and oscillations (for the case of linear and annular bubbles). It was demonstrated that gas combustion in annular bubbles produces two same-magnitude pulses of force acting on the wall. The first pulse is produced due to expansion of combustion products, and the second pulse is produced due to axial cumulative processes after bubble collapse. This process shapes an annular vortex which facilitates high-speed convective processes between combustion products and liquid; and this convection produces small-size bubbles.

  9. Application of Phase-field Method in Predicting Gas Bubble Microstructure Evolution in Nuclear Fuels

    SciTech Connect

    Hu, Shenyang Y.; Li, Yulan; Sun, Xin; Gao, Fei; Devanathan, Ramaswami; Henager, Charles H.; Khaleel, Mohammad A.

    2010-04-30

    Fission product accumulation and gas bubble microstructure evolution in nuclear fuels strongly affect thermo-mechanical properties such as thermal conductivity, gas release, volumetric swelling and cracking, and hence the fuel performance. In this paper, a general phase-field model is developed to predict gas bubble formation and evolution. Important materials processes and thermodynamic properties including the generation of gas atoms and vacancies, sinks for vacancies and gas atoms, the elastic interaction among defects, gas re-solution, and inhomogeneity of elasticity and diffusivity are accounted for in the model. The simulations demonstrate the potential application of the phase-field method in investigating 1) heterogeneous nucleation of gas bubbles at defects; 2) effect of elastic interaction, inhomogeneity of material properties, and gas re-solution on gas bubble microstructures; and 3) effective properties from the output of phase-field simulations such as distribution of defects, gas bubbles, and stress fields.

  10. A study on measurement of gas-liquid interfacial area in a dispersed gas injection system

    NASA Astrophysics Data System (ADS)

    Park, H. K.; Yoon, J. K.

    1990-08-01

    The gas-liquid interfacial area in a dispersed gas injection system was estimated by a chemical method and measured directly by an electroresistivity probe method. In the chemical method, the gas-liquid interfacial area was obtained by plotting CO2 absorption rate in 0.1 mol/L KOH solution based on the gas absorption theory. In the electroresistivity probe method, local gas holdup, bubble rising velocity, and local bubble diameter were measured in the same solution into which air was injected upwardly. Overall mean values of gas holdup and bubble diameter in the vessel were obtained by means of statistical treatments. The specific interfacial area was calculated from these data. Measurements were done in a cylindrical water vessel under different conditions of gas flow rate and nozzle diameter. The measured values of the specific interfacial area by the electroresistivity probe method were compared with those by the chemical method and showed good agreement.

  11. Optical measurements of gas bubbles in oil behind a cavitating micro-orifice flow

    NASA Astrophysics Data System (ADS)

    Iben, Uwe; Wolf, Fabian; Freudigmann, Hans-Arndt; Fröhlich, Jochen; Heller, Winfried

    2015-06-01

    In hydraulic systems, it is common for air release to occur behind valves or throttles in the form of bubbles. These air bubbles can affect the behavior and the performance of these systems to a substantial extent. In the paper, gas release in a liquid flow behind an orifice is analyzed by optical methods for various operation points. The bubbles are observed with a digital camera, and a detection algorithm based on the Hough transformation is used to determine their number and size. The appearance of gas bubbles is very sensitive to the inlet and outlet pressure of the orifice. Gas bubbles are only observed if choking cavitation occurs. An empirical relationship between an adjusted cavitation number and the appearance of gas release is presented. It is assumed that the observed bubbles contain mostly air. With the applied pressure differences, up to 30 % of the dissolved air was degassed in the form of bubbles.

  12. Phase-field simulations of gas density within bubbles under irradiation

    SciTech Connect

    Paul C. Millett; Anter El-Azab; Michael Tonks

    2011-05-01

    Phase-field simulations are used to study the evolution of gas density within irradiation-induced bubbles. In our simulations, the dpa rate, gas production rate, and defect diffusivities are systematically varied to understand their effect on bubble nucleation rates, bubble densities, and the distribution of gas concentration within bubbles and in the solid regions. We find that gas densities within bubbles fluctuate drastically in the early nucleation stages, when growth rates are highest, but converge to steady-state values during the later coarsening stages. The steady-state gas densities within bubbles correspond with the ratio of total accumulated vacancy content divided by the total accumulated gas content, in agreement with a thermodynamic analysis concerning free-energy minimization.

  13. Hydrodynamics of Fischer-Tropsch synthesis in slurry bubble column reactors: Final report

    SciTech Connect

    Bukur, D.B.; Daly, J.G.; Patel, S.A.; Raphael, M.L.; Tatterson, G.B.

    1987-06-01

    This report describes studies on hydrodynamics of bubble columns for Fischer-Tropsch synthesis. These studies were carried out in columns of 0.051 m and 0.229 m in diameter and 3 m tall to determine effects of operating conditions (temperature and gas flow rate), distributor type (sintered metal plate and single and multi-hole perforated plates) and liquid media (paraffin and reactor waxes) on gas hold-up and bubble size distribution. In experiments with the Fischer-Tropsch (F-T) derived paraffin wax (FT-300) for temperatures between 230 and 280/sup 0/C there is a range of gas velocities (transition region) where two values of gas hold-up (i.e., two flow regimes) are possible. Higher hold-ups were accompanied by the presence of foam (''foamy'' regime) whereas lower values were obtained in the absence of foam (''slug flow'' in the 0.051 m column, or ''churn-turbulent'' flow regime in the 0.229 m column). This type of behavior has been observed for the first time in a system with molten paraffin wax as the liquid medium. Several factors which have significant effect on foaming characteristics of this system were identified. Reactor waxes have much smaller tendency to foam and produce lower hold-ups due to the presence of larger bubbles. Finally, new correlations for prediction of the gas hold-up and the specific gas-liquid interfacial area were developed on the basis of results obtained in the present study. 49 refs., 99 figs., 19 tabs.

  14. Mathematical model of diffusion-limited evolution of multiple gas bubbles in tissue

    NASA Technical Reports Server (NTRS)

    Srinivasan, R. Srini; Gerth, Wayne A.; Powell, Michael R.

    2003-01-01

    Models of gas bubble dynamics employed in probabilistic analyses of decompression sickness incidence in man must be theoretically consistent and simple, if they are to yield useful results without requiring excessive computations. They are generally formulated in terms of ordinary differential equations that describe diffusion-limited gas exchange between a gas bubble and the extravascular tissue surrounding it. In our previous model (Ann. Biomed. Eng. 30: 232-246, 2002), we showed that with appropriate representation of sink pressures to account for gas loss or gain due to heterogeneous blood perfusion in the unstirred diffusion region around the bubble, diffusion-limited bubble growth in a tissue of finite volume can be simulated without postulating a boundary layer across which gas flux is discontinuous. However, interactions between two or more bubbles caused by competition for available gas cannot be considered in this model, because the diffusion region has a fixed volume with zero gas flux at its outer boundary. The present work extends the previous model to accommodate interactions among multiple bubbles by allowing the diffusion region volume of each bubble to vary during bubble evolution. For given decompression and tissue volume, bubble growth is sustained only if the bubble number density is below a certain maximum.

  15. Evolution of bubble size distribution from gas blowout in shallow water

    NASA Astrophysics Data System (ADS)

    Zhao, Lin; Boufadel, Michel C.; Lee, Kenneth; King, Thomas; Loney, Norman; Geng, Xiaolong

    2016-03-01

    Gas is often emanated from the sea bed during a subsea oil and gas blowout. The size of a gas bubble changes due to gas dissolution in the ambient water and expansion as a result of a decrease in water pressure during the rise. It is important to understand the fate and transport of gas bubbles for the purpose of environmental and safety concerns. In this paper, we used the numerical model, VDROP-J to simulate gas formation in jet/plume upon release, and dissolution and expansion while bubble rising during a relatively shallow subsea gas blowout. The model predictions were an excellent match to the experimental data. Then a gas dissolution and expansion module was included in the VDROP-J model to predict the fate and transport of methane bubbles rising due to a blowout through a 0.10 m vertical orifice. The numerical results indicated that gas bubbles would increase the mixing energy in released jets, especially at small distances and large distances from the orifice. This means that models that predict the bubble size distribution (BSD) should account for this additional mixing energy. It was also found that only bubbles of certain sizes would reach the water surfaces; small bubbles dissolve fast in the water column, while the size of the large bubbles decreases. This resulted in a BSD that was bimodal near the orifice, and then became unimodal.

  16. Sparger Effect on Bubble-Column Gas Distributions

    NASA Astrophysics Data System (ADS)

    Torczynski, J. R.; George, D. L.; Shollenberger, K. A.

    2000-11-01

    The effect of sparger geometry (hole number, size, and orientation) on gas distribution in bubble columns is examined. Experiments are performed in a cylindrical vessel with an inner diameter D of 0.48 m and a height of 3 m. The vessel is filled to a height of 4 D with liquid, gas is injected near the bottom through the sparger, and the gas distribution is measured using gamma-densitometry tomography (GDT). Drakeol 10 (a lightweight mineral oil) is typically the liquid (Drakeol 5 and water are also used). The gas is air, with column pressures of 100-500 kPa and superficial velocities up to 30 cm/s. Cross spargers (four hole-lined tubes radiating from a central hub) are examined that have 4-120 holes with 1-8 mm diameters oriented upward, downward, or sideways (swirling). For a given liquid, column pressure, and gas flow rate, the gas radial distribution above a few diameters is independent of sparger selection and vertical location. The development length is less than D with downward holes, ( 1 - 2 ) D with upward holes, and about 3 D with sideways holes. The gas volume fraction decreases with height for upward holes but increases with height for sideways holes. *Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under Contract DE-AC04-94AL85000.

  17. Transmission of detonation from a medium with bubbles to an explosive-gas volume

    NASA Astrophysics Data System (ADS)

    Pinaev, A. V.

    2015-11-01

    For the first time, the possibility of transmission of detonation from a gas-liquid medium with bubbles of a chemically active gas mixture to an explosive-gas volume occurring above the interface is established. The experiments are fulfilled in a formulation in which bubble detonation was initiated by the explosion of a conductor located inside the bubble medium. The distance between the wire and the bubblemedium boundary was varied by decreasing it to 1 cm, when the gas volume was more frequently initiated by hot products of the conductor explosion and the discharge plasma. The dynamics of the gas-liquid interface after the arrival of the bubble-detonation wave to it is investigated. The probabilities of transmission of detonation from the bubble medium to the gas-mixture volume in dependence on the wire-immersion depth are determined, and the mechanism of ignition of the explosive-gas volume is described.

  18. Hydrodynamics of an endothermic gas with application to bubble cavitation.

    PubMed

    Lutsko, James F

    2006-10-28

    The hydrodynamics for a gas of hard spheres which sometimes experience inelastic collisions resulting in the loss of a fixed, velocity-independent, amount of energy Delta is investigated with the goal of understanding the coupling between hydrodynamics and endothermic chemistry. The homogeneous cooling state of a uniform system and the modified Navier-Stokes equations are discussed and explicit expressions given for the pressure, cooling rates, and all transport coefficients for D dimensions. The Navier-Stokes equations are solved numerically for the case of a two-dimensional gas subject to a circular piston so as to illustrate the effects of the energy loss on the structure of shocks found in cavitating bubbles. It is found that the maximal temperature achieved is a sensitive function of Delta with a minimum occurring near the physically important value of Delta approximately 12,000 K approximately 1 eV. PMID:17092085

  19. Observations on gas-bubble disease of fish

    USGS Publications Warehouse

    1953-01-01

    SOME DIFFICULTY has been experienced in raising fry and young fingerlings at the Puyallup hatchery of the Washington State Department of Game, a hatchery now in its fourth year of operation. There has been evidence of gas in the yolk-sac fry, and the mortality was always excessive among the fingerlings while reared in the hatchery troughs. The mortality rate decreased and evidence of gas-bubble disease disappeared when the fish mere moved to outside ponds. Also, fish seemed less susceptible to parasitic diseases when held in the ponds rather than 1m hatchery troughs. Strains of fish raised at the station were cutthroat trout (Salmo clarkii clarkii and Salmo clarkii lewisi) rainbow trout (Salmo gairdnerii gairdnerii), and steelhead trout (Salmo gairdnerii iriatus)

  20. Development of Liposomal Bubbles with Perfluoropropane Gas as Gene Delivery Carriers

    NASA Astrophysics Data System (ADS)

    Maruyama, Kazuo; Suzuki, Ryo; Sawamura, Kaori; Takizawa, Tomoko; Utoguchi, Naoki; Negishi, Yoichi

    2007-05-01

    Liposomes have some advantages as drug, antigen and gene delivery carriers. Their size can be easily controlled and they can be modified to add a targeting function. Based on liposome technology, we developed novel liposomal bubbles (Bubble liposomes) containing the ultrasound imaging gas, perfluoropropane. We assessed the feasibility of Bubble liposomes as carriers for gene delivery after cavitation induced by ultrasound. At first, we investigated their ability to deliver genes with Bubble liposomes and ultrasound to various types of cells such as mouse sarcoma cells, mouse melanoma cells, human T cell line and human umbilical vein endothelial cells. The results showed that the Bubble liposomes could deliver plasmid DNA to many cell types without cytotoxicity. In addition, we found that Bubble liposomes could effectively deliver plasmid DNA into mouse femoral artery in vivo. The gene transduction with Bubble liposomes was more effectively than conventional lipofection. We conclude that Bubble liposomes are unique and efficient gene delivery carriers in vitro and in vivo.

  1. On the possibility of diffusionally driven oscillations in two component gas bubbles in fluids

    NASA Technical Reports Server (NTRS)

    Weinberg, Michael C.

    1986-01-01

    The problem of an isolated, stationary, two-component gas bubble in a fluid is analyzed. The appropriate governing equations, and an approximate version of these equations, for this model system are reviewed. The qualitative differences in bubble dissolution behavior between single- and two-component gas bubbles are elucidated. In particular, it is demonstrated that in the latter case the gas bubble radius may exhibit extrema as a function of time for certain values of the controlling parameters. The conditions under which these extrema may occur, and the maximum number of extrema which are permitted are elucidated.

  2. Rise characteristics of gas bubbles in a 2D rectangular column: VOF simulations vs experiments

    SciTech Connect

    Krishna, R.; Baten, J.M. van

    1999-10-01

    About five centuries ago, Leonardo da Vinci described the sinuous motion of gas bubbles rising in water. The authors have attempted to simulate the rise trajectories of bubbles of 4, 5, 7, 8, 9, 12, and 20 mm in diameter rising in a 2D rectangular column filled with water. The simulations were carried out using the volume-of-fluid (VOF) technique developed by Hirt and Nichols (J. Computational Physics, 39, 201--225 (1981)). To solve the Navier-Stokes equations of motion the authors used a commercial solver, CFX 4.1c of AEA Technology, UK. They developed their own bubble-tracking algorithm to capture sinuous bubble motions. The 4 and 5 mm bubbles show large lateral motions observed by Da Vinci. The 7, 8 and 9 mm bubble behave like jellyfish. The 12 mm bubble flaps its wings like a bird. The extent of lateral motion of the bubbles decreases with increasing bubble size. Bubbles larger than 20 mm in size assume a spherical cap form and simulations of the rise characteristics match experiments exactly. VOF simulations are powerful tools for a priori determination of the morphology and rise characteristics of bubbles rising in a liquid. Bubble-bubble interactions are also properly modeled by the VOF technique.

  3. Ultrasonic methods for locating hold-up

    SciTech Connect

    Sinha, D.N.; Olinger, C.T.

    1995-09-01

    Hold-up remains one of the major contributing factors to unaccounted for materials and can be a costly problem in decontamination and decommissioning activities. Ultrasonic techniques are being developed to noninvasively monitor hold-up in process equipment where the inner surface of such equipment may be in contact with the hold-up material. These techniques may be useful in improving hold-up measurements as well as optimizing decontamination techniques.

  4. Quantification of gas saturations during bubbly gas flow using a novel calibration technique

    NASA Astrophysics Data System (ADS)

    Hegele, P. R.; Mumford, K. G.

    2012-12-01

    An understanding of gas dynamics is important during the remediation of contaminated soil and groundwater by techniques such as in situ air sparging (IAS) and in situ thermal treatment (ISTT). For example, mass transfer rates between dissolved contaminants and gases are governed by gas-liquid interfacial area, relative permeability effects reduce aqueous flow through a gas-occupied treatment zone, bubble flow allows gas phase transport at lower gas saturations in coarse material, and the onset of gas connection allows increased capture and recovery of gas-phase mass during vapor extraction. Visualization using light transmission methods (i.e., transmitting light through thin experimental cells and capturing digital images of the media and fluids in the cell over time) can be used to investigate gas dynamics in laboratory experiments. These light transmission methods often require calibration to representative wet and dry or residual transmitted light intensities in order to quantify gas saturations. In this work, a new calibration procedure was developed and used to quantify gas saturations during bubbly gas flow in coarse sand, which only used data from the water-saturated image. A known gas volume was injected at slow flow rates into the bottom of a thin cell (100 mm × 80 mm × 8 mm) containing water and sand, such that bubbly gas flow occurred. Pixel-wise gas saturation values at multiple points in time during the gas injection were integrated over the volume of the cell and calibrated to the total volume of gas injected. This method was able to overcome experimental difficulties associated with obtaining representative dry or residual images for use in calibration, and was able to calibrate directly to the distribution of discontinuous gas, which resulted in low errors in local gas saturation (i.e., standard deviations of 0.5%-2% with a median filter applied). Calibrated images were used to validate results from a numerical model used to simulate bubbly gas flow in two and three dimensions for use in air sparging applications. In addition, the light transmission method was applied to laboratory experiments of ISTT using electrical resistance heating (ERH) to investigate the development of a gas phase during boiling.

  5. Frequency dependence in seismoacoustic imaging of shallow free gas due to gas bubble resonance

    NASA Astrophysics Data System (ADS)

    Tóth, Zsuzsanna; Spiess, Volkhard; Keil, Hanno

    2015-12-01

    Shallow free gas is investigated in seismoacoustic data in 10 frequency bands covering a frequency range between 0.2 and 43 kHz. At the edge of a gassy patch in the Bornholm Basin (Baltic Sea), compressional wave attenuation caused by free gas is estimated from reflection amplitudes beneath the gassy sediment layer. Imaging of shallow free gas is considerably influenced by gas bubble resonance, because in the resonance frequency range attenuation is significantly increased. At the resonance frequency of the largest bubbles between 3 and 5 kHz, high scattering causes complete acoustic blanking beneath the top of the gassy sediment layer. In the wider resonance frequency range between 3 and 15 kHz, the effect of smaller bubbles becomes dominant and the attenuation slightly decreases. This allows acoustic waves to be transmitted and reflections can be observed beneath the gassy sediment layer for higher frequencies. Above resonance beginning at ˜19 kHz, attenuation is low and the presence of free gas can be inferred from the decreased reflection amplitudes beneath the gassy layer. Below the resonance frequency range (<1 kHz), attenuation is generally very low and not dependent on frequency. Using the geoacoustic model of Anderson and Hampton, the observed frequency boundaries suggest gas bubble sizes between 1 and 4-6 mm, and gas volume fractions up to 0.02% in a ˜2 m thick sediment layer, whose upper boundary is the gas front. With the multifrequency acoustic approach and the Anderson and Hampton model, quantification of free gas in shallow marine environments is possible if the measurement frequency range allows the identification of the resonance frequency peak. The method presented is limited to places with only moderate attenuation, where the amplitudes of a reflection can be analyzed beneath the gassy sediment layer.

  6. A new pressure formulation for gas-compressibility dampening in bubble dynamics models.

    PubMed

    Gadi Man, Yezaz Ahmed; Trujillo, Francisco J

    2016-09-01

    We formulated a pressure equation for bubbles performing nonlinear radial oscillations under ultrasonic high pressure amplitudes. The proposed equation corrects the gas pressure at the gas-liquid interface on inertial bubbles. This pressure formulation, expressed in terms of gas-Mach number, accounts for dampening due to gas compressibility during the violent collapse of cavitation bubbles and during subsequent rebounds. We refer to this as inhomogeneous pressure, where the gas pressure at the gas-liquid interface can differ to the pressure at the centre of the bubble, in contrast to homogenous pressure formulations that consider that pressure inside the bubble is spatially uniform from the wall to the centre. The pressure correction was applied to two bubble dynamic models: the incompressible Rayleigh-Plesset equation and the compressible Keller and Miksis equation. This improved the predictions of the nonlinear radial motion of the bubble vs time obtained with both models. Those simulations were also compared with other bubble dynamics models that account for liquid and gas compressibility effects. It was found that our corrected models are in closer agreement with experimental data than alternative models. It was concluded that the Rayleigh-Plesset family of equations improve accuracy by using our proposed pressure correction. PMID:27150768

  7. Decompression vs. Decomposition: Distribution, Amount, and Gas Composition of Bubbles in Stranded Marine Mammals

    PubMed Central

    de Quirós, Yara Bernaldo; González-Diaz, Oscar; Arbelo, Manuel; Sierra, Eva; Sacchini, Simona; Fernández, Antonio

    2012-01-01

    Gas embolic lesions linked to military sonar have been described in stranded cetaceans including beaked whales. These descriptions suggest that gas bubbles in marine mammal tissues may be more common than previously thought. In this study we have analyzed gas amount (by gas score) and gas composition within different decomposition codes using a standardized methodology. This broad study has allowed us to explore species-specific variability in bubble prevalence, amount, distribution, and composition, as well as masking of bubble content by putrefaction gases. Bubbles detected within the cardiovascular system and other tissues related to both pre- and port-mortem processes are a common finding on necropsy of stranded cetaceans. To minimize masking by putrefaction gases, necropsy, and gas sampling must be performed as soon as possible. Before 24 h post mortem is recommended but preferably within 12 h post mortem. At necropsy, amount of bubbles (gas score) in decomposition code 2 in stranded cetaceans was found to be more important than merely presence vs. absence of bubbles from a pathological point of view. Deep divers presented higher abundance of gas bubbles, mainly composed of 70% nitrogen and 30% CO2, suggesting a higher predisposition of these species to suffer from decompression-related gas embolism. PMID:22675306

  8. Decompression vs. Decomposition: Distribution, Amount, and Gas Composition of Bubbles in Stranded Marine Mammals.

    PubMed

    de Quirós, Yara Bernaldo; González-Diaz, Oscar; Arbelo, Manuel; Sierra, Eva; Sacchini, Simona; Fernández, Antonio

    2012-01-01

    Gas embolic lesions linked to military sonar have been described in stranded cetaceans including beaked whales. These descriptions suggest that gas bubbles in marine mammal tissues may be more common than previously thought. In this study we have analyzed gas amount (by gas score) and gas composition within different decomposition codes using a standardized methodology. This broad study has allowed us to explore species-specific variability in bubble prevalence, amount, distribution, and composition, as well as masking of bubble content by putrefaction gases. Bubbles detected within the cardiovascular system and other tissues related to both pre- and port-mortem processes are a common finding on necropsy of stranded cetaceans. To minimize masking by putrefaction gases, necropsy, and gas sampling must be performed as soon as possible. Before 24 h post mortem is recommended but preferably within 12 h post mortem. At necropsy, amount of bubbles (gas score) in decomposition code 2 in stranded cetaceans was found to be more important than merely presence vs. absence of bubbles from a pathological point of view. Deep divers presented higher abundance of gas bubbles, mainly composed of 70% nitrogen and 30% CO(2), suggesting a higher predisposition of these species to suffer from decompression-related gas embolism. PMID:22675306

  9. Axial solid distribution in slurry bubble columns

    SciTech Connect

    Murray, P.; Fan, L.-S. )

    1989-11-01

    The axial sold concentration distribution in a slurry bubbly column was studied in both batch and continuous operation. Air and water were used as the gas and liquid phases, respectively. The gas velocity ranged from 0.016 to 0.173 m/s, and the slurry velocity ranged from 0.0 to 0.031 m/s. Glass beads of diameters 163,97, and 49 {mu}m were used as the solid phase. The holdup distribution of each solid in binary mixtures was also studied. The effects of gas velocity, slurry velocity, and particle size on the axial solid concentration distribution were examined. A mechanistic model is developed to describe the solid distribution in the slurry bubble columns. The model accounts for the solid distribution for both batch and continuous operation involving monodispersed and binary mixtures of solid particles.

  10. Possible high sonic velocity due to the inclusion of gas bubbles in water

    NASA Astrophysics Data System (ADS)

    Banno, T.; Mikada, H.; Goto, T.; Takekawa, J.

    2010-12-01

    If formation water becomes multi-phase by inclusion of gas bubbles, sonic velocities would be strongly influenced. In general, sonic velocities are knocked down due to low bulk moduli of the gas bubbles. However, sonic velocities may increase depending on the size of gas bubbles, when the bubbles in water or other media oscillate due to incoming sonic waves. Sonic waves are scattered by the bubbles and the superposition of the incoming and the scattered waves result in resonant-frequency-dependent behavior. The phase velocity of sonic waves propagating in fluids containing bubbles, therefore, probably depends on their frequencies. This is a typical phenomenon called “wave dispersion.” So far we have studied about the bubble impact on sonic velocity in bubbly media, such as the formation that contains gas bubbles. As a result, it is shown that the bubble resonance effect is a key to analyze the sonic phase velocity increase. Therefore to evaluate the resonance frequency of bubbles is important to solve the frequency response of sonic velocity in formations having bubbly fluids. There are several analytical solutions of the resonance frequency of bubbles in water. Takahira et al. (1994) derived a equation that gives us the resonance frequency considering bubble - bubble interactions. We have used this theory to calculate resonance frequency of bubbles at the previous work. However, the analytical solution of the Takahira’s equation is based on several assumptions. Therefore we used a numerical approach to calculate the bubble resonance effect more precisely in the present study. We used the boundary element method (BEM) to reproduce a bubble oscillation in incompressible liquid. There are several reasons to apply the BEM. Firstly, it arrows us to model arbitrarily sets and shapes of bubbles. Secondly, it is easy to use the BEM to reproduce a boundary-surface between liquid and gas. The velocity potential of liquid surrounding a bubble satisfies the Laplace equation when the liquid is supposed to be incompressible. We got the boundary integral equation from the Laplace equation and solved the boundary integral equation by the BEM. Then, we got the gradient of the velocity potential from the BEM. We used this gradient to get time derivative of the velocity potential from the Bernouii’s equation. And we used the second order Adams-Bashforth method to execute time integration of the velocity potential. We conducted this scheme iteratively to calculate a bubble oscillation. At each time step, we input a pressure change as a sinusoidal wave. As a result, we observed a bubble oscillation following the pressure frequency. We also evaluated the resonance frequency of a bubble by changing the pressure frequency. It showed a good agreement with the analytical solution described above. Our future work is to extend the calculation into plural bubbles condition. We expect that interaction between bubbles becomes strong and resonance frequency of bubbles becomes small when distance between bubbles becomes small.

  11. Modeling gas bubbles and dissolved gases in a turbulent ocean boundary layer

    NASA Astrophysics Data System (ADS)

    Liang, J.; McWilliams, J. C.; Sullivan, P. P.; Baschek, B.

    2010-12-01

    Gas bubbles are ubiquitous in the surface ocean boundary layer (OBL). After their injection by breaking surface gravity waves, gas bubbles are mixed by turbulent water flows, rise by buoyancy, change size, and exchange gases with the ambient water. They modify the acoustical and optical properties of the upper ocean, enhance upper ocean stratification, and provide an important pathway for gas exchange between the atmosphere and the ocean. We have developed a coupled OBL-Bubble-Dissolved-Gas model that resolves the bubble behavior and bubble impacts on upper ocean dynamics and dissolved gases (Liang et al. 2010). The model is configured to simulate bubbles and dissolved gases in the turbulent OBL with Langmuir circulations and breaking waves. As a result of bubble injection and evolution, Langmuir circulations are weakened, the gas exchange rate is increased, and the equilibrium gas saturation level is enhanced. REFERENCE: Liang, J.-H., J. C. McWilliams, P. P. Sullivan, and B. Baschek (2010) Modeling bubbles and dissolved gases in the ocean, submitted.

  12. A model of extravascular bubble evolution: effect of changes in breathing gas composition.

    PubMed

    Himm, J F; Homer, L D

    1999-10-01

    Observations of bubble evolution in rats after decompression from air dives (O. Hyldegaard and J. Madsen. Undersea Biomed. Res. 16: 185-193, 1989; O. Hyldegaard and J. Madsen. Undersea Hyperbaric Med. 21: 413-424, 1994; O. Hyldegaard, M. Moller, and J. Madsen. Undersea Biomed. Res. 18: 361-371, 1991) suggest that bubbles may resolve more safely when the breathing gas is a heliox mixture than when it is pure O(2). This is due to a transient period of bubble growth seen during switches to O(2) breathing. In an attempt to understand these experimental results, we have developed a multigas-multipressure mathematical model of bubble evolution, which consists of a bubble in a well-stirred liquid. The liquid exchanges gas with the bubble via diffusion, and the exchange between liquid and blood is described by a single-exponential time constant for each inert gas. The model indicates that bubbles resolve most rapidly in spinal tissue, in adipose tissue, and in aqueous tissues when the breathing gas is switched to O(2) after surfacing. In addition, the model suggests that switching to heliox breathing may prolong the existence of the bubble relative to breathing air for bubbles in spinal and adipose tissues. Some possible explanations for the discrepancy between model and experiment are discussed. PMID:10517787

  13. Shock-wave propagation in a sonoluminescing gas bubble

    NASA Technical Reports Server (NTRS)

    Wu, C. C.; Roberts, Paul H.

    1993-01-01

    The motion of the bubble radius and of the air trapped inside the bubble during sonoluminescence are determined self-consistently by coupling the solution of the Rayleigh-Plesset equation governing the bubble radius to the solution of Euler's equations for the motion of air in the bubble. Results are presented for three slightly different conditions of excitation, in two of which shocks are formed during the collapse of the bubble, and in which such high temperatures are attained that the air is ionized. Estimates are made of the duration and intensity of the light then radiated by the plasma.

  14. Contribution to irradiation creep arising from gas-driven bubbles

    SciTech Connect

    Woo, C.H.; Garner, F.A.

    1998-03-01

    In a previous paper the relationship was defined between void swelling and irradiation creep arising from the interaction of the SIPA and SIG creep-driven deformation and swelling-driven deformation was highly interactive in nature, and that the two contributions could not be independently calculated and then considered as directly additive. This model could be used to explain the recent experimental observation that the creep-swelling coupling coefficient was not a constant as previously assumed, but declined continuously as the swelling rate increased. Such a model thereby explained the creep-disappearance and creep-damping anomalies observed in conditions where significant void swelling occurred before substantial creep deformation developed. At lower irradiation temperatures and high helium/hydrogen generation rates, such as found in light water cooled reactors and some fusion concepts, gas-filled cavities that have not yet exceeded the critical radius for bubble-void conversion should also exert an influence on irradiation creep. In this paper the original concept is adapted to include such conditions, and its predictions then compared with available data. It is shown that a measurable increase in the creep rate is expected compared to the rate found in low gas-generating environments. The creep rate is directly related to the gas generation rate and thereby to the neutron flux and spectrum.

  15. Gas generation and bubble formation model for crystalline silicotitanate ion exchange columns

    SciTech Connect

    Hang, T.

    2000-07-19

    The authors developed a transient model to describe the process of gas generation due to radiolysis and bubble formation in crystalline silicotitanate (CST) ion exchange (IX) columns using the Aspen Custom Modeler (ACM) software package. The model calculates gas concentrations and onset of bubble formation for large CST IX columns. The calculations include cesium loading as a function of time, gas generation as a function of cesium loading, and bubble formation as a function of gas solubility. This report summarizes the model development and predictions.

  16. Modeling discrete gas bubble formation and mobilization during subsurface heating of contaminated zones

    NASA Astrophysics Data System (ADS)

    Krol, Magdalena M.; Mumford, Kevin G.; Johnson, Richard L.; Sleep, Brent E.

    2011-04-01

    During thermal remediation the increase in subsurface temperature can lead to bubble formation and mobilization. In order to investigate the effect of gas formation on resulting aqueous concentrations, a 2D finite difference flow and mass transport model was developed which incorporates a macroscopic invasion percolation (MIP) model to simulate bubble expansion and movement. The model was used to simulate three soil scenarios with different permeabilities and entry pressures at various operating temperatures and groundwater velocities. It was observed that discrete bubble formation occurred in all three soils, upward mobility being limited by lower temperatures and higher entry pressures. Bubble mobilization resulted in a different aqueous mass distribution than if no discrete gas formation was modeled, especially at higher temperatures. This was a result of bubbles moving upwards to cooler areas, then collapsing, and contaminating previously clean zones. The cooling effect also led to possible non-aqueous phase liquid (NAPL) formation which was not predicted using a model without discrete bubble formation.

  17. Dynamics of gas bubble growth in a supersaturated solution with Sievert's solubility law.

    PubMed

    Gor, G Yu; Kuchma, A E

    2009-07-21

    This paper presents a theoretical description of diffusion growth of a gas bubble after its nucleation in supersaturated liquid solution. We study systems where gas molecules completely dissociate in the solvent into two parts, thus making Sievert's solubility law valid. We show that the difference between Henry's and Sievert's laws for chemical equilibrium conditions causes the difference in bubble growth dynamics. Assuming that diffusion flux is steady we obtain a differential equation on bubble radius. Bubble dynamics equation is solved analytically for the case of homogeneous nucleation of a bubble, which takes place at a significant pressure drop. We also obtain conditions of diffusion flux steadiness. The fulfillment of these conditions is studied for the case of nucleation of water vapor bubbles in magmatic melts. PMID:19624209

  18. Linear oscillation of gas bubbles in a viscoelastic material under ultrasound irradiation

    SciTech Connect

    Hamaguchi, Fumiya; Ando, Keita

    2015-11-15

    Acoustically forced oscillation of spherical gas bubbles in a viscoelastic material is studied through comparisons between experiments and linear theory. An experimental setup has been designed to visualize bubble dynamics in gelatin gels using a high-speed camera. A spherical gas bubble is created by focusing an infrared laser pulse into (gas-supersaturated) gelatin gels. The bubble radius (up to 150 μm) under mechanical equilibrium is controlled by gradual mass transfer of gases across the bubble interface. The linearized bubble dynamics are studied from the observation of spherical bubble oscillation driven by low-intensity, planar ultrasound driven at 28 kHz. It follows from the experiment for an isolated bubble that the frequency response in its volumetric oscillation was shifted to the high frequency side and its peak was suppressed as the gelatin concentration increases. The measurement is fitted to the linearized Rayleigh–Plesset equation coupled with the Voigt constitutive equation that models the behavior of linear viscoelastic solids; the fitting yields good agreement by tuning unknown values of the viscosity and rigidity, indicating that more complex phenomena including shear thinning, stress relaxation, and retardation do not play an important role for the small-amplitude oscillations. Moreover, the cases for bubble-bubble and bubble-wall systems are studied. The observed interaction effect on the linearized dynamics can be explained as well by a set of the Rayleigh–Plesset equations coupled through acoustic radiation among these systems. This suggests that this experimental setup can be applied to validate the model of bubble dynamics with more complex configuration such as a cloud of bubbles in viscoelastic materials.

  19. Linear oscillation of gas bubbles in a viscoelastic material under ultrasound irradiation

    NASA Astrophysics Data System (ADS)

    Hamaguchi, Fumiya; Ando, Keita

    2015-11-01

    Acoustically forced oscillation of spherical gas bubbles in a viscoelastic material is studied through comparisons between experiments and linear theory. An experimental setup has been designed to visualize bubble dynamics in gelatin gels using a high-speed camera. A spherical gas bubble is created by focusing an infrared laser pulse into (gas-supersaturated) gelatin gels. The bubble radius (up to 150 μm) under mechanical equilibrium is controlled by gradual mass transfer of gases across the bubble interface. The linearized bubble dynamics are studied from the observation of spherical bubble oscillation driven by low-intensity, planar ultrasound driven at 28 kHz. It follows from the experiment for an isolated bubble that the frequency response in its volumetric oscillation was shifted to the high frequency side and its peak was suppressed as the gelatin concentration increases. The measurement is fitted to the linearized Rayleigh-Plesset equation coupled with the Voigt constitutive equation that models the behavior of linear viscoelastic solids; the fitting yields good agreement by tuning unknown values of the viscosity and rigidity, indicating that more complex phenomena including shear thinning, stress relaxation, and retardation do not play an important role for the small-amplitude oscillations. Moreover, the cases for bubble-bubble and bubble-wall systems are studied. The observed interaction effect on the linearized dynamics can be explained as well by a set of the Rayleigh-Plesset equations coupled through acoustic radiation among these systems. This suggests that this experimental setup can be applied to validate the model of bubble dynamics with more complex configuration such as a cloud of bubbles in viscoelastic materials.

  20. Molecular dynamics study of fission gas bubble nucleation in UO2

    NASA Astrophysics Data System (ADS)

    Liu, X.-Y.; Andersson, D. A.

    2015-07-01

    Molecular dynamics (MD) simulations are used to study helium and xenon gas bubble nucleation in UO2. For helium bubbles, the pressure release mechanism is by creating defects on the oxygen sublattice. Helium atoms diffuse away from the bubbles into nearby bulk UO2, thus forming a diffuse interface. For xenon bubbles, over-pressurized bubbles containing xenon can displace uranium atoms, which tend to aggregate around the xenon bubble as a pressure release mechanism. MD simulations of xenon atoms in pre-existing voids suggest that xenon atoms and the replaced uranium atoms occur in a 1:1 ratio, although kinetic factors may reduce that ratio depending on availability of xenon atoms and vacancies around the bubble. Finally, MD simulations suggest that for small bubbles (1-5 xenon atoms), the xenon bubble nucleus at UO2 grain-boundaries has much lower formation energy compared to that of bubbles of similar sizes in the bulk. However, when the xenon bubble grows into larger sizes, this energy difference is reduced.

  1. Hydroacoustic detection and quantification of free gas -methane bubbles- in the ocean

    NASA Astrophysics Data System (ADS)

    Greinert, J.; Artemov, Y.; Gimpel, P.

    2003-04-01

    Extensive methane release as a free gas phase from cold vents is well known from deep (>2000m) and shallow (10s of meters) water depths. Supposedly, much more methane is transported into the water column by free gas than by dissolved gas, which is oxidized by anaerobic and aerobic processes and partly precipitated as carbonate. Rising gas bubbles are not affected by this 'filter' mechanisms. Because of the strength of the backscattered signal from gas bubbles in the water column, bubbles can be detected by single-beam or multi-beam echosounder systems. Thus, hydroacoustic systems with different frequencies can be used to 1) detect free gas in the water column, 2) map the distribution of active vent sites which release free gas, 3) monitor a possible periodicity in the release of bubbles induced by e.g. tides or currents, 4) quantify the gas volume and gas flux that is released in a local area or larger region. In the German research project LOTUS we use ship- mounted single-beam echosounders to map gas plumes (flares) and investigate their periodicity (Flare Imaging). Using specialized single-beam echosounder systems makes it possible to measure the bubble sizes and their distribution. In combination with the volume of the backscattering strength these measurements can be used to estimate the gas volume in a defined part of the water body. Though gas bubbles rise in the water column, they are - particularly methane - rapidly dissolved and thus become smaller. Their rising speed as well as their diminishing size can be determined, which helps to understand the dissolution behaviour of methane bubbles; they form a hydrate skin at distinct pressure and temperature conditions. For a detailed, long-term observation of active bubble-expulsing areas we developed a lander based 180 kHz multi beam system that 'looks' horizontally (GasQuant). The system records backscatter data from a 75° swath that covers an area of about 5300m2. Via calibration we can quantify the methane flux of every single bubble-vent and calculate the methane flux of a bubble vent area. Both hydroacoustic techniques were used during several cruises in 2002 to investigate bubble vents at Hydrate Ridge (HR), offshore Oregon. Several bubble-vent areas were detected at the northern summit of HR. They are related to carbonate chemoherms and morphological heights but were also found in areas which do not show any of these features. The GasQuant system was successfully deployed at the northern and southern summit. The data processing is currently in progress.

  2. Three stages of bubble formation on submerged orifice under constant gas flow rate

    NASA Astrophysics Data System (ADS)

    Yu, Xianxian; Wang, Yiwei; Huang, Chenguang; Du, Tezhuan

    2015-12-01

    Bubble formation is involved in many engineering applications. It is important to understand the dynamics of bubble formation. This work reports experimental and numerical results of bubble formation on submerged orifice under constant gas flow rate. Compressible large eddy simulation combined volume of fluid (VOF) was adopted in simulation and results was validated by experiment. Bubble formation is divided into three stages in this paper, expansion stage, elongation stage and pinch-off stage. In expansion stage, The bubble grows radially due to the incoming gas flux, but the bubble base remains attached to the orifice. But as gas injected, the spherical bubble will go into the elongation stage when the downward resultant force is lager than upward resultant force. And when bubble neck's length is bigger than ?2Ro the bubble will go into pinch-off stage. Cylindrical Rayleigh-Plesset equation can be used to describe the pinch-off stage. Uncertain parameter r in it is given reference value in this paper.

  3. Gas and liquid measurements in air-water bubbly flows

    SciTech Connect

    Zhou, X.; Doup, B.; Sun, X.

    2012-07-01

    Local measurements of gas- and liquid-phase flow parameters are conducted in an air-water two-phase flow loop. The test section is a vertical pipe with an inner diameter of 50 mm and a height of 3.2 m. The measurements are performed at z/D = 10. The gas-phase measurements are performed using a four-sensor conductivity probe. The data taken from this probe are processed using a signal processing program to yield radial profiles of the void fraction, bubble velocity, and interfacial area concentration. The velocity measurements of the liquid-phase are performed using a state-of-the-art Particle Image Velocimetry (PIV) system. The raw PIV images are acquired using fluorescent particles and an optical filtration device. Image processing is used to remove noise in the raw PIV images. The statistical cross correlation is introduced to determine the axial velocity field and turbulence intensity of the liquid-phase. Measurements are currently being performed at z/D = 32 to provide a more complete data set. These data can be used for computational fluid dynamic model development and validation. (authors)

  4. The dissolution or growth of a gas bubble inside a drop in zero gravity

    NASA Technical Reports Server (NTRS)

    Kondos, Pericles A.; Subramanian, R. Shankar; Weinberg, Michael C.

    1987-01-01

    The radius-time history of a gas bubble located concentrically within a spherical liquid drop in a space laboratory is analyzed within the framework of the quasi-stationary approximation. Illustrative results are calculated from the theory which demonstrate interesting qualitative features. For instance, when a pure gas bubble dissolves within a liquid drop in an environment containing the same gas and some inert species, the dissolution can be more or less rapid than that in an unbounded liquid depending on the initial relative size of the drop. Further, given a similar growth situation, indefinite growth is not possible, and the bubble will initially grow, but always dissolve in the end.

  5. Studies of the Hot Gas in the Galactic halo and Local Bubble

    NASA Technical Reports Server (NTRS)

    Shelton, Robin L.

    2003-01-01

    This paper presents a report on the progress made on Studies of the Hot Gas in the Galactic halo and Local Bubble at Johns Hopkins University. The broad goals of this project are to determine the physical conditions and history of the hot phase of the Galaxy's interstellar medium. Such gas resides in the Galactic halo, the Local Bubble surrounding the solar neighborhood, other bubbles, and supernova remnants. A better understanding of the hot gas and the processes occurring within it requires several types of work, including ultraviolet and X-ray data analyses and computer modeling.

  6. Physical data measurements and mathematical modelling of simple gas bubble experiments in glass melts

    NASA Technical Reports Server (NTRS)

    Weinberg, Michael C.

    1986-01-01

    In this work consideration is given to the problem of the extraction of physical data information from gas bubble dissolution and growth measurements. The discussion is limited to the analysis of the simplest experimental systems consisting of a single, one component gas bubble in a glassmelt. It is observed that if the glassmelt is highly under- (super-) saturated, then surface tension effects may be ignored, simplifying the task of extracting gas diffusivity values from the measurements. If, in addition, the bubble rise velocity is very small (or very large) the ease of obtaining physical property data is enhanced. Illustrations are given for typical cases.

  7. Magnetic field induced motion behavior of gas bubbles in liquid

    PubMed Central

    Wang, Keliang; Pei, Pucheng; Pei, Yu; Ma, Ze; Xu, Huachi; Chen, Dongfang

    2016-01-01

    The oxygen evolution reaction generally exists in electrochemical reactions. It is a ubiquitous problem about how to control the motion of oxygen bubbles released by the reaction. Here we show that oxygen bubbles during oxygen evolution reaction exhibit a variety of movement patterns in the magnetic field, including directional migration and rotational motion of oxygen bubbles when the magnet in parallel with the electrode, and exclusion movement of oxygen bubbles when the magnet perpendicular to the electrode. The results demonstrate that the direction of oxygen bubbles movement is dependent upon the magnet pole near the electrode, and the kinetics of oxygen bubbles is mainly proportional to intensity of the electromagnetic field. The magnetic-field induced rotational motion of oxygen bubbles in a square electrolyzer can increase liquid hydrodynamics, thus solve the problems of oxygen bubbles coalescence, and uneven distribution of electrolyte composition and temperature. These types of oxygen bubbles movement will not only improve energy saving and metal deposition for energy storage and metal refinery, but also propel object motion in application to medical and martial fields. PMID:26867515

  8. Magnetic field induced motion behavior of gas bubbles in liquid.

    PubMed

    Wang, Keliang; Pei, Pucheng; Pei, Yu; Ma, Ze; Xu, Huachi; Chen, Dongfang

    2016-01-01

    The oxygen evolution reaction generally exists in electrochemical reactions. It is a ubiquitous problem about how to control the motion of oxygen bubbles released by the reaction. Here we show that oxygen bubbles during oxygen evolution reaction exhibit a variety of movement patterns in the magnetic field, including directional migration and rotational motion of oxygen bubbles when the magnet in parallel with the electrode, and exclusion movement of oxygen bubbles when the magnet perpendicular to the electrode. The results demonstrate that the direction of oxygen bubbles movement is dependent upon the magnet pole near the electrode, and the kinetics of oxygen bubbles is mainly proportional to intensity of the electromagnetic field. The magnetic-field induced rotational motion of oxygen bubbles in a square electrolyzer can increase liquid hydrodynamics, thus solve the problems of oxygen bubbles coalescence, and uneven distribution of electrolyte composition and temperature. These types of oxygen bubbles movement will not only improve energy saving and metal deposition for energy storage and metal refinery, but also propel object motion in application to medical and martial fields. PMID:26867515

  9. Magnetic field induced motion behavior of gas bubbles in liquid

    NASA Astrophysics Data System (ADS)

    Wang, Keliang; Pei, Pucheng; Pei, Yu; Ma, Ze; Xu, Huachi; Chen, Dongfang

    2016-02-01

    The oxygen evolution reaction generally exists in electrochemical reactions. It is a ubiquitous problem about how to control the motion of oxygen bubbles released by the reaction. Here we show that oxygen bubbles during oxygen evolution reaction exhibit a variety of movement patterns in the magnetic field, including directional migration and rotational motion of oxygen bubbles when the magnet in parallel with the electrode, and exclusion movement of oxygen bubbles when the magnet perpendicular to the electrode. The results demonstrate that the direction of oxygen bubbles movement is dependent upon the magnet pole near the electrode, and the kinetics of oxygen bubbles is mainly proportional to intensity of the electromagnetic field. The magnetic-field induced rotational motion of oxygen bubbles in a square electrolyzer can increase liquid hydrodynamics, thus solve the problems of oxygen bubbles coalescence, and uneven distribution of electrolyte composition and temperature. These types of oxygen bubbles movement will not only improve energy saving and metal deposition for energy storage and metal refinery, but also propel object motion in application to medical and martial fields.

  10. Natural frequency of a gas bubble in a tube: Experimental and simulation results

    PubMed Central

    Jang, Neo W.; Gracewski, Sheryl M.; Abrahamsen, Ben; Buttaccio, Travis; Halm, Robert; Dalecki, Diane

    2009-01-01

    Use of ultrasonically excited microbubbles within blood vessels has been proposed for a variety of clinical applications. In this paper, an axisymmetric coupled boundary element and finite element code and experiments have been used to investigate the effects of a surrounding tube on a bubble’s response to acoustic excitation. A balloon model allowed measurement of spherical gas bubble response. Resonance frequencies match one-dimensional cylindrical model predictions for a bubble well within a rigid tube but deviate for a bubble near the tube end. Simulations also predict bubble translation along the tube axis and aspherical oscillations at higher amplitudes. PMID:19603851

  11. Nonlinear Oscillations of Gas Bubbles and Their Impact on Plasma Breakdown in Water

    NASA Astrophysics Data System (ADS)

    Sommers, Bradley; Foster, John

    2011-10-01

    We investigate the effects of a time varying electric field on air bubbles submerged in water. For a sufficiently strong field, a large electrical stress acting on the liquid-gas boundary can deform the volume and shape of the bubble. This deformation may drastically alter the internal pressure and polarization of the bubble, thus easing the conditions for streamer formation within the gas volume. This type of enhancement could have a broad impact on the viability of liquid plasma technologies, which tend to suffer from high voltage requirements. Bubbles with 0.5-3 mm diameter are trapped in the node of a 26.5 kHz underwater acoustic field while either alternating or pulsed voltage signals of 5-20 kV are applied across their diameter. Bubble response is captured using a high speed camera (10,000 fps), along with a high sensitivity hydrophone. The response is documented over a wide range of factors, including bubble size, field frequency, and field strength. The observed deformations of the bubble shape are then used to predict changes to the reduced field (E/N) within the bubble volume. We investigate the effects of a time varying electric field on air bubbles submerged in water. For a sufficiently strong field, a large electrical stress acting on the liquid-gas boundary can deform the volume and shape of the bubble. This deformation may drastically alter the internal pressure and polarization of the bubble, thus easing the conditions for streamer formation within the gas volume. This type of enhancement could have a broad impact on the viability of liquid plasma technologies, which tend to suffer from high voltage requirements. Bubbles with 0.5-3 mm diameter are trapped in the node of a 26.5 kHz underwater acoustic field while either alternating or pulsed voltage signals of 5-20 kV are applied across their diameter. Bubble response is captured using a high speed camera (10,000 fps), along with a high sensitivity hydrophone. The response is documented over a wide range of factors, including bubble size, field frequency, and field strength. The observed deformations of the bubble shape are then used to predict changes to the reduced field (E/N) within the bubble volume. Research supported by the NSF (CBET #1033141).

  12. A Study of Bubble and Slug Gas-Liquid Flow in a Microgravity Environment

    NASA Technical Reports Server (NTRS)

    McQuillen, J.

    2000-01-01

    The influence of gravity on the two-phase flow dynamics is obvious.As the gravity level is reduced,there is a new balance between inertial and interfacial forces, altering the behavior of the flow. In bubbly flow,the absence of drift velocity leads to spherical-shaped bubbles with a rectilinear trajectory.Slug flow is a succession of long bubbles and liquid slug carrying a few bubbles. There is no flow reversal in the thin liquid film as the long bubble and liquid slug pass over the film. Although the flow structure seems to be simpler than in normal gravity conditions,the models developed for the prediction of flow behavior in normal gravity and extended to reduced gravity flow are unable to predict the flow behavior correctly.An additional benefit of conducting studies in microgravity flows is that these studies aide the development of understanding for normal gravity flow behavior by removing the effects of buoyancy on the shape of the interface and density driven shear flows between the gas and the liquid phases. The proposal calls to study specifically the following: 1) The dynamics of isolated bubbles in microgravity liquid flows will be analyzed: Both the dynamics of spherical isolated bubbles and their dispersion by turbulence, their interaction with the pipe wall,the behavior of the bubbles in accelerated or decelerated flows,and the dynamics of isolated cylindrical bubbles, their deformation in accelerated/decelerated flows (in converging or diverging channels), and bubble/bubble interaction. Experiments will consist of the use of Particle Image Velocimetry (PIV) and Laser Doppler Velocimeters (LDV) to study single spherical bubble and single and two cylindrical bubble behavior with respect to their influence on the turbulence of the surrounding liquid and on the wall 2) The dynamics of bubbly and slug flow in microgravity will be analyzed especially for the role of the coalescence in the transition from bubbly to slug flow (effect of fluid properties and surfactant), to identify clusters that promote coalescence and transition the void fraction distribution in bubbly and slug flow,to measure the wall friction in bubbly flow. These experiments will consist of multiple bubbles type flows and will utilize hot wire and film anemometers to measure liquid velocity and wall shear stress respectively and double fiber optic probes to measure bubble size and velocity as a function of tube radius and axial location.

  13. Laser generation of gas bubbles: Photoacoustic and photothermal effects recorded in transient grating experiments

    SciTech Connect

    Frez, Clifford; Diebold, Gerald J.

    2008-11-14

    Absorption of high power laser radiation by colloidal suspensions or solutions containing photoreactive chemicals can result in bubble production. Here, transient grating experiments are reported where picosecond and nanosecond lasers are used to initiate photoinduced processes that lead to bubble formation. Irradiation of colloidal Pt suspensions is found to produce water vapor bubbles that condense back to liquid on a nanosecond time scale. Laser irradiation of Pt suspensions supersaturated with CO{sub 2} liberates dissolved gas to produce bubbles at the sites of the colloidal particles. Laser induced chemical reactions that produce bubbles are found in suspensions of particulate C in water, and in the sensitized decarboxylation of oxalic acid. Theory based on linear acoustics as well as the Rayleigh-Plesset equation is given for description of the bubble motion.

  14. Heat transfer and bubble dynamics in slurry bubble columns for Fischer-Tropsch clean alternative energy

    NASA Astrophysics Data System (ADS)

    Wu, Chengtian

    With the increasing demand for alternative energy resources, the Fischer-Tropsch (FT) process that converts synthesis gas into clean liquid fuels has attracted more interest from the industry. Slurry bubble columns are the most promising reactors for FT synthesis due to their advantages over other reactors. Successful operation, design, and scale-up of such reactors require detailed knowledge of hydrodynamics, bubble dynamics, and transport characteristics. However, most previous studies have been conducted at ambient pressure or covered only low superficial gas velocities. The objectives of this study were to experimentally investigate the heat transfer coefficient and bubble dynamics in slurry bubble columns at conditions that can mimic FT conditions. The air-C9C 11-FT catalysts/glass beads systems were selected to mimic the physical properties of the gas, liquid, and solid phases at commercial FT operating conditions. A heat transfer coefficient measurement technique was developed, and for the first time, this technique was applied in a pilot scale (6-inch diameter) high pressure slurry bubble column. The effects of superficial gas velocity, pressure, solids loading, and liquid properties on the heat transfer coefficients were investigated. Since the heat transfer coefficient can be affected by the bubble properties (Kumar et al., 1992), in this work bubble dynamics (local gas holdup, bubble chord length, apparent bubble frequency, specific interfacial area, and bubble velocity) were studied using the improved four-point optical probe technique (Xue et al., 2003; Xue, 2004). Because the four-point optical technique had only been successfully applied in a churn turbulent flow bubble column (Xue, 2004), this technique was first assessed in a small scale slurry bubble column in this study. Then the bubble dynamics were studied at the same conditions as the heat transfer coefficient investigation in the same pilot scale column. The results from four-point probe bubble dynamics study advanced the understanding of heat transfer in the slurry bubble column. This study also provides important benchmark information for the slurry bubble column design and the evaluation of computational fluid dynamics (CFD) simulations.

  15. Radial oscillation of a gas bubble in a fluid as a problem in canonical perturbation theory

    NASA Astrophysics Data System (ADS)

    Stephens, James

    2006-11-01

    The oscillation of a gas bubble is in a fluid is of interest in many areas of physics and technology. Lord Rayleigh treated the pressure developed in the collapse of cavitation bubbles and developed an expression for the collapse period. Minnaert developed a harmonic oscillator approximation to bubble oscillation in his study of the sound produced by running water. Besides recent interest in bubble oscillation in connection to sonoluminescence, an understanding of oscillating bubbles is of important to oceanographers studying the sound spectrum produced by water waves, geophysicists employing air guns as acoustic probes, mechanical engineers concerned with erosion of turbine blades, and military engineers concerned with the acoustic signatures developed by the propeller screws of ships and submarines. For the oceanographer, Minnaert's approximation is useful, for the latter two examples, Lord Rayleigh's analysis is appropriate. For the case of the airgun, a period of twice Rayleigh's period for the ``total collapse'' of the cavitation bubble is often cited as a good approximation for the period of an air bubble ejected from an air gun port, typically at ˜2000 psi), however for the geophysical example, numerical integration is employed from the outset to determine the dynamics of the bubble and the emitted acoustic energy. On the one hand, a bubble can be treated as a harmonic oscillator in the small amplitude regime, whereas even in the relatively moderate pressure regime characteristic of air guns the oscillation is strongly nonlinear and amplitude dependent. Is it possible to develop an analytic approximation that affords insight into the behavior of a bubble beyond the harmonic approximation of Minnaert? In this spirit, the free radial oscillation of a gas bubble in a fluid is treated as a problem in canonical perturbation theory. Several orders of the expansion are determined in order to explore the dependence of the oscillation frequency with bubble amplitude. The expansion to second order is inverted to express the time dependence of the oscillation.

  16. Dispersed bubble reactor for enhanced gas-liquid-solids contact and mass transfer

    DOEpatents

    Vimalchand, Pannalal; Liu, Guohai; Peng, WanWang; Bonsu, Alexander

    2016-01-26

    An apparatus to promote gas-liquid contact and facilitate enhanced mass transfer. The dispersed bubble reactor (DBR) operates in the dispersed bubble flow regime to selectively absorb gas phase constituents into the liquid phase. The dispersion is achieved by shearing the large inlet gas bubbles into fine bubbles with circulating liquid and additional pumped liquid solvent when necessary. The DBR is capable of handling precipitates that may form during absorption or fine catalysts that may be necessary to promote liquid phase reactions. The DBR can be configured with multistage counter current flow sections by inserting concentric cylindrical sections into the riser to facilitate annular flow. While the DBR can absorb CO.sub.2 in liquid solvents that may lead to precipitates at high loadings, it is equally capable of handling many different types of chemical processes involving solids (precipitates/catalysts) along with gas and liquid phases.

  17. Holdup measurement for nuclear fuel manufacturing plants

    SciTech Connect

    Zucker, M.S.; Degen, M.; Cohen, I.; Gody, A.; Summers, R.; Bisset, P.; Shaub, E.; Holody, D.

    1981-07-13

    The assay of nuclear material holdup in fuel manufacturing plants is a laborious but often necessary part of completing the material balance. A range of instruments, standards, and a methodology for assaying holdup has been developed. The objectives of holdup measurement are ascertaining the amount, distribution, and how firmly fixed the SNM is. The purposes are reconciliation of material unbalance during or after a manufacturing campaign or plant decommissioning, to decide security requirements, or whether further recovery efforts are justified.

  18. Phase-field simulations of intragranular fission gas bubble evolution in UO2 under post-irradiation thermal annealing

    SciTech Connect

    Li, Yulan; Hu, Shenyang Y.; Montgomery, Robert O.; Gao, Fei; Sun, Xin

    2013-05-15

    Fission gas bubble is one of evolving microstructures, which affect thermal mechanical properties such as thermo-conductivity, gas release, volume swelling, and cracking, in operating nuclear fuels. Therefore, fundamental understanding of gas bubble evolution kinetics is essential to predict the thermodynamic property and performance changes of fuels. In this work, a generic phasefield model was developed to describe the evolution kinetics of intra-granular fission gas bubbles in UO2 fuels under post-irradiation thermal annealing conditions. Free energy functional and model parameters are evaluated from atomistic simulations and experiments. Critical nuclei size of the gas bubble and gas bubble evolution were simulated. A linear relationship between logarithmic bubble number density and logarithmic mean bubble diameter is predicted which is in a good agreement with experimental data.

  19. Hydrodynamic characterization of slurry bubble-column reactors for Fischer-Tropsch synthesis

    SciTech Connect

    Jackson, N.B.; Torczynski, J.R.; Shollenberger, K.A.; O`Hern, T.J.; Adkins, D.R.

    1996-08-01

    In the Fischer-Tropsch approach to indirect liquefaction, slurry bubble-column reactors (SBCRs) are used to convert coal syngas into the desired product. Sandia`s program to develop, implement, and apply diagnostics for hydrodynamic characterization of SBCRs at industrially relevant conditions is discussed.Gas-liquid flow experiments are performed in an industrial-scale stainless steel vessel. Gamma-densitometry tomography (GDT) is applied to make spatially resolved gas holdup measurements. Both water and Drakeol 10 with air sparging are examined at ambient and elevated pressures. Gas holdup increases with gas superficial velocity and pressure, and the GDT values are in good agreement with values from differential pressure (DP) measurements.

  20. Heat transfer investigations in a slurry bubble column

    SciTech Connect

    Saxena, S.C.; Rao, N.S.; Vadivel, R.; Shrivastav, S.; Saxena, A.C.; Patel, B.B.; Thimmapuram, P.R.; Kagzi, M.Y.; Khan, I.A.; Verma, A.K.

    1991-02-01

    Slurry bubble columns, for use in Fischer-Tropsch synthesis, have been investigated. Two bubble columns (0.108 and 0.305 m internal diameter) were set up and experiments were conducted to determine gas holdup and heat transfer coefficients. These columns were equipped with either single heat transfer probes of different diameters, or bundles of five-, seven-, or thirty-seven tubes. the experiments were conducted for two- and three phase systems; employing for gas phase: air and nitrogen, liquid phase: water and Therminol-66, and solid phase: red iron oxide (1.02, 1.70 and 2.38 {mu}m), glass beads (50.0, 90.0, 119.0 and 143.3 {mu}m), silica sand (65 {mu}m), and magnetite (28.0, 35.7, 46.0, 58.0, 69.0, 90.5, 115.5 and 137.5 {mu}m). The column temperature was varied between 298--523 K, gas velocity between 0--40 cm/s, and solids concentration between 0--50 weight percent. The holdup and heat transfer data as a function of operating and system parameters were employed to assess the available correlations and semitheoretical models, and to develop new correlations. Information concerning the design and scale-up of larger units is presented. Specific research work that need to be undertaken to understand the phenomena of heat transfer and gas holdup is outlined so that efficient gas conversion and catalyst usage may be accomplished in slurry bubble columns. 28 refs., 102 figs., 42 tabs.

  1. Bubble Size Control to Improve Oxygen-Based Bleaching: Characterization of Flow Regimes in Pulp-Water-Gas Three-Phase Flows

    SciTech Connect

    S.M. Ghiaasiaan and Seppo Karrila

    2006-03-20

    Flow characteristics of fibrous paper pulp-water-air slurries were investigated in a vertical circular column 1.8 m long, with 5.08 cm diameter. Flow structures, gas holdup (void fraction), and the geometric and population characteristics of gas bubbles were experimentally investigated, using visual observation, Gamma-ray densitometry, and flash X-ray photography. Five distinct flow regimes could be visually identified: dispersed bubbly, layered bubbly, plug, churn-turbulent, and slug. Flow regime maps were constructed, and the regime transition lines were found to be sensitive to consistency. The feasibility of using artificial neural networks (ANNs) for the identification of the flow regimes, using the statistical characteristics of pressure fluctuations measured by a single pressure sensor, was demonstrated. Local pressure fluctuations at a station were recorded with a minimally-intrusive transducer. Three-layer, feed-forward ANNs were designed that could identify the four major flow patterns (bubbly, plug, churn, and slug) well. The feasibility of a transportable artificial neural network (ANN) - based technique for the classification of flow regimes was also examined. Local pressures were recorded at three different locations using three independent but similar transducers. An ANN was designed, trained and successfully tested for the classification of the flow regimes using one of the normalized pressure signals (from Sensor 1). The ANN trained and tested for Sensor 1 predicted the flow regimes reasonably well when applied directly to the other two sensors, indicating a good deal of transportability. An ANN-based method was also developed, whereby the power spectrum density characteristics of other sensors were adjusted before they were used as input to the ANN that was based on Sensor 1 alone. The method improved the predictions. The gas-liquid interfacial surface area concentration was also measured in the study. The gas absorption technique was applied, using CO2 as the transferred species and sodium hydroxide as the alkaline agent in water. Statistical analysis was performed to identify the parametric dependencies. The experimental data were empirically correlated.

  2. An experimental investigation of gas-bubble breakup in constricted square capillaries

    SciTech Connect

    Gauglitz, P.A.; St. Laurent, C.M.; Radke, C.J.

    1987-09-01

    Recent advances in EOR involve generating foam within underground porous media to displace the oil. The authors investigate the important snap-off mechanism of gas-bubble generation in constricted square capillaries experimentally. The snap-off of smaller bubbles from a larger bubble as it moves through the constriction is recorded on 16-mm movies. The time required for bubbles to snap off once they move past the constriction and the length of the generated bubbles are obtained from viewing the movie frames. The bubble capillary number, ..mu..upsilon/sub T//sigma, is varied from 10/sup -5/ to 5 x 10/sup -3/ by adjusting the wetting-fluid viscosity, ..mu.., and the surface tension, sigma, by adding aqueous surfactants to mixtures of glycerol and water, and by altering the bubble velocity, upsilon/sub T/. Results show that a dimensionless time to snap-off depends weakly on the capillary number and that the generated bubble size increases almost linearly with increasing capillary number. Surfactants create dynamically immobile interfaces for surfactant solutions of 1 wt% sodium dodecyl benzene sulfonate (SDBS) and Chevron Chaser SD1000. Compared with the surfactant-free solutions, the time to breakup with surfactants increases by a factor of about 3; generated bubble length increases by a factor of at most 3.

  3. A novel ultrasound based technique for classifying gas bubble sizes in liquids

    NASA Astrophysics Data System (ADS)

    Hussein, Walid; Salman Khan, Muhammad; Zamorano, Juan; Espic, Felipe; Becerra Yoma, Nestor

    2014-12-01

    Characterizing gas bubbles in liquids is crucial to many biomedical, environmental and industrial applications. In this paper a novel method is proposed for the classification of bubble sizes using ultrasound analysis, which is widely acknowledged for being non-invasive, non-contact and inexpensive. This classification is based on 2D templates, i.e. the average spectrum of events representing the trace of bubbles when they cross an ultrasound field. The 2D patterns are obtained by capturing ultrasound signals reflected by bubbles. Frequency-domain based features are analyzed that provide discrimination between bubble sizes. These features are then fed to an artificial neural network, which is designed and trained to classify bubble sizes. The benefits of the proposed method are that it facilitates the processing of multiple bubbles simultaneously, the issues concerning masking interference among bubbles are potentially reduced and using a single sinusoidal component makes the transmitter-receiver electronics relatively simpler. Results from three bubble sizes indicate that the proposed scheme can achieve an accuracy in their classification that is as high as 99%.

  4. Enhanced Generic Phase-field Model of Irradiation Materials: Fission Gas Bubble Growth Kinetics in Polycrystalline UO2

    SciTech Connect

    Li, Yulan; Hu, Shenyang Y.; Montgomery, Robert O.; Gao, Fei; Sun, Xin

    2012-05-30

    Experiments show that inter-granular and intra-granular gas bubbles have different growth kinetics which results in heterogeneous gas bubble microstructures in irradiated nuclear fuels. A science-based model predicting the heterogeneous microstructure evolution kinetics is desired, which enables one to study the effect of thermodynamic and kinetic properties of the system on gas bubble microstructure evolution kinetics and morphology, improve the understanding of the formation mechanisms of heterogeneous gas bubble microstructure, and provide the microstructure to macroscale approaches to study their impact on thermo-mechanical properties such as thermo-conductivity, gas release, volume swelling, and cracking. In our previous report 'Mesoscale Benchmark Demonstration, Problem 1: Mesoscale Simulations of Intra-granular Fission Gas Bubbles in UO2 under Post-irradiation Thermal Annealing', we developed a phase-field model to simulate the intra-granular gas bubble evolution in a single crystal during post-irradiation thermal annealing. In this work, we enhanced the model by incorporating thermodynamic and kinetic properties at grain boundaries, which can be obtained from atomistic simulations, to simulate fission gas bubble growth kinetics in polycrystalline UO2 fuels. The model takes into account of gas atom and vacancy diffusion, vacancy trapping and emission at defects, gas atom absorption and resolution at gas bubbles, internal pressure in gas bubbles, elastic interaction between defects and gas bubbles, and the difference of thermodynamic and kinetic properties in matrix and grain boundaries. We applied the model to simulate gas atom segregation at grain boundaries and the effect of interfacial energy and gas mobility on gas bubble morphology and growth kinetics in a bi-crystal UO2 during post-irradiation thermal annealing. The preliminary results demonstrate that the model can produce the equilibrium thermodynamic properties and the morphology of gas bubbles at grain boundaries for given grain boundary properties. More validation of the model capability in polycrystalline is underway.

  5. Radial oscillation of a gas bubble in a fluid as a problem in canonical perturbation theory

    NASA Astrophysics Data System (ADS)

    Stephens, James

    2005-11-01

    The oscillation of a gas bubble is in a fluid is of interest in many areas of physics and technology. Lord Rayleigh treated the pressure developed in the collapse of cavitation bubbles and developed an expression for the collapse period. Minnaert developed a harmonic oscillator approximation to bubble oscillation in his study of the sound produced by running water. Oscillating bubbles are important to oceanographers studying the sound spectrum produced by water waves, geophysicists employing air guns as acoustic probes, mechanical engineers concerned with erosion of turbine blades, and military engineers concerned with the acoustic signatures developed by the propeller screws of ships and submarines. For the oceanographer, Minnaert's approximation is useful, for the latter two examples, Lord Rayleigh's analysis is appropriate. On the one hand, a bubble can be treated as a harmonic oscillator in the small amplitude regime, whereas even in the relatively moderate pressure regime characteristic of air guns the oscillation is strongly nonlinear and amplitude dependent. Is it possible to develop an analytic approximation that affords insight into the behavior of a bubble beyond the harmonic approximation of Minnaert? In this spirit, the free radial oscillation of a gas bubble in a fluid is treated as a problem in canonical perturbation theory. Several orders of the expansion are determined in order to explore the dependence of the oscillation frequency with bubble amplitude. The expansion to second order is inverted to express the time dependence of the oscillation.

  6. Experimental technique for observing free oscillation of a spherical gas bubble in highly viscous liquids.

    NASA Astrophysics Data System (ADS)

    Nakajima, Takehiro; Ando, Keita

    2015-11-01

    An experimental technique is developed to observe free oscillations of a spherical gas bubble in highly viscous liquids. It is demonstrated that focusing a nanosecond laser pulse of wavelength 532 nm and energy up to 1.5 mJ leads to the formation of a spherical gaseous bubble, not a vaporous bubble (quickly condensed back to the liquid), whose equilibrium radius is up to 200 microns in glycerin saturated with gases at room temperature. The subsequent free oscillations of the spherical gas bubble is visualized using a high-speed camera. Since the oscillation periods are short enough to ignore bubble translation under gravity and mass transfer out of the bubble, the observed bubble dynamics can be compared to nonlinear and linearized Reyleigh-Plesset-type calculations that account for heat conduction and acoustic radiation as well as the liquid viscosity. In this presentation, we report on the measurements with varying the viscosity and comparisons to the theory to quantify damping mechanisms in the bubble dynamics.

  7. Measurement and Analysis of Gas Bubbles Near a Reference Electrode in Aqueous Solutions

    SciTech Connect

    Supathorn Phongikaroon; Steve Herrmann; Shelly Li; Michael Simpson

    2005-10-01

    Bubble size distributions (BSDs) near a reference electrode (RE) in aqueous glycerol solutions of an electrolyte NaCl have been investigated under various gas superficial velocities (U{sub S}). BSD and voltage reading of the solution were measured by using a high-speed digital camera and a pH/voltage meter, respectively. The results show that bubble size (b) increases with liquid viscosity ({mu}{sub c}) and U{sub S}. Self-similarity is seen and can be described by the log-normal form of the continuous number frequency distribution. The result shows that b controls the voltage reading in each solution. As b increases, the voltage increases because of gas bubbles interrupting their electrolyte paths in the solutions. An analysis of bubble rising velocity reveals that Stokes Law should be used cautiously to describe the system. The fundamental equation for bubble formation was developed via Newton's second law of motion and shown to be the function of three dimensionless groups--Weber number, Bond number, and Capillary number. After linking an electrochemical principle in the practical application, the result indicates that the critical bubble size is {approx}177 {micro}m. Further analysis suggests that there may be 3000 to 70,000 bubbles generated on the anode surface depending on the size of initial bubbles and provides the potential cause of the efficiency drop observed in the practical application.

  8. Evolution of fission-gas-bubble-size distribution in recrystallized U-10Mo nuclear fuel

    NASA Astrophysics Data System (ADS)

    Rest, J.

    2010-12-01

    An analytical model for the nucleation and growth of intra and intergranular fission-gas bubbles, used to characterize fission-gas bubble development in U-Mo alloy fuel with burnup limited to less than 10 at.% U in order to capture the fuel swelling stage prior to irradiation-induced recrystallization, is extended to recrystallized fuel at a burnup of 16 at.% U. During recrystallization the grain size is transformed from micron to sub-micron sizes. The intergranular bubble-size distribution post-recrystallization is found to evolve with similar kinetics and morphology to that pre-recrystallization with any differences primarily due to gas content and initial and/or boundary conditions (e.g., fuel microstructure). The predictions of the theory are compared with measured bubble-size distributions in pre and post recrystallized U-10Mo alloy fuel.

  9. Effect of Orifice Diameter on Bubble Generation Process in Melt Gas Injection to Prepare Aluminum Foams

    NASA Astrophysics Data System (ADS)

    Yuan, Jianyu; Li, Yanxiang; Wang, Ningzhen; Cheng, Ying; Chen, Xiang

    2016-06-01

    The bubble generation process in conditioned A356 alloy melt through submerged spiry orifices with a wide diameter range (from 0.07 to 1.0 mm) is investigated in order to prepare aluminum foams with fine pores. The gas flow rate and chamber pressure relationship for each orifice is first determined when blowing gas in atmospheric environment. The effects of chamber pressure ( P c) and orifice diameter ( D o) on bubble size are then analyzed separately when blowing gas in melt. A three-dimensional fitting curve is obtained illustrating both the influences of orifice diameter and chamber pressure on bubble size based on the experimental data. It is found that the bubble size has a V-shaped relationship with orifice diameter and chamber pressure neighboring the optimized parameter ( D o = 0.25 mm, P c = 0.4 MPa). The bubble generation mechanism is proposed based on the Rayleigh-Plesset equation. It is found that the bubbles will not be generated until a threshold pressure difference is reached. The threshold pressure difference is dependent on the orifice diameter, which determines the time span of pre-formation stage and bubble growth stage.

  10. Effect of Orifice Diameter on Bubble Generation Process in Melt Gas Injection to Prepare Aluminum Foams

    NASA Astrophysics Data System (ADS)

    Yuan, Jianyu; Li, Yanxiang; Wang, Ningzhen; Cheng, Ying; Chen, Xiang

    2016-03-01

    The bubble generation process in conditioned A356 alloy melt through submerged spiry orifices with a wide diameter range (from 0.07 to 1.0 mm) is investigated in order to prepare aluminum foams with fine pores. The gas flow rate and chamber pressure relationship for each orifice is first determined when blowing gas in atmospheric environment. The effects of chamber pressure (P c) and orifice diameter (D o) on bubble size are then analyzed separately when blowing gas in melt. A three-dimensional fitting curve is obtained illustrating both the influences of orifice diameter and chamber pressure on bubble size based on the experimental data. It is found that the bubble size has a V-shaped relationship with orifice diameter and chamber pressure neighboring the optimized parameter (D o = 0.25 mm, P c = 0.4 MPa). The bubble generation mechanism is proposed based on the Rayleigh-Plesset equation. It is found that the bubbles will not be generated until a threshold pressure difference is reached. The threshold pressure difference is dependent on the orifice diameter, which determines the time span of pre-formation stage and bubble growth stage.

  11. Rate of disappearance of gas bubble trauma signs in juvenile salmonids

    USGS Publications Warehouse

    Hans, K.M.; Mesa, M.G.; Maule, A.G.

    1999-01-01

    To assess the rate of disappearance of gas bubble trauma (GBT) signs in juvenile salmonids, we exposed spring chinook salmon Oncorhynchus tshawytscha and steelhead O. mykiss to water containing high levels of dissolved gas supersaturation (DGS) for a time period sufficient to induce signs of GBT, reduced the DGS to minimal levels, and then sampled fish through time to document changes in severity of GBT. Because of the tendency of GBT signs to dissipate at different rates, we conducted trials focusing on emboli (bubbles) in the gill filaments and lateral line and separate trials that focused on bubbles in the external surfaces (fins, eyes, and opercula). Bubbles in gill filaments dissipated almost completely within 2 h after transfer of fish to water of nearly normal DGS (104%), whereas bubbles in the lateral line dissipated to negligible levels within 5 h. Bubbles on external surfaces were more persistent through time than they were in gill filaments and the lateral line. Although typically dissipating to low levels within 48 h, external bubbles sometimes remained for 4 d. Assuming a direct relation exists between easily observable signs and direct mortality, our results suggest that fish can recover quickly from the potentially lethal effects of DGS once they move from water with high DGS to water of almost normal gas saturation. These results should be of fundamental importance to fishery managers interpreting the results of monitoring for the severity and prevalence of GBT in juvenile salmonids in the Columbia River system and perhaps elsewhere.

  12. Hydrodynamic and mass transfer parameters in a large-scale slurry bubble column reactor with high solid loading

    SciTech Connect

    Behkish, A.; Men, Z.; Inga, J.R.; Morsi, B.I.

    1999-07-01

    The effects of pressure (P), superficial gas velocity (UG) and solid concentration (CV) on the equilibrium Solubility (C*), gas holdup (eG), volumetric gas-liquid mass transfer coefficient (kLa) and bubble size distribution for methane (CH{sub 4}) in a liquid mixture of decanes were statistically studied in a large-scale (1-ft diameter, 10-ft high) slurry bubble column reactor (SBCR). Glass beads with volumetric concentrations of 0, 7.6%, 18%, 28.4% and 36% were used. The experiments were selected following the central composite statistical design approach. The kLa values were determined using the transient physical absorption technique; the gas holdup was measured using the manometric method and the bubble size distributions were measured using the Dynamic Gas Disengagement technique (DGD). The equilibrium solubility values appeared to follow Henry's Law in the 1--15 bar range. The eG values were found to increase with superficial gas velocity and pressure due to the increase of the volume fraction of the small and large gas bubbles. The eG values, however, decreased with solid concentration due to the increase of slurry viscosity. The kLa values appeared to have the same trend as eG values indicting that the mass transfer behavior in the SBCR was mainly controlled by the gas-liquid interfacial area. Also, statistical correlations relating kLa and eG to the main process variables were proposed.

  13. Secondary Vortex Formation in Bifurcated Submerged Entry Nozzles: Numerical Simulation of Gas Bubble Entrapment

    NASA Astrophysics Data System (ADS)

    Pirker, Stefan; Kahrimanovic, Damir; Schneiderbauer, Simon

    2015-04-01

    The submerged entry nozzle (SEN) flow behavior is crucial for continuous casting of slab steel since it controls the mold flow pattern. In this study, we focus on the bottom zone of a bifurcated SEN where the flow deflection determines the port outflow. By applying a hybrid finite volume and lattice Boltzmann-based turbulence model, the dynamic behavior of horizontally orientated secondary vortices is investigated. In addition to the pure liquid metal flow, gas bubbles are traced in both discrete and continuous way. Simulation results indicate the existence of highly turbulent secondary vortices in the deflection zone of a bifurcated SEN, which attract gas bubbles in form of bubble threads or continuous gas volumes at their rotational axes. In addition, cyclically detaching gas volumes are formed at the upper port region at higher gas flow rates. Numerical predictions agree well with observations from physical water-air models.

  14. New technique for emboli detection and discrimination based on nonlinear characteristics of gas bubbles.

    PubMed

    Palanchon, P; Bouakaz, A; van Blankenstein, J H; Klein, J; Bom, N; de Jong, N

    2001-06-01

    Detection and characterization of emboli in the blood stream is of high clinical importance for making decisions after surgery. In this study, a new technique based on the nonlinear oscillations of gas bubbles was applied to gaseous emboli detection, characterization and sizing. To simulate gaseous emboli, an experimental system was developed to produce air bubbles of uniform diameters ranging from 19 microm up to 200 microm. The ultrasonic setup consisted of low-frequency transducers operating at 130 kHz and 250 kHz and using low acoustic pressures (30 kPa and 55 kPa). The experimental and theoretical results show that, depending on the transmitted frequency and the bubble sizes, higher harmonic components were produced in the frequency spectrum of the backscattered echo. Nonresonating bubbles scatter either linearly when their sizes are far away from the resonance size or nonlinearly at the second or third harmonic frequency when their sizes are getting close to the resonance size. Only resonant bubbles or bubbles very close to the resonance size are able to scatter at higher harmonic frequencies (fourth and fifth). This property is used to discriminate resonating bubbles from other bubble sizes. The appearance of harmonic component in the frequency spectrum seems to be an unambiguous tool to differentiate gaseous emboli from solid emboli that scatter linearly. PMID:11516540

  15. Vapor-Gas Bubble Evolution and Growth in Extremely Viscous Fluids Under Vacuum

    NASA Technical Reports Server (NTRS)

    Kizito, John; Balasubramaniam, R.; Nahra, Henry; Agui, Juan; Truong, Duc

    2008-01-01

    Formation of vapor and gas bubbles and voids is normal and expected in flow processes involving extremely viscous fluids in normal gravity. Practical examples of extremely viscous fluids are epoxy-like filler materials before the epoxy fluids cure to their permanent form to create a mechanical bond between two substrates. When these fluids flow with a free liquid interface exposed to vacuum, rapid bubble expansion process may ensue. Bubble expansion might compromise the mechanical bond strength. The potential sources for the origin of the gases might be incomplete out-gassing process prior to filler application; regasification due to seal leakage in the filler applicator; and/or volatiles evolved from cure reaction products formed in the hardening process. We embarked on a study that involved conducting laboratory experiments with imaging diagnostics in order to deduce the seriousness of bubbling caused by entrained air and volatile fluids under space vacuum and low gravity environment. We used clear fluids with the similar physical properties as the epoxy-like filler material to mimic the dynamics of bubbles. Another aspect of the present study was to determine the likelihood of bubbling resulting from dissolved gases nucleating from solution. These experimental studies of the bubble expansion are compared with predictions using a modified Rayleigh- Plesset equation, which models the bubble expansion.

  16. Characterization of intergranular fission gas bubbles in U-Mo fuel.

    SciTech Connect

    Kim, Y. S.; Hofman, G.; Rest, J.; Shevlyakov, G. V.; Nuclear Engineering Division; SSCR RIAR

    2008-04-14

    This report can be divided into two parts: the first part, which is composed of sections 1, 2, and 3, is devoted to report the analyses of fission gas bubbles; the second part, which is in section 4, is allocated to describe the mechanistic model development. Swelling data of irradiated U-Mo alloy typically show that the kinetics of fission gas bubbles is composed of two different rates: lower initially and higher later. The transition corresponds to a burnup of {approx}0 at% U-235 (LEU) or a fission density of {approx}3 x 10{sup 21} fissions/cm{sup 3}. Scanning electron microscopy (SEM) shows that gas bubbles appear only on the grain boundaries in the pretransition regime. At intermediate burnup where the transition begins, gas bubbles are observed to spread into the intragranular regions. At high burnup, they are uniformly distributed throughout fuel. In highly irradiated U-Mo alloy fuel large-scale gas bubbles form on some fuel particle peripheries. In some cases, these bubbles appear to be interconnected and occupy the interface region between fuel and the aluminum matrix for dispersion fuel, and fuel and cladding for monolithic fuel, respectively. This is a potential performance limit for U-Mo alloy fuel. Microscopic characterization of the evolution of fission gas bubbles is necessary to understand the underlying phenomena of the macroscopic behavior of fission gas swelling that can lead to a counter measure to potential performance limit. The microscopic characterization data, particularly in the pre-transition regime, can also be used in developing a mechanistic model that predicts fission gas bubble behavior as a function of burnup and helps identify critical physical properties for the future tests. Analyses of grain and grain boundary morphology were performed. Optical micrographs and scanning electron micrographs of irradiated fuel from RERTR-1, 2, 3 and 5 tests were used. Micrographic comparisons between as-fabricated and as-irradiated fuel revealed that the site of first bubble appearance is the grain boundary. Analysis using a simple diffusion model showed that, although the difference in the Mo-content between the grain boundary and grain interior region decreased with burnup, a complete convergence in the Mo-content was not reached at the end of the test for all RERTR tests. A total of 13 plates from RERTR-1, 2, 3 and 5 tests with different as-fabrication conditions and irradiation conditions were included for gas bubble analyses. Among them, two plates contained powders {gamma}-annealed at {approx}800 C for {approx}100 hours. Most of the plates were fabricated with as-atomized powders except for two as-machined powder plates. The Mo contents were 6, 7 and 10wt%. The irradiation temperature was in the range 70-190 C and the fission rate was in the range 2.4 x 10{sup 14} - 7 x 10{sup 14} f/cm{sup 3}-s. Bubble size for both of the {gamma}-annealed powder plates is smaller than the as-atomized powder plates. The bubble size for the as-atomized powder plates increases as a function of burnup and the bubble growth rate shows signs of slowing at burnups higher than {approx}40 at% U-235 (LEU). The bubble-size distribution for all plates is a quasi-normal, with the average bubble size ranging 0.14-0.18 {micro}m. Although there are considerable errors, after an initial incubation period the average bubble size increases with fission density and shows saturation at high fission density. Bubble population (density) per unit grain boundary length was measured. The {gamma}-annealed powder plates have a higher bubble density per unit grain boundary length than the as-atomized powder plates. The measured bubble number densities per unit grain boundary length for as-atomized powder plates are approximately constant with respect to burnup. Bubble density per unit cross section area was calculated using the density per unit grain boundary length data. The grains were modeled as tetrakaidecahedrons. Direct measurements for some plates were also performed and compared with the calculated quantities. Bubble density per unit grain boundary surface area was calculated by using the density per unit grain boundary length data. These data were used as input for mechanistic modeling described in section 4. Volumetric bubble density was calculated by using density per unit grain boundary surface area. Based on these data, bubble volumetric fraction was calculated. Bubble volume fraction was also calculated by using the density per unit cross section area. Bubble volume fraction was also directly measured for some plates. These three results are comparable although the direct measurement data are slightly larger than the others. Bubble volume fraction increased as a function of burnup, reaching {approx}2% of fuel volume at 3 x 10{sup 21} f/cm{sup 3}. Fission gas bubble swelling is minor compared to that of solid fission product swelling.

  17. Gas-bubble growth mechanisms in the analysis of metal fuel swelling

    SciTech Connect

    Gruber, E.E.; Kramer, J.M.

    1986-06-01

    During steady-state irradiation, swelling rates associated with growth of fission-gas bubbles in metallic fast reactor fuels may be expected to remain small. As a consequence, bubble-growth mechanisms are not a major consideration in modeling the steady-state fuel behavior, and it is usually adequate to consider the gas pressure to be in equilibrium with the external pressure and surface tension restraint. On transient time scales, however, various bubble-growth mechanisms become important components of the swelling rate. These mechanisms include growth by diffusion, for bubbles within grains and on grain boundaries; dislocation nucleation at the bubble surface, or ''punchout''; and bubble growth by creep. Analyses of these mechanisms are presented and applied to provide information on the conditions and the relative time scales for which the various processes should dominate fuel swelling. The results are compared to a series of experiments in which the swelling of irradiated metal fuel was determined after annealing at various temperatures and pressures. The diffusive growth of bubbles on grain boundaries is concluded to be dominant in these experiments.

  18. Histopathology and ultrastructure of ocular lesions associated with gas bubble disease in salmonids.

    PubMed

    Speare, D J

    1990-11-01

    Ocular lesions associated with natural and experimental outbreaks of gas bubble disease (GBD) in commercial salmonids were assessed histologically and by scanning electron microscopy. Small gas emboli were first detected in the choroid gland of the posterior uvea. In subacute and chronic cases, bubble size increased markedly and localization in retrobulbar and periocular sites was favoured. During the acute phase of GBD, ocular lesions were limited to anatomical displacement of tissue and local degeneration of compressed tissues around the perimeter of bubbles. Subacute sequelae included the formation of anterior synechia, lens cataract, and suppurative panophthalmitis. During chronic stages, when large retrobulbar bubbles had caused severe exophthalmia, there was stretching of the optic nerve and of retinal blood vessels and severe distortion of the posterior aspects of the globe. The sequential development, pathogenesis and persistence of ocular lesions associated with GBD in fish are discussed. PMID:2079557

  19. Gas bubble formation in fused silica generated by ultra-short laser pulses.

    PubMed

    Cvecek, Kristian; Miyamoto, Isamu; Schmidt, Michael

    2014-06-30

    During processing of glass using ultra-fast lasers the formation of bubble-like structures can be observed in several glass types such as fused silica. Their formation can be exploited to generate periodic gratings in glasses but for other glass processing techniques such as waveguide-writing or glass welding by ultra-fast lasers the bubble formation proves often detrimental. In this work we present experiments and their results in order to gain understanding of the origins and on the underlying formation and transportation mechanisms of the gas bubbles. PMID:24977843

  20. Analysis of an oscillatory oil squeeze film containing a central gas bubble

    NASA Technical Reports Server (NTRS)

    Haber, S.; Etsion, I.

    1985-01-01

    A squeeze-film damper, consisting of two circular plates, having only normal oscillatory relative motion is considered. The liquid lubricant between the plates is assumed to contain a single central gas bubble. The effect of the bubble on the damper performance is analyzed. Comparison is made with the performance of a pure liquid damper. Substantial deviations in peak dynamic pressures are predicted which explain discrepancies between experimental and theoretical results reported in the literature.

  1. MESO-SCALE MODELING OF THE INFLUENCE OF INTERGRANULAR GAS BUBBLES ON EFFECTIVE THERMAL CONDUCTIVITY

    SciTech Connect

    Paul C. Millett; Michael Tonks

    2011-06-01

    Using a mesoscale modeling approach, we have investigated how intergranular fission gas bubbles, as observed in high-burnup nuclear fuel, modify the effective thermal conductivity in a polycrystalline material. The calculations reveal that intergranular porosity has a significantly higher resistance to heat transfer compared to randomly-distributed porosity. A model is developed to describe this conductivity reduction that considers an effective grain boundary Kapitza resistance as a function of the fractional coverage of grain boundaries by bubbles.

  2. A Philippinite with an Unusually Large Bubble: Gas Pressure and Noble Gas Composition

    NASA Astrophysics Data System (ADS)

    Matsuda, J.; Maruoka, T.; Pinti, D. L.; Koeberl, C.

    1995-09-01

    Bubbles are common in tektites, but usually their sizes range up to only a few mm. They are most abundant in Muong Nong-type tektites. The gases contained in these bubbles are of terrestrial atmospheric composition, with pressures below 1 atm (e.g., [1]). The abundances of light noble gases (He, Ne) are controlled by diffusion from the atmosphere [2], and noble gases dissolved in tektite glass indicate that the glass solidified at atmospheric pressures equivalent to about 40 km altitude [3]. Large bubbles in splash-form tektites are rather rare. Thus, the finding that a philippinite (size: 6.0 x 4.5 cm; weight: 199.6 g) contains an unusually large bubble justified a detailed study. The volume of the bubble, which was confirmed by X-ray photography, was estimated at 5.4 cm^3, by comparing the density of this tektite (2.288 g/cm^3) to that of normal philippinites (2.438 g/cm^3). A device was specifically constructed for crushing the present sample under vacuum. The 10x10 cm cylindrical device has a piston that allows to gently crush the sample by turning a handle. Various disk spacers can be used to adjust the inner height to that of the sample. The device is made of stainless steel, yielding a low noble gas blank. The crushing device is connected to a purification line and a noble gas sector-type mass spectrometer (VG 5400) [4]. Before crushing, the complete tektite was wrapped in aluminum foil. A first crushing attempt, using stainless steel disk spacers, failed and resulted in damage to the steel spacers, indicating a high strength of the tektite. Using iron disk spacers resulted in an ambient pressure increase (probably due to hydrogen from the Fe) in the sample chamber. However, the noble gas blanks were negligible. The background pressure, at 2 x 10-4 Torr, increased to 3 x 10-4 Torr when the sample was crushed. From the volume of the crushing device and that of the bubble in the tektite, the total gas pressure in the bubble was estimated at about 1 x 10-4 atm. Part of the extracted gas was kept for total gas analysis, while the remainder has been purified for the noble gas measurements. Total amounts and isotopic ratios of all noble gases were measured. The amounts of Ar, Kr, and Xe close to the blank level, while those of He and Ne were about 3 to 4 orders of magnitude larger than the blank. The ^20Ne/^36Ar ratio in the bubble gas is more than 4 orders of magnitude higher than the atmospheric value, which is similar to the pattern previously observed in tektites [2,3,5]. The isotopic ratios of Ar, Kr and Xe were, within uncertainties, similar to those of the terrestrial atmosphere. However, the Ne isotopic ratios were significantly different from atmospheric values, and differ from the results reported in previous studies [2,5]. The Ne isotope data seem to lie on the mass fractionation line from the atmosphere in a ^20Ne/^22Ne vs. ^21Ne/^22Ne three isotope plot, suggesting that the Ne in the bubble has diffused in from the atmosphere. However, it is generally believed that the isotopic fractionation during a steady state is very small, and the observed Ne values are higher than those calculated from simple mass fractionation [6]. The high isotopic fractionation is likely to be associated with the non-equilibrium conditions prevailing during tektite formation. Acknowledgments: We are grateful to D. Heinlein for bringing the precious sample to our attention and for allowing its analysis. References: [1] Jessberger E. K. and Gentner W. (1972) EPSL, 14, 221-225. [2] Matsubara K. and Matsuda J. (1991) Meteoritics, 26, 217-220. [3] Matsuda J. et al. (1993) Meteoritics, 28, 586-599. [4] Maruoka T. and Matsuda J. (1995) J. Mass Spectrom. Soc. Jpn., 43, 1-8. [5] Hennecke et al. (1975) JGR, 80, 2931-2934. [6] Kaneoka I., EPSL, 48, 284-292.

  3. A gas bubble-based parallel micro manipulator: conceptual design and kinematics model

    NASA Astrophysics Data System (ADS)

    Dong, Wei; Gauthier, Michaël; Lenders, Cyrille; Lambert, Pierre

    2012-05-01

    The parallel mechanism has become an alternative solution when micro manipulators are demanded in the fields of micro manipulation and micro assembly. In this technical note, a three-degree-of-freedom (3-DOF) parallel micro manipulator is presented, which is directly driven by three micro gas bubbles. Since the micro gas bubbles are generated and maintained due to the surface tension between the gas and liquid media, the proposed novel system can be used in the liquid environment which allows for rotation about the X and Y axes and translation along the Z axis. In this technical note, the conceptual design of micro gas bubble-based parallel manipulator is introduced and the input/output characteristic of the actuator is analyzed in detail. The kinematics model of the parallel micro manipulator is also established, based on which the workspace and the system motion resolution are analyzed as a criterion and reference for future prototype development.

  4. Gas bubble disease in smallmouth bass and northern squawfish from the Snake and Columbia Rivers

    SciTech Connect

    Montgomery, J.C.; Becker, C.D.

    1980-11-01

    In 1975 and 1976, 179 smallmouth bass (Micropterus dolomieui) and 85 northern squawfish (Ptychocheilus oregonensis) were collected by angling from the lower Snake and mid-Columbia rivers, southeastern Washington. All fish were examined externally for gas bubble syndrome. Emboli were found beneath membranes of the opercula, body, and fins of 72% of the smallmouth bass and 84% of the northern squawfish. Hemorrhage was also noted on the caudal, anal, and pectoral fins of several smallmouth bass. Presence of gas bubble syndrome corresponded to the spring runoff when total dissolved gas supersaturations in river water exceeded 115%.

  5. Sound waves in a liquid with polydisperse vapor-gas bubbles

    NASA Astrophysics Data System (ADS)

    Gubaidullin, D. A.; Fedorov, Yu. V.

    2016-03-01

    A mathematical model is presented for the propagation of plane, spherical, and cylindrical sound waves in a liquid containing polydisperse vapor-gas bubbles with allowance for phase transitions. A system of integro-differential equations is constructed to describe perturbed motion of a two-phase mixture, and a dispersion relation is derived. An expression for equilibrium sound velocity is obtained for a gas-liquid or vapor-liquid mixture. The theoretical results agree well with the known experimental data. The dispersion curves obtained for the phase velocity and the attenuation coefficient in a mixture of water with vapor-gas bubbles are compared for various values of vapor concentration in the bubbles and various bubble distributions in size. The evolution of pressure pulses of plane and cylindrical waves is demonstrated for different values of the initial vapor concentration in bubbles. The calculated frequency dependence of the phase sound velocity in a mixture of water with vapor bubbles is compared with experimental data.

  6. Nonlinear oscillations of gas bubbles submerged in water: implications for plasma breakdown

    NASA Astrophysics Data System (ADS)

    Sommers, B. S.; Foster, J. E.

    2012-10-01

    Gas bubbles submerged in a dielectric liquid and driven by an electric field can undergo dramatic changes in both shape and volume. In certain cases, this deformation can enhance the distribution of the applied field inside the bubble as well as decrease the internal gas pressure. Both effects will tend to facilitate plasma formation in the gas volume. A practical realization of these two effects could have a broad impact on the viability of liquid plasma technologies, which tend to suffer from high voltage requirements. In this experiment, bubbles of diameter 0.4-0.7 mm are suspended in the node of a 26.4 kHz underwater acoustic standing wave and excited into nonlinear shape oscillations using ac electric fields with amplitudes of 5-15 kV cm-1. Oscillations of the deformed bubble are photographed with a high-speed camera operating at 5130 frames s-1 and the resulting images are decomposed into their axisymmetric spherical harmonic modes, Y_l^0 , using an edge detection algorithm. Overall, the bubble motion is dominated by the first three even modes l = 0, 2 and 4. Electrostatic simulations of the deformed bubble's internal electric field indicate that the applied field is enhanced by as much as a factor of 2.3 above the nominal applied field. Further simulation of both the pure l = 2 and l = 4 modes predicts that with additional deformation, the field enhancement factors could reach as much as 10-50.

  7. Gas Bubble Disease Monitoring and Research of Juvenile Salmonids : Annual Report 1996.

    SciTech Connect

    Maule, Alec G.; Beeman, John W.; Hans, Karen M.; Mesa, M.G.; Haner, P.; Warren, J.J.

    1997-10-01

    This document describes the project activities 1996--1997 contract year. This report is composed of three chapters which contain data and analyses of the three main elements of the project: field research to determine the vertical distribution of migrating juvenile salmonids, monitoring of juvenile migrants at dams on the Snake and Columbia rivers, and laboratory experiments to describe the progression of gas bubble disease signs leading to mortality. The major findings described in this report are: A miniature pressure-sensitive radio transmitter was found to be accurate and precise and, after compensation for water temperature, can be used to determine the depth of tagged-fish to within 0.32 m of the true depth (Chapter 1). Preliminary data from very few fish suggest that depth protects migrating juvenile steelhead from total dissolved gas supersaturation (Chapter 1). As in 1995, few fish had any signs of gas bubble disease, but it appeared that prevalence and severity increased as fish migrated downstream and in response to changing gas supersaturation (Chapter 2). It appeared to gas bubble disease was not a threat to migrating juvenile salmonids when total dissolved gas supersaturation was < 120% (Chapter 2). Laboratory studies suggest that external examinations are appropriate for determining the severity of gas bubble disease in juvenile salmonids (Chapter 3). The authors developed a new method for examining gill arches for intravascular bubbles by clamping the ventral aorta to reduce bleeding when arches were removed (Chapter 3). Despite an outbreak of bacterial kidney disease in the experimental fish, the data indicate that gas bubble disease is a progressive trauma that can be monitored (Chapter 3).

  8. Experiment and Numerical Simulation of Bubble Behaviors in Argon Gas Injection Into Lead-Bismuth Pool

    SciTech Connect

    Yumi Yamada; Toyou Akashi; Minoru Takahashi

    2006-07-01

    In a lead-bismuth alloy (45%Pb-55%Bi) cooled direct contact boiling water fast reactor (PBWFR), steam can be produced by direct contact of feed water with primary Pb-Bi coolant in the upper core plenum, and Pb-Bi coolant can be circulated by buoyancy forces of steam bubbles. As a basic study to investigate the two-phase flow characteristics in the chimneys of PBWFR, a two-dimensional two-phase flow was simulated by injecting argon gas into Pb-Bi pool in a rectangular vessel (400 mm in length, 1500 mm in height, 50 mm in width), and bubble behaviors were investigated experimentally. Bubble sizes, bubble rising velocities and void fractions were measured using void probes. Argon gas was injected through five nozzles of 4 mm in diameter into Pb-Bi at two locations. The experimental conditions are the pressure of atmospheric pressure, Pb-Bi temperatures of 443 K, and the flow rate of injection Ar gas is 10, 20, and 30 NL/min. The measured bubble rising velocities were distributed in the range from 1 to 3 m/s. The average velocity was about 0.6 m/s. The measured bubble chord lengths were distributed from 1 mm up to 30 mm. The average chord length was about 7 mm. An analysis was performed by two-dimensional and two-fluid model. The experimental results were compared with the analytical results to evaluate the validity of the analytical model. Although large diameter bubbles were observed in the experiment, the drag force model for spherical bubbles performed better for simulation of the experimental result because of high surface tension force of Pb-Bi. (authors)

  9. Gas bubble transport and emissions for shallow peat from a northern peatland: The role of pressure changes and peat structure

    NASA Astrophysics Data System (ADS)

    Chen, Xi; Slater, Lee

    2015-01-01

    Gas bubbles are an important pathway for methane release from peatlands. The mechanisms controlling gas bubble transport and emissions in peat remain uncertain. The effects of hydrostatic pressure and peat structure on the dynamics of gas bubbles in shallow peat were therefore tested in laboratory experiments. A peat monolith was retrieved from a raised bog and maintained in a saturated state. Three distinct layers were identified from noninvasive permittivity measurements supported by soil physical properties (porosity, bulk density). Phase I of the experiment involved monitoring for the accumulation of gas bubbles under steady pressure and temperature conditions. The data showed evidence for gas bubbles being impeded by a shallow semiconfining layer at depths between 10 and 15 cm. Visible gas bubbles observed on the side of the sample box were recorded over time to estimate changes in the vertical distribution of volumetric gas content. Porosity estimates derived using the Complex Refraction Index Model (CRIM) suggest that gas bubbles enlarge the pore space when the exerted pressure is high enough. Phase II involved triggering release of trapped bubbles by repeatedly increasing and decreasing hydrostatic pressure in an oversaturated condition. Comparison of changes in pressure head and methane density in the head space confirmed that the increasing buoyancy force during drops in pressure is more important for triggering ebullition than increasing mobility during increases in pressure. Our findings demonstrate the importance of changes in hydrostatic pressure on bubble size and variations in resistance of the peat fabric in regulating methane releases from peatlands.

  10. Circulation of bubbly magma and gas segregation within tunnels of the potential Yucca Mountain repository

    NASA Astrophysics Data System (ADS)

    Menand, Thierry; Phillips, Jeremy C.; Sparks, R. Stephen J.

    2008-07-01

    Following an intersection of rising magma with drifts of the potential Yucca Mountain nuclear waste repository, a pathway is likely to be established to the surface with magma flowing for days to weeks and affecting the performance of engineered structures located along or near the flow path. In particular, convective circulation could occur within magma-filled drifts due to the exsolution and segregation of magmatic gas. We investigate gas segregation in a magma-filled drift intersected by a vertical dyke by means of analogue experiments, focusing on the conditions of sustained magma flow. Degassing is simulated by electrolysis, producing micrometric bubbles in viscous mixtures of water and golden syrup, or by aerating golden syrup, producing polydisperse bubbly mixtures with 40% of gas by volume. The presence of exsolved bubbles induces a buoyancy-driven exchange flow between the dyke and the drift that leads to gas segregation. Bubbles segregate from the magma by rising and accumulating as a foam at the top of the drift, coupled with the accumulation of denser degassed magma at the base of the drift. Steady-state influx of bubbly magma from the dyke into the drift is balanced by outward flux of lighter foam and denser degassed magma. The length and time scales of this gas segregation are controlled by the rise of bubbles in the horizontal drift. Steady-state gas segregation would be accomplished within hours to hundreds of years depending on the viscosity of the degassed magma and the average size of exsolved gas bubbles, and the resulting foam would only be a few cm thick. The exchange flux of bubbly magma between the dyke and the drift that is induced by gas segregation ranges from 1 m3 s-1, for the less viscous magmas, to 10-8 m3 s-1, for the most viscous degassed magmas, with associated velocities ranging from 10-1 to 10-9 m s-1 for the same viscosity range. This model of gas segregation also predicts that the relative proportion of erupted degassed magma, that could potentially carry and entrain nuclear waste material towards the surface, would depend on the value of the dyke magma supply rate relative to the value of the gas segregation flux, with violent eruption of gassy as well as degassed magmas at relatively high magma supply rates, and eruption of mainly degassed magma by milder episodic Strombolian explosions at relatively lower supply rates.

  11. N131: A dust bubble born from the disruption of a gas filament

    NASA Astrophysics Data System (ADS)

    Zhang, Chuan-Peng; Li, Guang-Xing; Wyrowski, Friedrich; Wang, Jun-Jie; Yuan, Jing-Hua; Xu, Jin-Long; Gong, Yan; Yeh, Cosmos C.; Menten, Karl M.

    2016-01-01

    Context. OB-type stars have strong ionizing radiation and drive energetic winds. The ultraviolet radiation from ionizing stars may heat dust and ionize gas to sweep up an expanding bubble shell. This shell may be the result of feedback leading to a new generation of stars. Aims: N131 is an infrared dust bubble residing in a molecular filament. We study the formation and fragmentation of this bubble with multiwavelength dust and gas observations. Methods: Towards the bubble N131, we analysed archival multiwavelength observations including 3.6, 4.5, 5.8, 8.0, 24, 70, 160, 250, 350, 500 μm, 1.1 mm, and 21 cm. In addition, we performed new observations of CO (2-1), CO (1-0), and 13CO (1-0) with the IRAM 30 m telescope. Results: Multiwavelength dust and gas observations reveal a ring-like shell with compact fragments, two filamentary structures, and the secondary bubble N131-A. Bubble N131 is a rare object with a large hole at 24 μm and 21 cm in the direction of its centre. The dust and gas clumps are compact and might have been compressed at the inner edge of the ring-like shell, while they are extended and might be pre-existing at the outer edge. The column density, excitation temperature, and velocity show a potentially hierarchical distribution from the inner to outer edge of the ring-like shell. We also detected the front and back sides of the secondary bubble N131-A in the direction of its centre. The derived Lyman-continuum ionizing photon flux within N131-A is equivalent to an O9.5 star. Based on the above, we suggest that the bubble N131 might be triggered by the strong stellar winds from a group of massive stars inside the bubble. Conclusions: We propose a scenario in which the bubble N131 forms from the disruption of a gas filament by the expansion of the H II region, strong stellar winds, and fragments under self-gravity. The reduced datacubes (FITS files) are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/585/A117

  12. Modeling the influence of bubble pressure on grain boundary separation and fission gas release

    SciTech Connect

    Pritam Chakraborty; Michael R. Tonks; Giovanni Pastore

    2014-09-01

    Grain boundary (GB) separation as a mechanism for fission gas release (FGR), complementary to gas bubble interlinkage, has been experimentally observed in irradiated light water reactor fuel. However there has been limited effort to develop physics-based models incorporating this mechanism for the analysis of FGR. In this work, a computational study is carried out to investigate GB separation in UO2 fuel under the effect of gas bubble pressure and hydrostatic stress. A non-dimensional stress intensity factor formula is obtained through 2D axisymmetric analyses considering lenticular bubbles and Mode-I crack growth. The obtained functional form can be used in higher length-scale models to estimate the contribution of GB separation to FGR.

  13. Bubble dispersion and coalescence in turbulent pipe flow

    NASA Astrophysics Data System (ADS)

    Luo, Jianjun

    2002-04-01

    An experiment for investigating bubble coalescence rate in turbulent pipe flow was designed based on measuring evolution of the specific interfacial area at two locations along the pipeline. A broad range of operating conditions (i.e. 0.008 < phiG < 0.5, 4 < epsilonp < 26 w/kg, 25 mum < d32 < 8,700 mum, and sodium dodecyl sulfate (SDS) concentration range of 0--50 ppm) were investigated. Three bubble coalescence rates were developed based on the temporal rate of variation of Sauter mean diameter, specific interfacial area, and bubble population density and the resulting findings were discussed in terms of hydrodynamic factors (including gas hold-up, energy dissipation rate and bubble size) and interfacial properties. The bubble coalescence rate was found to increase as the gas hold-up and the energy dissipation rate increase, and decrease as the bubble size and SAA concentration increase. Compared to tap water, the normalized coalescence rates were found to decrease radically by the presence of minute dosage of SAA due to the decisive role interfacial characteristics play. The exponential format of interfacial parameters can be used to characterize their effect on bubble coalescence processes, which implies that the interfacial characteristics affect the bubble coalescence through influencing coalescence efficiency which leads to decreasing bubble coalescence rate in gas/liquid turbulent flow. A theoretical collision model was adapted to the case of bubble coalescence rate in turbulent two-phase flow in pipes, and the resulting expression was found to apply not only to pure water system but also to contaminated streams displaying surface activity. The use of different interfacial parameters (such as the static surface tension, surface pressure, Gibbs surface excess and surface excess based on long-term approximation) to explain how SAA retards bubble coalescence rate was evaluated and it was found although the dimensionless forms of these interfacial parameters are correlated with bubble coalescence rate for SDS aqueous solutions to the similar degrees, the surface excess based on the long-term approximation could prevail due to its revealing the underlying mechanism of coalescence hindrance. Factors affecting bubble dispersion and sparger performance were systematically investigated though the use of a 25.4 mm pipe loop in which liquid velocities of up to 3.2 m/s, and gas holdup varying between 0.008 and 0.5 were tested. Trace dosage of either MIBC or SDS was added to simulate the industrial streams. The use of novel dynamic spargers results in the formation of large interfacial area of contact (up to 5,400 m2/m3) and small bubbles (d32 down to 25 mum). The efficiency by which dynamic spargers utilize energy for the formation of interfacial area was found to be one order of magnitude higher than that obtained in mechanically-agitated tanks and traditional pipe nozzles, and more efficient than some of the commonly used static mixers operating at the same power input per unit mass of the stream processed. The interfacial area and the Sauter mean bubble size can be predicted by using correlation equations for MIBC and SDS aqueous solutions. (Abstract shortened by UMI.)

  14. Equations of spatial hydrodynamic interaction of weakly nonspherical gas bubbles in liquid in an acoustic field

    NASA Astrophysics Data System (ADS)

    Davletshin, A. I.; Khalitova, T. F.

    2016-01-01

    A mathematical model of spatial hydrodynamic interaction of gas bubbles in liquid in an acoustic field taking into account small deformations of their surfaces is proposed. It is a system of ordinary differential equations of the second order in radii of the bubbles, the position vectors of their centers and the amplitudes of deviation of their shape from the spherical one in the form of spherical harmonics. The equations derived are of the first order of accuracy in A / R and of the fourth order in R / D, where R is the characteristic radius of the bubbles, A is the amplitude of characteristic deviation of their surface from the spherical one in the form of spherical harmonics, D is the characteristic distance between bubbles. The derivation of the equations is carried out by the method of spherical functions with the use of the Bernoulli integral, the kinematic and dynamic boundary conditions on the surface of the bubbles. The effects of viscosity and compressibility of the liquid are considered approximately, the gas in the bubbles is assumed homobaric.

  15. Experiment and Numerical Simulation of Bubble Behavior in Argon Gas Injection into Lead-Bismuth Pool

    NASA Astrophysics Data System (ADS)

    Yamada, Yumi; Akashi, Toyou; Takahashi, Minoru

    In a lead-bismuth alloy (45%Pb-55%Bi) cooled direct contact boiling water fast reactor (PBWFR), steam can be produced by direct contact of feed water with primary Pb-Bi coolant in the upper core plenum, and Pb-Bi coolant can be circulated by buoyancy forces of steam bubbles. As a basic study to investigate the two-phase flow characteristics in the chimneys of PBWFR, a two-dimensional two-phase flow was simulated by injecting argon gas into Pb-Bi pool in a rectangular vessel (400mm in length, 1500mm in height), and bubble behavior were investigated experimentally. Bubble sizes, bubble rising velocities and void fractions were measured using void probes. The experimental conditions are the atmospheric pressure and the flow rate of injection Ar gas is 10, 20, and 30 NL/min. The average of measured bubble rising velocity was about 0.6 m/s. The average chord length was about 7mm. An analysis was performed by two-dimensional and two-fluid model. The experimental results were compared with the analytical results to evaluate the validity of the analytical model. Although large diameter bubbles were observed in the experiment, the drag force model of lower value performed better for simulation of the experimental result.

  16. Evolution of a gas bubble in porous matrix filled by methane hydrate

    NASA Astrophysics Data System (ADS)

    Tsiberkin, Kirill; Lyubimov, Dmitry; Lyubimova, Tatyana; Zikanov, Oleg

    2013-04-01

    Behavior of a small isolated hydrate-free inclusion (a bubble) within hydrate-bearing porous matrix is studied analytically and numerically. An infinite porous matrix of uniform properties with pores filled by methane hydrates and either water (excessive water situation) or methane gas (excessive gas situation) is considered. A small spherical hydrate-free bubble of radius R0 exists at initial moment within the matrix due to overheating relative to the surrounding medium. There is no continuing heat supply within the bubble, so new hydrate forms on its boundary, and its radius decreases with time. The process is analysed in the framework of the model that takes into account the phase transition and accompanying heat and mass transport processes and assumes spherical symmetry. It is shown that in the case of small (~ 10-2-10-1 m) bubbles, convective fluxes are negligible and the process is fully described by heat conduction and phase change equations. A spherically symmetric Stefan problem for purely conduction-controlled evolution is solved analytically for the case of equilibrium initial temperature and pressure within the bubble. The self-similar solution is verified, with good results, in numerical simulations based on the full filtration and heat transfer model and using the isotherm migration method. Numerical simulations are also conducted for a wide range of cases not amenable to analytical solution. It is found that, except for initial development of an overheated bubble, its radius evolves with time following the self-similar formula: R(t) ( t)1-2 R0-= 1 - tm- , (1) where tm is the life-time of bubble (time of its complete freezing). The analytical solution shows that tm follows 2 tm ~ (R0-?) , (2) where ? is a constant determined by the temperature difference ΔT between the bubble's interior and far field. We consider implications for natural hydrate deposits. As an example, for a bubble with R0 = 4 cm and ΔT = 0.001 K, we find tm ~ 5.7 ? 106 s (2 months) in a water excess system, and ~ 2.9 ? 107 s (11 months) in a gas excess system. Motion of the bubble is not considered in our study, but it can be estimated that at the typical velocity of buoyancy-driven transport, a small bubble does not move a significant distance over its life-time and, thus, cannot survive filtration through the hydrate stability zone. Work was financially supported by the Civilian Research and Development Foundation (Grant RUP1-2945-PE-09) and the Russian Foundation for Basic Research (Grant 09-01-92505).

  17. Development of the Liposomes Entrapped Ultrasound Imaging Gas (``Bubble Liposomes'') as Novel Gene Delivery Carriers

    NASA Astrophysics Data System (ADS)

    Suzuki, Ryo; Tanaka, Kumiko; Sawamura, Kaori; Takizawa, Tomoko; Utoguchi, Naoki; Negishi, Yoichi; Hagisawa, Kohsuke; Nishioka, Toshihiko; Maruyama, Kazuo

    2006-05-01

    Recently, microbubbles and ultrasound have been investigated with a view to improving the transfection efficiency of nonviral delivery systems for gene by cavitation. However, microbubbles had some problems in terms of stability and targeting ability. To solve these problems, we paid attention to liposomes that had many advantages such as stable and safe in vivo and easy to modify targeting ligand. Previously, we have represented that liposomes are good drug and gene delivery carriers. In addition, we developed that the liposomes ("Bubble liposomes") were entrapped with perfluoropropane known as ultrasound imaging gas. In this study, we assessed about feasibility of "Bubble liposomes" as gene delivery tool utilized cavitation by ultrasound irradiation. "Bubble liposomes" could effectively deliver plasmid DNA to cells by combination of ultrasound irradiation without cyototoxicity. This result suggested that "Bubble liposomes" might be a new class of tool for gene delivery.

  18. Measurement and Analysis of Gas Bubbles near a Reference Electrode in Aqueous Solutions

    SciTech Connect

    Steven D. Herrmann; Shelly X. Li; Michael F. Simpson; Supathorn Phongikaroon

    2006-10-01

    Bubble size distributions (BSD) near a reference electrode (RE) in aqueous glycerol solutions of an electrolyte NaCl have been investigated under various gas superficial velocities (Us). BSD and RE voltage were measured by using a high-speed digital camera and a pH/voltage meter, respectively. Self-similarity is seen in the normalized cumulative number distribution through BSD. The percent relative difference (PRD) based on the baseline voltage shows that bubble size (b) has a strong impact on PRD at low liquid viscosity and both PRD and b increase at diverging rates as Us increases. An analysis on bubble rising velocity reveals that the system is in an intermediate region. A fundamental equation for spherical bubble formation is developed via Newton’s second law of motion and is linked to an electrochemical principle in the practical application.

  19. Creating Small Gas Bubbles in Flowing Mercury Using Turbulence at an Orifice

    SciTech Connect

    Wendel, Mark W; Abdou, Ashraf A; Paquit, Vincent C; Felde, David K; Riemer, Bernie

    2010-01-01

    Pressure waves created in liquid mercury pulsed spallation targets have been shown to create cavitation damage to the target container. One way to mitigate such damage would be to absorb the pressure pulse energy into a dispersed population of small bubbles, however, creating such a population in mercury is difficult due to the high surface tension and particularly the non-wetting behavior of mercury on gas-injection hardware. If the larger injected gas bubbles can be broken down into small bubbles after they are introduced to the flow, then the material interface problem is avoided. Research at the Oak Ridge National Labarotory is underway to develop a technique that has shown potential to provide an adequate population of small-enough bubbles to a flowing spallation target. This technique involves gas injection at an orifice of a geometry that is optimized to the turbulence intensity and pressure distribution of the flow, while avoiding coalescence of gas at injection sites. The most successful geometry thus far can be described as a square-toothed orifice having a 2.5 bar pressure drop in the nominal flow of 12 L/s for one of the target inlet legs. High-speed video and high-resolution photography have been used to quantify the bubble population on the surface of the mercury downstream of the gas injection sight. Also, computational fluid dynamics has been used to optimize the dimensions of the toothed orifice based on a RANS computed mean flow including turbulent energies such that the turbulent dissipation and pressure field are best suited for turbulent break-up of the gas bubbles.

  20. Flow regime transitions in a bubble column with a paraffin wax as the liquid medium

    SciTech Connect

    Bukur, D.B.; Petrovic, D.; Daly, J.G.

    1987-06-01

    Gas hold-up measurements were made in a 0.051-m-diameter by 3.05-m-long glass bubble column with a molten paraffin wax as the liquid medium. For temperatures between 230 and 280/sup 0/C, there is a range of gas velocities where two modes of operation are possible, and they are referred to as the foamy and the turbulent bubbling flow regimes. The start-up velocity determines which flow regime are obtained. Transitions between these two flow regimes occur and are influenced by the temperature (i.e., the liquid viscosity) and the gas distributor design. Lower temperatures and/or perforated plate distributors with larger holes favor the existence of the turbulent bubbling flow regime.

  1. Evolution of microstructure of bubbles and gas permeability in sheared rhyolite (Invited)

    NASA Astrophysics Data System (ADS)

    Okumura, S.; Nakamura, M.; Fujioka, T.; Tsuchiyama, A.; Takeuchi, S.; Nakano, T.; Uesugi, K.

    2010-12-01

    The microstructure of bubbles in magmas ascending in volcanic conduits is strongly changed by shear deformation. Because the microstructure controls the magma rheology and degassing behavior, clarifying its evolution in sheared magmas will help to understand the dynamics of magma ascent in volcanic conduits and predict the explosivity and style of volcanic eruptions. We have experimentally investigated the evolution of the microstructure of bubbles and the corresponding change in the gas permeability in shared rhyolite. The deformation experiments were performed using a piston-cylinder-type torsional deformation apparatus. Natural obsidians with a water content of 0.5 wt% were vesiculated in a cell with constant volume (ca. 5 mmΦ and ~5 mm in length) and then twisted at a temperature of around 1000°C. The maximum strain rate and total strain were of the order of 10-2 s-1 and ~35. After the deformation experiments, the microstructure of bubbles in run products was observed using synchrotron radiation X-ray CT at SPring-8 (BL20B2). The gas permeability of the run products was measured using an originally-manufactured gas permeameter. The size distribution and connectivity of bubbles in the run products indicated that shear strongly enhanced bubble coalescence. The coalescence resulted in the formation of bubble networks and an increase in the connectivity with total strain. The shear also elongated bubbles in a direction parallel to the shear. These results imply that shear increases the gas permeability in a direction parallel to the shear, and indeed, the measured gas permeabilities in this direction were two to five orders of magnitude larger than those of non-sheared samples. Once the connectivity and gas permeability increased because of shear deformation, compaction started to occur. During compaction, the connectivity remained large although the vesicularity decreased, and finally, bubble networks were pinched off, leaving elongated and aligned fine bubbles. The compaction of samples with a vesicularity of ~60 vol% resulted in the formation of dense rhyolite with only ~5 vol% vesicularity. Our experimental results imply that under a large shear strain, for example, in a narrow and long volcanic conduit, degassing is enhanced and magma compaction occurs, resulting in the effusion of lava and non-explosive eruptions.

  2. Bubble retention in synthetic sludge: Testing of alternative gas retention apparatus

    SciTech Connect

    Rassat, S.D.; Gauglitz, P.A.

    1995-07-01

    Several of the underground storage tanks currently used to store waste at Hanford have been placed on the Flammable Gas Watch List, because the waste is either known or suspected to generate, store, and episodically release flammable gases. The objective of this experimental study is to develop a method to measure gas bubble retention in simulated tank waste and in diluted simulant. The method and apparatus should (1) allow for reasonably rapid experiments, (2) minimize sample disturbance, and (3) provide realistic bubble nucleation and growth. The scope of this experimental study is to build an apparatus for measuring gas retention in simulated waste and to design the apparatus to be compatible with future testing on actual waste. The approach employed for creating bubbles in sludge involves dissolving a soluble gas into the supernatant liquid at an elevated pressure, recirculating the liquid containing the dissolved gas through the sludge, then reducing the pressure to allow bubbles to nucleate and grow. Results have been obtained for ammonia as the soluble gas and SY1-SIM-91A, a chemically representative simulated tank waste. In addition, proof-of-principle experiments were conducted with both ammonia and CO{sub 2} as soluble gases and sludge composed of 90-micron glass beads. Results are described.

  3. The effects of bubbles on the structure of upward gas-liquid flow

    NASA Astrophysics Data System (ADS)

    Gubaidulin, D. A.; Snigerev, B. A.

    2016-01-01

    The paper presents the results of study of the local structure of turbulent gas-liquid flow in vertical pipe. A mathematical model based on the use of Eulerian description for both phases taking into account the action of different forces of interfacial interaction. Special attention is paid to the development of approaches for the simulation of polydispersed bubbly flows taking into account processes of coagulation and fragmentation. Comparison of simulation results with experimental data showed that the developed approach allows to obtain detailed information about the structures of turbulent gas-liquid flows, the distribution of bubbles by size.

  4. Bioinspired gas bubble spontaneous and directional transportation effects in an aqueous medium.

    PubMed

    Ma, Rui; Wang, Jingming; Yang, Zhongjia; Liu, Meng; Zhang, Jingjing; Jiang, Lei

    2015-04-01

    A series of well-ordered, 3D gradient porous interconnected network surfaces composed of micro-nano hierarchical geometries is constructed on a copper wire. A continuous gas film can be trapped around its interface in an aqueous medium acting as an effective channel for gas transportation. Driving by the difference of the Laplace pressure, gas bubbles can be transported spontaneously and directionally. PMID:25688855

  5. Investigating the role of gas bubble formation and entrapment in contaminated aquifers: Reactive transport modelling.

    PubMed

    Amos, Richard T; Ulrich Mayer, K

    2006-09-10

    In many natural and contaminated aquifers, geochemical processes result in the production or consumption of dissolved gases. In cases where methanogenesis or denitrification occurs, the production of gases may result in the formation and growth of gas bubbles below the water table. Near the water table, entrapment of atmospheric gases during water table rise may provide a significant source of O(2) to waters otherwise depleted in O(2). Furthermore, the presence of bubbles will affect the hydraulic conductivity of an aquifer, resulting in changes to the groundwater flow regime. The interactions between physical transport, biogeochemical processes, and gas bubble formation, entrapment and release is complex and requires suitable analysis tools. The objective of the present work is the development of a numerical model capable of quantitatively assessing these processes. The multicomponent reactive transport code MIN3P has been enhanced to simulate bubble growth and contraction due to in-situ gas production or consumption, bubble entrapment due to water table rise and subsequent re-equilibration of the bubble with ambient groundwater, and permeability changes due to trapped gas phase saturation. The resulting formulation allows for the investigation of complex geochemical systems where microbially mediated redox reactions both produce and consume gases as well as affect solution chemistry, alkalinity, and pH. The enhanced model has been used to simulate processes in a petroleum hydrocarbon contaminated aquifer where methanogenesis is an important redox process. The simulations are constrained by data from a crude oil spill site near Bemidji, MN. Our results suggest that permeability reduction in the methanogenic zone due to in-situ formation of gas bubbles, and dissolution of entrapped atmospheric bubbles near the water table, both work to attenuate the dissolved gas plume emanating from the source zone. Furthermore, the simulations demonstrate that under the given conditions more than 50% of all produced CH(4) partitions to the gas phase or is aerobically oxidised near the water table, suggesting that these processes should be accounted for when assessing the rate and extent of methanogenic degradation of hydrocarbons. PMID:16797104

  6. Evidence for the importance of bubbles in increasing air-sea gas flux

    NASA Astrophysics Data System (ADS)

    Farmer, D. M.; McNeil, C. L.; Johnson, B. D.

    1993-02-01

    Two models have been proposed to account for gas exchang between the atmosphere and the oceans: one involves direct transport of the gas through a surface boundary layer1; the other also includes a substantial enhancement of the gas flux due to bubbles formed by breaking waves2,3. In a long time-series of dissolved oxygen measurements, Wallace and Wirick4 observed sharply increased fluxes that seemed to be associated with wave activity. But the lack of vertical resolution meant that they could not rule out water advection and entrapment, rather than bubble-mediated air injection, as the cause of the increased flux. They were also unable to calculate transfer coefficients. Here we report simultaneous in situ observations from a vertical array of dissolved-gas sensors and a variety of other instruments during a single storm event. Our results confirm the importance of bubbles for the gas-transfer process. They also imply that existing transfer coefficients underestimate the transfer of weakly soluble gases during periods of bubble penetration.

  7. Observation of bubble-involving spontaneous gas dissolution in superheated Al alloy melt

    NASA Astrophysics Data System (ADS)

    Zhang, S. G.; Zhang, L.; Lu, W. Q.; Zhang, W.; Yu, J. D.; Fu, Y. N.; Li, J. G.

    2013-10-01

    We present a direct visualization of spontaneous gas dissolution in Al-7.7 mass% Ca eutectic alloy melt during superheating using high-brilliance synchrotron X-ray imaging. A bubble-involving gas dissolution process was observed, which can be understood within the framework of adsorption-diffusion-dissolution mechanism. The heterogenous nucleation and combined effect of hydrogen diffusivity and solubility results in the growth of individual bubbles in a stochastic way with Gaussian distribution. This also applies to the behavior of group bubbles in early stage, while which in final stage can be treated as reverse Ostwald ripening dominated by Lifshitz-Slyozov-Wagner diffusion mechanism when pure diffusive condition is satisfied.

  8. Effects of gas bubble production on heat transfer from a volumetrically heated liquid pool

    NASA Astrophysics Data System (ADS)

    Bull, Geoffrey R.

    Aqueous solutions of uranium salts may provide a new supply chain to fill potential shortfalls in the availability of the most common radiopharmaceuticals currently in use worldwide, including Tc99m which is a decay product of Mo99. The fissioning of the uranium in these solutions creates Mo99 but also generates large amounts of hydrogen and oxygen from the radiolysis of the water. When the dissolved gases reach a critical concentration, bubbles will form in the solution. Bubbles in the solution affect both the fission power and the heat transfer out of the solution. As a result, for safety and production calculations, the effects of the bubbles on heat transfer must be understood. A high aspect ratio tank was constructed to simulate a section of an annulus with heat exchangers on the inner and outer steel walls to provide cooling. Temperature measurements via thermocouples inside the tank and along the outside of the steel walls allowed the calculation of overall and local heat transfer coefficients. Different air injection manifolds allowed the exploration of various bubble characteristics and patterns on heat transfer from the pool. The manifold type did not appear to have significant impact on the bubble size distributions in water. However, air injected into solutions of magnesium sulfate resulted in smaller bubble sizes and larger void fractions than those in water at the same injection rates. One dimensional calculations provide heat transfer coefficient values as functions of the superficial gas velocity in the pool.

  9. Experimental determination of gas-bubble breakup in a constricted cylindrical capillary

    SciTech Connect

    Gauglitz, P.A.; St Laurent, C.M.; Radke, C.J.

    1988-07-01

    To gain insight into the mechanisms of gas-foam generation in porous media, this work quantifies how smaller bubbles snap off from a single, larger bubble as it moves through a smooth, cylindrical constriction. Time to snap off, generated bubble size, and bubble velocity are obtained from viewing 16-mm movies taken of snap-off events. The bubble capillary number, Ca/sub GAMMA, is varied from 10/sup -5/ to 5 x 10/sup -2/. The authors study two narrowly constricted capillaries of different tube radii (neck radius/tube radius of 0.17 and 0.20) and one widely constricted capillary (neck radius/tube radius = 0.40). In the widely constricted capillary, time to breakup is proportional to Ca/sub GAMMA/sup -2/, and the generated bubble length is proportional to Ca/sub GAMMA/sup -1/. In the narrow constrictions, the same results apply above Ca/sub GAMMA = 5 x 10/sup -4/; below this critical Ca/sub GAMMA, time to breakup is independent of Ca/sub GAMMA but depends on the Ohnesorge number. Snap-off behavior with surfactant solutions is found to be similar to that in surfactant-free solutions.

  10. ADVANCED DIAGNOSTIC TECHNIQUES FOR THREE-PHASE SLURRY BUBBLE COLUMN REACTORS (SBCR)

    SciTech Connect

    M.H. Al-Dahhan; M.P. Dudukovic; L.S. Fan

    2001-07-25

    This report summarizes the accomplishment made during the second year of this cooperative research effort between Washington University, Ohio State University and Air Products and Chemicals. The technical difficulties that were encountered in implementing Computer Automated Radioactive Particle Tracking (CARPT) in high pressure SBCR have been successfully resolved. New strategies for data acquisition and calibration procedure have been implemented. These have been performed as a part of other projects supported by Industrial Consortium and DOE via contract DE-2295PC95051 which are executed in parallel with this grant. CARPT and Computed Tomography (CT) experiments have been performed using air-water-glass beads in 6 inch high pressure stainless steel slurry bubble column reactor at selected conditions. Data processing of this work is in progress. The overall gas holdup and the hydrodynamic parameters are measured by Laser Doppler Anemometry (LDA) in 2 inch slurry bubble column using Norpar 15 that mimic at room temperature the Fischer Tropsch wax at FT reaction conditions of high pressure and temperature. To improve the design and scale-up of bubble column, new correlations have been developed to predict the radial gas holdup and the time averaged axial liquid recirculation velocity profiles in bubble columns.

  11. Pressure effects on bubble-column flow characteristics

    SciTech Connect

    Adkins, D.R.; Shollenberger, K.A.; O`Hern, T.J.; Torczynski, J.R.

    1996-03-01

    Bubble-column reactors are used in the chemical processing industry for two-phase and three-phase chemical reactions. Hydrodynamic effects must be considered when attempting to scale these reactors to sizes of industrial interest, and diagnostics are needed to acquire data for the validation of multiphase scaling predictions. This paper discusses the use of differential pressure (DP) and gamma- densitometry tomography (GDT) measurements to ascertain the gas distribution in a two-phase bubble column reactor. Tests were performed on an industrial scale reactor (3-m tall, 0.48-m inside diameter) using a 5-Curie cesium-137 source with a sodium-iodide scintillation detector. GDT results provide information on the time- averaged cross-sectional distribution of gas in the liquid, and DP measurements provide information on the time and volume averaged axial distribution of gas. Close agreement was observed between the two methods of measuring the gas distribution in the bubble column. The results clearly show that, for a fixed volumetric flowrate through the reactor, increasing the system pressure leads to an increase in the gas volume fraction or ``gas holdup`` in the liquid. It is also shown from this work that GDT can provide useful diagnostic information on industrial scale bubble-column reactors.

  12. The effect of exercise and rest duration on the generation of venous gas bubbles at altitude

    NASA Technical Reports Server (NTRS)

    Dervay, Joseph P.; Powell, Michael R.; Butler, Bruce; Fife, Caroline E.

    2002-01-01

    BACKGROUND: Decompression, as occurs with aviators and astronauts undergoing high altitude operations or with deep-sea divers returning to surface, can cause gas bubbles to form within the organism. Pressure changes to evoke bubble formation in vivo during depressurization are several orders of magnitude less than those required for gas phase formation in vitro in quiescent liquids. Preformed micronuclei acting as "seeds" have been proposed, dating back to the 1940's. These tissue gas micronuclei have been attributed to a minute gas phase located in hydrophobic cavities, surfactant-stabilized microbubbles, or arising from musculoskeletal activity. The lifetimes of these micronuclei have been presumed to be from a few minutes to several weeks. HYPOTHESIS: The greatest incidence of venous gas emboli (VGE) will be detected by precordial Doppler ultrasound with depressurization immediately following lower extremity exercise, with progressively reduced levels of VGE observed as the interval from exercise to depressurization lengthens. METHODS: In a blinded cross-over design, 20 individuals (15 men, 5 women) at sea level exercised by performing knee-bend squats (150 knee flexes over 10 min, 235-kcal x h(-1)) either at the beginning, middle, or end of a 2-h chair-rest period without an oxygen prebreathe. Seated subjects were then depressurized to 6.2 psia (6,706 m or 22,000 ft altitude equivalent) for 120 min with no exercise performed at altitude. RESULTS: Of the 20 subjects with VGE in the pulmonary artery, 10 demonstrated a greater incidence of bubbles with exercise performed just prior to depressurization, compared with decreasing bubble grades and incidence as the interval of rest increased prior to depressurization. No decompression illness was reported. CONCLUSIONS: There is a significant increase in decompression-induced bubble formation at 6.2 psia when lower extremity exercise is performed just prior to depressurization as compared with longer rest intervals. Analysis indicated that micronuclei half-life is on the order of an hour under these hypobaric conditions.

  13. About the equilibrium speed of sound in a liquid with gas-vapor bubbles

    NASA Astrophysics Data System (ADS)

    Gubaidullin, D. A.; Gubaidullina, D. D.; Fedorov, Yu V.

    2016-01-01

    The general expression of an equilibrium velocity of a sound in vapor-gas-liquid mixtures is presented and influence of concentration of vapor and a volume content of bubbles on the received expression is analyzed. In special cases, for gas-liquid and vapor-liquid mixtures expressions of an equilibrium velocity are presented and the satisfactory consent of the received expressions with known experimental data is discovered.

  14. Numerical simulation of bubble collapse and the transfer of vapor and noncondensable gas through the bubble interface using the ghost fluid method

    NASA Astrophysics Data System (ADS)

    Jinbo, Y.; Kobayashi, K.; Watanabe, M.; Takahira, H.

    2015-12-01

    The ghost fluid method is improved to include heat and mass transfer across the gas- liquid interface during the bubble collapse in a compressible liquid. This transfer is due to both nonequilibrium phase transition at the interface and diffusion of the noncondensable gas across the interface. In the present method, the ghost fluids are defined with the intention of conserving the total mass, momentum, and energy, as well as the mass of each component while considering the heat and mass fluxes across the interface. The gas phase inside the bubble is a mixture of vapor and noncondensable gas, where binary diffusion between the mixture components is taken into account. The gas diffusion in the surrounding liquid is also considered. This method is applied to a simulation of a single spherical bubble collapse with heat and mass transfer across the interface in a compressible liquid. When noncondensable gas is present, it accumulates near the interface due to vapor condensation, thereby preventing further condensation. This results in a weaker bubble collapse than the case without noncondensable gas.

  15. The Experimental Study of Dynamics of Scaled Gas-Filled Bubble Collapse in Liquid

    NASA Astrophysics Data System (ADS)

    Pavlenko, Alexander

    2011-06-01

    The article provides results of analyzing special features of the single-bubble sonoluminescence, developing the special apparatus to investigate this phenomenon on a larger-scale basis. Certain very important effects of high energy density physics, i.e. liquid compressibility, shock-wave formation under the collapse of the gas cavity in liquid, shock-wave focusing in the gas-filled cavity, occurrence of hot dense plasma in the focusing area, and high-temperature radiation yield are observed in this phenomenon. Specificity of the process is conditioned by the ``ideal'' preparation and sphericity of the gas-and-liquid contact boundary what makes the collapse process efficient due to the reduced influence of hydrodynamic instabilities. Results of experimental investigations; results of developing the facilities, description of methods used to register parameters of facilities and the system under consideration; analytical estimates how gas-filled bubbles evolve in liquid with the regard for scale effects; results of preliminary 1-D gas dynamic calculations of the gas bubble evolution are presented. The work supported by ISTC Project #2116.

  16. Removal of dichloromethane from waste gas streams using a hybrid bubble column/biofilter bioreactor

    PubMed Central

    2014-01-01

    The performance of a hybrid bubble column/biofilter (HBCB) bioreactor for the removal of dichloromethane (DCM) from waste gas streams was studied in continuous mode for several months. The HBCB bioreactor consisted of two compartments: bubble column bioreactor removing DCM from liquid phase and biofilter removing DCM from gas phase. Effect of inlet DCM concentration on the elimination capacity was examined in the DCM concentration range of 34–359 ppm with loading rates ranged from 2.2 to 22.8 g/m3.h and constant total empty bed retention time (EBRT) of 200 s. In the equal loading rates, the elimination capacity and removal efficiency of the biofilter were higher than the corresponding values of the bubble column bioreactor. The maximum elimination capacity of the HBCB bioreactor was determined to be 15.7 g/m3.h occurred in the highest loading rate of 22.8 g/m3.h with removal efficiency of 69%. The overall mineralization portion of the HBCB bioreactor was in the range of 72-79%. The mixed liquor acidic pH especially below 5.5 inhibited microbial activity and decreased the elimination capacity. Inhibitory effect of high ionic strength was initiated in the mixed liquor electrical conductivity of 12.2 mS/cm. This study indicated that the HBCB bioreactor could benefit from advantages of both bubble column and biofilter reactors and could remove DCM from waste gas streams in a better manner. PMID:24406056

  17. Helium gas bubble trapped in liquid helium in high magnetic field

    NASA Astrophysics Data System (ADS)

    Bai, H.; Hannahs, S. T.; Markiewicz, W. D.; Weijers, H. W.

    2014-03-01

    High magnetic field magnets are used widely in the area of the condensed matter physics, material science, chemistry, geochemistry, and biology at the National High Magnetic Field Laboratory. New high field magnets of state-of-the-art are being pursued and developed at the lab, such as the current developing 32 T, 32 mm bore fully superconducting magnet. Liquid Helium (LHe) is used as the coolant for superconducting magnets or samples tested in a high magnetic field. When the magnetic field reaches a relatively high value the boil-off helium gas bubble generated by heat losses in the cryostat can be trapped in the LHe bath in the region where BzdBz/dz is less than negative 2100 T2/m, instead of floating up to the top of LHe. Then the magnet or sample in the trapped bubble region may lose efficient cooling. In the development of the 32 T magnet, a prototype Yttrium Barium Copper Oxide coil of 6 double pancakes with an inner diameter of 40 mm and an outer diameter of 140 mm was fabricated and tested in a resistive magnet providing a background field of 15 T. The trapped gas bubble was observed in the tests when the prototype coil was ramped up to 7.5 T at a current of 200 A. This letter reports the test results on the trapped gas bubble and the comparison with the analytical results which shows they are in a good agreement.

  18. Catalytic microtubular jet engines self-propelled by accumulated gas bubbles.

    PubMed

    Solovev, Alexander A; Mei, Yongfeng; Bermúdez Ureña, Esteban; Huang, Gaoshan; Schmidt, Oliver G

    2009-07-01

    Strain-engineered microtubes with an inner catalytic surface serve as self-propelled microjet engines with speeds of up to approximately 2 mm s(-1) (approximately 50 body lengths per second). The motion of the microjets is caused by gas bubbles ejecting from one opening of the tube, and the velocity can be well approximated by the product of the bubble radius and the bubble ejection frequency. Trajectories of various different geometries are well visualized by long microbubble tails. If a magnetic layer is integrated into the wall of the microjet engine, we can control and localize the trajectories by applying external rotating magnetic fields. Fluid (i.e., fuel) pumping through the microtubes is revealed and directly clarifies the working principle of the catalytic microjet engines. PMID:19373828

  19. Thermocapillary migration of a gas bubble in an arbitrary direction with respect to a plane surface

    NASA Technical Reports Server (NTRS)

    Meyyappan, M.; Shankar Subramanian, R.

    1987-01-01

    The thermocapillary migration of a gas bubble in an unbounded fluid in the presence of a neighboring rigid plane surface is considered in the limit of negligible Reynolds and Marangoni numbers. Results are given for a scalar interaction parameter defined as the ratio of the speed of the bubble in the presence of the plane surface to the speed in its absence. It is suggested that the weaker interaction effects noted for the case of thermocapillary migration relative to the case of motion due to a body force such as that caused by a gravitational field is attributable to the more rapid decay, away from the bubble, of the disturbance velocity and temperature gradient fields. The surface is found to exert the greatest influence in the case of motion normal to it, and the weakest influence in the case of parallel motion.

  20. The speed of sound in a gas-vapour bubbly liquid.

    PubMed

    Prosperetti, Andrea

    2015-10-01

    In addition to the vapour of the liquid, bubbles in cavitating flows usually contain also a certain amount of permanent gas that diffuses out of the liquid as they grow. This paper presents a simplified linear model for the propagation of monochromatic pressure waves in a bubbly liquid with these characteristics. Phase change effects are included in detail, while the gas is assumed to follow a polytropic law. It is shown that even a small amount of permanent gas can have a major effect on the behaviour of the system. Particular attention is paid to the low-frequency range, which is of special concern in flow cavitation. Numerical results for water and liquid oxygen illustrate the implications of the model. PMID:26442146

  1. A Mathematical Model of Diffusion-Limited Gas Bubble Dynamics in Tissue with Varying Diffusion Region Thickness

    NASA Technical Reports Server (NTRS)

    Srinivasan, R. Srini; Gerth, Wayne A.; Powell, Michael R.; Paloski, William H. (Technical Monitor)

    2000-01-01

    A three-region mathematical model of gas bubble dynamics has been shown suitable for describing diffusion-limited dynamics of more than one bubble in a given volume of extravascular tissue. The model is based on the dynamics of gas exchange between a bubble and a well-stirred tissue region through an intervening unperfused diffusion region previously assumed to have constant thickness and uniform gas diffusivity. As a result, the gas content of the diffusion region remains constant as the volume of the region increases with bubble growth, causing dissolved gas in the region to violate Henry's law. Earlier work also neglected the relationship between the varying diffusion region volume and the fixed total tissue volume, because only cases in which the diffusion region volume is a small fraction of the overall tissue volume were considered. We herein extend the three-region model to correct these theoretical inconsistencies by allowing both the thickness and gas content of the diffusion region to vary during bubble evolution. A postulated difference in gas diffusivity between an infinitesimally thin layer at the bubble surface and the remainder of the diffusion region leads to variation in diffusion region gas content and thickness during bubble growth and resolution. This variable thickness, differential diffusivity (VTDD) model can yield bubble lifetimes considerably longer than those yielded by earlier three-region models for given model and decompression parameters, and meets a need for theoretically consistent but relatively simple bubble dynamics models for use in studies of decompression sickness (DCS) in human subjects, Keywords: decompression sickness, gas diffusion in tissue, diffusivity

  2. Analysis of diffusion of noncondensable gas in liquid around gaseous bubble nucleus in pressure reduction

    SciTech Connect

    Mukasa, Shinobu; Mizukami, Koichi; Wada, Kazuhiro

    1999-07-01

    To know the boiling inception condition is one of the fundamental problems in boiling heat transfer research and is often concerned with evaluation of safety and reliability of apparatuses cooled by means of boiling. The boiling liquid is not necessarily free from noncondensable gas. For example, liquid sodium in a fast nuclear reactor contains inert gas. The purpose of this study is to develop a well established method for evaluating the effect of noncondensable gas on the condition of boiling inception induced by pressure reduction. In their previous study, the authors adopted one-directional diffusion equation to describe the diffusion of noncondensable gas in the liquid around a bubble nucleus growing due to pressure reduction. However the equation is an approximation obtained by ignoring the advection due to the movement of the liquid accompanied by the growth of the bubble nucleus. In the present study is derived a pseudo-spherical diffusion equation which includes the advection effect. The equation is applied for the investigation of the growth of gaseous bubble nucleus and the boiling inception caused by pressure reduction. Calculations are made for such combinations of liquid and noncondensable gas as liquid sodium and argon, water and oxygen, and water and nitrogen. The growing process of gaseous bubble nucleus and the boiling inception condition are analyzed and compared with those with the previous method. The modified curvatures at boiling does not differ greatly between two analyses, whereas the growth processes are quite different from those with the previous method. The effect of temperature, pressure reduction rate, cavity size and solubility of noncondensable gas are examined.

  3. Compositional Discrimination of Decompression and Decomposition Gas Bubbles in Bycaught Seals and Dolphins

    PubMed Central

    Bernaldo de Quirós, Yara; Seewald, Jeffrey S.; Sylva, Sean P.; Greer, Bill; Niemeyer, Misty; Bogomolni, Andrea L.; Moore, Michael J.

    2013-01-01

    Gas bubbles in marine mammals entangled and drowned in gillnets have been previously described by computed tomography, gross examination and histopathology. The absence of bacteria or autolytic changes in the tissues of those animals suggested that the gas was produced peri- or post-mortem by a fast decompression, probably by quickly hauling animals entangled in the net at depth to the surface. Gas composition analysis and gas scoring are two new diagnostic tools available to distinguish gas embolisms from putrefaction gases. With this goal, these methods have been successfully applied to pathological studies of marine mammals. In this study, we characterized the flux and composition of the gas bubbles from bycaught marine mammals in anchored sink gillnets and bottom otter trawls. We compared these data with marine mammals stranded on Cape Cod, MA, USA. Fresh animals or with moderate decomposition (decomposition scores of 2 and 3) were prioritized. Results showed that bycaught animals presented with significantly higher gas scores than stranded animals. Gas composition analyses indicate that gas was formed by decompression, confirming the decompression hypothesis. PMID:24367623

  4. Two-phase mixture in a reactor with a TPJ gas distributor: The statistical model of bubble population

    SciTech Connect

    Pindur, K.; Pawelczyk, R.

    1996-12-31

    Statistical description is presented of the population of bubbles produced in a two-phase mixture in a reactor using a novel TPJ (Two Perpendicular Jets) gas distributor. The analysis performed supports the idea that it is the lognormal distribution which should be assumed as a statistical model of the population of bubble diameters.

  5. Transmission electron microscopy characterization of the fission gas bubble superlattice in irradiated U-7wt% Mo dispersion fuels

    SciTech Connect

    B.D. Miller; J. Gan; D.D. Keiser Jr.; A.B. Robinson; J.-F. Jue; J.W. Madden; P.G. Medvedev

    2015-03-01

    Transmission electron microscopy characterization of irradiated U-7wt% Mo dispersion fuel was performed on various samples to understand the effect of irradiation parameters (fission density, fission rate, and temperature) on the self-organized fission-gas-bubble superlattice that forms in the irradiated U-Mo fuel. The bubble superlattice was seen to form a face-centered cubic structure coherent with the host U-7wt% Mo body centered cubic structure. At a fission density between 3.0 and 4.5 x 1021 fiss/cm3, the superlattice bubbles appear to have reached a saturation size with additional fission gas associated with increasing burnup predominately accumulating along grain boundaries. At a fission density of ~4.5x1021 fiss/cm3, the U-7wt% Mo microstructure undergoes grain subdivision and can no longer support the ordered bubble superlattice. The fuel grains are primarily less than 500 nm in diameter with micron-size fission-gas bubbles present on the grain boundaries. Solid fission products decorate the inside surface of the micron-sized fission-gas bubbles. Residual superlattice bubbles are seen in areas where fuel grains remain micron sized. Potential mechanisms of the formation and collapse of the bubble superlattice are discussed.

  6. First-order description of the mechanical fracture behavior of fine-grained surficial marine sediments during gas bubble growth

    NASA Astrophysics Data System (ADS)

    Barry, M. A.; Boudreau, B. P.; Johnson, B. D.; Reed, A. H.

    2010-12-01

    Bubbles in sediments, imaged via Computed Tomography (CT) scanning, and in surrogate transparent material (gelatin), are well-described geometrically as eccentric oblate spheroids. While sediments are undoubtedly visco-elasto-plastic solids, only part of that complex behavior appears to influence significantly the formation and shape of gas bubbles. Specifically, the shape of these bubbles can be explained if the mechanical response of fine-grained sediment is approximated by Linear Elastic Fracture Mechanics (LEFM). To determine the adequacy of the LEFM approximation for gas bubble growth in fine-grained sediments, a number of gas bubbles were injected and grown in natural sediments, while monitoring the size and shape using an industrial CT scanner. A comparison of measured inverse aspect ratios (IARs) of the injected bubbles with calculated IARs from pressure records provides support for the LEFM theory. Deviations from LEFM are observable in the data, but as bubbles grow larger they trend more closely toward the theory. The use of LEFM has been shown to describe gas bubble growth in shallow coastal sediments to first order.

  7. Prospecting for zones of contaminated ground-water discharge to streams using bottom-sediment gas bubbles

    USGS Publications Warehouse

    Vroblesky, Don A.; Lorah, Michelle M.

    1991-01-01

    Decomposition of organic-rich bottom sediment in a tidal creek in Maryland results in production of gas bubbles in the bottom sediment during summer and fall. In areas where volatile organic contaminants discharge from ground water, through the bottom sediment, and into the creek, part of the volatile contamination diffuses into the gas bubbles and is released to the atmosphere by ebullition. Collection and analysis of gas bubbles for their volatile organic contaminant content indicate that relative concentrations of the volatile organic contaminants in the gas bubbles are substantially higher in areas where the same contaminants occur in the ground water that discharges to the streams. Analyses of the bubbles located an area of previously unknown ground-water contamination. The method developed for this study consisted of disturbing the bottom sediment to release gas bubbles, and then capturing the bubbles in a polyethylene bag at the water-column surface. The captured gas was transferred either into sealable polyethylene bags for immediate analysis with a photoionization detector or by syringe to glass tubes containing wires coated with an activated-carbon adsorbent. Relative concentrations were determined by mass spectral analysis for chloroform and trichloroethylene.

  8. Generating singlet oxygen bubbles: a new mechanism for gas-liquid oxidations in water.

    PubMed

    Bartusik, Dorota; Aebisher, David; Ghafari, BiBi; Lyons, Alan M; Greer, Alexander

    2012-02-01

    Laser-coupled microphotoreactors were developed to bubble singlet oxygen [(1)O(2) ((1)Δ(g))] into an aqueous solution containing an oxidizable compound. The reactors consisted of custom-modified SMA fiberoptic receptacles loaded with 150 μm silicon phthalocyanine glass sensitizer particles, where the particles were isolated from direct contact with water by a membrane adhesively bonded to the bottom of each device. A tube fed O(2) gas to the reactor chambers. In the presence of O(2), singlet oxygen was generated by illuminating the sensitizer particles with 669 nm light from an optical fiber coupled to the top of the reactor. The generated (1)O(2) was transported through the membrane by the O(2) stream and formed bubbles in solution. In solution, singlet oxygen reacted with probe compounds (9,10-anthracene dipropionate dianion, trans-2-methyl-2-pentanoate anion, N-benzoyl-D,L-methionine, or N-acetyl-D,L-methionine) to give oxidized products in two stages. The early stage was rapid and showed that (1)O(2) transfer occurred via bubbles mainly in the bulk water solution. The later stage was slow; it arose only from (1)O(2)-probe molecule contact at the gas/liquid interface. A mechanism is proposed that involves (1)O(2) mass transfer and solvation, where smaller bubbles provide better penetration of (1)O(2) into the flowing stream due to higher surface-to-volume contact between the probe molecules and (1)O(2). PMID:22260325

  9. Lagrangian coherent structures analysis of gas-liquid flow in a bubble column

    NASA Astrophysics Data System (ADS)

    Wu, Qin; Wang, GuoYu; Huang, Biao; Bai, ZeYu

    2014-06-01

    The objective of this paper is to apply a new identifying method to investigating the gas-liquid two-phase flow behaviors in a bubble column with air injected into water. In the numerical simulations, the standard k- ɛ turbulence model is employed to describe the turbulence phenomenon occurring in the continuous fluid. The Finite-Time Lyapunov Exponent (FTLE) and Lagrangian Coherent Structures (LCS) are applied to analyze the vortex structures in multiphase flow. Reasonable agreements are obtained between the numerical and experimental data. The numerical results show that the evolution of gas-liquid in the column includes initial and periodical developing stages. During the initial stage, the bubble hose is forming and extending along the vertical direction with the vortex structures formed symmetrically. During the periodical developing stage, the bubble hose starts to oscillate periodically, and the vortexes move along the bubble hose to the bottom of column alternately. Compared to the Euler-system-based identification criterion of a vortex, the FTLE field presents the boundary of a vortex without any threshold defined and the LCS represents the divergence extent of infinite neighboring particles. During the initial stage, the interfaces between the forward and backward flows are highlighted by the LCS. As for the periodical developing stage, the LCS curls near the vortex centers, providing a method of analyzing a flow field from a dynamical system perspective.

  10. Gas Bubble Trauma Monitoring and Research of Juvenile Salmonids, 1994-1995 Progress Report.

    SciTech Connect

    Hans, Karen M.

    1997-07-01

    This report describes laboratory and field monitoring studies of gas bubble trauma (GBT) in migrating juvenile salmonids in the Snake and Columbia rivers. The first chapter describes laboratory studies of the progression of GBT signs leading to mortality and the use of the signs for GBT assessment. The progression and severity of GBT signs in juvenile salmonids exposed to different levels of total dissolved gas (TDG) and temperatures was assessed and quantified. Next, the prevalence, severity, and individual variation of GBT signs was evaluated to attempt to relate them to mortality. Finally, methods for gill examination in fish exposed to high TDG were developed and evaluated. Primary findings were: (1) no single sign of GBT was clearly correlated with mortality, but many GBT signs progressively worsened; (2) both prevalence and severity of GBT signs in several tissues is necessary; (3) bubbles in the lateral line were the earliest sign of GBT, showed progressive worsening, and had low individual variation but may develop poorly during chronic exposures; (4) fin bubbles had high prevalence, progressively worsened, and may be a persistent sign of GBT; and (5) gill bubbles appear to be the proximate cause of death but may only be relevant at high TDG levels and are difficult to examine. Chapter Two describes monitoring results of juvenile salmonids for signs of GBT. Emigrating fish were collected and examined for bubbles in fins and lateral lines. Preliminary findings were: (1) few fish had signs of GBT, but prevalence and severity appeared to increase as fish migrated downstream; (2) there was no apparent correlation between GBT signs in the fins, lateral line, or gills; (3) prevalence and severity of GBT was suggestive of long-term, non-lethal exposure to relatively low level gas supersaturated water; and (4) it appeared that GBT was not a threat to migrating juvenile salmonids. 24 refs., 26 figs., 3 tabs.

  11. Gas bubble retention and its effect on waste properties: Retention mechanisms, viscosity, and tensile and shear strengths

    SciTech Connect

    Gauglitz, P.A.; Rassat, S.D.; Powell, M.R.

    1995-08-01

    Several of the underground nuclear storage tanks at Hanford have been placed on a flammable gas watch list, because the waste is either known or suspected to generate, store, and episodically release flammable gases. Because retention and episodic release of flammable gases from these tanks containing radioactive waste slurries are critical safety concerns, Pacific Northwest Laboratory (PNL) is studying physical mechanisms and waste properties that contribute to the episodic gas release from these storage tanks. This study is being conducted for Westinghouse Hanford Company as part of the PNL Flammable Gas project. Previous investigations have concluded that gas bubbles are retained by the slurry or sludge that has settled at the bottom of the tanks; however, the mechanisms responsible for the retention of these bubbles are not well understood. Understanding the rheological behavior of the waste, particularly of the settled sludge, is critical to characterizing the tendency of the waste to retain gas bubbles and the dynamics of how these bubbles are released from the waste. The presence of gas bubbles is expected to affect the rheology of the sludge, specifically its viscosity and tensile and shear strengths, but essentially no literature data are available to assess the effect of bubbles. The objectives of this study were to conduct experiments and develop theories to understand better how bubbles are retained by slurries and sludges, to measure the effect of gas bubbles on the viscosity of simulated slurries, and to measure the effect of gas bubbles on the tensile and shear strengths of simulated slurries and sludges. In addition to accomplishing these objectives, this study developed correlations, based on the new experimental data, that can be used in large-scale computations of waste tank physical phenomena.

  12. Finite-sized gas bubble motion in a blood vessel: Non-Newtonian effects

    NASA Astrophysics Data System (ADS)

    Mukundakrishnan, Karthik; Ayyaswamy, Portonovo S.; Eckmann, David M.

    2008-09-01

    We have numerically investigated the axisymmetric motion of a finite-sized nearly occluding air bubble through a shear-thinning Casson fluid flowing in blood vessels of circular cross section. The numerical solution entails solving a two-layer fluid model—a cell-free layer and a non-Newtonian core together with the gas bubble. This problem is of interest to the field of rheology and for gas embolism studies in health sciences. The numerical method is based on a modified front-tracking method. The viscosity expression in the Casson model for blood (bulk fluid) includes the hematocrit [the volume fraction of red blood cells (RBCs)] as an explicit parameter. Three different flow Reynolds numbers, Reapp=ρlUmaxd/μapp , in the neighborhood of 0.2, 2, and 200 are investigated. Here, ρl is the density of blood, Umax is the centerline velocity of the inlet Casson profile, d is the diameter of the vessel, and μapp is the apparent viscosity of whole blood. Three different hematocrits have also been considered: 0.45, 0.4, and 0.335. The vessel sizes considered correspond to small arteries, and small and large arterioles in normal humans. The degree of bubble occlusion is characterized by the ratio of bubble to vessel radius (aspect ratio), λ , in the range 0.9⩽λ⩽1.05 . For arteriolar flow, where relevant, the Fahraeus-Lindqvist effects are taken into account. Both horizontal and vertical vessel geometries have been investigated. Many significant insights are revealed by our study: (i) bubble motion causes large temporal and spatial gradients of shear stress at the “endothelial cell” (EC) surface lining the blood vessel wall as the bubble approaches the cell, moves over it, and passes it by; (ii) rapid reversals occur in the sign of the shear stress (+ → - → +) imparted to the cell surface during bubble motion; (iii) large shear stress gradients together with sign reversals are ascribable to the development of a recirculation vortex at the rear of the bubble; (iv) computed magnitudes of shear stress gradients coupled with their sign reversals may correspond to levels that cause injury to the cell by membrane disruption through impulsive compression and stretching; and (v) for the vessel sizes and flow rates investigated, gravitational effects are negligible.

  13. Finite-sized gas bubble motion in a blood vessel: non-Newtonian effects.

    PubMed

    Mukundakrishnan, Karthik; Ayyaswamy, Portonovo S; Eckmann, David M

    2008-09-01

    We have numerically investigated the axisymmetric motion of a finite-sized nearly occluding air bubble through a shear-thinning Casson fluid flowing in blood vessels of circular cross section. The numerical solution entails solving a two-layer fluid model--a cell-free layer and a non-Newtonian core together with the gas bubble. This problem is of interest to the field of rheology and for gas embolism studies in health sciences. The numerical method is based on a modified front-tracking method. The viscosity expression in the Casson model for blood (bulk fluid) includes the hematocrit [the volume fraction of red blood cells (RBCs)] as an explicit parameter. Three different flow Reynolds numbers, Reapp=rholUmaxdmicroapp , in the neighborhood of 0.2, 2, and 200 are investigated. Here, rhol is the density of blood, Umax is the centerline velocity of the inlet Casson profile, d is the diameter of the vessel, and microapp is the apparent viscosity of whole blood. Three different hematocrits have also been considered: 0.45, 0.4, and 0.335. The vessel sizes considered correspond to small arteries, and small and large arterioles in normal humans. The degree of bubble occlusion is characterized by the ratio of bubble to vessel radius (aspect ratio), lambda , in the range 0.9< or =lambda< or =1.05 . For arteriolar flow, where relevant, the Fahraeus-Lindqvist effects are taken into account. Both horizontal and vertical vessel geometries have been investigated. Many significant insights are revealed by our study: (i) bubble motion causes large temporal and spatial gradients of shear stress at the "endothelial cell" (EC) surface lining the blood vessel wall as the bubble approaches the cell, moves over it, and passes it by; (ii) rapid reversals occur in the sign of the shear stress (+ --> - --> +) imparted to the cell surface during bubble motion; (iii) large shear stress gradients together with sign reversals are ascribable to the development of a recirculation vortex at the rear of the bubble; (iv) computed magnitudes of shear stress gradients coupled with their sign reversals may correspond to levels that cause injury to the cell by membrane disruption through impulsive compression and stretching; and (v) for the vessel sizes and flow rates investigated, gravitational effects are negligible. PMID:18851139

  14. Gas bubbles in seals, dolphins, and porpoises entangled and drowned at depth in gillnets.

    PubMed

    Moore, M J; Bogomolni, A L; Dennison, S E; Early, G; Garner, M M; Hayward, B A; Lentell, B J; Rotstein, D S

    2009-05-01

    Gas bubbles were found in 15 of 23 gillnet-drowned bycaught harp (Pagophilus groenlandicus), harbor (Phoca vitulina) and gray (Halichoerus grypus) seals, common (Delphinus delphis) and white-sided (Lagenorhyncus acutus) dolphins, and harbor porpoises (Phocaena phocaena) but in only 1 of 41 stranded marine mammals. Cases with minimal scavenging and bloating were chilled as practical and necropsied within 24 to 72 hours of collection. Bubbles were commonly visible grossly and histologically in bycaught cases. Affected tissues included lung, liver, heart, brain, skeletal muscle, gonad, lymph nodes, blood, intestine, pancreas, spleen, and eye. Computed tomography performed on 4 animals also identified gas bubbles in various tissues. Mean +/- SD net lead line depths (m) were 92 +/- 44 and ascent rates (ms(-1)) 0.3 +/- 0.2 for affected animals and 76 +/- 33 and 0.2 +/- 0.1, respectively, for unaffected animals. The relatively good carcass condition of these cases, comparable to 2 stranded cases that showed no gas formation on computed tomography (even after 3 days of refrigeration in one case), along with the histologic absence of bacteria and autolytic changes, indicate that peri- or postmortem phase change of supersaturated blood and tissues is most likely. Studies have suggested that under some circumstances, diving mammals are routinely supersaturated and that these mammals presumably manage gas exchange and decompression anatomically and behaviorally. This study provides a unique illustration of such supersaturated tissues. We suggest that greater attention be paid to the radiology and pathology of bycatch mortality as a possible model to better understand gas bubble disease in marine mammals. PMID:19176498

  15. The Bubble Box: Towards an Automated Visual Sensor for 3D Analysis and Characterization of Marine Gas Release Sites.

    PubMed

    Jordt, Anne; Zelenka, Claudius; von Deimling, Jens Schneider; Koch, Reinhard; Köser, Kevin

    2015-01-01

    Several acoustic and optical techniques have been used for characterizing natural and anthropogenic gas leaks (carbon dioxide, methane) from the ocean floor. Here, single-camera based methods for bubble stream observation have become an important tool, as they help estimating flux and bubble sizes under certain assumptions. However, they record only a projection of a bubble into the camera and therefore cannot capture the full 3D shape, which is particularly important for larger, non-spherical bubbles. The unknown distance of the bubble to the camera (making it appear larger or smaller than expected) as well as refraction at the camera interface introduce extra uncertainties. In this article, we introduce our wide baseline stereo-camera deep-sea sensor bubble box that overcomes these limitations, as it observes bubbles from two orthogonal directions using calibrated cameras. Besides the setup and the hardware of the system, we discuss appropriate calibration and the different automated processing steps deblurring, detection, tracking, and 3D fitting that are crucial to arrive at a 3D ellipsoidal shape and rise speed of each bubble. The obtained values for single bubbles can be aggregated into statistical bubble size distributions or fluxes for extrapolation based on diffusion and dissolution models and large scale acoustic surveys. We demonstrate and evaluate the wide baseline stereo measurement model using a controlled test setup with ground truth information. PMID:26690168

  16. The Bubble Box: Towards an Automated Visual Sensor for 3D Analysis and Characterization of Marine Gas Release Sites

    PubMed Central

    Jordt, Anne; Zelenka, Claudius; Schneider von Deimling, Jens; Koch, Reinhard; Köser, Kevin

    2015-01-01

    Several acoustic and optical techniques have been used for characterizing natural and anthropogenic gas leaks (carbon dioxide, methane) from the ocean floor. Here, single-camera based methods for bubble stream observation have become an important tool, as they help estimating flux and bubble sizes under certain assumptions. However, they record only a projection of a bubble into the camera and therefore cannot capture the full 3D shape, which is particularly important for larger, non-spherical bubbles. The unknown distance of the bubble to the camera (making it appear larger or smaller than expected) as well as refraction at the camera interface introduce extra uncertainties. In this article, we introduce our wide baseline stereo-camera deep-sea sensor bubble box that overcomes these limitations, as it observes bubbles from two orthogonal directions using calibrated cameras. Besides the setup and the hardware of the system, we discuss appropriate calibration and the different automated processing steps deblurring, detection, tracking, and 3D fitting that are crucial to arrive at a 3D ellipsoidal shape and rise speed of each bubble. The obtained values for single bubbles can be aggregated into statistical bubble size distributions or fluxes for extrapolation based on diffusion and dissolution models and large scale acoustic surveys. We demonstrate and evaluate the wide baseline stereo measurement model using a controlled test setup with ground truth information. PMID:26690168

  17. Holdup Measurement System 4 (HMS4)

    Energy Science and Technology Software Center (ESTSC)

    2004-01-15

    Nuclear material holdup in equipment is a consequence of the normal processing of nuclear material. The environmental, safety, and health (S&H) concerns, as well as those of nuclear materials accountability and safeguards, create the increasing demand for measurements of the holdup. To meet this demand, facility operators will have to have higher quality results in a timelier manner. To achieve this many thousands of items will have to be measured in a facility on amore » routine basis. These measurements will probably be made by personnel without an expertise in nuclear measurements.« less

  18. [Analysis of evolution of the size of decompression gas bubbles in diver tissues during schedules of medical recompression].

    PubMed

    Nikolaev, V P

    2013-01-01

    The mathematical model of gas bubble dynamics in body tissues was used for the analysis of evolution of their size during the treatment of decompression sickness in divers by means of recompression in accordance with RN table 72 and USN table 6A. It was shown that the duration of the process of bubble dissolution depends on the compression - decompression profile, as well on the initial size of a bubble, the oxygen content in the breathing mixture and the rate of nitrogen diffusion between a bubble and the surrounding tissue. The results of this study give the grounds to assume that the effect of recompression regimes used in the UK, USA and Russia promotes the treatment of DCS as a result of complete dissolution or significant reduction in the bubble sizes as well as due to therapeutic action of moderately hyperoxic breathing mixture on the tissues affected by bubbles. PMID:23814897

  19. Gas bubbles in fossil amber as possible indicators of the major gas composition of ancient air

    USGS Publications Warehouse

    Berner, R.A.; Landis, G.P.

    1988-01-01

    Gases trapped in Miocene to Upper Cretaceous amber were released by gently crushing the amber under vacuum and were analyzed by quadrupole mass spectrometry. After discounting the possibility that the major gases N2, O2, and CO2 underwent appreciable diffusion and diagenetic exchange with their surroundings or reaction with the amber, it has been concluded that in primary bubbles (gas released during initial breakage) these gases represent mainly original ancient air modified by the aerobic respiration of microorganisms. Values of N2/(CO2+O2) for each time period give consistent results despite varying O2/CO2 ratios that presumably were due to varying degrees of respiration. This allows calculation of original oxygen concentrations, which, on the basis of these preliminary results, appear to have changed from greater than 30 percent O2 during one part ofthe Late Cretaceous (between 75 and 95 million years ago) to 21 percent during the Eocene-Oligocene and for present-day samples, with possibly lower values during the Oligocene-Early Miocene. Variable O2 levels over time in general confirm theoretical isotope-mass balance calculations and suggest that the atmosphere has evolved over Phanerozoic time.

  20. IR dust bubbles: gas, dust and star formation in the S21-S24 complex

    NASA Astrophysics Data System (ADS)

    Cappa, E. C.; Romero, A. G.; Vasquez, J.; Firpo, V.; Dorunea, N.; Rubio, M.; Kobilnicky, C.

    2013-06-01

    Churchwell et al. (2006) identified many IR dust bubbles in the GLIMPSE images at 8 μm. Among these bubbles, S21, S22, S23, and S24 conform a poorly studied complex plenty of small scale bubbles, with IRDCs and signposts of recent star formation, located at about 4.5 kpc. Based on 12CO(2-1), 13CO(2-1), and 13CO(3-2) line observations obtained with the APEX telescope (angular resolution of 20"-30"), LABOCA continuum observations at 870 μm (angular resolution of 18.5") also from APEX, Spitzer-IRAC and -MIPS images in the near and mid IR (3.6 to 24 μm, and Herschel-PACS and -SPIRE images in the far infrared (70-500 μm), we performed an analysis of the characteristics of the gas and dust in this high density complex. This study allowed molecular shells linked to these bubbles to be revealed, and to estimate new distances, excitation conditions, masses, and ambient densities. Cold dust counterparts were revealed by Herschel and LABOCA images, showing the material available for new generations of stars. In addition to the presence of EGOs and methanol masers, a search for young stellar objets in the complex using the available data at several wavelengths in the infrared revealed many active areas of star formation coincident with the densest regions. We compare our results with those for other IR dust bubbles and investigate the possibility that the expansion of the bubbles has triggered the star formation activity.

  1. Thermal stability of fission gas bubble superlattice in irradiated U–10Mo fuel

    SciTech Connect

    Gan, J.; Keiser, D. D.; Miller, B. D.; Robinson, A. B.; Wachs, D. M.; Meyer, M. K.

    2015-09-01

    To investigate the thermal stability of the fission gas bubble superlattice, a key microstructural feature in both irradiated U-7Mo dispersion and U-10Mo monolithic fuel plates, a FIB-TEM sample of the irradiated U-10Mo fuel with a local fission density of 3.5×1021 fissions/cm3 was used for an in-situ heating TEM experiment. The temperature of the heating holder was raised at a ramp rate of approximately 10 ºC/min up to ~700 ºC, kept at that temperature for about 34 min, continued to 850 ºC with a reduced rate of 5 ºC/min. The result shows a high thermal stability of the fission gas bubble superlattice. The implication of this observation on the fuel microstructural evolution and performance under irradiation is discussed.

  2. Molecular gas and star formation toward the IR dust bubble S 24 and its environs

    NASA Astrophysics Data System (ADS)

    Cappa, C. E.; Duronea, N.; Firpo, V.; Vasquez, J.; López-Caraballo, C. H.; Rubio, M.; Vazzano, M. M.

    2016-01-01

    Aims: We present a multiwavelength analysis of the infrared dust bubble S 24 and the extended IR sources G341.220-0.213 and G341.217-0.237 located in its environs. We aim to investigate the characteristics of the molecular gas and the interstellar dust linked to them and analyze the evolutionary state of the young stellar objects identified there and the relation of the bubble to S 24 and the IR sources. Methods: Using the APEX telescope, we mapped the molecular emission in the CO(2-1), 13CO(2-1), C18O(2-1), and 13CO(3-2) lines in a region of about 5' × 5' in size around the bubble. The cold dust distribution was analyzed using submillimeter continuum images from ATLASGAL and Herschel. Complementary IR and radio data at different wavelengths were used to complete the study of the interstellar medium in the region. Results: The molecular gas distribution shows that gas linked to the S 24 bubble and to G341.220-0.213 and G341.217-0.237 has velocities of between -48.0 km s-1 and -40.0 km s-1, compatible with the kinematical distance of 3.7 kpc that is generally adopted for the region. The gas distribution reveals a shell-like molecular structure of ~0.8 pc in radius bordering the S 24 bubble. A cold dust counterpart of the shell is detected in the LABOCA and Herschel-SPIRE images. The weak extended emission at 24 μm from warm dust and radio continuum emission projected inside the bubble indicates exciting sources and that the bubble is a compact HII region. Part of the molecular gas bordering the S 24 HII region coincides with the extended infrared dust cloud SDC341.194-0.221. A molecular and cold dust clump is present at the interface between the S 24 HII region and G341.217-0.237, shaping the eastern border of the IR bubble. The arc-like molecular structure encircling the northern and eastern sections of the IR source G341.220-0.213 indicates that the source is interacting with the molecular gas. The analysis of the available IR point source catalogs reveals some young stellar object candidates linked to the IR-extended sources, thus confirming their nature as active star-forming regions. Gas and dust masses were estimated for the different features. The total gas mass in the region and the H2 ambient density amount to 10 300 M⊙ and 5900 cm-3, indicating that G341.220-0.213, G341.217-0.237, and the S 24 HII region are evolving in a high-density medium. A triggering star formation scenario for the HII region is investigated. Final reduced APEX data cube in FITS format is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/585/A30

  3. A comprehensive fission gas release model considering multiple bubble sizes on the grain boundary under steady-state conditions

    SciTech Connect

    Hwang, W.; Suk, H.C. ); Jae, W.M. )

    1991-09-01

    This paper reports on a comprehensive fission gas release model developed by considering the behavior of multiple bubble sizes on the fuel grain boundary in terms of relevant physical parameters. This model takes into account bubble migration and coalescence; critical bubble size, which depends on the thermal gradient on the grain boundary; and the lenticular shape of the bubbles. Booth's classical diffusion theory is directly adopted in the modeling of intragranular fission gas behavior. To consider the bubble drift due to the thermal gradient, those bubbles that exceed the critical bubble size are assumed to be left on the grain boundary and to migrate along the thermal gradient until they encounter free voidages. Use of this model in the KAFEPA code, which predicts the absolute magnitude and the trend of the gas release depending on power history, gives better agreement with the experimental data than the predictions of the model in the ELESIM code, which considers only a single bubble size at the grain boundary.

  4. Experimental study on a plane shock wave accelerating a gas bubble

    NASA Astrophysics Data System (ADS)

    Layes, Guillaume; Jourdan, Georges; Houas, Lazhar

    2009-07-01

    A detailed experimental study of the interaction between a planar shock wave and an isolated spherical gas inhomogeneity is presented here. Different configurations have been considered: a shock wave moving from one gas into another, of similar density, lower density and one of higher density. Sequences of shadowgraph pictures obtained during the same run provided useful insights into several mechanisms such as shock wave reflection, refraction and focusing, distortion of the bubble interface, and vortex formation. Based on these sequences, the changes with time in the characteristic bubble sizes were plotted and the results showed that the influence of the shock wave Mach number is significantly greater in the case of light gas bubbles. The displacement of the inhomogeneity relative to the surrounding gas was determined and compared to Rudinger and Somers' model. In all the cases studied, although the measurements were found to agree well with the theoretical predictions, in the initial acceleration phase, the final translational motions of the vortex ring were not accurately predicted by the model. The database obtained was used to estimate the resulting pattern of circulation, which was compared to other existing models. The circulation was found to increase with both the Mach number and the density ratio across the interface and was always overestimated by the models. These differences are probably caused by the presence of pulverized soap film trapped in the vortices, which reduces the motion and the strength of the resulting flow. A large number of tests are performed over a significant range of shock wave Mach numbers and density differences, with the use of high-speed imaging methods to track the vortex evolution during a single test shot. The database obtained should provide a useful tool for checking the validity of many codes and models describing the dynamics of shock/bubble interactions.

  5. Changes in Gas Bubble Disease Signs for Migrating Juvenile Salmonids Experimentally Exposed to Supersaturated Gasses, 1996-1997 Progress Report.

    SciTech Connect

    Absolon, Randall F.

    1999-03-01

    This study was designed to answer the question of whether gas bubble disease (GBD) signs change as a result of the hydrostatic conditions juvenile salmonids encounter when they enter the turbine intake of hydroelectric projects during their downstream migration.

  6. Friction Drag Reduction of External Flows with Bubble and Gas Injection

    NASA Astrophysics Data System (ADS)

    Ceccio, Steven L.

    2010-01-01

    The lubrication of external liquid flow with a bubbly mixture or gas layer has been the goal of engineers for many years, and this article presents the underlying principles and recent advances of this technology. It reviews the use of partial and supercavities for drag reduction of axisymmetric objects moving within a liquid. Partial cavity flows can also be used to reduce the friction drag on the nominally two-dimensional portions of a horizontal surface, and the basic flow features of two-dimensional cavities are presented. Injection of gas can lead to the creation of a bubbly mixture near the flow surface that can significantly modify the flow within the turbulent boundary layer, and there have been significant advances in the understanding of the underlying physical process of drag reduction. Moreover, with sufficient gas flux, the bubbles flowing beneath a solid surface can coalesce to form a thin drag-reducing air layer. The current applications of these techniques to underwater vehicles and surface ships are discussed.

  7. Warm Pressurant Gas Effects on the Bubble Point Pressure for Cryogenic LADs

    NASA Technical Reports Server (NTRS)

    Hartwig, Jason W.; McQuillen, John B.; Chato, David J.

    2014-01-01

    This paper presents experimental results for the liquid hydrogen and nitrogen bubble point tests using warm pressurant gases conducted at the NASA Glenn Research Center. The purpose of the test series was to determine the effect of elevating the temperature of the pressurant gas on the performance of a liquid acquisition device (LAD). Three fine mesh screen samples (325x2300, 450x2750, 510x3600) were tested in liquid hydrogen and liquid nitrogen using cold and warm non-condensable (gaseous helium) and condensable (gaseous hydrogen or nitrogen) pressurization schemes. Gases were conditioned from 0K 90K above the liquid temperature. Results clearly indicate degradation in bubble point pressure using warm gas, with a greater reduction in performance using condensable over non-condensable pressurization. Degradation in the bubble point pressure is inversely proportional to screen porosity, as the coarsest mesh demonstrated the highest degradation. Results here have implication on both pressurization and LAD system design for all future cryogenic propulsion systems. A detailed review of historical heated gas tests is also presented for comparison to current results.

  8. Warm Pressurant Gas Effects on the Static Bubble Point Pressure for Cryogenic LADs

    NASA Technical Reports Server (NTRS)

    Hartwig, Jason W.; McQuillen, John; Chato, Daniel J.

    2014-01-01

    This paper presents experimental results for the liquid hydrogen and nitrogen bubble point tests using warm pressurant gases conducted at the NASA Glenn Research Center. The purpose of the test series was to determine the effect of elevating the temperature of the pressurant gas on the performance of a liquid acquisition device (LAD). Three fine mesh screen samples (325x2300, 450x2750, 510x3600) were tested in liquid hydrogen and liquid nitrogen using cold and warm non-condensable (gaseous helium) and condensable (gaseous hydrogen or nitrogen) pressurization schemes. Gases were conditioned from 0K - 90K above the liquid temperature. Results clearly indicate degradation in bubble point pressure using warm gas, with a greater reduction in performance using condensable over non-condensable pressurization. Degradation in the bubble point pressure is inversely proportional to screen porosity, as the coarsest mesh demonstrated the highest degradation. Results here have implication on both pressurization and LAD system design for all future cryogenic propulsion systems. A detailed review of historical heated gas tests is also presented for comparison to current results.

  9. Determining gas bubble morphology and size distribution in mud using CT imagery

    NASA Astrophysics Data System (ADS)

    Briggs, Kevin B.; Reed, Allen H.

    2003-10-01

    Sampling for the measurement and description of methane gas bubbles in situ was accomplished using the method of Abegg and Anderson [Mar. Geol. 137, 137-147 (1997)]. Sediment cores from East Bay, off the mouth of the Mississippi River, were collected by divers and placed into aluminum pressure transfer chambers while on the seafloor. With the cores at seafloor pressure within the chambers, they were transferred to an x-ray computed tomography (CT) scanner where high-resolution images were made of the sediment within the cores. Data, in the format of series of cross-sectional images of x-ray attenuation reconstructed in 3-D, were evaluated in terms of spatial distribution, sizes, and shapes of bubbles. CT imagery was obtained from a GE LS medical CT scanner at a local hospital and the Naval Research Laboratory's new HD-500 industrial CT scanner specifically designed for core sample imaging. The medical scanner provided images of stationary cores at 625-μm intervals with a rotating x-ray source and was able to resolve bubbles down to 625 μm in diameter. The industrial scanner provided images of rotating cores at 25-μm intervals with a stationary source and was able to resolve bubbles down to 10 μm in diameter.

  10. Shock-induced collapse of a gas bubble in shockwave lithotripsy

    PubMed Central

    Johnsen, Eric; Colonius, Tim

    2008-01-01

    The shock-induced collapse of a pre-existing nucleus near a solid surface in the focal region of a lithotripter is investigated. The entire flow field of the collapse of a single gas bubble subjected to a lithotripter pulse is simulated using a high-order accurate shock- and interface-capturing scheme, and the wall pressure is considered as an indication of potential damage. Results from the computations show the same qualitative behavior as that observed in experiments: a re-entrant jet forms in the direction of propagation of the pulse and penetrates the bubble during collapse, ultimately hitting the distal side and generating a water-hammer shock. As a result of the propagation of this wave, wall pressures on the order of 1 GPa may be achieved for bubbles collapsing close to the wall. The wall pressure decreases with initial stand-off distance and pulse width and increases with pulse amplitude. For the stand-off distances considered in the present work, the wall pressure due to bubble collapse is larger than that due to the incoming shockwave; the region over which this holds may extend to ten initial radii. The present results indicate that shock-induced collapse is a mechanism with high potential for damage in shockwave lithotripsy. PMID:19062841

  11. Measurement of bubble velocity components in a swirling gas liquid pipe flow using a local four-sensor conductance probe

    NASA Astrophysics Data System (ADS)

    Lucas, G. P.; Mishra, R.

    2005-03-01

    This paper presents a novel technique for measuring the local axial, radial and azimuthal velocity components of the gas in bubbly gas-liquid flows using a local four-sensor conductance probe. A mathematical model is presented showing how the velocity vector of a gas bubble can be calculated from seven time intervals taken from the output signals from each of the four conductance sensors located within the probe. The paper goes on to describe the construction of a local four-sensor probe and the associated electronic measurement circuitry. Results are presented showing the distributions of the mean local axial, radial and azimuthal gas velocity components in vertical, bubbly gas-liquid flows, both with and without swirl. These results were obtained using the four-sensor probe in a vertical 80 mm diameter pipe into which a swirl generator could be installed. Additional results are presented showing the local gas volume fraction distribution, also obtained from the probe, in bubbly gas-liquid flows with and without swirl. It was found, as expected, that the presence of swirl caused a significant increase in the magnitude of the measured azimuthal velocity of the gas, particularly at the pipe walls. It was also found that, at a comparatively high water flow rate, the presence of swirl caused the gas bubbles to preferentially accumulate at the centre of the pipe.

  12. A MODEL TO ESTIMATE VOLUME CHANGE DUE TO RADIOLYTIC GAS BUBBLES AND THERMAL EXPANSION IN SOLUTION REACTORS

    SciTech Connect

    F. SOUTO; A HEGER

    2001-02-01

    Aqueous homogeneous solution reactors have been proposed for the production of medical isotopes. However, the reactivity effects of fuel solution volume change, due to formation of radiolytic gas bubbles and thermal expansion, have to be mitigated to allow steady-state operation of solution reactors. The results of the free run experiments analyzed indicate that the proposed model to estimate the void volume due to radiolytic gas bubbles and thermal expansion in solution reactors can accurately describe the observed behavior during the experiments. This void volume due to radiolytic gas bubbles and fuel solution thermal expansion can then be used in the investigation of reactivity effects in fissile solutions. In addition, these experiments confirm that the radiolytic gas bubbles are formed at a higher temperature than the fuel solution temperature. These experiments also indicate that the mole-weighted average for the radiolytic gas bubbles in uranyl fluoride solutions is about 1 {micro}m. Finally, it should be noted that another model, currently under development, would simulate the power behavior during the transient given the initial fuel solution level and density. The model is based on Monte Carlo simulation with the MCNP computer code [Briesmeister, 1997] to obtain the reactor reactivity as a function of the fuel solution density, which, in turn, changes due to thermal expansion and radiolytic gas bubble formation.

  13. Helium gas bubble trapped in liquid helium in high magnetic field

    SciTech Connect

    Bai, H. Hannahs, S. T.; Markiewicz, W. D.; Weijers, H. W.

    2014-03-31

    High magnetic field magnets are used widely in the area of the condensed matter physics, material science, chemistry, geochemistry, and biology at the National High Magnetic Field Laboratory. New high field magnets of state-of-the-art are being pursued and developed at the lab, such as the current developing 32 T, 32 mm bore fully superconducting magnet. Liquid Helium (LHe) is used as the coolant for superconducting magnets or samples tested in a high magnetic field. When the magnetic field reaches a relatively high value the boil-off helium gas bubble generated by heat losses in the cryostat can be trapped in the LHe bath in the region where BzdBz/dz is less than negative 2100 T{sup 2}/m, instead of floating up to the top of LHe. Then the magnet or sample in the trapped bubble region may lose efficient cooling. In the development of the 32 T magnet, a prototype Yttrium Barium Copper Oxide coil of 6 double pancakes with an inner diameter of 40 mm and an outer diameter of 140 mm was fabricated and tested in a resistive magnet providing a background field of 15 T. The trapped gas bubble was observed in the tests when the prototype coil was ramped up to 7.5 T at a current of 200 A. This letter reports the test results on the trapped gas bubble and the comparison with the analytical results which shows they are in a good agreement.

  14. Gas-liquid mass transfer characteristics in a bubble column with suspended sparingly soluble fine particles

    SciTech Connect

    Sada, E.; Fujiwara, N.; Kumazawa, M.; Lee, C.

    1985-04-01

    (To investigate the influence of suspended particles on mass transfer characteristics in a slurry bubble column, physical and chemical absorptions were performed into aqueous slurries of fine calcium hydroxide particles ca. 7 ..mu..m in average size. Such mass transfer parameters as volumetric liquid-side mass transfer coefficient, specific gas-liquid interfacial area, and hence liquid-side mass transfer coefficient were determined under various electrolyte concentrations, solid concentrations, and gas flow rates.) and K /SUB L/ /SUP o/ a could be correlated by the gas flow rate. (The volumetric gas-side mass transfer coefficient was determined and correlated by the gas flow rate. The enhancement factors during absorption of dilute carbon dioxide into aqueous calcium hydroxide slurries were compared with the theoretical predictions based on the film theoryincorporating a finite slurry concept.)

  15. Two-phase gas bubble-liquid boundary layer flow along vertical and inclined surfaces

    SciTech Connect

    Cheung, F.B.; Epstein, M.

    1985-01-01

    The behavior of a two-phase gas bubble-liquid boundary layer along vertical and inclined porous surfaces with uniform gas injection is investigated experimentally and analytically. Using argon gas and water as the working fluids, a photographical study of the two-phase boundary layer flow has been performed for various angles of inclination ranging from 45/sup 0/ to 135/sup 0/ and gas injection rates ranging from 0.01 to 0.1 m/s. An integral method has been employed to solve the system of equations governing the two-phase motion. The effects of the gas injection rate and the angle of inclination on the growth of the boundary layer have been determined. The predicted boundary layer thickness is found to be in good agreement with the experimental results. The calculated axial liquid velocity and the void fraction in the two-phase region are also presented along with the observed flow behavior.

  16. Dynamic morphology of gas hydrate on a methane bubble in water: Observations and new insights for hydrate film models

    NASA Astrophysics Data System (ADS)

    Warzinski, Robert P.; Lynn, Ronald; Haljasmaa, Igor; Leifer, Ira; Shaffer, Frank; Anderson, Brian J.; Levine, Jonathan S.

    2014-10-01

    Predicting the fate of subsea hydrocarbon gases escaping into seawater is complicated by potential formation of hydrate on rising bubbles that can enhance their survival in the water column, allowing gas to reach shallower depths and the atmosphere. The precise nature and influence of hydrate coatings on bubble hydrodynamics and dissolution is largely unknown. Here we present high-definition, experimental observations of complex surficial mechanisms governing methane bubble hydrate formation and dissociation during transit of a simulated oceanic water column that reveal a temporal progression of deep-sea controlling mechanisms. Synergistic feedbacks between bubble hydrodynamics, hydrate morphology, and coverage characteristics were discovered. Morphological changes on the bubble surface appear analogous to macroscale, sea ice processes, presenting new mechanistic insights. An inverse linear relationship between hydrate coverage and bubble dissolution rate is indicated. Understanding and incorporating these phenomena into bubble and bubble plume models will be necessary to accurately predict global greenhouse gas budgets for warming ocean scenarios and hydrocarbon transport from anthropogenic or natural deep-sea eruptions.

  17. Preliminary study of the effects of a reversible chemical reaction on gas bubble dissolution. [for space glass refining

    NASA Technical Reports Server (NTRS)

    Weinberg, M. C.

    1982-01-01

    A preliminary investigation is carried out of the effects of a reversible chemical reaction on the dissolution of an isolated, stationary gas bubble in a glass melt. The exact governing equations for the model system are formulated and analyzed. The approximate quasi-steady-state version of these equations is solved analytically, and a calculation is made of bubble dissolution rates. The results are then compared with numerical solutions obtained from the finite difference form of the exact governing equations. It is pointed out that in the microgravity condition of space, the buoyant rise of a gas bubble in a glass melt will be negligible on the time scale of most experiments. For this reason, a determination of the behavior of a stationary gas bubble in a melt is relevant for an understanding of glass refining in space.

  18. An acoustic study of soils that model seabed sediments containing gas bubbles

    PubMed

    Gardner

    2000-01-01

    The acoustic response of gassy seabed sediment is unique. It is a dispersive and extraordinarily attenuative natural material at frequencies which cause gas bubble resonance. It conceals the structure of the seabed from seismic profiling and it dampens acoustic signals that, for example, trigger acoustic mines. In the past, theoretical studies have formulated the probable cause of this response and crude experimental work has partially corroborated theory. This study measures compressional wave velocity and attenuation in a laboratory soil simulating natural gassy soil, and it investigates the structural properties that cause the unique acoustic response. It was confirmed that below the frequencies which cause resonance the soil behaves as a compressible material (containing gas), and above as a relatively incompressible material (containing no gas). Over the frequency range producing bubble resonance it is suggested that the soil should be modeled as a biphasic material of gas and a relatively incompressible saturated soil matrix (particles and fluid). Velocities for gassy soil were found to be as low as 220 m/s at frequencies below resonance and 1500 m/s above resonance; attenuations were found to be as high as 60 dB/cm for moderately gassy soil and as low as 1 dB/cm for soil with almost no gas. PMID:10641629

  19. Handling of liquid holdup in Duyong two-phase flow pipeline system

    SciTech Connect

    Saad, M.R.; Singh, B. )

    1988-01-01

    This paper deals with the handling of liquids in the multi-phase flow pipeline system within Carigali's Duyong Offshore Gas Complex and the Onshore Gas Terminal, in Kerteh, Terongganu. The data and operations experience gathered necessitate changes to the operating procedures originally identified during the design phase. This is to ensure more efficient handling of liquid hold-up in the pipeline during low gas flowrates.

  20. The Effect of Viscosity on the Spherical Stability of Oscillating Gas Bubbles

    NASA Technical Reports Server (NTRS)

    Hao, Y.; Prosperetti, A.

    1999-01-01

    Gas bubbles driven in radial oscillations are subject to an instability of the spherical shape that is opposed by surface tension and viscosity. An exact linear formulation for the study of the phenomenon has been available for many years, but its complexity has discouraged a detailed investigation. With the recent theory of sonoluminescence of Lohse and co-workers, there has been a renewed interest in the problem and new data have become available. This paper presents a numerical method for the solution of the pertinent equations and compares the theory with these new data. The coupling of the strong nonlinearity of the bubble radial oscillations with the parametric mechanism of the surface instability results in a very complex structure for the stability boundary. Nevertheless, a good agreement between theory and data is found. A comparison with earlier approximate models is also made.

  1. Gas embolotherapy: Bubble evolution in acoustic droplet vaporization and design of a benchtop microvascular model

    NASA Astrophysics Data System (ADS)

    Wong, Zheng Zheng

    This work was motivated by an ongoing development of a potential embolotherapy technique to occlude blood flow to tumors using gas bubbles selectively formed by in vivo acoustic droplet vaporization (ADV) of liquid perfluorocarbon droplets. Mechanisms behind the ADV, transport and lodging of emboli need to be understood before gas embolotherapy can translate to the clinic. Evolution of a bubble from acoustic droplet vaporization in a rigid tube, under physiological and room temperature conditions, was observed via ultra-high speed imaging. Effective radii and radial expansion ratios were obtained by processing the images using Image] software. At physiological temperature, a radial expansion ratio of 5.05 was attained, consistent with theoretical prediction. The initial radial growth rate was linear, after which the growth rate increased proportionally with square root of time. Nondimensionalization revealed that the subsequent growth rate also varied inversely with square root of initial radius. Eventually growth became asymptotic. No collapse was observed. A theoretical model derived from a modified Bernoulli equation, and a computational model by Ye & Bull (2004), were compared respectively with experimental results. Initial growth rates were predicted correctly by both models. Experimental results showed heavy damping of growth rate as the bubble grew towards the wall, whereas both models predicted an overshoot in growth followed by multiple oscillations. The theoretical model broke down near the wall; the computational model gave a reasonable bubble shape near the wall but would require correct initial pressure values to be accurate. At room temperature, the expansion ratio shot to 1.43 initially and oscillated down to 1.11, far below the theoretical prediction. Failure of the bubble to expand fully could be due to unconsumed or condensed liquid perfluorocarbon. A new fabrication method via non-lithographic means was devised to make a circular-lumen microchannel out of PDMS, with a diameter as small as 80 microns to mimic the size of a medium arteriole. The microchannel was endothelialized successfully, with a fairly homogeneous distribution along the length. Cell viability assays confirmed the viability of cells maintained in the microchannel. Bubble motion experiments performed with the benchtop microvascular model demonstrated its feasibility.

  2. Acoustic emission associated with the bursting of a gas bubble at the free surface of a non-Newtonian fluid.

    PubMed

    Divoux, T; Vidal, V; Melo, F; Géminard, J-C

    2008-05-01

    We report experimental measurements of the acoustic emission associated with the bursting of a gas bubble at the free surface of a non-Newtonian fluid. On account of the viscoelastic properties of the fluid, the bubble is generally elongated. The associated frequency and duration of the acoustic signal are discussed with regard to the shape of the bubble and successfully accounted for by a simple linear model. The acoustic energy exhibits a high sensitivity to the dynamics of the thin film bursting, which demonstrates that, in practice, it is barely possible to deduce from the acoustic measurements the total amount of energy released by the event. Our experimental findings provide clues for the understanding of the signals from either volcanoes or foams, where one observes respectively, the bursting of giant bubbles at the free surface of lava and bubble bursting avalanches. PMID:18643164

  3. Generating Singlet Oxygen Bubbles: A New Mechanism for Gas-Liquid Oxidations in Water

    PubMed Central

    Bartusik, Dorota; Aebisher, David; Ghafari, BiBi

    2012-01-01

    Laser-coupled microphotoreactors were developed to bubble singlet oxygen [1O2 (1Δg)] into an aqueous solution containing an oxidizable compound. The reactors consisted of custom-modified SMA fiber-optic receptacles loaded with 150-μm silicon phthalocyanine glass sensitizer particles, where the particles were isolated from direct contact with water by a membrane adhesively bonded to the bottom of each device. A tube fed O2 gas to the reactor chambers. In the presence of O2, singlet oxygen was generated by illuminating the sensitizer particles with 669-nm light from an optical fiber coupled to the top of the reactor. The generated 1O2 was transported through the membrane by the O2 stream and formed bubbles in solution. In solution, singlet oxygen reacted with probe compounds (either 9,10-anthracene dipropionate dianion, trans-2-methyl-2-pentanoate anion, N-benzoyl-D,L-methionine, and N-acetyl-D,L-methionine) to give oxidized products in two stages. The early stage was rapid and showed that 1O2 transfer occurred via bubbles mainly in the bulk water solution. The later stage was slow, it arose only from 1O2-probe molecule contact at the gas/liquid interface. A mechanism is proposed that involves 1O2 mass transfer and solvation, where smaller bubbles provide better penetration of 1O2 into the flowing stream due to higher surface-to-volume contact between the probe molecules and 1O2. PMID:22260325

  4. Free gas bubbles in the hydrate stability zone: evidence from CT investigation under in situ conditions

    NASA Astrophysics Data System (ADS)

    Abegg, F.; Freitag, J.; Bohrmann, G.; Brueckmann, W.; Eisenhauer, A.; Amann, H.; Hohnberg, H.-J.

    2003-04-01

    Determination of the internal structures and the fabric of natural marine gas hydrate as well as its distribution in shallow subseafloor depth was restricted because of dissociation during recovery. Investigation under in situ conditions becomes possible with a pressure coring device. The newly developed MultiAutoclaveCorer (MAC) can take up to four cores which are housed in a pressure vessel called LabTransferChamber (LTC), which is compatible with CT imaging technology. During a video-guided deployment on Hydrate Ridge, a well known near-surface gas hydrate-rich environment, two LTCs were filled and recovered under pressure. CT imaging was performed four days after retrieval in a medical clinic in Palo Alto/Ca., a second round was run 2 months later in Kiel/Germany, still under pressure. The same type of scanner was used for both rounds of imaging. The function and the pressure preserving capability of the MAC was confirmed. Although only 0.8 m apart, both cores showed different gas hydrate contents, varying between a maximum of 5 vol-% in LTC 3 and 48 vol-% in LTC 4, documenting the high variability of gas hydrate occurrences in near-surface sediments. The uppermost layer of gas hydrate was observed 0.1 m below the seafloor. The high gas hydrate content in LTC 4 is concentrated in a horizon between 0.28 and 0.32 m subseafloor depth. Within this hoizon a significant quantity of bubbles was detected with a free gas content of up to 2.4 vol-%. Bubble sizes reach a maximum of 1.8 x 10-2 m in either x, y or z direction. Integrating across the mentioned core interval, the gas hydrate content is 19 vol-% and the free gas content is 0.8 vol-%. Assuming several simplifications, the normalised calculated methane volume of the gas hydrate is 9.15 x 10-3 m^3 and the amount of methane in the bubbles is 1.49 x 10-4 m^3.

  5. Plasma Discharges in Gas Bubbles in Liquid Water: Breakdown Mechanisms and Resultant Chemistry

    NASA Astrophysics Data System (ADS)

    Gucker, Sarah M. N.

    The use of atmospheric pressure plasmas in gases and liquids for purification of liquids has been investigated by numerous researchers, and is highly attractive due to their strong potential as a disinfectant and sterilizer. However, the fundamental understanding of plasma production in liquid water is still limited. Despite the decades of study dedicated to electrical discharges in liquids, many physical aspects of liquids, such as the high inhomogeneity of liquids, complicate analyses. For example, the complex nonlinearities of the fluid have intricate effects on the electric field of the propagating streamer. Additionally, the liquid material itself can vaporize, leading to discontinuous liquid-vapor boundaries. Both can and do often lead to notable hydrodynamic effects. The chemistry of these high voltage discharges on liquid media can have circular effects, with the produced species having influence on future discharges. Two notable examples include an increase in liquid conductivity via charged species production, which affects the discharge. A second, more complicated scenario seen in some liquids (such as water) is the doubling or tripling of molecular density for a few molecule layers around a high voltage electrode. These complexities require technological advancements in optical diagnostics that have only recently come into being. This dissertation investigates several aspects of electrical discharges in gas bubbles in liquids. Two primary experimental configurations are investigated: the first allows for single bubble analysis through the use of an acoustic trap. Electrodes may be brought in around the bubble to allow for plasma formation without physically touching the bubble. The second experiment investigates the resulting liquid phase chemistry that is driven by the discharge. This is done through a dielectric barrier discharge with a central high voltage surrounded by a quartz discharge tube with a coil ground electrode on the outside. The plasma is created either through flowing gas around the high voltage electrode in the discharge tube or self-generated by the plasma as in the steam discharge. This second method allows for large scale processing of contaminated water and for bulk chemical and optical analysis. Breakdown mechanisms of attached and unattached gas bubbles in liquid water were investigated using the first device. The breakdown scaling relation between breakdown voltage, pressure and dimensions of the discharge was studied. A Paschen-like voltage dependence for air bubbles in liquid water was discovered. The results of high-speed photography suggest the physical charging of the bubble due to a high voltage pulse; this charging can be significant enough to produce rapid kinetic motion of the bubble about the electrode region as the applied electric field changes over a voltage pulse. Physical deformation of the bubble is observed. This charging can also prevent breakdown from occurring, necessitating higher applied voltages to overcome the phenomenon. This dissertation also examines the resulting chemistry from plasma interacting with the bubble-liquid system. Through the use of optical emission spectroscopy, plasma parameters such as electron density, gas temperature, and molecular species production and intensity are found to have a time-dependence over the ac voltage cycle. This dependence is also source gas type dependent. These dependencies afford effective control over plasma-driven decomposition. The effect of plasma-produced radicals on various wastewater simulants is studied. Various organic dyes, halogenated compounds, and algae water are decomposed and assessed. Toxicology studies with melanoma cells exposed to plasma-treated dye solutions are completed, demonstrating the non-cytotoxic quality of the decomposition process. Thirdly, this dissertation examines the steam plasma system, developed through this research to circumvent the acidification associated with gas-feed discharges. This steam plasma creates its own gas pocket via field emission. This steam plasma is shown to have strong decontamination properties, with residual effects lasting beyond two weeks that continue to decompose contaminants. Finally, a "two-dimensional bubble" was developed and demonstrated as a novel diagnostic device to study the gas-water interface, the reaction zone. This device is shown to provide convenient access to the reaction zone and decomposition of various wastewater simulants is investigated.

  6. ALMA observations of cold molecular gas filaments trailing rising radio bubbles in PKS 0745-191

    NASA Astrophysics Data System (ADS)

    Russell, H. R.; McNamara, B. R.; Fabian, A. C.; Nulsen, P. E. J.; Edge, A. C.; Combes, F.; Murray, N. W.; Parrish, I. J.; Salomé, P.; Sanders, J. S.; Baum, S. A.; Donahue, M.; Main, R. A.; O'Connell, R. W.; O'Dea, C. P.; Oonk, J. B. R.; Tremblay, G.; Vantyghem, A. N.; Voit, G. M.

    2016-02-01

    We present ALMA observations of the CO(1-0) and CO(3-2) line emission tracing filaments of cold molecular gas in the central galaxy of the cluster PKS 0745-191. The total molecular gas mass of 4.6 ± 0.3 × 109 M⊙, assuming a Galactic XCO factor, is divided roughly equally between three filaments each extending radially 3-5 kpc from the galaxy centre. The emission peak is located in the SE filament ˜ 1 arcsec (2 kpc) from the nucleus. The velocities of the molecular clouds in the filaments are low, lying within ± 100 km s-1 of the galaxy's systemic velocity. Their FWHMs are less than 150 km s-1, which is significantly below the stellar velocity dispersion. Although the molecular mass of each filament is comparable to a rich spiral galaxy, such low velocities show that the filaments are transient and the clouds would disperse on <107 yr timescales unless supported, likely by the indirect effect of magnetic fields. The velocity structure is inconsistent with a merger origin or gravitational free-fall of cooling gas in this massive central galaxy. If the molecular clouds originated in gas cooling even a few kpc from their current locations their velocities would exceed those observed. Instead, the projection of the N and SE filaments underneath X-ray cavities suggests they formed in the updraft behind bubbles buoyantly rising through the cluster atmosphere. Direct uplift of the dense gas by the radio bubbles appears to require an implausibly high coupling efficiency. The filaments are coincident with low temperature X-ray gas, bright optical line emission and dust lanes indicating that the molecular gas could have formed from lifted warmer gas that cooled in situ.

  7. ALMA observations of cold molecular gas filaments trailing rising radio bubbles in PKS 0745-191

    NASA Astrophysics Data System (ADS)

    Russell, H. R.; McNamara, B. R.; Fabian, A. C.; Nulsen, P. E. J.; Edge, A. C.; Combes, F.; Murray, N. W.; Parrish, I. J.; Salomé, P.; Sanders, J. S.; Baum, S. A.; Donahue, M.; Main, R. A.; O'Connell, R. W.; O'Dea, C. P.; Oonk, J. B. R.; Tremblay, G.; Vantyghem, A. N.; Voit, G. M.

    2016-05-01

    We present ALMA observations of the CO(1-0) and CO(3-2) line emission tracing filaments of cold molecular gas in the central galaxy of the cluster PKS 0745-191. The total molecular gas mass of 4.6± 0.3× 109 M_{⊙}, assuming a Galactic XCO factor, is divided roughly equally between three filaments each extending radially 3-5 kpc from the galaxy centre. The emission peak is located in the SE filament ˜ 1 arcsec (2 kpc) from the nucleus. The velocities of the molecular clouds in the filaments are low, lying within ± 100 { km s^{-1}} of the galaxy's systemic velocity. Their full width at half-maximum (FWHM) are less than 150 { km s^{-1},} which is significantly below the stellar velocity dispersion. Although the molecular mass of each filament is comparable to a rich spiral galaxy, such low velocities show that the filaments are transient and the clouds would disperse on < 107 yr time-scales unless supported, likely by the indirect effect of magnetic fields. The velocity structure is inconsistent with a merger origin or gravitational free-fall of cooling gas in this massive central galaxy. If the molecular clouds originated in gas cooling even a few kpc from their current locations their velocities would exceed those observed. Instead, the projection of the N and SE filaments underneath X-ray cavities suggests they formed in the updraft behind bubbles buoyantly rising through the cluster atmosphere. Direct uplift of the dense gas by the radio bubbles appears to require an implausibly high coupling efficiency. The filaments are coincident with low temperature X-ray gas, bright optical line emission and dust lanes indicating that the molecular gas could have formed from lifted warmer gas that cooled in situ.

  8. Experimental investigation of remote seismic triggering by gas bubble growth in groundwater

    NASA Astrophysics Data System (ADS)

    Crews, J. B.; Cooper, C. A.

    2014-12-01

    Remotely triggered seismicity is the process by which an earthquake at one location initiates others after a time delay ranging from seconds to days, over distances up to thousands of kilometers. Candidate mechanisms have been proposed, but none specifically address the role of carbon dioxide (CO2) gas bubble growth in groundwater as a driver of remote seismic triggering in active volcanic and geothermal regions, where shallow crustal CO2 gas is abundant. In the present study, we hypothesize that a seismic wave from a distant source can initiate rapid gas bubble growth in CO2-rich groundwater, resulting in a persistent increase in pore fluid pressure and a reduction of effective stress, which can trigger failure on a critically loaded geologic fault. Under conditions representative of a confined aquifer, a Berea sandstone core flooded with an aqueous CO2 solution was subjected to a six-period burst of 0.05-0.3 Hz, 0.1-0.4 MPa confining stress oscillations. After the oscillations were terminated, the pore fluid pressure exceeded its initial value by 13-60 cm equivalent freshwater head, scaling with the amplitude and frequency - a surplus that is consistent with borehole water level changes [Roeloffs et al. (1995) USGS Open File Report, 95-42] observed in response to the June 28 1992 MW 7.3 Landers, California earthquake Rayleigh wave in Parkfield and Long Valley caldera, California, where remotely triggered earthquakes occurred [Hill et al. (1993) Science, 260(5114); Hill et al. (1995) Journal of Geophysical Research, 100(B7)]. Our experimental results indicate that seismically initiated gas bubble growth in groundwater is a physically plausible mechanism for remote seismic triggering in active volcanic and geothermal regions, suggesting that the aqueous CO2 saturation state in a confined aquifer may be used to assess susceptibility to remote seismic triggering.

  9. A complementary approach to estimate the internal pressure of fission gas bubbles by SEM-SIMS-EPMA in irradiated nuclear fuels

    NASA Astrophysics Data System (ADS)

    Cagna, C.; Zacharie-Aubrun, I.; Bienvenu, P.; Barrallier, L.; Michel, B.; Noirot, J.

    2016-02-01

    The behaviour of gases produced by fission is of great importance for nuclear fuel in operation. Within this context, a decade ago, a general method for the characterisation of the fission gas including gas bubbles in an irradiated UO2 nuclear fuel was developed and applied to determine the bubbles internal pressure. The method consists in the determination of the pressure, over a large population of bubbles, using three techniques: SEM, EPMA and SIMS. In this paper, a complementary approach using the information given by the same techniques is performed on an isolated bubble under the surface and is aiming for a better accuracy compared to the more general measurement of gas content. SEM and EPMA enable the detection of a bubble filled with xenon under the surface. SIMS enables the detection of the gas filling the bubble. The quantification is achieved using the EPMA data as reference at positions where no or nearly no bubbles are detected.

  10. Probabilistic gas and bubble dynamics models of decompression sickness occurrence in air and nitrogen-oxygen diving.

    PubMed

    Gerth, W A; Vann, R D

    1997-01-01

    Probabilistic models of the occurrence of decompression sickness (DCS) with instantaneous risk defined as the weighted sum of bubble volumes in each of three parallel-perfused gas exchange compartments were fit using likelihood maximization to the subset of the USN Primary Air and N2-O2 database [n = 2,383, mean P(DCS) = 5.8%] used in development of the USN LE1 probabilistic models. Bubble dynamics with one diffusible gas in each compartment were modeled using the Van Liew equations with the nucleonic bubble radius, compartmental volume, compartmental bulk N2 diffusivity, compartmental N2 solubility, and the N2 solubility in blood x compartmental blood flow as adjustable parameters. Models were also tested that included the effects of linear elastic resistance to bubble growth in one, two, or all three of the modeled compartments. Model performance about the training data and separate validation data was compared to results obtained about the same data using the LE1 probabilistic model, which was independently implemented from published descriptions. In the most successful bubble volume model, BVM(3), diffusion significantly slows bubble growth in one of the modeled compartments, whereas mechanical resistance to bubble growth substantially accelerates bubble resolution in all compartments. BVM(3) performed generally on a par with LE1, despite inclusion of 12 more adjustable parameters, and tended to provide more accurate incidence-only estimates of DCS probability than LE1, particularly for profiles in which high fractional O2 gas mixes are breathed. Values of many estimated BVM(3) parameters were outside of the physiologic range, indicating that the model emerged from optimization as a mathematical descriptor of processes beyond bubble formation and growth that also contribute to DCS outcomes. Although incomplete as a mechanistic description of DCS etiology, BVM(3) remains applicable to a wider variety of decompressions than LE1 and affords a conceptual framework for further refinements motivated by mechanistic principles. PMID:9444059

  11. Heat transfer between immiscible liquids enhanced by gas bubbling. [PWR; BWR

    SciTech Connect

    Greene, G.A.; Schwarz, C.E.; Klages, J.; Klein, J.

    1982-08-01

    The phenomena of core-concrete interactions impact upon containment integrity of light water reactors (LWR) following postulated complete meltdown of the core by containment pressurization, production of combustible gases, and basemat penetration. Experiments have been performed with non-reactor materials to investigate one aspect of this problem, heat transfer between overlying immiscible liquids whose interface is disturbed by a transverse non-condensable gas flux emanating from below. Hydrodynamic studies have been performed to test a criterion for onset of entrainment due to bubbling through the interface and subsequent heat transfer studies were performed to assess the effect of bubbling on interfacial heat transfer rates, both with and without bubble induced entrainment. Non-entraining interfacial heat transfer data with mercury-water/oil fluid pairs were observed to be bounded from below within a factor of two to three by the Szekeley surface renewal heat transfer model. However heat transfer data for fluid pairs which are found to entrain (water-oil), believed to be characteristic of molten reactor core-concrete conditions, were measured to be up to two orders of magnitude greater than surface renewal predictions and are calculated by a simple entrainment heat transfer model.

  12. Hydrodynamic models for slurry bubble column reactors. Seventh technical progress report, January--March 1996

    SciTech Connect

    Gidaspow, D.

    1996-04-01

    The objective of this investigation is to convert our ``learning gas solid-liquid`` fluidization model into a predictive design model. The IIT hydrodynamic model computes the phase velocities and the volume fractions of gas, liquid and particulate phase. Model verification involves a comparison of these computed velocities and volume fractions to experimental values. A hydrodynamic model for multiphase flows, based on the principles of mass, momentum and energy conservation for each phase, was developed and applied to model gas-liquid, gas-liquid-solid fluidization and gas-solid-solid separation. To simulate the industrial slurry bubble column reactors, a computer program based on the hydrodynamic model was written with modules for chemical reactions (e.g. the synthesis of methanol), phase changes and heat exchangers. In the simulations of gas-liquid two phases flow system, the gas hold-ups, computed with a variety of operating conditions such as temperature, pressure, gas and liquid velocities, agree well with the measurements obtained at Air Products` pilot plant. The hydrodynamic model has more flexible features than the previous empirical correlations in predicting the gas hold-up of gas-liquid two-phase flow systems. In the simulations of gas-liquid-solid bubble column reactors with and without slurry circulation, the code computes volume fractions, temperatures and velocity distributions for the gas, the liquid and the solid phases, as well as concentration distributions for the species (CO, H{sub 2}, CH{sub 3}0H, ... ), after startup from a certain initial state. A kinetic theory approach is used to compute a solid viscosity due to particle collisions. Solid motion and gas-liquid-solid mixing are observed on a color PCSHOW movie made from computed time series data. The steady state and time average catalyst concentration profiles, the slurry height and the rates of methanol production agree well with the measurements obtained at an Air Products` pilot plant.

  13. ADVANCED DIAGNOSTIC TECHNIQUES FOR THREE-PHASE SLURRY BUBBLE COLUMN REACTORS(SBCR)

    SciTech Connect

    M.H. Al-Dahhan; L.S. Fan; M.P. Dudukovic

    2002-07-25

    This report summarizes the accomplishment made during the third year of this cooperative research effort between Washington University, Ohio State University and Air Products and Chemicals. Data processing of the performed Computer Automated Radioactive Particle Tracking (CARPT) experiments in 6 inch column using air-water-glass beads (150 {micro}m) system has been completed. Experimental investigation of time averaged three phases distribution in air-Therminol LT-glass beads (150 {micro}m) system in 6 inch column has been executed. Data processing and analysis of all the performed Computed Tomography (CT) experiments have been completed, using the newly proposed CT/Overall gas holdup methodology. The hydrodynamics of air-Norpar 15-glass beads (150 {micro}m) have been investigated in 2 inch slurry bubble column using Dynamic Gas Disengagement (DGD), Pressure Drop fluctuations, and Fiber Optic Probe. To improve the design and scale-up of bubble column reactors, a correlation for overall gas holdup has been proposed based on Artificial Neural Network and Dimensional Analysis.

  14. Bubble Combustion

    NASA Technical Reports Server (NTRS)

    Corrigan, Jackie

    2004-01-01

    A method of energy production that is capable of low pollutant emissions is fundamental to one of the four pillars of NASA s Aeronautics Blueprint: Revolutionary Vehicles. Bubble combustion, a new engine technology currently being developed at Glenn Research Center promises to provide low emissions combustion in support of NASA s vision under the Emissions Element because it generates power, while minimizing the production of carbon dioxide (CO2) and nitrous oxides (NOx), both known to be Greenhouse gases. and allows the use of alternative fuels such as corn oil, low-grade fuels, and even used motor oil. Bubble combustion is analogous to the inverse of spray combustion: the difference between bubble and spray combustion is that spray combustion is spraying a liquid in to a gas to form droplets, whereas bubble combustion involves injecting a gas into a liquid to form gaseous bubbles. In bubble combustion, the process for the ignition of the bubbles takes place on a time scale of less than a nanosecond and begins with acoustic waves perturbing each bubble. This perturbation causes the local pressure to drop below the vapor pressure of the liquid thus producing cavitation in which the bubble diameter grows, and upon reversal of the oscillating pressure field, the bubble then collapses rapidly with the aid of the high surface tension forces acting on the wall of the bubble. The rapid and violent collapse causes the temperatures inside the bubbles to soar as a result of adiabatic heating. As the temperatures rise, the gaseous contents of the bubble ignite with the bubble itself serving as its own combustion chamber. After ignition, this is the time in the bubble s life cycle where power is generated, and CO2, and NOx among other species, are produced. However, the pollutants CO2 and NOx are absorbed into the surrounding liquid. The importance of bubble combustion is that it generates power using a simple and compact device. We conducted a parametric study using CAVCHEM, a computational model developed at Glenn, that simulates the cavitational collapse of a single bubble in a liquid (water) and the subsequent combustion of the gaseous contents inside the bubble. The model solves the time-dependent, compressible Navier-Stokes equations in one-dimension with finite-rate chemical kinetics using the CHEMKIN package. Specifically, parameters such as frequency, pressure, bubble radius, and the equivalence ratio were varied while examining their effect on the maximum temperature, radius, and chemical species. These studies indicate that the radius of the bubble is perhaps the most critical parameter governing bubble combustion dynamics and its efficiency. Based on the results of the parametric studies, we plan on conducting experiments to study the effect of ultrasonic perturbations on the bubble generation process with respect to the bubble radius and size distribution.

  15. A Study of Vertical Gas Jets in a Bubbling Fluidized Bed

    SciTech Connect

    Ceccio, Steven; Curtis, Jennifer

    2011-04-15

    A detailed experimental study of a vertical gas jet impinging a fluidized bed of particles has been conducted with the help of Laser Doppler Velocimetry measurements. Mean and fluctuating velocity profiles of the two phases have been presented and analyzed for different fluidization states of the emulsion. The results of this work would be greatly helpful in understanding the complex two-phase mixing phenomenon that occurs in bubbling beds, such as in coal and biomass gasification, and also in building more fundamental gas-solid Eulerian/Lagrangian models which can be incorporated into existing CFD codes. Relevant simulations to supplement the experimental findings have also been conducted using the Department of Energy's open source code MFIX. The goal of these simulations was two-fold. One was to check the two-dimensional nature of the experimental results. The other was an attempt to improve the existing dense phase Eulerian framework through validation with the experimental results. In particular the sensitivity of existing frictional models in predicting the flow was investigated. The simulation results provide insight on wall-bounded turbulent jets and the effect frictional models have on gas-solid bubbling flows. Additionally, some empirical minimum fluidization correlations were validated for non-spherical particles with the idea of extending the present study to non-spherical particles which are more common in industries.

  16. Method for gas bubble and void control and removal from metals

    DOEpatents

    Siclen, C.D. Van; Wright, R.N.

    1996-02-06

    A method is described for enhancing the diffusion of gas bubbles or voids attached to impurity precipitates, and biasing their direction of migration out of the host metal (or metal alloy) by applying a temperature gradient across the host metal (or metal alloy). In the preferred embodiment of the present invention, the impurity metal is insoluble in the host metal and has a melting point lower than the melting point of the host material. Also, preferably the impurity metal is lead or indium and the host metal is aluminum or a metal alloy. 2 figs.

  17. Method for gas bubble and void control and removal from metals

    DOEpatents

    Van Siclen, Clinton D.; Wright, Richard N.

    1996-01-01

    A method for enhancing the diffusion of gas bubbles or voids attached to impurity precipitates, and biasing their direction of migration out of the host metal (or metal alloy) by applying a temperature gradient across the host metal (or metal alloy). In the preferred embodiment of the present invention, the impurity metal is insoluble in the host metal and has a melting point lower than the melting point of the host material. Also, preferably the impurity metal is lead or indium and the host metal is aluminum or a metal alloy.

  18. From ordered bubbles to random stripes: Pattern formation in a hydrodynamic lattice gas

    SciTech Connect

    Rothman, D.H. )

    1993-05-01

    A two-component momentum-conserving lattice gas with competing interactions is introduced in two dimensions. One interaction acts at short range and produces interfaces with surface tension. The second interaction, the negative of the first, acts at range a and produces modulated structures with approximate wavelength 2a. Depending on particle density, species concentration, and relative interaction strength, the equilibrium patterns formed by the model range from isotropic mixed and unmixed phases to hexagonally-ordered bubbles to randomly-oriented stripes. A Ginzburg-Landau equation is proposed that qualitatively captures the basic features of the phase transitions. 23 refs., 5 figs.

  19. Vertical Mobilization of a Residual Oil Phase in a Bead Pack Due to Flow of Discrete Gas Bubbles

    NASA Astrophysics Data System (ADS)

    Pakkala, Konark; Udell, Kent

    2007-11-01

    Mobilization of trapped oil ganglia is of interest in soil and groundwater clean-up and enhanced oil recovery applications. In this work, experiments with glass beads and various oil phase compositions were performed to determine the volumetric fraction of the non-aqueous phase liquid that may be mobilized with rising discrete gas bubbles. Experiments were performed using 6 mm and 2 mm beads. The oil phase liquids included dodecane, perchloroethene, and trichloroethene representing both spreading and non-spreading oil phases. It was found that bubbles were quite effective in mobilizing all three oils including those with densities greater than that of the suspending water. The effectiveness of the mobilization was greater in bead packs with larger beads than in packs comprised of small beads. Volumetric fractional flows of the oil phase were up to 10% of the bubble-droplet volumes, with volumetric fractions decreasing with decreasing oil phase saturations and bead size. The geometry of the oil ganglia/gas bubble combinatory body was also a function of the bead size with smaller beads producing larger, flatter gas bubbles, and the large beads producing bubbles and ganglia of similar size and geometries as the beads themselves.

  20. Incidence and Outcomes of Anterior Chamber Gas Bubble during Femtosecond Flap Creation for Laser-Assisted In Situ Keratomileusis

    PubMed Central

    Rush, Sloan W.; Cofoid, Philip; Rush, Ryan B.

    2015-01-01

    Purpose. To report the incidence and outcomes of anterior chamber gas bubble formation during femtosecond laser flap creation for laser-assisted in situ keratomileusis (LASIK). Methods. The charts of 2,886 consecutive eyes that underwent femtosecond LASIK from May 2011 through August 2014 were retrospectively reviewed. The incidence, preoperative characteristics, intraoperative details, and postoperative outcomes were analyzed in subjects developing anterior chamber gas bubble formation during the procedure. Results. A total of 4 cases (0.14%) developed anterior chamber gas bubble formation during femtosecond laser flap creation. In all four cases, the excimer laser was unable to successfully track the pupil immediately following the anterior chamber bubble formation, temporarily postponing the completion of the procedure. There was an ethnicity predilection of anterior chamber gas formation toward Asians (p = 0.0055). An uncorrected visual acuity of 20/20 was ultimately achieved in all four cases without further complications. Conclusions. Anterior chamber gas bubble formation during femtosecond laser flap creation for LASIK is an uncommon event that typically results in a delay in treatment completion; nevertheless, it does influence final positive visual outcome. PMID:25954511

  1. Incidence and Outcomes of Anterior Chamber Gas Bubble during Femtosecond Flap Creation for Laser-Assisted In Situ Keratomileusis.

    PubMed

    Rush, Sloan W; Cofoid, Philip; Rush, Ryan B

    2015-01-01

    Purpose. To report the incidence and outcomes of anterior chamber gas bubble formation during femtosecond laser flap creation for laser-assisted in situ keratomileusis (LASIK). Methods. The charts of 2,886 consecutive eyes that underwent femtosecond LASIK from May 2011 through August 2014 were retrospectively reviewed. The incidence, preoperative characteristics, intraoperative details, and postoperative outcomes were analyzed in subjects developing anterior chamber gas bubble formation during the procedure. Results. A total of 4 cases (0.14%) developed anterior chamber gas bubble formation during femtosecond laser flap creation. In all four cases, the excimer laser was unable to successfully track the pupil immediately following the anterior chamber bubble formation, temporarily postponing the completion of the procedure. There was an ethnicity predilection of anterior chamber gas formation toward Asians (p = 0.0055). An uncorrected visual acuity of 20/20 was ultimately achieved in all four cases without further complications. Conclusions. Anterior chamber gas bubble formation during femtosecond laser flap creation for LASIK is an uncommon event that typically results in a delay in treatment completion; nevertheless, it does influence final positive visual outcome. PMID:25954511

  2. Static liquid holdup in packed beds of spherical particles

    SciTech Connect

    Saez, A.E.; Yepez, M.M.; Cabrera, C.; Soria, E.M. )

    1991-11-01

    In this paper, the authors use dimensional analysis to establish the independent parameters that affect the static liquid holdup. The authors also present experimental data to explore the dependence of the static holdup on the E[umlt o]tv[umlt o]s number; through comparison with previous theoretical works, the authors analyze the mechanisms responsible for the effect of E[umlt o]tv[umlt o]s number on the static liquid holdup.

  3. Review of Monitoring Plans for Gas Bubble Disease Signs and Gas Supersaturation Levels on the Columbia and Snake Rivers.

    SciTech Connect

    Fidler, Larry; Elston, Ralph; Colt, John

    1994-07-01

    Montgomery Watson was retained by the Bonneville Power Administration to evaluate the monitoring program for gas bubble disease signs and dissolved gas supersaturation levels on the Columbia and Snake rivers. The results of this evaluation will provide the basis for improving protocols and procedures for future monitoring efforts. Key study team members were Dr. John Colt, Dr. Larry Fidler, and Dr. Ralph Elston. On the week of June 6 through 10, 1994 the study team visited eight monitoring sites (smolt, adult, and resident fish) on the Columbia and Snake rivers. Additional protocol evaluations were conducted at the Willard Field Station (National Biological Survey) and Pacific Northwest Laboratories at Richland (Battelle). On June 13 and 14, 1994, the study team visited the North Pacific Division office of the U.S. Corps of Engineers and the Fish Passage Center to collect additional information and data on the monitoring programs. Considering the speed at which the Gas Bubble Trauma Monitoring Program was implemented this year, the Fish Passage Center and cooperating Federal, State, and Tribal Agencies have been doing an incredible job. Thirty-one specific recommendations are presented in this report and are summarized in Section 14.

  4. Clostridium perfringens septicemia in a long-beaked common dolphin Delphinus capensis: an etiology of gas bubble accumulation in cetaceans.

    PubMed

    Danil, Kerri; St Leger, Judy A; Dennison, Sophie; Bernaldo de Quirós, Yara; Scadeng, Miriam; Nilson, Erika; Beaulieu, Nicole

    2014-10-16

    An adult female long-beaked common dolphin Delphinus capensis live-stranded in La Jolla, California, USA, on July 30, 2012 and subsequently died on the beach. Computed tomography and magnetic resonance imaging revealed gas bubble accumulation in the vasculature, organ parenchyma, mandibular fat pads, and subdermal sheath as well as a gas-filled cavity within the liver, mild caudal abdominal effusion, and fluid in the uterus. Gross examination confirmed these findings and also identified mild ulcerations on the palate, ventral skin, and flukes, uterine necrosis, and multifocal parenchymal cavitations in the brain. Histological review demonstrated necrosis and round clear spaces interpreted as gas bubbles with associated bacterial rods within the brain, liver, spleen, and lymph nodes. Anaerobic cultures of the lung, spleen, liver, bone marrow, and abdominal fluid yielded Clostridium perfringens, which was further identified as type A via a multiplex PCR assay. The gas composition of sampled bubbles was typical of putrefaction gases, which is consistent with the by-products of C. perfringens, a gas-producing bacterium. Gas bubble formation in marine mammals due to barotrauma, and peri- or postmortem off-gassing of supersaturated tissues and blood has been previously described. This case study concluded that a systemic infection of C. perfringens likely resulted in production of gas and toxins, causing tissue necrosis. PMID:25320031

  5. Experimental formation of massive hydrate deposits from accumulation of CH4 gas bubbles within synthetic and natural sediments

    SciTech Connect

    Madden, Megan Elwood; Szymcek, Phillip; Ulrich, Shannon M; McCallum, Scott D; Phelps, Tommy Joe

    2009-01-01

    In order for methane to be economically produced from the seafloor, prediction and detection of massive hydrate deposits will be necessary. In many cases, hydrate samples recovered from seafloor sediments appear as veins or nodules, suggesting that there are strong geologic controls on where hydrate is likely to accumulate. Experiments have been conducted examining massive hydrate accumulation from methane gas bubbles within natural and synthetic sediments in a large volume pressure vessels through temperature and pressure data, as well as visual observations. Observations of hydrate growth suggest that accumulation of gas bubbles within void spaces and at sediment interfaces likely results in the formation of massive hydrate deposits. Methane hydrate was first observed as a thin film forming at the gas/water interface of methane bubbles trapped within sediment void spaces. As bubbles accumulated, massive hydrate growth occurred. These experiments suggest that in systems containing free methane gas, bubble pathways and accumulation points likely control the location and habit of massive hydrate deposits.

  6. Dual gas-bubble-assisted solvothermal synthesis of magnetite with tunable size and structure.

    PubMed

    He, Quanguo; Wu, Zhaohui; Huang, Chunyan

    2011-10-01

    We present a facile solvothermal approach by employing ammonium bicarbonate (NH4HCO3) and ammonium acetate (NH4Ac) as dual gas-bubble-generating structure-directing agent to produce of magnetite (Fe3O4) particles with tunable size ranging from 90 nm to 400 nm and controllable structures including porous and hollow construction. The size, morphology and structure of the final products are achieved by simple adjustment of the molar ratio of NH4HCO3 and NH4Ac, ammonium ion concentration and the reaction time. The results reveal that the molar ratio of NH4HCO3 and NH4Ac strongly influenced the morphology and size of magnetite particles, even could decide the kind of architecture including solid, hollow and porous to form. Particularly, ammonium ion molar concentration plays a significant role in controlling size and magnetic property for magnetite particles. Simultaneously, prolonging the reaction time is beneficial to the magnetite particles growth and inner space escalation with altered reaction time at a certain concentration of ammonium and molar ratio of NH4HCO3 and NH4Ac. Such a design conception of dual gas-bubble-assistance used here is promisingly positive and significant for hollow magnetic particles fabrication and may be extended to other nano-scale hollow construction. PMID:22400226

  7. Venous gas bubble production following cold stress during a no-decompression dive.

    PubMed

    Dunford, R; Hayward, J

    1981-03-01

    The effect of cold stress on venous gas bubble production was studied using Doppler ultrasonic monitoring. Ten subjects participated in four exposure regimes carried out at 78 fsw on an underwater platform for 38 min of light exercise in 10 degrees C water. Two cold exposures (1/8-in. wet suit) and two warm exposures (insulated dry suit) were each followed by rewarming in a heated bath or by endogenous heat production while insulated in a sleeping bag. Results showed that for the cold dives compared to warm dives, air consumption increased 29%, rectal temperature dropped 0.8 degrees C by the end of the dive, mean skin temperature dropped 11 degrees C, and cooling rate correlated with mean skin fold and endomorphy (P less than 0.001). A threefold increase in bubble scores (P less than 0.025) was observed following the warm dives compared to the cold dives. The results suggest that inert gas uptake is reduced as a result of peripheral vasoconstriction when the cold stress is induced at the onset of the dive and maintained throughout. PMID:7222286

  8. Measurement of Entrapped Biogenic Gas Bubbles in Northern Peat Soils: Application of Resistivity and X-ray Computed Tomography.

    NASA Astrophysics Data System (ADS)

    Kettridge, N.; Binley, A.; Baird, A.

    2008-05-01

    Peatlands are the largest natural source per annum of CH4 emissions to the atmosphere. CH4 is lost from peatlands via diffusion or active transport through vascular plants, and as bubbles moving to the peatland surface - ebullition. The build up and ebullition of biogenic gas bubbles within northern peatlands is spatially variable and depends on the rate of CH4 production, the transport of dissolved CH4 to bubbles through pore water, and the physical properties of the peat. Recent measurements suggest a threshold bubble volume must be reached to trigger episodic or cyclic ebullition, which is assumed to be dependent on peat type. However, this threshold theory lacks a secure physical basis and therefore cannot be applied to simulate methane ebullition from northern peatlands with any confidence. We develop an approach to examine the structural attributes of the peat that cause and promote the trapping and release of bubbles by combining resistivity and X-ray computed tomography (CT). The spatial and temporal variation in the biogenic gas content of peat cores are identified from resistivity measurements. Areas of high and low entrapped gas content are subsequently correlated with the pore structure of the peat samples, characterised using CT. The CT images of the peat structure are vectorised to allow them to be analysed for metrics which relate to the ability of the peat to trap bubbles: e.g. stem length and width, number of branches, angle of branches. Difficulties applying these approaches within northern peatlands are examined. The low pore water conductivity of poorly decomposed near surface peat can hamper resistivity measurements at the laboratory scale, and electrolytic reactions induce the development of artificial gas bubbles. The similarity in linear attenuations between poorly decomposed Sphagnum and pore water also makes the peat structure indistinguishable from the pore water within standard CT scans. The peat samples must, therefore, first be doped with a solution of lead(II) nitrate which is adsorbed by the peat fibres, making them visible.

  9. The effects of total dissolved gas on chum salmon fry survival, growth, gas bubble disease, and seawater tolerance

    SciTech Connect

    Geist, David R.; Linley, Timothy J.; Cullinan, Valerie I.; Deng, Zhiqun

    2013-02-01

    Chum salmon Oncorhynchus keta alevin developing in gravel habitats downstream of Bonneville Dam on the Columbia River are exposed to elevated levels of total dissolved gas (TDG) when water is spilled at the dam to move migrating salmon smolts downstream to the Pacific Ocean. Current water quality criteria for the management of dissolved gas in dam tailwaters were developed primarily to protect salmonid smolts and are assumed to be protective of alevin if adequate depth compensation is provided. We studied whether chum salmon alevin exposed to six levels of dissolved gas ranging from 100% to 130% TDG at three development periods between hatch and emergence (hereafter early, middle, and late stage) suffered differential mortality, growth, gas bubble disease, or seawater tolerance. Each life stage was exposed for 50 d (early stage), 29 d (middle stage), or 16 d (late stage) beginning at 13, 34, and 37 d post-hatch, respectively, through 50% emergence. The mortality for all stages from exposure to emergence was estimated to be 8% (95% confidence interval (CI) of 4% to 12%) when dissolved gas levels were between 100% and 117% TDG. Mortality significantly increased as dissolved gas levels rose above 117% TDG,; with the lethal concentration that produced 50% mortality (LC50 ) was estimated to be 128.7% TDG (95% CI of 127.2% to 130.2% TDG) in the early and middle stages. By contrast, there was no evidence that dissolved gas level significantly affected growth in any life stage except that the mean wet weight at emergence of early stage fish exposed to 130% TDG was significantly less than the modeled growth of unexposed fish. The proportion of fish afflicted with gas bubble disease increased with increasing gas concentrations and occurred most commonly in the nares and gastrointestinal tract. Early stage fish exhibited higher ratios of filament to lamellar gill chloride cells than late stage fish, and these ratios increased and decreased for early and late stage fish, respectively, as gas levels increased; however, there were no significant differences in mortality between life stages after 96 h in seawater. The study results suggest that current water quality guidelines for the management of dissolved gas appear to offer a conservative level of protection to chum salmon alevin incubating in gravel habitat downstream of Bonneville Dam.

  10. Does nitrogen gas bubbled through a low density polymer gel dosimeter solution affect the polymerization process?

    PubMed Central

    Shahbazi-Gahrouei, Daryoush; Gholami, Mehrdad; Pourfallah, Tayyeb Allahverdi; Keshtkar, Mohammad

    2015-01-01

    Background: On account of the lower electron density in the lung tissue, the dose distribution in the lung cannot be verified with the existing polymer gel dosimeters. Thus, the aims of this study are to make a low density polymer gel dosimeter and investigate the effect of nitrogen gas bubbles on the R2 responses and its homogeneity. Materials and Methods: Two different types of low density polymer gel dosimeters were prepared according to a composition proposed by De Deene, with some modifications. In the first type, no nitrogen gas was perfused through the gel solution and water. In the second type, to expel the dissolved oxygen, nitrogen gas was perfused through the water and gel solution. The post-irradiation times in the gels were 24 and 5 hours, respectively, with and without perfusion of nitrogen gas through the water and gel solution. Results: In the first type of gel, there was a linear correlation between the doses and R2 responses from 0 to 12 Gy. The fabricated gel had a higher dynamic range than the other low density polymer gel dosimeter; but its background R2 response was higher. In the second type, no difference in R2 response was seen in the dose ranges from 0 to 18 Gy. Both gels had a mass density between 0.35 and 0.45 g.cm-3 and CT values of about -650 to -750 Hounsfield units. Conclusion: It appeared that reactions between gelatin-free radicals and monomers, due to an increase in the gel temperature during rotation in the household mixer, led to a higher R2-background response. In the second type of gel, it seemed that the collapse of the nitrogen bubbles was the main factor that affected the R2-responses. PMID:26015914

  11. How man-made interference might cause gas bubble emboli in deep diving whales

    PubMed Central

    Fahlman, Andreas; Tyack, Peter L.; Miller, Patrick J. O.; Kvadsheim, Petter H.

    2014-01-01

    Recent cetacean mass strandings in close temporal and spatial association with sonar activity has raised the concern that anthropogenic sound may harm breath-hold diving marine mammals. Necropsy results of the stranded whales have shown evidence of bubbles in the tissues, similar to those in human divers suffering from decompression sickness (DCS). It has been proposed that changes in behavior or physiological responses during diving could increase tissue and blood N2 levels, thereby increasing DCS risk. Dive data recorded from sperm, killer, long-finned pilot, Blainville's beaked and Cuvier's beaked whales before and during exposure to low- (1–2 kHz) and mid- (2–7 kHz) frequency active sonar were used to estimate the changes in blood and tissue N2 tension (PN2). Our objectives were to determine if differences in (1) dive behavior or (2) physiological responses to sonar are plausible risk factors for bubble formation. The theoretical estimates indicate that all species may experience high N2 levels. However, unexpectedly, deep diving generally result in higher end-dive PN2 as compared with shallow diving. In this focused review we focus on three possible explanations: (1) We revisit an old hypothesis that CO2, because of its much higher diffusivity, forms bubble precursors that continue to grow in N2 supersaturated tissues. Such a mechanism would be less dependent on the alveolar collapse depth but affected by elevated levels of CO2 following a burst of activity during sonar exposure. (2) During deep dives, a greater duration of time might be spent at depths where gas exchange continues as compared with shallow dives. The resulting elevated levels of N2 in deep diving whales might also make them more susceptible to anthropogenic disturbances. (3) Extended duration of dives even at depths beyond where the alveoli collapse could result in slow continuous accumulation of N2 in the adipose tissues that eventually becomes a liability. PMID:24478724

  12. How man-made interference might cause gas bubble emboli in deep diving whales.

    PubMed

    Fahlman, Andreas; Tyack, Peter L; Miller, Patrick J O; Kvadsheim, Petter H

    2014-01-01

    Recent cetacean mass strandings in close temporal and spatial association with sonar activity has raised the concern that anthropogenic sound may harm breath-hold diving marine mammals. Necropsy results of the stranded whales have shown evidence of bubbles in the tissues, similar to those in human divers suffering from decompression sickness (DCS). It has been proposed that changes in behavior or physiological responses during diving could increase tissue and blood N2 levels, thereby increasing DCS risk. Dive data recorded from sperm, killer, long-finned pilot, Blainville's beaked and Cuvier's beaked whales before and during exposure to low- (1-2 kHz) and mid- (2-7 kHz) frequency active sonar were used to estimate the changes in blood and tissue N2 tension (PN2 ). Our objectives were to determine if differences in (1) dive behavior or (2) physiological responses to sonar are plausible risk factors for bubble formation. The theoretical estimates indicate that all species may experience high N2 levels. However, unexpectedly, deep diving generally result in higher end-dive PN2 as compared with shallow diving. In this focused review we focus on three possible explanations: (1) We revisit an old hypothesis that CO2, because of its much higher diffusivity, forms bubble precursors that continue to grow in N2 supersaturated tissues. Such a mechanism would be less dependent on the alveolar collapse depth but affected by elevated levels of CO2 following a burst of activity during sonar exposure. (2) During deep dives, a greater duration of time might be spent at depths where gas exchange continues as compared with shallow dives. The resulting elevated levels of N2 in deep diving whales might also make them more susceptible to anthropogenic disturbances. (3) Extended duration of dives even at depths beyond where the alveoli collapse could result in slow continuous accumulation of N2 in the adipose tissues that eventually becomes a liability. PMID:24478724

  13. A pilot-scale jet bubbling reactor for wet flue gas desulfurization with pyrolusite.

    PubMed

    Su, Shi-jun; Zhu, Xiao-fan; Liu, Yong-jun; Jiang, Wen-ju; Jin, Yan

    2005-01-01

    MnO2 in pyrolusite can react with SO2 in flue gas and obtain by-product MnSO4 x H2O. A pilot scale jet bubbling reactor was applied in this work. Different factors affecting both SO2 absorption efficiency and Mn2+ extraction rate have been investigated, these factors include temperature of inlet gas flue, ration of liquid/solid mass flow rate (L/S), pyrolusite grade, and SO2 concentration in the inlet flue gas. In the meantime, the procedure of purification of absorption liquid was also discussed. Experiment results indicated that the increase of temperature from 30 to 70 K caused the increase of SO2 absorption efficiency from 81.4% to 91.2%. And when SO2 concentration in the inlet flue gas increased from 500 to 3000 ppm, SO2 absorption efficiency and Mn2+ extraction rate decreased from 98.1% to 82.2% and from 82.8% to 61.7%, respectively. The content of MnO2 in pyrolusite had a neglectable effect on SO2 absorption efficiency. Low L/S was good for both removal of SO2 and Mn2+ extraction. The absorption liquid was filtrated and purified to remove Si, Mg, Ca, Fe, Al and heavy metals, last product MnSO4 x H2O was obtained which quality could reach China GB1622-86, the industry grade standards. PMID:16313012

  14. Ion-induced density bubble in a strongly correlated one-dimensional gas

    SciTech Connect

    Goold, J.; Doerk, H.; Idziaszek, Z.; Calarco, T.; Busch, Th.

    2010-04-15

    We consider a harmonically trapped Tonks-Girardeau gas of impenetrable bosons in the presence of a single embedded ion, which is assumed to be tightly confined in an RF trap. In an ultracold ion-atom collision the ion's charge induces an electric dipole moment in the atoms which leads to an attractive r{sup -4} potential asymptotically. We treat the ion as a static deformation of the harmonic trap potential and model its short range interaction with the gas in the framework of quantum defect theory. The molecular bound states of the ionic potential are not populated due to the lack of any possible relaxation process in the Tonks-Girardeau regime. Armed with this knowledge we calculate the density profile of the gas in the presence of a central ionic impurity and show that a density bubble of the order of 1{mu}m occurs around the ion for typical experimental parameters. From these exact results we show that an ionic impurity in a Tonks gas can be described using a pseudopotential approximation, allowing for significantly easier treatment.

  15. Bubble characteristics in the radial direction of three-phase fluidized beds

    SciTech Connect

    Yu, Y.H.; Kim, S.D. )

    1988-12-01

    Bubble characteristics such as bubble size and rising velocity in three-phase fluidized beds provide the basic information for analyzing phase holdup, axial and radial mixing and heat and mass transfer characteristics. The relationship between the bubble size and its rising velocity and the bubble size distribution in three-phase fluidized beds have been investigated. On the other hand, bubble size reduction has been observed by addition of floating bubble breakers. This paper presents a study on the bubble holdup mean velocity, and mean bubble chord length in a three-phase fluidized bed of 0.254 m-ID with four different particle sizes (0.4--6.0 mm).

  16. Near-wall measurements of the bubble- and Lorentz-force-driven convection at gas-evolving electrodes

    NASA Astrophysics Data System (ADS)

    Baczyzmalski, Dominik; Weier, Tom; Kähler, Christian J.; Cierpka, Christian

    2015-08-01

    Chemical energy storage systems, e.g., in the form of hydrogen or methanol, have a great potential for the establishment of volatile renewable energy sources due to the large energy density. The efficiency of hydrogen production through water electrolysis is, however, limited by gas bubbles evolving at the electrode's surface and can be enhanced by an accelerated bubble detachment. In order to characterize the complex multi-phase flow near the electrode, simultaneous measurements of the fluid velocities and the size and trajectories of hydrogen bubbles were performed in a water electrolyzer. The liquid phase velocity was measured by PIV/PTV, while shadowgraphy was used to determine the bubble trajectories. Special measurement and evaluation techniques had to be applied as the measurement uncertainty is strongly affected by the high void fraction close to the wall. In particular, the application of an advanced PTV scheme allowed for more precise fluid velocity measurements closer to electrode. Based on these data, stability characteristics of the near-wall flow were evaluated and compared to that of a wall jet. PTV was used as well to investigate the effect of Lorentz forces on the near-wall fluid velocities. The results show a significantly increased wall parallel liquid phase velocity with increasing Lorentz forces. It is presumed that this enhances the detachment of hydrogen bubbles from the electrode surface and, consequently, decreases the fractional bubble coverage and improves the efficiency. In addition, the effect of large rising bubbles with path oscillations on the near-wall flow was investigated. These bubbles can have a strong impact on the mass transfer near the electrode and thus affect the performance of the process.

  17. Passive acoustic derived bubble flux and applications to natural gas seepage in the Mackenzie Delta, NWT, Canada and Coal Oil Point, CA

    NASA Astrophysics Data System (ADS)

    Culling, D.; Leifer, I.; Dallimore, S.; Alcala, K.

    2012-12-01

    Methane is a prominent greenhouse gas that escapes naturally from thermogenic reservoirs as seepage from marine and lacustrine biogenic sources as bubble ebullition. Geologic methane emissions are critically important contributors to the global methane budget however, few quantitative flux measurements are available for shallow waters. This gap in knowledge is critical as in these settings gas can easily transit as bubbles through the water column and directly influence global atmospheric budgets. Video and active acoustic (sonar) measurements of bubble flux have spatial limitations requiring predictable bubble emission location. Passive acoustics are less affected by these limitations, in addition, they can provide data in water too shallow for effective sonar bubble observations. Lab tests were undertaken to quantify the acoustic signature of bubbles formed in non-cohesive sediments. specifically focusing on mechanisms that complicate interpretation of acoustic data. Lab tests then were compared to field data to provide measurement calibration/validation. The principles behind the acoustic analysis method are based on the Minnaert equation, which relates a bubble radius and acoustic frequency. Bubble size and the resultant acoustic frequency from known flows and capillary tube diameters are well documented; however changing sediment pathways adds to the complexity of bubble formation and the resultant bubble acoustic signal. These complex signals were investigated in a lab tank with a thick, cohesive fine-grained sediment bed, through which bubbles produced by a syringe pump migrated to the sediment-water interface. Then, the resultant bubbles were diverted into clear water and measured from high speed, high definition video, while the acoustic signature of bubble formation was recorded concurrently by a hydrophone. Bubble formation is influenced by currents, which shifts the acoustical signal towards a higher frequency with a more complex pattern than the Minnaert equation predicts. Furthermore, bubbles from a cohesive media escaped in pulses of multiple bubbles, which caused significant inter-bubble acoustic coupling and mud-bubble interaction. The acoustic signature of subsurface bubble migration and concurrent sediment movements, including bubble pinch off, presented additional complexities. Use of passive acoustic derived flux was applied to natural gas seepage in the Mackenzie Delta in the North West Territories, Canada as well as offshore Coal Oil Point (COP), CA. Video data were used to calibrate the COP acoustic observations and showed a strong current impact for non-cohesive sediments. Seepage flux in the delta (cohesive sediments) was calibrated using a custom turbine tent that directly measured flux. Further applications of passive acoustic-derived seep fluxes include monitoring of marine pipelines for leaks, and studying biogenic wetlands ebullition as well as thermogenic and hydrate seepage.

  18. Fuel Performance Experiments and Modeling: Fission Gas Bubble Nucleation and Growth in Alloy Nuclear Fuels

    SciTech Connect

    McDeavitt, Sean; Shao, Lin; Tsvetkov, Pavel; Wirth, Brian; Kennedy, Rory

    2014-04-07

    Advanced fast reactor systems being developed under the DOE's Advanced Fuel Cycle Initiative are designed to destroy TRU isotopes generated in existing and future nuclear energy systems. Over the past 40 years, multiple experiments and demonstrations have been completed using U-Zr, U-Pu-Zr, U-Mo and other metal alloys. As a result, multiple empirical and semi-empirical relationships have been established to develop empirical performance modeling codes. Many mechanistic questions about fission as mobility, bubble coalescience, and gas release have been answered through industrial experience, research, and empirical understanding. The advent of modern computational materials science, however, opens new doors of development such that physics-based multi-scale models may be developed to enable a new generation of predictive fuel performance codes that are not limited by empiricism.

  19. Gas Bubble Trauma Monitoring in the Clearwater River Drainage, Idaho 1998.

    SciTech Connect

    Cochnauer, Tim

    1998-12-01

    Select portions of the Clearwater and North Fork of the Clearwater rivers were electroshocked to estimate the incidence of gas bubble trauma (GBT) occurring in resident fish populations for the spring and summer months of 1998. The study area was divided into four sections and sampled weekly during periods of spill and non-spill from Dworshak Dam. Five thousand five hundred and forty one fish, representing 22 different species, were captured and examined for GBT. Two fish were detected with signs of GBT; exhibiting the lowest incidence of GBT in the last four years (0.04%). Reduced discharge and lower levels of total dissolved gases may have resulted in lower incidence of GBT in the 1998 monitoring period.

  20. Homogeneous bubble nucleation in binary systems of liquid solvent and dissolved gas

    NASA Astrophysics Data System (ADS)

    Němec, Tomáš

    2016-03-01

    A formulation of the classical nucleation theory (CNT) is developed for bubble nucleation in a binary system composed of a liquid solvent and a dissolved gas. The theoretical predictions are compared to the experimental nucleation data of four binary mixtures, i.e. diethylether - nitrogen, propane - carbon dioxide, isobutane - carbon dioxide, and R22 (chlorodifluoromethane) - carbon dioxide. The presented CNT formulation is found to improve the precision of the simpler theoretical method of Ward et al. [J. Basic Eng. 92 (10), 71-80, 1970] based on the weak-solution approximation. By analyzing the available experimental nucleation data, an inconsistency in the data reported by Mori et al. [Int. J. Heat Mass Transfer, 19 (10), 1153-1159, 1976] for propane - carbon dioxide and R22 - carbon dioxide is identified.

  1. Research on acting mechanism and behavior of a gas bubble in the air dense medium fluidized bed

    SciTech Connect

    Tao, X.; Chen, Q.; Yang, Y.; Chen, Z.

    1996-12-31

    Coal dry beneficiation with air-dense medium fluidized bed has now been established as a high efficiency dry separation technology, it is the application of fluidization technology to the coal preparation field. The tiny particle media forms an uniform and stable fluidized bed with a density acted by airflow, which is used to separate 80{micro}m to {approximately}6mm size coal. This technology has achieved satisfied industrialization results, and attracted the expert`s attention in the field. In fluidized bed, the interaction between gas and solid was mainly decided by the existence state of heavy media particles mass (position and distance) relative velocity of gas-solid two phase, as well turbulent action. A change of vertical gas-solid fluidizing state essentially is the one of a energy transforming process. For a coal separating process with air-dense medium fluidized bed, the gas bubble, producing a turbulent and stirring action in the bed, leads to two effects. It can promote a uniform distribution of heavy media particles, and a uniform and stability of a bed density. Otherwise it will decrease effective contacts between gas-solids two phases, producing a bigger gas bubble. Therefore controlling a gas bubble size in bed should be optimized. This paper analyzes mutual movement between gas-solid, and studies the gas bubble behavior in the bed. A mechanic mode and a separating process of coal in the bed is discussed. It aims to research the coal separating mechanism with air-dense fluidized bed.

  2. Relationship of the time course of venous gas bubbles to altitude decompression illness

    NASA Technical Reports Server (NTRS)

    Conkin, J.; Foster, P. P.; Powell, M. R.; Waligora, J. M.

    1996-01-01

    The correlation is low between the occurrence of gas bubbles in the pulmonary artery, called venous gas emboli (VGE), and subsequent decompression illness (DCI). The correlation improves when a "grade" of VGE is considered; a zero to four categorical classification based on the intensity and duration of the VGE signal from a Doppler bubble detector. Additional insight about DCI might come from an analysis of the time course of the occurrence of VGE. Using the NASA Hypobaric Decompression Sickness Databank, we compared the time course of the VGE outcome between 322 subjects who exercised and 133 Doppler technicians who did not exercise to evaluate the role of physical activity on the VGE outcome and incidence of DCI. We also compared 61 subjects with VGE and DCI with 110 subjects with VGE but without DCI to identify unique characteristics about the time course of the VGE outcome to try to discriminate between DCI and no-DCI cases. The VGE outcome as a function of time showed a characteristic short lag, rapid response, and gradual recovery phase that was related to physical activity at altitude and the presence or absence of DCI. The average time for DCI symptoms in a limb occurred just before the time of the highest fraction of VGE in the pulmonary artery. It is likely, but not certain, that an individual will report a DCI symptom if VGE are detected early in the altitude exposure, the intensity or grade of VGE rapidly increases from a limb region, and the intensity or grade of VGE remains high.

  3. Vortex motion in the near-wake region behind a single gas bubble in a liquid-solid fluidized bed - The pendulum model for wake size prediction

    SciTech Connect

    Tsuchiya, K.; Fan, L.S.

    1987-01-01

    A mechanistic model, denoted as the pendulum model, which interrelates the frequency of vortex shedding and the size of the bubble wake is developed based on secondary motion of a single gas bubble rising in liquids and/or liquid-solid suspensions. In the model, the bubble and its primary wake are regarded as a single semi-rigid body steadily rocking at the vortex shedding frequency. Inherent model parameters, including bubble geometric parameters, the bubble rise velocity and the vortex shedding frequency, are expressed in terms of the bubble size to permit a priori prediction of the wake size. The predicted wake sizes are compared satisfactorily with the experimental data reported in the literature over a wide range of the bubble Reynolds number.

  4. Sparger Effects on Gas Volume Fraction Distributions in Vertical Bubble-Column Flows as Measured by Gamma-Densitometry Tomography

    SciTech Connect

    GEORGE,DARIN L.; SHOLLENBERGER,KIM ANN; TORCZYNSKI,JOHN R.

    2000-01-18

    Gamma-densitometry tomography is applied to study the effect of sparger hole geometry, gas flow rate, column pressure, and phase properties on gas volume fraction profiles in bubble columns. Tests are conducted in a column 0.48 m in diameter, using air and mineral oil, superficial gas velocities ranging from 5 to 30 cm s{sup -1}, and absolute column pressures from 103 to 517 kPa. Reconstructed gas volume fraction profiles from two sparger geometries are presented. The development length of the gas volume fraction profile is found to increase with gas flow rate and column pressure. Increases in gas flow rate increase the local gas volume fraction preferentially on the column axis, whereas increases in column pressure produce a uniform rise in gas volume fraction across the column. A comparison of results from the two spargers indicates a significant change in development length with the number and size of sparger holes.

  5. Lateral line pore diameters correlate with the development of gas bubble trauma signs in several Columbia River fishes

    USGS Publications Warehouse

    Morris, R.G.; Beeman, J.W.; VanderKooi, S.P.; Maule, A.G.

    2003-01-01

    Gas bubble trauma (GBT) caused by gas supersaturation of river water continues to be a problem in the Columbia River Basin. A common indicator of GBT is the percent of the lateral line occluded with gas bubbles; however, this effect has never been examined in relation to lateral line morphology. The effects of 115, 125 and 130% total dissolved gas levels were evaluated on five fish species common to the upper Columbia River. Trunk lateral line pore diameters differed significantly (P<0.0001) among species (longnose sucker>largescale sucker>northern pikeminnow???chinook salmon???redside shiner). At all supersaturation levels evaluated, percent of lateral line occlusion exhibited an inverse correlation to pore size but was not generally related to total dissolved gas level or time of exposure. This study suggests that the differences in lateral line pore diameters between species should be considered when using lateral line occlusion as an indicator of gas bubble trauma. ?? 2003 Elsevier Science Inc. All rights reserved.

  6. Enriched Air Nitrox Breathing Reduces Venous Gas Bubbles after Simulated SCUBA Diving: A Double-Blind Cross-Over Randomized Trial

    PubMed Central

    Souday, Vincent; Koning, Nick J.; Perez, Bruno; Grelon, Fabien; Mercat, Alain; Boer, Christa; Seegers, Valérie; Radermacher, Peter; Asfar, Pierre

    2016-01-01

    Objective To test the hypothesis whether enriched air nitrox (EAN) breathing during simulated diving reduces decompression stress when compared to compressed air breathing as assessed by intravascular bubble formation after decompression. Methods Human volunteers underwent a first simulated dive breathing compressed air to include subjects prone to post-decompression venous gas bubbling. Twelve subjects prone to bubbling underwent a double-blind, randomized, cross-over trial including one simulated dive breathing compressed air, and one dive breathing EAN (36% O2) in a hyperbaric chamber, with identical diving profiles (28 msw for 55 minutes). Intravascular bubble formation was assessed after decompression using pulmonary artery pulsed Doppler. Results Twelve subjects showing high bubble production were included for the cross-over trial, and all completed the experimental protocol. In the randomized protocol, EAN significantly reduced the bubble score at all time points (cumulative bubble scores: 1 [0–3.5] vs. 8 [4.5–10]; P < 0.001). Three decompression incidents, all presenting as cutaneous itching, occurred in the air versus zero in the EAN group (P = 0.217). Weak correlations were observed between bubble scores and age or body mass index, respectively. Conclusion EAN breathing markedly reduces venous gas bubble emboli after decompression in volunteers selected for susceptibility for intravascular bubble formation. When using similar diving profiles and avoiding oxygen toxicity limits, EAN increases safety of diving as compared to compressed air breathing. Trial Registration ISRCTN 31681480 PMID:27163253

  7. Tritium inventory differences. I. Sampling and U-getter pump holdup

    SciTech Connect

    Ellefson, R.E.; Gill, J.T.

    1986-06-22

    Inventory differences (ID) in tritium material balance accounts (MBA) can occur with unmeasured transfers from the process or unmeasured holdup in the system. Small but cumulatively significant quantities of tritium can leave the MBA by normal capillary sampling of process gas operation. A predictor model for estimating the quantity of tritium leaving the MBA by sampling has been developed and implemented. The model calculates the gas transferred per sample; using the tritium concentration in the process and the number of samples, a quantity of tritium transferred is predicted. Verification of the model is made by PVT measurement of process transfer from multiple samplings. Conparison of predicted sample transfers with the IDs from several MBAs reveals that sampling typically represents 50% of unmeasured transfers for regularly sampled processes. Another source of ID is unmeasured houldup of tritium in U-getter pumps. A method of measuring T/sub 2/ holdup by D/sub 2/ dilution has been developed and applied to three different U-getter pumps at Mound. Replicate dilution experiments on the same pumps speread over a nine-month period indicates that getter pumps have holdup quantities related to regeneration performance.

  8. Inertial-Fusion-Related Hydrodynamic Instabilities in a Spherical Gas Bubble Accelerated by a Planar Shock Wave

    SciTech Connect

    Niederhaus, John; Ranjan, Devesh; Anderson, Mark; Oakley, Jason; Bonazza, Riccardo; Greenough, Jeff

    2005-05-15

    Experiments studying the compression and unstable growth of a dense spherical bubble in a gaseous medium subjected to a strong planar shock wave (2.8 < M < 3.4) are performed in a vertical shock tube. The test gas is initially contained in a free-falling spherical soap-film bubble, and the shocked bubble is imaged using planar laser diagnostics. Concurrently, simulations are carried out using a compressible hydrodynamics code in r-z axisymmetric geometry.Experiments and computations indicate the formation of characteristic vortical structures in the post-shock flow, due to Richtmyer-Meshkov and Kelvin-Helmholtz instabilities, and smaller-scale vortices due to secondary effects. Inconsistencies between experimental and computational results are examined, and the usefulness of the current axisymmetric approach is evaluated.

  9. Bubble diagnostics

    DOEpatents

    Visuri, Steven R.; Mammini, Beth M.; Da Silva, Luiz B.; Celliers, Peter M.

    2003-01-01

    The present invention is intended as a means of diagnosing the presence of a gas bubble and incorporating the information into a feedback system for opto-acoustic thrombolysis. In opto-acoustic thrombolysis, pulsed laser radiation at ultrasonic frequencies is delivered intraluminally down an optical fiber and directed toward a thrombus or otherwise occluded vessel. Dissolution of the occlusion is therefore mediated through ultrasonic action of propagating pressure or shock waves. A vapor bubble in the fluid surrounding the occlusion may form as a result of laser irradiation. This vapor bubble may be used to directly disrupt the occlusion or as a means of producing a pressure wave. It is desirable to detect the formation and follow the lifetime of the vapor bubble. Knowledge of the bubble formation and lifetime yields critical information as to the maximum size of the bubble, density of the absorbed radiation, and properties of the absorbing material. This information can then be used in a feedback system to alter the irradiation conditions.

  10. HYDRODYNAMIC MODELS FOR SLURRY BUBBLE COLUMN REACTORS. FINAL TECHNICAL REPORT ALSO INCLUDES THE QUARTERLY TECHNICAL REPORT FOR THE PERIOD 01/01/1997 - 03/31/1997.

    SciTech Connect

    DIMITRI GIDASPOW

    1997-08-15

    The objective of this study is to develop a predictive experimentally verified computational fluid dynamic (CFD) three phase model. It predicts the gas, liquid and solid hold-ups (volume fractions) and flow patterns in the industrially important bubble-coalesced (churn-turbulent) regime. The input into the model can be either particulate viscosities as measured with a Brookfield viscometer or effective restitution coefficient for particles. A combination of x-ray and {gamma}-ray densitometers was used to measure solid and liquid volume fractions. There is a fair agreement between the theory and the experiment. A CCD camera was used to measure instantaneous particle velocities. There is a good agreement between the computed time average velocities and the measurements. There is an excellent agreement between the viscosity of 800 {micro}m glass beads obtained from measurement of granular temperature (random kinetic energy of particles) and the measurement using a Brookfield viscometer. A relation between particle Reynolds stresses and granular temperature was found for developed flow. Such measurement and computations gave a restitution coefficient for a methanol catalyst to be about 0.9. A transient, two-dimensional hydrodynamic model for production of methanol from syn-gas in an Air Products/DOE LaPorte slurry bubble column reactor was developed. The model predicts downflow of catalyst at the walls and oscillatory particle and gas flow at the center, with a frequency of about 0.7 Hertz. The computed temperature variation in the rector with heat exchangers was only about 5 K, indicating good thermal management. The computed slurry height, the gas holdup and the rate of methanol production agree with LaPorte's reported data. Unlike the previous models in the literature, this model computes the gas and the particle holdups and the particle rheology. The only adjustable parameter in the model is the effective particle restitution coefficient.

  11. Measurement of bubble size distribution in a gas-liquid foam using pulsed-field gradient nuclear magnetic resonance.

    PubMed

    Stevenson, Paul; Sederman, Andrew J; Mantle, Mick D; Li, Xueliang; Gladden, Lynn F

    2010-12-01

    Pulsed-field gradient nuclear magnetic resonance, previously used for measuring droplet size distributions in emulsions, has been used to measure bubble size distributions in a non-overflowing pneumatic gas-liquid foam that has been created by sparging propane into an aqueous solution of 1.5g/l (5.20mM) SDS. The bubble size distributions measured were reproducible and approximated a Weibull distribution. However, the bubble size distributions did not materially change with position at which they were measured within the froth. An analysis of foam coarsening due to Ostwald ripening in a non-overflowing foam indicates that, for the experimental conditions employed, one would not expect this to be a significant effect. It is therefore apparent that the eventual collapse of the foam is due to bubble bursting (or surface coalescence) rather than Ostwald ripening. This surface coalescence occurs because of evaporation from the free surface of the foam. An analytical solution for the liquid fraction profile for a certain class of non-overflowing pneumatic foam is given, and a mean bubble size that is appropriate for drainage calculations is suggested. PMID:20832808

  12. Fission gas bubble nucleated cavitational swelling of the alpha-uranium phase of irradiated U-Pu-Zr fuel

    SciTech Connect

    Rest, J.

    1992-04-01

    Cavitational swelling has been identified as a potential swelling mechanism for the alpha uranium phase of irradiated U-Pu-Zr metal fuels for the Integral Fast Reactor being developed at Argonne National Laboratory. The trends of U-Pu-Zr swelling data prior to fuel cladding contact can be interpreted in terms of unrestrained cavitational driven swelling. It is theorized that the swelling mechanisms at work in the alpha uranium phase can be modeled by single vacancy and single interstitial kinetics with intergranular gas bubbles providing the void nuclei, avoiding the use of complicated defect interaction terms required for the calculation of void nucleation. The focus of the kinetics of fission gas evolution as it relates to cavitational swelling is prior to the formation of a significant amount of interconnected porosity and is on the development of small intergranular gas bubbles which can act as void nuclei. Calculations for the evolution of intergranular fission gas bubbles show that they provide critical cavity sizes (i.e., the size above which the cavity will grow by bias-driven vacancy flux) consistent with the observed incubation dose for the onset of rapid swelling and gas release.

  13. Gas bubble dimensions in Archean lava flows indicate low air pressure at 2.7 Ga

    NASA Astrophysics Data System (ADS)

    Som, S. M.; Buick, R.; Hagadorn, J.; Blake, T.; Perreault, J.; Harnmeijer, J.; Catling, D. C.

    2014-12-01

    Air pressure constrains atmospheric composition, which, in turn, is linked to the Earth system through biogeochemical cycles and fluxes of volatiles from and to the Earth's interior. Previous studies have only placed maximum levels on surface air pressure for the early Earth [1]. Here, we calculate an absolute value for Archean barometric pressure using gas bubble size (vesicle) distributions in uninflated basaltic lava flows that solidified at sea level 2.7 billion years ago in the Pilbara Craton, Western Australia. These vesicles have been filled in by secondary minerals deposited during metasomatism and so are now amydules, but thin sections show that infilling did not change vesicle dimensions. Amygdule dimensions are measured using high-resolution X-ray tomography from core samples obtained from the top and bottom of the lava flows. The modal size expressed at the top and at the bottom of an uninflated flow can be linked to atmospheric pressure using the ideal gas law. Such a technique has been verified as a paleoaltimeter using Hawaiian Quaternary lava flows [2]. We use statistical methods to estimate the mean and standard deviation of the volumetric size of the amygdules by applying 'bootstrap'resampling and the Central Limit Theorem. Our data indicate a surprisingly low atmospheric pressure. Greater nitrogen burial under anaerobic conditions likely explains lower pressure. Refs: [1] Som et al. (2012) Nature 484, 359-262. D. L. Sahagian et al. (2002) J. Geol., 110, 671-685.

  14. Tiny Bubbles.

    ERIC Educational Resources Information Center

    Kim, Hy

    1985-01-01

    A simple oxygen-collecting device (easily constructed from glass jars and a lid) can show bubbles released by water plants during photosynthesis. Suggestions are given for: (1) testing the collected gas; (2) using various carbon dioxide sources; and (3) measuring respiration. (DH)

  15. Segregating gas from melt: an experimental study of the Ostwald ripening of vapor bubbles in magmas

    NASA Astrophysics Data System (ADS)

    Lautze, Nicole C.; Sisson, Thomas W.; Mangan, Margaret T.; Grove, Timothy L.

    2011-02-01

    Diffusive coarsening (Ostwald ripening) of H2O and H2O-CO2 bubbles in rhyolite and basaltic andesite melts was studied with elevated temperature-pressure experiments to investigate the rates and time spans over which vapor bubbles may enlarge and attain sufficient buoyancy to segregate in magmatic systems. Bubble growth and segregation are also considered in terms of classical steady-state and transient (non-steady-state) ripening theory. Experimental results are consistent with diffusive coarsening as the dominant mechanism of bubble growth. Ripening is faster in experiments saturated with pure H2O than in those with a CO2-rich mixed vapor probably due to faster diffusion of H2O than CO2 through the melt. None of the experimental series followed the time1/3 increase in mean bubble radius and time-1 decrease in bubble number density predicted by classical steady-state ripening theory. Instead, products are interpreted as resulting from transient regime ripening. Application of transient regime theory suggests that bubbly magmas may require from days to 100 years to reach steady-state ripening conditions. Experimental results, as well as theory for steady-state ripening of bubbles that are immobile or undergoing buoyant ascent, indicate that diffusive coarsening efficiently eliminates micron-sized bubbles and would produce mm-sized bubbles in 102-104 years in crustal magma bodies. Once bubbles attain mm-sizes, their calculated ascent rates are sufficient that they could transit multiple kilometers over hundreds to thousands of years through mafic and silicic melt, respectively. These results show that diffusive coarsening can facilitate transfer of volatiles through, and from, magmatic systems by creating bubbles sufficiently large for rapid ascent.

  16. Segregating gas from melt: an experimental study of the Ostwald ripening of vapor bubbles in magmas

    USGS Publications Warehouse

    Lautze, Nicole C.; Sisson, Thomas W.; Mangan, Margaret T.; Grove, Timothy L.

    2011-01-01

    Diffusive coarsening (Ostwald ripening) of H2O and H2O-CO2 bubbles in rhyolite and basaltic andesite melts was studied with elevated temperature–pressure experiments to investigate the rates and time spans over which vapor bubbles may enlarge and attain sufficient buoyancy to segregate in magmatic systems. Bubble growth and segregation are also considered in terms of classical steady-state and transient (non-steady-state) ripening theory. Experimental results are consistent with diffusive coarsening as the dominant mechanism of bubble growth. Ripening is faster in experiments saturated with pure H2O than in those with a CO2-rich mixed vapor probably due to faster diffusion of H2O than CO2 through the melt. None of the experimental series followed the time1/3 increase in mean bubble radius and time-1 decrease in bubble number density predicted by classical steady-state ripening theory. Instead, products are interpreted as resulting from transient regime ripening. Application of transient regime theory suggests that bubbly magmas may require from days to 100 years to reach steady-state ripening conditions. Experimental results, as well as theory for steady-state ripening of bubbles that are immobile or undergoing buoyant ascent, indicate that diffusive coarsening efficiently eliminates micron-sized bubbles and would produce mm-sized bubbles in 102–104 years in crustal magma bodies. Once bubbles attain mm-sizes, their calculated ascent rates are sufficient that they could transit multiple kilometers over hundreds to thousands of years through mafic and silicic melt, respectively. These results show that diffusive coarsening can facilitate transfer of volatiles through, and from, magmatic systems by creating bubbles sufficiently large for rapid ascent.

  17. Tribonucleation of bubbles

    NASA Astrophysics Data System (ADS)

    Wildeman, Sander; Lhuissier, Henri; Sun, Chao; Prosperetti, Andrea; Lohse, Detlef

    2013-11-01

    We report on the nucleation of bubbles on solids that are gently rubbed against each other while immersed in a gas-supersaturated liquid. For given supersaturation and surface material, bubble nucleation is only observed beyond a certain threshold for the rubbing force and velocity. Above this threshold, a regularly spaced row of growing bubbles is left behind on the surface. Direct observation through the bottom of a transparent solid shows that each bubble in the row results from the early coalescence of several microscopic bubbles. From a detailed study of the wear tracks it seems that these gas nuclei originate from a local fracturing of the surface asperities in the contact area.

  18. Bubble size distribution in a gas sparged vessel agitated by a Rushton turbine

    SciTech Connect

    Parthasarathy, R.; Ahmed, N. . Dept. of Chemical Engineering)

    1994-03-01

    The effect of agitation, due to a Rushton turbine, on the bubble size and bubble size distribution has been studied in an aerated vessel. By using a noncoalescing system, it has been possible to study the bubble breakup process in isolation. Bubbles of two different sizes, with d[sub 32] of 300 [mu]m and 2.5 mm, are generated using porous spargers. With no agitation, the bubble populations are found to exhibit a log-normal distribution. The 300-[mu]m bubbles are too small to undergo further breakage for the range of impeller speeds studied, and the size distribution is preserved. The larger bubbles are broken by agitation and the d[sub 32] decreases. Also with increasing agitation, the size distribution changes from unimodal to bimodal, and again to unimodal, as the bubble population moves progressively down the size scale. A model proposed, based on the energy dissipated in the impeller zone, predicts the continually changing pattern of the bubble size distributions satisfactorily.

  19. A Phase-Field Approach to Modeling Hydrate Formation on Methane Gas Bubbles in a Water Column

    NASA Astrophysics Data System (ADS)

    Fu, X.; Cueto-Felgueroso, L.; Waite, W. F.; Ruppel, C. D.; Juanes, R.

    2014-12-01

    Methane hydrates are water-based crystalline solids, where gas molecules are trapped inside the lattice structure formed by water. Most commonly found in deep ocean floors where low temperature and high pressure are primal conditions for hydrate to form, gas hydrates contain most of the world's mobile carbon and yet it remains an important and open question how methane leakage from gas hydrate impacts ocean and the atmosphere. While current work focus on the breakdown of gas hydrate in marine environment and the the release of methane from seafloor, few studies explore the fate of a single or a plume of methane bubbles when entering the water column after the release. We propose to study the fate of an individual and a series of methane bubbles through mathematical modeling, specifically using a phase-field approach. Phase-field modeling is a mathematical framework that describes systems that are out of thermodynamic equilibrium. First introduced in the context of solidification process and phase transitions, it has since been adopted in the field of multiphase flow. In this work, we present a new phase-field formulation for multiphase/multicomponent flows that allows us to model the fate of methane bubbles in the water system as a nonequilibrium process.

  20. Experiments on the motion of gas bubbles in turbulence generated by an active grid

    NASA Astrophysics Data System (ADS)

    Poorte, R. E. G.; Biesheuvel, A.

    2002-06-01

    The random motion of nearly spherical bubbles in the turbulent flow behind a grid is studied experimentally. In quiescent water these bubbles rise at high Reynolds number. The turbulence is generated by an active grid of the design of Makita (1991), and can have turbulence Reynolds number R[lambda] of up to 200. Minor changes in the geometry of the grid and in its mode of operation improves the isotropy of the turbulence, compared with that reported by Makita (1991) and Mydlarski & Warhaft (1996). The trajectory of each bubble is measured with high spatial and temporal resolution with a specially developed technique that makes use of a position-sensitive detector. Bubble statistics such as the mean rise velocity and the root-mean-square velocity fluctuations are obtained by ensemble averaging over many identical bubbles. The resulting bubble mean rise velocity is significantly reduced (up to 35%) compared with the quiescent conditions. The vertical bubble velocity fluctuations are found to be non-Gaussian, whereas the horizontal displacements are Gaussian for all times. The diffusivity of bubbles is considerably less than that of fluid particles. These findings are qualitatively consistent with results obtained through theoretical analysis and numerical simulations by Spelt & Biesheuvel (1997).

  1. Hold-up power supply for flash memory

    NASA Technical Reports Server (NTRS)

    Ott, William E. (Inventor)

    2004-01-01

    A hold-up power supply for flash memory systems is provided. The hold-up power supply provides the flash memory with the power needed to temporarily operate when a power loss exists. This allows the flash memory system to complete any erasures and writes, and thus allows it to shut down gracefully. The hold-up power supply detects when a power loss on a power supply bus is occurring and supplies the power needed for the flash memory system to temporally operate. The hold-up power supply stores power in at least one capacitor. During normal operation, power from a high voltage supply bus is used to charge the storage capacitors. When a power supply loss is detected, the power supply bus is disconnected from the flash memory system. A hold-up controller controls the power flow from the storage capacitors to the flash memory system. The hold-up controller uses feedback to assure that the proper voltage is provided from the storage capacitors to the flash memory system. This power supplied by the storage capacitors allows the flash memory system to complete any erasures and writes, and thus allows the flash memory system to shut down gracefully.

  2. Hydrodynamic characteristics and gas-liquid mass transfer in a biofilm airlift suspension reactor.

    PubMed

    Nicolella, C; van Loosdrecht, M C; van der Lans, R G; Heijnen, J J

    1998-12-01

    The hydrodynamics and mass transfer, specifically the effects of gas velocity and the presence and type of solids on the gas hold-up and volumetric mass transfer coefficient, were studied on a lab-scale airlift reactor with internal draft tube. Basalt particles and biofilm-coated particles were used as solid phase. Three distinct flow regimes were observed with increasing gas flow rate. The influence of the solid phase on the hydrodynamics was a peculiar characteristic of the regimes. The volumetric mass transfer coefficient was found to decrease with increasing solid loading and particle size. This could be predominantly related to the influence that the solid has on gas hold-up. The ratio between gas hold-up and volumetric mass transfer coefficient was found to be independent of solid loading, size, or density, and it was proven that the presence of solids in airlift reactors lowers the number of gas bubbles without changing their size. To evaluate scale effects, experimental results were compared with theoretical and empirical models proposed for similar systems. PMID:10099471

  3. A generalized bubble diameter correlation for gas-solid fluidized beds

    SciTech Connect

    Horio, M.; Nonaka, A.

    1987-11-01

    A new bubble diameter correlation is derived to predict bubbling characteristics of fluidized beds of varieties of powders. The present model is founded on the postulate that the steady bubble size, which is often called the maximum stable diameter, observed in a bed of Geldart group A powder is formed as a result of an equilibrium of successive coalescence and splitting. For the cases of group B powders the present correlation automatically converges to the conventional correlation. For group A powders the present correlation is validated by comparison with experimental data in the literature. Based on this correlation a theoretical explanation is presented for the fact that the maximum bubble diameters observed were up to 50 to 100 times as large as those from the stable bubble theory.

  4. The effect of viscoelasticity on the dynamics of gas bubbles near free surfaces

    NASA Astrophysics Data System (ADS)

    Lind, S. J.; Phillips, T. N.

    2013-02-01

    The dynamics of bubbles immersed in a viscoelastic fluid directly beneath an initially plane free surface is modelled using the boundary integral method. The model predicts a range of dynamics that is dependent on the Deborah number, the Reynolds number and the proximity of the bubble to the free surface. The motion of the free surface jet caused by the collapse of a bubble in a viscoelastic fluid can be significantly retarded compared with the Newtonian case. The axial jet predicted in many instances in the Newtonian case is not observed when the inertial forces are sufficiently small. In this case an annular jet forms that can penetrate the bubble. At high Deborah numbers, there is a return to Newtonian-like dynamics since the effects of viscosity are abated by elasticity to such an extent that inertia is the prevailing influence on bubble dynamics.

  5. Proteomics of juvenile senegal sole (Solea senegalensis) affected by gas bubble disease in hyperoxygenated ponds.

    PubMed

    Salas-Leiton, E; Cánovas-Conesa, B; Zerolo, R; López-Barea, J; Cañavate, J P; Alhama, J

    2009-01-01

    Solea senegalensis is a commercial flat fish traditionally farmed in earth ponds in coastal wetlands that might also become important to more intensive aquaculture. Gas bubble disease (GBD) is a potential risk for outdoor fish farming, particularly in certain periods of the year, related to improper management leading to macroalgae blooms. Physical-chemical conditions inducing hyperoxia, including radiation, temperature, and high levels of dissolved oxygen, have been monitored in fish affected by GBD together with observed symptoms. Exophthalmia, subcutaneous emphysemas, obstruction of gill lamellae, hemorrhages, and anomalous swimming were the main effects of oxygen supersaturation. A proteomic study was carried out for the first time under aquaculture conditions and protein expression changes are described for fish that were subject to hyperoxic conditions. Proteins identified in gill of GBD-affected fish are related to oxidative alteration of cytoskeleton structure/function (beta-tubulin, beta-actin), motility (light myosin chain, alpha-tropomyosin), or regulatory pathways (calmodulin, Raf kinase inhibitor protein), reflecting the central role of gill in oxygen exchange. Hepatic proteins identified are related to protein oxidative damages (beta-globin, FABPs), protection from oxidative stress (DCXR, GNMT), and inflammatory response (C3), in agreement with the predominant metabolic role of liver. Comparison of protein expression patterns and protein identification are suggested as potentially specific hyperoxia biomarkers that would facilitate prevention of GBD outbreaks. PMID:19101763

  6. The effect of pH and gas composition on the bubble fractionation of proteins

    SciTech Connect

    DeSouza, A.H.G.; Tanner, R.D.; Effler, W.T. Jr.

    1991-12-31

    Studies were conducted to establish the effect of the variation of environmental factors on the separation occurring in protein systems, resulting from bubble fractionation in a bioreactor. The measure of separation was selected to be the separation ratio. This is defined to be the ratio of either the top or the middle position concentration in the vessel to the bottom concentration of the vessel. Invertase and Ce-amylase were the two {open_quotes}model{close_quotes} enzymes considered. It was observed that, under certain conditions, i.e., a combination of the nature of the sparging gas and the medium pH, varying degrees of protein separation were achieved. The pH of the system dramatically influenced the separation. It was found that the best separation occurred at a certain pH, assumed to be at or close to the pI of the protein in question. Furthermore, it was observed that systems sparged with CO{sub 2} exhibited greater separation than systems sparged with air. In fact, in the case of invertase, almost threefold separation was observed at the top port when the solution was sparged with CO{sub 2}.

  7. Small Gas Bubble Experiment for Mitigation of Cavitation Damage and Pressure Waves in Short-pulse Mercury Spallation Targets

    SciTech Connect

    Wendel, Mark W; Felde, David K; Sangrey, Robert L; Abdou, Ashraf A; West, David L; Shea, Thomas J; Hasegawa, Shoichi; Kogawa, Hiroyuki; Naoe, Dr. Takashi; Farny, Dr. Caleb H.; Kaminsky, Andrew L

    2014-01-01

    Populations of small helium gas bubbles were introduced into a flowing mercury experiment test loop to evaluate mitigation of beam-pulse induced cavitation damage and pressure waves. The test loop was developed and thoroughly tested at the Spallation Neutron Source (SNS) prior to irradiations at the Los Alamos Neutron Science Center - Weapons Neutron Research Center (LANSCE-WNR) facility. Twelve candidate bubblers were evaluated over a range of mercury flow and gas injection rates by use of a novel optical measurement technique that accurately assessed the generated bubble size distributions. Final selection for irradiation testing included two variations of a swirl bubbler provided by Japan Proton Accelerator Research Complex (J-PARC) collaborators and one orifice bubbler developed at SNS. Bubble populations of interest consisted of sizes up to 150 m in radius with achieved gas void fractions in the 10^-5 to 10^-4 range. The nominal WNR beam pulse used for the experiment created energy deposition in the mercury comparable to SNS pulses operating at 2.5 MW. Nineteen test conditions were completed each with 100 pulses, including variations on mercury flow, gas injection and protons per pulse. The principal measure of cavitation damage mitigation was surface damage assessment on test specimens that were manually replaced for each test condition. Damage assessment was done after radiation decay and decontamination by optical and laser profiling microscopy with damaged area fraction and maximum pit depth being the more valued results. Damage was reduced by flow alone; the best mitigation from bubble injection was between half and a quarter that of flow alone. Other data collected included surface motion tracking by three laser Doppler vibrometers (LDV), loop wall dynamic strain, beam diagnostics for charge and beam profile assessment, embedded hydrophones and pressure sensors, and sound measurement by a suite of conventional and contact microphones.

  8. Testing a simple model of gas bubble dynamics in porous media

    NASA Astrophysics Data System (ADS)

    Ramirez, Jorge A.; Baird, Andy J.; Coulthard, Tom J.; Waddington, J. Michael

    2015-02-01

    Bubble dynamics in porous media are of great importance in industrial and natural systems. Of particular significance is the impact that bubble-related emissions (ebullition) of greenhouse gases from porous media could have on global climate (e.g., wetland methane emissions). Thus, predictions of future changes in bubble storage, movement, and ebullition from porous media are needed. Methods exist to predict ebullition using numerical models, but all existing models are limited in scale (spatial and temporal) by high computational demands or represent porous media simplistically. A suitable model is needed to simulate ebullition at scales beyond individual pores or relatively small collections (<10-4 m3) of connected pores. Here we present a cellular automaton model of bubbles in porous media that addresses this need. The model is computationally efficient, and could be applied over large spatial and temporal extent without sacrificing fine-scale detail. We test this cellular automaton model against a physical model and find a good correspondence in bubble storage, bubble size, and ebullition between both models. It was found that porous media heterogeneity alone can have a strong effect on ebullition. Furthermore, results from both models suggest that the frequency distributions of number of ebullition events per time and the magnitude of bubble loss are strongly right skewed, which partly explains the difficulty in interpreting ebullition events from natural systems.

  9. Bubble column reactors for wastewater treatment. 2: The effect of sparger design on sublation column hydrodynamics in the homogeneous flow regime

    SciTech Connect

    Smith, J.S.; Burns, L.F.; Valsaraj, K.T.; Thibodeaux, L.J.

    1996-05-01

    A simple analysis of bubble column hydrodynamics indicates that the upper limit of the homogeneous flow regime is the optimum operating condition for solvent sublation. This is in contrast to the traditional belief that solvent sublation is limited to the string bubbling flow regime. The implication is that the limited number of low-pressure adsorptive processes that operate in the bubbly flow regime, such as solvent sublation, may soon become viable options for industry. Results of gas holdup, bubble size, and dispersion experiments are reported as functions of gas velocity for three different types of gas-bubble spargers, namely, a fine porous glass frit, a flexible rubber membrane, and an annular shear sparger. The data show that the shear sparger affects the column dynamic properties such that the transition to the heterogeneous regime is delayed. Therefore, for applications requiring homogeneous flow, column capacity can be improved by approximately 25%. Moreover, the interfacial area produced by the shear sparger operating in the homogeneous regime rivals that produced by perforated and sintered plates operating in the heterogeneous regime.

  10. Mass transfer processes across the Capillary Fringe: Quantification of gas-water interface and bubble mediated mass transfer

    NASA Astrophysics Data System (ADS)

    Geistlinger, Helmut; Mohammadian, Sadjad; Schlüter, Steffen; Karimzadeh, Lotfollah; Vogel, Hans-Jörg

    2013-04-01

    The Capillary Fringe (CF) is a highly dynamic zone at the interface between the water-saturated aquifer and the vadose zone, where steep biogeochemical gradients and thus high bioactivities are expected. Mass transfer processes between the unsaturated zone and the atmosphere, like Greenhouse gas emissions and evaporation, are controlled by the highly temporal and spatial variable gas-water interface across the capillary fringe. Due to water table fluctuations, gas phase may be entrapped or released at/from the CF, which extremely affects the hydraulic properties of the porous medium as well as the mass transfer processes in the partially saturated zone. Most of these processes (gas entrapment and bubble mediated mass transfer (BMT)) are governed by the interactions between the interfaces of gas, water and soil phases. Quantification of these parameters requires a pore-scale approach, which can determine the phase volumes and interfaces with high accuracy. For the understanding and prediction of the involved processes, experiments and modeling at the pore scale are the necessary prerequisites for upscaled, effective modeling approaches. To achieve this aim, we conducted a set of column experiments using X-Ray Computed Tomography (CT). Using this technique, we are able to quantitatively analyze the desired variables in 3D inside the actual bulk volume of the porous media. Water table (WT) elevation was raised at different velocities in the column filled with 1mm-glass beads. After each rise, the column was scanned with CT. We used an intelligent multi-phase segmentation method, considering grey value frequency and voxel neighboring, to separate gas, water, and solid phases in the CT images. The saturation of the gas phase, distribution of the trapped gas bubbles and clusters, and their size, shape, and area are quantified and analyzed at pore-scale. We developed a new segmentation algorithm to distinguish the gas/water interface from the gas/solid interface. Only the first plays the key role in BMT. Parallel to the CT-column experiments we measured in the same experimental setup (column, sediment, WT-rise velocity) the dissolution of trapped Oxygen gas bubbles using optode spots along the capillary fringe inside the column. For the first time we quantify BMT based on pore-scale process characteristics of gas phase distribution using two different models: (i) an effective 1D-diffusion model and (ii) a Multisphere diffusion model.

  11. Evaluation of the Integrated Holdup Measurement System with the M3(superscript 3)CA for Assay of Uranium and Plutonium Holdup

    SciTech Connect

    P. A. Russo; J. K. Sprinkle, Jr.; C. W. Bjork; T. O. McKown; G. A. Sheppard; S. E. Smith; J. F. Harris

    1999-08-01

    Uranium and plutonium holdup that has been simulated by insertion of a variety of sealed, reference samples into pipes, ducts, and other hardware has been measured over a period of six years with an integrated holdup measurement system. The result is a systematic evaluation of the generalized-geometry holdup (GGH) formalism applied to portable gamma-ray holdup measurements with low-resolution detectors. The extended exercise was carried out both with and without automation of the measurements, data reduction/analysis, and holdup evaluation. Automation was accomplished by the software Version 2 for the Holdup Measurement System (HMS2). The purpose of the exercise was to establish reliable benchmarks for GGH measurements and to document the advantages of the automation with actual measurement results. The results presented below demonstrate a factor of 2 improvement in the quantitative reliability of the holdup assay automated by HMS2. The automated results are otherwise identical to the manual measurements. These and similar exercises also show that automation can decrease by a factor of 20 or more the time required to execute a holdup measurement campaign and obtain the holdup quantities for the facility using an integrated holdup measurement system, and that only one person, rather than two, is required to perform the measurements. Enhanced implementation of the integrated holdup measurement system with new software, corrections for systematic effects, and improved room-temperature gamma-ray detectors is planned.

  12. Enhanced electron injection in laser-driven bubble acceleration by ultra-intense laser irradiating foil-gas targets

    NASA Astrophysics Data System (ADS)

    Zhang, Guo-Bo; Ma, Yan-Yun; Xu, Han; Hafz, Nasr A. M.; Yang, Xiao-Hu; Chen, Min; Yu, Tong-Pu; Zou, De-Bin; Liu, Jian-Xun; Yan, Jian-Feng; Zhuo, Hong-Bin; Gan, Long-Fei; Tian, Li-Chao; Shao, Fu-Qiu; Yin, Yan; Kawata, S.

    2015-08-01

    A scheme for enhancing the electron injection charge in a laser-driven bubble acceleration is proposed. In this scheme, a thin foil target is placed in front of a gas target. Upon interaction with an ultra-intense laser pulse, the foil emits electrons with large longitudinal momenta, allowing them to be trapped into the transmitted shaped laser-excited bubble in the gaseous plasma target. Two-dimensional particle-in-cell simulation is used to demonstrate this scheme, and an electron beam with a total electron number of 4.21 × 10 8 μ m - 1 can be produced, which is twice the number of electrons produced without the foil. Such scheme may be widely used for applications that require high electron yields such as positron and gamma ray generation from relativistic electron beams interacting with solid targets.

  13. The condition of the resonant break-up of a gas bubble subjected to an acoustic wave in liquid

    NASA Astrophysics Data System (ADS)

    Vanovskiy, V. V.; Petrov, A. G.

    2015-12-01

    The problem of a gas bubble break-up in liquid is considered in the conditions of the frequencies resonance of the radial and nth axially symmetric deformational mode 2:1. The nonlinear energy transfer between the modes is described using an efficient Krylov-Bogolyubov averaging technique. It is shown that the deformational mode magnitude can be some orders larger than the radial mode magnitude which is damped by the thermal, viscous and acoustic dissipation. The estimative criterion of bubble break-up is obtained in the cases of slow and fast acoustic wave start. The obtained pressure magnitudes in the wave for break-up are very small and the mechanism can have strong medical and technical applications.

  14. Engineering Development of Slurry Bubble Column Reactor (SBCR) Technology

    SciTech Connect

    Puneet Gupta

    2002-07-31

    This report summarizes the procedures used and results obtained in determining radial gas holdup profiles, via gamma ray scanning, and in assessing liquid and gas mixing parameters, via radioactive liquid and gas tracers, during Fischer Tropsch synthesis. The objectives of the study were (i) to develop a procedure for detection of gas holdup radial profiles in operating reactors and (ii) to test the ability of the developed, previously described, engineering models to predict the observed liquid and gas mixing patterns. It was shown that the current scanning procedures were not precise enough to obtain an accurate estimate of the gas radial holdup profile and an improved protocol for future use was developed. The previously developed physically based model for liquid mixing was adapted to account for liquid withdrawal from the mid section of the column. The ability of our engineering mixing models for liquid and gas phase to predict both liquid and gas phase tracer response was established and illustrated.

  15. Kinetics of In-situ formation of AlN in Al alloy melts by bubbling ammonia gas

    NASA Astrophysics Data System (ADS)

    Zheng, Qingjun; Reddy, Ramana G.

    2003-12-01

    In-situ processing of AlN-Al alloy composites by the gas bubbling method was investigated using ammonia as the gaseous precursor in the temperature range of 1373 to 1523 K. The products were characterized using X-ray diffraction, scanning electron microscopy, and energy-dispersive X-ray microanalysis. It was found that in-situ formation of AlN reinforcing particles was feasible by bubbling ammonia through aluminum and aluminum alloy melts. The AlN particles formed in situ were small in size and enriched in the top part of the product formed in the crucible. In comparison with the purified nitrogen bubbling gas, using ammonia as the nitrogen precursor enhanced the formation of AlN. Hydrogen gas generated from the dissociation of ammonia is an effective oxygen getter in the system, which can offset the deleterious effect of oxygen impurities and enhance the formation of AlN. The rate of formation of AlN was controlled by the diffusion of nitrogen atoms in the liquid boundary layer. A kinetic model was developed to describe the rate of formation of AlN, which was in excellent agreement with the experimental results. The influence of various processing variables on the rate of formation of AlN were also investigated. The rate of formation of AlN changed little with the content of silicon in the matrix melt, increased slightly with increase in temperature and decrease in nozzle size, and increased significantly with the increasing gas flow rate.

  16. Prospects for bubble fusion

    SciTech Connect

    Nigmatulin, R.I.; Lahey, R.T. Jr.

    1995-09-01

    In this paper a new method for the realization of fusion energy is presented. This method is based on the superhigh compression of a gas bubble (deuterium or deuterium/thritium) in heavy water or another liquid. The superhigh compression of a gas bubble in a liquid is achieved through forced non-linear, non-periodic resonance oscillations using moderate amplitudes of forcing pressure. The key feature of this new method is a coordination of the forced liquid pressure change with the change of bubble volume. The corresponding regime of the bubble oscillation has been called {open_quotes}basketball dribbling (BD) regime{close_quotes}. The analytical solution describing this process for spherically symmetric bubble oscillations, neglecting dissipation and compressibility of the liquid, has been obtained. This solution shown no limitation on the supercompression of the bubble and the corresponding maximum temperature. The various dissipation mechanisms, including viscous, conductive and radiation heat losses have been considered. It is shown that in spite of these losses it is possible to achieve very high gas bubble temperatures. This because the time duration of the gas bubble supercompression becomes very short when increasing the intensity of compression, thus limiting the energy losses. Significantly, the calculated maximum gas temperatures have shown that nuclear fusion may be possible. First estimations of the affect of liquid compressibility have been made to determine possible limitations on gas bubble compression. The next step will be to investigate the role of interfacial instability and breaking down of the bubble, shock wave phenomena around and in the bubble and mutual diffusion of the gas and the liquid.

  17. Large eddy simulation of dilute bubbly turbulent flows for aerating hydrofoils

    NASA Astrophysics Data System (ADS)

    Hajit, Mohammad; Sotiropoulos, Fotis

    2014-11-01

    We have proposed a formulation for the large eddy simulation of dilute bubbly flows by converting the governing equations to a more loosely-coupled form. This formulation provides an efficient numerical procedure for two-way coupling of bubbly flows at low gas holdups. Subgrid-scale turbulence modeling is based on the dynamic procedure of Germano for the liquid phase and the Jakobson approach for the gas phase. Wall-modeling is implemented using the method of Cabot & Moin. Our approach is employed to simulate flow over aerating hydrofoils at different angles of attack. A structured body-fitted C-grid is employed for domain discretization. Validation of our computational code, for C-grids, is carried out by simulating single-phase flows over a NACA0012 airfoil (20° AOA) with laminar flow and an E387 airfoil (6° AOA) with turbulent flow. Comparisons with available computational and experimental data in terms of time averaged drag coefficient, lift coefficient, separation bubble length, and reattachment point proves the validity of our computational code. The aerating hydrofoil simulation utilizes a NACA0015 hydrofoil, for which experiments were carried out at Saint Anthony Falls Laboratory. Comparisons between computational and experimental datasets show promising results. This work is supported by the U.S. Dept. of Energy and the Hydro Reasearch Foundation.

  18. Mechanism of gas bubble shoot-off and motion during spark discharge in liquid

    NASA Astrophysics Data System (ADS)

    Yavtushenko, I. O.; Orlov, A. M.; Zharkov, S. V.

    2012-07-01

    The conditions of the excitation of a pulsed plasma discharge on the surface of a processed metal (copper) sample immersed in a conducting aqueous solution have been studied. Cathode polarization of the metal was provided by a high-voltage capacitor bank (4?F) charged to U = 200-1100 V after each discharge. It is established that electric breakdown with a duration not exceeding 0.1 ?s is always preceded by the formation of small hydrogen bubbles (with radii r ? 37-40 ?m) on the polarized metal surface, which takes about 139-159 ?s. A mechanism of passivation of the processed metal surface by these hydrogen bubbles, which are synchronously shot off from the electrode surface under the action of the spark discharge, is proposed. Consistent matching of the experimental data and model calculations is used to estimate the main parameters determining the kinetics of bubble detachment from the electrode surface at various voltages U on the capacitor bank.

  19. Uranium dioxide films with xenon filled bubbles for fission gas behavior studies

    NASA Astrophysics Data System (ADS)

    Usov, I. O.; Dickerson, R. M.; Dickerson, P. O.; Byler, D. D.; McClellan, K. J.

    2014-09-01

    Electron beam evaporation and ion beam assisted deposition (IBAD) methods were utilized to fabricate depleted UO2 films and UO2 films with embedded Xe atoms, respectively. The films were fabricated at elevated temperature of 700 °C and also subsequently annealed at 1000 °C to induce grain growth and Xe atom redistribution. The goal of this work was to synthesize reference UO2 samples with controlled microstructures and Xe-filled bubble morphologies, without the effects attendant to rector irradiation-induced fission. Transmission electron microscopy (TEM) microstructural characterization revealed that fine Xe-filled bubbles nucleated in the as grown films and subsequent annealing resulted in noticeable bubble size increase. Reported results demonstrate the great potential IBAD techniques and UO2 films have for various areas of nuclear materials studies.

  20. Novel techniques for slurry bubble column hydrodynamics

    SciTech Connect

    Dudukovic, M.P.

    1999-05-14

    The objective of this cooperative research effort between Washington University, Ohio State University and Exxon Research Engineering Company was to improve the knowledge base for scale-up and operation of slurry bubble column reactors for syngas conversion and other coal conversion processes by increased reliance on experimentally verified hydrodynamic models. During the first year (July 1, 1995--June 30, 1996) of this three year program novel experimental tools (computer aided radioactive particle tracking (CARPT), particle image velocimetry (PIV), heat probe, optical fiber probe and gamma ray tomography) were developed and tuned for measurement of pertinent hydrodynamic quantities, such as velocity field, holdup distribution, heat transfer and bubble size. The accomplishments were delineated in the First Technical Annual Report. The second year (July, 1996--June 30, 1997) was spent on further development and tuning of the novel experimental tools (e.g., development of Monte Carlo calibration for CARPT, optical probe development), building up the hydrodynamic data base using these tools and comparison of the two techniques (PIV and CARPT) for determination of liquid velocities. A phenomenological model for gas and liquid backmixing was also developed. All accomplishments were summarized in the Second Annual Technical Report. During the third and final year of the program (July 1, 1997--June 30, 1998) and during the nine months no cost extension, the high pressure facility was completed and a set of data was taken at high pressure conditions. Both PIV, CT and CARPT were used. More fundamental hydrodynamic modeling was also undertaken and model predictions were compared to data. The accomplishments for this period are summarized in this report.

  1. A Refined Approach to Bubble Nucleation and Polymer Foaming Process: Dissolved Gas and Cluster Size Effects

    PubMed

    Lee; Flumerfelt

    1996-12-25

    A refined approach to bubble nucleation is presented and applied to polymer foaming process. The integral overall energy balance and the integral Clausius-Duhem inequality are used to analyze a bubble nucleation experiment. The computation of long-range intermolecular potential results in expressions for surface tension, work, and critical work for cluster formation, as functions of the Hamaker constant, molecular and/or repeat unit interaction distance, molar fractions of each component, and cluster radius. The variation of surface tension with cluster size, temperature, and pressure is determined in terms of well-known macroscopic properties and compared with available experimental data. PMID:8978536

  2. Implementation and verification of numerical model for gas bubble dynamics in electroconductive fluid

    NASA Astrophysics Data System (ADS)

    Tucs, A.; Spitans, S.; Jakovics, A.; Baake, E.

    2013-10-01

    Apart from common steam reforming process the thermal decomposition of methane is regarded as an alternate route to producing hydrogen and elemental carbon with out of CO2 emissions. Chemical reaction of decarburation can be ensured by means of methane bubbly flow through a molten metal bath and additionally controlled by external electromagnetic field. This is the initial stage of research and preliminary calculation results for the single bubble rise dynamics in 2D axisymmetric consideration at different flow conditions and 2D planar consideration in the presence of external DC EM field are obtained and compared to experimental and simulation data from literature.

  3. The North Sea Blowout: A gas bubble megaplume with spiral vortex motion and why it might, or might not, contribute much to the atmospheric methane

    NASA Astrophysics Data System (ADS)

    Schneider von Deimling, Jens; Leifer, Ira; Schmidt, Mark; Rehder, Gregor; Linke, Peter

    2014-05-01

    In the Central North Sea, during drilling operations, a gas blowout accident happened in 1990. Thereafter, natural gas has leaked prodigiously from a 60 m diameter and 20 m deep crater located at 95 m depth into the water column and to the sea surface. A series of field studies was carried out at this site since 2005 evidencing ongoing intense seepage activity. Three gas bubble megaplumes and dozens of minor to major bubble seeps were observed in the crater during a manned submersible dive, ROV mapped hundreds. Analysis of gas bubbles captured at 118 m water depth revealed concentrations between 88-90%Vol CH4 with δ 13C-CH4 values around -74‰ VPDB, consistent with a biogenic origin. Blowout site flux estimates derived from ROV video show the site's emissions are the strongest and most intense marine methane seepage quantified to date with seabed emissions of ~32.6 kt/y. Based on previous research suggesting greater flux correlates with greater transport efficiency, the direct bubble-mediated atmospheric flux to the atmosphere was estimated at a surprisingly low 0.7kt/y. This is orders of magnitude smaller compared to the seabed flux, thus the bulk methane dissolves before reaching the atmosphere, suggesting enhanced bubble dissolution rates for megaplumes. Analysis of more than 120 water samples from near the blowout plume showed dissolved methane concentration distributions consistent with enhanced bubble dissolution at depth. CH4 concentrations ranged from 0.2 µmol/L at 20 m depth to a peak in the crater of an extraordinary 400 µmol/L. To evaluate further the controlling factors on the rising bubble plume, multibeam water column data were analyzed. The bubble plume spatial distribution revealed a horizontal intrusion of gas bubbles just below the thermocline. This pronounced pattern was traced 200 m horizontally with a downflow plume orientation suggesting trapping of methane-enriched fluids at depth. A numerical bubble propagation model was used to simulate the extraordinarily intense Blowout site plume. Simulations that used normal bubble dissolution rates were unable to explain the observed trapping of almost all methane at depth, even when neglecting the observed very strong upwelling flows at the site. Incorporating a hypothesized enhanced bubble gas exchange rate allowed reproduction of observations. Video and multibeam water column analyses revealed significant turbulence in and around the bubble plume on decimeter and meter scale. Moreover 3D water column assessments by multibeam reveal that the gas ebullitions merge into a 20 m wide spiral vortex extending throughout the water column. Spiral vortex formation never has been reported for gas seepage and may be an important process enhancing plume methane dissolution. Numerical simulations incorporating vortical bubble trapping (slow rise) and enhanced bubble gas exchange were able to reproduce observations. Thus, megaplume processes could explain the surprising low surface methane observations, with important implications for understanding the fate of methane from intense seepage and for blowout response.

  4. The necking time of gas bubbles in liquids of arbitrary viscosity

    NASA Astrophysics Data System (ADS)

    Bolaños-Jiménez, R.; Sevilla, A.; Martínez-Bazán, C.

    2016-04-01

    We report an experimental and theoretical study of the collapse time of a gas bubble injected into an otherwise stagnant liquid under quasi-static conditions and for a wide range of liquid viscosities. The experiments were performed by injecting a constant flow rate of air through a needle with inner radius a into several water/glycerine mixtures, providing a viscosity range of 20 cP ≲ μ ≲ 1500 cP. By analyzing the temporal evolution of the neck radius, R0(t), the collapse time has been extracted for three different stages during the collapse process, namely, Ri/a = 0.6, 0.4, and 0.2, being Ri = R0(t = 0) the initial neck radius. The collapse time is shown to monotonically increase with both Ri/a and with the Ohnesorge number, Oh = μ / √{ ρ σ R i } , where ρ and σ represent the liquid density and the surface tension coefficient, respectively. The theoretical approach is based on the cylindrical Rayleigh-Plesset equation for the radial liquid flow around the neck, which is the appropriate leading-order representation of the collapse dynamics, thanks to the slenderness condition R0(t) r1(t) ≪ 1, where r1(t) is half the axial curvature of the interface evaluated at the neck. The Rayleigh-Plesset equation can be integrated numerically to obtain the collapse time, τcol, which is made dimensionless using the capillary time, t σ = √{ ρ Ri 3 / σ } . We present a novel scaling law for τcol as a function of Ri/a and Oh that closely follows the experimental data for the entire range of both parameters, and provide analytical expressions in the inviscid and Stokes regimes, i.e., τ col ( Oh → 0 ) → √{ 2 ln C } and τcol(Oh → ∞) → 2Oh, respectively, where C is a constant of order unity that increases with Ri/a.

  5. What can be Learned from X-ray Spectroscopy Concerning Hot Gas in Local Bubble and Charge Exchange Processes?

    NASA Technical Reports Server (NTRS)

    Snowden, Steve

    2007-01-01

    What can be learned from x-ray spectroscopy in observing hot gas in local bubble and charge exchange processes depends on spectral resolution, instrumental grasp, instrumental energy band, signal-to-nose, field of view, angular resolution and observatory location. Early attempts at x-ray spectroscopy include ROSAT; more recently, astronomers have used diffuse x-ray spectrometers, XMM Newton, sounding rocket calorimeters, and Suzaku. Future observations are expected with calorimeters on the Spectrum Roentgen Gamma mission, and the Solar Wind Charge Exchange (SWCX). The Geospheric SWCX may provide remote sensing of the solar wind and magnetosheath and remote observations of solar CMEs moving outward from the sun.

  6. Upper ocean bubble measurements from the NE Pacific and estimates of their role in air-sea gas transfer of the weakly soluble gases nitrogen and oxygen

    NASA Astrophysics Data System (ADS)

    Vagle, Svein; McNeil, Craig; Steiner, Nadja

    2010-12-01

    Simultaneous observations of upper-ocean bubble clouds, and dissolved gaseous nitrogen (N2) and oxygen (O2) from three winter storms are presented and analyzed. The data were collected on the Canadian Surface Ocean Lower Atmosphere Study (C-SOLAS) mooring located near Ocean Station Papa (OSP) at 50N, 145W in the NE Pacific during winter of 2003/2004. The bubble field was measured using an upward looking 200 kHz echosounder. Direct estimates of bubble mediated gas fluxes were made using assumed bubble size spectra and the upward looking echosounder data. A one-dimensional biogeochemical model was used to help compare data and various existing models of bubble mediated air-sea gas exchange. The direct bubble flux calculations show an approximate quadratic/cubic dependence on mean bubble penetration depth. After scaling from N2/O2 to carbon dioxide, near surface, nonsupersaturating, air-sea transfer rates, KT, for U10 > 12 m s-1 fall between quadratic and cubic relationships. Estimates of the subsurface bubble induced air injection flux, VT, show an approximate quadratic/cubic dependence on mean bubble penetration depth. Both KT and VT are much higher than those measured during Hurricane Frances over the wind speed range 12 < U10 < 23 m s-1. This result implies that over the open ocean and this wind speed range, older and more developed seas which occur during winter storms are more effective in exchanging gases between the atmosphere and ocean than younger less developed seas which occur during the rapid passage of a hurricane.

  7. Lander based hydroacoustic monitoring of marine single bubble releases in Eckernförde Bay utilizing the multibeam based GasQuant II system.

    NASA Astrophysics Data System (ADS)

    Urban, Peter; Schneider von Deimling, Jens; Greinert, Jens

    2015-04-01

    The GEOMAR Helmholtz Centre for Ocean Research Kiel is currently developing a Imagenex Delta T based lander system for monitoring and quantifying marine gas release (bubbles). The GasQuant II is built as the successor of the GasQuant I system (Greinert, 2008), that has been successfully used for monitoring tempo-spatial variability of gas release in the past (Schneider von Deimling et al., 2010). The new system is lightweight (40 kg), energy efficient, flexible to use and built for ROV deployment with autonomous operation of up to three days. A prototype has been successfully deployed in Eckernförde Bay during the R/V ALKOR cruise AL447 in October/November 2014 to monitor the tempo-spatial variability of gas bubble seepage and to detect a possible correlation with tidal variations. Two deployments, one in forward- and one in upward looking mode, reveal extensive but scattered single bubble releases rather than distinct and more continuous sources. While these releases are difficult to detect in forward looking mode, they can unambiguously be detected in the upward looking mode even for minor gas releases, bubble rising speeds can be determined. Greinert, J., 2008. Monitoring temporal variability of bubble release at seeps: The hydroacoustic swath system GasQuant. J. Geophys. Res. Oceans Vol. 113 Issue C7 CiteID C07048 113, 7048. doi:10.1029/2007JC004704 Schneider von Deimling, J., Greinert, J., Chapman, N.R., Rabbel, W., Linke, P., 2010. Acoustic imaging of natural gas seepage in the North Sea: Sensing bubbles controlled by variable currents. Limnol. Oceanogr. Methods 8, 155. doi:10.4319/lom.2010.8.155

  8. Determination of the Accommodation Coefficient Using Vapor/gas Bubble Dynamics in an Acoustic Field

    NASA Technical Reports Server (NTRS)

    Gumerov, Nail A.; Hsiao, Chao-Tsung; Goumilevski, Alexei G.; Allen, Jeff (Technical Monitor)

    2001-01-01

    Nonequilibrium liquid/vapor phase transformations can occur in superheated or subcooled liquids in fast processes such as in evaporation in a vacuum. The rate at which such a phase transformation occurs depends on the "condensation" or "accommodation" coefficient, Beta, which is a property of the interface. Existing measurement techniques for Beta are complex and expensive. The development of a relatively inexpensive and reliable technique for measurement of Beta for a wide range of substances and temperatures is of great practical importance. The dynamics of a bubble in an acoustic field strongly depends on the value of Beta. It is known that near the saturation temperature, small vapor bubbles grow under the action of an acoustic field due to "rectified heat transfer." This finding can be used as the basis for an effective measurement technique of Beta. We developed a theory of vapor bubble behavior in an isotropic acoustic wave and in a plane standing acoustic wave. A numerical code was developed which enables simulation of a variety of experimental situations and accurately takes into account slowly evolving temperature. A parametric study showed that the measurement of Beta can be made over a broad range of frequencies and bubble sizes. We found several interesting regimes and conditions which can be efficiently used for measurements of Beta. Measurements of Beta can be performed in both reduced and normal gravity environments.

  9. Methane isotopic signature of gas bubbles in permafrost winter lake ice: a tool for quantifying variable oxidation levels

    NASA Astrophysics Data System (ADS)

    Sapart, C. J.; Boereboom, T.; Roeckmann, T.; Tison, J.-L.

    2012-04-01

    Methane (CH4) is a strong greenhouse gas and its atmospheric mixing ratio has strongly increased since pre-industrial times. This increase was primarily due to emissions from anthropogenic sources, but there is growing concern about possible feedbacks of natural sources in a changing climate. Thawing of permafrost areas in the Arctic is considered as an important feedback, since the Arctic region undergoes the fastest climate change and hosts large carbon stocks. Subarctic lakes are considered as "hotspots" for CH4 emissions, but the role of the ice cover during the winter period is not well understood to date. Here, we present measurements of CH4 mixing ratio and δ13C-CH4 in 4 types of bubbles identified in subarctic lake ice covers located in a sporadic or discontinuous permafrost area. Our analysis reveals that different bubble types contain CH4 with different, specific isotopic signatures. The evolution of mixing ratio and δ13C-CH4 suggest that oxidation of dissolved CH4 is the most important process determining the isotopic composition of CH4 in bubbles. This results from gas exsolution occurring during the ice growth process. A first estimate of the CH4 oxidation budget (mean = 0.12 mg CH4 m-2 d-1) enables to quantify the impact of the ice cover on CH4 emissions from subartic lakes. The increased exchange time between gases coming from the sediments and the water column, due to the capping effect of the lake ice cover, reduces the amount of CH4 released "as is" and favours its oxidation into carbon dioxide; the latter being further added to the HCO3- pool through the carbonate equilibration reactions.

  10. Ultraviolet absorption by interstellar gas near the LMC star HD 36402 in the interstellar bubble N51D

    NASA Technical Reports Server (NTRS)

    De Boer, K. S.; Nash, A. G.

    1982-01-01

    Four interstellar absorption components associated with the immediate surroundings of the star are found in UV, high-dispersion IUE spectra of the LMC star HD 36402 in the N51D nebulosity. The 305 km/sec absorption is found to originate in low-density, 10,000 K gas, and the density and velocity structures agree with that derived from visual emission lines. From a fit of the observed Lyman-alpha profile, it is found that there is an N(H) of about 10 to the 20.2/sq cm in front of HD 36402, while the large N(H) of approximately 10 to the 21.3/sq cm from 21-cm data indicates most of the neutral gas to be behind N51D. An additional component shows N V, C IV and Si IV features which are stronger than is consistent with a wind-blown interstellar bubble, implying that there is additional absorption outside the bubble. Solar abundance ratios for the metals are suggested by the overall pattern of absorption line strength.

  11. How many bubbles in your glass of bubbly?

    PubMed

    Liger-Belair, Gérard

    2014-03-20

    The issue about how many carbon dioxide bubbles are likely to nucleate in a glass of champagne (or bubbly) is of concern for sommeliers, wine journalists, experienced tasters, and any open minded physical chemist wondering about complex phenomena at play in a glass of bubbly. The whole number of bubbles likely to form in a single glass is the result of the fine interplay between dissolved CO2, tiny gas pockets trapped within particles acting as bubble nucleation sites, and ascending bubble dynamics. Based on theoretical models combining ascending bubble dynamics and mass transfer equations, the falsely naı̈ve question of how many bubbles are likely to form per glass is discussed in the present work. A theoretical relationship is derived, which provides the whole number of bubbles likely to form per glass, depending on various parameters of both the wine and the glass itself. PMID:24571670

  12. Bubble convection within magma reservoirs

    NASA Astrophysics Data System (ADS)

    Bouche, Emmanuella; Vergniolle, Sylvie; Gamblin, Yves; Vieira, Antonio

    2008-11-01

    Volcanoes are gas-rich hence small bubbles slowly rise in magma reservoirs. Under certain condition of gas flux, bubble size and reservoir height, the bubble rise is no more homogeneous: the collective buoyancy of the bubbles produces instabilities and the bubble motion becomes driven by convection. If such a convection occurs, the residence time of bubbles in the reservoir is reduced and thus eruptive activity is modified. By analogy with thermal convection, we define Rayleigh (Rab) and Prandtl (Prb) numbers for bubble convection. However, the critical Rab for bubble convection is hardly known from previous studies and its dependence to Prb is ignored. Laboratory experiments are performed with small bubbles rising in a cylindrical tank filled with viscous oils in order to quantify bubble convection and apply it to real volcanoes. Rab and Prb are acurately determined from measurement, via two hydrophones, of bubble size and gas volume fraction. Bubble velocity is obtained by PIV. Experiments show two main regimes: a steady cellular regime at low Rab and a bubble plume regime when Rab is higher. The critical Rab depends on the critical Prb for the two transitions.

  13. The secondary Bjerknes force between two gas bubbles under dual-frequency acoustic excitation.

    PubMed

    Zhang, Yuning; Zhang, Yuning; Li, Shengcai

    2016-03-01

    The secondary Bjerknes force is one of the essential mechanisms of mutual interactions between bubbles oscillating in a sound field. The dual-frequency acoustic excitation has been applied in several fields such as sonochemistry, biomedicine and material engineering. In this paper, the secondary Bjerknes force under dual-frequency excitation is investigated both analytically and numerically within a large parameter zone. The unique characteristics (i.e., the complicated patterns of the parameter zone for sign change and the combination resonances) of the secondary Bjerknes force under dual-frequency excitation are revealed. Moreover, the influence of several parameters (e.g., the pressure amplitude, the bubble distance and the phase difference between sound waves) on the secondary Bjerknes force is also investigated numerically. PMID:26584991

  14. Velocity of a freely rising gas bubble in a soda-lime silicate glass melt

    NASA Technical Reports Server (NTRS)

    Hornyak, E. J.; Weinberg, M. C.

    1984-01-01

    A comparison is conducted between measured velocities for the buoyant rise of single bubbles of varying size and composition, in a soda-lime silicate glass melt, with the steady state velocities predicted by the Stokes and Hadamard-Rybczynski formulas. In all cases, the data are noted to fit the Hadamard-Rybczynski expression for steady state rise speed considerably better than the Stokes formula.

  15. Influence of a gas bubble on the dynamical parameters of the slug flow using particle image velocimetry

    NASA Astrophysics Data System (ADS)

    Siddiqui, M. I.; Heikal, M. R.; Munir, S.; Dass, S. C.; Aziz, A. Rashid A.

    2014-10-01

    Inlet conditions strongly affect the dynamical parameters of a two-phase slug flow. A series of experiments were carried out, in a 6m long Plexiglas pipe having internal diameter 74 mm, to investigate the influence of gas bubble on the flow dynamics inside the slugy body of a unit slug. The pipe was kept inclined at an elevation of 1.160 to consider the terrain slugging mechanism. An optical diagnostic technique, Particle Image Velocimetry (PIV) was employed at a point 3.5m from the inlet to measure the instantaneous velocity fields of the flow for each case. Single-phase liquid pipe flow and the slugy body of the two-phase slug flow are the targeted sections for study and comparison. Velocity components, turbulence intensity and average volume flux are measured and compared. The effect of gas bubble on the liquid Reynolds number is also considered. It is noticed that by increasing the gas flow rate velocity, average flux and average kinetic energy increases dramatically in a slugy body of a slug flow regime. The results are also compared with the single phase liquid flow having same liquid flow rate. Moreover it is noticed that the increase in average volume flux in a slugy body for lower liquid flow rates are more significant as compared to the higher liquid flow rates by increasing gas rate. This shows that slug can be helpful in oil transportation in terrain oil fields for lower liquid flow rates as it creates more fluctuations and vibrational forces for higher liquid flow.

  16. Cohesion of Bubbles in Foam

    ERIC Educational Resources Information Center

    Ross, Sydney

    1978-01-01

    The free-energy change, or binding energy, of an idealized bubble cluster is calculated on the basis of one mole of gas, and on the basis of a single bubble going from sphere to polyhedron. Some new relations of bubble geometry are developed in the course of the calculation. (BB)

  17. Cluster finds giant gas vortices at the edge of Earth's magnetic bubble

    NASA Astrophysics Data System (ADS)

    2004-08-01

    12 August 2004 ESA’s quartet of space-weather watchers, Cluster, has discovered vortices of ejected solar material high above the Earth. The superheated gases trapped in these structures are probably tunnelling their way into the Earth’s magnetic ‘bubble’, the magnetosphere. This discovery possibly solves a 17-year-mystery of how the magnetosphere is constantly topped up with electrified gases when it should be acting as a barrier. hi-res Size hi-res: 1446 Kb Credits: H. Hasegawa (Dartmouth College) Three-dimensional cut-away view of Earth's magnetosphere This figure shows a three-dimensional cut-away view of Earth' s magnetosphere. The curly features sketched on the boundary layer are the Kelvin-Helmholtz vortices discovered by Cluster. They originate where two adjacent flows travel with different speed. In this case, one of the flows is the heated gas inside the boundary layer of the magnetosphere, the other the solar wind just outside it. The arrows show the direction of the magnetic field, in red that associated with the solar wind and in green the one inside Earth’s magnetosphere. The white dashed arrow shows the trajectory followed by Cluster. High resolution version (JPG format) 1446 Kb High resolution version (TIFF format) 15 365 Kb hi-res Size hi-res: 22 Kb Credits: H. Hasegawa (Dartmouth College) Electrified gas varies across the vortices along Cluster’s trajectory This computer simulation shows how the density of the electrified gas is expected to vary across the vortices along Cluster’s trajectory (white dashed line). The density is lower inside the boundary layer (blue region) and higher outside, in the region dominated by the solar wind (shown in red). The density variations measured by the instruments on board Cluster match those predicted by this model. Low resolution version (JPG format) 22 Kb High resolution version (TIFF format) 3438 Kb The Earth’s magnetic field is our planet’s first line of defence against the bombardment of the solar wind. The solar wind itself is launched from the Sun and carries the Sun’s magnetic field throughout the Solar System. Sometimes this magnetic field is aligned with Earth’s and sometimes it points in the opposite direction. When the two fields point in opposite directions, scientists understand how ‘doors’ in Earth’s field can open. This phenomenon, called ‘magnetic reconnection’, allows the solar wind to flow in and collect in the reservoir known as the boundary layer. On the contrary, when the fields are aligned they should present an impenetrable barrier to the flow. However, spacecraft measurements of the boundary layer, dating back to 1987, present a puzzle because they clearly show that the boundary layer is fuller when the fields are aligned than when they are not. So how is the solar wind getting in? Thanks to the data from the four formation-flying spacecraft of ESA’s Cluster mission, scientists have made a breakthrough. On 20 November 2001, the Cluster flotilla was heading around from behind Earth and had just arrived at the dusk side of the planet, where the solar wind slides past Earth’s magnetosphere. There it began to encounter gigantic vortices of gas at the magnetopause, the outer ‘edge’ of the magnetosphere. “These vortices were really huge structures, about six Earth radii across,” says Hiroshi Hasegawa, Dartmouth College, New Hampshire who has been analysing the data with help from an international team of colleagues. Their results place the size of the vortices at almost 40 000 kilometres each, and this is the first time such structures have been detected. These vortices are known as products of Kelvin-Helmholtz instabilities (KHI). They can occur when two adjacent flows are travelling with different speeds, so one is slipping past the other. Good examples of such instabilities are the waves whipped up by the wind slipping across the surface of the ocean. Although KHI-waves had been observed before, this is the first time that vortices are actually detected. When a KHI-wave rolls up into a vortex, it becomes known as a ‘Kelvin Cat’s eye’. The data collected by Cluster have shown density variations of the electrified gas, right at the magnetopause, precisely like those expected when travelling through a ‘Kelvin Cat’s eye’. Scientists had postulated that, if these structures were to form at the magnetopause, they might be able to pull large quantities of the solar wind inside the boundary layer as they collapse. Once the solar wind particles are carried into the inner part of the magnetosphere, they can be excited strongly, allowing them to smash into Earth’s atmosphere and give rise to the aurorae. Cluster’s discovery strengthens this scenario but does not show the precise mechanism by which the gas is transported into Earth’s magnetic bubble. Thus, scientists still do not know whether this is the only process to fill up the boundary layer when the magnetic fields are aligned. For those measurements, Hasegawa says, scientists will have to wait for a future generation of magnetospheric satellites. Notes for editors The results of this investigation have appeared in today’s issue of the scientific journal Nature, in a paper entitled ‘Transport of solar wind into Earth's magnetosphere through rolled-up Kelvin-Helmholtz vortices’, by H. Hasegawa, M. Fujimoto, T.D. Phan, H. Reme, A. Balogh, M.W. Dunlop, C. Hashimoto and R. TanDokoro. More about magnetic reconnection Solar wind particles follow ‘magnetic field lines’, rather like beads on a wire. The ‘doors’ that open in Earth’s magnetosphere during oppositely aligned magnetic configurations are caused by a phenomenon called ‘magnetic reconnection‘. During this process, Earth’s field lines spontaneously break and join themselves to the Sun’s, allowing the solar wind to pass freely into Earth’s magnetosphere. Magnetic reconnections are not possible in the aligned case, however, hence the need for a different mechanism to inject the particles into Earth’s magnetosphere. More about Cluster Cluster is a mission of international co-operation between ESA and NASA. It involves four spacecraft, launched on two Russian rockets during the summer of 2000. They are now flying in formation around Earth, relaying the most detailed ever information about how the solar wind affects our planet in 3D. The solar wind is the perpetual stream of subatomic particles given out by the Sun and it can damage communications satellites and power stations on Earth. The Cluster mission is expected to continue until at least 2005. The ongoing archiving of the Cluster data (or Cluster Active Archive) is part of the International Living with a Star programme (ILWS), in which space agencies worldwide get together to investigate how variations in the Sun affect the environment of Earth and the other planets. In particular, ILWS concentrate on those aspects of the Sun-Earth system that may affect mankind and society. ILWS is a collaborative initiative between Europe, the United States, Russia, Japan and Canada.

  18. Centrifugal bubble O{sub 2} ({sup 1{Delta}}) gas generator with a total pressure of 100 Torr

    SciTech Connect

    Zagidulin, M V; Nikolaev, V D; Svistun, M I; Khvatov, N A

    2008-08-31

    A centrifugal bubbling singlet-oxygen gas generator is developed in which chlorine with helium are injected into the rotating layer of the alkali solution of hydrogen peroxide through cylindrical nozzles directed at an angle of 30{sup 0} to the bubbler surface. The concentrations of water vapour and O{sub 2} ({sup 1{Delta}}) and the gas temperature were determined by using the multichannel recording of the emission bands of oxygen at 634, 703, 762 and 1268 nm. For the chlorine and helium flow rates of 60 and 90 mmol s{sup -1}, respectively, the specific chlorine load of 3.2 mmol cm{sup -2}, a total pressure of 100 Torr in the working region of the gas generator and the oxygen partial pressure of 36 Torr, the chlorine utilisation was 90% and the content of O{sub 2} ({sup 1{Delta}}) was {approx}60%. For the ratio of the flow rates of chlorine and the alkali solution of hydrogen peroxide equal to 1 mol L{sup -1}, the water vapour content was {approx}25%. The chemical efficiency of the oxygen-iodine laser with this gas generator achieved 23% for the specific power of 12.7 W cm per 1 cm{sup 3} s{sup -1} per pass of the solution through the gas generator. (laser applications and other topics in quantum electronics)

  19. Influence of infection with Renibacterium salmoninarum on susceptibility of juvenile spring chinook salmon to gas bubble trauma

    USGS Publications Warehouse

    Weiland, L.K.; Mesa, M.G.; Maule, A.G.

    1999-01-01

    During experiments in our laboratory to assess the progression and severity of gas bubble trauma (GBT) in juvenile spring chinook salmon Oncorhynchus tshawytscha, we had the opportunity to assess the influence of Renibacterium salmoninarum (Rs), the causative agent of bacterial kidney disease, on the susceptibility of salmon to GBT. We exposed fish with an established infection of Rs to 120% total dissolved gas (TDG) for 96 h and monitored severity of GBT signs in the fins and gills, Rs infection level in kidneys by using an enzyme-linked immunosorbent assay (ELISA), and mortality. Mortality occurred rapidly after exposure to 120% TDG, with a LT20 (time necessary to kill 20% of the population) of about 37 h, which is at a minimum about 16% earlier than other bioassays we have conducted using fish that had no apparent signs of disease. Fish that died early (from 31 to 36 h and from 49 to 52 h) had significantly higher infection levels (mean ?? SE ELISA absorbance = 1.532 ?? 0.108) than fish that survived for 96h (mean ?? SE ELISA absorbance = 0.828 ?? 0.137). Fish that died early also had a significantly greater number of gill filaments occluded with bubbles than those that survived 96 h. Conversely, fish that survived for 96 h had a significantly higher median fin severity ranking than those that died early. Our results indicate that fish with moderate to high levels of Rs infection are more vulnerable to the effects of dissolved gas supersaturation (DGS) and die sooner than fish with lower levels of Rs infection. However, there is a substantial amount of individual variation in susceptibility to the apparent cumulative effects of DGS and Rs infection. Collectively, our findings have important implications to programs designed to monitor the prevalence and severity of GBT in juvenile salmonids in areas like the Columbia River basin and perhaps elsewhere.

  20. Hydrodynamics and axial mixing in a three-phase bubble column. effects of slurry properties

    SciTech Connect

    Kelkar, B.G.; Carr, N.L.; Shah, Y.T.

    1984-04-01

    The hydrodynamics and mixing properties were studied with three phases (gas, liquid, and solid) flowing cocurrently upward in a column. The effects of gas and slurry velocities, solid physical properties, particle size, solids concentration, interfacial tension, and slurry viscosity on phase holdups and axial dispersion coefficients were examined. The phase holdups as well as axial dispersion coefficients were not significantly affected by particle size, solids concentration, and slurry velocities. However, solids wettability was found to enhance the coalescence tendencies in the liquid phase, and hence it decreased the axial dispersion coefficient compared to the ones for water. Addition of surfactants increased the gas holdup and slightly decreased the axial dispersion coefficient. However, an increase in the liquid viscosity reduced both the gas holdup and dispersion coefficients. The results are compared with those reported in the literature and are explained by the drift flux approach and Zuber-Findley theory.

  1. Nondestructive assay holdup measurements with the Ortec detective

    SciTech Connect

    Vo, Duc; Wenz, Tracy; Bracken, David

    2009-01-01

    Wing 4 of the Chemistry and Metallurgy Research facility at Los Alamos National Laboratory is to be downgraded from a Hazard Category 2 Nuclear Facility to a Hazard Category 3 Radiological Facility. Survey and holdup measurements are used to ensure that the total contamination levels present in the facility do not contribute enough activity to go above the Hazard Category 3 threshold quantities. Additionally, the measurement information provides an understanding of the cleanup and the equipment removal needs for the next step of decontaminating and decommissioning of the site. The Chemistry and Metallurgy Research (CMR) facility has been housing the research and experimental activities for analytical chemistry, plutonium and uranium chemistry, and metallurgy since the start of the Los Alamos National Laboratory. It is currently being replaced by the new Chemistry and Metallurgy Research Replacement facilities. As a result, the CMR is gradually closing and/or downgrading to a nonnuclear facility. In 2008, the Safeguards Science and Technology group, N-1, was assigned the task of doing survey and holdup measurements of Wing 4 of the CMR. The goal of the measurements is to provide defensible measurement data for Wing 4 of the CMR Building to be downgraded from a Hazard Category 2 Nuclear Facility to below a Hazard Category 3 Radiological Facility. In addition, the measurement information would provide an understanding of the cleanup and the equipment removal needs for the next step of decontaminating and decommissioning the site. The large areal olume of the site and the high intensity of the high-energy gamma rays of thorium, either from the background or the contaminated objects in the measured room or the adjacent rooms, present some challenges in the holdup measurements. Typical holdup techniques of point source, line, or area measurement do not work well. In order to speed up the measurement time and to accuralely account for all the isotopes present in the facility, we used a new technique that we tentatively named 'Room Holdup Measurement' to do holdup measurements of the site. This technique uses the portable, electric-cooled high-purity germanium detectors from Ortec (the Detectives) to measure the activities of the isotopes.

  2. On the Clouds of Bubbles Formed by Breaking Wind-Waves in Deep Water, and their Role in Air -- Sea Gas Transfer

    NASA Astrophysics Data System (ADS)

    Thorpe, S. A.

    1982-02-01

    Clouds of small bubbles generated by wind waves breaking and producing whitecaps in deep water have been observed below the surface by using an inverted echo sounder. The bubbles are diffused down to several metres below the surface by turbulence against their natural tendency to rise. Measurements have been made at two sites, one in fresh water at Loch Ness and the other in the sea near Oban, northwest Scotland. Sonagraph records show bubble clouds of two distinct types, `columnar clouds' which appear in unstable or convective conditions when the air temperature is less than the surface water temperature, and `billow clouds' which appear in stable conditions when the air temperature exceeds that of the water. Clouds penetrate deeper as the wind speed increases, and deeper in convective conditions than in stable conditions at the same wind speed. The response to a change in wind speed occurs in a period of only a few minutes. Measurements of the acoustic scattering cross section per unit volume, Mv, of the bubbles have been made at several depths. The distributions of Mv at constant depth are close to logarithmic normal. The time-averaged value of Mv, {M}v, decreases exponentially with depth over scales of 40-85 cm (winds up to 12 m s-1),, the scale increasing as the wind increases. Values of {M}v at the same depth and at the same wind speed are greater in the sea than in the fresh-water loch, even at smaller fetches. Estimates have been made of the least mean vertical speed at which bubbles must be advected for them to reach the observed depths. Several centimetres per second are needed, the speeds increasing with wind. Results depend on the conditions at the surfaces of the bubbles, that is whether they are covered by a surface active-film. The presence of oxygen (or gases other than nitrogen) in the gas composing the bubbles appears not to be important in determining their general behaviour. The presence of turbulence in the water also appears unlikely to affect the gas diffusion rates from individual bubbles at wind speeds up to 16 m s-1, except perhaps very close to the surface. The vertical variation of {M}v, and the trend with increasing wind speed is moderately well predicted by a `cell model' taken to represent turbulent motions in the water. Analytical and numerical models in which the tendency of bubbles to rise is balanced by turbulent diffusion, and the effects of solubility of the gas within the bubbles are accounted for, are in reasonable agreement with the observations. An eddy diffusion coefficient is taken (in neutral conditions) to be equal to that in the atmospheric boundary layer over a rigid surface, linearly proportional to depth and friction velocity. The effects of stable or unstable conditions, and those of varying the saturation level in the water, are briefly examined. Estimates are also made, by using the observed values of {M}v supported by the analytical results, of the gas flux from the bubbles. Most of the flux occurs in the upper 2m of the water column. This flux is compared with existing measurement of the net gas flux across the air-water interface. It is concluded that in Loch Ness the component of the flux via the bubbles is small at wind speeds up to 12 m s-1 but that at sea the contribution is significant at wind speeds of 12 m s-1 (at least when the water is close to being saturated) and that at higher wind speeds the bubble contribution may dominate in the processes of air-water gas transfer.

  3. Sonochemistry and bubble dynamics.

    PubMed

    Mettin, Robert; Cairós, Carlos; Troia, Adriano

    2015-07-01

    The details of bubble behaviour in chemically active cavitation are still not sufficiently well understood. Here we report on experimental high-speed observations of acoustically driven single-bubble and few-bubble systems with the aim of clarification of the connection of their dynamics with chemical activity. Our experiment realises the sonochemical isomerization reaction of maleic acid to fumaric acid, mediated by bromine radicals, in a bubble trap set-up. The main result is that the reaction product can only be observed in a parameter regime where a small bubble cluster occurs, while a single trapped bubble stays passive. Evaluations of individual bubble dynamics for both cases are given in form of radius-time data and numerical fits to a bubble model. A conclusion is that a sufficiently strong collapse has to be accompanied by non-spherical bubble dynamics for the reaction to occur, and that the reason appears to be an efficient mixing of liquid and gas phase. This finding corroborates previous observations and literature reports on high liquid phase sonochemical activity under distinct parameter conditions than strong sonoluminescence emissions. PMID:25194210

  4. Tritium inventory differences: I. Sampling and U-getter pump holdup

    SciTech Connect

    Ellefson, R.E.; Gill, J.T.

    1986-01-01

    Inventory differences (ID) in tritium material balance accounts (MBA) can occur with unmeasured transfers from the process or unmeasured holdup in the system. Small but cumulatively significant quantities of tritium can leave the MBA by normal capillary sampling of process gas operation. A predictor model for estimating the quantity of tritium leaving the MBA by sampling has been developed and implemented. The model calculates the gas transferred per sample; using the tritium concentration in the process and the number of samples, a quantity of tritium transferred is predicted. Verification of the model is made by PVT measurement of process transfer from multiple samplings. Comparison of predicted sample transfers with IDs from several MBA's reveals that sampling typically represents 50% of unmeasured transfers for regularly sampled processes.

  5. Passage of a shock wave through inhomogeneous media and its impact on gas-bubble deformation

    NASA Astrophysics Data System (ADS)

    Nowakowski, A. F.; Ballil, A.; Nicolleau, F. C. G. A.

    2015-08-01

    The paper investigates shock-induced vortical flows within inhomogeneous media of nonuniform thermodynamic properties. Numerical simulations are performed using a Eulerian type mathematical model for compressible multicomponent flow problems. The model, which accounts for pressure nonequilibrium and applies different equations of state for individual flow components, shows excellent capabilities for the resolution of interfaces separating compressible fluids as well as for capturing the baroclinic source of vorticity generation. The developed finite volume Godunov type computational approach is equipped with an approximate Riemann solver for calculating fluxes and handles numerically diffused zones at flow component interfaces. The computations are performed for various initial conditions and are compared with available experimental data. The initial conditions promoting a shock-bubble interaction process include weak to high planar shock waves with a Mach number ranging from 1.2 to 3 and isolated cylindrical bubble inhomogeneities of helium, argon, nitrogen, krypton, and sulphur hexafluoride. The numerical results reveal the characteristic features of the evolving flow topology. The impulsively generated flow perturbations are dominated by the reflection and refraction of the shock, the compression, and acceleration as well as the vorticity generation within the medium. The study is further extended to investigate the influence of the ratio of the heat capacities on the interface deformation.

  6. Passage of a shock wave through inhomogeneous media and its impact on gas-bubble deformation.

    PubMed

    Nowakowski, A F; Ballil, A; Nicolleau, F C G A

    2015-08-01

    The paper investigates shock-induced vortical flows within inhomogeneous media of nonuniform thermodynamic properties. Numerical simulations are performed using a Eulerian type mathematical model for compressible multicomponent flow problems. The model, which accounts for pressure nonequilibrium and applies different equations of state for individual flow components, shows excellent capabilities for the resolution of interfaces separating compressible fluids as well as for capturing the baroclinic source of vorticity generation. The developed finite volume Godunov type computational approach is equipped with an approximate Riemann solver for calculating fluxes and handles numerically diffused zones at flow component interfaces. The computations are performed for various initial conditions and are compared with available experimental data. The initial conditions promoting a shock-bubble interaction process include weak to high planar shock waves with a Mach number ranging from 1.2 to 3 and isolated cylindrical bubble inhomogeneities of helium, argon, nitrogen, krypton, and sulphur hexafluoride. The numerical results reveal the characteristic features of the evolving flow topology. The impulsively generated flow perturbations are dominated by the reflection and refraction of the shock, the compression, and acceleration as well as the vorticity generation within the medium. The study is further extended to investigate the influence of the ratio of the heat capacities on the interface deformation. PMID:26382524

  7. AFM forces between mica and polystyrene surfaces in aqueous electrolyte solutions with and without gas bubbles.

    PubMed

    Saavedra, Jorge H; Acuña, Sergio M; Toledo, Pedro G

    2013-11-15

    Force curves between a flat mica substrate and a polystyrene microsphere were measured with an atomic force microscope (AFM) in carefully degassed water and aqueous NaCl, CaCl2, and AlCl3 solutions. The pH of the water used does not change significantly with degassing treatment, and its value remains close to 6. Electrolyte concentration ranges from 10-4 to 10-2M and pH from 4.7 to 5.1. We have found that the repulsive long-range electrostatic force between mica and polystyrene is attenuated by the presence of electrolytes and counterbalanced by a long-range attractive force, which we referred to as a hydrophobic force, which is longer-ranged than the ever present attractive van der Waals force. This force, which includes the adhesive bridging of residual air bubbles and newborn vapor cavities, and any other unknown forces, is reasonably well represented by a unique exponential law. Prefactor and decaying length are not very sensitive to electrolyte type, concentration, and pH, suggesting that any new force included in the law, in addition to adhesive bridges, should obey a non-classical electrostatic mechanism. However, we also know that liquid/solid contact angle and liquid/vapor surface tension increase with electrolyte concentration and valence increasing the stability of bubbles and cavities which in turn increase the bridging force. Clearly, these effects are hidden in the empirical force law. PMID:23998373

  8. Experimental and theoretical studies of gas-liquid mass transfer of a single bubble in a liquid-solid fluidized bed

    SciTech Connect

    Song, G.H.; Jean, R.H.; Fan, L.S. . Dept. of Chemical Engineering)

    1988-01-01

    Experiments are conducted using ozone as a tracer to study the interfacial gas-liquid mass transfer behavior of a single bubble in liquid and liquid-solid fluidized media. A spectrophotometric system is developed, which consists of an ultraviolet (UV) light source, optical fibers, narrow band interference filters, UV-visible photomultipliers, and computerized fast data acquisition. Bubble size, particle properties, and bed voidage are varied to examine the axial variation of the mass transfer rate. A theoretical model is developed for the prediction of the overall gas-liquid mass transfer coefficient of a single circular-cap in a two dimensional or spherical-cap bubble in a three dimensional liquid-solid fluidized bed. The penetration concept is used to account for the mass transfer rate across the bubble roof. Two cases are considered in the evaluation of the mass transfer rate across the bubble base. The prediction of the overall mass transfer coefficient based on the model is shown to agree reasonably well with the experimental results obtained in this study.

  9. Holdup Measurement System 4 V1.0d

    SciTech Connect

    2011-05-31

    HMS4 is a software package for performing and documenting holdup measurements. HMS4 includes two sets of programs; the main program that runs on a host personal computer (PC), and the other ones that run on a handheld mobile computer or portable PC. The main host computer program performs setup and calibration of multichannel analyzer/detector pairs, loads the controllers with operational parameters, receives measurement data from the controllers, maintains measurements and derived results in databases, and prints reports.

  10. Models for gamma-ray holdup measurements at duct contact

    SciTech Connect

    Sheppard, G.A.; Russo, P.A.; Wenz, T.R.; Miller, M.C.; Piquette, E.C. ); Haas, F.X.; Glick, J.B.; Garrett, A.G. )

    1991-01-01

    The use of gamma-ray measurements to nondestructively assay special nuclear material holdup in DOE processing facilities has increased recently. A measurement approach that is relatively insensitive to deposit geometry involves withdrawing the detector from the holdup-bearing equipment far enough to validate an assumed point-, line-, or area-source deposit geometry. Because of facility constraints, these generalized geometry procedures are not always followed, and some ducts are measured at contact. Quantitative interpretation of contact measurements requires knowledge of the width of the deposit transverse to the duct axis. Rocky Flats personnel have introduced a method to obtain data from which this width can be deduced. It involves taking measurements in pairs, with the detector viewing the holdup deposit at contact from above and below the duct. The interpretation of the top and bottom measurements to give the deposit width at each location requires a model for the detector's response to radial source position and a model for the deposit geometry. We have derived a relationship between the top-to-bottom count rate ratio and the deposit width that approximates the detector response and models the deposit geometry as a uniform strip. The model was validated in controlled experiments that used thin foils of high-enriched uranium metal to simulate duct deposits. 4 refs., 5 figs., 1 tab.

  11. Tribonucleation of bubbles

    PubMed Central

    Wildeman, Sander; Lhuissier, Henri; Sun, Chao; Lohse, Detlef; Prosperetti, Andrea

    2014-01-01

    We report on the nucleation of bubbles on solids that are gently rubbed against each other in a liquid. The phenomenon is found to depend strongly on the material and roughness of the solid surfaces. For a given surface, temperature, and gas content, a trail of growing bubbles is observed if the rubbing force and velocity exceed a certain threshold. Direct observation through a transparent solid shows that each bubble in the trail results from the early coalescence of several microscopic bubbles, themselves detaching from microscopic gas pockets forming between the solids. From a detailed study of the wear tracks, with atomic force and scanning electron microscopy imaging, we conclude that these microscopic gas pockets originate from a local fracturing of the surface asperities, possibly enhanced by chemical reactions at the freshly created surfaces. Our findings will be useful either for preventing undesired bubble formation or, on the contrary, for “writing with bubbles,” i.e., creating controlled patterns of microscopic bubbles. PMID:24982169

  12. Physics of bubble oscillations

    NASA Astrophysics Data System (ADS)

    Lauterborn, Werner; Kurz, Thomas

    2010-10-01

    Bubbles in liquids, soft and squeezy objects made of gas and vapour, yet so strong as to destroy any material and so mysterious as at times turning into tiny light bulbs, are the topic of the present report. Bubbles respond to pressure forces and reveal their full potential when periodically driven by sound waves. The basic equations for nonlinear bubble oscillation in sound fields are given, together with a survey of typical solutions. A bubble in a liquid can be considered as a representative example from nonlinear dynamical systems theory with its resonances, multiple attractors with their basins, bifurcations to chaos and not yet fully describable behaviour due to infinite complexity. Three stability conditions are treated for stable trapping of bubbles in standing sound fields: positional, spherical and diffusional stability. Chemical reactions may become important in that respect, when reacting gases fill the bubble, but the chemistry of bubbles is just touched upon and is beyond the scope of the present report. Bubble collapse, the runaway shrinking of a bubble, is presented in its current state of knowledge. Pressures and temperatures that are reached at this occasion are discussed, as well as the light emission in the form of short flashes. Aspherical bubble collapse, as for instance enforced by boundaries nearby, mitigates most of the phenomena encountered in spherical collapse, but introduces a new effect: jet formation, the self-piercing of a bubble with a high velocity liquid jet. Examples of this phenomenon are given from light induced bubbles. Two oscillating bubbles attract or repel each other, depending on their oscillations and their distance. Upon approaching, attraction may change to repulsion and vice versa. When being close, they also shoot self-piercing jets at each other. Systems of bubbles are treated as they appear after shock wave passage through a liquid and with their branched filaments that they attain in standing sound fields. The N-bubble problem is formulated in the spirit of the n-body problem of astrophysics, but with more complicated interaction forces. Simulations are compared with three-dimensional bubble dynamics obtained by stereoscopic high speed digital videography.

  13. Energy effects in bubble nucleation

    SciTech Connect

    Jackson, M.L. . Dept. of Chemical Engineering)

    1994-04-01

    Bubble size and number produced by desorption are important considerations for certain industrial processes such as flotation, gas stripping, and some types of chemical reactions and mass transfer. The size and number of bubbles produced by the desorption of supersaturated gases from water are shown to be a primary function of the energy available for bubble formation in a flowing system; this energy is that not dissipated in turbulence and friction. The number of nucleation sites is greatly increased when certain impurities are present, particularly surface-active agents. Low saturation pressures can produce very large numbers of very small bubbles when added energy is provided for discharge. High gas concentrations produce excess large bubbles which pass up rapidly through the much slower rising bubble mass. A combination of low saturation pressure followed by higher pressure for flow, such as by liquid pumping, results in bubble characteristics which can be controlled for applications.

  14. A Next-Generation Automated Holdup Measurement System (HMS-5)

    SciTech Connect

    Gariazzo, Claudio Andres; Smith, Steven E; Solodov, Alexander A

    2007-01-01

    Holdup Measurement System 4 software (HMS4) has been in use at facilities to systematically measure and verify the amounts of uranium holdup in process facilities under safeguards since its release in 2004. It is a system for measuring uranium and plutonium and archiving holdup data (via barcoded locations with information) which is essential for any internationally safeguarded facility to monitor all amounts of residual special nuclear material (SNM). Additionally, HMS4 has been tested by sites in Russia, the United States, South Africa, and China for more effective application. Comments and lessons learned have been received over time and an updated version of the software would enable the international partners to use a wider variety of commercial equipment existing at these facilities. In June 2005, the Oak Ridge National Laboratory (ORNL) and Los Alamos National Laboratory conducted a holdup measurement training course on HMS4 for subject matter experts from the Ulba Metallurgical Facility at Ust-Kamenogorsk, Kazakhstan, which included an additional external software package for improved measurements of low-enriched uranium by using higher energy gamma-rays more readily found. Due to not being currently integrated into HMS4, it would be greatly beneficial to include this application in the next generation HMS software package (HMS-5). This software system upgrade would assist the International Atomic Energy Agency (IAEA) in having a more comprehensive software package and having it tested at several safeguarded locations. When released, HMS4 only supported AMETEK/ORTEC equipment despite many facilities currently utilizing Canberra Industries technology (detectors, multi-channel analyzers, other hardware, and software packages). For HMS-5 to support all available hardware systems and to benefit the majority of international partners and the IAEA, Canberra technology must be integrated because of such widespread use of its hardware. Furthermore, newly developed hardware such as lanthanum halide detectors and digital processing multichannel analyzers will be incorporated into the new HMS-5 system to accommodate the evolving realm of SNM detection and quantification. HMS-5 is the natural progression from the previous incantations of automated special nuclear material holdup measurement systems for process facilities. ORNL is leading this next-generation system with assistance from its foreign partners and past experiences of its Safeguards Laboratory staff.

  15. A method to calculate equilibrium concentrations of gas and defects in the vicinity of an over-pressured bubble in UO2

    NASA Astrophysics Data System (ADS)

    Noirot, L.

    2014-04-01

    We present a method devised to calculate the equilibrium concentration of point defects and gas atoms in the vicinity of a bubble in UO2. First, we neglect the mechanical energy stored in the solid around an over-pressured bubble and then we explain how to take it into account. We apply the method to helium in interstitial positions in UO2, and compare our theoretical value of Henry's constant with experiments and a molecular dynamics computation. Then, we apply the method to xenon in a Schottky defect and use it to assess the realism of two scenarios elaborated to explain the “paradox of annealing experiments”, i.e. “why a large proportion of gas is released from grains in annealing experiments on irradiated fuel, even though there are thousands of intragranular bubbles to trap the gas?” These two scenarios (thermal resolution or blockage of trapping due to the stress field around the bubbles) were both found to be unrealistic, at least with the formation energies available from ab initio calculations, and with the assumption made to calculate the Z3 term of the partition function. This term is related to the vibration frequencies of xenon atoms in Schottky defects and lattice atoms close to defects.

  16. The effect of high viscosity on the collapse-like chaotic and regular periodic oscillations of a harmonically excited gas bubble.

    PubMed

    Hegedűs, Ferenc; Klapcsik, Kálmán

    2015-11-01

    In the last decade many industrial applications have emerged based on the rapidly developing ultrasonic technology such as ultrasonic pasteurization, alteration of the viscosity of food systems, and mixing immiscible liquids. The fundamental physical basis of these applications is the prevailing extreme conditions (high temperature, pressure and even shock waves) during the collapse of acoustically excited bubbles. By applying the sophisticated numerical techniques of modern bifurcation theory, the present study intends to reveal the regions in the excitation pressure amplitude-ambient temperature parameter plane where collapse-like motion of an acoustically driven gas bubble in highly viscous glycerine exists. We report evidence that below a threshold temperature the bubble model, the Keller-Miksis equation, becomes an overdamped oscillator suppressing collapse-like behaviour. In addition, we have found periodic windows interspersed with chaotic regions indicating the presence of transient chaos, which is important from application point of view if predictability is required. PMID:26186832

  17. Fluid Dynamics of Bubbly Liquids

    NASA Technical Reports Server (NTRS)

    Tsang, Y. H.; Koch, D. L.; Zenit, R.; Sangani, A.; Kushch, V. I.; Spelt, P. D. M.; Hoffman, M.; Nahra, H.; Fritz, C.; Dolesh, R.

    2002-01-01

    Experiments have been performed to study the average flow properties of inertially dominated bubbly liquids which may be described by a novel analysis. Bubbles with high Reynolds number and low Weber number may produce a fluid velocity disturbance that can be approximated by a potential flow. We studied the behavior of suspensions of bubbles of about 1.5 mm diameter in vertical and inclined channels. The suspension was produced using a bank of 900 glass capillaries with inner diameter of about 100 microns in a quasi-steady fashion. In addition, salt was added to the suspension to prevent bubble-bubble coalescence. As a result, a nearly monodisperse suspension of bubble was produced. By increasing the inclination angle, we were able to explore an increasing amount of shear to buoyancy motion. A pipe flow experiment with the liquid being recirculated is under construction. This will provide an even larger range of shear to buoyancy motion. We are planning a microgravity experiment in which a bubble suspension is subjected to shearing in a couette cell in the absence of a buoyancy-driven relative motion of the two phases. By employing a single-wire, hot film anemometer, we were able to obtain the liquid velocity fluctuations. The shear stress at the wall was measured using a hot film probe flush mounted on the wall. The gas volume fraction, bubble velocity, and bubble velocity fluctuations were measured using a homemade, dual impedance probe. In addition, we also employed a high-speed camera to obtain the bubble size distribution and bubble shape in a dilute suspension. A rapid decrease in bubble velocity for a dilute bubble suspension is attributed to the effects of bubble-wall collisions. The more gradual decrease of bubble velocity as gas volume fraction increases, due to subsequent hindering of bubble motion, is in qualitative agreement with the predictions of Spelt and Sangani for the effects of potential-flow bubble-bubble interactions on the mean velocity. The ratio of the bubble velocity variance to the square of the mean is 0(0.1). For these conditions Spelt and Sangani predicted that the homogeneous suspension would be unstable and clustering into horizontal rafts will take place. Evidence for bubble clustering is obtained by analysis of video images. The liquid velocity variance is larger than would be expected for a homogeneous suspension and the liquid velocity frequency spectrum indicates the presence of velocity fluctuations that are slow compared with the time for the passage of an individual bubble. These observations provide further evidence for bubble clustering.

  18. Phospholipid-coated gas bubble engineering: key parameters for size and stability control, as determined by an acoustical method.

    PubMed

    Rossi, Simona; Waton, Gilles; Krafft, Marie Pierre

    2010-02-01

    We have recently reported the sampling of differently sized monomodal populations of microbubbles from a polydisperse lipid-coated bubble preparation. The microbubbles were coated with dimyristoylphosphatidylcholine (DMPC) and stabilized by perfluorohexane (PFH). Such microbubbles are useful as contrast agents and, potentially, for oxygen, drug, and gene delivery and as therapeutic devices. Monomodal populations of small bubbles (approximately 1.6 microm in radius) and large bubbles (approximately 5.4 microm) have been obtained, as assessed by acoustical measurement, static light scattering, and optical microscopy. In this paper, we have determined the influence of various preparation parameters on the initial size characteristics (mean radius and radii distribution) of the microbubbles and on their stability upon time. The bubble size was determined acoustically, with a homemade acoustic setup equipped with a low-power emitter, to avoid altering the bubble stability. We have focused on the effects of the bubble flotation time during the fractionation process and on the DMPC concentration. PFH was indispensable for obtaining stable bubbles. The nature of the buffer [Isoton II vs N-2-hydroxyethylpiperazine-N'-2-ethanesulfonic acid (HEPES)] used as the continuous phase did not significantly impact the bubble characteristics and stability. In both buffers, the half-lives of small bubbles (approximately 1.6 microm in radius in Isoton II and approximately 2.1 microm in HEPES) were found to be longer than those of larger ones (approximately 5.4 and approximately 5.9 microm in Isoton II and HEPES, respectively). The bubble stability study revealed that in both buffers, the average radius of the population of large bubbles progressively increased with time. On the other hand, the average radius of the population of small bubbles decreased slightly in Isoton II and remained constant in HEPES. This suggests that the dissolution behavior of small and large bubbles is governed by different mechanisms. PMID:20099916

  19. Axial and Radial Solids Holdup Modeling of Circulating Fluidized Bed Risers

    NASA Astrophysics Data System (ADS)

    Miao, Q.; Zhu, J.; Barghl, S.; Wanfi, C.; Yin, X. L.; Wu, C. Z.

    Hydrodynamics plays a crucial role in defining the performance of gas-solid circulating fluidized beds (CFB). A two dimensional model was developed considering the hydrodynamic behavior of CFB gasifiers. In the modeling, the CFB riser was divided into two regions: a dense region at the bottom and a dilute region at the top of the riser. Radial distributions of bed voidage were taken into account in the upper zone by using (1991)'s correlation. For model validation purposes, a cold model CFB was employed, in which sawdust was transported with air as fluidizing agent. The column was 10m in height and 280 mm in diameter, and was equipped with pressure transducers to measure axial pressure profile and with a reflective optical fiber probe to measure local solids holdup. A satisfactory agreement between the model predictions and experimental data was found.

  20. Review of Current Literature and Research on Gas Supersaturation and Gas Bubble Trauma: Special Publication Number 1, 1986.

    SciTech Connect

    Colt, John; Bouck, Gerald R.; Fidler, Larry

    1986-12-01

    This report presents recently published information and on-going research on the various areas of gas supersaturation. Growing interest in the effects of chronic gas supersaturation on aquatic animals has been due primarily to heavy mortality of salmonid species under hatchery conditions. Extensive examination of affected animals has failed to consistently identify pathogenic organisms. Water quality sampling has shown that chronic levels of gas supersaturation are commonly present during a significant period of the year. Small marine fish larvae are significantly more sensitive to gas supersaturation than salmonids. Present water quality criteria for gas supersaturation are not adequate for the protection of either salmonids under chronic exposure or marine fish larvae, especially in aquaria or hatcheries. To increase communication between interested parties in the field of gas supersaturation research and control, addresses and telephone numbers of all people responding to the questionnaire are included. 102 refs.

  1. Intense gas bubble emissions in the Kerch seep area - A newly discovered high-flux seep site in the Black Sea

    NASA Astrophysics Data System (ADS)

    Römer, M.; Sahling, H.; Pape, T.; Bahr, A.; Feseker, T.; Wintersteller, P.; Bohrmann, G.

    2012-04-01

    More than 500 bubble-induced hydroacoustic anomalies (flares) were found in the water column above the seafloor in the study area comprising about 430 km2 at the Don-Kuban paleo-fan (Eastern Black Sea) by using ship mounted single beam and multibeam echosounders. Almost all flares originated from the seafloor above the gas hydrate stability zone (GHSZ), which in that region is located below ~700 m water depth. This observation confirms the sealing mechanism of gas hydrate, which impedes migration of free gas through the GHSZ and subsequent bubble emission from the seafloor. However, an intense seep site, called the "Kerch seep area" was discovered as an exception at 890 m water depth well within the GHSZ. In situ temperature measurements in shallow sediments indicate locally elevated temperatures probably caused by enhanced upward fluid flow. The base of the GHSZ in this region is generally situated at about 150 m below the seafloor. However, the local thermal anomalies result in a thinning of the gas hydrate occurrence zone to only a few meters below the seafloor and allow free gas to reach the seafloor. At sites where gas migrated into near-surface deposits, shallow gas hydrate deposits evolved and up-doming of overlying sediments led to the formation of mounds rising several meters from the surrounding seafloor. Further gas bubbles ascending from greater depth are accumulated below the gas hydrate layer at the base of the mound structures and migrate horizontally to their rims. At the mound edges gas bubbles either might form fresh gas hydrates and increase the extent of the mound structures by pushing up overlying sediments or escape at several sites into the water column. Two mounds were mapped in ultra-high resolution during dives with the autonomous underwater vehicle 'AUV MARUM SEAL 5000'. Several individual flares were detected in the Kerch seep area using hydroacoustic systems. Repeated surveys in that area conducted during three cruises within four years suggested that gas discharge varied spatially and temporally while the total number of flares remained rather constant. During seafloor inspections with MARUḾs remotely operated vehicle 'ROV QUEST 4000 m' gas bubble emission sites were investigated in detail. Gas bubbles collected during the ROV dives mainly consisted of methane predominantly of microbial origin. By analyzing the high-definition video material the gas flux from several bubble emission sites was calculated. In combination with the hydroacoustic results (flare distributions) it is estimated that about 2.2 - 87 × 106 mol CH4/yr are emitted from the seafloor at the Kerch seep area. Despite this high mass of methane injected into the hydrosphere, the peak of the highest flares at ~350 m water depth as revealed by echosounder recording suggest that the ascending methane completely dissolves in the water column and does not pass the sea-atmosphere boundary.

  2. Gas bubble network formation in irradiated beryllium pebbles monitored by X-ray microtomography

    NASA Astrophysics Data System (ADS)

    Möslang, A.; Pieritz, R. A.; Boller, E.; Ferrero, C.

    2009-04-01

    The effective and safe operation of helium cooled ceramic breeder blankets with beryllium as a neutron multiplier requires among others an efficient tritium release. A micrometric resolution computer aided microtomography (CMT) setup located at the European Synchrotron Radiation Facility made possible the 3D reconstruction of interconnected channel networks of helium bubbles in beryllium pebbles, thus enabling the identification of open porosities in the micrometer range. Beryllium pebbles of 2 mm diameter were neutron irradiated at 770 K to a fluence of 1.24 × 10 25 nm -2, resulting in 480 appm helium and 12 appm tritium. After annealing at 1500 K, CMT was performed on the pebbles at 4.9 and 1.4 μm spatial resolution, respectively, followed by the post-processing of the reconstructed pebble volumes. Besides a bimodal pore distribution with a smaller population around 10 μm diameter and a high density of partly interconnected pores around 40 μm diameter, a swelling of 17% was found. The spatial distribution of the void fraction network will be discussed together with implications on tritium release behaviour.

  3. Observations of solute effects on bubble formation

    SciTech Connect

    Hofmeier, U.; Yaminsky, V.V.; Christenson, H.K.

    1995-09-01

    The authors have studied the effects of solute, in particular aqueous electrolyte, on bubble formation at capillary orifices and frits at varying gas flow rates. Using a stroboscope, video microscope, and rotating mirror, they have obtained pictures which show how bubble formation involves the interaction of bubbles at the orifice. These interactions depend on the value of the surface elasticity E due to positively (ethanol) or negatively (NaCl) adsorbed solute. At low flow rates consecutive bubbles do not interact. Each bubble detaches and leaves the orifice region before the next one starts forming. A intermediate flow rates the more closely spaced, consecutive bubbles begin to interact. In pure liquids there is no barrier to bubble coalescence and the detached bubble is fed by the subsequent bubble as this starts to grow. The process may be repeated several times before the original bubble has risen out of range. In solutions where E is large enough bubble coalescence is inhibited. Instead of feeding into the detached bubble the following bubble pushes it aside, and the bubbles appear to bounce off each other. Bouncing may give rise to a characteristic sequence of larger and smaller bubbles if the emerging bubbles break off prematurely from the orifice due to the inertia of the original bubble. The transition from feeding to bouncing depends critically on E of the solution and leads to a smaller average bubble size for large E values. At high flow rates detached bubbles are invariably fed by several subsequent ones. At very high flow rates the bubbling becomes chaotic, but the interaction of bubbles after leaving the orifice area produces smaller bubbles in solutions. Bouncing is more likely to occur with narrow and irregular capillaries. The dramatically different appearance of gas-sparged columns in salt water and freshwater has its origin in the difference between assemblies of pores showing mainly feeding (freshwater) or bouncing (salt water).

  4. BLOWING COSMIC BUBBLES

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This NASA Hubble Space Telescope image reveals an expanding shell of glowing gas surrounding a hot, massive star in our Milky Way Galaxy. This shell is being shaped by strong stellar winds of material and radiation produced by the bright star at the left, which is 10 to 20 times more massive than our Sun. These fierce winds are sculpting the surrounding material - composed of gas and dust - into the curve-shaped bubble. Astronomers have dubbed it the Bubble Nebula (NGC 7635). The nebula is 10 light-years across, more than twice the distance from Earth to the nearest star. Only part of the bubble is visible in this image. The glowing gas in the lower right-hand corner is a dense region of material that is getting blasted by radiation from the Bubble Nebula's massive star. The radiation is eating into the gas, creating finger-like features. This interaction also heats up the gas, causing it to glow. Scientists study the Bubble Nebula to understand how hot stars interact with the surrounding material. Credit: Hubble Heritage Team (AURA/STScI/NASA)

  5. Radicular Compression by Intraspinal Epidural Gas Bubble Occurred in Distant Two Levels after Lumbar Microdiscectomy

    PubMed Central

    Yoon, Kang-Jun; Ha, Sang-Soo; Kang, Joon-Ki

    2014-01-01

    The authors report a case of symptomatic epidural gas accumulation 2 weeks after the multi-level lumbar surgery, causing postoperative recurrent radiculopathy. The accumulation of epidural gas compressing the dural sac and nerve root was demonstrated by CT and MRI at the distant two levels, L3-4 and L5-S1, where vacuum in disc space was observed preoperatively and both laminectomy and discectomy had been done. However, postoperative air was not identified at L4-5 level where only laminectomy had been done in same surgical field, which suggested the relationship between postoperative epidural gas and the manipulation of disc structure. Conservative treatment and needle aspiration was performed, but not effective to relieve patient's symptoms. The patient underwent revision surgery to remove the gaseous cyst. Her leg pain was improved after the second operation. PMID:25628816

  6. Rarefied gas correction for the bubble entrapment singularity in drop impacts

    NASA Astrophysics Data System (ADS)

    Duchemin, Laurent; Josserand, Christophe

    2012-11-01

    We study the non-continuous correction in the dynamics of drop impact on a solid substrate. Close to impact, a thin film of gas is formed beneath the drop so that the local Knudsen number is of order one. We consider the first correction to the dynamics which consists of allowing slip of the gas along the substrate and the interface. We focus on the singular dynamics of entrapment that can be seen when surface tension and liquid viscosity can be neglected. There we show that different dynamical regimes are present that tend to lower the singularity strength. We finally suggest how these effects might be connected to the influence of the gas pressure in the impact dynamics observed in recent experiments.

  7. Heat transfer between stratified immiscible liquid layers driven by gas bubbling across the interface

    SciTech Connect

    Greene, G.A.; Irvine, T.F. Jr.

    1988-01-01

    The modeling of molten core debris in the CORCON and VANESA computer codes as overlying, immiscible liquid layers is discussed as it relates to the transfer of heat and mass between the layers. This initial structure is identified and possible configurations are discussed. The stratified, gas-sparged configuration that is presently employed in CORCON and VANESA is examined and the existing literature for interlayer heat transfer is assessed. An experiment which was designed to measure interlayer heat transfer with gas sparging is described. The results are presented and compared to previously existing models. A dimensionless correlation for stratified, interlayer heat transfer with gas sparging is developed. This relationship is recommended for inclusion in CORCON-MOD2 for heat transfer between stratified, molten liquid layers. 12 refs., 6 figs., 3 tabs.

  8. Mass flow measurement of gas-liquid bubble flow with the combined use of a Venturi tube and a vortex flowmeter

    NASA Astrophysics Data System (ADS)

    Sun, Zhiqiang

    2010-05-01

    Development of effective techniques for gas-liquid two-phase flow measurement is of interest to both academic research and industrial applications. This paper presents a novel approach to the measurement of the mass flow rate of homogeneous gas-liquid bubble flow with the combined use of a Venturi tube and a vortex flowmeter. The Venturi tube and the vortex flowmeter were mounted in the same pipeline with a spacing interval of ten times the pipe's inner diameter. A measurement correlation was established based on the differential pressure generated across the Venturi tube and the frequency extracted from the vortex flowmeter signal. Experiments were conducted on a vertical upward gas-liquid two-phase flow rig under the bubble flow pattern, with the air mass flow rate from 0.2 × 10-3 to 3.2 × 10-3 kg s-1, the water mass flow rate from 3.3 to 5.2 kg s-1 and the volumetric void fraction from 0.004 to 0.246. The results show that the relative errors of the correlation for the mixture mass flow rate measurement were within ±5%, and the maximum standard deviation of the relative errors was 2.0%. This method provides a simple and practical solution to the mass flow measurement of homogeneous gas-liquid bubble flows.

  9. Recalcitrant bubbles

    PubMed Central

    Shanahan, Martin E. R.; Sefiane, Khellil

    2014-01-01

    We demonstrate that thermocapillary forces may drive bubbles against liquid flow in ‘anomalous' mixtures. Unlike ‘ordinary' liquids, in which bubbles migrate towards higher temperatures, we have observed vapour bubbles migrating towards lower temperatures, therefore against the flow. This unusual behaviour may be explained by the temperature dependence of surface tension of these binary mixtures. Bubbles migrating towards their equilibrium position follow an exponential trend. They finally settle in a stationary position just ‘downstream' of the minimum in surface tension. The exponential trend for bubbles in ‘anomalous' mixtures and the linear trend in pure liquids can be explained by a simple model. For larger bubbles, oscillations were observed. These oscillations can be reasonably explained by including an inertial term in the equation of motion (neglected for smaller bubbles). PMID:24740256

  10. TECHNOLOGY ASSESSMENT OF FINE BUBBLE AERATORS

    EPA Science Inventory

    This technology assessment addresses design and evaluation of fine bubble aeration equipment. It discusses the associated gas transfer theory used as the basis for measuring water and wastewater oxygenation efficiency. Mixing requirements are also discussed. While bubble aeration...

  11. Holdup Measures on an SRNL Mossbauer Spectroscopy Instrument

    SciTech Connect

    Dewberry, R.; Brown, T.; Salaymeh, S.

    2010-05-05

    Gamma-ray holdup measurements of a Mossbauer spectroscopy instrument are described and modeled. In the qualitative acquisitions obtained in a low background area of Savannah River National Laboratory, only Am-241 and Np-237 activity were observed. The Am-241 was known to be the instrumental activation source, while the Np-237 is clearly observed as a source of contamination internal to the instrument. The two sources of activity are modeled separately in two acquisition configurations using two separate modeling tools. The results agree well, demonstrating a content of (1980 {+-} 150) {mu}Ci Am-241 and (110 {+-} 50) {mu}Ci of Np-237.

  12. Holdup Measurement System 4 V1.0d

    Energy Science and Technology Software Center (ESTSC)

    2011-05-31

    HMS4 is a software package for performing and documenting holdup measurements. HMS4 includes two sets of programs; the main program that runs on a host personal computer (PC), and the other ones that run on a handheld mobile computer or portable PC. The main host computer program performs setup and calibration of multichannel analyzer/detector pairs, loads the controllers with operational parameters, receives measurement data from the controllers, maintains measurements and derived results in databases, andmore » prints reports.« less

  13. A Simple Economic Teaching Experiment on the Hold-Up Problem

    ERIC Educational Resources Information Center

    Balkenborg, Dieter; Kaplan, Todd; Miller, Timothy

    2012-01-01

    The hold-up problem is central to the theory of incomplete contracts. This can occur if, after making a sunk investment in a relationship, one party can be taken advantage of by the other party, leading to inefficient underinvestment. The authors describe a simple teaching experiment that illustrates the hold-up problem, and address how to…

  14. A three dimensional model of an ultrasound contrast agent gas bubble and its mechanical effects on microvessels

    PubMed Central

    Hosseinkhah, N.; Hynynen, K.

    2012-01-01

    Ultrasound contrast agents inside a microvessel, when driven by ultrasound, oscillate and induce mechanical stresses on the vessel wall. These mechanical stresses can produce beneficial therapeutic effects but also induce vessel rupture if the stresses are too high. Therefore, it is important to use sufficiently low pressure amplitudes to avoid rupturing the vessels while still inducing the desired therapeutic effects. In this work, we developed a comprehensive three dimensional model of a confined microbubble inside a vessel while considering the bubble shell properties, blood viscosity, vessel wall curvature and the mechanical properties of the vessel wall. Two bubble models with the assumption of a spherical symmetric bubble and a simple asymmetrical bubble were simulated. This work was validated with previous experimental results and enabled us to evaluate the microbubbles’ behaviour and the resulting mechanical stresses induced on the vessel walls. In this study the fluid shear and circumferential stresses were evaluated as indicators of the mechanical stresses. The effects of acoustical parameters, vessel viscoelasticity and rigidity, vessel/bubble size and off-center bubbles on bubble behaviour and stresses on the vessel were investigated. The fluid shear and circumferential stresses acting on the vessel varied with time and location. As the frequency changed, the microbubble oscillated with the highest amplitude at its resonance frequency which was different from the resonance frequency of an unbound bubble. The bubble resonance frequency increased as the rigidity of a flexible vessel increased. The fluid shear and circumferential stresses peaked at frequencies above the bubble’s resonance frequency. The more rigid the vessels were, the more damped the bubble oscillations. The synergistic effect of acoustic frequency and vessel elasticity had also been investigated, since the circumferential stress showed either an increasing trend or a decreasing one versus the vessel rigidity at difference acoustic frequencies. When the acoustic pressure was increased from 52 kPa to 680 kPa, the maximum bubble radius increase by 2.5 folds and the maximum shear and circumferential stress increased by 15.7 and 18.3 folds respectively. The shear stress was largest when the acoustic frequency was higher (3.25 MHz) and the ratio of the vessel radius to the bubble radius was lower. The circumferential stress was largest when the bubble wall was closer to the vessel wall. An oscillating off-center bubble forms a mushroom shape with the most damping on the points closest to the vessel wall. PMID:22252221

  15. An energy-efficient process for decomposing perfluorooctanoic and perfluorooctane sulfonic acids using dc plasmas generated within gas bubbles

    NASA Astrophysics Data System (ADS)

    Yasuoka, K.; Sasaki, K.; Hayashi, R.

    2011-06-01

    Perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS) are environmentally harmful and persistent substances. Their decomposition was investigated using dc plasmas generated within small gas bubbles in a solution. The plasma characteristics including discharge voltage, voltage drop in the liquid, plasma shape and the emission spectrum were examined with different gases. The decomposition rate and energy efficiency were evaluated by measuring the concentration of fluoride and sulfate ions released from PFOA/PFOS molecules. The concentration of fluoride ions and energy efficiency in the treatment of a PFOS solution were 17.7 mg l-1 (54.8% of the initial amount of fluorine atoms) and 26 mg kWh-1, respectively, after 240 min of operation. The addition of scavengers of hydroxyl radicals and hydrated electrons showed little effect on the decomposition. The decomposition processes were analyzed with an assumption that positive species reacted with PFOA/PFOS molecules at the boundary of the plasma-solution surface. This type of plasma showed a much higher decomposition energy efficiency compared with energy efficiencies reported in other studies.

  16. Bubble Puzzles

    NASA Astrophysics Data System (ADS)

    Lohse, Detlef

    2006-11-01

    Bubbles are fascinating. With their ubiquitous occurrence in a multitude of fluid systems bubbles occupy a very important place in contemporary science and technology. In many applications, bubble control is crucial. I will demonstrate that bubble nucleation at surfaces, which always has been associated with randomness, can be perfectly controlled both in space and time. This new technique allows to quantitatively study bubble-bubble and bubble-surface interaction and reveals a shielding effect in bubble clusters [1]. -- In a second example for the importance of bubble control I will discuss their disturbing effect in piezo-acoustic ink-jet printing: I will show how bubbles are entrained, grow by rectified diffusion, and finally seriously disturb the jetting process by counteracting the pressure build-up at the nozzle [2]. [1] N. Bremond, M. Arora, C. D. Ohl, and D. Lohse, Phys. Rev. Lett. 96, 224501 (2006). [2] J. de Jong, H. Reinten, M. van den Berg, H. Wijshoff, M. Versluis, G. de Bruin, and D. Lohse, J. Acoust. Soc. Am., (August 2006).

  17. Holdup counters for the Plutonium Fuel Production Facility--PFPF

    SciTech Connect

    Miller, M.C.; Menlove, H.O. ); Seya, M.; Takahashi, S. ); Adedin-Zadeh, R. )

    1990-01-01

    A neutron coincidence counting system has been developed for assaying plutonium holdup in glove boxes at the automated mixed-oxide fuel fabrication facility, PFPF, in Japan. The time-correlated neutron emission rate arising from the spontaneous fission decay of plutonium isotopes is measured and converted to grams of plutonium contained in the glove box. Each detection system consists of a pair of polyethylene slabs containing {sup 3}He proportional counters and associated electronics. These slabs are placed on either side of the glove box that is to be measured for plutonium holdup. The detectors are moved by a portable lifter to map out the coincidence response from the entire glove box. Results of a design optimization study that considered detector efficiency, as well as overall size and weight and how these parameters interface with the procedure of mapping the glove box, are presented. The use of Los Alamos transport code, MCNP, in the detector design optimization and in aid of calibration is also discussed. 2 refs., 8 figs., 1 tab.

  18. Removal of elemental mercury from flue gas by thermally activated ammonium persulfate in a bubble column reactor.

    PubMed

    Liu, Yangxian; Wang, Qian

    2014-10-21

    In this article, a novel technique on removal of elemental mercury (Hg(0)) from flue gas by thermally activated ammonium persulfate ((NH4)(2)S(2)O(8)) has been developed for the first time. Some experiments were carried out in a bubble column reactor to evaluate the effects of process parameters on Hg(0) removal. The mechanism and kinetics of Hg(0) removal are also studied. The results show that the parameters, (NH4)(2)S(2)O(8) concentration, activation temperature and solution pH, have significant impacts on Hg(0) removal. The parameters, Hg(0), SO2 and NO concentration, only have small effects on Hg(0) removal. Hg(0) is removed by oxidations of (NH4)(2)S(2)O(8), sulfate and hydroxyl free radicals. When (NH4)(2)S(2)O(8) concentration is more than 0.1 mol/L and solution pH is lower than 9.71, Hg(0) removal by thermally activated (NH4)(2)S(2)O(8) meets a pseudo-first-order fast reaction with respect to Hg(0). However, when (NH4)(2)S(2)O(8) concentration is less than 0.1 mol/L or solution pH is higher than 9.71, the removal process meets a moderate speed reaction with respect to Hg(0). The above results indicate that this technique is a feasible method for emission control of Hg(0) from flue gas. PMID:25251199

  19. Gas-bubble snap-off under pressure driven flow in constricted noncircular capillaries

    SciTech Connect

    Kovscek, A.R.; Radke, C.J.

    1996-04-01

    A model for snap-off of a gas thread in a constricted cornered pore is developed. The time for wetting liquid to accumulate at a pore throat into an unstable collar is examined, as for the resulting pore-spanning lens to be displaced from the pore so that snap-off is the time may repeat. A comer-flow hydrodynamic analysis for the accumulation rate of wetting liquid due to both gradients in interfacial curvature and in applied liquid-phase pressure reveals that wetting-phase pressure gradients significantly increase the frequency of liquid accumulation for snap-off as compared to liquid rearrangement driven only by differences in pore-wall curvature. For moderate and large pressure gradients, the frequency of accumulation increases linearly with pressure gradient because of the increased rate of wetting liquid flow along pore comers. Pore topology is important to the theory, for pores with relatively small throats connected to large bodies demonstrate excellent ability to snapoff gas threads even when the initial capillary pressure is high or equivalently when the liquid saturation is low. A macroscopic momentum balance across the lens resulting from snap-off reveals that lens displacement rates are not linear with the imposed pressure drop. Instead, the frequency of lens displacement scales with powers between 0.5 and 0.6 for pores with dimensionless constriction radii between 0.15 and 0.40. Statistical percolation arguments are employed to form a generation rate expression and connect pore-level foam generation events to macroscopic pressure gradients in porous media. The rate of foam generation by capillary snap-off increases linearly with the liquid-phase pressure gradient and according to a power-law relationship with respect to the imposed gas-phase pressure gradient.

  20. Mesoscale Benchmark Demonstration Problem 1: Mesoscale Simulations of Intra-granular Fission Gas Bubbles in UO2 under Post-irradiation Thermal Annealing

    SciTech Connect

    Li, Yulan; Hu, Shenyang Y.; Montgomery, Robert; Gao, Fei; Sun, Xin; Tonks, Michael; Biner, Bullent; Millet, Paul; Tikare, Veena; Radhakrishnan, Balasubramaniam; Andersson , David

    2012-04-11

    A study was conducted to evaluate the capabilities of different numerical methods used to represent microstructure behavior at the mesoscale for irradiated material using an idealized benchmark problem. The purpose of the mesoscale benchmark problem was to provide a common basis to assess several mesoscale methods with the objective of identifying the strengths and areas of improvement in the predictive modeling of microstructure evolution. In this work, mesoscale models (phase-field, Potts, and kinetic Monte Carlo) developed by PNNL, INL, SNL, and ORNL were used to calculate the evolution kinetics of intra-granular fission gas bubbles in UO2 fuel under post-irradiation thermal annealing conditions. The benchmark problem was constructed to include important microstructural evolution mechanisms on the kinetics of intra-granular fission gas bubble behavior such as the atomic diffusion of Xe atoms, U vacancies, and O vacancies, the effect of vacancy capture and emission from defects, and the elastic interaction of non-equilibrium gas bubbles. An idealized set of assumptions was imposed on the benchmark problem to simplify the mechanisms considered. The capability and numerical efficiency of different models are compared against selected experimental and simulation results. These comparisons find that the phase-field methods, by the nature of the free energy formulation, are able to represent a larger subset of the mechanisms influencing the intra-granular bubble growth and coarsening mechanisms in the idealized benchmark problem as compared to the Potts and kinetic Monte Carlo methods. It is recognized that the mesoscale benchmark problem as formulated does not specifically highlight the strengths of the discrete particle modeling used in the Potts and kinetic Monte Carlo methods. Future efforts are recommended to construct increasingly more complex mesoscale benchmark problems to further verify and validate the predictive capabilities of the mesoscale modeling methods used in this study.

  1. Growth and setting of gas bubbles in a viscoelastic matrix imaged by X-ray microtomography: the evolution of cellular structures in fermenting wheat flour dough.

    PubMed

    Turbin-Orger, A; Babin, P; Boller, E; Chaunier, L; Chiron, H; Della Valle, G; Dendievel, R; Rguerre, A L; Salvo, L

    2015-05-01

    X-ray tomography is a relevant technique for the dynamic follow-up of gas bubbles in an opaque viscoelastic matrix, especially using image analysis. It has been applied here to pieces of fermenting wheat flour dough of various compositions, at two different voxel sizes (15 and 5 ?m). The resulting evolution of the main cellular features shows that the creation of cellular structures follows two regimes that are defined by a characteristic time of connectivity, tc [30 and 80 min]: first (t ? tc), bubbles grow freely and then (t ? tc) they become connected since the percolation of the gas phase is limited by liquid films. During the first regime, bubbles can be tracked and the local strain rate can be measured. Its values (10(-4)-5 10(-4) s(-1)) are in agreement with those computed from dough viscosity and internal gas pressure, both of which depend on the composition. For higher porosity, P = 0.64 in our case, and thus occurring in the second regime, different cellular structures are obtained and XRT images show deformed gas cells that display complex shapes. The comparison of these images with confocal laser scanning microscopy images suggests the presence of liquid films that separate these cells. The dough can therefore be seen as a three-phase medium: viscoelastic matrix/gas cell/liquid phase. The contributions of the different levels of matter organization can be integrated by defining a capillary number (C = 0.1-1) that makes it possible to predict the macroscopic dough behavior. PMID:25816111

  2. Heat transfer and hydrodynamic investigations of a baffled slurry bubble column

    NASA Astrophysics Data System (ADS)

    Saxena, S. C.; Chen, Z. D.

    1992-09-01

    Heat transfer and hydrodynamic investigations have been conducted in a 0.108 m internal diameter bubble column at ambient conditions. The column is equipped with seven 19mm diameter tubes arranged in an equilateral triangular pitch of 36.5 mm. A Monsanto synthetic heat transfer fluid, Therminol-66 having a viscosity of 39.8 cP at 303 K, is used as a liquid medium. Magnetite powders, average diameters 27.7 and 36.6 µm, in five concentrations up to 50 weight percent in the slurry, are used. As a gas phase, industrial grade nitrogen of purity 99.6 percent is employed. Gas holdup in different operating modes and regimes have been measured for the two- and three-phase systems over a superficial gas velocity range up to 0.20 m/s in the semi-batch mode. Heat transfer coefficients are measured at different tube locations in the bundle at different radial and vertical locations over a range of operating conditions. All these data are compared with the existing literature correlations and models. New correlations are proposed.

  3. Writing bubbles

    NASA Astrophysics Data System (ADS)

    Wildeman, Sander; Lhuissier, Henri; Sun, Chao; Prosperetti, Andrea; Lohse, Detlef

    2012-11-01

    We report on the nucleation of bubbles under a solid sphere immersed in a supersaturated liquid that is gently rubbed against a surface. For a fixed liquid supersaturation, bubbles are observed only above a certain rubbing velocity threshold. Above this threshold and provided that bubbles adhere better to the surface than to the sphere, a regularly spaced row of growing bubbles is left behind on the surface. Direct observation through a transparent sphere shows that each bubble in the row actually results from the early coalescence of several microscopic bubbles, which nucleate between the sphere and the surface. Together with the influence of the degree of supersaturation and the normal force between sphere and surface, we study the influence of the liquid itself (water or ethanol), the sphere material (glass, metal or Teflon) and of the surface roughness (polished or unpolished). Regardless of its precise origin, this method of ``writing bubbles'' also provides a simple way to spatially and temporally control the nucleation of bubbles on a surface and to study their interactions.

  4. Enhancing gas-liquid mass transfer rates in non-newtonian fermentations by confining mycelial growth to microbeads in a bubble column

    SciTech Connect

    Gbewonyo, K.; Wang, D.I.C.

    1983-12-01

    The performance of a penicillin fermentation was assessed in a laboratory-scale bubble column fermentor, with mycelial growth confined to the pore matrix of celite beads. Final cell densities of 29 g/L and penicillin titres of 5.5 g/L were obtained in the confined cell cultures. In comparison, cultures of free mycelial cells grown in the absence of beads experienced dissolved oxygen limitations in the bubble column, giving only 17 g/L final cell concentrations with equally low penicillin titres of 2 g/L. The better performance of the confined cell cultures was attributed to enhanced gas liquid mass transfer rates, with mass transfer coefficients (k /SUB L/ a) two to three times higher than those determined in the free cell cultures. Furthermore, the confined cell cultures showed more efficient utilization of power input for mass transfer, providing up to 50% reduction in energy requirements for aeration.

  5. Storm in a "Teacup": A Radio-quiet Quasar with ≈10 kpc Radio-emitting Bubbles and Extreme Gas Kinematics

    NASA Astrophysics Data System (ADS)

    Harrison, C. M.; Thomson, A. P.; Alexander, D. M.; Bauer, F. E.; Edge, A. C.; Hogan, M. T.; Mullaney, J. R.; Swinbank, A. M.

    2015-02-01

    We present multi-frequency (1-8 GHz) Very Large Array data, combined with VIsible MultiObject Spectrograph integral field unit data and Hubble Space Telescope imaging, of a z = 0.085 radio-quiet type 2 quasar (with L 1.4 GHz ≈ 5 × 1023 W Hz-1 and L AGN ≈ 2 × 1045 erg s-1). Due to the morphology of its emission-line region, the target (J1430+1339) has been referred to as the "Teacup" active galactic nucleus (AGN) in the literature. We identify "bubbles" of radio emission that are extended ≈10-12 kpc to both the east and west of the nucleus. The edge of the brighter eastern bubble is co-spatial with an arc of luminous ionized gas. We also show that the "Teacup" AGN hosts a compact radio structure, located ≈0.8 kpc from the core position, at the base of the eastern bubble. This radio structure is co-spatial with an ionized outflow with an observed velocity of v = -740 km s-1. This is likely to correspond to a jet, or possibly a quasar wind, interacting with the interstellar medium at this position. The large-scale radio bubbles appear to be inflated by the central AGN, which indicates that the AGN can also interact with the gas on >~ 10 kpc scales. Our study highlights that even when a quasar is formally "radio-quiet" the radio emission can be extremely effective for observing the effects of AGN feedback.

  6. STORM IN A {sup T}EACUP{sup :} A RADIO-QUIET QUASAR WITH ≈10 kpc RADIO-EMITTING BUBBLES AND EXTREME GAS KINEMATICS

    SciTech Connect

    Harrison, C. M.; Thomson, A. P.; Alexander, D. M.; Edge, A. C.; Hogan, M. T.; Swinbank, A. M.; Bauer, F. E.; Mullaney, J. R.

    2015-02-10

    We present multi-frequency (1-8 GHz) Very Large Array data, combined with VIsible MultiObject Spectrograph integral field unit data and Hubble Space Telescope imaging, of a z = 0.085 radio-quiet type 2 quasar (with L {sub 1.4} {sub GHz} ≈ 5 × 10{sup 23} W Hz{sup –1} and L {sub AGN} ≈ 2 × 10{sup 45} erg s{sup –1}). Due to the morphology of its emission-line region, the target (J1430+1339) has been referred to as the ''Teacup'' active galactic nucleus (AGN) in the literature. We identify ''bubbles'' of radio emission that are extended ≈10-12 kpc to both the east and west of the nucleus. The edge of the brighter eastern bubble is co-spatial with an arc of luminous ionized gas. We also show that the ''Teacup'' AGN hosts a compact radio structure, located ≈0.8 kpc from the core position, at the base of the eastern bubble. This radio structure is co-spatial with an ionized outflow with an observed velocity of v = –740 km s{sup –1}. This is likely to correspond to a jet, or possibly a quasar wind, interacting with the interstellar medium at this position. The large-scale radio bubbles appear to be inflated by the central AGN, which indicates that the AGN can also interact with the gas on ≳ 10 kpc scales. Our study highlights that even when a quasar is formally ''radio-quiet'' the radio emission can be extremely effective for observing the effects of AGN feedback.

  7. Bubbly Little Star

    NASA Technical Reports Server (NTRS)

    2007-01-01

    In this processed Spitzer Space Telescope image, baby star HH 46/47 can be seen blowing two massive 'bubbles.' The star is 1,140 light-years away from Earth.

    The infant star can be seen as a white spot toward the center of the Spitzer image. The two bubbles are shown as hollow elliptical shells of bluish-green material extending from the star. Wisps of green in the image reveal warm molecular hydrogen gas, while the bluish tints are formed by starlight scattered by surrounding dust.

    These bubbles formed when powerful jets of gas, traveling at 200 to 300 kilometers per second, or about 120 to 190 miles per second, smashed into the cosmic cloud of gas and dust that surrounds HH 46/47. The red specks at the end of each bubble show the presence of hot sulfur and iron gas where the star's narrow jets are currently crashing head-on into the cosmic cloud's gas and dust material.

    Whenever astronomers observe a star, or snap a stellar portrait, through the lens of any telescope, they know that what they are seeing is slightly blurred. To clear up the blurring in Spitzer images, astronomers at the Jet Propulsion Laboratory developed an image processing technique for Spitzer called Hi-Res deconvolution.

    This process reduces blurring and makes the image sharper and cleaner, enabling astronomers to see the emissions around forming stars in greater detail. When scientists applied this image processing technique to the Spitzer image of HH 46/47, they were able to see winds from the star and jets of gas that are carving the celestial bubbles.

    This infrared image is a three-color composite, with data at 3.6 microns represented in blue, 4.5 and 5.8 microns shown in green, and 24 microns represented as red.

  8. A Bubble Bursts

    NASA Technical Reports Server (NTRS)

    2005-01-01

    RCW 79 is seen in the southern Milky Way, 17,200 light-years from Earth in the constellation Centaurus. The bubble is 70-light years in diameter, and probably took about one million years to form from the radiation and winds of hot young stars.

    The balloon of gas and dust is an example of stimulated star formation. Such stars are born when the hot bubble expands into the interstellar gas and dust around it. RCW 79 has spawned at least two groups of new stars along the edge of the large bubble. Some are visible inside the small bubble in the lower left corner. Another group of baby stars appears near the opening at the top.

    NASA's Spitzer Space Telescope easily detects infrared light from the dust particles in RCW 79. The young stars within RCW 79 radiate ultraviolet light that excites molecules of dust within the bubble. This causes the dust grains to emit infrared light that is detected by Spitzer and seen here as the extended red features.

  9. Mechanisms for stable single bubble sonoluminescence

    SciTech Connect

    Brenner, M.P.; Lohse, D.; Oxtoby, D.; Dupont, T.F.

    1996-02-01

    A gas bubble trapped in water by an oscillating acoustic field is expected to either shrink or grow on a diffusive time scale, depending on the forcing strength and the bubble size. At high ambient gas concentration this has long been observed. However, recent sonoluminescence experiments show that when the ambient gas concentration is low the bubble can be stable for days. This paper discusses mechanisms leading to stability. {copyright} {ital 1996 The American Physical Society.}

  10. Bubble, Bubble, Toil and Trouble.

    ERIC Educational Resources Information Center

    Journal of Chemical Education, 2001

    2001-01-01

    Bubbles are a fun way to introduce the concepts of surface tension, intermolecular forces, and the use of surfactants. Presents two activities in which students add chemicals to liquid dishwashing detergent with water in order to create longer lasting bubbles. (ASK)

  11. Weak waves in multifractional liquids with bubbles

    NASA Astrophysics Data System (ADS)

    Gubaidullin, D. A.; Nikiforov, A. A.; Gafiyatov, R. N.

    2016-01-01

    The propagation of weak waves in multifractional mixtures of liquid with vapor-gas and gas bubbles of different sizes and different compositions with phase transitions is studied. The dispersed phase consists of N+M fractions having various gases in bubbles and different in the bubbles radii. Phase transitions accounted for N fractions. The total bubble volume concentration is small (less than 1%). The dispersion relation is derived and dispersion curves is built. Influence of the mass concentration is shown. It is shown that dispersion and dissipation of acoustic waves depends significantly on presence of different bubbles in fractions of the dispersed phase.

  12. Generation of pulsed discharge plasma in water with fine bubbles

    NASA Astrophysics Data System (ADS)

    Hayashi, Yui; Takada, Noriharu; Kanda, Hideki; Goto, Motonobu; Goto laboratory Team

    2015-09-01

    Recently, some researchers have proposed electric discharge methods with bubbles in water because the discharge plasma inside bubble was easy to be generated compared to that in water. Almost all of these methods introduced bubbles in the order of millimeter size from a nozzle placed in water. In these methods, bubbles rose one after another owing to high rising speed of millibubble, leading to inefficient gas consumption. We proposed fine bubbles introduction at the discharge area in water. A fine bubble is determined a bubble with less than 100 μm in a diameter. Fine bubbles exhibit extremely slow rising speed. Fine bubbles decrease in size during bubble rising and subsequently collapse in water with OH radical generation. Therefore, combining the discharge plasma with fine bubbles is expected to generate more active species with small amount of gas consumption. In this work, fine bubbles were introduced in water and pulsed discharge plasma was generated between two cylindrical electrodes which placed in water. We examined effects of fine bubbles on electric discharge in water when argon or oxygen gas was utilized as feed gas. Fine bubbles enhanced optical emission of hydrogen and oxygen atoms from H2O molecules, but that of feed gas was not observed. The formation mechanism of H2O2 by electric discharge was supposed to be different from that with no bubbling. Dissolved oxygen in water played a role in H2O2 formation by the discharge with fine bubbles.

  13. Gravity driven flows of bubble suspensions.

    NASA Astrophysics Data System (ADS)

    Zenit, Roberto; Koch, Donald L.; Sangani, Ashok K.

    1999-11-01

    Experiments on vertical and inclined channels were performed to study the behavior of a mono-dispersed bubble suspension for which the dual limit of large Reynolds number and small Weber number is satisfied. A uniform stream of 1.5 mm diameter bubbles is produced by a bank of identical capillaries and coalescence is inhibited by addition of salt to the water. Measurements of the liquid velocity and bubble-probe collision rate are obtained with a hot wire anemometer. The gas volume fraction, bubble velocity, velocity variance and chord length are measured using a dual impedance probe. Image analysis is used to quantify the distributions of bubble size and aspect ratio. For vertical channels the bubble velocity is observed to decrease as the bubble concentration increases in accord with the predictions of Spelt and Sangani (1998). The bubble velocity variance arises largely due to bubble-wall and bubble-bubble collisions. For inclined channels, the strength of the shear flow is controlled by the extent of bubble segregation and the effective viscosity of the bubble phase. The measurements are compared with solutions of the averaged equations of motion for a range of gas volume fractions and channel inclination angles.

  14. Driving bubbles out of glass

    NASA Technical Reports Server (NTRS)

    Mattox, D. M.

    1981-01-01

    Surface tension gradient in melt forces gas bubbles to surface, increasing glass strength and transparency. Conventional chemical and buoyant fining are extremely slow in viscous glasses, but tension gradient method moves 250 um bubbles as rapidly as 30 um/s. Heat required for high temperature part of melt is furnished by stationary electrical or natural-gas heater; induction and laser heating are also possible. Method has many applications in industry processes.

  15. Bubble size in horizontal pipelines

    SciTech Connect

    Hesketh, R.P.; Russell, T.W.F.; Etchells, A.W.

    1987-04-01

    Bubble sizes for dilute dispersion in horizontal pipelines under turbulent liquid flow conditions are shown to be predicted by a theory. This theory contains the dependence of dispersed-phase density on the bubble size, which is not included in theories presented by others. Theories are compared using experimental data from both gas-liquid and liquid-liquid dispersions to show that only one theory can predict both gas bubble and liquid drop sizes with a single constant. Additionally, a generalized equation is proposed that includes the effect of the dispersed-phase viscosity.

  16. 18. Building L9; view of the relationship between west holdup ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. Building L-9; view of the relationship between west holdup kettle and incorporation kettles; mezzanine, looking SE. (Ryan and Harms) - Holston Army Ammunition Plant, RDX-and-Composition-B Manufacturing Line 9, Kingsport, Sullivan County, TN

  17. Determination of the column hold-up volume in supercritical fluid chromatography using nitrous-oxide.

    PubMed

    Vajda, Péter; Guiochon, Georges

    2013-09-27

    This study introduces a new tracer that is useful for the determination of the hold-up time or volume of packed columns, particularly of those used in supercritical fluid chromatography. The thermodynamic void volume of three columns packed with different adsorbents were determined using the weight difference method. These void volumes were used as the reference point in the further discussion. The hold-up volumes of these columns were determined under dynamic conditions, using nitrous oxide dissolved in methanol as the hold-up time marker. Changes in the hold-up volumes of these columns were monitored during changes of the volumetric flow rate of pure supercritical carbon dioxide and of dilute mixtures of organic modifier and supercritical carbon dioxide. The results suggest significant methanol enrichment on the adsorbent surface. PMID:23972457

  18. Filling in the Gaps in a Study of Gas that Molds the Fermi Bubbles: An Archival Supplement to a Cycle 20 GO Program

    NASA Astrophysics Data System (ADS)

    Jenkins, Edward

    2013-10-01

    Two sharply defined lobes of gamma-ray emission emerging from the center of our Galaxy, called the Fermi Bubbles, have been discovered in the Galactic halo. Their emissivity appears to be uniform and extends up to 8 kpc on either side of the plane. Accompanying the Fermi Bubbles are excess emissions seen in X-rays, microwaves and polarized, low frequency radio emissions. It is generally believed that cosmic ray particles emitted from the central portion of the Galactic disk {or perhaps the nucleus itself} are responsible for these emissions. These particles must have been advected into the halo by a wind or shock. Our COS observations of 5 extragalactic targets behind or near the southern lobe of the Fermi Bubbles will help us to understand the physical nature and kinematics of the gas responsible for this transport. Spectra in the MAST archive for other extragalactic targets in the same part of the sky, plus those of some foreground stars, should offer us further guidance in our interpretation of the primary data obtained from the Cycle 20 observations.

  19. Decommissioning the Fuel Process Building, a Shift in Paradigm for Terminating Safeguards on Process Holdup

    SciTech Connect

    Ivan R. Thomas

    2010-07-01

    INMM Abstract 51st Annual Meeting Decommissioning the Fuel Process Building, a Shift in Paradigm for Terminating Safeguards on Process Holdup The Fuel Process Building at the Idaho Nuclear Technology and Engineering Center (INTEC) is being decommissioned after nearly four decades of recovering high enriched uranium from various government owned spent nuclear fuels. The separations process began with fuel dissolution in one of multiple head-ends, followed by three cycles of uranium solvent extraction, and ending with denitration of uranyl nitrate product. The entire process was very complex, and the associated equipment formed an extensive maze of vessels, pumps, piping, and instrumentation within several layers of operating corridors and process cells. Despite formal flushing and cleanout procedures, an accurate accounting for the residual uranium held up in process equipment over extended years of operation, presented a daunting safeguards challenge. Upon cessation of domestic reprocessing, the holdup remained inaccessible and was exempt from measurement during ensuing physical inventories. In decommissioning the Fuel Process Building, the Idaho Cleanup Project, which operates the INTEC, deviated from the established requirements that all nuclear material holdup be measured and credited to the accountability books and that all nuclear materials, except attractiveness level E residual holdup, be transferred to another facility. Instead, the decommissioning involved grouting the process equipment in place, rather than measuring and removing the contained holdup for subsequent transfer. The grouting made the potentially attractiveness level C and D holdup even more inaccessible, thereby effectually converting the holdup to attractiveness level E and allowing for termination of safeguards controls. Prior to grouting the facility, the residual holdup was estimated by limited sampling and destructive analysis of solutions in process lines and by acceptable knowledge based upon the separations process, plant layout, and operating history. The use of engineering estimates, in lieu of approved measurement methods, was justified by the estimated small quantity of holdup remaining, the infeasibility of measuring the holdup in a highly radioactive background, and the perceived hazards to personnel. The alternate approach to quantifying and terminating safeguards on process holdup was approved by deviation.

  20. Droplets, Bubbles and Ultrasound Interactions.

    PubMed

    Shpak, Oleksandr; Verweij, Martin; de Jong, Nico; Versluis, Michel

    2016-01-01

    The interaction of droplets and bubbles with ultrasound has been studied extensively in the last 25 years. Microbubbles are broadly used in diagnostic and therapeutic medical applications, for instance, as ultrasound contrast agents. They have a similar size as red blood cells, and thus are able to circulate within blood vessels. Perfluorocarbon liquid droplets can be a potential new generation of microbubble agents as ultrasound can trigger their conversion into gas bubbles. Prior to activation, they are at least five times smaller in diameter than the resulting bubbles. Together with the violent nature of the phase-transition, the droplets can be used for local drug delivery, embolotherapy, HIFU enhancement and tumor imaging. Here we explain the basics of bubble dynamics, described by the Rayleigh-Plesset equation, bubble resonance frequency, damping and quality factor. We show the elegant calculation of the above characteristics for the case of small amplitude oscillations by linearizing the equations. The effect and importance of a bubble coating and effective surface tension are also discussed. We give the main characteristics of the power spectrum of bubble oscillations. Preceding bubble dynamics, ultrasound propagation is introduced. We explain the speed of sound, nonlinearity and attenuation terms. We examine bubble ultrasound scattering and how it depends on the wave-shape of the incident wave. Finally, we introduce droplet interaction with ultrasound. We elucidate the ultrasound-focusing concept within a droplets sphere, droplet shaking due to media compressibility and droplet phase-conversion dynamics. PMID:26486337

  1. Exploring Bubbles

    NASA Astrophysics Data System (ADS)

    O'Geary, Melissa A.

    Bubbles provide an enjoyable and festive medium through which to teach many concepts within the science topics of light, color, chemistry, force, air pressure, electricity, buoyancy, floating, density, among many others. In order to determine the nature of children's engagement within a museum setting and the learning opportunities of playing with bubbles, I went to a children's interactive museum located in a metropolitan city in the Northeastern part of the United States.

  2. Bubbles of Metamorphosis

    NASA Astrophysics Data System (ADS)

    Prakash, Manu

    2011-11-01

    Metamorphosis presents a puzzling challenge where, triggered by a signal, an organism abruptly transforms its entire shape and form. Here I describe the role of physical fluid dynamic processes during pupal metamorphosis in flies. During early stages of pupation of third instar larvae into adult flies, a physical gas bubble nucleates at a precise temporal and spatial location, as part of the normal developmental program in Diptera. Although its existence has been known for the last 100 years, the origin and control of this ``cavitation'' event has remained completely mysterious. Where does the driving negative pressure for bubble nucleation come from? How is the location of the bubble nucleation site encoded in the pupae? How do molecular processes control such a physical event? What is the role of this bubble during development? Via developing in-vivo imaging techniques, direct bio-physical measurements in live insect pupal structures and physical modeling, here I elucidate the physical mechanism for appearance and disappearance of this bubble and predict the site of nucleation and its exact timing. This new physical insight into the process of metamorphosis also allows us to understand the inherent design of pupal shell architectures in various species of insects. Milton Award, Harvard Society of Fellows; Terman Fellowship, Stanford

  3. Bubble migration during hydrate formation

    NASA Astrophysics Data System (ADS)

    Shagapov, V. Sh.; Chiglintseva, A. S.; Rusinov, A. A.

    2015-03-01

    A model of the process of migration of methane bubbles in water under thermobaric conditions of hydrate formation is proposed. The peculiarities of the temperature field evolution, migration rate, and changes in the radius and volume fraction of gas hydrate bubbles are studied. It is shown that, with a constant mass flow of gas from the reservoir bottom, for all parameters of the surfacing gas hydrate disperse system, there is a quasistationary pattern in the form of a "step"-like wave. Depending on the relationship of the initial gas bubble density with the average gas density in the hydrate composition determined by the depth from which bubbles rise to the surface, the final radius of hydrate particles may be larger or smaller than the initial gas bubble radii. It is established that the speed at which gas hydrate inclusions rise to the surface decreases by several times due to an increase in their weight during hydrate formation. The influence of the depth of the water reservoir whose bottom is a gas flow source on the dynamics of hydrate formation is studied.

  4. Controlling the Mobility of the Fluid Interface of Moving Gas Bubbles or Liquid Drops by Using Micellar Solutions of Surfactants

    NASA Technical Reports Server (NTRS)

    Maldarelli, Charles; Papageorgiou, Demetrios

    1998-01-01

    Microgravity processes must rely on mechanisms other than buoyancy to move bubbles or droplets from one region to another in a continuous liquid phase. One suggested method is thermocapillary migration in which a temperature gradient is applied to the continuous phase. A significant and as yet unresolved impediment to the use of thermocapillary migration to direct bubble or drop motion is that these migrations can be significantly retarded by the adsorption onto the fluid particle surface of surface active impurities unavoidably present in the continuous or (if the particle is a liquid) droplet phases. The focus of our research was to develop a theory for remobilizing fluid particle interfaces retarded by a surfactant impurity in an effort to make more viable the use of thermocapillary migrations for the management of bubbles and drops in microgravity. We postulated that a surfactant at high bulk concentration which kinetically exchanges rapidly with the surface can restore interface mobility. The scaling arguments along with a discussion of the previous literature is reviewed in the context of the scaling framework. The specific objectives of the research were twofold. The first was to prove the remobilization theory by studying a model problem. As the mechanism for remobilization is independent of the force which drives the particle, the fluid particle shape and the presence of fluid inertia, we chose the simplest model consisting of a spherical bubble rising steadily by buoyancy in creeping flow. We solved the hydrodynamic and surfactant transport equations for rapid kinetic exchange to demonstrate that as the concentration increases, the Marangoni retardation at first increases (the low k behavior) and then decreases (the high k behavior). The second objective was to develop a method to determine the kinetic rate constants of a surfactant molecule, since this information is necessary to select surfactants which will exchange rapidly enough relative to the convective rate in the thermocapillary process of interest. To measure the kinetic rate, we measure the dynamic tension change accompanying adsorption onto an initially clean interface, or the re-equilibration in tension when an equilibrium interface is compressed. The dynamic tension measurements are made by a pendant bubble method, in which surfactant adsorbs onto a pendant bubble, and the tension is measured by analyzing the shape change in the bubble. We conclude this report by detailing the publications, presentations and doctoral thesis completed under the auspices of this grant.

  5. CONTINUOUSLY SENSITIVE BUBBLE CHAMBER

    DOEpatents

    Good, R.H.

    1959-08-18

    A radiation detector of the bubble chamber class is described which is continuously sensitive and which does not require the complex pressure cycling equipment characteristic of prior forms of the chamber. The radiation sensitive element is a gas-saturated liquid and means are provided for establishing a thermal gradient across a region of the liquid. The gradient has a temperature range including both the saturation temperature of the liquid and more elevated temperatures. Thus a supersaturated zone is created in which ionizing radiations may give rise to visible gas bubbles indicative of the passage of the radiation through the liquid. Additional means are provided for replenishing the supply of gas-saturated liquid to maintaincontinuous sensitivity.

  6. Bubbles, microparticles, and neutrophil activation: changes with exercise level and breathing gas during open-water SCUBA diving.

    PubMed

    Thom, Stephen R; Milovanova, Tatyana N; Bogush, Marina; Yang, Ming; Bhopale, Veena M; Pollock, Neal W; Ljubkovic, Marko; Denoble, Petar; Madden, Dennis; Lozo, Mislav; Dujic, Zeljko

    2013-05-15

    The study goal was to evaluate responses in humans following decompression from open-water SCUBA diving with the hypothesis that exertion underwater and use of a breathing mixture containing more oxygen and less nitrogen (enriched air nitrox) would alter annexin V-positive microparticle (MP) production and size changes and neutrophil activation, as well as their relationships to intravascular bubble formation. Twenty-four divers followed a uniform dive profile to 18 m of sea water breathing air or 22.5 m breathing 32% oxygen/68% nitrogen for 47 min, either swimming with moderately heavy exertion underwater or remaining stationary at depth. Blood was obtained pre- and at 15 and 120 min postdive. Intravascular bubbles were quantified by transthoracic echocardiography postdive at 20-min intervals for 2 h. There were no significant differences in maximum bubble scores among the dives. MP number increased 2.7-fold, on average, within 15 min after each dive; only the air-exertion dive resulted in a significant further increase to 5-fold over baseline at 2 h postdive. Neutrophil activation occurred after all dives. For the enriched air nitrox stationary at depth dive, but not for other conditions, the numbers of postdive annexin V-positive particles above 1 μm in diameter were correlated with intravascular bubble scores (correlation coefficients ∼0.9, P < 0.05). We conclude that postdecompression relationships among bubbles, MPs, platelet-neutrophil interactions, and neutrophil activation appear to exist, but more study is required to improve confidence in the associations. PMID:23493363

  7. Interaction of Cavitation Bubbles on Surfaces

    NASA Astrophysics Data System (ADS)

    Arora, Manish

    2005-11-01

    Patterned structures on solid surfaces can be used as controlled nucleation sites for cavitation. Etched micro-pits on hydrophobic solid surfaces trap small amounts of gas during immersion in water, which--when lowering the pressure--serve as bubble nucleus. Using specifically patterned surfaces, the dynamics of a few bubbles with controlled distances is investigated. The temporal evolution of the cavitating bubbles is visualized stroboscopically and with high speed imaging. When the inter-bubble distance is sufficiently small, the bubbles merge through a series of fascinating intermediate 3d shapes. Morover, bubbles on the edge of the pattern `shield' the bubbles inside, thus delaying the collapse of the interior bubbles. The results are reproduced with the help of axis-symmetric boundary integral simulations.

  8. Frictional drag reduction by bubble injection

    NASA Astrophysics Data System (ADS)

    Murai, Yuichi

    2014-07-01

    The injection of gas bubbles into a turbulent boundary layer of a liquid phase has multiple different impacts on the original flow structure. Frictional drag reduction is a phenomenon resulting from their combined effects. This explains why a number of different void-drag reduction relationships have been reported to date, while early works pursued a simple universal mechanism. In the last 15 years, a series of precisely designed experimentations has led to the conclusion that the frictional drag reduction by bubble injection has multiple manifestations dependent on bubble size and flow speed. The phenomena are classified into several regimes of two-phase interaction mechanisms. Each regime has inherent physics of bubbly liquid, highlighted by keywords such as bubbly mixture rheology, the spectral response of bubbles in turbulence, buoyancy-dominated bubble behavior, and gas cavity breakup. Among the regimes, bubbles in some selected situations lose the drag reduction effect owing to extra momentum transfer promoted by their active motions. This separates engineers into two communities: those studying small bubbles for high-speed flow applications and those studying large bubbles for low-speed flow applications. This article reviews the roles of bubbles in drag reduction, which have been revealed from fundamental studies of simplified flow geometries and from development of measurement techniques that resolve the inner layer structure of bubble-mixed turbulent boundary layers.

  9. Experimental evidence for seismically initiated gas bubble nucleation and growth in groundwater as a mechanism for coseismic borehole water level rise and remotely triggered seismicity

    NASA Astrophysics Data System (ADS)

    Crews, Jackson B.; Cooper, Clay A.

    2014-09-01

    Changes in borehole water levels and remotely triggered seismicity occur in response to near and distant earthquakes at locations around the globe, but the mechanisms for these phenomena are not well understood. Experiments were conducted to show that seismically initiated gas bubble growth in groundwater can trigger a sustained increase in pore fluid pressure consistent in magnitude with observed coseismic borehole water level rise, constituting a physically plausible mechanism for remote triggering of secondary earthquakes through the reduction of effective stress in critically loaded geologic faults. A portion of the CO2 degassing from the Earth's crust dissolves in groundwater where seismic Rayleigh and P waves cause dilational strain, which can reduce pore fluid pressure to or below the bubble pressure, triggering CO2 gas bubble growth in the saturated zone, indicated by a spontaneous buildup of pore fluid pressure. Excess pore fluid pressure was measured in response to the application of 0.1-1.0 MPa, 0.01-0.30 Hz confining stress oscillations to a Berea sandstone core flooded with initially subsaturated aqueous CO2, under conditions representative of a confined aquifer. Confining stress oscillations equivalent to the dynamic stress of the 28 June 1992 Mw 7.3 Landers, California, earthquake Rayleigh wave as it traveled through the Long Valley caldera, and Parkfield, California, increased the pore fluid pressure in the Berea core by an average of 36 ± 15 cm and 23 ± 15 cm of equivalent freshwater head, respectively, in agreement with 41.8 cm and 34 cm rises recorded in wells at those locations.

  10. Sensitivity study of Bubble diameter for prediction of flow pattern in homogeneous bubble column regime

    NASA Astrophysics Data System (ADS)

    Pourtousi, M.; Ganesan, P.; Sahu, J. N.; Redzwan, Ghufran

    2015-09-01

    Determining the bubble diameter size in a bubble column rector plays an important role to accurately predict flow pattern in a bubble column reactor. This paper employs the Eulerian-Eulerian method to numerically investigate the sensitivity study of bubble diameter size in a cylindrical bubble column reactor. Existing experimental results in the literature are used to validate the implementation of the proposed numerical method. In our simulation various bubble diameter size (i.e., 35.5mm) are used to find an appropriate bubble size inside the bubble column when the regime is homogeneous (superficial gas velocity = 0.005m/s). The result shows that bubble diameter 4mm is a reasonable size for flow pattern prediction inside the column.

  11. Oscillations of soap bubbles

    NASA Astrophysics Data System (ADS)

    Kornek, U.; Müller, F.; Harth, K.; Hahn, A.; Ganesan, S.; Tobiska, L.; Stannarius, R.

    2010-07-01

    Oscillations of droplets or bubbles of a confined fluid in a fluid environment are found in various situations in everyday life, in technological processing and in natural phenomena on different length scales. Air bubbles in liquids or liquid droplets in air are well-known examples. Soap bubbles represent a particularly simple, beautiful and attractive system to study the dynamics of a closed gas volume embedded in the same or a different gas. Their dynamics is governed by the densities and viscosities of the gases and by the film tension. Dynamic equations describing their oscillations under simplifying assumptions have been well known since the beginning of the 20th century. Both analytical description and numerical modeling have made considerable progress since then, but quantitative experiments have been lacking so far. On the other hand, a soap bubble represents an easily manageable paradigm for the study of oscillations of fluid spheres. We use a technique to create axisymmetric initial non-equilibrium states, and we observe damped oscillations into equilibrium by means of a fast video camera. Symmetries of the oscillations, frequencies and damping rates of the eigenmodes as well as the coupling of modes are analyzed. They are compared to analytical models from the literature and to numerical calculations from the literature and this work.

  12. Plutonium Hold-up Measurements at Pacific Northwest National Laboratory

    SciTech Connect

    Berg, Randal K.; Brackenbush, L. W.; Haggard, Daniel L.; Hilliard, James R.; Mapili, Gabriel M.; Mozhayev, Andrey V.; Tanner, Jennifer E.; Tomeraasen, Paul L.

    2008-11-01

    Estimation of plutonium quantities contained in various process equipment is necessary to comply with criticality, safeguards and safety basis requirements during operation and decommissioning of nuclear facilities. Pacific Northwest National Laboratory (PNNL) gained extensive experience performing plutonium holdup measurements at various nuclear facilities over the past two decades. Both neutron and gamma techniques are used for the determination of plutonium quantities in the presence of other radioactive materials such as fission and activation products. An additional challenge is to perform such measurements at locations surrounded by materials in process and sealed sources when a facility is in operations mode. The neutron slab counter is calibrated for measurements of various sized objects at different distances. The measurement technique that is utilized accounts for the interferences from these background sources. Using a high purity germanium detector provides the capability to distinguish plutonium gamma activities from other radioactive materials and obtain additional information useful for analysis. The infinite energy extrapolation technique is applied (when necessary) to correct for attenuation not otherwise accounted for. Since both neutron counting and high resolution gamma spectrometry require relatively long count times for a single measurement, the preliminary planning and simple dose rate survey data are extremely helpful to optimize the number of quantitative measurements. The paper describes the specific measurement approaches for both neutron and gamma assay techniques and also presents a few application examples based on measurements taken at several facilities.

  13. Low-enriched uranium holdup measurements in Kazakhstan

    SciTech Connect

    Barham, M.A.; Ceo, R.N.; Smith, S.E.

    1998-12-31

    Quantification of the residual nuclear material remaining in process equipment has long been a challenge to those who work with nuclear material accounting systems. Fortunately, nuclear material has spontaneous radiation emissions that can be measured. If gamma-ray measurements can be made, it is easy to determine what isotope a deposit contains. Unfortunately, it can be quite difficult to relate this measured signal to an estimate of the mass of the nuclear deposit. Typically, the measurement expert must work with incomplete or inadequate information to determine a quantitative result. Simplified analysis models, the distribution of the nuclear material, any intervening attenuation, background(s), and the source-to-detector distance(s) can have significant impacts on the quantitative result. This presentation discusses the application of a generalized-geometry holdup model to the low-enriched uranium fuel pellet fabrication plant in Ust-Kamenogorsk, Kazakhstan. Preliminary results will be presented. Software tools have been developed to assist the facility operators in performing and documenting the measurements. Operator feedback has been used to improve the user interfaces.

  14. Evaluation of an integrated holdup measurement system using the GGH formalism with the M{sup 3}CA

    SciTech Connect

    Russo, P.A.; Smith, H.A.; Sprinkle, J.K. Jr.; Bjork, C.W.; Sheppard, G.A.; Smith, S.E.

    1995-10-01

    Nuclear facilities need portable, automated tools based on gamma-ray spectroscopy to perform plantwide assays of special nuclear materials (SNM) deposited as holdup in processing equipment. These assays satisfy such nuclear material control functions as obtaining or verifying SNM inventory quantities, assuring safe operating conditions, and quantifying SNM for decontamination and decommissioning. A new, integrated holdup measurement system designed to meet these requirements has been evaluated quantitatively for holdup assays. The hardware for the integrated holdup measurement system consists of a compact gamma-ray detector with collimation and shielding, a self-contained portable gamma-ray spectroscopy instrument, and a palm-size programmable control and data-storage unit. The application software, called HMSII (Holdup Measurement System II) masks the sophistication of the hardware and data analysis with a simple user interface. The heart of the integrated holdup measurement system is the generalized-geometry holdup (GGH) calibration and analysis formalism. The GGH formalism is based on the simplifying assumptions that each of hundreds of holdup deposit geometries in the facility can be interpreted as one of three simple geometric models (point, line, or area) to reduce the calibration and analysis effort to manageable proportions. Results obtained over a 4-yr period will be presented. Because of the reproducibility of setup and data treatment under HMSII automation, it is straightforward to repeat the assays of static equipment over extended periods of time with multiple users. This new integrated measurement system improves the precision and reliability of holdup measurements.

  15. What Can Be Learned from X-Ray Spectroscopy Concerning Hot Gas in the Local Bubble and Charge Exchange Processes?

    NASA Technical Reports Server (NTRS)

    Snowden, S. L.

    2008-01-01

    Both solar wind charge exchange emission and diffuse thermal emission from the Local Bubble are strongly dominated in the soft X-ray band by lines from highly ionized elements. While both processes share many of the same lines, the spectra should differ significantly due to the different production mechanisms, abundances, and ionization states. Despite their distinct spectral signatures, current and past observatories have lacked the spectral resolution to adequately distinguish between the two sources. High-resolution X-ray spectroscopy instrumentation proposed for future missions has the potential to answer fundamental questions such as whether there is any hot plasma in the Local Hot Bubble, and if so, what are the abundances of the emitting plasma and whether the plasma is in equilibrium. Such instrumentation will provide dynamic information about the solar wind including data on ion species which are currently difficult to track. It will also make possible remote sensing of the solar wind.

  16. Tuning bubbly structures in microchannels

    PubMed Central

    Vuong, Sharon M.; Anna, Shelley L.

    2012-01-01

    Foams have many useful applications that arise from the structure and size distribution of the bubbles within them. Microfluidics allows for the rapid formation of uniform bubbles, where bubble size and volume fraction are functions of the input gas pressure, liquid flow rate, and device geometry. After formation, the microchannel confines the bubbles and determines the resulting foam structure. Bubbly structures can vary from a single row (“dripping”), to multiple rows (“alternating”), to densely packed bubbles (“bamboo” and dry foams). We show that each configuration arises in a distinct region of the operating space defined by bubble volume and volume fraction. We describe the boundaries between these regions using geometric arguments and show that the boundaries are functions of the channel aspect ratio. We compare these geometric arguments with foam structures observed in experiments using flow-focusing, T-junction, and co-flow designs to generate stable nitrogen bubbles in aqueous surfactant solution and stable droplets in oil containing dissolved surfactant. The outcome of this work is a set of design parameters that can be used to achieve desired foam structures as a function of device geometry and experimental control parameters. PMID:22655008

  17. The oscillations of vapor bubbles

    NASA Astrophysics Data System (ADS)

    Prosperetti, Andrea; Yin, Z.; Yang, B.

    2003-04-01

    Bob Apfel had so many interests that it is impossible-however fitting and desirable-to pay homage to his work as a whole. Some of his early studies were devoted to bubble nucleation at high superheats. In the first part of this paper a recent application of this phenomenon is described. Once a vapor bubble is generated, its subsequent oscillations (free and forced) present analogies and differences with those of a gas bubble: the second part of the paper focuses on this topic. [Work supported by NSF and NASA.

  18. The oscillation of vapor bubbles

    NASA Astrophysics Data System (ADS)

    Prosperetti, Andrea; Yin, Zhizhong

    2001-05-01

    Bob Apfel had so many interests that it is impossible-however fitting and desirable-to pay homage to his work as a whole. Some of his early studies were devoted to bubble nucleation at high superheats. In the first part of this paper a recent application of this phenomenon is described. Once a vapor bubble is generated, its subsequent oscillations (free and forced) present analogies and differences with those of a gas bubble: the second part of the paper focuses on this topic. [Work supported by NSF and NASA.

  19. Stable tridimensional bubble clusters in multi-bubble sonoluminescence (MBSL).

    PubMed

    Rosselló, J M; Dellavale, D; Bonetto, F J

    2015-01-01

    In the present work, stable clusters made of multiple sonoluminescent bubbles are experimentally and theoretically studied. Argon bubbles were acoustically generated and trapped using bi-frequency driving within a cylindrical chamber filled with a sulfuric acid aqueous solution (SA85w/w). The intensity of the acoustic pressure field was strong enough to sustain, during several minutes, a large number of positionally and spatially fixed (without pseudo-orbits) sonoluminescent bubbles over an ellipsoidally-shaped tridimensional array. The dimensions of the ellipsoids were studied as a function of the amplitude of the applied low-frequency acoustic pressure (PAc(LF)) and the static pressure in the fluid (P0). In order to explain the size and shape of the bubble clusters, we performed a series of numerical simulations of the hydrodynamic forces acting over the bubbles. In both cases the observed experimental behavior was in excellent agreement with the numerical results. The simulations revealed that the positionally stable region, mainly determined by the null primary Bjerknes force (F→Bj), is defined as the outer perimeter of an axisymmetric ellipsoidal cluster centered in the acoustic field antinode. The role of the high-frequency component of the pressure field and the influence of the secondary Bjerknes force are discussed. We also investigate the effect of a change in the concentration of dissolved gas on the positional and spatial instabilities through the cluster dimensions. The experimental and numerical results presented in this paper are potentially useful for further understanding and modeling numerous current research topics regarding multi-bubble phenomena, e.g. forces acting on the bubbles in multi-frequency acoustic fields, transient acoustic cavitation, bubble interactions, structure formation processes, atomic and molecular emissions of equal bubbles and nonlinear or unsteady acoustic pressure fields in bubbly media. PMID:24974006

  20. Leverage bubble

    NASA Astrophysics Data System (ADS)

    Yan, Wanfeng; Woodard, Ryan; Sornette, Didier

    2012-01-01

    Leverage is strongly related to liquidity in a market and lack of liquidity is considered a cause and/or consequence of the recent financial crisis. A repurchase agreement is a financial instrument where a security is sold simultaneously with an agreement to buy it back at a later date. Repurchase agreement (repo) market size is a very important element in calculating the overall leverage in a financial market. Therefore, studying the behavior of repo market size can help to understand a process that can contribute to the birth of a financial crisis. We hypothesize that herding behavior among large investors led to massive over-leveraging through the use of repos, resulting in a bubble (built up over the previous years) and subsequent crash in this market in early 2008. We use the Johansen-Ledoit-Sornette (JLS) model of rational expectation bubbles and behavioral finance to study the dynamics of the repo market that led to the crash. The JLS model qualifies a bubble by the presence of characteristic patterns in the price dynamics, called log-periodic power law (LPPL) behavior. We show that there was significant LPPL behavior in the market before that crash and that the predicted range of times predicted by the model for the end of the bubble is consistent with the observations.

  1. Seismically Initiated Carbon Dioxide Gas Bubble Growth in Groundwater: A Mechanism for Co-seismic Borehole Water Level Rise and Remotely Triggered Secondary Seismicity

    NASA Astrophysics Data System (ADS)

    Crews, Jackson B.

    Visualization experiments, core-scale laboratory experiments, and numerical simulations were conducted to examine the transient effect of dilational seismic wave propagation on pore fluid pressure in aquifers hosting groundwater that is near saturation with respect to dissolved carbon dioxide (CO2) gas. Groundwater can become charged with dissolved CO2 through contact with gas-phase CO2 in the Earth's crust derived from magma degasing, metamorphism, and biogenic processes. The propagation of dilational seismic waves (e.g., Rayleigh and p-waves) causes oscillation of the mean normal confining stress and pore fluid pressure. When the amplitude of the pore fluid pressure oscillation is large enough to drive the pore fluid pressure below the bubble pressure, an aqueous-to-gas-phase transition can occur in the pore space, which causes a buildup of pore fluid pressure and reduces the inter-granular effective stress under confined conditions. In visualization experiments conducted in a Hele-Shaw cell representing a smooth-walled, vertically oriented fracture, millisecond-scale pressure perturbations triggered bubble nucleation and growth lasting tens of seconds, with resulting pore fluid overpressure proportional to the magnitude of the pressure perturbation. In a Berea sandstone core flooded with initially under-saturated aqueous CO2 under conditions representative of a confined aquifer, rapid reductions in confining stress triggered transient pore pressure rise up to 0.7 MPa (100 psi) overpressure on a timescale of ~10 hours. The rate of pore pressure buildup in the first 100 seconds was proportional to the saturation with respect to dissolved CO 2 at the pore pressure minimum. Sinusoidal confining stress oscillations on a Berea sandstone core produced excess pore fluid pressure after the oscillations were terminated. Confining stress oscillations in the 0.1-0.4 MPa (15-60 psi) amplitude range and 0.05-0.30 Hz frequency band increased the pore fluid pressure by 13-60 cm of freshwater. Co-seismic borehole water level increases of the same magnitude were observed in Parkfield, California, and Long Valley caldera, California, in response to the propagation of a Rayleigh wave in the same amplitude and frequency range produced by the June 28, 1992 MW 7.3 Landers, California, earthquake. Co-seismic borehole water level rise is well documented in the literature, but the mechanism is not well understood, and the results of core-scale experiments indicate that seismically initiated CO2 gas bubble nucleation and growth in groundwater is a reasonable mechanism. Remotely triggered secondary seismicity is also well documented, and the reduction of effective stress due to CO2 bubble nucleation and growth in critically loaded faults may potentially explain how, for example, the June 28, 1992 MW 7.3 Landers, California, earthquake triggered seismicity as far away as Yellowstone, Wyoming, 1250 km from the hypocenter. A numerical simulation was conducted using Euler's method and a first-order kinetic model to compute the pore fluid pressure response to confining stress excursions on a Berea sandstone core flooded with initially under-saturated aqueous CO2. The model was calibrated on the pore pressure response to a rapid drop and later recovery of the confining stress. The model predicted decreasing overpressure as the confining stress oscillation frequency increased from 0.05 Hz to 0.30 Hz, in contradiction with the experimental results and field observations, which exhibit larger excess pore fluid pressure in response to higher frequency oscillations. The limitations of the numerical model point to the important influence of non-ideal behavior arising from a discontinuous gas phase and complex dynamics at the gas-liquid interface.

  2. Holdup Measurement System II (HMSII): Version 2.1. User`s guide and software documentation

    SciTech Connect

    Smith, S.E.

    1995-05-31

    The Holdup Measurement System II (HMSII) software is a database management package for doing Holdup Measurements. It is based on the generalized geometry holdup (GGH) methodology taught in the US Department of Energy Safeguards Technology Training Program, ``Nondestructive Assay of Special Nuclear Materials Holdup.`` This program was developed and taught by Los Alamos National Laboratory (LANL). The HMSII was developed as a joint effort between LANL and the Oak Ridge Y-12 Plant, managed for the US Department of Energy by Lockheed Martin Energy Systems, Inc. The system is designed specifically for use with three types of Multichannel Analyzer (MCA): a Davidson Portable MultiChannel Analyzer (MCA); a EG&G Ortec MicroNOMAD ({mu}NOMAD); or a new Miniature Modular MultiChannel Analyzer (M{sup 3}CA) under development at LANL. It is also designed assuming a 512 channel spectrum from a low resolution (e.g., NaI) detector measuring Uranium or Plutonium. Another important hardware component of the system is a portable bar code reader (also called a DataLogger or Trakker), by Intermec Corporation. The 944X series and the JANUS 2OXX series readers are compatible models with the HMSII. The JANUS series is a bar code reader which is also a 386 compatible palmtop PC with MS-DOS 5.0 built-in. Both series readers are programmable and control all the aspects of field holdup data collection from the MCAs.

  3. Shock waves in a uniform bubbly flow

    NASA Astrophysics Data System (ADS)

    Kameda, Masaharu; Shimaura, Naoto; Higashino, Fumio; Matsumoto, Yoichiro

    1998-10-01

    An experimental and numerical study of transient shock wave phenomena in a liquid containing noncondensable gas bubbles is presented. Experiments are done in a shock tube with an upwardly directed bubbly flow to obtain a uniform spatial distribution of bubbles. The bubbly flow has an initial gas volume fraction of 0.2%. The bubbles have a radius of 0.6 mm. The liquid used is a silicone oil whose kinematic viscosity is 50×10-6 m2/s. Nitrogen and SF6 gas bubbles are tested to bring out the thermal effects of the bubble interior. The numerical calculation is performed using a modified mathematical model based on Kameda and Matsumoto [Phys. Fluids 8, 322 (1996)]. The transient pressure profiles determined in the experiment for the upwardly bubbly flow agree well quantitatively with those obtained by the numerical calculation using a uniform spatial distribution of bubbles. The SF6 experiment shows that the radial motion of the bubbles should be estimated by solving an equation in which the liquid compressibility is taken into account.

  4. Characterization of oxygen transfer in miniature and lab-scale bubble column bioreactors and comparison of microbial growth performance based on constant k(L)a.

    PubMed

    Doig, Steven D; Ortiz-Ochoa, Kenny; Ward, John M; Baganz, Frank

    2005-01-01

    This work describes the engineering characterization of miniature (2 mL) and laboratory-scale (100 mL) bubble column bioreactors useful for the cultivation of microbial cells. These bioreactors were constructed of glass and used a range of sintered glass gas diffusers with differently sized pores to disperse humidified air within the liquid biomedium. The effect of the pressure of this supplied air on the breakthrough point for gas diffusers with different pore sizes was examined and could be predicted using the Laplace-Young equation. The influence of the superficial gas velocity (u(g)) on the volumetric mass transfer coefficient (k(L)a) was determined, and values of up to 0.09 s(-1) were observed in this work. Two modeling approaches were considered in order to predict and provide comparison criteria. The first related the volumetric power consumption (P/V) to the k(L)a and a good correlation was obtained for differently sized reactors with a given pore size, but this correlation was not satisfactory for bubble columns with different gas diffusers. Values for P/V ranged from about 10 to 400 W.m(-3). Second, a model was developed predicting bubble size (d(b)), bubble rising velocity (u(b)), gas hold-up (phi), liquid side mass transfer coefficient (k(L)), and thus the k(L)a using established theory and empirical correlations. Good agreement was found with our experimental data at different scales and pore sizes. Values for d(b) varied from 0.1 to 0.6 mm, and k(L) values between 1.7 and 9.8 x 10(-4) m.s(-1) were determined. Several E. coli cultivations were performed in the miniature bubble column at low and high k(L)a values, and the results were compared to those from a conventional stirred tank operated under identical k(L)a values. Results from the two systems were similar in terms of biomass growth rate and carbon source utilization. PMID:16080699

  5. Air bubble migration rates as a proxy for bubble pressure distribution in ice cores

    NASA Astrophysics Data System (ADS)

    Dadic, Ruzica; Schneebeli, Martin; Bertler, Nancy

    2015-04-01

    Air bubble migration can be used as a proxy to measure the pressure of individual bubbles and can help constrain the gradual close-off of gas bubbles and the resulting age distribution of gases in ice cores. The close-off depth of single bubbles can vary by tens of meters, which leads to a distribution of pressures for bubbles at a given depth. The age distribution of gases (along with gas-age-ice-age differences) decreases the resolution of the gas level reconstructions from ice cores and limits our ability to determine the phase relationship between gas and ice, and thus, the impact of rapid changes of greenhouse gases on surface temperatures. For times of rapid climate change, including the last 150 years, and abrupt climate changes further back in the past, knowledge of the age distribution of the gases trapped in air bubbles will enable us to refine estimates of atmospheric changes. When a temperature gradient is applied to gas bubbles in an ice sample, the bubbles migrate toward warmer ice. This motion is caused by sublimation from the warm wall and subsequent frost deposition on the cold wall. The migration rate depends on ice temperature and bubble pressure and is proportional to the temperature gradient. The spread in migration rates for bubbles in the same samples at given temperatures should therefore reflect the variations in bubble pressures within a sample. Air bubbles with higher pressures would have been closed off higher in the firn column and thus have had time to equilibrate with the surrounding ice pressure, while air bubbles that have been closed off recently would have pressures that are similar to todays atmospheric pressure above the firn column. For ice under pressures up to ~13-16 bar, the pressure distribution of bubbles from a single depth provides a record of the trapping function of air bubbles in the firn column for a certain time in the past. We will present laboratory experiments on air bubble migration, using Antarctic ice core samples from a range of depths, to show that air bubble migration is a valid proxy for bubble pressure and can thus be used to determine the trapping function of air bubbles and gas age distribution for past conditions.

  6. A Laboratory Experiment To Measure Henry's Law Constants of Volatile Organic Compounds with a Bubble Column and a Gas Chromatography Flame Ionization Detector (GC-FID)

    ERIC Educational Resources Information Center

    Lee, Shan-Hu; Mukherjee, Souptik; Brewer, Brittany; Ryan, Raphael; Yu, Huan; Gangoda, Mahinda

    2013-01-01

    An undergraduate laboratory experiment is described to measure Henry's law constants of organic compounds using a bubble column and gas chromatography flame ionization detector (GC-FID). This experiment is designed for upper-division undergraduate laboratory courses and can be implemented in conjunction with physical chemistry, analytical…

  7. A Laboratory Experiment To Measure Henry's Law Constants of Volatile Organic Compounds with a Bubble Column and a Gas Chromatography Flame Ionization Detector (GC-FID)

    ERIC Educational Resources Information Center

    Lee, Shan-Hu; Mukherjee, Souptik; Brewer, Brittany; Ryan, Raphael; Yu, Huan; Gangoda, Mahinda

    2013-01-01

    An undergraduate laboratory experiment is described to measure Henry's law constants of organic compounds using a bubble column and gas chromatography flame ionization detector (GC-FID). This experiment is designed for upper-division undergraduate laboratory courses and can be implemented in conjunction with physical chemistry, analytical

  8. Buoyancy Driven Shear Flows of Bubble Suspensions

    NASA Astrophysics Data System (ADS)

    Hill, R. J.; Zenit, R.; Chellppannair, T.; Koch, D. L.; Spelt, P. D. M.; Sangani, A.

    1998-11-01

    In this work the gas volume fraction and the root-mean-squared fluid velocity are measured in buoyancy driven shear flows of bubble suspensions in a tall, inclined, rectangular channel. The experiments are performed under conditions where We << 1 and Re >> 1 , so that the bubbles are relatively undeformed and the flow is inviscid and approximately irrotational. Nitrogen is introduced through an array of capillaries at the base of a .2x.02x2 m channel filled with an aqueous electrolyte solution (0.06 molL-1 MgSO_4). The rising bubbles generate a unidirectional shear flow, where the denser suspension at the lower surface of the channel falls, while the less dense suspension at the upper surface rises. Hot-film anemometry is used to measure the resulting gas volume fraction and fluid velocity profiles. The bubble collision rate with the sensor is related to the gas volume fraction and the mean and variance of the bubble velocity using an experimentally measured collision surface area for the sensor. Bubble collisions with the sensor are identified by the characteristic slope of the hot-film anemometer signal when bubbles collide with the sensor. It is observed that the steady shear flow develops a bubble phase pressure gradient across the channel gap as the bubbles interchange momentum through direct collisions. The discrete phase presssure gradient balances the buoyancy force driving bubbles toward the upper surface resulting in a steady void fraction profile across the gap width. The strength of the shear flow is controlled by the extent of bubble segregation and by the effective viscosity of the bubble phase. The measurements are compared with solutions of the averaged equations of motion (Kang et al. 1997; Spelt and Sangani, 1998), for a range of gas volume fractions and channel inclination angles.

  9. Bubble nucleation in stout beers

    NASA Astrophysics Data System (ADS)

    Lee, W. T.; McKechnie, J. S.; Devereux, M. G.

    2011-05-01

    Bubble nucleation in weakly supersaturated solutions of carbon dioxide—such as champagne, sparkling wines, and carbonated beers—is well understood. Bubbles grow and detach from nucleation sites: gas pockets trapped within hollow cellulose fibers. This mechanism appears not to be active in stout beers that are supersaturated solutions of nitrogen and carbon dioxide. In their canned forms these beers require additional technology (widgets) to release the bubbles which will form the head of the beer. We extend the mathematical model of bubble nucleation in carbonated liquids to the case of two gases and show that this nucleation mechanism is active in stout beers, though substantially slower than in carbonated beers and confirm this by observation. A rough calculation suggests that despite the slowness of the process, applying a coating of hollow porous fibers to the inside of a can or bottle could be a potential replacement for widgets.

  10. Physical modeling studies of electrolyte flow due to gas evolution and some aspects of bubble behavior in advanced Hall cells; Part 1: Flow in cells with a flat anode

    SciTech Connect

    Shekhar, R. . Dept. of Metallurgical Engineering); Evans, J.W. . Dept. of Materials Science and Mineral Engineering)

    1994-06-01

    The need for energy reduction in the electrolytic production of aluminum led to the concept of advanced Hall cells that can be operated at lower interelectrode gaps compared to existing cells. However, gas bubbles generated by the anodic reaction increase the resistivity of electrolyte and cancel out part of the reduction in interelectrode resistance expected from bringing the electrodes closer together. Therefore, the primary objective of this work was to determine a cell design in which flow can be managed to promote the removal of anode gas bubbles from the interelectrode gap. In particular, this article focuses on advanced Hall cells equipped with flat'' anodes, similar to those used in existing cells. The principal experimental tool has been a water'' model consisting of a large tank in which simulated anodes can be suspended in either the horizontal or near-horizontal configurations. Gas was generated by forcing compressed air through porous graphite, and the fine bubbles characteristic of inert anodes used in advanced Hall cells were produced by adding butanol to water. Velocities were measured using a laser-Doppler velocimeter (LDV). This study indicates that the existing cell configuration might not be the optimum configuration for advanced Hall cells. The results also show that operation of an advanced Hall cell with a fully submerged anode should give rise to higher electrolyte velocities and thus rapid removal of bubbles. The bubble effect should be further lowered in a near-horizontal configuration; however, the flow pattern could have an adverse effect on current efficiency and alumina distribution in the cell. It has also been shown that the bubble size, and, therefore, the physical properties of the electrolyte, can have a significant effect on the electrolyte flow pattern in the interelectrode gap.

  11. O VI gas - Circumstellar or interstellar. [abundance models due to ionization of circumstellar bubbles or supernova shock waves

    NASA Technical Reports Server (NTRS)

    Jenkins, E. B.

    1978-01-01

    Observations in the UV spectra from the Copernicus satellite have revealed absorption lines from five-times ionized oxygen atoms. To explain this abundance, two explanations have been advanced to supplant the traditional model of steady loss from nearby stars. One, ionization from circumstellar bubbles, is said to result from rapidly rotating stars. The other, examined in more detail, suggests a mechanism whereby shock waves from explosive disturbances in nearby supernovae preferentially channel coronal-type O VI regions in the interstellar medium into areas of high temperature (above 100,000 K). An examination of column densities with increasing distribution is proposed to examine the hypotheses, although the results are as yet inconclusive.

  12. FEASTING BLACK HOLE BLOWS BUBBLES

    NASA Technical Reports Server (NTRS)

    2002-01-01

    A monstrous black hole's rude table manners include blowing huge bubbles of hot gas into space. At least, that's the gustatory practice followed by the supermassive black hole residing in the hub of the nearby galaxy NGC 4438. Known as a peculiar galaxy because of its unusual shape, NGC 4438 is in the Virgo Cluster, 50 million light-years from Earth. These NASA Hubble Space Telescope images of the galaxy's central region clearly show one of the bubbles rising from a dark band of dust. The other bubble, emanating from below the dust band, is barely visible, appearing as dim red blobs in the close-up picture of the galaxy's hub (the colorful picture at right). The background image represents a wider view of the galaxy, with the central region defined by the white box. These extremely hot bubbles are caused by the black hole's voracious eating habits. The eating machine is engorging itself with a banquet of material swirling around it in an accretion disk (the white region below the bright bubble). Some of this material is spewed from the disk in opposite directions. Acting like high-powered garden hoses, these twin jets of matter sweep out material in their paths. The jets eventually slam into a wall of dense, slow-moving gas, which is traveling at less than 223,000 mph (360,000 kph). The collision produces the glowing material. The bubbles will continue to expand and will eventually dissipate. Compared with the life of the galaxy, this bubble-blowing phase is a short-lived event. The bubble is much brighter on one side of the galaxy's center because the jet smashed into a denser amount of gas. The brighter bubble is 800 light-years tall and 800 light-years across. The observations are being presented June 5 at the American Astronomical Society meeting in Rochester, N.Y. Both pictures were taken March 24, 1999 with the Wide Field and Planetary Camera 2. False colors were used to enhance the details of the bubbles. The red regions in the picture denote the hot gas. Credits: NASA and Jeffrey Kenney and Elizabeth Yale (Yale University)

  13. Simulations of Bubble Motion in an Oscillating Liquid

    NASA Astrophysics Data System (ADS)

    Kraynik, A. M.; Romero, L. A.; Torczynski, J. R.

    2010-11-01

    Finite-element simulations are used to investigate the motion of a gas bubble in a liquid undergoing vertical vibration. The effect of bubble compressibility is studied by comparing "compressible" bubbles that obey the ideal gas law with "incompressible" bubbles that are taken to have constant volume. Compressible bubbles exhibit a net downward motion away from the free surface that does not exist for incompressible bubbles. Net (rectified) velocities are extracted from the simulations and compared with theoretical predictions. The dependence of the rectified velocity on ambient gas pressure, bubble diameter, and bubble depth are in agreement with the theory. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  14. Determining the gas permeability coefficient of a porous medium by means of the bubble-counting flow meter

    NASA Astrophysics Data System (ADS)

    Skoczylas, Norbert

    2015-08-01

    In this paper the conception of a low-cost device to determine the coefficient of permeability was presented. In the apparatus a non-typical source of gas and gas flow meter has been used. A used flow meter allows us to measure very low gas flow rates. The upper measurement range limit of the constructed device was about 20?cm3?min-1, whereas the lower measurement range limit was estimated to be approximately 0.01?cm3?min-1.

  15. Burst of Star Formation Drives Galactic Bubble

    NASA Technical Reports Server (NTRS)

    2001-01-01

    NASA's Hubble Space Telescope (HST) captures a lumpy bubble of hot gas rising from a cauldron of glowing matter in Galaxy NGC 3079, located 50 million light-years from Earth in the constellation Ursa Major. Astronomers suspect the bubble is being blown by 'winds' or high speed streams of particles, released during a burst of star formation. The bubble's lumpy surface has four columns of gaseous filaments towering above the galaxy's disc that whirl around in a vortex and are expelled into space. Eventually, this gas will rain down on the disc and may collide with gas clouds, compress them, and form a new generation of stars.

  16. Bubble Formation Modeling in IE-911

    SciTech Connect

    Fondeur, F.F.

    2000-09-27

    The author used diffusion modeling to determine the hydrogen and oxygen concentration inside IE-911. The study revealed gas bubble nucleation will not occur in the bulk solution inside the pore or on the pore wall. This finding results from the fast oxygen and hydrogen gas molecular diffusion and a very confined pore space. The net steady state concentration of these species inside the pore proves too low to drive bubble nucleation. This study did not investigate other gas bubble nucleating mechanism such as suspended particles in solution.

  17. Bubble characteristics in gassy aqueous sediments

    SciTech Connect

    Orsi, T.H.; Anderson, A.L.

    1994-09-01

    Although gas bubbles are known to dramatically alter the biogeochemical, geotechnical, and geoacoustic characteristics of bottom sediments in numerous marine, estuarine, and lacustrine sediments worldwide, little is known about their size, shape, or spatial distribution within the sediments. In this study, we describe an approach for quantifying gas bubble characteristics in gassy aqueous sediments using x-ray computed tomography (CT or CAT scanning). By calibrating the CT scanner using a specially machined Plexiglas disk with preformed spheres of different diameters, the proper thresholding technique can be identified for segmenting the CT images into matrix (sediment) and bubble (free gas). To illustrate the approach, we examine a naturally gassy sediment from a shallow water lake near College Station, Texas. Free gas within the sediments occurred as large bubbles with diameters >2 mm, resulting in volume fractions ranging from essentially zero to a high in excess of 0.08. The distinct vertical segregation of bubbles correlated well with sediment structure and water content, but had a nominal effect overall on sediment bulk density. Bubble size and shape were related as bubble shape progressed from spherical to elliptical to amorphous (blobs) in form with increasing size. These results suggest that the assumption of spherical bubbles distributed uniformly throughout a volume of aqueous sediments, as commonly invoked for modeling purposes, may be inaccurate.

  18. Bubbling orientifolds

    NASA Astrophysics Data System (ADS)

    Mukhi, Sunil; Smedbäck, Mikael

    2005-08-01

    We investigate a class of 1/2-BPS bubbling geometries associated to orientifolds of type-IIB string theory and thereby to excited states of the SO(N)/Sp(N) Script N = 4 supersymmetric Yang-Mills theory. The geometries are in correspondence with free fermions moving in a harmonic oscillator potential on the half-line. Branes wrapped on torsion cycles of these geometries are identified in the fermi fluid description. Besides being of intrinsic interest, these solutions may also occur as local geometries in flux compactifications where orientifold planes are present to ensure global charge cancellation. We comment on the extension of this procedure to M-theory orientifolds.

  19. Bubble Growth in Lunar Basalts

    NASA Astrophysics Data System (ADS)

    Zhang, Y.

    2009-05-01

    Although Moon is usually said to be volatile-"free", lunar basalts are often vesicular with mm-size bubbles. The vesicular nature of the lunar basalts suggests that they contained some initial gas concentration. A recent publication estimated volatile concentrations in lunar basalts (Saal et al. 2008). This report investigates bubble growth on Moon and compares with that on Earth. Under conditions relevant to lunar basalts, bubble growth in a finite melt shell (i.e., growth of multiple regularly-spaced bubbles) is calculated following Proussevitch and Sahagian (1998) and Liu and Zhang (2000). Initial H2O content of 700 ppm (Saal et al. 2008) or lower is used and the effect of other volatiles (such as carbon dioxide, halogens, and sulfur) is ignored. H2O solubility at low pressures (Liu et al. 2005), concentration-dependent diffusivity in basalt (Zhang and Stolper 1991), and lunar basalt viscosity (Murase and McBirney 1970) are used. Because lunar atmospheric pressure is essentially zero, the confining pressure on bubbles is completely supplied by the overlying magma. Due to low H2O content in lunar basaltic melt (700 ppm H2O corresponds to a saturation pressure of 75 kPa), H2O bubbles only grow in the upper 16 m of a basalt flow or lake. A depth of 20 mm corresponds to a confining pressure of 100 Pa. Hence, vesicular lunar rocks come from very shallow depth. Some findings from the modeling are as follows. (a) Due to low confining pressure as well as low viscosity, even though volatile concentration is very low, bubble growth rate is extremely high, much higher than typical bubble growth rates in terrestrial melts. Hence, mm-size bubbles in lunar basalts are not strange. (b) Because the pertinent pressures are so low, bubble pressure due to surface tension plays a main role in lunar bubble growth, contrary to terrestrial cases. (c) Time scale to reach equilibrium bubble size increases as the confining pressure increases. References: (1) Liu Y, Zhang YX (2000) Earth Planet. Sci. Lett. 181, 251. (2) Liu Y, Zhang YX, Behrens H (2005) J. Volcanol. Geotherm. Res. 143, 219. (3) Murase T, McBirney A (1970) Science 167, 1491. (4) Proussevitch AA, Sahagian DL (1998) J. Geophys. Res. 103, 18223. (5) Saal AE, Hauri EH, Cascio ML, et al. (2008) Nature 454, 192. (6) Zhang YX, Stolper EM (1991) Nature 351, 306.

  20. Fissile material holdup measurement systems: an historical review of hardware and software

    SciTech Connect

    Chapman, Jeffrey Allen; Smith, Steven E; Rowe, Nathan C

    2015-01-01

    The measurement of fissile material holdup is accomplished by passively measuring the energy-dependent photon flux and/or passive neutron flux emitted from the fissile material deposited within an engineered process system. Both measurement modalities--photon and neutron--require the implementation of portable, battery-operated systems that are transported, by hand, from one measurement location to another. Because of this portability requirement, gamma-ray spectrometers are typically limited to inorganic scintillators, coupled to photomultiplier tubes, a small multi-channel analyzer, and a handheld computer for data logging. For neutron detection, polyethylene-moderated, cadmium-back-shielded He-3 thermal neutron detectors are used, coupled to nuclear electronics for supplying high voltage to the detector, and amplifying the signal chain to the scaler for counting. Holdup measurement methods, including the concept of Generalized Geometry Holdup (GGH), are well presented by T. Douglas Reilly in LA-UR-07-5149 and P. Russo in LA-14206, yet both publications leave much of the evolutionary hardware and software to the imagination of the reader. This paper presents an historical review of systems that have been developed and implemented since the mid-1980s for the nondestructive assay of fissile material, in situ. Specifications for the next-generation holdup measurements systems are conjectured.

  1. Discrete Bubble Modeling for Cavitation Bubbles

    NASA Astrophysics Data System (ADS)

    Choi, Jin-Keun; Chahine, Georges; Hsiao, Chao-Tsung

    2007-03-01

    Dynaflow, Inc. has conducted extensive studies on non-spherical bubble dynamics and interactions with solid and free boundaries, vortical flow structures, and other bubbles. From these studies, emerged a simplified Surface Averaged Pressure (SAP) spherical bubble dynamics model and a Lagrangian bubble tracking scheme. In this SAP scheme, the pressure and velocity of the surrounding flow field are averaged on the bubble surface, and then used for the bubble motion and volume dynamics calculations. This model is implemented using the Fluent User Defined Function (UDF) as Discrete Bubble Model (DBM). The Bubble dynamics portion can be solved using an incompressible liquid modified Rayleigh-Plesset equation or a compressible liquid modified Gilmore equation. The Discrete Bubble Model is a very suitable tool for the studies on cavitation inception of foils and turbo machinery, bubble nuclei effects, noise from the bubbles, and can be used in many practical problems in industrial and naval applications associated with flows in pipes, jets, pumps, propellers, ships, and the ocean. Applications to propeller cavitation, wake signatures of waterjet propelled ships, bubble-wake interactions, modeling of cavitating jets, and bubble entrainments around a ship will be presented.

  2. Scaling Laws for Reduced-Scale Tests of Pulse Jet Mixing Systems in Non-Newtonian Slurries: Gas Retention and Release Behavior

    SciTech Connect

    Stewart, Charles W.; Meyer, Perry A.; Kurath, Dean E.; Barnes, Steven M.

    2006-03-02

    The Waste Treatment Plant (WTP) under construction at the Hanford Site will use pulse jet mixer (PJM) technology for mixing and gas retention control applications in tanks expected to contain waste slurries exhibiting a non-Newtonian rheology. This paper presents the results of theoretical and experimental studies performed to establish the methodology to perform reduced-scale gas retention and release tests with PJM systems in non-Newtonian fluids with gas generation. The technical basis for scaled testing with unsteady jet mixing systems in gas-generating non-Newtonian fluids is presented in the form of a bubble migration model that accounts for the gas generation rate, the average bubble rise velocity, and the geometry of the vessel. Scaling laws developed from the model were validated with gas holdup and release tests conducted at three scales: large scale, 1/4 scale, and 1/9 scale. Experiments were conducted with two non-Newtonian simulants with in-situ gas generation by decomposition of hydrogen peroxide. The data were compared non-dimensionally, and the important scale laws were examined. From these results, scaling laws are developed which allow the design of mixing systems at a reduced scale.

  3. Photon bubbles in ultracold matter.

    PubMed

    Mendonça, J T; Kaiser, R

    2012-01-20

    We show that static and oscillating photon bubbles can be excited by diffused light in the laser cooled matter confined in a magneto-optical trap. The bubble instability is due to the coupling between the radiation field and the mean field oscillations of the ultracold gas, and it can provide a source for low frequency turbulence. We consider a diffusion-dominated regime, which can be described by a radiation transport equation, coupled with the mean field equations for the cold atom gas. A perturbative analysis shows the occurrence of two different regimes with either oscillating or purely growing bubbles. This work could also be useful to understand similar processes in astrophysics. PMID:22400734

  4. Comparison of electrical capacitance tomography and gamma densitometer measurement in viscous oil-gas flows

    SciTech Connect

    Archibong Eso, A.; Zhao, Yabin; Yeung, Hoi

    2014-04-11

    Multiphase flow is a common occurrence in industries such as nuclear, process, oil and gas, food and chemical. A prior knowledge of its features and characteristics is essential in the design, control and management of such processes due to its complex nature. Electrical Capacitance Tomography (ECT) and Gamma Densitometer (Gamma) are two promising approaches for multiphase visualization and characterization in process industries. In two phase oil and gas flow, ECT and Gamma are used in multiphase flow monitoring techniques due to their inherent simplicity, robustness, and an ability to withstand wide range of operational temperatures and pressures. High viscous oil (viscosity > 100 cP) is of interest because of its huge reserves, technological advances in its production and unlike conventional oil (oil viscosity < 100 cP) and gas flows where ECT and Gamma have been previously used, high viscous oil and gas flows comes with certain associated concerns which include; increased entrainment of gas bubbles dispersed in oil, shorter and more frequent slugs as well as oil film coatings on the walls of flowing conduits. This study aims to determine the suitability of both devices in the visualization and characterization of high-viscous oil and gas flow. Static tests are performed with both devices and liquid holdup measurements are obtained. Dynamic experiments were also conducted in a 1 and 3 inch facility at Cranfield University with a range of nominal viscosities (1000, 3000 and 7500 cP). Plug, slug and wavy annular flow patterns were identified by means of Probability Mass Function and time series analysis of the data acquired from Gamma and ECT devices with high speed camera used to validate the results. Measured Liquid holdups for both devices were also compared.

  5. Comparison of electrical capacitance tomography & gamma densitometer measurement in viscous oil-gas flows

    NASA Astrophysics Data System (ADS)

    Archibong Eso, A.; Zhao, Yabin; Yeung, Hoi

    2014-04-01

    Multiphase flow is a common occurrence in industries such as nuclear, process, oil & gas, food and chemical. A prior knowledge of its features and characteristics is essential in the design, control and management of such processes due to its complex nature. Electrical Capacitance Tomography (ECT) and Gamma Densitometer (Gamma) are two promising approaches for multiphase visualization and characterization in process industries. In two phase oil & gas flow, ECT and Gamma are used in multiphase flow monitoring techniques due to their inherent simplicity, robustness, and an ability to withstand wide range of operational temperatures and pressures. High viscous oil (viscosity > 100 cP) is of interest because of its huge reserves, technological advances in its production and unlike conventional oil (oil viscosity < 100 cP) and gas flows where ECT and Gamma have been previously used, high viscous oil and gas flows comes with certain associated concerns which include; increased entrainment of gas bubbles dispersed in oil, shorter and more frequent slugs as well as oil film coatings on the walls of flowing conduits. This study aims to determine the suitability of both devices in the visualization and characterization of high-viscous oil and gas flow. Static tests are performed with both devices and liquid holdup measurements are obtained. Dynamic experiments were also conducted in a 1 & 3 inch facility at Cranfield University with a range of nominal viscosities (1000, 3000 & 7500 cP). Plug, slug and wavy annular flow patterns were identified by means of Probability Mass Function and time series analysis of the data acquired from Gamma and ECT devices with high speed camera used to validate the results. Measured Liquid holdups for both devices were also compared.

  6. Manipulating bubbles with secondary Bjerknes forces

    SciTech Connect

    Lanoy, Maxime; Derec, Caroline; Leroy, Valentin; Tourin, Arnaud

    2015-11-23

    Gas bubbles in a sound field are submitted to a radiative force, known as the secondary Bjerknes force. We propose an original experimental setup that allows us to investigate in detail this force between two bubbles, as a function of the sonication frequency, as well as the bubbles radii and distance. We report the observation of both attractive and, more interestingly, repulsive Bjerknes force, when the two bubbles are driven in antiphase. Our experiments show the importance of taking multiple scatterings into account, which leads to a strong acoustic coupling of the bubbles when their radii are similar. Our setup demonstrates the accuracy of secondary Bjerknes forces for attracting or repealing a bubble, and could lead to new acoustic tools for noncontact manipulation in microfluidic devices.

  7. Bernoulli Suction Effect on Soap Bubble Blowing?

    NASA Astrophysics Data System (ADS)

    Davidson, John; Ryu, Sangjin

    2015-11-01

    As a model system for thin-film bubble with two gas-liquid interfaces, we experimentally investigated the pinch-off of soap bubble blowing. Using the lab-built bubble blower and high-speed videography, we have found that the scaling law exponent of soap bubble pinch-off is 2/3, which is similar to that of soap film bridge. Because air flowed through the decreasing neck of soap film tube, we studied possible Bernoulli suction effect on soap bubble pinch-off by evaluating the Reynolds number of airflow. Image processing was utilized to calculate approximate volume of growing soap film tube and the volume flow rate of the airflow, and the Reynolds number was estimated to be 800-3200. This result suggests that soap bubbling may involve the Bernoulli suction effect.

  8. How are soap bubbles blown? Fluid dynamics of soap bubble blowing

    NASA Astrophysics Data System (ADS)

    Davidson, John; Lambert, Lori; Sherman, Erica; Wei, Timothy; Ryu, Sangjin

    2013-11-01

    Soap bubbles are a common interfacial fluid dynamics phenomenon having a long history of delighting not only children and artists but also scientists. In contrast to the dynamics of liquid droplets in gas and gas bubbles in liquid, the dynamics of soap bubbles has not been well documented. This is possibly because studying soap bubbles is more challenging due to there existing two gas-liquid interfaces. Having the thin-film interface seems to alter the characteristics of the bubble/drop creation process since the interface has limiting factors such as thickness. Thus, the main objective of this study is to determine how the thin-film interface differentiates soap bubbles from gas bubbles and liquid drops. To investigate the creation process of soap bubbles, we constructed an experimental model consisting of air jet flow and a soap film, which consistently replicates the conditions that a human produces when blowing soap bubbles, and examined the interaction between the jet and the soap film using the high-speed videography and the particle image velocimetry.

  9. Bubble-Free Containers For Liquids In Microgravity

    NASA Technical Reports Server (NTRS)

    Kornfeld, Dale M.; Antar, Basil L.

    1995-01-01

    Reports discuss entrainment of gas bubbles during handling of liquids in microgravity, and one report proposes containers filled with liquids in microgravity without entraining bubbles. Bubbles are troublesome in low-gravity experiments - particularly in biological experiments. Wire-mesh cage retains liquid contents without solid wall, because in microgravity, surface tension of liquid exerts sufficient confining force.

  10. Compressibility of a translating bubble in an oscillating pressure field

    NASA Technical Reports Server (NTRS)

    Watts, R. G.; Hsu, Y.-Y.

    1974-01-01

    The response of a single translating vapor-gas bubble to a sinusoidal pressure variation is analyzed analytically and experimentally. The bubble is assumed to move in an infinite liquid with a constant translational velocity. Bubbles are assumed to consist of saturated vapor and a noncondensible gas. The experimental results are in the low frequency range with no noncondensible gas present, although the theory is more general. Agreement between experiment and theory is satisfactory.

  11. Shock induced jetting of micron sized bubbles

    NASA Astrophysics Data System (ADS)

    Ohl, Claus-Dieter; Ikink, Roy; Lohse, Detlef; Prosperetti, Andrea

    2002-11-01

    Gas bubbles having a radius between 10 mum and 100 mum and rising freely in water when being subjected to a shock front exhibit a liquid jetting phenomenon. The jet points in the direction of the propagating shock wave. A linear relationship between the jet length and the bubble radius is found and a lower bound of the averaged velocity of the liquid jet can be estimated to be between 50 m/s and 300 m/s increasing linearly for larger bubbles. In a later stage the jet breaks up and releases micron sized bubbles. In the course of shock wave mediated cell permeabilization this observation suggests a microinjection mechanism responsible for cell transfection when minute gas bubbles are present and exposed together with cells to shock waves.

  12. Calibration of a bubble evolution model to observed bubble incidence in divers.

    PubMed

    Gault, K A; Tikuisis, P; Nishi, R Y

    1995-09-01

    The method of maximum likelihood was used to calibrate a probabilistic bubble evolution model against data of bubbles detected in divers. These data were obtained from a diverse set of 2,064 chamber man-dives involving air and heliox with and without oxygen decompression. Bubbles were measured with Doppler ultrasound and graded according to the Kisman-Masurel code from which a single maximum bubble grade (BG) per diver was compared to the maximum bubble radius (Rmax) predicted by the model. This comparison was accomplished using multinomial statistics by relating BG to Rmax through a series of probability funct