Science.gov

Sample records for gas liquefied natural

  1. Thermoacoustic natural gas liquefier

    SciTech Connect

    Swift, G.; Gardner, D.; Hayden, M.; Radebaugh, R.; Wollan, J.

    1996-07-01

    This is the final report of a two-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). This project sought to develop a natural-gas-powered natural-gas liquefier that has absolutely no moving parts and requires no electrical power. It should have high efficiency, remarkable reliability, and low cost. The thermoacoustic natural-gas liquefier (TANGL) is based on our recent invention of the first no-moving-parts cryogenic refrigerator. In short, our invention uses acoustic phenomena to produce refrigeration from heat, with no moving parts. The required apparatus comprises nothing more than heat exchangers and pipes, made of common materials, without exacting tolerances. Its initial experimental success in a small size lead us to propose a more ambitious application: large-energy liquefaction of natural gas, using combustion of natural gas as the energy source. TANGL was designed to be maintenance-free, inexpensive, portable, and environmentally benign.

  2. Thermoacoustic natural gas liquefier

    SciTech Connect

    Swift, G.W.

    1997-05-01

    Cryenco and Los Alamos are collaborating to develop a natural-gas-powered natural-gas liquefier that will have no moving parts and require no electrical power. It will have useful efficiency, remarkable reliability, and low cost. The liquefaction of natural gas, which occurs at only 115 Kelvin at atmospheric pressure, has previously required rather sophisticated refrigeration machinery. The 1990 invention of the thermoacoustically driven orifice pulse-tube refrigerator (TA-DOPTR) provides cryogenic refrigeration with no moving parts for the first time. In short, this invention uses acoustic phenomena to produce refrigeration from heat. The required apparatus consists of nothing more than helium-filled heat exchangers and pipes, made of common materials, without exacting tolerances. In the Cryenco-Los Alamos collaboration, the authors are developing a version of this invention suitable for use in the natural-gas industry. The project is known as acoustic liquefier for short. The present program plans call for a two-phase development. Phase 1, with capacity of 500 gallon per day (i.e., approximately 40,000 scfd, requiring a refrigeration power of about 7 kW), is large enough to illuminate all the issues of large-scale acoustic liquefaction without undue cost, and to demonstrate the liquefaction of 60--70% of input gas, while burning 30--40%. Phase 2 will target versions of approximately 10{sup 6} scfd = 10,000 gallon per day capacity. In parallel with both, they continue fundamental research on the technology, directed toward increased efficiency, to build scientific foundations and a patent portfolio for future acoustic liquefiers.

  3. Thermoacoustic natural gas liquefier

    SciTech Connect

    Swift, G.W.

    1995-06-01

    In collaboration with Cryenco Inc. and NIST-Boulder, we intend to develop a natural gas-powered natural-gas liquefier which has absolutely no moving parts and requires no electrical power. It will have high efficiency, remarkable reliability, and low cost. Progress on the liquefier to be constructed at Cryenco continues satisfactorily. The thermoacoustic driver is still ahead of the pulse tube refrigerator, because of NIST`s schedule. We completed the thermoacoustics design in the fall of 1994, with Los Alamos providing physics input and checks of all aspects, and Cryenco providing engineering to ASME code, drafting, etc. Completion of this design represents a significant amount of work, especially in view of the many unexpected problems encountered. Meanwhile, Cryenco and NIST have almost completed the design of the pulse tube refrigerator. At Los Alamos, we have assembled a half-size scale model of the thermoacoustic portion of the 500 gal/day TANGL. This scale model will enable easy experimentation in harmonic suppression techniques, new stack geometries, new heat-exchanger geometries, resonator coiling, and other areas. As of March 1995, the scale model is complete and we are performing routine debugging tests and modifications.

  4. Liquefied Natural Gas Transfer

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Chicago Bridge & Iron Company's tanks and associated piping are parts of system for transferring liquefied natural gas from ship to shore and storing it. LNG is a "cryogenic" fluid meaning that it must be contained and transferred at very low temperatures, about 260 degrees below Fahrenheit. Before the LNG can be pumped from the ship to the storage tanks, the two foot diameter transfer pipes must be cooled in order to avoid difficulties associated with sharp differences of temperature between the supercold fluid and relatively warm pipes. Cooldown is accomplished by sending small steady flow of the cryogenic substance through the pipeline; the rate of flow must be precisely controlled or the transfer line will be subjected to undesirable thermal stress.

  5. Bibliography on Liquefied Natural Gas (LNG) safety

    NASA Technical Reports Server (NTRS)

    Ordin, P. M.

    1976-01-01

    Approximately 600 citations concerning safety of liquefied natural gas and liquid methane are presented. Each entry includes the title, author, abstract, source, description of figures, key references, and major descriptors for retrieving the document. An author index is provided as well as an index of descriptors.

  6. Global Liquefied Natural Gas Market: Status and Outlook, The

    EIA Publications

    2003-01-01

    The Global Liquefied Natural Gas Market: Status & Outlook was undertaken to characterize the global liquefied natural gas (LNG) market and to examine recent trends and future prospects in the LNG market.

  7. Liquefied Natural Gas for Trucks and Buses

    SciTech Connect

    James Wegrzyn; Michael Gurevich

    2000-06-19

    Liquefied natural gas (LNG) is being developed as a heavy vehicle fuel. The reason for developing LNG is to reduce our dependency on imported oil by eliminating technical and costs barriers associated with its usage. The U.S. Department of Energy (DOE) has a program, currently in its third year, to develop and advance cost-effective technologies for operating and refueling natural gas-fueled heavy vehicles (Class 7-8 trucks). The objectives of the DOE Natural Gas Vehicle Systems Program are to achieve market penetration by reducing vehicle conversion and fuel costs, to increase consumer acceptance by improving the reliability and efficiency, and to improve air quality by reducing tailpipe emissions. One way to reduce fuel costs is to develop new supplies of cheap natural gas. Significant progress is being made towards developing more energy-efficient, low-cost, small-scale natural gas liquefiers for exploiting alternative sources of natural gas such as from landfill and remote gas sites. In particular, the DOE program provides funds for research and development in the areas of; natural gas clean up, LNG production, advanced vehicle onboard storage tanks, improved fuel delivery systems and LNG market strategies. In general, the program seeks to integrate the individual components being developed into complete systems, and then demonstrate the technology to establish technical and economic feasibility. The paper also reviews the importance of cryogenics in designing LNG fuel delivery systems.

  8. Fuel tank for liquefied natural gas

    NASA Technical Reports Server (NTRS)

    DeLay, Thomas K. (Inventor)

    2012-01-01

    A storage tank is provided for storing liquefied natural gas on, for example, a motor vehicle such as a bus or truck. The storage tank includes a metal liner vessel encapsulated by a resin-fiber composite layer. A foam insulating layer, including an outer protective layer of epoxy or of a truck liner material, covers the composite layer. A non-conducting protective coating may be painted on the vessel between the composite layer and the vessel so as to inhibit galvanic corrosion.

  9. Lightweight Tanks for Storing Liquefied Natural Gas

    NASA Technical Reports Server (NTRS)

    DeLay, Tom

    2008-01-01

    Single-walled, jacketed aluminum tanks have been conceived for storing liquefied natural gas (LNG) in LNG-fueled motor vehicles. Heretofore, doublewall steel tanks with vacuum between the inner and outer walls have been used for storing LNG. In comparison with the vacuum- insulated steel tanks, the jacketed aluminum tanks weigh less and can be manufactured at lower cost. Costs of using the jacketed aluminum tanks are further reduced in that there is no need for the vacuum pumps heretofore needed to maintain vacuum in the vacuum-insulated tanks.

  10. Risk management of liquefied natural gas installations

    NASA Technical Reports Server (NTRS)

    Fedor, O. H.; Parsons, W. N.; Coutinho, J. De C.

    1976-01-01

    In connection with the construction of four major liquefied natural gas (LNG) facilities in New York City, the New York City Fire Commissioner has asked NASA for assistance. It was decided that the Kennedy Space Center should develop a risk management system (RMS) for the use of the New York Fire Department (NYFD). The RMS provides for a published set of safety regulations by the NYFD. A description of the RMS is presented as an example of an application of aerospace technology to a civilian sector, namely LNG facilities.

  11. Liquefied Natural Gas (LNG) dispenser verification device

    NASA Astrophysics Data System (ADS)

    Xiong, Maotao; Yang, Jie-bin; Zhao, Pu-jun; Yu, Bo; Deng, Wan-quan

    2013-01-01

    The composition of working principle and calibration status of LNG (Liquefied Natural Gas) dispenser in China are introduced. According to the defect of weighing method in the calibration of LNG dispenser, LNG dispenser verification device has been researched. The verification device bases on the master meter method to verify LNG dispenser in the field. The experimental results of the device indicate it has steady performance, high accuracy level and flexible construction, and it reaches the international advanced level. Then LNG dispenser verification device will promote the development of LNG dispenser industry in China and to improve the technical level of LNG dispenser manufacture.

  12. Development of a thermoacoustic natural gas liquefier.

    SciTech Connect

    Wollan, J. J.; Swift, G. W.; Backhaus, S. N.; Gardner, D. L.

    2002-01-01

    Praxair, in conjunction with the Los Alamos National Laboratory, is developing a new technology, thermoacoustic heat engines and refrigerators, for liquefaction of natural gas. This is the only technology capable of producing refrigeration power at cryogenic temperatures with no moving parts. A prototype, with a projected natural gas liquefaction capacity of 500 gallons/day, has been built and tested. The power source is a natural gas burner. Systems will be developed with liquefaction capacities up to 10,000 to 20,000 gallons per day. The technology, the development project, accomplishments and applications are discussed. In February 2001 Praxair, Inc. purchased the acoustic heat engine and refrigeration development program from Chart Industries. Chart (formerly Cryenco, which Chart purchased in 1997) and Los Alamos had been working on the technology development program since 1994. The purchase included assets and intellectual property rights for thermoacoustically driven orifice pulse tube refrigerators (TADOPTR), a new and revolutionary Thermoacoustic Stirling Heat Engine (TASHE) technology, aspects of Orifice Pulse Tube Refrigeration (OPTR) and linear motor compressors as OPTR drivers. Praxair, in cooperation with Los Alamos National Laboratory (LANL), the licensor of the TADOPTR and TASHE patents, is continuing the development of TASHE-OPTR natural gas powered, natural gas liquefiers. The liquefaction of natural gas, which occurs at -161 C (-259 F) at atmospheric pressure, has previously required rather sophisticated refrigeration machinery. The 1990 TADOPTR invention by Drs. Greg Swift (LANL) and Ray Radebaugh (NIST) demonstrated the first technology to produce cryogenic refrigeration with no moving parts. Thermoacoustic engines and refrigerators use acoustic phenomena to produce refrigeration from heat. The basic driver and refrigerator consist of nothing more than helium-filled heat exchangers and pipes, made of common materials, without exacting tolerances. The liquefier development program is divided into two components: Thermoacoustically driven refrigerators and linear motor driven refrigerators (LOPTRs). LOPTR technology will, for the foreseeable future, be limited to natural gas liquefaction capacities on the order of hundreds of gallons per day. TASHE-OPTR technology is expected to achieve liquefaction capacities of tens of thousands of gallons per day. This paper will focus on the TASHE-OPTR technology because its natural gas liquefaction capacity has greater market opportunity. LOPTR development will be mentioned briefly. The thermoacoustically driven refrigerator development program is now in the process of demonstrating the technology at a capacity of about 500 gallon/day (gpd) i.e., approximately 42,000 standard cubic feet/day, which requires about 7 kW of refrigeration power. This capacity is big enough to illuminate the issues of large-scale acoustic liquefaction at reasonable cost and to demonstrate the liquefaction of about 70% of an input gas stream, while burning about 30%. Subsequent to this demonstration a system with a capacity of approximately 10{sup 6} standard cubic feet/day (scfd) = 10,000 gpd with a projected liquefaction rate of about 85% of the input gas stream will be developed. When commercialized, the TASHE-OPTRs will be a totally new type of heat-driven cryogenic refrigerator, with projected low manufacturing cost, high reliability, long life, and low maintenance. A TASHE-OPTR will be able to liquefy a broad range of gases, one of the most important being natural gas (NG). Potential NG applications range from distributed liquefaction of pipeline gas as fuel for heavy-duty fleet and long haul vehicles to large-scale liquefaction at on-shore and offshore gas wellheads. An alternative to the thermoacoustic driver, but with many similar technical and market advantages, is the linear motor compressor. Linear motors convert electrical power directly into oscillating linear, or axial, motion. Attachment of a piston to the oscillator results in a direct drive compressor. Such a compressor has two distinct advantages over rotary motor compressors. One, it is a completely dry system. Because there are no gearbox and roller bearings, there is no requirement for lubricants, which eliminates the cleanup issues associated with lubricants in cryogenic refrigerators driven by conventional compressors. Two, the oscillator is suspended by flexure bearings. Flexure bearings have no wearing parts and have essentially infinite lifetime. Linear motors can also be run in reverse as linear generators and can be driven by acoustic engines. Although most natural gas is still carried from well to user as gas in pipelines, the use of liquefied natural gas (LNG) has been increasing. A typical modern, large liquefaction plant costs a billion dollars, liquefies 10{sup 9} scfd, uses 10-15% of its throughput to power itself, and has substantial operating and maintenance costs.

  13. 77 FR 2126 - Pipeline Safety: Implementation of the National Registry of Pipeline and Liquefied Natural Gas...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-13

    ... Registry of Pipeline and Liquefied Natural Gas Operators AGENCY: Pipeline and Hazardous Materials Safety... registry of pipeline and liquefied natural gas operators. FOR FURTHER INFORMATION CONTACT: Jamerson Pender... 72878), titled: ``Pipeline Safety: Updates to Pipeline and Liquefied Natural Gas Reporting...

  14. Power conversion system utilizing reversible energy of liquefied natural gas

    SciTech Connect

    Hoskinson, R.L.

    1982-05-18

    A power conversion system comprising a combination of a liquefied natural gas vaporizing plant and a fuel burning power generating facility is disclosed. The liquefied natural gas vaporizing plant utilizes the cryogenic capacity of the liquefied natural gas to produce liquid air which is pumped to a high pressure by a liquid air pump. The liquid air is then brought into a heat exchanging relationship with air drawn into the vaporizing plant so that the high pressure liquid air is converted to high pressure gaseous air. The high pressure gaseous air which represents recovered reversible energy of the liquefied natural gas is fed into a combustion chamber of the fuel burning power generating plant. Since the power generating facility requires no significant output of power to drive a compressor to compress ambient air prior to its entry into the combustion chamber, the power generating facility is operated at a high efficiency.

  15. Risk management technique for liquefied natural gas facilities

    NASA Technical Reports Server (NTRS)

    Fedor, O. H.; Parsons, W. N.

    1975-01-01

    Checklists have been compiled for planning, design, construction, startup and debugging, and operation of liquefied natural gas facilities. Lists include references to pertinent safety regulations. Methods described are applicable to handling of other hazardous materials.

  16. 76 FR 4417 - Liberty Natural Gas LLC, Liberty Liquefied Natural Gas (LNG) Deepwater Port License Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-25

    ... Maritime Administration Liberty Natural Gas LLC, Liberty Liquefied Natural Gas (LNG) Deepwater Port License... Deepwater Port License Application. The application describes an offshore natural gas deepwater port.... Summary of the Application Liberty Natural Gas, LLC, proposes to own, construct, and operate a natural......

  17. Proceedings of the eighth international conference on liquefied natural gas

    SciTech Connect

    Not Available

    1986-01-01

    This book presents the papers given at a conference on liquefied natural gas. Topics considered at the conference included the financing of LNG plants, energy policy strategies for developing countries, liquefaction processes of natural gas, air coolers and gas turbines in LNG units, safety, receiving terminals, storage facilities, inspection, metering, nickel steels used in LNG storage vessels, expanded concretes for controlling LNG vapor generation, and a next generation LNG carrier propelled by a gas injection diesel engine.

  18. 75 FR 70350 - Liberty Natural Gas LLC, Liberty Liquefied Natural Gas (LNG) Deepwater Port License Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-17

    ... Maritime Administration Liberty Natural Gas LLC, Liberty Liquefied Natural Gas (LNG) Deepwater Port License.... Coast Guard received an application from Liberty Natural Gas LLC for all Federal authorizations required... the transportation, storage, and further handling of oil or natural gas for transportation to...

  19. 78 FR 35014 - Orders Granting Authority to Import and Export Natural Gas, and to Import Liquefied Natural Gas...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-11

    ... Granting Authority to Import and Export Natural Gas, and to Import Liquefied Natural Gas During April 2013... natural gas and to import liquefied natural gas. These orders are summarized in the attached appendix and... INC 13-41-NG CASCADE NATURAL GAS CORPORATION 13-43-NG ENCANA MARKETING (USA) INC 13-44-NG......

  20. 78 FR 46581 - Orders Granting Authority To Import and Export Natural Gas, and To Import Liquefied Natural Gas...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-01

    ... Granting Authority To Import and Export Natural Gas, and To Import Liquefied Natural Gas During June 2013... authority to import and export natural gas and to import liquefied natural gas. These orders are summarized... of Fossil Energy, Office of Natural Gas Regulatory Activities, Docket Room 3E-033,......

  1. 77 FR 12274 - Orders Granting Authority To Import and Export Natural Gas and Liquefied Natural Gas During...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-29

    ... Orders Granting Authority To Import and Export Natural Gas and Liquefied Natural Gas During January 2012... 2012, it issued Orders granting authority to import and export natural gas and liquefied natural gas.... DOMINION COVE POINT LNG, LP 11-98-LNG ENERGY PLUS NATURAL GAS LLC 11-155-NG BROOKFIELD ENERGY......

  2. 77 FR 31838 - Notice of Orders Granting Authority to Import and Export Natural Gas and Liquefied Natural Gas...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-30

    ... of Orders Granting Authority to Import and Export Natural Gas and Liquefied Natural Gas During April..., it issued Orders granting authority to import and export natural gas and liquefied natural gas. These... Capital International, LLC....... 12-33-NG Phillips 66 Company 12-34-NG Northwest Natural Gas Company......

  3. 77 FR 19277 - Orders Granting Authority To Import and Export Natural Gas and Liquefied Natural Gas During...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-30

    ... Granting Authority To Import and Export Natural Gas and Liquefied Natural Gas During February 2012 FE... 2012, it issued Orders granting authority to import and export natural gas and liquefied natural gas..., ULC 12-13-NG ENCANA NATURAL GAS INC 11-163-NG ALCOA INC 12-11-NG JPMORGAN LNG CO 12-15-LNG CNE......

  4. 77 FR 16471 - Pipeline Safety: Implementation of the National Registry of Pipeline and Liquefied Natural Gas...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-21

    ...: Implementation of the National Registry of Pipeline and Liquefied Natural Gas Operators AGENCY: Pipeline and... registry of pipeline and liquefied natural gas operators. This notice provides updates to the information... and liquefied natural gas (LNG) operators. New operators use the national registry to obtain...

  5. 49 CFR 191.15 - Transmission systems; gathering systems; and liquefied natural gas facilities: Incident report.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... liquefied natural gas facilities: Incident report. 191.15 Section 191.15 Transportation Other Regulations...; gathering systems; and liquefied natural gas facilities: Incident report. (a) Transmission or Gathering... under § 191.5 of this part. (b) LNG. Each operator of a liquefied natural gas plant or facility...

  6. 49 CFR 191.17 - Transmission systems; gathering systems; and liquefied natural gas facilities: Annual report.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... liquefied natural gas facilities: Annual report. 191.17 Section 191.17 Transportation Other Regulations...; gathering systems; and liquefied natural gas facilities: Annual report. (a) Transmission or Gathering. Each..., 2011. (b) LNG. Each operator of a liquefied natural gas facility must submit an annual report for...

  7. 78 FR 19696 - Orders Granting Authority To Import and Export Natural Gas, To Import Liquefied Natural Gas, To...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-02

    ... Granting Authority To Import and Export Natural Gas, To Import Liquefied Natural Gas, To Export Liquefied Natural Gas and Vacating Prior Authority During December 2012 FE Docket Nos. DIAMOND CAPITAL INTERNATIONAL... during December 2012, it issued orders granting authority to import and export natural gas and......

  8. 18 CFR 157.212 - Synthetic and liquefied natural gas facilities.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... of the Natural Gas Act for Certain Transactions and Abandonment § 157.212 Synthetic and liquefied... liquefied natural gas and that are not “related jurisdictional natural gas facilities” as defined in § 153.2... natural gas facilities. 157.212 Section 157.212 Conservation of Power and Water Resources FEDERAL...

  9. 75 FR 38092 - The Dow Chemical Company; Application for Blanket Authorization To Export Liquefied Natural Gas

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-01

    ... Chemical Company; Application for Blanket Authorization To Export Liquefied Natural Gas AGENCY: Office of... The Dow Chemical Company (Dow), requesting blanket authorization to export liquefied natural gas (LNG... equivalent of 390 billion cubic feet (Bcf) of natural gas on a short-term or spot market basis. The LNG...

  10. 49 CFR 191.17 - Transmission systems; gathering systems; and liquefied natural gas facilities: Annual report.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... liquefied natural gas facilities: Annual report. 191.17 Section 191.17 Transportation Other Regulations... OF TRANSPORTATION (CONTINUED) PIPELINE SAFETY TRANSPORTATION OF NATURAL AND OTHER GAS BY PIPELINE...; gathering systems; and liquefied natural gas facilities: Annual report. (a) Transmission or Gathering....

  11. 49 CFR 191.17 - Transmission systems; gathering systems; and liquefied natural gas facilities: Annual report.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... liquefied natural gas facilities: Annual report. 191.17 Section 191.17 Transportation Other Regulations... OF TRANSPORTATION (CONTINUED) PIPELINE SAFETY TRANSPORTATION OF NATURAL AND OTHER GAS BY PIPELINE...; gathering systems; and liquefied natural gas facilities: Annual report. (a) Transmission or Gathering....

  12. 49 CFR 191.15 - Transmission systems; gathering systems; and liquefied natural gas facilities: Incident report.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... liquefied natural gas facilities: Incident report. 191.15 Section 191.15 Transportation Other Regulations... OF TRANSPORTATION (CONTINUED) PIPELINE SAFETY TRANSPORTATION OF NATURAL AND OTHER GAS BY PIPELINE...; gathering systems; and liquefied natural gas facilities: Incident report. (a) Transmission or...

  13. 49 CFR 191.15 - Transmission systems; gathering systems; and liquefied natural gas facilities: Incident report.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... liquefied natural gas facilities: Incident report. 191.15 Section 191.15 Transportation Other Regulations... OF TRANSPORTATION (CONTINUED) PIPELINE SAFETY TRANSPORTATION OF NATURAL AND OTHER GAS BY PIPELINE...; gathering systems; and liquefied natural gas facilities: Incident report. (a) Transmission or...

  14. 49 CFR 191.15 - Transmission systems; gathering systems; and liquefied natural gas facilities: Incident report.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... liquefied natural gas facilities: Incident report. 191.15 Section 191.15 Transportation Other Regulations... OF TRANSPORTATION (CONTINUED) PIPELINE SAFETY TRANSPORTATION OF NATURAL AND OTHER GAS BY PIPELINE...; gathering systems; and liquefied natural gas facilities: Incident report. (a) Transmission or...

  15. 49 CFR 191.17 - Transmission systems; gathering systems; and liquefied natural gas facilities: Annual report.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... liquefied natural gas facilities: Annual report. 191.17 Section 191.17 Transportation Other Regulations... OF TRANSPORTATION (CONTINUED) PIPELINE SAFETY TRANSPORTATION OF NATURAL AND OTHER GAS BY PIPELINE...; gathering systems; and liquefied natural gas facilities: Annual report. (a) Transmission or Gathering....

  16. Control method for mixed refrigerant based natural gas liquefier

    DOEpatents

    Kountz, Kenneth J.; Bishop, Patrick M.

    2003-01-01

    In a natural gas liquefaction system having a refrigerant storage circuit, a refrigerant circulation circuit in fluid communication with the refrigerant storage circuit, and a natural gas liquefaction circuit in thermal communication with the refrigerant circulation circuit, a method for liquefaction of natural gas in which pressure in the refrigerant circulation circuit is adjusted to below about 175 psig by exchange of refrigerant with the refrigerant storage circuit. A variable speed motor is started whereby operation of a compressor is initiated. The compressor is operated at full discharge capacity. Operation of an expansion valve is initiated whereby suction pressure at the suction pressure port of the compressor is maintained below about 30 psig and discharge pressure at the discharge pressure port of the compressor is maintained below about 350 psig. Refrigerant vapor is introduced from the refrigerant holding tank into the refrigerant circulation circuit until the suction pressure is reduced to below about 15 psig, after which flow of the refrigerant vapor from the refrigerant holding tank is terminated. Natural gas is then introduced into a natural gas liquefier, resulting in liquefaction of the natural gas.

  17. 40 CFR 1048.620 - What are the provisions for exempting large engines fueled by natural gas or liquefied petroleum...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... large engines fueled by natural gas or liquefied petroleum gas? 1048.620 Section 1048.620 Protection of... exempting large engines fueled by natural gas or liquefied petroleum gas? (a) If an engine meets all the... natural gas or liquefied petroleum gas. (2) The engine must have maximum engine power at or......

  18. 40 CFR 1048.620 - What are the provisions for exempting large engines fueled by natural gas or liquefied petroleum...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... large engines fueled by natural gas or liquefied petroleum gas? 1048.620 Section 1048.620 Protection of... exempting large engines fueled by natural gas or liquefied petroleum gas? (a) If an engine meets all the... natural gas or liquefied petroleum gas. (2) The engine must have maximum engine power at or......

  19. 78 FR 21349 - Orders Granting Authority To Import and Export Natural Gas, To Export Liquefied Natural Gas, To...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-10

    ... Granting Authority To Import and Export Natural Gas, To Export Liquefied Natural Gas, To Export Compressed Natural Gas, Vacating Prior Authority and Denying Request for Rehearing During January 2013 ] FE Docket... GAS LLC 12-168-CNG MERRILL LYNCH COMMODITIES CANADA, ULC 12-169-NG GAS NATURAL PUERTO RICO INC...

  20. 33 CFR 165.110 - Safety and Security Zone; Liquefied Natural Gas Carrier Transits and Anchorage Operations, Boston...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...; Liquefied Natural Gas Carrier Transits and Anchorage Operations, Boston, Massachusetts. 165.110 Section 165... Limited Access Areas First Coast Guard District § 165.110 Safety and Security Zone; Liquefied Natural Gas... ahead and one mile astern, and 500 yards on each side of any liquefied natural gas carrier (LNGC)...

  1. 78 FR 4401 - Orders Granting Authority To Import and Export Natural Gas, To Import and Export Liquefied...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-22

    ... Granting Authority To Import and Export Natural Gas, To Import and Export Liquefied Natural Gas, and... export natural gas and liquefied natural gas. These orders are summarized in the attached appendix and... ENERGY INC 12-124-NG GLACIAL NATURAL GAS, INC 12-125-NG YANKEE GAS SERVICES COMPANY 12-129-NG......

  2. 77 FR 4028 - Orders Granting, Amending and Vacating Authority To Import and Export Natural Gas and Liquefied...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-26

    ... Granting, Amending and Vacating Authority To Import and Export Natural Gas and Liquefied Natural Gas FE Docket Nos. Gas Natural Caxitlan, S. DE R.L 11-147-NG Jordan Cove Energy Project, L.P 11-127-LNG Irving..., amending and vacating authority to import and export natural gas and liquefied natural gas. These......

  3. 78 FR 53739 - Orders Granting Authority To Import and Export Natural Gas, To Import and Export Liquefied...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-30

    ... Granting Authority To Import and Export Natural Gas, To Import and Export Liquefied Natural Gas and... export natural gas, to import and export liquefied natural gas and to vacate prior authority. These... ENERGY) 13-83-LNG STANDARD NATURAL GAS, INC.) 13-81-LNG CASTLETON COMMODITIES CANADA LP) 1...

  4. 78 FR 44940 - Orders Granting Authority To Import and Export Natural Gas, and To Import and Export Liquefied...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-25

    ... Granting Authority To Import and Export Natural Gas, and To Import and Export Liquefied Natural Gas During May 2013 FE DOCKET NOS. CASCADE NATURAL GAS CORPORATION........ 12-179-NG CASCADE NATURAL GAS... orders granting authority to import and export natural gas and to import and export liquefied......

  5. 33 CFR 165.1709 - Security Zones: Liquefied Natural Gas Tanker Transits and Operations at Phillips Petroleum LNG...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...: Liquefied Natural Gas Tanker Transits and Operations at Phillips Petroleum LNG Pier, Cook Inlet, AK. (a... navigable waters within a 1000-yard radius of the Liquefied Natural Gas (LNG) tankers during their inbound... Natural Gas tankers while they are moored at Phillips Petroleum LNG Pier, 60°40′43″ N and 151°24′10″ W....

  6. 33 CFR 165.1709 - Security Zones: Liquefied Natural Gas Tanker Transits and Operations at Phillips Petroleum LNG...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...: Liquefied Natural Gas Tanker Transits and Operations at Phillips Petroleum LNG Pier, Cook Inlet, AK. (a... navigable waters within a 1000-yard radius of the Liquefied Natural Gas (LNG) tankers during their inbound... Natural Gas tankers while they are moored at Phillips Petroleum LNG Pier, 60°40′43″ N and 151°24′10″ W....

  7. 40 CFR Table W - 5 of Subpart W-Default Methane Emission Factors for Liquefied Natural Gas (LNG) Storage

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Emission Factors for Liquefied Natural Gas (LNG) Storage W Table W Protection of Environment ENVIRONMENTAL... Natural Gas Systems Definitions. Pt. 98, Subpt. W, Table W-5 Table W-5 of Subpart W—Default Methane Emission Factors for Liquefied Natural Gas (LNG) Storage LNG storage Emission factor...

  8. DEVELOPMENT OF A THERMOACOUSTIC NATURAL GAS LIQUEFIER-UPDATE

    SciTech Connect

    J. WOLLAN; G. SWIFT

    2001-05-01

    Thermoacoustic heat engines and refrigerators are being developed for liquefaction of natural gas. This is the only technology capable of producing refrigeration power at cryogenic temperatures with no moving parts. A prototype, with a projected natural gas liquefaction capacity of 500 gallons/day, has been built and tested. The power source is a natural gas burner. Systems are developed with liquefaction capacities up to 10,000 to 20,000 gallons per day. The technology, the development project, accomplishments and applications are discussed.

  9. 33 CFR 165.110 - Safety and Security Zone; Liquefied Natural Gas Carrier Transits and Anchorage Operations, Boston...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...; Liquefied Natural Gas Carrier Transits and Anchorage Operations, Boston, Massachusetts. 165.110 Section 165... Limited Access Areas First Coast Guard District § 165.110 Safety and Security Zone; Liquefied Natural Gas.... Deepwater port means any facility or structure meeting the definition of deepwater port in 33 CFR...

  10. Reliquefaction of boil-off from liquefied natural gas

    SciTech Connect

    Cook, P.J.

    1989-07-11

    This patent describes a process for liquifying boil-off gas resulting from the evaporation of liquified natural gas contained in a storage vessel. The boil-off gas is cooled and liquified in a closed-loop refrigeration system and then returned to the storage vessel wherein. The closed-loop refrigeration system comprises the steps: compressing nitrogen as a working fluid in a compressor system to form a compressed working fluid; splitting the compressed working fluid into a first and second stream; isenthalpically expanding the first stream to produce a cooled first stream, then warming against boil-off gas and compressed working fluid; and isentropically expanding the second stream to form a cooled expanded stream which is then warmed against boil-off gas to form at least partially condensed boil-off prior to warming against the working fluid and prior to return to the compressor system.

  11. 75 FR 60095 - Sempra LNG Marketing, LLC; Application for Blanket Authorization To Export Liquefied Natural Gas

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-29

    ... LNG supplies. \\1\\ 15 U.S.C. 717b. \\2\\ See 49 FR 6684, February 22, 1984. Sempra states that in DOE/FE... LNG Marketing, LLC; Application for Blanket Authorization To Export Liquefied Natural Gas AGENCY..., by Sempra LNG Marketing, LLC (Sempra), requesting blanket authorization to export up to a total...

  12. Reliquefaction of boil-off from liquefied natural gas

    SciTech Connect

    Stuber, W.G.; Kovak, K.W.

    1989-07-04

    This patent describes a process for liquifying boil-off gas resulting from the evaporation of liquified natural gas contained in a storage vessel, the boil-off gas being cooled and liquified in a closed-loop nitrogen refrigeration system and then returned to the storage vessel. The closed loop refrigeration system comprises the following steps: compressing nitrogen as a working fluid in a multi-stage compressor system having an initial and final stage to form a compressed working fluid; splitting the compressed working fluid into a first and second stream; isenthalpically expanding the first stream to produce a cooled first stream, then warming against recycle compressed working fluid and boil-off gas; isentropically expanding the second stream to form a cooled expanded stream which is then warmed against boil-off gas and working fluid prior to return to the compressor system; the improvement for reliquefying a boil-off gas containing from about 0 to 10% nitrogen by volume. It comprises: effecting isenthalpic expansion of the first stream under conditions such that at least a liquid fraction is generated; separating any vapor fraction, if generated, from the liquid fraction; warming the vapor fraction, if generated, against boil-off gas and recycle compressed working fluid; pressurizing the liquid fraction formed by pumping; warming the pressurized liquid fraction first against boil-off gas and then in parallel with the warming of the isentropically expanded second stream.

  13. 78 FR 65427 - Pipeline Safety: Reminder of Requirements for Liquefied Petroleum Gas and Utility Liquefied...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-31

    .... Background 49 CFR 192.11 requires that each plant that supplies petroleum gas by pipeline to a natural gas... Liquefied Petroleum Gas and Utility Liquefied Petroleum Gas Pipeline Systems AGENCY: Pipeline and Hazardous... owners and operators of liquefied petroleum gas (LPG) and utility liquefied petroleum gas......

  14. 33 CFR 165.502 - Safety and Security Zone; Cove Point Liquefied Natural Gas Terminal, Chesapeake Bay, Maryland.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Safety and Security Zone; Cove Point Liquefied Natural Gas Terminal, Chesapeake Bay, Maryland. 165.502 Section 165.502 Navigation and... Areas Fifth Coast Guard District § 165.502 Safety and Security Zone; Cove Point Liquefied Natural...

  15. 33 CFR 165.502 - Safety and Security Zone; Cove Point Liquefied Natural Gas Terminal, Chesapeake Bay, Maryland.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Safety and Security Zone; Cove Point Liquefied Natural Gas Terminal, Chesapeake Bay, Maryland. 165.502 Section 165.502 Navigation and... Areas Fifth Coast Guard District § 165.502 Safety and Security Zone; Cove Point Liquefied Natural...

  16. 33 CFR 165.502 - Safety and Security Zone; Cove Point Liquefied Natural Gas Terminal, Chesapeake Bay, Maryland.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Safety and Security Zone; Cove Point Liquefied Natural Gas Terminal, Chesapeake Bay, Maryland. 165.502 Section 165.502 Navigation and... Areas Fifth Coast Guard District § 165.502 Safety and Security Zone; Cove Point Liquefied Natural...

  17. Liquefied natural gas as a transportation fuel for heavy-duty trucks: Volume I

    SciTech Connect

    1997-12-01

    This document contains Volume 1 of a three-volume manual designed for use with a 2- to 3-day liquefied natural gas (LNG) training course. Transportation and off-road agricultural, mining, construction, and industrial applications are discussed. This volume provides a brief introduction to the physics and chemistry of LNG; an overview of several ongoing LNG projects, economic considerations, LNG fuel station technology, LNG vehicles, and a summary of federal government programs that encourage conversion to LNG.

  18. On the application of computational fluid dynamics codes for liquefied natural gas dispersion.

    SciTech Connect

    Luketa-Hanlin, Anay Josephine; Koopman, Ronald P.; Ermak, Donald

    2006-02-01

    Computational fluid dynamics (CFD) codes are increasingly being used in the liquefied natural gas (LNG) industry to predict natural gas dispersion distances. This paper addresses several issues regarding the use of CFD for LNG dispersion such as specification of the domain, grid, boundary and initial conditions. A description of the k-{var_epsilon} model is presented, along with modifications required for atmospheric flows. Validation issues pertaining to the experimental data from the Burro, Coyote, and Falcon series of LNG dispersion experiments are also discussed. A description of the atmosphere is provided as well as discussion on the inclusion of the Coriolis force to model very large LNG spills.

  19. Analysis of temperature and pressure changes in liquefied natural gas (LNG) cryogenic tanks

    NASA Astrophysics Data System (ADS)

    Chen, Q.-S.; Wegrzyn, J.; Prasad, V.

    2004-10-01

    Liquefied natural gas (LNG) is being developed as a transportation fuel for heavy vehicles such as trucks and transit buses, to lessen the dependency on oil and to reduce greenhouse gas emissions. The LNG stations are properly designed to prevent the venting of natural gas (NG) from LNG tanks, which can cause evaporative greenhouse gas emissions and result in fluctuations of fuel flow and changes of fuel composition. Boil-off is caused by the heat added into the LNG fuel during the storage and fueling. Heat can leak into the LNG fuel through the shell of tank during the storage and through hoses and dispensers during the fueling. Gas from tanks onboard vehicles, when returned to LNG tanks, can add additional heat into the LNG fuel. A thermodynamic and heat transfer model has been developed to analyze different mechanisms of heat leak into the LNG fuel. The evolving of properties and compositions of LNG fuel inside LNG tanks is simulated. The effect of a number of buses fueled each day on the possible total fuel loss rate has been analyzed. It is found that by increasing the number of buses, fueled each day, the total fuel loss rate can be reduced significantly. It is proposed that an electric generator be used to consume the boil-off gas or a liquefier be used to re-liquefy the boil-off gas to reduce the tank pressure and eliminate fuel losses. These approaches can prevent boil-off of natural gas emissions, and reduce the costs of LNG as transportation fuel.

  20. Development of a Small-Scale Natural Gas Liquefier. Final Report

    SciTech Connect

    Kountz, K.; Kriha, K.; Liss, W.; Perry, M.; Richards, M.; Zuckerman, D.

    2003-04-30

    This final report describes the progress during the contract period March 1, 1998 through April 30, 2003, on the design, development, and testing of a novel mixed-refrigerant-based 1000 gal/day natural gas liquefier, together with the associated gas cleanup equipment. Based on the work, it is concluded that a cost-effective 1000 gal/day liquefaction system is technically and economically feasible. A unit based on the same developed technology, with 5000 gal/day capacity, would have much improved economics.

  1. Study on Solidification of CO2 by using Cold Energy of Liquefied Natural Gas

    NASA Astrophysics Data System (ADS)

    Takeuchi, Yoshiyuki; Fujiwara, Atsushi

    In conventional natural gas combustion power plants, vaporization heat of liquefied natural gas (LNG) has been supplied by sea water and/or air. In the plants, cold vaporization energy has been lost without any effective utilization. An advanced technology has been developed in which carbon dioxide in the flue gas is solidified and separated as dry-ice. Carbon dioxide in the flue gas of a LNG combined cycle is cooled and solidified by the evaporation of LNG. Fundamental studies on fluidized bed heat exchanger were carried out to analyze heat transfer phenomena at low temperature. And the fluidized bed type heat exchanger was confirmed that they had high efficiency by striping off frost solidified on the surface of heat exchanger tube. The heat transfer coefficient at -135°C was calculated about 330-370 (W/m2•K) at the condition where C02 gas was solidified.

  2. Impacts of Imported Liquefied Natural Gas on Residential Appliance Components: Literature Review

    SciTech Connect

    Lekov, Alex; Sturges, Andy; Wong-Parodi, Gabrielle

    2009-12-09

    An increasing share of natural gas supplies distributed to residential appliances in the U.S. may come from liquefied natural gas (LNG) imports. The imported gas will be of a higher Wobbe number than domestic gas, and there is concern that it could produce more pollutant emissions at the point of use. This report will review recently undertaken studies, some of which have observed substantial effects on various appliances when operated on different mixtures of imported LNG. While we will summarize findings of major studies, we will not try to characterize broad effects of LNG, but describe how different components of the appliance itself will be affected by imported LNG. This paper considers how the operation of each major component of the gas appliances may be impacted by a switch to LNG, and how this local impact may affect overall safety, performance and pollutant emissions.

  3. Compressed natural gas and liquefied petroleum gas conversions: The National Renewable Energy Laboratory`s experience

    SciTech Connect

    Motta, R.C.; Kelly, K.J.; Warnock, W.W.

    1996-04-01

    The National Renewable Energy Laboratory (NREL) contracted with conversion companies in six states to convert approximately 900 light-duty Federal fleet vehicles to operate on compressed natural gas (CNG) or liquefied petroleum gas (LPG). The contracts were initiated in order to help the Federal government meet the vehicle acquisition requirements of the Energy Policy Act of 1992 (EPACT) during a period of limited original equipment manufacturer (OEM) model availability. Approximately 90% of all conversions were performed on compact of full-size vans and pickups, and 90% of the conversions were to bi-fuel operation. With a positive response from the fleet managers, this program helped the Federal government meet the vehicle acquisition requirements of EPACT for fiscal years 1993 and 1994, despite limited OEM model availability. The conversions also helped to establish the infrastructure needed to support further growth in the use of alternative fuel vehicles. In conclusion, the program has been successful in helping the Federal government meet the vehicle acquisition requirements of EPACT, establishing infrastructure, increasing the displacement of imported oil, and evaluating the emissions performance of converted vehicles. With the relatively widespread availability of OEM vehicles in the 1996 model year, the program is now being phased out.

  4. Life-cycle greenhouse gas assessment of Nigerian liquefied natural gas addressing uncertainty.

    PubMed

    Safaei, Amir; Freire, Fausto; Henggeler Antunes, Carlos

    2015-03-17

    Natural gas (NG) has been regarded as a bridge fuel toward renewable sources and is expected to play a greater role in future global energy mix; however, a high degree of uncertainty exists concerning upstream (well-to-tank, WtT) greenhouse gas (GHG) emissions of NG. In this study, a life-cycle (LC) model is built to assess uncertainty in WtT GHG emissions of liquefied NG (LNG) supplied to Europe by Nigeria. The 90% prediction interval of GHG intensity of Nigerian LNG was found to range between 14.9 and 19.3 g CO2 eq/MJ, with a mean value of 16.8 g CO2 eq/MJ. This intensity was estimated considering no venting practice in Nigerian fields. The mean estimation can shift up to 25 g CO2 eq when considering a scenario with a higher rate of venting emissions. A sensitivity analysis of the time horizon to calculate GHG intensity was also performed showing that higher GHG intensity and uncertainty are obtained for shorter time horizons, due to the higher impact factor of methane. The uncertainty calculated for Nigerian LNG, specifically regarding the gap of data for methane emissions, recommends initiatives to measure and report emissions and further LC studies to identify hotspots to reduce the GHG intensity of LNG chains. PMID:25621534

  5. Effect of Increased Levels of Liquefied Natural Gas Exports on U.S. Energy Markets

    EIA Publications

    2014-01-01

    This report responds to a May 29, 2014 request from the U.S. Department of Energy's Office of Fossil Energy (DOE/FE) for an update of the Energy Information Administration's (EIA) January 2012 study of liquefied natural gas (LNG) export scenarios. This updated study, like the prior one, is intended to serve as an input to be considered in the evaluation of applications to export LNG from the United States under Section 3 of the Natural Gas Act, which requires DOE to grant a permit to export domestically produced natural gas unless it finds that such action is not consistent with the public interest. Appendix A provides a copy of the DOE/FE request letter.

  6. [Ecological/hygienic and toxicological evaluation of combustion products of aviation kerosene and liquefied natural gas].

    PubMed

    Afanas'ev, R V; Berezin, G I; Raznoschikov, V V

    2006-01-01

    Products of kerosene combustion in the present-day aeroengines contain more than 200 compounds of incomplete combustion, partial oxidation, and thermal decomposition of fuel and oil. Most of these are strong toxicants for humans. Increase of temperature in the turbine engine combustion chamber led to production of very toxic nitrogen oxides. In search for the ecologically safe and less toxic alternative attention of fuel engineers was drawn to liquefied natural gas which compares well and even excels kerosene in ecological, economic and many other respects. PMID:16999075

  7. Breach and safety analysis of spills over water from large liquefied natural gas carriers.

    SciTech Connect

    Hightower, Marion Michael; Luketa-Hanlin, Anay Josephine; Attaway, Stephen W.

    2008-05-01

    In 2004, at the request of the Department of Energy, Sandia National Laboratories (Sandia) prepared a report, ''Guidance on the Risk and Safety Analysis of Large Liquefied Natural Gas (LNG) Spills Over Water''. That report provided framework for assessing hazards and identifying approaches to minimize the consequences to people and property from an LNG spill over water. The report also presented the general scale of possible hazards from a spill from 125,000 m3 o 150,000 m3 class LNG carriers, at the time the most common LNG carrier capacity.

  8. 40 CFR Table W - 5 of Subpart W of Part 98-Default Methane Emission Factors for Liquefied Natural Gas (LNG) Storage

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Methane Emission Factors for Liquefied Natural Gas (LNG) Storage W Table W Protection of Environment... Petroleum and Natural Gas Systems Definitions. Pt. 98, Subpt. W, Table W-5 Table W-5 of Subpart W of Part 98—Default Methane Emission Factors for Liquefied Natural Gas (LNG) Storage LNG storage Emission factor...

  9. An investigation of the use of odorants in liquefied natural gas used as a vehicle fuel

    SciTech Connect

    Green, T.; Williams, T.

    1994-12-31

    Interest in liquefied natural gas (LNG) as an alternative vehicle fuel has increased significantly. Its greater storage density relative to compressed natural gas makes it an attractive option for both volume and weight constrained vehicle applications. The public transportation market, specifically transit bus properties, have been very aggressive in pursuing LNG as an alternative vehicle fuel. Naturally, when dealing with the general public and a new transportation fuel, the issue of safety must be addressed. With this in mind, the Gas Research Institute has initiated a number of safety related studies including an investigation of the use of odorants in LNG. This paper presents the preliminary results of an investigation performed by the Institute of Gas Technology to determine both the applicability and effectiveness of odorizing LNG. This includes an overview of the current state-of-the-art in LNG vehicle fueling and safety systems as well as a discussion of an LNG odorization program conducted by San Diego Gas & Electric in the mid 70`s. Finally, the paper discusses the results of the modeling effort to determine whether conventional odorants used in natural gas can be injected and remain soluble in LNG at temperatures and pressures encountered in LNG fueling and on-board storage systems.

  10. 33 CFR 165.1709 - Security Zones: Liquefied Natural Gas Tanker Transits and Operations at Phillips Petroleum LNG...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) Special Regulations. (1) For the purpose of this section, the general regulations contained in 33 CFR 165... Gas Tanker Transits and Operations at Phillips Petroleum LNG Pier, Cook Inlet, AK. 165.1709 Section...: Liquefied Natural Gas Tanker Transits and Operations at Phillips Petroleum LNG Pier, Cook Inlet, AK....

  11. 33 CFR 165.1709 - Security Zones: Liquefied Natural Gas Tanker Transits and Operations at Phillips Petroleum LNG...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) Special Regulations. (1) For the purpose of this section, the general regulations contained in 33 CFR 165... Gas Tanker Transits and Operations at Phillips Petroleum LNG Pier, Cook Inlet, AK. 165.1709 Section...: Liquefied Natural Gas Tanker Transits and Operations at Phillips Petroleum LNG Pier, Cook Inlet, AK....

  12. 33 CFR 165.1709 - Security Zones: Liquefied Natural Gas Tanker Transits and Operations at Phillips Petroleum LNG...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) Special Regulations. (1) For the purpose of this section, the general regulations contained in 33 CFR 165... Gas Tanker Transits and Operations at Phillips Petroleum LNG Pier, Cook Inlet, AK. 165.1709 Section...: Liquefied Natural Gas Tanker Transits and Operations at Phillips Petroleum LNG Pier, Cook Inlet, AK....

  13. Characterization of liquefied natural gas tanker steel from cryogenic to fire temperatures.

    SciTech Connect

    Dempsey, J. Franklin; Wellman, Gerald William; Antoun, Bonnie R.; Connelly, Kevin; Kalan, Robert J.

    2010-03-01

    The increased demand for Liquefied Natural Gas (LNG) as a fuel source in the U.S. has prompted a study to improve our capability to predict cascading damage to LNG tankers from cryogenic spills and subsequent fire. To support this large modeling and simulation effort, a suite of experiments were conducted on two tanker steels, ABS Grade A steel and ABS Grade EH steel. A thorough and complete understanding of the mechanical behavior of the tanker steels was developed that was heretofore unavailable for the span of temperatures of interest encompassing cryogenic to fire temperatures. This was accomplished by conducting several types of experiments, including tension, notched tension and Charpy impact tests at fourteen temperatures over the range of -191 C to 800 C. Several custom fixtures and special techniques were developed for testing at the various temperatures. The experimental techniques developed and the resulting data will be presented, along with a complete description of the material behavior over the temperature span.

  14. Thermodynamic analysis of liquefied natural gas (LNG) production cycle in APCI process

    NASA Astrophysics Data System (ADS)

    Nezhad, Shahrooz Abbasi; Shabani, Bezhan; Soleimani, Majid

    2012-12-01

    The appropriate production of liquefied natural gas (LNG) with least consuming energy and maximum efficiency is quite important. In this paper, LNG production cycle by means of APCI Process has been studied. Energy equilibrium equations and exergy equilibrium equations of each equipment in the APCI cycle were established. The equipments are described using rigorous thermodynamics and no significant simplification is assumed. Taken some operating parameters as key parameters, influences of these parameters on coefficient of performance (COP) and exergy efficiency of the cascading cycle were analyzed. The results indicate that COP and exergy efficiency will be improved with the increasing of the inlet pressure of MR (mixed refrigerant) compressors, the decreasing of the NG and MR after precooling process, outlet pressure of turbine, inlet temperature of MR compressor and NG temperature after cooling in main cryogenic heat exchanger (MCHE). The COP and exergy efficiency of the APCI cycle will be above 2% and 40%, respectively, after optimizing the key parameters.

  15. The influence of liquefied natural gas composition on its behavior as a coolant

    NASA Astrophysics Data System (ADS)

    Urbano, A.; Nasuti, F.

    2013-03-01

    Liquefied Natural Gas (LNG) is a suitable propellant to be used, together with liquid oxygen as oxidizer, in a liquid rocket engine, because of possible advantages with respect to hydrogen in specific applications. Often approximated as pure methane, LNG is a mixture of methane, other heavier hydrocarbons and nitrogen. If LNG is to be used in a regeneratively cooled liquid rocket engine, the knowledge of the thermodynamic and heat transfer characteristics when it flows in the cooling channels is of primary importance. The aim of the present work is to understand how the composition of LNG can influence the flow in the cooling channels. A parametric study is carried out considering different LNG compositions and heat flux levels. Attention is devoted to the pressure drop and cooling capabilities, which are the aspects that have to be controlled in a regenerative cooling system.

  16. Economic and environmental assessment of liquefied natural gas as a supplemental aircraft fuel

    NASA Astrophysics Data System (ADS)

    Withers, Mitch R.; Malina, Robert; Gilmore, Christopher K.; Gibbs, Jonathan M.; Trigg, Chris; Wolfe, Philip J.; Trivedi, Parthsarathi; Barrett, Steven R. H.

    2014-04-01

    In 2013, natural gas is 70-80% cheaper than jet fuel on an energy basis. As an alternative aviation fuel, natural gas may reduce operating costs. In this paper, we assess the use of liquefied natural gas (LNG) as a supplemental aircraft fuel in a military context, with detailed assessments of the Lockheed Martin C-130H and C-130J transport aircraft. We estimate the cost of retrofitting these aircraft to use LNG and the savings from reduced fuel expenses. We evaluate the societal impacts of LNG within a cost-benefit framework, taking into account resource consumption, human health impacts related to air quality, and climate damage. In order to compare alternative uses of natural gas in aviation, we include in our analysis Fischer-Tropsch (FT) jet fuel from natural gas as a drop-in alternative. Uncertainty analysis is performed with Monte Carlo simulations. We find that aircraft operators can save up to 14% on fuel expenses (retrofit costs included) by employing LNG retrofits, with a 95% confidence interval of 2-23%. Society can also benefit by 12% (3-20%) from LNG use as a result of improved surface air quality, lower resource consumption, and net climate neutrality. These results are highly dependent on fuel prices, the quantity and cost of the LNG retrofits, and the frequency and length of missions. FT jet fuel is not cost-competitive with conventional fuel and results in increased fuel expenses by 17%. FT fuel provides marginal societal benefits relative to jet fuel.

  17. 33 CFR 165.502 - Safety and Security Zone; Cove Point Liquefied Natural Gas Terminal, Chesapeake Bay, Maryland.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Safety and Security Zone; Cove Point Liquefied Natural Gas Terminal, Chesapeake Bay, Maryland. 165.502 Section 165.502 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PORTS AND WATERWAYS SAFETY REGULATED NAVIGATION AREAS AND LIMITED...

  18. 33 CFR 165.502 - Safety and Security Zone; Cove Point Liquefied Natural Gas Terminal, Chesapeake Bay, Maryland.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Safety and Security Zone; Cove Point Liquefied Natural Gas Terminal, Chesapeake Bay, Maryland. 165.502 Section 165.502 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PORTS AND WATERWAYS SAFETY REGULATED NAVIGATION AREAS AND LIMITED...

  19. Method for recovering power according to a cascaded rankine cycle by gasifying liquefied natural gas and utilizing the cold potential

    SciTech Connect

    Matsumoto, O.; Aoki, I.

    1984-04-24

    The present invention discloses a method for recovering effective energy as power between liquefied natural gas and a high temperature source by cascading two kinds of Rankine cycles when the liquefied natural gas is re-gasified. The method is characterized in that a first medium performs a first Rankine cycle with the liquefied natural gas as a low temperature source, the first medium being mainly a mixture of hydrocarbons having 1-6 carbon atoms or a mixture of halogenated hydrocarbons of boiling points close to those of said hydrocarbons, the first medium having compositions according to which the vapor curve of gasifying the liquefied natural gas substantially corresponds to the low pressure cooling curve of the first medium, the power generated thereby is recovered by a first turbine during the first Rankine cycle, a second medium having a higher boiling point than said first medium performs a second Rankine cycle with part of said first Rankine cycle as the low temperature source, the second medium, being a single hydrocarbon component having 1-6 carbon atoms or a mixture thereof, a single halogenated hydrocarbon whose boiling point is close to that of this hydrocarbon or a mixture thereof, or ammonia, whose low pressure cooling curve substantially corresponds to the vapor curve of the high pressure first medium, said first and second Rankine cycles are cascaded, and a second turbine is disposed to recover power during the second Rankine cycle.

  20. 76 FR 76698 - Dominion Cove Point LNG, LP; Application To Export Domestic Liquefied Natural Gas to Non-Free...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-08

    .... A notice of that application was published in the Federal Register on September 21, 2011, (76 FR... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Dominion Cove Point LNG, LP; Application To Export Domestic Liquefied Natural Gas to Non-Free...

  1. 78 FR 38024 - Magnolia LNG, LLC; Liquefied Natural Gas Limited; Notice of Intent To Prepare an Environmental...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-25

    ... Prepare an Environmental Impact Statement for the Planned Magnolia Liquefied Natural Gas Project, Request... planned project and encourage them to comment on their areas of concern. Summary of the Planned Project... this notice. Land Requirements for Construction The planned liquefaction facilities would...

  2. Portable, fast-response gas sensor for measuring methane and ethane and propane in liquefied natural gas spills

    SciTech Connect

    Bingham, G.E.; Kiefer, R.D.; Gillespie, C.H.; McRae, T.G.; Goldwire, H.C.; Koopman, R.P.

    1983-10-01

    We have developed a four-band, IR radiometer for measuring methane and ethane plus propane in the 1% to 100% gas per volume of air range in liquefied natural gas spills. The instrument is a small and lightweight open-cell, pyroelectric detector-based sensor designed for field use. It compensates for attenuation because of dense fog and is sufficiently hardened to allow continuous operation in the transient flame front of an ignited natural gas cloud. The sensor transmits five determinations of the gas concentration each second to a data-collection station on an interrupt-driven, serial data link. It has an operational power requirement of 15 W at 12 V dc.

  3. Blanketing effect of expansion foam on liquefied natural gas (LNG) spillage pool.

    PubMed

    Zhang, Bin; Liu, Yi; Olewski, Tomasz; Vechot, Luc; Mannan, M Sam

    2014-09-15

    With increasing consumption of natural gas, the safety of liquefied natural gas (LNG) utilization has become an issue that requires a comprehensive study on the risk of LNG spillage in facilities with mitigation measures. The immediate hazard associated with an LNG spill is the vapor hazard, i.e., a flammable vapor cloud at the ground level, due to rapid vaporization and dense gas behavior. It was believed that high expansion foam mitigated LNG vapor hazard through warming effect (raising vapor buoyancy), but the boil-off effect increased vaporization rate due to the heat from water drainage of foam. This work reveals the existence of blocking effect (blocking convection and radiation to the pool) to reduce vaporization rate. The blanketing effect on source term (vaporization rate) is a combination of boil-off and blocking effect, which was quantitatively studied through seven tests conducted in a wind tunnel with liquid nitrogen. Since the blocking effect reduces more heat to the pool than the boil-off effect adds, the blanketing effect contributes to the net reduction of heat convection and radiation to the pool by 70%. Water drainage rate of high expansion foam is essential to determine the effectiveness of blanketing effect, since water provides the boil-off effect. PMID:25194555

  4. AIR QUALITY IMPACTS OF LIQUEFIED NATURAL GAS IN THE SOUTH COAST AIR BASIN OF CALIFORNIA

    SciTech Connect

    Carerras-Sospedra, Marc; Brouwer, Jack; Dabdub, Donald; Lunden, Melissa; Singer, Brett

    2011-07-01

    The effects of liquefied natural gas (LNG) on pollutant emission inventories and air quality in the South Coast Air Basin of California were evaluated using recent LNG emission measurements by Lawrence Berkeley National Laboratory and the Southern California Gas Company (SoCalGas), and with a state-of-the-art air quality model. Pollutant emissions can be affected by LNG owing to differences in composition and physical properties, including the Wobbe index, a measure of energy delivery rate. This analysis uses LNG distribution scenarios developed by modeling Southern California gas flows, including supplies from the LNG receiving terminal in Baja California, Mexico. Based on these scenarios, the projected penetratino of LNG in the South Coast Air Basin is expected to be limited. In addition, the increased Wobbe index of delivered gas (resulting from mixtures of LNG and conventional gas supplies) is expected to cause increases smaller than 0.05 percent in overall (area-wide) emissions of nitrogen oxides (NOx). BAsed on the photochemical state of the South Coast Air Basin, any increase in NOx is expected to cause an increase in the highest local ozone concentrations, and this is reflected in model results. However, the magnitude of the increase is well below the generally accepted accuracy of the model and would not be discernible with the existing monitoring network. Modeling of hypothetical scenarios indicates that discernible changes to ambient ozone and particulate matter concentrations would occur only at LNG distribution rates that are not achievable with current or planned infrastructure and with Wobbe index vlaues that exceed current gas quality tariffs. Results of these hypothetical scenarios are presented for consideration of any proposed substantial expansion of LNG supply infrastructure in Southern California.

  5. Proposing a novel combined cycle for optimal exergy recovery of liquefied natural gas

    NASA Astrophysics Data System (ADS)

    Salimpour, M. R.; Zahedi, M. A.

    2012-08-01

    The effective utilization of the cryogenic exergy associated with liquefied natural gas (LNG) vaporization is important. In this paper, a novel combined power cycle is proposed which utilizes LNG in different ways to enhance the power generation of a power plant. In addition to the direct expansion in the appropriate expander, LNG is used as a low-temperature heat sink for a middle-pressure gas cycle which uses nitrogen as working fluid. Also, LNG is used to cool the inlet air of an open Brayton gas turbine cycle. These measures are accomplished to improve the exergy recovery of LNG. In order to analyze the performance of the system, the influence of several key parameters such as pressure ratio of LNG turbine, ratio of the mass flow rate of LNG to the mass flow rate of air, pressure ratio of different compressors, LNG pressure and inlet pressure of nitrogen compressor, on the thermal efficiency and exergy efficiency of the offered cycle is investigated. Finally, the proposed combined cycle is optimized on the basis of first and second laws of thermodynamics.

  6. 33 CFR 165.1151 - Security Zones; liquefied hazardous gas tank vessels, San Pedro Bay, California.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... a tank vessel as liquefied petroleum gas, liquefied natural gas, or similar liquefied gas products... Eleventh Coast Guard District § 165.1151 Security Zones; liquefied hazardous gas tank vessels, San Pedro Bay, California. (a) Definition. “Liquefied Hazardous Gas” as used in this section means a...

  7. LNG plants in the US and abroad. [Liquefied Natural Gas (LNG)

    SciTech Connect

    Blazek, C.F.; Biederman, R.T.

    1992-01-01

    The Institute of Gas Technology recently conducted a comprehensive survey of LNG production and storage facilities in North America. This survey was performed as part of IGT's LNG Observer newsletter which covers both domestic and international LNG news, reports on LNG related economics and statistics, and routinely conducts interviews with key industry leaders. In addition to providing consulting services to the LNG industry, IGT has cosponsored the International Conference on Liquefied Natural Gas for the part 20 years. The objective of this paper is to present a summary of our recent survey results as well as provide an overview of world LNG trade. This information is important in assessing the potential near term availability of LNG for transportation applications. The IGT LNG Survey appraised the capacity and current market activity of LNG peak shaving, satellite storage, and import receiving facilities in the United States and Canada. Information was requested from facilities on three main topics: liquefaction, storage, and regasification. Additional questions were posed regarding the year of operation, designer/contractor for liquefaction cycle and storage, source of LNG (for storage-only facilities), plans for expansion, and level of interest in providing LNG as a vehicle fuel. The IGT LNG Survey has to date received information on 56 LNG peak shaving facilities, 28 satellite storage facilities, and 4 LNG import receiving terminals.

  8. Supply chain management and economic valuation of real options in the natural gas and liquefied natural gas industry

    NASA Astrophysics Data System (ADS)

    Wang, Mulan Xiaofeng

    My dissertation concentrates on several aspects of supply chain management and economic valuation of real options in the natural gas and liquefied natural gas (LNG) industry, including gas pipeline transportations, ocean LNG shipping logistics, and downstream storage. Chapter 1 briefly introduces the natural gas and LNG industries, and the topics studied in this thesis. Chapter 2 studies how to value U.S. natural gas pipeline network transport contracts as real options. It is common for natural gas shippers to value and manage contracts by simple adaptations of financial spread option formulas that do not fully account for the implications of the capacity limits and the network structure that distinguish these contracts. In contrast, we show that these operational features can be fully captured and integrated with financial considerations in a fairly easy and managerially significant manner by a model that combines linear programming and simulation. We derive pathwise estimators for the so called deltas and structurally characterize them. We interpret them in a novel fashion as discounted expectations, under a specific weighing distribution, of the amounts of natural gas to be procured/marketed when optimally using pipeline capacity. Based on the actual prices of traded natural gas futures and basis swaps, we show that an enhanced version of the common approach employed in practice can significantly underestimate the true value of natural gas pipeline network capacity. Our model also exhibits promising financial (delta) hedging performance. Thus, this model emerges as an easy to use and useful tool that natural gas shippers can employ to support their valuation and delta hedging decisions concerning natural gas pipeline network transport capacity contracts. Moreover, the insights that follow from our data analysis have broader significance and implications in terms of the management of real options beyond our specific application. Motivated by current developments in the LNG industry, Chapter 3 studies the operations of LNG supply chains facing both supply and price risk. To model the supply uncertainty, we employ a closed-queuing-network (CQN) model to represent upstream LNG production and shipping, via special oceans-going tankers, to a downstream re-gasification facility in the U.S, which sells natural gas into the wholesale spot market. The CQN shipping model analytically generates the unloaded amount probability distribution. Price uncertainty is captured by the spot price, which experiences both volatility and significant seasonality, i.e., higher prices in winter. We use a trinomial lattice to model the price uncertainty, and calibrate to the extended forward curves. Taking the outputs from the CQN model and the spot price model as stochastic inputs, we formulate a real option inventory-release model to study the benefit of optimally managing a downstream LNG storage facility. This allows characterization of the structure of the optimal inventory management policy. An interesting finding is that when it is optimal to sell, it is not necessarily optimal to sell the entire available inventory. The model can be used by LNG players to value and manage the real option to store LNG at a re-gasification facility, and is easy to be implemented. For example, this model is particularly useful to value leasing contracts for portions of the facility capacity. Real data is used to assess the value of the real option to store LNG at the downstream re-gasification facility, and, contrary to what has been claimed by some practitioners, we find that it has significant value (several million dollars). Chapter 4 studies the importance of modeling the shipping variability when valuing and managing a downstream LNG storage facility. The shipping model presented in Chapter 3 uses a "rolling forward" method to generate the independent and identically distributed (i.i.d.) unloaded amount in each decision period. We study the merit of the i.i.d. assumption by using simulation and developing an upper bound. We show that the model, which uses the i.i.d. unloaded amount, provides a good estimation of the storage value, and yields a near optimal inventory control policy. We also test the performance of a model that uses constant throughput to determine the inventory release policy. This model performs worse than the model of Chapter 3 for storage valuation purposes, but can be used to suggest the optimal inventory control policy, especially when the ratio of flow rate to storage size is high, i.e., storage is scarce. Chapter 5 summarizes the contributions of this thesis.

  9. Report on issues regarding the existing New York liquefied natural gas moratorium

    SciTech Connect

    1998-11-01

    The New York Energy Planning Board has prepared this study to provide the Governor and the Legislature with information necessary to determine the need for further extension or modification of the existing State moratorium on the siting of new liquefied natural gas (LNG) facilities and intrastate transportation routes as required by Chapter 385 of the laws of 1997. The report examines existing laws and regulations that would affect new LNG facilities in New York and government initiatives in other states. It reviews existing use of LNG in New York, including safety issues and potential public concerns that may arise with lifting the moratorium. It also discusses the economic and environmental effects of increased LNG usage for New York State. The study concludes that there are economic and environmental advantages for allowing the construction of new LNG facilities as well as the intrastate transportation of LNG over new routes. Additionally, it concludes that safety concerns associated with these facilities are adequately addressed by existing Federal, State and local statutes and regulations.

  10. Experimental and numerical investigation of the roll motion behavior of a floating liquefied natural gas system

    NASA Astrophysics Data System (ADS)

    Zhao, WenHua; Yang, JianMin; Hu, ZhiQiang; Xiao, LongFei; Peng, Tao

    2013-03-01

    The present paper does an experimental and numerical investigation of the hydrodynamic interaction and the response of a single point turret-moored Floating Liquefied Natural Gas (FLNG) system, which is a new type of floating LNG (Liquid Natural Gas) platform that consists of a ship-type FPSO hull equipped with LNG storage tanks and liquefaction plants. In particular, this study focuses on the investigation of the roll response of FLNG hull in free-decay motions, white noise waves and also in irregular waves. Model tests of the FLNG system in 60%H filling condition excited by both white noise waves and irregular waves combined with steady wind and current have been carried out. Response Amplitude Operators (RAOs) and time histories of the responses are obtained for sway, roll and yaw motions. Obvious Low Frequency (LF) components of the roll motions are observed, which may be out of expectation. To facilitate the physical understanding of this phenomenon, we filter the roll motions at the period of 30 s into two parts: the Wave Frequency (WF) motions and the Low Frequency (LF) motions respectively. The results indicate that the LF motions are closely related to the sway and yaw motions. Possible reasons for the presence of the LF motions of roll have been discussed in detail, through the comparison with the sway and yaw motions. As for the numerical part, the simulation of the modeled case is conducted with the help of the software SESAM®. A good agreement between experiments and calculations is reported within the scope of trends. However, the numerical simulations should be further improved for the prediction of the FLNG system in the heading sea.

  11. Study of Hydrogen Production Method using Latent Heat of Liquefied Natural Gas

    NASA Astrophysics Data System (ADS)

    Ogawa, Masaru; Seki, Tatsuyoshi; Honda, Hiroshi; Nakamura, Motomu; Takatani, Yoshiaki

    In recent years, Fuel Cell Electrical Vehicle is expected to improve urban environment. Particularly a hydrogen fuel type FCEV expected for urban use, because its excellent characters such as short startup time, high responsibility and zero emission. On the other hand, as far as hydrogen production is concerned, large amount of CO2 is exhausted into the atmosphere by the process of LNG reforming. In our research, we studied the utilization of LNG latent heat for hydrogen gas production process as well as liquefied hydrogen process. Furthermore, CO2---Capturing as liquid state or solid state from hydrogen gas production process by LNG is also studied. Results of research shows that LNG latent heat is very effect to cool hydrogen gas for conventional hydrogen liquefied process. However, the LNG latent heat is not available for LNG reforming process. If we want to use LNG latent heat for this process, we have to develop new hydrogen gas produce process. In this new method, both hydrogen and CO2 is cooled by LNG directly, and CO2 is removed from the reforming gas. In order to make this method practical, we should develop a new type heat-exchanger to prevent solid CO2 from interfering the performance of it.

  12. 40 CFR Table W - 5 of Subpart W of Part 98-Default Methane Emission Factors for Liquefied Natural Gas (LNG) Storage

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 21 2014-07-01 2014-07-01 false 5 of Subpart W of Part 98-Default Methane Emission Factors for Liquefied Natural Gas (LNG) Storage W Table W Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Petroleum and Natural Gas Systems Definitions....

  13. Life cycle greenhouse gas emissions from U.S. liquefied natural gas exports: implications for end uses.

    PubMed

    Abrahams, Leslie S; Samaras, Constantine; Griffin, W Michael; Matthews, H Scott

    2015-03-01

    This study analyzes how incremental U.S. liquefied natural gas (LNG) exports affect global greenhouse gas (GHG) emissions. We find that exported U.S. LNG has mean precombustion emissions of 37 g CO2-equiv/MJ when regasified in Europe and Asia. Shipping emissions of LNG exported from U.S. ports to Asian and European markets account for only 3.5-5.5% of precombustion life cycle emissions, hence shipping distance is not a major driver of GHGs. A scenario-based analysis addressing how potential end uses (electricity and industrial heating) and displacement of existing fuels (coal and Russian natural gas) affect GHG emissions shows the mean emissions for electricity generation using U.S. exported LNG were 655 g CO2-equiv/kWh (with a 90% confidence interval of 562-770), an 11% increase over U.S. natural gas electricity generation. Mean emissions from industrial heating were 104 g CO2-equiv/MJ (90% CI: 87-123). By displacing coal, LNG saves 550 g CO2-equiv per kWh of electricity and 20 g per MJ of heat. LNG saves GHGs under upstream fugitive emissions rates up to 9% and 5% for electricity and heating, respectively. GHG reductions were found if Russian pipeline natural gas was displaced for electricity and heating use regardless of GWP, as long as U.S. fugitive emission rates remain below the estimated 5-7% rate of Russian gas. However, from a country specific carbon accounting perspective, there is an imbalance in accrued social costs and benefits. Assuming a mean social cost of carbon of $49/metric ton, mean global savings from U.S. LNG displacement of coal for electricity generation are $1.50 per thousand cubic feet (Mcf) of gaseous natural gas exported as LNG ($.028/kWh). Conversely, the U.S. carbon cost of exporting the LNG is $1.80/Mcf ($.013/kWh), or $0.50-$5.50/Mcf across the range of potential discount rates. This spatial shift in embodied carbon emissions is important to consider in national interest estimates for LNG exports. PMID:25650513

  14. 18 CFR 157.212 - Synthetic and liquefied natural gas facilities.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... that are used to transport either a mix of synthetic and natural gas or exclusively revaporized... natural gas facilities. 157.212 Section 157.212 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY REGULATIONS UNDER NATURAL GAS ACT APPLICATIONS FOR...

  15. 18 CFR 157.212 - Synthetic and liquefied natural gas facilities.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... that are used to transport either a mix of synthetic and natural gas or exclusively revaporized... natural gas facilities. 157.212 Section 157.212 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY REGULATIONS UNDER NATURAL GAS ACT APPLICATIONS FOR...

  16. 18 CFR 157.212 - Synthetic and liquefied natural gas facilities.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... that are used to transport either a mix of synthetic and natural gas or exclusively revaporized... natural gas facilities. 157.212 Section 157.212 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY REGULATIONS UNDER NATURAL GAS ACT APPLICATIONS FOR...

  17. 18 CFR 157.212 - Synthetic and liquefied natural gas facilities.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... natural gas facilities. 157.212 Section 157.212 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY REGULATIONS UNDER NATURAL GAS ACT APPLICATIONS FOR CERTIFICATES... 7 OF THE NATURAL GAS ACT Interstate Pipeline Blanket Certificates and Authorization Under Section...

  18. 77 FR 38128 - Withdrawal of TORP Terminal LP, Bienville Offshore Energy Terminal Liquefied Natural Gas (LNG...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-26

    ... Maritime Administration Withdrawal of TORP Terminal LP, Bienville Offshore Energy Terminal Liquefied... Terminal LP's (TORP) withdrawal of the deepwater port license application for the proposed Bienville Offshore Energy Terminal (BOET). All actions related to the processing and agency coordination...

  19. Analysis of Influence of Heat Insulation on the Thermal Regime of Storage Tanks with Liquefied Natural Gas

    NASA Astrophysics Data System (ADS)

    Maksimov, Vyacheslav I.; Nagornova, Tatiana A.; Glazyrin, Viktor P.; Shestakov, Igor A.

    2016-02-01

    Is numerically investigated the process of convective heat transfer in the reservoirs of liquefied natural gas (LNG). The regimes of natural convection in a closed rectangular region with different intensity of heat exchange at the external borders are investigated. Is solved the time-dependent system of energy and Navier-Stokes equations in the dimensionless variables "vorticity - the stream function". Are obtained distributions of the hydrodynamic parameters and temperatures, that characterize basic regularities of the processes. The special features of the formation of circulation flows are isolated and the analysis of the temperature distribution in the solution region is carried out. Is shown the influence of geometric characteristics and intensity of heat exchange on the outer boundaries of reservoir on the temperature field in the LNG storage.

  20. Estimated uncertainty of calculated liquefied natural gas density from a comparison of NBS and Gaz de France densimeter test facilities

    SciTech Connect

    Siegwarth, J.D.; LaBrecque, J.F.; Roncier, M.; Philippe, R.; Saint-Just, J.

    1982-12-16

    Liquefied natural gas (LNG) densities can be measured directly but are usually determined indirectly in custody transfer measurement by using a density correlation based on temperature and composition measurements. An LNG densimeter test facility at the National Bureau of Standards uses an absolute densimeter based on the Archimedes principle, while a test facility at Gaz de France uses a correlation method based on measurement of composition and density. A comparison between these two test facilities using a portable version of the absolute densimeter provides an experimental estimate of the uncertainty of the indirect method of density measurement for the first time, on a large (32 L) sample. The two test facilities agree for pure methane to within about 0.02%. For the LNG-like mixtures consisting of methane, ethane, propane, and nitrogen with the methane concentrations always higher than 86%, the calculated density is within 0.25% of the directly measured density 95% of the time.

  1. Guidance on risk analysis and safety implications of a large liquefied natural gas (LNG) spill over water.

    SciTech Connect

    Wellman, Gerald William; Melof, Brian Matthew; Luketa-Hanlin, Anay Josephine; Hightower, Marion Michael; Covan, John Morgan; Gritzo, Louis Alan; Irwin, Michael James; Kaneshige, Michael Jiro; Morrow, Charles W.

    2004-12-01

    While recognized standards exist for the systematic safety analysis of potential spills or releases from LNG (Liquefied Natural Gas) storage terminals and facilities on land, no equivalent set of standards or guidance exists for the evaluation of the safety or consequences from LNG spills over water. Heightened security awareness and energy surety issues have increased industry's and the public's attention to these activities. The report reviews several existing studies of LNG spills with respect to their assumptions, inputs, models, and experimental data. Based on this review and further analysis, the report provides guidance on the appropriateness of models, assumptions, and risk management to address public safety and property relative to a potential LNG spill over water.

  2. Evaporation of liquefied natural gas in conditions of compact storage containers heating

    NASA Astrophysics Data System (ADS)

    Telgozhayeva, D. S.

    2014-08-01

    Identical by its power, but located in different parts of the external surface of the tank, the heating sources are different intensity heat transfer modes is heating up, respectively, times of vapour pressure rise to critical values. Developed mathematical model and method of calculation can be used in the analysis of conditions of storage tanks for liquefied gases.

  3. Foam production as a side effect of an offshore liquefied natural gas terminal: how do plankton deal with it?

    PubMed

    Franzo, Annalisa; Karuza, Ana; Celussi, Mauro; Fornasaro, Daniela; Beran, Alfred; Di Poi, Elena; Del Negro, Paola

    2015-06-01

    The future growing demand of fossil fuels likely will lead to an increased deployment of liquefied natural gas terminals. However, some concerns exist about their possible effects on the marine environment and biota. Such plants showed to cause the production of foam, as occurred at the still operative terminal of Porto Viro (northern Adriatic Sea). Here, we present results from two microcosm experiments focused on the effects of such foam on microbially mediated degradation processes and its consequent incorporation within the pelagic food web. Such material could be considered as a heterogeneous matrix of both living and non-living organic matter, which constitutes an important substrate for exoenzymes as suggested by the faster hydrolytic rates measured in the treatment microcosms. In the second experiment, a quite immediate and efficient carbon transfer to planktonic biomass through prokaryotic incorporation and consequent predation by heterotrophic flagellates was highlighted. Although no negative effect was evidenced on the overall microbes' growth and foam-derived C seemed to be easily reworked and transferred to higher trophic levels, an important reduction in biodiversity was evidenced for microalgae. Among them, mixotrophic organisms seemed to be favoured suggesting that the addition of foam could cause a modification of the microbial community structure. PMID:25877905

  4. EXAMINE AND EVALUATE A PROCESS TO USE SALT CAVERNS TO RECEIVE SHIP BORNE LIQUEFIED NATURAL GAS

    SciTech Connect

    Michael M. McCall; William M. Bishop; D. Braxton Scherz

    2003-04-24

    The goal of the U.S. Department of Energy cooperative research project is to define, describe, and validate, a process to utilize salt caverns to receive and store the cargoes of LNG ships. The project defines the process as receiving LNG from a ship, pumping the LNG up to cavern injection pressures, warming it to cavern compatible temperatures, injecting the warmed vapor directly into salt caverns for storage, and distribution to the pipeline network. The performance of work under this agreement is based on U.S. Patent 5,511,905, and other U.S. and Foreign pending patent applications. The cost sharing participants in the research are The National Energy Technology Laboratory (U.S. Department of Energy), BP America Production Company, Bluewater Offshore Production Systems (U.S.A.), Inc., and HNG Storage, L.P. Initial results indicate that a salt cavern based receiving terminal could be built at about half the capital cost, less than half the operating costs and would have significantly higher delivery capacity, shorter construction time, and be much more secure than a conventional liquid tank based terminal. There is a significant body of knowledge and practice concerning natural gas storage in salt caverns, and there is a considerable body of knowledge and practice in handling LNG, but there has never been any attempt to develop a process whereby the two technologies can be combined. Salt cavern storage is infinitely more secure than surface storage tanks, far less susceptible to accidents or terrorist acts, and much more acceptable to the community. The project team developed conceptual designs of two salt cavern based LNG terminals, one with caverns located in Calcasieu Parish Louisiana, and the second in Vermilion block 179 about 50 miles offshore Louisiana. These conceptual designs were compared to conventional tank based LNG terminals and demonstrate superior security, economy and capacity. The potential for the development of LNG receiving terminals, utilizing salt caverns for storage and the existing comprehensive pipeline system has profound implications for the next generation of LNG terminals. LNG imports are expected to become an increasingly more important part of the U.S. energy supply and the capacities to receive LNG securely, safely, and economically must be expanded. Salt cavern LNG receiving terminals both in onshore and offshore locations can be quickly built and provide additional import capacity into the U.S. exceeding 6-10 Bcf/day in the aggregate.

  5. An assessment of air emissions from liquefied natural gas ships using different power systems and different fuels.

    PubMed

    Afon, Yinka; Ervin, David

    2008-03-01

    The shipping industry has been an unrecognized source of criteria pollutants: nitrogen oxides (NOx), volatile organic compounds, coarse particulate matter (PM10), fine particulate matter (PM2.5), sulfur dioxide (SO2), and carbon monoxide (CO). Liquefied natural gas (LNG) has traditionally been transported via steam turbine (ST) ships. Recently, LNG shippers have begun using dual-fuel diesel engines (DFDEs) to propel and offload their cargoes. Both the conventional ST boilers and DFDE are capable of burning a range of fuels, from heavy fuel oil to boil-off-gas (BOG) from the LNG load. In this paper a method for estimating the emissions from ST boilers and DFDEs during LNG offloading operations at berth is presented, along with typical emissions from LNG ships during offloading operations under different scenarios ranging from worst-case fuel oil combustion to the use of shore power. The impact on air quality in nonattainment areas where LNG ships call is discussed. Current and future air pollution control regulations for ocean-going vessels (OGVs) such as LNG ships are also discussed. The objective of this study was to estimate and compare emissions of criteria pollutants from conventional ST and DFDE ships using different fuels. The results of this study suggest that newer DFDE ships have lower SO2 and PM2.5/PM10 emissions, conventional ST ships have lower NOx, volatile organic compound, and CO emissions; and DFDE ships utilizing shore power at berth produce no localized emissions because they draw their required power from the local electric grid. PMID:18376643

  6. 75 FR 72877 - Pipeline Safety: Updates to Pipeline and Liquefied Natural Gas Reporting Requirements

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-26

    ... . SUPPLEMENTARY INFORMATION: I. Background On July 2, 2009, (74 FR 31675) PHMSA published a Notice of Proposed... distribution and hazardous liquid pipelines (August 17, 2009; 74 FR 41496). The use of these new forms were... Comment Opportunity The Gas Piping Technology Committee (GPTC) and the Pipeline Safety Trust...

  7. A methodology for risk analysis based on hybrid Bayesian networks: application to the regasification system of liquefied natural gas onboard a floating storage and regasification unit.

    PubMed

    Martins, Marcelo Ramos; Schleder, Adriana Miralles; Droguett, Enrique López

    2014-12-01

    This article presents an iterative six-step risk analysis methodology based on hybrid Bayesian networks (BNs). In typical risk analysis, systems are usually modeled as discrete and Boolean variables with constant failure rates via fault trees. Nevertheless, in many cases, it is not possible to perform an efficient analysis using only discrete and Boolean variables. The approach put forward by the proposed methodology makes use of BNs and incorporates recent developments that facilitate the use of continuous variables whose values may have any probability distributions. Thus, this approach makes the methodology particularly useful in cases where the available data for quantification of hazardous events probabilities are scarce or nonexistent, there is dependence among events, or when nonbinary events are involved. The methodology is applied to the risk analysis of a regasification system of liquefied natural gas (LNG) on board an FSRU (floating, storage, and regasification unit). LNG is becoming an important energy source option and the world's capacity to produce LNG is surging. Large reserves of natural gas exist worldwide, particularly in areas where the resources exceed the demand. Thus, this natural gas is liquefied for shipping and the storage and regasification process usually occurs at onshore plants. However, a new option for LNG storage and regasification has been proposed: the FSRU. As very few FSRUs have been put into operation, relevant failure data on FSRU systems are scarce. The results show the usefulness of the proposed methodology for cases where the risk analysis must be performed under considerable uncertainty. PMID:25041168

  8. Comments on Potential Geologic and Seismic Hazards Affecting Proposed Liquefied Natural Gas Site in Santa Monica Bay, California

    USGS Publications Warehouse

    Ross, Stephanie L.; Lee, Homa J.; Parsons, Tom E.; Beyer, Larry A.; Boore, David M.; Conrad, James E.; Edwards, Brian D.; Fisher, Michael A.; Frankel, Arthur D.; Geist, Eric L.; Hudnut, Kenneth W.; Hough, Susan E.; Kayen, Robert E.; Lorenson, T.D.; Luco, Nicolas; McCrory, Patricia A.; McGann, Mary; Nathenson, Manuel; Nolan, Michael; Petersen, Mark D.; Ponti, Daniel J.; Powell, Charles L.; Ryan, Holly F.; Tinsley, John C., III; Wills, Chris J.; Wong, Florence L.; Xu, Jingping

    2008-01-01

    In a letter to the U.S. Geological Survey (USGS) dated March 25, 2008, Representative Jane Harman (California 36th district) requested advice on geologic hazards that should be considered in the review of a proposed liquefied natural gas (LNG) facility off the California coast in Santa Monica Bay. In 2004, the USGS responded to a similar request from Representative Lois Capps, regarding two proposed LNG facilities offshore Ventura County, Calif., with a report summarizing potential geologic and seismic hazards (Ross and others, 2004). The proposed LNG Deepwater Port (DWP) facility includes single point moorings (SPMs) and 35 miles of underwater pipelines. The DWP submersible buoys, manifolds, and risers would be situated on the floor of the southern Santa Monica Basin, in 3,000 feet of water, about 23 miles offshore of the Palos Verdes Peninsula. Twin 24-inch diameter pipelines would extend northeastward from the buoys across the basin floor, up the basin slope and across the continental shelf, skirting north around the Santa Monica submarine canyon. Figure 1 provides locations of the project and geologic features. Acronyms are defined in table 1. This facility is being proposed in a region of known geologic hazards that arise from both the potential for strong earthquakes and geologic processes related to sediment transport and accumulation in the offshore environment. The probability of a damaging earthquake (considered here as magnitude 6.5 or greater) in the next 30 years within about 30 miles (50 km) of the proposed pipeline ranges from 16% at the pipeline's offshore end to 48% where it nears land (Petersen, 2008). Earthquakes of this magnitude are capable of producing strong shaking, surface fault offsets, liquefaction phenomena, landslides, underwater turbidity currents and debris flow avalanches, and tsunamis. As part of the DWP license application for the Woodside Natural Gas proposal in Santa Monica Bay (known as the OceanWay Secure Energy Project), Fugro West, Inc., had already prepared a document discussing geologic hazards in the area, titled 'Exhibit B Topic Report 6 - Geological Resources' (Fugro West, Inc., 2007); hereafter, this will be called the 'Geological Resources document'. The USGS agreed to evaluate the information in the Geological Resources document regarding (1) proximity of active faults to the proposed project, (2) potential magnitude of seismic events from nearby faults, (3) thoroughness of the assessment of earthquake hazards in general, (4) potential hazards from ground rupture and strong shaking, (5) potential hazards from tsunamis, and (6) other geologic hazards including landslides and debris flows. Because two new earthquake probability reports were scheduled to be released in mid-April, 2008, by the USGS and the California Geological Survey (CGS), the USGS suggested a 6-month review period to enable a thorough incorporation of this new information. Twenty-seven scientists from the USGS and the CGS reviewed various sections of the Geological Resources document. This report outlines our major conclusions. The appendix is a longer list of comments by these reviewers, grouped by section of the Geological Resources document. Before discussing our reviews, we first provide a brief overview of geologic hazards in the proposed site area. This report is a snapshot in time and any future work in the area will need to take into account ongoing research efforts. For example, USGS scientists collected seismic reflection data in the spring of 2008 to study the structure and seismic potential of several faults in the area. Their interpretations (Conrad and others, 2008a and 2008b) are too preliminary to be included in this report, but their final results, along with other researchers' studies in the project area, should be considered in any future work on the Deepwater Port project.

  9. 78 FR 34084 - Freeport-McMoRan Energy LLC; Application for Long-Term Authorization To Export Liquefied Natural...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-06

    ... Imported Natural Gas, 49 FR 6,684 (Feb.22, 1984). \\12\\ Id. (citing, e.g., Phillips Alaska Natural Gas Corp... Freeport-McMoRan Energy LLC; Application for Long-Term Authorization To Export Liquefied Natural Gas... authorization to export liquefied natural gas (LNG) produced from domestic sources in an amount up to 24......

  10. 46 CFR 188.10-43 - Liquefied flammable gas.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Liquefied flammable gas. 188.10-43 Section 188.10-43... PROVISIONS Definition of Terms Used in This Subchapter § 188.10-43 Liquefied flammable gas. This term means any flammable gas having a Reid vapor pressure exceeding 40 p.s.i. which has been liquefied....

  11. 46 CFR 188.10-43 - Liquefied flammable gas.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Liquefied flammable gas. 188.10-43 Section 188.10-43... PROVISIONS Definition of Terms Used in This Subchapter § 188.10-43 Liquefied flammable gas. This term means any flammable gas having a Reid vapor pressure exceeding 40 p.s.i. which has been liquefied....

  12. 46 CFR 188.10-43 - Liquefied flammable gas.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Liquefied flammable gas. 188.10-43 Section 188.10-43... PROVISIONS Definition of Terms Used in This Subchapter § 188.10-43 Liquefied flammable gas. This term means any flammable gas having a Reid vapor pressure exceeding 40 p.s.i. which has been liquefied....

  13. 49 CFR 393.69 - Liquefied petroleum gas systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 5 2010-10-01 2010-10-01 false Liquefied petroleum gas systems. 393.69 Section... ACCESSORIES NECESSARY FOR SAFE OPERATION Fuel Systems § 393.69 Liquefied petroleum gas systems. (a) A fuel system that uses liquefied petroleum gas as a fuel for the operation of a motor vehicle or for...

  14. 49 CFR 393.69 - Liquefied petroleum gas systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 5 2014-10-01 2014-10-01 false Liquefied petroleum gas systems. 393.69 Section... ACCESSORIES NECESSARY FOR SAFE OPERATION Fuel Systems § 393.69 Liquefied petroleum gas systems. (a) A fuel system that uses liquefied petroleum gas as a fuel for the operation of a motor vehicle or for...

  15. 40 CFR 1065.720 - Liquefied petroleum gas.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 34 2012-07-01 2012-07-01 false Liquefied petroleum gas. 1065.720... Standards § 1065.720 Liquefied petroleum gas. (a) Except as specified in paragraph (b) of this section, liquefied petroleum gas for testing must meet the specifications in the following table: Table 1 of §...

  16. 40 CFR 1065.720 - Liquefied petroleum gas.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 33 2011-07-01 2011-07-01 false Liquefied petroleum gas. 1065.720... Standards § 1065.720 Liquefied petroleum gas. (a) Except as specified in paragraph (b) of this section, liquefied petroleum gas for testing must meet the specifications in the following table: Table 1 of §...

  17. 40 CFR 1065.720 - Liquefied petroleum gas.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 33 2014-07-01 2014-07-01 false Liquefied petroleum gas. 1065.720... Standards § 1065.720 Liquefied petroleum gas. (a) Except as specified in paragraph (b) of this section, liquefied petroleum gas for testing must meet the specifications in the following table: Table 1 of §...

  18. 30 CFR 57.4463 - Liquefied petroleum gas use underground.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Liquefied petroleum gas use underground. 57... Fire Prevention and Control Flammable and Combustible Liquids and Gases § 57.4463 Liquefied petroleum gas use underground. Use of liquefied petroleum gases underground shall be limited to maintenance...

  19. 30 CFR 57.4463 - Liquefied petroleum gas use underground.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Liquefied petroleum gas use underground. 57... Fire Prevention and Control Flammable and Combustible Liquids and Gases § 57.4463 Liquefied petroleum gas use underground. Use of liquefied petroleum gases underground shall be limited to maintenance...

  20. 30 CFR 57.4463 - Liquefied petroleum gas use underground.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Liquefied petroleum gas use underground. 57... Fire Prevention and Control Flammable and Combustible Liquids and Gases § 57.4463 Liquefied petroleum gas use underground. Use of liquefied petroleum gases underground shall be limited to maintenance...

  1. 30 CFR 57.4463 - Liquefied petroleum gas use underground.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Liquefied petroleum gas use underground. 57... Fire Prevention and Control Flammable and Combustible Liquids and Gases § 57.4463 Liquefied petroleum gas use underground. Use of liquefied petroleum gases underground shall be limited to maintenance...

  2. 76 FR 34212 - Lake Charles Exports, LLC; Application for Long-Term Authorization To Export Liquefied Natural Gas

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-13

    ... hydraulic fracturing have combined to reduce the cost of producing natural gas from shale resources, making... in certain narrow circumstances not applicable here. \\8\\ Executive Order No. 13534, 75 FR...

  3. 76 FR 33746 - Freeport LNG Development, L.P.; Application for Blanket Authorization To Export Liquefied Natural...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-09

    ... Freeport LNG Development, L.P.; Application for Blanket Authorization To Export Liquefied Natural Gas... liquefied natural gas (LNG) that previously had been imported into the United States from foreign sources on... natural gas to any country that has the capacity to import LNG via ocean-going carrier, and with...

  4. A 1 kW-class multi-stage heat-driven thermoacoustic cryocooler system operating at liquefied natural gas temperature range

    NASA Astrophysics Data System (ADS)

    Zhang, L. M.; Hu, J. Y.; Wu, Z. H.; Luo, E. C.; Xu, J. Y.; Bi, T. J.

    2015-07-01

    This article introduces a multi-stage heat-driven thermoacoustic cryocooler capable of reaching cooling capacity about 1 kW at liquefied natural gas temperature range without any moving mechanical parts. The cooling system consists of an acoustically resonant double-acing traveling wave thermoacoustic heat engine and three identical pulse tube coolers. Unlike other traditional traveling wave thermoacoustic heat engines, the acoustically resonant double-acting thermoacoustic heat engine is a closed-loop configuration consists of three identical thermoacoustic conversion units. Each pulse tube cooler is bypass driven by one thermoacoustic heat engine unit. The device is acoustically completely symmetric and therefore "self-matching" for efficient traveling-wave thermoacoustic conversion. In the experiments, with 7 MPa helium gas as working gas, when the heating temperature reaches 918 K, total cooling capacity of 0.88 kW at 110 K is obtained with a resonant frequency of about 55 Hz. When the heating temperature is 903 K, a maximum total cooling capacity at 130 K of 1.20 kW is achieved, with a thermal-to-cold exergy efficiency of 8%. Compared to previously developed heat-driven thermoacoustic cryocoolers, this device has higher thermal efficiency and higher power density. It shows a good prospect of application in the field of natural gas liquefaction and recondensation.

  5. 77 FR 64964 - Cheniere Marketing, LLC; Application for Long-Term Authorization To Export Liquefied Natural Gas...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-24

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY... From Domestic Natural Gas Resources to Non-Free Trade Agreement Countries for a 22-Year Period AGENCY: Office of Fossil Energy, DOE. ACTION: Notice of application. SUMMARY: The Office of Fossil Energy (FE)...

  6. 77 FR 72840 - CE FLNG, LLC; Application for Long-Term Authorization To Export Liquefied Natural Gas Produced...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-06

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY CE FLNG... Natural Gas Resources to Non-Free Trade Agreement Countries for a 30-Year Period AGENCY: Office of Fossil Energy, DOE. ACTION: Notice of application. SUMMARY: The Office of Fossil Energy (FE) of the...

  7. 77 FR 72837 - Golden Pass Products LLC; Application for Long-Term Authorization To Export Liquefied Natural Gas...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-06

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Golden... From Domestic Natural Gas Resources to Non-Free Trade Agreement Countries for a 25-Year Period AGENCY: Office of Fossil Energy, DOE. ACTION: Notice of application. SUMMARY: The Office of Fossil Energy (FE)...

  8. Thermodynamic Processes Involving Liquefied Natural Gas at the LNG Receiving Terminals / Procesy termodynamiczne z wykorzystaniem skroplonego gazu ziemnego w terminalach odbiorczych LNG

    NASA Astrophysics Data System (ADS)

    Łaciak, Mariusz

    2013-06-01

    The increase in demand for natural gas in the world, cause that the production of liquefied natural gas (LNG) and in consequences its regasification becoming more common process related to its transportation. Liquefied gas is transported in the tanks at a temperature of about 111K at atmospheric pressure. The process required to convert LNG from a liquid to a gas phase for further pipeline transport, allows the use of exergy of LNG to various applications, including for electricity generation. Exergy analysis is a well known technique for analyzing irreversible losses in a separate process. It allows to specify the distribution, the source and size of the irreversible losses in energy systems, and thus provide guidelines for energy efficiency. Because both the LNG regasification and liquefaction of natural gas are energy intensive, exergy analysis process is essential for designing highly efficient cryogenic installations. Wzrost zapotrzebowania na gaz ziemny na świecie powoduje, że produkcja skroplonego gazu ziemnego (LNG), a w konsekwencji jego regazyfikacja, staje się coraz bardziej powszechnym procesem związanym z jego transportem. Skroplony gaz transportowany jest w zbiornikach w temperaturze około 111K pod ciśnieniem atmosferycznym. Przebieg procesu regazyfikacji niezbędny do zamiany LNG z fazy ciekłej w gazową dla dalszego transportu w sieci, umożliwia wykorzystanie egzergii LNG do różnych zastosowań, między innymi do produkcji energii elektrycznej. Analiza egzergii jest znaną techniką analizowania nieodwracalnych strat w wydzielonym procesie. Pozwala na określenie dystrybucji, źródła i wielkości nieodwracalnych strat w systemach energetycznych, a więc ustalić wytyczne dotyczące efektywnego zużycia energii. Ponieważ zarówno regazyfikacja LNG jak i skraplanie gazu ziemnego są energochłonne, proces analizy egzergii jest niezbędny do projektowania wysoce wydajnych instalacji kriogenicznych.

  9. Method and apparatus for pressurizing a liquefied gas

    SciTech Connect

    Bingham, Dennis N.

    2005-07-26

    Apparatus providing at least one thermoelectric device for pressurizing a liquefied gas container and methods employing same are disclosed. A thermoelectric device including a heating surface and a cooling surface is used for pressurizing a container by vaporizing liquefied gas within the container by transferring heat energy from a portion of the liquefied gas in contact with the cooling surface to another portion of the liquefied gas in contact with the heating surface of the thermoelectric device to convert some of the liquefied gas to a vapor state. Liquefied gas vapor and/or liquid phase may be supplied by disclosed apparatus and methods. The apparatus may also be used as a vapor pump or a liquid pump, or fluid pump. Methods of operation are also disclosed.

  10. 78 FR 75337 - Eos LNG LLC; Application for Long-Term Authorization To Export Liquefied Natural Gas Produced...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-11

    ...The Office of Fossil Energy (FE) of the Department of Energy (DOE) gives notice of receipt of an application (Application) filed on August 23, 2013, by Eos LNG LLC (Eos), requesting long-term, multi- contract authorization to export LNG produced from domestic sources in a volume equivalent to approximately 584 billion cubic feet per year (Bcf/yr) of natural gas, or 1.6 Bcf per day (Bcf/d). Eos......

  11. 78 FR 75339 - Barca LNG LLC; Application for Long-Term Authorization To Export Liquefied Natural Gas Produced...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-11

    ...The Office of Fossil Energy (FE) of the Department of Energy (DOE) gives notice of receipt of an application (Application) filed on August 23, 2013, by Barca LNG LLC (Barca), requesting long-term, multi- contract authorization to export LNG produced from domestic sources in a volume equivalent to approximately 584 billion cubic feet per year (Bcf/yr) of natural gas, or 1.6 Bcf per day (Bcf/d).......

  12. 46 CFR 188.10-43 - Liquefied flammable gas.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Liquefied flammable gas. 188.10-43 Section 188.10-43 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OCEANOGRAPHIC RESEARCH VESSELS GENERAL PROVISIONS Definition of Terms Used in This Subchapter § 188.10-43 Liquefied flammable gas. This term means any flammable gas having a Reid...

  13. 46 CFR 188.10-41 - Liquefied compressed gas.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Liquefied compressed gas. 188.10-41 Section 188.10-41 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OCEANOGRAPHIC RESEARCH VESSELS GENERAL PROVISIONS Definition of Terms Used in This Subchapter § 188.10-41 Liquefied compressed gas. This term means a gas which, under the...

  14. 46 CFR 188.10-41 - Liquefied compressed gas.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Liquefied compressed gas. 188.10-41 Section 188.10-41... PROVISIONS Definition of Terms Used in This Subchapter § 188.10-41 Liquefied compressed gas. This term means a gas which, under the charged pressure, is partially liquid at a temperature of 70 °F....

  15. 46 CFR 188.10-41 - Liquefied compressed gas.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Liquefied compressed gas. 188.10-41 Section 188.10-41... PROVISIONS Definition of Terms Used in This Subchapter § 188.10-41 Liquefied compressed gas. This term means a gas which, under the charged pressure, is partially liquid at a temperature of 70 °F....

  16. 46 CFR 188.10-41 - Liquefied compressed gas.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Liquefied compressed gas. 188.10-41 Section 188.10-41... PROVISIONS Definition of Terms Used in This Subchapter § 188.10-41 Liquefied compressed gas. This term means a gas which, under the charged pressure, is partially liquid at a temperature of 70 °F....

  17. 40 CFR 1065.720 - Liquefied petroleum gas.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 34 2013-07-01 2013-07-01 false Liquefied petroleum gas. 1065.720... CONTROLS ENGINE-TESTING PROCEDURES Engine Fluids, Test Fuels, Analytical Gases and Other Calibration Standards § 1065.720 Liquefied petroleum gas. (a) Except as specified in paragraph (b) of this...

  18. 40 CFR 1065.720 - Liquefied petroleum gas.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false Liquefied petroleum gas. 1065.720... CONTROLS ENGINE-TESTING PROCEDURES Engine Fluids, Test Fuels, Analytical Gases and Other Calibration Standards § 1065.720 Liquefied petroleum gas. (a) Except as specified in paragraph (b) of this...

  19. A conceptual demonstration of freeze desalination-membrane distillation (FD-MD) hybrid desalination process utilizing liquefied natural gas (LNG) cold energy.

    PubMed

    Wang, Peng; Chung, Tai-Shung

    2012-09-01

    The severe global water scarcity and record-high fossil oil price have greatly stimulated the research interests on new desalination technologies which can be driven by renewable energy or waste energy. In this study, a hybrid desalination process comprising freeze desalination and membrane distillation (FD-MD) processes was developed and explored in an attempt to utilize the waste cold energy released from re-gasification of liquefied natural gas (LNG). The concept of this technology was demonstrated using indirect-contact freeze desalination (ICFD) and direct-contact membrane distillation (DCMD) configurations. By optimizing the ICFD operation parameters, namely, the usage of nucleate seeds, operation duration and feed concentration, high quality drinkable water with a low salinity ∼0.144 g/L was produced in the ICFD process. At the same time, using the optimized hollow fiber module length and packing density in the DCMD process, ultra pure water with a low salinity of 0.062 g/L was attained at a condition of high energy efficiency (EE). Overall, by combining FD and MD processes and adopting the optimized operation parameters, the hybrid FD-MD system has been successfully demonstrated. A high total water recovery of 71.5% was achieved, and the water quality obtained met the standard for drinkable water. In addition, with results from specific energy calculation, it was proven that the hybrid process is an energy-saving process and utilization of LNG cold energy could greatly reduce the total energy consumption. PMID:22682269

  20. The design of an optical sensor arrangement for the detection of oil contamination in an adhesively bonded structure of a liquefied natural gas (LNG) ship

    NASA Astrophysics Data System (ADS)

    Kim, Bu Gi; Lee, Dai Gil

    2009-06-01

    Liquefied natural gas (LNG) has been widely used as a substitute fuel for commercial purposes. It is transported mainly by LNG ships which have primary and secondary leakage barriers. The former is composed of welded thin stainless steel or invar plates, while the latter is composed of adhesively bonded glass composite or aluminum foil sheets. The role of the secondary barrier is to maintain fluid tightness when the primary barrier fails during the transport of LNG. The tightness of the secondary barrier is dependent on the wetting characteristics between the adhesive and adherend of the bonded structure during bonding operation, which depends much on the contamination on the adherend surface. Therefore, in this work, an optical measuring device of oil contamination on the aluminum surface for the secondary barrier was developed. A transparent oil was used as the contaminant and its effect on the bonding strength was investigated. From the experiments, it has been found that the developed measuring device for oil contamination can be used to detect oil contamination on a large bonding area of the secondary barrier in ship building yards.

  1. 77 FR 70174 - Waterway Suitability Assessment for Expansion of Liquefied Gas Terminals; Houston and Texas City, TX

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-23

    ..., 2008, issue of the Federal Register (73 FR 3316). Public Meeting We do not now plan to hold a public... SECURITY Coast Guard Waterway Suitability Assessment for Expansion of Liquefied Gas Terminals; Houston and... modify marine terminal operations in an existing facility handling Liquefied Natural Gas (LNG)...

  2. 29 CFR 779.360 - Classification of liquefied-petroleum-gas sales.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 3 2011-07-01 2011-07-01 false Classification of liquefied-petroleum-gas sales. 779.360... Establishments Liquefied-Petroleum-Gas and Fuel Oil Dealers § 779.360 Classification of liquefied-petroleum-gas... ultimate consumer of liquefied-petroleum-gas, whether delivered in portable cylinders or in bulk to...

  3. 29 CFR 779.360 - Classification of liquefied-petroleum-gas sales.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 3 2012-07-01 2012-07-01 false Classification of liquefied-petroleum-gas sales. 779.360... Establishments Liquefied-Petroleum-Gas and Fuel Oil Dealers § 779.360 Classification of liquefied-petroleum-gas... ultimate consumer of liquefied-petroleum-gas, whether delivered in portable cylinders or in bulk to...

  4. 29 CFR 779.360 - Classification of liquefied-petroleum-gas sales.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 3 2014-07-01 2014-07-01 false Classification of liquefied-petroleum-gas sales. 779.360... Establishments Liquefied-Petroleum-Gas and Fuel Oil Dealers § 779.360 Classification of liquefied-petroleum-gas... ultimate consumer of liquefied-petroleum-gas, whether delivered in portable cylinders or in bulk to...

  5. 29 CFR 779.360 - Classification of liquefied-petroleum-gas sales.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 3 2013-07-01 2013-07-01 false Classification of liquefied-petroleum-gas sales. 779.360... Establishments Liquefied-Petroleum-Gas and Fuel Oil Dealers § 779.360 Classification of liquefied-petroleum-gas... ultimate consumer of liquefied-petroleum-gas, whether delivered in portable cylinders or in bulk to...

  6. 29 CFR 779.360 - Classification of liquefied-petroleum-gas sales.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 3 2010-07-01 2010-07-01 false Classification of liquefied-petroleum-gas sales. 779.360... Establishments Liquefied-Petroleum-Gas and Fuel Oil Dealers § 779.360 Classification of liquefied-petroleum-gas... ultimate consumer of liquefied-petroleum-gas, whether delivered in portable cylinders or in bulk to...

  7. 75 FR 62510 - Chevron U.S.A. Inc.; Application for Blanket Authorization To Export Liquefied Natural Gas

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-12

    ... Fossil Energy, DOE. ACTION: Notice of application. SUMMARY: The Office of Fossil Energy (FE) of the... of Energy (FE-34), Office of Oil and Gas Global Security and Supply, Office of Fossil Energy... Global Security and Supply, Office of Fossil Energy, Forrestal Building, Room 3E-042, 1000...

  8. Liquefied Natural Gas Storage of Variable Composition / Magazynowanie Skroplonego Gazu Ziemnego O Zmiennym Składzie

    NASA Astrophysics Data System (ADS)

    Łaciak, Mariusz

    2015-03-01

    Thanks to the increasing diversification of LNG supply sources, being a result of the growing number of LNG liquefaction installations over the World, increase of short-term trade contracts and general trend to globally liberalize gas markets, reception terminals have to cope with the broad range of qualitatively diversified LNG deliveries from various sources. Different LNG deliveries potentially have different density caused by different gas composition. Although the LNG composition depends on LNG source, it mainly consists of methane, ethane, propane, butane and trace nitrogen. When a new supply of LNG is transported to the tank, the LNG composition and temperature in the tank can be different from LNG as delivered. This may lead to the liquid stratification in the tank, and consequently the rollover. As a result, LNG rapidly evaporates and the pressure in the tank increases. More and more restrictive safety regulations require fuller understanding of the formation and evolution of layers. The paper is focused on the analysis of liquid stratification in the tank which may take place when storing LNG, and which process leads to the rapid evaporation of considerable quantities of LNG. The aim was to attempt modeling of the process of liquid stratification in an LNG tank. The paper is closed with the results of modelling. Dzięki rosnącej dywersyfikacji źródeł dostaw LNG, spowodowanej zwiększającą się liczbą instalacji skraplania gazu na całym świecie, wzrostem ilości kontraktów krótkoterminowych w handlu i ogólnej tendencji do globalnej liberalizacja rynków gazu, terminale do odbioru muszą radzić sobie z coraz większą gamą różnych jakościowo dostaw LNG z różnych źródeł. Różne dostawy LNG mają potencjalnie inną gęstość dzięki różnym składom gazu. Chociaż kompozycja LNG zależy od źródła, to przede wszystkim składa się z metanu, etanu, propanu, butanu i w śladowych ilościach z azotu. Gdy nowa dostawa LNG jest doprowadzana do zbiornika, skład i temperatura LNG już w zbiorniku może być inny niż dostarczanego. Może to prowadzić do rozwarstwienia cieczy w zbiorniku, a w konsekwencji wystąpienia zjawiska znanego jako "rollover". W wyniku tego zjawiska następuje gwałtowne odparowanie LNG i nagły wzrost ciśnienia w zbiorniku. Coraz bardziej restrykcyjne przepisy dotyczące bezpieczeństwa wymagają pełniejszego zrozumienia zjawiska tworzenia i ewolucji warstw. W artykule przeprowadzono analizę procesu rozwarstwienia cieczy w zbiorniku, mogącego wystąpić podczas magazynowania skroplonego gazu ziemnego, a prowadzącego do gwałtownego odparowania znacznych ilości LNG. Celem była próba modelowania procesu powstawania rozwarstwienia się cieczy w zbiorniku LNG. Przedstawione zostały wyniki modelowania tego zjawiska

  9. Liquefied natural gas (LNG) safety

    NASA Technical Reports Server (NTRS)

    Ordin, P. M.

    1977-01-01

    Bibliography, assembled from computer search of NASA Aerospace Safety Data Bank, including title of report, author, abstract, source, description of figures, key references, and key words or subject terms. Publication is indexed by key subjects and by authors. Items are relevant to design engineers and safety specialists.

  10. 29 CFR 1926.153 - Liquefied petroleum gas (LP-Gas).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... published in 49 CFR Part 178, Shipping Container Specifications. (3) Definition. As used in this section... 29 Labor 8 2010-07-01 2010-07-01 false Liquefied petroleum gas (LP-Gas). 1926.153 Section 1926.153... § 1926.153 Liquefied petroleum gas (LP-Gas). (a) Approval of equipment and systems. (1) Each system...

  11. 29 CFR 1926.153 - Liquefied petroleum gas (LP-Gas).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... published in 49 CFR part 178, Shipping Container Specifications. (3) Definition. As used in this section... 29 Labor 8 2013-07-01 2013-07-01 false Liquefied petroleum gas (LP-Gas). 1926.153 Section 1926.153... § 1926.153 Liquefied petroleum gas (LP-Gas). (a) Approval of equipment and systems. (1) Each system...

  12. 29 CFR 1926.153 - Liquefied petroleum gas (LP-Gas).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... published in 49 CFR part 178, Shipping Container Specifications. (3) Definition. As used in this section... 29 Labor 8 2011-07-01 2011-07-01 false Liquefied petroleum gas (LP-Gas). 1926.153 Section 1926.153... § 1926.153 Liquefied petroleum gas (LP-Gas). (a) Approval of equipment and systems. (1) Each system...

  13. 29 CFR 1926.153 - Liquefied petroleum gas (LP-Gas).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... published in 49 CFR part 178, Shipping Container Specifications. (3) Definition. As used in this section... 29 Labor 8 2014-07-01 2014-07-01 false Liquefied petroleum gas (LP-Gas). 1926.153 Section 1926.153... § 1926.153 Liquefied petroleum gas (LP-Gas). (a) Approval of equipment and systems. (1) Each system...

  14. 29 CFR 1926.153 - Liquefied petroleum gas (LP-Gas).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... published in 49 CFR part 178, Shipping Container Specifications. (3) Definition. As used in this section... 29 Labor 8 2012-07-01 2012-07-01 false Liquefied petroleum gas (LP-Gas). 1926.153 Section 1926.153... § 1926.153 Liquefied petroleum gas (LP-Gas). (a) Approval of equipment and systems. (1) Each system...

  15. 49 CFR 393.69 - Liquefied petroleum gas systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... propulsion of the motor vehicle must conform to Division IV of the 1969 edition of the Standards. (4) A fuel... system that uses liquefied petroleum gas as a fuel for the operation of a motor vehicle or for the operation of auxiliary equipment installed on, or used in connection with, a motor vehicle must conform...

  16. 49 CFR 393.69 - Liquefied petroleum gas systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... propulsion of the motor vehicle must conform to Division IV of the 1969 edition of the Standards. (4) A fuel... system that uses liquefied petroleum gas as a fuel for the operation of a motor vehicle or for the operation of auxiliary equipment installed on, or used in connection with, a motor vehicle must conform...

  17. 49 CFR 393.69 - Liquefied petroleum gas systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... propulsion of the motor vehicle must conform to Division IV of the 1969 edition of the Standards. (4) A fuel... system that uses liquefied petroleum gas as a fuel for the operation of a motor vehicle or for the operation of auxiliary equipment installed on, or used in connection with, a motor vehicle must conform...

  18. 30 CFR 57.4463 - Liquefied petroleum gas use underground.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Liquefied petroleum gas use underground. 57.4463 Section 57.4463 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Fire Prevention and Control Flammable...

  19. 18 CFR 260.9 - Reports by natural gas pipeline companies on service interruptions and damage to facilities.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... jurisdictional natural gas facilities other than liquefied natural gas facilities caused by a hurricane... reason other than hurricane, earthquake or other natural disaster or terrorist activity, the natural...

  20. Exposure of a liquefied gas container to an external fire.

    PubMed

    Raj, Phani K

    2005-06-30

    In liquefied gas, bulk-storage facilities and plants, the separation distances between storage tanks and between a tank and a line of adjoining property that can be built are governed by local regulations and/or codes (e.g. National Fire Protection Association (NFPA) 58, 2004). Separation distance requirements have been in the NFPA 58 Code for over 60 years; however, no scientific foundations (either theoretical or experimental) are available for the specified distances. Even though the liquefied petroleum gas (LPG) industry has operated safely over the years, there is a question as to whether the code-specified distances provide sufficient safety to LPG-storage tanks, when they are exposed to large external fires. A radiation heat-transfer-based model is presented in this paper. The temporal variation of the vapor-wetted tank-wall temperature is calculated when exposed to thermal radiation from an external, non-impinging, large, 30.5 m (100 ft) diameter, highly radiative, hydrocarbon fuel (pool) fire located at a specified distance. Structural steel wall of a pressurized, liquefied gas container (such as the ASME LP-Gas tank) begins to lose its strength, when the wall temperature approaches a critical temperature, 810 K (1000 degrees F). LP-Gas tank walls reaching close to this temperature will be a cause for major concern because of increased potential for tank failure, which could result in catastrophic consequences. Results from the model for exposure of different size ASME (LP-Gas) containers to a hydrocarbon pool fire of 30.5 m (100 ft) in diameter, located with its base edge at the separation distances specified by NFPA 58 [NFPA 58, Liquefied Petroleum Gas Code, Table 6.3.1, 2004 ed., National Fire Protection Association, Quincy, MA, 2004] indicate that the vapor-wetted wall temperature of the containers never reach the critical temperature under common wind conditions (0, 5 and 10 m/s), with the flame tilting towards the tank. This indicates that the separation distances specified in the code are adequate for non-impingement type of fires. The model can be used to test the efficacy of other similar codes and regulations for other materials. PMID:15908108

  1. 46 CFR 30.10-39 - Liquefied flammable gas-TB/ALL.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 1 2014-10-01 2014-10-01 false Liquefied flammable gas-TB/ALL. 30.10-39 Section 30.10-39 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS GENERAL PROVISIONS Definitions § 30.10-39 Liquefied flammable gas—TB/ALL. The term liquefied flammable gas means any flammable gas having a Reid vapor pressure exceeding 40...

  2. 46 CFR 30.10-39 - Liquefied flammable gas-TB/ALL.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Liquefied flammable gas-TB/ALL. 30.10-39 Section 30.10-39 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS GENERAL PROVISIONS Definitions § 30.10-39 Liquefied flammable gas—TB/ALL. The term liquefied flammable gas means any flammable gas having a Reid vapor pressure exceeding 40...

  3. 46 CFR 30.10-39 - Liquefied flammable gas-TB/ALL.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 1 2012-10-01 2012-10-01 false Liquefied flammable gas-TB/ALL. 30.10-39 Section 30.10-39 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS GENERAL PROVISIONS Definitions § 30.10-39 Liquefied flammable gas—TB/ALL. The term liquefied flammable gas means any flammable gas having a Reid vapor pressure exceeding 40...

  4. 46 CFR 30.10-39 - Liquefied flammable gas-TB/ALL.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 1 2013-10-01 2013-10-01 false Liquefied flammable gas-TB/ALL. 30.10-39 Section 30.10-39 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS GENERAL PROVISIONS Definitions § 30.10-39 Liquefied flammable gas—TB/ALL. The term liquefied flammable gas means any flammable gas having a Reid vapor pressure exceeding 40...

  5. U.S. Natural Gas Markets: Mid-Term Prospects for Natural Gas Supply

    EIA Publications

    2001-01-01

    This service report describes the recent behavior of natural gas markets with respect to natural gas prices, their potential future behavior, the potential future supply contribution of liquefied natural gas and increased access to federally restricted resources, and the need for improved natural gas data.

  6. 30 CFR 75.1106-3 - Storage of liquefied and nonliquefied compressed gas cylinders; requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...; requirements. (a) Liquefied and nonliquefied compressed gas cylinders stored in an underground coal mine shall... coal mine. (c) When not in use, the valves of all liquefied and nonliquefied compressed gas cylinders... compressed gas cylinders; requirements. 75.1106-3 Section 75.1106-3 Mineral Resources MINE SAFETY AND...

  7. 30 CFR 75.1106-3 - Storage of liquefied and nonliquefied compressed gas cylinders; requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...; requirements. (a) Liquefied and nonliquefied compressed gas cylinders stored in an underground coal mine shall... coal mine. (c) When not in use, the valves of all liquefied and nonliquefied compressed gas cylinders... compressed gas cylinders; requirements. 75.1106-3 Section 75.1106-3 Mineral Resources MINE SAFETY AND...

  8. 30 CFR 75.1106-3 - Storage of liquefied and nonliquefied compressed gas cylinders; requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...; requirements. (a) Liquefied and nonliquefied compressed gas cylinders stored in an underground coal mine shall... coal mine. (c) When not in use, the valves of all liquefied and nonliquefied compressed gas cylinders... compressed gas cylinders; requirements. 75.1106-3 Section 75.1106-3 Mineral Resources MINE SAFETY AND...

  9. 30 CFR 75.1106-3 - Storage of liquefied and nonliquefied compressed gas cylinders; requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...; requirements. (a) Liquefied and nonliquefied compressed gas cylinders stored in an underground coal mine shall... coal mine. (c) When not in use, the valves of all liquefied and nonliquefied compressed gas cylinders... compressed gas cylinders; requirements. 75.1106-3 Section 75.1106-3 Mineral Resources MINE SAFETY AND...

  10. 30 CFR 75.1106-3 - Storage of liquefied and nonliquefied compressed gas cylinders; requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...; requirements. (a) Liquefied and nonliquefied compressed gas cylinders stored in an underground coal mine shall... coal mine. (c) When not in use, the valves of all liquefied and nonliquefied compressed gas cylinders... compressed gas cylinders; requirements. 75.1106-3 Section 75.1106-3 Mineral Resources MINE SAFETY AND...

  11. 46 CFR 111.105-32 - Bulk liquefied flammable gas and ammonia carriers.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Bulk liquefied flammable gas and ammonia carriers. 111... gas and ammonia carriers. (a) Each vessel that carries bulk liquefied flammable gases or ammonia as a.... (2) The term “gas-dangerous” does not include the weather deck of an ammonia carrier. (c)...

  12. 46 CFR 111.105-32 - Bulk liquefied flammable gas and ammonia carriers.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Bulk liquefied flammable gas and ammonia carriers. 111... gas and ammonia carriers. (a) Each vessel that carries bulk liquefied flammable gases or ammonia as a.... (2) The term “gas-dangerous” does not include the weather deck of an ammonia carrier. (c)...

  13. 46 CFR 111.105-32 - Bulk liquefied flammable gas and ammonia carriers.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Bulk liquefied flammable gas and ammonia carriers. 111... gas and ammonia carriers. (a) Each vessel that carries bulk liquefied flammable gases or ammonia as a.... (2) The term “gas-dangerous” does not include the weather deck of an ammonia carrier. (c)...

  14. 46 CFR 111.105-32 - Bulk liquefied flammable gas and ammonia carriers.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Bulk liquefied flammable gas and ammonia carriers. 111... gas and ammonia carriers. (a) Each vessel that carries bulk liquefied flammable gases or ammonia as a.... (2) The term “gas-dangerous” does not include the weather deck of an ammonia carrier. (c)...

  15. 46 CFR 111.105-32 - Bulk liquefied flammable gas and ammonia carriers.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Bulk liquefied flammable gas and ammonia carriers. 111... gas and ammonia carriers. (a) Each vessel that carries bulk liquefied flammable gases or ammonia as a.... (2) The term “gas-dangerous” does not include the weather deck of an ammonia carrier. (c)...

  16. The unsuspected killer: Liquefied petroleum gas overexposure in South Africa.

    PubMed

    Sampson, L W J; van der Schyff, N; Cupido, C

    2015-02-01

    A 21-year-old woman with no past medical history of note was found unconscious together with five of her family members after prolonged exposure to liquefied petroleum gas. She was admitted to the intensive care unit at Victoria Hospital, Wynberg, Cape Town, South Africa, following resuscitation for pulseless electrical activity. On examination the following was found: coma without focal neurology; shock requiring fluid resuscitation and adrenaline; probable pneumonitis or aspiration pneumonia; acute rhabdomyolysis with severe metabolic acidosis; and raised serum K+. A carboxyhaemoglobin test was unable to confirm or exclude carbon monoxide poisoning. PMID:26242505

  17. 46 CFR 58.16-7 - Use of liquefied petroleum gas.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... requirements of 46 CFR 25.45-2 or 184.05, as applicable. (c) Systems using liquefied petroleum gas for cooking... 46 Shipping 2 2014-10-01 2014-10-01 false Use of liquefied petroleum gas. 58.16-7 Section 58.16-7... MACHINERY AND RELATED SYSTEMS Liquefied Petroleum Gases for Cooking and Heating § 58.16-7 Use of...

  18. 46 CFR 58.16-7 - Use of liquefied petroleum gas.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... requirements of 46 CFR 25.45-2 or 184.05, as applicable. (c) Systems using liquefied petroleum gas for cooking... 46 Shipping 2 2012-10-01 2012-10-01 false Use of liquefied petroleum gas. 58.16-7 Section 58.16-7... MACHINERY AND RELATED SYSTEMS Liquefied Petroleum Gases for Cooking and Heating § 58.16-7 Use of...

  19. 46 CFR 58.16-7 - Use of liquefied petroleum gas.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... requirements of 46 CFR 25.45-2 or 184.05, as applicable. (c) Systems using liquefied petroleum gas for cooking... 46 Shipping 2 2010-10-01 2010-10-01 false Use of liquefied petroleum gas. 58.16-7 Section 58.16-7... MACHINERY AND RELATED SYSTEMS Liquefied Petroleum Gases for Cooking and Heating § 58.16-7 Use of...

  20. 46 CFR 58.16-7 - Use of liquefied petroleum gas.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... requirements of 46 CFR 25.45-2 or 184.05, as applicable. (c) Systems using liquefied petroleum gas for cooking... 46 Shipping 2 2013-10-01 2013-10-01 false Use of liquefied petroleum gas. 58.16-7 Section 58.16-7... MACHINERY AND RELATED SYSTEMS Liquefied Petroleum Gases for Cooking and Heating § 58.16-7 Use of...

  1. 46 CFR 58.16-7 - Use of liquefied petroleum gas.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... requirements of 46 CFR 25.45-2 or 184.05, as applicable. (c) Systems using liquefied petroleum gas for cooking... 46 Shipping 2 2011-10-01 2011-10-01 false Use of liquefied petroleum gas. 58.16-7 Section 58.16-7... MACHINERY AND RELATED SYSTEMS Liquefied Petroleum Gases for Cooking and Heating § 58.16-7 Use of...

  2. Mathematical simulation of the process of condensing natural gas

    NASA Astrophysics Data System (ADS)

    Tastandieva, G. M.

    2015-01-01

    Presents a two-dimensional unsteady model of heat transfer in terms of condensation of natural gas at low temperatures. Performed calculations of the process heat and mass transfer of liquefied natural gas (LNG) storage tanks of cylindrical shape. The influence of model parameters on the nature of heat transfer. Defined temperature regimes eliminate evaporation by cooling liquefied natural gas. The obtained dependence of the mass flow rate of vapor condensation gas temperature. Identified the possibility of regulating the process of "cooling down" liquefied natural gas in terms of its partial evaporation with low cost energy.

  3. 46 CFR 31.10-18a - Liquefied gas vessels: additional firefighting equipment inspections.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Liquefied gas vessels: additional firefighting equipment inspections. 31.10-18a Section 31.10-18a Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS INSPECTION AND CERTIFICATION Inspections § 31.10-18a Liquefied gas vessels: additional firefighting equipment inspections. (a) Once...

  4. Analysis of Restricted Natural Gas Supply Cases

    EIA Publications

    2004-01-01

    The four cases examined in this study have progressively greater impacts on overall natural gas consumption, prices, and supply. Compared to the Annual Energy Outlook 2004 reference case, the no Alaska pipeline case has the least impact; the low liquefied natural gas case has more impact; the low unconventional gas recovery case has even more impact; and the combined case has the most impact.

  5. 42 CFR 84.81 - Compressed breathing gas and liquefied breathing gas containers; minimum requirements.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... the container. (d) Compressed breathing gas contained valves or a separate charging system or adapter... accordance with 5 U.S.C. 552(a) and 1 CFR part 51. Copies may be obtained from American National Standards... 42 Public Health 1 2013-10-01 2013-10-01 false Compressed breathing gas and liquefied...

  6. 42 CFR 84.81 - Compressed breathing gas and liquefied breathing gas containers; minimum requirements.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... the container. (d) Compressed breathing gas contained valves or a separate charging system or adapter... accordance with 5 U.S.C. 552(a) and 1 CFR part 51. Copies may be obtained from American National Standards... 42 Public Health 1 2011-10-01 2011-10-01 false Compressed breathing gas and liquefied...

  7. 42 CFR 84.81 - Compressed breathing gas and liquefied breathing gas containers; minimum requirements.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... the container. (d) Compressed breathing gas contained valves or a separate charging system or adapter... accordance with 5 U.S.C. 552(a) and 1 CFR part 51. Copies may be obtained from American National Standards... 42 Public Health 1 2014-10-01 2014-10-01 false Compressed breathing gas and liquefied...

  8. 42 CFR 84.81 - Compressed breathing gas and liquefied breathing gas containers; minimum requirements.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... the container. (d) Compressed breathing gas contained valves or a separate charging system or adapter... accordance with 5 U.S.C. 552(a) and 1 CFR part 51. Copies may be obtained from American National Standards... 42 Public Health 1 2012-10-01 2012-10-01 false Compressed breathing gas and liquefied...

  9. 40 CFR 80.32 - Controls applicable to liquefied petroleum gas retailers and wholesale purchaser-consumers.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... petroleum gas retailers and wholesale purchaser-consumers. 80.32 Section 80.32 Protection of Environment... Controls and Prohibitions § 80.32 Controls applicable to liquefied petroleum gas retailers and wholesale...,660 gallons of liquefied petroleum gas per month shall equip each pump from which liquefied...

  10. 40 CFR 80.32 - Controls applicable to liquefied petroleum gas retailers and wholesale purchaser-consumers.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... petroleum gas retailers and wholesale purchaser-consumers. 80.32 Section 80.32 Protection of Environment... Controls and Prohibitions § 80.32 Controls applicable to liquefied petroleum gas retailers and wholesale...,660 gallons of liquefied petroleum gas per month shall equip each pump from which liquefied...

  11. 40 CFR 80.32 - Controls applicable to liquefied petroleum gas retailers and wholesale purchaser-consumers.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... petroleum gas retailers and wholesale purchaser-consumers. 80.32 Section 80.32 Protection of Environment... Controls and Prohibitions § 80.32 Controls applicable to liquefied petroleum gas retailers and wholesale...,660 gallons of liquefied petroleum gas per month shall equip each pump from which liquefied...

  12. 40 CFR 80.32 - Controls applicable to liquefied petroleum gas retailers and wholesale purchaser-consumers.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... petroleum gas retailers and wholesale purchaser-consumers. 80.32 Section 80.32 Protection of Environment... Controls and Prohibitions § 80.32 Controls applicable to liquefied petroleum gas retailers and wholesale...,660 gallons of liquefied petroleum gas per month shall equip each pump from which liquefied...

  13. 40 CFR 80.32 - Controls applicable to liquefied petroleum gas retailers and wholesale purchaser-consumers.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... petroleum gas retailers and wholesale purchaser-consumers. 80.32 Section 80.32 Protection of Environment... Controls and Prohibitions § 80.32 Controls applicable to liquefied petroleum gas retailers and wholesale...,660 gallons of liquefied petroleum gas per month shall equip each pump from which liquefied...

  14. 76 FR 28326 - Pipeline Safety: National Pipeline Mapping System Data Submissions and Submission Dates for Gas...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-17

    ... Systems and Liquefied Natural Gas Annual Reports AGENCY: Pipeline and Hazardous Materials Safety... operators of gas transmission and gathering systems and Liquefied Natural Gas (LNG) facilities that they... to Pipeline and Liquefied Natural Gas Reporting Requirements'' (One Rule). This rulemaking...

  15. Thermodynamic analysis on the insulation of liquefied gas containers

    SciTech Connect

    Bisio, G.

    1996-12-31

    Beginning from Prigogine`s and Haken`s statements on the possibility of keeping an order (i.e., an exergy level) by dissipative phenomena, in previous papers, for several systems, the exergy level and the entropy production rate necessary for reaching and supporting such a level at a steady state were examined. In this paper, the above concepts are utilized to obtain a general rule on the liquefied gas containers insulation in the temperature field between sulfur dioxide boiling and helium boiling (at atmospheric pressure). To this purpose, both the entropy production in the insulation and that necessary to return back to the environment temperature the thermal energy flowing through the insulation, by a suitable heat pump cycle, are examined.

  16. Development of a Liquefied Noble Gas Time Projection Chamber

    NASA Astrophysics Data System (ADS)

    Lesser, Ezra; White, Aaron; Aidala, Christine

    2015-10-01

    Liquefied noble gas detectors have been used for various applications in recent years for detecting neutrinos, neutrons, photons, and potentially dark matter. The University of Michigan is developing a detector with liquid argon to produce scintillation light and ionization electrons. Our data collection method will allow high-resolution energy measurement and spatial reconstruction of detected particles by using multi-pixel silicon photomultipliers (SiPM) and a cylindrical time projection chamber (TPC) with a multi-wire endplate. We have already designed a liquid argon condenser and purification unit surrounded by an insulating vacuum, constructed circuitry for temperature and pressure sensors, and created software to obtain high-accuracy sensor readouts. The status of detector development will be presented. Funded through the Michigan Memorial Phoenix Project.

  17. 33 CFR 165.1151 - Security Zones; liquefied hazardous gas tank vessels, San Pedro Bay, California.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Security Zones; liquefied hazardous gas tank vessels, San Pedro Bay, California. 165.1151 Section 165.1151 Navigation and Navigable... Bay, California. (a) Definition. “Liquefied Hazardous Gas” as used in this section means a...

  18. 78 FR 26799 - Waterway Suitability Assessment for Expansion of Liquefied Gas Terminals; Beaumont, TX

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-08

    ... the January 17, 2008, issue of the Federal Register (73 FR 3316). Public meeting: We do not now plan... SECURITY Coast Guard Waterway Suitability Assessment for Expansion of Liquefied Gas Terminals; Beaumont, TX... construction to expand or modify marine terminal operations in an existing facility handling Liquefied...

  19. 42 CFR 84.81 - Compressed breathing gas and liquefied breathing gas containers; minimum requirements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... accordance with 5 U.S.C. 552(a) and 1 CFR part 51. Copies may be obtained from American National Standards... 42 Public Health 1 2010-10-01 2010-10-01 false Compressed breathing gas and liquefied breathing... APPROVAL OF RESPIRATORY PROTECTIVE DEVICES Self-Contained Breathing Apparatus § 84.81 Compressed...

  20. Method and apparatus for recovering natural gas in a mine

    SciTech Connect

    Hvizdos, L.J.

    1981-06-09

    Method and apparatus are disclosed for the recovery and removal of natural gas from a mine by liquefying and collecting the gas within the mine, and then transporting the liquified gas to the surface in a mobile tank. Natural gas is withdrawn from bore holes in a coal mine and liquefied using liquid nitrogen. A unique apparatus permits both the liquid nitrogen and the liquefied natural gas to be contained within a same insulated tank, enhancing the portable characteristics. Liquid nitrogen and its vapor are used to cool the natural gas so as to separate water and CO2. Means are disclosed for controlling the cooling by the cryogenic liquid by regulating the venting flow rate of its vapor in response to the pressure of the liquefied natural gas. The disclosed system eliminates the need for extensive piping and on-site pumping associated with conventional degasification processes.

  1. Apparatus for recovering natural gas in a mine

    SciTech Connect

    Hvizdos, L.J.

    1982-03-23

    Method and apparatus are disclosed for the recovery and removal of natural gas from a mine by liquefying and collecting the gas within the mine, and then transporting the liquified gas to the surface in a mobile tank. Natural gas is withdrawn from bore holes in a coal mine and liquefied using liquid nitrogen. A unique apparatus permits both the liquid nitrogen and the liquefied natural gas to be contained within a same insulated tank, enhancing the portable characteristics. Liquid nitrogen and its vapor are used to cool the natural gas so as to separate water and co2. Means are disclosed for controlling the cooling by the cryogenic liquid by regulating the venting flow rate of its vapor in response to the pressure of the liquefied natural gas. The disclosed system eliminates the need for extensive piping and on-site pumping associated with conventional degasification processes.

  2. 49 CFR 192.1015 - What must a master meter or small liquefied petroleum gas (LPG) operator do to implement this...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ..., DEPARTMENT OF TRANSPORTATION (CONTINUED) PIPELINE SAFETY TRANSPORTATION OF NATURAL AND OTHER GAS BY PIPELINE... a master meter or small liquefied petroleum gas (LPG) operator do to implement this subpart? (a... petroleum gas (LPG) operator do to implement this subpart? 192.1015 Section 192.1015 Transportation...

  3. 78 FR 36014 - Deepwater Port License Application: Liberty Natural Gas, LLC, Port Ambrose Deepwater Port

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-14

    ... an application for the licensing of a liquefied natural gas deepwater port and that the application..., and operate a liquefied natural gas (LNG) deepwater port, known as Port Ambrose, located in the New... Maritime Administration Deepwater Port License Application: Liberty Natural Gas, LLC, Port...

  4. Emissions of liquefied petroleum gas (LPG) from motor vehicles

    NASA Astrophysics Data System (ADS)

    Lai, Cheng-Hsun; Chang, Chih-Chung; Wang, Chieh-Heng; Shao, Min; Zhang, Yuanhang; Wang, Jia-Lin

    Continuous on-site measurements of 50 speciated volatile organic compounds (VOCs) were conducted in downtown Guangzhou to characterize the sources and concentration profiles of ambient VOCs. The synchronicity in diurnal variation between the VOCs and NO suggests that traffic emissions were responsible for the observed VOCs in downtown Guangzhou. It was found that the three major constituent species of liquefied petroleum gas (LPG), i.e., propane, iso-butane, and n-butane, together termed LPG alkanes, contributed, on average, 24% of the total VOCs (TVOCs). Their high correlation and synchronized diurnal variations between NO and the LPG alkanes suggest that their origin lies in LPG fueled car exhaust in Guangzhou. LPG buses and taxis were likely to be responsible for the bulk of ambient LPG species. Using propane and 3-methyl pentane (3MC5A) as the indicators for the LPG and gasoline emissions, respectively, the emissions of the LPG fleet were found to increase more than those of the gasoline fleet during the morning and evening rush hours, as well the noontime break in downtown Guangzhou. Although LPG alkanes account for 24% of the TVOC, their contribution to the total ozone forming potential (OFP) is only about 7%. Ethylene and propylene contribute about 26% to the total OFP despite their lower contribution of 16% to the TVOC.

  5. Two Heat-Transfer Improvements for Gas Liquefiers

    NASA Technical Reports Server (NTRS)

    Martin, Jerry L.

    2005-01-01

    Two improvements in heat-transfer design have been investigated with a view toward increasing the efficiency of refrigerators used to liquefy gases. The improvements could contribute to the development of relatively inexpensive, portable oxygen liquefiers for medical use. A description of the heat-transfer problem in a pulse-tube refrigerator is prerequisite to a meaningful description of the first improvement. In a pulse-tube refrigerator in particular, one of in-line configuration heat must be rejected from two locations: an aftercooler (where most of the heat is rejected) and a warm heat exchanger (where a small fraction of the total input power must be rejected as heat). Rejection of heat from the warm heat exchanger can be problematic because this heat exchanger is usually inside a vacuum vessel. When an acoustic-inertance tube is used to provide a phase shift needed in the pulse-tube cooling cycle, another problem arises: Inasmuch as the acoustic power in the acoustic-inertance tube is dissipated over the entire length of the tube, the gas in the tube must be warmer than the warm heat exchanger in order to reject heat at the warm heat exchanger. This is disadvantageous because the increase in viscosity with temperature causes an undesired increase in dissipation of acoustic energy and an undesired decrease in the achievable phase shift. Consequently, the overall performance of the pulse-tube refrigerator decreases with increasing temperature in the acoustic-inertance tube. In the first improvement, the acoustic-inertance tube is made to serve as the warm heat exchanger and to operate in an approximately isothermal condition at a lower temperature, thereby increasing the achievable phase shift and the overall performance of the refrigerator. This is accomplished by placing the acoustic-inertance tube inside another tube and pumping a cooling fluid (e.g., water) in the annular space between the tubes. Another benefit of this improvement is added flexibility of design to locate the warm heat-rejection components outside the vacuum vessel. The second improvement is the development of a compact radial-flow condenser characterized by a very high heat transfer coefficient and a small pressure drop.

  6. Tenth international conference on liquefied natural gas

    SciTech Connect

    Not Available

    1992-01-01

    Separate abstracts were prepared for the 73 individual papers presented. The conference was divided into four sessions: (1) LNG Market, (2) Liquefaction plants, (3) LNG receiving terminals and storage, and (4) LNG transportation, handling, safety and environmental issues.

  7. 30 CFR 75.1106-4 - Use of liquefied and nonliquefied compressed gas cylinders; general requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...-UNDERGROUND COAL MINES Fire Protection § 75.1106-4 Use of liquefied and nonliquefied compressed gas cylinders... gas is used in any area in which oil, grease, or coal dust is present, oil and grease deposits shall... gas cylinders; general requirements. 75.1106-4 Section 75.1106-4 Mineral Resources MINE SAFETY...

  8. 30 CFR 75.1106-4 - Use of liquefied and nonliquefied compressed gas cylinders; general requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...-UNDERGROUND COAL MINES Fire Protection § 75.1106-4 Use of liquefied and nonliquefied compressed gas cylinders... gas is used in any area in which oil, grease, or coal dust is present, oil and grease deposits shall... gas cylinders; general requirements. 75.1106-4 Section 75.1106-4 Mineral Resources MINE SAFETY...

  9. 30 CFR 75.1106-4 - Use of liquefied and nonliquefied compressed gas cylinders; general requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...-UNDERGROUND COAL MINES Fire Protection § 75.1106-4 Use of liquefied and nonliquefied compressed gas cylinders... gas is used in any area in which oil, grease, or coal dust is present, oil and grease deposits shall... gas cylinders; general requirements. 75.1106-4 Section 75.1106-4 Mineral Resources MINE SAFETY...

  10. 30 CFR 75.1106-4 - Use of liquefied and nonliquefied compressed gas cylinders; general requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...-UNDERGROUND COAL MINES Fire Protection § 75.1106-4 Use of liquefied and nonliquefied compressed gas cylinders... gas is used in any area in which oil, grease, or coal dust is present, oil and grease deposits shall... gas cylinders; general requirements. 75.1106-4 Section 75.1106-4 Mineral Resources MINE SAFETY...

  11. 30 CFR 75.1106-4 - Use of liquefied and nonliquefied compressed gas cylinders; general requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...-UNDERGROUND COAL MINES Fire Protection § 75.1106-4 Use of liquefied and nonliquefied compressed gas cylinders... gas is used in any area in which oil, grease, or coal dust is present, oil and grease deposits shall... gas cylinders; general requirements. 75.1106-4 Section 75.1106-4 Mineral Resources MINE SAFETY...

  12. Summary and analysis of comments on the notice of proposed rulemaking for emission standards and test procedures for natural gas-fueled and liquefied petroleum gas-fueled vehicles and engines, and certification procedures for aftermarket conversion systems

    SciTech Connect

    Not Available

    1994-05-01

    The document summarizes the results of the analysis performed in support for the proposed rule for emission standards and test procedures for natural gas-fueled and liquified petroleum gas-fueled motor vehicles and engines (57 FR 52912) November 5, 1992. The rule also contained procedures by which one can secure an exemption from the Clean Air Act tampering prohibition for an aftermarket conversion (i.e., a vehicle modification which allows the vehicle to operate on a fuel other than the fuel it was designed and certified to operate on). These procedures, based on the current new vehicle certification procedures, were intended to clarify how one can avoid application of the EPA tampering policy on a conversion by providing a method of demonstrating that a vehicle will continue to meet applicable emission standards after the conversion.

  13. 30 CFR 75.1106-2 - Transportation of liquefied and nonliquefied compressed gas cylinders; requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... compressed gas cylinders; requirements. 75.1106-2 Section 75.1106-2 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Fire Protection § 75.1106-2 Transportation of liquefied and nonliquefied compressed gas...

  14. 30 CFR 75.1106-2 - Transportation of liquefied and nonliquefied compressed gas cylinders; requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... compressed gas cylinders; requirements. 75.1106-2 Section 75.1106-2 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Fire Protection § 75.1106-2 Transportation of liquefied and nonliquefied compressed gas...

  15. 30 CFR 75.1106-2 - Transportation of liquefied and nonliquefied compressed gas cylinders; requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... compressed gas cylinders; requirements. 75.1106-2 Section 75.1106-2 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Fire Protection § 75.1106-2 Transportation of liquefied and nonliquefied compressed gas...

  16. 30 CFR 75.1106-2 - Transportation of liquefied and nonliquefied compressed gas cylinders; requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... compressed gas cylinders; requirements. 75.1106-2 Section 75.1106-2 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Fire Protection § 75.1106-2 Transportation of liquefied and nonliquefied compressed gas...

  17. 30 CFR 75.1106-2 - Transportation of liquefied and nonliquefied compressed gas cylinders; requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... compressed gas cylinders; requirements. 75.1106-2 Section 75.1106-2 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Fire Protection § 75.1106-2 Transportation of liquefied and nonliquefied compressed gas...

  18. Efficient liquefaction cycles for natural gas

    NASA Astrophysics Data System (ADS)

    Al-Musleh, Easa Ismail

    Natural Gas is liquefied for storage and transportation purposes. Large quantity of Natural Gas is liquefied on a daily basis. Therefore, there is a need for efficient refrigeration cycles to liquefy natural gas. Refrigeration cycles are energy intensive processes. In such systems, the compressors are the main power consumers. A given refrigeration task can be achieved by many configurations and use of refrigerant mediums. In principle, all possible configurations utilize vapor compression and/or expander cycles. However, identifying an energy efficient configuration along with the proper choice of refrigerants is not a straightforward technique. In the refrigeration literature, many methods have been proposed to identify efficient refrigeration configurations for a given task. However, these methods rely on detailed simulations and mathematical programming and do not provide much physical insights to design a good refrigeration process. As a result, our motivation is to develop physical insights through systematic evaluation of refrigerants and cycle configurations. We have identified key features of different refrigeration systems for Liquefied Natural Gas (LNG) applications. This was achieved through detailed simulations and thermodynamic analysis. Such features are essential to understand the limits of different configurations. Moreover, they can lead to process developments and improvements.

  19. 33 CFR 165.1151 - Security Zones; liquefied hazardous gas tank vessels, San Pedro Bay, California.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Security Zones; liquefied hazardous gas tank vessels, San Pedro Bay, California. 165.1151 Section 165.1151 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PORTS AND WATERWAYS SAFETY REGULATED NAVIGATION AREAS AND LIMITED ACCESS AREAS...

  20. 33 CFR 165.1151 - Security Zones; liquefied hazardous gas tank vessels, San Pedro Bay, California.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Security Zones; liquefied hazardous gas tank vessels, San Pedro Bay, California. 165.1151 Section 165.1151 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PORTS AND WATERWAYS SAFETY REGULATED NAVIGATION AREAS AND LIMITED ACCESS AREAS...

  1. 33 CFR 165.1151 - Security Zones; liquefied hazardous gas tank vessels, San Pedro Bay, California.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Security Zones; liquefied hazardous gas tank vessels, San Pedro Bay, California. 165.1151 Section 165.1151 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PORTS AND WATERWAYS SAFETY REGULATED NAVIGATION AREAS AND LIMITED ACCESS AREAS...

  2. 46 CFR 61.15-10 - Liquefied-petroleum-gas piping for heating and cooking.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Liquefied-petroleum-gas piping for heating and cooking. 61.15-10 Section 61.15-10 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING PERIODIC TESTS AND INSPECTIONS Periodic Tests of Piping Systems § 61.15-10...

  3. 46 CFR 61.15-10 - Liquefied-petroleum-gas piping for heating and cooking.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 2 2011-10-01 2011-10-01 false Liquefied-petroleum-gas piping for heating and cooking. 61.15-10 Section 61.15-10 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING PERIODIC TESTS AND INSPECTIONS Periodic Tests of Piping Systems § 61.15-10...

  4. 46 CFR 61.15-10 - Liquefied-petroleum-gas piping for heating and cooking.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 2 2014-10-01 2014-10-01 false Liquefied-petroleum-gas piping for heating and cooking. 61.15-10 Section 61.15-10 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING PERIODIC TESTS AND INSPECTIONS Periodic Tests of Piping Systems § 61.15-10...

  5. 46 CFR 61.15-10 - Liquefied-petroleum-gas piping for heating and cooking.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 2 2012-10-01 2012-10-01 false Liquefied-petroleum-gas piping for heating and cooking. 61.15-10 Section 61.15-10 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING PERIODIC TESTS AND INSPECTIONS Periodic Tests of Piping Systems § 61.15-10...

  6. 46 CFR 61.15-10 - Liquefied-petroleum-gas piping for heating and cooking.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 2 2013-10-01 2013-10-01 false Liquefied-petroleum-gas piping for heating and cooking. 61.15-10 Section 61.15-10 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING PERIODIC TESTS AND INSPECTIONS Periodic Tests of Piping Systems § 61.15-10...

  7. 78 FR 26056 - Waterway Suitability Assessment for Expansion of Liquefied Gas Terminals; Nederland, TX

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-03

    ... public dockets in the January 17, 2008, issue of the Federal Register (73 FR 3316). Public meeting: We do... SECURITY Coast Guard Waterway Suitability Assessment for Expansion of Liquefied Gas Terminals; Nederland... Coast Guard regulations, Sunoco Partners Marketing and Terminals has submitted a Letter of Intent and...

  8. First Operating Results of a Dynamic Gas Bearing Turbine in AN Industrial Hydrogen Liquefier

    NASA Astrophysics Data System (ADS)

    Bischoff, S.; Decker, L.

    2010-04-01

    Hydrogen has been brought into focus of industry and public since fossil fuels are depleting and costs are increasing dramatically. Beside these issues new high-tech processes in the industry are in need for hydrogen at ultra pure quality. To achieve these requirements and for efficient transportation, hydrogen is liquefied in industrial plants. Linde Gas has commissioned a new 5.5 TPD Hydrogen liquefier in Leuna, Germany, which has been engineered and supplied by Linde Kryotechnik. One of the four expansion turbines installed in the liquefaction process is equipped with dynamic gas bearings. Several design features and operational characteristics of this application will be discussed. The presentation will include results of efficiency and operational reliability that have been determined from performance tests. The advantages of the Linde dynamic gas bearing turbine for future use in hydrogen liquefaction plants will be shown.

  9. FIRST OPERATING RESULTS OF A DYNAMIC GAS BEARING TURBINE IN AN INDUSTRIAL HYDROGEN LIQUEFIER

    SciTech Connect

    Bischoff, S.; Decker, L.

    2010-04-09

    Hydrogen has been brought into focus of industry and public since fossil fuels are depleting and costs are increasing dramatically. Beside these issues new high-tech processes in the industry are in need for hydrogen at ultra pure quality. To achieve these requirements and for efficient transportation, hydrogen is liquefied in industrial plants. Linde Gas has commissioned a new 5.5 TPD Hydrogen liquefier in Leuna, Germany, which has been engineered and supplied by Linde Kryotechnik. One of the four expansion turbines installed in the liquefaction process is equipped with dynamic gas bearings. Several design features and operational characteristics of this application will be discussed. The presentation will include results of efficiency and operational reliability that have been determined from performance tests. The advantages of the Linde dynamic gas bearing turbine for future use in hydrogen liquefaction plants will be shown.

  10. Epoxidized natural rubber toughened aqueous resole type liquefied EFB resin: Physical and chemical characterization

    NASA Astrophysics Data System (ADS)

    Amran, Umar Adli; Zakaria, Sarani; Chia, Chin Hua

    2013-11-01

    A preliminary study on the reaction between aqueous resole type resinified liquefied palm oil empty fruit bunches fibres (RLEFB) with epoxidized natural rubber (ENR). Liquefaction of empty fruit bunches (EFB) is carried out at different ratio of phenol to EFB (P:EFB). Resole type phenolic resin is prepared using sodium hydroxide (NaOH) as the catalyst with the ratio of liquefied EFB (LEFB) to formaldehyde (LEFB:F) of 1:1.8. 50% epoxidation of epoxidized natural rubber (ENR-50) is used to react with resole resin by mixing with ENR with aqueous resole resin. The cured resin is characterized with FT-IR and SEM. Aqueous system have been found to be unsuitable medium in the reaction between resin and ENR. This system produced a highly porous product when RLEFB/ENR resin is cured.

  11. 77 FR 33446 - Jordan Cove Energy Project, L.P.; Application for Long-Term Authorization to Export Liquefied...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-06

    ... Cove Energy Project, L.P.; Application for Long-Term Authorization to Export Liquefied Natural Gas Produced From Domestic and Canadian Natural Gas Resources to Non-Free Trade Agreement Countries for a 25..., multi-contract authorization to export as liquefied natural gas (LNG) both natural gas...

  12. Natural gas marketing II

    SciTech Connect

    Not Available

    1988-01-01

    This book covers all aspects of gas marketing, from the basic regulatory structure to the latest developments in negotiating agreements and locating markets. Topics include: Federal regulation of the gas industry; Fundamentals of gas marketing contracts; FERC actions encouraging competitive markets; Marketing conditions from the pipelines' perspective; State non-utility regulation of natural gas production, transportation, and marketing; Natural gas wellhead agreements and tariffs; Natural gas processing agreements; Effective management of producer's natural gas contracts; Producer-pipeline litigation; Natural gas purchasing from the perspective of industrial gas users; Gas marketing by co-owners: problems of disproportionate sales, gas balancing, and accounting to royalty owners; Alternatives and new directions in marketing.

  13. 78 FR 44934 - Sabine Pass Liquefaction, LLC; Application for Long-Term Authorization To Export Liquefied...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-25

    ... Delegation Orders Relating to the Regulation of Imported Natural Gas, 49 FR 6684 (Feb. 22, 1984). Further... Pass Liquefaction, LLC; Application for Long-Term Authorization To Export Liquefied Natural Gas... export liquefied natural gas (LNG) produced from domestic sources in an amount up to 91,250,000...

  14. 78 FR 44937 - Sabine Pass Liquefaction, LLC; Application for Long-Term Authorization To Export Liquefied...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-25

    ... Orders Relating to the Regulation of Imported Natural Gas, 49 FR 6684 (Feb. 22, 1984). Further details... Pass Liquefaction, LLC; Application for Long-Term Authorization To Export Liquefied Natural Gas... export liquefied natural gas (LNG) produced from domestic sources in an amount up to 104,250,000...

  15. 78 FR 30295 - Constellation Energy Commoditiesgroup, Inc., ENI USA Gas Marketing LLC, Sequent Energy Canada...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-22

    ... Export Natural Gas, To Import Liquefied Natural Gas, To Export Liquefied Natural Gas, and Vacating Prior... March 2013, it issued orders granting authority to import and export natural gas and liquefied natural... of Natural Gas Regulatory Activities, Docket Room 3E-033, Forrestal Building, 1000......

  16. Experimental investigation of mobile small-scale liquefier for 10000 NM3/D of coal bed methane gas

    NASA Astrophysics Data System (ADS)

    Sun, Zhaohu; Wu, J. F.; Gong, Maoqiong; Guo, Ping

    2012-06-01

    There is a growing recognition that unconventional sources of gas, such as shale gas, coal bed methane (CBM) and deep tight gas will contribute a significant component of future gas supplies as technologies evolve. In recent years, the interest in such source of gas utilization technologies based on small-scale LNG production has been rising steeply. In this paper, a mobile liquefier prototype for 10000 Nm3/d of CBM has been designed, constructed and tested. It has two cascade refrigeration systems. The high-temperature refrigeration system will pre-cool the resource gas to 5oC, and the low-temperature refrigeration system will continue to cool the resource gas to the liquefied point with a Mixed Refrigerant Cycle (MRC). The kernel compressor is a conventional oil-lubricated air-conditioning compressor with the discharge pressure of 2.0 MPa. The main heat exchanger is plate-fin heat exchanger with four passages. A series of experiments have been done on the prototype liquefier at different resource gas pressures and environmental temperatures. It is less than one hour from the start of the equipment to the existence of LNG. The maximum production of LNG is about 20 m3/d when a stream of about 12500 Nm3/d of pure CBM at a process pressure of 1.3 MPa is liquefied. The energy consumption of liquefying 1 Nm3 methane is 0.612 kWh.

  17. Urban leakage of liquefied petroleum gas and its impact on Mexico City air quality

    SciTech Connect

    Blake, D.R.; Rowland, F.S.

    1995-08-18

    Alkane hydrocarbons (propane, isobutane, and n-butane) from liquefied petroleum gas (LPG) are present in major quantities throughout Mexico City air because of leakage of the unburned gas from numerous urban sources. These hydrocarbons, together with olefinic minor LPG components, furnish substantial amounts of hydroxyl radical reactivity, a major precursor to formation of the ozone component of urban smog. The combined processes of unburned leakage and incomplete combustion of LPG play significant role in causing the excessive ozone characteristic of Mexico City. Reductions in ozone levels should be possible through changes in LPG composition and lowered rates of leakage. 23 refs., 3 tabs.

  18. Practical natural gas engineering

    SciTech Connect

    Smith, R.V.

    1983-01-01

    According to the author, there is no fundamental difference between the behavior of wells producing liquids and the behavior of wells producing gas. This book bridges the gap between the results of empirical testing and the theory of unsteady-state flow in porous media. It strengthens the bond between conventional reservoir engineering practices and understanding gas well behavior. Problems are included at the end of each chapter for use in the classroom. Contents: Introduction to natural gas engineering; Properties of natural gas; Application of gas laws to reservoir engineering; Gas measurement; Flow of natural gas in circular pipe and annular conductors; Flow of gas in porous media; Gas well testing; Unsteady-state flow behavior of gas wells; Production forecasting for gas wells; Production decline curves for gas wells; Sizing flow strings for gas wells; Gas sales contracts; Compressibility for natural gas; Gas measurement factors.

  19. Determination of traces of water in liquefied hydrocarbon gases by gas chromatography analysis of the vapor phase

    SciTech Connect

    Amirov, K.M.; Cherpegina, E.K.; Zakharova, N.V.

    1986-09-01

    To find the mathematical formula relating the water concentration in the initial liquid-phase sample of liquefied hydrocarbon gases and in the vapor phase, the authors examine the material balance for the distribution of the trace water from preparation of the liquefied hydrocarbon gas sample to carrying out the analysis of the equilibrium vapor phase. It is proposed that the sensitivity of the chromatographic determination of traces of water in liquefied hydrocarbon gases can be increased by a factor of 10-20 by analyzing the equilibrium vapor phase of the hydrocarbon gases. Methods have been developed for determining and evaluating the distribution coefficients of water in the gases. Results are given for determinations of trace water in liquefied n-butane and butane-butene fractions. The calculated detection limit for water in n-butane is 0.0003 wt.%.

  20. Liquefied petroleum gas (LPG) poisoning: report of two cases and review of the literature.

    PubMed

    Fukunaga, T; Yamamoto, H; Tanegashima, A; Yamamoto, Y; Nishi, K

    1996-10-25

    Two autopsy cases of men who died while connecting a liquefied petroleum gas (LPG) pipe are reported. Their blood concentrations of propane (the main content of LPG) were 0.12 and 3.40 mg/100 g, respectively. The cause of death after exposure of LPG has generally been considered to be asphyxia from hypoxia. The large differences in the blood propane levels found here and reported in the literature, however, suggest that direct toxic effects of propane poisoning may be the cause of death in some cases. Propane concentrations and the cause of death are reviewed and discussed. PMID:8948127

  1. Large-Scale Wireless Temperature Monitoring System for Liquefied Petroleum Gas Storage Tanks

    PubMed Central

    Fan, Guangwen; Shen, Yu; Hao, Xiaowei; Yuan, Zongming; Zhou, Zhi

    2015-01-01

    Temperature distribution is a critical indicator of the health condition for Liquefied Petroleum Gas (LPG) storage tanks. In this paper, we present a large-scale wireless temperature monitoring system to evaluate the safety of LPG storage tanks. The system includes wireless sensors networks, high temperature fiber-optic sensors, and monitoring software. Finally, a case study on real-world LPG storage tanks proves the feasibility of the system. The unique features of wireless transmission, automatic data acquisition and management, local and remote access make the developed system a good alternative for temperature monitoring of LPG storage tanks in practical applications. PMID:26393596

  2. Natural Gas Monthly

    EIA Publications

    2016-01-01

    Highlights activities, events, and analyses associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer related activities and underground storage data are also reported.

  3. Natural gas annual 1996

    SciTech Connect

    1997-09-01

    This document provides information on the supply and disposition of natural gas to a wide audience. The 1996 data are presented in a sequence that follows natural gas from it`s production to it`s end use.

  4. Natural Gas Flare

    A natural gas flare. Sometimes, often due to lack of transportation or storage capacity, natural gas that is co-produced with oil will be burned in a flare. This wellpad is in the Tuscaloosa Marine Shale....

  5. Natural gas annual 1995

    SciTech Connect

    1996-11-01

    The Natural Gas Annual provides information on the supply and disposition of natural gas to a wide audience including industry, consumers, Federal and State agencies, and educational institutions. The 1995 data are presented in a sequence that follows natural gas (including supplemental supplies) from its production to its end use. This is followed by tables summarizing natural gas supply and disposition from 1991 to 1995 for each Census Division and each State. Annual historical data are shown at the national level.

  6. Natural gas annual 1994

    SciTech Connect

    1995-11-17

    The Natural Gas Annual provides information on the supply and disposition of natural gas to a wide audience including industry, consumers, Federal and State agencies, and educational institutions. The 1994 data are presented in a sequence that follows natural gas (including supplemental supplies) from its production to its end use. This is followed by tables summarizing natural gas supply and disposition from 1990 to 1994 for each Census Division and each State. Annual historical data are shown at the national level.

  7. 49 CFR 192.1015 - What must a master meter or small liquefied petroleum gas (LPG) operator do to implement this...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false What must a master meter or small liquefied petroleum gas (LPG) operator do to implement this subpart? 192.1015 Section 192.1015 Transportation Other... a master meter or small liquefied petroleum gas (LPG) operator do to implement this subpart?...

  8. 49 CFR 192.1015 - What must a master meter or small liquefied petroleum gas (LPG) operator do to implement this...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false What must a master meter or small liquefied petroleum gas (LPG) operator do to implement this subpart? 192.1015 Section 192.1015 Transportation Other... a master meter or small liquefied petroleum gas (LPG) operator do to implement this subpart?...

  9. 49 CFR 192.1015 - What must a master meter or small liquefied petroleum gas (LPG) operator do to implement this...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false What must a master meter or small liquefied petroleum gas (LPG) operator do to implement this subpart? 192.1015 Section 192.1015 Transportation Other... a master meter or small liquefied petroleum gas (LPG) operator do to implement this subpart?...

  10. 49 CFR 192.1015 - What must a master meter or small liquefied petroleum gas (LPG) operator do to implement this...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false What must a master meter or small liquefied petroleum gas (LPG) operator do to implement this subpart? 192.1015 Section 192.1015 Transportation Other... a master meter or small liquefied petroleum gas (LPG) operator do to implement this subpart?...

  11. Ataxia with Parkinsonism and dystonia after intentional inhalation of liquefied petroleum gas.

    PubMed

    Godani, Massimiliano; Canavese, Francesca; Migliorini, Sonia; Sette, Massimo Del

    2015-01-01

    The practice of inhaling liquefied petroleum gas (LPG) to commit suicide is uncommon and almost exclusively a prerogative of the prison population. Numerous cases of sudden deaths caused by intentional propane and/or butane inhalation have been described, but these cases survived and a description of the consequences is very rare. We describe a prisoner who survived after voluntary inhalation of LPG, and who developed ataxia, Parkinsonism, and dystonia. Brain MRI showed bilateral hyperintensity in the basal ganglia and in the cerebellar hemispheres. The clinical evolution and the MRI abnormalities are similar to those described in cases of poisoning by CO where the mechanism of brain injury is related to histotoxic hypoxia. We believe that LPG, considered until now a mixture of gas with low neurotoxic power, may have caused direct toxic damage to the brain, mediated by a mechanism of hypoxia, such as in CO intoxication. PMID:26005350

  12. Ataxia with Parkinsonism and dystonia after intentional inhalation of liquefied petroleum gas

    PubMed Central

    Godani, Massimiliano; Canavese, Francesca; Migliorini, Sonia; Sette, Massimo Del

    2015-01-01

    The practice of inhaling liquefied petroleum gas (LPG) to commit suicide is uncommon and almost exclusively a prerogative of the prison population. Numerous cases of sudden deaths caused by intentional propane and/or butane inhalation have been described, but these cases survived and a description of the consequences is very rare. We describe a prisoner who survived after voluntary inhalation of LPG, and who developed ataxia, Parkinsonism, and dystonia. Brain MRI showed bilateral hyperintensity in the basal ganglia and in the cerebellar hemispheres. The clinical evolution and the MRI abnormalities are similar to those described in cases of poisoning by CO where the mechanism of brain injury is related to histotoxic hypoxia. We believe that LPG, considered until now a mixture of gas with low neurotoxic power, may have caused direct toxic damage to the brain, mediated by a mechanism of hypoxia, such as in CO intoxication. PMID:26005350

  13. Conversion of a Waste Gas to Liquid Natural Gas

    NASA Astrophysics Data System (ADS)

    Gongaware, D. F.; Barclay, M. A.; Barclay, J. A.; Skrzypkowski, M. P.

    2004-06-01

    The choice of liquefied natural gas (LNG) as a heavy-duty vehicular fuel is growing rapidly due to improved LNG economics, diesel price uncertainties caused by the dependence on imported crude oil, liabilities associated with environmental and health concerns, and governmental programs related to concerns over greenhouse gas emissions. However, vehicle owners who wish to use LNG are impeded by a lack of refueling infrastructure and reliable supply of inexpensive fuel. These barriers are being overcome by the development of innovative purifier/liquefier systems that economically convert a wide array of distributed, low cost methane gas sources into high quality LNG. This paper describes the engineering design, manufacture, installation, and initial operations of two such systems. One unit was a pilot-scale system using an innovative cryogenic freezing process to remove bulk concentrations of carbon dioxide from the landfill gas (LFG). The second unit converts stranded well gas containing ˜ 18% nitrogen gas into LNG. The paper closes with a summary of lessons learned from these two installations and directions for future improvements.

  14. 33 CFR 127.203 - Portable gas detectors.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Portable gas detectors. 127.203...) WATERFRONT FACILITIES WATERFRONT FACILITIES HANDLING LIQUEFIED NATURAL GAS AND LIQUEFIED HAZARDOUS GAS Waterfront Facilities Handling Liquefied Natural Gas Equipment § 127.203 Portable gas detectors. The...

  15. 33 CFR 127.203 - Portable gas detectors.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Portable gas detectors. 127.203...) WATERFRONT FACILITIES WATERFRONT FACILITIES HANDLING LIQUEFIED NATURAL GAS AND LIQUEFIED HAZARDOUS GAS Waterfront Facilities Handling Liquefied Natural Gas Equipment § 127.203 Portable gas detectors. The...

  16. 33 CFR 127.203 - Portable gas detectors.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Portable gas detectors. 127.203...) WATERFRONT FACILITIES WATERFRONT FACILITIES HANDLING LIQUEFIED NATURAL GAS AND LIQUEFIED HAZARDOUS GAS Waterfront Facilities Handling Liquefied Natural Gas Equipment § 127.203 Portable gas detectors. The...

  17. 33 CFR 127.203 - Portable gas detectors.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) WATERFRONT FACILITIES WATERFRONT FACILITIES HANDLING LIQUEFIED NATURAL GAS AND LIQUEFIED HAZARDOUS GAS Waterfront Facilities Handling Liquefied Natural Gas Equipment § 127.203 Portable gas detectors. The marine... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Portable gas detectors....

  18. 33 CFR 127.1203 - Gas detection.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) WATERFRONT FACILITIES WATERFRONT FACILITIES HANDLING LIQUEFIED NATURAL GAS AND LIQUEFIED HAZARDOUS GAS Waterfront Facilities Handling Liquefied Hazardous Gas Equipment § 127.1203 Gas detection. (a) Each... Limit listed in 29 CFR 1910.1000, Table Z-1 or Z-2. (c) Each gas detector required by paragraph (a)...

  19. Liquefied gas ship safety. Analysis of the record 1964-1979

    SciTech Connect

    Not Available

    1980-01-01

    In spite of all the disaster scenarios that can be imagined involving LNG and LPG vessels, the large body of historical evidence on their actual safety performance reveals a record superior to that of crude-oil tankers. The casualty data on liquefied-gas ships, compiled from reports published in Lloyd's List, show that since 1964, only two cargo spills have occurred - neither resulting in serious consequences - and no cargos have caught fire. Only two serious incidents (where some risk of cargo leakage or fire appeared to exist) occurred during 1979: (1) on June 29, the El Paso Paul Kayser hit a submerged rock in the Straits of Gibraltar and, though the vessel lost 850 tons of steel, the cargo-containment system remained intact and (2) on April 8, the Mostafa Ben Boulaid sustained a 15-min spill through deck fractures caused by a construction defect in a safety valve, but the cargo tank itself was not damaged.

  20. Au sensitized ZnO nanorods for enhanced liquefied petroleum gas sensing properties

    NASA Astrophysics Data System (ADS)

    Nakate, U. T.; Bulakhe, R. N.; Lokhande, C. D.; Kale, S. N.

    2016-05-01

    The zinc oxide (ZnO) nanorods have grown on glass substrate by spray pyrolysis deposition (SPD) method using zinc acetate solution. The phase formation, surface morphology and elemental composition of ZnO films have been investigated using X-ray diffraction, field emission scanning electron microscopy (FE-SEM), atomic force microscopy (AFM) and energy dispersive X-ray (EDX) techniques. The liquefied petroleum gas (LPG) sensing response was remarkably improved by sensitization of gold (Au) surface noble metal on ZnO nanorods film. Maximum LPG response of 21% was observed for 1040 ppm of LPG, for pure ZnO nanorods sample. After Au sensitization on ZnO nanorods film sample, the LPG response greatly improved up to 48% at operating temperature 623 K. The improved LPG response is attributed Au sensitization with spill-over mechanism. Proposed model for LPG sensing mechanism discussed.

  1. Flame synthesis of carbon nano onions using liquefied petroleum gas without catalyst.

    PubMed

    Dhand, Vivek; Prasad, J Sarada; Rao, M Venkateswara; Bharadwaj, S; Anjaneyulu, Y; Jain, Pawan Kumar

    2013-03-01

    Densely agglomerated, high specific surface area carbon nano onions with diameter of 30-40 nm have been synthesized. Liquefied petroleum gas and air mixtures produced carbon nano onions in diffusion flames without catalyst. The optimized oxidant to fuel ratio which produces carbon nano onions has been found to be 0.1 slpm/slpm. The experiment yielded 70% pure carbon nano onions with a rate of 5 g/h. X-ray diffraction, high-resolution electron microscopy and Raman spectrum reveal the densely packed sp(2) hybridized carbon with (002) semi-crystalline hexagonal graphite reflection. The carbon nano onions are thermally stable up to 600 °C. PMID:25427484

  2. Upgrading Fischer-Tropsch LPG (liquefied petroleum gas) with the Cyclar process

    SciTech Connect

    Gregor, J.H.; Gosling, C.D.; Fullerton, H.E.

    1989-04-28

    The use of the UOP/BP Cyclar{reg sign} process for upgrading Fischer-Tropsch (F-T) liquefied petroleum gas (LPG) was studied at UOP{reg sign}. The Cyclar process converts LPG into aromatics. The LPG derived from F-T is highly olefinic. Two routes for upgrading F-T LPG were investigated. In one route, olefinic LPG was fed directly to a Cyclar unit (Direct Cyclar). The alternative flow scheme used the Huels CSP process to saturate LPG olefins upstream of the Cyclar unit (Indirect Cyclar). An 18-run pilot plant study verified that each route is technically feasible. An economic evaluation procedure was designed to choose between the Direct and Indirect Cyclar options for upgrading LPG. Four situations involving three different F-T reactor technologies were defined. The main distinction between the cases was the degree of olefinicity, which ranged between 32 and 84 wt % of the fresh feed. 8 refs., 80 figs., 44 tabs.

  3. Natural gas liquefaction processes

    NASA Astrophysics Data System (ADS)

    Venkatarathnam, Gadhiraju

    The liquefaction of natural gas using a mixed refrigerant process was first proposed by Kleemenko in 1959 [50]. Mixed refrigerant processes were subsequently adopted for the commercial liquefaction of natural gas nearly 40 years ago. Over 95% of the base-load LNG plants operate on mixed refrigerant processes, with the remaining few operating on conventional cascade processes. The enthalpy of natural gas varies nonlinearly with temperature (at constant pressure), with points of inflection on the enthalpy temperature curve.

  4. ZnO nanowires-C microfiber hybrid nanosensor for liquefied petroleum gas detection.

    PubMed

    Le, D T T; Iannotta, S; Hieu, N V; Corradi, C; Huy, T Q; Pola, M; Tonezzer, M

    2014-07-01

    Zinc oxide nanowires are integrated onto carbon microfibers using a two-step approach which includes electrochemical deposition of zinc and its thermal oxidation. Such nano-on-micro hybrid architecture is then used as resistive gas sensor. Some properties like mechanical flexibility, low cost and large-area fabrication make this design appealing for different applications. The huge surface-to-volume ratio of such structure comes from being structured at both microscale and nanoscale (ZnO nanowires and C microfiber) and leads to a strong and rapid response/recovery times when it is used as a gas sensor. The fabrication process of the ZnO-microC device is very simple and doesn't involve any expensive lithographic step. The sensors show excellent liquefied petroleum gas sensing properties, with very fast response on gas exposure (about 3 s) and very good reversibility (less than 2%). In addition, the carbon microfiber substrate allows the use of the ZnO-microC sensor also in applications where flexibility is required (for example integrated in fabric). PMID:24757984

  5. Liquefaction of remote sources of natural gas. Final report

    SciTech Connect

    Rogers, D.W.

    1981-12-01

    The objective was to determine the technical and financial feasibility of liquefying remote reserves of natural gas and transporting the liquefied product to users. The proposed methodology included efforts to (1) identify any prohibitive or limiting laws and/or regulations; (2) identify sufficient unutilized reserves in remote areas to justify further investigation; (3) identify existing portable liquefaction equipment (or an interested manufacturer that could supply the needed equipment) to obtain cost and performance data; (4) determine site preparation, supply and production costs for use in assessing economic feasibility; and (5) identify potential users. The conclusion is that the liquefaction of natural gas in remote areas of Appalachia is not economically feasible as long as an adequate and reliable supply of pipeline gas is perceived to be available for the forseable future and the price per Btu of pipeline gas remains so far below other fuels. 3 tables.

  6. Oxygen deficiency hazards associated with liquefied gas systems development of a program of controls

    SciTech Connect

    Miller, T.M.; Mazur, P.O.

    1983-01-01

    The use of liquefied gases in industry and research has become commonplace. Release into the atmosphere of these gases, whether intentional or not, will result in a displacement of air and a reduction in the oxygen concentration. Exposure to reduced levels of oxygen levels may cause reduced abilities, unconsciousness, or death. This paper describes the derivation of a novel program of controls for oxygen deficiency hazards. The key to this approach is a quantitative assessment of risk for each planned operation and the application of control measures to reduce that risk to an acceptable level. Five risk levels evolve which are based on the probability of fatality. Controls such as training, oxygen monitoring equipment, self-rescue respirators, and medical surveillance are required when the probability of fatality exceeds 10/sup -7/ per hour. The quantitative nature of this program ensures an appropriate level of control without undue burden or expense. 11 references, 5 figures, 3 tables.

  7. Natural gas in Tennessee

    SciTech Connect

    Lyons, C.

    1988-01-01

    One of the goals of the Tennessee Department of Economic and Community Development's Energy Division is to provide the public with information necessary to make informed decisions about energy-related issues in Tennessee. This publication is a general reference guide to Tennessee's natural gas industry, and it profiles the role of natural gas in meeting Tennessee's energy needs. A directory of natural gas organizations and distributors is also provided for obtaining additional information about federal, state, and local issues concerning natural gas in Tennessee. Currently, Tennessee consumes four times the amount of energy that it produces and imports more than 70% of its total energy requirements. Natural gas accounted for 13% of the total energy Btu's consumed in the state in 1985. In order to satisfy the gas requirements of end-users, Tennessee must import 98% of its natural gas. Because of Tennessee's geographic proximity to major gas-producing areas in the southwest and Gulf of Mexico, an intricate network of interstate pipelines has evolved, providing Tennessee a comparative advantage in access to adequate natural gas reserves and low transportation costs. 6 figs., 5 tabs.

  8. Apparatus for the liquefaction of natural gas and methods relating to same

    DOEpatents

    Turner, Terry D.; Wilding, Bruce M.; McKellar, Michael G.

    2009-09-22

    An apparatus and method for producing liquefied natural gas. A liquefaction plant may be coupled to a source of unpurified natural gas, such as a natural gas pipeline at a pressure letdown station. A portion of the gas is drawn off and split into a process stream and a cooling stream. The cooling stream passes through an expander creating work output. A compressor may be driven by the work output and compresses the process stream. The compressed process stream is cooled, such as by the expanded cooling stream. The cooled, compressed process stream is expanded to liquefy the natural gas. A gas-liquid separator separates a vapor from the liquid natural gas. A portion of the liquid gas is used for additional cooling. Gas produced within the system may be recompressed for reintroduction into a receiving line or recirculation within the system for further processing.

  9. Texas plant treats natural gas for use as alternative fuel

    SciTech Connect

    1996-02-19

    Pushed by the Clean Air Act Amendments of 1990, the Metropolitan Transit Authority of Harris County is using clean-burning liquefied methane to fuel some of Houston`s city buses. Houston Metro`s primary supply of liquefied methane is a 12 MMscfd amine-treating unit in Willis, TX. The willis plant uses Dow Chemical Co.`s GAS/SPEC process to treat natural gas. The GAS/SPEC process uses a specialty amine solvent to remove carbon dioxide (CO{sub 2}) and hydrogen sulfide from natural gas. To convert natural gas to a liquid, processors cool the gas to cryogenic temperatures and compress it. If the gas contains carbon dioxide, the CO{sub 2} will freeze, subsequently blocking transmission lines and damaging equipment. Processors therefore must remove CO{sub 2} from natural gas to prevent these problems. The natural gas processed at the Willis amine treater contains 1.5--2.5% CO{sub 2}. During treatment, the CO{sub 2} concentration is reduced to 50 ppm. The solvent used in the Willis plant is called GAS/SPEC CS-Plus. Dow makes seven other solvents for use with the process.

  10. World Natural Gas Model

    Energy Science and Technology Software Center (ESTSC)

    1994-12-01

    RAMSGAS, the Research and Development Analysis Modeling System World Natural Gas Model, was developed to support planning of unconventional gaseoues fuels research and development. The model is a scenario analysis tool that can simulate the penetration of unconventional gas into world markets for oil and gas. Given a set of parameter values, the model estimates the natural gas supply and demand for the world for the period from 1980 to 2030. RAMSGAS is based onmore » a supply/demand framwork and also accounts for the non-renewable nature of gas resources. The model has three fundamental components: a demand module, a wellhead production cost module, and a supply/demand interface module. The demand for gas is a product of total demand for oil and gas in each of 9 demand regions and the gas share. Demand for oil and gas is forecast from the base year of 1980 through 2030 for each demand region, based on energy growth rates and price-induced conservation. For each of 11 conventional and 19 unconventional gas supply regions, wellhead production costs are calculated. To these are added transportation and distribution costs estimates associated with moving gas from the supply region to each of the demand regions and any economic rents. Based on a weighted average of these costs and the world price of oil, fuel shares for gas and oil are computed for each demand region. The gas demand is the gas fuel share multiplied by the total demand for oil plus gas. This demand is then met from the available supply regions in inverse proportion to the cost of gas from each region. The user has almost complete control over the cost estimates for each unconventional gas source in each year and thus can compare contributions from unconventional resources under different cost/price/demand scenarios.« less

  11. Application of far infrared rare earth mineral composite materials to liquefied petroleum gas.

    PubMed

    Zhu, Dongbin; Liang, Jinsheng; Ding, Yan; Xu, Anping

    2010-03-01

    Far infrared rare earth mineral composite materials were prepared by the coprecipitation method using tourmaline, cerium acetate, and lanthanum acetate as raw materials. The results of Fourier transform infrared spectroscopy show that tourmaline modified with the rare earths La and Ce has a better far infrared emitting performance. Through XRD analysis, we attribute the improved far infrared emission properties of the tourmaline to the unit cell shrinkage of the tourmaline arising from La enhancing the redox properties of nano-CeO2. The effect of the composite materials on the combustion of liquefied petroleum gas (LPG) was studied by the flue gas analysis and water boiling test. Based on the results, it was found that the composite materials could accelerate the combustion of LPG, and that the higher the emissivity of the rare earth mineral composite materials, the better the effects on combustion of LPG. In all activation styles, both air and LPG to be activated has a best effect, indicating the activations having a cumulative effect. PMID:20355556

  12. Natural gas monthly

    SciTech Connect

    Not Available

    1982-11-01

    This report presents data on the supply and disposition of natural gas in the USA during July 1982, as well as data on production, storage, imports, exports, and consumption. Selected data are also presented on the activities of the major interstate pipeline companies. Volumes of natural gas in storage continue to run slightly ahead of year-ago levels, especially for interstate operators. Weighted average prices received for gas sold by major interstate pipeline companies during July of 19982 ranged from a low of $2.61 per thousand cubic feet (Mcf) for Kansas-Nebraska to a high of $7.09 per Mcf for Pacific Gas. These variations are attributable to the sources of supply available to the various pipeline companies and the market structures of each. September 1982 applications for determination of a maximum lawful price under the Natural Gas Policy Act (NGPA) increased slightly for new gas (Section 102) and decreased significantly for high-cost gas (Section 107) when compared to August. Natural gas ceiling prices prescribed by the NGPA continued to move upward through the application of prescribed monthly inflation adjustments. In the 3-year period from November 1979 through November 1982, the price ceiling for new gas, for example, increased from $2.314 to $3.249 per million (MM) Btu's. The highest ceiling price permitted under the NGPA is natural gas produced from tight formations set for November 1982 at $5.396 per MMBtu. Market natural gas production during September of 1982 was 1444 billion cubic feet (Bcf) compared to the September 1981 level of 1578 Bcf. Consumption during the same period also declined from 1266 Bcf to 1176 Bcf.

  13. Liquefied natural gas experience of a large transit fleet

    SciTech Connect

    Pentz, R.

    1995-12-31

    The Houston Metropolitan Transit Authority (METRO) is the mass transit authority for an area of 1,275 square miles and a population of 3.5 million. METRO is organized as an independent authority responsible to an appointed board of directors. METRO operates over 1,160 buses which use approximately 2,000 miles of bus routes. Each year METRO provides over 60 million passenger trips. The low cost to the customer can only be achieved through aggressive cost control and efficient operation with effective equipment maintenance and availability. METRO utilizes approximately nine million gallons of diesel fuel per year. Fuel costs are approximately 4.5% of operating costs equivalent to approximately $.18 cents per mile. METRO has demonstrated the technical and economic feasibility of LNG fuel usage for a centrally refueled fleet. This pioneering effort used the free market and intense cooperation with suppliers to create an LNG supply where there was none, convert theoretical concepts to on the road hardware and mobilize a large organization to accommodate a drastic change in operations. Experience leads them to recommend others considering this approach to fully commit their own resources to the tasks, cooperate and exchange information openly with all concerned and only accept project participants which have the competence and resources to persevere through developments.

  14. Natural gas monthly

    SciTech Connect

    1996-05-01

    This document highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Data presented include volume and price, production, consumption, underground storage, and interstate pipeline activities.

  15. Assessment of reducing ozone forming potential for vehicles using liquefied petroleum gas as an alternative fuel

    NASA Astrophysics Data System (ADS)

    Chang, Chih-Chung; Lo, Jiunn-Guang; Wang, Jia-Lin

    Liquefied petroleum gas (LPG) is currently used in a small fleet of taxis as an alternative fuel to gasoline in Taipei, Taiwan as part of an incentive program promoted by Taiwan EPA to improve urban air quality. Under the test procedure in accordance with the US FTP-75 protocol to simulate an average urban driving pattern, the exhaust from four LPG and four gasoline-powered vehicles was analyzed for the percent composition of NMHCs. Emission factors for individual NMHCs were apportioned from the emission factors of total hydrocarbon based on chemical composition of the exhaust from both types of vehicles. After adjusting for ozone formation potential (OFP) by maximum incremental reactivity, the average OFP for LPG vehicles was estimated to be only 52.8% (g-O 3/veh-km) of the gasoline vehicles, or 3.3% of ozone reduction in Taipei metropolitan area, should all taxis be converted to LPG fuel. Composition analysis of the local LPG revealed that propane, butane and isobutane were the three major components and negligible amounts of alkenes were also found. In addition, the leakage from a LPG service station was substantially smaller than from a gasoline service station because of the closed design with the LPG pumping systems.

  16. Apparatus for the liquefaction of natural gas and methods relating to same

    SciTech Connect

    Wilding, Bruce M.; McKellar, Michael G.; Turner, Terry D.; Carney, Francis H.

    2009-09-29

    An apparatus and method for producing liquefied natural gas. A liquefaction plant may be coupled to a source of unpurified natural gas, such as a natural gas pipeline at a pressure letdown station. A portion of the gas is drawn off and split into a process stream and a cooling stream. The cooling stream passes through an expander creating work output. A compressor may be driven by the work output and compresses the process stream. The compressed process stream is cooled, such as by the expanded cooling stream. The cooled, compressed process stream is divided into first and second portions with the first portion being expanded to liquefy the natural gas. A gas-liquid separator separates the vapor from the liquid natural gas. The second portion of the cooled, compressed process stream is also expanded and used to cool the compressed process stream.

  17. Liquid natural gas regasification combined with adsorbed natural gas filling system.

    NASA Astrophysics Data System (ADS)

    Roszak, Eliza Anna; Chorowski, Maciej

    2012-06-01

    The article provides an introduction to innovative method of Liquid Natural Gas (LNG) physical exergy practical utilization. The energy spent to liquefy natural gas (a thermodynamic minimum is about 0.13 kWh/l of LNG depending on pressure and chemical composition) can be partly recovered in the system making use either of the LNG low temperature (111 K) or its ability to increase the pressure in a storage vessel by heat absorption from the environment. The paper presents estimation of the LNG physical exergy and its dependence on the pressure and temperature. Then description and comparison of available natural gas storage methods (liquefaction, compression, adsorption) is given, with a special attention paid to Adsorbed Natural Gas (ANG) technology. Original data concerning adsorption isotherms of methane with activated carbon MaxsorbIII are presented. A concept of ANG storage technology coupled with the LNG regasification, is a promising technique of utilization of the LNG cold exergy. The energy efficient combination of ANG with LNG may help market progress of adsorption technology in natural gas storage and distribution. The ANG/LNG coupling is especially perspective in case of small capacity and distributed natural gas deposits exploitation.

  18. 75 FR 73071 - Northern Natural Gas Company, Southern Natural Gas Company, Florida Gas Transmission Company, LLC...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-29

    ... Energy Regulatory Commission Northern Natural Gas Company, Southern Natural Gas Company, Florida Gas Transmission Company, LLC, Transcontinental Gas Pipe Line Company, LLC, Enterprise Field Services, LLC; Notice... Abandonment Project proposed by Northern Natural Gas Company, Southern Natural Gas Company, Florida...

  19. Safer Liquid Natural Gas

    NASA Technical Reports Server (NTRS)

    1976-01-01

    After the disaster of Staten Island in 1973 where 40 people were killed repairing a liquid natural gas storage tank, the New York Fire Commissioner requested NASA's help in drawing up a comprehensive plan to cover the design, construction, and operation of liquid natural gas facilities. Two programs are underway. The first transfers comprehensive risk management techniques and procedures which take the form of an instruction document that includes determining liquid-gas risks through engineering analysis and tests, controlling these risks by setting up redundant fail safe techniques, and establishing criteria calling for decisions that eliminate or accept certain risks. The second program prepares a liquid gas safety manual (the first of its kind).

  20. Natural gas as a natural' solution

    SciTech Connect

    McCormick, W.T. Jr.

    1991-05-15

    This article promotes natural gas use as a means to cut US dependence on imported oil by some 28 percent over the next ten years, while improving energy efficiency and solving a portion of the global warming and acid rain problems. Topics of discussion include fuel substitution, the Clean Air Act, natural gas capacity and distribution, and natural gas exploration.

  1. Natural Gas Annual

    EIA Publications

    2015-01-01

    Provides information on the supply and disposition of natural gas in the United States. Production, transmission, storage, deliveries, and price data are published by state for the current year. Summary data are presented for each state for the previous 5 years.

  2. US crude oil, natural gas, and natural gas liquids reserves

    SciTech Connect

    Not Available

    1990-10-05

    This report presents estimates of proved reserves of crude oil, natural gas, and natural gas liquids as of December 31, 1989, and production volumes for the year 1989 for the total United States and for selected states and state sub-divisions. Estimates are presented for the following four categories of natural gas: total gas (wet after lease separation), its two major components (nonassociated and associated-dissolved gas), and total dry gas (wet gas adjusted for the removal of liquids at natural gas processing plants). In addition, two components of natural gas liquids, lease condensate and natural gas plant liquids, have their reserves and production reported separately. Also included is information on indicated additional crude oil reserves and crude oil, natural gas, and lease condensate reserves in nonproducing reservoirs. 28 refs., 9 figs., 15 tabs.

  3. Natural gas marketing and transportation

    SciTech Connect

    Not Available

    1991-01-01

    This book covers: Overview of the natural gas industry; Federal regulation of marketing and transportation; State regulation of transportation; Fundamentals of gas marketing contracts; Gas marketing options and strategies; End user agreements; Transportation on interstate pipelines; Administration of natural gas contracts; Structuring transactions with the nonconventional source fuels credit; Take-or-pay wars- a cautionary analysis for the future; Antitrust pitfalls in the natural gas industry; Producer imbalances; Natural gas futures for the complete novice; State non-utility regulation of production, transportation and marketing; Natural gas processing agreements and Disproportionate sales, gas balancing, and accounting to royalty owners.

  4. Natural gas hydrates

    SciTech Connect

    Sloan, E.D. Jr. )

    1991-12-01

    This paper reports on gas clathrates (commonly called hydrates), which are crystalline compounds that occur when water form a cage-like structure around smaller guest molecules. Gas hydrates of interest to the natural gas hydrocarbon industry are composed of water and eight molecules: methane, ethane, propane, isobutane, normal butane, nitrogen, carbon dioxide, and hydrogen sulfide. Hydrate formation is possible in any place where water exists with such molecules - in natural or artificial environments and at temperatures above and below 32{degrees} F when the pressure is elevated. Hydrates are considered a nuisance because they block transmission lines, plug blowout preventers, jeopardize the foundations of deepwater platforms and pipelines, cause tubing and casing collapse, and foul process heat exchangers, valves, and expanders. Common examples of preventive measures are the regulation of pipeline water content, unusual drilling-mud compositions, and large quantities of methanol injection into pipelines. We encounter conditions that encourage hydrate formation as we explore more unusual environments for gas and oil, including deepwater frontiers and permafrost regions.

  5. Thermodynamic Cycle Selection for Distributed Natural Gas Liquefaction

    NASA Astrophysics Data System (ADS)

    Barclay, M. A.; Gongaware, D. F.; Dalton, K.; Skrzypkowski, M. P.

    2004-06-01

    Natural gas liquefaction plants with cooling capacities of approximately 100 kW are facilitating the development of a distributed LNG infrastructure. To be economically viable, liquefiers of this scale must be able to operate on a variety of feed gases while offering relatively low capital costs, short delivery time, and good performance. This paper opens with a discussion of a natural gas liquefier design focusing on the refrigeration system. Linde, cascade, mixed refrigerant, and modified-Brayton cycle refrigeration systems are then discussed in context of the overall plant design. Next, a detailed comparison of the modified-Brayton and mixed refrigerant cycles is made including cycle selection's impact on main system components like the recuperative heat exchanger and compressors. In most cases, a reverse-Brayton or a mixed refrigerant cycle refrigerator is the best-suited available technology for local liquefaction. The mixed refrigerant cycle liquefier offers the potential of better real performance at lower capital costs but requires more know-how in the areas of two-phase flow and refrigerant composition management, heat exchanger design, and process control.

  6. Natural gas monthly, April 1999

    SciTech Connect

    1999-05-06

    The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. There are two feature articles in this issue: Natural gas 1998: Issues and trends, Executive summary; and Special report: Natural gas 1998: A preliminary summary. 6 figs., 28 tabs.

  7. 77 FR 38790 - Noble Americas Gas & Power Corp., LNG Development Company, LLC, LNG Development Company, LLC (d/b...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-29

    ...); Notice of Orders Granting Authority To Import and Export Natural Gas and Liquefied Natural Gas During May... issued Orders granting authority to import and export natural gas and liquefied natural gas. These Orders... inspection and copying in the Office of Fossil Energy, Office of Natural Gas Regulatory......

  8. Natural Gas Exports from Iran

    EIA Publications

    2012-01-01

    This assessment of the natural gas sector in Iran, with a focus on Iran’s natural gas exports, was prepared pursuant to section 505 (a) of the Iran Threat Reduction and Syria Human Rights Act of 2012 (Public Law No: 112-158). As requested, it includes: (1) an assessment of exports of natural gas from Iran; (2) an identification of the countries that purchase the most natural gas from Iran; (3) an assessment of alternative supplies of natural gas available to those countries; (4) an assessment of the impact a reduction in exports of natural gas from Iran would have on global natural gas supplies and the price of natural gas, especially in countries identified under number (2); and (5) such other information as the Administrator considers appropriate.

  9. Natural gas monthly, December 1995

    SciTech Connect

    1995-12-01

    This report presents information of interest to organizations associated with the natural gas industry. Data are presented on natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also included.

  10. Natural gas monthly, March 1994

    SciTech Connect

    Not Available

    1994-03-22

    The Natural Gas Monthly (NGM) is prepared in the Data Operations Branch of the Reserves and Natural Gas Division, Office of Oil and Gas, Energy Information Administration (EIA), US Department of energy (DOE). The NGM highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information.

  11. Natural gas monthly, July 1997

    SciTech Connect

    1997-07-01

    The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. The feature article this month is entitled ``Intricate puzzle of oil and gas reserves growth.`` A special report is included on revisions to monthly natural gas data. 6 figs., 24 tabs.

  12. Natural gas monthly, September 1993

    SciTech Connect

    Not Available

    1993-09-27

    The Natural Gas Monthly (NGM) is prepared in the Data Operations Branch of the Reserves and Natural Gas Division, Office of Oil and Gas, Energy Information Administration (EIA), US Department of Energy (DOE). The NGM highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information.

  13. Natural gas monthly, August 1993

    SciTech Connect

    Not Available

    1993-08-25

    The Natural Gas Monthly (NGM) is prepared in the Data Operations Branch of the Reserves and Natural Gas Division, Office of Oil and Gas, Energy Information Administration (EIA), US Department of Energy (DOE). The NGM highhghts activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information.

  14. Natural gas monthly, October 1996

    SciTech Connect

    1996-10-01

    The Natural Gas Monthly (NGM) is prepared in the Data Operations Branch of the Reserves and Natural Gas Division, Office of Oil and Gas, Energy Information Administration (EIA), U.S. Department of Energy (DOE). The NGM highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information.

  15. Natural gas monthly, August 1994

    SciTech Connect

    Not Available

    1994-08-24

    The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information.

  16. Natural gas monthly, July 1998

    SciTech Connect

    1998-07-01

    The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. 6 figs., 25 tabs.

  17. Natural gas monthly, June 1993

    SciTech Connect

    Not Available

    1993-06-22

    The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information.

  18. Natural gas monthly, November 1995

    SciTech Connect

    1995-12-05

    The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information.

  19. Natural gas monthly: December 1993

    SciTech Connect

    Not Available

    1993-12-01

    The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. Articles are included which are designed to assist readers in using and interpreting natural gas information.

  20. Natural gas monthly, November 1993

    SciTech Connect

    Not Available

    1993-11-29

    The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground state data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information.

  1. Natural gas monthly, June 1999

    SciTech Connect

    1999-06-01

    The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. 6 figs., 25 tabs.

  2. Natural gas monthly, July 1993

    SciTech Connect

    Not Available

    1993-07-27

    The Natural Gas Monthly NGM highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information.

  3. Natural Gas Monthly, March 1996

    SciTech Connect

    1996-03-25

    The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information.

  4. Natural gas monthly, September 1995

    SciTech Connect

    1995-09-27

    The (NGM) Natural Gas Monthly highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information.

  5. Natural gas monthly, July 1994

    SciTech Connect

    Not Available

    1994-07-20

    The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information.

  6. Investigation of poly(o-anisidine)-SnO2 nanocomposites for fabrication of low temperature operative liquefied petroleum gas sensor

    NASA Astrophysics Data System (ADS)

    Patil, Dewyani; Kolhe, Kishor; Potdar, Hari S.; Patil, Pradip

    2011-12-01

    Poly(o-anisidine)-tin oxide (POA-SnO2) nanocomposites has been investigated for the fabrication of low temperature operative (100 C) liquefied petroleum gas (LPG) sensor. The POA-SnO2 nanocomposites have been synthesized through an in situ chemical polymerization of o-anisidine in presence of SnO2 nanoparticles. The POA-SnO2 nanocomposite shows better LPG sensing properties than that of pure POA. The nanocomposite with 50 wt. % SnO2 exhibits an excellent LPG sensing characteristics at the operating temperature of 100 C such as higher relative gas response (23.47% to 3.4% of LPG), extremely rapid response (6 s), fast recovery (33 s), good reproducibility, and remarkable selectivity. The application of POA-SnO2 nanocomposites for fabrication of the LPG sensor was demonstrated.

  7. Natural gas monthly, October 1997

    SciTech Connect

    1997-10-01

    The Natural Gas Monthly highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. The feature article in this issue is a special report, ``Comparison of Natural Gas Storage Estimates from the EIA and AGA.`` 6 figs., 26 tabs.

  8. Natural gas monthly, April 1997

    SciTech Connect

    1997-04-01

    The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are present3ed each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. The feature article is entitled ``Natural gas pipeline and system expansions.`` 6 figs., 27 tabs.

  9. Natural gas monthly, May 1997

    SciTech Connect

    1997-05-01

    The Natural Gas Monthly highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. The feature article this month is ``Restructuring energy industries: Lessons from natural gas.`` 6 figs., 26 tabs.

  10. Natural gas monthly, November 1996

    SciTech Connect

    1996-11-01

    The report highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the Natural Gas Monthly features articles designed to assist readers in using and interpreting natural gas information. The feature article this month is ``US natural gas imports and exports-1995``. 6 figs., 24 tabs.

  11. Natural Gas Monthly, October 1993

    SciTech Connect

    Not Available

    1993-11-10

    The (NGM) Natural Gas Monthly highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. This month`s feature articles are: US Production of Natural Gas from Tight Reservoirs: and Expanding Rule of Underground Storage.

  12. Natural gas monthly, June 1994

    SciTech Connect

    Not Available

    1994-06-01

    The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. The feature article this month is the executive summary from Natural Gas 1994: Issues and Trends. 6 figs., 31 tabs.

  13. Natural gas monthly, May 1994

    SciTech Connect

    Not Available

    1994-05-25

    The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. The featured articles for this month are: Opportunities with fuel cells, and revisions to monthly natural gas data.

  14. Natural gas monthly, June 1996

    SciTech Connect

    1996-06-24

    The natural gas monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. The feature article for this month is Natural Gas Industry Restructuring and EIA Data Collection.

  15. Natural gas monthly, April 1994

    SciTech Connect

    Not Available

    1994-04-26

    The National Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information.

  16. Natural Gas Value-Chain and Network Assessments

    SciTech Connect

    Kobos, Peter H.; Outkin, Alexander V.; Beyeler, Walter E.; Walker, LaTonya Nicole; Malczynski, Leonard A.; Myerly, Melissa M.; Vargas, Vanessa N.; Tenney, Craig M.; Borns, David J.

    2015-09-01

    The current expansion of natural gas (NG) development in the United States requires an understanding of how this change will affect the natural gas industry, downstream consumers, and economic growth in order to promote effective planning and policy development. The impact of this expansion may propagate through the NG system and US economy via changes in manufacturing, electric power generation, transportation, commerce, and increased exports of liquefied natural gas. We conceptualize this problem as supply shock propagation that pushes the NG system and the economy away from its current state of infrastructure development and level of natural gas use. To illustrate this, the project developed two core modeling approaches. The first is an Agent-Based Modeling (ABM) approach which addresses shock propagation throughout the existing natural gas distribution system. The second approach uses a System Dynamics-based model to illustrate the feedback mechanisms related to finding new supplies of natural gas - notably shale gas - and how those mechanisms affect exploration investments in the natural gas market with respect to proven reserves. The ABM illustrates several stylized scenarios of large liquefied natural gas (LNG) exports from the U.S. The ABM preliminary results demonstrate that such scenario is likely to have substantial effects on NG prices and on pipeline capacity utilization. Our preliminary results indicate that the price of natural gas in the U.S. may rise by about 50% when the LNG exports represent 15% of the system-wide demand. The main findings of the System Dynamics model indicate that proven reserves for coalbed methane, conventional gas and now shale gas can be adequately modeled based on a combination of geologic, economic and technology-based variables. A base case scenario matches historical proven reserves data for these three types of natural gas. An environmental scenario, based on implementing a $50/tonne CO 2 tax results in less proven reserves being developed in the coming years while demand may decrease in the absence of acceptable substitutes, incentives or changes in consumer behavior. An increase in demand of 25% increases proven reserves being developed by a very small amount by the end of the forecast period of 2025.

  17. Fire protection considerations for the design and operation of liquefied petroleum gas (LPG) storage facilities

    SciTech Connect

    Not Available

    1989-01-01

    This standard addresses the design, operation, and maintenance of LPG storage facilities from the standpoint of prevention and control of releases, fire-protection design, and fire-control measures, as well as the history of LPG storage facility failure, facility design philosophy, operating and maintenance procedures, and various fire-protection and firefighting approaches and presentations. The storage facilities covered are LPG installations (storage vessels and associated loading/unloading/transfer systems) at marine and pipeline terminals, natural gas processing plants, refineries, petrochemical plants, and tank farms.

  18. 75 FR 57766 - Notice of Petition To Amend Authorizations Under Section 3 of the Natural Gas Act; Cameron LNG, LLC

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-22

    ... Gas Act; Cameron LNG, LLC September 15, 2010. Take notice that on September 3, 2010, Cameron LNG, LLC (Cameron), 101 Ash Street, San Diego, California 92101, filed a petition to amend the authorizations issued... liquefied natural gas (LNG) terminal facility located in Cameron Parish, Louisiana, for the...

  19. CFD Investigation of Pollutant Emission in Can-Type Combustor Firing Natural Gas, LNG and Syngas

    NASA Astrophysics Data System (ADS)

    Hasini, H.; Fadhil, SSA; Mat Zian, N.; Om, NI

    2016-03-01

    CFD investigation of flow, combustion process and pollutant emission using natural gas, liquefied natural gas and syngas of different composition is carried out. The combustor is a can-type combustor commonly used in thermal power plant gas turbine. The investigation emphasis on the comparison of pollutant emission such in particular CO2, and NOx between different fuels. The numerical calculation for basic flow and combustion process is done using the framework of ANSYS Fluent with appropriate model assumptions. Prediction of pollutant species concentration at combustor exit shows significant reduction of CO2 and NOx for syngas combustion compared to conventional natural gas and LNG combustion.

  20. An evaluation of options for Prudhoe Bay Natural Gas

    SciTech Connect

    Corley, D.I.; Marsden, S.S.

    1984-04-01

    This study investigates some of the reasons why the natural gas which is produced along with the oil at Prudhoe Bay is not being delivered to a market and three of the possible methods of delivering this gas energy to a market. These three alternatives include a proposal to build a natural gas pipeline through Canada, a liquefied natural gas (LNG) proposal and a proposal to manufacture fuel grade methanol from the natural gas at Prudhoe Bay which would be shipped through the existing Trans Alaska Pipeline System. A brief review of the engineering, economic, environmental, supply/demand and market aspects, and most importantly the political considerations affecting the selection of any of these three alternatives is presented. From virtually every viewpoint the methanol proposal is the most reasonable method of delivering the Prudhoe Bay gas energy to a market. It is shown that either of the other alternatives would result in the cost of the Prudhoe Bay gas energy being higher than the cost of energy from imported oil or natural gas.

  1. Natural gas monthly, February 1996

    SciTech Connect

    1996-03-01

    The NGM highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information.

  2. Natural gas monthly, March 1998

    SciTech Connect

    1998-03-01

    The March 1998 edition of the Natural Gas Monthly highlights activities, events, and analyses associated with the natural gas industry. Volume and price data are presented for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. This report also features an article on the correction of errors in the drilling activity estimates series, and in-depth drilling activity data. 6 figs., 28 tabs.

  3. Trends in natural gas regulation

    SciTech Connect

    Kumar, J.; Griggs, J.W.

    1984-09-01

    In recent years the natural gas market in the United States has been beset with high prices for consumers, declining demand for natural gas and excess quantities of deliverable natural gas. These market distortions are a result of existing regulation and pipeline marketing practices. Legislation to address these problems has been introduced in the U.S. Congress. This paper assesses the current problems and the prospects for change in the regulatory environment.

  4. Natural gas monthly, October 1995

    SciTech Connect

    1995-10-23

    The Natural Gas Monthly highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. A glossary of the terms used in this report is provided to assist readers in understanding the data presented in this publication. 6 figs., 30 tabs.

  5. Natural gas monthly, February 1994

    SciTech Connect

    Not Available

    1994-02-25

    The NGM highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. The NGM also features articles designed to assist readers in using and interpreting natural gas information.

  6. Efficiency Improvement of Small Gas Bearing Turbines — Impact on Standard Helium Liquefier Performance

    NASA Astrophysics Data System (ADS)

    Cretegny, D.; Schönfeld, H.; Decker, L.; Löhlein, K.

    2004-06-01

    Radial turbine design is dictated by criteria like specific speed and/or velocity ratios. For small capacity plants the size of the turbine wheel needs to be reduced and thus the rotational speed increased in order to reach a high efficiency. The design of a small turbine, taking mechanical and manufacturing criteria into account, will be presented as well as the impact of reducing size (lower Reynolds number, larger wheel relative clearance and blockage, etc.) An overview of the technical and operational improvements is presented as well as the first test results. The impact of the new turbine design on the capacity of standard liquefiers is calculated and analyzed. Additional tests on a standard plant with a liquefaction capacity of 65 l/h are being performed to confirm the calculated results.

  7. Annual committee reports in 1983: Natural Gas Committee

    SciTech Connect

    Not Available

    1984-01-01

    The Natural Gas Committee reports two significant state laws in 1983: a West Virginia bill that declared take-or-pay clauses against public policy and an Oklahoma statute protecting small producers. The Supreme Court, in several decisions, dealt with pipeline production, contract rights, royalties, and the constitutionality of state energy laws. Rulemaking included sellers' recovery of production-related costs, defining categories of high-cost gas, and simplifying well application and filing requirements. The Pipeline Subcommittee reports on West Virginia's legislature utilities reform bill, several court case, and policy statements concerning off-system sales and production-related costs. Judicial developments of concern to the Distribution subcommittee cover incremental pricing and cogeneration, while administrative developments include challenges to pipeline minimum bills, incentive rates for industry, self-help transportation services, rate design, and liquefied natural gas imports. 104 references.

  8. Natural gas monthly, January 1994

    SciTech Connect

    Not Available

    1994-02-01

    The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. The featured article for this month is on US coalbed methane production.

  9. Natural Gas Emergencies

    MedlinePlus

    ... before you dig on your property. If you smell gas outdoors, move away from the area until you no longer smell the gas and call 911. Do not return ... it is safe to do so. If you smell gas indoors, get outside immediately, leaving doors open ...

  10. Natural gas pipeline technology overview.

    SciTech Connect

    Folga, S. M.; Decision and Information Sciences

    2007-11-01

    The United States relies on natural gas for one-quarter of its energy needs. In 2001 alone, the nation consumed 21.5 trillion cubic feet of natural gas. A large portion of natural gas pipeline capacity within the United States is directed from major production areas in Texas and Louisiana, Wyoming, and other states to markets in the western, eastern, and midwestern regions of the country. In the past 10 years, increasing levels of gas from Canada have also been brought into these markets (EIA 2007). The United States has several major natural gas production basins and an extensive natural gas pipeline network, with almost 95% of U.S. natural gas imports coming from Canada. At present, the gas pipeline infrastructure is more developed between Canada and the United States than between Mexico and the United States. Gas flows from Canada to the United States through several major pipelines feeding U.S. markets in the Midwest, Northeast, Pacific Northwest, and California. Some key examples are the Alliance Pipeline, the Northern Border Pipeline, the Maritimes & Northeast Pipeline, the TransCanada Pipeline System, and Westcoast Energy pipelines. Major connections join Texas and northeastern Mexico, with additional connections to Arizona and between California and Baja California, Mexico (INGAA 2007). Of the natural gas consumed in the United States, 85% is produced domestically. Figure 1.1-1 shows the complex North American natural gas network. The pipeline transmission system--the 'interstate highway' for natural gas--consists of 180,000 miles of high-strength steel pipe varying in diameter, normally between 30 and 36 inches in diameter. The primary function of the transmission pipeline company is to move huge amounts of natural gas thousands of miles from producing regions to local natural gas utility delivery points. These delivery points, called 'city gate stations', are usually owned by distribution companies, although some are owned by transmission companies. Compressor stations at required distances boost the pressure that is lost through friction as the gas moves through the steel pipes (EPA 2000). The natural gas system is generally described in terms of production, processing and purification, transmission and storage, and distribution (NaturalGas.org 2004b). Figure 1.1-2 shows a schematic of the system through transmission. This report focuses on the transmission pipeline, compressor stations, and city gates.

  11. Natural gas leak mapper

    DOEpatents

    Reichardt, Thomas A.; Luong, Amy Khai; Kulp, Thomas J.; Devdas, Sanjay

    2008-05-20

    A system is described that is suitable for use in determining the location of leaks of gases having a background concentration. The system is a point-wise backscatter absorption gas measurement system that measures absorption and distance to each point of an image. The absorption measurement provides an indication of the total amount of a gas of interest, and the distance provides an estimate of the background concentration of gas. The distance is measured from the time-of-flight of laser pulse that is generated along with the absorption measurement light. The measurements are formated into an image of the presence of gas in excess of the background. Alternatively, an image of the scene is superimosed on the image of the gas to aid in locating leaks. By further modeling excess gas as a plume having a known concentration profile, the present system provides an estimate of the maximum concentration of the gas of interest.

  12. Natural gas monthly, February 1998

    SciTech Connect

    1998-02-01

    This issue of the Natural Gas Monthly (NGM) presents the most recent estimates of natural gas data from the Energy Information Administration. Estimates extend through February 1998 for many data series, and through November 1997 for most natural gas prices. Highlights of the natural gas data contained in this issue are: Preliminary estimates for January and February 1998 show that dry natural gas production, net imports, and consumption are all within 1 percent of their levels in 1997. Warmer-than-normal weather in recent months has resulted in lower consumption of natural gas by the residential sector and lower net withdrawals of gas from under round storage facilities compared with a year ago. This has resulted in an estimate of the amount of working gas in storage at the end of February 1998 that is 18 percent higher than in February 1997. The national average natural gas wellhead price is estimated to be $3.05 per thousand cubic feet in November 1997, 7 percent higher than in October. The cumulative average wellhead price for January through November 1997 is estimated to be $2.42 per thousand cubic feet, 17 percent above that of the same period in 1996. This price increase is far less than 36-percent rise that occurred between 1995 and 1996. 6 figs., 26 tabs.

  13. Natural Gas Energy Educational Kit.

    ERIC Educational Resources Information Center

    American Gas Association, Arlington, VA. Educational Services.

    Prepared by energy experts and educators to introduce middle school and high school students to natural gas and its role in our society, this kit is designed to be incorporated into existing science and social studies curricula. The materials and activities focus on the origin, discovery, production, delivery, and use of natural gas. The role of

  14. Natural gas monthly, August 1990

    SciTech Connect

    Not Available

    1990-11-05

    This report highlights activities, events, and analyses of interest to public and private sector oganizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. 33 tabs.

  15. Natural gas monthly, July 1990

    SciTech Connect

    Not Available

    1990-10-03

    This report highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. A glossary is included. 7 figs., 33 tabs.

  16. Natural Gas Energy Educational Kit.

    ERIC Educational Resources Information Center

    American Gas Association, Arlington, VA. Educational Services.

    Prepared by energy experts and educators to introduce middle school and high school students to natural gas and its role in our society, this kit is designed to be incorporated into existing science and social studies curricula. The materials and activities focus on the origin, discovery, production, delivery, and use of natural gas. The role of…

  17. Natural Gas Industry and Markets

    EIA Publications

    2006-01-01

    This special report provides an overview of the supply and disposition of natural gas in 2004 and is intended as a supplement to the Energy Information Administration's (EIA) Natural Gas Annual 2004 (NGA). Unless otherwise stated, all data and figures in this report are based on summary statistics published in the NGA 2004.

  18. Natural gas monthly, December 1996

    SciTech Connect

    1996-12-01

    This document highlights activities, events, and analysis of interest to the public and private sector associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also included.

  19. 40 CFR 86.1511 - Exhaust gas analysis system.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Regulations for Otto-Cycle Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum... Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Light-Duty Trucks; Idle Test... 40 Protection of Environment 19 2010-07-01 2010-07-01 false Exhaust gas analysis system....

  20. Deaths involving natural gas inhalation.

    PubMed

    Maryam, Akhgari; Elham, Bazmi

    2010-07-01

    Death due to gas inhalation is accidental or suicidal. Natural gas can be a cause of death as a result of oxygen replacement in the atmosphere. Three male victims who were killed from gas inhalation are described in this study. One 19-year-old man attempted suicide using a combination of plastic bag suffocation and natural gas tube in his mouth. The other victim (24 years old man) attempted suicide by natural gas inhalation, and the cause of death of the third victim was inhalation of the vapor from a furnace that contained crude oil or gasoline. Methanol was detected in blood and liver samples by headspace gas chromatography (HSGC) and headspace gas chromatography-mass spectrometry (HSGCMS). Carboxyhemoglobin (CO-Hb) and other drugs and poisons were not detected in blood and liver samples. PMID:20430818

  1. Natural gas monthly - January 1996

    SciTech Connect

    1996-01-01

    This highlight discusses changes in natural gas supply, demand, and prices for the first three quarters of 1995 (January thru September) compared to the same periods in 1993 and 1994. Production for the first three quarters of 1995 lagged year-earlier levels while natural gas consumption has continued a steady upward movement. Total U.S. natural gas production through the first three quarters at 14.1 trillion cubic feet, was less than 1 percent below the 1994 period, but remained well ahead of the comparable 1993 period. The three leading producing States (Texas, Louisiana, and Oklahoma) contributed nearly 70 percent of the total. Natural gas consumption totaled 16.0 trillion cubic feet for the first three quarters, 4 percent above the same period in 1994. Net imports of natural gas reached 2.0 trillion cubic feet by the end of the third quarter 1995 and accounted for nearly 13 percent of total consumption during this period.

  2. Estimating household fuel oil/kerosine, natural gas, and LPG prices by census region

    SciTech Connect

    Poyer, D.A.; Teotia, A.P.S.

    1994-08-01

    The purpose of this research is to estimate individual fuel prices within the residential sector. The data from four US Department of Energy, Energy Information Administration, residential energy consumption surveys were used to estimate the models. For a number of important fuel types - fuel oil, natural gas, and liquefied petroleum gas - the estimation presents a problem because these fuels are not used by all households. Estimates obtained by using only data in which observed fuel prices are present would be biased. A correction for this self-selection bias is needed for estimating prices of these fuels. A literature search identified no past studies on application of the selectivity model for estimating prices of residential fuel oil/kerosine, natural gas, and liquefied petroleum gas. This report describes selectivity models that utilize the Dubin/McFadden correction method for estimating prices of residential fuel oil/kerosine, natural gas, and liquefied petroleum gas in the Northeast, Midwest, South, and West census regions. Statistically significant explanatory variables are identified and discussed in each of the models. This new application of the selectivity model should be of interest to energy policy makers, researchers, and academicians.

  3. 33 CFR 127.1203 - Gas detection.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Limit listed in 29 CFR 1910.1000, Table Z-1 or Z-2. (c) Each gas detector required by paragraph (a) or...) WATERFRONT FACILITIES WATERFRONT FACILITIES HANDLING LIQUEFIED NATURAL GAS AND LIQUEFIED HAZARDOUS GAS... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Gas detection. 127.1203...

  4. 78 FR 17189 - Trunkline LNG Export, LLC; Application for Long-Term Authorization to Export Liquefied Natural...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-20

    ... to the Regulation of Imported Natural Gas, 49 FR 6,684 (February 22, 1984) (``Policy Guidelines... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY... from Domestic Natural Gas Resources to Non-Free Trade Agreement Countries for a 25- Year Period...

  5. Natural Gas Hydrates Update 1998-2000

    EIA Publications

    2001-01-01

    Significant events have transpired on the natural gas hydrate research and development front since "Future Supply Potential of Natural Gas Hydrates" appeared in Natural Gas 1998 Issues and Trends and in the Potential Gas Committee's 1998 biennial report.

  6. Effects of Propane/Natural Gas Blended Fuels on Gas Turbine Pollutant Emissions

    SciTech Connect

    D. Straub; D. Ferguson; K. Casleton; G. Richards

    2006-03-01

    U.S. natural gas composition is expected to be more variable in the future. Liquefied natural gas (LNG) imports to the U.S. are expected to grow significantly over the next 10-15 years. Unconventional gas supplies, like coal-bed methane, are also expected to grow. As a result of these anticipated changes, the composition of fuel sources may vary significantly from existing domestic natural gas supplies. To allow the greatest use of gas supplies, end-use equipment should be able to accommodate the widest possible gas composition. For this reason, the effect of gas composition on combustion behavior is of interest. This paper will examine the effects of fuel variability on pollutant emissions for premixed gas turbine conditions. The experimental data presented in this paper have been collected from a pressurized single injector combustion test rig at the National Energy Technology Laboratory (NETL). The tests are conducted at 7.5 atm with a 589K air preheat. A propane blending facility is used to vary the Wobbe Index of the site natural gas. The results indicate that propane addition of about five (vol.) percent does not lead to a significant change in the observed NOx emissions. These results vary from data reported in the literature for some engine applications and potential reasons for these differences are discussed.

  7. Natural gas monthly, August 1996

    SciTech Connect

    1996-08-01

    This analysis presents the most recent data on natural gas prices, supply, and consumption from the Energy Information Administration (EIA). The presentation of the latest monthly data is followed by an update on natural gas markets. The markets section examines the behavior of daily spot and futures prices based on information from trade press, as well as regional, weekly data on natural gas storage from the American Gas Association (AGA). This {open_quotes}Highlights{close_quotes} closes with a special section comparing and contrasting EIA and AGA storage data on a monthly and regional basis. The regions used are those defined by the AGA for their weekly data collection effort: the Producing Region, the Consuming Region East, and the Consuming Region West. While data on working gas levels have tracked fairly closely between the two data sources, differences have developed recently. The largest difference is in estimates of working gas levels in the East consuming region during the heating season.

  8. Compressed natural gas measurement issues

    SciTech Connect

    Blazek, C.F.; Kinast, J.A.; Freeman, P.M.

    1993-12-31

    The Natural Gas Vehicle Coalition`s Measurement and Metering Task Group (MMTG) was established on July 1st, 1992 to develop suggested revisions to National Institute of Standards & Technology (NIST) Handbook 44-1992 (Specifications, Tolerances, and Other Technical Requirements for Weighing and Measuring Devices) and NIST Handbook 130-1991 (Uniform Laws & Regulations). Specifically, the suggested revisions will address the sale and measurement of compressed natural gas when sold as a motor vehicle fuel. This paper briefly discusses the activities of the MMTG and its interaction with NIST. The paper also discusses the Institute of Gas Technology`s (IGT) support of the MMTG in the area of natural gas composition, their impact on metering technology applicable to high pressure fueling stations as well as conversion factors for the establishment of ``gallon gasoline equivalent`` of natural gas. The final portion of this paper discusses IGT`s meter research activities and its meter test facility.

  9. Natural gas: The next shortage

    NASA Astrophysics Data System (ADS)

    Bell, Peter M.

    The eighth Annual Meeting of the Gas Research Institute that was held in Chicago in April 1984 focused on the potential of a crisis in the supply of natural gas. According to a report of discussions held at that meeting, Natural gas, the country's largest petrochemical feedstock, may be in short supply in a couple of years if some present forecasts prove true. The next supply/demand crisis for natural gas is likely to come in early 1986 [Chemical and Engineering News, April 30, 1984]. There are a number of variables, geologic and socio-economic, that may affect this prediction. An important factor is that drilling exploration of natural gas has decreased sharply, due to the onset of sharp rates of surplus since 1981. Drilling is highly sensitive to depth and flow rate.

  10. North American Natural Gas Markets

    SciTech Connect

    Not Available

    1989-02-01

    This report summarizes die research by an Energy Modeling Forum working group on the evolution of the North American natural gas markets between now and 2010. The group's findings are based partly on the results of a set of economic models of the natural gas industry that were run for four scenarios representing significantly different conditions: two oil price scenarios (upper and lower), a smaller total US resource base (low US resource case), and increased potential gas demand for electric generation (high US demand case). Several issues, such as the direction of regulatory policy and the size of the gas resource base, were analyzed separately without the use of models.

  11. 75 FR 13524 - Northern Natural Gas Company, Southern Natural Gas Company, Florida Gas Transmission Company, LLC...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-22

    ... Energy Regulatory Commission Northern Natural Gas Company, Southern Natural Gas Company, Florida Gas Transmission Company, LLC, Transcontinental Gas Pipe Line Company, LLC, Enterprise Field Services, LLC; Notice of Application March 16, 2010. Take notice that on March 5, 2010, Northern Natural Gas...

  12. Natural Gas Monthly August 1998

    SciTech Connect

    1998-08-01

    The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. Explanatory notes supplement the information found in tables of the report. A description of the data collection surveys that support the NGM is provided. A glossary of the terms used in this report is also provided to assist readers in understanding the data presented in this publication.

  13. Gas Hydrate Storage of Natural Gas

    SciTech Connect

    Rudy Rogers; John Etheridge

    2006-03-31

    Environmental and economic benefits could accrue from a safe, above-ground, natural-gas storage process allowing electric power plants to utilize natural gas for peak load demands; numerous other applications of a gas storage process exist. A laboratory study conducted in 1999 to determine the feasibility of a gas-hydrates storage process looked promising. The subsequent scale-up of the process was designed to preserve important features of the laboratory apparatus: (1) symmetry of hydrate accumulation, (2) favorable surface area to volume ratio, (3) heat exchanger surfaces serving as hydrate adsorption surfaces, (4) refrigeration system to remove heat liberated from bulk hydrate formation, (5) rapid hydrate formation in a non-stirred system, (6) hydrate self-packing, and (7) heat-exchanger/adsorption plates serving dual purposes to add or extract energy for hydrate formation or decomposition. The hydrate formation/storage/decomposition Proof-of-Concept (POC) pressure vessel and supporting equipment were designed, constructed, and tested. This final report details the design of the scaled POC gas-hydrate storage process, some comments on its fabrication and installation, checkout of the equipment, procedures for conducting the experimental tests, and the test results. The design, construction, and installation of the equipment were on budget target, as was the tests that were subsequently conducted. The budget proposed was met. The primary goal of storing 5000-scf of natural gas in the gas hydrates was exceeded in the final test, as 5289-scf of gas storage was achieved in 54.33 hours. After this 54.33-hour period, as pressure in the formation vessel declined, additional gas went into the hydrates until equilibrium pressure/temperature was reached, so that ultimately more than the 5289-scf storage was achieved. The time required to store the 5000-scf (48.1 hours of operating time) was longer than designed. The lower gas hydrate formation rate is attributed to a lower heat transfer rate in the internal heat exchanger than was designed. It is believed that the fins on the heat-exchanger tubes did not make proper contact with the tubes transporting the chilled glycol, and pairs of fins were too close for interior areas of fins to serve as hydrate collection sites. A correction of the fabrication fault in the heat exchanger fin attachments could be easily made to provide faster formation rates. The storage success with the POC process provides valuable information for making the process an economically viable process for safe, aboveground natural-gas storage.

  14. Natural gas monthly, November 1997

    SciTech Connect

    1997-11-01

    This issue of the Natural Gas Monthly presents the most recent estimates of natural gas data from the Energy Information Administration. Estimates extend through November for many data series, and through August for most natural gas prices. Highlights of the most recent data estimates are: (1) Preliminary estimates of dry natural gas production and total consumption available through November 1997 indicate that both series are on track to end the year at levels close to those of 1996. Cumulative dry production is one-half percent higher than in 1996 and consumption is one-half percent lower. (2) Natural gas production is estimated to be 52.6 billion cubic feet per day in November 1997, the highest rate since March 1997. (3) After falling 8 percent in July 1997, the national average wellhead price rose 10 percent in August 1997, reaching an estimated $2.21 per thousand cubic feet. (4) Milder weather in November 1997 compared to November 1996 has resulted in significantly lower levels of residential consumption of natural gas and net storage withdrawls than a year ago. The November 1997 estimates of residential consumption and net withdrawls are 9 and 20 percent lower, respectively, than in November 1996.

  15. Chemical analysis and ozone formation potential of exhaust from dual-fuel (liquefied petroleum gas/gasoline) light duty vehicles

    NASA Astrophysics Data System (ADS)

    Adam, T. W.; Astorga, C.; Clairotte, M.; Duane, M.; Elsasser, M.; Krasenbrink, A.; Larsen, B. R.; Manfredi, U.; Martini, G.; Montero, L.; Sklorz, M.; Zimmermann, R.; Perujo, A.

    2011-06-01

    Measures must be undertaken to lower the transport sector's contribution to anthropogenic emissions. Vehicles powered by liquefied petroleum gas (LPG) are an option due to their reduced emissions of air pollutants compared to engines with conventional fuels. In the present study, ten different dual-fuel LPG/gasoline light duty vehicles were tested, which all complied with European emission level legislation EURO-4. Tests with LPG and gasoline were performed on a chassis dynamometer by applying the New European Driving Cycle (NEDC) and emission factors and ozone formation potentials of both kinds of fuels were compared. The components investigated comprised regulated compounds, CO 2, volatile hydrocarbons and carbonyls. On-line analysis of aromatic species was carried out by resonance-enhanced multiphoton ionization-time-of-flight mass spectrometry (REMPI-TOFMS). We demonstrate that utilization of LPG can entail some environmental benefits by reducing emissions. However, for dual-fuel LPG/gasoline vehicles running on LPG the benefits are less than expected. The main reason is that dual-fuel vehicles usually start the engine up on gasoline even when LPG is selected as fuel. This cold-start phase is crucial for the quality of the emissions. Moreover, we demonstrate an influence on the chemical composition of emissions of vehicle performance, fuel and the evaporative emission system of the vehicles.

  16. Simultaneous boiling and spreading of liquefied petroleum gas on water. Final report, December 12, 1978-March 31, 1981

    SciTech Connect

    Chang, H.R.; Reid, R.C.

    1981-04-01

    An experimental and theoretical investigation was carried out to study the boiling and spreading of liquid nitrogen, liquid methane and liquefied petroleum gas (LPG) on water in a one-dimensional configuration. Primary emphasis was placed on the LPG studies. Experimental work involved the design and construction of a spill/spread/boil apparatus which permitted the measurement of spreading and local boil-off rates. With the equations of continuity and momentum transfer, a mathematical model was developed to describe the boiling-spreading phenomena of cryogens spilled on water. The model accounted for a decrease in the density of the cryogenic liquid due to bubble formation. The boiling and spreading rates of LPG were found to be the same as those of pure propane. An LPG spill was characterized by the very rapid and violent boiling initially and highly irregular ice formation on the water surface. The measured local boil-off rates of LPG agreed reasonably well with theoretical predictions from a moving boundary heat transfer model. The spreading velocity of an LPG spill was found to be constant and determined by the size of the distributor opening. The maximum spreading distance was found to be unaffected by the spilling rate. These observations can be explained by assuming that the ice formation on the water surface controls the spreading of LPG spills. While the mathematical model did not predict the spreading front adequately, it predicted the maximum spreading distance reasonably well.

  17. On-board measurement of emissions from liquefied petroleum gas, gasoline and diesel powered passenger cars in Algeria.

    PubMed

    Chikhi, Saâdane; Boughedaoui, Ménouèr; Kerbachi, Rabah; Joumard, Robert

    2014-08-01

    On-board measurements of unit emissions of CO, HC, NOx and CO₂ were conducted on 17 private cars powered by different types of fuels including gasoline, dual gasoline-liquefied petroleum gas (LPG), gasoline, and diesel. The tests performed revealed the effect of LPG injection technology on unit emissions and made it possible to compare the measured emissions to the European Artemis emission model. A sequential multipoint injection LPG kit with no catalyst installed was found to be the most efficient pollutant reduction device for all of the pollutants, with the exception of the NOx. Specific test results for a sub-group of LPG vehicles revealed that LPG-fueled engines with no catalyst cannot compete with catalyzed gasoline and diesel engines. Vehicle age does not appear to be a determining parameter with regard to vehicle pollutant emissions. A fuel switch to LPG offers many advantages as far as pollutant emissions are concerned, due to LPG's intrinsic characteristics. However, these advantages are being rapidly offset by the strong development of both gasoline and diesel engine technologies and catalyst converters. The LPG's performance on a chassis dynamometer under real driving conditions was better than expected. The enforcement of pollutant emission standards in developing countries is an important step towards introducing clean technology and reducing vehicle emissions. PMID:25108721

  18. Liquefied Gaseous Fuels Safety and Environmental Control Assessment Program: second status report

    SciTech Connect

    Not Available

    1980-10-01

    The Assistant Secretary for Environment has responsibility for identifying, characterizing, and ameliorating the environmental, health, and safety issues and public concerns associated with commercial operation of specific energy systems. The need for developing a safety and environmental control assessment for liquefied gaseous fuels was identified by the Environmental and Safety Engineering Division as a result of discussions with various governmental, industry, and academic persons having expertise with respect to the particular materials involved: liquefied natural gas, liquefied petroleum gas, hydrogen, and anhydrous ammonia. This document is arranged in three volumes and reports on progress in the Liquefied Gaseous Fuels (LGF) Safety and Environmental Control Assessment Program made in Fiscal Year (FY)-1979 and early FY-1980. Volume 1 (Executive Summary) describes the background, purpose and organization of the LGF Program and contains summaries of the 25 reports presented in Volumes 2 and 3. Annotated bibliographies on Liquefied Natural Gas (LNG) Safety and Environmental Control Research and on Fire Safety and Hazards of Liquefied Petroleum Gas (LPG) are included in Volume 1.

  19. 33 CFR 127.1203 - Gas detection.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Limit listed in 29 CFR 1910.1000, Table Z-1 or Z-2. (c) Each gas detector required by paragraph (a) or... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Gas detection. 127.1203 Section...) WATERFRONT FACILITIES WATERFRONT FACILITIES HANDLING LIQUEFIED NATURAL GAS AND LIQUEFIED HAZARDOUS...

  20. 33 CFR 127.1203 - Gas detection.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Limit listed in 29 CFR 1910.1000, Table Z-1 or Z-2. (c) Each gas detector required by paragraph (a) or... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Gas detection. 127.1203 Section...) WATERFRONT FACILITIES WATERFRONT FACILITIES HANDLING LIQUEFIED NATURAL GAS AND LIQUEFIED HAZARDOUS...

  1. 33 CFR 127.1203 - Gas detection.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Limit listed in 29 CFR 1910.1000, Table Z-1 or Z-2. (c) Each gas detector required by paragraph (a) or... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Gas detection. 127.1203 Section...) WATERFRONT FACILITIES WATERFRONT FACILITIES HANDLING LIQUEFIED NATURAL GAS AND LIQUEFIED HAZARDOUS...

  2. Apparatus For The Liquefaaction Of Natural Gas And Methods Relating To Same

    DOEpatents

    Wilding, Bruce M.; Bingham, Dennis N.; McKellar, Michael G.; Turner, Terry D.; Raterman, Kevin T.; Palmer, Gary L.; Klingler, Kerry M.; Vranicar, John J.

    2005-05-03

    An apparatus and method for producing liquefied natural gas. A liquefaction plant may be coupled to a source of unpurified natural gas, such as a natural gas pipeline at a pressure letdown station. A portion of the gas is drawn off and split into a process stream and a cooling stream. The cooling stream passes through a turbo expander creating work output. A compressor is driven by the work output and compresses the process stream. The compressed process stream is cooled, such as by the expanded cooling stream. The cooled, compressed process stream is divided into first and second portions with the first portion being expanded to liquefy the natural gas. A gas-liquid separator separates the vapor from the liquid natural gas. The second portion of the cooled, compressed process stream is also expanded and used to cool the compressed process stream. Additional features and techniques may be integrated with the liquefaction process including a water clean-up cycle and a carbon dioxide (CO2) clean-up cycle.

  3. Apparatus For The Liquefaaction Of Natural Gas And Methods Relating To Same

    DOEpatents

    Wilding, Bruce M.; Bingham, Dennis N.; McKellar, Michael G.; Turner, Terry D.; Raterman, Kevin T.; Palmer, Gary L.; Klingler, Kerry M.; Vranicar, John J.

    2003-06-24

    An apparatus and method for producing liquefied natural gas. A liquefaction plant may be coupled to a source of unpurified natural gas, such as a natural gas pipeline at a pressure letdown station. A portion of the gas is drawn off and split into a process stream and a cooling stream. The cooling stream passes through a turbo expander creating work output. A compressor is driven by the work output and compresses the process stream. The compressed process stream is cooled, such as by the expanded cooling stream. The cooled, compressed process stream is divided into first and second portions with the first portion being expanded to liquefy the natural gas. A gas-liquid separator separates the vapor from the liquid natural gas. The second portion of the cooled, compressed process stream is also expanded and used to cool the compressed process stream. Additional features and techniques may be integrated with the liquefaction process including a water clean-up cycle and a carbon dioxide (CO.sub.2) clean-up cycle.

  4. Apparatus For The Liquefaaction Of Natural Gas And Methods Relating To Same

    DOEpatents

    Wilding, Bruce M.; Bingham, Dennis N.; McKellar, Michael G.; Turner, Terry D.; Rateman, Kevin T.; Palmer, Gary L.; Klinger, Kerry M.; Vranicar, John J.

    2005-11-08

    An apparatus and method for producing liquefied natural gas. A liquefaction plant may be coupled to a source of unpurified natural gas, such as a natural gas pipeline at a pressure letdown station. A portion of the gas is drawn off and split into a process stream and a cooling stream. The cooling stream passes through a turbo expander creating work output. A compressor is driven by the work output and compresses the process stream. The compressed process stream is cooled, such as by the expanded cooling stream. The cooled, compressed process stream is divided into first and second portions with the first portion being expanded to liquefy the natural gas. A gas-liquid separator separates the vapor from the liquid natural gas. The second portion of the cooled, compressed process stream is also expanded and used to cool the compressed process stream. Additional features and techniques may be integrated with the liquefaction process including a water clean-up cycle and a carbon dioxide (CO2) clean-up cycle.

  5. Apparatus for the liquefaction of natural gas and methods relating to same

    SciTech Connect

    Wilding, Bruce M.; Bingham, Dennis N.; McKellar, Michael G.; Turner, Terry D.; Raterman, Kevin T.; Palmer, Gary L.; Klingler, Kerry M.; Vranicar, John J.

    2007-05-22

    An apparatus and method for producing liquefied natural gas. A liquefaction plant may be coupled to a source of unpurified natural gas, such as a natural gas pipeline at a pressure letdown station. A portion of the gas is drawn off and split into a process stream and a cooling stream. The cooling stream passes through a turbo expander creating work output. A compressor is driven by the work output and compresses the process stream. The compressed process stream is cooled, such as by the expanded cooling stream. The cooled, compressed process stream is divided into first and second portions with the first portion being expanded to liquefy the natural gas. A gas-liquid separator separates the vapor from the liquid natural gas. The second portion of the cooled, compressed process stream is also expanded and used to cool the compressed process stream. Additional features and techniques may be integrated with the liquefaction process including a water clean-up cycle and a carbon dioxide (CO.sub.2) clean-up cycle.

  6. Risk analysis and decision processes: The siting of liquefied gas facilities in four countries

    SciTech Connect

    Kunreuther, H.C.; Linnerooth, J.

    1983-01-01

    This book investigates the decision processes for siting liquified energy gas facilities in West Germany, The Netherlands, the United Kingdom, and the United States. It considers the role of risk analysis in such decisions. The problems with cultural and political structure in these cases are included.

  7. Natural gas monthly, March 1999

    SciTech Connect

    1999-03-01

    This issue of the Natural Gas Monthly contains estimates for March 1999 for many natural gas data series at the national level. Estimates of national natural gas prices are available through December 1998 for most series. Highlights of the data contained in this issue are listed below. Preliminary data indicate that the national average wellhead price for 1998 declined to 16% from the previous year ($1.96 compared to $2.32 per thousand cubic feet). At the end of March, the end of the 1998--1999 heating season, the level of working gas in underground natural gas storage facilities is estimated to be 1,354 billion cubic feet, 169 billion cubic feet higher than at the end of March 1998. Gas consumption during the first 3 months of 1999 is estimated to have been 179 billion cubic feet higher than in the same period in 1998. Most of this increase (133 billion cubic feet) occurred in the residential sector due to the cooler temperatures in January and February compared to the same months last year. According to the National Weather Service, heating degree days in January 1999 were 15% greater than the previous year while February recorded a 5% increase.

  8. Effects of Propane/Natural Gas Blended Fuels on Gas Turbine Pollutant Emissions

    SciTech Connect

    Straub, D.L.; Ferguson, D.H.; Casleton, K.H.; Richards, G.A.

    2007-03-01

    Liquefied natural gas (LNG) imports to the U.S. are expected to grow significantly over the next 10-15 years. Likewise, it is expected that changes to the domestic gas supply may also introduce changes in natural gas composition. As a result of these anticipated changes, the composition of fuel sources may vary significantly from conventional domestic natural gas supplies. This paper will examine the effects of fuel variability on pollutant emissions for premixed gas turbine conditions. The experimental data presented in this paper have been collected from a pressurized single injector combustion test rig at the National Energy Technology Laboratory (NETL). The tests are conducted at 7.5 atm with a 588 K air preheat. A propane blending facility is used to vary the Wobbe Index of the site natural gas. The results indicate that propane addition of about five (vol.) percent does not lead to a significant change in the observed NOx or CO emissions. These results are different from data collected on some engine applications and potential reasons for these differences will be described.

  9. Small Helium Liquefiers Using 4 K Pulse Tube Cryocoolers

    NASA Astrophysics Data System (ADS)

    Wang, C.

    2006-04-01

    Two small helium liquefiers using 4 K pulse tube cryocooler have been developed and commercialized at Cryomech, Inc. Model PT405 and PT410 pulse tube cryocoolers used for the liquefiers have cooling capacities of 0.5 W and 1.0 W at 4.2 K respectively. One distinctive advantage of the pulse tube liquefiers is efficient precooling of helium gas to be liquefied with the 1st stage heat exchanger and the 2nd stage regenerator of the cold head. The liquefier with the PT405 liquefies helium from room temperature at a rate of 7.2 Liter/day for 4.6 kW power input. The liquefier with the PT410 has a liquefaction rate of 14.0 liter/day for 8.0 kW power input. The helium liquefiers have been used for a few challenging applications to liquefy and re-condense helium.

  10. Mutagenic/carcinogenic agents in indoor pollutants; the dinitropyrenes generated by kerosene heaters and fuel gas and liquefied petroleum gas burners.

    PubMed

    Tokiwa, H; Nakagawa, R; Horikawa, K

    1985-07-01

    Incomplete combustion of kerosene heater, and fuel gas and liquefied petroleum gas-burner emissions produces indoor pollutants that may be carcinogenic. The incomplete-combustion products from each type of appliance were therefore collected by adsorption on about 3 g of XAD-2 resin, and were extracted with benzene-methanol as a solvent for determination and identification of mutagens in the Salmonella-microsome test system. Benzene-methanol extracts of the particulates generated by a heater and two burners showed extreme mutagenicity for strains TA97 and TA98 without S9 mix. Based on the results of analysis, a combination of high performance liquid chromatography (h.p.l.c.) and gas chromatography (GC), about 40-80% of the direct-acting mutagenicity in each crude extract showed the same h.p.l.c. and GC retention times as dinitropyrenes (1,3-, 1,6- and 1,8-isomers), and 1-nitropyrene. Moreover, other nitroarenes, 2-nitrofluorene, 1,5- and 1,8-dinitronaphthalene, and 4,4'-dinitrobiphenyl, were detectable in almost all samples, but their contribution to the mutagenicity of each extract was very low. Kerosene heaters were found to generate small amounts (0.2 ng/h) of dinitropyrenes, which are potential mutagens/carcinogens, only after 1 h of operation. PMID:3892284

  11. On-road remote sensing of liquefied petroleum gas (LPG) vehicle emissions measurement and emission factors estimation

    NASA Astrophysics Data System (ADS)

    Ning, Z.; Chan, T. L.

    In the present study, the real-world on-road liquefied petroleum gas (LPG) vehicle/taxi emissions of carbon monoxide (CO), hydrocarbon (HC) and nitric oxide (NO) were investigated. A regression analysis approach based on the measured LPG vehicle emission data was also used to estimate the on-road LPG vehicle emission factors of CO, HC and NO with respect to the effects of instantaneous vehicle speed and acceleration/deceleration profiles for local urban driving patterns. The results show that the LPG vehicle model years and driving patterns have a strong correlation to their emission factors. A unique correlation of LPG vehicle emission factors (i.e., g km -1 and g l -1) on different model years for urban driving patterns has been established. Finally, a comparison was made between the average LPG, and petrol [Chan, T.L., Ning, Z., Leung, C.W., Cheung, C.S., Hung, W.T., Dong, G., 2004. On-road remote sensing of petrol vehicle emissions measurement and emission factors estimation in Hong Kong. Atmospheric Environment 38, 2055-2066 and 3541] and diesel [Chan, T.L., Ning, Z., 2005. On-road remote sensing of diesel vehicle emissions measurement and emission factors estimation in Hong Kong. Atmospheric Environment 39, 6843-6856] vehicle emission factors. It has shown that the introduction of the replacement of diesel taxis to LPG taxis has alleviated effectively the urban street air pollution. However, it has demonstrated that proper maintenance on the aged LPG taxis should also be taken into consideration.

  12. Total fuel-cycle analysis of heavy-duty vehicles using biofuels and natural gas-based alternative fuels.

    PubMed

    Meyer, Patrick E; Green, Erin H; Corbett, James J; Mas, Carl; Winebrake, James J

    2011-03-01

    Heavy-duty vehicles (HDVs) present a growing energy and environmental concern worldwide. These vehicles rely almost entirely on diesel fuel for propulsion and create problems associated with local pollution, climate change, and energy security. Given these problems and the expected global expansion of HDVs in transportation sectors, industry and governments are pursuing biofuels and natural gas as potential alternative fuels for HDVs. Using recent lifecycle datasets, this paper evaluates the energy and emissions impacts of these fuels in the HDV sector by conducting a total fuel-cycle (TFC) analysis for Class 8 HDVs for six fuel pathways: (1) petroleum to ultra low sulfur diesel; (2) petroleum and soyoil to biodiesel (methyl soy ester); (3) petroleum, ethanol, and oxygenate to e-diesel; (4) petroleum and natural gas to Fischer-Tropsch diesel; (5) natural gas to compressed natural gas; and (6) natural gas to liquefied natural gas. TFC emissions are evaluated for three greenhouse gases (GHGs) (carbon dioxide, nitrous oxide, and methane) and five other pollutants (volatile organic compounds, carbon monoxide, nitrogen oxides, particulate matter, and sulfur oxides), along with estimates of total energy and petroleum consumption associated with each of the six fuel pathways. Results show definite advantages with biodiesel and compressed natural gas for most pollutants, negligible benefits for e-diesel, and increased GHG emissions for liquefied natural gas and Fischer-Tropsch diesel (from natural gas). PMID:21416755

  13. Liquefaction of natural gas to methanol for shipping and storage

    SciTech Connect

    O'Hare, T.E.; Sapienza, R.S.; Mahajan, D.; Skaperdas, G.T.

    1986-07-01

    The penetration of natural gas into distant markets can be substantially increased by a new methanol synthesis process under development at the Brookhaven National Laboratory. The new methanol process is made possible by the discovery of a catalyst that drops synthesis temperatures from about 275/sup 0/C to about 100/sup 0/C. The new low temperature liquid catalyst can convert synthesis gas completely to methanol in a single pass through the methanol synthesis reactor. This characteristic leads to a further major improvement in the methanol plant. As a result of process design factors made possible by the BNL catalyst, the plant required to convert natural gas to methanol is very simple. Conversion of natural gas to methanol requires two chemical reactions, both of which are exothermic, and thus represent a loss of heating value in the feed natural gas. This loss is about 20% of the feed gas energy, and is, therefore, higher than the 10% loss in energy in natural gas liquefaction, which is a simpler physical - not a chemical - change. The energy disadvantage of the methanol option must be balanced against the advantage of a much lower capital investment requirement made possible by the new BNL synthesis. Preliminary estimates show that methanol conversion and shipping require an investment for liquefaction to methanol, and shipping liquefied methanol that can range from 35 to 50% of the capital needed for the LNG plant and LNG tanker fleet. This large reduction in capital requirements is expected to make liquefaction to methanol attractive in many cases where the LNG capital needs are prohibitive. 3 tabs.

  14. Nitrogen removal from natural gas

    SciTech Connect

    1997-04-01

    According to a 1991 Energy Information Administration estimate, U.S. reserves of natural gas are about 165 trillion cubic feet (TCF). To meet the long-term demand for natural gas, new gas fields from these reserves will have to be developed. Gas Research Institute studies reveal that 14% (or about 19 TCF) of known reserves in the United States are subquality due to high nitrogen content. Nitrogen-contaminated natural gas has a low Btu value and must be upgraded by removing the nitrogen. In response to the problem, the Department of Energy is seeking innovative, efficient nitrogen-removal methods. Membrane processes have been considered for natural gas denitrogenation. The challenge, not yet overcome, is to develop membranes with the required nitrogen/methane separation characteristics. Our calculations show that a methane-permeable membrane with a methane/nitrogen selectivity of 4 to 6 would make denitrogenation by a membrane process viable. The objective of Phase I of this project was to show that membranes with this target selectivity can be developed, and that the economics of the process based on these membranes would be competitive. Gas permeation measurements with membranes prepared from two rubbery polymers and a superglassy polymer showed that two of these materials had the target selectivity of 4 to 6 when operated at temperatures below - 20{degrees}C. An economic analysis showed that a process based on these membranes is competitive with other technologies for small streams containing less than 10% nitrogen. Hybrid designs combining membranes with other technologies are suitable for high-flow, higher-nitrogen-content streams.

  15. 75 FR 42432 - Northern Natural Gas Company, Southern Natural Gas Company, Florida Gas Transmission Company, LLC...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-21

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Northern Natural Gas Company, Southern Natural Gas Company, Florida Gas Transmission Company, LLC, Transcontinental Gas Pipe Line Company, LLC, and Enterprise Field Services, LLC; Notice of Intent To Prepare...

  16. Apparatus and method for gelling liquefied gasses

    NASA Technical Reports Server (NTRS)

    Elliott, Adam (Inventor); DiSalvo, Roberto (Inventor); Shepherd, Phillip (Inventor); Kosier, Ryan (Inventor)

    2011-01-01

    A method and apparatus for gelling liquid propane and other liquefied gasses includes a temperature controlled churn mixer, vacuum pump, liquefied gas transfer tank, and means for measuring amount of material entering the mixer. The apparatus and method are particularly useful for the production of high quality rocket fuels and propellants.

  17. High-throughput investigation of catalysts for JP-8 fuel cracking to liquefied petroleum gas.

    PubMed

    Bedenbaugh, John E; Kim, Sungtak; Sasmaz, Erdem; Lauterbach, Jochen

    2013-09-01

    Portable power technologies for military applications necessitate the production of fuels similar to LPG from existing feedstocks. Catalytic cracking of military jet fuel to form a mixture of C₂-C₄ hydrocarbons was investigated using high-throughput experimentation. Cracking experiments were performed in a gas-phase, 16-sample high-throughput reactor. Zeolite ZSM-5 catalysts with low Si/Al ratios (≤25) demonstrated the highest production of C₂-C₄ hydrocarbons at moderate reaction temperatures (623-823 K). ZSM-5 catalysts were optimized for JP-8 cracking activity to LPG through varying reaction temperature and framework Si/Al ratio. The reducing atmosphere required during catalytic cracking resulted in coking of the catalyst and a commensurate decrease in conversion rate. Rare earth metal promoters for ZSM-5 catalysts were screened to reduce coking deactivation rates, while noble metal promoters reduced onset temperatures for coke burnoff regeneration. PMID:23879196

  18. 75 FR 53371 - Liquefied Natural Gas Facilities: Obtaining Approval of Alternative Vapor-Gas Dispersion Models

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-31

    ... temperature and/or turbulence profiles may be invoked at the upwind boundary or if forcing functions may be..., Porosity- ] Distributed Resistance methodology, etc). 6. Section 2.3.1.5 Turbulence Modeling should describe and clearly state the limitation of the model related to its ability to model...

  19. Staff Handbook on Natural Gas.

    ERIC Educational Resources Information Center

    Gorges, H. A., Ed.; Raine, L. P., Ed.

    The Department of Commerce created a Natural Gas Action Group early in the fall of 1975 to assist industrial firms and the communities they serve to cope with the effects of potentially severe and crippling curtailment situations. This action group was trained to assess a specific local situation, review the potential for remedial action and…

  20. EIA's Natural Gas Production Data

    EIA Publications

    2009-01-01

    This special report examines the stages of natural gas processing from the wellhead to the pipeline network through which the raw product becomes ready for transportation and eventual consumption, and how this sequence is reflected in the data published by the Energy Information Administration (EIA).

  1. Natural Gas Multi-Year Program Plan

    SciTech Connect

    1997-12-01

    This document comprises the Department of Energy (DOE) Natural Gas Multi-Year Program Plan, and is a follow-up to the `Natural Gas Strategic Plan and Program Crosscut Plans,` dated July 1995. DOE`s natural gas programs are aimed at simultaneously meeting our national energy needs, reducing oil imports, protecting our environment, and improving our economy. The Natural Gas Multi-Year Program Plan represents a Department-wide effort on expanded development and use of natural gas and defines Federal government and US industry roles in partnering to accomplish defined strategic goals. The four overarching goals of the Natural Gas Program are to: (1) foster development of advanced natural gas technologies, (2) encourage adoption of advanced natural gas technologies in new and existing markets, (3) support removal of policy impediments to natural gas use in new and existing markets, and (4) foster technologies and policies to maximize environmental benefits of natural gas use.

  2. Detecting Liquefied Petroleum Gas (LPG) at Room Temperature Using ZnSnO3/ZnO Nanowire Piezo-Nanogenerator as Self-Powered Gas Sensor.

    PubMed

    Fu, Yongming; Nie, Yuxin; Zhao, Yayu; Wang, Penglei; Xing, Lili; Zhang, Yan; Xue, Xinyu

    2015-05-20

    High sensitivity, selectivity, and reliability have been achieved from ZnSnO3/ZnO nanowire (NW) piezo-nanogenerator (NG) as self-powered gas sensor (SPGS) for detecting liquefied petroleum gas (LPG) at room temperature (RT). After being exposed to 8000 ppm LPG, the output piezo-voltage of ZnSnO3/ZnO NW SPGS under compressive deformation is 0.089 V, much smaller than that in air ambience (0.533 V). The sensitivity of the SPGS against 8000 ppm LPG is up to 83.23, and the low limit of detection is 600 ppm. The SPGS has lower sensitivity against H2S, H2, ethanol, methanol and saturated water vapor than LPG, indicating good selectivity for detecting LPG. After two months, the decline of the sensing performance is less than 6%. Such piezo-LPG sensing at RT can be ascribed to the new piezo-surface coupling effect of ZnSnO3/ZnO nanocomposites. The practical application of the device driven by human motion has also been simply demonstrated. This work provides a novel approach to fabricate RT-LPG sensors and promotes the development of self-powered sensing system. PMID:25915174

  3. 77 FR 55197 - LNG Development Company, LLC; Application for Long-Term Authorization To Export Liquefied Natural...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-07

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY LNG... From Canadian and Domestic Natural Gas Resources to Non-Free Trade Agreement Countries for a 25-Year Period AGENCY: Office of Fossil Energy, DOE. ACTION: Notice of application. SUMMARY: The Office of...

  4. 77 FR 63806 - Southern LNG Company, L.L.C.; Application for Long-Term Authorization To Export Liquefied Natural...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-17

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY... Produced From Domestic Natural Gas Resources to Non-Free Trade Agreement Countries for a 20- Year Period AGENCY: Office of Fossil Energy, DOE. ACTION: Notice of application. SUMMARY: The Office of Fossil...

  5. Flexible LNG supply, storage and price formation in a global natural gas market

    NASA Astrophysics Data System (ADS)

    Hayes, Mark Hanley

    The body of work included in this dissertation explores the interaction of the growing, flexible liquefied natural gas (LNG) trade with the fundamentals of pipeline gas supply, gas storage, and gas consumption. By nature of its uses---largely for residential heating and electric power generation---the consumption of natural gas is highly variable both seasonally and on less predictable daily and weekly timescales. Flexible LNG trade will interconnect previously isolated regional gas markets, each with non-correlated variability in gas demand, differing gas storage costs, and heterogeneous institutional structures. The dissertation employs a series of analytical models to address key issues that will affect the expansion of the LNG trade and the implications for gas prices, investment and energy policy. First, I employ an optimization model to evaluate the fundamentals of seasonal LNG swing between markets with non-correlated gas demand (the U.S. and Europe). The model provides insights about the interaction of LNG trade with gas storage and price formation in interconnected regional markets. I then explore how random (stochastic) variability in gas demand will drive spot cargo movements and covariation in regional gas prices. Finally, I analyze the different institutional structures of the gas markets in the U.S. and Europe and consider how managed gas markets in Europe---without a competitive wholesale gas market---may effectively "export" supply and price volatility to countries with more competitive gas markets, such as the U.S.

  6. 33 CFR 127.203 - Portable gas detectors.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Portable gas detectors. 127.203 Section 127.203 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) WATERFRONT FACILITIES WATERFRONT FACILITIES HANDLING LIQUEFIED NATURAL GAS AND LIQUEFIED HAZARDOUS GAS Waterfront Facilities Handling...

  7. Adsorbed Natural Gas Storage in Optimized High Surface Area Microporous Carbon

    NASA Astrophysics Data System (ADS)

    Romanos, Jimmy; Rash, Tyler; Nordwald, Erik; Shocklee, Joshua Shawn; Wexler, Carlos; Pfeifer, Peter

    2011-03-01

    Adsorbed natural gas (ANG) is an attractive alternative technology to compressed natural gas (CNG) or liquefied natural gas (LNG) for the efficient storage of natural gas, in particular for vehicular applications. In adsorbants engineered to have pores of a few molecular diameters, a strong van der Walls force allows reversible physisorption of methane at low pressures and room temperature. Activated carbons were optimized for storage by varying KOH:C ratio and activation temperature. We also consider the effect of mechanical compression of powders to further enhance the volumetric storage capacity. We will present standard porous material characterization (BET surface area and pore-size distribution from subcritical N2 adsorption) and methane isotherms up to 250 bar at 293K. At sufficiently high pressure, specific surface area, methane binding energy and film density can be extracted from supercritical methane adsorption isotherms. Research supported by the California Energy Commission (500-08-022).

  8. Pipeline accident report: Columbia Liquified Natural Gas Corporation Explosion and Fire, Cove Point, Maryland, October 6, 1979

    SciTech Connect

    Not Available

    1980-04-16

    About 3:35 a.m., e.d.t., an explosion caused by liquefied natural gas vapors destroyed a transformer building at the reception facility of the Columbia LNG Corporation, Cove Point, Maryland. Odorless liquefied natural gas leaked through an inadequately tightened LNG pump seal, vaporized, passed through approximately 210 ft of underground electrical conduit, and entered the substation building. One person was killed and one person was seriously injured. Damage to the facility was estimated at about $3 million. The National Transportation Safety Board determines that the probable cause of the accident was LNG which leaked through an inadequately tightened LNG pump seal, vaporized, and migrated through a 3-in. conduit, into a substation building where the vaporized LNG-air mixture was ignited by the arcing contacts of a circuit breaker interlock. Contributing to the accident was the absence of any combustible gas indicator to detect and warn personnel of the presence of flammable vapors in the building.

  9. Liquified natural gas conversion process

    SciTech Connect

    Gordonouin, O.M.

    1988-08-02

    A process for the conversion of the paraffinic hydrocarbon components of Liquified Natural Gas (LNG), of carbon number 1 or 2, into an aromatics-rich liquid mixture of hydrocarbons having a number of carbon atoms greater than 3, and into a hydrogen-rich gaseous by-product is described comprising the following steps: (a) revaporization into a gaseous phase of LNG in heat exchangers receiving the hot gaseous effluents from a short residence time catalytic reactor wherein the catalyst consists essentially of actinide and lanthanide elements in combustion with gallium and zirconium, (b) pre-heating of the gaseous phase stream, and of the recycled gas stream in a furnace, (c) reaction between an ionized hydrogen plasma and the mixture of the preheated gas stream of LNG and the recycled gas stream, in the presence of a catalyst in a short residence time reactor, (d) separation of the solid particles of the catalyst from the stream of gaseous products of the reactor, (e) removal of hydrogen and light hydrocarbons products of carbon number less than 3 from the gaseous product stream in a separation unit utilizing as cooling fluids low temperature streams derived from LNG, (f) recycling the recycled gas stream of light hydrocarbons to the furnace and reactor, and (g) regeneration of the catalyst by combustion of the coke deposited on the catalyst, with an oxidizing stream.

  10. Meeting Asia's future gas import demand with stranded natural gas from central Asia, Russia, Southeast Asia, and Australia

    USGS Publications Warehouse

    Attanasi, E.D.; Freeman, P.A.

    2013-01-01

    This analysis shows the important contribution that stranded gas from central Asia, Russia, Southeast Asia, and Australia can make in meeting the projected demand for gas imports of China, India, Japan, and South Korea from 2020 to 2040. The estimated delivered costs of pipeline gas from stranded fields in Russia and central Asia at Shanghai, China, are generally less than delivered costs of liquefied natural gas (LNG). Australia and Malaysia are initially the lowest-cost LNG suppliers. In the concluding section, it is argued that Asian LNG demand is price sensitive, and that current Asian LNG pricing procedures are unlikely to be sustainable for gas import demand to attain maximum potential growth. Resource volumes in stranded fields evaluated can nearly meet projected import demands.

  11. Methods of natural gas liquefaction and natural gas liquefaction plants utilizing multiple and varying gas streams

    DOEpatents

    Wilding, Bruce M; Turner, Terry D

    2014-12-02

    A method of natural gas liquefaction may include cooling a gaseous NG process stream to form a liquid NG process stream. The method may further include directing the first tail gas stream out of a plant at a first pressure and directing a second tail gas stream out of the plant at a second pressure. An additional method of natural gas liquefaction may include separating CO.sub.2 from a liquid NG process stream and processing the CO.sub.2 to provide a CO.sub.2 product stream. Another method of natural gas liquefaction may include combining a marginal gaseous NG process stream with a secondary substantially pure NG stream to provide an improved gaseous NG process stream. Additionally, a NG liquefaction plant may include a first tail gas outlet, and at least a second tail gas outlet, the at least a second tail gas outlet separate from the first tail gas outlet.

  12. Apparatus for dispensing compressed natural gas and liquified natural gas to natural gas powered vehicles

    DOEpatents

    Bingham, Dennis A.; Clark, Michael L.; Wilding, Bruce M.; Palmer, Gary L.

    2007-05-29

    A fueling facility and method for dispensing liquid natural gas (LNG), compressed natural gas (CNG) or both on-demand. The fueling facility may include a source of LNG, such as cryogenic storage vessel. A low volume high pressure pump is coupled to the source of LNG to produce a stream of pressurized LNG. The stream of pressurized LNG may be selectively directed through an LNG flow path or to a CNG flow path which includes a vaporizer configured to produce CNG from the pressurized LNG. A portion of the CNG may be drawn from the CNG flow path and introduced into the CNG flow path to control the temperature of LNG flowing therethrough. Similarly, a portion of the LNG may be drawn from the LNG flow path and introduced into the CNG flow path to control the temperature of CNG flowing therethrough.

  13. Natural gas 1995: Issues and trends

    SciTech Connect

    1995-11-01

    Natural Gas 1995: Issues and Trends addresses current issues affecting the natural gas industry and markets. Highlights of recent trends include: Natural gas wellhead prices generally declined throughout 1994 and for 1995 averages 22% below the year-earlier level; Seasonal patterns of natural gas production and wellhead prices have been significantly reduced during the past three year; Natural gas production rose 15% from 1985 through 1994, reaching 18.8 trillion cubic feet; Increasing amounts of natural gas have been imported; Since 1985, lower costs of producing and transporting natural gas have benefitted consumers; Consumers may see additional benefits as States examine regulatory changes aimed at increasing efficiency; and, The electric industry is being restructured in a fashion similar to the recent restructuring of the natural gas industry.

  14. U.S. crude oil, natural gas, and natural gas liquids reserves 1997 annual report

    SciTech Connect

    Wood, John H.; Grape, Steven G.; Green, Rhonda S.

    1998-12-01

    This report presents estimates of proved reserves of crude oil, natural gas, and natural gas liquids as of December 31, 1997, as well as production volumes for the US and selected States and State subdivisions for the year 1997. Estimates are presented for the following four categories of natural gas: total gas (wet after lease separation), nonassociated gas and associated-dissolved gas (which are the two major types of wet natural gas), and total dry gas (wet gas adjusted for the removal of liquids at natural gas processing plants). In addition, reserve estimates for two types of natural gas liquids, lease condensate and natural gas plant liquids, are presented. Also included is information on indicated additional crude oil reserves and crude oil, natural gas, and lease condensate reserves in nonproducing reservoirs. A discussion of notable oil and gas exploration and development activities during 1997 is provided. 21 figs., 16 tabs.

  15. Compressed natural gas (CNG) measurement

    SciTech Connect

    Husain, Z.D.; Goodson, F.D.

    1995-12-01

    The increased level of environmental awareness has raised concerns about pollution. One area of high attention is the internal combustion engine. The internal combustion engine in and of itself is not a major pollution threat. However, the vast number of motor vehicles in use release large quantities of pollutants. Recent technological advances in ignition and engine controls coupled with unleaded fuels and catalytic converters have reduced vehicular emissions significantly. Alternate fuels have the potential to produce even greater reductions in emissions. The Natural Gas Vehicle (NGV) has been a significant alternative to accomplish the goal of cleaner combustion. Of the many alternative fuels under investigation, compressed natural gas (CNG) has demonstrated the lowest levels of emission. The only vehicle certified by the State of California as an Ultra Low Emission Vehicle (ULEV) was powered by CNG. The California emissions tests of the ULEV-CNG vehicle revealed the following concentrations: Non-Methane Hydrocarbons 0.005 grams/mile Carbon Monoxide 0.300 grams/mile Nitrogen Oxides 0.040 grams/mile. Unfortunately, CNG vehicles will not gain significant popularity until compressed natural gas is readily available in convenient locations in urban areas and in proximity to the Interstate highway system. Approximately 150,000 gasoline filling stations exist in the United States while number of CNG stations is about 1000 and many of those CNG stations are limited to fleet service only. Discussion in this paper concentrates on CNG flow measurement for fuel dispensers. Since the regulatory changes and market demands affect the flow metering and dispenser station design those aspects are discussed. The CNG industry faces a number of challenges.

  16. Gas supplies of interstate/natural gas pipeline companies 1989

    SciTech Connect

    Not Available

    1990-12-18

    This publication provides information on the interstate pipeline companies' supply of natural gas during calendar year 1989, for use by the FERC for regulatory purposes. It also provides information to other Government agencies, the natural gas industry, as well as policy makers, analysts, and consumers interested in current levels of interstate supplies of natural gas and trends over recent years. 5 figs., 18 tabs.

  17. 40 CFR 1065.715 - Natural gas.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 33 2014-07-01 2014-07-01 false Natural gas. 1065.715 Section 1065.715... PROCEDURES Engine Fluids, Test Fuels, Analytical Gases and Other Calibration Standards § 1065.715 Natural gas. (a) Except as specified in paragraph (b) of this section, natural gas for testing must meet...

  18. 40 CFR 1065.715 - Natural gas.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false Natural gas. 1065.715 Section 1065.715... PROCEDURES Engine Fluids, Test Fuels, Analytical Gases and Other Calibration Standards § 1065.715 Natural gas. (a) Except as specified in paragraph (b) of this section, natural gas for testing must meet...

  19. 40 CFR 1065.715 - Natural gas.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 34 2013-07-01 2013-07-01 false Natural gas. 1065.715 Section 1065.715... PROCEDURES Engine Fluids, Test Fuels, Analytical Gases and Other Calibration Standards § 1065.715 Natural gas. (a) Except as specified in paragraph (b) of this section, natural gas for testing must meet...

  20. 40 CFR 1065.715 - Natural gas.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 34 2012-07-01 2012-07-01 false Natural gas. 1065.715 Section 1065.715... PROCEDURES Engine Fluids, Test Fuels, Analytical Gases and Other Calibration Standards § 1065.715 Natural gas. (a) Except as specified in paragraph (b) of this section, natural gas for testing must meet...

  1. 40 CFR 1065.715 - Natural gas.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 33 2011-07-01 2011-07-01 false Natural gas. 1065.715 Section 1065.715... PROCEDURES Engine Fluids, Test Fuels, Analytical Gases and Other Calibration Standards § 1065.715 Natural gas. (a) Except as specified in paragraph (b) of this section, natural gas for testing must meet...

  2. Natural Gas Market Centers: A 2008 Update

    EIA Publications

    2009-01-01

    This special report looks at the current status of market centers in today's natural gas marketplace, examining their role and their importance to natural gas shippers, pipelines, and others involved in the transportation of natural gas over the North American pipeline network.

  3. Carbon sequestration in natural gas reservoirs: Enhanced gas recovery and natural gas storage

    SciTech Connect

    Oldenburg, Curtis M.

    2003-04-08

    Natural gas reservoirs are obvious targets for carbon sequestration by direct carbon dioxide (CO{sub 2}) injection by virtue of their proven record of gas production and integrity against gas escape. Carbon sequestration in depleted natural gas reservoirs can be coupled with enhanced gas production by injecting CO{sub 2} into the reservoir as it is being produced, a process called Carbon Sequestration with Enhanced Gas Recovery (CSEGR). In this process, supercritical CO{sub 2} is injected deep in the reservoir while methane (CH{sub 4}) is produced at wells some distance away. The active injection of CO{sub 2} causes repressurization and CH{sub 4} displacement to allow the control and enhancement of gas recovery relative to water-drive or depletion-drive reservoir operations. Carbon dioxide undergoes a large change in density as CO{sub 2} gas passes through the critical pressure at temperatures near the critical temperature. This feature makes CO{sub 2} a potentially effective cushion gas for gas storage reservoirs. Thus at the end of the CSEGR process when the reservoir is filled with CO{sub 2}, additional benefit of the reservoir may be obtained through its operation as a natural gas storage reservoir. In this paper, we present discussion and simulation results from TOUGH2/EOS7C of gas mixture property prediction, gas injection, repressurization, migration, and mixing processes that occur in gas reservoirs under active CO{sub 2} injection.

  4. Practical natural gas engineering, 2nd edition

    SciTech Connect

    Smith, R.V.

    1990-01-01

    This book reports on remedial measures for gas wells and new methods for calculating the position of the stabilized performance curves for gas wells as well as the heating value for natural gases from compositional analyses. In addition, the author includes problem solutions in an appendix and a section showing the relation between the conventional empirical equation and the theoretical performance equation of A.S. Odeh. The author successfully bridges the gap between the results of empirical testing and the theory of unsteady-state flow in porous media. It strengthens the bond between conventional reservoir engineering practices and understanding gas well behavior. Problems listed at the end of each chapter are excellent exercises for practitioners. This book provides information on: Natural Gas Engineering; Properties of natural gas; Application of gas laws to reservoir engineering; Gas measurement; Flow of natural gas in circular pipe and annular conductors; Flow of gas in porous media (a review); Gas well testing; Unsteady-state flow behavior of gas wells; Production forecasting for gas wells; Production decline curves for gas wells; Sizing flow strings for gas wells; Remedial measures for gas wells; Gas sales contracts; and appendices on Compressibility for natural gas, Gas measurement factors, SI metric conversion factors, and Solutions to problems.

  5. Contracts for the new natural gas business

    SciTech Connect

    Haedicke, M.E.

    1992-01-01

    Two major developments in the natural gas industry are causing fundamental changes in natural gas contracts. The first development, financial markets for natural gas, began only recently. On April 3, 1990, the New York Mercantile Exchange (NYMEX) began trading natural gas futures for a twelve month forward period. On the opening day, 925 contracts were traded. Recently, 18,344 contracts were traded in a single day, and gas 4 futures on NYMEX are now traded for an eighteen month forward period. At the same time, the market for off-exchange products, such as natural gas swaps and trade options, has expanded considerably. Shortly, it will be hard to imagine life in the natural gas business without the emerging financial markets for natural gas, if that time has not already occurred. The second major development, deregulation of the gas industry, began with the passage of the Natural Gas Policy Act of 1978. Each of the two developments provides a catalyst for fundamental changes in natural gas contracts. This article explores the impact of these two developments on long-term fixed-price physical gas contracts and the future direction of long-term fixed-price gas contracts.

  6. Imported LNG (liquid natural gas) as an alternative fuel

    SciTech Connect

    Kelly, M. )

    1990-11-01

    Imports of liquefied natural gas (LNG) first arrived in the United States in 1972 at the rate of one billion cubic feet (Bcf) per year. By 1979, they had reached 252 Bcf/year. However, as US as demand declined and domestic deliverability grew, inflexible LNG prices led to the complete collapse of trade during the 1980s. In 1987, all four US import terminals were idle and no LNG was imported. The situation bean to change with renegotiation of Distrigas' contract to import LNG from Algeria's Sonatrach. In 1988, the company imported 19 Bcf of gas to its Everett, Massachusetts terminal, with greater volumes in 1989. Panhandle Eastern has also renegotiated its Algerian supply contract and reactivated the company's Trunkline LNG terminal at Lake Charles, Louisiana. It received its first cargo in December 1989. Moves are also being made to bring the other two US import terminals, at Cove Point, Maryland and Elba Island, Georgia, back into service. On the supply side too, there are major new developments. Not only is Algeria seeking to expand its existing exports, but new LNG projects in Nigeria, Norway and Venezuela in particular are aimed at the US market. The purpose of this report is to describe the current status and potential development of LNG imports to the US with a view to identifying those circumstances in which an electric utility might consider LNG as an alternate back-up fuel to distillate or residual oil, in gas-fired generating facilities. 9 figs., 10 tabs.

  7. Advanced Liquid Natural Gas Onboard Storage System

    SciTech Connect

    Greg Harper; Charles Powars

    2003-10-31

    Cummins Westport Incorporated (CWI) has designed and developed a liquefied natural gas (LNG) vehicle fuel system that includes a reciprocating pump with the cold end submerged in LNG contained in a vacuum-jacketed tank. This system was tested and analyzed under the U.S. Department of Energy (DOE) Advanced LNG Onboard Storage System (ALOSS) program. The pumped LNG fuel system developed by CWI and tested under the ALOSS program is a high-pressure system designed for application on Class 8 trucks powered by CWI's ISX G engine, which employs high-pressure direct injection (HPDI) technology. A general ALOSS program objective was to demonstrate the feasibility and advantages of a pumped LNG fuel system relative to on-vehicle fuel systems that require the LNG to be ''conditioned'' to saturation pressures that exceeds the engine fuel pressure requirements. These advantages include the capability to store more fuel mass in given-size vehicle and station tanks, and simpler lower-cost LNG refueling stations that do not require conditioning equipment. Pumped LNG vehicle fuel systems are an alternative to conditioned LNG systems for spark-ignition natural gas and port-injection dual-fuel engines (which typically require about 100 psi), and they are required for HPDI engines (which require over 3,000 psi). The ALOSS program demonstrated the feasibility of a pumped LNG vehicle fuel system and the advantages of this design relative to systems that require conditioning the LNG to a saturation pressure exceeding the engine fuel pressure requirement. LNG tanks mounted on test carts and the CWI engineering truck were repeatedly filled with LNG saturated at 20 to 30 psig. More fuel mass was stored in the vehicle tanks as well as the station tank, and no conditioning equipment was required at the fueling station. The ALOSS program also demonstrated the general viability and specific performance of the CWI pumped LNG fuel system design. The system tested as part of this program is designed to be used on Class 8 trucks with CWI ISX G HPDI engines. Extensive test cart and engineering truck tests of the pump demonstrated good durability and the high-pressure performance needed for HPDI application. The LNG tanks manufactured by Taylor-Wharton passed SAE J2343 Recommended Practice drop tests and accelerated road-load vibration tests. NER and hold-time tests produced highly consistent results. Additional tests confirmed the design adequacy of the liquid level sensor, vaporizer, ullage volume, and other fuel system components. While the testing work performed under this program focused on a high-pressure pumped LNG fuel system design, the results also validate the feasibility of a low-pressure pumped fuel system. A low-pressure pumped fuel system could incorporate various design refinements including a simpler and lighter-weight pump, which would decrease costs somewhat relative to a high-pressure system.

  8. 100th Anniversary of the Discovery of Helium in Natural Gas

    NASA Astrophysics Data System (ADS)

    Longsworth, Ralph Cady

    2006-04-01

    December 7, 2005 marks the 100th anniversary of the discovery of helium in natural gas by H. P. Cady and D. F. McFarland at the University of Kansas. The work was done in the Chemistry building, Bailey Hall, built in 1900 and designated as a National Historic Chemical Landmark in 2000. An early air liquefier was installed in 1903 and in the same year McFarland used the liquid air to analyze a sample of natural gas that wouldn't burn. He analyzed it as having 71% nitrogen plus the expected methane and residual gas that couldn't be condensed. It took two years to assemble the apparatus that Cady used to see the helium spectrum in the residual gas. This paper includes a discussion of the discoveries related to helium, personal insights into the life and contributions of H. P. Cady, and the evolution of its production.

  9. US crude oil, natural gas, and natural gas liquids reserves, 1992 annual report

    SciTech Connect

    Not Available

    1993-10-18

    This report presents estimates of proved reserves of crude oil, natural gas, and natural gas liquids as of December 31, 1992, as well as production volumes for the United States, and selected States and State subdivisions for the year 1992. Estimates are presented for the following four categories of natural gas: total gas (wet after lease separation), its two major components (nonassociated and associated-dissolved gas), and total dry gas (wet gas adjusted for the removal of liquids at natural gas processing plants). In addition, two components of natural gas liquids, lease condensate and natural gas plant liquids, have their reserves and production data presented. Also included is information on indicated additional crude oil reserves and crude oil, natural gas, and lease condensate reserves in nonproducing reservoirs. A discussion of notable oil and gas exploration and development activities during 1992 is provided.

  10. The domestic natural gas shortage in China

    NASA Astrophysics Data System (ADS)

    Guo, Ting

    This thesis analyzes the domestic shortage in the Chinese natural gas market. Both the domestic supply and demand of natural gas are growing fast in China. However, the supply cannot catch up with the demand. Under the present pricing mechanism, the Chinese natural gas market cannot get the equilibrium by itself. Expensive imports are inadequate to fill the increasing gap between the domestic demand and supply. Therefore, the shortage problem occurs. Since the energy gap can result in the arrested development of economics, the shortage problem need to be solved. This thesis gives three suggestions to solve the problem: the use of Unconventional Gas, Natural Gas Storage and Pricing Reform.

  11. Global Natural Gas Market Trends, 2. edition

    SciTech Connect

    2007-07-15

    The report provides an overview of major trends occurring in the natural gas industry and includes a concise look at the drivers behind recent rapid growth in gas usage and the challenges faced in meeting that growth. Topics covered include: an overview of Natural Gas including its history, the current market environment, and its future market potential; an analysis of the overarching trends that are driving a need for change in the Natural Gas industry; a description of new technologies being developed to increase production of Natural Gas; an evaluation of the potential of unconventional Natural Gas sources to supply the market; a review of new transportation methods to get Natural Gas from producing to consuming countries; a description of new storage technologies to support the increasing demand for peak gas; an analysis of the coming changes in global Natural Gas flows; an evaluation of new applications for Natural Gas and their impact on market sectors; and, an overview of Natural Gas trading concepts and recent changes in financial markets.

  12. Efficient electrochemical refrigeration power plant using natural gas with ∼100% CO2 capture

    NASA Astrophysics Data System (ADS)

    Al-musleh, Easa I.; Mallapragada, Dharik S.; Agrawal, Rakesh

    2015-01-01

    We propose an efficient Natural Gas (NG) based Solid Oxide Fuel Cell (SOFC) power plant equipped with ∼100% CO2 capture. The power plant uses a unique refrigeration based process to capture and liquefy CO2 from the SOFC exhaust. The capture of CO2 is carried out via condensation and purification using two rectifying columns operating at different pressures. The uncondensed gas mixture, comprising of relatively high purity unconverted fuel, is recycled to the SOFC and found to boost the power generation of the SOFC by 22%, when compared to a stand alone SOFC. If Liquefied Natural Gas (LNG) is available at the plant gate, then the refrigeration available from its evaporation is used for CO2 Capture and Liquefaction (CO2CL). If NG is utilized, then a Mixed Refrigerant (MR) vapor compression cycle is utilized for CO2CL. Alternatively, the necessary refrigeration can be supplied by evaporating the captured liquid CO2 at a lower pressure, which is then compressed to supercritical pressures for pipeline transportation. From rigorous simulations, the power generation efficiency of the proposed processes is found to be 70-76% based on lower heating value (LHV). The benefit of the proposed processes is evident when the efficiency of 73% for a conventional SOFC-Gas turbine power plant without CO2 capture is compared with an equivalent efficiency of 71.2% for the proposed process with CO2CL.

  13. CdO nanosheet film with a (200)-preferred orientation with sensitivity to liquefied petroleum gas (LPG) at low-temperatures.

    PubMed

    Cui, Guangliang; Li, Zimeng; Gao, Liang; Zhang, Mingzhe

    2012-12-21

    CdO nanosheet film can be synthesized by electrochemical deposition in an ultra-thin liquid layer by using Cd(NO(3))(2) and HNO(3) as source materials for Cd and oxygen respectively. HNO(3) is also used to adjust the pH of the electrolyte. Studies on the detailed structure indicate that the synthesized CdO nanosheet film has a face-centered cubic structure with (200)-preferred orientation. The response of the CdO nanosheet film to liquefied petroleum gas (LPG) at low temperature has been significantly improved by the novel structure of film. It has exhibited excellent sensitivity and selectivity to LPG at low temperature. A new growth mechanism of electrochemical deposition has been proposed to elaborate the formation of nanosheet in an ultra-thin liquid layer. The self-oscillation of potential in the growth interface and intermediate hydroxide are responsible for the formation of nanosheets. PMID:23131858

  14. 78 FR 21351 - Orders Granting Authority to Import and Export Natural Gas, To Import Liquefied Natural Gas, To...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-10

    ...-NG SOCIETE GENERALE ENERGY CORP 13-09-NG FREEPOINT COMMODITIES LLC 13-10-NG PLANET ENERGY CORP 13-13... LNG SDG, S.A. from various international sources by vessel. 3234 02/19/13 13-13-NG Planet Energy...

  15. Natural gas and CO2 price variation: impact on the relative cost-efficiency of LNG and pipelines.

    PubMed

    Ulvestad, Marte; Overland, Indra

    2012-06-01

    THIS ARTICLE DEVELOPS A FORMAL MODEL FOR COMPARING THE COST STRUCTURE OF THE TWO MAIN TRANSPORT OPTIONS FOR NATURAL GAS: liquefied natural gas (LNG) and pipelines. In particular, it evaluates how variations in the prices of natural gas and greenhouse gas emissions affect the relative cost-efficiency of these two options. Natural gas is often promoted as the most environmentally friendly of all fossil fuels, and LNG as a modern and efficient way of transporting it. Some research has been carried out into the local environmental impact of LNG facilities, but almost none into aspects related to climate change. This paper concludes that at current price levels for natural gas and CO2 emissions the distance from field to consumer and the volume of natural gas transported are the main determinants of transport costs. The pricing of natural gas and greenhouse emissions influence the relative cost-efficiency of LNG and pipeline transport, but only to a limited degree at current price levels. Because more energy is required for the LNG process (especially for fuelling the liquefaction process) than for pipelines at distances below 9100 km, LNG is more exposed to variability in the price of natural gas and greenhouse gas emissions up to this distance. If the prices of natural gas and/or greenhouse gas emission rise dramatically in the future, this will affect the choice between pipelines and LNG. Such a price increase will be favourable for pipelines relative to LNG. PMID:24683269

  16. Natural gas and CO2 price variation: impact on the relative cost-efficiency of LNG and pipelines

    PubMed Central

    Ulvestad, Marte; Overland, Indra

    2012-01-01

    This article develops a formal model for comparing the cost structure of the two main transport options for natural gas: liquefied natural gas (LNG) and pipelines. In particular, it evaluates how variations in the prices of natural gas and greenhouse gas emissions affect the relative cost-efficiency of these two options. Natural gas is often promoted as the most environmentally friendly of all fossil fuels, and LNG as a modern and efficient way of transporting it. Some research has been carried out into the local environmental impact of LNG facilities, but almost none into aspects related to climate change. This paper concludes that at current price levels for natural gas and CO2 emissions the distance from field to consumer and the volume of natural gas transported are the main determinants of transport costs. The pricing of natural gas and greenhouse emissions influence the relative cost-efficiency of LNG and pipeline transport, but only to a limited degree at current price levels. Because more energy is required for the LNG process (especially for fuelling the liquefaction process) than for pipelines at distances below 9100 km, LNG is more exposed to variability in the price of natural gas and greenhouse gas emissions up to this distance. If the prices of natural gas and/or greenhouse gas emission rise dramatically in the future, this will affect the choice between pipelines and LNG. Such a price increase will be favourable for pipelines relative to LNG. PMID:24683269

  17. Life-cycle analysis of shale gas and natural gas.

    SciTech Connect

    Clark, C.E.; Han, J.; Burnham, A.; Dunn, J.B.; Wang, M.

    2012-01-27

    The technologies and practices that have enabled the recent boom in shale gas production have also brought attention to the environmental impacts of its use. Using the current state of knowledge of the recovery, processing, and distribution of shale gas and conventional natural gas, we have estimated up-to-date, life-cycle greenhouse gas emissions. In addition, we have developed distribution functions for key parameters in each pathway to examine uncertainty and identify data gaps - such as methane emissions from shale gas well completions and conventional natural gas liquid unloadings - that need to be addressed further. Our base case results show that shale gas life-cycle emissions are 6% lower than those of conventional natural gas. However, the range in values for shale and conventional gas overlap, so there is a statistical uncertainty regarding whether shale gas emissions are indeed lower than conventional gas emissions. This life-cycle analysis provides insight into the critical stages in the natural gas industry where emissions occur and where opportunities exist to reduce the greenhouse gas footprint of natural gas.

  18. DOE/BNL Liquid Natural Gas Heavy Vehicle Program

    SciTech Connect

    James E. Wegrzyn; Wai-Lin Litzke; Michael Gurevich

    1998-08-11

    As a means of lowering greenhouse gas emissions, increasing economic growth, and reducing the dependency on imported oil, the Department of Energy and Brookhaven National Laboratory (DOE/ BNL) is promoting the substitution of liquefied natural gas (LNG) in heavy-vehicles that are currently being fueled by diesel. Heavy vehicles are defined as Class 7 and 8 trucks (> 118,000 pounds GVVV), and transit buses that have a fuel usage greater than 10,000 gallons per year and driving range of more than 300 miles. The key in making LNG market-competitive with all types of diesel fuels is in improving energy efficiency and reducing costs of LNG technologies through systems integration. This paper integrates together the three LNG technologies of: (1) production from landfills and remote well sites; (2) cryogenic fuel delivery systems; and (3) state-of-the-art storage tank and refueling facilities, with market end-use strategies. The program's goal is to develop these technologies and strategies under a ''green'' and ''clean'' strategy. This ''green'' approach reduces the net contribution of global warming gases by reducing levels of methane and carbon dioxide released by heavy vehicles usage to below recoverable amounts of natural gas from landfills and other natural resources. Clean technology refers to efficient use of energy with low environmental emissions. The objective of the program is to promote fuel competition by having LNG priced between $0.40 - $0.50 per gallon with a combined production, fuel delivery and engine systems efficiency approaching 45%. This can make LNG a viable alternative to diesel.

  19. Troubleshooting natural gas processing: Wellhead to transmission

    SciTech Connect

    Lieberman, N.

    1987-01-01

    This book describes practical, day-to-day problems of natural gas handling. This book combines field experience with technical principles on natural gas production treating and transmission. This volume is dominated by illustrative case histories and rules of thumb. The book also provides a checklist of distillation problems which is a summary of causes and cures of the problems encountered in the fractionation of propane, butane and natural gasoline. A glossary of terms used in natural gas transmission is another good part of this book. The author has avoided complex mechanical details in favor of simple line drawings. Among the topics discussed are; wellhead pressure and gas flow, vapor-liquid separation at the wellhead, wellhead compression, corrosion in gathering systems, gas sweetening using amines, sulfur recovery, dehydration, centrifugal gas compression, reciprocal gas compression, hydrates, gas cooling and condensate recovery.

  20. 78 FR 42889 - Pipeline Safety: Reminder of Requirements for Utility LP-Gas and LPG Pipeline Systems

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-18

    ... natural gas distribution system must meet the requirements of Part 192 and ANSI/NFPA 58 and 59 (2004) (192... Bulletin to remind owners and operators of liquefied petroleum gas (LPG) and utility liquefied petroleum... Requirements for Utility LP-Gas and LPG Pipeline Systems AGENCY: Pipeline and Hazardous Materials...

  1. Organization of a natural gas marketing entity

    SciTech Connect

    Paul, J.M.

    1988-08-01

    For those producers considering a full-scale marketing program for their natural gas, the availability of supply should not lead one to believe that the sales of those supplies can be accomplished by a simple phone call to several potential purchasers. This paper traces the history of natural gas marketing since the passage of the Natural Gas Policy Act through the implementation of the Federal Energy Regulatory Commission's Order 500.

  2. Natural gas 1998: Issues and trends

    SciTech Connect

    1999-06-01

    Natural Gas 1998: Issues and Trends provides a summary of the latest data and information relating to the US natural gas industry, including prices, production, transmission, consumption, and the financial and environmental aspects of the industry. The report consists of seven chapters and five appendices. Chapter 1 presents a summary of various data trends and key issues in today`s natural gas industry and examines some of the emerging trends. Chapters 2 through 7 focus on specific areas or segments of the industry, highlighting some of the issues associated with the impact of natural gas operations on the environment. 57 figs., 18 tabs.

  3. US crude oil, natural gas, and natural gas liquids reserves 1996 annual report

    SciTech Connect

    1997-12-01

    The EIA annual reserves report series is the only source of comprehensive domestic proved reserves estimates. This publication is used by the Congress, Federal and State agencies, industry, and other interested parties to obtain accurate estimates of the Nation`s proved reserves of crude oil, natural gas, and natural gas liquids. These data are essential to the development, implementation, and evaluation of energy policy and legislation. This report presents estimates of proved reserves of crude oil, natural gas, and natural gas liquids as of December 31, 1996, as well as production volumes for the US and selected States and State subdivisions for the year 1996. Estimates are presented for the following four categories of natural gas: total gas (wet after lease separation), nonassociated gas and associated-dissolved gas (which are the two major types of wet natural gas), and total dry gas (wet gas adjusted for the removal of liquids at natural gas processing plants). In addition, reserve estimates for two types of natural gas liquids, lease condensate and natural gas plant liquids, are presented. Also included is information on indicated additional crude oil reserves and crude oil, natural gas, and lease condensate reserves in nonproducing reservoirs. A discussion of notable oil and gas exploration and development activities during 1996 is provided. 21 figs., 16 tabs.

  4. U.S. crude oil, natural gas, and natural gas liquids reserves 1995 annual report

    SciTech Connect

    1996-11-01

    The EIA annual reserves report series is the only source of comprehensive domestic proved reserves estimates. This publication is used by the Congress, Federal and State agencies, industry, and other interested parties to obtain accurate estimates of the Nation`s proved reserves of crude oil, natural gas, and natural gas liquids. These data are essential to the development, implementation, and evaluation of energy policy and legislation. This report presents estimates of proved reserves of crude oil, natural gas, and natural gas liquids as of December 31, 1995, as well as production volumes for the US and selected States and State subdivisions for the year 1995. Estimates are presented for the following four categories of natural gas: total gas (wet after lease separation), nonassociated gas and associated-dissolved gas (which are the two major types of wet natural gas), and total dry gas (wet gas adjusted for the removal of liquids at natural gas processing plants). In addition, reserve estimates for two types of natural gas liquids, lease condensate and natural gas plant liquids, are presented. Also included is information on indicated additional crude oil reserves and crude oil, natural gas, and lease condensate reserves in nonproducing reservoirs. A discussion of notable oil and gas exploration and development activities during 1995 is provided. 21 figs., 16 tabs.

  5. Natural gas annual 1993 supplement: Company profiles

    SciTech Connect

    Not Available

    1995-02-01

    The Natural Gas Annual provides information on the supply and disposition of natural gas to a wide audience including industry, consumers, Federal and State agencies, and educational institutions. This report, the Natural Gas Annual 1993 Supplement: Company Profiles, presents a detailed profile of 45 selected companies in the natural gas industry. The purpose of this report is to show the movement of natural gas through the various States served by the companies profiled. The companies in this report are interstate pipeline companies or local distribution companies (LDC`s). Interstate pipeline companies acquire gas supplies from company owned production, purchases from producers, and receipts for transportation for account of others. Pipeline systems, service area maps, company supply and disposition data are presented.

  6. A helium liquefier using three 4 k pulse tube cryocoolers

    NASA Astrophysics Data System (ADS)

    Wang, Chao; Oviedo, Abner

    2012-06-01

    We have developed a helium liquefier which can be used for recondensing/reliquefying helium vapor in a helium cryostat or liquefying helium gas in a storage dewar. The helium liquefier employs three 4 K pulse tube cryocoolers, Cryomech model PT415. Each PT415 has remote motor/rotary valve assembly to minimize vibration, providing ≥ 1.5W at 4.2K. The liquefier can liquefy room temperature helium gas with a liquefaction rate of 62 Liter/day. When installing it in the cryostat, it can recondense and reliquefy helium vapor with a rate of 78 L/day. The liquefier will be installed in a gravitational wave detector in Brazil to recondense/reliquefy the helium boil off from the cryostat.

  7. Underground natural gas storage reservoir management

    SciTech Connect

    Ortiz, I.; Anthony, R.

    1995-06-01

    The objective of this study is to research technologies and methodologies that will reduce the costs associated with the operation and maintenance of underground natural gas storage. This effort will include a survey of public information to determine the amount of natural gas lost from underground storage fields, determine the causes of this lost gas, and develop strategies and remedial designs to reduce or stop the gas loss from selected fields. Phase I includes a detailed survey of US natural gas storage reservoirs to determine the actual amount of natural gas annually lost from underground storage fields. These reservoirs will be ranked, the resultant will include the amount of gas and revenue annually lost. The results will be analyzed in conjunction with the type (geologic) of storage reservoirs to determine the significance and impact of the gas loss. A report of the work accomplished will be prepared. The report will include: (1) a summary list by geologic type of US gas storage reservoirs and their annual underground gas storage losses in ft{sup 3}; (2) a rank by geologic classifications as to the amount of gas lost and the resultant lost revenue; and (3) show the level of significance and impact of the losses by geologic type. Concurrently, the amount of storage activity has increased in conjunction with the net increase of natural gas imports as shown on Figure No. 3. Storage is playing an ever increasing importance in supplying the domestic energy requirements.

  8. SEAPORT LIQUID NATURAL GAS STUDY

    SciTech Connect

    COOK,Z.

    1999-02-01

    The Seaport Liquid Natural Gas Study has attempted to evaluate the potential for using LNG in a variety of heavy-duty vehicle and equipment applications at the Ports of Los Angeles and Oakland. Specifically, this analysis has focused on the handling and transport of containerized cargo to, from and within these two facilities. In terms of containerized cargo throughput, Los Angeles and Oakland are the second and sixth busiest ports in the US, respectively, and together handle nearly 4.5 million TEUs per year. At present, the landside handling and transportation of containerized cargo is heavily dependent on diesel-powered, heavy-duty vehicles and equipment, the utilization of which contributes significantly to the overall emissions impact of port-related activities. Emissions from diesel units have been the subject of increasing scrutiny and regulatory action, particularly in California. In the past two years alone, particulate matter from diesel exhaust has been listed as a toxic air contaminant by CAM, and major lawsuits have been filed against several of California's largest supermarket chains, alleging violation of Proposition 65 statutes in connection with diesel emissions from their distribution facilities. CARE3 has also indicated that it may take further regulatory action relating to the TAC listing. In spite of these developments and the very large diesel emissions associated with port operations, there has been little AFV penetration in these applications. Nearly all port operators interviewed by CALSTART expressed an awareness of the issues surrounding diesel use; however, none appeared to be taking proactive steps to address them. Furthermore, while a less controversial issue than emissions, the dominance of diesel fuel use in heavy-duty vehicles contributes to a continued reliance on imported fuels. The increasing concern regarding diesel use, and the concurrent lack of alternative fuel use and vigorous emissions reduction activity at the Ports provide both the backdrop and the impetus for this study.

  9. Use of natural gas for environmental purposes

    SciTech Connect

    Hay, N.E.

    1986-03-01

    The environmental advantages of natural gas have long been recognized. For example, the combustion of natural gas produces lower criteria emissions than combustion of other fossil fuels; emission reductions can be quickly achieved using natural gas, especially since many emitters already have gas service; and, such use of gas may require significantly lower capital investment than other control methods. Until recently, these environmental advantages have been taken advantage of only to a very limited degree before there were clean air laws, reducing emissions had no economic value for the emitter. Second, when much of our clean air legislation was written and implemented, preconceptions regarding the future price, supply and use technology for natural gas resulted in gas use being excluded or ignored as a compliance method. This is the eighth year of a gas supply (deliverability) surplus; gas prices are dropping; and, new gas-fired use technologies are entering the market as never before. More flexible regulatory concepts, such as EPA's Emissions Trading Policy, and increasing state and local regulations are creating new opportunities to use natural gas for compliance. 22 references, 2 tables.

  10. Natural gas annual 1994: Volume 2

    SciTech Connect

    1995-11-01

    The Natural Gas Annual provides information on the supply and disposition of natural gas to a wide audience including industry, consumers, Federal and State agencies, and educational institutions. This report, Volume 2, presents historical data fro the Nation from 1930 to 1994, and by State from 1967 to 1994.

  11. Majors' Shift to Natural Gas, The

    EIA Publications

    2001-01-01

    The Majors' Shift to Natural Gas investigates the factors that have guided the United States' major energy producers' growth in U.S. natural gas production relative to oil production. The analysis draws heavily on financial and operating data from the Energy Information Administration's Financial Reporting System (FRS)

  12. Arctic Oil and Natural Gas Potential

    EIA Publications

    2009-01-01

    This paper examines the discovered and undiscovered Arctic oil and natural gas resource base with respect to their location and concentration. The paper also discusses the cost and impediments to developing Arctic oil and natural gas resources, including those issues associated with environmental habitats and political boundaries.

  13. Natural gas monthly, September 1990. [Contains Glossary

    SciTech Connect

    Not Available

    1990-11-30

    This report highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. 7 figs., 33 tabs.

  14. Natural gas monthly, October 1990. [Contains glossary

    SciTech Connect

    Not Available

    1990-12-28

    This report highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. 7 figs., 34 tabs.

  15. 75 FR 19954 - Cheniere Marketing, LLC; Application for Blanket Authorization To Export Liquefied Natural Gas

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-16

    ... * * * authorization * * * is completely consistent with, if not mandated by, the statutory directive.'' \\5\\ See 49 FR... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY...: Office of Fossil Energy, DOE. ACTION: Notice of application. SUMMARY: The Office of Fossil Energy (FE)...

  16. Liquefied Natural Gas: A Potential for an Abundant Energy Supply or a Potential for Danger.

    ERIC Educational Resources Information Center

    Fishman, Joseph

    This unit was designed to develop mathematical applications in relation to a community resource issue. It should both motivate mathematics learning and provide meaningful problems for reinforcing understanding of mathematics content and skills, including ratios and percentages, linear equations, exponential functions, graphing, and the reading and…

  17. Liquefied Natural Gas Terminal Siting in a Highly Seismic Region on the Mexican Pacific Coast

    NASA Astrophysics Data System (ADS)

    Zaczek, Yannick; Lambert, Nicolas

    A new LNG terminal should be built on the Pacific coast of Mexico, one of the most seismic regions in the world. According to International codes, a siting process must be carried out to insure the feasibility of the project, which involves, in a first step, a data collection of all existing documents related to geology, seismicity, and geotechnics. As a second step, a seismo-tectonic study has been performed, with localisation of active faults on or close to the site (aerial and satellite imagery, geophysical investigations) and determination of OBE & SSE levels. Afterwards, the site was globally characterised, with a first geotechnical report, dealing with liquefaction risks, typical soil layers, and general foundation methodology. The general site layout, the general stability of buildings, the detailed soil investigations, and the detailed foundation design are performed in the phases as described in this paper.

  18. 75 FR 13644 - TORP Terminal LP, Bienville Offshore Energy Terminal Liquefied Natural Gas Deepwater Port License...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-22

    ... Notice that appeared in the Federal Register on April 11, 2000 (65 FR 19477) (see Privacy Act). You may... EIS for the proposed action was published in the Federal Register at 74 FR 39136, August 5, 2009 and the Draft Supplemental EIS was published in the Federal Register at 74 FR 60310, November 20,...

  19. Guide to natural gas cogeneration

    SciTech Connect

    Hay, N.

    1987-01-01

    This book is a reference on the engineering and economic aspects of gas-fired cogeneration systems. In its 44 chapters it covers equipment considerations and applications for gas engines, gas turbines, steam engines, electrical switchgear, and packaged systems. The text is illustrated with case studies for both commercial and industrial applications of all sizes, as well as for packaged systems for restaurants and hospitals. A special chapter is included which illustrates market opportunities and keys to successful development.

  20. How EIA Estimates Natural Gas Production

    EIA Publications

    2004-01-01

    The Energy Information Administration (EIA) publishes estimates monthly and annually of the production of natural gas in the United States. The estimates are based on data EIA collects from gas producing states and data collected by the U. S. Minerals Management Service (MMS) in the Department of Interior. The states and MMS collect this information from producers of natural gas for various reasons, most often for revenue purposes. Because the information is not sufficiently complete or timely for inclusion in EIA's Natural Gas Monthly (NGM), EIA has developed estimation methodologies to generate monthly production estimates that are described in this document.

  1. Natural gas 1994: Issues and trends

    SciTech Connect

    Not Available

    1994-07-01

    This report provides an overview of the natural gas industry in 1993 and early 1994 (Chapter 1), focusing on the overall ability to deliver gas under the new regulatory mandates of Order 636. In addition, the report highlights a range of issues affecting the industry, including: restructuring under Order 636 (Chapter 2); adjustments in natural gas contracting (Chapter 3); increased use of underground storage (Chapter 4); effects of the new market on the financial performance of the industry (Chapter 5); continued impacts of major regulatory and legislative changes on the natural gas market (Appendix A).

  2. Catalytic decomposition of petroleum into natural gas

    SciTech Connect

    Mango, F.D.; Hightower, J.

    1997-12-01

    Petroleum is believed to be unstable in the earth, decomposing to lighter hydrocarbons at temperatures > 150{degrees}C. Oil and gas deposits support this view: gas/oil ratios and methane concentrations tend to increase with depth above 150{degrees}C. Although oil cracking is suggested and receives wide support, laboratory pyrolysis does not give products resembling natural gas. Moreover, it is doubtful that the light hydrocarbons in wet gas (C{sub 2}-C{sub 4}) could decompose over geologic time to dry gas (>95% methane) without catalytic assistance. We now report the catalytic decomposition of crude oil to a gas indistinguishable from natural gas. Like natural gas in deep basins, it becomes progressively enriched in methane: initially 90% (wet gas) to a final composition of 100% methane (dry gas). To our knowledge, the reaction is unprecedented and unexpectedly robust (conversion of oil to gas is 100% in days, 175{degrees}C) with significant implications regarding the stability of petroleum in sedimentary basins. The existence or nonexistence of oil in the deep subsurface may not depend on the thermal stability of hydrocarbons as currently thought. The critical factor could be the presence of transition metal catalysts which destabilize hydrocarbons and promote their decomposition to natural gas.

  3. Carbonyl sulfide hydrolysis in natural gas

    SciTech Connect

    Russo, F.; Caribotti, P.; Garofalo, N.

    1988-01-01

    Carbonyl sulfide may naturally occur in high H/sub 2/S - CO/sub 2/ content sour natural gases. Furthermore part of the H/sub 2/S present in natural gases may be converted into COS if molecular sieves are used as H/sub 2/S removal substances in natural gas desulphurization plants. Carbonyl sulfide might then hydrolize to H/sub 2/S in the gas storage fields and transmission lines. This paper illustrates experimental data relevant to the kinetics and thermodynamics of the reaction between carbonyl sulfide and water both at gas and gas/liquid phases. Results may suggest whether carbonyl sulfide should be included in natural gas quality specifications.

  4. Natural gas monthly, September 1991. [Contains glossary

    SciTech Connect

    Not Available

    1991-10-18

    The Natural Gas Monthly highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production distribution consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. The data in this publication are collected on surveys conducted by the EIA to fulfill its responsibilities for gathering and reporting energy data. Some of the data are collected under the authority of the Federal Energy Regulatory Commission (FERC), an independent commission within the DOE, which has jurisdiction primarily in the regulation of electric utilities and the interstate natural gas industry. Geographic coverage is the 50 States and the District of Columbia.

  5. IGNITION IMPROVEMENT OF LEAN NATURAL GAS MIXTURES

    SciTech Connect

    Jason M. Keith

    2005-02-01

    This report describes work performed during a thirty month project which involves the production of dimethyl ether (DME) on-site for use as an ignition-improving additive in a compression-ignition natural gas engine. A single cylinder spark ignition engine was converted to compression ignition operation. The engine was then fully instrumented with a cylinder pressure transducer, crank shaft position sensor, airflow meter, natural gas mass flow sensor, and an exhaust temperature sensor. Finally, the engine was interfaced with a control system for pilot injection of DME. The engine testing is currently in progress. In addition, a one-pass process to form DME from natural gas was simulated with chemical processing software. Natural gas is reformed to synthesis gas (a mixture of hydrogen and carbon monoxide), converted into methanol, and finally to DME in three steps. Of additional benefit to the internal combustion engine, the offgas from the pilot process can be mixed with the main natural gas charge and is expected to improve engine performance. Furthermore, a one-pass pilot facility was constructed to produce 3.7 liters/hour (0.98 gallons/hour) DME from methanol in order to characterize the effluent DME solution and determine suitability for engine use. Successful production of DME led to an economic estimate of completing a full natural gas-to-DME pilot process. Additional experimental work in constructing a synthesis gas to methanol reactor is in progress. The overall recommendation from this work is that natural gas to DME is not a suitable pathway to improved natural gas engine performance. The major reasons are difficulties in handling DME for pilot injection and the large capital costs associated with DME production from natural gas.

  6. Out of gas: Tenneco in the era of natural gas regulation, 1938--1978

    NASA Astrophysics Data System (ADS)

    Raley, David

    2011-12-01

    Federal regulation over the natural gas industry spanned 1938--1978, during which time both the industry and the nature of the regulation changed. The original intent of the law was to reform an industry stagnating because of the Depression, but regulation soon evolved into a public-private partnership to win World War II, then to a framework for the creation and management of a nationwide natural gas grid in the prosperous post-war years, and finally to a confused and chaotic system of wellhead price regulation which produced shortages and discouraged new production during the 1950s and 1960s. By the 1970s, regulation had become ineffective, leading to deregulation in 1978. The natural gas industry operated under the oversight of the Federal Power Commission (FPC) which set gas rates, regulated profits and competition, and established rules for entry and exit into markets. Over the course of four decades, the FPC oversaw the development of a truly national industry built around a system of large diameter pipelines. Tennessee Gas Transmission Company (later Tenneco) was an integral part of this industry. At first, Tenneco prospered under regulation. Regulation provided Tenneco with the means to build its first pipeline and a secure revenue stream for decades. A series of conflicts with the FPC and the difficulties imposed by the Phillips vs. Wisconsin case in 1954 soon interfered with the ambitious long-term goals of Tenneco CEO and president Gardiner Symonds. Tenneco first diversified into unregulated businesses in the 1940s, which accelerated as regulatory changes constrained the company's growth. By the 1960s the company was at the forefront of the conglomeration movement, when Tenneco included a variety of disparate businesses, including oil and gas production, chemicals, consumer packaging, manufacturing, shipbuilding, and food production, among others. Gas transmission became a minority interest in Tenneco's portfolio as newer and larger divisions overshadowed its former core business. The 1970s brought a renewed interest in natural gas and other energy resources as the nation faced chronic energy shortages. As the FPC loosened its low rate policy in the early 1970s to encourage production, Tenneco once again invested heavily in new pipelines and gas exploration, as well as more speculative ventures in Arctic gas, liquefied natural gas, synthetic fuels, and nuclear energy. By 1978, growing public and political support led to deregulation of natural gas, plunging Tenneco into a new era where market forces, not FPC oversight, impacted the gas industry. The deregulation of natural gas in 1978 removed the guaranteed rate of return from Tenneco's bottom line and exposed the weakness of Tenneco's conglomeration---the profitable pipeline had long been used to prop-up weaker businesses. The 1980s and 1990s were characterized by a gradual dissolution of Tenneco.

  7. 78 FR 38309 - Northern Natural Gas Company; Southern Natural Gas Company, L.L.C.; Florida Gas Transmission...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-26

    ... Energy Regulatory Commission Northern Natural Gas Company; Southern Natural Gas Company, L.L.C.; Florida Gas Transmission Company, LLC; Notice of Application Take notice that on June 4, 2013, Northern Natural Gas Company (Northern), 1111 South 103rd Street, Omaha, Nebraska 68124; on behalf of...

  8. Natural gas vehicles : Status, barriers, and opportunities.

    SciTech Connect

    Rood Werpy, M.; Santini, D.; Burnham, A.; Mintz, M.; Energy Systems

    2010-11-29

    In the United States, recent shale gas discoveries have generated renewed interest in using natural gas as a vehicular fuel, primarily in fleet applications, while outside the United States, natural gas vehicle use has expanded significantly in the past decade. In this report for the U.S. Department of Energy's Clean Cities Program - a public-private partnership that advances the energy, economic, and environmental security of the U.S. by supporting local decisions that reduce petroleum use in the transportation sector - we have examined the state of natural gas vehicle technology, current market status, energy and environmental benefits, implications regarding advancements in European natural gas vehicle technologies, research and development efforts, and current market barriers and opportunities for greater market penetration. The authors contend that commercial intracity trucks are a prime area for advancement of this fuel. Therefore, we examined an aggressive future market penetration of natural gas heavy-duty vehicles that could be seen as a long-term goal. Under this scenario using Energy Information Administration projections and GREET life-cycle modeling of U.S. on-road heavy-duty use, natural gas vehicles would reduce petroleum consumption by approximately 1.2 million barrels of oil per day, while another 400,000 barrels of oil per day reduction could be achieved with significant use of natural gas off-road vehicles. This scenario would reduce daily oil consumption in the United States by about 8%.

  9. Energy resource potential of natural gas hydrates

    USGS Publications Warehouse

    Collett, T.S.

    2002-01-01

    The discovery of large gas hydrate accumulations in terrestrial permafrost regions of the Arctic and beneath the sea along the outer continental margins of the world's oceans has heightened interest in gas hydrates as a possible energy resource. However, significant to potentially insurmountable technical issues must be resolved before gas hydrates can be considered a viable option for affordable supplies of natural gas. The combined information from Arctic gas hydrate studies shows that, in permafrost regions, gas hydrates may exist at subsurface depths ranging from about 130 to 2000 m. The presence of gas hydrates in offshore continental margins has been inferred mainly from anomalous seismic reflectors, known as bottom-simulating reflectors, that have been mapped at depths below the sea floor ranging from about 100 to 1100 m. Current estimates of the amount of gas in the world's marine and permafrost gas hydrate accumulations are in rough accord at about 20,000 trillion m3. Disagreements over fundamental issues such as the volume of gas stored within delineated gas hydrate accumulations and the concentration of gas hydrates within hydrate-bearing strata have demonstrated that we know little about gas hydrates. Recently, however, several countries, including Japan, India, and the United States, have launched ambitious national projects to further examine the resource potential of gas hydrates. These projects may help answer key questions dealing with the properties of gas hydrate reservoirs, the design of production systems, and, most important, the costs and economics of gas hydrate production.

  10. Reforming natural gas markets: the antitrust alternative

    SciTech Connect

    Lambert, J.D.; Gilfoyle, N.P.

    1983-05-12

    Although the centerpiece of the Department of Energy's proposed legislation is gradual decontrol of all wellhead natural gas prices by Jan. 1, 1986, it also addresses the structural problems that have contributed to the current market disorder. Intended to promote increased competition in the marketing of natural gas, the provisions are based on fundamental tenets of antitrust law. This review of relevant antitrust principles as they relate to the natural gas industry places the remedial features of the proposed legislation in legal context. These features concern the pipelines' contract carrier obligation, gas purchase contract modifications, and limitations on passthrough of purchase gas costs. Should the legislation fail to pass, private antitrust litigation will remain as an inducement to structural and economic reform in the gas industry.

  11. Natural gas contracts in efficient portfolios

    SciTech Connect

    Sutherland, R.J.

    1994-12-01

    This report addresses the {open_quotes}contracts portfolio{close_quotes} issue of natural gas contracts in support of the Domestic Natural Gas and Oil Initiative (DGOI) published by the U.S. Department of Energy in 1994. The analysis is a result of a collaborative effort with the Public Service Commission of the State of Maryland to consider {open_quotes}reforms that enhance the industry`s competitiveness{close_quotes}. The initial focus of our collaborative effort was on gas purchasing and contract portfolios; however, it became apparent that efficient contracting to purchase and use gas requires a broader consideration of regulatory reform. Efficient portfolios are obtained when the holder of the portfolio is affected by and is responsible for the performance of the portfolio. Natural gas distribution companies may prefer a diversity of contracts, but the efficient use of gas requires that the local distribution company be held accountable for its own purchases. Ultimate customers are affected by their own portfolios, which they manage efficiently by making their own choices. The objectives of the DGOI, particularly the efficient use of gas, can be achieved when customers have access to suppliers of gas and energy services under an improved regulatory framework. The evolution of the natural gas market during the last 15 years is described to account for the changing preferences toward gas contracts. Long-term contracts for natural gas were prevalent before the early 1980s, primarily because gas producers had few options other than to sell to a single pipeline company, and this pipeline company, in turn, was the only seller to a gas distribution company.

  12. The Canoe Ridge Natural Gas Storage Project

    SciTech Connect

    Reidel, Steve P.; Spane, Frank A.; Johnson, Vernon G.

    2003-06-18

    In 1999 the Pacific Gas and Electric Gas Transmission Northwest (GTN) drilled a borehole to investigate the feasibility of developing a natural gas-storage facility in a structural dome formed in Columbia River basalts in the Columbia Basin of south-central Washington State. The proposed aquifer storage facility will be an unconventional one where natural gas will be initially injected (and later retrieved) in one or multiple previous horizons (interflow zones) that are confined between deep (>700 meters) basalt flows of the Columbia River Basalt Group. This report summarizes the results of joint investigations on that feasibility study by GTN and the US Department of Energy.

  13. North American Natural Gas Markets. Volume 2

    SciTech Connect

    Not Available

    1989-02-01

    This report summarizes die research by an Energy Modeling Forum working group on the evolution of the North American natural gas markets between now and 2010. The group`s findings are based partly on the results of a set of economic models of the natural gas industry that were run for four scenarios representing significantly different conditions: two oil price scenarios (upper and lower), a smaller total US resource base (low US resource case), and increased potential gas demand for electric generation (high US demand case). Several issues, such as the direction of regulatory policy and the size of the gas resource base, were analyzed separately without the use of models.

  14. Natural Gas Engine Development Gaps (Presentation)

    SciTech Connect

    Zigler, B.T.

    2014-03-01

    A review of current natural gas vehicle offerings is presented for both light-duty and medium- and heavy-duty applications. Recent gaps in the marketplace are discussed, along with how they have been or may be addressed. The stakeholder input process for guiding research and development needs via the Natural Gas Vehicle Technology Forum (NGVTF) to the U.S. Department of Energy and the California Energy Commission is reviewed. Current high-level natural gas engine development gap areas are highlighted, including efficiency, emissions, and the certification process.

  15. Natural gas annual 1992: Volume 1

    SciTech Connect

    Not Available

    1993-11-22

    This document provides information on the supply and disposition of natural gas to a wide audience including industry, consumers, Federal and State agencies, and education institutions. The 1992 data are presented in a sequence that follows natural gas (including supplemental supplies) from its production top its end use. Tables summarizing natural gas supply and disposition from 1988 to 1992 are given for each Census Division and each State. Annual historical data are shown at the national level. Volume 2 of this report presents State-level historical data.

  16. GAS/LIQUID MEMBRANES FOR NATURAL GAS UPGRADING

    SciTech Connect

    Howard S. Meyer

    2002-06-01

    A new project was initiated this quarter to develop gas/liquid membranes for natural gas upgrading. Efforts have concentrated on legal agreements, including alternative field sites. Gas Technology Institute (GTI) is conducting this research program whose objective is to develop gas/liquid membranes for natural gas upgrading to assist DOE in achieving their goal of developing novel methods of upgrading low quality natural gas to meet pipeline specifications. Kvaerner Process Systems (KPS) and W. L. Gore & Associates (GORE) gas/liquid membrane contactors are based on expanded polytetrafluoroethylene (ePTFE) membranes acting as the contacting barrier between the contaminated gas stream and the absorbing liquid. These resilient membranes provide much greater surface area for transfer than other tower internals, with packing densities five to ten times greater, resulting in equipment 50-70% smaller and lower weight for the same treating service. The scope of the research program is to (1) build and install a laboratory- and a field-scale gas/liquid membrane absorber; (2) operate the units with a low quality natural gas feed stream for sufficient time to verify the simulation model of the contactors and to project membrane life in this severe service; and (3) conducted an economic evaluation, based on the data, to quantify the impact of the technology. Chevron, one of the major producers of natural gas, has offered to host the test at a gas treating plant. KPS will use their position as a recognized leader in the construction of commercial amine plants for building the unit along with GORE providing the membranes. GTI will provide operator and data collection support during lab- and field-testing to assure proper analytical procedures are used. Kvaerner and GTI will perform the final economic evaluation. GTI will provide project management and be responsible for reporting and interactions with DOE on this project.

  17. Well log evaluation of natural gas hydrates

    SciTech Connect

    Collett, T.S.

    1992-10-01

    Gas hydrates are crystalline substances composed of water and gas, in which a solid-water-lattice accommodates gas molecules in a cage-like structure. Gas hydrates are globally widespread in permafrost regions and beneath the sea in sediment of outer continental margins. While methane, propane, and other gases can be included in the clathrate structure, methane hydrates appear to be the most common in nature. The amount of methane sequestered in gas hydrates is probably enormous, but estimates are speculative and range over three orders of magnitude from about 100,000 to 270,000,000 trillion cubic feet. The amount of gas in the hydrate reservoirs of the world greedy exceeds the volume of known conventional gas reserves. Gas hydrates also represent a significant drilling and production hazard. A fundamental question linking gas hydrate resource and hazard issues is: What is the volume of gas hydrates and included gas within a given gas hydrate occurrence Most published gas hydrate resource estimates have, of necessity, been made by broad extrapolation of only general knowledge of local geologic conditions. Gas volumes that may be attributed to gas hydrates are dependent on a number of reservoir parameters, including the areal extent ofthe gas-hydrate occurrence, reservoir thickness, hydrate number, reservoir porosity, and the degree of gas-hydrate saturation. Two of the most difficult reservoir parameters to determine are porosity and degreeof gas hydrate saturation. Well logs often serve as a source of porosity and hydrocarbon saturation data; however, well-log calculations within gas-hydrate-bearing intervals are subject to error. The primary reason for this difficulty is the lack of quantitative laboratory and field studies. The primary purpose of this paper is to review the response of well logs to the presence of gas hydrates.

  18. Well log evaluation of natural gas hydrates

    SciTech Connect

    Collett, T.S.

    1992-10-01

    Gas hydrates are crystalline substances composed of water and gas, in which a solid-water-lattice accommodates gas molecules in a cage-like structure. Gas hydrates are globally widespread in permafrost regions and beneath the sea in sediment of outer continental margins. While methane, propane, and other gases can be included in the clathrate structure, methane hydrates appear to be the most common in nature. The amount of methane sequestered in gas hydrates is probably enormous, but estimates are speculative and range over three orders of magnitude from about 100,000 to 270,000,000 trillion cubic feet. The amount of gas in the hydrate reservoirs of the world greedy exceeds the volume of known conventional gas reserves. Gas hydrates also represent a significant drilling and production hazard. A fundamental question linking gas hydrate resource and hazard issues is: What is the volume of gas hydrates and included gas within a given gas hydrate occurrence? Most published gas hydrate resource estimates have, of necessity, been made by broad extrapolation of only general knowledge of local geologic conditions. Gas volumes that may be attributed to gas hydrates are dependent on a number of reservoir parameters, including the areal extent ofthe gas-hydrate occurrence, reservoir thickness, hydrate number, reservoir porosity, and the degree of gas-hydrate saturation. Two of the most difficult reservoir parameters to determine are porosity and degreeof gas hydrate saturation. Well logs often serve as a source of porosity and hydrocarbon saturation data; however, well-log calculations within gas-hydrate-bearing intervals are subject to error. The primary reason for this difficulty is the lack of quantitative laboratory and field studies. The primary purpose of this paper is to review the response of well logs to the presence of gas hydrates.

  19. Natural gas-assisted steam electrolyzer

    DOEpatents

    Pham, Ai-Quoc; Wallman, P. Henrik; Glass, Robert S.

    2000-01-01

    An efficient method of producing hydrogen by high temperature steam electrolysis that will lower the electricity consumption to an estimated 65 percent lower than has been achievable with previous steam electrolyzer systems. This is accomplished with a natural gas-assisted steam electrolyzer, which significantly reduces the electricity consumption. Since this natural gas-assisted steam electrolyzer replaces one unit of electrical energy by one unit of energy content in natural gas at one-quarter the cost, the hydrogen production cost will be significantly reduced. Also, it is possible to vary the ratio between the electricity and the natural gas supplied to the system in response to fluctuations in relative prices for these two energy sources. In one approach an appropriate catalyst on the anode side of the electrolyzer will promote the partial oxidation of natural gas to CO and hydrogen, called Syn-Gas, and the CO can also be shifted to CO.sub.2 to give additional hydrogen. In another approach the natural gas is used in the anode side of the electrolyzer to burn out the oxygen resulting from electrolysis, thus reducing or eliminating the potential difference across the electrolyzer membrane.

  20. Tapping methane hydrates for unconventional natural gas

    USGS Publications Warehouse

    Ruppel, Carolyn

    2007-01-01

    Methane hydrate is an icelike form of concentrated methane and water found in the sediments of permafrost regions and marine continental margins at depths far shallower than conventional oil and gas. Despite their relative accessibility and widespread occurrence, methane hydrates have never been tapped to meet increasing global energy demands. With rising natural gas prices, production from these unconventional gas deposits is becoming economically viable, particularly in permafrost areas already being exploited for conventional oil and gas. This article provides an overview of gas hydrate occurrence, resource assessment, exploration, production technologies, renewability, and future challenges.

  1. Natural Gas Variability In California: Environmental Impacts And Device Performance Combustion Modeling of Pollutant Emissions From a Residential Cooking Range

    SciTech Connect

    Tonse, S. R.; Singer, B. C.

    2011-07-01

    As part of a larger study of liquefied natural gas impacts on device performance and pollutant emissions for existing equipment in California, this report describes a cmoputer modeling study of a partially premixed flame issueing from a single cooktop burner port. The model consisted of a reactive computational fluid dynamics three-dimensional spatial grid and a 71-species chemical mechanism with propane combustion capability. Simulations were conducted with a simplified fuel mixture containing methane, ethane, and propane in proportions that yield properties similar to fuels distributed throughout much of California now and in recent years (baseline fuel), as well as with two variations of simulated liquefied natural gas blends. A variety of simulations were conducted with baseline fuel to explore the effect of several key parameters on pollutant formation and other flame characteristics. Simulations started with fuel and air issuing through the burner port, igniting, and continuing until the flame was steady with time. Conditions at this point were analyzed to understand fuel, secondary air and reaction product flows, regions of pollutant formation, and exhaust concentrations of carbon monoxide, nitric oxide and formaldehyde. A sensitivity study was conducted, varying the inflow parameters of this baseline gs about real-world operating conditions. Flame properties responded as expected from reactive flow theory. In the simulation, carbon monoxide levels were influenced more by the mixture's inflow velocity than by the gas-to-air ratio in the mixture issuing from the inflow port. Additional simulations were executed at two inflow conditions - high heat release and medium heat release - to examine the impact of replacing the baseline gas with two mixtures representative of liquefied natural gas. Flame properties and pollutant generation rates were very similar among the three fuel mixtures.

  2. Analysis of Adsorbed Natural Gas Tank Technology

    NASA Astrophysics Data System (ADS)

    Knight, Ernest; Schultz, Conrad; Rash, Tyler; Dohnke, Elmar; Stalla, David; Gillespie, Andrew; Sweany, Mark; Seydel, Florian; Pfeifer, Peter

    With gasoline being an ever decreasing finite resource and with the desire to reduce humanity's carbon footprint, there has been an increasing focus on innovation of alternative fuel sources. Natural gas burns cleaner, is more abundant, and conforms to modern engines. However, storing compressed natural gas (CNG) requires large, heavy gas cylinders, which limits space and fuel efficiency. Adsorbed natural gas (ANG) technology allows for much greater fuel storage capacity and the ability to store the gas at a much lower pressure. Thus, ANG tanks are much more flexible in terms of their size, shape, and weight. Our ANG tank employs monolithic nanoporous activated carbon as its adsorbent material. Several different configurations of this Flat Panel Tank Assembly (FPTA) along with a Fuel Extraction System (FES) were examined to compare with the mass flow rate demands of an engine.

  3. Natural gas 1992: Issues and trends

    SciTech Connect

    Not Available

    1993-03-01

    This report provides an overview of the natural gas industry in 1991 and 1992, focusing on trends in production, consumption, and pricing of natural gas and how they reflect the regulatory and legislative changes of the past decade (Chapter 1). Also presented are details of FERC Order 636 and the Energy Policy Act of 1992, as well as pertinent provisions of the Clean Air Act Amendments of 1990 (Chapter 2). In addition, the report highlights a range of issues affecting the industry, including: Trends in wellhead prices and natural gas supply activities (Chapter 3); Recent rate design changes for interstate pipeline companies (Chapter 4); Benefits to consumers from the more competitive marketplace (Chapter 5); Pipeline capacity expansions during the past 2 years (Chapter 6); Increasing role of the natural gas futures market (Chapter 7).

  4. Natural gas annual 1992: Supplement: Company profiles

    SciTech Connect

    Not Available

    1994-01-01

    The data for the Natural Gas Annual 1991 Supplement : Company Profiles are taken from Form EIA-176, (open quotes) Annual Report of Natural and Supplemental Gas Supply and Disposition (close quotes). Other sources include industry literature and corporate annual reports to shareholders. The companies appearing in this report are major interstate natural gas pipeline companies, large distribution companies, or combination companies with both pipeline and distribution operations. The report contains profiles of 45 corporate families. The profiles describe briefly each company, where it operates, and any important issues that the company faces. The purpose of this report is to show the movement of natural gas through the various States served by the 45 large companies profiled.

  5. A historical analysis of natural gas demand

    NASA Astrophysics Data System (ADS)

    Dalbec, Nathan Richard

    This thesis analyzes demand in the US energy market for natural gas, oil, and coal over the period of 1918-2013 and examines their price relationship over the period of 2007-2013. Diagnostic tests for time series were used; Augmented Dickey-Fuller, Kwiatkowski-Phillips-Schmidt-Shin, Johansen cointegration, Granger Causality and weak exogeneity tests. Directed acyclic graphs were used as a complimentary test for endogeneity. Due to the varied results in determining endogeneity, a seemingly unrelated regression model was used which assumes all right hand side variables in the three demand equations were exogenous. A number of factors were significant in determining demand for natural gas including its own price, lagged demand, a number of structural break dummies, and trend, while oil indicate some substitutability with natural gas. An error correction model was used to examine the price relationships. Natural gas price was found not to have a significant cointegrating vector.

  6. Natural gas 1996 - issues and trends

    SciTech Connect

    1996-12-01

    This publication presents a summary of the latest data and information relating to the U.S. natural gas industry, including prices, production, transmission, consumption, and financial aspects of the industry.

  7. Natural gas flow through critical nozzles

    NASA Technical Reports Server (NTRS)

    Johnson, R. C.

    1969-01-01

    Empirical method for calculating both the mass flow rate and upstream volume flow rate through critical flow nozzles is determined. Method requires knowledge of the composition of natural gas, and of the upstream pressure and temperature.

  8. Combustion gas properties. 2: Natural gas fuel and dry air

    NASA Technical Reports Server (NTRS)

    Wear, J. D.; Jones, R. E.; Trout, A. M.; Mcbride, B. J.

    1985-01-01

    A series of computations has been made to produce the equilibrium temperature and gas composition for natural gas fuel and dry air. The computed tables and figures provide combustion gas property data for pressures from 0.5 to 50 atmospheres and equivalence ratios from 0 to 2.0. Only samples tables and figures are provided in this report. The complete set of tables and figures is provided on four microfiche films supplied with this report.

  9. Natural gas at thermodynamic equilibrium. Implications for the origin of natural gas.

    PubMed

    Mango, Frank D; Jarvie, Daniel; Herriman, Eleanor

    2009-01-01

    It is broadly accepted that so-called 'thermal' gas is the product of thermal cracking, 'primary' thermal gas from kerogen cracking, and 'secondary' thermal gas from oil cracking. Since thermal cracking of hydrocarbons does not generate products at equilibrium and thermal stress should not bring them to equilibrium over geologic time, we would not expect methane, ethane, and propane to be at equilibrium in subsurface deposits. Here we report compelling evidence of natural gas at thermodynamic equilibrium. Molecular compositions are constrained to equilibrium, [Formula in text] and isotopic compositions are also under equilibrium constraints: [Formula in text].The functions [(CH4)*(C3H8)] and [(C2H6)2] exhibit a strong nonlinear correlation (R2 = 0.84) in which the quotient Q progresses to K as wet gas progresses to dry gas. There are striking similarities between natural gas and catalytic gas generated from marine shales. A Devonian/Mississippian New Albany shale generates gas with Q converging on K over time as wet gas progresses to dry gas at 200 degrees C. The position that thermal cracking is the primary source of natural gas is no longer tenable. It is challenged by its inability to explain the composition of natural gas, natural gases at thermodynamic equilibrium, and by the existence of a catalytic path to gas that better explains gas compositions. PMID:19531233

  10. Natural gas at thermodynamic equilibrium Implications for the origin of natural gas

    PubMed Central

    2009-01-01

    It is broadly accepted that so-called 'thermal' gas is the product of thermal cracking, 'primary' thermal gas from kerogen cracking, and 'secondary' thermal gas from oil cracking. Since thermal cracking of hydrocarbons does not generate products at equilibrium and thermal stress should not bring them to equilibrium over geologic time, we would not expect methane, ethane, and propane to be at equilibrium in subsurface deposits. Here we report compelling evidence of natural gas at thermodynamic equilibrium. Molecular compositions are constrained to equilibrium, and isotopic compositions are also under equilibrium constraints: The functions [(CH4)*(C3H8)] and [(C2H6)2] exhibit a strong nonlinear correlation (R2 = 0.84) in which the quotient Q progresses to K as wet gas progresses to dry gas. There are striking similarities between natural gas and catalytic gas generated from marine shales. A Devonian/Mississippian New Albany shale generates gas with Q converging on K over time as wet gas progresses to dry gas at 200°C. The position that thermal cracking is the primary source of natural gas is no longer tenable. It is challenged by its inability to explain the composition of natural gas, natural gases at thermodynamic equilibrium, and by the existence of a catalytic path to gas that better explains gas compositions. PMID:19531233

  11. Convert natural gas into clean transportation fuels

    SciTech Connect

    Agee, M.A.

    1997-03-01

    A new process economically converts natural gas into synthetic transportation fuels that are free of sulfur, metals, aromatics and are clear in appearance. The process, developed by Syntroleum Corp., is energy self-sufficient and can be implemented in sizes small enough to fit a large number of the world`s gas fields. The process is described.

  12. Natural gas forklifts clear the air

    SciTech Connect

    1995-05-01

    The switch from propane to natural gas-fueled forklifts, as two Utah companies discovered, means cleaner air, less costly fuel, faster refueling, improved safety, and good performance. In other words: less downtime and higher productivity. Tough new OSHA indoor air quality standards and concerns for worker health and safety have focused attention on forklift exhaust emissions. Forklifts fueled by natural gas produce 95% less carbon monoxide (CO) than propane forklifts. Further, they are less expensive to operate because natural gas is a cost-effective fuel. Refueling is easy and can be done in as little as 45 seconds. Because the tank is mounted on the lift, vehicles can be driven right to the refueling port and workers don`t have to handle heavy tanks. Natural gas is also a safe fuel. In the event of a leak, natural gas will dissipate into the atmosphere because it is lighter than air rather than pool at the site. Its high auto-ignition temperature makes it less likely to ignite. Natural gas forklifts consistently score high on performance. They offer all the benefits and power of an internal combustion engine without any of the emission problems. Battery recharging and battery storage requirements of electric powered forklifts are nonexistent.

  13. Value-Added Products from Remote Natural Gas

    SciTech Connect

    Lyle A. Johnson

    2002-03-15

    In Wyoming and throughout the United States, there are natural gas fields that are not producing because of their remoteness from gas pipelines. Some of these fields are ideal candidates for a cogeneration scheme where components suitable for chemical feedstock or direct use, such as propane and butane, are separated. Resulting low- to medium-Btu gas is fired in a gas turbine system to provide power for the separation plant. Excess power is sold to the utility, making the integrated plant a true cogeneration facility. This project seeks to identify the appropriate technologies for various subsystems of an integrated plant to recover value-added products from wet gas and/or retrograde condensate reservoirs. Various vendors and equipment manufacturers will be contacted and a data base consisting of feedstock constraints and output specifications for various subsystems and components will be developed. Based on vendor specifications, gas reservoirs suited for value-added product recovery will be identified. A candidate reservoir will then be selected, and an optimum plant layout will be developed. A facility will then be constructed and operated. The project consists of eight subtasks: Compilation of Reservoir Data; Review of Treatment and Conditioning Technologies; Review of Product Recovery and Separation Technologies; Development of Power Generation System; Integrated Plant Design for Candidate Field; System Fabrication; System Operation and Monitoring; and Economic Evaluation and Reporting. The first five tasks have been completed and the sixth is nearly complete. Systems Operations and Monitoring will start next year. The Economic Evaluation and Reporting task will be a continuous effort for the entire project. The reservoir selected for the initial demonstration of the process is the Burnt Wagon Field, Natrona County, Wyoming. The field is in a remote location with no electric power to the area and no gas transmission line. The design for the gas processing train to produce the liquefied gas products includes three gas compressors, a cryogenic separation unit, and a natural gas powered generator. Based on the equipment specifications, air quality permits for the well field and the gas processing unit were developed and the permits were issued by the Wyoming Department of Environmental Quality. Also, to make state and federal reporting easier, three of the four leases that made up the Burnt Wagon were combined. All major equipment has been installed and individual component operability is being conducted. During the next project year, operability testing and the shakedown of the entire system will be completed. Once shakedown is complete, the system will be turned over to the cosponsor for day-to-day operations. During operations, data will be collected through remote linkage to the data acquisition system or analysis of the system performance to develop an economic evaluation of the process.

  14. GAS/LIQUID MEMBRANES FOR NATURAL GAS UPGRADING

    SciTech Connect

    Howard S. Meyer

    2003-04-01

    Gas Technology Institute (GTI) is conducting this research program whose objective is to develop gas/liquid membranes for natural gas upgrading to assist DOE in achieving their goal of developing novel methods of upgrading low quality natural gas to meet pipeline specifications. Kvaerner Process Systems (KPS) and W. L. Gore & Associates (GORE) gas/liquid membrane contactors are based on expanded polytetrafluoroethylene (ePTFE) membranes acting as the contacting barrier between the contaminated gas stream and the absorbing liquid. These resilient membranes provide much greater surface area for transfer than other tower internals, with packing densities five to ten times greater, resulting in equipment 50-70% smaller and lower weight for the same treating service. The scope of the research program is to (1) build and install a laboratory- and a field-scale gas/liquid membrane absorber; (2) operate the units with a low quality natural gas feed stream for sufficient time to verify the simulation model of the contactors and to project membrane life in this severe service; and (3) conducted an economic evaluation, based on the data, to quantify the impact of the technology. Chevron, one of the major producers of natural gas, has offered to host the test at a gas treating plant. KPS will use their position as a recognized leader in the construction of commercial amine plants for building the unit along with GORE providing the membranes. GTI will provide operator and data collection support during lab- and field-testing to assure proper analytical procedures are used. KPS and GTI will perform the final economic evaluation. GTI will provide project management and be responsible for reporting and interactions with DOE on this project. Efforts this quarter have concentrated on field site selection. ChevronTexaco has nominated their Headlee Gas Plant in Odessa, TX for a commercial-scale dehydration test. Potting and module materials testing were initiated. Preliminary design of the bench-scale equipment continues.

  15. A real loser. [Natural gas resource planning

    SciTech Connect

    Kretschmer, R.K.; Mraz, L.J.

    1994-03-01

    The National Energy Policy Act requires states to consider the adoption of gas integrated resource planning (IRP). In Illinois, gas IRP has not only been considered, but implemented as well. Some respected regulators and utility planners have tried to promote gas IRP as a wonderful tool by explaining all of its theoretical benefits. But the reality is that gas IRP is not cost-effective. In fact, it's a clear loser. Consider the legislative history of gas IRP in Illinois. On September 19, 1985, then-Governor James R. Thompson signed into law legislation that mandated IRP for gas and electric utilities (effective January 1, 1986). Throughout the debate on the merits of mandating IRP, legislators focused almost exclusively on the electric industry. Believe it or not, natural gas was referenced only twice throughout the legislative debate. Nevertheless, the legislation required local distribution companies (LDCs) to develop so-called least-cost plans.

  16. Natural gas use is taking off

    SciTech Connect

    Kauffmann, B.G.

    1995-07-01

    The paper describes an infrared radiant heat process to de-ice aircraft. A typical 727 aircraft de-icing costs $2000--3000 using the current glycol method. The natural gas powered heater would only cost $400 per aircraft and would not pose the environmental problems that the glycol does. It is estimated that one Infratek system could consume 3.8 million cubic feet of natural gas each year during the de-icing season. Large airports might have as many as 10 units. 3.8 million cu. ft. of gas is equal to about 40 New York residential customers or eight New York commercial customers.

  17. NATURAL GAS RESOURCES IN DEEP SEDIMENTARY BASINS

    SciTech Connect

    Thaddeus S. Dyman; Troy Cook; Robert A. Crovelli; Allison A. Henry; Timothy C. Hester; Ronald C. Johnson; Michael D. Lewan; Vito F. Nuccio; James W. Schmoker; Dennis B. Riggin; Christopher J. Schenk

    2002-02-05

    From a geological perspective, deep natural gas resources are generally defined as resources occurring in reservoirs at or below 15,000 feet, whereas ultra-deep gas occurs below 25,000 feet. From an operational point of view, ''deep'' is often thought of in a relative sense based on the geologic and engineering knowledge of gas (and oil) resources in a particular area. Deep gas can be found in either conventionally-trapped or unconventional basin-center accumulations that are essentially large single fields having spatial dimensions often exceeding those of conventional fields. Exploration for deep conventional and unconventional basin-center natural gas resources deserves special attention because these resources are widespread and occur in diverse geologic environments. In 1995, the U.S. Geological Survey estimated that 939 TCF of technically recoverable natural gas remained to be discovered or was part of reserve appreciation from known fields in the onshore areas and State waters of the United. Of this USGS resource, nearly 114 trillion cubic feet (Tcf) of technically-recoverable gas remains to be discovered from deep sedimentary basins. Worldwide estimates of deep gas are also high. The U.S. Geological Survey World Petroleum Assessment 2000 Project recently estimated a world mean undiscovered conventional gas resource outside the U.S. of 844 Tcf below 4.5 km (about 15,000 feet). Less is known about the origins of deep gas than about the origins of gas at shallower depths because fewer wells have been drilled into the deeper portions of many basins. Some of the many factors contributing to the origin of deep gas include the thermal stability of methane, the role of water and non-hydrocarbon gases in natural gas generation, porosity loss with increasing thermal maturity, the kinetics of deep gas generation, thermal cracking of oil to gas, and source rock potential based on thermal maturity and kerogen type. Recent experimental simulations using laboratory pyrolysis methods have provided much information on the origins of deep gas. Technologic problems are one of the greatest challenges to deep drilling. Problems associated with overcoming hostile drilling environments (e.g. high temperatures and pressures, and acid gases such as CO{sub 2} and H{sub 2}S) for successful well completion, present the greatest obstacles to drilling, evaluating, and developing deep gas fields. Even though the overall success ratio for deep wells is about 50 percent, a lack of geological and geophysical information such as reservoir quality, trap development, and gas composition continues to be a major barrier to deep gas exploration. Results of recent finding-cost studies by depth interval for the onshore U.S. indicate that, on average, deep wells cost nearly 10 times more to drill than shallow wells, but well costs and gas recoveries vary widely among different gas plays in different basins. Based on an analysis of natural gas assessments, many topical areas hold significant promise for future exploration and development. One such area involves re-evaluating and assessing hypothetical unconventional basin-center gas plays. Poorly-understood basin-center gas plays could contain significant deep undiscovered technically-recoverable gas resources.

  18. Natural Gas Pipeline and System Expansions

    EIA Publications

    1997-01-01

    This special report examines recent expansions to the North American natural gas pipeline network and the nature and type of proposed pipeline projects announced or approved for construction during the next several years in the United States. It includes those projects in Canada and Mexico that tie in with U.S. markets or projects.

  19. GAS/LIQUID MEMBRANES FOR NATURAL GAS UPGRADING

    SciTech Connect

    Howard S. Meyer

    2002-06-30

    Efforts this quarter have concentrated on legal agreements, including alternative field sites. Preliminary design of the bench-scale equipment continues. Gas Technology Institute (GTI) is conducting this research program whose objective is to develop gas/liquid membranes for natural gas upgrading to assist DOE in achieving their goal of developing novel methods of upgrading low quality natural gas to meet pipeline specifications. Kvaerner Process Systems (KPS) and W. L. Gore & Associates (GORE) gas/liquid membrane contactors are based on expanded polytetrafluoroethylene (ePTFE) membranes acting as the contacting barrier between the contaminated gas stream and the absorbing liquid. These resilient membranes provide much greater surface area for transfer than other tower internals, with packing densities five to ten times greater, resulting in equipment 50--70% smaller and lower weight for the same treating service. The scope of the research program is to (1) build and install a laboratory- and a field-scale gas/liquid membrane absorber; (2) operate the units with a low quality natural gas feed stream for sufficient time to verify the simulation model of the contactors and to project membrane life in this severe service; and (3) conducted an economic evaluation, based on the data, to quantify the impact of the technology. Chevron, one of the major producers of natural gas, has offered to host the test at a gas treating plant. KPS will use their position as a recognized leader in the construction of commercial amine plants for building the unit along with GORE providing the membranes. GTI will provide operator and data collection support during lab- and field-testing to assure proper analytical procedures are used. Kvaerner and GTI will perform the final economic evaluation. GTI will provide project management and be responsible for reporting and interactions with DOE on this project.

  20. GAS/LIQUID MEMBRANES FOR NATURAL GAS UPGRADING

    SciTech Connect

    Howard S. Meyer

    2002-10-01

    Gas Technology Institute (GTI) is conducting this research program whose objective is to develop gas/liquid membranes for natural gas upgrading to assist DOE in achieving their goal of developing novel methods of upgrading low quality natural gas to meet pipeline specifications. Kvaerner Process Systems (KPS) and W. L. Gore & Associates (GORE) gas/liquid membrane contactors are based on expanded polytetrafluoroethylene (ePTFE) membranes acting as the contacting barrier between the contaminated gas stream and the absorbing liquid. These resilient membranes provide much greater surface area for transfer than other tower internals, with packing densities five to ten times greater, resulting in equipment 50-70% smaller and lower weight for the same treating service. The scope of the research program is to (1) build and install a laboratory- and a field-scale gas/liquid membrane absorber; (2) operate the units with a low quality natural gas feed stream for sufficient time to verify the simulation model of the contactors and to project membrane life in this severe service; and (3) conducted an economic evaluation, based on the data, to quantify the impact of the technology. Chevron, one of the major producers of natural gas, has offered to host the test at a gas treating plant. KPS will use their position as a recognized leader in the construction of commercial amine plants for building the unit along with GORE providing the membranes. GTI will provide operator and data collection support during lab- and field-testing to assure proper analytical procedures are used. KPS and GTI will perform the final economic evaluation. GTI will provide project management and be responsible for reporting and interactions with DOE on this project. Efforts this quarter have concentrated on legal agreements, including alternative field sites. Preliminary design of the bench-scale equipment continues.

  1. GAS/LIQUID MEMBRANES FOR NATURAL GAS UPGRADING

    SciTech Connect

    Howard S. Meyer

    2002-06-01

    Efforts this quarter have concentrated on legal agreements, including alternative field sites. Preliminary design of the bench-scale equipment has been initiated. Gas Technology Institute (GTI) is conducting this research program whose objective is to develop gas/liquid membranes for natural gas upgrading to assist DOE in achieving their goal of developing novel methods of upgrading low quality natural gas to meet pipeline specifications. Kvaerner Process Systems (KPS) and W. L. Gore & Associates (GORE) gas/liquid membrane contactors are based on expanded polytetrafluoroethylene (ePTFE) membranes acting as the contacting barrier between the contaminated gas stream and the absorbing liquid. These resilient membranes provide much greater surface area for transfer than other tower internals, with packing densities five to ten times greater, resulting in equipment 50--70% smaller and lower weight for the same treating service. The scope of the research program is to (1) build and install a laboratory- and a field-scale gas/liquid membrane absorber; (2) operate the units with a low quality natural gas feed stream for sufficient time to verify the simulation model of the contactors and to project membrane life in this severe service; and (3) conducted an economic evaluation, based on the data, to quantify the impact of the technology. Chevron, one of the major producers of natural gas, has offered to host the test at a gas treating plant. KPS will use their position as a recognized leader in the construction of commercial amine plants for building the unit along with GORE providing the membranes. GTI will provide operator and data collection support during lab- and field-testing to assure proper analytical procedures are used. Kvaerner and GTI will perform the final economic evaluation. GTI will provide project management and be responsible for reporting and interactions with DOE on this project.

  2. GAS/LIQUID MEMBRANES FOR NATURAL GAS UPGRADING

    SciTech Connect

    Howard S. Meyer

    2003-01-01

    Gas Technology Institute (GTI) is conducting this research program whose objective is to develop gas/liquid membranes for natural gas upgrading to assist DOE in achieving their goal of developing novel methods of upgrading low quality natural gas to meet pipeline specifications. Kvaerner Process Systems (KPS) and W. L. Gore & Associates (GORE) gas/liquid membrane contactors are based on expanded polytetrafluoroethylene (ePTFE) membranes acting as the contacting barrier between the contaminated gas stream and the absorbing liquid. These resilient membranes provide much greater surface area for transfer than other tower internals, with packing densities five to ten times greater, resulting in equipment 50-70% smaller and lower weight for the same treating service. The scope of the research program is to (1) build and install a laboratory- and a field-scale gas/liquid membrane absorber; (2) operate the units with a low quality natural gas feed stream for sufficient time to verify the simulation model of the contactors and to project membrane life in this severe service; and (3) conducted an economic evaluation, based on the data, to quantify the impact of the technology. Chevron, one of the major producers of natural gas, has offered to host the test at a gas treating plant. KPS will use their position as a recognized leader in the construction of commercial amine plants for building the unit along with GORE providing the membranes. GTI will provide operator and data collection support during lab- and field-testing to assure proper analytical procedures are used. Kvaerner and GTI will perform the final economic evaluation. GTI will provide project management and be responsible for reporting and interactions with DOE on this project. Efforts this quarter have concentrated on legal agreements, including alternative field sites. Preliminary design of the bench-scale equipment continues.

  3. Natural gas hydrates: myths, facts and issues

    NASA Astrophysics Data System (ADS)

    Beauchamp, Beno??t

    2004-07-01

    Gas hydrates are solid-like substances naturally occurring beneath the oceans and in polar regions. They contain vast, and potentially unstable, reserves of methane and other natural gases. Many believe that, if released in the environment, the methane from hydrates would be a considerable hazard to marine ecosystems, coastal populations and infrastructures, or worse, that it would dangerously contribute to global warming. On the other hand, hydrates may contain enough natural gas to provide an energy supply assurance for the 21st century. This paper attempts to separate the myths, the facts and the issues that relate to natural gas hydrates beyond the doomsday environmental scenarios and overly optimistic estimates. To cite this article: B. Beauchamp, C. R. Geoscience 336 (2004).

  4. 30 CFR 75.1106-5 - Maintenance and tests of liquefied and nonliquefied compressed gas cylinders; accessories and...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... nonliquefied compressed gas cylinders; accessories and equipment; requirements. 75.1106-5 Section 75.1106-5 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Fire Protection § 75.1106-5 Maintenance and tests...

  5. 30 CFR 75.1106-5 - Maintenance and tests of liquefied and nonliquefied compressed gas cylinders; accessories and...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... nonliquefied compressed gas cylinders; accessories and equipment; requirements. 75.1106-5 Section 75.1106-5 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Fire Protection § 75.1106-5 Maintenance and tests...

  6. 30 CFR 75.1106-5 - Maintenance and tests of liquefied and nonliquefied compressed gas cylinders; accessories and...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... nonliquefied compressed gas cylinders; accessories and equipment; requirements. 75.1106-5 Section 75.1106-5 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Fire Protection § 75.1106-5 Maintenance and tests...

  7. 30 CFR 75.1106-5 - Maintenance and tests of liquefied and nonliquefied compressed gas cylinders; accessories and...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... nonliquefied compressed gas cylinders; accessories and equipment; requirements. 75.1106-5 Section 75.1106-5 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Fire Protection § 75.1106-5 Maintenance and tests...

  8. 30 CFR 75.1106-5 - Maintenance and tests of liquefied and nonliquefied compressed gas cylinders; accessories and...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... nonliquefied compressed gas cylinders; accessories and equipment; requirements. 75.1106-5 Section 75.1106-5 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Fire Protection § 75.1106-5 Maintenance and tests...

  9. Liquid natural gas as a transportation fuel in the heavy trucking industry. Second quarterly progress report, [October 1, 1994-- December 30, 1994

    SciTech Connect

    Sutton, W.H.

    1994-12-01

    Emphasis of this project focuses on LNG research issues in use of liquefied natural as a transportation fuel in heavy trucking industry. These issues maybe categorized as: task 1--direct diesel replacement with LNG fuel; and task 2--short and long term storage. Accomplishments for these tasks are discussed. Task 1 consists of atomization, fundamentals of direct replacement, and distribution of emissions. Task 2 includes modified adsorbents, vent gas, and LNG storage at moderate conditions.

  10. Liquefied Gaseous Fuels Safety and Environmental Control Assessment Program: second status report

    SciTech Connect

    1980-10-01

    Volume 2 consists of 19 reports describing technical effort performed by Government Contractors in the area of LNG Safety and Environmental Control. Report topics are: simulation of LNG vapor spread and dispersion by finite element methods; modeling of negatively buoyant vapor cloud dispersion; effect of humidity on the energy budget of a liquefied natural gas (LNG) vapor cloud; LNG fire and explosion phenomena research evaluation; modeling of laminar flames in mixtures of vaporized liquefied natural gas (LNG) and air; chemical kinetics in LNG detonations; effects of cellular structure on the behavior of gaseous detonation waves under transient conditions; computer simulation of combustion and fluid dynamics in two and three dimensions; LNG release prevention and control; the feasibility of methods and systems for reducing LNG tanker fire hazards; safety assessment of gelled LNG; and a four band differential radiometer for monitoring LNG vapors.

  11. Geologic studies of deep natural gas resources

    USGS Publications Warehouse

    Dyman, T. S., (Edited By); Kuuskraa, V.A.

    2001-01-01

    In 1995, the USGS estimated a mean resource of 114 trillion cubic feet of undiscovered technically recoverable natural gas in plays deeper than 15,000 feet/4,572 meters in onshore regions of the United States. This volume summarizes major conclusions of ongoing work. Chapters A and B address the areal extent of drilling and distribution of deep basins in the U.S. Chapter C summarizes distribution of deep sedimentary basins and potential for deep gas in the former Soviet Union. Chapters D and E are geochemical papers addressing source-rock issues and deep gas generation. Chapter F develops a probabilistic method for subdividing gas resources into depth slices, and chapter G analyzes the relative uncertainty of estimates of deep gas in plays in the Gulf Coast Region. Chapter H evaluates the mechanism of hydrogenation of deep, high-rank spent kerogen by water, with subsequent generation of methane-rich HC gas.

  12. Apparatus and method for gelling liquefied gasses

    NASA Technical Reports Server (NTRS)

    Elliott, Adam (Inventor); DiSalvo, Roberto (Inventor); Shepherd, Phillip (Inventor); Kosier, Ryan (Inventor)

    2010-01-01

    The present invention is a method and apparatus for gelling liquid propane and other liquefied gasses. The apparatus includes a temperature controlled churn mixer, vacuum pump, liquefied gas transfer tank, and means for measuring amount of material entering the mixer. The method uses gelling agents such as silicon dioxide, clay, carbon, or organic or inorganic polymers, as well as dopants such as titanium, aluminum, and boron powders. The apparatus and method are particularly useful for the production of high quality rocket fuels and propellants.

  13. Influence of methane emissions and vehicle efficiency on the climate implications of heavy-duty natural gas trucks.

    PubMed

    Camuzeaux, Jonathan R; Alvarez, Ramón A; Brooks, Susanne A; Browne, Joshua B; Sterner, Thomas

    2015-06-01

    While natural gas produces lower carbon dioxide emissions than diesel during combustion, if enough methane is emitted across the fuel cycle, then switching a heavy-duty truck fleet from diesel to natural gas can produce net climate damages (more radiative forcing) for decades. Using the Technology Warming Potential methodology, we assess the climate implications of a diesel to natural gas switch in heavy-duty trucks. We consider spark ignition (SI) and high-pressure direct injection (HPDI) natural gas engines and compressed and liquefied natural gas. Given uncertainty surrounding several key assumptions and the potential for technology to evolve, results are evaluated for a range of inputs for well-to-pump natural gas loss rates, vehicle efficiency, and pump-to-wheels (in-use) methane emissions. Using reference case assumptions reflecting currently available data, we find that converting heavy-duty truck fleets leads to damages to the climate for several decades: around 70-90 years for the SI cases, and 50 years for the more efficient HPDI. Our range of results indicates that these fuel switches have the potential to produce climate benefits on all time frames, but combinations of significant well-to-wheels methane emissions reductions and natural gas vehicle efficiency improvements would be required. PMID:25986359

  14. Magnetic liquefier for hydrogen

    SciTech Connect

    1992-12-31

    This document summarizes work done at the Astronautics Technology Center of the Astronautics Corporation of America (ACA) in Phase 1 of a four phase program leading to the development of a magnetic liquefier for hydrogen. The project involves the design, fabrication, installation, and operation of a hydrogen liquefier providing significantly reduced capital and operating costs, compared to present liquefiers. To achieve this goal, magnetic refrigeration, a recently developed, highly efficient refrigeration technology, will be used for the liquefaction process. Phase 1 project tasks included liquefier conceptual design and analysis, preliminary design of promising configurations, design selection, and detailed design of the selected design. Fabrication drawings and vendor specifications for the selected design were completed during detailed design. The design of a subscale, demonstration magnetic hydrogen liquefier represents a significant advance in liquefaction technology. The cost reductions that can be realized in hydrogen liquefaction in both the subscale and, more importantly, in the full-scale device are expected to have considerable impact on the use of liquid hydrogen in transportation, chemical, and electronic industries. The benefits to the nation from this technological advance will continue to have importance well into the 21st century.

  15. Anaerobic methanethiol degradation and methanogenic community analysis in an alkaline (pH 10) biological process for liquefied petroleum gas desulfurization.

    PubMed

    van Leerdam, Robin C; Bonilla-Salinas, Monica; de Bok, Frank A M; Bruning, H; Lens, Piet N L; Stams, Alfons J M; Janssen, Albert J H

    2008-11-01

    Anaerobic methanethiol (MT) degradation by mesophilic (30 degrees C) alkaliphilic (pH 10) communities was studied in a lab-scale Upflow Anaerobic Sludge Bed (UASB) reactor inoculated with a mixture of sediments from the Wadden Sea (The Netherlands), Soap Lake (Central Washington), and Russian soda lakes. MT degradation started after 32 days of incubation. During the first 252 days, complete degradation was achieved till a volumetric loading rate of 7.5 mmol MT/L/day, and sulfide, methane, and carbon dioxide were the main reaction products. Temporary inhibition of MT degradation occurred after MT peak loads and in the presence of dimethyl disulfide (DMDS), which is the autooxidation product of MT. From day 252 onwards, methanol was dosed to the reactor as co-substrate at a loading rate of 3-6 mmol/L/day to stimulate growth of methylotrophic methanogens. Methanol was completely degraded and also a complete MT degradation was achieved till a volumetric loading rate of 13 mmol MT/L/day (0.77 mmol MT/gVSS/day). However, from day 354 till the end of the experimental run (day 365), acetate was formed and MT was not completely degraded anymore, indicating that methanol-degrading homoacetogenic bacteria had partially outcompeted the methanogenic MT-degrading archea. The archeal community in the reactor sludge was analyzed by DGGE and sequencing of 16S rRNA genes. The methanogenic archea responsible for the degradation of MT in the reactor were related to Methanolobus oregonensis. A pure culture, named strain SODA, was obtained by serial dilutions in medium containing both trimethyl amine and dimethyl sulfide (DMS). Strain SODA degraded MT, DMS, trimethyl amine, and methanol. Flow sheet simulations revealed that for sufficient MT removal from liquefied petroleum gas, the extraction and biological degradation process should be operated above pH 9. PMID:18814290

  16. Apparatus for the liquefaction of a gas and methods relating to same

    DOEpatents

    Turner, Terry D. [Idaho Falls, ID; Wilding, Bruce M. [Idaho Falls, ID; McKellar, Michael G. [Idaho Falls, ID

    2009-12-29

    Apparatuses and methods are provided for producing liquefied gas, such as liquefied natural gas. In one embodiment, a liquefaction plant may be coupled to a source of unpurified natural gas, such as a natural gas pipeline at a pressure letdown station. A portion of the gas is drawn off and split into a process stream and a cooling stream. The cooling stream may be sequentially pass through a compressor and an expander. The process stream may also pass through a compressor. The compressed process stream is cooled, such as by the expanded cooling stream. The cooled, compressed process stream is expanded to liquefy the natural gas. A gas-liquid separator separates the vapor from the liquid natural gas. A portion of the liquid gas may be used for additional cooling. Gas produced within the system may be recompressed for reintroduction into a receiving line.

  17. Implications of Disruption to Natural Gas Deliverability

    SciTech Connect

    Science Applications International

    2008-09-30

    This project was sponsored by Department of Energy/Office of Electricity Delivery and Energy Reliability and managed by the National Energy Technology Laboratory. The primary purpose of the project was to analyze the capability of the natural gas production, transmission and supply systems to continue to provide service in the event of a major disruption in capacity of one or more natural gas transmission pipelines. The project was specifically designed to detail the ability of natural gas market to absorb facility losses and efficiently reallocate gas supplies during a significant pipeline capacity disruption in terms that allowed federal and state agencies and interests to develop effective policies and action plans to prioritize natural gas deliveries from a regional and national perspective. The analyses for each regional study were based on four primary considerations: (1) operating conditions (pipeline capacity, storage capacity, local production, power dispatch decision making and end user options); (2) weather; (3) magnitude and location of the disruption; and, (4) normal versus emergency situation. The detailed information contained in the region reports as generated from this project are Unclassified Controlled Information; and as such are subject to disclosure in accordance with the Freedom of Information Act. Therefore, this report defines the regions that were analyzed and the basic methodologies and assumptions used to completing the analysis.

  18. Natural gas product and strategic analysis

    SciTech Connect

    Layne, A.W.; Duda, J.R.; Zammerilli, A.M.

    1993-12-31

    Product and strategic analysis at the Department of Energy (DOE)/Morgantown Energy Technology Center (METC) crosscuts all sectors of the natural gas industry. This includes the supply, transportation, and end-use sectors of the natural-gas market. Projects in the Natural Gas Resource and Extraction supply program have been integrated into a new product focus. Product development facilitates commercialization and technology transfer through DOE/industry cost-shared research, development, and demonstration (RD&D). Four products under the Resource and Extraction program include Resource and Reserves; Low Permeability Formations; Drilling, Completion, and Stimulation: and Natural Gas Upgrading. Engineering process analyses have been performed for the Slant Hole Completion Test project. These analyses focused on evaluation of horizontal-well recovery potential and applications of slant-hole technology. Figures 2 and 3 depict slant-well in situ stress conditions and hydraulic fracture configurations. Figure 4 presents Paludal Formation coal-gas production curves used to optimize the hydraulic fracture design for the slant well. Economic analyses have utilized data generated from vertical test wells to evaluate the profitability of horizontal technology for low-permeability formations in Yuma County, Colorado, and Maverick County, Texas.

  19. Life-cycle greenhouse gas emissions of shale gas, natural gas, coal, and petroleum.

    PubMed

    Burnham, Andrew; Han, Jeongwoo; Clark, Corrie E; Wang, Michael; Dunn, Jennifer B; Palou-Rivera, Ignasi

    2012-01-17

    The technologies and practices that have enabled the recent boom in shale gas production have also brought attention to the environmental impacts of its use. It has been debated whether the fugitive methane emissions during natural gas production and transmission outweigh the lower carbon dioxide emissions during combustion when compared to coal and petroleum. Using the current state of knowledge of methane emissions from shale gas, conventional natural gas, coal, and petroleum, we estimated up-to-date life-cycle greenhouse gas emissions. In addition, we developed distribution functions for key parameters in each pathway to examine uncertainty and identify data gaps such as methane emissions from shale gas well completions and conventional natural gas liquid unloadings that need to be further addressed. Our base case results show that shale gas life-cycle emissions are 6% lower than conventional natural gas, 23% lower than gasoline, and 33% lower than coal. However, the range in values for shale and conventional gas overlap, so there is a statistical uncertainty whether shale gas emissions are indeed lower than conventional gas. Moreover, this life-cycle analysis, among other work in this area, provides insight on critical stages that the natural gas industry and government agencies can work together on to reduce the greenhouse gas footprint of natural gas. PMID:22107036

  20. Intensification of production of liquified natural gas

    SciTech Connect

    Dvoiris, A.D.; Sirotin, A.G.; Sakharova, G.P.

    1980-01-01

    Results are reported for studies aimed at the development of highly efficient heat-exchange surface through application of a porous layer to the tubes, together with the results of thermal testing for processes involving the boiling of liquefied hydrocarbons. 9 refs.