These are representative sample records from Science.gov related to your search topic.
For comprehensive and current results, perform a real-time search at Science.gov.
1

Thermoacoustic natural gas liquefier  

SciTech Connect

This is the final report of a two-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). This project sought to develop a natural-gas-powered natural-gas liquefier that has absolutely no moving parts and requires no electrical power. It should have high efficiency, remarkable reliability, and low cost. The thermoacoustic natural-gas liquefier (TANGL) is based on our recent invention of the first no-moving-parts cryogenic refrigerator. In short, our invention uses acoustic phenomena to produce refrigeration from heat, with no moving parts. The required apparatus comprises nothing more than heat exchangers and pipes, made of common materials, without exacting tolerances. Its initial experimental success in a small size lead us to propose a more ambitious application: large-energy liquefaction of natural gas, using combustion of natural gas as the energy source. TANGL was designed to be maintenance-free, inexpensive, portable, and environmentally benign.

Swift, G.; Gardner, D.; Hayden, M.; Radebaugh, R. [National Inst. of Standards and Technology, Gaithersburg, MD (United States); Wollan, J. [Cryenco, Inc. (United States)

1996-07-01

2

Thermoacoustic natural gas liquefier  

SciTech Connect

Cryenco and Los Alamos are collaborating to develop a natural-gas-powered natural-gas liquefier that will have no moving parts and require no electrical power. It will have useful efficiency, remarkable reliability, and low cost. The liquefaction of natural gas, which occurs at only 115 Kelvin at atmospheric pressure, has previously required rather sophisticated refrigeration machinery. The 1990 invention of the thermoacoustically driven orifice pulse-tube refrigerator (TA-DOPTR) provides cryogenic refrigeration with no moving parts for the first time. In short, this invention uses acoustic phenomena to produce refrigeration from heat. The required apparatus consists of nothing more than helium-filled heat exchangers and pipes, made of common materials, without exacting tolerances. In the Cryenco-Los Alamos collaboration, the authors are developing a version of this invention suitable for use in the natural-gas industry. The project is known as acoustic liquefier for short. The present program plans call for a two-phase development. Phase 1, with capacity of 500 gallon per day (i.e., approximately 40,000 scfd, requiring a refrigeration power of about 7 kW), is large enough to illuminate all the issues of large-scale acoustic liquefaction without undue cost, and to demonstrate the liquefaction of 60--70% of input gas, while burning 30--40%. Phase 2 will target versions of approximately 10{sup 6} scfd = 10,000 gallon per day capacity. In parallel with both, they continue fundamental research on the technology, directed toward increased efficiency, to build scientific foundations and a patent portfolio for future acoustic liquefiers.

Swift, G.W. [Los Alamos National Lab., NM (United States). Condensed Matter and Thermal Physics Group

1997-05-01

3

Global Liquefied Natural Gas Market: Status and Outlook, The  

EIA Publications

The Global Liquefied Natural Gas Market: Status & Outlook was undertaken to characterize the global liquefied natural gas (LNG) market and to examine recent trends and future prospects in the LNG market.

2003-01-01

4

Power conversion system utilizing reversible energy of liquefied natural gas  

Microsoft Academic Search

A power conversion system comprising a combination of a liquefied natural gas vaporizing plant and a fuel burning power generating facility is disclosed. The liquefied natural gas vaporizing plant utilizes the cryogenic capacity of the liquefied natural gas to produce liquid air which is pumped to a high pressure by a liquid air pump. The liquid air is then brought

Hoskinson

1982-01-01

5

Bibliography on Liquefied Natural Gas (LNG) safety  

NASA Technical Reports Server (NTRS)

Approximately 600 citations concerning safety of liquefied natural gas and liquid methane are presented. Each entry includes the title, author, abstract, source, description of figures, key references, and major descriptors for retrieving the document. An author index is provided as well as an index of descriptors.

Ordin, P. M.

1976-01-01

6

Liquefied Natural Gas for Trucks and Buses  

SciTech Connect

Liquefied natural gas (LNG) is being developed as a heavy vehicle fuel. The reason for developing LNG is to reduce our dependency on imported oil by eliminating technical and costs barriers associated with its usage. The U.S. Department of Energy (DOE) has a program, currently in its third year, to develop and advance cost-effective technologies for operating and refueling natural gas-fueled heavy vehicles (Class 7-8 trucks). The objectives of the DOE Natural Gas Vehicle Systems Program are to achieve market penetration by reducing vehicle conversion and fuel costs, to increase consumer acceptance by improving the reliability and efficiency, and to improve air quality by reducing tailpipe emissions. One way to reduce fuel costs is to develop new supplies of cheap natural gas. Significant progress is being made towards developing more energy-efficient, low-cost, small-scale natural gas liquefiers for exploiting alternative sources of natural gas such as from landfill and remote gas sites. In particular, the DOE program provides funds for research and development in the areas of; natural gas clean up, LNG production, advanced vehicle onboard storage tanks, improved fuel delivery systems and LNG market strategies. In general, the program seeks to integrate the individual components being developed into complete systems, and then demonstrate the technology to establish technical and economic feasibility. The paper also reviews the importance of cryogenics in designing LNG fuel delivery systems.

James Wegrzyn; Michael Gurevich

2000-06-19

7

Recovery of power from vaporization of liquefied natural gas  

Microsoft Academic Search

Power is recovered from the vaporization of natural gas by warming the natural gas against a multicomponent stream which is cooled and liquefied. The liquefied multicomponent stream is pumped to an elevated pressure and is warmed against one or more streams of propane which are cooled and liquefied. The warmed multicomponent stream is heated, expanded through a generator loaded expander

C. L. Newton; D. L. Fuini

1984-01-01

8

Liquefied Natural Gas (LNG) dispenser verification device  

NASA Astrophysics Data System (ADS)

The composition of working principle and calibration status of LNG (Liquefied Natural Gas) dispenser in China are introduced. According to the defect of weighing method in the calibration of LNG dispenser, LNG dispenser verification device has been researched. The verification device bases on the master meter method to verify LNG dispenser in the field. The experimental results of the device indicate it has steady performance, high accuracy level and flexible construction, and it reaches the international advanced level. Then LNG dispenser verification device will promote the development of LNG dispenser industry in China and to improve the technical level of LNG dispenser manufacture.

Xiong, Maotao; Yang, Jie-bin; Zhao, Pu-jun; Yu, Bo; Deng, Wan-quan

2013-01-01

9

Lightweight Tanks for Storing Liquefied Natural Gas  

NASA Technical Reports Server (NTRS)

Single-walled, jacketed aluminum tanks have been conceived for storing liquefied natural gas (LNG) in LNG-fueled motor vehicles. Heretofore, doublewall steel tanks with vacuum between the inner and outer walls have been used for storing LNG. In comparison with the vacuum- insulated steel tanks, the jacketed aluminum tanks weigh less and can be manufactured at lower cost. Costs of using the jacketed aluminum tanks are further reduced in that there is no need for the vacuum pumps heretofore needed to maintain vacuum in the vacuum-insulated tanks.

DeLay, Tom

2008-01-01

10

75 FR 53371 - Liquefied Natural Gas Facilities: Obtaining Approval of Alternative Vapor-Gas Dispersion Models  

Federal Register 2010, 2011, 2012, 2013, 2014

...the Technical Committee on Liquefied Natural Gas of the NFPA. Several years ago...LNG Facilities. Subject: Liquefied Natural Gas Facilities: Obtaining Approval of...used with justification provided for the selection of pool diameter(s),...

2010-08-31

11

77 FR 16471 - Pipeline Safety: Implementation of the National Registry of Pipeline and Liquefied Natural Gas...  

Federal Register 2010, 2011, 2012, 2013, 2014

...national registry of pipeline and liquefied natural gas (LNG) operators. New operators...of master meter systems or petroleum gas systems that serve fewer than...operators and several hundred small liquefied petroleum gas (LPG) operators who...

2012-03-21

12

Development of a thermoacoustic natural gas liquefier  

Microsoft Academic Search

Praxair, in conjunction with the Los Alamos National Laboratory, is developing a new technology, thermoacoustic heat engines and refrigerators, for liquefaction of natural gas. This is the only technology capable of producing refrigeration power at cryogenic temperatures with no moving parts. A prototype, with a projected natural gas liquefaction capacity of 500 gallons\\/day, has been built and tested. The power

John J. Wollan; Gregory W. Swift; S. N. Backhaus; D. L. Gardner

2002-01-01

13

Performance metrics for evaluating liquefied natural gas, vapor dispersion models  

Microsoft Academic Search

New performance metrics are necessary to quantify the inherent margins of safety11In this paper, margin of safety is an occupational safety phrase, and it is expressed as a ratio. in vapor dispersion models for liquefied natural gas (LNG) spills. Currently, vapor dispersion model calculations in the 49 Code of Federal Regulations, Part 193 as well as Standard 59A of the

Frank A. Licari

2010-01-01

14

Liquefied Natural Gas: Global Challenges (released in AEO2008)  

EIA Publications

U.S. imports of liquefied natural gas (LNG) in 2007 were more than triple the 2000 total, and they are expected to grow in the long term as North Americas conventional natural gas production declines. With U.S. dependence on LNG imports increasing, competitive forces in the international markets for natural gas in general and LNG in particular will play a larger role in shaping the U.S. market for LNG. Key factors currently shaping the future of the global LNG market include the evolution of project economics, worldwide demand for natural gas, government policies that affect the development and use of natural resources in countries with LNG facilities, and changes in seasonal patterns of LNG trade.

2008-01-01

15

40 CFR 1048.620 - What are the provisions for exempting large engines fueled by natural gas or liquefied petroleum...  

Code of Federal Regulations, 2013 CFR

...engines fueled by natural gas or liquefied petroleum gas? 1048.620 Section 1048.620...engines fueled by natural gas or liquefied petroleum gas? (a) If an engine meets all...operate solely on natural gas or liquefied petroleum gas. (2) The engine must have...

2013-07-01

16

40 CFR 1048.620 - What are the provisions for exempting large engines fueled by natural gas or liquefied petroleum...  

Code of Federal Regulations, 2010 CFR

...engines fueled by natural gas or liquefied petroleum gas? 1048.620 Section 1048.620...engines fueled by natural gas or liquefied petroleum gas? (a) If an engine meets all...operate solely on natural gas or liquefied petroleum gas. (2) The engine must have...

2010-07-01

17

40 CFR 1048.620 - What are the provisions for exempting large engines fueled by natural gas or liquefied petroleum...  

Code of Federal Regulations, 2012 CFR

...engines fueled by natural gas or liquefied petroleum gas? 1048.620 Section 1048.620...engines fueled by natural gas or liquefied petroleum gas? (a) If an engine meets all...operate solely on natural gas or liquefied petroleum gas. (2) The engine must have...

2012-07-01

18

40 CFR 1048.620 - What are the provisions for exempting large engines fueled by natural gas or liquefied petroleum...  

Code of Federal Regulations, 2014 CFR

...engines fueled by natural gas or liquefied petroleum gas? 1048.620 Section 1048.620...engines fueled by natural gas or liquefied petroleum gas? (a) If an engine meets all...operate solely on natural gas or liquefied petroleum gas. (2) The engine must have...

2014-07-01

19

40 CFR 1048.620 - What are the provisions for exempting large engines fueled by natural gas or liquefied petroleum...  

Code of Federal Regulations, 2011 CFR

...engines fueled by natural gas or liquefied petroleum gas? 1048.620 Section 1048.620...engines fueled by natural gas or liquefied petroleum gas? (a) If an engine meets all...operate solely on natural gas or liquefied petroleum gas. (2) The engine must have...

2011-07-01

20

78 FR 35014 - Orders Granting Authority to Import and Export Natural Gas, and to Import Liquefied Natural Gas...  

Federal Register 2010, 2011, 2012, 2013, 2014

...Export Natural Gas, and to Import Liquefied Natural Gas During April 2013...FE) of the Department of Energy gives notice that during April 2013, it issued orders granting authority to import and...

2013-06-11

21

A Novel Process for Natural Gas Liquids Recovery from Oil Field Associated Gas with Liquefied Natural Gas Cryogenic Energy Utilization  

Microsoft Academic Search

A novel process to recovery natural gas liquids from oil field associated gas with liquefied natural gas (LNG) cryogenic energy utilization is proposed. Compared to the current electric refrigeration process, the proposed process uses the cryogenic energy of LNG and saves 62.6% of electricity. The proposed process recovers ethane, liquid petroleum gas (propane and butane) and heavier hydrocarbons, with total

Haijun BIAN; Wendong XU; Xiuxi LI; Yu QIAN

2011-01-01

22

Supply chain management and economic valuation of real options in the natural gas and liquefied natural gas industry  

Microsoft Academic Search

My dissertation concentrates on several aspects of supply chain management and economic valuation of real options in the natural gas and liquefied natural gas (LNG) industry, including gas pipeline transportations, ocean LNG shipping logistics, and downstream storage. Chapter 1 briefly introduces the natural gas and LNG industries, and the topics studied in this thesis. Chapter 2 studies how to value

Mulan Xiaofeng Wang

2008-01-01

23

Developments in non-utility uses of liquefied natural gas (LNG)  

SciTech Connect

The development uses, and market for liquefied natural gas (LNG) is addressed. Applications discussed include aircraft fuel, rocket fuel, diesel locomotive fuel, and as a refrigeration source for a shrimp boat in a demonstration program. 3 figs. (CBS)

Anderson, P.J.

1988-01-01

24

77 FR 38128 - Withdrawal of TORP Terminal LP, Bienville Offshore Energy Terminal Liquefied Natural Gas (LNG...  

Federal Register 2010, 2011, 2012, 2013, 2014

...Administration [USCG-2006-24644] Withdrawal of TORP Terminal LP, Bienville Offshore Energy Terminal Liquefied Natural Gas (LNG) Deepwater Port Application AGENCY: Maritime Administration, DOT. ACTION: Deepwater port, application withdrawal...

2012-06-26

25

77 FR 2126 - Pipeline Safety: Implementation of the National Registry of Pipeline and Liquefied Natural Gas...  

Federal Register 2010, 2011, 2012, 2013, 2014

...DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration [Docket No. PHMSA-2012-0001] Pipeline Safety: Implementation of the National Registry of Pipeline and Liquefied Natural Gas Operators...

2012-01-13

26

Analysis of temperature and pressure changes in liquefied natural gas (LNG) cryogenic tanks  

Microsoft Academic Search

Liquefied natural gas (LNG) is being developed as a transportation fuel for heavy vehicles such as trucks and transit buses, to lessen the dependency on oil and to reduce greenhouse gas emissions. The LNG stations are properly designed to prevent the venting of natural gas (NG) from LNG tanks, which can cause evaporative greenhouse gas emissions and result in fluctuations

Q.-S Chen; J. Wegrzyn; V. Prasad

2004-01-01

27

77 FR 31838 - Notice of Orders Granting Authority to Import and Export Natural Gas and Liquefied Natural Gas...  

Federal Register 2010, 2011, 2012, 2013, 2014

...Import and Export Natural Gas and Liquefied Natural Gas During April 2012 AGENCY: Office of Fossil Energy, Department of Energy...FE) of the Department of Energy gives notice that during April 2012, it issued Orders granting authority to import and...

2012-05-30

28

Control method for mixed refrigerant based natural gas liquefier  

Microsoft Academic Search

In a natural gas liquefaction system having a refrigerant storage circuit, a refrigerant circulation circuit in fluid communication with the refrigerant storage circuit, and a natural gas liquefaction circuit in thermal communication with the refrigerant circulation circuit, a method for liquefaction of natural gas in which pressure in the refrigerant circulation circuit is adjusted to below about 175 psig by

Kenneth J. Kountz; Patrick M. Bishop

2003-01-01

29

Liquefied natural gas-refrigerant electricity generating system  

Microsoft Academic Search

The present invention relates to a power generation system, using refrigerant as an agent to circulate between a warm heat source and a cold heat sink, thereby producing electric power and alleviating the thermal pollution in the environment, gasifying liquid natural gas, and heating the produced natural gas toward ambient temperature.

Nozowa

1984-01-01

30

Production of liquid nitrogen using liquefied natural gas as sole refrigerant  

Microsoft Academic Search

This patent describes a process for the liquefaction of a nitrogen stream produced by a cryogenic air separation unit having at least one distillation column. It comprises compressing the nitrogen stream to a pressure of at least 350 psi in a multi-stage compressor wherein interstage cooling is provided by heat exchange against vaporizing liquefied natural gas; condensing the compressed nitrogen

R. Agrawal; C. L. Ayres

1992-01-01

31

Novel cogeneration power system with liquefied natural gas (LNG) cryogenic exergy utilization  

Microsoft Academic Search

We propose a new cogeneration power system with two energy sources of fuel chemical energy and liquefied natural gas (LNG) cryogenic energy, and two outputs of electrical power and cooling power. Due to the advanced integration of system and cascade utilization of LNG cryogenic energy, the system has excellent energy saving: chemical energy of fuel and LNG cryogenic energy are

Shimin Deng; Hongguang Jin; Ruixian Cai; Rumou Lin

2004-01-01

32

Impact of Liquefied Natural Gas usage and payload size on Hybrid Wing Body aircraft fuel efficiency  

E-print Network

This work assessed Hybrid Wing Body (HWB) aircraft in the context of Liquefied Natural Gas (LNG) fuel usage and payload/range scalability at three scales: H1 (B737), H2 (B787) and H3 (B777). The aircraft were optimized for ...

Mody, Pritesh (Pritesh Chetan)

2010-01-01

33

33 CFR 165.1709 - Security Zones: Liquefied Natural Gas Tanker Transits and Operations at Phillips Petroleum LNG...  

Code of Federal Regulations, 2010 CFR

... Specific Regulated Navigation Areas and Limited Access Areas Seventeenth Coast Guard District...Security Zones: Liquefied Natural Gas Tanker Transits and Operations...a) Location. The following areas are established as security...

2010-07-01

34

33 CFR 165.110 - Safety and Security Zone; Liquefied Natural Gas Carrier Transits and Anchorage Operations, Boston...  

Code of Federal Regulations, 2010 CFR

...REGULATED NAVIGATION AREAS AND LIMITED ACCESS AREAS Specific Regulated Navigation Areas and Limited Access Areas First Coast Guard District § 165.110...Safety and Security Zone; Liquefied Natural Gas Carrier Transits and Anchorage...

2010-07-01

35

33 CFR 165.502 - Safety and Security Zone; Cove Point Liquefied Natural Gas Terminal, Chesapeake Bay, Maryland.  

Code of Federal Regulations, 2010 CFR

... Specific Regulated Navigation Areas and Limited Access Areas Fifth Coast Guard District ...Cove Point Liquefied Natural Gas Terminal, Chesapeake Bay, Maryland...a) Location. The following area is a safety and security zone: All waters of the...

2010-07-01

36

An exergy analysis of small-scale liquefied natural gas (LNG) liquefaction processes  

Microsoft Academic Search

Four processes for small-scale liquefied natural gas (LNG) production are evaluated. These include a single-stage mixed refrigerant (SMR), a two-stage expander nitrogen refrigerant and two open-loop expander processes. Steady-state simulations were undertaken to ensure that each process was compared on an identical basis, was fully optimised and was in agreement with published results. Composite curves for the feed and recycle

C. W. Remeljej; A. F. A. Hoadley

2006-01-01

37

From NIMBY to NIABY: regional mobilization against liquefied natural gas in the United States  

Microsoft Academic Search

Only sometimes do environmental protests that begin as not-in-my-backyard (NIMBY) objections to proposed facilities become translated into more universal not-in-anyone's-backyard (NIABY) mobilizations. An examination of opposition to liquefied natural gas (LNG) receiving terminals in the United States shows evidence of regional mobilization in the Gulf and West Coasts, but not in the Northeast. Opposition to LNG facilities in the United

Hilary Schaffer Boudet

2011-01-01

38

Liquefied natural gas as a transportation fuel for heavy-duty trucks: Volume I  

SciTech Connect

This document contains Volume 1 of a three-volume manual designed for use with a 2- to 3-day liquefied natural gas (LNG) training course. Transportation and off-road agricultural, mining, construction, and industrial applications are discussed. This volume provides a brief introduction to the physics and chemistry of LNG; an overview of several ongoing LNG projects, economic considerations, LNG fuel station technology, LNG vehicles, and a summary of federal government programs that encourage conversion to LNG.

NONE

1997-12-01

39

On the application of computational fluid dynamics codes for liquefied natural gas dispersion.  

SciTech Connect

Computational fluid dynamics (CFD) codes are increasingly being used in the liquefied natural gas (LNG) industry to predict natural gas dispersion distances. This paper addresses several issues regarding the use of CFD for LNG dispersion such as specification of the domain, grid, boundary and initial conditions. A description of the k-{var_epsilon} model is presented, along with modifications required for atmospheric flows. Validation issues pertaining to the experimental data from the Burro, Coyote, and Falcon series of LNG dispersion experiments are also discussed. A description of the atmosphere is provided as well as discussion on the inclusion of the Coriolis force to model very large LNG spills.

Luketa-Hanlin, Anay Josephine; Koopman, Ronald P. (Lawrence Livermore National Laboratory, Livermore, CA); Ermak, Donald (Lawrence Livermore National Laboratory, Livermore, CA)

2006-02-01

40

Experimental study on liquid\\/solid phase change for cold energy storage of Liquefied Natural Gas (LNG) refrigerated vehicle  

Microsoft Academic Search

The present paper addresses an experimental investigation of the cold storage with liquid\\/solid phase change of water based on the cold energy recovery of Liquefied Natural Gas (LNG) refrigerated vehicles. Water as phase change material (PCM) was solidified outside the heat transfer tubes that were internally cooled by cryogenic nitrogen gas substituting cryogenic natural gas. The ice layer profiles were

Hongbo Tan; Yanzhong Li; Hanfei Tuo; Man Zhou; Baocong Tian

2010-01-01

41

Development of a Small-Scale Natural Gas Liquefier. Final Report  

SciTech Connect

This final report describes the progress during the contract period March 1, 1998 through April 30, 2003, on the design, development, and testing of a novel mixed-refrigerant-based 1000 gal/day natural gas liquefier, together with the associated gas cleanup equipment. Based on the work, it is concluded that a cost-effective 1000 gal/day liquefaction system is technically and economically feasible. A unit based on the same developed technology, with 5000 gal/day capacity, would have much improved economics.

Kountz, K.; Kriha, K.; Liss, W.; Perry, M.; Richards, M.; Zuckerman, D.

2003-04-30

42

The liquefied natural gas pipeline: a system study  

E-print Network

for conventional gas transmission systems. The LNG system offers approximately twice the capacity of a similar gas phase pipeline of comparable diameter. However, the cryogenic temperature of LNG requires that the pipeline be insulated and very long lines... is the line pipe material which represents about 30% of the total cost. The pipe must be constructed of high quality steels or other materials suitable to cryogenic service. At present these materials are rather costly. However, should newer, less...

Hazel, Thomas Ray

1972-01-01

43

Study on Solidification of CO2 by using Cold Energy of Liquefied Natural Gas  

NASA Astrophysics Data System (ADS)

In conventional natural gas combustion power plants, vaporization heat of liquefied natural gas (LNG) has been supplied by sea water and/or air. In the plants, cold vaporization energy has been lost without any effective utilization. An advanced technology has been developed in which carbon dioxide in the flue gas is solidified and separated as dry-ice. Carbon dioxide in the flue gas of a LNG combined cycle is cooled and solidified by the evaporation of LNG. Fundamental studies on fluidized bed heat exchanger were carried out to analyze heat transfer phenomena at low temperature. And the fluidized bed type heat exchanger was confirmed that they had high efficiency by striping off frost solidified on the surface of heat exchanger tube. The heat transfer coefficient at -135°C was calculated about 330-370 (W/m2•K) at the condition where C02 gas was solidified.

Takeuchi, Yoshiyuki; Fujiwara, Atsushi

44

Impacts of Imported Liquefied Natural Gas on Residential Appliance Components: Literature Review  

SciTech Connect

An increasing share of natural gas supplies distributed to residential appliances in the U.S. may come from liquefied natural gas (LNG) imports. The imported gas will be of a higher Wobbe number than domestic gas, and there is concern that it could produce more pollutant emissions at the point of use. This report will review recently undertaken studies, some of which have observed substantial effects on various appliances when operated on different mixtures of imported LNG. While we will summarize findings of major studies, we will not try to characterize broad effects of LNG, but describe how different components of the appliance itself will be affected by imported LNG. This paper considers how the operation of each major component of the gas appliances may be impacted by a switch to LNG, and how this local impact may affect overall safety, performance and pollutant emissions.

Lekov, Alex; Sturges, Andy; Wong-Parodi, Gabrielle

2009-12-09

45

THE OUTLOOK FOR GLOBAL TRADE IN LIQUEFIED NATURAL GAS  

E-print Network

the largest market, but North America and Organization for Economic Co-operation and Development (OECD) Europe gas (LNG) to the year 2020. Because of substantial uncertainties in the current markets for LNG, LNG forecast, LNG trade, LNG exports, LNG imports, LNG costs #12;i TABLE OF CONTENTS EXECUTIVE SUMMARY

46

Life-cycle greenhouse gas assessment of nigerian liquefied natural gas addressing uncertainty.  

PubMed

Natural gas (NG) has been regarded as a bridge fuel toward renewable sources and is expected to play a greater role in future global energy mix; however, a high degree of uncertainty exists concerning upstream (well-to-tank, WtT) greenhouse gas (GHG) emissions of NG. In this study, a life-cycle (LC) model is built to assess uncertainty in WtT GHG emissions of liquefied NG (LNG) supplied to Europe by Nigeria. The 90% prediction interval of GHG intensity of Nigerian LNG was found to range between 14.9 and 19.3 g CO2 eq/MJ, with a mean value of 16.8 g CO2 eq/MJ. This intensity was estimated considering no venting practice in Nigerian fields. The mean estimation can shift up to 25 g CO2 eq when considering a scenario with a higher rate of venting emissions. A sensitivity analysis of the time horizon to calculate GHG intensity was also performed showing that higher GHG intensity and uncertainty are obtained for shorter time horizons, due to the higher impact factor of methane. The uncertainty calculated for Nigerian LNG, specifically regarding the gap of data for methane emissions, recommends initiatives to measure and report emissions and further LC studies to identify hotspots to reduce the GHG intensity of LNG chains. PMID:25621534

Safaei, Amir; Freire, Fausto; Henggeler Antunes, Carlos

2015-03-17

47

Compressed natural gas and liquefied petroleum gas conversions: The National Renewable Energy Laboratory`s experience  

SciTech Connect

The National Renewable Energy Laboratory (NREL) contracted with conversion companies in six states to convert approximately 900 light-duty Federal fleet vehicles to operate on compressed natural gas (CNG) or liquefied petroleum gas (LPG). The contracts were initiated in order to help the Federal government meet the vehicle acquisition requirements of the Energy Policy Act of 1992 (EPACT) during a period of limited original equipment manufacturer (OEM) model availability. Approximately 90% of all conversions were performed on compact of full-size vans and pickups, and 90% of the conversions were to bi-fuel operation. With a positive response from the fleet managers, this program helped the Federal government meet the vehicle acquisition requirements of EPACT for fiscal years 1993 and 1994, despite limited OEM model availability. The conversions also helped to establish the infrastructure needed to support further growth in the use of alternative fuel vehicles. In conclusion, the program has been successful in helping the Federal government meet the vehicle acquisition requirements of EPACT, establishing infrastructure, increasing the displacement of imported oil, and evaluating the emissions performance of converted vehicles. With the relatively widespread availability of OEM vehicles in the 1996 model year, the program is now being phased out.

Motta, R.C.; Kelly, K.J.; Warnock, W.W.

1996-04-01

48

Effect of Increased Levels of Liquefied Natural Gas Exports on U.S. Energy Markets  

EIA Publications

This report responds to a May 29, 2014 request from the U.S. Department of Energy's Office of Fossil Energy (DOE/FE) for an update of the Energy Information Administration's (EIA) January 2012 study of liquefied natural gas (LNG) export scenarios. This updated study, like the prior one, is intended to serve as an input to be considered in the evaluation of applications to export LNG from the United States under Section 3 of the Natural Gas Act, which requires DOE to grant a permit to export domestically produced natural gas unless it finds that such action is not consistent with the public interest. Appendix A provides a copy of the DOE/FE request letter.

2014-01-01

49

A new methodology for analyzing and predicting U.S. liquefied natural gas imports using neural networks  

E-print Network

Liquefied Natural Gas (LNG) is becoming an increasing factor in the U.S. natural gas market. For 30 years LNG imports into the U.S. have remained fairly flat. There are currently 18 permit applications being filed in the U.S. and another 10 permit...

Bolen, Matthew Scott

2005-11-01

50

[Ecological/hygienic and toxicological evaluation of combustion products of aviation kerosene and liquefied natural gas].  

PubMed

Products of kerosene combustion in the present-day aeroengines contain more than 200 compounds of incomplete combustion, partial oxidation, and thermal decomposition of fuel and oil. Most of these are strong toxicants for humans. Increase of temperature in the turbine engine combustion chamber led to production of very toxic nitrogen oxides. In search for the ecologically safe and less toxic alternative attention of fuel engineers was drawn to liquefied natural gas which compares well and even excels kerosene in ecological, economic and many other respects. PMID:16999075

Afanas'ev, R V; Berezin, G I; Raznoschikov, V V

2006-01-01

51

33 CFR 165.1151 - Security Zones; liquefied hazardous gas tank vessels, San Pedro Bay, California.  

Code of Federal Regulations, 2010 CFR

...Areas and Limited Access Areas Eleventh Coast Guard...liquefied hazardous gas tank vessels, San Pedro...gas, liquefied natural gas, or similar liquefied gas products. (b) Location. The following areas are security...

2010-07-01

52

Feasibility of landfill gas as a liquefied natural gas fuel source for refuse trucks.  

PubMed

The purpose of this paper is to develop a methodology to evaluate the feasibility of using landfill gas (LFG) as a liquefied natural gas (LNG) fuel source for heavy-duty refuse trucks operating on landfills. Using LFG as a vehicle fuel can make the landfills more self-sustaining, reduce their dependence on fossil fuels, and reduce emissions and greenhouse gases. Acrion Technologies Inc. in association with Mack Trucks Inc. developed a technology to generate LNG from LFG using the CO2 WASH process. A successful application of this process was performed at the Eco Complex in Burlington County, PA. During this application two LNG refuse trucks were operated for 600 hr each using LNG produced from gases from the landfill. The methodology developed in this paper can evaluate the feasibility of three LFG options: doing nothing, electricity generation, and producing LNG to fuel refuse trucks. The methodology involved the modeling of several components: LFG generation, energy recovery processes, fleet operations, economic feasibility, and decision-making. The economic feasibility considers factors such as capital, maintenance, operational, and fuel costs, emissions and tax benefits, and the sale of products such as surplus LNG and food-grade carbon dioxide (CO2). Texas was used as a case study. The 96 landfills in Texas were prioritized and 17 landfills were identified that showed potential for converting LFG to LNG for use as a refuse truck fuel. The methodology was applied to a pilot landfill in El Paso, TX. The analysis showed that converting LFG to LNG to fuel refuse trucks proved to be the most feasible option and that the methodology can be applied for any landfill that considers this option. PMID:18512437

Zietsman, Josias; Bari, Muhammad Ehsanul; Rand, Aaron J; Gokhale, Bhushan; Lord, Dominique; Kumar, Sunil

2008-05-01

53

An investigation of the use of odorants in liquefied natural gas used as a vehicle fuel  

SciTech Connect

Interest in liquefied natural gas (LNG) as an alternative vehicle fuel has increased significantly. Its greater storage density relative to compressed natural gas makes it an attractive option for both volume and weight constrained vehicle applications. The public transportation market, specifically transit bus properties, have been very aggressive in pursuing LNG as an alternative vehicle fuel. Naturally, when dealing with the general public and a new transportation fuel, the issue of safety must be addressed. With this in mind, the Gas Research Institute has initiated a number of safety related studies including an investigation of the use of odorants in LNG. This paper presents the preliminary results of an investigation performed by the Institute of Gas Technology to determine both the applicability and effectiveness of odorizing LNG. This includes an overview of the current state-of-the-art in LNG vehicle fueling and safety systems as well as a discussion of an LNG odorization program conducted by San Diego Gas & Electric in the mid 70`s. Finally, the paper discusses the results of the modeling effort to determine whether conventional odorants used in natural gas can be injected and remain soluble in LNG at temperatures and pressures encountered in LNG fueling and on-board storage systems.

Green, T.; Williams, T. [Gas Research Institute, Chicago, IL (United States)

1994-12-31

54

Economics of liquefied natural gas production, transport and distribution for end use as a transportation fuel  

SciTech Connect

Natural gas vehicles have been operating in the United States for over 30 years. With few exceptions, these vehicles are owned and operated by local gas utilities that utilize the natural gas in the compressed form (CNG), at pressures of up to 3,600 psi. However, the limited range, system weight and the high cost of fueling facilities presents a serious handicap for these compressed fuel systems. Liquefied natural gas (LNG) automotive fuel systems, on the other hand, are a relatively new player in the emerging clean fuels market. While the technical feasibility, safety, and operational suitability of LNG fuel systems have been demonstrated during the past 20 years, in a variety of test projects including automotive, marine, aviation, and rail systems, little has been done to commercialize or promote this technology. Recent independent cost comparisons and technical evaluations have been conducted by several major transit organizations and national truck fleets with interesting results. They have concluded that LNG automotive fuel systems can meet the performance and operational criteria of their gasoline and diesel fuel systems without compromising vehicle range or imposing unacceptable weight and payload penalties on their vehicles. The purpose of this paper is to further define the economics of LNG production, transportation and distribution costs. The liquefaction of natural gas is a mature technology and was first accomplished by Faraday in 1855. The first large scale plants were installed in the United States in 1941 and this paper provides a summary of the issues and costs associated with the procurement, installation, and operation of modern day natural gas liquefaction systems. There are no technical barriers to building LNG plants where needed. In addition to these {open_quotes}peak shaving{close_quotes} liquefaction plants, operated by utilities, there are many liquefaction plants owned and operated by the industrial gas business sector.

Adkins, R.E.; Sutton, H.E. [Cryogenic Fuels, Inc., Fort Collins, CO (United States)

1994-12-31

55

Guidance on risk analysis and safety implications of a large liquefied natural gas (LNG) spill over water  

Microsoft Academic Search

While recognized standards exist for the systematic safety analysis of potential spills or releases from LNG (Liquefied Natural Gas) storage terminals and facilities on land, no equivalent set of standards or guidance exists for the evaluation of the safety or consequences from LNG spills over water. Heightened security awareness and energy surety issues have increased industry's and the public's attention

Gerald William Wellman; Brian Matthew Melof; Anay Josephine Luketa-Hanlin; Marion Michael Hightower; John Morgan Covan; Louis Alan Gritzo; Michael James Irwin; Michael Jiro Kaneshige; Charles W. Morrow

2004-01-01

56

Fuel switch could bring big savings for HECO Liquefied natural gas beats low-sulfur oil in cost and equipment  

E-print Network

that will soon be required at plants burning low-sulfur fuel, the report said. Hawaii's reliance on oil Electric save costs at the two power plants because LNG is cheaper than the oil currently used and becauseFuel switch could bring big savings for HECO Liquefied natural gas beats low-sulfur oil in cost

57

The influence of liquefied natural gas composition on its behavior as a coolant  

NASA Astrophysics Data System (ADS)

Liquefied Natural Gas (LNG) is a suitable propellant to be used, together with liquid oxygen as oxidizer, in a liquid rocket engine, because of possible advantages with respect to hydrogen in specific applications. Often approximated as pure methane, LNG is a mixture of methane, other heavier hydrocarbons and nitrogen. If LNG is to be used in a regeneratively cooled liquid rocket engine, the knowledge of the thermodynamic and heat transfer characteristics when it flows in the cooling channels is of primary importance. The aim of the present work is to understand how the composition of LNG can influence the flow in the cooling channels. A parametric study is carried out considering different LNG compositions and heat flux levels. Attention is devoted to the pressure drop and cooling capabilities, which are the aspects that have to be controlled in a regenerative cooling system.

Urbano, A.; Nasuti, F.

2013-03-01

58

Thermodynamic analysis of liquefied natural gas (LNG) production cycle in APCI process  

NASA Astrophysics Data System (ADS)

The appropriate production of liquefied natural gas (LNG) with least consuming energy and maximum efficiency is quite important. In this paper, LNG production cycle by means of APCI Process has been studied. Energy equilibrium equations and exergy equilibrium equations of each equipment in the APCI cycle were established. The equipments are described using rigorous thermodynamics and no significant simplification is assumed. Taken some operating parameters as key parameters, influences of these parameters on coefficient of performance (COP) and exergy efficiency of the cascading cycle were analyzed. The results indicate that COP and exergy efficiency will be improved with the increasing of the inlet pressure of MR (mixed refrigerant) compressors, the decreasing of the NG and MR after precooling process, outlet pressure of turbine, inlet temperature of MR compressor and NG temperature after cooling in main cryogenic heat exchanger (MCHE). The COP and exergy efficiency of the APCI cycle will be above 2% and 40%, respectively, after optimizing the key parameters.

Nezhad, Shahrooz Abbasi; Shabani, Bezhan; Soleimani, Majid

2012-12-01

59

Characterization of liquefied natural gas tanker steel from cryogenic to fire temperatures.  

SciTech Connect

The increased demand for Liquefied Natural Gas (LNG) as a fuel source in the U.S. has prompted a study to improve our capability to predict cascading damage to LNG tankers from cryogenic spills and subsequent fire. To support this large modeling and simulation effort, a suite of experiments were conducted on two tanker steels, ABS Grade A steel and ABS Grade EH steel. A thorough and complete understanding of the mechanical behavior of the tanker steels was developed that was heretofore unavailable for the span of temperatures of interest encompassing cryogenic to fire temperatures. This was accomplished by conducting several types of experiments, including tension, notched tension and Charpy impact tests at fourteen temperatures over the range of -191 C to 800 C. Several custom fixtures and special techniques were developed for testing at the various temperatures. The experimental techniques developed and the resulting data will be presented, along with a complete description of the material behavior over the temperature span.

Dempsey, J. Franklin (Sandia National Laboratories, Albuquerque, NM); Wellman, Gerald William (Sandia National Laboratories, Albuquerque, NM); Antoun, Bonnie R.; Connelly, Kevin; Kalan, Robert J. (Sandia National Laboratories, Albuquerque, NM)

2010-03-01

60

Economic and environmental assessment of liquefied natural gas as a supplemental aircraft fuel  

NASA Astrophysics Data System (ADS)

In 2013, natural gas is 70-80% cheaper than jet fuel on an energy basis. As an alternative aviation fuel, natural gas may reduce operating costs. In this paper, we assess the use of liquefied natural gas (LNG) as a supplemental aircraft fuel in a military context, with detailed assessments of the Lockheed Martin C-130H and C-130J transport aircraft. We estimate the cost of retrofitting these aircraft to use LNG and the savings from reduced fuel expenses. We evaluate the societal impacts of LNG within a cost-benefit framework, taking into account resource consumption, human health impacts related to air quality, and climate damage. In order to compare alternative uses of natural gas in aviation, we include in our analysis Fischer-Tropsch (FT) jet fuel from natural gas as a drop-in alternative. Uncertainty analysis is performed with Monte Carlo simulations. We find that aircraft operators can save up to 14% on fuel expenses (retrofit costs included) by employing LNG retrofits, with a 95% confidence interval of 2-23%. Society can also benefit by 12% (3-20%) from LNG use as a result of improved surface air quality, lower resource consumption, and net climate neutrality. These results are highly dependent on fuel prices, the quantity and cost of the LNG retrofits, and the frequency and length of missions. FT jet fuel is not cost-competitive with conventional fuel and results in increased fuel expenses by 17%. FT fuel provides marginal societal benefits relative to jet fuel.

Withers, Mitch R.; Malina, Robert; Gilmore, Christopher K.; Gibbs, Jonathan M.; Trigg, Chris; Wolfe, Philip J.; Trivedi, Parthsarathi; Barrett, Steven R. H.

2014-04-01

61

Supply chain management and economic valuation of real options in the natural gas and liquefied natural gas industry  

NASA Astrophysics Data System (ADS)

My dissertation concentrates on several aspects of supply chain management and economic valuation of real options in the natural gas and liquefied natural gas (LNG) industry, including gas pipeline transportations, ocean LNG shipping logistics, and downstream storage. Chapter 1 briefly introduces the natural gas and LNG industries, and the topics studied in this thesis. Chapter 2 studies how to value U.S. natural gas pipeline network transport contracts as real options. It is common for natural gas shippers to value and manage contracts by simple adaptations of financial spread option formulas that do not fully account for the implications of the capacity limits and the network structure that distinguish these contracts. In contrast, we show that these operational features can be fully captured and integrated with financial considerations in a fairly easy and managerially significant manner by a model that combines linear programming and simulation. We derive pathwise estimators for the so called deltas and structurally characterize them. We interpret them in a novel fashion as discounted expectations, under a specific weighing distribution, of the amounts of natural gas to be procured/marketed when optimally using pipeline capacity. Based on the actual prices of traded natural gas futures and basis swaps, we show that an enhanced version of the common approach employed in practice can significantly underestimate the true value of natural gas pipeline network capacity. Our model also exhibits promising financial (delta) hedging performance. Thus, this model emerges as an easy to use and useful tool that natural gas shippers can employ to support their valuation and delta hedging decisions concerning natural gas pipeline network transport capacity contracts. Moreover, the insights that follow from our data analysis have broader significance and implications in terms of the management of real options beyond our specific application. Motivated by current developments in the LNG industry, Chapter 3 studies the operations of LNG supply chains facing both supply and price risk. To model the supply uncertainty, we employ a closed-queuing-network (CQN) model to represent upstream LNG production and shipping, via special oceans-going tankers, to a downstream re-gasification facility in the U.S, which sells natural gas into the wholesale spot market. The CQN shipping model analytically generates the unloaded amount probability distribution. Price uncertainty is captured by the spot price, which experiences both volatility and significant seasonality, i.e., higher prices in winter. We use a trinomial lattice to model the price uncertainty, and calibrate to the extended forward curves. Taking the outputs from the CQN model and the spot price model as stochastic inputs, we formulate a real option inventory-release model to study the benefit of optimally managing a downstream LNG storage facility. This allows characterization of the structure of the optimal inventory management policy. An interesting finding is that when it is optimal to sell, it is not necessarily optimal to sell the entire available inventory. The model can be used by LNG players to value and manage the real option to store LNG at a re-gasification facility, and is easy to be implemented. For example, this model is particularly useful to value leasing contracts for portions of the facility capacity. Real data is used to assess the value of the real option to store LNG at the downstream re-gasification facility, and, contrary to what has been claimed by some practitioners, we find that it has significant value (several million dollars). Chapter 4 studies the importance of modeling the shipping variability when valuing and managing a downstream LNG storage facility. The shipping model presented in Chapter 3 uses a "rolling forward" method to generate the independent and identically distributed (i.i.d.) unloaded amount in each decision period. We study the merit of the i.i.d. assumption by using simulation and developing an upper bound. We show that the model

Wang, Mulan Xiaofeng

62

Blanketing effect of expansion foam on liquefied natural gas (LNG) spillage pool.  

PubMed

With increasing consumption of natural gas, the safety of liquefied natural gas (LNG) utilization has become an issue that requires a comprehensive study on the risk of LNG spillage in facilities with mitigation measures. The immediate hazard associated with an LNG spill is the vapor hazard, i.e., a flammable vapor cloud at the ground level, due to rapid vaporization and dense gas behavior. It was believed that high expansion foam mitigated LNG vapor hazard through warming effect (raising vapor buoyancy), but the boil-off effect increased vaporization rate due to the heat from water drainage of foam. This work reveals the existence of blocking effect (blocking convection and radiation to the pool) to reduce vaporization rate. The blanketing effect on source term (vaporization rate) is a combination of boil-off and blocking effect, which was quantitatively studied through seven tests conducted in a wind tunnel with liquid nitrogen. Since the blocking effect reduces more heat to the pool than the boil-off effect adds, the blanketing effect contributes to the net reduction of heat convection and radiation to the pool by 70%. Water drainage rate of high expansion foam is essential to determine the effectiveness of blanketing effect, since water provides the boil-off effect. PMID:25194555

Zhang, Bin; Liu, Yi; Olewski, Tomasz; Vechot, Luc; Mannan, M Sam

2014-09-15

63

Proposing a novel combined cycle for optimal exergy recovery of liquefied natural gas  

NASA Astrophysics Data System (ADS)

The effective utilization of the cryogenic exergy associated with liquefied natural gas (LNG) vaporization is important. In this paper, a novel combined power cycle is proposed which utilizes LNG in different ways to enhance the power generation of a power plant. In addition to the direct expansion in the appropriate expander, LNG is used as a low-temperature heat sink for a middle-pressure gas cycle which uses nitrogen as working fluid. Also, LNG is used to cool the inlet air of an open Brayton gas turbine cycle. These measures are accomplished to improve the exergy recovery of LNG. In order to analyze the performance of the system, the influence of several key parameters such as pressure ratio of LNG turbine, ratio of the mass flow rate of LNG to the mass flow rate of air, pressure ratio of different compressors, LNG pressure and inlet pressure of nitrogen compressor, on the thermal efficiency and exergy efficiency of the offered cycle is investigated. Finally, the proposed combined cycle is optimized on the basis of first and second laws of thermodynamics.

Salimpour, M. R.; Zahedi, M. A.

2012-08-01

64

AIR QUALITY IMPACTS OF LIQUEFIED NATURAL GAS IN THE SOUTH COAST AIR BASIN OF CALIFORNIA  

SciTech Connect

The effects of liquefied natural gas (LNG) on pollutant emission inventories and air quality in the South Coast Air Basin of California were evaluated using recent LNG emission measurements by Lawrence Berkeley National Laboratory and the Southern California Gas Company (SoCalGas), and with a state-of-the-art air quality model. Pollutant emissions can be affected by LNG owing to differences in composition and physical properties, including the Wobbe index, a measure of energy delivery rate. This analysis uses LNG distribution scenarios developed by modeling Southern California gas flows, including supplies from the LNG receiving terminal in Baja California, Mexico. Based on these scenarios, the projected penetratino of LNG in the South Coast Air Basin is expected to be limited. In addition, the increased Wobbe index of delivered gas (resulting from mixtures of LNG and conventional gas supplies) is expected to cause increases smaller than 0.05 percent in overall (area-wide) emissions of nitrogen oxides (NOx). BAsed on the photochemical state of the South Coast Air Basin, any increase in NOx is expected to cause an increase in the highest local ozone concentrations, and this is reflected in model results. However, the magnitude of the increase is well below the generally accepted accuracy of the model and would not be discernible with the existing monitoring network. Modeling of hypothetical scenarios indicates that discernible changes to ambient ozone and particulate matter concentrations would occur only at LNG distribution rates that are not achievable with current or planned infrastructure and with Wobbe index vlaues that exceed current gas quality tariffs. Results of these hypothetical scenarios are presented for consideration of any proposed substantial expansion of LNG supply infrastructure in Southern California.

Carerras-Sospedra, Marc; Brouwer, Jack; Dabdub, Donald; Lunden, Melissa; Singer, Brett

2011-07-01

65

LNG plants in the US and abroad. [Liquefied Natural Gas (LNG)  

SciTech Connect

The Institute of Gas Technology recently conducted a comprehensive survey of LNG production and storage facilities in North America. This survey was performed as part of IGT's LNG Observer newsletter which covers both domestic and international LNG news, reports on LNG related economics and statistics, and routinely conducts interviews with key industry leaders. In addition to providing consulting services to the LNG industry, IGT has cosponsored the International Conference on Liquefied Natural Gas for the part 20 years. The objective of this paper is to present a summary of our recent survey results as well as provide an overview of world LNG trade. This information is important in assessing the potential near term availability of LNG for transportation applications. The IGT LNG Survey appraised the capacity and current market activity of LNG peak shaving, satellite storage, and import receiving facilities in the United States and Canada. Information was requested from facilities on three main topics: liquefaction, storage, and regasification. Additional questions were posed regarding the year of operation, designer/contractor for liquefaction cycle and storage, source of LNG (for storage-only facilities), plans for expansion, and level of interest in providing LNG as a vehicle fuel. The IGT LNG Survey has to date received information on 56 LNG peak shaving facilities, 28 satellite storage facilities, and 4 LNG import receiving terminals.

Blazek, C.F.; Biederman, R.T.

1992-01-01

66

78 FR 65427 - Pipeline Safety: Reminder of Requirements for Liquefied Petroleum Gas and Utility Liquefied...  

Federal Register 2010, 2011, 2012, 2013, 2014

...Safety: Reminder of Requirements for Liquefied Petroleum Gas and Utility Liquefied Petroleum Gas Pipeline Systems AGENCY: Pipeline and...reminding owners and operators of liquefied petroleum gas (LPG) and utility liquefied...

2013-10-31

67

Fault-Tree Analysis of Intuitionistic Fuzzy Sets for Liquefied Natural Gas Terminal Emergency Shut-Down System  

Microsoft Academic Search

A new approach of intuitionistic fuzzy fault-tree analysis is proposed to find the most critical system component for the failure analysis problem of a liquefied natural gas (LNG) terminal emergency shut-down (ESD) system to determine weak paths in the ESD and reveal areas where key improvement must be made. In this paper, we first present the ESD fault-tree, fault-tree nodes,

Chiu-Lien Lee; Ming-Hung Shu

2007-01-01

68

Report on issues regarding the existing New York liquefied natural gas moratorium  

SciTech Connect

The New York Energy Planning Board has prepared this study to provide the Governor and the Legislature with information necessary to determine the need for further extension or modification of the existing State moratorium on the siting of new liquefied natural gas (LNG) facilities and intrastate transportation routes as required by Chapter 385 of the laws of 1997. The report examines existing laws and regulations that would affect new LNG facilities in New York and government initiatives in other states. It reviews existing use of LNG in New York, including safety issues and potential public concerns that may arise with lifting the moratorium. It also discusses the economic and environmental effects of increased LNG usage for New York State. The study concludes that there are economic and environmental advantages for allowing the construction of new LNG facilities as well as the intrastate transportation of LNG over new routes. Additionally, it concludes that safety concerns associated with these facilities are adequately addressed by existing Federal, State and local statutes and regulations.

NONE

1998-11-01

69

Experimental and numerical investigation of the roll motion behavior of a floating liquefied natural gas system  

NASA Astrophysics Data System (ADS)

The present paper does an experimental and numerical investigation of the hydrodynamic interaction and the response of a single point turret-moored Floating Liquefied Natural Gas (FLNG) system, which is a new type of floating LNG (Liquid Natural Gas) platform that consists of a ship-type FPSO hull equipped with LNG storage tanks and liquefaction plants. In particular, this study focuses on the investigation of the roll response of FLNG hull in free-decay motions, white noise waves and also in irregular waves. Model tests of the FLNG system in 60%H filling condition excited by both white noise waves and irregular waves combined with steady wind and current have been carried out. Response Amplitude Operators (RAOs) and time histories of the responses are obtained for sway, roll and yaw motions. Obvious Low Frequency (LF) components of the roll motions are observed, which may be out of expectation. To facilitate the physical understanding of this phenomenon, we filter the roll motions at the period of 30 s into two parts: the Wave Frequency (WF) motions and the Low Frequency (LF) motions respectively. The results indicate that the LF motions are closely related to the sway and yaw motions. Possible reasons for the presence of the LF motions of roll have been discussed in detail, through the comparison with the sway and yaw motions. As for the numerical part, the simulation of the modeled case is conducted with the help of the software SESAM®. A good agreement between experiments and calculations is reported within the scope of trends. However, the numerical simulations should be further improved for the prediction of the FLNG system in the heading sea.

Zhao, WenHua; Yang, JianMin; Hu, ZhiQiang; Xiao, LongFei; Peng, Tao

2013-03-01

70

77 FR 12274 - Orders Granting Authority To Import and Export Natural Gas and Liquefied Natural Gas During...  

Federal Register 2010, 2011, 2012, 2013, 2014

...Energy, Office of Natural Gas Regulatory Activities, Docket...Anderson, Manager, Natural Gas Regulatory Activities, Office of Oil and Gas Global Security and Supply...granting blanket authority Marketing L.P. to...

2012-02-29

71

78 FR 21351 - Orders Granting Authority to Import and Export Natural Gas, To Import Liquefied Natural Gas, To...  

Federal Register 2010, 2011, 2012, 2013, 2014

...EXCELERATE ENERGY GAS MARKETING, LIMITED PARTNERSHIP...13-21-NG AECO GAS STORAGE PARTNERSHIP...Manager, Natural Gas Regulatory Activities, Office of Oil and Gas Global Security and...12-155-LNG Sempra LNG Marketing, Order granting...

2013-04-10

72

78 FR 19696 - Orders Granting Authority To Import and Export Natural Gas, To Import Liquefied Natural Gas, To...  

Federal Register 2010, 2011, 2012, 2013, 2014

...12-166-NG TRANSALTA ENERGY MARKETING CORP...12-167-NG GDF SUEZ GAS NA LLC...Manager, Natural Gas Regulatory Activities, Office of Oil and Gas Global Security and...Order granting blanket Marketing Ltd. authority...

2013-04-02

73

Has liquefied natural gas infrastructure development brought about integration between the major global markets for natural gas?  

Microsoft Academic Search

The last six years have witnessed a dramatic surge in world natural gas prices as demand has outstripped supply. This trend may continue as major economies turn from coal to natural gas to reduce carbon dioxide emissions. Increasing tightness between supply and demand has left isolated markets vulnerable to price shocks, and the flexibility of natural gas supply has become

Jacob Pashelinsky; Geoffrey Rothwell

74

Life cycle greenhouse gas emissions from u.s. Liquefied natural gas exports: implications for end uses.  

PubMed

This study analyzes how incremental U.S. liquefied natural gas (LNG) exports affect global greenhouse gas (GHG) emissions. We find that exported U.S. LNG has mean precombustion emissions of 37 g CO2-equiv/MJ when regasified in Europe and Asia. Shipping emissions of LNG exported from U.S. ports to Asian and European markets account for only 3.5-5.5% of precombustion life cycle emissions, hence shipping distance is not a major driver of GHGs. A scenario-based analysis addressing how potential end uses (electricity and industrial heating) and displacement of existing fuels (coal and Russian natural gas) affect GHG emissions shows the mean emissions for electricity generation using U.S. exported LNG were 655 g CO2-equiv/kWh (with a 90% confidence interval of 562-770), an 11% increase over U.S. natural gas electricity generation. Mean emissions from industrial heating were 104 g CO2-equiv/MJ (90% CI: 87-123). By displacing coal, LNG saves 550 g CO2-equiv per kWh of electricity and 20 g per MJ of heat. LNG saves GHGs under upstream fugitive emissions rates up to 9% and 5% for electricity and heating, respectively. GHG reductions were found if Russian pipeline natural gas was displaced for electricity and heating use regardless of GWP, as long as U.S. fugitive emission rates remain below the estimated 5-7% rate of Russian gas. However, from a country specific carbon accounting perspective, there is an imbalance in accrued social costs and benefits. Assuming a mean social cost of carbon of $49/metric ton, mean global savings from U.S. LNG displacement of coal for electricity generation are $1.50 per thousand cubic feet (Mcf) of gaseous natural gas exported as LNG ($.028/kWh). Conversely, the U.S. carbon cost of exporting the LNG is $1.80/Mcf ($.013/kWh), or $0.50-$5.50/Mcf across the range of potential discount rates. This spatial shift in embodied carbon emissions is important to consider in national interest estimates for LNG exports. PMID:25650513

Abrahams, Leslie S; Samaras, Constantine; Griffin, W Michael; Matthews, H Scott

2015-03-01

75

Investigation on the heat transfer characteristics during flow boiling of liquefied natural gas in a vertical micro-fin tube  

NASA Astrophysics Data System (ADS)

This paper presents an experimental investigation on the heat transfer characteristics of liquefied natural gas flow boiling in a vertical micro-fin tube. The effect of heat flux, mass flux and inlet pressure on the flow boiling heat transfer coefficients was analyzed. The Kim, Koyama, and two kinds of Wellsandt correlations with different Ftp coefficients were used to predict the flow boiling heat transfer coefficients. The predicted results showed that the Koyama correlation was the most accurate over the range of experimental conditions.

Xu, Bin; Shi, Yumei; Chen, Dongsheng

2014-03-01

76

Application of landfill gas as a liquefied natural gas fuel for refuse trucks in Texas  

E-print Network

apparent negative impacts of these conventional fuels are global warming, poor air-quality, and adverse health effects. Considering these negative impacts, it is necessary to develop and use non-conventional sources of energy. Landfill gas (LFG) generated...

Gokhale, Bhushan

2007-04-25

77

49 CFR 393.69 - Liquefied petroleum gas systems.  

Code of Federal Regulations, 2011 CFR

... 2011-10-01 false Liquefied petroleum gas systems. 393.69 Section 393...Fuel Systems § 393.69 Liquefied petroleum gas systems. (a) A fuel system that uses liquefied petroleum gas as a fuel for the operation...

2011-10-01

78

49 CFR 393.69 - Liquefied petroleum gas systems.  

Code of Federal Regulations, 2010 CFR

... 2010-10-01 false Liquefied petroleum gas systems. 393.69 Section 393...Fuel Systems § 393.69 Liquefied petroleum gas systems. (a) A fuel system that uses liquefied petroleum gas as a fuel for the operation...

2010-10-01

79

49 CFR 393.69 - Liquefied petroleum gas systems.  

Code of Federal Regulations, 2014 CFR

... 2014-10-01 false Liquefied petroleum gas systems. 393.69 Section 393...Fuel Systems § 393.69 Liquefied petroleum gas systems. (a) A fuel system that uses liquefied petroleum gas as a fuel for the operation...

2014-10-01

80

40 CFR 1065.720 - Liquefied petroleum gas.  

Code of Federal Regulations, 2013 CFR

... 2013-07-01 false Liquefied petroleum gas. 1065.720 Section 1065.720...Standards § 1065.720 Liquefied petroleum gas. (a) Except as specified in paragraph (b) of this section, liquefied petroleum gas for testing must meet the...

2013-07-01

81

40 CFR 1065.720 - Liquefied petroleum gas.  

Code of Federal Regulations, 2011 CFR

... 2011-07-01 false Liquefied petroleum gas. 1065.720 Section 1065.720...Standards § 1065.720 Liquefied petroleum gas. (a) Except as specified in paragraph (b) of this section, liquefied petroleum gas for testing must meet the...

2011-07-01

82

40 CFR 1065.720 - Liquefied petroleum gas.  

Code of Federal Regulations, 2012 CFR

... 2012-07-01 false Liquefied petroleum gas. 1065.720 Section 1065.720...Standards § 1065.720 Liquefied petroleum gas. (a) Except as specified in paragraph (b) of this section, liquefied petroleum gas for testing must meet the...

2012-07-01

83

40 CFR 1065.720 - Liquefied petroleum gas.  

Code of Federal Regulations, 2014 CFR

... 2014-07-01 false Liquefied petroleum gas. 1065.720 Section 1065.720...Standards § 1065.720 Liquefied petroleum gas. (a) Except as specified in paragraph (b) of this section, liquefied petroleum gas for testing must meet the...

2014-07-01

84

49 CFR 393.69 - Liquefied petroleum gas systems.  

Code of Federal Regulations, 2012 CFR

... 2012-10-01 false Liquefied petroleum gas systems. 393.69 Section 393...Fuel Systems § 393.69 Liquefied petroleum gas systems. (a) A fuel system that uses liquefied petroleum gas as a fuel for the operation...

2012-10-01

85

40 CFR 1065.720 - Liquefied petroleum gas.  

Code of Federal Regulations, 2010 CFR

... 2010-07-01 false Liquefied petroleum gas. 1065.720 Section 1065.720...Standards § 1065.720 Liquefied petroleum gas. (a) Except as specified in paragraph (b) of this section, liquefied petroleum gas for testing must meet the...

2010-07-01

86

49 CFR 393.69 - Liquefied petroleum gas systems.  

Code of Federal Regulations, 2013 CFR

... 2013-10-01 false Liquefied petroleum gas systems. 393.69 Section 393...Fuel Systems § 393.69 Liquefied petroleum gas systems. (a) A fuel system that uses liquefied petroleum gas as a fuel for the operation...

2013-10-01

87

75 FR 38092 - The Dow Chemical Company; Application for Blanket Authorization To Export Liquefied Natural Gas  

Federal Register 2010, 2011, 2012, 2013, 2014

...Natural Gas AGENCY: Office of Fossil Energy, DOE. ACTION: Notice of application...SUMMARY: The Office of Fossil Energy (FE) of the Department of Energy...Security and Supply, Office of Fossil Energy, Forrestal Building, Room...

2010-07-01

88

75 FR 60095 - Sempra LNG Marketing, LLC; Application for Blanket Authorization To Export Liquefied Natural Gas  

Federal Register 2010, 2011, 2012, 2013, 2014

...Natural Gas AGENCY: Office of Fossil Energy, DOE. ACTION: Notice of application...SUMMARY: The Office of Fossil Energy (FE) of the Department of Energy...Security and Supply, Office of Fossil Energy, Forrestal Building, Room...

2010-09-29

89

75 FR 19954 - Cheniere Marketing, LLC; Application for Blanket Authorization To Export Liquefied Natural Gas  

Federal Register 2010, 2011, 2012, 2013, 2014

...Natural Gas AGENCY: Office of Fossil Energy, DOE. ACTION: Notice of application...SUMMARY: The Office of Fossil Energy (FE) of the Department of Energy...Security and Supply, Office of Fossil Energy, Forrestal Building, Room...

2010-04-16

90

Guidance on risk analysis and safety implications of a large liquefied natural gas (LNG) spill over water.  

SciTech Connect

While recognized standards exist for the systematic safety analysis of potential spills or releases from LNG (Liquefied Natural Gas) storage terminals and facilities on land, no equivalent set of standards or guidance exists for the evaluation of the safety or consequences from LNG spills over water. Heightened security awareness and energy surety issues have increased industry's and the public's attention to these activities. The report reviews several existing studies of LNG spills with respect to their assumptions, inputs, models, and experimental data. Based on this review and further analysis, the report provides guidance on the appropriateness of models, assumptions, and risk management to address public safety and property relative to a potential LNG spill over water.

Wellman, Gerald William; Melof, Brian Matthew; Luketa-Hanlin, Anay Josephine; Hightower, Marion Michael; Covan, John Morgan; Gritzo, Louis Alan; Irwin, Michael James; Kaneshige, Michael Jiro; Morrow, Charles W.

2004-12-01

91

Estimated uncertainty of calculated liquefied natural gas density from a comparison of NBS and Gaz de France densimeter test facilities  

SciTech Connect

Liquefied natural gas (LNG) densities can be measured directly but are usually determined indirectly in custody transfer measurement by using a density correlation based on temperature and composition measurements. An LNG densimeter test facility at the National Bureau of Standards uses an absolute densimeter based on the Archimedes principle, while a test facility at Gaz de France uses a correlation method based on measurement of composition and density. A comparison between these two test facilities using a portable version of the absolute densimeter provides an experimental estimate of the uncertainty of the indirect method of density measurement for the first time, on a large (32 L) sample. The two test facilities agree for pure methane to within about 0.02%. For the LNG-like mixtures consisting of methane, ethane, propane, and nitrogen with the methane concentrations always higher than 86%, the calculated density is within 0.25% of the directly measured density 95% of the time.

Siegwarth, J.D.; LaBrecque, J.F.; Roncier, M.; Philippe, R.; Saint-Just, J.

1982-12-16

92

30 CFR 57.4463 - Liquefied petroleum gas use underground.  

Code of Federal Regulations, 2011 CFR

...2011-07-01 2011-07-01 false Liquefied petroleum gas use underground. 57.4463 Section...Liquids and Gases § 57.4463 Liquefied petroleum gas use underground. Use of liquefied petroleum gases underground shall be limited to...

2011-07-01

93

30 CFR 57.4463 - Liquefied petroleum gas use underground.  

Code of Federal Regulations, 2012 CFR

...2012-07-01 2012-07-01 false Liquefied petroleum gas use underground. 57.4463 Section...Liquids and Gases § 57.4463 Liquefied petroleum gas use underground. Use of liquefied petroleum gases underground shall be limited to...

2012-07-01

94

30 CFR 57.4463 - Liquefied petroleum gas use underground.  

Code of Federal Regulations, 2010 CFR

...2010-07-01 2010-07-01 false Liquefied petroleum gas use underground. 57.4463 Section...Liquids and Gases § 57.4463 Liquefied petroleum gas use underground. Use of liquefied petroleum gases underground shall be limited to...

2010-07-01

95

30 CFR 57.4463 - Liquefied petroleum gas use underground.  

Code of Federal Regulations, 2013 CFR

...2013-07-01 2013-07-01 false Liquefied petroleum gas use underground. 57.4463 Section...Liquids and Gases § 57.4463 Liquefied petroleum gas use underground. Use of liquefied petroleum gases underground shall be limited to...

2013-07-01

96

30 CFR 57.4463 - Liquefied petroleum gas use underground.  

Code of Federal Regulations, 2014 CFR

...2014-07-01 2014-07-01 false Liquefied petroleum gas use underground. 57.4463 Section...Liquids and Gases § 57.4463 Liquefied petroleum gas use underground. Use of liquefied petroleum gases underground shall be limited to...

2014-07-01

97

Visual Simulation of Offshore Liquefied Natural Gas (LNG) Terminals in a Decision-Making Context1  

Microsoft Academic Search

Due to legislation passed in 1977, the Coastal Commission tock part in a study analyzing potential offshore Liquified Natural Gas (LNG) sites and the types of terminals that might occupy those sites. The study had to evaluate the engineering feasibility of siting an LNG receiving terminal offshore in relation to the maximum protection of coastal resource provisions required by the

Brian E. Baird; Stephen R. J. Sheppard; Richard C. Smardon

98

Design and testing of a 45MW 100Hz quadruple-star synchronous motor for a Liquefied Natural Gas turbo-compressor drive  

Microsoft Academic Search

Over the last few decades, the production of Liquefied Natural Gas (LNG) has been pushing the development of electric drives with increasingly high power ratings, up to several tens of megawatts. A consolidated technology in this field entails dual-star 2-pole synchronous motors fed by Load-Commutated Inverters (LCI) with supply frequencies between 50 and 80 Hz. This paper presents a novel

A. Tessarolo; G. Zocco; C. Tonello

2010-01-01

99

Design and Testing of a 45MW 100Hz Quadruple-Star Synchronous Motor for a Liquefied Natural Gas Turbo-Compressor Drive  

Microsoft Academic Search

Over the last few decades, the production of liquefied natural gas (LNG) has been pushing the development of elec- tric drives with increasingly high power ratings, up to several tens of megawatts. A consolidated technology in this field entails dual-star two-pole synchronous motors fed by load-commutated inverters with supply frequencies between 50 and 80 Hz. This paper presents a novel

Alberto Tessarolo; Gianfranco Zocco; Carlo Tonello

2011-01-01

100

Hydrogen production by steam reforming of liquefied natural gas (LNG) over mesoporous nickel–alumina xerogel catalysts: Effect of nickel content  

Microsoft Academic Search

Mesoporous nickel–alumina xerogel (XNiAl) catalysts with various nickel contents were prepared by a single-step sol–gel method for use in hydrogen production by steam reforming of liquefied natural gas (LNG). The effect of nickel content on the catalytic performance of XNiAl catalysts was investigated. Nickel species were finely dispersed in the XNiAl catalysts through the formation of Ni–O–Al composite structure. The

Jeong Gil Seo; Min Hye Youn; Ho-In Lee; Jae Jeong Kim; Eunsun Yang; Jin Suk Chung; Pil Kim; In Kyu Song

2008-01-01

101

76 FR 2093 - Eni USA Gas Marketing LLC; Application for Blanket Authorization To Export Liquefied Natural Gas  

Federal Register 2010, 2011, 2012, 2013, 2014

...Natural Gas AGENCY: Office of Fossil Energy, DOE. ACTION: Notice of application...SUMMARY: The Office of Fossil Energy (FE) of the Department of Energy...Security and Supply, Office of Fossil Energy, Forrestal Building, Room...

2011-01-12

102

An assessment of air emissions from liquefied natural gas ships using different power systems and different fuels.  

PubMed

The shipping industry has been an unrecognized source of criteria pollutants: nitrogen oxides (NOx), volatile organic compounds, coarse particulate matter (PM10), fine particulate matter (PM2.5), sulfur dioxide (SO2), and carbon monoxide (CO). Liquefied natural gas (LNG) has traditionally been transported via steam turbine (ST) ships. Recently, LNG shippers have begun using dual-fuel diesel engines (DFDEs) to propel and offload their cargoes. Both the conventional ST boilers and DFDE are capable of burning a range of fuels, from heavy fuel oil to boil-off-gas (BOG) from the LNG load. In this paper a method for estimating the emissions from ST boilers and DFDEs during LNG offloading operations at berth is presented, along with typical emissions from LNG ships during offloading operations under different scenarios ranging from worst-case fuel oil combustion to the use of shore power. The impact on air quality in nonattainment areas where LNG ships call is discussed. Current and future air pollution control regulations for ocean-going vessels (OGVs) such as LNG ships are also discussed. The objective of this study was to estimate and compare emissions of criteria pollutants from conventional ST and DFDE ships using different fuels. The results of this study suggest that newer DFDE ships have lower SO2 and PM2.5/PM10 emissions, conventional ST ships have lower NOx, volatile organic compound, and CO emissions; and DFDE ships utilizing shore power at berth produce no localized emissions because they draw their required power from the local electric grid. PMID:18376643

Afon, Yinka; Ervin, David

2008-03-01

103

Apparatus for reliquefying boil-off natural gas from a storage tank  

Microsoft Academic Search

In a combination of apparatus for storing liquefied natural gas which includes an insulated separation tank in which solidified carbon dioxide is settled out of liquefied natural gas and a liquefied natural gas-solidified carbon dioxide slurry accumulates, an insulated liquefied natural gas storage tank, and a conduit for delivering liquefied natural gas from the separation tank to the storage tank,

C. C. Hanke; M. Husain; Y. A. Selcukoglu

1980-01-01

104

75 FR 13644 - TORP Terminal LP, Bienville Offshore Energy Terminal Liquefied Natural Gas Deepwater Port License...  

Federal Register 2010, 2011, 2012, 2013, 2014

...33.9 million cubic meters of gas per day [m3/ day]). BOET's major components would include a turret mooring system (TMS), a FRU, a HiLoad unit, two mooring lines that connect the HiLoad to the FRU, two high pressure (HP) flexible gas...

2010-03-22

105

EXAMINE AND EVALUATE A PROCESS TO USE SALT CAVERNS TO RECEIVE SHIP BORNE LIQUEFIED NATURAL GAS  

SciTech Connect

The goal of the U.S. Department of Energy cooperative research project is to define, describe, and validate, a process to utilize salt caverns to receive and store the cargoes of LNG ships. The project defines the process as receiving LNG from a ship, pumping the LNG up to cavern injection pressures, warming it to cavern compatible temperatures, injecting the warmed vapor directly into salt caverns for storage, and distribution to the pipeline network. The performance of work under this agreement is based on U.S. Patent 5,511,905, and other U.S. and Foreign pending patent applications. The cost sharing participants in the research are The National Energy Technology Laboratory (U.S. Department of Energy), BP America Production Company, Bluewater Offshore Production Systems (U.S.A.), Inc., and HNG Storage, L.P. Initial results indicate that a salt cavern based receiving terminal could be built at about half the capital cost, less than half the operating costs and would have significantly higher delivery capacity, shorter construction time, and be much more secure than a conventional liquid tank based terminal. There is a significant body of knowledge and practice concerning natural gas storage in salt caverns, and there is a considerable body of knowledge and practice in handling LNG, but there has never been any attempt to develop a process whereby the two technologies can be combined. Salt cavern storage is infinitely more secure than surface storage tanks, far less susceptible to accidents or terrorist acts, and much more acceptable to the community. The project team developed conceptual designs of two salt cavern based LNG terminals, one with caverns located in Calcasieu Parish Louisiana, and the second in Vermilion block 179 about 50 miles offshore Louisiana. These conceptual designs were compared to conventional tank based LNG terminals and demonstrate superior security, economy and capacity. The potential for the development of LNG receiving terminals, utilizing salt caverns for storage and the existing comprehensive pipeline system has profound implications for the next generation of LNG terminals. LNG imports are expected to become an increasingly more important part of the U.S. energy supply and the capacities to receive LNG securely, safely, and economically must be expanded. Salt cavern LNG receiving terminals both in onshore and offshore locations can be quickly built and provide additional import capacity into the U.S. exceeding 6-10 Bcf/day in the aggregate.

Michael M. McCall; William M. Bishop; D. Braxton Scherz

2003-04-24

106

Control of Vapor Dispersion and Pool Fire of Liquefied Natural Gas (LNG) with Expansion Foam  

E-print Network

of flammable characteristics and dense gas behaviors, expansion foam has been recommended as one of the safety provisions for mitigating accidental LNG releases. However, the effectiveness of foam in achieving this objective has not been sufficiently reported...

Yun, Geun Woong

2011-10-21

107

Analysis and optimization of a cascading power cycle with liquefied natural gas (LNG) cold energy recovery  

Microsoft Academic Search

The effective utilization of the cryogenic energy associated with LNG vaporization is quite important. In this paper a cascading power cycle with LNG directly expanding consisting of a Rankine cycle with ammonia–water as working fluid and a power cycle of combustion gas is proposed to recover cryogenic energy of LNG. Energy equilibrium equations and exergy equilibrium equations of each equipment

T. Lu

2009-01-01

108

77 FR 72837 - Golden Pass Products LLC; Application for Long-Term Authorization To Export Liquefied Natural Gas...  

Federal Register 2010, 2011, 2012, 2013, 2014

...substantial quantities of natural gas from diverse domestic supply sources...long been significant U.S. natural gas supply areas. Specifically, GPP states that the...interstate pipeline systems of Florida Gas Transmission Company, LLC;...

2012-12-06

109

A methodology for risk analysis based on hybrid Bayesian networks: application to the regasification system of liquefied natural gas onboard a floating storage and regasification unit.  

PubMed

This article presents an iterative six-step risk analysis methodology based on hybrid Bayesian networks (BNs). In typical risk analysis, systems are usually modeled as discrete and Boolean variables with constant failure rates via fault trees. Nevertheless, in many cases, it is not possible to perform an efficient analysis using only discrete and Boolean variables. The approach put forward by the proposed methodology makes use of BNs and incorporates recent developments that facilitate the use of continuous variables whose values may have any probability distributions. Thus, this approach makes the methodology particularly useful in cases where the available data for quantification of hazardous events probabilities are scarce or nonexistent, there is dependence among events, or when nonbinary events are involved. The methodology is applied to the risk analysis of a regasification system of liquefied natural gas (LNG) on board an FSRU (floating, storage, and regasification unit). LNG is becoming an important energy source option and the world's capacity to produce LNG is surging. Large reserves of natural gas exist worldwide, particularly in areas where the resources exceed the demand. Thus, this natural gas is liquefied for shipping and the storage and regasification process usually occurs at onshore plants. However, a new option for LNG storage and regasification has been proposed: the FSRU. As very few FSRUs have been put into operation, relevant failure data on FSRU systems are scarce. The results show the usefulness of the proposed methodology for cases where the risk analysis must be performed under considerable uncertainty. PMID:25041168

Martins, Marcelo Ramos; Schleder, Adriana Miralles; Droguett, Enrique López

2014-12-01

110

33 CFR 165.502 - Safety and Security Zone; Cove Point Liquefied Natural Gas Terminal, Chesapeake Bay, Maryland.  

Code of Federal Regulations, 2011 CFR

...Natural Gas Terminal, Chesapeake Bay, Maryland. 165.502 Section 165.502 ...Natural Gas Terminal, Chesapeake Bay, Maryland. (a) Location. The following area is a safety and...Guard Captain of the Port, Baltimore, Maryland or his designated...

2011-07-01

111

33 CFR 165.502 - Safety and Security Zone; Cove Point Liquefied Natural Gas Terminal, Chesapeake Bay, Maryland.  

Code of Federal Regulations, 2013 CFR

...Natural Gas Terminal, Chesapeake Bay, Maryland. 165.502 Section 165.502 ...Natural Gas Terminal, Chesapeake Bay, Maryland. (a) Location. The following area is a safety and...Guard Captain of the Port, Baltimore, Maryland or his designated...

2013-07-01

112

33 CFR 165.502 - Safety and Security Zone; Cove Point Liquefied Natural Gas Terminal, Chesapeake Bay, Maryland.  

Code of Federal Regulations, 2014 CFR

...Natural Gas Terminal, Chesapeake Bay, Maryland. 165.502 Section 165.502 ...Natural Gas Terminal, Chesapeake Bay, Maryland. (a) Location. The following area is a safety and...Guard Captain of the Port, Baltimore, Maryland or his designated...

2014-07-01

113

33 CFR 165.502 - Safety and Security Zone; Cove Point Liquefied Natural Gas Terminal, Chesapeake Bay, Maryland.  

Code of Federal Regulations, 2012 CFR

...Natural Gas Terminal, Chesapeake Bay, Maryland. 165.502 Section 165.502 ...Natural Gas Terminal, Chesapeake Bay, Maryland. (a) Location. The following area is a safety and...Guard Captain of the Port, Baltimore, Maryland or his designated...

2012-07-01

114

Comments on Potential Geologic and Seismic Hazards Affecting Proposed Liquefied Natural Gas Site in Santa Monica Bay, California  

USGS Publications Warehouse

In a letter to the U.S. Geological Survey (USGS) dated March 25, 2008, Representative Jane Harman (California 36th district) requested advice on geologic hazards that should be considered in the review of a proposed liquefied natural gas (LNG) facility off the California coast in Santa Monica Bay. In 2004, the USGS responded to a similar request from Representative Lois Capps, regarding two proposed LNG facilities offshore Ventura County, Calif., with a report summarizing potential geologic and seismic hazards (Ross and others, 2004). The proposed LNG Deepwater Port (DWP) facility includes single point moorings (SPMs) and 35 miles of underwater pipelines. The DWP submersible buoys, manifolds, and risers would be situated on the floor of the southern Santa Monica Basin, in 3,000 feet of water, about 23 miles offshore of the Palos Verdes Peninsula. Twin 24-inch diameter pipelines would extend northeastward from the buoys across the basin floor, up the basin slope and across the continental shelf, skirting north around the Santa Monica submarine canyon. Figure 1 provides locations of the project and geologic features. Acronyms are defined in table 1. This facility is being proposed in a region of known geologic hazards that arise from both the potential for strong earthquakes and geologic processes related to sediment transport and accumulation in the offshore environment. The probability of a damaging earthquake (considered here as magnitude 6.5 or greater) in the next 30 years within about 30 miles (50 km) of the proposed pipeline ranges from 16% at the pipeline's offshore end to 48% where it nears land (Petersen, 2008). Earthquakes of this magnitude are capable of producing strong shaking, surface fault offsets, liquefaction phenomena, landslides, underwater turbidity currents and debris flow avalanches, and tsunamis. As part of the DWP license application for the Woodside Natural Gas proposal in Santa Monica Bay (known as the OceanWay Secure Energy Project), Fugro West, Inc., had already prepared a document discussing geologic hazards in the area, titled 'Exhibit B Topic Report 6 - Geological Resources' (Fugro West, Inc., 2007); hereafter, this will be called the 'Geological Resources document'. The USGS agreed to evaluate the information in the Geological Resources document regarding (1) proximity of active faults to the proposed project, (2) potential magnitude of seismic events from nearby faults, (3) thoroughness of the assessment of earthquake hazards in general, (4) potential hazards from ground rupture and strong shaking, (5) potential hazards from tsunamis, and (6) other geologic hazards including landslides and debris flows. Because two new earthquake probability reports were scheduled to be released in mid-April, 2008, by the USGS and the California Geological Survey (CGS), the USGS suggested a 6-month review period to enable a thorough incorporation of this new information. Twenty-seven scientists from the USGS and the CGS reviewed various sections of the Geological Resources document. This report outlines our major conclusions. The appendix is a longer list of comments by these reviewers, grouped by section of the Geological Resources document. Before discussing our reviews, we first provide a brief overview of geologic hazards in the proposed site area. This report is a snapshot in time and any future work in the area will need to take into account ongoing research efforts. For example, USGS scientists collected seismic reflection data in the spring of 2008 to study the structure and seismic potential of several faults in the area. Their interpretations (Conrad and others, 2008a and 2008b) are too preliminary to be included in this report, but their final results, along with other researchers' studies in the project area, should be considered in any future work on the Deepwater Port project.

Ross, Stephanie L.; Lee, Homa J.; Parsons, Tom E.; Beyer, Larry A.; Boore, David M.; Conrad, James E.; Edwards, Brian D.; Fisher, Michael A.; Frankel, Arthur D.; Geist, Eric L.; Hudnut, Kenneth W.; Hough, Susan E.; Kayen, Robert E.; Lorenson, Thomas D.; Luco, Nicolas; McCrory, Patricia A.; McGann, Mary L.; Nathenson, Manuel; Nolan, Michael; Petersen, Mark D.; Ponti, Daniel J.; Powell, Charles L.; Ryan, Holly F.; Tinsley, John C.; Wills, Chris J.; Wong, Florence L.; Xu, Jingping

2008-01-01

115

Efficient liquefaction cycles for natural gas  

Microsoft Academic Search

Natural Gas is liquefied for storage and transportation purposes. Large quantity of Natural Gas is liquefied on a daily basis. Therefore, there is a need for efficient refrigeration cycles to liquefy natural gas. Refrigeration cycles are energy intensive processes. In such systems, the compressors are the main power consumers. A given refrigeration task can be achieved by many configurations and

Easa Ismail Al-Musleh

2010-01-01

116

Thermodynamic Processes Involving Liquefied Natural Gas at the LNG Receiving Terminals / Procesy termodynamiczne z wykorzystaniem skroplonego gazu ziemnego w terminalach odbiorczych LNG  

NASA Astrophysics Data System (ADS)

The increase in demand for natural gas in the world, cause that the production of liquefied natural gas (LNG) and in consequences its regasification becoming more common process related to its transportation. Liquefied gas is transported in the tanks at a temperature of about 111K at atmospheric pressure. The process required to convert LNG from a liquid to a gas phase for further pipeline transport, allows the use of exergy of LNG to various applications, including for electricity generation. Exergy analysis is a well known technique for analyzing irreversible losses in a separate process. It allows to specify the distribution, the source and size of the irreversible losses in energy systems, and thus provide guidelines for energy efficiency. Because both the LNG regasification and liquefaction of natural gas are energy intensive, exergy analysis process is essential for designing highly efficient cryogenic installations. Wzrost zapotrzebowania na gaz ziemny na ?wiecie powoduje, ?e produkcja skroplonego gazu ziemnego (LNG), a w konsekwencji jego regazyfikacja, staje si? coraz bardziej powszechnym procesem zwi?zanym z jego transportem. Skroplony gaz transportowany jest w zbiornikach w temperaturze oko?o 111K pod ci?nieniem atmosferycznym. Przebieg procesu regazyfikacji niezb?dny do zamiany LNG z fazy ciek?ej w gazow? dla dalszego transportu w sieci, umo?liwia wykorzystanie egzergii LNG do ró?nych zastosowa?, mi?dzy innymi do produkcji energii elektrycznej. Analiza egzergii jest znan? technik? analizowania nieodwracalnych strat w wydzielonym procesie. Pozwala na okre?lenie dystrybucji, ?ród?a i wielko?ci nieodwracalnych strat w systemach energetycznych, a wi?c ustali? wytyczne dotycz?ce efektywnego zu?ycia energii. Poniewa? zarówno regazyfikacja LNG jak i skraplanie gazu ziemnego s? energoch?onne, proces analizy egzergii jest niezb?dny do projektowania wysoce wydajnych instalacji kriogenicznych.

?aciak, Mariusz

2013-06-01

117

75 FR 62510 - Chevron U.S.A. Inc.; Application for Blanket Authorization To Export Liquefied Natural Gas  

Federal Register 2010, 2011, 2012, 2013, 2014

...Natural Gas AGENCY: Office of Fossil Energy, DOE. ACTION: Notice of application...SUMMARY: The Office of Fossil Energy (FE) of the Department of Energy...Security and Supply, Office of Fossil Energy, Forrestal Building, Room...

2010-10-12

118

76 FR 34212 - Lake Charles Exports, LLC; Application for Long-Term Authorization To Export Liquefied Natural Gas  

Federal Register 2010, 2011, 2012, 2013, 2014

...SUG, are jointly developing plans to install liquefaction facilities to enable export of domestically produced LNG...intends to use the requested export authorization on behalf of BGLS. LCE plans to export natural gas sourced from...

2011-06-13

119

40 CFR 86.157-98 - Refueling test procedures for liquefied petroleum gas-fueled vehicles.  

Code of Federal Regulations, 2014 CFR

...Refueling test procedures for liquefied petroleum gas-fueled vehicles. 86.157-98...Refueling test procedures for liquefied petroleum gas-fueled vehicles. (a) Equipment...procedure for light-duty liquefied petroleum gas-fueled vehicles and trucks...

2014-07-01

120

29 CFR 779.360 - Classification of liquefied-petroleum-gas sales.  

Code of Federal Regulations, 2011 CFR

... Classification of liquefied-petroleum-gas sales. 779.360 Section...Service Establishments Liquefied-Petroleum-Gas and Fuel Oil Dealers § 779.360 Classification of liquefied-petroleum-gas sales. (a)...

2011-07-01

121

40 CFR 86.157-98 - Refueling test procedures for liquefied petroleum gas-fueled vehicles.  

Code of Federal Regulations, 2012 CFR

...Refueling test procedures for liquefied petroleum gas-fueled vehicles. 86.157-98...Refueling test procedures for liquefied petroleum gas-fueled vehicles. (a) Equipment...procedure for light-duty liquefied petroleum gas-fueled vehicles and trucks...

2012-07-01

122

40 CFR 86.157-98 - Refueling test procedures for liquefied petroleum gas-fueled vehicles.  

Code of Federal Regulations, 2013 CFR

...Refueling test procedures for liquefied petroleum gas-fueled vehicles. 86.157-98...Refueling test procedures for liquefied petroleum gas-fueled vehicles. (a) Equipment...procedure for light-duty liquefied petroleum gas-fueled vehicles and trucks...

2013-07-01

123

29 CFR 779.360 - Classification of liquefied-petroleum-gas sales.  

Code of Federal Regulations, 2012 CFR

... Classification of liquefied-petroleum-gas sales. 779.360 Section...Service Establishments Liquefied-Petroleum-Gas and Fuel Oil Dealers § 779.360 Classification of liquefied-petroleum-gas sales. (a)...

2012-07-01

124

29 CFR 779.360 - Classification of liquefied-petroleum-gas sales.  

Code of Federal Regulations, 2010 CFR

... Classification of liquefied-petroleum-gas sales. 779.360 Section...Service Establishments Liquefied-Petroleum-Gas and Fuel Oil Dealers § 779.360 Classification of liquefied-petroleum-gas sales. (a)...

2010-07-01

125

29 CFR 779.360 - Classification of liquefied-petroleum-gas sales.  

Code of Federal Regulations, 2013 CFR

... Classification of liquefied-petroleum-gas sales. 779.360 Section...Service Establishments Liquefied-Petroleum-Gas and Fuel Oil Dealers § 779.360 Classification of liquefied-petroleum-gas sales. (a)...

2013-07-01

126

40 CFR 86.157-98 - Refueling test procedures for liquefied petroleum gas-fueled vehicles.  

Code of Federal Regulations, 2011 CFR

...Refueling test procedures for liquefied petroleum gas-fueled vehicles. 86.157-98...Refueling test procedures for liquefied petroleum gas-fueled vehicles. (a) Equipment...procedure for light-duty liquefied petroleum gas-fueled vehicles and trucks...

2011-07-01

127

29 CFR 779.360 - Classification of liquefied-petroleum-gas sales.  

Code of Federal Regulations, 2014 CFR

... Classification of liquefied-petroleum-gas sales. 779.360 Section...Service Establishments Liquefied-Petroleum-Gas and Fuel Oil Dealers § 779.360 Classification of liquefied-petroleum-gas sales. (a)...

2014-07-01

128

29 CFR 1926.153 - Liquefied petroleum gas (LP-Gas).  

Code of Federal Regulations, 2011 CFR

... 2011-07-01 false Liquefied petroleum gas (LP-Gas). 1926.153 Section...Prevention § 1926.153 Liquefied petroleum gas (LP-Gas). (a) Approval of...for transportation or storing liquefied petroleum gases. (b) Welding on LP-Gas...

2011-07-01

129

29 CFR 1926.153 - Liquefied petroleum gas (LP-Gas).  

Code of Federal Regulations, 2013 CFR

... 2013-07-01 false Liquefied petroleum gas (LP-Gas). 1926.153 Section...Prevention § 1926.153 Liquefied petroleum gas (LP-Gas). (a) Approval of...for transportation or storing liquefied petroleum gases. (b) Welding on LP-Gas...

2013-07-01

130

29 CFR 1926.153 - Liquefied petroleum gas (LP-Gas).  

Code of Federal Regulations, 2014 CFR

... 2014-07-01 false Liquefied petroleum gas (LP-Gas). 1926.153 Section...Prevention § 1926.153 Liquefied petroleum gas (LP-Gas). (a) Approval of...for transportation or storing liquefied petroleum gases. (b) Welding on LP-Gas...

2014-07-01

131

29 CFR 1926.153 - Liquefied petroleum gas (LP-Gas).  

Code of Federal Regulations, 2012 CFR

... 2012-07-01 false Liquefied petroleum gas (LP-Gas). 1926.153 Section...Prevention § 1926.153 Liquefied petroleum gas (LP-Gas). (a) Approval of...for transportation or storing liquefied petroleum gases. (b) Welding on LP-Gas...

2012-07-01

132

46 CFR 58.16-7 - Use of liquefied petroleum gas.  

Code of Federal Regulations, 2010 CFR

...2010-10-01 false Use of liquefied petroleum gas. 58.16-7 Section 58...MACHINERY AND RELATED SYSTEMS Liquefied Petroleum Gases for Cooking and Heating § 58.16-7 Use of liquefied petroleum gas. (a) Cooking equipment...

2010-10-01

133

46 CFR 58.16-7 - Use of liquefied petroleum gas.  

Code of Federal Regulations, 2011 CFR

...2011-10-01 false Use of liquefied petroleum gas. 58.16-7 Section 58...MACHINERY AND RELATED SYSTEMS Liquefied Petroleum Gases for Cooking and Heating § 58.16-7 Use of liquefied petroleum gas. (a) Cooking equipment...

2011-10-01

134

46 CFR 58.16-7 - Use of liquefied petroleum gas.  

Code of Federal Regulations, 2013 CFR

...2013-10-01 false Use of liquefied petroleum gas. 58.16-7 Section 58...MACHINERY AND RELATED SYSTEMS Liquefied Petroleum Gases for Cooking and Heating § 58.16-7 Use of liquefied petroleum gas. (a) Cooking equipment...

2013-10-01

135

46 CFR 58.16-7 - Use of liquefied petroleum gas.  

Code of Federal Regulations, 2012 CFR

...2012-10-01 false Use of liquefied petroleum gas. 58.16-7 Section 58...MACHINERY AND RELATED SYSTEMS Liquefied Petroleum Gases for Cooking and Heating § 58.16-7 Use of liquefied petroleum gas. (a) Cooking equipment...

2012-10-01

136

46 CFR 58.16-7 - Use of liquefied petroleum gas.  

Code of Federal Regulations, 2014 CFR

...2014-10-01 false Use of liquefied petroleum gas. 58.16-7 Section 58...MACHINERY AND RELATED SYSTEMS Liquefied Petroleum Gases for Cooking and Heating § 58.16-7 Use of liquefied petroleum gas. (a) Cooking equipment...

2014-10-01

137

33 CFR 165.1151 - Security Zones; liquefied hazardous gas tank vessels, San Pedro Bay, California.  

Code of Federal Regulations, 2012 CFR

...Zones; liquefied hazardous gas tank vessels, San Pedro Bay, California. 165.1151 Section 165.1151 Navigation and Navigable...Zones; liquefied hazardous gas tank vessels, San Pedro Bay, California. (a) Definition. “Liquefied Hazardous...

2012-07-01

138

33 CFR 165.1151 - Security Zones; liquefied hazardous gas tank vessels, San Pedro Bay, California.  

Code of Federal Regulations, 2011 CFR

...Zones; liquefied hazardous gas tank vessels, San Pedro Bay, California. 165.1151 Section 165.1151 Navigation and Navigable...Zones; liquefied hazardous gas tank vessels, San Pedro Bay, California. (a) Definition. “Liquefied Hazardous...

2011-07-01

139

33 CFR 165.1151 - Security Zones; liquefied hazardous gas tank vessels, San Pedro Bay, California.  

Code of Federal Regulations, 2014 CFR

...Zones; liquefied hazardous gas tank vessels, San Pedro Bay, California. 165.1151 Section 165.1151 Navigation and Navigable...Zones; liquefied hazardous gas tank vessels, San Pedro Bay, California. (a) Definition. “Liquefied Hazardous...

2014-07-01

140

33 CFR 165.1151 - Security Zones; liquefied hazardous gas tank vessels, San Pedro Bay, California.  

Code of Federal Regulations, 2013 CFR

...Zones; liquefied hazardous gas tank vessels, San Pedro Bay, California. 165.1151 Section 165.1151 Navigation and Navigable...Zones; liquefied hazardous gas tank vessels, San Pedro Bay, California. (a) Definition. “Liquefied Hazardous...

2013-07-01

141

The design of an optical sensor arrangement for the detection of oil contamination in an adhesively bonded structure of a liquefied natural gas (LNG) ship  

NASA Astrophysics Data System (ADS)

Liquefied natural gas (LNG) has been widely used as a substitute fuel for commercial purposes. It is transported mainly by LNG ships which have primary and secondary leakage barriers. The former is composed of welded thin stainless steel or invar plates, while the latter is composed of adhesively bonded glass composite or aluminum foil sheets. The role of the secondary barrier is to maintain fluid tightness when the primary barrier fails during the transport of LNG. The tightness of the secondary barrier is dependent on the wetting characteristics between the adhesive and adherend of the bonded structure during bonding operation, which depends much on the contamination on the adherend surface. Therefore, in this work, an optical measuring device of oil contamination on the aluminum surface for the secondary barrier was developed. A transparent oil was used as the contaminant and its effect on the bonding strength was investigated. From the experiments, it has been found that the developed measuring device for oil contamination can be used to detect oil contamination on a large bonding area of the secondary barrier in ship building yards.

Kim, Bu Gi; Lee, Dai Gil

2009-06-01

142

A conceptual demonstration of freeze desalination-membrane distillation (FD-MD) hybrid desalination process utilizing liquefied natural gas (LNG) cold energy.  

PubMed

The severe global water scarcity and record-high fossil oil price have greatly stimulated the research interests on new desalination technologies which can be driven by renewable energy or waste energy. In this study, a hybrid desalination process comprising freeze desalination and membrane distillation (FD-MD) processes was developed and explored in an attempt to utilize the waste cold energy released from re-gasification of liquefied natural gas (LNG). The concept of this technology was demonstrated using indirect-contact freeze desalination (ICFD) and direct-contact membrane distillation (DCMD) configurations. By optimizing the ICFD operation parameters, namely, the usage of nucleate seeds, operation duration and feed concentration, high quality drinkable water with a low salinity ?0.144 g/L was produced in the ICFD process. At the same time, using the optimized hollow fiber module length and packing density in the DCMD process, ultra pure water with a low salinity of 0.062 g/L was attained at a condition of high energy efficiency (EE). Overall, by combining FD and MD processes and adopting the optimized operation parameters, the hybrid FD-MD system has been successfully demonstrated. A high total water recovery of 71.5% was achieved, and the water quality obtained met the standard for drinkable water. In addition, with results from specific energy calculation, it was proven that the hybrid process is an energy-saving process and utilization of LNG cold energy could greatly reduce the total energy consumption. PMID:22682269

Wang, Peng; Chung, Tai-Shung

2012-09-01

143

33 CFR 165.110 - Safety and Security Zone; Liquefied Natural Gas Carrier Transits and Anchorage Operations, Boston...  

Code of Federal Regulations, 2011 CFR

...Gas Carrier Transits and Anchorage Operations, Boston, Massachusetts. 165.110 Section 165.110 Navigation and Navigable...Gas Carrier Transits and Anchorage Operations, Boston, Massachusetts. (a) Definitions. As used in this section—...

2011-07-01

144

33 CFR 165.110 - Safety and Security Zone; Liquefied Natural Gas Carrier Transits and Anchorage Operations, Boston...  

Code of Federal Regulations, 2014 CFR

...Gas Carrier Transits and Anchorage Operations, Boston, Massachusetts. 165.110 Section 165.110 Navigation and Navigable...Gas Carrier Transits and Anchorage Operations, Boston, Massachusetts. (a) Definitions. As used in this section—...

2014-07-01

145

33 CFR 165.110 - Safety and Security Zone; Liquefied Natural Gas Carrier Transits and Anchorage Operations, Boston...  

Code of Federal Regulations, 2013 CFR

...Gas Carrier Transits and Anchorage Operations, Boston, Massachusetts. 165.110 Section 165.110 Navigation and Navigable...Gas Carrier Transits and Anchorage Operations, Boston, Massachusetts. (a) Definitions. As used in this section—...

2013-07-01

146

33 CFR 165.110 - Safety and Security Zone; Liquefied Natural Gas Carrier Transits and Anchorage Operations, Boston...  

Code of Federal Regulations, 2012 CFR

...Gas Carrier Transits and Anchorage Operations, Boston, Massachusetts. 165.110 Section 165.110 Navigation and Navigable...Gas Carrier Transits and Anchorage Operations, Boston, Massachusetts. (a) Definitions. As used in this section—...

2012-07-01

147

46 CFR 13.607 - Requirements to qualify for an STCW endorsement for advanced liquefied gas tanker cargo operations.  

Code of Federal Regulations, 2014 CFR

...endorsement in advanced liquefied gas tanker cargo operations by...training program onboard liquefied gas tankers. The program must be...least three loading and three discharge operations. (e) Grandfathering...valid tankerman-PIC liquefied gas, tankerman-PIC...

2014-10-01

148

A liquefied petroleum gas gasification system utilizing solar thermal energy  

Microsoft Academic Search

Liquefied petroleum gas (abbreviated as LPG) is still an important source of residential gas in China due to its advantages. LPG gasfier is the key equipment of the LPG center supplement system. Traditional LPG vaporizer mainly depends on electric heating as its heat source, which leads to high energy cost and can not meet the demand of energy conservation policy.

Guohua Shi; Youyin Jing; Yuefen Gao

2008-01-01

149

18 CFR 260.9 - Reports by natural gas pipeline companies on service interruptions and damage to facilities.  

Code of Federal Regulations, 2014 CFR

...than liquefied natural gas facilities caused by a hurricane, earthquake or other natural disaster or terrorist activity that results...liquefied natural gas facilities by reason other than hurricane, earthquake or other natural disaster or terrorist activity, the...

2014-04-01

150

18 CFR 260.9 - Reports by natural gas pipeline companies on service interruptions and damage to facilities.  

Code of Federal Regulations, 2011 CFR

...than liquefied natural gas facilities caused by a hurricane, earthquake or other natural disaster or terrorist activity that results...liquefied natural gas facilities by reason other than hurricane, earthquake or other natural disaster or terrorist activity, the...

2011-04-01

151

18 CFR 260.9 - Reports by natural gas pipeline companies on service interruptions and damage to facilities.  

Code of Federal Regulations, 2013 CFR

...than liquefied natural gas facilities caused by a hurricane, earthquake or other natural disaster or terrorist activity that results...liquefied natural gas facilities by reason other than hurricane, earthquake or other natural disaster or terrorist activity, the...

2013-04-01

152

18 CFR 260.9 - Reports by natural gas pipeline companies on service interruptions and damage to facilities.  

Code of Federal Regulations, 2012 CFR

...than liquefied natural gas facilities caused by a hurricane, earthquake or other natural disaster or terrorist activity that results...liquefied natural gas facilities by reason other than hurricane, earthquake or other natural disaster or terrorist activity, the...

2012-04-01

153

Emissions of liquefied petroleum gas (LPG) from motor vehicles  

Microsoft Academic Search

Continuous on-site measurements of 50 speciated volatile organic compounds (VOCs) were conducted in downtown Guangzhou to characterize the sources and concentration profiles of ambient VOCs. The synchronicity in diurnal variation between the VOCs and NO suggests that traffic emissions were responsible for the observed VOCs in downtown Guangzhou.It was found that the three major constituent species of liquefied petroleum gas

Cheng-Hsun Lai; Chih-Chung Chang; Chieh-Heng Wang; Min Shao; Yuanhang Zhang; Jia-Lin Wang

2009-01-01

154

40 CFR 86.157-98 - Refueling test procedures for liquefied petroleum gas-fueled vehicles.  

Code of Federal Regulations, 2010 CFR

...2010-07-01 2010-07-01 false Refueling test procedures for liquefied petroleum gas-fueled...Otto-Cycle Complete Heavy-Duty Vehicles; Test Procedures § 86.157-98 Refueling test procedures for liquefied petroleum...

2010-07-01

155

Cellular glass insulation keeps liquefied gas from vaporizing  

SciTech Connect

The North West Shelf Project, located on the Burrup Peninsula in Western Australia, supplies much of that vast state with natural gas for domestic and industrial applications. Some of the gas is also exported to Japan as liquefied natural gas (LNG). While awaiting shipment to Japan, the LNG is stored at {minus}322 F in four storage tanks, each with a capacity of 2.5 million ft{sup 3}. When Woodside Offshore Petroleum Pty Ltd., operator of the LNG facility, selected insulation material for the storage tanks, it went in search of a material with more than just insulating value. Since the insulation is installed inside the tanks, it must be able to resist wicking or absorbing the LNG. Also, it had to have sufficient strength to withstand the weight of the 2.5 million ft{sup 3} of LNG without being crushed or losing its insulting properties. And, as a safety precaution, the selected materials should neither burn nor support combustion. Ultimately, Woodside selected a cellular glass insulation called Foamglas, from Pittsburgh Corning Corp., that met all the performance criteria and was cost competitive with the lesser-performing alternatives. Foamglas is produced from strong, inert borosilicate glass. Its insulating capability is provided by the tiny, closed cells of air encapsulated within the foam-like structure of the glass. Since the cells are closed,neither liquid nor vapor can enter the structure of the insulation. The inert glass itself will not absorb or react with LNG, nor will it burn or support a fire. The cellular structure provides effective insulation in both not and cold applications, and offers a fire barrier.

NONE

1995-11-01

156

ALTERNATIVE TRANSPORT FUELS FROM NATURAL GAS  

Microsoft Academic Search

This paper examines the economics of using natural gas as an alternative fuel in transport vehicles including passenger cars, taxis, buses, and trucks. It compares the cost of using conventional fuels (gasoline and diesel) in these vehicles with that of retrofitting the vehicles and using natural gas-based fuels. These fuels include compressed natural gas (CNG), liquefied petroleum gas (LPG), methanol,

JR. R. MORENO; D. G. FALLEN BAILEY

1989-01-01

157

Building natural gas locomotives  

SciTech Connect

This article describes a liquefied natural gas-fueled locomotive built by Morrison Knudsen which includes a Caterpillar 1200-horsepower V-16, a monofuel management system with double-wall super-insulated cryogenic tanks, and microprocessor-based controls. Efforts by railroad companies to reduce operating costs and meet future emissions standards have led engineers to look for innovative ways to design trains. In January, Morrison Knudsen Corp. of Boise, Idaho, powered its way into the locomotive manufacturing business when it introduced the natural gas-fueled MK1200G, to be used mostly around railroad company yards and on trips shorter than 50 miles.

O'Conner, L.

1994-04-01

158

Mathematical simulation of the process of condensing natural gas  

NASA Astrophysics Data System (ADS)

Presents a two-dimensional unsteady model of heat transfer in terms of condensation of natural gas at low temperatures. Performed calculations of the process heat and mass transfer of liquefied natural gas (LNG) storage tanks of cylindrical shape. The influence of model parameters on the nature of heat transfer. Defined temperature regimes eliminate evaporation by cooling liquefied natural gas. The obtained dependence of the mass flow rate of vapor condensation gas temperature. Identified the possibility of regulating the process of "cooling down" liquefied natural gas in terms of its partial evaporation with low cost energy.

Tastandieva, G. M.

2015-01-01

159

77 FR 70174 - Waterway Suitability Assessment for Expansion of Liquefied Gas Terminals; Houston and Texas City, TX  

Federal Register 2010, 2011, 2012, 2013, 2014

...for Expansion of Liquefied Gas Terminals; Houston and Texas City, TX AGENCY: Coast Guard, DHS. ACTION: Notice...Liquefied Hazardous Gas (LHG) facilities in Houston and Texas City, Texas, and increased LHG marine traffic in the...

2012-11-23

160

46 CFR 61.15-10 - Liquefied-petroleum-gas piping for heating and cooking.  

Code of Federal Regulations, 2012 CFR

... 2 2012-10-01 2012-10-01 false Liquefied-petroleum-gas piping for heating and cooking. 61.15-10 Section...Periodic Tests of Piping Systems § 61.15-10 Liquefied-petroleum-gas piping for heating and cooking....

2012-10-01

161

46 CFR 61.15-10 - Liquefied-petroleum-gas piping for heating and cooking.  

Code of Federal Regulations, 2010 CFR

... 2 2010-10-01 2010-10-01 false Liquefied-petroleum-gas piping for heating and cooking. 61.15-10 Section...Periodic Tests of Piping Systems § 61.15-10 Liquefied-petroleum-gas piping for heating and cooking....

2010-10-01

162

46 CFR 61.15-10 - Liquefied-petroleum-gas piping for heating and cooking.  

Code of Federal Regulations, 2011 CFR

... 2 2011-10-01 2011-10-01 false Liquefied-petroleum-gas piping for heating and cooking. 61.15-10 Section...Periodic Tests of Piping Systems § 61.15-10 Liquefied-petroleum-gas piping for heating and cooking....

2011-10-01

163

46 CFR 61.15-10 - Liquefied-petroleum-gas piping for heating and cooking.  

Code of Federal Regulations, 2013 CFR

... 2 2013-10-01 2013-10-01 false Liquefied-petroleum-gas piping for heating and cooking. 61.15-10 Section...Periodic Tests of Piping Systems § 61.15-10 Liquefied-petroleum-gas piping for heating and cooking....

2013-10-01

164

46 CFR 61.15-10 - Liquefied-petroleum-gas piping for heating and cooking.  

Code of Federal Regulations, 2014 CFR

... 2 2014-10-01 2014-10-01 false Liquefied-petroleum-gas piping for heating and cooking. 61.15-10 Section...Periodic Tests of Piping Systems § 61.15-10 Liquefied-petroleum-gas piping for heating and cooking....

2014-10-01

165

78 FR 75359 - Waterway Suitability Assessment for Construction and Operation of Liquefied Gas Terminals; Orange...  

Federal Register 2010, 2011, 2012, 2013, 2014

...Operation of Liquefied Gas Terminals; Orange, TX AGENCY: Coast Guard, DHS. ACTION...Liquefied Hazardous Gas (LHG) at its Orange, Texas facility. The Coast Guard is...INVISTA, S.a.r.l. located in Orange, Texas submitted an LOI and WSA on...

2013-12-11

166

40 CFR 80.32 - Controls applicable to liquefied petroleum gas retailers and wholesale purchaser-consumers.  

Code of Federal Regulations, 2012 CFR

...false Controls applicable to liquefied petroleum gas retailers and wholesale purchaser-consumers...32 Controls applicable to liquefied petroleum gas retailers and wholesale purchaser-consumers...handling over 13,660 gallons of liquefied petroleum gas per month shall equip each pump...

2012-07-01

167

40 CFR 80.32 - Controls applicable to liquefied petroleum gas retailers and wholesale purchaser-consumers.  

Code of Federal Regulations, 2013 CFR

...false Controls applicable to liquefied petroleum gas retailers and wholesale purchaser-consumers...32 Controls applicable to liquefied petroleum gas retailers and wholesale purchaser-consumers...handling over 13,660 gallons of liquefied petroleum gas per month shall equip each pump...

2013-07-01

168

40 CFR 80.32 - Controls applicable to liquefied petroleum gas retailers and wholesale purchaser-consumers.  

Code of Federal Regulations, 2010 CFR

...false Controls applicable to liquefied petroleum gas retailers and wholesale purchaser-consumers...32 Controls applicable to liquefied petroleum gas retailers and wholesale purchaser-consumers...handling over 13,660 gallons of liquefied petroleum gas per month shall equip each pump...

2010-07-01

169

40 CFR 80.32 - Controls applicable to liquefied petroleum gas retailers and wholesale purchaser-consumers.  

Code of Federal Regulations, 2011 CFR

...false Controls applicable to liquefied petroleum gas retailers and wholesale purchaser-consumers...32 Controls applicable to liquefied petroleum gas retailers and wholesale purchaser-consumers...handling over 13,660 gallons of liquefied petroleum gas per month shall equip each pump...

2011-07-01

170

40 CFR 80.32 - Controls applicable to liquefied petroleum gas retailers and wholesale purchaser-consumers.  

Code of Federal Regulations, 2014 CFR

...false Controls applicable to liquefied petroleum gas retailers and wholesale purchaser-consumers...32 Controls applicable to liquefied petroleum gas retailers and wholesale purchaser-consumers...handling over 13,660 gallons of liquefied petroleum gas per month shall equip each pump...

2014-07-01

171

Analysis of exhaust gas composition of internal combustion engines using liquefied petroleum gas  

Microsoft Academic Search

The problems of implementation of liquefied petroleum gas (LPG) supply systems are related with the fact that they are alternative systems used in engines constructed and optimized for work with other kinds of fuel. So assemblers of the systems have to evaluate power losses and at the same time ecological requirements. The experiment is devoted to the analysis of gas

Saulius Mockus; Jonas Sapragonas; Agnius Stonys; Saugirdas Pukalskas

2006-01-01

172

Natural gas  

NSDL National Science Digital Library

Natural gas is used as a means of power in households. Natural gas has no natural odor, so an odor is added to the gas. This is useful because gas leaks can be detected better and it also reduces the risk of accidents in homes.

N/A N/A (None; )

2003-07-27

173

Natural Gas Liquefaction Process for Small-scale LNG Project  

Microsoft Academic Search

In the field of natural gas liquefaction, the small-scale natural gas liquefier has been attracting more and more attentions home and abroad, thanks to its small volume, mobile transportation, easy start-up and shut-down, as well as skid-mounted package. A study was made to choose the optimum liquefaction process to improve the economy of small-scale liquefied natural gas (LNG) plant. The

Cao Wensheng

2012-01-01

174

Domestic liquefied petroleum gas: are we using a kitchen bomb?  

PubMed

The aim of this study is to understand the aetiological factors and pattern of burns caused by the use of liquefied petroleum gas (LPG). This hospital based study was conducted on consecutive patients admitted with major burns from September 2011 to August 2012. The data was recorded on predesigned data sheet. Age, gender, mode of injury, its exact mechanism, place of incidence, extent of burn and inhalation injury were recorded for every patient. 182 patients with LPG related burn injury were admitted in one year. This is 11% of total burn patients received during the same period (182/1656). 147 incidents caused these burns due to gas leak from various parts of the LPG cooking system. Leakage was either from the cylinder, pipe or stove in 52%, 36% and 2% incidents respectively. Human error accounted for 3% incidents while in 7% the mechanism could not be ascertained. Leakage from 5kg cylinder with pipe was the commonest aetiological factor. There were 14 group casualties with more than one victim involved. LPG related burns are preventable to a large extent. There is a need to improve the safety standards in the LPG stove system. Public awareness needs to be improved. PMID:24480369

Paliwal, G; Agrawal, K; Srivastava, R K; Sharma, S

2014-09-01

175

Evaluation of burn injuries related to liquefied petroleum gas.  

PubMed

Liquefied petroleum gas (LPG) is a fuel that is widely used for domestic, agricultural, and industrial purposes. LPG is also commonly used in restaurants, industries, and cars; however, the home continues to be the main site for accidents. In Turkey, the increased usage of LPG as a cooking or heating fuel has resulted in many burn injuries from LPG mishaps. Between January 2000 and June 2011, 56 LPG-burned patients were compared with 112 flame-burned patients. There were no significant differences with respect to the mean age, sex, hospitalization time, and mortality in both groups. In the LPG-caused burn cases, 41 burns (73.2%) occurred at home, seven (12.5) were work-related mishaps, and eight (14.3) were associated with car accidents. The majority of the LPG burns (82%, 46 patients) resulted from a gas leak, and 18% of them were related to the failure to close LPG tubes in the patients' kitchens (10 patients). Burns to the face and neck (82 vs 67%, P = .039) and upper (62 vs 23%, P = .000) and lower (70 vs 45%, P = .002) extremities were significantly higher in LPG-caused burn cases than flame-burned cases. General awareness regarding the risk of LPG and first aid for burns appears to be lacking. The LPG delivery system should be standardized throughout countries that widely use LPG. PMID:23799481

Tarim, Mehmet Akin

2014-01-01

176

Alternative transport fuels from natural gas. Technical paper  

Microsoft Academic Search

This report examines the economics of using natural gas as an alternative fuel in transport vehicles including passenger cars, taxis, buses, and trucks. It compares the cost of using conventional fuels (gasoline and diesel) in these vehicles with that of retrofitting the vehicles and using natural gas-based fuels. These fuels include compressed natural gas (CNG), liquefied petroleum gas (LPG), methanol,

R. Moreno; D. G. F. Bailey

1989-01-01

177

Two Heat-Transfer Improvements for Gas Liquefiers  

NASA Technical Reports Server (NTRS)

Two improvements in heat-transfer design have been investigated with a view toward increasing the efficiency of refrigerators used to liquefy gases. The improvements could contribute to the development of relatively inexpensive, portable oxygen liquefiers for medical use. A description of the heat-transfer problem in a pulse-tube refrigerator is prerequisite to a meaningful description of the first improvement. In a pulse-tube refrigerator in particular, one of in-line configuration heat must be rejected from two locations: an aftercooler (where most of the heat is rejected) and a warm heat exchanger (where a small fraction of the total input power must be rejected as heat). Rejection of heat from the warm heat exchanger can be problematic because this heat exchanger is usually inside a vacuum vessel. When an acoustic-inertance tube is used to provide a phase shift needed in the pulse-tube cooling cycle, another problem arises: Inasmuch as the acoustic power in the acoustic-inertance tube is dissipated over the entire length of the tube, the gas in the tube must be warmer than the warm heat exchanger in order to reject heat at the warm heat exchanger. This is disadvantageous because the increase in viscosity with temperature causes an undesired increase in dissipation of acoustic energy and an undesired decrease in the achievable phase shift. Consequently, the overall performance of the pulse-tube refrigerator decreases with increasing temperature in the acoustic-inertance tube. In the first improvement, the acoustic-inertance tube is made to serve as the warm heat exchanger and to operate in an approximately isothermal condition at a lower temperature, thereby increasing the achievable phase shift and the overall performance of the refrigerator. This is accomplished by placing the acoustic-inertance tube inside another tube and pumping a cooling fluid (e.g., water) in the annular space between the tubes. Another benefit of this improvement is added flexibility of design to locate the warm heat-rejection components outside the vacuum vessel. The second improvement is the development of a compact radial-flow condenser characterized by a very high heat transfer coefficient and a small pressure drop.

Martin, Jerry L.

2005-01-01

178

Liquefied Noble Gas (LNG) detectors for detection of nuclear materials  

NASA Astrophysics Data System (ADS)

Liquefied-noble-gas (LNG) detectors offer, in principle, very good energy resolution for both neutrons and gamma rays, fast response time (hence high-count-rate capabilities), excellent discrimination between neutrons and gamma rays, and scalability to large volumes. They do, however, need cryogenics. LNG detectors in sizes of interest for fissionable material detection in cargo are reaching a certain level of maturity because of the ongoing extensive R&}D effort in high-energy physics regarding their use in the search for dark matter and neutrinoless double beta decay. The unique properties of LNG detectors, especially those using Liquid Argon (LAr) and Liquid Xenon (LXe), call for a study to determine their suitability for Non-Intrusive Inspection (NII) for Special Nuclear Materials (SNM) and possibly for other threats in cargo. Rapiscan Systems Laboratory, Yale University Physics Department, and Adelphi Technology are collaborating in the investigation of the suitability of LAr as a scintillation material for large size inspection systems for air and maritime containers and trucks. This program studies their suitability for NII, determines their potential uses, determines what improvements in performance they offer and recommends changes to their design to further enhance their suitability. An existing 3.1 liter LAr detector (microCLEAN) at Yale University, developed for R&}D on the detection of weakly interacting massive particles (WIMPs) was employed for testing. A larger version of this detector (15 liters), more suitable for the detection of higher energy gamma rays and neutrons is being built for experimental evaluation. Results of measurements and simulations of gamma ray and neutron detection in microCLEAN and a larger detector (326 liter CL38) are presented.

Nikkel, J. A.; Gozani, T.; Brown, C.; Kwong, J.; McKinsey, D. N.; Shin, Y.; Kane, S.; Gary, C.; Firestone, M.

2012-03-01

179

U.S. Natural Gas Supply to 2030 Larry Hughes  

E-print Network

LNG Total Figure 1: U.S. natural gas supply (reference case) It should be noted that this is the reference case; the "side cases", based upon the volume of projected LNG (liquefied natural gas) imports gas supply projections for 2030 (TCF) Production Low LNG Reference High LNG Dry gas 21.99 20.83 19

Hughes, Larry

180

Tenth international conference on liquefied natural gas  

SciTech Connect

Separate abstracts were prepared for the 73 individual papers presented. The conference was divided into four sessions: (1) LNG Market, (2) Liquefaction plants, (3) LNG receiving terminals and storage, and (4) LNG transportation, handling, safety and environmental issues.

Not Available

1992-01-01

181

Urban leakage of liquefied petroleum gas and its impact on Mexico City air quality  

Microsoft Academic Search

Alkane hydrocarbons (propane, isobutane, and n-butane) from liquefied petroleum gas (LPG) are present in major quantities throughout Mexico City air because of leakage of the unburned gas from numerous urban sources. These hydrocarbons, together with olefinic minor LPG components, furnish substantial amounts of hydroxyl radical reactivity, a major precursor to formation of the ozone component of urban smog. The combined

D. R. Blake; F. S. Rowland

1995-01-01

182

Efficient liquefaction cycles for natural gas  

NASA Astrophysics Data System (ADS)

Natural Gas is liquefied for storage and transportation purposes. Large quantity of Natural Gas is liquefied on a daily basis. Therefore, there is a need for efficient refrigeration cycles to liquefy natural gas. Refrigeration cycles are energy intensive processes. In such systems, the compressors are the main power consumers. A given refrigeration task can be achieved by many configurations and use of refrigerant mediums. In principle, all possible configurations utilize vapor compression and/or expander cycles. However, identifying an energy efficient configuration along with the proper choice of refrigerants is not a straightforward technique. In the refrigeration literature, many methods have been proposed to identify efficient refrigeration configurations for a given task. However, these methods rely on detailed simulations and mathematical programming and do not provide much physical insights to design a good refrigeration process. As a result, our motivation is to develop physical insights through systematic evaluation of refrigerants and cycle configurations. We have identified key features of different refrigeration systems for Liquefied Natural Gas (LNG) applications. This was achieved through detailed simulations and thermodynamic analysis. Such features are essential to understand the limits of different configurations. Moreover, they can lead to process developments and improvements.

Al-Musleh, Easa Ismail

183

Using geographic information systems in assessment of major hazards of liquefied petroleum gas  

Microsoft Academic Search

It is known that there are hazards associated with the storage, handling and use of liquefied petroleum gas. Storage process plants of dangerous substances define the set of risk sources. Release of chemical due to accident could be severe and poses an immediate effect to workers on-site and communities off-site as well as it causes adversely a potential effect on

Mohanad El-Harbawi; Sa'ari Mustapha; S. Abdul Rashid; Thomas S. Y. Choong; Mohamed AL-Shalabi

2004-01-01

184

Assessment of reducing ozone forming potential for vehicles using liquefied petroleum gas as an alternative fuel  

Microsoft Academic Search

Liquefied petroleum gas (LPG) is currently used in a small fleet of taxis as an alternative fuel to gasoline in Taipei, Taiwan as part of an incentive program promoted by Taiwan EPA to improve urban air quality. Under the test procedure in accordance with the US FTP-75 protocol to simulate an average urban driving pattern, the exhaust from four LPG

Chih-Chung Chang; Jiunn-Guang Lo; Jia-Lin Wang

2001-01-01

185

Apparatus For The Liquefaaction Of Natural Gas And Methods Relating To Same  

Microsoft Academic Search

An apparatus and method for producing liquefied natural gas. A liquefaction plant may be coupled to a source of unpurified natural gas, such as a natural gas pipeline at a pressure letdown station. A portion of the gas is drawn off and split into a process stream and a cooling stream. The cooling stream passes through a turbo expander creating

Bruce M. Wilding; Dennis N. Bingham; Michael G. McKellar; Terry D. Turner; Kevin T. Raterman; Gary L. Palmer; Kerry M. Klingler; John J. Vranicar

2003-01-01

186

Apparatus for the liquefaction of natural gas and methods relating to same  

Microsoft Academic Search

An apparatus and method for producing liquefied natural gas. A liquefaction plant may be coupled to a source of unpurified natural gas, such as a natural gas pipeline at a pressure letdown station. A portion of the gas is drawn off and split into a process stream and a cooling stream. The cooling stream passes through an expander creating work

Bruce M. Wilding; Michael G. McKellar; Terry D. Turner; Francis H. Carney

2009-01-01

187

Apparatus For The Liquefaaction Of Natural Gas And Methods Relating To Same  

Microsoft Academic Search

An apparatus and method for producing liquefied natural gas. A liquefaction plant may be coupled to a source of unpurified natural gas, such as a natural gas pipeline at a pressure letdown station. A portion of the gas is drawn off and split into a process stream and a cooling stream. The cooling stream passes through a turbo expander creating

Bruce M. Wilding; Dennis N. Bingham; Michael G. McKellar; Terry D. Turner; Kevin T. Rateman; Gary L. Palmer; Kerry M. Klinger; John J. Vranicar

2005-01-01

188

Apparatus for the liquefaction of natural gas and methods relating to same  

Microsoft Academic Search

An apparatus and method for producing liquefied natural gas. A liquefaction plant may be coupled to a source of unpurified natural gas, such as a natural gas pipeline at a pressure letdown station. A portion of the gas is drawn off and split into a process stream and a cooling stream. The cooling stream passes through a turbo expander creating

Bruce M. Wilding; Dennis N. Bingham; Michael G. McKellar; Terry D. Turner; Kevin T. Raterman; Gary L. Palmer; Kerry M. Klingler; John J. Vranicar

2007-01-01

189

Experimental investigation of mobile small-scale liquefier for 10000 NM3/D of coal bed methane gas  

NASA Astrophysics Data System (ADS)

There is a growing recognition that unconventional sources of gas, such as shale gas, coal bed methane (CBM) and deep tight gas will contribute a significant component of future gas supplies as technologies evolve. In recent years, the interest in such source of gas utilization technologies based on small-scale LNG production has been rising steeply. In this paper, a mobile liquefier prototype for 10000 Nm3/d of CBM has been designed, constructed and tested. It has two cascade refrigeration systems. The high-temperature refrigeration system will pre-cool the resource gas to 5oC, and the low-temperature refrigeration system will continue to cool the resource gas to the liquefied point with a Mixed Refrigerant Cycle (MRC). The kernel compressor is a conventional oil-lubricated air-conditioning compressor with the discharge pressure of 2.0 MPa. The main heat exchanger is plate-fin heat exchanger with four passages. A series of experiments have been done on the prototype liquefier at different resource gas pressures and environmental temperatures. It is less than one hour from the start of the equipment to the existence of LNG. The maximum production of LNG is about 20 m3/d when a stream of about 12500 Nm3/d of pure CBM at a process pressure of 1.3 MPa is liquefied. The energy consumption of liquefying 1 Nm3 methane is 0.612 kWh.

Sun, Zhaohu; Wu, J. F.; Gong, Maoqiong; Guo, Ping

2012-06-01

190

Epoxidized natural rubber toughened aqueous resole type liquefied EFB resin: Physical and chemical characterization  

NASA Astrophysics Data System (ADS)

A preliminary study on the reaction between aqueous resole type resinified liquefied palm oil empty fruit bunches fibres (RLEFB) with epoxidized natural rubber (ENR). Liquefaction of empty fruit bunches (EFB) is carried out at different ratio of phenol to EFB (P:EFB). Resole type phenolic resin is prepared using sodium hydroxide (NaOH) as the catalyst with the ratio of liquefied EFB (LEFB) to formaldehyde (LEFB:F) of 1:1.8. 50% epoxidation of epoxidized natural rubber (ENR-50) is used to react with resole resin by mixing with ENR with aqueous resole resin. The cured resin is characterized with FT-IR and SEM. Aqueous system have been found to be unsuitable medium in the reaction between resin and ENR. This system produced a highly porous product when RLEFB/ENR resin is cured.

Amran, Umar Adli; Zakaria, Sarani; Chia, Chin Hua

2013-11-01

191

Urban leakage of liquefied petroleum gas and its impact on Mexico City air quality  

SciTech Connect

Alkane hydrocarbons (propane, isobutane, and n-butane) from liquefied petroleum gas (LPG) are present in major quantities throughout Mexico City air because of leakage of the unburned gas from numerous urban sources. These hydrocarbons, together with olefinic minor LPG components, furnish substantial amounts of hydroxyl radical reactivity, a major precursor to formation of the ozone component of urban smog. The combined processes of unburned leakage and incomplete combustion of LPG play significant role in causing the excessive ozone characteristic of Mexico City. Reductions in ozone levels should be possible through changes in LPG composition and lowered rates of leakage. 23 refs., 3 tabs.

Blake, D.R.; Rowland, F.S. [Univ. of California, Irvine, CA (United States)

1995-08-18

192

Liquefied petroleum gas cold burn sustained while refueling a car.  

PubMed

There have been few cases of cold burn related to the exposure of liquid petroleum gas (LPG). We present the case of a young woman exposed to LPG while refueling her car who sustained partial thickness burns to the dorsum of her hand. Contact with LPG leaking from a pressurized system causes tissue damage because of cold injury. Immediate management of LPG is extrapolated from the management of frostbite. The increasing use of LPG mandates an awareness of prevention strategies and management principles in the setting of adverse events. PMID:20152007

Scarr, Bronwyn; Mitra, Biswadev; Maini, Amit; Cleland, Heather

2010-02-01

193

Flame synthesis of carbon nano onions using liquefied petroleum gas without catalyst.  

PubMed

Densely agglomerated, high specific surface area carbon nano onions with diameter of 30-40 nm have been synthesized. Liquefied petroleum gas and air mixtures produced carbon nano onions in diffusion flames without catalyst. The optimized oxidant to fuel ratio which produces carbon nano onions has been found to be 0.1 slpm/slpm. The experiment yielded 70% pure carbon nano onions with a rate of 5 g/h. X-ray diffraction, high-resolution electron microscopy and Raman spectrum reveal the densely packed sp(2) hybridized carbon with (002) semi-crystalline hexagonal graphite reflection. The carbon nano onions are thermally stable up to 600 °C. PMID:25427484

Dhand, Vivek; Prasad, J Sarada; Rao, M Venkateswara; Bharadwaj, S; Anjaneyulu, Y; Jain, Pawan Kumar

2013-03-01

194

49 CFR 192.1015 - What must a master meter or small liquefied petroleum gas (LPG) operator do to implement this...  

Code of Federal Regulations, 2013 CFR

...2013-10-01 false What must a master meter or small liquefied petroleum gas (LPG) operator do to implement this subpart? 192...192.1015 What must a master meter or small liquefied petroleum gas (LPG) operator do to implement this subpart?...

2013-10-01

195

49 CFR 192.1015 - What must a master meter or small liquefied petroleum gas (LPG) operator do to implement this...  

Code of Federal Regulations, 2012 CFR

...2012-10-01 false What must a master meter or small liquefied petroleum gas (LPG) operator do to implement this subpart? 192...192.1015 What must a master meter or small liquefied petroleum gas (LPG) operator do to implement this subpart?...

2012-10-01

196

49 CFR 192.1015 - What must a master meter or small liquefied petroleum gas (LPG) operator do to implement this...  

Code of Federal Regulations, 2011 CFR

...2011-10-01 false What must a master meter or small liquefied petroleum gas (LPG) operator do to implement this subpart? 192...192.1015 What must a master meter or small liquefied petroleum gas (LPG) operator do to implement this subpart?...

2011-10-01

197

49 CFR 192.1015 - What must a master meter or small liquefied petroleum gas (LPG) operator do to implement this...  

Code of Federal Regulations, 2014 CFR

...2014-10-01 false What must a master meter or small liquefied petroleum gas (LPG) operator do to implement this subpart? 192...192.1015 What must a master meter or small liquefied petroleum gas (LPG) operator do to implement this subpart?...

2014-10-01

198

An Examination of the International Natural Gas Trade  

Microsoft Academic Search

AbstractRecent developments in the liquefied natural gas (LNG) industry, particularly the ongoing projects of liquefaction and regasification and the increasing number of LNG-carriers to be delivered in forthcoming years, have led some specialists to argue that LNG is today at the crossroads between regionalisation and globalisation. Other specialists think that, by 2010, LNG's share of the total international trade of

Ahmed Mazighi

2003-01-01

199

Natural gas monthly  

SciTech Connect

The Natural Gas Monthly highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the Natural Gas Monthly features articles designed to assist readers in using and interpreting natural gas information.

NONE

1998-01-01

200

Stratified liquefied petroleum gas—dimethyl ether compression ignition engine combustion at various intake valve open timings  

Microsoft Academic Search

The combustion and exhaust emissions characteristics of compression ignition engine with a variable valve timing device were investigated for liquefied petroleum gas (LPG) and dimethyl ether (DME) under various LPG injection timing conditions. LPG was used as the main fuel injected directly into the combustion chamber. DME was used as an ignition promoter injected into the intake port. Different LPG

K Yeom; C Bae

2010-01-01

201

78 FR 14784 - Northern Natural Gas Company; Notice of Intent To Prepare an Environmental Assessment for the...  

Federal Register 2010, 2011, 2012, 2013, 2014

...Environmental Assessment for the Proposed Garner Lng Offloading Facilities and Utilization Project...impacts of the Garner liquefied natural gas (LNG) Offloading Facilities and Utilization...involving construction and operation of LNG offloading facilities by Northern...

2013-03-07

202

Natural Gas Flare  

USGS Multimedia Gallery

A natural gas flare. Sometimes, often due to lack of transportation or storage capacity, natural gas that is co-produced with oil will be burned in a flare. This wellpad is in the Tuscaloosa Marine Shale....

203

Natural gas annual 1996  

SciTech Connect

This document provides information on the supply and disposition of natural gas to a wide audience. The 1996 data are presented in a sequence that follows natural gas from it`s production to it`s end use.

NONE

1997-09-01

204

Natural Gas Monthly  

EIA Publications

Highlights activities, events, and analyses associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer related activities and underground storage data are also reported.

2015-01-01

205

Natural gas annual 1995  

SciTech Connect

The Natural Gas Annual provides information on the supply and disposition of natural gas to a wide audience including industry, consumers, Federal and State agencies, and educational institutions. The 1995 data are presented in a sequence that follows natural gas (including supplemental supplies) from its production to its end use. This is followed by tables summarizing natural gas supply and disposition from 1991 to 1995 for each Census Division and each State. Annual historical data are shown at the national level.

NONE

1996-11-01

206

Natural gas annual 1994  

SciTech Connect

The Natural Gas Annual provides information on the supply and disposition of natural gas to a wide audience including industry, consumers, Federal and State agencies, and educational institutions. The 1994 data are presented in a sequence that follows natural gas (including supplemental supplies) from its production to its end use. This is followed by tables summarizing natural gas supply and disposition from 1990 to 1994 for each Census Division and each State. Annual historical data are shown at the national level.

NONE

1995-11-17

207

Comparative life-cycle air emissions of coal, domestic natural gas, LNG, and SNG for electricity generation  

Microsoft Academic Search

The U.S. Department of Energy (DOE) estimates that in the coming decades the United States' natural gas (NG) demand for electricity generation will increase. Estimates also suggest that NG supply will increasingly come from imported liquefied natural gas (LNG). Additional supplies of NG could come domestically from the production of synthetic natural gas (SNG) via coal gasification-methanation. The objective of

Paulina Jaramillo; W. Michael Griffin; H. Scott Matthews

2007-01-01

208

ZnO nanowires-C microfiber hybrid nanosensor for liquefied petroleum gas detection.  

PubMed

Zinc oxide nanowires are integrated onto carbon microfibers using a two-step approach which includes electrochemical deposition of zinc and its thermal oxidation. Such nano-on-micro hybrid architecture is then used as resistive gas sensor. Some properties like mechanical flexibility, low cost and large-area fabrication make this design appealing for different applications. The huge surface-to-volume ratio of such structure comes from being structured at both microscale and nanoscale (ZnO nanowires and C microfiber) and leads to a strong and rapid response/recovery times when it is used as a gas sensor. The fabrication process of the ZnO-microC device is very simple and doesn't involve any expensive lithographic step. The sensors show excellent liquefied petroleum gas sensing properties, with very fast response on gas exposure (about 3 s) and very good reversibility (less than 2%). In addition, the carbon microfiber substrate allows the use of the ZnO-microC sensor also in applications where flexibility is required (for example integrated in fabric). PMID:24757984

Le, D T T; Iannotta, S; Hieu, N V; Corradi, C; Huy, T Q; Pola, M; Tonezzer, M

2014-07-01

209

Oxygen deficiency hazards associated with liquefied gas systems development of a program of controls  

SciTech Connect

The use of liquefied gases in industry and research has become commonplace. Release into the atmosphere of these gases, whether intentional or not, will result in a displacement of air and a reduction in the oxygen concentration. Exposure to reduced levels of oxygen levels may cause reduced abilities, unconsciousness, or death. This paper describes the derivation of a novel program of controls for oxygen deficiency hazards. The key to this approach is a quantitative assessment of risk for each planned operation and the application of control measures to reduce that risk to an acceptable level. Five risk levels evolve which are based on the probability of fatality. Controls such as training, oxygen monitoring equipment, self-rescue respirators, and medical surveillance are required when the probability of fatality exceeds 10/sup -7/ per hour. The quantitative nature of this program ensures an appropriate level of control without undue burden or expense. 11 references, 5 figures, 3 tables.

Miller, T.M.; Mazur, P.O.

1983-01-01

210

Texas plant treats natural gas for use as alternative fuel  

SciTech Connect

Pushed by the Clean Air Act Amendments of 1990, the Metropolitan Transit Authority of Harris County is using clean-burning liquefied methane to fuel some of Houston`s city buses. Houston Metro`s primary supply of liquefied methane is a 12 MMscfd amine-treating unit in Willis, TX. The willis plant uses Dow Chemical Co.`s GAS/SPEC process to treat natural gas. The GAS/SPEC process uses a specialty amine solvent to remove carbon dioxide (CO{sub 2}) and hydrogen sulfide from natural gas. To convert natural gas to a liquid, processors cool the gas to cryogenic temperatures and compress it. If the gas contains carbon dioxide, the CO{sub 2} will freeze, subsequently blocking transmission lines and damaging equipment. Processors therefore must remove CO{sub 2} from natural gas to prevent these problems. The natural gas processed at the Willis amine treater contains 1.5--2.5% CO{sub 2}. During treatment, the CO{sub 2} concentration is reduced to 50 ppm. The solvent used in the Willis plant is called GAS/SPEC CS-Plus. Dow makes seven other solvents for use with the process.

NONE

1996-02-19

211

Alaskan Natural Gas Pipeline Developments (released in AEO2007)  

EIA Publications

The Annual Energy Outlook 2007 reference case projects that an Alaska natural gas pipeline will go into operation in 2018, based on the Energy Information Administration's current understanding of the projects time line and economics. There is continuing debate, however, about the physical configuration and the ownership of the pipeline. In addition, the issue of Alaskas oil and natural gas production taxes has been raised, in the context of a current market environment characterized by rising construction costs and falling natural gas prices. If rates of return on investment by producers are reduced to unacceptable levels, or if the project faces significant delays, other sources of natural gas, such as unconventional natural gas production and liquefied natural gas imports, could fulfill the demand that otherwise would be served by an Alaska pipeline.

2007-01-01

212

Natural-gas liquids  

Microsoft Academic Search

Casinghead gasoline or natural gasoline, now more suitably known as natural-gas liquids (NGL), was a nuisance when first found, but was developed into a major and profitable commodity. This part of the petroleum industry began at about the turn of the century, and more than 60 yr later the petroleum industry recovers approx. one million bbl of natural-gas liquids a

W. B. Blackstock; G. W. McCullough; R. C. McCutchan

1968-01-01

213

Application of far infrared rare earth mineral composite materials to liquefied petroleum gas.  

PubMed

Far infrared rare earth mineral composite materials were prepared by the coprecipitation method using tourmaline, cerium acetate, and lanthanum acetate as raw materials. The results of Fourier transform infrared spectroscopy show that tourmaline modified with the rare earths La and Ce has a better far infrared emitting performance. Through XRD analysis, we attribute the improved far infrared emission properties of the tourmaline to the unit cell shrinkage of the tourmaline arising from La enhancing the redox properties of nano-CeO2. The effect of the composite materials on the combustion of liquefied petroleum gas (LPG) was studied by the flue gas analysis and water boiling test. Based on the results, it was found that the composite materials could accelerate the combustion of LPG, and that the higher the emissivity of the rare earth mineral composite materials, the better the effects on combustion of LPG. In all activation styles, both air and LPG to be activated has a best effect, indicating the activations having a cumulative effect. PMID:20355556

Zhu, Dongbin; Liang, Jinsheng; Ding, Yan; Xu, Anping

2010-03-01

214

Adsorbed Natural Gas Technology  

NASA Astrophysics Data System (ADS)

The current status of adsorbed natural gas technology for the vehicle fueling sector is reviewed. It is shown that there are solutions to the all of the problems associated to adsorption storage, and that it is possible to build a light, compact, and efficient system for storage, distribution, and dispensing of natural gas. The practical achievement of this objective is essential for the natural gas vehicle to create a strong and sustained interest of the automotive market.

Mota, José Paulo

215

Natural gas annual 1997  

SciTech Connect

The Natural Gas Annual provides information on the supply and disposition of natural gas to a wide audience including industry, consumers, Federal and State agencies, and educational institutions. The 1997 data are presented in a sequence that follows natural gas (including supplemental supplies) from its production to its end use. This is followed by tables summarizing natural gas supply and disposition from 1993 to 1997 for each Census Division and each State. Annual historical data are shown at the national level. 27 figs., 109 tabs.

NONE

1998-10-01

216

Synthesis of nanorods and mixed shaped copper ferrite and their applications as liquefied petroleum gas sensor  

NASA Astrophysics Data System (ADS)

Present paper reports the preparation and characterization of nanorods and mixed shaped (nanospheres/nanocubes) copper ferrite for liquefied petroleum gas (LPG) sensing at room temperature. The structural, surface morphological, optical, electrical as well as LPG sensing properties of the copper ferrite were investigated. Single phase spinel structure of the CuFe 2O 4 was confirmed by XRD data. The minimum crystallite size of copper ferrite was found 25 nm. The stoichiometry was confirmed by elemental analysis and it revealed the presence of oxygen, iron and copper elements with 21.91, 12.39 and 65.70 atomic weight percentages in copper ferrite nanorods. The band gap of copper ferrite was 3.09 and 2.81 eV, respectively for nanospheres/nanocubes and nanorods. The sensing films were made by using screen printing technology and investigated with the exposure of LPG. Our results show that the mixed shaped CuFe 2O 4 had an improved sensing performance over that of the CuFe 2O 4 nanorods, of which a possible sensing mechanism related to a surface reaction process was discussed. Sensor based on mixed shaped copper ferrite is 92% reproducible after one month. The role of PEG in the synthesis for obtaining nanospheres/nanocubes has also been demonstrated.

Singh, Satyendra; Yadav, B. C.; Prakash, Rajiv; Bajaj, Bharat; lee, Jae Rock

2011-10-01

217

Natural gas sampling  

Microsoft Academic Search

Two simple, inexpensive devices for sampling natural gas from small and noncommercial deposits are described. One device is intended for sampling of minute gas seepage from the bottom of shallow basins such as ponds or marshes where the gas might have an environmental impact. A shallow, inverted large metal funnel with a small hole in the side is placed on

N. P. Prokopovich; D. C. Magleby

1981-01-01

218

Natural gas to buoy Trinidad and Tobago petroleum sector  

SciTech Connect

Trinidad and Tobago's petroleum sector remains at a crossroads. While heavily reliant on oil and gas for domestic energy consumption and hard currency export earnings, the small Caribbean island nation faces some tough choices in reviving its hydrocarbon sector in the 1990s. Exploration and production of crude oil have stagnated in recent years, and domestic refinery utilization remains low at 36%. However, substantial natural gas reserves in Trinidad and Tobago offer the promise of a burgeoning natural gas based economy with an eye to liquefied natural gas and gas based petrochemical exports. Any solutions will involve considerable outlays by the government as well as a sizable infusion of capital by foreign companies. Therein lie some of the hard choices. The article describes the roles of oil and gas, foreign investment prospects, refining status, refining problems, gas sector foreign investment, and outlook for the rest of the 1990's.

Not Available

1993-03-01

219

Conceptual Liquefied Natural Gas (LNG) terminal design for Kuwait  

E-print Network

on the deck of the LNG terminal concept........................................50 33. The global moments on the vertical slab between the two tanks.......................................52 34. Max Fx for Node 415 (Airy vs Stream...).............................................................................53 35. Min Fz for Node 415 (Airy vs Stream)..............................................................................54 36. Min Mx for Node 415 (Airy vs Stream)............................................................................55 37...

Aljeeran, Fares

2006-08-16

220

Liquefied natural gas experience of a large transit fleet  

SciTech Connect

The Houston Metropolitan Transit Authority (METRO) is the mass transit authority for an area of 1,275 square miles and a population of 3.5 million. METRO is organized as an independent authority responsible to an appointed board of directors. METRO operates over 1,160 buses which use approximately 2,000 miles of bus routes. Each year METRO provides over 60 million passenger trips. The low cost to the customer can only be achieved through aggressive cost control and efficient operation with effective equipment maintenance and availability. METRO utilizes approximately nine million gallons of diesel fuel per year. Fuel costs are approximately 4.5% of operating costs equivalent to approximately $.18 cents per mile. METRO has demonstrated the technical and economic feasibility of LNG fuel usage for a centrally refueled fleet. This pioneering effort used the free market and intense cooperation with suppliers to create an LNG supply where there was none, convert theoretical concepts to on the road hardware and mobilize a large organization to accommodate a drastic change in operations. Experience leads them to recommend others considering this approach to fully commit their own resources to the tasks, cooperate and exchange information openly with all concerned and only accept project participants which have the competence and resources to persevere through developments.

Pentz, R. [Houston Metropolitan Transit Authority, TX (United States)

1995-12-31

221

Simulation and integration of liquefied natural gas (lng) processes  

E-print Network

the global energy demands. This work addresses the simulation and optimization of an LNG plant. First, the process flowsheet is constructed based on a common process configuration. Then, the key units are simulated using ASPEN Plus to determine...

Al-Sobhi, Saad Ali

2009-05-15

222

Russia’s Natural Gas Export Potential up to 2050  

E-print Network

Recent increases in natural gas reserve estimates and advances in shale gas technology make natural gas a fuel with good prospects to serve a bridge to a low-carbon world. Russia is an important energy supplier as it holds the world largest natural gas reserves and it is the world’s largest exporter of natural gas. Energy was one of the driving forces of Russia’s recent economic recovery from the economic collapse of 1990s. These prospects have changed drastically with a global recession and the collapse of oil and gas prices from their peaks of 2008. An additional factor is an ongoing surge in a liquefied natural gas (LNG) capacity and a development of Central Asia’s and the Middle East gas supplies that can compete with Russian gas in its traditional (European) and potential (Asian) markets. To study the long-term prospects for Russian natural gas, we employ the MIT Emissions Prediction and Policy Analysis (EPPA) model, a computable general equilibrium model of the world economy. While we consider the updated reserve estimates for all world regions, in this paper we focus on the results for Russian natural gas trade. The role of natural gas is explored in the context of several policy assumptions: with no greenhouse gas mitigation policy and scenarios of emissions targets in developed countries. Scenarios where Europe takes on an even more restrictive target of 80

Sergey Paltsev; Sergey Paltsev

2011-01-01

223

Liquid natural gas regasification combined with adsorbed natural gas filling system.  

NASA Astrophysics Data System (ADS)

The article provides an introduction to innovative method of Liquid Natural Gas (LNG) physical exergy practical utilization. The energy spent to liquefy natural gas (a thermodynamic minimum is about 0.13 kWh/l of LNG depending on pressure and chemical composition) can be partly recovered in the system making use either of the LNG low temperature (111 K) or its ability to increase the pressure in a storage vessel by heat absorption from the environment. The paper presents estimation of the LNG physical exergy and its dependence on the pressure and temperature. Then description and comparison of available natural gas storage methods (liquefaction, compression, adsorption) is given, with a special attention paid to Adsorbed Natural Gas (ANG) technology. Original data concerning adsorption isotherms of methane with activated carbon MaxsorbIII are presented. A concept of ANG storage technology coupled with the LNG regasification, is a promising technique of utilization of the LNG cold exergy. The energy efficient combination of ANG with LNG may help market progress of adsorption technology in natural gas storage and distribution. The ANG/LNG coupling is especially perspective in case of small capacity and distributed natural gas deposits exploitation.

Roszak, Eliza Anna; Chorowski, Maciej

2012-06-01

224

Design and reliability of an aluminum liner/FRP hybrid gas bottle for low pressure liquefied petroleum gas  

SciTech Connect

A hybrid gas bottle, composed of an aluminum liner partially reinforced with thin FRP, was developed in order to achieve a considerable reduction in weight of the delivery type bottle for low pressure liquefied petroleum gas. Stress was put on the safety of the bottle with damage given in the FRP layer during the delivery process. An allowable limit of the damage was proposed by FEM analysis and experiments, which revealed that much severer damage than that of the high pressure bottles can be accepted for the low pressure bottle. Various kinds of damage caused by hypothetically violent handling was also examined in order to ensure the safety of the bottle in service. Little visible damage was found to the fibers in the FRP layer, even though a clear change in appearance was observed on the surface. With the official permit of the regulatory body, the bottles were put on a field test for a year. A partial peeling of the paint was observed in a limited area, but no damage was found on the fiber.

Saito, Makoto; Kataoka, Yasuto; Mizoguchi, Takao; Takusagawa, Atsushi; Mori, Hiroyuki [Kobe Steel, Ltd., Hyogo (Japan)

1995-11-01

225

Natural gas monthly  

SciTech Connect

This document highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Data presented include volume and price, production, consumption, underground storage, and interstate pipeline activities.

NONE

1996-05-01

226

Fossil Fuels: Natural Gas  

NSDL National Science Digital Library

This lesson provides an introduction to the use of natural gas as an energy source. Topics include its advantages (cleanliness, fewer carbon emissions), disadvantages (difficulty in transport and storage), sources, and usage. There is also a discussion of the creation and production of natural gas, the United States' production and reserves, and some potential new sources (coal bed methane, methane hydrates). The lesson includes an activity in which students investigate porosity and permeability in simulated sediments.

John Pratte

227

29 CFR 1926.153 - Liquefied petroleum gas (LP-Gas).  

Code of Federal Regulations, 2010 CFR

...directed toward any LP-Gas container within 20 feet...located in an unpartitioned area on the same floor, the...tank. (n) When LP-Gas and one or more other gases are stored or used in the same area, the containers shall...

2010-07-01

228

Towards a two-dimensional laser induced breakdown spectroscopy mapping of liquefied petroleum gas and electrolytic oxy-hydrogen flames  

NASA Astrophysics Data System (ADS)

Two-dimensional mapping of the laser-induced breakdown spectroscopy (LIBS) signal of chemical species information in liquefied petroleum gas (LPG) and electrolytic oxy-hydrogen (EOH) flames was performed with in situ flame diagnostics. Base LIBS signals averaged from measurements at wavelengths of 320 nm to 350 nm describe the density information of a flame. The CN LIBS signal provides the concentration of fuel, while the H/O signal represents the fuel/air equivalence ratio. Here, we demonstrate the meaningful use of two-dimensional LIBS mappings to provide key combustion information, such as density, fuel concentration, and fuel/air equivalence ratio.

Lee, Seok Hwan; Hahn, H. Thomas; Yoh, Jack J.

2013-10-01

229

42 CFR 84.81 - Compressed breathing gas and liquefied breathing gas containers; minimum requirements.  

Code of Federal Regulations, 2012 CFR

...SAFETY AND HEALTH RESEARCH AND RELATED ACTIVITIES APPROVAL OF RESPIRATORY PROTECTIVE DEVICES Self-Contained Breathing Apparatus...Compressed breathing gas contained valves or a separate charging system or adapter provided with each apparatus shall be equipped...

2012-10-01

230

42 CFR 84.81 - Compressed breathing gas and liquefied breathing gas containers; minimum requirements.  

Code of Federal Regulations, 2013 CFR

...SAFETY AND HEALTH RESEARCH AND RELATED ACTIVITIES APPROVAL OF RESPIRATORY PROTECTIVE DEVICES Self-Contained Breathing Apparatus...Compressed breathing gas contained valves or a separate charging system or adapter provided with each apparatus shall be equipped...

2013-10-01

231

42 CFR 84.81 - Compressed breathing gas and liquefied breathing gas containers; minimum requirements.  

Code of Federal Regulations, 2010 CFR

...SAFETY AND HEALTH RESEARCH AND RELATED ACTIVITIES APPROVAL OF RESPIRATORY PROTECTIVE DEVICES Self-Contained Breathing Apparatus...Compressed breathing gas contained valves or a separate charging system or adapter provided with each apparatus shall be equipped...

2010-10-01

232

42 CFR 84.81 - Compressed breathing gas and liquefied breathing gas containers; minimum requirements.  

Code of Federal Regulations, 2014 CFR

...SAFETY AND HEALTH RESEARCH AND RELATED ACTIVITIES APPROVAL OF RESPIRATORY PROTECTIVE DEVICES Self-Contained Breathing Apparatus...Compressed breathing gas contained valves or a separate charging system or adapter provided with each apparatus shall be equipped...

2014-10-01

233

42 CFR 84.81 - Compressed breathing gas and liquefied breathing gas containers; minimum requirements.  

Code of Federal Regulations, 2011 CFR

...SAFETY AND HEALTH RESEARCH AND RELATED ACTIVITIES APPROVAL OF RESPIRATORY PROTECTIVE DEVICES Self-Contained Breathing Apparatus...Compressed breathing gas contained valves or a separate charging system or adapter provided with each apparatus shall be equipped...

2011-10-01

234

Natural Gas Expanders-Compressors  

Microsoft Academic Search

Natural gas expanders-compressors serve a variety of natural gas plants, ranging from primary treatment at the well (installations for comprehensive treatment of natural gas) to liquefaction for separation, storage, and transport. Natural gas expanders-compressors take on particular importance for wells with throttling cold. The growing demand for this equipment has been satisfied by imports until recently. The most popular was

V. M. Kulakov; V. V. Kulakov; A. V. Kulakov

2002-01-01

235

Determination of trace anions in liquefied petroleum gas using liquid absorption and electrokinetic migration for enrichment followed by ion chromatography.  

PubMed

A simple sample enrichment technique, electrokinetic migration enrichment in single phase using a designed device, coupled with ion chromatography is presented for the determination of four anions (H(2)PO(4)(-), Cl(-), NO(3)(-), and SO(4)(2-)) in liquefied petroleum gas by liquid adsorption. The electrokinetic migration enrichment is based on the phenomenon of ion electrokinetic migration to the opposite electrode. When the anions migrated to the anode in a smaller volume chamber under the electric field, the concentration was realized. The main parameters affecting enrichment efficiency of applied voltage and enrichment time were investigated. The ion chromatography condition for anions separation was also studied. Under the optimal electrokinetic migration enrichment and ion chromatography conditions, the four anions were detected simultaneously with good linear relationship (r(2) = 0.9908-0.9968) and high precisions (less than 5% of the relative standard deviations of peak areas). The limits of detection of anions (S/N of 3) were in the range of 8-600 ?g L(-1). The enrichment factors of the four anions ranged from 3.1 to 5.8. The established method was successfully applied to the analysis of the trace anions in liquefied petroleum gas by liquid adsorption with satisfactory results. The advantages of this method are simple operation and low cost. PMID:22733518

Li, Meilan; Yang, Jianmin; Li, Hai-Fang; Lin, Jin-Ming

2012-06-01

236

Technical, economic, and environmental impact study of converting Uzbekistan transportation fleets to natural gas operation. Export trade information  

SciTech Connect

This study, conducted by Radian International, was funded by the U.S. Trade and Development Agency. The report assesses the feasibility (technical, economic and environmental) of converting the Uzbek transportation fleets to natural gas operation. The study focuses on the conversion of high fuel use vehicles and locomotives to liquefied natural gas (LNG) and the conversion of moderate fuel use veicles to compressed natural gas (CNG). The report is divided into the following sections: Executive Summary; (1.0) Introduction; (2.0) Country Background; (3.0) Characterization of Uzbek Transportation Fuels; (4.0) Uzbek Vehicle and Locomotive Fleet Characterization; (5.0) Uzbek Natural Gas Vehicle Conversion Shops; (6.0) Uzbek Natural Gas Infrastructure; (7.0) Liquefied Natural Gas (LNG) for Vehicular Fuel in Uzbekistan; (8.0) Economic Feasibility Study; (9.0) Environmental Impact Analysis; References; Appendices A - S.

NONE

1997-04-30

237

US crude oil, natural gas, and natural gas liquids reserves  

SciTech Connect

This report presents estimates of proved reserves of crude oil, natural gas, and natural gas liquids as of December 31, 1989, and production volumes for the year 1989 for the total United States and for selected states and state sub-divisions. Estimates are presented for the following four categories of natural gas: total gas (wet after lease separation), its two major components (nonassociated and associated-dissolved gas), and total dry gas (wet gas adjusted for the removal of liquids at natural gas processing plants). In addition, two components of natural gas liquids, lease condensate and natural gas plant liquids, have their reserves and production reported separately. Also included is information on indicated additional crude oil reserves and crude oil, natural gas, and lease condensate reserves in nonproducing reservoirs. 28 refs., 9 figs., 15 tabs.

Not Available

1990-10-05

238

Energy-saving drying technology for porous media using liquefied DME gas  

Microsoft Academic Search

Process design and energy requirement for a practical plant are investigated for an energy-saving drying (dewatering) process\\u000a invented by the authors in 2002 for high-moisture porous materials. The basic concept of the process involves the extraction\\u000a of water from a high-moisture porous material by bringing it in physical contact with liquefied dimethyl ether (DME) at room\\u000a temperature. Water content of

Hideki Kanda; Hisao Makino; Minoru Miyahara

2008-01-01

239

Natural Gas Purchasing Options  

E-print Network

As a result of economic and regulatory changes, the natural gas marketplace now offers multiple options for purchasers. The purpose of this panel is to discuss short-term purchasing options and how to take advantage of these options both to lower...

Watkins, G.

240

Clean Cities Natural Gas  

E-print Network

2014 Vehicle Buyer's Guide Clean Cities Natural Gas Propane Biodiesel Electric Hybrid Ethanol Flex . . . . . . . . . . . . . . . . . . . . . 15 Plug-In Hybrid Electric . . . . . . . . . . 18 Hybrid Electric vehicles, and hybrid luxury cars are now in the marketplace. Early in the 2013 calendar year the number

241

Natural Gas Annual  

EIA Publications

Provides information on the supply and disposition of natural gas in the United States. Production, transmission, storage, deliveries, and price data are published by state for the current year. Summary data are presented for each state for the previous 5 years.

2014-01-01

242

Investigation of poly(o-anisidine)-SnO2 nanocomposites for fabrication of low temperature operative liquefied petroleum gas sensor  

NASA Astrophysics Data System (ADS)

Poly(o-anisidine)-tin oxide (POA-SnO2) nanocomposites has been investigated for the fabrication of low temperature operative (100 °C) liquefied petroleum gas (LPG) sensor. The POA-SnO2 nanocomposites have been synthesized through an in situ chemical polymerization of o-anisidine in presence of SnO2 nanoparticles. The POA-SnO2 nanocomposite shows better LPG sensing properties than that of pure POA. The nanocomposite with 50 wt. % SnO2 exhibits an excellent LPG sensing characteristics at the operating temperature of 100 °C such as higher relative gas response (˜23.47% to 3.4% of LPG), extremely rapid response (˜6 s), fast recovery (˜33 s), good reproducibility, and remarkable selectivity. The application of POA-SnO2 nanocomposites for fabrication of the LPG sensor was demonstrated.

Patil, Dewyani; Kolhe, Kishor; Potdar, Hari S.; Patil, Pradip

2011-12-01

243

Natural gas monthly, April 1999  

SciTech Connect

The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. There are two feature articles in this issue: Natural gas 1998: Issues and trends, Executive summary; and Special report: Natural gas 1998: A preliminary summary. 6 figs., 28 tabs.

NONE

1999-05-06

244

Natural gas sampling  

SciTech Connect

Two simple, inexpensive devices for sampling natural gas from small and noncommercial deposits are described. One device is intended for sampling of minute gas seepage from the bottom of shallow basins such as ponds or marshes where the gas might have an environmental impact. A shallow, inverted large metal funnel with a small hole in the side is placed on the bottom sediments in the basin. A rod pushed through the hole in the funnel liberates gas which after being trapped by the funnel is diverted through a tube attached to the funnel outlet into a sampling bottle. The second device intended for sampling gas seepage encountered in cased and uncased holes consists of an open-topped cylindrical steel container with a small nipple in its bottom. Threads on the nipple facilitate attachment of the sampler to a closed topped segment of a casing. During sampling, the cylindrical container is filled almost to the top with water, and a rigid tube attached to the upper portion of the nipple inside the cylindrical container conducts gas into a common glass sample bottle. (BLM)

Prokopovich, N.P.; Magleby, D.C.

1981-06-01

245

Possible health effects of liquefied petroleum gas on workers at filling and distribution stations of Gaza governorates.  

PubMed

Liquefied petroleum gas (LPG) is widely used in the Gaza Strip for domestic purposes, in agriculture and industry and, illegally, in cars. This study aimed to identify possible health effects on workers exposed to LPG in Gaza governorates. Data were collected by a questionnaire interview, and haematological and biochemical analyses of venous blood samples were made from 30 workers at filling and distribution stations and 30 apparently healthy controls. Statistically significant differences were found in all self-reported health-related complaints among LPG workers versus controls. LPG workers had significantly higher values of red blood cell counts, haemoglobin, haematocrit mean corpuscular haemoglobin and platelet counts. They also had significantly higher values of kidney function tests (urea, creatinine and uric acid) and liver function enzyme activities (aspartate aminotransferase and alanine aminotransferase). LPG workers at Gaza Strip petroleum stations are at higher risk for health-related symptoms and clinical abnormalities. PMID:23879082

Sirdah, M M; Al Laham, N A; El Madhoun, R A

2013-03-01

246

Fabrication of iron titanium oxide thin film and its application as opto-electronic humidity and liquefied petroleum gas sensors  

NASA Astrophysics Data System (ADS)

Present paper explores the synthesis, characterization, and opto-electronic humidity as well as liquefied petroleum gas (LPG) sensing applications of iron titanium oxide nanocomposite. Thin film of iron titanium oxide was deposited on an equilateral borosilicate glass prism using sol-gel spin coating process. X-ray diffraction reveals the formation of iron titanium oxide having minimum crystallite size 9 nm. The opto-electronic humidity sensing properties of the fabricated film were investigated at different angles of incidence of the light. It was observed that the intensity of reflected light increased with an increase in relative humidity (%RH) in the range 5-95. The fabricated film shows maximum sensitivity 4.5 ?W/%RH, which is quite significant for sensor fabrication purposes. The maximum percentage sensor response for LPG was found 2600 which is many folds more than the earlier reported titania based LPG sensor.

Verma, Nidhi; Singh, Satyendra; Srivastava, Richa; Yadav, B. C.

2014-04-01

247

Natural gas monthly, December 1995  

SciTech Connect

This report presents information of interest to organizations associated with the natural gas industry. Data are presented on natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also included.

NONE

1995-12-01

248

Natural Gas Exports from Iran  

EIA Publications

This assessment of the natural gas sector in Iran, with a focus on Iran’s natural gas exports, was prepared pursuant to section 505 (a) of the Iran Threat Reduction and Syria Human Rights Act of 2012 (Public Law No: 112-158). As requested, it includes: (1) an assessment of exports of natural gas from Iran; (2) an identification of the countries that purchase the most natural gas from Iran; (3) an assessment of alternative supplies of natural gas available to those countries; (4) an assessment of the impact a reduction in exports of natural gas from Iran would have on global natural gas supplies and the price of natural gas, especially in countries identified under number (2); and (5) such other information as the Administrator considers appropriate.

2012-01-01

249

Natural gas monthly, July 1997  

SciTech Connect

The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. The feature article this month is entitled ``Intricate puzzle of oil and gas reserves growth.`` A special report is included on revisions to monthly natural gas data. 6 figs., 24 tabs.

NONE

1997-07-01

250

Natural gas monthly, October 1996  

SciTech Connect

The Natural Gas Monthly (NGM) is prepared in the Data Operations Branch of the Reserves and Natural Gas Division, Office of Oil and Gas, Energy Information Administration (EIA), U.S. Department of Energy (DOE). The NGM highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information.

NONE

1996-10-01

251

Natural gas monthly, September 1993  

SciTech Connect

The Natural Gas Monthly (NGM) is prepared in the Data Operations Branch of the Reserves and Natural Gas Division, Office of Oil and Gas, Energy Information Administration (EIA), US Department of Energy (DOE). The NGM highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information.

Not Available

1993-09-27

252

Natural gas monthly, July 1993  

SciTech Connect

The Natural Gas Monthly NGM highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information.

Not Available

1993-07-27

253

Natural gas monthly, November 1995  

SciTech Connect

The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information.

NONE

1995-12-05

254

Natural gas monthly, October 1998  

SciTech Connect

The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. 6 figs., 27 tabs.

NONE

1998-10-01

255

Natural gas monthly, September 1995  

SciTech Connect

The (NGM) Natural Gas Monthly highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information.

NONE

1995-09-27

256

Natural gas monthly, June 1997  

SciTech Connect

The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. 6 figs., 24 tabs.

NONE

1997-06-01

257

Natural gas monthly, June 1998  

SciTech Connect

The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. 6 figs., 27 tabs.

NONE

1998-06-01

258

Natural gas monthly: September 1996  

SciTech Connect

The Natural Gas Monthly highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. 6 figs., 24 tabs.

NONE

1996-09-01

259

Natural Gas Monthly, March 1996  

SciTech Connect

The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information.

NONE

1996-03-25

260

Natural gas monthly, June 1999  

SciTech Connect

The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. 6 figs., 25 tabs.

NONE

1999-06-01

261

Natural gas monthly, April 1995  

SciTech Connect

The Natural Gas Monthly highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. 6 figs., 31 tabs.

NONE

1995-04-27

262

Natural gas monthly, May 1999  

SciTech Connect

The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time the NGM features articles designed to assist readers in using and interpreting natural gas information. 6 figs., 27 tabs.

NONE

1999-05-01

263

Natural gas monthly, July 1998  

SciTech Connect

The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. 6 figs., 25 tabs.

NONE

1998-07-01

264

Natural gas pipeline technology overview  

Microsoft Academic Search

The United States relies on natural gas for one-quarter of its energy needs. In 2001 alone, the nation consumed 21.5 trillion cubic feet of natural gas. A large portion of natural gas pipeline capacity within the United States is directed from major production areas in Texas and Louisiana, Wyoming, and other states to markets in the western, eastern, and midwestern

S. M. Folga

2007-01-01

265

Natural gas monthly, November 1998  

SciTech Connect

The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. 6 figs., 27 tabs.

NONE

1998-11-01

266

Natural gas monthly, February 1999  

SciTech Connect

The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. 6 figs., 28 tabs.

NONE

1999-02-01

267

Natural gas monthly, January 1999  

SciTech Connect

The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. 6 figs., 28 tabs.

NONE

1999-02-01

268

33 CFR 127.203 - Portable gas detectors.  

Code of Federal Regulations, 2010 CFR

...HAZARDOUS GAS Waterfront Facilities Handling Liquefied Natural Gas Equipment § 127.203 Portable gas detectors. The marine transfer area for LNG must have at least two portable gas detectors capable of measuring 0-100% of the lower...

2010-07-01

269

Natural Gas Monthly, October 1993  

SciTech Connect

The (NGM) Natural Gas Monthly highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. This month`s feature articles are: US Production of Natural Gas from Tight Reservoirs: and Expanding Rule of Underground Storage.

Not Available

1993-11-10

270

Natural gas monthly, April 1997  

SciTech Connect

The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are present3ed each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. The feature article is entitled ``Natural gas pipeline and system expansions.`` 6 figs., 27 tabs.

NONE

1997-04-01

271

Natural gas monthly, March 1997  

SciTech Connect

The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. The feature article is entitled ``Natural gas analysis and geographic information systems.`` 6 figs., 27 tabs.

NONE

1997-03-01

272

Natural gas monthly: April 1996  

SciTech Connect

The Natural Gas Monthly highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. This month`s feature article focuses on preliminary highlights from the 1995 natural gas industry. 7 figs., 25 tabs.

NONE

1996-04-01

273

Natural gas monthly, June 1996  

SciTech Connect

The natural gas monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. The feature article for this month is Natural Gas Industry Restructuring and EIA Data Collection.

NONE

1996-06-24

274

Natural gas monthly, August 1995  

SciTech Connect

The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. This month`s feature article is on US Natural Gas Imports and Exports 1994.

NONE

1995-08-24

275

Natural gas monthly, December 1997  

SciTech Connect

The Natural Gas Monthly highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. The article this month is entitled ``Recent Trends in Natural Gas Spot Prices.`` 6 figs., 27 tabs.

NONE

1997-12-01

276

Natural gas monthly, June 1995  

SciTech Connect

The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. This month feature is on the value of underground storage in today`s natural gas industry.

NONE

1995-06-21

277

Natural gas monthly, November 1996  

SciTech Connect

The report highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the Natural Gas Monthly features articles designed to assist readers in using and interpreting natural gas information. The feature article this month is ``US natural gas imports and exports-1995``. 6 figs., 24 tabs.

NONE

1996-11-01

278

Natural gas monthly, May 1997  

SciTech Connect

The Natural Gas Monthly highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. The feature article this month is ``Restructuring energy industries: Lessons from natural gas.`` 6 figs., 26 tabs.

NONE

1997-05-01

279

Natural gas monthly, October 1997  

SciTech Connect

The Natural Gas Monthly highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. The feature article in this issue is a special report, ``Comparison of Natural Gas Storage Estimates from the EIA and AGA.`` 6 figs., 26 tabs.

NONE

1997-10-01

280

Estimating household fuel oil/kerosine, natural gas, and LPG prices by census region  

SciTech Connect

The purpose of this research is to estimate individual fuel prices within the residential sector. The data from four US Department of Energy, Energy Information Administration, residential energy consumption surveys were used to estimate the models. For a number of important fuel types - fuel oil, natural gas, and liquefied petroleum gas - the estimation presents a problem because these fuels are not used by all households. Estimates obtained by using only data in which observed fuel prices are present would be biased. A correction for this self-selection bias is needed for estimating prices of these fuels. A literature search identified no past studies on application of the selectivity model for estimating prices of residential fuel oil/kerosine, natural gas, and liquefied petroleum gas. This report describes selectivity models that utilize the Dubin/McFadden correction method for estimating prices of residential fuel oil/kerosine, natural gas, and liquefied petroleum gas in the Northeast, Midwest, South, and West census regions. Statistically significant explanatory variables are identified and discussed in each of the models. This new application of the selectivity model should be of interest to energy policy makers, researchers, and academicians.

Poyer, D.A.; Teotia, A.P.S.

1994-08-01

281

Natural gas monthly, April 1998  

SciTech Connect

This issue of the Natural Gas Monthly presents the most recent estimates of natural gas data from the Energy Information Administration (EIA). Estimates extend through April 1998 for many data series. The report highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, feature articles are presented designed to assist readers in using and interpreting natural gas information. This issue contains the special report, ``Natural Gas 1997: A Preliminary Summary.`` This report provides information on natural gas supply and disposition for the year 1997, based on monthly data through December from EIA surveys. 6 figs., 28 tabs.

NONE

1998-04-01

282

Liquefied Gaseous Fuels Safety and Environmental Control Assessment Program: second status report  

SciTech Connect

The Assistant Secretary for Environment has responsibility for identifying, characterizing, and ameliorating the environmental, health, and safety issues and public concerns associated with commercial operation of specific energy systems. The need for developing a safety and environmental control assessment for liquefied gaseous fuels was identified by the Environmental and Safety Engineering Division as a result of discussions with various governmental, industry, and academic persons having expertise with respect to the particular materials involved: liquefied natural gas, liquefied petroleum gas, hydrogen, and anhydrous ammonia. This document is arranged in three volumes and reports on progress in the Liquefied Gaseous Fuels (LGF) Safety and Environmental Control Assessment Program made in Fiscal Year (FY)-1979 and early FY-1980. Volume 1 (Executive Summary) describes the background, purpose and organization of the LGF Program and contains summaries of the 25 reports presented in Volumes 2 and 3. Annotated bibliographies on Liquefied Natural Gas (LNG) Safety and Environmental Control Research and on Fire Safety and Hazards of Liquefied Petroleum Gas (LPG) are included in Volume 1.

Not Available

1980-10-01

283

76 FR 4417 - Liberty Natural Gas LLC, Liberty Liquefied Natural Gas (LNG) Deepwater Port License Application  

Federal Register 2010, 2011, 2012, 2013, 2014

...DEPARTMENT OF TRANSPORTATION Maritime Administration...Application AGENCY: Maritime Administration...SUMMARY: The Maritime Administration...will prepare an environmental impact statement...Department of Transportation, Docket...

2011-01-25

284

Natural gas monthly, September 1998  

SciTech Connect

The National Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. 6 figs., 27 tabs.

NONE

1998-09-01

285

An automatic flow system for NIR screening analysis of liquefied petroleum gas with respect to propane content.  

PubMed

This paper proposes a NIR spectrometric method for screening analysis of liquefied petroleum gas (LPG) samples. The proposed method is aimed at discriminating samples with low and high propane content, which can be useful for the adjustment of burn settings in industrial applications. A gas flow system was developed to introduce the LPG sample into a NIR flow cell at constant pressure. In addition, a gas chromatographer was employed to determine the propane content of the sample for reference purposes. The results of a principal component analysis, as well as a classification study using SIMCA (soft independent modeling of class analogies), revealed that the samples can be successfully discriminated with respect to propane content by using the NIR spectrum in the range 8100-8800 cm(-1). In addition, by using SPA-LDA (linear discriminant analysis with variables selected by the successive projections algorithm), it was found that perfect discrimination can also be achieved by using only two wavenumbers (8215 and 8324 cm(-1)). This finding may be of value for the design of a dedicated, low-cost instrument for routine analyses. PMID:23598110

Dantas, Hebertty V; Barbosa, Mayara F; Nascimento, Elaine C L; Moreira, Pablo N T; Galvão, Roberto K H; Araújo, Mário C U

2013-03-15

286

30 CFR 75.1106-4 - Use of liquefied and nonliquefied compressed gas cylinders; general requirements.  

Code of Federal Regulations, 2010 CFR

...nonliquefied compressed gas shall be used only in well-ventilated areas. (d) Not more than...nonliquefied compressed gas unit, consisting of one...nonliquefied compressed gas is used in any area in which oil,...

2010-07-01

287

Compromise on natural gas prices  

Microsoft Academic Search

Members of the House energy committee have reached a tentative agreement on natural gas legislation. They agreed on a compromise which neither decontrols or recontrols the price of natural gas. It limits take or pay clauses in producer-pipeline contracts; requires contract carriage by pipelines; bars pipelines from charging consumers when gas purchases are imprudent; and repeals the rest of the

1984-01-01

288

Development of Alaska North Slope natural gas resources: A historical perspective and future potential  

SciTech Connect

This paper presents a historical analysis of plans proposed by the private sector to develop and commercialize the natural gas resources found on the North Slope of Alaska. It evaluates current proposals to commercialize North Slope gas and discusses the potential economic benefits to be derived from gas commercialization. First, we describe the natural gas resources of the North Slope. Second, a resource-allocation optimization model is presented to evaluate quantitatively the options available for gas utilization. The model is applied to the North Slope to screen the various gas utilization alternatives and to recommend the economically feasible options. The optimal decision is a major gas (LNG) sale to the Pacific Rim countries. The LNG project involves conditioning natural gas on the North Slope and transporting the gas by pipeline from Prudhoe Bay to a tidewater port where it can be liquefied and shipped by tankers to the Pacific Rim markets.

Lannom, D.A.; Ogbe, D.O.; Lawal, A.S.; Hatzignatiou, D.G. [Univ. of Alaska, Fairbanks, AL (United States)

1996-12-31

289

Studies on the sensing behaviour of nanocrystalline CuGa(2)O(4) towards hydrogen, liquefied petroleum gas and ammonia.  

PubMed

In the present article, the gas sensing behaviour of nanocrystalline CuGa(2)O(4) towards H(2), liquefied petroleum gas (LPG) and NH(3) has been reported for the first time. Nanocrystalline powders of CuGa(2)O(4) having average particle sizes in the range of 30-60nm have been prepared through thermal decomposition of an aqueous precursor solution comprising copper nitrate, gallium nitrate and triethanol amine (TEA), followed by calcination at 750 degrees C for 2h. The synthesized nanocrystalline CuGa(2)O(4) powders have been characterised through X-ray diffraction (XRD), transmission electron microscopy (TEM), field-emission scanning electron microscopy (FESEM) study, energy dispersive X-ray (EDX) analysis and BET (Brunauer-Emmett-Teller) surface area measurement. The synthesized CuGa(2)O(4) having spinel structure with specific surface area of 40m(2)/g exhibits maximum sensitivity towards H(2), LPG, and NH(3) at 350 degrees C. PMID:20441946

Biswas, Soumya Kanti; Sarkar, Arpita; Pathak, Amita; Pramanik, Panchanan

2010-06-15

290

Natural gas monthly, February 1996  

SciTech Connect

The NGM highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information.

NONE

1996-03-01

291

Natural gas monthly, May 1995  

SciTech Connect

The NGM highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information.

NONE

1995-05-24

292

Natural gas monthly, March 1998  

SciTech Connect

The March 1998 edition of the Natural Gas Monthly highlights activities, events, and analyses associated with the natural gas industry. Volume and price data are presented for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. This report also features an article on the correction of errors in the drilling activity estimates series, and in-depth drilling activity data. 6 figs., 28 tabs.

NONE

1998-03-01

293

Natural gas monthly, October 1995  

SciTech Connect

The Natural Gas Monthly highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. A glossary of the terms used in this report is provided to assist readers in understanding the data presented in this publication. 6 figs., 30 tabs.

NONE

1995-10-23

294

Natural gas monthly, January 1994  

SciTech Connect

The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. The featured article for this month is on US coalbed methane production.

Not Available

1994-02-01

295

Bringing Alaska North Slope Natural Gas to Market (released in AEO2009)  

EIA Publications

At least three alternatives have been proposed over the years for bringing sizable volumes of natural gas from Alaska's remote North Slope to market in the lower 48 states: a pipeline interconnecting with the existing pipeline system in central Alberta, Canada; a gas-to-liquids (GTL) plant on the North Slope; and a large liquefied natural gas (LNG) export facility at Valdez, Alaska. The National Energy Modeling System (NEMS) explicitly models the pipeline and GTL options. The what if LNG option is not modeled in NEMS.

2009-01-01

296

30 CFR 75.1106-3 - Storage of liquefied and nonliquefied compressed gas cylinders; requirements.  

Code of Federal Regulations, 2010 CFR

...nonliquefied compressed gas cylinders stored in an...Placed securely in storage areas designated by the operator...nonliquefied compressed gas cylinders shall not be...left unattended in any area inby the last open crosscut...nonliquefied compressed gas cylinders shall be...

2010-07-01

297

A Texas natural gas model  

SciTech Connect

The Railroad Commission of Texas, through its Gas Services Division, is responsible for the safety and economic regulation of natural gas downstream of the wellhead, including the gathering, processing, storage, transmission and distribution of natural gas. This responsibility requires an understanding of the movement of natural gas in Texas, which was the objective of a recently completed project of the Gas Services Division. The authors goal was to trace a molecule of gas from wellhead to burner tip and identify the incremental value added by each of the components along the path. The authors developed a Texas Natural Gas Model that relates the components of the path so that flow within individual segments of the industry, or between segments of the industry, can be analyzed. The Model links information on wellhead production and prices, marketing costs (reflecting gathering, processing, and compression), transmission costs, and end user consumption and costs. End user information is presented for the primary Texas local distribution companies (LDC) and electric utilities, as well as on an aggregate basis for industrial consumption. LDC costs are further subdivided into the city gate gas costs and average delivered cost to the residential, commercial and industrial sectors. The Model also quantifies by pipeline the significant amount of gas that leaves the state through the interstate pipeline system. The Texas Natural Gas Model provides a comprehensive volume and value balance of the natural gas system within Texas, recognizing the relationship between all segments of the industry.

Nalepa, K.J.; Feng, N.

1999-07-01

298

Natural gas pipeline technology overview.  

SciTech Connect

The United States relies on natural gas for one-quarter of its energy needs. In 2001 alone, the nation consumed 21.5 trillion cubic feet of natural gas. A large portion of natural gas pipeline capacity within the United States is directed from major production areas in Texas and Louisiana, Wyoming, and other states to markets in the western, eastern, and midwestern regions of the country. In the past 10 years, increasing levels of gas from Canada have also been brought into these markets (EIA 2007). The United States has several major natural gas production basins and an extensive natural gas pipeline network, with almost 95% of U.S. natural gas imports coming from Canada. At present, the gas pipeline infrastructure is more developed between Canada and the United States than between Mexico and the United States. Gas flows from Canada to the United States through several major pipelines feeding U.S. markets in the Midwest, Northeast, Pacific Northwest, and California. Some key examples are the Alliance Pipeline, the Northern Border Pipeline, the Maritimes & Northeast Pipeline, the TransCanada Pipeline System, and Westcoast Energy pipelines. Major connections join Texas and northeastern Mexico, with additional connections to Arizona and between California and Baja California, Mexico (INGAA 2007). Of the natural gas consumed in the United States, 85% is produced domestically. Figure 1.1-1 shows the complex North American natural gas network. The pipeline transmission system--the 'interstate highway' for natural gas--consists of 180,000 miles of high-strength steel pipe varying in diameter, normally between 30 and 36 inches in diameter. The primary function of the transmission pipeline company is to move huge amounts of natural gas thousands of miles from producing regions to local natural gas utility delivery points. These delivery points, called 'city gate stations', are usually owned by distribution companies, although some are owned by transmission companies. Compressor stations at required distances boost the pressure that is lost through friction as the gas moves through the steel pipes (EPA 2000). The natural gas system is generally described in terms of production, processing and purification, transmission and storage, and distribution (NaturalGas.org 2004b). Figure 1.1-2 shows a schematic of the system through transmission. This report focuses on the transmission pipeline, compressor stations, and city gates.

Folga, S. M.; Decision and Information Sciences

2007-11-01

299

Chemical analysis and ozone formation potential of exhaust from dual-fuel (liquefied petroleum gas/gasoline) light duty vehicles  

NASA Astrophysics Data System (ADS)

Measures must be undertaken to lower the transport sector's contribution to anthropogenic emissions. Vehicles powered by liquefied petroleum gas (LPG) are an option due to their reduced emissions of air pollutants compared to engines with conventional fuels. In the present study, ten different dual-fuel LPG/gasoline light duty vehicles were tested, which all complied with European emission level legislation EURO-4. Tests with LPG and gasoline were performed on a chassis dynamometer by applying the New European Driving Cycle (NEDC) and emission factors and ozone formation potentials of both kinds of fuels were compared. The components investigated comprised regulated compounds, CO 2, volatile hydrocarbons and carbonyls. On-line analysis of aromatic species was carried out by resonance-enhanced multiphoton ionization-time-of-flight mass spectrometry (REMPI-TOFMS). We demonstrate that utilization of LPG can entail some environmental benefits by reducing emissions. However, for dual-fuel LPG/gasoline vehicles running on LPG the benefits are less than expected. The main reason is that dual-fuel vehicles usually start the engine up on gasoline even when LPG is selected as fuel. This cold-start phase is crucial for the quality of the emissions. Moreover, we demonstrate an influence on the chemical composition of emissions of vehicle performance, fuel and the evaporative emission system of the vehicles.

Adam, T. W.; Astorga, C.; Clairotte, M.; Duane, M.; Elsasser, M.; Krasenbrink, A.; Larsen, B. R.; Manfredi, U.; Martini, G.; Montero, L.; Sklorz, M.; Zimmermann, R.; Perujo, A.

2011-06-01

300

On-board measurement of emissions from liquefied petroleum gas, gasoline and diesel powered passenger cars in Algeria.  

PubMed

On-board measurements of unit emissions of CO, HC, NOx and CO? were conducted on 17 private cars powered by different types of fuels including gasoline, dual gasoline-liquefied petroleum gas (LPG), gasoline, and diesel. The tests performed revealed the effect of LPG injection technology on unit emissions and made it possible to compare the measured emissions to the European Artemis emission model. A sequential multipoint injection LPG kit with no catalyst installed was found to be the most efficient pollutant reduction device for all of the pollutants, with the exception of the NOx. Specific test results for a sub-group of LPG vehicles revealed that LPG-fueled engines with no catalyst cannot compete with catalyzed gasoline and diesel engines. Vehicle age does not appear to be a determining parameter with regard to vehicle pollutant emissions. A fuel switch to LPG offers many advantages as far as pollutant emissions are concerned, due to LPG's intrinsic characteristics. However, these advantages are being rapidly offset by the strong development of both gasoline and diesel engine technologies and catalyst converters. The LPG's performance on a chassis dynamometer under real driving conditions was better than expected. The enforcement of pollutant emission standards in developing countries is an important step towards introducing clean technology and reducing vehicle emissions. PMID:25108721

Chikhi, Saâdane; Boughedaoui, Ménouèr; Kerbachi, Rabah; Joumard, Robert

2014-08-01

301

Natural gas monthly, February 1998  

SciTech Connect

This issue of the Natural Gas Monthly (NGM) presents the most recent estimates of natural gas data from the Energy Information Administration. Estimates extend through February 1998 for many data series, and through November 1997 for most natural gas prices. Highlights of the natural gas data contained in this issue are: Preliminary estimates for January and February 1998 show that dry natural gas production, net imports, and consumption are all within 1 percent of their levels in 1997. Warmer-than-normal weather in recent months has resulted in lower consumption of natural gas by the residential sector and lower net withdrawals of gas from under round storage facilities compared with a year ago. This has resulted in an estimate of the amount of working gas in storage at the end of February 1998 that is 18 percent higher than in February 1997. The national average natural gas wellhead price is estimated to be $3.05 per thousand cubic feet in November 1997, 7 percent higher than in October. The cumulative average wellhead price for January through November 1997 is estimated to be $2.42 per thousand cubic feet, 17 percent above that of the same period in 1996. This price increase is far less than 36-percent rise that occurred between 1995 and 1996. 6 figs., 26 tabs.

NONE

1998-02-01

302

Natural Gas Imports and Exports  

EIA Publications

In the face of unprecedented levels of domestic natural gas production, net imports of natural gas into the United States fell 23% in 2012. A combination of both higher exports and lower imports led to a decline in net imports. In 2012, total imports decreased by 10% to 3,135 Bcf, while total exports increased by 8% to 1,619 Bcf.

2013-01-01

303

Natural gas monthly, July 1990  

SciTech Connect

This report highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. A glossary is included. 7 figs., 33 tabs.

Not Available

1990-10-03

304

Natural gas monthly, December 1996  

SciTech Connect

This document highlights activities, events, and analysis of interest to the public and private sector associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also included.

NONE

1996-12-01

305

Carbon dioxide power cycles using liquid natural gas as heat sink  

Microsoft Academic Search

Liquefied natural gas (LNG) is recognized as a source of usable cryogenic exergy for power cycles. The performance of conventional cycles are calculated. A binary steam–Organic Rankine Cycle (ORC) at 550°C has an efficiency of about 52%, somewhat higher than that of a nitrogen Brayton cycle (50.7% at 700°C). Carbon dioxide is recognized as an almost ideal medium for implementing

Gianfranco Angelino; Costante M. Invernizzi

2009-01-01

306

Natural gas monthly - January 1996  

SciTech Connect

This highlight discusses changes in natural gas supply, demand, and prices for the first three quarters of 1995 (January thru September) compared to the same periods in 1993 and 1994. Production for the first three quarters of 1995 lagged year-earlier levels while natural gas consumption has continued a steady upward movement. Total U.S. natural gas production through the first three quarters at 14.1 trillion cubic feet, was less than 1 percent below the 1994 period, but remained well ahead of the comparable 1993 period. The three leading producing States (Texas, Louisiana, and Oklahoma) contributed nearly 70 percent of the total. Natural gas consumption totaled 16.0 trillion cubic feet for the first three quarters, 4 percent above the same period in 1994. Net imports of natural gas reached 2.0 trillion cubic feet by the end of the third quarter 1995 and accounted for nearly 13 percent of total consumption during this period.

NONE

1996-01-01

307

Apparatus For The Liquefaaction Of Natural Gas And Methods Relating To Same  

DOEpatents

An apparatus and method for producing liquefied natural gas. A liquefaction plant may be coupled to a source of unpurified natural gas, such as a natural gas pipeline at a pressure letdown station. A portion of the gas is drawn off and split into a process stream and a cooling stream. The cooling stream passes through a turbo expander creating work output. A compressor is driven by the work output and compresses the process stream. The compressed process stream is cooled, such as by the expanded cooling stream. The cooled, compressed process stream is divided into first and second portions with the first portion being expanded to liquefy the natural gas. A gas-liquid separator separates the vapor from the liquid natural gas. The second portion of the cooled, compressed process stream is also expanded and used to cool the compressed process stream. Additional features and techniques may be integrated with the liquefaction process including a water clean-up cycle and a carbon dioxide (CO.sub.2) clean-up cycle.

Wilding, Bruce M. (Idaho Falls, ID); Bingham, Dennis N. (Idaho Falls, ID); McKellar, Michael G. (Idaho Falls, ID); Turner, Terry D. (Ammon, ID); Raterman, Kevin T. (Idaho Falls, ID); Palmer, Gary L. (Shelley, ID); Klingler, Kerry M. (Idaho Falls, ID); Vranicar, John J. (Concord, CA)

2003-06-24

308

Apparatus For The Liquefaaction Of Natural Gas And Methods Relating To Same  

DOEpatents

An apparatus and method for producing liquefied natural gas. A liquefaction plant may be coupled to a source of unpurified natural gas, such as a natural gas pipeline at a pressure letdown station. A portion of the gas is drawn off and split into a process stream and a cooling stream. The cooling stream passes through a turbo expander creating work output. A compressor is driven by the work output and compresses the process stream. The compressed process stream is cooled, such as by the expanded cooling stream. The cooled, compressed process stream is divided into first and second portions with the first portion being expanded to liquefy the natural gas. A gas-liquid separator separates the vapor from the liquid natural gas. The second portion of the cooled, compressed process stream is also expanded and used to cool the compressed process stream. Additional features and techniques may be integrated with the liquefaction process including a water clean-up cycle and a carbon dioxide (CO2) clean-up cycle.

Wilding, Bruce M. (Idaho Falls, ID); Bingham, Dennis N. (Idaho Falls, ID); McKellar, Michael G. (Idaho Falls, ID); Turner, Terry D. (Ammon, ID); Raterman, Kevin T. (Idaho Falls, ID); Palmer, Gary L. (Shelley, ID); Klingler, Kerry M. (Idaho Falls, ID); Vranicar, John J. (Concord, CA)

2005-05-03

309

Apparatus for the liquefaction of natural gas and methods relating to same  

DOEpatents

An apparatus and method for producing liquefied natural gas. A liquefaction plant may be coupled to a source of unpurified natural gas, such as a natural gas pipeline at a pressure letdown station. A portion of the gas is drawn off and split into a process stream and a cooling stream. The cooling stream passes through a turbo expander creating work output. A compressor is driven by the work output and compresses the process stream. The compressed process stream is cooled, such as by the expanded cooling stream. The cooled, compressed process stream is divided into first and second portions with the first portion being expanded to liquefy the natural gas. A gas-liquid separator separates the vapor from the liquid natural gas. The second portion of the cooled, compressed process stream is also expanded and used to cool the compressed process stream. Additional features and techniques may be integrated with the liquefaction process including a water clean-up cycle and a carbon dioxide (CO.sub.2) clean-up cycle.

Wilding, Bruce M. (Idaho Falls, ID); Bingham, Dennis N. (Idaho Falls, ID); McKellar, Michael G. (Idaho Falls, ID); Turner, Terry D. (Ammon, ID); Raterman, Kevin T. (Idaho Falls, ID); Palmer, Gary L. (Shelley, ID); Klingler, Kerry M. (Idaho Falls, ID); Vranicar, John J. (Concord, CA)

2007-05-22

310

Apparatus For The Liquefaaction Of Natural Gas And Methods Relating To Same  

DOEpatents

An apparatus and method for producing liquefied natural gas. A liquefaction plant may be coupled to a source of unpurified natural gas, such as a natural gas pipeline at a pressure letdown station. A portion of the gas is drawn off and split into a process stream and a cooling stream. The cooling stream passes through a turbo expander creating work output. A compressor is driven by the work output and compresses the process stream. The compressed process stream is cooled, such as by the expanded cooling stream. The cooled, compressed process stream is divided into first and second portions with the first portion being expanded to liquefy the natural gas. A gas-liquid separator separates the vapor from the liquid natural gas. The second portion of the cooled, compressed process stream is also expanded and used to cool the compressed process stream. Additional features and techniques may be integrated with the liquefaction process including a water clean-up cycle and a carbon dioxide (CO2) clean-up cycle.

Wilding, Bruce M. (Idaho Falls, ID); Bingham, Dennis N. (Idaho Falls, ID); McKellar, Michael G. (Idaho Falls, ID); Turner, Terry D. (Ammon, ID); Rateman, Kevin T. (Idaho Falls, ID); Palmer, Gary L. (Shelley, ID); Klinger, Kerry M. (Idaho Falls, ID); Vranicar, John J. (Concord, CA)

2005-11-08

311

Farm dependence on natural gas  

SciTech Connect

This study was undertaken to explore the impacts of natural gas price increases and supply contraints on agricultural production in order to indicate the types of adjustments farmers would need to make, and to provide state and federal policymakers with an awareness of the crop, state, and regional dependence on natural gas for farm production. A qualitative analysis involving collection of information, summarization and analysis of current operational use of natural gas on farms, and calculation of farm dependence on natural gas, by crop, state, and region was undertaken. An econometric anlaysis involving estimation of consumption functions for natural gas used for irrigation and crop drying was also undertaken. The econometric analysis conducted in this study was less successful than the qualitative analysis, most probably a result of data constraints leading to a very small sample size. The qualitative analysis showed that farmers in the Southern Plains region are most dependent on natural gas for irrigation, followed by farmers in the Northern Plains. Production of rice, cotton and grain sorghum is most dependent on natural gas for irrigation. Dependence on natural gas for crop drying is most marked in the Delta States and Northern Plains regions. Rice, peanuts and grain sorghum depend most heavily among crops on natural gas for drying. The variables which seem to have the greatest impact on the consumption of natural gas for irrigation based on the econometric estimation include the quality of land (represented by its market value), the price of fertilizer, and the price of diesel fuel (a substitute). The estimated crop drying equations did not provide useful results.

Devlin, P.J.

1981-01-01

312

High-performance liquefied petroleum gas sensing based on nanostructures of zinc oxide and zinc stannate  

Microsoft Academic Search

Toxic and combustible gas detection plays a major role in environmental air quality monitoring. Real-time monitoring of hazardous gases and signal of accidental leakages is of great importance owing to the concern for safety requirements in industries and household applications. A simple and economical method for the fabrication of highly sensitive zinc oxide (ZnO) nanorods based gas sensors for detecting

Aarthy Sivapunniyam; Niti Wiromrat; Myo Tay Zar Myint; Joydeep Dutta

2011-01-01

313

Apparatus and method for gelling liquefied gasses  

NASA Technical Reports Server (NTRS)

A method and apparatus for gelling liquid propane and other liquefied gasses includes a temperature controlled churn mixer, vacuum pump, liquefied gas transfer tank, and means for measuring amount of material entering the mixer. The apparatus and method are particularly useful for the production of high quality rocket fuels and propellants.

Elliott, Adam (Inventor); DiSalvo, Roberto (Inventor); Shepherd, Phillip (Inventor); Kosier, Ryan (Inventor)

2011-01-01

314

Effect of parasitic refrigeration on the efficiency of magnetic liquefiers  

SciTech Connect

Our studies have shown that magnetic refrigerators have the potential to liquefy cryogens very efficiently. High efficiency is especially important for liquid hydrogen and natural gas applications where the liquefaction costs are a significant fraction of the total liquid cost. One of the characteristics of magnetic refrigerators is the requirement for a high-field superconducting magnet. Providing a 4.2-K bath for this magnet will require a small amount of parasitic refrigeration at 4.2 K even though the rest of the liquefier may be at 110 K (liquid natural gas) or higher. For several different refrigeration power levels at 4.2 K, we have calculated the efficiency of the magnetic liquefier as a function of power, temperature and the 4.2-K refrigerator efficiency. The results show that if the ratio of the thermal load at 4.2 K to the main refrigerator power is 0.001 or less, the effect on the efficiency of the liquefier is negligible at all temperatures below room temperature provided the 4.2-K refrigerator efficiency is high.

Barclay, J.A.; Stewart, W.F.

1982-01-01

315

Total fuel-cycle analysis of heavy-duty vehicles using biofuels and natural gas-based alternative fuels.  

PubMed

Heavy-duty vehicles (HDVs) present a growing energy and environmental concern worldwide. These vehicles rely almost entirely on diesel fuel for propulsion and create problems associated with local pollution, climate change, and energy security. Given these problems and the expected global expansion of HDVs in transportation sectors, industry and governments are pursuing biofuels and natural gas as potential alternative fuels for HDVs. Using recent lifecycle datasets, this paper evaluates the energy and emissions impacts of these fuels in the HDV sector by conducting a total fuel-cycle (TFC) analysis for Class 8 HDVs for six fuel pathways: (1) petroleum to ultra low sulfur diesel; (2) petroleum and soyoil to biodiesel (methyl soy ester); (3) petroleum, ethanol, and oxygenate to e-diesel; (4) petroleum and natural gas to Fischer-Tropsch diesel; (5) natural gas to compressed natural gas; and (6) natural gas to liquefied natural gas. TFC emissions are evaluated for three greenhouse gases (GHGs) (carbon dioxide, nitrous oxide, and methane) and five other pollutants (volatile organic compounds, carbon monoxide, nitrogen oxides, particulate matter, and sulfur oxides), along with estimates of total energy and petroleum consumption associated with each of the six fuel pathways. Results show definite advantages with biodiesel and compressed natural gas for most pollutants, negligible benefits for e-diesel, and increased GHG emissions for liquefied natural gas and Fischer-Tropsch diesel (from natural gas). PMID:21416755

Meyer, Patrick E; Green, Erin H; Corbett, James J; Mas, Carl; Winebrake, James J

2011-03-01

316

Natural gas monthly, August 1996  

SciTech Connect

This analysis presents the most recent data on natural gas prices, supply, and consumption from the Energy Information Administration (EIA). The presentation of the latest monthly data is followed by an update on natural gas markets. The markets section examines the behavior of daily spot and futures prices based on information from trade press, as well as regional, weekly data on natural gas storage from the American Gas Association (AGA). This {open_quotes}Highlights{close_quotes} closes with a special section comparing and contrasting EIA and AGA storage data on a monthly and regional basis. The regions used are those defined by the AGA for their weekly data collection effort: the Producing Region, the Consuming Region East, and the Consuming Region West. While data on working gas levels have tracked fairly closely between the two data sources, differences have developed recently. The largest difference is in estimates of working gas levels in the East consuming region during the heating season.

NONE

1996-08-01

317

Effects of Propane/Natural Gas Blended Fuels on Gas Turbine Pollutant Emissions  

SciTech Connect

Liquefied natural gas (LNG) imports to the U.S. are expected to grow significantly over the next 10-15 years. Likewise, it is expected that changes to the domestic gas supply may also introduce changes in natural gas composition. As a result of these anticipated changes, the composition of fuel sources may vary significantly from conventional domestic natural gas supplies. This paper will examine the effects of fuel variability on pollutant emissions for premixed gas turbine conditions. The experimental data presented in this paper have been collected from a pressurized single injector combustion test rig at the National Energy Technology Laboratory (NETL). The tests are conducted at 7.5 atm with a 588 K air preheat. A propane blending facility is used to vary the Wobbe Index of the site natural gas. The results indicate that propane addition of about five (vol.) percent does not lead to a significant change in the observed NOx or CO emissions. These results are different from data collected on some engine applications and potential reasons for these differences will be described.

Straub, D.L.; Ferguson, D.H.; Casleton, K.H.; Richards, G.A.

2007-03-01

318

76 FR 33746 - Freeport LNG Development, L.P.; Application for Blanket Authorization To Export Liquefied Natural...  

Federal Register 2010, 2011, 2012, 2013, 2014

...Natural Gas AGENCY: Office of Fossil Energy, DOE. ACTION: Notice of application...SUMMARY: The Office of Fossil Energy (FE) of the Department of Energy...Regulatory Activities, Office of Fossil Energy, P.O. Box 44375,...

2011-06-09

319

Gas Hydrate Storage of Natural Gas  

SciTech Connect

Environmental and economic benefits could accrue from a safe, above-ground, natural-gas storage process allowing electric power plants to utilize natural gas for peak load demands; numerous other applications of a gas storage process exist. A laboratory study conducted in 1999 to determine the feasibility of a gas-hydrates storage process looked promising. The subsequent scale-up of the process was designed to preserve important features of the laboratory apparatus: (1) symmetry of hydrate accumulation, (2) favorable surface area to volume ratio, (3) heat exchanger surfaces serving as hydrate adsorption surfaces, (4) refrigeration system to remove heat liberated from bulk hydrate formation, (5) rapid hydrate formation in a non-stirred system, (6) hydrate self-packing, and (7) heat-exchanger/adsorption plates serving dual purposes to add or extract energy for hydrate formation or decomposition. The hydrate formation/storage/decomposition Proof-of-Concept (POC) pressure vessel and supporting equipment were designed, constructed, and tested. This final report details the design of the scaled POC gas-hydrate storage process, some comments on its fabrication and installation, checkout of the equipment, procedures for conducting the experimental tests, and the test results. The design, construction, and installation of the equipment were on budget target, as was the tests that were subsequently conducted. The budget proposed was met. The primary goal of storing 5000-scf of natural gas in the gas hydrates was exceeded in the final test, as 5289-scf of gas storage was achieved in 54.33 hours. After this 54.33-hour period, as pressure in the formation vessel declined, additional gas went into the hydrates until equilibrium pressure/temperature was reached, so that ultimately more than the 5289-scf storage was achieved. The time required to store the 5000-scf (48.1 hours of operating time) was longer than designed. The lower gas hydrate formation rate is attributed to a lower heat transfer rate in the internal heat exchanger than was designed. It is believed that the fins on the heat-exchanger tubes did not make proper contact with the tubes transporting the chilled glycol, and pairs of fins were too close for interior areas of fins to serve as hydrate collection sites. A correction of the fabrication fault in the heat exchanger fin attachments could be easily made to provide faster formation rates. The storage success with the POC process provides valuable information for making the process an economically viable process for safe, aboveground natural-gas storage.

Rudy Rogers; John Etheridge

2006-03-31

320

Prevalence and risk factors of noise-induced hearing loss among liquefied petroleum gas (LPG) cylinder infusion workers in Taiwan.  

PubMed

We assessed the exposure levels of noise, estimated prevalence, and identify risk factors of noise-induced hearing loss (NIHL) among male workers with a cross-sectional study in a liquefied petroleum gas cylinder infusion factory in Taipei City. Male in-field workers exposed to noise and administrative controls were enrolled in 2006 and 2007. Face-to-face interviews were applied for demographics, employment history, and drinking/smoking habit. We then performed the measurements on noise levels in field and administration area, and hearing thresholds on study subjects with standard apparatus and protocols. Existence of hearing loss > 25 dBHL for the average of 500 Hz, 1 kHz, and 2 kHz was accordingly determined for NIHL. The effects from noise exposure, predisposing characteristics, employment-related factors, and personal habits to NIHL were estimated by univariate and multivariate logistic regressions. A total of 75 subjects were involved in research and 56.8% of in-field workers had NIHL. Between the in-field and administration groups, hearing thresholds on the worse ear showed significant differences at frequencies of 4 k, 6 k, and 8 kHz with aging considered. Adjusted odds ratio for field noise exposure (OR=99.57, 95% CI: 3.53, 2,808.74) and frequent tea or coffee consumption (OR=0.03, 95% CI: 0.01, 0.51) were found significant. Current study addressed NIHL in a specific industry in Taiwan. Further efforts in minimizing its impact are still in need. PMID:19996535

Chang, Shu-Ju; Chang, Chin-Kuo

2009-12-01

321

Natural Gas Monthly August 1998  

SciTech Connect

The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. Explanatory notes supplement the information found in tables of the report. A description of the data collection surveys that support the NGM is provided. A glossary of the terms used in this report is also provided to assist readers in understanding the data presented in this publication.

NONE

1998-08-01

322

BIODESULPHURIZATION WITHIN NATURAL GAS IN OIL AND GAS FIELD  

Microsoft Academic Search

The presence of sulphur compounds in natural gas can interfere to the quality of natural gas. The decline of combustion gas capacity, metal instrument corrosion in gas piping, and the environmental pollution from gas emission can affect by their presence. Bio-filter is one of the methods that selected to reduce sulphur content in natural gas. A lab scale study of

Sri Astuti Rahayu; M. Fierdaus; M. Udiharto

323

Natural gas production from Arctic gas hydrates  

Microsoft Academic Search

The natural gas hydrates of the Messoyakha field in the West Siberian basin of Russia and those of the Prudhoe Bay-Kuparuk River area on the North Slope of Alaska occur within a similar series of interbedded Cretaceous and Tertiary sandstone and siltstone reservoirs. Geochemical analyses of gaseous well-cuttings and production gases suggest that these two hydrate accumulations contain a mixture

1993-01-01

324

Natural gas monthly, July 1995  

SciTech Connect

The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. The data in this publication are collected on surveys conducted by the EIA to fulfill its responsibilities for gathering and reporting energy data. Some of the data are collected under the authority of the Federal Energy Regulatory Commission (FERC), an independent commission within the DOE, which has jurisdiction primarily in the regulation of electric utilities and the interstate natural gas industry. Geographic coverage is the 50 States and the District of Columbia. Explanatory Notes supplement the information found in tables of the report. A description of the data collection surveys that support the NGM is provided in the Data Sources section. A glossary of the terms used in this report is also provided to assist readers in understanding the data presented in this publication. All natural gas volumes are reported at a pressure base of 14.73 pounds per square inch absolute (psia) and at 60 degrees Fahrenheit. Cubic feet are converted to cubic meters by applying a factor of 0.02831685.

NONE

1995-07-21

325

Natural gas monthly, November 1997  

SciTech Connect

This issue of the Natural Gas Monthly presents the most recent estimates of natural gas data from the Energy Information Administration. Estimates extend through November for many data series, and through August for most natural gas prices. Highlights of the most recent data estimates are: (1) Preliminary estimates of dry natural gas production and total consumption available through November 1997 indicate that both series are on track to end the year at levels close to those of 1996. Cumulative dry production is one-half percent higher than in 1996 and consumption is one-half percent lower. (2) Natural gas production is estimated to be 52.6 billion cubic feet per day in November 1997, the highest rate since March 1997. (3) After falling 8 percent in July 1997, the national average wellhead price rose 10 percent in August 1997, reaching an estimated $2.21 per thousand cubic feet. (4) Milder weather in November 1997 compared to November 1996 has resulted in significantly lower levels of residential consumption of natural gas and net storage withdrawls than a year ago. The November 1997 estimates of residential consumption and net withdrawls are 9 and 20 percent lower, respectively, than in November 1996.

NONE

1997-11-01

326

Flexible LNG supply, storage and price formation in a global natural gas market  

NASA Astrophysics Data System (ADS)

The body of work included in this dissertation explores the interaction of the growing, flexible liquefied natural gas (LNG) trade with the fundamentals of pipeline gas supply, gas storage, and gas consumption. By nature of its uses---largely for residential heating and electric power generation---the consumption of natural gas is highly variable both seasonally and on less predictable daily and weekly timescales. Flexible LNG trade will interconnect previously isolated regional gas markets, each with non-correlated variability in gas demand, differing gas storage costs, and heterogeneous institutional structures. The dissertation employs a series of analytical models to address key issues that will affect the expansion of the LNG trade and the implications for gas prices, investment and energy policy. First, I employ an optimization model to evaluate the fundamentals of seasonal LNG swing between markets with non-correlated gas demand (the U.S. and Europe). The model provides insights about the interaction of LNG trade with gas storage and price formation in interconnected regional markets. I then explore how random (stochastic) variability in gas demand will drive spot cargo movements and covariation in regional gas prices. Finally, I analyze the different institutional structures of the gas markets in the U.S. and Europe and consider how managed gas markets in Europe---without a competitive wholesale gas market---may effectively "export" supply and price volatility to countries with more competitive gas markets, such as the U.S.

Hayes, Mark Hanley

327

High-throughput investigation of catalysts for JP-8 fuel cracking to liquefied petroleum gas.  

PubMed

Portable power technologies for military applications necessitate the production of fuels similar to LPG from existing feedstocks. Catalytic cracking of military jet fuel to form a mixture of C?-C? hydrocarbons was investigated using high-throughput experimentation. Cracking experiments were performed in a gas-phase, 16-sample high-throughput reactor. Zeolite ZSM-5 catalysts with low Si/Al ratios (?25) demonstrated the highest production of C?-C? hydrocarbons at moderate reaction temperatures (623-823 K). ZSM-5 catalysts were optimized for JP-8 cracking activity to LPG through varying reaction temperature and framework Si/Al ratio. The reducing atmosphere required during catalytic cracking resulted in coking of the catalyst and a commensurate decrease in conversion rate. Rare earth metal promoters for ZSM-5 catalysts were screened to reduce coking deactivation rates, while noble metal promoters reduced onset temperatures for coke burnoff regeneration. PMID:23879196

Bedenbaugh, John E; Kim, Sungtak; Sasmaz, Erdem; Lauterbach, Jochen

2013-09-01

328

Adsorbed Natural Gas Storage in Optimized High Surface Area Microporous Carbon  

NASA Astrophysics Data System (ADS)

Adsorbed natural gas (ANG) is an attractive alternative technology to compressed natural gas (CNG) or liquefied natural gas (LNG) for the efficient storage of natural gas, in particular for vehicular applications. In adsorbants engineered to have pores of a few molecular diameters, a strong van der Walls force allows reversible physisorption of methane at low pressures and room temperature. Activated carbons were optimized for storage by varying KOH:C ratio and activation temperature. We also consider the effect of mechanical compression of powders to further enhance the volumetric storage capacity. We will present standard porous material characterization (BET surface area and pore-size distribution from subcritical N2 adsorption) and methane isotherms up to 250 bar at 293K. At sufficiently high pressure, specific surface area, methane binding energy and film density can be extracted from supercritical methane adsorption isotherms. Research supported by the California Energy Commission (500-08-022).

Romanos, Jimmy; Rash, Tyler; Nordwald, Erik; Shocklee, Joshua Shawn; Wexler, Carlos; Pfeifer, Peter

2011-03-01

329

A comparative analysis of liquefied petroleum gas (LPG) and kerosene related burns.  

PubMed

Previous studies from our department reflected a trend of decreasing incidence of burns culminating from rising income levels, which were bringing about a change in the cooking fuel in many urban households [1,2]. These studies also indicated a changing scenario of increased incidence of burns from LPG mishaps [2]. In the absence of much information on the subject we felt it rather imperative to comparatively study the pattern of burn injuries resulting from LPG and kerosene. This prospective study was conducted on the clinical database of consecutive patients admitted with burns sustained due to LPG and kerosene from 1st January 2009 to 31st May 2010 (17 months). Data recorded for each patient included; age, gender, religion, socioeconomic status, literacy level, type of family unit, marital status, type of dwelling unit, mode of injury and its exact mechanism, place of incident, level of cooking stove, extent of burns (%TBSA), presence of features of inhalation injury, number of patients affected in a single mishap, size of LPG cylinder used, length of hospital stay and mortality. Of 731 flame burn patients in this study, 395 (54%) were due to kerosene burns and 200 (27.4%) from LPG mishaps. Significantly, the majority of injuries, in both the groups, occurred in lower middle class families living as nuclear units, in a single room dwelling, without a separate kitchen. Majority of LPG burns (70.5%, 141 patients) resulted from a gas leak and 25.5% were from cooking negligence (51 patients). 50.5% of kerosene accidents were from 'stove mishaps' and 49% due to cooking negligence. In all kerosene accidents the stove was kept at floor level but in LPG group 20.6% had the stove placed on a platform. There was a slight difference in mean TBSA burns; 51% in kerosene group compared to 41.5% TBSA in LPG group. There were nine episodes in LPG group in which there were more than three burn victims admitted for treatment. Very importantly, 77% patients in LPG group were from a large cylinder (14.2 kg), which uses a rubber connecting tube. Mortality in kerosene group (50.6%) was far higher than in LPG group (33.5%). This study, from 200 LPG burn admissions, for the first time details the profile from LPG mishaps. It is very interesting to note that of all burns in the world the inequitable distribution bias towards LMICs (low and middle income countries) extends further towards low middle class families within the LMIC. A major risk factor is constrained living condition of a single room dwelling unit. Almost all burns from LPG mishaps were potentially preventable if more care had been practiced to ensure safety. Since majority of LPG mishaps were from gas leaks, either from the rubber tube (Fig. 1) or the stove valve, the observation of floor level cooking in 79.4% of LPG cases may be an economic compulsion of a single room dwelling unit without much impact on the injury pattern. The small LPG cylinder (5 kg) in which the burner is placed directly over the cylinder, as one unit without a connecting tube, is safer because it reduces the chances of a gas leak from an ill-fitting or a cracked rubber connecting tube (Fig. 2). PMID:21507577

Ahuja, Rajeev B; Dash, Jayant K; Shrivastava, Prabhat

2011-12-01

330

Natural gas monthly, March 1999  

SciTech Connect

This issue of the Natural Gas Monthly contains estimates for March 1999 for many natural gas data series at the national level. Estimates of national natural gas prices are available through December 1998 for most series. Highlights of the data contained in this issue are listed below. Preliminary data indicate that the national average wellhead price for 1998 declined to 16% from the previous year ($1.96 compared to $2.32 per thousand cubic feet). At the end of March, the end of the 1998--1999 heating season, the level of working gas in underground natural gas storage facilities is estimated to be 1,354 billion cubic feet, 169 billion cubic feet higher than at the end of March 1998. Gas consumption during the first 3 months of 1999 is estimated to have been 179 billion cubic feet higher than in the same period in 1998. Most of this increase (133 billion cubic feet) occurred in the residential sector due to the cooler temperatures in January and February compared to the same months last year. According to the National Weather Service, heating degree days in January 1999 were 15% greater than the previous year while February recorded a 5% increase.

NONE

1999-03-01

331

75 FR 42432 - Northern Natural Gas Company, Southern Natural Gas Company, Florida Gas Transmission Company, LLC...  

Federal Register 2010, 2011, 2012, 2013, 2014

...Company, Florida Gas Transmission...Transcontinental Gas Pipe Line Company...Matagorda Offshore Pipeline System Abandonment Project and Request...Matagorda Offshore Pipeline System Abandonment Project (Project...Northern Natural Gas Company,...

2010-07-21

332

75 FR 73071 - Northern Natural Gas Company, Southern Natural Gas Company, Florida Gas Transmission Company, LLC...  

Federal Register 2010, 2011, 2012, 2013, 2014

...Company, Florida Gas Transmission...Transcontinental Gas Pipe Line Company...Matagorda Offshore Pipeline System Abandonment Project November...Matagorda Offshore Pipeline System Abandonment Project proposed...Northern Natural Gas Company,...

2010-11-29

333

75 FR 6874 - Outer Continental Shelf (OCS) Central Planning Area (CPA) Gulf of Mexico (GOM) Oil and Gas Lease...  

Federal Register 2010, 2011, 2012, 2013, 2014

...Central Planning Area (CPA) Gulf of Mexico (GOM) Oil and Gas Lease Sale 213 AGENCY...Liquefied Natural Gas (LNG) Deepwater...Terminal, Vermilion Area, Blocks 139 and 140...Central Planning Area, Oil and Gas Lease Sale 213,...

2010-02-12

334

Natural gas monthly, February 1997  

SciTech Connect

This issue of the Natural Gas Monthly presents estimates of natural gas supply and consumption through February 1997. Estimates of natural gas prices are through November 1996 except electric utility prices that are through October 1996. Cumulatively for January through February 1997, the daily average rates for several data series remain close to those of 1996. (Comparing daily rates accounts for the fact that February 1996 had 29 days.) Daily total consumption for January through February is estimated to be 83 billion cubic feet per day, 1 percent higher than during the same period in 1996. Similarly, the estimate of average daily production of 53 billion cubic feet is 1.5 percent higher than in 1996, while daily net imports during the first 2 months of 1997 are virtually unchanged from 1996.

NONE

1997-02-01

335

Meeting Asia's future gas import demand with stranded natural gas from central Asia, Russia, Southeast Asia, and Australia  

USGS Publications Warehouse

This analysis shows the important contribution that stranded gas from central Asia, Russia, Southeast Asia, and Australia can make in meeting the projected demand for gas imports of China, India, Japan, and South Korea from 2020 to 2040. The estimated delivered costs of pipeline gas from stranded fields in Russia and central Asia at Shanghai, China, are generally less than delivered costs of liquefied natural gas (LNG). Australia and Malaysia are initially the lowest-cost LNG suppliers. In the concluding section, it is argued that Asian LNG demand is price sensitive, and that current Asian LNG pricing procedures are unlikely to be sustainable for gas import demand to attain maximum potential growth. Resource volumes in stranded fields evaluated can nearly meet projected import demands.

Attanasi, Emil D.; Freeman, Philip A.

2013-01-01

336

Natural Gas 1998: Issues and Trends  

NSDL National Science Digital Library

The EIA attributes a more competitive industry and increases in pipeline capacity as major factors affecting increased natural gas demand in Natural Gas 1998: Issues and Trends. According to this recently released report, Natural gas demand has increased in the United States by fourteen percent since 1990 and electric utility consumption of natural gas rose about seventeen percent from 1990 to 1998.

337

Natural Gas Multi-Year Program Plan  

SciTech Connect

This document comprises the Department of Energy (DOE) Natural Gas Multi-Year Program Plan, and is a follow-up to the `Natural Gas Strategic Plan and Program Crosscut Plans,` dated July 1995. DOE`s natural gas programs are aimed at simultaneously meeting our national energy needs, reducing oil imports, protecting our environment, and improving our economy. The Natural Gas Multi-Year Program Plan represents a Department-wide effort on expanded development and use of natural gas and defines Federal government and US industry roles in partnering to accomplish defined strategic goals. The four overarching goals of the Natural Gas Program are to: (1) foster development of advanced natural gas technologies, (2) encourage adoption of advanced natural gas technologies in new and existing markets, (3) support removal of policy impediments to natural gas use in new and existing markets, and (4) foster technologies and policies to maximize environmental benefits of natural gas use.

NONE

1997-12-01

338

Nitrogen removal from natural gas  

SciTech Connect

According to a 1991 Energy Information Administration estimate, U.S. reserves of natural gas are about 165 trillion cubic feet (TCF). To meet the long-term demand for natural gas, new gas fields from these reserves will have to be developed. Gas Research Institute studies reveal that 14% (or about 19 TCF) of known reserves in the United States are subquality due to high nitrogen content. Nitrogen-contaminated natural gas has a low Btu value and must be upgraded by removing the nitrogen. In response to the problem, the Department of Energy is seeking innovative, efficient nitrogen-removal methods. Membrane processes have been considered for natural gas denitrogenation. The challenge, not yet overcome, is to develop membranes with the required nitrogen/methane separation characteristics. Our calculations show that a methane-permeable membrane with a methane/nitrogen selectivity of 4 to 6 would make denitrogenation by a membrane process viable. The objective of Phase I of this project was to show that membranes with this target selectivity can be developed, and that the economics of the process based on these membranes would be competitive. Gas permeation measurements with membranes prepared from two rubbery polymers and a superglassy polymer showed that two of these materials had the target selectivity of 4 to 6 when operated at temperatures below - 20{degrees}C. An economic analysis showed that a process based on these membranes is competitive with other technologies for small streams containing less than 10% nitrogen. Hybrid designs combining membranes with other technologies are suitable for high-flow, higher-nitrogen-content streams.

NONE

1997-04-01

339

Natural Gas as Motor Fuel  

Microsoft Academic Search

The necessity of developing and using alternative motor fuels, natural gas and products of its processing in particular, is due to two interrelated basic causes: the rapid depletion of oil reserves on the planet and deterioration of the environmental situation in many, primarily developed, countries.

A. l. Lapidus; I. F. Krylov; B. P. Tonkonogov

2005-01-01

340

Natural gas monthly, January 1997  

SciTech Connect

This publication, the Natural Gas Monthly, presents the most recent data on natural gas supply, consumption, and prices from the Energy Information Administration (EIA). Of special interest in this issue are two articles summarizing reports recently published by EIA. The articles are {open_quotes}Natural Gas Productive Capacity{close_quotes} and {open_quotes}Outlook for Natural Gas Through 2015,{close_quotes} both of which precede the {open_quotes}Highlights{close_quotes} section. With this issue, January 1997, changes have been made to the format of the Highlights section and to several of the tabular and graphical presentations throughout the publication. The changes to the Highlights affect the discussion of developments in the industry and the presentation of weekly storage data. An overview of the developments in the industry is now presented in a brief summary followed by specific discussions of supply, end-use consumption, and prices. Spot and futures prices are discussed as appropriate in the Price section, together with wellhead and consumer prices.

NONE

1997-01-01

341

Natural gas vehicles: An option for Europe  

Microsoft Academic Search

In Europe natural gas vehicles play a minor role. A decisive reason for this is the dependence of most European countries from gas imports. Except for Italy, there is no tradition to use natural gas as fuel. In addition, there is a lack of infrastructure (e.g. fuelling stations). In contrast to Europe, in Latin American and Asian countries natural gas

Hella Engerer; Manfred Horn

2010-01-01

342

The DOE/NREL Next Generation Natural Gas Vehicle Program - An Overview  

SciTech Connect

This paper summarizes the Next Generation Natural Gas Vehicle (NG-NGV) Program that is led by the U.S. Department Of Energy's (DOE's) Office of Heavy Vehicle Technologies (OHVT) through the National Renewable Energy Laboratory (NREL). The goal of this program is to develop and implement one Class 3-6 compressed natural gas (CNG) prototype vehicle and one Class 7-8 liquefied natural gas (LNG) prototype vehicle in the 2004 to 2007 timeframe. OHVT intends for these vehicles to have 0.5 g/bhp-hr or lower emissions of oxides of nitrogen (NOx) by 2004 and 0.2 g/bhp-hr or lower NOx by 2007. These vehicles will also have particulate matter (PM) emissions of 0.01 g/bhp-hr or lower by 2004. In addition to ambitious emissions goals, these vehicles will target life-cycle economics that are compatible with their conventionally fueled counterparts.

Kevin Walkowicz; Denny Stephens; Kevin Stork

2001-05-14

343

Method for recovery of natural gas liquids  

Microsoft Academic Search

This patent describes a method for recovering natural gas liquids from a fuel gas stream with high hydrogen and carbon dioxide content comprising the steps of: dehydrating the fuel gas stream; compressing the fuel gas stream to a pressure of generally 300 psi; chilling the fuel gas stream in an inlet gas cooler to generally - 45°F; separating the chilled,

G. J. IV Montgomery; H. K. Aghili

1987-01-01

344

Methods of natural gas liquefaction and natural gas liquefaction plants utilizing multiple and varying gas streams  

DOEpatents

A method of natural gas liquefaction may include cooling a gaseous NG process stream to form a liquid NG process stream. The method may further include directing the first tail gas stream out of a plant at a first pressure and directing a second tail gas stream out of the plant at a second pressure. An additional method of natural gas liquefaction may include separating CO.sub.2 from a liquid NG process stream and processing the CO.sub.2 to provide a CO.sub.2 product stream. Another method of natural gas liquefaction may include combining a marginal gaseous NG process stream with a secondary substantially pure NG stream to provide an improved gaseous NG process stream. Additionally, a NG liquefaction plant may include a first tail gas outlet, and at least a second tail gas outlet, the at least a second tail gas outlet separate from the first tail gas outlet.

Wilding, Bruce M; Turner, Terry D

2014-12-02

345

Efficient electrochemical refrigeration power plant using natural gas with ?100% CO2 capture  

NASA Astrophysics Data System (ADS)

We propose an efficient Natural Gas (NG) based Solid Oxide Fuel Cell (SOFC) power plant equipped with ?100% CO2 capture. The power plant uses a unique refrigeration based process to capture and liquefy CO2 from the SOFC exhaust. The capture of CO2 is carried out via condensation and purification using two rectifying columns operating at different pressures. The uncondensed gas mixture, comprising of relatively high purity unconverted fuel, is recycled to the SOFC and found to boost the power generation of the SOFC by 22%, when compared to a stand alone SOFC. If Liquefied Natural Gas (LNG) is available at the plant gate, then the refrigeration available from its evaporation is used for CO2 Capture and Liquefaction (CO2CL). If NG is utilized, then a Mixed Refrigerant (MR) vapor compression cycle is utilized for CO2CL. Alternatively, the necessary refrigeration can be supplied by evaporating the captured liquid CO2 at a lower pressure, which is then compressed to supercritical pressures for pipeline transportation. From rigorous simulations, the power generation efficiency of the proposed processes is found to be 70-76% based on lower heating value (LHV). The benefit of the proposed processes is evident when the efficiency of 73% for a conventional SOFC-Gas turbine power plant without CO2 capture is compared with an equivalent efficiency of 71.2% for the proposed process with CO2CL.

Al-musleh, Easa I.; Mallapragada, Dharik S.; Agrawal, Rakesh

2015-01-01

346

Natural gas and CO2 price variation: impact on the relative cost-efficiency of LNG and pipelines  

PubMed Central

This article develops a formal model for comparing the cost structure of the two main transport options for natural gas: liquefied natural gas (LNG) and pipelines. In particular, it evaluates how variations in the prices of natural gas and greenhouse gas emissions affect the relative cost-efficiency of these two options. Natural gas is often promoted as the most environmentally friendly of all fossil fuels, and LNG as a modern and efficient way of transporting it. Some research has been carried out into the local environmental impact of LNG facilities, but almost none into aspects related to climate change. This paper concludes that at current price levels for natural gas and CO2 emissions the distance from field to consumer and the volume of natural gas transported are the main determinants of transport costs. The pricing of natural gas and greenhouse emissions influence the relative cost-efficiency of LNG and pipeline transport, but only to a limited degree at current price levels. Because more energy is required for the LNG process (especially for fuelling the liquefaction process) than for pipelines at distances below 9100 km, LNG is more exposed to variability in the price of natural gas and greenhouse gas emissions up to this distance. If the prices of natural gas and/or greenhouse gas emission rise dramatically in the future, this will affect the choice between pipelines and LNG. Such a price increase will be favourable for pipelines relative to LNG. PMID:24683269

Ulvestad, Marte; Overland, Indra

2012-01-01

347

Imported LNG (liquid natural gas) as an alternative fuel  

SciTech Connect

Imports of liquefied natural gas (LNG) first arrived in the United States in 1972 at the rate of one billion cubic feet (Bcf) per year. By 1979, they had reached 252 Bcf/year. However, as US as demand declined and domestic deliverability grew, inflexible LNG prices led to the complete collapse of trade during the 1980s. In 1987, all four US import terminals were idle and no LNG was imported. The situation bean to change with renegotiation of Distrigas' contract to import LNG from Algeria's Sonatrach. In 1988, the company imported 19 Bcf of gas to its Everett, Massachusetts terminal, with greater volumes in 1989. Panhandle Eastern has also renegotiated its Algerian supply contract and reactivated the company's Trunkline LNG terminal at Lake Charles, Louisiana. It received its first cargo in December 1989. Moves are also being made to bring the other two US import terminals, at Cove Point, Maryland and Elba Island, Georgia, back into service. On the supply side too, there are major new developments. Not only is Algeria seeking to expand its existing exports, but new LNG projects in Nigeria, Norway and Venezuela in particular are aimed at the US market. The purpose of this report is to describe the current status and potential development of LNG imports to the US with a view to identifying those circumstances in which an electric utility might consider LNG as an alternate back-up fuel to distillate or residual oil, in gas-fired generating facilities. 9 figs., 10 tabs.

Kelly, M. (Jensen Associates, Inc., Boston, MA (USA))

1990-11-01

348

Gas supplies of interstate/natural gas pipeline companies 1989  

SciTech Connect

This publication provides information on the interstate pipeline companies' supply of natural gas during calendar year 1989, for use by the FERC for regulatory purposes. It also provides information to other Government agencies, the natural gas industry, as well as policy makers, analysts, and consumers interested in current levels of interstate supplies of natural gas and trends over recent years. 5 figs., 18 tabs.

Not Available

1990-12-18

349

Underground Natural Gas Working Storage Capacity  

EIA Publications

Working natural gas storage capacity increased by about 2% in the lower 48 states between November 2011 and November 2012, according to Underground Working Natural Gas Storage Capacity, released by the U.S. Energy Information Administration (EIA).

2014-01-01

350

Optimizing Natural Gas Use: A Case Study  

E-print Network

Optimization of Steam & Energy systems in any continuously operating process plant results in substantial reduction in Natural gas purchases. During periods of natural gas price hikes, this would benefit the plant to control their fuel budget...

Venkatesan, V. V.; Schweikert, P.

2007-01-01

351

CdO nanosheet film with a (200)-preferred orientation with sensitivity to liquefied petroleum gas (LPG) at low-temperatures.  

PubMed

CdO nanosheet film can be synthesized by electrochemical deposition in an ultra-thin liquid layer by using Cd(NO(3))(2) and HNO(3) as source materials for Cd and oxygen respectively. HNO(3) is also used to adjust the pH of the electrolyte. Studies on the detailed structure indicate that the synthesized CdO nanosheet film has a face-centered cubic structure with (200)-preferred orientation. The response of the CdO nanosheet film to liquefied petroleum gas (LPG) at low temperature has been significantly improved by the novel structure of film. It has exhibited excellent sensitivity and selectivity to LPG at low temperature. A new growth mechanism of electrochemical deposition has been proposed to elaborate the formation of nanosheet in an ultra-thin liquid layer. The self-oscillation of potential in the growth interface and intermediate hydroxide are responsible for the formation of nanosheets. PMID:23131858

Cui, Guangliang; Li, Zimeng; Gao, Liang; Zhang, Mingzhe

2012-12-21

352

Natural gas availability: present and future  

Microsoft Academic Search

Natural gas fuel availability will be a critical factor in the ability to use gas as a motor fuel. The 1969 U.S. consumption of motor gasoline was 85.4 billion gas, equivalent to 10.6 trillion ft³ of natural gas at 1032 Btu\\/ft³, which is about 50% of the total gas consumed in 1969. Between 1950 and 1970 the demand for gas

Zareski

1972-01-01

353

Natural gas saver with separator and compressor  

Microsoft Academic Search

A gas-pressure relieving system includes a liquid separator and compressor to permit separation of liquid components from natural gas. The natural gas is returned to a distribution system at an appropriate pressure. The system avoids the pollution normally effected by burn-off at a well head and at the same time provides for recovery of liquid gas for later processing. (5

D. F. Tipton; L. R. Jeffers

1972-01-01

354

Natural gas depressurization power recovery and reheat  

Microsoft Academic Search

A process is described for reduction in pressure of natural gas with the recovery of net power and the control of the temperature of the low pressure natural gas product by heat exchange with ambient atmosphere comprising the step of: (a) introducing high pressure natural gas at a pressure in the range of 100 to 2000 psia into an expansion

T. A. Shenoy; J. C. Tao

1987-01-01

355

EROSIVE WEAR OF NATURAL GAS PIPELINE  

Microsoft Academic Search

Erosive wear can be caused by a water jet burst from leaked water pipe laid side by side to natural gas pipeline. The erosive wear behavior of natural gas pipeline eroded by sand and water jetting was investigated. This work present the erosive wear analysis of API 5L X42, steel grade pipeline which normally used for distributing natural gas to

ZULKIFLI ABDUL MAJID; RAHMAT MOHSIN; FADHLI OMAR

356

Advanced Liquid Natural Gas Onboard Storage System  

SciTech Connect

Cummins Westport Incorporated (CWI) has designed and developed a liquefied natural gas (LNG) vehicle fuel system that includes a reciprocating pump with the cold end submerged in LNG contained in a vacuum-jacketed tank. This system was tested and analyzed under the U.S. Department of Energy (DOE) Advanced LNG Onboard Storage System (ALOSS) program. The pumped LNG fuel system developed by CWI and tested under the ALOSS program is a high-pressure system designed for application on Class 8 trucks powered by CWI's ISX G engine, which employs high-pressure direct injection (HPDI) technology. A general ALOSS program objective was to demonstrate the feasibility and advantages of a pumped LNG fuel system relative to on-vehicle fuel systems that require the LNG to be ''conditioned'' to saturation pressures that exceeds the engine fuel pressure requirements. These advantages include the capability to store more fuel mass in given-size vehicle and station tanks, and simpler lower-cost LNG refueling stations that do not require conditioning equipment. Pumped LNG vehicle fuel systems are an alternative to conditioned LNG systems for spark-ignition natural gas and port-injection dual-fuel engines (which typically require about 100 psi), and they are required for HPDI engines (which require over 3,000 psi). The ALOSS program demonstrated the feasibility of a pumped LNG vehicle fuel system and the advantages of this design relative to systems that require conditioning the LNG to a saturation pressure exceeding the engine fuel pressure requirement. LNG tanks mounted on test carts and the CWI engineering truck were repeatedly filled with LNG saturated at 20 to 30 psig. More fuel mass was stored in the vehicle tanks as well as the station tank, and no conditioning equipment was required at the fueling station. The ALOSS program also demonstrated the general viability and specific performance of the CWI pumped LNG fuel system design. The system tested as part of this program is designed to be used on Class 8 trucks with CWI ISX G HPDI engines. Extensive test cart and engineering truck tests of the pump demonstrated good durability and the high-pressure performance needed for HPDI application. The LNG tanks manufactured by Taylor-Wharton passed SAE J2343 Recommended Practice drop tests and accelerated road-load vibration tests. NER and hold-time tests produced highly consistent results. Additional tests confirmed the design adequacy of the liquid level sensor, vaporizer, ullage volume, and other fuel system components. While the testing work performed under this program focused on a high-pressure pumped LNG fuel system design, the results also validate the feasibility of a low-pressure pumped fuel system. A low-pressure pumped fuel system could incorporate various design refinements including a simpler and lighter-weight pump, which would decrease costs somewhat relative to a high-pressure system.

Greg Harper; Charles Powars

2003-10-31

357

DOE/BNL Liquid Natural Gas Heavy Vehicle Program  

SciTech Connect

As a means of lowering greenhouse gas emissions, increasing economic growth, and reducing the dependency on imported oil, the Department of Energy and Brookhaven National Laboratory (DOE/ BNL) is promoting the substitution of liquefied natural gas (LNG) in heavy-vehicles that are currently being fueled by diesel. Heavy vehicles are defined as Class 7 and 8 trucks (> 118,000 pounds GVVV), and transit buses that have a fuel usage greater than 10,000 gallons per year and driving range of more than 300 miles. The key in making LNG market-competitive with all types of diesel fuels is in improving energy efficiency and reducing costs of LNG technologies through systems integration. This paper integrates together the three LNG technologies of: (1) production from landfills and remote well sites; (2) cryogenic fuel delivery systems; and (3) state-of-the-art storage tank and refueling facilities, with market end-use strategies. The program's goal is to develop these technologies and strategies under a ''green'' and ''clean'' strategy. This ''green'' approach reduces the net contribution of global warming gases by reducing levels of methane and carbon dioxide released by heavy vehicles usage to below recoverable amounts of natural gas from landfills and other natural resources. Clean technology refers to efficient use of energy with low environmental emissions. The objective of the program is to promote fuel competition by having LNG priced between $0.40 - $0.50 per gallon with a combined production, fuel delivery and engine systems efficiency approaching 45%. This can make LNG a viable alternative to diesel.

James E. Wegrzyn; Wai-Lin Litzke; Michael Gurevich

1998-08-11

358

NITROGEN REMOVAL FROM NATURAL GAS  

SciTech Connect

The objective of this project was to develop a membrane process for the denitrogenation of natural gas. Large proven reserves in the Lower-48 states cannot be produced because of the presence of nitrogen. To exploit these reserves, cost-effective, simple technology able to reduce the nitrogen content of the gas to 4-5% is required. Technology applicable to treatment of small gas streams (below 10 MMscfd) is particularly needed. In this project membranes that selectively permeate methane and reject nitrogen in the gas were developed. Preliminary calculations show that a membrane with a methane/nitrogen selectivity of 3 to 5 is required to make the process economically viable. A number of polymer materials likely to have the required selectivities were evaluated as composite membranes. Polyacetylenes such as poly(1-trimethylsilyl-1-propyne) [PTMSP] and poly(4-methyl-2-pentyne) [PMP] had high selectivities and fluxes, but membranes prepared from these polymers were not stable, showing decreasing flux and selectivity during tests lasting only a few hours. Parel, a poly(propylene oxide allyl glycidyl ether) had a selectivity of 3 at ambient temperatures and 4 or more at temperatures of {minus}20 C. However, Parel is no longer commercially available, and we were unable to find an equivalent material in the time available. Therefore, most of our experimental work focused on silicone rubber membranes, which have a selectivity of 2.5 at ambient temperatures, increasing to 3-4 at low temperatures. Silicone rubber composite membranes were evaluated in bench-scale module tests and with commercial-scale, 4-inch-diameter modules in a small pilot plant. Over six days of continuous operation at a feed gas temperature of {minus}5 to {minus}10 C, the membrane maintained a methane/nitrogen selectivity of about 3.3. Based on the pilot plant performance data, an analysis of the economic potential of the process was prepared. We conclude that a stand-alone membrane process is the lowest-cost technology for small gas streams containing less than 10% nitrogen. The membrane process can recover more than 60-70% of the hydrocarbon content of the gas at a cost of $0.60-0.70/Mscfd. The capital cost of the process is about $100-200/Mscf. A number of small operators appear to be ready to use the technology if these costs can be demonstrated in the field. A second, and perhaps better, application of the technology is to combine the membrane process with a cryogenic process to treat large gas streams containing 10-20% nitrogen. The combination process achieves significant synergies. The membrane process performs a bulk separation of the gas, after which the cryogenic process treats the membrane residue (nitrogen-enriched) gas to recover more methane. Overall, hydrocarbon recoveries are greater than 95%. The capital cost of the combination process is lower than that of either process used alone and the processing costs are in the range $0.30-0.40/Mscf. This operating cost would be attractive to many gas producers. MTR is collaborating with a producer of cryogenic systems to further develop the combination process. A number of innovations in membrane process designs were made during the project; four U.S. patents covering various aspects of the technology were filed and issued.

K.A. Lokhandwala; M.B. Ringer; T.T. Su; Z. He; I. Pinnau; J.G. Wijmans; A. Morisato; K. Amo; A. DaCosta; R.W. Baker; R. Olsen; H. Hassani; T. Rathkamp

1999-12-31

359

US crude oil, natural gas, and natural gas liquids reserves, 1992 annual report  

SciTech Connect

This report presents estimates of proved reserves of crude oil, natural gas, and natural gas liquids as of December 31, 1992, as well as production volumes for the United States, and selected States and State subdivisions for the year 1992. Estimates are presented for the following four categories of natural gas: total gas (wet after lease separation), its two major components (nonassociated and associated-dissolved gas), and total dry gas (wet gas adjusted for the removal of liquids at natural gas processing plants). In addition, two components of natural gas liquids, lease condensate and natural gas plant liquids, have their reserves and production data presented. Also included is information on indicated additional crude oil reserves and crude oil, natural gas, and lease condensate reserves in nonproducing reservoirs. A discussion of notable oil and gas exploration and development activities during 1992 is provided.

Not Available

1993-10-18

360

Oil and gas in coastal lands and waters  

Microsoft Academic Search

Contents include: The Coastal Region; Alternatives; Protecting the Sea: OCS Oil; Protecting the Sea: Tankers; Oil Ashore; Locations Onshore: Rigs to Refineries; Platform Construction: Northampton County, Va; Liquefied Natural Gas; and Protecting Communities and the Land.

Gillman

1977-01-01

361

Adsorbed natural gas storage and transportation vessels  

Microsoft Academic Search

Adsorbed natural gas (ANG) storage and transportation technology recently became competitive to compressed natural gas (CNG) method due to a high energy density capability achievements. New adsorbents such as monolithic carbons and recently compressed active carbon fibers used in noncylindrical vessels have made possible to store the same capacity of gas as CNG tanks, but at much lower pressure. New

L. L. Vasiliev; L. E. Kanonchik; D. A. Mishkinis; M. I. Rabetsky

2000-01-01

362

Life-cycle analysis of shale gas and natural gas.  

SciTech Connect

The technologies and practices that have enabled the recent boom in shale gas production have also brought attention to the environmental impacts of its use. Using the current state of knowledge of the recovery, processing, and distribution of shale gas and conventional natural gas, we have estimated up-to-date, life-cycle greenhouse gas emissions. In addition, we have developed distribution functions for key parameters in each pathway to examine uncertainty and identify data gaps - such as methane emissions from shale gas well completions and conventional natural gas liquid unloadings - that need to be addressed further. Our base case results show that shale gas life-cycle emissions are 6% lower than those of conventional natural gas. However, the range in values for shale and conventional gas overlap, so there is a statistical uncertainty regarding whether shale gas emissions are indeed lower than conventional gas emissions. This life-cycle analysis provides insight into the critical stages in the natural gas industry where emissions occur and where opportunities exist to reduce the greenhouse gas footprint of natural gas.

Clark, C.E.; Han, J.; Burnham, A.; Dunn, J.B.; Wang, M. (Energy Systems); ( EVS)

2012-01-27

363

30 CFR 75.1106-5 - Maintenance and tests of liquefied and nonliquefied compressed gas cylinders; accessories and...  

Code of Federal Regulations, 2010 CFR

...nonliquefied compressed gas cylinders; accessories and equipment; requirements...nonliquefied compressed gas cylinders; accessories and equipment; requirements...gages, and other cylinder accessories shall be maintained in a...

2010-07-01

364

Fuel-cycle greenhouse gas emissions from alternative fuels in Australian heavy vehicles  

Microsoft Academic Search

This paper quantifies the expected pre-combustion and combustion emissions of greenhouse gases from Australian heavy vehicles using alternative fuels. We use the term exbodied emissions for these full fuel-cycle emissions. The fuels examined are low sulfur diesel (LSD), ultra-low sulfur diesel (ULS), compressed natural gas (CNG), liquefied natural gas (LNG), liquefied petroleum gas (LPG), ethanol (from lignocellulose), biodiesel and waste

Tom Beer; Tim Grant; David Williams; Harry Watson

2002-01-01

365

On Natural Gas price mechanism given present context of China’s natural gas industry  

Microsoft Academic Search

As the efficient clean natural resource, natural gas has become the world top choice of ameliorating environment and promoting sustainable development on economy. It is estimated by International Information Center of Natural Gas that in 2000 world primary consumption gross of natural gas is 2.5 tril cubes, which accounts for 22% of the total consumption of non-renewable resource. As a

Zhao Shu-rong; Guo Ying

2008-01-01

366

Shale gas--the unfolding story  

Microsoft Academic Search

In the early 2000s US gas production was in slow but steady decline despite increasing drilling activity. As US natural gas prices rose in response to the resulting tight market, the only supply-side solution appeared to lie in the development of liquefied natural gas (LNG) projects in the Middle East and Africa for importation to the North American market. Almost

Howard Rogers

2011-01-01

367

Out of gas: Tenneco in the era of natural gas regulation, 1938--1978  

NASA Astrophysics Data System (ADS)

Federal regulation over the natural gas industry spanned 1938--1978, during which time both the industry and the nature of the regulation changed. The original intent of the law was to reform an industry stagnating because of the Depression, but regulation soon evolved into a public-private partnership to win World War II, then to a framework for the creation and management of a nationwide natural gas grid in the prosperous post-war years, and finally to a confused and chaotic system of wellhead price regulation which produced shortages and discouraged new production during the 1950s and 1960s. By the 1970s, regulation had become ineffective, leading to deregulation in 1978. The natural gas industry operated under the oversight of the Federal Power Commission (FPC) which set gas rates, regulated profits and competition, and established rules for entry and exit into markets. Over the course of four decades, the FPC oversaw the development of a truly national industry built around a system of large diameter pipelines. Tennessee Gas Transmission Company (later Tenneco) was an integral part of this industry. At first, Tenneco prospered under regulation. Regulation provided Tenneco with the means to build its first pipeline and a secure revenue stream for decades. A series of conflicts with the FPC and the difficulties imposed by the Phillips vs. Wisconsin case in 1954 soon interfered with the ambitious long-term goals of Tenneco CEO and president Gardiner Symonds. Tenneco first diversified into unregulated businesses in the 1940s, which accelerated as regulatory changes constrained the company's growth. By the 1960s the company was at the forefront of the conglomeration movement, when Tenneco included a variety of disparate businesses, including oil and gas production, chemicals, consumer packaging, manufacturing, shipbuilding, and food production, among others. Gas transmission became a minority interest in Tenneco's portfolio as newer and larger divisions overshadowed its former core business. The 1970s brought a renewed interest in natural gas and other energy resources as the nation faced chronic energy shortages. As the FPC loosened its low rate policy in the early 1970s to encourage production, Tenneco once again invested heavily in new pipelines and gas exploration, as well as more speculative ventures in Arctic gas, liquefied natural gas, synthetic fuels, and nuclear energy. By 1978, growing public and political support led to deregulation of natural gas, plunging Tenneco into a new era where market forces, not FPC oversight, impacted the gas industry. The deregulation of natural gas in 1978 removed the guaranteed rate of return from Tenneco's bottom line and exposed the weakness of Tenneco's conglomeration---the profitable pipeline had long been used to prop-up weaker businesses. The 1980s and 1990s were characterized by a gradual dissolution of Tenneco.

Raley, David

2011-12-01

368

Natural gas and air mixing device  

SciTech Connect

A natural gas and air mixing device for allowing the combustion of a mixture of natural gas and air in a conventional internal combustion engine. The device includes a gas plenum which disperses natural gas through apertures into a mixing chamber, where the gas mixes with air drawn through passageways in an annular rim which is fitted over the air intake of a conventional carburetor. The construction of the device allows alternate operation of the engine with gasoline as the fuel and requires few alternations in the engine compartment.

Greenway, D.O.; Davis, F.J.

1984-10-30

369

Natural gas 1998: Issues and trends  

SciTech Connect

Natural Gas 1998: Issues and Trends provides a summary of the latest data and information relating to the US natural gas industry, including prices, production, transmission, consumption, and the financial and environmental aspects of the industry. The report consists of seven chapters and five appendices. Chapter 1 presents a summary of various data trends and key issues in today`s natural gas industry and examines some of the emerging trends. Chapters 2 through 7 focus on specific areas or segments of the industry, highlighting some of the issues associated with the impact of natural gas operations on the environment. 57 figs., 18 tabs.

NONE

1999-06-01

370

Natural Gas Variability In California: Environmental Impacts And Device Performance Combustion Modeling of Pollutant Emissions From a Residential Cooking Range  

SciTech Connect

As part of a larger study of liquefied natural gas impacts on device performance and pollutant emissions for existing equipment in California, this report describes a cmoputer modeling study of a partially premixed flame issueing from a single cooktop burner port. The model consisted of a reactive computational fluid dynamics three-dimensional spatial grid and a 71-species chemical mechanism with propane combustion capability. Simulations were conducted with a simplified fuel mixture containing methane, ethane, and propane in proportions that yield properties similar to fuels distributed throughout much of California now and in recent years (baseline fuel), as well as with two variations of simulated liquefied natural gas blends. A variety of simulations were conducted with baseline fuel to explore the effect of several key parameters on pollutant formation and other flame characteristics. Simulations started with fuel and air issuing through the burner port, igniting, and continuing until the flame was steady with time. Conditions at this point were analyzed to understand fuel, secondary air and reaction product flows, regions of pollutant formation, and exhaust concentrations of carbon monoxide, nitric oxide and formaldehyde. A sensitivity study was conducted, varying the inflow parameters of this baseline gs about real-world operating conditions. Flame properties responded as expected from reactive flow theory. In the simulation, carbon monoxide levels were influenced more by the mixture's inflow velocity than by the gas-to-air ratio in the mixture issuing from the inflow port. Additional simulations were executed at two inflow conditions - high heat release and medium heat release - to examine the impact of replacing the baseline gas with two mixtures representative of liquefied natural gas. Flame properties and pollutant generation rates were very similar among the three fuel mixtures.

Tonse, S. R.; Singer, B. C.

2011-07-01

371

Comparative Life-Cycle Air Emissions of Coal, Domestic Natural  

E-print Network

Comparative Life-Cycle Air Emissions of Coal, Domestic Natural Gas, LNG, and SNG for Electricity States' natural gas (NG) demand for electricity generation will increase. Estimates also suggest that NG supply will increasingly come from imported liquefied natural gas (LNG). Additional supplies of NG could

Jaramillo, Paulina

372

Liquefied Gaseous Fuels Safety and Environmental Control Assessment Program: second status report  

SciTech Connect

Volume 2 consists of 19 reports describing technical effort performed by Government Contractors in the area of LNG Safety and Environmental Control. Report topics are: simulation of LNG vapor spread and dispersion by finite element methods; modeling of negatively buoyant vapor cloud dispersion; effect of humidity on the energy budget of a liquefied natural gas (LNG) vapor cloud; LNG fire and explosion phenomena research evaluation; modeling of laminar flames in mixtures of vaporized liquefied natural gas (LNG) and air; chemical kinetics in LNG detonations; effects of cellular structure on the behavior of gaseous detonation waves under transient conditions; computer simulation of combustion and fluid dynamics in two and three dimensions; LNG release prevention and control; the feasibility of methods and systems for reducing LNG tanker fire hazards; safety assessment of gelled LNG; and a four band differential radiometer for monitoring LNG vapors.

None

1980-10-01

373

Natural gas annual 1993 supplement: Company profiles  

SciTech Connect

The Natural Gas Annual provides information on the supply and disposition of natural gas to a wide audience including industry, consumers, Federal and State agencies, and educational institutions. This report, the Natural Gas Annual 1993 Supplement: Company Profiles, presents a detailed profile of 45 selected companies in the natural gas industry. The purpose of this report is to show the movement of natural gas through the various States served by the companies profiled. The companies in this report are interstate pipeline companies or local distribution companies (LDC`s). Interstate pipeline companies acquire gas supplies from company owned production, purchases from producers, and receipts for transportation for account of others. Pipeline systems, service area maps, company supply and disposition data are presented.

Not Available

1995-02-01

374

Study of the Effects of Obstacles in Liquefied Natural Gas (LNG) Vapor Dispersion using CFD Modeling  

E-print Network

of this phenomenon through the application of advanced simulation tools. Computational Fluid Dynamic (CFD) tools are often used to estimate the exclusion zones in an event of accidental LNG spill. In practice these releases are more likely to occur in the confines...

Ruiz Vasquez, Roberto

2012-10-19

375

LNG (liquefied natural gas): A necessary part in China's future energy infrastructure  

Microsoft Academic Search

This paper presents an overview of the LNG industry in China, covering LNG plants, receiving terminals, transportation, and applications. Small and medium scale LNG plants with different liquefaction processes have already been built or are being built. China's first two LNG receiving terminals have been put into operation in Guangdong and Fujian, another one is being built in Shanghai, and

Wensheng Lin; Na Zhang; Anzhong Gu

2010-01-01

376

75 FR 72877 - Pipeline Safety: Updates to Pipeline and Liquefied Natural Gas Reporting Requirements  

Federal Register 2010, 2011, 2012, 2013, 2014

...operating at an unknown percentage of SMYS even though...operations without this determination. For example, Sec...operating at an unknown percentage of SMYS. NiSource...would be similar in content. As discussed above...Register (72 FR 45002) a determination that transport...

2010-11-26

377

Liquefied Natural Gas (LNG) Vapor Dispersion Modeling with Computational Fluid Dynamics Codes  

E-print Network

.......................................... 12 1.3 LNG Hazards ................................................................................................... 12 1.3.1 Cryogenic Hazards .............................................................................. 13 ix Page 1... suitable for cryogenic service. These materials include 9 % nickel steel, aluminum or other cryogenic alloy. The outer wall is generally made of carbon steel or reinforced concrete. The annular space between two tank walls is filled with insulation...

Qi, Ruifeng

2012-10-19

378

Forced Dispersion of Liquefied Natural Gas Vapor Clouds with Water Spray Curtain Application  

E-print Network

, disperse and warm a heavier-than-air vapor cloud. Dispersion of cryogenic LNG vapor behaves differently from other dense gases because of low molecular weight and extremely low temperature. So the interaction between water curtain and LNG vapor... .............................................................................................. 5 1.4.1 Cryogenic Hazards ............................................................................. 5 1.4.2 Flash Fire ........................................................................................... 6 1.4.3 Pool Fire...

Rana, Morshed A.

2011-02-22

379

Clearing the air with natural gas engines  

Microsoft Academic Search

This article examines the increased popularity of natural gas vehicles which has spurred engine designers to manipulate fuel-air ratios, compression ratios, ignition timing, and catalytic converters in ways to minimize exhaust pollutants. The topics of the article include reducing pollutants, high-octane engineering, diesel to natural gas, and the two-fuel choice.

OConnor

1993-01-01

380

System identification of a natural gas engine  

Microsoft Academic Search

Simulation results are shown for linear system identification carried out to identify key model parameters of a lean-burn natural gas engine with transmission. The natural gas engine can be described by a nonlinear plant with three states. The dynamic state equations of the model involve parameters that might vary depending on ambient conditions, type of transmission connected to the engine,

Anupam Gangopadhyay; Peter Meckl

1998-01-01

381

Throttleless Otto-cycle natural gas engines  

Microsoft Academic Search

The results are presented of exploratory research on establishing the feasibility of using preheated intake air for power and torque control in place of conventional throttling. The Throttleless Otto Cycle Natural Gas Engine (TONE) concept was proposed as a way to make vehicular use of natural gas fueled engines more competitive. It was shown that it is possible to increase

M. Shoda; P. D. Ronney; E. J. Durbin

1992-01-01

382

Rate of slag reduction with natural gas  

Microsoft Academic Search

Copper recovery from a slag in Teniente Slag Cleaning Furnace depends strongly on the degree of magnetite reduction and co-reduction of cuprous oxide. The process is using as a reductant bunker oil or coal powder injected with air through tuyeres. Utilisation of natural gas in the slag cleaning process is of great interest in Chilean smelters having natural gas. Lower

G. Riveros; A. Warczok; D. Espinola

383

Natural gas annual 1994: Volume 2  

SciTech Connect

The Natural Gas Annual provides information on the supply and disposition of natural gas to a wide audience including industry, consumers, Federal and State agencies, and educational institutions. This report, Volume 2, presents historical data fro the Nation from 1930 to 1994, and by State from 1967 to 1994.

NONE

1995-11-01

384

Natural gas monthly, October 1990. [Contains glossary  

SciTech Connect

This report highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. 7 figs., 34 tabs.

Not Available

1990-12-28

385

Monthly Natural Gas Gross Production Report  

EIA Publications

Monthly natural gas gross withdrawals estimated from data collected on Form EIA-914 (Monthly Natural Gas Production Report) for Federal Offshore Gulf of Mexico, Texas, Louisiana, New Mexico, Oklahoma, Texas, Wyoming, other states and lower 48 states. Alaska data are from the Alaska state government and included to obtain a U.S. total.

2015-01-01

386

Natural gas 1994: Issues and trends  

SciTech Connect

This report provides an overview of the natural gas industry in 1993 and early 1994 (Chapter 1), focusing on the overall ability to deliver gas under the new regulatory mandates of Order 636. In addition, the report highlights a range of issues affecting the industry, including: restructuring under Order 636 (Chapter 2); adjustments in natural gas contracting (Chapter 3); increased use of underground storage (Chapter 4); effects of the new market on the financial performance of the industry (Chapter 5); continued impacts of major regulatory and legislative changes on the natural gas market (Appendix A).

Not Available

1994-07-01

387

PARTICLE EMISSIONS FROM COMPRESSED NATURAL GAS ENGINES  

Microsoft Academic Search

This paper presents the results of measurements conducted to determine particle and gas emissions from two large compressed natural gas (CNG) spark ignition (SI) engines. Particle size distributions in the range from 0.01–30?m, and gas composition were measured for five power settings of the engines: 35, 50, 65, 80 and 100% of full power. Particle emissions in the size range

Z. D. Ristovski; L. Morawska; J. Hitchins; S. Thomas; C. Greenaway; D. Gilbert

2000-01-01

388

Natural gas monthly, September 1991. [Contains glossary  

SciTech Connect

The Natural Gas Monthly highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production distribution consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. The data in this publication are collected on surveys conducted by the EIA to fulfill its responsibilities for gathering and reporting energy data. Some of the data are collected under the authority of the Federal Energy Regulatory Commission (FERC), an independent commission within the DOE, which has jurisdiction primarily in the regulation of electric utilities and the interstate natural gas industry. Geographic coverage is the 50 States and the District of Columbia.

Not Available

1991-10-18

389

Apparatus and method for gelling liquefied gasses  

NASA Technical Reports Server (NTRS)

The present invention is a method and apparatus for gelling liquid propane and other liquefied gasses. The apparatus includes a temperature controlled churn mixer, vacuum pump, liquefied gas transfer tank, and means for measuring amount of material entering the mixer. The method uses gelling agents such as silicon dioxide, clay, carbon, or organic or inorganic polymers, as well as dopants such as titanium, aluminum, and boron powders. The apparatus and method are particularly useful for the production of high quality rocket fuels and propellants.

Elliott, Adam (Inventor); DiSalvo, Roberto (Inventor); Shepherd, Phillip (Inventor); Kosier, Ryan (Inventor)

2010-01-01

390

IGNITION IMPROVEMENT OF LEAN NATURAL GAS MIXTURES  

SciTech Connect

This report describes work performed during a thirty month project which involves the production of dimethyl ether (DME) on-site for use as an ignition-improving additive in a compression-ignition natural gas engine. A single cylinder spark ignition engine was converted to compression ignition operation. The engine was then fully instrumented with a cylinder pressure transducer, crank shaft position sensor, airflow meter, natural gas mass flow sensor, and an exhaust temperature sensor. Finally, the engine was interfaced with a control system for pilot injection of DME. The engine testing is currently in progress. In addition, a one-pass process to form DME from natural gas was simulated with chemical processing software. Natural gas is reformed to synthesis gas (a mixture of hydrogen and carbon monoxide), converted into methanol, and finally to DME in three steps. Of additional benefit to the internal combustion engine, the offgas from the pilot process can be mixed with the main natural gas charge and is expected to improve engine performance. Furthermore, a one-pass pilot facility was constructed to produce 3.7 liters/hour (0.98 gallons/hour) DME from methanol in order to characterize the effluent DME solution and determine suitability for engine use. Successful production of DME led to an economic estimate of completing a full natural gas-to-DME pilot process. Additional experimental work in constructing a synthesis gas to methanol reactor is in progress. The overall recommendation from this work is that natural gas to DME is not a suitable pathway to improved natural gas engine performance. The major reasons are difficulties in handling DME for pilot injection and the large capital costs associated with DME production from natural gas.

Jason M. Keith

2005-02-01

391

Natural gas vehicles : Status, barriers, and opportunities.  

SciTech Connect

In the United States, recent shale gas discoveries have generated renewed interest in using natural gas as a vehicular fuel, primarily in fleet applications, while outside the United States, natural gas vehicle use has expanded significantly in the past decade. In this report for the U.S. Department of Energy's Clean Cities Program - a public-private partnership that advances the energy, economic, and environmental security of the U.S. by supporting local decisions that reduce petroleum use in the transportation sector - we have examined the state of natural gas vehicle technology, current market status, energy and environmental benefits, implications regarding advancements in European natural gas vehicle technologies, research and development efforts, and current market barriers and opportunities for greater market penetration. The authors contend that commercial intracity trucks are a prime area for advancement of this fuel. Therefore, we examined an aggressive future market penetration of natural gas heavy-duty vehicles that could be seen as a long-term goal. Under this scenario using Energy Information Administration projections and GREET life-cycle modeling of U.S. on-road heavy-duty use, natural gas vehicles would reduce petroleum consumption by approximately 1.2 million barrels of oil per day, while another 400,000 barrels of oil per day reduction could be achieved with significant use of natural gas off-road vehicles. This scenario would reduce daily oil consumption in the United States by about 8%.

Rood Werpy, M.; Santini, D.; Burnham, A.; Mintz, M.; Energy Systems

2010-11-29

392

SEAPORT LIQUID NATURAL GAS STUDY  

SciTech Connect

The Seaport Liquid Natural Gas Study has attempted to evaluate the potential for using LNG in a variety of heavy-duty vehicle and equipment applications at the Ports of Los Angeles and Oakland. Specifically, this analysis has focused on the handling and transport of containerized cargo to, from and within these two facilities. In terms of containerized cargo throughput, Los Angeles and Oakland are the second and sixth busiest ports in the US, respectively, and together handle nearly 4.5 million TEUs per year. At present, the landside handling and transportation of containerized cargo is heavily dependent on diesel-powered, heavy-duty vehicles and equipment, the utilization of which contributes significantly to the overall emissions impact of port-related activities. Emissions from diesel units have been the subject of increasing scrutiny and regulatory action, particularly in California. In the past two years alone, particulate matter from diesel exhaust has been listed as a toxic air contaminant by CAM, and major lawsuits have been filed against several of California's largest supermarket chains, alleging violation of Proposition 65 statutes in connection with diesel emissions from their distribution facilities. CARE3 has also indicated that it may take further regulatory action relating to the TAC listing. In spite of these developments and the very large diesel emissions associated with port operations, there has been little AFV penetration in these applications. Nearly all port operators interviewed by CALSTART expressed an awareness of the issues surrounding diesel use; however, none appeared to be taking proactive steps to address them. Furthermore, while a less controversial issue than emissions, the dominance of diesel fuel use in heavy-duty vehicles contributes to a continued reliance on imported fuels. The increasing concern regarding diesel use, and the concurrent lack of alternative fuel use and vigorous emissions reduction activity at the Ports provide both the backdrop and the impetus for this study.

COOK,Z.

1999-02-01

393

Natural gas industry in Iran  

Microsoft Academic Search

AT the end of March 2007, the remaining quantity of recoverable gas reserves in the country has been in excess of 28.3 trillion cubic meters that is the second gas rich country in the word. While the geological studies in certain geographical regions of the country have not been thoroughly conducted yet. it is likely to explore further reserves of

H. Omidvar

2008-01-01

394

GAS/LIQUID MEMBRANES FOR NATURAL GAS UPGRADING  

SciTech Connect

A new project was initiated this quarter to develop gas/liquid membranes for natural gas upgrading. Efforts have concentrated on legal agreements, including alternative field sites. Gas Technology Institute (GTI) is conducting this research program whose objective is to develop gas/liquid membranes for natural gas upgrading to assist DOE in achieving their goal of developing novel methods of upgrading low quality natural gas to meet pipeline specifications. Kvaerner Process Systems (KPS) and W. L. Gore & Associates (GORE) gas/liquid membrane contactors are based on expanded polytetrafluoroethylene (ePTFE) membranes acting as the contacting barrier between the contaminated gas stream and the absorbing liquid. These resilient membranes provide much greater surface area for transfer than other tower internals, with packing densities five to ten times greater, resulting in equipment 50-70% smaller and lower weight for the same treating service. The scope of the research program is to (1) build and install a laboratory- and a field-scale gas/liquid membrane absorber; (2) operate the units with a low quality natural gas feed stream for sufficient time to verify the simulation model of the contactors and to project membrane life in this severe service; and (3) conducted an economic evaluation, based on the data, to quantify the impact of the technology. Chevron, one of the major producers of natural gas, has offered to host the test at a gas treating plant. KPS will use their position as a recognized leader in the construction of commercial amine plants for building the unit along with GORE providing the membranes. GTI will provide operator and data collection support during lab- and field-testing to assure proper analytical procedures are used. Kvaerner and GTI will perform the final economic evaluation. GTI will provide project management and be responsible for reporting and interactions with DOE on this project.

Howard S. Meyer

2002-06-01

395

The Canoe Ridge Natural Gas Storage Project  

SciTech Connect

In 1999 the Pacific Gas and Electric Gas Transmission Northwest (GTN) drilled a borehole to investigate the feasibility of developing a natural gas-storage facility in a structural dome formed in Columbia River basalts in the Columbia Basin of south-central Washington State. The proposed aquifer storage facility will be an unconventional one where natural gas will be initially injected (and later retrieved) in one or multiple previous horizons (interflow zones) that are confined between deep (>700 meters) basalt flows of the Columbia River Basalt Group. This report summarizes the results of joint investigations on that feasibility study by GTN and the US Department of Energy.

Reidel, Steve P.; Spane, Frank A.; Johnson, Vernon G.

2003-06-18

396

Value-Added Products from Remote Natural Gas  

SciTech Connect

In Wyoming and throughout the United States, there are natural gas fields that are not producing because of their remoteness from gas pipelines. Some of these fields are ideal candidates for a cogeneration scheme where components suitable for chemical feedstock or direct use, such as propane and butane, are separated. Resulting low- to medium-Btu gas is fired in a gas turbine system to provide power for the separation plant. Excess power is sold to the utility, making the integrated plant a true cogeneration facility. This project seeks to identify the appropriate technologies for various subsystems of an integrated plant to recover value-added products from wet gas and/or retrograde condensate reservoirs. Various vendors and equipment manufacturers will be contacted and a data base consisting of feedstock constraints and output specifications for various subsystems and components will be developed. Based on vendor specifications, gas reservoirs suited for value-added product recovery will be identified. A candidate reservoir will then be selected, and an optimum plant layout will be developed. A facility will then be constructed and operated. The project consists of eight subtasks: Compilation of Reservoir Data; Review of Treatment and Conditioning Technologies; Review of Product Recovery and Separation Technologies; Development of Power Generation System; Integrated Plant Design for Candidate Field; System Fabrication; System Operation and Monitoring; and Economic Evaluation and Reporting. The first five tasks have been completed and the sixth is nearly complete. Systems Operations and Monitoring will start next year. The Economic Evaluation and Reporting task will be a continuous effort for the entire project. The reservoir selected for the initial demonstration of the process is the Burnt Wagon Field, Natrona County, Wyoming. The field is in a remote location with no electric power to the area and no gas transmission line. The design for the gas processing train to produce the liquefied gas products includes three gas compressors, a cryogenic separation unit, and a natural gas powered generator. Based on the equipment specifications, air quality permits for the well field and the gas processing unit were developed and the permits were issued by the Wyoming Department of Environmental Quality. Also, to make state and federal reporting easier, three of the four leases that made up the Burnt Wagon were combined. All major equipment has been installed and individual component operability is being conducted. During the next project year, operability testing and the shakedown of the entire system will be completed. Once shakedown is complete, the system will be turned over to the cosponsor for day-to-day operations. During operations, data will be collected through remote linkage to the data acquisition system or analysis of the system performance to develop an economic evaluation of the process.

Lyle A. Johnson

2002-03-15

397

Natural gas annual 1992: Volume 1  

SciTech Connect

This document provides information on the supply and disposition of natural gas to a wide audience including industry, consumers, Federal and State agencies, and education institutions. The 1992 data are presented in a sequence that follows natural gas (including supplemental supplies) from its production top its end use. Tables summarizing natural gas supply and disposition from 1988 to 1992 are given for each Census Division and each State. Annual historical data are shown at the national level. Volume 2 of this report presents State-level historical data.

Not Available

1993-11-22

398

Natural Gas Engine Development Gaps (Presentation)  

SciTech Connect

A review of current natural gas vehicle offerings is presented for both light-duty and medium- and heavy-duty applications. Recent gaps in the marketplace are discussed, along with how they have been or may be addressed. The stakeholder input process for guiding research and development needs via the Natural Gas Vehicle Technology Forum (NGVTF) to the U.S. Department of Energy and the California Energy Commission is reviewed. Current high-level natural gas engine development gap areas are highlighted, including efficiency, emissions, and the certification process.

Zigler, B.T.

2014-03-01

399

Incremental natural gas resources through infield reserve growth/secondary natural gas recovery. [Compartmented natural gas reservoir  

SciTech Connect

The objectives of the Infield Growth/Secondary Natural Gas Recovery project have been: To establish how depositional and diagenetic heterogeneities in reservoirs of conventional permeability cause reservoir compartmentalization and, hence, incomplete recovery of natural gas. To document practical, field-oriented examples of reserve growth from fluvial and deltaic sandstones of the Texas gulf coast basin and to use these gas reservoirs as a natural laboratory for developing concepts and testing applications of both tools and techniques to find secondary gas. To demonstrate how the integration of geology, reservoir engineering, geophysics, and well log analysis/petrophysics leads to strategic recompletion and well placement opportunities for reserve growth in mature fields. To transfer project results to natural gas producers, not just as field case studies, but as conceptual models of how heterogeneities determine natural gas flow and how to recognize the geologic and engineering clues that operators can use in a cost-effective manner to identify secondary gas. Accomplishments are presented for: reservoir characterization; integrated formation evaluation and engineering testing; compartmented reservoir simulator; and reservoir geophysics.

Finley, R.J.; Levey, R.A.

1992-01-01

400

Well log evaluation of natural gas hydrates  

SciTech Connect

Gas hydrates are crystalline substances composed of water and gas, in which a solid-water-lattice accommodates gas molecules in a cage-like structure. Gas hydrates are globally widespread in permafrost regions and beneath the sea in sediment of outer continental margins. While methane, propane, and other gases can be included in the clathrate structure, methane hydrates appear to be the most common in nature. The amount of methane sequestered in gas hydrates is probably enormous, but estimates are speculative and range over three orders of magnitude from about 100,000 to 270,000,000 trillion cubic feet. The amount of gas in the hydrate reservoirs of the world greedy exceeds the volume of known conventional gas reserves. Gas hydrates also represent a significant drilling and production hazard. A fundamental question linking gas hydrate resource and hazard issues is: What is the volume of gas hydrates and included gas within a given gas hydrate occurrence Most published gas hydrate resource estimates have, of necessity, been made by broad extrapolation of only general knowledge of local geologic conditions. Gas volumes that may be attributed to gas hydrates are dependent on a number of reservoir parameters, including the areal extent ofthe gas-hydrate occurrence, reservoir thickness, hydrate number, reservoir porosity, and the degree of gas-hydrate saturation. Two of the most difficult reservoir parameters to determine are porosity and degreeof gas hydrate saturation. Well logs often serve as a source of porosity and hydrocarbon saturation data; however, well-log calculations within gas-hydrate-bearing intervals are subject to error. The primary reason for this difficulty is the lack of quantitative laboratory and field studies. The primary purpose of this paper is to review the response of well logs to the presence of gas hydrates.

Collett, T.S.

1992-10-01

401

Well log evaluation of natural gas hydrates  

SciTech Connect

Gas hydrates are crystalline substances composed of water and gas, in which a solid-water-lattice accommodates gas molecules in a cage-like structure. Gas hydrates are globally widespread in permafrost regions and beneath the sea in sediment of outer continental margins. While methane, propane, and other gases can be included in the clathrate structure, methane hydrates appear to be the most common in nature. The amount of methane sequestered in gas hydrates is probably enormous, but estimates are speculative and range over three orders of magnitude from about 100,000 to 270,000,000 trillion cubic feet. The amount of gas in the hydrate reservoirs of the world greedy exceeds the volume of known conventional gas reserves. Gas hydrates also represent a significant drilling and production hazard. A fundamental question linking gas hydrate resource and hazard issues is: What is the volume of gas hydrates and included gas within a given gas hydrate occurrence? Most published gas hydrate resource estimates have, of necessity, been made by broad extrapolation of only general knowledge of local geologic conditions. Gas volumes that may be attributed to gas hydrates are dependent on a number of reservoir parameters, including the areal extent ofthe gas-hydrate occurrence, reservoir thickness, hydrate number, reservoir porosity, and the degree of gas-hydrate saturation. Two of the most difficult reservoir parameters to determine are porosity and degreeof gas hydrate saturation. Well logs often serve as a source of porosity and hydrocarbon saturation data; however, well-log calculations within gas-hydrate-bearing intervals are subject to error. The primary reason for this difficulty is the lack of quantitative laboratory and field studies. The primary purpose of this paper is to review the response of well logs to the presence of gas hydrates.

Collett, T.S.

1992-10-01

402

Natural gas-assisted steam electrolyzer  

DOEpatents

An efficient method of producing hydrogen by high temperature steam electrolysis that will lower the electricity consumption to an estimated 65 percent lower than has been achievable with previous steam electrolyzer systems. This is accomplished with a natural gas-assisted steam electrolyzer, which significantly reduces the electricity consumption. Since this natural gas-assisted steam electrolyzer replaces one unit of electrical energy by one unit of energy content in natural gas at one-quarter the cost, the hydrogen production cost will be significantly reduced. Also, it is possible to vary the ratio between the electricity and the natural gas supplied to the system in response to fluctuations in relative prices for these two energy sources. In one approach an appropriate catalyst on the anode side of the electrolyzer will promote the partial oxidation of natural gas to CO and hydrogen, called Syn-Gas, and the CO can also be shifted to CO.sub.2 to give additional hydrogen. In another approach the natural gas is used in the anode side of the electrolyzer to burn out the oxygen resulting from electrolysis, thus reducing or eliminating the potential difference across the electrolyzer membrane.

Pham, Ai-Quoc (San Jose, CA); Wallman, P. Henrik (Berkeley, CA); Glass, Robert S. (Livermore, CA)

2000-01-01

403

Magnetic liquefier for hydrogen  

SciTech Connect

This document summarizes work done at the Astronautics Technology Center of the Astronautics Corporation of America (ACA) in Phase 1 of a four phase program leading to the development of a magnetic liquefier for hydrogen. The project involves the design, fabrication, installation, and operation of a hydrogen liquefier providing significantly reduced capital and operating costs, compared to present liquefiers. To achieve this goal, magnetic refrigeration, a recently developed, highly efficient refrigeration technology, will be used for the liquefaction process. Phase 1 project tasks included liquefier conceptual design and analysis, preliminary design of promising configurations, design selection, and detailed design of the selected design. Fabrication drawings and vendor specifications for the selected design were completed during detailed design. The design of a subscale, demonstration magnetic hydrogen liquefier represents a significant advance in liquefaction technology. The cost reductions that can be realized in hydrogen liquefaction in both the subscale and, more importantly, in the full-scale device are expected to have considerable impact on the use of liquid hydrogen in transportation, chemical, and electronic industries. The benefits to the nation from this technological advance will continue to have importance well into the 21st century.

NONE

1992-12-31

404

Degradation of gas turbine performance in natural gas service  

Microsoft Academic Search

The paper covers in detail degradation mechanisms and the impact of component degradation on overall gas turbine performance, in particular for two shaft engines as they are used as drivers for compressors in the natural gas service. The impact of component interaction plays a crucial role in the understanding of degradation effects. This is key in understanding and using other

Rainer Kurz; Klaus Brun

2009-01-01

405

46 CFR 54.15-25 - Minimum relief capacities for cargo tanks containing compressed or liquefied gas.  

Code of Federal Regulations, 2010 CFR

...insulated holds. F=0.1 for membrane and semi-membrane tanks. G=gas factor of: ER25SE09.062 where: L=latent heat of the material being vaporized at the relieving conditions, in Kcal/kg (Btu per pound). C=constant based...

2010-10-01

406

Natural gas at thermodynamic equilibrium Implications for the origin of natural gas  

PubMed Central

It is broadly accepted that so-called 'thermal' gas is the product of thermal cracking, 'primary' thermal gas from kerogen cracking, and 'secondary' thermal gas from oil cracking. Since thermal cracking of hydrocarbons does not generate products at equilibrium and thermal stress should not bring them to equilibrium over geologic time, we would not expect methane, ethane, and propane to be at equilibrium in subsurface deposits. Here we report compelling evidence of natural gas at thermodynamic equilibrium. Molecular compositions are constrained to equilibrium, and isotopic compositions are also under equilibrium constraints: The functions [(CH4)*(C3H8)] and [(C2H6)2] exhibit a strong nonlinear correlation (R2 = 0.84) in which the quotient Q progresses to K as wet gas progresses to dry gas. There are striking similarities between natural gas and catalytic gas generated from marine shales. A Devonian/Mississippian New Albany shale generates gas with Q converging on K over time as wet gas progresses to dry gas at 200°C. The position that thermal cracking is the primary source of natural gas is no longer tenable. It is challenged by its inability to explain the composition of natural gas, natural gases at thermodynamic equilibrium, and by the existence of a catalytic path to gas that better explains gas compositions. PMID:19531233

2009-01-01

407

Preliminary Assumptions for Natural Gas Peaking  

E-print Network

Preliminary Assumptions for Natural Gas Peaking Technologies Gillian Charles and Steve Simmons GRAC, and characteristics Discussion of overnight capital cost assumptions and estimations Preliminary draft reference plants and capital cost estimates for peaking technologies Frame, Aeroderivative, Intercooled

408

A historical analysis of natural gas demand  

NASA Astrophysics Data System (ADS)

This thesis analyzes demand in the US energy market for natural gas, oil, and coal over the period of 1918-2013 and examines their price relationship over the period of 2007-2013. Diagnostic tests for time series were used; Augmented Dickey-Fuller, Kwiatkowski-Phillips-Schmidt-Shin, Johansen cointegration, Granger Causality and weak exogeneity tests. Directed acyclic graphs were used as a complimentary test for endogeneity. Due to the varied results in determining endogeneity, a seemingly unrelated regression model was used which assumes all right hand side variables in the three demand equations were exogenous. A number of factors were significant in determining demand for natural gas including its own price, lagged demand, a number of structural break dummies, and trend, while oil indicate some substitutability with natural gas. An error correction model was used to examine the price relationships. Natural gas price was found not to have a significant cointegrating vector.

Dalbec, Nathan Richard

409

Natural gas annual 1992: Supplement: Company profiles  

SciTech Connect

The data for the Natural Gas Annual 1991 Supplement : Company Profiles are taken from Form EIA-176, (open quotes) Annual Report of Natural and Supplemental Gas Supply and Disposition (close quotes). Other sources include industry literature and corporate annual reports to shareholders. The companies appearing in this report are major interstate natural gas pipeline companies, large distribution companies, or combination companies with both pipeline and distribution operations. The report contains profiles of 45 corporate families. The profiles describe briefly each company, where it operates, and any important issues that the company faces. The purpose of this report is to show the movement of natural gas through the various States served by the 45 large companies profiled.

Not Available

1994-01-01

410

Anaerobic methanethiol degradation and methanogenic community analysis in an alkaline (pH 10) biological process for liquefied petroleum gas desulfurization.  

PubMed

Anaerobic methanethiol (MT) degradation by mesophilic (30 degrees C) alkaliphilic (pH 10) communities was studied in a lab-scale Upflow Anaerobic Sludge Bed (UASB) reactor inoculated with a mixture of sediments from the Wadden Sea (The Netherlands), Soap Lake (Central Washington), and Russian soda lakes. MT degradation started after 32 days of incubation. During the first 252 days, complete degradation was achieved till a volumetric loading rate of 7.5 mmol MT/L/day, and sulfide, methane, and carbon dioxide were the main reaction products. Temporary inhibition of MT degradation occurred after MT peak loads and in the presence of dimethyl disulfide (DMDS), which is the autooxidation product of MT. From day 252 onwards, methanol was dosed to the reactor as co-substrate at a loading rate of 3-6 mmol/L/day to stimulate growth of methylotrophic methanogens. Methanol was completely degraded and also a complete MT degradation was achieved till a volumetric loading rate of 13 mmol MT/L/day (0.77 mmol MT/gVSS/day). However, from day 354 till the end of the experimental run (day 365), acetate was formed and MT was not completely degraded anymore, indicating that methanol-degrading homoacetogenic bacteria had partially outcompeted the methanogenic MT-degrading archea. The archeal community in the reactor sludge was analyzed by DGGE and sequencing of 16S rRNA genes. The methanogenic archea responsible for the degradation of MT in the reactor were related to Methanolobus oregonensis. A pure culture, named strain SODA, was obtained by serial dilutions in medium containing both trimethyl amine and dimethyl sulfide (DMS). Strain SODA degraded MT, DMS, trimethyl amine, and methanol. Flow sheet simulations revealed that for sufficient MT removal from liquefied petroleum gas, the extraction and biological degradation process should be operated above pH 9. PMID:18814290

van Leerdam, Robin C; Bonilla-Salinas, Monica; de Bok, Frank A M; Bruning, H; Lens, Piet N L; Stams, Alfons J M; Janssen, Albert J H

2008-11-01

411

Method for route selection of transcontinental natural gas pipelines  

E-print Network

1 Method for route selection of transcontinental natural gas pipelines Fotios G. Thomaidis1.U. energy corridor 1. Introduction Route selection of transcontinental natural gas pipelines route selection method The route selection method for transcontinental natural gas pipelines results

Kouroupetroglou, Georgios

412

USSR: development of its natural gas industry  

Microsoft Academic Search

Natural gas production in Russia currently stands at 13 tcf compared to US production of 20 tcf. Russian production is expected to increase to 15.4 tcf in 1980 and will surpass the US production total by 1985 (estimated 24.72 tcf). Natural gas reserves in the USSR are estimated at 990 tcf, amounting to a 72-yr life index at the 1976

Lippitt; H. F. II

1979-01-01

413

PVT measurements for five natural gas mixtures  

E-print Network

Major Subject: Chemical Engineering PVT MEASUREMENTS FOR FIVE NATURAL GAS MIXTURES A Thesis by PHILIP PARAYIL SIMON Approved as to style and content by: James C. Holste (Chair of Committee) Kenneth N. Marsh (Member) Randolph C. Wilhoit (Member...) Raymond W. Flumerfelt (Head of Department) August 1991 ABSTRACT PVT Measurements for Five Natural Gas Mixtures (August 1991) Philip Parayil Simon, B. Tech. , Indian Institute of Technology, Madras Chair of Advisory Committee: Dr. James C. Holste...

Simon, Philip Parayil

1991-01-01

414

Natural Gas and the Marcellus Shale  

NSDL National Science Digital Library

This homework problem introduces students to Marcellus shale natural gas and how an unconventional reservoir rock can become an attractive hydrocarbon target. It is designed to expand students' understanding of hydrocarbon resources by introducing an unconventional natural gas play. Students explore the technological factors that make conventional source rocks attractive reservoir rocks and how this advance impacts both U.S. energy supply and the environment.

Sid Halsor

415

GAS/LIQUID MEMBRANES FOR NATURAL GAS UPGRADING  

SciTech Connect

Gas Technology Institute (GTI) is conducting this research program whose objective is to develop gas/liquid membranes for natural gas upgrading to assist DOE in achieving their goal of developing novel methods of upgrading low quality natural gas to meet pipeline specifications. Kvaerner Process Systems (KPS) and W. L. Gore & Associates (GORE) gas/liquid membrane contactors are based on expanded polytetrafluoroethylene (ePTFE) membranes acting as the contacting barrier between the contaminated gas stream and the absorbing liquid. These resilient membranes provide much greater surface area for transfer than other tower internals, with packing densities five to ten times greater, resulting in equipment 50-70% smaller and lower weight for the same treating service. The scope of the research program is to (1) build and install a laboratory- and a field-scale gas/liquid membrane absorber; (2) operate the units with a low quality natural gas feed stream for sufficient time to verify the simulation model of the contactors and to project membrane life in this severe service; and (3) conducted an economic evaluation, based on the data, to quantify the impact of the technology. Chevron, one of the major producers of natural gas, has offered to host the test at a gas treating plant. KPS will use their position as a recognized leader in the construction of commercial amine plants for building the unit along with GORE providing the membranes. GTI will provide operator and data collection support during lab- and field-testing to assure proper analytical procedures are used. KPS and GTI will perform the final economic evaluation. GTI will provide project management and be responsible for reporting and interactions with DOE on this project. Efforts this quarter have concentrated on field site selection. ChevronTexaco has nominated their Headlee Gas Plant in Odessa, TX for a commercial-scale dehydration test. Potting and module materials testing were initiated. Preliminary design of the bench-scale equipment continues.

Howard S. Meyer

2003-04-01

416

How Regulators Should Use Natural Gas Price Forecasts  

Microsoft Academic Search

Natural gas prices are critical to a range of regulatory decisions covering both electric and gas utilities. Natural gas prices are often a crucial variable in electric generation capacity planning and in the benefit-cost relationship for energy-efficiency programs. High natural gas prices can make coal generation the most economical new source, while low prices can make natural gas generation the

Ken Costello

2010-01-01

417

Natural gas production verification tests  

SciTech Connect

This Environmental Assessment (EA) has been prepared by the Department of Energy (DOE) in compliance with the requirements of the National Environmental Policy Act of 1969. The Department of Energy (DOE) proposes to fund, through a contract with Petroleum Consulting Services, Inc. of Canton, Ohio, the testing of the effectiveness of a non-water based hydraulic fracturing treatment to increase gas recovery from low-pressure, tight, fractured Devonian Shale formations. Although Devonian Shales are found in the Appalachian, Michigan, and Illinois Basins, testing will be done only in the dominant, historical five state area of established production. The objective of this proposed project is to assess the benefits of liquid carbon dioxide (CO{sub 2})/sand stimulations in the Devonian Shale. In addition, this project would evaluate the potential nondamaging (to the formation) properties of this unique fracturing treatment relative to the clogging or chocking of pores and fractures that act as gas flow paths to the wellbore in the target gas-producing zones of the formation. This liquid CO{sub 2}/sand fracturing process is water-free and is expected to facilitate gas well cleanup, reduce the time required for post-stimulation cleanup, and result in improved production levels in a much shorter time than is currently experienced.

Not Available

1992-02-01

418

GAS/LIQUID MEMBRANES FOR NATURAL GAS UPGRADING  

SciTech Connect

Efforts this quarter have concentrated on legal agreements, including alternative field sites. Preliminary design of the bench-scale equipment has been initiated. Gas Technology Institute (GTI) is conducting this research program whose objective is to develop gas/liquid membranes for natural gas upgrading to assist DOE in achieving their goal of developing novel methods of upgrading low quality natural gas to meet pipeline specifications. Kvaerner Process Systems (KPS) and W. L. Gore & Associates (GORE) gas/liquid membrane contactors are based on expanded polytetrafluoroethylene (ePTFE) membranes acting as the contacting barrier between the contaminated gas stream and the absorbing liquid. These resilient membranes provide much greater surface area for transfer than other tower internals, with packing densities five to ten times greater, resulting in equipment 50--70% smaller and lower weight for the same treating service. The scope of the research program is to (1) build and install a laboratory- and a field-scale gas/liquid membrane absorber; (2) operate the units with a low quality natural gas feed stream for sufficient time to verify the simulation model of the contactors and to project membrane life in this severe service; and (3) conducted an economic evaluation, based on the data, to quantify the impact of the technology. Chevron, one of the major producers of natural gas, has offered to host the test at a gas treating plant. KPS will use their position as a recognized leader in the construction of commercial amine plants for building the unit along with GORE providing the membranes. GTI will provide operator and data collection support during lab- and field-testing to assure proper analytical procedures are used. Kvaerner and GTI will perform the final economic evaluation. GTI will provide project management and be responsible for reporting and interactions with DOE on this project.

Howard S. Meyer

2002-06-01

419

GAS/LIQUID MEMBRANES FOR NATURAL GAS UPGRADING  

SciTech Connect

Gas Technology Institute (GTI) is conducting this research program whose objective is to develop gas/liquid membranes for natural gas upgrading to assist DOE in achieving their goal of developing novel methods of upgrading low quality natural gas to meet pipeline specifications. Kvaerner Process Systems (KPS) and W. L. Gore & Associates (GORE) gas/liquid membrane contactors are based on expanded polytetrafluoroethylene (ePTFE) membranes acting as the contacting barrier between the contaminated gas stream and the absorbing liquid. These resilient membranes provide much greater surface area for transfer than other tower internals, with packing densities five to ten times greater, resulting in equipment 50-70% smaller and lower weight for the same treating service. The scope of the research program is to (1) build and install a laboratory- and a field-scale gas/liquid membrane absorber; (2) operate the units with a low quality natural gas feed stream for sufficient time to verify the simulation model of the contactors and to project membrane life in this severe service; and (3) conducted an economic evaluation, based on the data, to quantify the impact of the technology. Chevron, one of the major producers of natural gas, has offered to host the test at a gas treating plant. KPS will use their position as a recognized leader in the construction of commercial amine plants for building the unit along with GORE providing the membranes. GTI will provide operator and data collection support during lab- and field-testing to assure proper analytical procedures are used. KPS and GTI will perform the final economic evaluation. GTI will provide project management and be responsible for reporting and interactions with DOE on this project. Efforts this quarter have concentrated on legal agreements, including alternative field sites. Preliminary design of the bench-scale equipment continues.

Howard S. Meyer

2002-10-01

420

GAS/LIQUID MEMBRANES FOR NATURAL GAS UPGRADING  

SciTech Connect

Efforts this quarter have concentrated on legal agreements, including alternative field sites. Preliminary design of the bench-scale equipment continues. Gas Technology Institute (GTI) is conducting this research program whose objective is to develop gas/liquid membranes for natural gas upgrading to assist DOE in achieving their goal of developing novel methods of upgrading low quality natural gas to meet pipeline specifications. Kvaerner Process Systems (KPS) and W. L. Gore & Associates (GORE) gas/liquid membrane contactors are based on expanded polytetrafluoroethylene (ePTFE) membranes acting as the contacting barrier between the contaminated gas stream and the absorbing liquid. These resilient membranes provide much greater surface area for transfer than other tower internals, with packing densities five to ten times greater, resulting in equipment 50--70% smaller and lower weight for the same treating service. The scope of the research program is to (1) build and install a laboratory- and a field-scale gas/liquid membrane absorber; (2) operate the units with a low quality natural gas feed stream for sufficient time to verify the simulation model of the contactors and to project membrane life in this severe service; and (3) conducted an economic evaluation, based on the data, to quantify the impact of the technology. Chevron, one of the major producers of natural gas, has offered to host the test at a gas treating plant. KPS will use their position as a recognized leader in the construction of commercial amine plants for building the unit along with GORE providing the membranes. GTI will provide operator and data collection support during lab- and field-testing to assure proper analytical procedures are used. Kvaerner and GTI will perform the final economic evaluation. GTI will provide project management and be responsible for reporting and interactions with DOE on this project.

Howard S. Meyer

2002-06-30

421

GAS/LIQUID MEMBRANES FOR NATURAL GAS UPGRADING  

SciTech Connect

Gas Technology Institute (GTI) is conducting this research program whose objective is to develop gas/liquid membranes for natural gas upgrading to assist DOE in achieving their goal of developing novel methods of upgrading low quality natural gas to meet pipeline specifications. Kvaerner Process Systems (KPS) and W. L. Gore & Associates (GORE) gas/liquid membrane contactors are based on expanded polytetrafluoroethylene (ePTFE) membranes acting as the contacting barrier between the contaminated gas stream and the absorbing liquid. These resilient membranes provide much greater surface area for transfer than other tower internals, with packing densities five to ten times greater, resulting in equipment 50-70% smaller and lower weight for the same treating service. The scope of the research program is to (1) build and install a laboratory- and a field-scale gas/liquid membrane absorber; (2) operate the units with a low quality natural gas feed stream for sufficient time to verify the simulation model of the contactors and to project membrane life in this severe service; and (3) conducted an economic evaluation, based on the data, to quantify the impact of the technology. Chevron, one of the major producers of natural gas, has offered to host the test at a gas treating plant. KPS will use their position as a recognized leader in the construction of commercial amine plants for building the unit along with GORE providing the membranes. GTI will provide operator and data collection support during lab- and field-testing to assure proper analytical procedures are used. Kvaerner and GTI will perform the final economic evaluation. GTI will provide project management and be responsible for reporting and interactions with DOE on this project. Efforts this quarter have concentrated on legal agreements, including alternative field sites. Preliminary design of the bench-scale equipment continues.

Howard S. Meyer

2003-01-01

422

Development of HCCI natural gas engines  

Microsoft Academic Search

The possibility of turbocharging into a natural gas homogeneous charge compression ignition (HCCI) engine is experimentally investigated. Experiments are performed using a naturally aspirated engine fitted with an external supercharger and a butterfly valve for back pressure control to simulate a turbocharger. The results indicate that the thermal efficiency can be improved by raising the engine compression ratio and lowering

Kazunobu Kobayashi; Takahiro Sako; Yoshimi Sakaguchi; Satoshi Morimoto; Sumihiro Kanematsu; Kiyoshi Suzuki; Tohru Nakazono; Hiroyuki Ohtsubo

2011-01-01

423

NATURAL GAS RESOURCES IN DEEP SEDIMENTARY BASINS  

SciTech Connect

From a geological perspective, deep natural gas resources are generally defined as resources occurring in reservoirs at or below 15,000 feet, whereas ultra-deep gas occurs below 25,000 feet. From an operational point of view, ''deep'' is often thought of in a relative sense based on the geologic and engineering knowledge of gas (and oil) resources in a particular area. Deep gas can be found in either conventionally-trapped or unconventional basin-center accumulations that are essentially large single fields having spatial dimensions often exceeding those of conventional fields. Exploration for deep conventional and unconventional basin-center natural gas resources deserves special attention because these resources are widespread and occur in diverse geologic environments. In 1995, the U.S. Geological Survey estimated that 939 TCF of technically recoverable natural gas remained to be discovered or was part of reserve appreciation from known fields in the onshore areas and State waters of the United. Of this USGS resource, nearly 114 trillion cubic feet (Tcf) of technically-recoverable gas remains to be discovered from deep sedimentary basins. Worldwide estimates of deep gas are also high. The U.S. Geological Survey World Petroleum Assessment 2000 Project recently estimated a world mean undiscovered conventional gas resource outside the U.S. of 844 Tcf below 4.5 km (about 15,000 feet). Less is known about the origins of deep gas than about the origins of gas at shallower depths because fewer wells have been drilled into the deeper portions of many basins. Some of the many factors contributing to the origin of deep gas include the thermal stability of methane, the role of water and non-hydrocarbon gases in natural gas generation, porosity loss with increasing thermal maturity, the kinetics of deep gas generation, thermal cracking of oil to gas, and source rock potential based on thermal maturity and kerogen type. Recent experimental simulations using laboratory pyrolysis methods have provided much information on the origins of deep gas. Technologic problems are one of the greatest challenges to deep drilling. Problems associated with overcoming hostile drilling environments (e.g. high temperatures and pressures, and acid gases such as CO{sub 2} and H{sub 2}S) for successful well completion, present the greatest obstacles to drilling, evaluating, and developing deep gas fields. Even though the overall success ratio for deep wells is about 50 percent, a lack of geological and geophysical information such as reservoir quality, trap development, and gas composition continues to be a major barrier to deep gas exploration. Results of recent finding-cost studies by depth interval for the onshore U.S. indicate that, on average, deep wells cost nearly 10 times more to drill than shallow wells, but well costs and gas recoveries vary widely among different gas plays in different basins. Based on an analysis of natural gas assessments, many topical areas hold significant promise for future exploration and development. One such area involves re-evaluating and assessing hypothetical unconventional basin-center gas plays. Poorly-understood basin-center gas plays could contain significant deep undiscovered technically-recoverable gas resources.

Thaddeus S. Dyman; Troy Cook; Robert A. Crovelli; Allison A. Henry; Timothy C. Hester; Ronald C. Johnson; Michael D. Lewan; Vito F. Nuccio; James W. Schmoker; Dennis B. Riggin; Christopher J. Schenk

2002-02-05

424

49 CFR 173.336 - Nitrogen dioxide, liquefied, or dinitrogen tetroxide, liquefied.  

Code of Federal Regulations, 2013 CFR

...2013-10-01 2013-10-01 false Nitrogen dioxide, liquefied, or dinitrogen...Preparation and Packaging § 173.336 Nitrogen dioxide, liquefied, or dinitrogen tetroxide, liquefied. (a) Nitrogen dioxide, liquefied, or...

2013-10-01

425

49 CFR 173.336 - Nitrogen dioxide, liquefied, or dinitrogen tetroxide, liquefied.  

Code of Federal Regulations, 2011 CFR

...2011-10-01 2011-10-01 false Nitrogen dioxide, liquefied, or dinitrogen...Preparation and Packaging § 173.336 Nitrogen dioxide, liquefied, or dinitrogen tetroxide, liquefied. (a) Nitrogen dioxide, liquefied, or...

2011-10-01

426

49 CFR 173.336 - Nitrogen dioxide, liquefied, or dinitrogen tetroxide, liquefied.  

Code of Federal Regulations, 2012 CFR

...2012-10-01 2012-10-01 false Nitrogen dioxide, liquefied, or dinitrogen...Preparation and Packaging § 173.336 Nitrogen dioxide, liquefied, or dinitrogen tetroxide, liquefied. (a) Nitrogen dioxide, liquefied, or...

2012-10-01

427

49 CFR 173.336 - Nitrogen dioxide, liquefied, or dinitrogen tetroxide, liquefied.  

Code of Federal Regulations, 2014 CFR

...2014-10-01 2014-10-01 false Nitrogen dioxide, liquefied, or dinitrogen...Preparation and Packaging § 173.336 Nitrogen dioxide, liquefied, or dinitrogen tetroxide, liquefied. (a) Nitrogen dioxide, liquefied, or...

2014-10-01

428

49 CFR 173.336 - Nitrogen dioxide, liquefied, or dinitrogen tetroxide, liquefied.  

Code of Federal Regulations, 2010 CFR

...2010-10-01 2010-10-01 false Nitrogen dioxide, liquefied, or dinitrogen...Preparation and Packaging § 173.336 Nitrogen dioxide, liquefied, or dinitrogen tetroxide, liquefied. (a) Nitrogen dioxide, liquefied, or...

2010-10-01

429

Life-cycle greenhouse gas emissions of shale gas, natural gas, coal, and petroleum.  

PubMed

The technologies and practices that have enabled the recent boom in shale gas production have also brought attention to the environmental impacts of its use. It has been debated whether the fugitive methane emissions during natural gas production and transmission outweigh the lower carbon dioxide emissions during combustion when compared to coal and petroleum. Using the current state of knowledge of methane emissions from shale gas, conventional natural gas, coal, and petroleum, we estimated up-to-date life-cycle greenhouse gas emissions. In addition, we developed distribution functions for key parameters in each pathway to examine uncertainty and identify data gaps such as methane emissions from shale gas well completions and conventional natural gas liquid unloadings that need to be further addressed. Our base case results show that shale gas life-cycle emissions are 6% lower than conventional natural gas, 23% lower than gasoline, and 33% lower than coal. However, the range in values for shale and conventional gas overlap, so there is a statistical uncertainty whether shale gas emissions are indeed lower than conventional gas. Moreover, this life-cycle analysis, among other work in this area, provides insight on critical stages that the natural gas industry and government agencies can work together on to reduce the greenhouse gas footprint of natural gas. PMID:22107036

Burnham, Andrew; Han, Jeongwoo; Clark, Corrie E; Wang, Michael; Dunn, Jennifer B; Palou-Rivera, Ignasi

2012-01-17

430

Reliability of natural gas cogeneration systems  

SciTech Connect

Cogeneration systems fueled by natural gas exceed the reliability of most central station power generating units, according to a study conducted by RINC Corporation for Gas Research Institute (GRI). In the study, researchers obtained operating data from 122 natural gas cogeneration units nationwide representing 2,200 megawatts (MW) of capacity and nearly 2 million hours of operating time at 37 facilities. Units were grouped into categories reflecting size (from 60 kilowatts to 100 MW), type of system (gas engine or gas turbine technology), use of emission controls, and type of thermal application. Various types and sizes of gas systems reported average availability factors ranging from 90.0 to 95.8 versus a weighted average of 85.9 percent for fossil-fuel steam, nuclear, and gas-turbine-based central station power generating units. Comparisons are based on study data and data reported by the North American Electric Reliability Council for utility power plants. Gas cogeneration can improve utility operations because as a group the relatively small, dispersed cogeneration units are more reliable than one or more large central station units of similar capacity.

NONE

1995-12-01

431

Natural Gas Prices Forecast Comparison--AEO vs. Natural Gas Markets  

SciTech Connect

This paper evaluates the accuracy of two methods to forecast natural gas prices: using the Energy Information Administration's ''Annual Energy Outlook'' forecasted price (AEO) and the ''Henry Hub'' compared to U.S. Wellhead futures price. A statistical analysis is performed to determine the relative accuracy of the two measures in the recent past. A statistical analysis suggests that the Henry Hub futures price provides a more accurate average forecast of natural gas prices than the AEO. For example, the Henry Hub futures price underestimated the natural gas price by 35 cents per thousand cubic feet (11.5 percent) between 1996 and 2003 and the AEO underestimated by 71 cents per thousand cubic feet (23.4 percent). Upon closer inspection, a liner regression analysis reveals that two distinct time periods exist, the period between 1996 to 1999 and the period between 2000 to 2003. For the time period between 1996 to 1999, AEO showed a weak negative correlation (R-square = 0.19) between forecast price by actual U.S. Wellhead natural gas price versus the Henry Hub with a weak positive correlation (R-square = 0.20) between forecasted price and U.S. Wellhead natural gas price. During the time period between 2000 to 2003, AEO shows a moderate positive correlation (R-square = 0.37) between forecasted natural gas price and U.S. Wellhead natural gas price versus the Henry Hub that show a moderate positive correlation (R-square = 0.36) between forecast price and U.S. Wellhead natural gas price. These results suggest that agencies forecasting natural gas prices should consider incorporating the Henry Hub natural gas futures price into their forecasting models along with the AEO forecast. Our analysis is very preliminary and is based on a very small data set. Naturally the results of the analysis may change, as more data is made available.

Wong-Parodi, Gabrielle; Lekov, Alex; Dale, Larry

2005-02-09

432

The solar thermal decarbonization of natural gas  

Microsoft Academic Search

The endothermic decomposition of natural gas into a carbon-rich condensed phase and a hydrogen-rich gas phase, using concentrated solar energy as the source of high-temperature process heat, is considered as a model reaction for conducting a 2nd-law analysis of a solar decarbonization process in which carbon is removed from fossil fuels prior to their use for power generation. The theoretical

D. Hirsch; M. Epstein; A. Steinfeld

2001-01-01

433

Comparative study of regulated and unregulated air pollutant emissions before and after conversion of automobiles from gasoline power to liquefied petroleum gas/gasoline dual-fuel retrofits.  

PubMed

Liquefied petroleum gas (LPG) is increasingly being examined as an alternative to gasoline use in automobiles as interest grows in reducing air pollutant emissions. In this study, emissions of regulated (CO, THC, NO(x)) and unregulated air pollutants, including CO2, particulate matter (PM), polycyclic aromatic hydrocarbons (PAHs), and BTEX (acronym for benzene, toluene, ethylbenzene, xylene), were measured before and after conversion of nine gasoline-powered automobiles to LPG/ gasoline dual-fuel retrofits. The tests were conducted on a standard chassis dynamometer in accordance with the United States Environmental Protection Agency FTP-75 test procedure, with the exception that all tests were conducted under hot-start driving conditions. The influences of LPG on air pollutant emission levels and carcinogenic potency were investigated and compared with gasoline. The results showed average emission factors of 0.14 g/km, 0.33 mg/km, 0.09 g/km, 0.44 g/km, and 197 g/km for CO, THC, NO(x), PM, and CO2, respectively, for LPG/ gasoline dual-fuel retrofits. Paired-sample t-test results indicated that the emissions of CO (p = 0.03), THC (p = 0.04), and CO2 (p = 4.6 x 10(-8)) were significantly reduced with the retrofit in comparison with gasoline-powered automobiles. The reduction percentages were 71%, 89%, and 14% for CO, THC, and CO2, respectively. The average total PAH emission factor for LPG was 217 microg/km, which is significantly lower than gasoline (863 microg/km; p = 0.05). The PAH corresponding carcinogenicities (BaP(eq)) were calculated via toxic equivalencies based on benzo(a)pyrene (BaP). Paired-sample t-test results fortotal BaP(eq) emissions showed no significant difference between gasoline (30.0 microg/km) and LPG (24.8 microg/km) at a confidence level of 95%. The discrepancy between PAH and BaP(eq) emissions resulted from the higher emission percentages of high molecular weight PAHs for LPG, which might be from lubricant oil. The average emission factors of benzene, toluene, ethylbenzene, and xylene were 351, 4400, 324, and 1100 microg/ km, respectively, with LPG as fuel, which were all significantly lower than those for gasoline (95% confidence level). The average reduction percentages were 78%, 61%, 57%, and 58% for benzene, toluene, ethylbenzene, and xylene, respectively. PMID:18200881

Yang, Hsi-Hsien; Chien, Shu-Mei; Cheng, Man-Ting; Peng, Chiung-Yu

2007-12-15

434

A comparative study of the elemental composition of the exhaust emissions of cars powered by liquefied petroleum gas and unleaded petrol  

NASA Astrophysics Data System (ADS)

Elements emitted from the exhausts of new Ford Falcon Forte cars powered by unleaded petrol (ULP) and liquefied petroleum gas (LPG) were measured on a chassis dynamometer. The measurements were carried out in February, June and August 2001, and at two steady state driving conditions (60 and 80 km h -1). Thirty seven elements were quantified in the exhaust samples by inductively coupled plasma mass spectrometry (ICPMS). The total emission factors of the elements from the exhausts of ULP cars were higher than those of LPG cars at both engine speeds even though high variability in the exhaust emissions from different cars was noted. The effect of the operating conditions such as mileage of the cars, engine speed, fuel and lubricating oil compositions on the emissions was studied. To investigate the effects of these conditions, multivariate data analysis methods were employed including exploratory principal component analysis (PCA), and the multi-criteria decision making methods (MCDM), preference ranking organization method for enrichment evaluation (PROMETHEE) and geometrical analysis for interactive aid (GAIA), for ranking the cars on the basis of the emission factors of the elements. PCA biplot of the complete data matrix showed a clear discrimination of the February, June and August emission test results. In addition, (i) platinum group elements (PGE) emissions were separated from each other in the three different clusters viz. Pt with February, Pd with June and Rh with August; (ii) the motor oil related elements, Zn and P, were particularly associated with the June and August tests (these vectors were also grouped with V, Al and Cu); and (iii) highest emissions of most major elements were associated with the August test after the cars have recorded their highest mileage. Extensive analysis with the aid of the MCDM ranking methods demonstrated clearly that cars powered by LPG outperform those powered by ULP. In general, cars tested in June perform better than those tested in August, which suggested that mileage was the key criterion of car performance on the basis of elemental emission factors.

Lim, McKenzie C. H.; Ayoko, Godwin A.; Morawska, Lidia; Ristovski, Zoran D.; Jayaratne, E. Rohan; Kokot, Serge

435

Method and apparatus for the cooling of natural gas  

Microsoft Academic Search

A method is claimed for cooling natural gas in a system in which the natural gas contains components other than methane which are separable by dewpoint condensation and the natural gas is available from a source, e.g. a well, at an elevated pressure. In accordance with the present invention, the natural gas is initially expanded in a work-producing expansion turbine

Strass

1982-01-01

436

Natural gas strategic plan and program crosscut plans  

SciTech Connect

The natural gas strategic plan recognizes the challenges and opportunities facing increased U.S. natural gas use. Focus areas of research include natural gas supply, delivery, and storage, power generation, industrial, residential and commercial, natural gas vehicles, and the environment. Historical aspects, mission, situation analysis, technology trends, strategic issues, performance indicators, technology program overviews, and forecasting in the above areas are described.

NONE

1995-06-01

437

Oil & Natural Gas Technology DOE Award No.: FWP 49462  

E-print Network

Used by Marcellus Shale Gas Producers Submitted by: John A. Veil Argonne National Laboratory Argonne, and gas shales. Figure 1 shows EIA projections of the source of natural gas supplies through 2030 productive oil and gas activities in the country today are shale gas plays. Figure 1 ­ U.S. Natural Gas

Boyer, Elizabeth W.

438

Implications of Disruption to Natural Gas Deliverability  

SciTech Connect

This project was sponsored by Department of Energy/Office of Electricity Delivery and Energy Reliability and managed by the National Energy Technology Laboratory. The primary purpose of the project was to analyze the capability of the natural gas production, transmission and supply systems to continue to provide service in the event of a major disruption in capacity of one or more natural gas transmission pipelines. The project was specifically designed to detail the ability of natural gas market to absorb facility losses and efficiently reallocate gas supplies during a significant pipeline capacity disruption in terms that allowed federal and state agencies and interests to develop effective policies and action plans to prioritize natural gas deliveries from a regional and national perspective. The analyses for each regional study were based on four primary considerations: (1) operating conditions (pipeline capacity, storage capacity, local production, power dispatch decision making and end user options); (2) weather; (3) magnitude and location of the disruption; and, (4) normal versus emergency situation. The detailed information contained in the region reports as generated from this project are Unclassified Controlled Information; and as such are subject to disclosure in accordance with the Freedom of Information Act. Therefore, this report defines the regions that were analyzed and the basic methodologies and assumptions used to completing the analysis.

Science Applications International

2008-09-30

439

GAS/LIQUID MEMBRANES FOR NATURAL GAS UPGRADING  

SciTech Connect

Gas Technology Institute (GTI) is conducting this research program whose objective is to develop gas/liquid membranes for natural gas upgrading to assist DOE in achieving their goal of developing novel methods of upgrading low quality natural gas to meet pipeline specifications. Kvaerner Process Systems (KPS) and W. L. Gore & Associates (GORE) gas/liquid membrane contactors are based on expanded polytetrafluoroethylene (ePTFE) membranes acting as the contacting barrier between the contaminated gas stream and the absorbing liquid. These resilient membranes provide much greater surface area for transfer than other tower internals, with packing densities five to ten times greater, resulting in equipment 50-70% smaller and lower weight for the same treating service. The scope of the research program is to (1) build and install a laboratory- and a field-scale gas/liquid membrane absorber; (2) operate the units with a low quality natural gas feed stream for sufficient time to verify the simulation model of the contactors and to project membrane life in this severe service; and (3) conducted an economic evaluation, based on the data, to quantify the impact of the technology. Chevron, one of the major producers of natural gas, has offered to host the test at a gas treating plant. KPS will use their position as a recognized leader in the construction of commercial amine plants for building the unit along with GORE providing the membranes. GTI will provide operator and data collection support during lab- and field-testing to assure proper analytical procedures are used. Kvaerner and GTI will perform the final economic evaluation. GTI will provide project management and be responsible for reporting and interactions with DOE on this project. Efforts this quarter have concentrated on field site selection. ChevronTexaco has nominated their Headlee Gas Plant in Odessa, TX for a commercial-scale dehydration test. Design and cost estimation for this new site are underway. A HazOp review was conducted. Potting and module materials testing continued. Preliminary design of the bench-scale equipment continues. A status meeting was held in Morgantown, WV with the DOE Project Manager.

Howard S. Meyer

2003-10-01

440

GAS/LIQUID MEMBRANES FOR NATURAL GAS UPGRADING  

SciTech Connect

Gas Technology Institute (GTI) is conducting this research program whose objective is to develop gas/liquid membranes for natural gas upgrading to assist DOE in achieving their goal of developing novel methods of upgrading low quality natural gas to meet pipeline specifications. Kvaerner Process Systems (KPS) and W. L. Gore & Associates (GORE) gas/liquid membrane contactors are based on expanded polytetrafluoroethylene (ePTFE) membranes acting as the contacting barrier between the contaminated gas stream and the absorbing liquid. These resilient membranes provide much greater surface area for transfer than other tower internals, with packing densities five to ten times greater, resulting in equipment 50-70% smaller and lower weight for the same treating service. The scope of the research program is to (1) build and install a laboratory- and a field-scale gas/liquid membrane absorber; (2) operate the units with a low quality natural gas feed stream for sufficient time to verify the simulation model of the contactors and to project membrane life in this severe service; and (3) conducted an economic evaluation, based on the data, to quantify the impact of the technology. Chevron, one of the major producers of natural gas, has offered to host the test at a gas treating plant. KPS will use their position as a recognized leader in the construction of commercial amine plants for building the unit along with GORE providing the membranes. GTI will provide operator and data collection support during lab- and field-testing to assure proper analytical procedures are used. Kvaerner and GTI will perform the final economic evaluation. GTI will provide project management and be responsible for reporting and interactions with DOE on this project. Efforts this quarter have concentrated on field site selection. ChevronTexaco has nominated their Headlee Gas Plant in Odessa, TX for a commercial-scale dehydration test. Design and cost estimation for this new site are underway. Potting and module materials testing continued. Preliminary design of the bench-scale equipment continues.

Howard S. Meyer

2003-07-01

441

77 FR 69781 - Enhanced Natural Gas Market Transparency  

Federal Register 2010, 2011, 2012, 2013, 2014

...Commission has identified additional areas of the natural gas market in which it believes increased...next month (i.e., next month gas). B. Areas Identified To Increase Price Transparency in the Natural Gas Markets 10. The Commission...

2012-11-21

442

Russia’s Natural Gas Export Potential up to 2050  

E-print Network

Recent increases in natural gas reserve estimates and advances in shale gas technology make natural gas a fuel with good prospects to serve a bridge to a low-carbon world. Russia is an important energy supplier as it holds ...

Paltsev, Sergey

443

Adsorbed natural gas storage with activated carbon  

SciTech Connect

Despite technical advances to reduce air pollution emissions, motor vehicles still account for 30 to 70% emissions of all urban air pollutants. The Clean Air Act Amendments of 1990 require 100 cities in the United States to reduce the amount of their smog within 5 to 15 years. Hence, auto emissions, the major cause of smog, must be reduced 30 to 60% by 1998. Natural gas con be combusted with less pollutant emissions. Adsorbed natural gas (ANG) uses adsorbents and operates with a low storage pressure which results in lower capital costs and maintenance. This paper describes the production of an activated carbon adsorbent produced from an Illinois coal for ANG.

Sun, Jian; Brady, T.A.; Rood, M.J. [Univ. of Illinois, Urbana, IL (United States)] [and others

1996-12-31

444

Dynamic simulation and optimization of the operation of boil-off gas compressors in a liquefied natural gas gasification plant  

Microsoft Academic Search

We propose an algorithm for the optimal operation schedule of the BOG compression process based on simulation of the dynamic\\u000a behavior of an LNG tank. The algorithm uses an empirical boil-off rate model to predict the amount of BOG generation, and\\u000a an MILP formulation to distribute the BOG compressors loads. Finally, a safety analysis is done using a dynamic simulator.

Namjin Jang; Myoung Wook Shin; Soo Hyoung Choi; En Sup Yoon

2011-01-01

445

Mitchell firmly retrenched in natural gas services  

SciTech Connect

The past three years, Mitchell Energy and Development Corp. has undergone a massive restructuring that has changed the face of one of the nation`s largest and best-known natural gas/natural gas liquids companies. Facing a rapidly changing industry that frequently has been stung by volatile swings in energy markets, management of the independent company, founded by George Mitchell in 1946, sold off $300 million in non-core assets; reduced its long-term debt by $400 million; instituted a hiring freeze and reduced its workforce by a third, from 2,900 to 1,950, over the last three years. Mitchell negotiated a buyout of its hugely profitable North Texas gas sales contract with Natural Gas Pipeline Company of America as a means of easing its transition to a market-sensitive price environment and reducing its debt. Mitchell also took operational control. Finally, Mitchell has left the real estate business, culminating July 31 with the sale of its real estate subsidiary, The Woodlands Corporation, for $543 million ($460 million net after-tax), further reducing its workforce to 1,100. On Aug. 18, the company said it will use the proceeds to repurchase common stock, retire another $200 million of public debt, make asset niche energy acquisitions and increase capital spending for existing programs. The result is a renewed focus on its exploration and production and gas gathering, processing and marketing businesses.

Share, J.

1997-09-01

446

Tertiary oil recovery process involving multiple cycles of gas--water injection after surfactant flood  

Microsoft Academic Search

The oil recovery efficiency of a tertiary oil recovery process such as a surfactant flood is improved by injecting after the surfactant solution alternating cycles of water and small volume slugs of a gas such as air, nitrogen, carbon dioxide, flue or exhaust gas, natural gas, methane, ethane, propane, butane, liquefied petroleum gas and mixtures thereof. (auth)

Carlin

1975-01-01

447

Natural Gas Regulatory Policy: Current Issues  

E-print Network

the options of industrial energy consumers for purchasing and moving natural gas. This panel viII discuss important developments in federal and state regulatory arenas and their impacts on purchasing options. Among the issues discussed viII be: 1...

Watkins, G.

448

Automatic natural gas compressor control system  

Microsoft Academic Search

A control system for a compressor utilized in transferring natural gas from relatively low pressure wells to a relatively high pressure pipe line incorporating automatic shutdown of the compressor and automatic restart of the compressor in response to certain conditions with the compressor operating at a desired flow rate regardless of upstream fluctuations in pressure. The compressor is unloaded upon

Dunnam; J. A. Jr

1984-01-01

449

Preliminary Assumptions for Natural Gas Peaking  

E-print Network

Preliminary Assumptions for Natural Gas Peaking Technologies Gillian Charles GRAC 2/27/14 #12;Today Robbins 2 #12;Peaking Power Plant Characteristics 6th Power Plan ($2006) Unit Size (MW) Capital Cost ($/k Overnight Capital Cost (2012$)* Almond 2-4 July 2012 (3) 58 MW GE LM6000 PG 174 MW Turlock, CA $1,153/kw

450

Mexican demand for US natural gas  

SciTech Connect

This study describes the Mexican natural gas industry as it exists today and the factors that have shaped the evolution of the industry in the past or that are expected to influence its progress; it also projects production and use of natural gas and estimates the market for exports of natural gas from the United States to Mexico. The study looks ahead to two periods, a near term (1993--1995) and an intermediate term (1996--2000). The bases for estimates under two scenarios are described. Under the conservative scenario, exports of natural gas from the United States would decrease from the 1992 level of 250 million cubic feet per day (MMCF/d), would return to that level by 1995, and would reach about 980 MMCF/D by 2000. Under the more optimistic scenario, exports would decrease in 1993 and would recover and rise to about 360 MMCF/D in 1995 and to 1,920 MMCF/D in 2000.

Kanter, M.A.; Kier, P.H.

1993-09-01

451

Experimental studies on a natural gas vehicle  

Microsoft Academic Search

This paper presents the results of several studies conducted on a natural gas vehicle. In one study of engine-out emissions performance, the exhaust emissions of the CNG engine were lower than those of the base gasoline engine. In another study of the conversion characteristics of three-way catalysts, it was found that the conversion efficiency of total hydrocarbons (THCs) was much

Mitsunori Ishii; Shizuo Ishizawa; Eiji Inada; Ryuichi Idoguchi; Toru Sekiba

1994-01-01

452

Minimizing liquid contaminants in natural gas liquids  

SciTech Connect

In processing natural gas liquids, significant contamination occurs with liquid dispersions and emulsions. Natural gas liquids (NGL) and liquid petroleum gas (LPG) streams are treated with caustic to remove residual organic sulfur compounds such as mercaptans and with amines to remove hydrogen sulfide. In both cases a liquid/liquid contactor is used. Significant amounts of the caustic or amine can be carried over into the product stream in process units that are running at rates above design capacity, are treating high sulfur feed stocks, or have other operational problems. The carried over liquid results in off-spec products, excessive loses of caustic or amine, and can cause operating problems in downstream processes. In addition, water is a significant contaminant which can cause LPG and natural gasoline to be off-specification. This paper discusses a new technique for separating very stable liquid dispersions of caustic, amine, or water from natural gas liquids using liquid/liquid cartridge coalescers constructed with specially formulated polymer and fluoropolymer medium with enhanced surface properties. In addition, factors influencing the coalescer mechanism will be discussed including interfacial tension, concentration of surface active compounds, steric repulsion, and electrostatic charge affects. Results from field tests, operating data from commercial installations, and economic benefits will also be presented.

Brown, R.L. [Pall Industrial Process Filtration, East Hills, NY (United States); Wines, T.H. [Pall Scientific and Laboratory Services, Port Washington, NY (United States); Williamson, K.M. [Pall Process Equipment Development, Cortland, NY (United States)

1996-12-31

453

Evaluating metalorganic frameworks for natural gas storage  

E-print Network

emissions, making natural gas a signi- cantly cleaner burning fuel than gasoline.2 Indeed, initial eld tests found up to 86% less CO, 26% less CO2, and 77% less NOx emissions aer converting gasoline cars to run that of gasoline in many countries.4 In spite of this, several challenges have prevented the wide- spread use

454

Naturally fractured tight gas reservoir detection optimization  

SciTech Connect

Building upon the partitioning of the Greater Green River Basin (GGRB) that was conducted last quarter, the goal of the work this quarter has been to conclude evaluation of the Stratos well and the prototypical Green River Deep partition, and perform the fill resource evaluation of the Upper Cretaceous tight gas play, with the goal of defining target areas of enhanced natural fracturing. The work plan for the quarter of November 1-December 31, 1998 comprised four tasks: (1) Evaluation of the Green River Deep partition and the Stratos well and examination of potential opportunity for expanding the use of E and P technology to low permeability, naturally fractured gas reservoirs, (2) Gas field studies, and (3) Resource analysis of the balance of the partitions.

NONE

1999-06-01

455

Solving Natural Gas Loadflow Problems Using Electric Loadflow Techniques  

Microsoft Academic Search

Methods to solve natural gas loadflow problems using electric loadflow techniques are presented. The motivation is to integrate a natural gas network with an electric power transmission network so that the network analysis for a combined natural gas and electric power distribution network can be performed in a consistent manner. The issues arising from solving gas loadflow problems are discussed

Qing Li; Seungwon An; Thomas W. Gedra

456

Natural gas hydrates and the mystery of the Bermuda Triangle  

Microsoft Academic Search

Natural gas hydrates occur on the ocean floor in such great volumes that they contain twice as much carbon as all known coal, oil and conventional natural gas deposits. Releases of this gas caused by sediment slides and other natural causes have resulted in huge slugs of gas saturated water with density too low to float a ship, and enough

Gruy

1998-01-01

457

Natural gas hydrates on the North Slope of Alaska  

Microsoft Academic Search

Gas hydrates are crystalline substances composed of water and gas, mainly methane, in which a solid-water lattice accommodates gas molecules in a cage-like structure, or clathrate. These substances often have been regarded as a potential (unconventional) source of natural gas. Significant quantities of naturally occurring gas hydrates have been detected in many regions of the Arctic including Siberia, the Mackenzie

Collett

1991-01-01

458

Method and apparatus for dispensing compressed natural gas and liquified natural gas to natural gas powered vehicles  

DOEpatents

A fueling facility and method for dispensing liquid natural gas (LNG), compressed natural gas (CNG) or both on-demand. The fueling facility may include a source of LNG, such as cryogenic storage vessel. A low volume high pressure pump is coupled to the source of LNG to produce a stream of pressurized LNG. The stream of pressurized LNG may be selectively directed through an LNG flow path or to a CNG flow path which includes a vaporizer configured to produce CNG from the pressurized LNG. A portion of the CNG may be drawn from the CNG flow path and introduced into the CNG flow path to control the temperature of LNG flowing therethrough. Similarly, a portion of the LNG may be drawn from the LNG flow path and introduced into the CNG flow path to control the temperature of CNG flowing therethrough.

Bingham, Dennis A.; Clark, Michael L.; Wilding, Bruce M.; Palmer, Gary L.

2005-05-31

459

Natural gas legislation: a consumer's perspective  

SciTech Connect

This report evaluates three major legislative proposals: accelerated decontrol of both old and new wellhead prices as proposed by the Reagan administration (S.615, H.R. 1760); imposition of new natural gas price controls at lower levels as proposed by Congressman Gephardt (H.R. 2154); and conversion of interstate gas pipelines to common carriage as proposed by Senators Dixon and Percy and by Congressman Corcoran (S. 1119, H.R. 2565). The reference or base case scenario used in the evaluation is a continuation of the Natural Gas Policy Act of 1978 (NGPA) with no legislative modifications. First, projections of wellhead and burner-tip natural gas prices are presented for the period 1983-1990, and then consumer benefits under the different scenarios are estimated. All projections presented assume that legislation takes effect as of January 1, 1983 and that normal weather patterns are experienced. All prices identified in the report are given in 1982 dollars unless otherwise indicated. 5 figs., 1 tab.

Lemon, J.R.

1983-08-01

460

LIQUID NATURAL GAS (LNG): AN ALTERNATIVE FUEL FROM LANDFILL GAS (LFG) AND WASTEWATER DIGESTER GAS  

SciTech Connect

This Research and Development Subcontract sought to find economic, technical and policy links between methane recovery at landfill and wastewater treatment sites in New York and Maryland, and ways to use that methane as an alternative fuel--compressed natural gas (CNG) or liquid natural gas (LNG) -- in centrally fueled Alternative Fueled Vehicles (AFVs).

VANDOR,D.

1999-03-01

461

West Virginia University 1 Department of Petroleum & Natural Gas  

E-print Network

West Virginia University 1 Department of Petroleum & Natural Gas Engineering E-mail: Statler-PNGE@mail.wvu.edu Degree Offered · Bachelor of Science in Petroleum and Natural Gas Engineering (B.S.P.N.G.E.) Nature of Program Petroleum and Natural Gas Engineering is concerned with design and application aspects

Mohaghegh, Shahab

462

Natural Gas Vehicle Developments--a Gas Industry And Original Equipment Manufacturer Cooperative Effort  

Microsoft Academic Search

For many years, natural gas has been used as an engine fuel in stationary prime movers driving natural gas compressors, liquid pumps, and similar equipment. However, the physical and economic barriers restricting the broad acceptance of natural gas as an alternative fuel in the transportation market have proven to be formidable. In spite of this, new opportunities for natural gas

1990-01-01

463

The 1991 natural gas vehicle challenge: Developing dedicated natural gas vehicle technology  

Microsoft Academic Search

An engineering research and design competition to develop and demonstrate dedicated natural gas-powered light-duty trucks, the Natural Gas Vehicle (NGV) Challenge, was held June 6-11, 1991, in Oklahoma. Sponsored by the US Department of Energy (DOE), Energy, Mines, and Resources -- Canada (EMR), the Society of Automative Engineers (SAE), and General Motors Corporation (GM), the competition consisted of rigorous vehicle

R. Larsen; W. Rimkus; J. Davies; M. Zammit; P. Patterson

1992-01-01

464

Incremental natural gas resources through infield reserve growth/secondary natural gas recovery  

SciTech Connect

The objectives of the Infield Growth/Secondary Natural Gas Recovery project have been: To establish how depositional and diagenetic heterogeneities in reservoirs of conventional permeability cause reservoir compartmentalization and, hence, incomplete recovery of natural gas. To document practical, field-oriented examples of reserve growth from fluvial and deltaic sandstones of the Texas gulf coast basin and to use these gas reservoirs as a natural laboratory for developing concepts and testing applications of both tools and techniques to find secondary gas. To demonstrate how the integration of geology, reservoir engineering, geophysics, and well log analysis/petrophysics leads to strategic recompletion and well placement opportunities for reserve growth in mature fields. To transfer project results to natural gas producers, not just as field case studies, but as conceptual models of how heterogeneities determine natural gas flow and how to recognize the geologic and engineering clues that operators can use in a cost-effective manner to identify secondary gas. Accomplishments are presented for: reservoir characterization; integrated formation evaluation and engineering testing; compartmented reservoir simulator; and reservoir geophysics.

Finley, R.J.; Levey, R.A.

1992-08-01

465

Incremental natural gas resources through infield reserve growth/secondary natural gas recovery  

SciTech Connect

The primary objective of the Infield Reserve Growth/Secondary Natural Gas Recovery (SGR) project is to develop, test, and verify technologies and methodologies with near- to midterm potential for maximizing the recovery of natural gasfrom conventional reservoirs in known fields. Additional technical and technology transfer objectives of the SGR project include: To establish how depositional and diagenetic heterogeneities in reservoirs of conventional permeability cause reservoir compartmentalization and, hence, incomplete recovery of natural gas. To document examples of reserve growth occurrence and potential from fluvial and deltaic sandstones of the Texas gulf coast basin as a natural laboratory for developing concepts and testing applications to find secondary gas. To demonstrate how the integration of geology, reservoir engineering, geophysics, and well log analysis/petrophysics leads to strategic recompletion and well placement opportunities for reserve growth in mature fields. To transfer project results to a wide array of natural gas producers, not just as field case studies, but as conceptual models of how heterogeneities determine natural gas flow units and how to recognize the geologic and engineering clues that operators can use in a cost-effective manner to identify incremental, or secondary, gas.

Finley, R.J.; Levey, R.A.; Hardage, B.A.

1993-12-31

466

Consortium for Petroleum & Natural Gas Stripper Wells  

SciTech Connect

The Pennsylvania State University, under contract to the U.S. Department of Energy (DOE), National Energy Technology Laboratory (NETL), established a national industry-driven Stripper Well Consortium (SWC) that is focused on improving the production performance of domestic petroleum and/or natural gas stripper wells. The SWC represents a partnership between U.S. petroleum and natural gas producers, trade associations, state funding agencies, academia, and the NETL. This document serves as the twelfth quarterly technical progress report for the SWC. Key activities for this reporting period included: (1) Drafting and releasing the 2007 Request for Proposals; (2) Securing a meeting facility, scheduling and drafting plans for the 2007 Spring Proposal Meeting; (3) Conducting elections and announcing representatives for the four 2007-2008 Executive Council seats; (4) 2005 Final Project Reports; (5) Personal Digital Assistant Workshops scheduled; and (6) Communications and outreach.

Joel L. Morrison; Sharon L. Elder

2007-03-31

467

Naturally fractured tight gas reservoir detection optimization  

SciTech Connect

The goal of the work this quarter has been to partition and high-grade the Greater Green River basin for exploration efforts in the Upper Cretaceous tight gas play and to initiate resource assessment of the basin. The work plan for the quarter of July 1-September 30, 1998 comprised three tasks: (1) Refining the exploration process for deep, naturally fractured gas reservoirs; (2) Partitioning of the basin based on structure and areas of overpressure; (3) Examination of the Kinney and Canyon Creek fields with respect to the Cretaceous tight gas play and initiation of the resource assessment of the Vermilion sub-basin partition (which contains these two fields); and (4) Initiation analysis of the Deep Green River Partition with respect to the Stratos well and assessment of the resource in the partition.

NONE

1998-11-30

468

18 CFR 2.78 - Utilization and conservation of natural resources-natural gas.  

Code of Federal Regulations, 2011 CFR

...2011-04-01 false Utilization and conservation of natural resources-natural gas. 2.78 Section 2.78 Conservation of...Statements of General Policy and Interpretations Under the Natural Gas Act § 2.78 Utilization and...

2011-04-01

469

18 CFR 2.78 - Utilization and conservation of natural resources-natural gas.  

Code of Federal Regulations, 2014 CFR

...2014-04-01 false Utilization and conservation of natural resources-natural gas. 2.78 Section 2.78 Conservation of...Statements of General Policy and Interpretations Under the Natural Gas Act § 2.78 Utilization and...

2014-04-01

470

18 CFR 2.78 - Utilization and conservation of natural resources-natural gas.  

Code of Federal Regulations, 2010 CFR

...2010-04-01 false Utilization and conservation of natural resources-natural gas. 2.78 Section 2.78 Conservation of...Statements of General Policy and Interpretations Under the Natural Gas Act § 2.78 Utilization and...

2010-04-01

471

18 CFR 2.78 - Utilization and conservation of natural resources-natural gas.  

Code of Federal Regulations, 2012 CFR

...2012-04-01 false Utilization and conservation of natural resources-natural gas. 2.78 Section 2.78 Conservation of...Statements of General Policy and Interpretations Under the Natural Gas Act § 2.78 Utilization and...

2012-04-01

472

Hydrogen-Enhanced Natural Gas Vehicle Program  

SciTech Connect

The project objective is to demonstrate the viability of HCNG fuel (30 to 50% hydrogen by volume and the remainder natural gas) to reduce emissions from light-duty on-road vehicles with no loss in performance or efficiency. The City of Las Vegas has an interest in alternative fuels and already has an existing hydrogen refueling station. Collier Technologies Inc (CT) supplied the latest design retrofit kits capable of converting nine compressed natural gas (CNG) fueled, light-duty vehicles powered by the Ford 5.4L Triton engine. CT installed the kits on the first two vehicles in Las Vegas, trained personnel at the City of Las Vegas (the City) to perform the additional seven retrofits, and developed materials for allowing other entities to perform these retrofits as well. These vehicles were used in normal service by the City while driver impressions, reliability, fuel efficiency and emissions were documented for a minimum of one year after conversion. This project has shown the efficacy of operating vehicles originally designed to operate on compressed natural gas with HCNG fuel incorporating large quantities of exhaust gas recirculation (EGR). There were no safety issues experienced with these vehicles. The only maintenance issue in the project was some rough idling due to problems with the EGR valve and piping parts. Once the rough idling was corrected no further maintenance issues with these vehicles were experienced. Fuel economy data showed no significant changes after conversion even with the added power provided by the superchargers that were part of the conversions. Driver feedback for the conversions was very favorable. The additional power provided by the HCNG vehicles was greatly appreciated, especially in traffic. The drivability of the HCNG vehicles was considered to be superior by the drivers. Most of the converted vehicles showed zero oxides of nitrogen throughout the life of the project using the State of Nevada emissions station.

Hyde, Dan; Collier, Kirk

2009-01-22

473

Evaluation of Natural Gas Pipeline Materials and Infrastructure for  

E-print Network

Evaluation of Natural Gas Pipeline Materials and Infrastructure for Hydrogen/Mixed Gas Service the existing natural gas transmission and distribution piping network for hydrogen/mixed gas delivery ­ Develop Capital Cost Hydrogen Effects on Materials Leakage/Seals Compressor/Valves/Inspection Collaborators

474

Development of a Natural Gas-to-Hydrogen Fueling System  

E-print Network

Compressors Storage Dispensers Natural Gas Water Electricity Energy Losses CO2 Effluent TraceGas Effluent> Development of a Natural Gas-to- Hydrogen Fueling System DOE Hydrogen & Fuel Cell Merit Review William E. Liss Gas Technology Institute May 2003 Cooperative Agreement DE-FC04-02AL67607 #12;2 Hydrogen

475

Oil free compression on a natural gas pipeline  

Microsoft Academic Search

Oil entrainment in the natural gas steam together with maintenance associated with oil systems have been long standing problems in booster compressors on a natural gas pipeline system. The use of dry gas shaft seals and active magnetic bearings will effectively eliminate the use of oil systems in gas compression. The paper deals with the history of TransCanada PipeLines' past

G. F. Cataford; R. P. Lancee

1986-01-01

476

Security-Constrained Unit Commitment With Natural Gas Transmission Constraints  

Microsoft Academic Search

The contribution of this paper focuses on the development of a security-based methodology for the solution of short-term SCUC when considering the impact of natural gas transmission system. The proposed methodology examines the interdependency of electricity and natural gas in a highly complex transmission system. The natural gas transmission system is modeled as a set of nonlinear equations. The proposed

Cong Liu; Mohammad Shahidehpour; Yong Fu; Zuyi Li

2009-01-01

477

Compressed natural gas vehicles: Motoring towards a cleaner Beijing  

Microsoft Academic Search

This paper first describes the state-of-the-art of compressed natural gas (CNG) technologies and evaluates the market prospects for CNG vehicles in Beijing. An analysis of the natural gas resource supply for fleet vehicles follows. The costs and benefits of establishing natural gas filling stations and promoting the development of vehicle technology are evaluated. The quantity of GHG reduction is calculated.

Guo Xiao Yan; Wang Tian Min

1997-01-01

478

Cost of Natural Gas Used in Manufacturing Sector Has Fallen  

EIA Publications

Natural gas has been an important exception to the trend of rising prices for energy sources used by manufacturers. Production of natural gas in the United States increased rapidly beginning in 2007 as a result of resources found in shale formations. That increase in supply has in turn lowered the price of natural gas to manufacturers

2013-01-01

479

The 1991 natural gas vehicle challenge: Developing dedicated natural gas vehicle technology  

SciTech Connect

An engineering research and design competition to develop and demonstrate dedicated natural gas-powered light-duty trucks, the Natural Gas Vehicle (NGV) Challenge, was held June 6--11, 1191, in Oklahoma. Sponsored by the US Department of Energy (DOE), Energy, Mines, and Resources -- Canada (EMR), the Society of Automative Engineers (SAE), and General Motors Corporation (GM), the competition consisted of rigorous vehicle testing of exhaust emissions, fuel economy, performance parameters, and vehicle design. Using Sierra 2500 pickup trucks donated by GM, 24 teams of college and university engineers from the US and Canada participated in the event. A gasoline-powered control testing as a reference vehicle. This paper discusses the results of the event, summarizes the technologies employed, and makes observations on the state of natural gas vehicle technology.

Larsen, R.; Rimkus, W. [Argonne National Lab., IL (United States); Davies, J. [General Motors of Canada Ltd., Toronto, ON (Canada); Zammit, M. [AC Rochester, NY (United States); Patterson, P. [USDOE, Washington, DC (United States)

1992-02-01

480

The 1991 natural gas vehicle challenge: Developing dedicated natural gas vehicle technology  

SciTech Connect

An engineering research and design competition to develop and demonstrate dedicated natural gas-powered light-duty trucks, the Natural Gas Vehicle (NGV) Challenge, was held June 6--11, 1191, in Oklahoma. Sponsored by the US Department of Energy (DOE), Energy, Mines, and Resources -- Canada (EMR), the Society of Automative Engineers (SAE), and General Motors Corporation (GM), the competition consisted of rigorous vehicle testing of exhaust emissions, fuel economy, performance parameters, and vehicle design. Using Sierra 2500 pickup trucks donated by GM, 24 teams of college and university engineers from the US and Canada participated in the event. A gasoline-powered control testing as a reference vehicle. This paper discusses the results of the event, summarizes the technologies employed, and makes observations on the state of natural gas vehicle technology.

Larsen, R.; Rimkus, W. (Argonne National Lab., IL (United States)); Davies, J. (General Motors of Canada Ltd., Toronto, ON (Canada)); Zammit, M. (AC Rochester, NY (United States)); Patterson, P. (USDOE, Washington, DC (United States))

1992-01-01

481

Natural gas gathering and transportation issues, 1998 Texas perspective  

SciTech Connect

In 1996 and 1997, the natural gas industry was intensely focused on the debate surrounding proposed new rules governing the gathering and transportation of natural gas in Texas by the Railroad Commission. This paper reviews that debate and several other regulatory issues that could impact the natural gas and gas processing industries over the next few years. In addition to the review of the Code of Conduct, this paper focuses on results of the informal complaint process, implementation of new legislation requiring the approval of construction of sour gas pipelines and several other natural gas related issues.

Kitchens, R.L. [Railroad Commission of Texas, Austin, TX (United States)

1998-12-31

482

Comparative life-cycle air emissions of coal, domestic natural gas, LNG, and SNG for electricity generation  

SciTech Connect

The U.S. Department of Energy (DOE) estimates that in the coming decades the United States' natural gas (NG) demand for electricity generation will increase. Estimates also suggest that NG supply will increasingly come from imported liquefied natural gas (LNG). Additional supplies of NG could come domestically from the production of synthetic natural gas (SNG) via coal gasification-methanation. The objective of this study is to compare greenhouse gas (GHG), SOx, and NOx life-cycle emissions of electricity generated with NG/LNG/SNG and coal. This life-cycle comparison of air emissions from different fuels can help us better understand the advantages and disadvantages of using coal versus globally sourced NG for electricity generation. Our estimates suggest that with the current fleet of power plants, a mix of domestic NG, LNG, and SNG would have lower GHG emissions than coal. If advanced technologies with carbon capture and sequestration (CCS) are used, however, coal and a mix of domestic NG, LNG, and SNG would have very similar life-cycle GHG emissions. For SOx and NOx we find there are significant emissions in the upstream stages of the NG/LNG life-cycles, which contribute to a larger range in SOx and NOx emissions for NG/LNG than for coal and SNG. 38 refs., 3 figs., 2 tabs.

Paulina Jaramillo; W. Michael Griffin; H. Scott Matthews [Carnegie Mellon University, Pittsburgh, PA (United States). Civil and Environmental Engineering Department

2007-09-15

483

Method and apparatus for treating natural gas from gas wells for safe transportation in pressure vessels  

Microsoft Academic Search

A system for treating natural gas from a gas source, such as a gas well, to make it suitable for safe transport in high tensile strength pressure vessels at pressures in excess of 2000 psi. The system comprises suitable pipes and valves for taking gas from a gas well. A separator is provided for removing free liquids from the gas

R. Pronovost; P. Innis; L. M. ORouke

1985-01-01

484

Evaluation of aftermarket fuel delivery systems for natural gas and LPG vehicles  

SciTech Connect

This study was designed to evaluate the effectiveness of aftermarket fuel delivery systems for vehicles fueled by compressed natural gas (CNG) and liquefied petroleum gas (LPG). Most of the CNG and LPG vehicles studied were converted to the alternative fuel after purchase. There are wide variations in the quality of the conversion hardware and the installation. This leads to questions about the overall quality of the converted vehicles, in terms of emissions, safety, and performance. There is a considerable body of emissions data for converted light-duty vehicles, and a smaller amount for medium- and heavy-duty vehicles. However, very few of these data involve real world conditions, and there is growing concern about in-use emissions. This report also attempts to assess factors that could allow in-use emissions to vary from the ``best-case`` results normally reported. The study also addresses issues of fuel supply, fuel composition, performance, safety, and warranty waivers. The report is based on an extensive literature and product survey and on the author`s experience with fuel delivery systems for light-duty vehicles.

Willson, B. [Colorado State