Science.gov

Sample records for gas operational discharges

  1. Operation of Ferroelectric Plasma Sources in a Gas Discharge Mode

    SciTech Connect

    A. Dunaevsky; N.J. Fisch

    2004-03-08

    Ferroelectric plasma sources in vacuum are known as sources of ablative plasma, formed due to surface discharge. In this paper, observations of a gas discharge mode of operation of the ferroelectric plasma sources (FPS) are reported. The gas discharge appears at pressures between approximately 20 and approximately 80 Torr. At pressures of 1-20 Torr, there is a transition from vacuum surface discharge to the gas discharge, when both modes coexist and the surface discharges sustain the gas discharge. At pressures between 20 and 80 Torr, the surface discharges are suppressed, and FPS operate in pure gas discharge mode, with the formation of almost uniform plasma along the entire surface of the ceramics between strips. The density of the expanding plasma is estimated to be about 1013 cm-3 at a distance of 5.5 mm from the surface. The power consumption of the discharge is comparatively low, making it useful for various applications. This paper also presents direct measurements of the yield of secondary electron emission from ferroelectric ceramics, which, at low energies of primary electrons, is high and dependent on the polarization of the ferroelectric material

  2. Hydrogen discharges operating at atmospheric pressure in a semiconductor gas discharge system

    NASA Astrophysics Data System (ADS)

    Aktas, K.; Acar, S.; Salamov, B. G.

    2011-08-01

    Analyses of physical processes which initiate electrical breakdown and spatial stabilization of current and control it with a photosensitive cathode in a semiconductor gas discharge system (SGDS) are carried out in a wide pressure range up to atmospheric pressure p, interelectrode distance d and diameter D of the electrode areas of the semiconductor cathode. The study compares the breakdown and stability curves of the gas discharge in the planar SGDS where the discharge gap is filled with hydrogen and air in two cases. The impact of the ionizing component of the discharge plasma on the control of the stable operation of the planar SGDS is also investigated at atmospheric pressure. The loss of stability is primarily due to modification of the semiconductor-cathode properties on the interaction with low-energy hydrogen ions and the formation of a space charge of positive ions in the discharge gap which changes the discharge from Townsend to glow type. The experimental results show that the discharge current in H2 is more stable than in air. The breakdown voltages are measured for H2 and air with parallel-plane electrodes, for pressures between 28 and 760 Torr. The effective secondary electron emission (SEE) coefficient is then determined from the breakdown voltage results and compared with the experimental results. The influence of the SEE coefficient is stated in terms of the differences between the experimental breakdown law.

  3. INTENSE ENERGETIC GAS DISCHARGE

    DOEpatents

    Luce, J.S.

    1960-03-01

    A method and apparatus for initiating and sustaining an energetic gas arc discharge are described. A hollow cathode and a hollow anode are provided. By regulating the rate of gas flow into the interior of the cathode, the arc discharge is caused to run from the inner surface of the cathode with the result that adequate space-charge neutralization is provided inside the cathode but not in the main arc volume. Thus, the gas fed to the cathode is substantially completely ionized before it leaves the cathode, with the result that an energetic arc discharge can be maintained at lower operating pressures.

  4. Radiofrequency gas plasma (glow discharge) disinfection of dental operative instruments, including handpieces.

    PubMed

    Baier, R E; Carter, J M; Sorensen, S E; Meyer, A E; McGowan, B D; Kasprzak, S A

    1992-01-01

    The radiofrequency-stimulated argon gas plasma (glow discharge) technique, already well-known for surface cleaning and activation of adhesion, was investigated for determination of its separate potential for rapid disinfection of dental operative instruments. Disinfection effectiveness was judged from diminished post-treatment recovery of viable organisms from the instruments agitated in saline. Streptococcus salivarius, Bacillus stearothermophilus, and Escherichia coli were used as primary contaminant organisms, dried from gelatin-thickened laboratory cultures onto the instruments and not subjected to any preliminary cleaning steps. Significant disinfection was obtained, with no sensible temperature increases, in under 10 minutes in laboratory apparatus consuming fewer than 5 Watts of power per cycle. Also, clinically used and deliberately-saliva-contaminated high-speed handpieces were gas-discharge-treated, with their resultant rapid disinfection noted by complete suppression of the viability of any transferred natural contaminant organisms within two minutes. With regard to preservation of instrument quality, it was also shown that this low-temperature gas-discharge method provides the noted substantial disinfection without deterioration of sharp edges. Work now in progress suggests that the method can provide cool, rapid, and complete sterilization when hydrogen peroxide vapors are present in the gas plasma used for treatment of instruments first given the normally recommended thorough pre-cleaning. PMID:1289559

  5. GAS DISCHARGE DEVICES

    DOEpatents

    Arrol, W.J.; Jefferson, S.

    1957-08-27

    The construction of gas discharge devices where the object is to provide a gas discharge device having a high dark current and stabilized striking voltage is described. The inventors have discovered that the introduction of tritium gas into a discharge device with a subsequent electrical discharge in the device will deposit tritium on the inside of the chamber. The tritium acts to emit beta rays amd is an effective and non-hazardous way of improving the abovementioned discharge tube characteristics

  6. Enhancement of the EUV emission of a metallic capillary discharge operated with argon ambient gas

    SciTech Connect

    Chan, L. S. Tan, D. Saboohi, S. Yap, S. L. Wong, C. S.

    2014-03-05

    In this work, the metallic capillary discharge is operated with two different ambients: air and argon. In the experiments reported here, the chamber is first evacuated to 10{sup −5} mbar. The discharge is initiated by the transient hollow cathode effect generated electron beam, with either air ambient or argon ambient at 10{sup −4} mbar. The bombardment of electron beam at the tip of the stainless steel anode gives rise to a metallic vapor, which is injected into the capillary and initiates the main discharge through the capillary. The EUV emission is measured for different discharge voltages for both conditions and compared. It is found that the metallic capillary discharge with argon ambientis able to produce higher EUV energy compared to that with air ambient.

  7. GAS DISCHARGE DEVICES

    DOEpatents

    Jefferson, S.

    1958-11-11

    An apparatus utilized in introducing tritium gas into envelope of a gas discharge device for the purpose f maintaining the discharge path in ionized condition is described. ln addition to the cathode and anode, the ischarge device contains a zirconium or tantalum ilament arranged for external excitation and a metallic seed containing tritium, and also arranged to have a current passed through it. Initially, the zirconium or tantalum filament is vaporized to deposit its material adjacent the main discharge region. Then the tritium gas is released and, due to its affinity for the first released material, it deposits in the region of the main discharge where it is most effective in maintaining the discharge path in an ionized condition.

  8. (Gas discharges and applications)

    SciTech Connect

    Sauers, I.

    1988-10-04

    The traveler attended the Ninth International Conference on Gas Discharges and Their Applications, which was held in Venice, Italy, on September 19--23, 1988; presented two papers, (1) Ion Chemistry in SF{sub 6} Corona'' and (2) Production of S{sub 2}F{sub 10} by SF{sub 6} Spark Discharge''; and participated in numerous discussions with conference participants on gas discharges related to his work on SF{sub 6}. The traveler visited the Centre de Physique Atomique at the University Paul Sabatier in Toulouse, France, to discuss with Dr. J. Casanovas his work on SF{sub 6} decomposition. Following that visit, the traveler visited the Laboratoire de Photoelectricite at the University of Dijon to discuss with Dr. J.-P. Goudonnet his work on surface studies and on the use of tunneling electron spectroscopy for the chemical analysis of surfaces.

  9. 46 CFR 153.964 - Discharge by gas pressurization.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Discharge by gas pressurization. 153.964 Section 153.964... CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Operations Cargo Transfer Procedures § 153.964 Discharge by gas pressurization. The person in charge of cargo transfer may...

  10. 46 CFR 153.964 - Discharge by gas pressurization.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Discharge by gas pressurization. 153.964 Section 153.964... CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Operations Cargo Transfer Procedures § 153.964 Discharge by gas pressurization. The person in charge of cargo transfer may...

  11. 46 CFR 153.964 - Discharge by gas pressurization.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Discharge by gas pressurization. 153.964 Section 153.964... CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Operations Cargo Transfer Procedures § 153.964 Discharge by gas pressurization. The person in charge of cargo transfer may...

  12. 46 CFR 154.1838 - Discharge by gas pressurization.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Discharge by gas pressurization. 154.1838 Section 154... SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Operations § 154.1838 Discharge by gas pressurization. The person in charge of cargo transfer may not authorize cargo discharge...

  13. 46 CFR 154.1838 - Discharge by gas pressurization.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Discharge by gas pressurization. 154.1838 Section 154... SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Operations § 154.1838 Discharge by gas pressurization. The person in charge of cargo transfer may not authorize cargo discharge...

  14. 46 CFR 154.1838 - Discharge by gas pressurization.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Discharge by gas pressurization. 154.1838 Section 154... SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Operations § 154.1838 Discharge by gas pressurization. The person in charge of cargo transfer may not authorize cargo discharge...

  15. 46 CFR 153.964 - Discharge by gas pressurization.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Discharge by gas pressurization. 153.964 Section 153.964 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Operations Cargo Transfer Procedures § 153.964 Discharge by...

  16. High-repetition-rate short-pulse gas discharge.

    PubMed

    Tulip, J; Seguin, H; Mace, P N

    1979-09-01

    A high-average-power short-pulse gas discharge is described. This consists of a volume-preionized transverse discharge of the type used in gas lasers driven by a Blumlein energy storage circuit. The Blumlein circuit is fabricated from coaxial cable, is pulse-charged from a high-repetition-rate Marx-bank generator, and is switched by a high-repetition-rate segmented rail gap. The operation of this discharge under conditions typical of rare-gas halide lasers is described. A maximum of 900 pps was obtained, giving a power flow into the discharge of 30 kW. PMID:18699678

  17. 46 CFR 154.1838 - Discharge by gas pressurization.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Operations § 154.1838 Discharge... pressurizing medium is the cargo vapor or a nonflammable, nontoxic gas that is inert with the cargo; and...

  18. The effect of the operation modes of a gas discharge low-pressure amalgam lamp on the intensity of generation of 185 nm UV vacuum radiation

    SciTech Connect

    Vasilyak, L. M.; Drozdov, L. A. Kostyuchenko, S. V.; Sokolov, D. V.; Kudryavtsev, N. N.; Sobur, D. A.

    2011-12-15

    The effect of the discharge current, mercury vapor pressure, and the inert gas pressure on the intensity and efficiency of the 185 nm line generation are considered. The spectra of the UV radiation (vacuum ultraviolet) transmission by protective coatings from the oxides of rare earth metals and aluminum are investigated.

  19. GAS DISCHARGE SWITCH EVALUATION FOR RHIC BEAM ABORT KICKER APPLICATION.

    SciTech Connect

    ZHANG,W.; SANDBERG,J.; SHELDRAKE,R.; PIRRIE,C.

    2002-06-30

    A gas discharge switch EEV HX3002 is being evaluated at Brookhaven National Laboratory as a possible candidate of RHIC Beam Abort Kicker modulator main switch. At higher beam energy and higher beam intensity, the switch stability becomes very crucial. The hollow anode thyratron used in the existing system is not rated for long reverse current conduction. The reverse voltage arcing caused thyratron hold-off voltage de-rating has been the main limitation of the system operation. To improve the system reliability, a new type of gas discharge switch has been suggested by Marconi Applied Technology for its reverse conducting capability.

  20. Multiplex electric discharge gas laser system

    NASA Technical Reports Server (NTRS)

    Laudenslager, James B. (Inventor); Pacala, Thomas J. (Inventor)

    1987-01-01

    A multiple pulse electric discharge gas laser system is described in which a plurality of pulsed electric discharge gas lasers are supported in a common housing. Each laser is supplied with excitation pulses from a separate power supply. A controller, which may be a microprocessor, is connected to each power supply for controlling the application of excitation pulses to each laser so that the lasers can be fired simultaneously or in any desired sequence. The output light beams from the individual lasers may be combined or utilized independently, depending on the desired application. The individual lasers may include multiple pairs of discharge electrodes with a separate power supply connected across each electrode pair so that multiple light output beams can be generated from a single laser tube and combined or utilized separately.

  1. Metal hydrides studied in gas discharge tube

    NASA Astrophysics Data System (ADS)

    Bozhinova, I.; Kolev, S.; Popov, Tsv.; Pashov, A.; Dimitrova, M.

    2016-05-01

    A novel construction of gas discharge tube has been tested for production of high densities of metal hydrydes. Its performance turned out to be comparable with the existing sources of the same type and even better. First results of the tests on NiH are reported and critically analysed. Plans for future modifiaction of the construction and application of the tube are discussed.

  2. Environmental and economic assessment of discharges from Gulf of Mexico Region oil and gas operation. Quarterly technical progress report, 1 October--31 December 1994

    SciTech Connect

    Gettleson, D.A.

    1995-01-18

    Task 3 (Environmental Field Sampling and Analysis of NORM, Heavy Metals, and Organics) work included analyses of samples. Task 4 (Monitoring of the Recovery of Impacted Wetland and Open Bay Produced Water Discharge Sites in Coastal Louisiana and Texas) activities involved the continued analyses of samples and field sampling at Bay de Chene. Task 5 (Assessment of Economic Impacts of Offshore and Coastal Discharge Requirements on Present and Future Operations in the Gulf of Mexico Region) activities included preparing a draft final report. Task 6 (Synthesis of Gulf of Mexico Seafood Consumption and Use Patterns) work also involved preparing a draft final report. Task 7 (Technology Transfer Plan) activities included a presentation at the Minerals Management Service Information Transfer Meeting for the Gulf of Mexico OCS Region. Task 8 (Project Management and Deliverables) activities involved the submission of the necessary reports and routine management.

  3. METHOD AND APPARATUS FOR PRODUCING INTENSE ENERGETIC GAS DISCHARGES

    DOEpatents

    Bell, P.R.; Luce, J.S.

    1960-01-01

    A device for producing an energetic gas arc discharge employing the use of gas-fed hollow cathode and anode electrodes is reported. The rate of feed of the gas to the electrodes is regulated to cause complete space charge neutralization to occur within the electrodes. The arc discharge is closely fitted within at least one of the electrodes so tint the gas fed to this electrode is substantially completely ionized before it is emitted into the vacuum chamber. It is this electrode design and the axial potential gradient that exists in the arc which permits the arc to be operated in low pressures and at volthges and currents that permit the arc to be energetic. The use of the large number of energetic ions that are accelerated toward the cathode as a propulsion device for a space vehicle is set forth.

  4. Research on Modern Gas Discharge Light Sources

    NASA Astrophysics Data System (ADS)

    Born, M.; Markus, T.

    This article gives an overview of today's gas discharge light sources and their application fields with focus on research aspects. In Sect. 15.1 of this chapter, an introduction to electric light sources, the lighting market and related research topics is outlined. Due to the complexity of the subject, we have focused on selected topics in the field of high intensity discharge (HID) lamps since these represent an essential part of modern lamp research. The working principle and light technical properties of HID lamps are described in Sect. 15.2. Physical and thermochemical modelling procedures and tools as well as experimental analysis are discussed in Sects. 15.3 and 15.4, respectively. These tools result in a detailed scientific insight into the complexity of real discharge lamps. In particular, analysis and modelling are the keys for further improvement and development of existing and new products.

  5. Pre-breakdown evaluation of gas discharge mechanisms in microgaps

    SciTech Connect

    Semnani, Abbas; Peroulis, Dimitrios; Venkattraman, Ayyaswamy; Alexeenko, Alina A.

    2013-04-29

    The individual contributions of various gas discharge mechanisms to total pre-breakdown current in microgaps are quantified numerically. The variation of contributions of field emission and secondary electron emission with increasing electric field shows contrasting behavior even for a given gap size. The total current near breakdown decreases rapidly with gap size indicating that microscale discharges operate in a high-current, low-voltage regime. This study provides the first such analysis of breakdown mechanisms and aids in the formulation of physics-based theories for microscale breakdown.

  6. Environmental and economic assessment of discharges from Gulf of Mexico Region Oil and Gas Operations. Quarterly technical progress report, 1 October--31 December 1993

    SciTech Connect

    Gettleson, D.A.

    1994-01-28

    Task 2 (Preparation of the Sampling and Analysis Plan) activities involved the incorporation of the offshore site selection process into the Sampling and Analysis Plan. Task 3 (Environmental Field Sampling and Analysis of NORM, Heavy Metals, and Organics) work included making decisions on tissue analyses and performing analyses of water and sediment samples. Task 4 (Monitoring of the Recovery of Impacted Wetland and Open Bay Produced Water Discharge Sites in Coastal Louisiana and Texas) activities involved the completion of the spring benthos samples collection on pre-termination samples at Four Isle Dome and the first post-termination samples at Delacroix Island. Task 5 (Assessment of Economic Impacts of Offshore and Coastal Discharge Requirements on Present and Future Operations in the Gum of Mexico Region) activities included continued work on development of a base case production forecast, modeling future production, and determining economic impact of treatment technologies. Task 6 (Synthesis of Gulf of Mexico Seafood Consumption and Use Patterns) work involved the completion of the fall survey season and the initiation of the survey data assembly. Task 7 (Technology Transfer Plan) activities included presentations at the Society of Environmental Toxicology and Chemistry annual meeting and Minerals Management Service Information Transfer Meeting. Task 8 (Project Management and Deliverables) activities involved the submission of the necessary reports and routine management.

  7. Environmental and economic assessment of discharges from Gulf of Mexico Region oil and gas operations. Quarterly technical progress report, 23 June 1992--30 September 1992

    SciTech Connect

    Gettleson, D.A.

    1992-11-10

    A Sampling and Analysis Plan was prepared and submitted to a Scientific Review Committee for comment. Substantial comments relative to study objectives, sampling design, and sampling periods coupled with the passage of Hurricane Andrew precluded the scheduled initiation of sampling at offshore and coastal sites (Tasks 3 -- Environmental Field Sampling and Analysis of Naturally Occurring Radioactive Materials (NORM), Heavy Metals, and Organics and 4 -- Monitoring of the Recovery of Impacted Wetland and Open Bay Produced Water Discharge Sites in Coastal Louisiana and Texas). A proposed revised schedule has been prepared for Tasks 3 and 4. Task 5 (Assessment of Economic Impacts of Offshore and Coastal Discharge Requirements on Present and Future Operations in the Gulf of Mexico Region), activities have involved identification and collection of the necessary data for the economic analysis. Task 6 (Synthesis of Gulf of Mexico Region Consumption and Use Patterns), activities have included near completion of the literature review and a reevaluation of the data collection efforts relative to the wholesaler, process plant, and restaurant components. Task 7 (Technology Transfer Plan), work has been delayed due to the Tasks 3 and 4 delay and cancellation of the annual US Minerals Management Service Gulf of Mexico Region Information Transfer Meeting.

  8. Physical processes in grid control gas discharge device Tacitron

    NASA Astrophysics Data System (ADS)

    Arefiev, Alexander; Vereschagin, Nicolay; Kruglov, Sergey

    2003-10-01

    of all stages of the distinguishing depends on: - pressure of the gas; - magnitude of the interrupting current (the concentration of electrons and ions in the discharge space); - magnitude of the voltage on the anode and grid; - sort of the filling gas - type of the load. According to the results of the investigation some recomendations on the operating of the tacitron in pulse power units were done.

  9. Sounding experiments of high pressure gas discharge

    SciTech Connect

    Biele, Joachim K.

    1998-07-10

    A high pressure discharge experiment (200 MPa, 5{center_dot}10{sup 21} molecules/cm{sup 3}, 3000 K) has been set up to study electrically induced shock waves. The apparatus consists of the combustion chamber (4.2 cm{sup 3}) to produce high pressure gas by burning solid propellant grains to fill the electrical pump chamber (2.5 cm{sup 3}) containing an insulated coaxial electrode. Electrical pump energy up to 7.8 kJ at 10 kV, which is roughly three times of the gas energy in the pump chamber, was delivered by a capacitor bank. From the current-voltage relationship the discharge develops at rapidly decreasing voltage. Pressure at the combustion chamber indicating significant underpressure as well as overpressure peaks is followed by an increase of static pressure level. These data are not yet completely understood. However, Lorentz forces are believed to generate pinching with subsequent pinch heating, resulting in fast pressure variations to be propagated as rarefaction and shock waves, respectively. Utilizing pure axisymmetric electrode initiation rather than often used exploding wire technology in the pump chamber, repeatable experiments were achieved.

  10. Low-voltage gas-discharge device

    DOEpatents

    Kovarik, V.J.; Hershcovitch, A.; Prelec, K.

    1982-06-08

    An electronic device of the type wherein current flow is conducted by an ionized gas comprising a cathode of the type heated by ionic bombardment, an anode, means for maintaining a predetermined pressure in the region between the anode and the cathode and means for maintaining a field in the region is described. The field, which is preferably a combined magnetic and electric field, is oriented so that the mean distance traveled by electrons before reaching the anode is increased. Because of this increased distance traveled electrons moving to the anode will ionize a large number of gas atoms, thus reducing the voltage necessary to initiate gas breakdown. In a preferred embodiment the anode is a main hollow cathode and the cathode is a smaller igniter hollow cathode located within and coaxial with the main hollow cathode. An axial magnetic field is provided in the region between the hollow cathodes in order to facilitate gas breakdown in that region and initiate plasma discharge from the main hollow cathode.

  11. Flue-gas cleaning using heterogeneously pulsed discharge

    NASA Astrophysics Data System (ADS)

    Yankelevitch, E.; Bystritskii, Vitaly M.; Sinebryukhov, A. V.; Akishev, Yurii

    1995-03-01

    A new promising electro physical method for cleaning flue gases from sulfur and nitrogen oxides has been proposed. This method is based on the initiation of repetitive arc micro discharges in an air-water mixture. The report gives a description of the setup used in an experimental verification of the method, the experimental results obtained, and the results of their analyses. It has been demonstrated that the proposed method has some advantages over other electro physical methods, such as simplicity to realize and operability in a highly humidified gas stream, which substantially extends the realize of its possible applications. The energy required to remove harmful impurity is 200 eV/mol and 23 eV/mol for gas mixtures with NO and SO2, respectively, which is an excellent result for an electro physical method of gas cleaning.

  12. Discharge source with gas curtain for protecting optics from particles

    DOEpatents

    Fornaciari, Neal R.; Kanouff, Michael P.

    2004-03-30

    A gas curtain device is employed to deflect debris that is generated by an extreme ultraviolet and soft x-ray radiation discharge source such as an electric discharge plasma source. The gas curtain device projects a stream of gas over the path of the radiation to deflect debris particles into a direction that is different from that of the path of the radiation. The gas curtain can be employed to prevent debris accumulation on the optics used in photolithography.

  13. Self-organization of intense light within erosive gas discharges

    NASA Astrophysics Data System (ADS)

    Torchigin, V. P.; Torchigin, A. V.

    2007-01-01

    Process of appearance of fire balls at gas discharges is considered. It is shown that the intense white light radiated by atoms excited at gas discharge is subject to self-organization in such a way that miniature ball lightnings appear.

  14. Power supply for negative impedance gas discharge lasers

    SciTech Connect

    Bees, G.L.

    1987-12-29

    An adjustable constant current power supply for a negative impedance gas discharge laser is described comprising: means for providing constant output of current, means connected between the constant current providing means and the gas discharge laser for matching the current output of the constant current providing means with lasing requirements of the gas discharge laser, the constant current providing means providing electrical energy to pump the gas discharge laser; and means electrically connected to the constant current providing means for feeding a variable controlled voltage to the constant current providing means the variable voltage altering the constant output of current over a preselected range feedback circuit means for providing a control signal to the variably controlled voltage feeding means; such that output power of the gas discharge laser varies with the output of current from the current providing means.

  15. Composite body for gas discharge lamp

    SciTech Connect

    Driessen, A. J. G. C.; Geertsema, E. B.; Oomen, J. J. C.; Rouwendal, J. W.

    1985-02-26

    Composite body, a gas discharge lamp having a sodium pressure from 300-600 torr in particular, having an envelope of densely sintered aluminium oxide or of other sodium vapor-resistant materials and a feed-through member of tantalum, niobium or other metals equivalent thereto, The bonding material consisting of a finely dispersed polycrystalline product having a composition in mole % between the following limits: Al/sub 2/O/sub 3/-5-70 at least one oxide chosen from Sc/sub 2/O/sub 3/ and Ti/sub 2/O /SUB x/ , wherein 2

  16. Sensitive glow discharge ion source for aerosol and gas analysis

    DOEpatents

    Reilly, Peter T. A.

    2007-08-14

    A high sensitivity glow discharge ion source system for analyzing particles includes an aerodynamic lens having a plurality of constrictions for receiving an aerosol including at least one analyte particle in a carrier gas and focusing the analyte particles into a collimated particle beam. A separator separates the carrier gas from the analyte particle beam, wherein the analyte particle beam or vapors derived from the analyte particle beam are selectively transmitted out of from the separator. A glow discharge ionization source includes a discharge chamber having an entrance orifice for receiving the analyte particle beam or analyte vapors, and a target electrode and discharge electrode therein. An electric field applied between the target electrode and discharge electrode generates an analyte ion stream from the analyte vapors, which is directed out of the discharge chamber through an exit orifice, such as to a mass spectrometer. High analyte sensitivity is obtained by pumping the discharge chamber exclusively through the exit orifice and the entrance orifice.

  17. Radionuclides, Metals, and Hydrocarbons in Oil and Gas Operational Discharges and Environmental Samples Associated with Offshore Production Facilities on the Texas/Louisiana Continental Shelf with an Environmental Assessment of Metals and Hydrocarbons

    SciTech Connect

    Continental Shelf Associates, Inc.

    1999-08-16

    This report presents concentrations of radionuclides, metals, and hydrocarbons in samples of produced water and produced sand from oil and gas production platforms located offshore Texas and Louisiana. Concentrations in produced water discharge plume/receiving water, ambient seawater, sediment, interstitial water, and marine animal tissue samples collected in the vicinity of discharging platforms and reference sites distant from discharges are also reported and discussed. An environmental risk assessment is made on the basis of the concentrations of metals and hydrocarbons determined in the samples.

  18. Radionuclides, Metals, and Hydrocarbons in Oil and Gas Operational Discharges and Environmental Samples Associated with Offshore Production Facilities on the Texas/Louisiana Continental Shelf with an Environmental Assessment of Metals and Hydrocarbons.

    SciTech Connect

    1997-06-01

    This report presents concentrations of radionuclides, metals, and hydrocarbons in samples of produced water and produced sand from oil and gas production platforms located offshore Texas and Louisiana. concentrations in produced water discharge plume / receiving water, ambient seawater, sediment, interstitial water, and marine animal tissue samples collected in the vicinity of discharging platforms and reference sites distant from discharges are also reported and discussed. An environmental risk assessment is made on the basis of the concentration of metals and hydrocarbons determined in the samples.

  19. Electric-discharge gas laser based on a multisectional discharge gap

    SciTech Connect

    Lazhintsev, B V; Nor-Arevyan, V A

    2000-01-31

    An electric discharge laser with an electrode unit of novel design was developed. An electric discharge system was based on multisectional plate-like electrodes and an automatic UV preionisation that makes it possible to form a highly stable volume discharge. High-efficiency lasing in N{sub 2} and XeF lasers was achieved. A pulse repetition rate up to 200 Hz was realised in the N{sub 2} laser without recourse to gas circulation. (lasers)

  20. Atomic iodine production in a gas flow by decomposing methyl iodide in a dc glow discharge

    SciTech Connect

    Mikheyev, P A; Shepelenko, A A; Voronov, A I; Kupryaev, Nikolai V

    2002-01-31

    The production of atomic iodine for an oxygen - iodine laser is studied by decomposing methyl iodide in a dc glow discharge in a vortex gas flow. The concentration of iodine atoms in discharge products was measured from the atomic iodine absorption of the radiation of a single-frequency tunable diode laser at a wavelength of 1.315 {mu}m. Atomic iodine concentrations sufficient for the operation of an oxygen - iodine laser were obtained. The concentration of atomic iodine amounted to 3.6 x 10{sup 15} cm{sup -3} for a pressure of the carrying argon gas of 15 Torr. The discharge stabilisation by a vortex gas flow allowed the glow discharge to be sustained in a strongly electronegative halogen-containing gas mixture for pressures up to 20 Torr. (active media)

  1. Atmospheric pressure helium afterglow discharge detector for gas chromatography

    DOEpatents

    Rice, Gary; D'Silva, Arthur P.; Fassel, Velmer A.

    1986-05-06

    An apparatus for providing a simple, low-frequency electrodeless discharge system for atmospheric pressure afterglow generation. A single quartz tube through which a gas mixture is passed is extended beyond a concentric electrode positioned thereabout. A grounding rod is placed directly above the tube outlet to permit optical viewing of the discharge between the electrodes.

  2. Atmospheric pressure helium afterglow discharge detector for gas chromatography

    DOEpatents

    Rice, G.; D'Silva, A.P.; Fassel, V.A.

    1985-04-05

    An apparatus for providing a simple, low-frequency, electrodeless discharge system for atmospheric pressure afterglow generation. A single quartz tube through which a gas mixture is passed is extended beyond a concentric electrode positioned thereabout. A grounding rod is placed directly above the tube outlet to permit optical viewing of the discharge between the electrodes.

  3. Gas lasers pumped by runaway electrons preionized diffuse discharge

    NASA Astrophysics Data System (ADS)

    Panchenko, Alexei N.; Lomaev, Mikhail I.; Panchenko, Nikolai A.; Tarasenko, Victor F.; Suslov, Alexei I.

    2015-05-01

    It was shown that run-away electron preionized volume (diffuse) discharge (REP DD) can be used as an excitation source of gas mixtures at elevated pressures and can produce laser emission. We report experimental and simulated results of application of the REP DD for excitation of different active gas mixtures. Kinetic model of the REP DD in mixtures of nitrogen with SF6 is developed allowing predicting the radiation parameters of nitrogen laser at 337.1 nm. Peculiarities of the REP DD development in different gas mixtures are studied, as well. It was shown that the REP DD allows obtaining efficient lasing stimulated radiation in the IR, visible and UV spectral ranges. New operation mode of nitrogen laser is demonstrated under REP DD excitation. Laser action on N2, HF, and DF molecules was obtained with the efficiency close to the limiting value. Promising prospects of REP DD employment for exciting a series of gas lasers was demonstrated. It was established that the REP DD is most efficient for pumping lasers with the mixtures comprising electro-negative gases.

  4. Advances in electron kinetics and theory of gas discharges

    SciTech Connect

    Kolobov, Vladimir I.

    2013-10-15

    “Electrons, like people, are fertile and infertile: high-energy electrons are fertile and able to reproduce.”—Lev TsendinModern physics of gas discharges increasingly uses physical kinetics for analysis of non-equilibrium plasmas. The description of underlying physics at the kinetic level appears to be important for plasma applications in modern technologies. In this paper, we attempt to grasp the legacy of Professor Lev Tsendin, who advocated the use of the kinetic approach for understanding fundamental problems of gas discharges. We outline the fundamentals of electron kinetics in low-temperature plasmas, describe elements of the modern kinetic theory of gas discharges, and show examples of the theoretical approach to gas discharge problems used by Lev Tsendin. Important connections between electron kinetics in gas discharges and semiconductors are also discussed. Using several examples, we illustrate how Tsendin's ideas and methods are currently being developed for the implementation of next generation computational tools for adaptive kinetic-fluid simulations of gas discharges used in modern technologies.

  5. Re-examination of demonstration gas discharge tubes

    SciTech Connect

    Maharaj, H.P. )

    1991-10-01

    Gas discharge tubes in which electrons or ions are accelerated at voltages on the order of kilovolts to produce observable atomic effects are potential x-ray sources. These tubes come in various shapes, sizes and designs, and are still in use in science classrooms despite the decline predicted in the 1970s. Because of current applications, a representative sample consisting of fifteen tubes marketed over a recent 2-year period was reexamined for regulatory compliance, product identification and advertising. The results revealed that: poor quality control and design can affect x-ray emissions; and deficiencies exist in product identification, safe use guidelines and operating instructions. This paper reports that these findings, together with the dose estimates, implications and subjective indicators, strongly suggest a user group of unknown size is at increased risk. A combination of enhanced surveillance and promotion of user awareness strategies is adopted to reduce and possible eliminate the potential health risks.

  6. Plasma physics issues in gas discharge laser development

    SciTech Connect

    Garscadden, A. ); Kushner, M.J.; Eden, J.G. . Dept. of Electrical and Computer Engineering)

    1991-12-01

    In this paper an account is given of the interplay between partially ionized plasma physics and the development of gas discharge lasers. Gas discharge excitation has provided a wide array of laser devices extending from the soft X-ray region to the far infrared. The scaling of gas discharge lasers in power and energy also covers many orders of magnitude. The particular features of three regimes are discussed: short wavelength lasers (deep UV to soft X-ray); visible and near UV lasers; and infrared molecular gas lasers. The current status (Fall 1990) of these areas is reviewed, and an assessment is made of future research topics that are perceived to be important.

  7. Temporally, spatially, and spectrally resolved barrier discharge produced in trapped helium gas at atmospheric pressure

    SciTech Connect

    Chiper, Alina Silvia; Popa, Gheorghe

    2013-06-07

    Experimental study was made on induced effects by trapped helium gas in the pulsed positive dielectric barrier discharge (DBD) operating in symmetrical electrode configuration at atmospheric pressure. Using fast photography technique and electrical measurements, the differences in the discharge regimes between the stationary and the flowing helium are investigated. It was shown experimentally that the trapped gas atmosphere (TGA) has notable impact on the barrier discharge regime compared with the influence of the flowing gas atmosphere. According to our experimental results, the DBD discharge produced in trapped helium gas can be categorized as a multi-glow (pseudo-glow) discharge, each discharge working in the sub-normal glow regime. This conclusion is made by considering the duration of current pulse (few {mu}s), their maximum values (tens of mA), the presence of negative slope on the voltage-current characteristic, and the spatio-temporal evolution of the most representative excited species in the discharge gap. The paper focuses on the space-time distribution of the active species with a view to better understand the pseudo-glow discharge mechanism. The physical basis for these effects was suggested. A transition to filamentary discharge is suppressed in TGA mode due to the formation of supplementary source of seed electrons by surface processes (by desorption of electrons due to vibrationally excited nitrogen molecules, originated from barriers surfaces) rather than volume processes (by enhanced Penning ionisation). Finally, we show that the pseudo-glow discharge can be generated by working gas trapping only; maintaining unchanged all the electrical and constructive parameters.

  8. Gas mixture for diffuse-discharge switch

    DOEpatents

    Christophorou, Loucas G.; Carter, James G.; Hunter, Scott R.

    1984-01-01

    Gaseous medium in a diffuse-discharge switch of a high-energy pulse generator is formed of argon combined with a compound selected from the group consisting of CF.sub.4, C.sub.2 F.sub.6, C.sub.3 F.sub.8, n-C.sub.4 F.sub.10, WF.sub.6, (CF.sub.3).sub.2 S and (CF.sub.3).sub.2 O.

  9. Gas mixture for diffuse-discharge switch

    DOEpatents

    Christophorou, L.G.; Carter, J.G.; Hunter, S.R.

    1982-08-31

    Gaseous medium in a diffuse-discharge switch of a high-energy pulse generator is formed of argon combined with a compound selected from the group consisting of CF/sub 4/, C/sub 2/F/sub 6/, C/sub 3/F/sub 8/, n-C/sub 4/F/sub 10/, WF/sub 6/, (CF/sub 3/)/sub 2/S and (CF/sub 3/)/sub 2/O.

  10. Broad beam gas ion source with hollow cathode discharge and four-grid accelerator system

    NASA Astrophysics Data System (ADS)

    Tang, Deli; Pu, Shihao; Huang, Qi; Tong, Honghui; Cui, Xirong; Chu, Paul K.

    2007-04-01

    A broad beam gas ion source based on low-pressure hollow cathode glow discharge is described. An axial magnetic filed produced by AlNiCo permanent magnets enhances the glow discharge in the ion source as a result of the magnetizing electrons between the hollow cathode and rod anode. The gas plasma is produced by magnetron hollow cathode glow discharge in the hollow cathode and a collimated broad ion beam is extracted by a four-grid accelerator system. A weak magnetic field of several millitesla is enough to ignite the magnetron glow discharge at pressure lower than 0.1 Pa, thereby enabling stable and continuous high-current discharge to form the homogeneous plasma. A four-grid accelerator, which separates the extraction and acceleration of the ion beam, is used in this design to generate the high-energy ion beam from 10 keV to 60 keV at a working pressure of 10-4 Torr. Although a higher gas pressure is necessary to maintain the low-pressure glow discharge when compared to hot filament discharge, the hollow cathode ion source is operational with reactive gases such as oxygen in the high-voltage continuous mode. A laterally uniform ion beam can be achieved by using the four-grid accelerator system. The effects of the rod anode length on the characteristics of the plasma discharge as well as ion beam extraction from the ion source are discussed.

  11. Periodically Discharging, Gas-Coalescing Filter

    NASA Technical Reports Server (NTRS)

    Carter, Donald Layne; Holder, Donald W.

    2006-01-01

    A proposed device would remove bubbles of gas from a stream of liquid (typically water), accumulate the gas, and periodically release the gas, in bulk, back into the stream. The device is intended for use in a flow system (1) in which there is a requirement to supply bubble-free water to a downstream subsystem and (2) that includes a sensor and valves, just upstream of the subsystem, for sensing bubbles and diverting the flow from the subsystem until the water stream is again free of bubbles. By coalescing the gas bubbles and then periodically releasing the accumulated gas, the proposed device would not contribute to net removal of gas from the liquid stream; nevertheless, it would afford an advantage by reducing the frequency with which the diverter valves would have to be activated. The device (see figure) would include an upper and a lower porous membrane made of a hydrophilic material. Both membranes would cover openings in a tube leading to an outlet. These membranes would allow water, but not gas bubbles, to pass through to the interior of the tube. Inside the tube, between the two membranes, there would be a flow restrictor that would play a role described below. Below both membranes there would be a relief valve. Water, possibly containing bubbles, would enter from the top and would pass through either the lower membrane or both membranes, depending how much gas had been accumulated thus far. When the volume of accumulated gas was sufficient to push the top surface of the liquid below the lower porous membrane, water could no longer flow through either membrane toward the outlet. This blockage would cause an increase in back pressure that would cause the relief valve to open. The opening of the relief valve would allow both the water and the bulk-accumulated gas to pass through to the outlet. Once the gas had been pushed out, water would once again flow through both membranes at a much lower pressure drop. The flow restrictor would maintain enough pressure

  12. Governmental oversight of discharges from concentrated animal feeding operations.

    PubMed

    Centner, Terence J

    2006-06-01

    As point sources of pollution in the United States, concentrated animal feeding operations (CAFOs) are subject to the National Pollution Discharge Elimination System permitting system requirements. Changes to federal regulations in 2003 and a 2005 court decision have increased the governmental oversight of CAFOs. Manure application to fields from "large CAFOs" that results in unpermitted discharges can be regulated under the Clean Water Act. The U.S. Environmental Protection Agency's interpretation of agricultural stormwater discharges was approved so that unpermitted discharges may arise if an owner or operator of a CAFO fails to apply manure correctly. Owners and operators do not, however, have a duty to secure governmental permits in the absence of a discharge. Turning to the federal provisions regarding nutrient management plans, a court found that they were deficient. Moreover, the federal government needs to reconsider requirements that would reduce pathogens from entering surface waters. Although these developments should assist in reducing the impairment of U.S. waters, concern still exists. Greater oversight of nutrient management plans and enhanced enforcement efforts offer opportunities to provide greater assurance that CAFO owners and operators will not allow a discharge of pollutants to enter surface waters. PMID:16456627

  13. Interaction of a surface glow discharge with a gas flow

    SciTech Connect

    Aleksandrov, A. L. Schweigert, I. V.

    2010-05-15

    A surface glow discharge in a gas flow is of particular interest as a possible tool for controlling the flow past hypersonic aircrafts. Using a hydrodynamic model of glow discharge, two-dimensional calculations for a kilovolt surface discharge in nitrogen at a pressure of 0.5 Torr are carried out in a stationary gas, as well as in a flow with a velocity of 1000 m/s. The discharge structure and plasma parameters are investigated near a charged electrode. It is shown that the electron energy in a cathode layer reaches 250-300 eV. Discharge is sustained by secondary electron emission. The influence of a high-speed gas flow on the discharge is considered. It is shown that the cathode layer configuration is flow-resistant. The distributions of the electric field and electron energy, as well as the ionization rate profile in the cathode layer, do not change qualitatively under the action of the flow. The basic effect of the flow's influence is a sharp decrease in the region of the quasineutral plasma surrounding the cathode layer due to fast convective transport of ions.

  14. Pulsed microwave discharge in a capillary filled with atmospheric-pressure gas

    SciTech Connect

    Gritsinin, S. I.; Gushchin, P. A.; Davydov, A. M.; Ivanov, E. V.; Kossyi, I. A.

    2013-08-15

    A pulsed microwave coaxial capillary plasma source generating a thin plasma filament along the capillary axis in an atmospheric-pressure argon flow is described. The dynamics of filament formation is studied, and the parameters of the gas and plasma in the contraction region are determined. A physical model of discharge formation and propagation is proposed. The model is based on the assumption that, under the conditions in which the electric fields is substantially below the threshold value, the discharge operates in a specific form known as a self-sustained-non-self-sustained (SNS) microwave discharge.

  15. Features of plasma glow in low pressure terahertz gas discharge

    SciTech Connect

    Bratman, V. L.; Golubev, S. V.; Izotov, I. V.; Kalynov, Yu. K.; Koldanov, V. A.; Razin, S. V.; Litvak, A. G.; Sidorov, A. V.; Skalyga, V. A.; Zorin, V. G.

    2013-12-15

    Investigations of the low pressure (1–100 Torr) gas discharge in the powerful (1 kW) quasi-optical terahertz (0.55 THz) wave beams were made. An intense afterglow was observed after the end of gyrotron terahertz radiation pulse. Afterglow duration significantly exceeded radiation pulse length (8 μs). This phenomenon could be explained by the strong dependence of the collisional-radiative recombination rate (that is supposed to be the most likely mechanism of electron losses from the low pressure terahertz gas discharge) on electron temperature.

  16. Features of plasma glow in low pressure terahertz gas discharge

    NASA Astrophysics Data System (ADS)

    Bratman, V. L.; Golubev, S. V.; Izotov, I. V.; Kalynov, Yu. K.; Koldanov, V. A.; Litvak, A. G.; Razin, S. V.; Sidorov, A. V.; Skalyga, V. A.; Zorin, V. G.

    2013-12-01

    Investigations of the low pressure (1-100 Torr) gas discharge in the powerful (1 kW) quasi-optical terahertz (0.55 THz) wave beams were made. An intense afterglow was observed after the end of gyrotron terahertz radiation pulse. Afterglow duration significantly exceeded radiation pulse length (8 μs). This phenomenon could be explained by the strong dependence of the collisional-radiative recombination rate (that is supposed to be the most likely mechanism of electron losses from the low pressure terahertz gas discharge) on electron temperature.

  17. Method and apparatus for processing exhaust gas with corona discharge

    DOEpatents

    Barlow, Stephan E.; Orlando, Thomas M.; Tonkyn, Russell G.

    1999-01-01

    The present invention is placing a catalyst coating upon surfaces surrounding a volume containing corona discharge. In addition, the electrodes are coated with a robust dielectric material. Further, the electrodes are arranged so that at least a surface portion of each electrode extends into a flow path of the exhaust gas to be treated and there is only exhaust gas in the volume between each pair of electrodes.

  18. Method and apparatus for processing exhaust gas with corona discharge

    DOEpatents

    Barlow, S.E.; Orlando, T.M.; Tonkyn, R.G.

    1999-06-22

    The present invention is placing a catalyst coating upon surfaces surrounding a volume containing corona discharge. In addition, the electrodes are coated with a robust dielectric material. Further, the electrodes are arranged so that at least a surface portion of each electrode extends into a flow path of the exhaust gas to be treated and there is only exhaust gas in the volume between each pair of electrodes. 12 figs.

  19. Pulsed electrical discharge in gas bubbles in water

    NASA Astrophysics Data System (ADS)

    Gershman, Sophia

    A phenomenological picture of pulsed electrical discharge in gas bubbles in water is produced by combining electrical, spectroscopic, and imaging methods. The discharge is generated by applying one microsecond long 5 to 20 kilovolt pulses between the needle and disk electrodes submerged in water. A gas bubble is generated at the tip of the needle electrode. The study includes detailed experimental investigation of the discharge in argon bubbles and a brief look at the discharge in oxygen bubbles. Imaging, electrical characteristics, and time-resolved optical emission data point to a fast streamer propagation mechanism and formation of a plasma channel in the bubble. Spectroscopic methods based on line intensity ratios and Boltzmann plots of line intensities of argon, atomic hydrogen, and argon ions and the examination of molecular emission bands from molecular nitrogen and hydroxyl radicals provide evidence of both fast beam-like electrons and slow thermalized ones with temperatures of 0.6 -- 0.8 electron-volts. The collisional nature of plasma at atmospheric pressure affects the decay rates of optical emission. Spectroscopic study of rotational-vibrational bands of hydroxyl radical and molecular nitrogen gives vibrational and rotational excitation temperatures of the discharge of about 0.9 and 0.1 electron-volt, respectively. Imaging and electrical evidence show that discharge charge is deposited on the bubble wall and water serves as a dielectric barrier for the field strength and time scales of this experiment. Comparing the electrical and imaging information for consecutive pulses applied at a frequency of 1 Hz indicates that each discharge proceeds as an entirely new process with no memory of the previous discharge aside from long-lived chemical species, such as ozone and oxygen. Intermediate values for the discharge gap and pulse duration, low repetition rate, and unidirectional character of the applied voltage pulses make the discharge process here unique

  20. Direct-current converter for gas-discharge lamps

    NASA Technical Reports Server (NTRS)

    Lutus, P.

    1980-01-01

    Metal/halide and similar gas-discharge lamps are powered from low-voltage dc source using small efficient converter. Converter is useful whenever 60-cycle ac power is not available or where space and weight allocations are limited. Possible applications are offshore platforms, mobile homes, and emergency lighting. Design innovations give supply high reliability and efficiency up to 75 percent.

  1. Comparison of electrical and optical characteristics in gas-phase and gas-liquid phase discharges

    NASA Astrophysics Data System (ADS)

    Qazi, H. I. A.; Nie, Qiu-Yue; Li, He-Ping; Zhang, Xiao-Fei; Bao, Cheng-Yu

    2015-12-01

    This paper presents an AC-excited argon discharge generated using a gas-liquid (two-phase) hybrid plasma reactor, which mainly consists of a powered needle electrode enclosed in a conical quartz tube and grounded deionized water electrode. The discharges in the gas-phase, as well as in the two-phase, exhibit two discharge modes, i.e., the low current glow-like diffuse mode and the high current streamer-like constrict mode, with a mode transition, which exhibits a negative resistance of the discharges. The optical emission spectral analysis shows that the stronger diffusion of the water vapor into the discharge region in the two-phase discharges boosts up the generation of OH (A-X) radicals, and consequently, leads to a higher rotational temperature in the water-phase plasma plume than that of the gas-phase discharges. Both the increase of the power input and the decrease of the argon flow rate result in the increase of the rotational temperature in the plasma plume of the water-phase discharge. The stable two-phase discharges with a long plasma plume in the water-phase under a low power input and gas flow rate may show a promising prospect for the degradation of organic pollutants, e.g., printing and dyeing wastewater, in the field of environmental protection.

  2. Comparison of electrical and optical characteristics in gas-phase and gas-liquid phase discharges

    SciTech Connect

    Qazi, H. I. A.; Li, He-Ping Zhang, Xiao-Fei; Bao, Cheng-Yu; Nie, Qiu-Yue

    2015-12-15

    This paper presents an AC-excited argon discharge generated using a gas-liquid (two-phase) hybrid plasma reactor, which mainly consists of a powered needle electrode enclosed in a conical quartz tube and grounded deionized water electrode. The discharges in the gas-phase, as well as in the two-phase, exhibit two discharge modes, i.e., the low current glow-like diffuse mode and the high current streamer-like constrict mode, with a mode transition, which exhibits a negative resistance of the discharges. The optical emission spectral analysis shows that the stronger diffusion of the water vapor into the discharge region in the two-phase discharges boosts up the generation of OH (A–X) radicals, and consequently, leads to a higher rotational temperature in the water-phase plasma plume than that of the gas-phase discharges. Both the increase of the power input and the decrease of the argon flow rate result in the increase of the rotational temperature in the plasma plume of the water-phase discharge. The stable two-phase discharges with a long plasma plume in the water-phase under a low power input and gas flow rate may show a promising prospect for the degradation of organic pollutants, e.g., printing and dyeing wastewater, in the field of environmental protection.

  3. Spots and patterns on electrodes of gas discharges

    NASA Astrophysics Data System (ADS)

    Benilov, Mikhail

    2015-09-01

    Concentration of electrical current onto the surface of electrodes of gas discharges in well-defined regions, or current spots, is often the rule rather than the exception. These spots occur on otherwise uniform electrode surfaces, a regime where one might expect a uniform distribution of current over the surface. In many cases, multiple spots may appear, forming beautiful patterns and surprising the observer. Important advances have been attained in the last 15 years in experimental investigation, understanding, and modelling of spots and patterns in discharges of different types, in particular, high-pressure arc discharges, dc glow discharges, and barrier discharges. It became clear that in many, if not most, cases there is no need to look for special physical mechanisms responsible for the formation of spots or patterns on uniform electrode surfaces: the spots or patterns originate in self-organization caused by (nonlinear) interaction of well-known mechanisms. In particular, standard mechanisms of near-cathode space-charge sheath are sufficient to produce self-organization, and it is this kind of self-organization that gives rise to cathode spots in low-current high-pressure arcs and normal spots and patterns of spots on cathodes of dc glow discharges. It was shown that spots and patterns on electrodes of gas discharges, being self-organization phenomena, are inherently related to multiple solutions, with one of the solutions describing a mode with a uniform distribution of current over the electrode surface and the others describing regimes with different spot patterns. These multiple solutions exist even in the most basic self-consistent models of gas discharges. In particular, multiple solutions have been found for dc glow discharges; the fact rather surprising by itself, given that such discharges have been under intensive theoretical investigation for many years. A concise review of the above-described advances is given in this talk. Work supported by FCT

  4. Gas laser in which the gas is excited by capacitor discharge

    SciTech Connect

    Lacour, B.; de Witte, O.; Maillet, M.; Vannier, C.

    1985-01-22

    A gas laser in which the gas is excited by laser discharge, said laser including two capacitors formed by two parallel metal plates between which two dielectric parts are spaced apart to form a passage which contains the laser gas. It further includes a transformer whose secondary winding is connected to the plates and whose primary winding is connected in series with a capacitor, means for charging and capacitor and a thyristor for discharging the capacitor in the primary winding. Application to exciting gas lasers in which the gas contains a dye stuff.

  5. Control of stochastic sensitivity in a stabilization problem for gas discharge system

    SciTech Connect

    Bashkirtseva, Irina

    2015-11-30

    We consider a nonlinear dynamic stochastic system with control. A problem of stochastic sensitivity synthesis of the equilibrium is studied. A mathematical technique of the solution of this problem is discussed. This technique is applied to the problem of the stabilization of the operating mode for the stochastic gas discharge system. We construct a feedback regulator that reduces the stochastic sensitivity of the equilibrium, suppresses large-amplitude oscillations, and provides a proper operation of this engineering device.

  6. The gas conversion of methane with oxygen at atmospheric pressure using a cylindrical dielectric barrier discharge

    NASA Astrophysics Data System (ADS)

    Martens, Tom; Petrovic, Dragana; de Bie, Christophe; Bogaerts, Annemie; Brok, Wouter; van Dijk, Jan

    2008-10-01

    The conversion of methane to useful chemicals and liquid fuels currently requires steam reforming, which requires great amounts of energy input. We are currently investigating the possibilities of using a plasma activated system for this gas conversion. Due to the pulsed nature and the low operating temperature capabilities, we have chosen the atmospheric pressure dielectric barrier discharge as a setup to investigate whether it can be used as a more efficient gas conversion reactor. For this purpose we have developed a CH4/O2 chemical reaction set and used it in a 2D fluid model of a cylindrical dielectric barrier discharge, in which we also incorporate the influence of the gas flow. In this way we investigate whether we can optimize the production of methanol or formaldehyde. The parameters under study are the CH4/O2 ratio, the applied voltage characteristics, the gap width and the gas flow rate.

  7. Exploration of the Townsend regime by discharge light emission in a gas discharge device

    NASA Astrophysics Data System (ADS)

    Hilal Yucel, Kurt

    2014-01-01

    The Townsend discharge mechanism has been explored in a planar microelectronic gas discharge device (MGDD) with different applied voltages U and interelectrode distance d under various pressures in air. The anode and the cathode of the MGDD are formed by a transparent SnO2 covered glass and a GaAs semiconductor, respectively. In the experiments, the discharge is found to be unstable just below the breakdown voltage Ub, whereas the discharge passes through a homogeneous stable Townsend mode beyond the breakdown voltage. The measurements are made by an electrical circuit and a CCD camera by recording the currents and light emission (LE) intensities. The intensity profiles, which are converted from the 3D light emission images along the semiconductor diameter, have been analysed for different system parameters. Different instantaneous conductivity σt regimes are found below and beyond the Townsend region. These regimes govern the current and spatio-temporal LE stabilities in the plasma system. It has been proven that the stable LE region increases up to 550 Torr as a function of pressure for small d. If the active area of the semiconductor becomes larger and the interlectrode distance d becomes smaller, the stable LE region stays nearly constant with pressure.

  8. Decomposition of dimethylamine gas with dielectric barrier discharge.

    PubMed

    Ye, Zhaolian; Zhao, Jie; Huang, Hong ying; Ma, Fei; Zhang, Renxi

    2013-09-15

    The decomposition of dimethylamine (DMA) with gas under high flow rate was investigated with dielectric barrier discharge (DBD) technology. Different parameters including removal efficiency, energy yield, carbon balance and CO2 selectivity, secondary products, as well as pathways and mechanisms of DMA degradation were studied. The experimental results showed that removal efficiency of DMA depended on applied voltage and gas flow rate, but had no obvious correlation with initial concentration. Excellent energy performance was obtained using present DBD technology for DMA abatement. When experiment conditions were controlled at: gas flow rate of 14.9 m(3)/h, initial concentration of 2104 mg/m(3), applied voltage of 4.8 kV, removal efficiency of DMA and energy yield can reach 85.2% and 953.9 g/kWh, respectively. However, carbon balance (around 40%) was not ideal due to shorter residence time (about 0.1s), implying that some additional conditions should be considered to improve the total oxidation of DMA. Moreover, secondary products in outlet gas stream were detected via gas chromatogram-mass spectrum and the amounts of NO3(-) and NO2(-) were analyzed by ion chromatogram. The obtained data demonstrated that NOx might be suppressed due to reductive NH radical form DMA dissociation. The likely reaction pathways and mechanisms for the removal of DMA were suggested based on products analysis. Experimental results demonstrated the application potential of DBD as a clean technology for organic nitrogen-containing gas elimination from gas streams. PMID:23742954

  9. Gas-discharge improving ecological characteristics of the atmosphere

    NASA Astrophysics Data System (ADS)

    Batanov, German; Kossyi, Igor; Silakov, Valerii

    2004-09-01

    GAS-DISCHARGE IMPROVING ECOLOGICALCHARACTERISTICS OF THE ATMOSPHERE 2.20. Environmental applications G.M.Batanov, I.A.Kossyi and V.P.Silakov Prokhorov Institute of General Physics, Russian Academy of Sciences, Vavilov Street 38, 119991, Moscow, Russia The possibility of improving ecological characteristics of the atmosphere with the help of freely localized microwave discharge is analyzed. Theoretical and experimental studies devoted to cleaning the troposphere of ozone-destroying pollutants and creating an artificial ozone layer in the stratosphere are reviewed. Experiments performed with convergent powerful microwave beam exciting discharge in condition close to the natural atmosphere one are discussed. Theoretical consideration of consequences of freely localized microwave discharge in atmosphere are analyzed and conclusions concerning to the possibility to improve ecological situation are made. Results of the studies in the Institute of General Physics of the possibility of the plasmachemical utilization of the accumulated chlorofluorocarbons (CFCs), capable of depleting the ozone layer, are presented. Experiments open up new avenues for development of an efficient reactor dedicated to the "harmful" CFCs decomposition. The results of theoretical and experimental modeling are used to predict the plasmachemical consequences of creating artificial ionized regions in the upper atmosphere for the purpose of long-range radio and TV communications.

  10. Gas flow dependence of atmospheric pressure plasma needle discharge characteristics

    NASA Astrophysics Data System (ADS)

    Qian, Muyang; Yang, Congying; Liu, Sanqiu; Chen, Xiaochang; Ni, Gengsong; Wang, Dezhen

    2016-04-01

    In this paper, a two-dimensional coupled model of neutral gas flow and plasma dynamics is presented to explain the gas flow dependence of discharge characteristics in helium plasma needle at atmospherics pressure. The diffusional mixing layer between the helium jet core and the ambient air has a moderate effect on the streamer propagation. The obtained simulation results present that the streamer shows the ring-shaped emission profile at a moderate gas flow rate. The key chemical reactions which drive the streamer propagation are electron-impact ionization of helium neutral, nitrogen and oxygen molecules. At a moderate gas flow rate of 0.5 slm, a significant increase in propagation velocity of the streamer is observed due to appropriate quantity of impurities air diffuse into the helium. Besides, when the gas flow rate is below 0.35 slm, the radial density of ground-state atomic oxygen peaks along the axis of symmetry. However, when the gas flow rate is above 0.5 slm, a ring-shaped density distribution appears. The peak density is on the order of 1020 m-3 at 10 ns in our work.

  11. Two-stage plasma gun based on a gas discharge with a self-heating hollow emitter.

    PubMed

    Vizir, A V; Tyunkov, A V; Shandrikov, M V; Oks, E M

    2010-02-01

    The paper presents the results of tests of a new compact two-stage bulk gas plasma gun. The plasma gun is based on a nonself-sustained gas discharge with an electron emitter based on a discharge with a self-heating hollow cathode. The operating characteristics of the plasma gun are investigated. The discharge system makes it possible to produce uniform and stable gas plasma in the dc mode with a plasma density up to 3x10(9) cm(-3) at an operating gas pressure in the vacuum chamber of less than 2x10(-2) Pa. The device features high power efficiency, design simplicity, and compactness. PMID:20192469

  12. Gas-discharge plasma sources for nonlocal plasma technology

    SciTech Connect

    Demidov, V. I.; DeJoseph, C. A. Jr.; Simonov, V. Ya.

    2007-11-12

    Nonlocal plasma technology is based on the effect of self-trapping of fast electrons in the plasma volume [V. I. Demidov, C. A. DeJoseph, Jr., and A. A. Kudryavtsev, Phys. Rev. Lett. 95, 215002 (2006)]. This effect can be achieved by changing the ratio of fast electron flux to ion flux incident on the plasma boundaries. This in turn leads to a significant change in plasma properties and therefore can be useful for technological applications. A gas-discharge device which demonstrates control of the plasma properties by this method is described.

  13. Piezoelectric transformers for low-voltage generation of gas discharges and ionic winds in atmospheric air

    SciTech Connect

    Johnson, Michael J.; Go, David B.

    2015-12-28

    To generate a gas discharge (plasma) in atmospheric air requires an electric field that exceeds the breakdown threshold of ∼30 kV/cm. Because of safety, size, or cost constraints, the large applied voltages required to generate such fields are often prohibitive for portable applications. In this work, piezoelectric transformers are used to amplify a low input applied voltage (<30 V) to generate breakdown in air without the need for conventional high-voltage electrical equipment. Piezoelectric transformers (PTs) use their inherent electromechanical resonance to produce a voltage amplification, such that the surface of the piezoelectric exhibits a large surface voltage that can generate corona-like discharges on its corners or on adjacent electrodes. In the proper configuration, these discharges can be used to generate a bulk air flow called an ionic wind. In this work, PT-driven discharges are characterized by measuring the discharge current and the velocity of the induced ionic wind with ionic winds generated using input voltages as low as 7 V. The characteristics of the discharge change as the input voltage increases; this modifies the resonance of the system and subsequent required operating parameters.

  14. Piezoelectric transformers for low-voltage generation of gas discharges and ionic winds in atmospheric air

    NASA Astrophysics Data System (ADS)

    Johnson, Michael J.; Go, David B.

    2015-12-01

    To generate a gas discharge (plasma) in atmospheric air requires an electric field that exceeds the breakdown threshold of ˜30 kV/cm. Because of safety, size, or cost constraints, the large applied voltages required to generate such fields are often prohibitive for portable applications. In this work, piezoelectric transformers are used to amplify a low input applied voltage (<30 V) to generate breakdown in air without the need for conventional high-voltage electrical equipment. Piezoelectric transformers (PTs) use their inherent electromechanical resonance to produce a voltage amplification, such that the surface of the piezoelectric exhibits a large surface voltage that can generate corona-like discharges on its corners or on adjacent electrodes. In the proper configuration, these discharges can be used to generate a bulk air flow called an ionic wind. In this work, PT-driven discharges are characterized by measuring the discharge current and the velocity of the induced ionic wind with ionic winds generated using input voltages as low as 7 V. The characteristics of the discharge change as the input voltage increases; this modifies the resonance of the system and subsequent required operating parameters.

  15. Dynamic processes in active medium of small diameter gas discharge lasers

    NASA Astrophysics Data System (ADS)

    Schishov, S. I.

    2008-03-01

    Review of electrodynamics properties for gas discharge lasers of small diameter has been completed with consideration of inertia typical for ionisation processes and transient nature of electron diffusion from unipolar to ambipolar. Procedure for calculation of transfer function and elements of equivalent electrical circuit for substitution of gas discharge laser discharge space.

  16. Experimental investigation on the effect of plasma jet in the triggered discharge process of a gas switch

    NASA Astrophysics Data System (ADS)

    Tie, W.; Liu, S.; Liu, X.; Zhang, Q.

    2016-08-01

    The temporal and spatial evolution of a plasma jet generated by a spark discharge was observed. The electron temperature and density were obtained under different time and gas pressures by optical emission spectroscopy. Moreover, the discharge process of the plasma-jet triggered gas switch was recorded and analyzed at the lowest working coefficient. The results showed that the plasma jet moved forward in a bullet mode, and the advancing velocity increased with the decrease of pressure, and decreased with time growing. At initial time, the maximum velocity of a plasma jet could reach 3.68 × 106 cm/s. The electron temperature decreased from 2.0 eV to 1.3 eV, and the electron density increased from 3.1 × 1015/cm3 to 6.3 × 1015/cm3 at the initial moment as the gas pressure increases from 0.1 MPa to 0.32 MPa. For a two-gap gas switch, the discharge performances were more depended on the second discharge spark gap (gap 2). Because plasma jet promoted the discharge in Gap 2, the gas switch operating in mode II had better triggered discharge characteristics. In the discharge process, the plasma-jet triggering had the effect of non-penetrating inducing, which not only provided initial electrons for reducing statistical lag but also enhanced the local electric field. The discharge was initiated and accelerated from electron avalanche to streamer. Therefore, a fast discharge was occurred in the gas switch.

  17. Dynamic Reduction Effect of CO2 Gas Discharge in Introducing Electric Vehicles

    NASA Astrophysics Data System (ADS)

    Liu, Bin; Inaba, Tsuginori

    For this study, the dynamic reduction effect of CO2 gas discharge for change from internal combustion engines to electric vehicles, EVs, was investigated quantitatively. The Japanese power generation status, which shows characteristics of electricity generation, and optimized adjustment to electricity demand, load and environment was examined. Based on a CO2 gas discharge basic unit, the estimated reduction quantity of CO2 gas discharge from EVs was calculated. The reduction effect of CO2 gas discharge is expected to be 52% by changing gas-fuelled vehicles to EVs. However, the dynamic differential is only 19% reduction by using the thermal power and -2% if only the coal thermal power is used.

  18. The oil and gas joint operating agreement

    SciTech Connect

    Not Available

    1990-01-01

    This book covers the following topics: introduction to the AAPL model form operating agreement; property provisions of the operating agreement; Article 6---the drilling and development article; duties and obligations revisited---who bear what risk of loss; operator's liens; accounting procedure joint operations; insurance; taking gas in kind absent a balancing agreement; RMMLF Form 5 Gas Balancing Agreement; tax partnerships for nontax professionals; alternative agreement forms.

  19. Self-Organization and Migration of Dielectric Barrier Discharge Filaments in Argon Gas Flow

    PubMed Central

    Yang, Yong; Cho, Young I.; Friedman, Gary; Fridman, Alexander; Fridman, Greg

    2012-01-01

    Observations of atmospheric-pressure dielectric barrier discharge are conducted through a water-filled electrode in atmospheric-pressure argon gas flow. Quasi-symmetric self-organized discharge filaments were observed. The streamers moved with the gas flow, and the migration velocity increased with increasing gas velocity. PMID:22287814

  20. High-power gas-discharge excimer ArF, KrCl, KrF and XeCl lasers utilising two-component gas mixtures without a buffer gas

    NASA Astrophysics Data System (ADS)

    Razhev, A. M.; Kargapol'tsev, E. S.; Churkin, D. S.

    2016-03-01

    Results of an experimental study of the influence of a gas mixture (laser active medium) composition on an output energy and total efficiency of gas-discharge excimer lasers on ArF* (193 nm), KrCl* (222 nm), KrF* (248 nm) and XeCl* (308 nm) molecules operating without a buffer gas are presented. The optimal ratios of gas components (from the viewpoint of a maximum output energy) of an active medium are found, which provide an efficient operation of laser sources. It is experimentally confirmed that for gas-discharge excimer lasers on halogenides of inert gases the presence of a buffer gas in an active medium is not a necessary condition for efficient operation. For the first time, in two-component gas mixtures of repetitively pulsed gas-discharge excimer lasers on electron transitions of excimer molecules ArF*, KrCl*, KrF* and XeCl*, the pulsed energy of laser radiation obtained under pumping by a transverse volume electric discharge in a low-pressure gas mixture without a buffer gas reached up to 170 mJ and a high pulsed output power (of up to 24 MW) was obtained at a FWHM duration of the KrF-laser pulse of 7 ns. The maximal total efficiency obtained in the experiment with two-component gas mixtures of KrF and XeCl lasers was 0.8%.

  1. Simulation of discharge in insulating gas from initial partial discharge to growth of a stepped leader using the percolation model

    NASA Astrophysics Data System (ADS)

    Sasaki, Akira; Kato, Susumu; Takahashii, Eiichi; Kishimoto, Yasuaki; Fujii, Takashi; Kanazawa, Seiji

    2016-02-01

    We show a cell simulation of a discharge in an insulating gas from the initial partial discharge to leader inception until breakdown, based on the percolation model. In the model, we consider that the propagation of the leader occurs when connections between randomly produced ionized regions in the discharge medium are established. To determine the distribution of ionized regions, the state of each simulation cell is decided by evaluating the probability of ionization in SF6, which depends on the local electric field. The electric field as well as the discharge current are calculated by solving circuit equations for the network of simulation cells. Both calculations are coupled to each other and the temporal evolution of discharge is self-consistently calculated. The model dependence of the features of the discharge is investigated. It is found that taking the suppression of attachment in the presence of a discharge current into account, the calculation reproduces the behavior of experimental discharges. It is shown that for a strong electric field, the inception of a stepped leader causes immediate breakdown. For an electric field of 30-50% of the critical field, the initial partial discharge persists for a stochastic time lag and then the propagation of a leader takes place. As the strength of the electric field decreases, the time lag increases rapidly and eventually only a partial discharge with a short arrested leader occurs, as observed in experiments.

  2. Effect of pulsed corona discharge voltage and feed gas flow rate on dissolved ozone concentration

    NASA Astrophysics Data System (ADS)

    Prasetyaningrum, A.; Ratnawati, Jos, B.

    2015-12-01

    Ozonization is one of the methods extensively used for water purification and degradation of organic materials. Ozone (O3) is recognized as a powerful oxidizing agent. Due to its strong oxidability and better environmental friendless, ozone increasing being used in domestic and industrial applications. Current technology in ozone production utilizes several techniques (corona discharge, ultra violet radiation and electrolysis). This experiment aimed to evaluating effect of voltage and gas flow rate on ozone production with corona discharge. The system consists of two net-type stainless steel electrode placed in a dielectric barrier. Three pulsed voltage (20, 30, 40 KV) and flow rate (5, 10, 15 L/min) were prepare for operation variable at high frequency (3.7 kHz) with AC pulsed power supply. The dissolved ozone concentration depends on the applied high-voltage level, gas flow rate and the discharge exposure duration. The ozone concentration increases with decreasing gas flow rate. Dissolved ozone concentrations greater than 200 ppm can be obtained with a minimum voltage 40 kV.

  3. Effect of pulsed corona discharge voltage and feed gas flow rate on dissolved ozone concentration

    SciTech Connect

    Prasetyaningrum, A. Ratnawati,; Jos, B.

    2015-12-29

    Ozonization is one of the methods extensively used for water purification and degradation of organic materials. Ozone (O{sub 3}) is recognized as a powerful oxidizing agent. Due to its strong oxidability and better environmental friendless, ozone increasing being used in domestic and industrial applications. Current technology in ozone production utilizes several techniques (corona discharge, ultra violet radiation and electrolysis). This experiment aimed to evaluating effect of voltage and gas flow rate on ozone production with corona discharge. The system consists of two net-type stainless steel electrode placed in a dielectric barrier. Three pulsed voltage (20, 30, 40 KV) and flow rate (5, 10, 15 L/min) were prepare for operation variable at high frequency (3.7 kHz) with AC pulsed power supply. The dissolved ozone concentration depends on the applied high-voltage level, gas flow rate and the discharge exposure duration. The ozone concentration increases with decreasing gas flow rate. Dissolved ozone concentrations greater than 200 ppm can be obtained with a minimum voltage 40 kV.

  4. Generation and Control of Electrolyte Cathode Atmospheric Glow Discharges using Miniature Gas Flow

    NASA Astrophysics Data System (ADS)

    Shirai, Naoki; Nakazawa, Masato; Ibuka, Shinji; Ishii, Shozo

    Stable electrolyte cathode atmospheric dc glow microdischarges were generated by using a miniature helium gas flow from a nozzle electrode in air. We developed two schemes to control the temporal evolution of the discharge and the interaction between the discharge column and the ambient air. The vaporization of electrolyte solutions takes place and affects the discharge characteristics. It takes time from the start of the discharge. Therefore the discharge was controlled by applying pulse modulated dc voltages. If the voltage was dropped down to zero before the vaporization, the gas discharge developed without the ionization of the components of solution. The helium gas discharge without air developed when the nozzle electrode was placed in a glass capillary. This was confirmed by examining the change in pH of the solution, which usually decreased owing to the generation of nitrogen oxides in the discharge in air.

  5. Ionization front in a high-current gas discharge

    NASA Astrophysics Data System (ADS)

    Choueiri, Edgar Y.; Randolph, Thomas M.

    2007-02-01

    Spectroscopic measurements of ion/neutral density ratio profiles are made inside the high-current, low-pressure discharge of a coaxial magnetoplasmadynamic thruster and show the existence of a thin ionization front, upstream in the discharge, that effectively ionizes the incoming gas to ionization levels above 50%. The measurements allow an estimate of the width of this ionization front to be on the order of a few millimeters. Due to the known existence of microturbulence in the plasma, which can produce suprathermal electrons, an explanation of the measurements based on the existence of a suprathermal tail in the electron energy distribution function is sought. A theoretical model for the width of the ionization front is combined with a multilevel excitation model for argon and shows that a Maxwellian electron distribution function cannot account for the small length scale of the ionization front, and that the latter is more consistent with an electron distribution function having a suprathermal population, the magnitude of which is estimated by comparing the model to the experiments.

  6. Ionization front in a high-current gas discharge

    SciTech Connect

    Choueiri, Edgar Y.; Randolph, Thomas M.

    2007-03-15

    Spectroscopic measurements of ion/neutral density ratio profiles are made inside the high-current, low-pressure discharge of a coaxial magnetoplasmadynamic thruster and show the existence of a thin ionization front, upstream in the discharge, that effectively ionizes the incoming gas to ionization levels above 50%. The measurements allow an estimate of the width of this ionization front to be on the order of a few millimeters. Due to the known existence of microturbulence in the plasma, which can produce suprathermal electrons, an explanation of the measurements based on the existence of a suprathermal tail in the electron energy distribution function is sought. A theoretical model for the width of the ionization front is combined with a multilevel excitation model for argon and shows that a Maxwellian electron distribution function cannot account for the small length scale of the ionization front, and that the latter is more consistent with an electron distribution function having a suprathermal population, the magnitude of which is estimated by comparing the model to the experiments.

  7. Coupling discharge and gas dynamics in streamer-less spark formation in supercritical N2

    NASA Astrophysics Data System (ADS)

    Agnihotri, Ashutosh; Hundsdorfer, Willem; Ebert, Ute

    2016-07-01

    A two-dimensional cylindrically symmetric model is developed to study the streamer-less spark formation in a short gap on the timescale of ion motion. It incorporates the coupling between the electric discharge and the gas through the heat generated by the discharge and the consecutive gas expansion. The model is employed to study electrical breakdown in supercritical N2. We present the simulation results of gas heating by the electrical discharge and the effect of gas expansion on the electrical discharge.

  8. Destruction of Bacterial Biofilms Using Gas Discharge Plasma

    NASA Astrophysics Data System (ADS)

    Abramzon, Nina

    2005-03-01

    Biofilms are bacterial communities embedded in an exopolysaccharidic matrix with a complex architectural structure. Bacteria in biofilms show different properties from those in free life thus, conventional methods of killing bacteria are often ineffective with biofilms. The use of plasmas potentially offers an alternative to conventional sterilization methods since plasmas contain a mixture of charged particles, chemically reactive species, and UV radiation. 4 and 7 day-old biofilms were produced using two bacterial species: Rhizobium gallicum and Chromobacterium violaceum. Gas discharge plasma was produced by using an AtomfloTM reactor (Surfx Technologies) and bacterial biofilms were exposed to it for different periods of time. Our results show that a 10-minute plasma treatment was able to kill 100% of the cells in most cases. Optical emission spectroscopy was used to study plasma composition which is then correlated with the effectiveness of killing. These results indicate the potentiality of plasma as an alternative sterilization method. Supported by CSuperb.

  9. Instability of dusty particle system in gas-discharge plasma

    SciTech Connect

    Filinov, V.S.; Petrov, O.F.; Fortov, V.E.; Molotkov, V.I.

    2005-10-31

    An effective anisotropic potential is proposed for the interaction between dust particles in a gas-discharge plasma. In addition to the Coulomb repulsion this potential takes into account attraction due to the spatial positive plasma charge originating from focusing of the ionic fluxes by dusty particles. The time evolution of the dust particle kinetic and potential energies from random initial configurations have been investigated by the Brownian dynamics method. Results of our simulation showed that the attraction between dusty particles can be the main physical reason of formation and decay of classical bound dust particle pairs and many particle complexes with low potential energy, while the kinetic energy (temperature) of unbound dust particles and particle oscillating in bound complexes may increase on three order as observed in experiments.

  10. Simulation of Gas Mixtures in RF Discharges for Nitride Deposition

    NASA Technical Reports Server (NTRS)

    Hwang, Helen H.; Meyyappan, Meyya; Arnold, James O. (Technical Monitor)

    1997-01-01

    Tungsten and titanium nitride films have long been grown by chemical vapor deposition (CVD) methods. However, there has been recent interest in low temperature growth using plasma enhanced CVD. For the present work, we focus on the radio frequency (BE) discharge characteristics of gas mixtures used in nitride deposition (for example, WF6 and ammonia). Because the radial variations for a standard 200 mm, parallel plate reactor are limited to a small zone near the edges of the electrodes, a 1-D (one-dimensional) analysis is considered. This model consists of a self-consistent, 3-D (three-dimensional) moment fluid simulation that solves the continuity, momentum, and energy equations for neutral and charged species. The results in terms of plasma structure, radical concentrations, and local deposition rate will be presented. We will also compare the 1-D results with those obtained from a 2-D hybrid plasma equipment model (HPEM) developed at the University of Illinois.

  11. Transport mechanisms of metastable and resonance atoms in a gas discharge plasma

    NASA Astrophysics Data System (ADS)

    Golubovskii, Yu; Gorchakov, S.; Uhrlandt, D.

    2013-04-01

    Atoms in electronically excited states are of significant importance in a large number of different gas discharges. The spatio-temporal distribution particularly of the lower excited states, the metastable and resonance ones, influences the overall behavior of the plasma because of their role in the ionization and energy budget. This article is a review of the theoretical and experimental studies on the spatial formation and temporal evolution of metastable and resonance atoms in weakly ionized low-temperature plasmas. Therefore, the transport mechanisms due to collisional diffusion and resonance radiation are compared step by step. The differences in formation of spatio-temporal structures of metastable and resonance atoms in plasmas are attributed to these different transport mechanisms. The analysis is performed by obtaining solutions of the diffusion and radiation transport equations. Solutions of stationary and non-stationary problems by decomposition over the eigenfunctions of the corresponding operators showed that there is, on the one hand, an effective suppression of the highest diffusion modes and, on the other hand, a survival of the highest radiation modes. The role of the highest modes is illustrated by examples. In addition, the differences in the Green functions for the diffusion and radiation transport operators are discussed. Numerical methods for the simultaneous solution of the balance equations for metastable and resonance atoms are proposed. The radiation transport calculations consider large absorption coefficients according to the Lorentz contour of a spectral line. Measurements of the distributions of metastable and resonance atoms are reviewed for a larger number of discharge conditions, i.e. in the positive column plasma, afterglow plasma, constricted pulsed discharge, stratified discharge, magnetron discharge, and in a discharge with a cathode spot.

  12. 46 CFR 153.462 - Static discharges from inert gas systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... gas systems. An inert gas system on a tank that carries a flammable or combustible cargo must not... 46 Shipping 5 2013-10-01 2013-10-01 false Static discharges from inert gas systems. 153.462... CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design...

  13. 46 CFR 153.462 - Static discharges from inert gas systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... gas systems. An inert gas system on a tank that carries a flammable or combustible cargo must not... 46 Shipping 5 2014-10-01 2014-10-01 false Static discharges from inert gas systems. 153.462... CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design...

  14. 46 CFR 153.462 - Static discharges from inert gas systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... gas systems. An inert gas system on a tank that carries a flammable or combustible cargo must not... 46 Shipping 5 2012-10-01 2012-10-01 false Static discharges from inert gas systems. 153.462... CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design...

  15. Growth of arc in high-pressure, pulsed glow discharge by gas density depletion

    NASA Astrophysics Data System (ADS)

    Imada, Go; Yatsui, Kiyoshi; Masuda, Wataru

    2000-10-01

    Effects of gas density depletion on arc formation of high-pressure, pulsed glow discharge have been investigated by eliminating the other factors which may affect the discharge stability, such as shock waves, residual ions, electrode heating, and discharge products. The gas density depletion has been simulated by utilizing a subsonic gas flow between the curved electrodes combined with a convergent nozzle and a divergent diffuser. A comparison has been made on the discharge in the aerodynamically created gas density depletion with the second discharge in the double-pulse discharge within a stable gas. We have found that the large gas density depletion, Δρ/ρ0˜-3.6% corresponding to a pulse repetition rate (PRR) of ˜50 Hz, tends to cause an arc-like filament or an arc without the shocks, ions, electrode heating, and products. However, the second discharge in the double-pulse discharge becomes an arc in much smaller gas density depletion (Δρ/ρ0˜-1.2% corresponding to PRR ˜3 Hz). Therefore, the collapse of high-pressure, pulsed glow discharge is most likely caused by some factor other than the gas density depletion.

  16. Particle-in-cell modeling of gas-confined barrier discharge

    NASA Astrophysics Data System (ADS)

    Levko, Dmitry; Raja, Laxminarayan L.

    2016-04-01

    Gas-confined barrier discharge is studied using the one-dimensional Particle-in-Cell Monte Carlo Collisions model for the conditions reported by Guerra-Garcia and Martinez-Sanchez [Appl. Phys. Lett. 106, 041601 (2015)]. Depending on the applied voltage, two modes of discharge are observed. In the first mode, the discharge develops in the entire interelectrode gap. In the second mode, the discharge is ignited and develops only in the gas layer having smaller breakdown voltage. The one-dimensional model shows that for the conditions considered, there is no streamer stage of breakdown as is typical for a traditional dielectric barrier discharge.

  17. Effects of ionic liquid electrode on pulse discharge plasmas in the wide range of gas pressures

    SciTech Connect

    Chen Qiang; Hatakeyama, Rikizo; Kaneko, Toshiro

    2010-11-15

    Gas-liquid interfacial pulse discharge plasmas are generated in the wide range of gas pressures, where an ionic liquid is used as the liquid electrode. By analyzing the characteristics of discharge voltage and current, the discharge mechanisms at low and high pressures are found to be dominated by secondary electron emission and first Townsend ionization, respectively. Therefore, the discharge properties at low and high pressures are mainly determined by the cathode material and the discharge gas type, respectively. Furthermore, the plasma properties are investigated by a double Langmuir probe. The density of the positive pulse plasma is found to be much smaller than that of the negative pulse plasma, although the discharge voltage and current of the negative and positive pulse plasmas are of the same order of magnitude. The positive pulse discharge plasma is considered to quickly diffuse onto the chamber wall from the radially central region due to its high plasma potential compared with that in the peripheral region.

  18. 46 CFR 153.462 - Static discharges from inert gas systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Static discharges from inert gas systems. 153.462... Equipment Special Requirements for Flammable Or Combustible Cargoes § 153.462 Static discharges from inert... create static arcing as the inert gas is injected into the tank....

  19. 46 CFR 153.462 - Static discharges from inert gas systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Static discharges from inert gas systems. 153.462... Equipment Special Requirements for Flammable Or Combustible Cargoes § 153.462 Static discharges from inert... create static arcing as the inert gas is injected into the tank....

  20. 21 CFR 1020.20 - Cold-cathode gas discharge tubes.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Cold-cathode gas discharge tubes. 1020.20 Section...) RADIOLOGICAL HEALTH PERFORMANCE STANDARDS FOR IONIZING RADIATION EMITTING PRODUCTS § 1020.20 Cold-cathode gas discharge tubes. (a) Applicability. The provisions of this section are applicable to cold-cathode...

  1. Characteristics of excitation discharge of an excimer laser in gas density depletion

    NASA Astrophysics Data System (ADS)

    Imada, Go; Masuda, Wataru; Yatsui, Kiyoshi

    1998-12-01

    The influences of gas density depletion on the highly- repetitive, high-pressure, pulsed glow discharge for excitation of excimer laser have been investigated eliminating the other instabilities, such as shock waves, residual ions, discharge products and electrode heating. The gas density depletion is simulated by utilizing a subsonic flow between the curved electrodes. The comparison has been made on the discharge occurred in the presence of the gas density depletion with the second discharge on the double-pulse experiment. We have found that the big gas density non uniformity, (Delta) (rho) /(rho) 0 approximately 3.6% corresponding to a pulse repetition rate (PRR) of approximately 20 Hz, tends to cause the arc discharge without the shocks, ions, discharge products and electrode heating. On the other hand, the second discharge on the double-pulse experiment becomes arc discharge in much smaller non uniformity ((Delta) (rho) /(rho) 0 approximately 1.2% corresponding to PRR approximately 3 Hz). The arc discharge in the double-pulse experiment might be driven by the residual ions and/or discharge products other than gas density depletion except for PRR greater than 20 Hz.

  2. Numerical investigation on operation mode influenced by external frequency in atmospheric pressure barrier discharge

    SciTech Connect

    Wang Qi; Sun Jizhong; Wang Dezhen

    2011-10-15

    The influence of external driving frequency on the discharge mode in the dielectric barrier discharge was investigated with a two-dimensional, self-consistent fluid model. The simulation results show that the helium discharge exhibits three operation modes: Townsend, homogeneous glow, and local glow discharges from the lower frequency (1 kHz) to the higher frequency (100 kHz) under discharge parameters specified in this work. The discharge operates in a Townsend mode when the driving frequency varies from 1 to about 7 kHz; while it exhibits homogenous glow characteristics in an approximate range from 7 to 65 kHz; when the external frequency exceeds 65 kHz, it turns into a local glow discharge. The effects of external driving frequency on the discharge mode were revealed and the physical reasons were discussed.

  3. Operating a fuel cell using landfill gas

    SciTech Connect

    Trippel, C.E.; Preston, J.L. Jr.; Trocciola, J.; Spiegel, R.

    1996-12-31

    An ONSI PC25{trademark}, 200 kW (nominal capacity) phosphoric acid fuel cell operating on landfill gas is installed at the Town of Groton Flanders Road landfill in Groton, Connecticut. This joint project by the Connecticut Light & Power Company (CL&P) which is an operating company of Northeast Utilities, the Town of Groton, International Fuel Cells (IFC), and the US EPA is intended to demonstrate the viability of installing, operating and maintaining a fuel cell operating on landfill gas at a landfill site. The goals of the project are to evaluate the fuel cell and gas pretreatment unit operation, test modifications to simplify the GPU design and demonstrate reliability of the entire system.

  4. Inception of Snapover and Gas Induced Glow Discharges

    NASA Technical Reports Server (NTRS)

    Galofaro, J. T.; Vayner, B. V.; Degroot, W. A.; Ferguson, D. C.; Thomson, C. D.; Dennison, J. R.; Davies, R. E.

    2000-01-01

    Ground based experiments of the snapover phenomenon were conducted in the large vertical simulation chamber at the Glenn Research Center (GRC) Plasma Interaction Facility (PIF). Two Penning sources provided both argon and xenon plasmas for the experiments. The sources were used to simulate a variety of ionospheric densities pertaining to a spacecraft in a Low Earth Orbital (LEO) environment. Secondary electron emission is believed responsible for dielectric surface charging, and all subsequent snapover phenomena observed. Voltage sweeps of conductor potentials versus collected current were recorded in order to examine the specific charging history of each sample. The average time constant for sample charging was estimated between 25 and 50 seconds for all samples. It appears that current drops off by approximately a factor of 3 over the charging time of the sample. All samples charged in the forward and reverse bias directions, demonstrated hysteresis. Current jumps were only observed in the forward or positive swept voltage direction. There is large dispersion in tile critical snapover potential when repeating sweeps on any one sample. The current ratio for the first snapover region jumps between 2 and 4.6 times, with a standard deviation less than 1.6. Two of the samples showed even larger current ratios. It is believed the second large snapover region is due to sample outgassing. Under certain preset conditions, namely at the higher neutral gas background pressures, a perceptible blue-green glow was observed around the conductor. The glow is believed to be a result of secondary electrons undergoing collisions with an expelled tenuous cloud of gas, that is outgassed from the sample. Spectroscopic measurements of the glow discharge were made in an attempt to identify specific lines contributing to the observed glow.

  5. Simulations of Electron Density Perturbations in a Gas Discharge

    NASA Astrophysics Data System (ADS)

    Caplinger, James; Sotnikov, Vladimir; Main, Daniel

    2015-11-01

    Beginning with the idealized case of the Pierce diode, a series of particle-in-cell (PIC) simulations are conducted in order to characterize density perturbations in a laboratory gas discharge. This work is conducted to support future experimental investigations into electromagnetic scattering off of electron density perturbations excited by plasma flows. As a first step, 2D PIC simulations were conducted for the Pierce diode case, which is a simple model that exploits instabilities of a monochromatic electron beam between two grounded electrodes. These results were compared to the standard analytical solution. Departing from this idealized case we will include in the simulations electron-neutral collisions, particle creation from ionization, as well as an electric field generated by biased electrodes. A parameter study of electric field strength and collision frequency will be performed for values approaching the Pierce diode as well as extending to cases of expected laboratory parameters. If we can extract physical density spectra from simulations with parameters approaching experimental values, it may be possible to analyze electromagnetic scattering characteristics.

  6. Zero Discharge Water Management for Horizontal Shale Gas Well Development

    SciTech Connect

    Paul Ziemkiewicz; Jennifer Hause; Raymond Lovett; David Locke Harry Johnson; Doug Patchen

    2012-03-31

    Hydraulic fracturing technology (fracking), coupled with horizontal drilling, has facilitated exploitation of huge natural gas (gas) reserves in the Devonian-age Marcellus Shale Formation (Marcellus) of the Appalachian Basin. The most-efficient technique for stimulating Marcellus gas production involves hydraulic fracturing (injection of a water-based fluid and sand mixture) along a horizontal well bore to create a series of hydraulic fractures in the Marcellus. The hydraulic fractures free the shale-trapped gas, allowing it to flow to the well bore where it is conveyed to pipelines for transport and distribution. The hydraulic fracturing process has two significant effects on the local environment. First, water withdrawals from local sources compete with the water requirements of ecosystems, domestic and recreational users, and/or agricultural and industrial uses. Second, when the injection phase is over, 10 to 30% of the injected water returns to the surface. This water consists of flowback, which occurs between the completion of fracturing and gas production, and produced water, which occurs during gas production. Collectively referred to as returned frac water (RFW), it is highly saline with varying amounts of organic contamination. It can be disposed of, either by injection into an approved underground injection well, or treated to remove contaminants so that the water meets the requirements of either surface release or recycle use. Depending on the characteristics of the RFW and the availability of satisfactory disposal alternatives, disposal can impose serious costs to the operator. In any case, large quantities of water must be transported to and from well locations, contributing to wear and tear on local roadways that were not designed to handle the heavy loads and increased traffic. The search for a way to mitigate the situation and improve the overall efficiency of shale gas production suggested a treatment method that would allow RFW to be used as make

  7. Study of deposit associated with discharge in micro-pixel gas chamber

    NASA Astrophysics Data System (ADS)

    Homma, Y.; Ochi, A.; Moriya, K.; Matsuda, S.; Yoshida, K.; Kobayashi, S.

    2009-02-01

    We found some deposits associated with discharge on dielectric (polyimide) substrates in "Micro-Pixel Gas Chambers" ( μ-PIC) operating with Ar/C2H6 90/10. Secondary electron images taken with a scanning electron microscope (SEM) revealed that they were a conductive material. Auger electron spectroscopy clearly showed that their main component was carbon (98%). Their origin was clarified using spark tests in which a single pixel was sparked a specific number of times. Secondary electron images clearly showed that discharge occurred in the narrow gaps between the electrodes. With a Ar/C2H6 50/50 gas mixture, the amount of carbon deposited depended on the number of sparks. The drop in the applied voltage after the test depended on the number of sparks. With pure N2 gas, no deposits were clearly found, however, a decrease in the applied voltage after the tests was observed. This can be attributed to carbonization of the polyimide surface. Although the SEM images did not show clear proof of this, this carbonization could contribute much less than the ethane dissociation.

  8. Hydrate Control for Gas Storage Operations

    SciTech Connect

    Jeffrey Savidge

    2008-10-31

    The overall objective of this project was to identify low cost hydrate control options to help mitigate and solve hydrate problems that occur in moderate and high pressure natural gas storage field operations. The study includes data on a number of flow configurations, fluids and control options that are common in natural gas storage field flow lines. The final phase of this work brings together data and experience from the hydrate flow test facility and multiple field and operator sources. It includes a compilation of basic information on operating conditions as well as candidate field separation options. Lastly the work is integrated with the work with the initial work to provide a comprehensive view of gas storage field hydrate control for field operations and storage field personnel.

  9. Harmonic distortion and power factor assessment in city street gas discharge lamps

    SciTech Connect

    Rios, S.; Castaneda, R.; Veas, D.

    1996-04-01

    The current and voltage harmonic spectrum, and power factor in gas discharge lamps: Sodium (Na)-high pressure and Mercury (Hg) in actual use in public street lighting have been measured. A sample of nearby 360 gas discharge lamps (Na, Hg) of different rated power was obtained by simple random sampling over a universe of approximately 15,000 lamps. An equivalent current harmonic spectrum for gas discharge lamps is proposed, which is independent of the type of gas and the lamp rated power. This current spectrum can be used to integrate gas discharge lamp models for harmonic distortion level assessment in distribution networks. The relation of this equivalent current harmonic spectrum with: (1) lamp voltage waveform, (2) type of lamp (Na, Hg), and (3) power factor-capacitor lamp, is analyzed.

  10. Systematic investigation of the barrier discharge operation in helium, nitrogen, and mixtures: discharge development, formation and decay of surface charges

    NASA Astrophysics Data System (ADS)

    Tschiersch, R.; Bogaczyk, M.; Wagner, H.-E.

    2014-09-01

    As a logical extension to previous investigations of the barrier discharge (BD) in helium and nitrogen, the present work reports on the operation in any mixtures of both pure gases. Using a well-established plane-parallel discharge cell configuration allows to study the influence of the He/N2 mixing ratio on the formation of different discharge modes. Their characterization was made by measuring the discharge emission development together with the formation and decay of surface charges on a bismuth silicon oxide (Bi12SiO20, BSO) crystal. This was realized by the simultaneous application of the spatio-temporally resolved optical emission spectroscopy, and the electro-optic Pockels effect in combination with a CCD high speed camera. The existence diagram for diffuse and filamentary BDs was determined by varying the amplitude and shape of the applied voltage. Over the entire range of the He/N2 ratio, the diffuse mode can be operated at moderate voltage amplitudes whereas filamentation occurs at significant overvoltage and is favoured by a high voltage slew rate. Irrespective of the discharge mode, the overall charge transfer during a discharge breakdown is found to be in excellent agreement with the amount of accumulated surface charges. An exponential decay of the surface charge deposited on the BSO crystal is induced by LED illumination beyond a typical discharge cycle. During the decay process, a broadening of the radial profiles of positive as well as negative surface charge spots originating from previous microdischarges is observed. The investigations contribute to a better understanding of the charge accumulation at a dielectric.

  11. Self-organized patterns in successive bifurcations in planar semiconductor-gas-discharge device

    NASA Astrophysics Data System (ADS)

    Astrov, Yu. A.; Lodygin, A. N.; Portsel, L. M.

    2015-03-01

    The formation of dissipative structures is investigated in a planar semiconductor-gas-discharge device at room temperature. The width of the discharge gap is about 1 mm. The gap is filled with nitrogen at a pressure that corresponds to the discharge operation at the right branch of the Paschen curve. Wafers of semi-insulating GaAs that exhibit linear transport in the whole range of voltage and current studied are used as semiconductor electrodes. In addition to the earlier investigated Andronov-Hopf bifurcation, a different mode of self-organization of the device is observed, where the transport of charge proceeds through an ensemble of pulsating current filaments. The corresponding critical current for the present bifurcation does not depend on the polarity of the bias voltage, while the spatiotemporal dynamics of a pattern differs substantially for a change in the polarity. Pulsating filaments can form a spatially ordered pattern when the GaAs electrode is under the positive potential. We also observe self-organization modes, where pulsating filaments form an irregular spatiotemporal dynamics of a pattern. The data obtained are briefly discussed in the frame of corresponding theoretical results in the field.

  12. Potential Industrial Applications of the One Atmosphere Uniform Glow Discharge Plasma (OAUGDP) Operating in Ambient Air

    NASA Astrophysics Data System (ADS)

    Reece Roth, J.

    2004-11-01

    The majority of industrial plasma processing with glow discharges has been conducted at pressures below 10 torr. This tends to limit applications to high value workpieces as a result of the high capital cost of vacuum systems and the production constraints of batch processing. It has long been recognized that glow discharge plasmas would play a much larger industrial role if they could be generated at one atmosphere. The One Atmosphere Uniform Glow Discharge Plasma (OAUGDP), developed at the University of Tennessee's Plasma Sciences Laboratory, is a non-thermal RF plasma operating on displacement currents with the time-resolved characteristics of a classical low pressure DC normal glow discharge. As a glow discharge, the OAUGDP operates with maximum electrical efficiency at the Stoletow point, where the energy input per ion-electron pair is a minimum [1, 2]. Several interdisciplinary teams have investigated potential applications of the OAUGDP. These teams included collaborators from the UTK Textiles and Nonwovens Development Center (TANDEC), and the Departments of Electrical and Computer Engineering, Microbiology, and Food Science and Technology, as well as the NASA Langley Research Center. The potential applications of the OAUGDP have all been at one atmosphere and room temperature, using air as the working gas. These applications include sterilizing medical and dental equipment; sterilizable air filters to deal with the "sick building syndrome"; removal of soot from Diesel engine exhaust; subsonic plasma aerodynamic effects, including flow re-attachment to airfoils and boundary layer modification; electrohydrodynamic (EDH) flow control of working gases; increasing the surface energy of materials; improving the adhesion of paints and electroplated layers: improving the wettability and wickability of fabrics; stripping of photoresist; and plasma deposition and directional etching of potential microelectronic relevance. [1] J. R. Roth, Industrial Plasma Engineering

  13. Efficient gas lasers pumped by double-discharge circuits with semiconductor opening switch

    NASA Astrophysics Data System (ADS)

    Panchenko, Alexei N.; Tarasenko, Victor F.

    2012-01-01

    A review of applications of double-discharge circuits based on generators with inductive energy storage (IES) and semiconductor opening switches (SOS) for efficient excitation of different gas lasers is presented. Using a pre-pulse-sustainer circuit technique based on inductive energy storage and semiconductor opening switch generators allows the formation of a pre-pulse with high amplitude and short rise-time and provides a sharp increase of discharge current which significantly improves discharge stability and life-time of the volume discharge in gas mixtures containing halogens. A pre-pulse with high pumping power forms a high-density discharge plasma and an inversion population in gas mixtures under study within ∼10 ns and provides both early onset of lasing and conditions for efficient excitation of an active medium from the storage capacitor. As a result, pulse duration, output energy and efficiency of the lasers under study were improved.

  14. [Removal of SO2 from flue gas by water vapor DC corona discharge].

    PubMed

    Sun, Ming; Wu, Yan

    2006-07-01

    The influence of several factors on removal rate of SO2 from flue gas in unsaturated water vapor DC corona discharge was researched. Furthermore, the experiments of the removal rate of SO2 in pulsed discharge increased by water vapor DC corona discharge plasma were conducted. The experiment system is supplied with multi-nozzle-plate electrodes and the flow of simulated flue gas is under 70 m3/h. The results show that removal rate of SO2 can be improved by increasing the concentration of water vapor, intensity of electric field or decreasing flow of simulated flue gas. In unsaturated water vapor DC corona discharge, removal rate of SO2 can be improved by 10%, when NH3 is added as NH3 and SO2 is in a mole ratio of two to one, it can reach 60%. The removal rate of SO2 can be increased by 5% in pulsed corona discharge and reach above 90%. PMID:16881295

  15. Effect of hydrogen ratio on plasma parameters of N2-H2 gas mixture glow discharge

    NASA Astrophysics Data System (ADS)

    El-Brulsy, R. A.; Abd Al-Halim, M. A.; Abu-Hashem, A.; Rashed, U. M.; Hassouba, M. A.

    2012-05-01

    A dc plane glow discharge in a nitrogen-hydrogen (N2-H2) gas mixture has been operated at discharge currents of 10 and 20 mA. The electron energy distribution function (EEDF) at different hydrogen concentrations is measured. A Maxwellian EEDF is found in the positive column region, while in both cathode fall and negative glow regions, a non-Maxwellian one is observed. Langmuir electric probes are used at different axial positions, gas pressures, and hydrogen concentrations to measure the electron temperature and plasma density. The electron temperature is found to increase with increasing H2 concentration and decrease with increasing both the axial distance from the cathode and the mixture pressure. At first, with increasing distance from the cathode, the ion density decreases, while the electron density increases; then, as the anode is further approached, they remain nearly constant. At different H2 concentrations, the electron and ion densities decrease with increasing the mixture pressure. Both the electron and ion densities slightly decrease with increasing H2 concentration.

  16. Natural gas in Lake Erie: a reconnaissance survey of discharges from an offshore drilling rig

    SciTech Connect

    Ferrante, J.G.; Dettmann, E.H.; Parker, J.I.

    1980-10-01

    Field studies were conducted May 28-June 1, 1979, to determine the chemical composition and physical behavior of discharges from an offshore gas drilling rig in the central basin of Lake Erie. The drilling operation was observed for four days, from rig jackup to the circulation of mud through the borehole after drilling had been completed. Resuspension studies using nephelometry, supplemented with chemical analyses, indicated little resuspension of lake bottom materials or release of metals to the water column during rig jack-up. Portions of the turbidity plumes generated during drilling were buoyant. Three surface turbidity plumes were mapped with nephelometry to a point at which particulate concentrations reached background levels in the Lake. Detectable plumes were approx. 400 to 1500 m in length and had maximum widths < 230 m. A chemical survey conducted in the plume during early gas shows indicated that discharged inorganic chemical species were rapidly diluted to background concentrations and that methane and ethane concentrations were substantially reduced within 330 m of the rig. There was no evidence of carbon tetrachloride extractable hydrocarbons (CTEH) above background concentrations during this chemical plume survey. However, a pair of water samples taken within 100 m of the rig approximately 3 hours after drilling of the target zone was completed had CTEH concentrations that were a factor of 2.4 above background.

  17. Nonlinear transport of semi-insulating GaAs in a semiconductor gas discharge structure

    NASA Astrophysics Data System (ADS)

    Yücel Kurt, H.; Salamov, B. G.

    2007-12-01

    Nonlinear transport of a semi-insulating (SI) GaAs photodetector in a semiconductor gas discharge structure (SGDS) is studied experimentally for a wide range of gas pressures p, interelectrode distances d and different diameters D of the detector areas. While being driven with a stationary voltage, the system generates current and discharge light emission (DLE) instabilities with different amplitudes of the oscillations. The transformation of the profile and amplitude of the current density of the filaments in the different regions of the current-voltage characteristic (CVC) has been studied. Instabilities of spatially non-uniform distributions resulting in the formation of multiple current filaments with increasing voltages above the critical values have been observed. It is shown that the interelectrode distance only plays a passive role and is not responsible for the appearance of the DLE instability under the experimental conditions. At the same time, the expanded range of current and DLE oscillations are observed for different diameters D of the infrared (IR) photodetector areas. An SGDS with an N-shaped CVC is analysed using both the current and DLE data which show the electrical instability in the GaAs photodetector. It is found that the application of high feeding voltage to this photodetector gives rise to a non-uniform spatial distribution of the DLE, which disturbs the operation of the system. The experiment also presents a new method to study and visualize the electrical instabilities in a high-resistivity IR photodetector of large diameter.

  18. Initiation of long, free-standing z discharges by CO2 laser gas heating

    NASA Astrophysics Data System (ADS)

    Niemann, C.; Tauschwitz, A.; Penache, D.; Neff, S.; Knobloch, R.; Birkner, R.; Presura, R.; Hoffmann, D. H. H.; Yu, S. S.; Sharp, W. M.

    2002-01-01

    High current discharge channels can neutralize both current and space charge of very intense ion beams. Therefore, they are considered an interesting solution for final focus and beam transport in a heavy ion beam fusion reactor. At the Gesellschaft für Schwerionenforschung accelerator facility, 50 cm long, free-standing discharge channels were created in a 60 cm diameter metallic chamber. Discharges with currents of 45 kA in 2 to 25 mbar ammonia (NH3) gas are initiated by a CO2 laser pulse along the channel axis before the capacitor bank is triggered. Resonant absorption of the laser, tuned to the v2 vibration of the ammonia molecule, causes strong gas heating. Subsequent expansion and rarefaction of the gas prepare the conditions for a stable discharge to fulfill the requirements for ion beam transport. The influence of an electric prepulse on the high current discharge was investigated. This article describes the laser-gas interaction and the discharge initiation mechanism. We found that channels are magnetohydrodynamic stable up to currents of 45 kA, measured by fast shutter and streak imaging techniques. The rarefaction of the laser heated gas is studied by means of a one-dimensional Lagrangian fluid code (CYCLOPS) and is identified as the dominant initiation mechanism of the discharge.

  19. Binary and ternary gas mixtures for use in glow discharge closing switches

    DOEpatents

    Hunter, Scott R.; Christophorou, Loucas G.

    1990-01-01

    Highly efficient binary and ternary gas mixtures for use in diffuse glow discharge closing switches are disclosed. The binary mixtures are combinations of helium or neon and selected perfluorides. The ternary mixtures are combinations of helium, neon, or argon, a selected perfluoride, and a small amount of gas that exhibits enhanced ionization characteristics. These mixtures are shown to be the optimum choices for use in diffuse glow discharge closing switches by virtue of the combined physio-electric properties of the mixture components.

  20. Gas-discharge probe microscopy of water-carrying channels in wood

    NASA Astrophysics Data System (ADS)

    Ivanov-Omskii, V. I.; Ivanova, E. I.

    2012-04-01

    We have used a gas-discharge imaging technique to study the water transport channels (tracheids) in wood samples. Results obtained for the samples of bitch and aspen show features of this variant of the probe microscopy and show its additional possibilities as compared to optical microscopy. It is concluded that gas-discharge probe microscopy can be used for additional diagnostics of the structure of plant and animal tissues.

  1. Endotoxin removal by radio frequency gas plasma (glow discharge)

    NASA Astrophysics Data System (ADS)

    Poon, Angela

    2011-12-01

    Contaminants remaining on implantable medical devices, even following sterilization, include dangerous fever-causing residues of the outer lipopolysaccharide-rich membranes of Gram-negative bacteria such as the common gut microorganism E. coli. The conventional method for endotoxin removal is by Food & Drug Administration (FDA)-recommended dry-heat depyrogenation at 250°C for at least 45 minutes, an excessively time-consuming high-temperature technique not suitable for low-melting or heat-distortable biomaterials. This investigation evaluated the mechanism by which E. coli endotoxin contamination can be eliminated from surfaces during ambient temperature single 3-minute to cumulative 15-minute exposures to radio-frequency glow discharge (RFGD)-generated residual room air plasmas activated at 0.1-0.2 torr in a 35MHz electrodeless chamber. The main analytical technique for retained pyrogenic bio-activity was the Kinetic Chromogenic Limulus Amebocyte Lysate (LAL) Assay, sufficiently sensitive to document compliance with FDA-required Endotoxin Unit (EU) titers less than 20 EU per medical device by optical detection of enzymatic color development corresponding to < 0.5 EU/ml in sterile water extracts of each device. The main analytical technique for identification of chemical compositions, amounts, and changes during sequential reference Endotoxin additions and subsequent RFGD-treatment removals from infrared (IR)-transparent germanium (Ge) prisms was Multiple Attenuated Internal Reflection (MAIR) infrared spectroscopy sensitive to even monolayer amounts of retained bio-contaminant. KimaxRTM 60 mm x 15 mm and 50mm x 15mm laboratory glass dishes and germanium internal reflection prisms were inoculated with E. coli bacterial endotoxin water suspensions at increments of 0.005, 0.05, 0.5, and 5 EU, and characterized by MAIR-IR spectroscopy of the dried residues on the Ge prisms and LAL Assay of sterile water extracts from both glass and Ge specimens. The Ge prism MAIR

  2. The inactivation of Chlorella spp. with dielectric barrier discharge in gas-liquid mixture

    NASA Astrophysics Data System (ADS)

    Song, Dan; Sun, Bing; Zhu, Xiaomei; Yan, Zhiyu; Liu, Hui; Liu, Yongjun

    2013-03-01

    The inactivation of Chlorella spp. with high voltage and frequency pulsed dielectric barrier discharge in hybrid gas-liquid reactor with a suspension electrode was studied experimentally. In the hybrid gas-liquid reactor, a steel plate was used as high voltage electrode while a quartz plate as a dielectric layer, another steel plate placing in the aqueous solution worked as a whole ground electrode. A suspension electrode is installed near the surface of solution between high voltage and ground electrode to make the dielectric barrier discharge uniform and stable, the discharge gap was between the quartz plate and the surface of the water. The effect of peak voltage, treatment time, the initial concentration of Chlorella spp. and conductivity of solution on the inactivation rate of Chlorella spp. was investigated, and the inactivation mechanism of Chlorella spp. preliminarily was studied. Utilizing this system inactivation of Chlorella spp., the inactivation rate increased with increasing of peak voltage, treatment time and electric conductivity. It was found that the inactivation rate of Chlorella spp. arrived at 100% when the initial concentration was 4 × 106 cells mL-1, and the optimum operation condition required a peak voltage of 20 kV, a treatment time of 10 min and a frequency of 7 kHz. Though the increasing of initial concentration of the Chlorella spp. contributed to the addition of interaction probability between the Chlorella spp. and O3, H2O2, high-energy electrons, UV radiation and other active substances, the total inactivation number raise, but the inactivation rate of the Chlorella spp. decreased.

  3. 33 CFR 151.69 - Operating requirements: Discharge of garbage outside special areas.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., GARBAGE, MUNICIPAL OR COMMERCIAL WASTE, AND BALLAST WATER Implementation of MARPOL 73/78 and the Protocol... Pollution and Sewage § 151.69 Operating requirements: Discharge of garbage outside special areas. (a) Except...; and (3) 100 nautical miles and the maximum water depth possible for animal carcasses. Discharge...

  4. 33 CFR 151.71 - Operating requirements: Discharge of garbage within special areas.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., GARBAGE, MUNICIPAL OR COMMERCIAL WASTE, AND BALLAST WATER Implementation of MARPOL 73/78 and the Protocol... Pollution and Sewage § 151.71 Operating requirements: Discharge of garbage within special areas. (a) When a... garbage into the water, except as allowed in this section. (b) Food wastes shall only be discharged...

  5. 33 CFR 151.71 - Operating requirements: Discharge of garbage within special areas.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., GARBAGE, MUNICIPAL OR COMMERCIAL WASTE, AND BALLAST WATER Implementation of MARPOL 73/78 and the Protocol... Pollution and Sewage § 151.71 Operating requirements: Discharge of garbage within special areas. (a) When a... garbage into the water, except as allowed in this section. (b) Food wastes shall only be discharged...

  6. 33 CFR 151.69 - Operating requirements: Discharge of garbage outside special areas.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., GARBAGE, MUNICIPAL OR COMMERCIAL WASTE, AND BALLAST WATER Implementation of MARPOL 73/78 and the Protocol... Pollution and Sewage § 151.69 Operating requirements: Discharge of garbage outside special areas. (a) Except...; and (3) 100 nautical miles and the maximum water depth possible for animal carcasses. Discharge...

  7. 33 CFR 151.79 - Operating requirements: Discharge of sewage within Antarctica.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... of sewage within Antarctica. 151.79 Section 151.79 Navigation and Navigable Waters COAST GUARD... Pollution and Sewage § 151.79 Operating requirements: Discharge of sewage within Antarctica. (a) A vessel certified to carry more than 10 persons must not discharge untreated sewage into the sea within 12...

  8. 33 CFR 151.79 - Operating requirements: Discharge of sewage within Antarctica.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... of sewage within Antarctica. 151.79 Section 151.79 Navigation and Navigable Waters COAST GUARD... Pollution and Sewage § 151.79 Operating requirements: Discharge of sewage within Antarctica. (a) A vessel certified to carry more than 10 persons must not discharge untreated sewage into the sea within 12...

  9. 33 CFR 151.79 - Operating requirements: Discharge of sewage within Antarctica.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... of sewage within Antarctica. 151.79 Section 151.79 Navigation and Navigable Waters COAST GUARD... Pollution and Sewage § 151.79 Operating requirements: Discharge of sewage within Antarctica. (a) A vessel certified to carry more than 10 persons must not discharge untreated sewage into the sea within 12...

  10. 33 CFR 151.79 - Operating requirements: Discharge of sewage within Antarctica.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... of sewage within Antarctica. 151.79 Section 151.79 Navigation and Navigable Waters COAST GUARD... Pollution and Sewage § 151.79 Operating requirements: Discharge of sewage within Antarctica. (a) A vessel certified to carry more than 10 persons must not discharge untreated sewage into the sea within 12...

  11. 33 CFR 151.79 - Operating requirements: Discharge of sewage within Antarctica.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... of sewage within Antarctica. 151.79 Section 151.79 Navigation and Navigable Waters COAST GUARD... Pollution and Sewage § 151.79 Operating requirements: Discharge of sewage within Antarctica. (a) A vessel certified to carry more than 10 persons must not discharge untreated sewage into the sea within 12...

  12. 33 CFR 151.67 - Operating requirements: Discharge of plastic prohibited.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... of plastic prohibited. 151.67 Section 151.67 Navigation and Navigable Waters COAST GUARD, DEPARTMENT... Sewage § 151.67 Operating requirements: Discharge of plastic prohibited. No person on board any ship may discharge into the sea, or into the navigable waters of the United States, plastic or garbage mixed...

  13. 33 CFR 151.67 - Operating requirements: Discharge of plastic prohibited.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... of plastic prohibited. 151.67 Section 151.67 Navigation and Navigable Waters COAST GUARD, DEPARTMENT... Sewage § 151.67 Operating requirements: Discharge of plastic prohibited. No person on board any ship may discharge into the sea, or into the navigable waters of the United States, plastic or garbage mixed...

  14. 33 CFR 151.67 - Operating requirements: Discharge of plastic prohibited.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... of plastic prohibited. 151.67 Section 151.67 Navigation and Navigable Waters COAST GUARD, DEPARTMENT... Sewage § 151.67 Operating requirements: Discharge of plastic prohibited. No person on board any ship may discharge into the sea, or into the navigable waters of the United States, plastic or garbage mixed...

  15. 33 CFR 151.67 - Operating requirements: Discharge of plastic prohibited.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... of plastic prohibited. 151.67 Section 151.67 Navigation and Navigable Waters COAST GUARD, DEPARTMENT... Sewage § 151.67 Operating requirements: Discharge of plastic prohibited. No person on board any ship may discharge into the sea, or into the navigable waters of the United States, plastic or garbage mixed...

  16. 33 CFR 151.67 - Operating requirements: Discharge of plastic prohibited.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... of plastic prohibited. 151.67 Section 151.67 Navigation and Navigable Waters COAST GUARD, DEPARTMENT... Sewage § 151.67 Operating requirements: Discharge of plastic prohibited. No person on board any ship may discharge into the sea, or into the navigable waters of the United States, plastic or garbage mixed...

  17. Pilot gasification and hot gas cleanup operations

    SciTech Connect

    Rockey, J.M.; Galloway, E.; Thomson, T.A.; Rutten, J.; Lui, A.

    1995-12-31

    The Morgantown Energy Technology Center (METC) has an integrated gasification hot gas cleanup facility to develop gasification, hot particulate and desulfurization process performance data for IGCC systems. The objective of our program is to develop fluidized-bed process performance data for hot gas desulfurization and to further test promising sorbents from lab-scale screening studies at highpressure (300 psia), and temperatures (1,200{degrees}F) using coal-derived fuel gases from a fluid-bed gasifier. The 10-inch inside diameter (ID), nominal 80 lb/hr, air blown gasifier is capable of providing about 300 lb/hr of low BTU gas at 1,000{degrees}F and 425 psig to downstream cleanup devices. The system includes several particle removal stages, which provide the capability to tailor the particle loading to the cleanup section. The gas pressure is reduced to approximately 300 psia and filtered by a candle filter vessel containing up to four filter cartridges. For batch-mode desulfurization test operations, the filtered coal gas is fed to a 6-inch ID, fluid-bed reactor that is preloaded with desulfurization sorbent. Over 400 hours of gasifier operation was logged in 1993 including 384 hours of integration with the cleanup rig. System baseline studies without desulfurization sorbent and repeatability checks with zinc ferrite sorbent were conducted before testing with the then most advanced zinc titanate sorbents, ZT-002 and ZR-005. In addition to the desulfurization testing, candle filters were tested for the duration of the 384 hours of integrated operation. One filter was taken out of service after 254 hours of filtering while another was left in service. At the conclusion of testing this year it is expected that 3 candles, one each with 254, 530, and 784 hours of filtering will be available for analysis for effects of the exposure to the coal gas environment.

  18. Impact of gas flow rate on breakdown of filamentary dielectric barrier discharges

    NASA Astrophysics Data System (ADS)

    Höft, H.; Becker, M. M.; Kettlitz, M.

    2016-03-01

    The influence of gas flow rate on breakdown properties and stability of pulsed dielectric barrier discharges (DBDs) in a single filament arrangement using a gas mixture of 0.1 vol. % O2 in N2 at atmospheric pressure was investigated by means of electrical and optical diagnostics, accompanied by fluid dynamics and electrostatics simulations. A higher flow rate perpendicular to the electrode symmetry axis resulted in an increased breakdown voltage and DBD current maximum, a higher discharge inception jitter, and a larger emission diameter of the discharge channel. In addition, a shift of the filament position for low gas flow rates with respect to the electrode symmetry axis was observed. These effects can be explained by the change of the residence time of charge carriers in the discharge region—i.e., the volume pre-ionization—for changed flow conditions due to the convective transport of particles out of the center of the gap.

  19. Initiation of long, free-standing Z-discharges by CO2 laser gas heating

    SciTech Connect

    Nieman, C.; Tauschwitz, A.; Penache, D.; Neff, S.; Knobloch, R.; Birkner, R.; Presura, R.; Hoffmann, D.H.H.; Yu, S.S.; Sharp, W.M.

    2004-04-19

    High current discharge channels can neutralize both current and space charge of very intense ion beams. Therefore they are considered as an interesting alternative for the final focus and beam transport in a heavy ion beam fusion reactor. At the GSI accelerator facility, 50 cm long, stable, free-standing discharge channels with currents in excess of 40 kA in 2 to 25 mbar ammonia (NH{sub 3}) gas are investigated for heavy ion beam transport studies. The discharges are initiated by a CO{sub 2} laser pulse along the channel axis before the discharge is triggered. Resonant absorption of the laser, tuned to the {nu}{sub 2} vibration of the ammonia molecule, causes strong gas heating. Subsequent expansion and rarefaction of the gas prepare the conditions for a stable discharge to fulfill the requirements for ion beam transport. This paper describes the laser-gas interaction and the discharge initiation mechanism. We report on the channel stability and evolution, measured by fast shutter and streak imaging techniques. The rarefaction of the laser heated gas is studied by means of a hydrocode simulation.

  20. 33 CFR 151.73 - Operating requirements: Discharge of garbage from fixed or floating platforms.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... SUBSTANCES, GARBAGE, MUNICIPAL OR COMMERCIAL WASTE, AND BALLAST WATER Implementation of MARPOL 73/78 and the... Pollution and Sewage § 151.73 Operating requirements: Discharge of garbage from fixed or floating...

  1. 33 CFR 151.73 - Operating requirements: Discharge of garbage from fixed or floating platforms.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... SUBSTANCES, GARBAGE, MUNICIPAL OR COMMERCIAL WASTE, AND BALLAST WATER Implementation of MARPOL 73/78 and the... Pollution and Sewage § 151.73 Operating requirements: Discharge of garbage from fixed or floating...

  2. 33 CFR 151.73 - Operating requirements: Discharge of garbage from fixed or floating platforms.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... SUBSTANCES, GARBAGE, MUNICIPAL OR COMMERCIAL WASTE, AND BALLAST WATER Implementation of MARPOL 73/78 and the... Pollution and Sewage § 151.73 Operating requirements: Discharge of garbage from fixed or floating...

  3. Discharge stabilization studies of CO laser gas mixtures in quasi-steady supersonic flow

    NASA Technical Reports Server (NTRS)

    Srinivasan, G.; Smith, J. A.

    1976-01-01

    Experiments were conducted to study the applicability of a double discharge stabilization scheme in conditions appropriate for high energy CO lasers in supersonic flows. A Ludwieg tube impulse flow facility and a ballasted capacitor bank provided essentially steady flow and discharge conditions (d.c.) for times longer than ten electrode length-flow transit times. Steady, arc-free, volume discharges were produced in a Mach 3 test cavity using an auxiliary discharge to stabilize the main discharge in N2 and He/CO mixture. A signigicant result is the lack of observed plasma E/N changes in response to auxiliary discharge current changes. Also, where glow discharges were obtained, the energy loading achieved was very much less than the threshold level required for laser operation.

  4. 2D fluid simulations of discharges at atmospheric pressure in reactive gas mixtures

    NASA Astrophysics Data System (ADS)

    Bourdon, Anne

    2015-09-01

    Since a few years, low-temperature atmospheric pressure discharges have received a considerable interest as they efficiently produce many reactive chemical species at a low energy cost. This potential is of great interest for a wide range of applications as plasma assisted combustion or biomedical applications. Then, in current simulations of atmospheric pressure discharges, there is the need to take into account detailed kinetic schemes. It is interesting to note that in some conditions, the kinetics of the discharge may play a role on the discharge dynamics itself. To illustrate this, we consider the case of the propagation of He-N2 discharges in long capillary tubes, studied for the development of medical devices for endoscopic applications. Simulation results put forward that the discharge dynamics and structure depend on the amount of N2 in the He-N2 mixture. In particular, as the amount of N2 admixture increases, the discharge propagation velocity in the tube increases, reaches a maximum for about 0 . 1 % of N2 and then decreases, in agreement with experiments. For applications as plasma assisted combustion with nanosecond repetitively pulsed discharges, there is the need to handle the very different timescales of the nanosecond discharge with the much longer (micro to millisecond) timescales of combustion processes. This is challenging from a computational point of view. It is also important to better understand the coupling of the plasma induced chemistry and the gas heating. To illustrate this, we present the simulation of the flame ignition in lean mixtures by a nanosecond pulsed discharge between two point electrodes. In particular, among the different discharge regimes of nanosecond repetitively pulsed discharges, a ``spark'' regime has been put forward in the experiments, with an ultra-fast local heating of the gas. For other discharge regimes, the gas heating is much weaker. We have simulated the nanosecond spark regime and have observed shock waves

  5. Dimmable Electronic Ballast for a Gas Discharge Lamp

    NASA Technical Reports Server (NTRS)

    Raducanu, Marius; Hennings, Brian D.

    2013-01-01

    Titanium dioxide (TiO2) is the most efficient photocatalyst for organic oxidative degradation. TiO2 is effective not only in aqueous solution, but also in nonaqueous solvents and in the gas phase. It is photostable, biologically and chemically inert, and non-toxic. Low-energy UV light (approximately 375 nm, UV-A) can be used to photoactivate TiO2. TiO2 photocatalysis has been used to mineralize most types of organic compounds. Also, TiO2 photocatalysis has been effectively used in sterilization. This effectiveness has been demonstrated by its aggressive destruction of microorganisms, and aggressive oxidation effects of toxins. It also has been used for the oxidation of carbon monoxide to carbon dioxide, and ammonia to nitrogen. Despite having many attractive features, advanced photocatalytic oxidation processes have not been effectively used for air cleaning. One of the limitations of the traditional photocatalytic systems is the ballast that powers (lights) the bulbs. Almost all commercial off-the-shelf (COTS) ballasts are not dimmable and do not contain safety features. COTS ballasts light the UV lamp as bright as the bulb can be lit, and this results in shorter bulb lifetime and maximal power consumption. COTS magnetic ballasts are bulky, heavy, and inefficient. Several iterations of dimmable electronic ballasts have been developed. Some manifestations have safety features such as broken-bulb or over-temperature warnings, replace-bulb alert, logbulb operational hours, etc. Several electronic ballast boards capable of independently lighting and controlling (dimming) four fluorescent (UV light) bulbs were designed, fabricated, and tested. Because of the variation in the market bulb parameters, the ballast boards were designed with a very broad range output. The ballast boards can measure and control the current (power) for each channel.

  6. Spark discharge method of liquid rare-gas purification

    NASA Astrophysics Data System (ADS)

    Pokachalov, S. G.; Kirsanov, M. A.; Kruglov, A. A.; Obodovski, I. M.

    1993-03-01

    The spark disharge method of liquid rare-gas purification is describe. The method is sufficiently more simple than those widely used. Physical aspects of the method are discussed, and examples of its application are presented.

  7. Administrative aspects of a general surgical firm: an audit of accuracy of operation lists and timeliness of discharge summaries.

    PubMed

    Aziz, M M; Corder, A P

    1996-07-01

    A one-year audit of operation lists and discharge summaries of one surgical firm showed only 1.4 percent of operation lists contained errors or omissions and only 5 percent contained abbreviations. 74.2 percent of discharge summaries were dictated within one week of discharge. A high proportion of day cases allowed 44.7 percent of the discharge summaries to be dictated on the day of operation. Close consultant and secretarial involvement in the preparation of operating lists can ensure a high degree of accuracy. Day case operation notes should be combined with a discharge letter to optimise communication with general practitioners. PMID:8943624

  8. Effect of duty-cycles on the air plasma gas-phase of dielectric barrier discharges

    NASA Astrophysics Data System (ADS)

    Barni, R.; Biganzoli, I.; Dell'Orto, E. C.; Riccardi, C.

    2015-10-01

    An experimental investigation concerning the effects of a duty-cycle in the supply of a dielectric barrier discharge in atmospheric pressure air has been performed. Electrical characteristics of the discharge have been measured, focusing mainly on the statistical properties of the current filaments and on dielectric surface charging, both affected by the frequent repetition of breakdown imposed by the duty-cycle. Information on the gas-phase composition was gathered too. In particular, a strong enhancement in the ozone formation rate is observed when suitable long pauses separate the active discharge phases. A simulation of the chemical kinetics in the gas-phase, based on a simplified discharge modeling, is briefly described in order to shed light on the observed increase in ozone production. The effect of a duty-cycle on surface modification of polymeric films in order to increase their wettability has been investigated too.

  9. Gas Breakdown of Radio Frequency Glow Discharges in Helium at near Atmospheric Pressure

    NASA Astrophysics Data System (ADS)

    Liu, Xinkun; Xu, Jinzhou; Cui, Tongfei; Guo, Ying; Zhang, Jing; Shi, Jianjun

    2013-07-01

    A one-dimensional self-consistent fluid model was developed for radio frequency glow discharge in helium at near atmospheric pressure, and was employed to study the gas breakdown characteristics in terms of breakdown voltage. The effective secondary electron emission coefficient and the effective electric field for ions were demonstrated to be important for determining the breakdown voltage of radio frequency glow discharge at near atmospheric pressure. The constant of A was estimated to be 64±4 cm-1Torr-1, which was proportional to the first Townsend coefficient and could be employed to evaluate the gas breakdown voltage. The reduction in the breakdown voltage of radio frequency glow discharge with excitation frequency was studied and attributed to the electron trapping effect in the discharge gap.

  10. Offshore desulfurization unit permits gas lift operations

    SciTech Connect

    Cabes, A.; Elgue, J.; Tournier-Lasserve, J. )

    1992-01-13

    This paper reports on the installation of a desulfurization unit for the Tchibouela oil field, offshore Congo, which allowed produced low-pressure associated gas containing CO{sub 2} to be kept for gas lift operations while, for safety reasons, the large volume of H{sub 2}S at low pressure was removed prior to compression. Since October 1989, the world's first offshore amine sweetening unit has worked satisfactorily and continues to prove that it is an attractive production alternative. For desulfurization, a selective methyldiethanolamine (MDEA) process, developed by Elf Aquitaine, was chosen because it was the only process that met the required specifications at a low pressure of 3.5 bar (51 psi).

  11. Toxic Gas Removal by Dielectric Discharge with Corona Effect

    SciTech Connect

    Moreno, H.; Pacheco, M.; Mercado, A.; Cruz, A.; Pacheco, J.; Yousfi, M.; Eichwald, O.; Benhenni, M.

    2006-12-04

    In this work, a theoretical and experimental study on SO2 and NOx removal by non-thermal plasma technology, more specifically a dielectric barrier (DBD) discharge combined with the Corona effect, is presented. Results obtained from a theoretical study describe the chemical kinetic model of SO2 and NOx removal processes; the effect of OH radicals in removal of both gases is noteworthy. Experimental results of de-SO2 process are reported. Also, optical emission spectroscopy study was applied on some atomic helium lines to obtain temperature of electrons in the non-thermal plasma.

  12. Fault and partial discharge location systems for gas-insulated transmission lines. Final report

    SciTech Connect

    Boggs, S.A.; Ford, G.L.; Fujimoto, N.; Stone, G.C.

    1983-12-01

    Partial discharge and faults in gas-insulated transmission line (GITL) can be difficult to locate. This report describes the development, testing, and application of systems for fault and partial discharge location in GITL. Both systems are based on timing of electromagnetic transients generated by a fault/partial discharge source. Both systems employ microcomputers to facilitate automated data acquisition and analysis. The major problems solved in developing the fault location system were coupling of high frequency signals from and between phases and isolation of high voltage short risetime signals from high speed digital logic. The problems addressed in the partial discharge location project include handling a large number of pulses which may include noise, the large dynamic range of partial discharge induced transients (> 80 dB), and achieving an accurate correlation resolution of 2 ns.

  13. Dynamics of dielectric barrier discharge in non-uniform gas composition investigated by laser spectroscopic measurements

    NASA Astrophysics Data System (ADS)

    Urabe, Keiichiro; Ito, Yosuke; Choi, Joon-Young; Sakai, Osamu; Tachibana, Kunihide

    2009-10-01

    It is well known that stable and glow dielectric barrier discharge (DBD) at atmospheric pressure is observed using helium gas and AC high voltage of kHz-order frequency. We have investigated the discharge mechanisms of DBDs from a view point of the spatiotemporal distributions of excited species measured by laser spectroscopic methods. In this presentation, we will show convincing arguments about the discharge model of the DBD especially having the non-uniformity of gas composition. As a DBD plasma source for atmospheric pressure processes, we have investigated an atmospheric pressure plasma jet (APPJ) using helium gas flow in ambient air, and this plasma source can be regarded as the DBD near the boundary interface of helium gas and ambient air. In this APPJ, we observed spatiotemporal distributions of excited species density inside the helium gas channel, using laser absorption spectroscopy and laser induced fluorescence, to measure the densities of helium metastable atom (2^3S1 state) and nitrogen ion (X^2σg^+ state) respectively. To study the influence of nitrogen gas contamination on the discharge profile of DBD, we have also applied CO2-laser heterodyne interferometry to measure the special distribution of electron density in parallel-plate DBD.

  14. A brush-shaped air plasma jet operated in glow discharge mode at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Li, Xuechen; Bao, Wenting; Jia, Pengying; Di, Cong

    2014-07-01

    Using ambient air as working gas, a direct-current plasma jet is developed to generate a brush-shaped plasma plume with fairly large volume. Although a direct-current power supply is used, the discharge shows a pulsed characteristic. Based on the voltage-current curve and fast photography, the brush-shaped plume, like the gliding arc plasma, is in fact a temporal superposition of a moving discharge filament in an arched shape. During it moves away from the nozzle, the discharge evolves from a low-current arc into a normal glow in one discharge cycle. The emission profile is explained qualitatively based on the dynamics of the plasma brush.

  15. Application of neural networks in identification of various types of partial discharges in gas insulated substations

    NASA Astrophysics Data System (ADS)

    Kishore, K. K.; Adikesavulu, A. K.; Singh, B. P.; Eswaran, Kumar

    2000-03-01

    Gas Insulated substations (GIS) up to 500kV class have been widely accepted over conventional air insulated substation due to several advantages. However, the presence of floating metal particles and protrusions within the GIS at various locations could seriously affect the performance. The paper describes the method of detection of partial discharges for various type of discharging sources e.g. floating particles, protrusions of high voltage conductor and particles sticking on the surface of insulator. In order to identify the discharge source, a Neural Network program is developed to classify each of the above source on the basis of its characteristic pattern.

  16. Rapid Decomposition of Cellulose Dissolved in Ionic Liquid Using Gas-Liquid Interface Discharge

    NASA Astrophysics Data System (ADS)

    Furukawa, Shoichiro; Inoue, Nobuhiro; Ishioka, Toshio; Furuya, Kenji; Harata, Akira

    2012-07-01

    Cellulose was dissolved at 3 wt % in 15 mL of 1-allyl-3-methylimidazolium chloride ([Amim]Cl) together with 2 wt % water, and then gas-liquid interface discharge was carried out at 20 W for 200 s. As a result, 7.6% of initially dissolved cellulose decomposed and 3.9% of initially dissolved cellulose changed into reducing sugar. Adding a small amount of water to the solution was essential for the decomposition of cellulose. [Amim]Cl was stable against the discharge, as determined from the NMR signals measured before and after the discharge.

  17. Effects of Gas Flow Rate on the Discharge Characteristics of a DC Excited Plasma Jet

    NASA Astrophysics Data System (ADS)

    Li, Xuechen; Jia, Pengying; Di, Cong; Bao, Wenting; Zhang, Chunyan

    2015-09-01

    A direct current (DC) source excited plasma jet consisting of a hollow needle anode and a plate cathode has been developed to form a diffuse discharge plume in ambient air with flowing argon as the working gas. Using optical and electrical methods, the discharge characteristics are investigated for the diffuse plasma plume. Results indicate that the discharge has a pulse characteristic, under the excitation of a DC voltage. The discharge pulse corresponds to the propagation process of a plasma bullet travelling from the anode to the cathode. It is found that, with an increment of the gas flow rate, both the discharge plume length and the current peak value of the pulsed discharge decrease in the laminar flow mode, reach their minima at about 1.5 L/min, and then slightly increase in the turbulent mode. However, the frequency of the pulsed discharge increases in the laminar mode with increasing the argon flow rate until the argon flow rate equals to about 1.5 L/min, and then slightly decreases in the turbulent mode. supported by National Natural Science Foundation of China (Nos. 10805013, 11375051), Funds for Distinguished Young Scientists of Hebei Province, China (No. A2012201045), Department of Education for Outstanding Youth Project of China (No. Y2011120), and Youth Project of Hebei University of China (No. 2011Q14)

  18. Numerical simulation of operation modes in atmospheric pressure uniform barrier discharge excited by a saw-tooth voltage

    SciTech Connect

    Li Xuechen; Niu Dongying; Yin Zengqian; Fang Tongzhen; Wang Long

    2012-08-15

    The characteristics of dielectric barrier discharge excited by a saw-tooth voltage are simulated in atmospheric pressure helium based on a one-dimensional fluid model. A stepped discharge is obtained per half voltage cycle with gas gap width less than 2 mm by the simulation, which is different to the pulsed discharge excited by a sinusoidal voltage. For the stepped discharge, the plateau duration increases with increasing the voltage amplitude and decreasing the gas gap. Therefore, uniform discharge with high temporal duty ratio can be realized with small gap through increasing the voltage amplitude. The maximal densities of both electron and ion appear near the anode and the electric field is almost uniformly distributed along the gap, which indicates that the stepped discharge belongs to a Townsend mode. In contrast to the stepped discharge with small gas gap, a pulsed discharge can be obtained with large gas gap. Through analyzing the spatial density distributions of electron and ion and the electric field, the pulsed discharge is in a glow mode. The voltage-current (V-I) characteristics are analyzed for the above mentioned discharges under different gas gaps, from which the different discharge modes are verified.

  19. Numerical simulation of operation modes in atmospheric pressure uniform barrier discharge excited by a saw-tooth voltage

    NASA Astrophysics Data System (ADS)

    Li, Xuechen; Niu, Dongying; Yin, Zengqian; Fang, Tongzhen; Wang, Long

    2012-08-01

    The characteristics of dielectric barrier discharge excited by a saw-tooth voltage are simulated in atmospheric pressure helium based on a one-dimensional fluid model. A stepped discharge is obtained per half voltage cycle with gas gap width less than 2 mm by the simulation, which is different to the pulsed discharge excited by a sinusoidal voltage. For the stepped discharge, the plateau duration increases with increasing the voltage amplitude and decreasing the gas gap. Therefore, uniform discharge with high temporal duty ratio can be realized with small gap through increasing the voltage amplitude. The maximal densities of both electron and ion appear near the anode and the electric field is almost uniformly distributed along the gap, which indicates that the stepped discharge belongs to a Townsend mode. In contrast to the stepped discharge with small gas gap, a pulsed discharge can be obtained with large gas gap. Through analyzing the spatial density distributions of electron and ion and the electric field, the pulsed discharge is in a glow mode. The voltage-current (V-I) characteristics are analyzed for the above mentioned discharges under different gas gaps, from which the different discharge modes are verified.

  20. Treatment of Dye Wastewater by Using a Hybrid Gas/Liquid Pulsed Discharge Plasma Reactor

    NASA Astrophysics Data System (ADS)

    Lu, Na; Li, Jie; Wu, Yan; Masayuki, Sato

    2012-02-01

    A hybrid gas/liquid pulsed discharge plasma reactor using a porous ceramic tube is proposed for dye wastewater treatment. High voltage pulsed discharge plasma was generated in the gas phase and simultaneously the plasma channel was permeated through the tiny holes of the ceramic tube into the water phase accompanied by gas bubbles. The porous ceramic tube not only separated the gas phase and liquid phase but also offered an effective plasma spreading channel. The effects of the peak pulse voltage, additive gas varieties, gas bubbling rate, solution conductivity and TiO2 addition were investigated. The results showed that this reactor was effective for dye wastewater treatment. The decoloration efficiency of Acid Orange II was enhanced with an increase in the power supplied. Under the studied conditions, 97% of Acid Orange II in aqueous solution was effectively decolored with additive oxygen gas, which was 51% higher than that with argon gas, and the increasing O2 bubbling rate also benefited the decoloration of dye wastewater. Water conductivity had a small effect on the level of decoloration. Catalysis of TiO2 could be induced by the pulsed discharge plasma and addition of TiO2 aided the decoloration of Acid Orange II.

  1. Ring-shaped electric discharge as an igniter of gas mixtures

    NASA Astrophysics Data System (ADS)

    Barkhudarov, E. M.; Berezhetskaya, N. K.; Kop'ev, V. A.; Kossyi, I. A.; Popov, N. A.; Taktakishvili, M. I.; Temchin, S. M.

    2010-09-01

    Results are presented from experimental studies of ignition of a stoichiometric methane-oxygen mixture in a closed chamber by a ring electric discharge. It is shown that the process of fast (explosive) ignition of the reactor volume starts on the axis of the ring, near its centre, i.e. at a distance from the annular region of power deposition. Experimental evidence suggests that the ignition of a combustible gas mixture near the axis is triggered by strong gas-dynamic perturbations converging to the axis, radially propagating from the ring discharger.

  2. Binary and ternary gas mixtures for use in glow discharge closing switches

    DOEpatents

    Hunter, S.R.; Christophorou, L.G.

    1988-04-27

    Highly efficient binary and ternary gas mixtures for use in diffuse glow discharge closing switches are disclosed. The binary mixtures are combinations of helium or neon and selected perfluorides. The ternary mixtures are combinations of helium, neon, or argon, a selected perfluoride, and a small amount of gas that exhibits enhanced ionization characteristics. These mixtures are shown to be the optimum choices for use in diffuse glow discharge closing switches by virtue if the combines physio-electric properties of the mixture components. 9 figs.

  3. Method for visualizing gas temperature distributions around hypersonic vehicles by using electric discharge

    NASA Astrophysics Data System (ADS)

    Nishio, Masatomi

    1993-06-01

    A method for visualizing qualitative gas temperature distributions around hypersonic vehicles by taking a photograph of the electric discharge is proposed. A gas temperature distribution over a slightly blunted wedge is visualized using the electric discharge generated by a pair of point-line electrodes. A hypersonic tunnel used for the experiment is characterized by Mach 10, a freestream duration of 10 ms, and a stagnation temperature of the tunnel barrel of 1000 K. It is concluded that the photograph shows a radiation spectrum contrast near the model surface, from which a temperature layer is seen.

  4. Employing partially coherent, compact gas-discharge sources for coherent diffractive imaging with extreme ultraviolet light

    NASA Astrophysics Data System (ADS)

    Bußmann, J.; Odstrčil, M.; Bresenitz, R.; Rudolf, D.; Miao, Jianwei; Brocklesby, W. S.; Grützmacher, D.; Juschkin, L.

    2015-09-01

    Coherent diffractive imaging (CDI) and related techniques enable a new type of diffraction-limited high-resolution extreme ultraviolet (EUV) microscopy. Here, we demonstrate CDI reconstruction of a complex valued object under illumination by a compact gas-discharge EUV light source emitting at 17.3 nm (O VI spectral line). The image reconstruction method accounts for the partial spatial coherence of the radiation and allows imaging even with residual background light. These results are a first step towards laboratory-scale CDI with a gas-discharge light source for applications including mask inspection for EUV lithography, metrology and astronomy.

  5. Scheduling hydro power systems with restricted operating zones and discharge ramping constraints

    SciTech Connect

    Guan, X.; Svoboda, Al; Li, C.

    1999-02-01

    An optimization-based algorithm is presented for scheduling hydro power systems with restricted operating zones and discharge ramping constraints. Hydro watershed scheduling problems are difficult to solve because many constraints, continuous and discrete, including hydraulic coupling of cascaded reservoirs have to be considered. Restricted or forbidden operating zones as well as minimum generation limits of hydro units result in discontinuous preferred operating regions, and hinder direct applications of efficient continuous optimization methods such as network flow algorithms. Discharge ramping constraints due to navigational, environmental and recreational requirements in a hydro system add another dimension of difficulty since they couple generation or water discharge across time horizon. The key idea of this paper is to use additional sets of multipliers to relax discontinuous operating region and discharge ramping constraints on individual hydro units so that a two-level optimization structure is formed. The low level consists of a continuous discharge scheduling subproblem determining the generation levels of all units in the entire watershed, and a number of pure integer scheduling subproblems determining the hydro operating states, one for each unit. The discharge subproblem is solved by a network flow algorithm, and the integer scheduling problems are solved by dynamic programming with a small number of states and well-structured transitions. The two sets of subproblems are coordinated through multipliers updated at the high level by using a modified subgradient algorithm. After the dual problem converges, a feasible hydro schedule is obtained by using the same network flow algorithm with the operating states obtained, and operating ranges modified to guarantee satisfaction of ramping constraints.

  6. Miniaturized Argon Plasma: Neutral Gas Characteristics in Dielectric Barrier Discharge

    NASA Astrophysics Data System (ADS)

    Ashraf, Farahat

    2015-10-01

    Plasma-neutral gas dynamics is computationally investigated in a miniaturized microthruster that encloses Ar and contains dielectric material sandwiched between two metal plates using a two-dimensional plasma mode. Spatial and temporal plasma properties are investigated by solving the Poisson equation with the conservation equations of charged and excited neutral plasma species using the COMSOL Multiphysics 4.2b. The microthruster property is found to depend on the secondary electron emission coefficient. The electrohydrodynamic force (EHD) is calculated and found to be significant in the sheath area near the dielectric layer and is found to affect gas flow dynamics including the Ar excimer formation and density. The effects of pressure and secondary emission coefficient are discussed. The plasma characteristics are affected by small changes in the secondary electron emission coefficient, which could result from the dielectric erosion and aging, and is found to affect the electrohydrodynamic force produced when the microthruster is used to produce thrust for a small spacecraft.

  7. Mass spectrometric investigation of the ionic species in a dielectric barrier discharge operating in helium-water vapour mixtures

    NASA Astrophysics Data System (ADS)

    Abd-Allah, Z.; Sawtell, D. A. G.; McKay, K.; West, G. T.; Kelly, P. J.; Bradley, J. W.

    2015-03-01

    Using advanced mass spectrometry the chemistry of ionic species present in an atmospheric-pressure parallel plate dielectric barrier discharge (DBD) with a single dielectric on the powered electrode have been identified. The discharge was driven in helium with controllable concentrations of water vapour using an excitation frequency of 10 kHz and an applied voltage of 1.2 kV. Both negative and positive ions were identified and their relative intensity determined with variation of water concentration in the discharge, inter-electrode spacing, gas residence time and nominal applied power. The most abundant negative ions were of the family \\text{O}{{\\text{H}}-}{{≤ft({{\\text{H}}2}\\text{O}\\right)}n} , while the positive ions were dominated by those of the form {{{H}}^ + }{{{(}}{{{H}}_2}{{O)}}_n} , with n up to 9 in both cases. Negative and positive ions responded in a similar way to changes in the operating parameters, with the particular response depending on the ion mass. Increasing the inter-electrode spacing and the water concentration in the discharge led to an increase in the intensity of large mass ionic water clusters. However, increasing the residence time of the species in the plasma region and increasing the applied power resulted in fragmentation of large water clusters to produce smaller ions.

  8. Observation of charge separation and gas discharge during sliding friction between metals and insulators

    NASA Astrophysics Data System (ADS)

    Miura, T.

    2015-10-01

    Charge generation due to friction between stainless steel and fused quartz in a vacuum was measured, and it was found that the density of the charge separation at the friction contact was 4×10-4 C/m2 In experiments in ambient gas, reduction of the separated charge caused by microgap gas discharge was observed. The residual rate of the charge, which is the ratio of charge accumulation in an ambient gas to that in a vacuum, in argon ambient gas was small, and it seemed to be effective for the relaxation of generated static electricity due to friction between solids.

  9. Experimental investigation of a capacitive blind hollow cathode discharge with central gas injection

    NASA Astrophysics Data System (ADS)

    Hoffmann, D.; Müller, M.; Petkow, D.; Herdrich, G.; Lein, S.

    2014-12-01

    The operating parameters and resulting plasma properties of a blind hollow cathode (BHC) discharge have been investigated. The hollow cathode was driven capacitively with a pulsed dc signal of 200 kHz in a power range between 50 and 100 W at an ambient pressure of about 10 Pa. The working gas was argon, which was introduced with a ceramic capillary at different positions of the longitudinal axis of the hollow cathode with flow rates of between 30 and 1000 sccm. The current-voltage characteristics were recorded. The pressure at the end of the BHC was measured with a miniaturized pressure transducer with varying volumetric flow rate and axial position of the capillary in the hollow cathode. To characterize the ignition behaviour of the system, the measured breakdown voltages were compared with phenomenological Paschen curves calculated from the pressure data. Optical emission spectroscopy was used to examine the origins of the light emission, comparing the glow mode and hollow cathode mode in particular. A high-speed camera recorded some plasma processes. A mounting with an indium tin oxide coated glass was used to observe the inner volume of the BHC along the longitudinal axis, while the plasma was operated with different parameters. The optical observations revealed an inhomogeneous plasma condition along the axis.

  10. CORONA DISCHARGE IGNITION FOR ADVANCED STATIONARY NATURAL GAS ENGINES

    SciTech Connect

    Dr. Paul D. Ronney

    2003-09-12

    An ignition source was constructed that is capable of producing a pulsed corona discharge for the purpose of igniting mixtures in a test chamber. This corona generator is adaptable for use as the ignition source for one cylinder on a test engine. The first tests were performed in a cylindrical shaped chamber to study the characteristics of the corona and analyze various electrode geometries. Next a test chamber was constructed that closely represented the dimensions of the combustion chamber of the test engine at USC. Combustion tests were performed in this chamber and various electrode diameters and geometries were tested. The data acquisition and control system hardware for the USC engine lab was updated with new equipment. New software was also developed to perform the engine control and data acquisition functions. Work is underway to design a corona electrode that will fit in the new test engine and be capable igniting the mixture in one cylinder at first and eventually in all four cylinders. A test engine was purchased for the project that has two spark plug ports per cylinder. With this configuration it will be possible to switch between corona ignition and conventional spark plug ignition without making any mechanical modifications.

  11. ZnO Nanowire-Based Corona Discharge Devices Operated Under Hundreds of Volts

    NASA Astrophysics Data System (ADS)

    Yang, Wenming; Zhu, Rong; Zong, Xianli

    2016-02-01

    Minimizing the voltage of corona discharges, especially when using nanomaterials, has been of great interest in the past decade or so. In this paper, we report a new corona discharge device by using ZnO nanowires operated in atmospheric air to realize continuous corona discharge excited by hundreds of volts. ZnO nanowires were synthesized on microelectrodes using electric-field-assisted wet chemical method, and a thin tungsten film was deposited on the microchip to enhance discharging performance. The testing results showed that the corona inception voltages were minimized greatly by using nanowires compared to conventional dischargers as a result of the local field enhancement of nanowires. The corona could be continuously generated and self-sustaining. It was proved that the law of corona inception voltage obeyed the conventional Peek's breakdown criterion. An optimal thickness of tungsten film coated over ZnO nanowires was figured out to obtain the lowest corona inception voltage. The ion concentration of the nanowire-based discharger attained 1017/m3 orders of magnitude, which is practicable for most discharging applications.

  12. ZnO Nanowire-Based Corona Discharge Devices Operated Under Hundreds of Volts.

    PubMed

    Yang, Wenming; Zhu, Rong; Zong, Xianli

    2016-12-01

    Minimizing the voltage of corona discharges, especially when using nanomaterials, has been of great interest in the past decade or so. In this paper, we report a new corona discharge device by using ZnO nanowires operated in atmospheric air to realize continuous corona discharge excited by hundreds of volts. ZnO nanowires were synthesized on microelectrodes using electric-field-assisted wet chemical method, and a thin tungsten film was deposited on the microchip to enhance discharging performance. The testing results showed that the corona inception voltages were minimized greatly by using nanowires compared to conventional dischargers as a result of the local field enhancement of nanowires. The corona could be continuously generated and self-sustaining. It was proved that the law of corona inception voltage obeyed the conventional Peek's breakdown criterion. An optimal thickness of tungsten film coated over ZnO nanowires was figured out to obtain the lowest corona inception voltage. The ion concentration of the nanowire-based discharger attained 10(17)/m(3) orders of magnitude, which is practicable for most discharging applications. PMID:26880727

  13. Degradation of dyes by active species injected from a gas phase surface discharge

    NASA Astrophysics Data System (ADS)

    Li, Jie; Wang, Tiecheng; Lu, Na; Zhang, Dandan; Wu, Yan; Wang, Tianwei; Sato, Masayuki

    2011-06-01

    A reactor, based on the traditional gas phase surface discharge (GPSD), is designed for degradation of dye wastewater in this study. The reactor is characterized by using the dye wastewater as a ground electrode. A spiral discharge electrode of stainless steel wire attached on the inside wall of a cylindrical insulating medium and the wastewater surrounding the insulating medium for simultaneous cooling of the discharge electrode constitute the reactor. The active chemical radicals generated by the discharge of the spiral electrode are injected into the water with the carrier gas. The removal of three organic dyes (including methyl red (MR), reactive brilliant blue (RBB) and cationic red (CR)) in aqueous solution is investigated. The effects of electrode configuration, discharge voltage and solution pH value on the decoloration efficiency of MR are discussed. The experimental results show that over 95% of decoloration efficiencies for all the dyes are obtained after several minutes of plasma treatment. 40% of chemical oxygen demand removal of MR is obtained after 8 min of discharge treatment. Furthermore, it is found that ozone mainly affects the removal of dyes and several aliphatic compounds are identified as the oxidation products of MR. The possible degradation pathways of MR by GPSD are proposed.

  14. Discharge product morphology versus operating temperature in non-aqueous lithium-air batteries

    NASA Astrophysics Data System (ADS)

    Tan, P.; Shyy, W.; Zhao, T. S.; Wei, Z. H.; An, L.

    2015-03-01

    During the discharge process of non-aqueous lithium-air batteries, a solid product, Li2O2, forms in the pores of the porous cathode, and eventually causes the discharge process to cease. During the charge process, solid Li2O2 needs to be electrochemically oxidized. The morphology of the discharge product is, therefore, critically related to the capacity and reversibility of the battery. In this work, we experimentally show that for a given design of the cathode, the shape of the discharge product Li2O2 at a given discharge current density remains almost unchanged with a change in the operating temperature, but the size decreases with an increase in the temperature. We also demonstrate that the product shape varies with the discharge current density at a given temperature. The practical implication of these findings is that the capacity, charge voltage, and cyclability of a given non-aqueous lithium-air battery are affected by the operating temperature.

  15. A powerful electrohydrodynamic flow generated by a high-frequency dielectric barrier discharge in a gas

    NASA Astrophysics Data System (ADS)

    Nebogatkin, S. V.; Rebrov, I. E.; Khomich, V. Yu.; Yamshchikov, V. A.

    2016-01-01

    Theoretical and experimental studies of an electrohydrodynamic flow induced by a high-frequency dielectric barrier discharge distributed over a dielectric surface in a gas have been conducted. Dependences of the ion current, the gas flow velocity, and the spatial distributions thereof on the parameters of the power supply of the plasma ion emitter and an external electric field determined by the collector grid voltage have been described.

  16. Discharge characteristics and hydrodynamics behaviors of atmospheric plasma jets produced in various gas flow patterns

    NASA Astrophysics Data System (ADS)

    Setsuhara, Yuichi; Uchida, Giichiro; Nakajima, Atsushi; Takenaka, Kosuke; Koga, Kazunori; Shiratani, Masaharu

    2015-09-01

    Atmospheric nonequilibrium plasma jets have been widely employed in biomedical applications. For biomedical applications, it is an important issue to understand the complicated mechanism of interaction of the plasma jet with liquid. In this study, we present analysis of the discharge characteristics of a plasma jet impinging onto the liquid surface under various gas flow patterns such as laminar and turbulence flows. For this purpose, we analyzed gas flow patters by using a Schlieren gas-flow imaging system in detail The plasma jet impinging into the liquid surface expands along the liquid surface. The diameter of the expanded plasma increases with gas flow rate, which is well explained by an increase in the diameter of the laminar gas-flow channel. When the gas flow rate is further increased, the gas flow mode transits from laminar to turbulence in the gas flow channel, which leads to the shortening of the plasm-jet length. Our experiment demonstrated that the gas flow patterns strongly affect the discharge characteristics in the plasma-jet system. This study was partly supported by a Grant-in-Aid for Scientific Research on Innovative Areas ``Plasma Medical Innovation'' (24108003) from the Ministry of Education, Culture, Sports, Science and Technology, Japan (MEXT).

  17. Characterization of a radio frequency hollow electrode discharge at low gas pressures

    NASA Astrophysics Data System (ADS)

    Ahadi, Amir Mohammad; Trottenberg, Thomas; Rehders, Stefan; Strunskus, Thomas; Kersten, Holger; Faupel, Franz

    2015-08-01

    A radio frequency (RF) hollow discharge configuration is presented, which makes use of a combination of RF plasma generation and the hollow cathode effect. The system was especially designed for the treatment of nanoparticles, plasma polymerization, and nanocomposite fabrication. The process gas streams through the plasma in the inner of the cylindrical electrode system. In the here presented measurements, pure argon and argon with oxygen admixtures are exemplarily used. The discharge is characterized by probe measurements in the effluent, electrical measurements of the discharge parameters, and visual observations of the plasma glow. It is found that the RF fluctuations of the plasma potential are weak. The plasma potential resembles the one of a DC hollow cathode discharge, the RF hollow electrode acts as a cathode due to the self-bias, and a high voltage sheath forms in its inner cylinder.

  18. Three-dimensional numerical modelling of gas discharges at atmospheric pressure incorporating photoionization phenomena

    NASA Astrophysics Data System (ADS)

    Papageorgiou, L.; Metaxas, A. C.; Georghiou, G. E.

    2011-02-01

    A three-dimensional (3D) numerical model for the characterization of gas discharges in air at atmospheric pressure incorporating photoionization through the solution of the Helmholtz equation is presented. Initially, comparisons with a two-dimensional (2D) axi-symmetric model are performed in order to assess the validity of the model. Subsequently several discharge instabilities (plasma spots and low pressure inhomogeneities) are considered in order to study their effect on streamer branching and off-axis propagation. Depending on the magnitude and position of the plasma spot, deformations and off-axis propagation of the main discharge channel were obtained. No tendency for branching in small (of the order of 0.1 cm) overvolted discharge gaps was observed.

  19. Characterization of a radio frequency hollow electrode discharge at low gas pressures

    SciTech Connect

    Ahadi, Amir Mohammad; Rehders, Stefan; Strunskus, Thomas; Faupel, Franz; Trottenberg, Thomas; Kersten, Holger

    2015-08-15

    A radio frequency (RF) hollow discharge configuration is presented, which makes use of a combination of RF plasma generation and the hollow cathode effect. The system was especially designed for the treatment of nanoparticles, plasma polymerization, and nanocomposite fabrication. The process gas streams through the plasma in the inner of the cylindrical electrode system. In the here presented measurements, pure argon and argon with oxygen admixtures are exemplarily used. The discharge is characterized by probe measurements in the effluent, electrical measurements of the discharge parameters, and visual observations of the plasma glow. It is found that the RF fluctuations of the plasma potential are weak. The plasma potential resembles the one of a DC hollow cathode discharge, the RF hollow electrode acts as a cathode due to the self-bias, and a high voltage sheath forms in its inner cylinder.

  20. Waveguide CO2 laser gain: Dependence on gas kinetic and discharge properties

    NASA Technical Reports Server (NTRS)

    Cohen, S. C.

    1975-01-01

    Using a simple rate equation approach the gas kinetic and discharge properties of waveguide CO2 lasers were examined. The dependence was calculated of the population inversion and laser small signal gain on gas pressure, gas mixture, pumping rate (discharge current), tube bore diameter, and wall temperature. At higher pressures the gain is optimized by using more helium rich mixtures and smaller bore diameters. The dependence of laser tunability on the gas kinetic properties and cavity losses was determined, it was found that for loss cavities the laser tunability may substantially exceed the molecular fullwidth at half maximum. The more helium rich gas mixtures give greater tunability when cavity losses are small and less tunability when cavity losses are large. The role of the various gases in the waveguide CO2 laser is the same as that in conventional devices, by contrast with conventional lasers, the waveguide laser transition is homogeneously broadened. The dependence of gain on gas pressure and other kinetic and discharge properties differs substantially from that predicted by scaling results from conventional low pressure lasers.

  1. Influence of dust-particle concentration on gas-discharge plasma

    SciTech Connect

    Sukhinin, G. I.; Fedoseev, A. V.

    2010-01-15

    A self-consistent kinetic model of a low-pressure dc glow discharge with dust particles based on Boltzmann equation for the electron energy distribution function is presented. The ions and electrons production in ionizing processes as well as their recombination on the dust-particle surface and on the discharge tube wall were taken into account. The influence of dust-particle concentration N{sub d} on gas discharge and dust particles parameters was investigated. It is shown that the increase of N{sub d} leads to the increase of an averaged electric field and ion density, and to the decrease of a dust-particle charge and electron density in the dusty cloud. The results were obtained in a wide region of different discharge and dusty plasma parameters: dust particles density 10{sup 2}-10{sup 8} cm{sup -3}, discharge current density 10{sup -1}-10{sup 1} mA/cm{sup 2}, and dust particles radius 1, 2, and 5 mum. The scaling laws for dust-particle surface potential and electric filed dependencies on dust-particle density, particle radius and discharge currents were revealed. It is shown that the absorption of electrons and ions on the dust particles surface does not lead to the electron energy distribution function depletion due to a self-consistent adjustment of dust particles and discharge parameters.

  2. Use of GTE-65 gas turbine power units in the thermal configuration of steam-gas systems for the refitting of operating thermal electric power plants

    SciTech Connect

    Lebedev, A. S.; Kovalevskii, V. P.; Getmanov, E. A.; Ermaikina, N. A.

    2008-07-15

    Thermal configurations for condensation, district heating, and discharge steam-gas systems (PGU) based on the GTE-65 gas turbine power unit are described. A comparative multivariant analysis of their thermodynamic efficiency is made. Based on some representative examples, it is shown that steam-gas systems with the GTE-65 and boiler-utilizer units can be effectively used and installed in existing main buildings during technical refitting of operating thermal electric power plants.

  3. Johann Wilhelm Hittorf and the material culture of nineteenth-century gas discharge research.

    PubMed

    Müller, Falk

    2011-06-01

    In the second half of the nineteenth century, gas discharge research was transformed from a playful and fragmented field into a new branch of physical science and technology. From the 1850s onwards, several technical innovations-powerful high-voltage supplies, the enhancement of glass-blowing skills, or the introduction of mercury air-pumps- allowed for a major extension of experimental practices and expansion of the phenomenological field. Gas discharge tubes served as containers in which resources from various disciplinary contexts could be brought together; along with the experimental apparatus built around them the tubes developed into increasingly complex interfaces mediating between the human senses and the micro-world. The focus of the following paper will be on the physicist and chemist Johann Wilhelm Hittorf (1824-1914), his educational background and his attempts to understand gaseous conduction as a process of interaction between electrical energy and matter. Hittorf started a long-term project in gas discharge research in the early 1860s. In his research he tried to combine a morphological exploration of gas discharge phenomena-aiming at the experimental production of a coherent phenomenological manifold--with the definition and precise measurements of physical properties. PMID:21879606

  4. 21 CFR 1020.20 - Cold-cathode gas discharge tubes.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... as specified herein. (b) Definitions. Beam blocking device means a movable or removable portion of... prevent the emergence of an exit beam. Cold-cathode gas discharge tube means an electronic device in which... cathode. Exit beam means that portion of the radiation which passes through the aperture resulting...

  5. Ignition of a combustible gas mixture by a high-current electric discharge in a closed volume

    SciTech Connect

    Berezhetskaya, N. K.; Gritsinin, S. I.; Kop'ev, V. A.; Kossyi, I. A.; Kuleshov, P. S.; Popov, N. A.; Starik, A. M.; Tarasova, N. M.

    2009-06-15

    Results are presented from experimental studies and numerical calculations of the ignition of a stoichiometric CH{sub 4}: O{sub 2} gas mixture by a high-current gliding discharge. It is shown that this type of discharge generates an axially propagating thermal wave (precursor) that penetrates into the gas medium and leads to fast gas heating. This process is followed by an almost simultaneous ignition of the gas mixture over the entire reactor volume.

  6. Characteristics of atmospheric-pressure, radio-frequency glow discharges operated with argon added ethanol

    SciTech Connect

    Sun Wenting; Li Guo; Li Heping; Bao Chengyu; Wang Huabo; Zeng Shi; Gao Xing; Luo Huiying

    2007-06-15

    Rf, atmospheric-pressure glow discharge (APGD) plasmas with bare metal electrodes have promising prospects in the fields of plasma-aided etching, thin film deposition, disinfection and sterilization, etc. In this paper, the discharge characteristics are presented for the rf APGD plasmas generated with pure argon or argon-ethanol mixture as the plasma-forming gas and using water-cooled, bare copper electrodes. The experimental results show that the breakdown voltage can be reduced significantly when a small amount of ethanol is added into argon, probably due to the fact that the Penning ionization process is involved, and a pure {alpha}-mode discharge can be produced more easily with the help of ethanol. The uniformity of the rf APGDs of pure argon or argon-ethanol mixtures using bare metallic electrodes is identified with the aid of the intensified charge coupled device images.

  7. Characteristics of atmospheric-pressure, radio-frequency glow discharges operated with argon added ethanol

    NASA Astrophysics Data System (ADS)

    Sun, Wen-Ting; Li, Guo; Li, He-Ping; Bao, Cheng-Yu; Wang, Hua-Bo; Zeng, Shi; Gao, Xing; Luo, Hui-Ying

    2007-06-01

    Rf, atmospheric-pressure glow discharge (APGD) plasmas with bare metal electrodes have promising prospects in the fields of plasma-aided etching, thin film deposition, disinfection and sterilization, etc. In this paper, the discharge characteristics are presented for the rf APGD plasmas generated with pure argon or argon-ethanol mixture as the plasma-forming gas and using water-cooled, bare copper electrodes. The experimental results show that the breakdown voltage can be reduced significantly when a small amount of ethanol is added into argon, probably due to the fact that the Penning ionization process is involved, and a pure α-mode discharge can be produced more easily with the help of ethanol. The uniformity of the rf APGDs of pure argon or argon-ethanol mixtures using bare metallic electrodes is identified with the aid of the intensified charge coupled device images.

  8. Plasma Discharges in Gas Bubbles in Liquid Water: Breakdown Mechanisms and Resultant Chemistry

    NASA Astrophysics Data System (ADS)

    Gucker, Sarah M. N.

    The use of atmospheric pressure plasmas in gases and liquids for purification of liquids has been investigated by numerous researchers, and is highly attractive due to their strong potential as a disinfectant and sterilizer. However, the fundamental understanding of plasma production in liquid water is still limited. Despite the decades of study dedicated to electrical discharges in liquids, many physical aspects of liquids, such as the high inhomogeneity of liquids, complicate analyses. For example, the complex nonlinearities of the fluid have intricate effects on the electric field of the propagating streamer. Additionally, the liquid material itself can vaporize, leading to discontinuous liquid-vapor boundaries. Both can and do often lead to notable hydrodynamic effects. The chemistry of these high voltage discharges on liquid media can have circular effects, with the produced species having influence on future discharges. Two notable examples include an increase in liquid conductivity via charged species production, which affects the discharge. A second, more complicated scenario seen in some liquids (such as water) is the doubling or tripling of molecular density for a few molecule layers around a high voltage electrode. These complexities require technological advancements in optical diagnostics that have only recently come into being. This dissertation investigates several aspects of electrical discharges in gas bubbles in liquids. Two primary experimental configurations are investigated: the first allows for single bubble analysis through the use of an acoustic trap. Electrodes may be brought in around the bubble to allow for plasma formation without physically touching the bubble. The second experiment investigates the resulting liquid phase chemistry that is driven by the discharge. This is done through a dielectric barrier discharge with a central high voltage surrounded by a quartz discharge tube with a coil ground electrode on the outside. The plasma

  9. Gas discharges in fumarolic ice caves of Erebus volcano, Antarctica

    NASA Astrophysics Data System (ADS)

    Fischer, T. P.; Curtis, A. G.; Kyle, P. R.; Sano, Y.

    2013-12-01

    Fumarolic ice caves and towers on Erebus are the surface expression of flank degassing on the world's southernmost active volcano. The caves are formed by warm gases and steam escaping from small vents on the lava flow floors that melts the overlying ice and snow. Extremophiles in the caves may be analogues for extraterrestrial environments. Over the past four Austral summers, mapping, gas and thermal monitoring conducted under the Erebus Caves Project has provided insights into the ice cave formation processes and the relationships between cave structures, magmatic processes, and weather. Gas samples were collected during the 2012 - 2013 field season in 4 ice caves (Warren, Harry's Dream, Sauna, Haggis Hole) as well as the thermal ground at Tramway Ridge. The vents at all of these sites are characterized by diffuse degassing through loose lava or cracks in the lava flow floor. Vent temperatures ranged from 5 to 17°C in most caves and at Tramway Ridge. In Sauna cave the temperature was 40°C. Gases were sampled by inserting a perforated 1 m long, 5 mm diameter stainless steel tube, into the vents or hot ground. Giggenbach bottles, copper tubes and lead glass bottles were connected in series. The gases were pumped at a slow rate (about 20 ml per minute) using a battery pump for 12-24 hours to flush the system. After flushing samples were collected for later analyses. All samples are dominated by atmospheric components, however, carbon dioxide (0.1 to 1.9%), methane (0.005 to 0.01%), hydrogen (0.002 to 0.07%), and helium (0.0009 to 0.002 %) are above air background. Nitrogen (average 74%) and oxygen (23.5%) are slightly below and above air values, respectively. Helium isotopes show minor input of mantle derived helium-3 with 3He4He ratios ranging from 1.03 to 1.18 RA (where RA is the ratio of air). This represents the first detection of hydrogen and helium in the caves. Methane could be produced by anaerobic respiration of subsurface microbes or hydrothermal

  10. Binary and ternary gas mixtures with temperature enhanced diffuse glow discharge characteristics for use in closing switches

    DOEpatents

    Christophorou, Loucas G.; Hunter, Scott R.

    1990-01-01

    An improvement to the gas mixture used in diffuse glow discharge closing switches is disclosed which includes binary and ternary gas mixtures which are formulated to exhibit decreasing electron attachment with increasing temperature. This increases the efficiency of the conductance of the glow discharge and further inhibits the formation of an arc.

  11. Binary and ternary gas mixtures with temperature enhanced diffuse glow discharge characteristics for use in closing switches

    DOEpatents

    Christophorou, L.G.; Hunter, S.R.

    1988-06-28

    An improvement to the gas mixture used in diffuse glow discharge closing switches is disclosed which includes binary and ternary gas mixtures which are formulated to exhibit decreasing electron attachment with increasing temperature. This increases the efficiency of the conductance of the glow discharge and further inhibits the formation of an arc. 11 figs.

  12. Binary and ternary gas mixtures with temperature enhanced diffuse glow discharge characteristics for use in closing switches

    DOEpatents

    Christophorou, L.G.; Hunter, S.R.

    1990-06-26

    An improvement to the gas mixture used in diffuse glow discharge closing switches is disclosed which includes binary and ternary gas mixtures which are formulated to exhibit decreasing electron attachment with increasing temperature. This increases the efficiency of the conductance of the glow discharge and further inhibits the formation of an arc. 11 figs.

  13. Ozone generation in a kHz-pulsed He-O2 capillary dielectric barrier discharge operated in ambient air

    NASA Astrophysics Data System (ADS)

    Sands, Brian L.; Ganguly, Biswa N.

    2013-12-01

    The generation of reactive oxygen species using nonequilibrium atmospheric pressure plasma jet devices has been a subject of recent interest due to their ability to generate localized concentrations from a compact source. To date, such studies with plasma jet devices have primarily utilized radio-frequency excitation. In this work, we characterize ozone generation in a kHz-pulsed capillary dielectric barrier discharge configuration comprised of an active discharge plasma jet operating in ambient air that is externally grounded. The plasma jet flow gas was composed of helium with an admixture of up to 5% oxygen. A unipolar voltage pulse train with a 20 ns pulse risetime was used to drive the discharge at repetition rates between 2-25 kHz. Using UVLED absorption spectroscopy centered at 255 nm near the Hartley-band absorption peak, ozone was detected over 1 cm from the capillary axis. We observed roughly linear scaling of ozone production with increasing pulse repetition rate up to a "turnover frequency," beyond which ozone production steadily dropped and discharge current and 777 nm O(5P→5S°) emission sharply increased. The turnover in ozone production occurred at higher pulse frequencies with increasing flow rate and decreasing applied voltage with a common energy density of 55 mJ/cm3 supplied to the discharge. The limiting energy density and peak ozone production both increased with increasing O2 admixture. The power dissipated in the discharge was obtained from circuit current and voltage measurements using a modified parallel plate dielectric barrier discharge circuit model and the volume-averaged ozone concentration was derived from a 2D ozone absorption measurement. From these measurements, the volume-averaged efficiency of ozone production was calculated to be 23 g/kWh at conditions for peak ozone production of 41 mg/h at 11 kV applied voltage, 3% O2, 2 l/min flow rate, and 13 kHz pulse repetition rate, with 1.79 W dissipated in the discharge.

  14. High-power EUV lithography sources based on gas discharges and laser-produced plasmas

    NASA Astrophysics Data System (ADS)

    Stamm, Uwe; Ahmad, Imtiaz; Balogh, Istvan; Birner, H.; Bolshukhin, D.; Brudermann, J.; Enke, S.; Flohrer, Frank; G„bel, Kai; G÷tze, S.; Hergenhan, G.; Kleinschmidt, J.'rgen; Kl÷pfel, Diethard; Korobotchko, Vladimir; Ringling, Jens; Schriever, Guido; Tran, C. D.; Ziener, C.

    2003-06-01

    Semiconductor chip manufacturers are expecting to use extreme UV lithography for production in 2009. EUV tools require high power, brilliant light sources at 13.5 nm with collector optics producing 120 W average power at entrance of the illuminator system. Today the power and lifetime of the EUV light source are considered as the most critical issue for EUV lithography. The present paper gives an update of the development status of EUV light sources at XTREME technologies, a joint venture of Lambda Physik AG, Goettingen, and Jenoptik LOS GmbH, Jena, Germany. Results on both laser produced plasma (LPP) and gas discharge produced plasma (GDPP), the two major technologies in EUV sources, are given. The LPP EUV sources use xenon-jet target systems and pulsed lasers with 400 W average power at 10 kHz developed at XTREME technologies. The maximum conversion efficiency form laser power into EUV in-band power is 0.75% into 2π solid angle. With 300 W laser average power at 3300 Hz repetition rate up to 1.5 W EUV radiation is generated at 13.5 nm. After a collector of 5 sr this corresponds to 0.6 W in intermediate focus without spectral purity filter and 0.5 W in intermediate focus with spectral purity filter. The direct generation of the EUV emitting plasma from electrical discharges is much simpler than LPP because the electrical energy has not to be converted into laser radiation before plasma excitation. XTREME technologies' Xenon GDPP EUV sources use the Z-pinch principle with efficient sliding discharge pre-ionization. The plasma pinch size and the available emission angle have been matched to the etendue of the optical system of 2-3 mm2 sr, i.e. no additional etendue related loss reduces the usable EUV power from the source. In continuous operation at 1000 Hz the GDPP sources emit 50W into 2π solid angle are obtained from the Z-pinch sources. Spatial and temporal emission stability of the EUV sources is in the range of a few percent. Debris shields for EUV sources

  15. 20 CFR 726.207 - Discharge by the carrier of obligations and duties of operator.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 20 Employees' Benefits 4 2014-04-01 2014-04-01 false Discharge by the carrier of obligations and duties of operator. 726.207 Section 726.207 Employees' Benefits OFFICE OF WORKERS' COMPENSATION PROGRAMS, DEPARTMENT OF LABOR FEDERAL COAL MINE HEALTH AND SAFETY ACT OF 1969, AS AMENDED BLACK LUNG...

  16. 20 CFR 726.207 - Discharge by the carrier of obligations and duties of operator.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 20 Employees' Benefits 4 2013-04-01 2013-04-01 false Discharge by the carrier of obligations and duties of operator. 726.207 Section 726.207 Employees' Benefits OFFICE OF WORKERS' COMPENSATION PROGRAMS, DEPARTMENT OF LABOR FEDERAL COAL MINE HEALTH AND SAFETY ACT OF 1969, AS AMENDED BLACK LUNG...

  17. 20 CFR 726.207 - Discharge by the carrier of obligations and duties of operator.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 20 Employees' Benefits 4 2012-04-01 2012-04-01 false Discharge by the carrier of obligations and duties of operator. 726.207 Section 726.207 Employees' Benefits OFFICE OF WORKERS' COMPENSATION PROGRAMS, DEPARTMENT OF LABOR FEDERAL COAL MINE HEALTH AND SAFETY ACT OF 1969, AS AMENDED BLACK LUNG...

  18. 33 CFR 151.73 - Operating requirements: Discharge of garbage from fixed or floating platforms.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Operating requirements: Discharge of garbage from fixed or floating platforms. 151.73 Section 151.73 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) POLLUTION VESSELS CARRYING OIL, NOXIOUS LIQUID SUBSTANCES, GARBAGE, MUNICIPAL OR...

  19. 33 CFR 151.71 - Operating requirements: Discharge of garbage within special areas.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Operating requirements: Discharge of garbage within special areas. 151.71 Section 151.71 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) POLLUTION VESSELS CARRYING OIL, NOXIOUS LIQUID SUBSTANCES, GARBAGE, MUNICIPAL OR COMMERCIAL WASTE,...

  20. 33 CFR 151.69 - Operating requirements: Discharge of garbage outside special areas.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Operating requirements: Discharge of garbage outside special areas. 151.69 Section 151.69 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) POLLUTION VESSELS CARRYING OIL, NOXIOUS LIQUID SUBSTANCES, GARBAGE, MUNICIPAL OR COMMERCIAL WASTE,...

  1. 33 CFR 151.69 - Operating requirements: Discharge of garbage outside special areas.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Operating requirements: Discharge of garbage outside special areas. 151.69 Section 151.69 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) POLLUTION VESSELS CARRYING OIL, NOXIOUS LIQUID SUBSTANCES, GARBAGE, MUNICIPAL OR COMMERCIAL WASTE,...

  2. Low power gas discharge plasma mediated inactivation and removal of biofilms formed on biomaterials

    PubMed Central

    Traba, Christian; Chen, Long; Liang, Jun F.

    2013-01-01

    The antibacterial activity of gas discharge plasma has been studied for quiet some time. However, high biofilm inactivation activity of plasma was only recently reported. Studies indicate that the etching effect associated with plasmas generated represent an undesired effect, which may cause live bacteria relocation and thus contamination spreading. Meanwhile, the strong etching effects from these high power plasmas may also alter the surface chemistry and affect the biocompatibility of biomaterials. In this study, we examined the efficiency and effectiveness of low power gas discharge plasma for biofilm inactivation and removal. Among the three tested gases, oxygen, nitrogen, and argon, discharge oxygen demonstrated the best anti-biofilm activity because of its excellent ability in killing bacteria in biofilms and mild etching effects. Low power discharge oxygen completely killed and then removed the dead bacteria from attached surface but had negligible effects on the biocompatibility of materials. DNA left on the regenerated surface after removal of biofilms did not have any negative impact on tissue cell growth. On the contrary, dramatically increased growth was found for these cells seeded on regenerated surfaces. These results demonstrate the potential applications of low power discharge oxygen in biofilm treatments of biomaterials and indwelling device decontaminations. PMID:23894232

  3. Emission spectroscopy of a microhollow cathode discharge plasma in helium-water gas mixtures

    SciTech Connect

    Namba, S.; Yamasaki, T.; Hane, Y.; Fukuhara, D.; Kozue, K.; Takiyama, K.

    2011-10-01

    A dc microhollow cathode discharge (MHCD) plasma was generated inflowing helium gas containing water vapor. The cathode hole diameters were 0.3, 0.7, 1.0, and 2.0 mm, each with a length of 2.0 mm. Emission spectroscopy was carried out to investigate the discharge mode and to determine the plasma parameters. For the 0.3-mm cathode, stable MHCDs in an abnormal glow mode existed at pressures up to 100 kPa, whereas for larger diameters, a plasma was not generated at atmospheric pressure. An analysis of the lineshapes relevant to He at 667.8 nm and to H{alpha} at 656.3 nm implied an electron density and gas temperature of 2 x 10{sup 14} cm{sup -3} and 1100 K, respectively, for a 100-kPa discharge in the negative glow region. The dependence of the OH band, and H{alpha} intensities on the discharge current exhibited different behaviors. Specifically, the OH spectrum had a maximum intensity at a certain current, while the H atom intensity kept increasing with the discharge current. This observation implies that a high concentration of OH radicals results in quenching, leading to the production of H atoms via the reaction OH + e{sup -}{yields} O + H + e{sup -}.

  4. Research of the DC discharge of He-Ne gas mixture in hollow core fiber

    NASA Astrophysics Data System (ADS)

    Wang, Xinbing; Duan, Lian

    2013-09-01

    Since the first waveguide 0.633 μm He-Ne laser from a 20 cm length of 430 μm glass capillary was reported in 1971, no smaller waveguide gas laser has ever been constructed. Recently as the development of low loss hollow core PBG fiber, it is possible to constract a He-Ne lasers based on hollow-core PBG fibers. For the small diameter of the air hole, it is necessary to do some research to obtain glow discharge in hollow core fibers. In this paper, the experimental research of DC discharge in 200 μm bore diameter hollow core fibers was reported. Stable glow discharge was obained at varioue He-Ne mixtures from 4 Torr to 18 Torr. In order to obtain the plasma parameter of the discharge, the trace gasses of N2 and H2 were added to the He-Ne mixtures, the optical emission spectroscopy of the discharge was recorded by a PI 2750 spectroscopy with a CCD camera. The gas temperature (Tg) could be obtained by matching the simulated rovibronic band of the N2 emission with the observed spectrum in the ultraviolet region. The spectral method was also used to obtained the electron density, which is based on the analysis of the wavelength profile of the 486.13 nm Hβ line, and the electron temperature was obtain by Boltzmann plot methods. Experimental results show that it is very difficult to achieve DC discharge in bore diameter less than 50 μm, and a RF discharge method was proposed. Project supported by the National Natural Science Foundation of China (61078033).

  5. Size-controlled synthesis and gas sensing application of tungsten oxide nanostructures produced by arc discharge.

    PubMed

    Fang, F; Kennedy, J; Futter, J; Hopf, T; Markwitz, A; Manikandan, E; Henshaw, G

    2011-08-19

    Several different synthetic methods have been developed to fabricate tungsten oxide (WO(3)) nanostructures, but most of them require exotic reagents or are unsuitable for mass production. In this paper, we present a systematic investigation demonstrating that arc discharge is a fast and inexpensive synthesis method which can be used to produce high quality tungsten oxide nanostructures for NO(2) gas sensing measurements. The as-synthesized WO(3) nanostructures are characterized by x-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), finger-print Raman spectroscopy and proton induced x-ray emission (PIXE). The analysis shows that spheroidal-shaped monoclinic WO(3) crystal nanostructures were produced with an average diameter of 30 nm (range 10-100 nm) at an arc discharge current of 110 A and 300 Torr oxygen partial pressure. It is found that the morphology is controlled by the arc discharge parameters of current and oxygen partial pressure, e.g. a high arc discharge current combined with a low oxygen partial pressure results in small WO(3) nanostructures with improved conductivity. Sensors produced from the WO(3) nanostructures show a strong response to NO(2) gas at 325 °C. The ability to tune the morphology of the WO(3) nanostructures makes this method ideal for the fabrication of gas sensing materials. PMID:21778569

  6. PREFACE: 12th International Conference on Gas Discharge Plasmas and Their Applications

    NASA Astrophysics Data System (ADS)

    Koval, N.; Landl, N.; Bogdan, A.; Yudin, A.

    2015-11-01

    The 12th International Conference ''Gas Discharge Plasmas and Their Applications'' (GDP 2015) was held in Tomsk, Russia, on September 6-11, 2015. GDP 2015 represents a continuation of the conferences on physics of gas discharge held in Russia since 1984 and seminars and conferences on the technological applications of low temperature plasmas traditionally organized in Tomsk. The six-day Conference brought together the specialists from different countries and organizations and provided an excellent opportunity to exchange knowledge, make oral contributions and poster presentations, and initiate discussions on the topics that are of interest to the Conference participants. The selected papers of the Conference cover a wide range of technical areas and modern aspects of the physical processes in the generators of low-temperature plasma, the low and high-pressure discharges, the pulsed plasma sources, the surface modification, and other gas-discharge technologies. The Conference was hosted by Institute of High Current Electronics SB RAS, Tomsk Polytechnic University, Tomsk Scientific Center, and Tomsk State University of Architecture and Building.

  7. LASER APPLICATIONS AND OTHER TOPICS IN QUANTUM ELECTRONICS: Gas-dynamic effects in the interaction of a motionless optical pulsating discharge with gas

    NASA Astrophysics Data System (ADS)

    Tishchenko, V. N.; Grachev, G. N.; Pavlov, A. A.; Smirnov, A. L.; Pavlov, A. A.; Golubev, M. P.

    2008-01-01

    The effect of energy removal from the combustion zone of a motionless optical pulsating discharge in the horizontal direction along the axis of a repetitively pulsed laser beam producing the discharge is discovered. The directivity diagram of a hot gas flow is formed during the action of hundreds of pulses. The effect is observed for short pulse durations, when the discharge efficiently generates shock waves. For long pulse durations, the heated gas propagates upward, as in a thermal source.

  8. Evaluation of the potentials of humic acid removal in water by gas phase surface discharge plasma.

    PubMed

    Wang, Tiecheng; Qu, Guangzhou; Ren, Jingyu; Yan, Qiuhe; Sun, Qiuhong; Liang, Dongli; Hu, Shibin

    2016-02-01

    Degradation of humic acid (HA), a predominant type of natural organic matter in ground water and surface waters, was conducted using a gas phase surface discharge plasma system. HA standard and two surface waters (Wetland, and Weihe River) were selected as the targets. The experimental results showed that about 90.9% of standard HA was smoothly removed within 40 min's discharge plasma treatment at discharge voltage 23.0 kV, and the removal process fitted the first-order kinetic model. Roles of some active species in HA removal were studied by evaluating the effects of solution pH and OH radical scavenger; and the results presented that O3 and OH radical played significant roles in HA removal. Scanning electron microscope (SEM) and FTIR analysis showed that HA surface topography and molecular structure were changed during discharge plasma process. The mineralization of HA was analyzed by UV-Vis spectrum, dissolved organic carbon (DOC), specific UV absorbance (SUVA), UV absorption ratios, and excitation-emission matrix (EEM) fluorescence. The formation of disinfection by-products during HA sample chlorination was also identified, and CHCl3 was detected as the main disinfection by-product, but discharge plasma treatment could suppress its formation to a certain extent. In addition, approximately 82.3% and 67.9% of UV254 were removed for the Weihe River water and the Wetland water after 40 min of discharge plasma treatment. PMID:26624519

  9. Singlet oxygen generation in gas discharge for oxygen-iodine laser pumping

    NASA Astrophysics Data System (ADS)

    Lopaev, D. V.; Braginsky, O. V.; Klopovsky, K. S.; Kovalev, A. S.; Mankelevich, Yu. A.; Popov, N. A.; Rakhimov, A. T.; Rakhimova, T. V.; Vasilieva, A. N.

    2004-09-01

    The possibility of development of effective discharged singlet oxygen (SO) generator (DSOG) for oxygen-iodine laser (OIL) is studied in detail. Researches of kinetics of oxygen atoms and oxygen molecules in the lowest metastable singlet states have been carried out in the different discharges and its afterglow (DC discharges, E-beam controlled discharge and RF discharges) in both CW and pulsed mode in a wide range of conditions (pressures, gas mixtures, energy deposits etc.). The models developed for all the discharges have allowed us to analyze SO generation and loss mechanisms and to find out the key-parameters controlling the highest SO yield. It is shown that in addition to spatial plasma uniformity at low E/N and high specific energy deposit per oxygen molecule, DSOG must be oxygen atom free to avoid fast three-body quenching of SO by atomic oxygen with increasing pressure and thereby to provide pressure scaling (in tens Torrs) for applying to real OIL systems.

  10. Gas laser for efficient sustaining a continuous optical discharge plasma in scientific and technological applications

    SciTech Connect

    Zimakov, V P; Kuznetsov, V A; Kedrov, A Yu; Solov'ev, N G; Shemyakin, A N; Yakimov, M Yu

    2009-09-30

    A stable high-power laser is developed for the study and technical applications of a continuous optical discharge (COD). The laser based on the technology of a combined discharge in a scheme with a fast axial gas flow emits 2.2 kW at 10.6 {mu}m per meter of the active medium in continuous and repetitively pulsed regimes with the electrooptical efficiency 20%. The sustaining of the COD plasma in argon and air is demonstrated at the atmospheric pressure. The emission properties of the COD plasma are studied and its possible applications are discussed. (lasers)

  11. Two-Dimensional Plasma Density Distributions in Low-Pressure Gas Discharges

    SciTech Connect

    Berlin, E.V.; Dvinin, S.A.; Mikheev, V.V.; Omarov, M.O.; Sviridkina, V. S.

    2004-12-15

    The plasma density distribution in a two-dimensional nonuniform positive column of a low-pressure gas discharge is studied in the hydrodynamic approximation with allowance for ion inertia. Exact solutions are derived for discharges in a rectangular and a cylindrical chamber. Asymptotic solutions near the coordinate origin and near the critical surface are considered. It is shown that, for potential plasma flows, the flow velocity component normal to the plasma boundary is equal to the ion acoustic velocity. The results obtained can be used to analyze the processes occurring in low-pressure plasmochemical reactors.

  12. Modular Coating for Flexible Gas Turbine Operation

    NASA Astrophysics Data System (ADS)

    Zimmermann, J. R. A.; Schab, J. C.; Stankowski, A.; Grasso, P. D.; Olliges, S.; Leyens, C.

    2016-01-01

    In heavy duty gas turbines, the loading boundary conditions of MCrAlY systems are differently weighted for different operation regimes as well as for each turbine component or even in individual part locations. For an overall optimized component protection it is therefore of interest to produce coatings with flexible and individually tailored properties. In this context, ALSTOM developed an Advanced Modular Coating Technology (AMCOTEC™), which is based on several powder constituents, each providing specific properties to the final coating, in combination with a new application method, allowing in-situ compositional changes. With this approach, coating properties, such as oxidation, corrosion, and cyclic lifetime, etc., can be modularly adjusted for individual component types and areas. For demonstration purpose, a MCrAlY coating with modular ductility increase was produced using the AMCOTEC™ methodology. The method was proven to be cost effective and a highly flexible solution, enabling fast compositional screening. A calculation method for final coating composition was defined and validated. The modular addition of ductility agent enabled increasing the coating ductility with up to factor 3 with only slight decrease of oxidation resistance. An optimum composition with respect to ductility is reached with addition of 20 wt.% of ductility agent.

  13. Effect of the river discharge implementation in an operational model for the West Iberia coastal area.

    NASA Astrophysics Data System (ADS)

    Campuzano, Francisco; Brito, David; Juliano, Manuela; Fernandes, Rodrigo; Neves, Ramiro

    2015-04-01

    In the Iberian Peninsula, most of the largest rivers discharge on the Atlantic coast draining almost two thirds of the territory. It is an important source of nutrients and sediments to these coastal areas. Rivers discharges in the Atlantic area when compared with the ones in the Mediterranean side present the particularity that their water before is released into the ocean is previously mixed in their estuaries in a different ratio depending of the estuarine residence time and the discharged flow. In order to evaluate the relative importance of the inland waters in the circulation patterns of Western Iberia, the rivers discharges were implemented in the PCOMS model application (Portuguese Coast Operational Modelling System). To reproduce the water continuum including the different spatial and temporal scales, a methodology consisting in a system of integrated models using the Mohid model was designed. At the watershed level, the Mohid Land model calculated operationally water flow and properties, including nutrients, for the main river catchments of Western Iberian with a 2 km horizontal resolution. Downstream, several operational hydrodynamic and biological estuarine applications used those outcomes as model inputs, filling the gaps in the observation network. From the estuarine models, the tidally modulated water and properties fluxes to the coast were obtained. These fluxes were finally imposed in the Portuguese Coast Operational Modelling System (PCOMS), a fully 3D baroclinic hydrodynamic and ecological regional model that covers the Iberian Atlantic front. The fate of the rivers discharges were analysed by integrating model results in boxes, comparing the climatologies obtained with and without rivers and the rivers area of influence was obtained by lagrangian tracers simulations.

  14. Study of the switching rate of gas-discharge devices based on the open discharge with counter-propagating electron beams

    SciTech Connect

    Bokhan, P. A.; Gugin, P. P.; Lavrukhin, M. A.; Zakrevsky, Dm. E.

    2015-06-15

    The switching rate of gas-discharge devices “kivotrons” based on the open discharge with counter-propagating electron beams has been experimentally studied. Structures with 2-cm{sup 2} overall cathode area were examined. The switching time was found to show a monotonic decrease with increasing the working-gas helium pressure and with increasing the voltage across the discharge gap at breakdown. The minimum switching time was found to be ∼240 ps at 17 kV voltage, and the maximum rate of electric-current rise limited by the discharge-circuit inductance was 3 × 10{sup 12 }A/s.

  15. Physical gas discharge procedure for adhesive surface pretreatment of polymer composite materials

    NASA Astrophysics Data System (ADS)

    Hahn, O.; Huesgen, B.

    The effects of corona discharge and low-pressure plasma treatments are examined with respect to the preparation of the adhesive surfaces of polymer composites. A glass-fiber-reinforced polyamide and an epoxy-based structural adhesive are employed and treated with the physical gas-discharge procedure. Attention is given to the wettability of the polymer surface and to the adhesive strengths of the joints for the two pretreatment procedures. Diagrams show the dependence of bonding strength and constant contact angle on the duration, performance, and storage times of the corona and plasma treatments. SEM is used to study the surface characteristics of the materials, and decomposition products are noted in the surfaces of the joints. Plasma treatments generally lead to more effective bonds in the polyamide specimens, and the corona-discharge treatment leads to good bonds with some surface modifications.

  16. Environmental policy constraints for acidic exhaust gas scrubber discharges from ships.

    PubMed

    Ülpre, H; Eames, I

    2014-11-15

    Increasingly stringent environmental legislation on sulphur oxide emissions from the combustion of fossil fuels onboard ships (International Maritime Organization (IMO) Regulation 14) can be met by either refining the fuel to reduce sulphur content or by scrubbing the exhaust gases. Commonly used open loop marine scrubbers discharge warm acidic exhaust gas wash water into the sea, depressing its pH. The focus on this paper is on the physics and chemistry behind the disposal of acidic discharges in seawater. The IMO Marine Environment Protection Committee (MEPC 59/24/Add.1 Annex 9) requires the wash water to reach a pH greater than 6.5 at a distance of 4m from the point of discharge. We examine the engineering constraints, specifically size and number of ports, to identify the challenges of meeting regulatory compliance. PMID:25284442

  17. Compressor discharge bleed air circuit in gas turbine plants and related method

    DOEpatents

    Anand, Ashok Kumar; Berrahou, Philip Fadhel; Jandrisevits, Michael

    2003-04-08

    A gas turbine system that includes a compressor, a turbine component and a load, wherein fuel and compressor discharge bleed air are supplied to a combustor and gaseous products of combustion are introduced into the turbine component and subsequently exhausted to atmosphere. A compressor discharge bleed air circuit removes bleed air from the compressor and supplies one portion of the bleed air to the combustor and another portion of the compressor discharge bleed air to an exhaust stack of the turbine component in a single cycle system, or to a heat recovery steam generator in a combined cycle system. In both systems, the bleed air diverted from the combustor may be expanded in an air expander to reduce pressure upstream of the exhaust stack or heat recovery steam generator.

  18. Compressor discharge bleed air circuit in gas turbine plants and related method

    DOEpatents

    Anand, Ashok Kumar; Berrahou, Philip Fadhel; Jandrisevits, Michael

    2002-01-01

    A gas turbine system that includes a compressor, a turbine component and a load, wherein fuel and compressor discharge bleed air are supplied to a combustor and gaseous products of combustion are introduced into the turbine component and subsequently exhausted to atmosphere. A compressor discharge bleed air circuit removes bleed air from the compressor and supplies one portion of the bleed air to the combustor and another portion of the compressor discharge bleed air to an exhaust stack of the turbine component in a single cycle system, or to a heat recovery steam generator in a combined cycle system. In both systems, the bleed air diverted from the combustor may be expanded in an air expander to reduce pressure upstream of the exhaust stack or heat recovery steam generator.

  19. TOPICAL REVIEW: Numerical modelling of atmospheric pressure gas discharges leading to plasma production

    NASA Astrophysics Data System (ADS)

    Georghiou, G. E.; Papadakis, A. P.; Morrow, R.; Metaxas, A. C.

    2005-10-01

    In this paper, we give a detailed review of recent work carried out on the numerical characterization of non-thermal gas discharge plasmas in air at atmospheric pressure. First, we briefly describe the theory of discharge development for dielectric barrier discharges, which is central to the production of non-equilibrium plasma, and we present a hydrodynamic model to approximate the evolution of charge densities. The model consists of the continuity equations for electrons, positive and negative ions coupled to Poisson's equation for the electric field. We then describe features of the finite element flux corrected transport algorithm, which has been developed to specifically aim for accuracy (no spurious diffusion or oscillations), efficiency (through the use of unstructured grids) and ease of extension to complex 3D geometries in the framework of the hydrodynamic model in gas discharges. We summarize the numerical work done by other authors who have applied different methods to various models and then we present highlights of our own work, which includes code validation, comparisons with existing results and modelling of radio frequency systems, dc discharges, secondary effects such as photoionization and plasma production in the presence of dielectrics. The extension of the code to 3D for more realistic simulations is demonstrated together with the adaptive meshing technique, which serves to achieve higher efficiency. Finally, we illustrate the versatility of our scheme by using it to simulate the transition from non-thermal to thermal discharges. We conclude that numerical modelling and, in particular, the extension to 3D can be used to shed new light on the processes involved with the production and control of atmospheric plasma, which plays an important role in a host of emerging technologies.

  20. Is Submarine Groundwater Discharge a Gas Hydrate Formation Mechanism on the Circum-Arctic Shelf?

    NASA Astrophysics Data System (ADS)

    Frederick, J. M.; Buffett, B. A.

    2015-12-01

    Methane hydrate is an ice-like solid that can sequester large quantities of methane gas in marine sediments along most continental margins where thermodynamic conditions permit its formation. Along the circum-Arctic shelf, relict permafrost-associated methane hydrate deposits formed when non-glaciated portions of the shelf experienced subaerial exposure during ocean transgressions. Gas hydrate stability and the permeability of circum-Arctic shelf sediments to gas migration is closely linked with relict submarine permafrost. Heat flow observations on the Alaskan North Slope and Canadian Beaufort Shelf suggest the movement of groundwater offshore, but direct observations of groundwater flow do not exist. Submarine discharge, an offshore flow of fresh, terrestrial groundwater, can affect the temperature and salinity field in shelf sediments, and may be an important factor in submarine permafrost and gas hydrate evolution on the Arctic continental shelf. Submarine groundwater discharge may also enhance the transport of organic matter for methanogenesis within marine sediments. Because it is buoyancy-driven, the velocity field contains regions with a vertical (upward) component as groundwater flows offshore. This combination of factors makes submarine groundwater discharge a potential mechanism controlling permafrost-associated gas hydrate evolution on the Arctic continental shelf. In this study, we quantitatively investigate the feasibility of submarine groundwater discharge as a control on permafrost-associated gas hydrate formation on the Arctic continental shelf, using the Canadian Beaufort Shelf as an example. We have developed a shelf-scale, two-dimensional numerical model based on the finite volume method for two-phase flow of pore fluid and methane gas within Arctic shelf sediments. The model tracks the evolution of the pressure, temperature, salinity, methane gas, methane hydrate, and permafrost fields given imposed boundary conditions, with latent heat of

  1. [Study on vibrational temperature and gas temperature in a hollowneedle-plate discharge plasma].

    PubMed

    Dong, Li-fang; Liu, Wei-yuan; Yang, Yu-jie; Wang, Shuai

    2010-09-01

    A 1.6-3 cm long plasma torch was generated when argon gas was introduced by using a hollowneedle-plate discharge device working in atmosphere. The vibrational temperature and the gas temperature at plasma root and tip were studied by using optical emission spectrum at different argon gas flow. The gas temperature was obtained by comparing experimental line shape of OH radicals band around 309 nm with its simulated line shape. The vibrational temperature was calculated using N2 second posi tive band system C3:pi u-B3 pi g. It was found that the gas temperatures at arc root and arc tip are equal and they decrease with the argon flow rate increasing. The gas temperature decreases from 350 to 300 K when argon flow rate increases from 3.0 to 6.5 mL x min(-1). The vibrational temperature at are tip (1950 K) is higher than that at arc root (1755 K) under a low gas flow rate (e.g., 3.0 mL x min(-1)). With gas flow rate increasing, the vibrational temperature at both tip and root decreases, but the decreasing rate at are tip is faster than that at arc root. When gas flow is larger, the vibrational temperatures at tip and root tend to be equal. PMID:21105384

  2. Electron density measurement in gas discharge plasmas by optical and acoustic methods

    NASA Astrophysics Data System (ADS)

    Biagioni, A.; Anania, M. P.; Bellaveglia, M.; Chiadroni, E.; Cianchi, A.; Di Giovenale, D.; Di Pirro, G.; Ferrario, M.; Filippi, F.; Mostacci, A.; Pompili, R.; Shpakov, V.; Vaccarezza, C.; Villa, F.; Zigler, A.

    2016-08-01

    Plasma density represents a very important parameter for both laser wakefield and plasma wakefield acceleration, which use a gas-filled capillary plasma source. Several techniques can be used to measure the plasma density within a capillary discharge, which are mainly based on optical diagnostic methods, as for example the well-known spectroscopic method using the Stark broadening effect. In this work, we introduce a preliminary study on an alternative way to detect the plasma density, based on the shock waves produced by gas discharge in a capillary. Firstly, the measurements of the acoustic spectral content relative to the laser-induced plasmas by a solid target allowed us to understand the main properties of the acoustic waves produced during this kind of plasma generation; afterwards, we have extended such acoustic technique to the capillary plasma source in order to calibrate it by comparison with the stark broadening method.

  3. Coulomb collisions in the Boltzmann equation for electrons in low-temperature gas discharge plasmas

    NASA Astrophysics Data System (ADS)

    Hagelaar, G. J. M.

    2016-02-01

    This paper investigates the effects of electron-electron and electron-ion Coulomb collisions on the electron distribution function and transport coefficients obtained from the Boltzmann equation for simple dc gas discharge conditions. Expressions are provided for the full Coulomb collision terms acting on both the isotropic and anisotropic parts of the electron distribution function, which are then incorporated in the freeware Boltzmann equation solver BOLSIG+. Different Coulomb collision effects are demonstrated and discussed on the basis of BOLSIG+  results for argon gas. It is shown that the anisotropic part of the electron-electron collision term, neglected in previous work, can in certain cases have a large effect on the electron mobility and is essential when describing the transition towards the Coulomb-collision dominated regime characterized by Spitzer transport coefficients. Finally, a brief overview is presented of the discharge conditions for which different Coulomb collision effects occur in different gases.

  4. Thermal poling of ferroelectrets: How does the gas temperature influence dielectric barrier discharges in cavities?

    NASA Astrophysics Data System (ADS)

    Qiu, Xunlin; Wirges, Werner; Gerhard, Reimund

    2016-06-01

    The influence of the temperature in the gas-filled cavities on the charging process of ferroelectret film systems has been studied in hysteresis measurements. The threshold voltage and the effective polarization of the ferroelectrets were determined as functions of the charging temperature TP. With increasing TP, the threshold voltage for triggering dielectric barrier discharges in ferroelectrets decreases. Thus, increasing the temperature facilitates the charging of ferroelectrets. However, a lower threshold voltage reduces the attainable remanent polarization because back discharges occur at lower charge levels, as soon as the charging voltage is turned off. The results are discussed in view of Paschen's law for electrical breakdown, taking into account the respective gas temperature and a simplified model for ferroelectrets. Our results indicate that the thermal poling scheme widely used for conventional ferroelectrics is also useful for electrically charging ferroelectrets.

  5. 46 CFR 153.1130 - Failure of slops discharge recording equipment; operating with, reporting failures, and replacing...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Failure of slops discharge recording equipment; operating with, reporting failures, and replacing pollution equipment: Category A, B, C, D. 153.1130 Section... slops discharge recording equipment; operating with, reporting failures, and replacing...

  6. 46 CFR 153.1130 - Failure of slops discharge recording equipment; operating with, reporting failures, and replacing...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Failure of slops discharge recording equipment; operating with, reporting failures, and replacing pollution equipment: Category A, B, C, D. 153.1130 Section... slops discharge recording equipment; operating with, reporting failures, and replacing...

  7. 46 CFR 153.1130 - Failure of slops discharge recording equipment; operating with, reporting failures, and replacing...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Failure of slops discharge recording equipment; operating with, reporting failures, and replacing pollution equipment: Category A, B, C, D. 153.1130 Section... slops discharge recording equipment; operating with, reporting failures, and replacing...

  8. 46 CFR 153.1130 - Failure of slops discharge recording equipment; operating with, reporting failures, and replacing...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Failure of slops discharge recording equipment; operating with, reporting failures, and replacing pollution equipment: Category A, B, C, D. 153.1130 Section... slops discharge recording equipment; operating with, reporting failures, and replacing...

  9. 46 CFR 153.1130 - Failure of slops discharge recording equipment; operating with, reporting failures, and replacing...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Failure of slops discharge recording equipment; operating with, reporting failures, and replacing pollution equipment: Category A, B, C, D. 153.1130 Section... slops discharge recording equipment; operating with, reporting failures, and replacing...

  10. Plasma characteristics of argon glow discharge produced by AC power supply operating at low frequencies

    SciTech Connect

    Kongpiboolkid, Watcharapon; Mongkolnavin, Rattachat

    2015-04-24

    Non-thermal properties of Argon glow discharge operating with various operating pressures were measured and presented in this work. The Argon plasma is produced by a parallel conducting electrodes coupling with a high voltage AC power supply. The power supply can generate high AC voltage at various frequencies. The frequencies for the operation are in the range of a few kHz. The system is capable of generating electric field between the two metal electrodes discharge system. The characteristics of plasma produced were measured by optical emission spectroscopy (OES) technique where electron temperature (T{sub e}) and electron number density (n{sub e}) can be determined by line intensity ratio method. The value of electron number density was then determined from the Saha-Eggert equation. Our results show that the electron number density of the discharge obtained is of the order of 10{sup −17} − 10{sup −18} m{sup −3} where the electron temperature is between 1.00−2.00 eV for various operating frequencies used which are in good agreement with similar results published earlier.

  11. Electron beam method and apparatus for obtaining uniform discharges in electrically pumped gas lasers

    DOEpatents

    Fenstermacher, Charles A.; Boyer, Keith

    1986-01-01

    A method and apparatus for obtaining uniform, high-energy, large-volume electrical discharges in the lasing medium of a gas laser whereby a high-energy electron beam is used as an external ionization source to ionize substantially the entire volume of the lasing medium which is then readily pumped by means of an applied potential less than the breakdown voltage of the medium. The method and apparatus are particularly useful in CO.sub.2 laser systems.

  12. Behaviour Of Gas Conditions During Vacuum Arc Discharges Used For Deposition Of Thin Films

    NASA Astrophysics Data System (ADS)

    Strzyzewski, P.; Catani, L.; Cianchi, A.; Langner, J.; Lorkiewicz, J.; Mirowski, R.; Russo, R.; Sadowski, M.; Tazzari, S.; Witkowski, J.

    2006-01-01

    The paper concerns an important problem which is connected with the inclusion of some impurities in the deposited metal film. It was found that appearance of contaminants in the film is induced mainly by water vapor remnants inside the vacuum chamber. The paper presents information on changes in the gas composition during and between arc-discharges, which is of primary importance for the selection of appropriate experimental conditions.

  13. VUV generation by adiabatically expanded and excited by a DC electrical discharge Argon gas

    SciTech Connect

    Pipergias, K.; Yasemidis, D.; Reppa, E.; Pentaris, D.; Efthimiopoulos, T.; Merlemis, N.; Giannetas, V.

    2010-11-10

    We investigate the emission of Argon (Ar) gas which is adiabatically expanded through a nozzle and excited using a DC electrical discharge. Because of the expansion and the electronic excitation, Ar dimers and clusters are formed, which give radiation in the second (2nd) and in the third (3rd) continua of Ar, centered at about 126 and 254 nm respectively. We particularly focus our study on the 2nd continuum, in order to develop a laser at this wavelength.

  14. Visible and near-ultraviolet spectra of low-pressure rare-gas microwave discharges

    NASA Technical Reports Server (NTRS)

    Campbell, J. P.; Spisz, E. W.; Bowman, R. L.

    1971-01-01

    The spectral emission characteristics of three commercial low pressure rare gas discharge lamps wire obtained in the near ultraviolet and visible wavelength range. All three lamps show a definite continuum over the entire wavelength range from 0.185 to 0.6 micrometers. Considerable line emission is superimposed on much of the continuum for wavelengths greater than 0.35 micrometers. These sources were used to make transmittance measurements on quartz samples in the near ultraviolet wavelength range.

  15. A method for removal of CO from exhaust gas using pulsed corona discharge.

    PubMed

    Li, X; Yang, L; Lei, Y; Wang, J; Lu, Y

    2000-10-01

    An experimental study of the oxidation of CO in exhaust gas from a motorcycle has been carried out using plasma chemical reactions in a pulsed corona discharge. In the process, some main parameters, such as the initial CO concentration, amplitude and frequency of pulses, residence time, reactor volume, and relative humidity (RH), as well as their effects on CO removal characteristics, were investigated. O3, which is beneficial to reducing CO, was produced during CO removal. When the exhaust gas was at ambient temperature, more than 80% CO removal efficiency was realized at an initial concentration of 288 ppm in a suitable range of the parameters. PMID:11288300

  16. Multifrequency laser probing of CO-containing gas mixtures excited in a pulsed discharge

    SciTech Connect

    Ionin, Andrei A; Klimachev, Yu M; Kozlov, A Yu; Kotkov, A A; Rulev, O A; Seleznev, L V; Sinitsyn, D V

    2007-03-31

    The method of multifrequency laser probing is developed which can be used for diagnostics of the temperature and population of vibrational levels in gas mixtures containing CO molecules in excited vibrational states. The method is tested by studying the dynamics of the gas temperature and population of vibrational levels of the CO molecule in gas mixtures excited by a pulsed discharge. It is shown that the method provides the reduction of the gas temperature measurement error down to 3%. It is found that the population of lower vibrational levels in the CO-O{sub 2} mixture can exceed the population of levels in CO-He and CO-N{sub 2} laser mixtures by several times. (active media)

  17. Design for gas chromatography-corona discharge-ion mobility spectrometry.

    PubMed

    Jafari, Mohammad T; Saraji, Mohammad; Sherafatmand, Hossein

    2012-11-20

    A corona discharge ionization-ion mobility spectrometry (CD-IMS) with a novel sample inlet system was designed and constructed as a detector for capillary gas chromatography. In this design, a hollow needle was used instead of a solid needle which is commonly used for corona discharge creation, helping us to have direct axial interfacing for GC-IMS. The capillary column was passed through the needle, resulting in a reaction of effluents with reactant ions on the upstream side of the corona discharge ionization source. Using this sample introduction design, higher ionization efficiency was achieved relative to the entrance direction through the side of the drift tube. In addition, the volume of the ionization region was reduced to minimize the resistance time of compounds in the ionization source, increasing chromatographic resolution of the instrument. The effects of various parameters such as drift gas flow, makeup gas flow, and column tip position inside the needle were investigated. The designed instrument was exhaustively validated in terms of sensitivity, resolution, and reproducibility by analyzing the standard solutions of methyl isobutyl ketone, heptanone, nonanone, and acetophenone as the test compounds. The results obtained by CD-IMS detector were compared with those of the flame ionization detector, which revealed the capability of the proposed GC-IMS for two-dimensional separation (based on the retention time and drift time information) and identification of an analyte in complex matrixes. PMID:23083064

  18. Theoretical Study of Plasma Parameters Dependence on Gas Temperature in an Atmospheric Pressure Argon Microwave Discharge

    SciTech Connect

    Pencheva, M.; Benova, E.; Zhelyazkov, I.

    2008-03-19

    The gas temperature is an important parameter in many applications of atmospheric pressure microwave discharges (MW). That is why it is necessary to study the influence of that temperature on the plasma characteristics. Our investigation is based on a self-consistent model including the wave electrodynamics and gas-discharge kinetics. We adopt a blocks' energy structure of the argon excited atom. More specifically, we consider 7 different blocks of states, namely 4s, 4p, 3d, 5s, 5p, 4d, and 6s. Each block k is characterized by its effective energy uk (derived as an average energy of all levels in the block), as well as its effective g-factor and population. The argon dimmer, atomic and molecular ions are also taken into account in the model. We solve the Boltzmann equation in order to get the electron energy distribution function and the necessary rate constants of the elementary processes. The collisional-radiative part of the model is based on 87 processes. As a result we obtain the electron and ions' number densities, mean electron energy, mean power for sustaining an electron--ion pair in the discharge bulk, as well as the population of the excited blocks of states of the argon atom as functions of the gas temperature.

  19. Theoretical Study of Plasma Parameters Dependence on Gas Temperature in an Atmospheric Pressure Argon Microwave Discharge

    NASA Astrophysics Data System (ADS)

    Pencheva, M.; Benova, E.; Zhelyazkov, I.

    2008-03-01

    The gas temperature is an important parameter in many applications of atmospheric pressure microwave discharges (MW). That is why it is necessary to study the influence of that temperature on the plasma characteristics. Our investigation is based on a self-consistent model including the wave electrodynamics and gas-discharge kinetics. We adopt a blocks' energy structure of the argon excited atom. More specifically, we consider 7 different blocks of states, namely 4s, 4p, 3d, 5s, 5p, 4d, and 6s. Each block k is characterized by its effective energy uk (derived as an average energy of all levels in the block), as well as its effective g-factor and population. The argon dimmer, atomic and molecular ions are also taken into account in the model. We solve the Boltzmann equation in order to get the electron energy distribution function and the necessary rate constants of the elementary processes. The collisional-radiative part of the model is based on 87 processes. As a result we obtain the electron and ions' number densities, mean electron energy, mean power for sustaining an electron—ion pair in the discharge bulk, as well as the population of the excited blocks of states of the argon atom as functions of the gas temperature.

  20. Towards sustainability in offshore oil and gas operations

    NASA Astrophysics Data System (ADS)

    Khan, M. Ibrahim

    Human activities are causing irreversible damage to the natural world and threaten our ability to sustain future generations. According to Millennium Ecosystem Assessment of 2005, sixty percent of world pristine habitats are destroyed or disturbed and species extinction rate is 100-1000 times higher than the normal background rate. One of the main reasons of these problems is the use of unsustainable technology. In this dissertation, the essential features of the modern technology development are discussed and a new single-parameter screening criterion is proposed. This criterion will allow the development of truly sustainable technologies. Previously developed technologies, particularly the ones developed after the industrial revolution, are evaluated based on the new criterion. The root cause for unsustainability of these technologies especially in the energy sector is discussed. The proposed criterion is applied to the petroleum sector. Petroleum hydrocarbons are considered to be the lifeblood of the modern society. Petroleum industry that took off from the golden era of 1930's never ceased to dominate all aspects of our society. Until now, there is no suitable alternative to fossil fuel and all trends indicate continued dominance of the petroleum industry in the foreseeable future. Even though petroleum operations have been based on solid scientific excellence and engineering marvels; only recently it has been discovered that many of the practices are not environmentally sustainable. Practically all activities of hydrocarbon operations are accompanied by undesirable discharges of liquid, solid, and gaseous wastes, which have enormous impacts on the environment. Consequently, reducing environmental impact is the most pressing issue today and many environmentalist groups are calling for curtailing petroleum operations altogether. There is clearly a need to develop a new management approach in hydrocarbon operations. This approach will have to be environmentally

  1. Arterial gas occlusions in operating heat pipes

    NASA Technical Reports Server (NTRS)

    Saaski, E. W.

    1975-01-01

    The effect of noncondensable gases on high performance arterial heat pipes has been investigated both analytically and experimentally. Models have been generated which characterize the dissolution of gases in condensate and the diffusional loss of dissolved gases from condensate in arterial flow. These processes, and others, have been used to postulate stability criteria for arterial heat pipes. Experimental observations of gas occlusions were made using a stainless steel heat pipe equipped with viewing ports, and the working fluids methanol and ammonia with the gas additives helium, argon, and xenon. Observations were related to gas transport models.

  2. HOLLOW CARBON ARC DISCHARGE

    DOEpatents

    Luce, J.S.

    1960-10-11

    A device is described for producing an energetic, direct current, hollow, carbon-arc discharge in an evacuated container and within a strong magnetic field. Such discharges are particularly useful not only in dissociation and ionization of high energy molecular ion beams, but also in acting as a shield or barrier against the instreaming of lowenergy neutral particles into a plasma formed within the hollow discharge when it is used as a dissociating mechanism for forming the plasma. There is maintained a predetermined ratio of gas particles to carbon particles released from the arc electrodes during operation of the discharge. The carbon particles absorb some of the gas particles and are pumped along and by the discharge out of the device, with the result that smaller diffusion pumps are required than would otherwise be necessary to dispose of the excess gas.

  3. Analytical model of atmospheric pressure, helium/trace gas radio-frequency capacitive Penning discharges

    NASA Astrophysics Data System (ADS)

    Lieberman, M. A.

    2015-04-01

    Atmospheric and near-atmospheric pressure, helium/trace gas radio-frequency capacitive discharges have wide applications. An analytic equilibrium solution is developed based on a homogeneous, current-driven discharge model that includes sheath and electron multiplication effects and contains two electron populations. A simplified chemistry is used with four unknown densities: hot electrons, warm electrons, positive ions and metastables. The dominant electron-ion pair production is Penning ionization, and the dominant ion losses are to the walls. The equilibrium particle balances are used to determine a single ionization balance equation for the warm electron temperature, which is solved, both approximately within the α- and γ-modes, and exactly by conventional root-finding techniques. All other discharge parameters are found, the extinction and α-γ transitions are determined, and a similarity law is given, in which the equilibrium for a short gap at high pressure can be rescaled to a longer gap at lower pressure. Within the α-mode, we find the scaling of the discharge parameters with current density, frequency, gas density and gap width. The analytic results are compared to hybrid and particle-in-cell (PIC) results for He/0.1%N2, and to hybrid results for He/0.1%H2O. For nitrogen, a full reaction set is used for the hybrid calculations and a simplified reaction set for the PIC simulations. For the chemically complex water trace gas, a set of 209 reactions among 43 species is used. The analytic results are found to be in reasonably good agreement with the more elaborate hybrid and PIC calculations.

  4. Effect of hydrogen ratio on plasma parameters of N{sub 2}-H{sub 2} gas mixture glow discharge

    SciTech Connect

    El-Brulsy, R. A.; Abd Al-Halim, M. A.; Abu-Hashem, A.; Rashed, U. M.; Hassouba, M. A.

    2012-05-15

    A dc plane glow discharge in a nitrogen-hydrogen (N{sub 2}-H{sub 2}) gas mixture has been operated at discharge currents of 10 and 20 mA. The electron energy distribution function (EEDF) at different hydrogen concentrations is measured. A Maxwellian EEDF is found in the positive column region, while in both cathode fall and negative glow regions, a non-Maxwellian one is observed. Langmuir electric probes are used at different axial positions, gas pressures, and hydrogen concentrations to measure the electron temperature and plasma density. The electron temperature is found to increase with increasing H{sub 2} concentration and decrease with increasing both the axial distance from the cathode and the mixture pressure. At first, with increasing distance from the cathode, the ion density decreases, while the electron density increases; then, as the anode is further approached, they remain nearly constant. At different H{sub 2} concentrations, the electron and ion densities decrease with increasing the mixture pressure. Both the electron and ion densities slightly decrease with increasing H{sub 2} concentration.

  5. Effect of Submarine Groundwater Discharge on Relict Arctic Submarine Permafrost and Gas Hydrate

    NASA Astrophysics Data System (ADS)

    Frederick, J. M.; Buffett, B. A.

    2014-12-01

    Permafrost-associated gas hydrate deposits exist at shallow depths within the sediments of the circum-Arctic continental shelves. Degradation of this shallow water reservoir has the potential to release large quantities of methane gas directly to the atmosphere. Gas hydrate stability and the permeability of the shelf sediments to gas migration is closely linked with submarine permafrost. Submarine permafrost extent depends on several factors, such as the lithology, sea level variations, mean annual air temperature, ocean bottom water temperature, geothermal heat flux, and the salinity of the pore water. The salinity of the pore water is especially relevant because it partially controls the freezing point for both ice and gas hydrate. Measurements of deep pore water salinity are few and far between, but show that deep off-shore sediments are fresh. Deep freshening has been attributed to large-scale topographically-driven submarine groundwater discharge, which introduces fresh terrestrial groundwater into deep marine sediments. We investigate the role of submarine ground water discharge on the salinity field and its effects on the seaward extent of relict submarine permafrost and gas hydrate stability on the Arctic shelf with a 2D shelf-scale model based on the finite volume method. The model tracks the evolution of the temperature, salinity, and pressure fields given imposed boundary conditions, with latent heat of water ice and hydrate formation included. The permeability structure of the sediments is coupled to changes in permafrost. Results show that pore fluid is strongly influenced by the permeability variations imposed by the overlying permafrost layer. Groundwater discharge tends to travel horizontally off-shore beneath the permafrost layer and the freshwater-saltwater interface location displays long timescale transient behavior that is dependent on the groundwater discharge strength. The seaward permafrost extent is in turn strongly influenced by the

  6. Analysis of double-probe characteristics in low-frequency gas discharges and its improvement

    SciTech Connect

    Liu, DongLin Li, XiaoPing; Xie, Kai; Liu, ZhiWei; Shao, MingXu

    2015-01-15

    The double-probe has been used successfully in radio-frequency discharges. However, in low-frequency discharges, the double-probe I-V curve is so much seriously distorted by the strong plasma potential fluctuations that the I-V curve may lead to a large estimate error of plasma parameters. To suppress the distortion, we investigate the double-probe characteristics in low-frequency gas discharge based on an equivalent circuit model, taking both the plasma sheath and probe circuit into account. We discovered that there are two primary interferences to the I-V curve distortion: the voltage fluctuation between two probe tips caused by the filter difference voltage and the current peak at the negative edge of the plasma potential. Consequently, we propose a modified passive filter to reduce the two types of interference simultaneously. Experiments are conducted in a glow-discharge plasma (f = 30 kHz) to test the performance of the improved double probe. The results show that the electron density error is reduced from more than 100% to less than 10%. The proposed improved method is also suitable in cases where intensive potential fluctuations exist.

  7. Organic acids enhanced decoloration of azo dye in gas phase surface discharge plasma system.

    PubMed

    Wang, Tiecheng; Qu, Guangzhou; Ren, Jingyu; Sun, Qiuhong; Liang, Dongli; Hu, Shibin

    2016-01-25

    A gas phase surface discharge plasma combined with organic acids system was developed to enhance active species mass transfer and dye-containing wastewater treatment efficacy, with Acid Orange II (AO7) as the model pollutant. The effects of discharge voltage and various organic acid additives (acetic acid, lactic acid and nonoic acid) on AO7 decoloration efficiency were evaluated. The experimental results showed that an AO7 decoloration efficiency of approximately 69.0% was obtained within 4 min of discharge plasma treatment without organic acid addition, which was improved to 82.8%, 83.5% and 88.6% within the same treatment time with the addition of acetic acid, lactic acid and nonoic acid, respectively. The enhancement effects on AO7 decoloration efficiency could be attributed to the decrease in aqueous surface tension, improvement in bubble distribution and shape, and increase in ozone equivalent concentration. The AO7 wastewater was biodegradable after discharge plasma treatment with the addition of organic acid. AO7 decomposition intermediates were analyzed by UV-vis spectrometry and GC-MS; 2-naphthol, 1,4-benzoquinone, phthalic anhydride, coumarin, 1,2-naphthoquinone, and 2-formyl-benzoic acid were detected. A possible pathway for AO7 decomposition in this system was proposed. PMID:26444488

  8. A compact repetitive high-voltage nanosecond pulse generator for the application of gas discharge.

    PubMed

    Pang, Lei; Zhang, Qiaogen; Ren, Baozhong; He, Kun

    2011-04-01

    Uniform and stable discharge plasma requires very short duration pulses with fast rise times. A repetitive high-voltage nanosecond pulse generator for the application of gas discharge is presented in this paper. It is constructed with all solid-state components. Two-stage magnetic compression is used to generate a short duration pulse. Unlike in some reported studies, common commercial fast recovery diodes instead of a semiconductor opening switch (SOS) are used in our experiment that plays the role of SOS. The SOS-like effects of four different kinds of diodes are studied experimentally to optimize the output performance. It is found that the output pulse voltage is higher with a shorter reverse recovery time, and the rise time of pulse becomes faster when the falling time of reverse recovery current is shorter. The SOS-like effect of the diodes can be adjusted by changing the external circuit parameters. Through optimization the pulse generator can provide a pulsed voltage of 40 kV with a 40 ns duration, 10 ns rise time, and pulse repetition frequency of up to 5 kHz. Diffuse plasma can be formed in air at standard atmospheric pressure using the developed pulse generator. With a light weight and small packaging the pulse generator is suitable for gas discharge application. PMID:21529005

  9. A compact repetitive high-voltage nanosecond pulse generator for the application of gas discharge

    NASA Astrophysics Data System (ADS)

    Pang, Lei; Zhang, Qiaogen; Ren, Baozhong; He, Kun

    2011-04-01

    Uniform and stable discharge plasma requires very short duration pulses with fast rise times. A repetitive high-voltage nanosecond pulse generator for the application of gas discharge is presented in this paper. It is constructed with all solid-state components. Two-stage magnetic compression is used to generate a short duration pulse. Unlike in some reported studies, common commercial fast recovery diodes instead of a semiconductor opening switch (SOS) are used in our experiment that plays the role of SOS. The SOS-like effects of four different kinds of diodes are studied experimentally to optimize the output performance. It is found that the output pulse voltage is higher with a shorter reverse recovery time, and the rise time of pulse becomes faster when the falling time of reverse recovery current is shorter. The SOS-like effect of the diodes can be adjusted by changing the external circuit parameters. Through optimization the pulse generator can provide a pulsed voltage of 40 kV with a 40 ns duration, 10 ns rise time, and pulse repetition frequency of up to 5 kHz. Diffuse plasma can be formed in air at standard atmospheric pressure using the developed pulse generator. With a light weight and small packaging the pulse generator is suitable for gas discharge application.

  10. Breakdown voltage reliability improvement in gas-discharge tube surge protectors employing graphite field emitters

    NASA Astrophysics Data System (ADS)

    Žumer, Marko; Zajec, Bojan; Rozman, Robert; Nemanič, Vincenc

    2012-04-01

    Gas-discharge tube (GDT) surge protectors are known for many decades as passive units used in low-voltage telecom networks for protection of electrical components from transient over-voltages (discharging) such as lightning. Unreliability of the mean turn-on DC breakdown voltage and the run-to-run variability has been overcome successfully in the past by adding, for example, a radioactive source inside the tube. Radioisotopes provide a constant low level of free electrons, which trigger the breakdown. In the last decades, any concept using environmentally harmful compounds is not acceptable anymore and new solutions were searched. In our application, a cold field electron emitter source is used as the trigger for the gas discharge but with no activating compound on the two main electrodes. The patent literature describes in details the implementation of the so-called trigger wires (auxiliary electrodes) made of graphite, placed in between the two main electrodes, but no physical explanation has been given yet. We present experimental results, which show that stable cold field electron emission current in the high vacuum range originating from the nano-structured edge of the graphite layer is well correlated to the stable breakdown voltage of the GDT surge protector filled with a mixture of clean gases.

  11. Plasma Discharges in Gas Bubbles in Liquid Water: Breakdown Mechanisms and Resultant Chemistry

    NASA Astrophysics Data System (ADS)

    Gucker, Sarah M. N.

    The use of atmospheric pressure plasmas in gases and liquids for purification of liquids has been investigated by numerous researchers, and is highly attractive due to their strong potential as a disinfectant and sterilizer. However, the fundamental understanding of plasma production in liquid water is still limited. Despite the decades of study dedicated to electrical discharges in liquids, many physical aspects of liquids, such as the high inhomogeneity of liquids, complicate analyses. For example, the complex nonlinearities of the fluid have intricate effects on the electric field of the propagating streamer. Additionally, the liquid material itself can vaporize, leading to discontinuous liquid-vapor boundaries. Both can and do often lead to notable hydrodynamic effects. The chemistry of these high voltage discharges on liquid media can have circular effects, with the produced species having influence on future discharges. Two notable examples include an increase in liquid conductivity via charged species production, which affects the discharge. A second, more complicated scenario seen in some liquids (such as water) is the doubling or tripling of molecular density for a few molecule layers around a high voltage electrode. These complexities require technological advancements in optical diagnostics that have only recently come into being. This dissertation investigates several aspects of electrical discharges in gas bubbles in liquids. Two primary experimental configurations are investigated: the first allows for single bubble analysis through the use of an acoustic trap. Electrodes may be brought in around the bubble to allow for plasma formation without physically touching the bubble. The second experiment investigates the resulting liquid phase chemistry that is driven by the discharge. This is done through a dielectric barrier discharge with a central high voltage surrounded by a quartz discharge tube with a coil ground electrode on the outside. The plasma

  12. Nondestructive Evaluation of the J-2X Direct Metal Laser Sintered Gas Generator Discharge Duct

    NASA Technical Reports Server (NTRS)

    Esther, Elizabeth A.; Beshears, Ronald D.; Lash, Rhonda K.

    2012-01-01

    The J-2X program at NASA's Marshall Space Flight Center (MSFC) procured a direct metal laser sintered (DMLS) gas generator discharge duct from Pratt & Whitney Rocketdyne and Morris Technologies for a test program that would evaluate the material properties and durability of the duct in an engine-like environment. DMLS technology was pursued as a manufacturing alternative to traditional techniques, which used off nominal practices to manufacture the gas generator duct's 180 degree turn geometry. MSFC's Nondestructive Evaluation (NDE) Team performed radiographic, ultrasonic, computed tomographic, and fluorescent penetrant examinations of the duct. Results from the NDE examinations reveal some shallow porosity but no major defects in the as-manufactured material. NDE examinations were also performed after hot-fire testing the gas generator duct and yielded similar results pre and post-test and showed no flaw growth or development.

  13. Efficient gas lasers pumped by run-away electron preionized diffuse discharge

    NASA Astrophysics Data System (ADS)

    Panchenko, Alexei N.; Lomaev, Mikhail I.; Panchenko, Nikolai A.; Tarasenko, Victor F.; Suslov, Alexey I.

    2015-02-01

    It was shown that run-away electron preionized volume (diffuse) discharge (REP DD) can be used as an excitation source of active gas mixtures at elevated pressures and can produce laser emission. We report experimental and calculated results of application of the REP DD for excitation of different active gas mixtures. It was shown that the REP DD allows to obtain efficient lasing stimulated radiation in the IR, visible and UV spectral ranges. Kinetic model of the REP DD in mixtures of nitrogen with SF6 is developed allowing to predict the radiation parameters of nitrogen laser at 337.1 nm. Promising prospects of REP DD employment for exciting a series of gas lasers was demonstrated. Lasing was obtained on molecules N2, HF, and DF with the efficiency close to the limiting value. It was established that the REP DD is most efficient for pumping lasers with the mixtures comprising electro-negative gases.

  14. Removal of ammonia from gas streams with dielectric barrier discharge plasmas.

    PubMed

    Xia, Lanyan; Huang, Li; Shu, Xiaohong; Zhang, Renxi; Dong, Wenbo; Hou, Huiqi

    2008-03-21

    We reported on the experimental study of gas-phase removal of ammonia (NH3) via dielectric barrier discharge (DBD) at atmospheric pressure, in which we mainly concentrated on three aspects--influence of initial NH3 concentration, peak voltage, and gas residence time on NH3 removal efficiency. Effectiveness, e.g. the removal efficiency, specific energy density, absolute removal amount and energy yield, of the self-made DBD reactor had also been studied. Basic analysis on DBD physical parameters and its performance was made in comparison with previous investigation. Moreover, products were detected via ion exchange chromatography (IEC). Experimental results demonstrated the application potential of DBD as an alternative technology for odor-causing gases elimination from gas streams. PMID:17659834

  15. Plasma ionization frequency, edge-to-axis density ratio, and density on axis of a cylindrical gas discharge

    SciTech Connect

    Palacio Mizrahi, J. H.

    2014-06-15

    A rigorous derivation of expressions, starting from the governing equations, for the ionization frequency, edge-to-axis ratio of plasma density, plasma density at the axis, and radially averaged plasma density in a cylindrical gas discharge has been obtained. The derived expressions are simple and involve the relevant parameters of the discharge: Cylinder radius, axial current, and neutral gas pressure. The found expressions account for ion inertia, ion temperature, and changes in plasma ion collisionality.

  16. Experimental biological effects assessment associated with on-shore brine discharge from the creation of gas storage caverns

    NASA Astrophysics Data System (ADS)

    Quintino, Victor; Rodrigues, Ana Maria; Freitas, Rosa; Ré, Ana

    2008-09-01

    Most of the studies on biological and ecological effects associated with brine discharge into the marine environment are related to the operation of desalination plants, for the production of freshwater. In this study we analysed the biological effects of a brine effluent from a completely different source, produced from the lixiviation of rock salt caves, for the creation of natural gas storage caverns. Lethal and sub-lethal endpoints following exposure to the brine were studied in a range of macrofauna species characteristic of the soft and hard bottom habitats in the vicinity of the discharge area, namely the isopod Eurydice pulchra, the annelids Sabellaria alveolata and Ophelia radiata, the sea-urchin Paracentrotus lividus and the bivalve Mytilus galloprovincialis. In a first series of experiments, brine, with salinity above 300, was diluted in distilled water to a salinity value close to that of the seawater in the discharge area (salinity 36) and, surprisingly, none of the exposed species was able to survive or develop into viable larvae. A second series of experiments exposed the species to brine diluted with seawater, simulating more realistic discharge circumstances. All the tested species at all the measured endpoints (adult survival, larval abnormal development, sperm fertilization success) showed negative biological effects in brine solutes always at a lower salinity than that of a salinity control obtained with concentrated seawater. The sub-lethal experiments with larval development of P. lividus, S. alveolata and M. galloprovincialis, and the fertilization success of P. lividus gave EC 50 values for the brine solute with salinity in the range of 40.9-43.5, whereas the EC 50 values for the concentrated seawater were in the range of salinity 44.2-49.0. It is hypothesised that differences in the ionic composition of the brine cause the inability of the species to tolerate the exposure to brine.

  17. SF 6 quenched gas mixtures for streamer mode operation of RPCs at very low voltages

    NASA Astrophysics Data System (ADS)

    Aielli, G.; Camarri, P.; Cardarelli, R.; Di Ciaccio, A.; Di Stante, L.; Liberti, B.; Paoloni, A.; Pastori, E.; Santonico, R.

    2002-11-01

    In the present paper we describe a search for gases that allow to reduce the energy of the electrical discharge produced in Resistive Plate Chambers (RPCs) operated in streamer mode, by reducing both the operating voltage and the released charge. This can be achieved, with current gas mixtures of argon, tetrafluoroethane (TFE) and isobutane, by reducing the total amount of quenching components (TFE+isobutane) down to 10-15% and compensating for the lower gas quenching power with the addition of small amounts of SF 6. We show here that SF 6, even for concentrations as low as 1% or less, has a strong effect in reducing the delivered charge in low quenched gases and allows to achieve a proper working mode of the RPC even at voltages as low as 4- 5 kV over a 2 mm gas gap.

  18. Specific features of an electric discharge operating between an electrolytic anode and a metal cathode

    NASA Astrophysics Data System (ADS)

    Gaisin, A. F.; Sarimov, L. R.

    2011-06-01

    Results are presented from experimental studies of a high-current electric discharge operating between an St45 steel cathode and a service water anode in a wide range of air pressures. Peculiarities of discharge ignition and specific features of cathode and anode spots were revealed. The behavior of the current density on a service water anode was investigated for the first time. Comparison of the current densities j on the steel cathode and service water anode shows that, in the parameter range under study, Hehl's law is not satisfied on the water anode. The two-dimensional distribution of the potential inside and on the surface of the service water anode was measured.

  19. Peculiarities of the charge transport in the gas discharge electronic device with irradiated porous zeolite

    NASA Astrophysics Data System (ADS)

    Ozturk, Sevgul; Koseoglu, Kivilcim; Ozer, Metin; Salamov, Bahtiyar G.

    2015-11-01

    The influence of pressure and β-radiation (1 kGy β doses) on the charge transport mechanism, charge trapping effects in porous zeolite surfaces and breakdown voltage (UB) are discussed in atmospheric microplasmas for the first time. This is due to exposure the zeolite cathode (ZC) to β-radiation resulting in substantial decreases in the UB, discharge currents and conductivity due to increase in porosity of the material. Results indicated that the enhancement of plasma light intensity and electron emission from the ZC surface with the release of trapped electrons which are captured by the defect centers following β-irradiation. The porosity of the ZC and radiation defect centers has significant influence on the charge transport of the microstructure and optical properties of the devices manufactured on its base. Thus, we confirm that the ZCir is a suitable cathode material for plasma light source, field emission displays, energy storage devices and low power gas discharge electronic devices.

  20. Magnetic Ignition of Pulsed Gas Discharges in Air of Low Pressure in a Coaxial Plasma Gun

    NASA Technical Reports Server (NTRS)

    Thom, Karlheinz; Norwood, Joseph, Jr.

    1961-01-01

    The effect of an axial magnetic field on the breakdown voltage of a coaxial system of electrodes has been investigated by earlier workers. For low values of gas pressure times electrode spacing, the breakdown voltage is decreased by the application of the magnetic field. The electron cyclotron radius now assumes the role held by the mean free path in nonmagnetic discharges and the breakdown voltage becomes a function of the magnetic flux density. In this paper the dependence of the formative time lag as a function of the magnetic flux density is established and the feasibility of using a magnetic field for igniting high-voltage, high-current discharges is shown through theory and experiment. With a 36 microfarad capacitor bank charged to 48,000 volts, a peak current of 1.3 x 10( exp 6) amperes in a coaxial type of plasma gun was achieved with a current rise time of only 2 microseconds.

  1. [Mechanism of the organic pollutant degradation in water by hybrid gas-liquid electrical discharge].

    PubMed

    Zhu, Li-nan; Ma, Jun; Yang, Shi-dong

    2007-09-01

    The method of hybrid gas-liquid electrical discharge was investigated for the removal of phenol. The results indicate that this new method can remove phenol in water effectively. The removal rate increases with increasing voltage and air aeration. The production quantity of H2O2 and O3 is measured respectively in the discharge region and the production quantity increases with increasing of voltage and air aeration. The energy consumption analysis indicates that with increasing the voltage, the increase extent of the phenol removal rate is smaller than the energy's, so the increase of energy efficiency is very small. Air aeration increases the energy consumption. At the same time, a considerable part of energy in the overall input energy makes the temperature of the solution increase, and more energy is transformed into heat, which leads to the waste of energy. PMID:17990549

  2. Pulsed Capillary Discharge Operated As A Compact Soft X-Ray Source

    NASA Astrophysics Data System (ADS)

    Valdivia, M. P.; Wyndham, E. S.; Favre, M.; Valenzuela, J. C.

    2010-07-01

    We analyze experimental results of radiation emission from a compact pulsed capillary ns discharge source, designed for soft x-ray applications, operated in Nitrogen and N/He mixtures at voltages in the range of 18-24kV. The discharge operates in an alumina capillary of length 21mm and 1.6mm inner diameter. The electrical energy stored is ~0.5 J with peak current of ~5kA. Fast charging from an IGBT based pulsed power circuit allows operation at 35-150 Hz. Characteristic time-integrated Nitrogen spectra were recorded from 10-220 Å with clear evidence of He-like Nitrogen line at 28.9 Å, which represents a possible source for a water window soft x-ray microscope. Time-evolution measurements show the influence of axial electron beams, generated by hollow cathode dynamics, on the x-ray emission. We discuss optimal frequency of operation, voltage applied, geometrical and pressure conditions for cathode and anode, for soft x-ray generation. Time-integrated MCP images of a filtered slit-wire system delivered an estimate of the maximum emission energy of our source, as well as clear evidence of full wall detachment, of ~100μm in radial size for the entire emission range.

  3. 2D numerical modelling of gas temperature in a nanosecond pulsed longitudinal He-SrBr2 discharge excited in a high temperature gas-discharge tube for the high-power strontium laser

    NASA Astrophysics Data System (ADS)

    Chernogorova, T. P.; Temelkov, K. A.; Koleva, N. K.; Vuchkov, N. K.

    2016-05-01

    An active volume scaling in bore and length of a Sr atom laser excited in a nanosecond pulse longitudinal He-SrBr2 discharge is carried out. Considering axial symmetry and uniform power input, a 2D model (r, z) is developed by numerical methods for determination of gas temperature in a new large-volume high-temperature discharge tube with additional incompact ZrO2 insulation in the discharge free zone, in order to find out the optimal thermal mode for achievement of maximal output laser parameters. A 2D model (r, z) of gas temperature is developed by numerical methods for axial symmetry and uniform power input. The model determines gas temperature of nanosecond pulsed longitudinal discharge in helium with small additives of strontium and bromine.

  4. Hairpin resonator probes with frequency domain boxcar operation for time resolved density measurements in pulsed RF discharges

    NASA Astrophysics Data System (ADS)

    Peterson, David; Kummerer, Theresa; Coumou, David; Shannon, Steven

    2014-10-01

    In this work, microsecond time resolved electron density measurements in pulsed RF discharges are shown using an automated hairpin resonance probe using relatively low cost electronics, on par with normal Langmuir probe boxcar mode operation. A low cost signal generator is used to produce the applied microwave frequency and the reflected waveform is filtered to remove the RF component. The signal is then heterodyned with a simple frequency mixer to produce a dc signal read by an oscilloscope to determine the electron density. The applied microwave frequency is automatically shifted in small increments in a frequency boxcar routine through a Labview™program to determine the resonant frequency. A simple dc sheath correction is then easily applied since the probe is fully floating, producing low cost, high fidelity, and highly reproducible electron density measurements. The measurements are made in a capacitively coupled, parallel plate configuration in a 13.56 MHz, 50--200 W RF discharge pulsed at 500 Hz, 200 W, 50% duty cycle. The gas input ranged from 50--100 mTorr pure Ar or with 5--10% O/He mixtures.

  5. The influence of the method of cooling liquid electrolyte cathode on the energy balance in the gas discharge

    NASA Astrophysics Data System (ADS)

    Tazmeev, Kh K.; Arslanov, I. M.; Tazmeev, G. Kh

    2016-01-01

    Experimentally investigated the energy balance in a gas discharge between a flowing electrolyte cathode and a metal anode at an power of tens of kilowatts. The discharge was burning in the air in the electrode gap with a height of 10 cm. The electrolyte was a solution of salt in distilled water. The concentration of the solution by weight was 5.5 g/l. The regularities of the influence of electrolyte mass flow through the flowing cathode on the energy characteristics of the discharge were studied. The modes of the discharge, whereby the energy balance of the portion of heat losses for heating of the electrolyte reaches a minimum were identified.

  6. 40 CFR Appendix B to Part 434 - Baseline Determination and Compliance Monitoring for Pre-existing Discharges at Remining Operations

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Monitoring for Pre-existing Discharges at Remining Operations B Appendix B to Part 434 Protection of... to Part 434—Baseline Determination and Compliance Monitoring for Pre-existing Discharges at Remining... Maximum Daily Limit at subpart C of this part. In the event that a pollutant concentration in the...

  7. Effects of water vapor on flue gas conditioning in the electric fields with corona discharge.

    PubMed

    Liqiang, Qi; Yajuan, Zhang

    2013-07-15

    Sulfur dioxide (SO2) removal via pulsed discharge nonthermal plasma in the absence of ammonia was investigated to determine how electrostatic precipitators (ESPs) can effectively collect particulate matter less than 2.5μm in diameter from flue gas. SO2 removal increased as water vapor concentration increased. In a wet-type plasma reactor, directing a gas-phase discharge plasma toward the water film surface significantly enhanced the liquid-phase oxidation of HSO3(-) to SO4(2-). Comparisons of various absorbents revealed that the hydroxyl radical is a key factor in plasma-induced liquid-phase reactions. The resistivity, size distribution, and cohesive force of fly ash at different water vapor contents were measured using a Bahco centrifuge, which is a dust electrical resistivity test instrument, as well as a cohesive force test apparatus developed by the researchers. When water vapor content increased by 5%, fly ash resistivity in flue gas decreased by approximately two orders of magnitude, adhesive force and size increased, and specific surface area decreased. Therefore, ESP efficiency increased. PMID:23669785

  8. 220Rn as a method for identifying point sources of groundwater discharge: Expanding the dissolved gas tool kit in groundwater stream water interactions. (Invited)

    NASA Astrophysics Data System (ADS)

    Gardner, P.

    2013-12-01

    The most commonly used dissolved gas environmental tracer technique for estimating groundwater discharge to streams is 222Rn. 222Rn has very low background in surface water and has a relatively long retention time in stream water, providing a high sensitivity for detecting groundwater discharge. Given the gas exchange velocity and half-life of 222Rn groundwater input signal can persist for over 5 km, making identification of point source discharge difficult. 220Rn (Thoron), is produced in the subsurface along with 222Rn, but has a half-life of 55.6s and decays away rapidly once it enters stream water. Thus, 220Rn is an ideal tracer for identifying point locations of groundwater discharge. 220 can be measured in conjunction with 222Rn providing a convenient methodology for identifying diffuse and point discharges of groundwater. The conditions required for measuring 220Rn, methodology for measuring 220Rn and characteristics of 222Rn and 220Rn signals in groundwater-stream water applications will be discussed. Initial results from a field investigation utilizing these tracers in the Jemez River in Northern New Mexico will be presented. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  9. Modelling the interaction between the plasma and the neutral gas in a pulsed glow discharge in nitrogen

    SciTech Connect

    Guiberteau, E.; Bonhomme, G.; Zoheir, C.

    1995-12-31

    We present here the first results obtained from the modelling of a pulsed glow discharge in nitrogen, taking into account the heat transfer to the neutral gas. The aim of modelling is to optimize the plasma process in a nitriding reactor. The iron sample to be nitrided forms the cathode of the glow discharge at low pressure (100 to 200 Pa). The reactor uses two disks of diameter 50 mm as electrodes with a 40 mm gap. It works in a pulsed regime (cycle period varies from 10 to 100 ms) with a discharge duration which can be varied from 0.5 to 10 ms. Experimental studies have been carried out using emission spectroscopy resolved in space (1 mm) and time (1 {mu}s), under various discharge and post-discharge durations. These studies have shown the important effect of energy transfer from the discharge to the neutral gas. In fact this transfer produces an expansion of the negative glow observed when the post-discharge duration is decreased. A realistic modelling should thus be performed bearing in mind that the neutral gas behaves not as a thermostat. Consequently the thermal and hydrodynamic evolution of the neutral gas must be considered in the whole modelling.

  10. Operation of the J-series thruster using inert gas

    NASA Technical Reports Server (NTRS)

    Rawlin, V. K.

    1982-01-01

    Electron bombardment ion thrusters using inert gases are candidates for large space systems. The J-Series 30 cm diameter thruster, designed for operation up to 3 k-W with mercury, is at a state of technology readiness. The characteristics of operation with xenon, krypton, and argon propellants in a J-Series thruster with that obtained with mercury are compared. The performance of the discharge chamber, ion optics, and neutralizer and the overall efficiency as functions of input power and specific impulse and thruster lifetime were evaluated. As expected, the discharge chamber performance with inert gases decreased with decreasing atomic mass. Aspects of the J-Series thruster design which would require modification to provide operation at high power with insert gases were identified.

  11. Hollow cathode operation at high discharge currents. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Friedly, Verlin Joe

    1990-01-01

    It was shown that ion thruster hollow cathode operation at high discharge current levels can induce reduced thruster lifetimes by causing cathode insert overheating and/or erosion of surfaces located downstream of the cathode. The erosion problem has been particularly baffling because the mechanism by which it occurs has not been understood. The experimental investigation described reveals the energies of the ions produced close to the cathode orifice can be several times the anode-to-cathode potential difference generally considered available to accelerate them. These energies (of order 50 eV) are sufficient to cause the observed erosion rates. The effects of discharge current (to 60 A), magnetic field configuration and the cathode flowrate, orifice diameter and insert design on the energies and current densities of these jet ions are examined. A model describing the mechanism by which the high energy ions could be produced when the anode-cathode potential difference is insufficient is proposed. The effects of discharge current on cathode temperature and internal pressure are also examined experimentally and described phenomenologically.

  12. Design and construct of a new detector for gas chromatography based on continuous negative corona discharge.

    PubMed

    Ghahfarokhi, M Sharifian; Khayamian, T

    2011-05-01

    In this work, a new detector was designed and constructed based on negative corona discharge. This detector can be used separately or as a detector in gas chromatography. The detector and chromatographic variables including cell temperature, gas flow rates, voltage between the two electrodes, and column temperature were optimized. Chloroform was used as a test compound to evaluate the performance of the detector. The detection limit of chloroform was obtained 0.78 ng∕ml and its dynamic range was over the range of 2-840 ng∕ml. The relative standard detection was about 6% for the limit of quantification. This detector is able to be used as an alternative for analysis of compounds containing electronegative elements. PMID:21639545

  13. Carbon dioxide fixation by microalgae photosynthesis using actual flue gas discharged from a boiler

    SciTech Connect

    Matsumoto, Hiroyo; Shioji, Norio; Hamasaki, Akihiro

    1995-12-31

    To mitigate CO{sub 2} discharged from thermal power plants, studies on CO{sub 2} fixation by the photosynthesis of microalgae using actual exhaust gas have been carried out. The results are as follows: (1) A method is proposed for evaluating the maximum photosynthesis rate in the raceway cultivator using only the algal physical properties; (2) Outdoor cultivation tests taking actual flue gas were performed with no trouble or break throughout 1 yr using the strain collected in the test; (3) The produced microalgae is effective as solid fuel; and (4) The feasibility studies of this system were performed. The system required large land area, but the area is smaller than that required for other biomass systems, such as tree farms.

  14. Modeling the Dynamics of Micro- and Macroparticles in a Combined Gas-Discharge Installation

    NASA Astrophysics Data System (ADS)

    Astashinskii, V. V.; Bogach, M. I.; Burachevskii, A. V.

    2016-05-01

    We present a model of the dynamics of micro- and macroparticles in a combined gas-discharge installation that accounts for the processes of metal explosion (heating of a metal in its solid state, melting, heating of the liquid metal, intense evaporation, ionization in metal vapor), a magnetohydrodynamic description of plasma acceleration (on the basis of the mass, momentum, and energy conservation laws neglecting the plasma viscosity and thermal conductivity), and a description of the processes of energy transfer from a high-velocity stream to accelerated particles. It has been established that the process of melting terminates in 1.3 ns after the start of the discharge and that the evaporation terminates in 480 ns. The stage of cooling starts in 21 μs. The average density of the plasma upon completion of the evaporation process can be estimated to be 1.7·10-5 g/cm3, with the pressure being of the order of 1.5·104 Pa and the total time of discharge, of about 250 μs.

  15. Modeling the Dynamics of Micro- and Macroparticles in a Combined Gas-Discharge Installation

    NASA Astrophysics Data System (ADS)

    Astashinskii, V. V.; Bogach, M. I.; Burachevskii, A. V.

    2016-06-01

    We present a model of the dynamics of micro- and macroparticles in a combined gas-discharge installation that accounts for the processes of metal explosion (heating of a metal in its solid state, melting, heating of the liquid metal, intense evaporation, ionization in metal vapor), a magnetohydrodynamic description of plasma acceleration (on the basis of the mass, momentum, and energy conservation laws neglecting the plasma viscosity and thermal conductivity), and a description of the processes of energy transfer from a high-velocity stream to accelerated particles. It has been established that the process of melting terminates in 1.3 ns after the start of the discharge and that the evaporation terminates in 480 ns. The stage of cooling starts in 21 μs. The average density of the plasma upon completion of the evaporation process can be estimated to be 1.7·10-5 g/cm3, with the pressure being of the order of 1.5·104 Pa and the total time of discharge, of about 250 μs.

  16. Origin and Distribution of Thiophenes and Furans in Gas Discharges from Active Volcanoes and Geothermal Systems

    PubMed Central

    Tassi, Franco; Montegrossi, Giordano; Capecchiacci, Francesco; Vaselli, Orlando

    2010-01-01

    The composition of non-methane organic volatile compounds (VOCs) determined in 139 thermal gas discharges from 18 different geothermal and volcanic systems in Italy and Latin America, consists of C2–C20 species pertaining to the alkanes, alkenes, aromatics and O-, S- and N-bearing classes of compounds. Thiophenes and mono-aromatics, especially the methylated species, are strongly enriched in fluids emissions related to hydrothermal systems. Addition of hydrogen sulphide to dienes and electrophilic methylation involving halogenated radicals may be invoked for the formation of these species. On the contrary, the formation of furans, with the only exception of C4H8O, seems to be favoured at oxidizing conditions and relatively high temperatures, although mechanisms similar to those hypothesized for the production of thiophenes can be suggested. Such thermodynamic features are typical of fluid reservoirs feeding high-temperature thermal discharges of volcanoes characterised by strong degassing activity, which are likely affected by conspicuous contribution from a magmatic source. The composition of heteroaromatics in fluids naturally discharged from active volcanoes and geothermal areas can then be considered largely dependent on the interplay between hydrothermal vs. magmatic contributions. This implies that they can be used as useful geochemical tools to be successfully applied in both volcanic monitoring and geothermal prospection. PMID:20480029

  17. Spectral Characteristics of Deuterium-, Helium- and Gas-Mixture-Discharges within PF-1000 Facility

    SciTech Connect

    Tsarenko, A.; Malinowski, K.; Skladnik-Sadowska, E.; Sadowski, M. J.; Scholz, M.; Paduch, M.; Tomaszewski, K.

    2006-01-15

    The paper reports on spectroscopic studies of high-current plasma discharges performed at different gas fillings within the large PF-1000 facility. To study visible radiation (VR) the use was made of a MECHELLE registered 900-spectrometer equipped with the CCD readout. The observations of a PF pinch column were performed at an angle of about 65 deg. to the z-axis, and the viewing field was at a distance of 40-50 mm from the electrode ends. Optical measurements were carried out at 0.5-{mu}s exposition synchronized with a chosen period of the investigated discharge. Differences in the optical spectra, recorded at various deuterium-helium mixtures, were analyzed. Intensities of HeI lines were computed for an assumed electron temperature and compared with the experiment. Estimated plasma concentration in pure-deuterium discharges amounted to 8x1018 cm-3, while that in pure helium shots was (4-7)x1017 cm-3 only. Estimates of the electron temperature, from the ratio of intensities of the chosen spectral lines and the continuum, gave values ranging from 5 eV to 50 eV. The paper presents also some spectra from 'weak shots', which show distinct impurity lines caused by different reasons.

  18. Algebraic operator approach to gas kinetic models

    NASA Astrophysics Data System (ADS)

    Il'ichov, L. V.

    1997-02-01

    Some general properties of the linear Boltzmann kinetic equation are used to present it in the form ∂ tϕ = - †Âϕ with the operators Âand† possessing some nontrivial algebraic properties. When applied to the Keilson-Storer kinetic model, this method gives an example of quantum ( q-deformed) Lie algebra. This approach provides also a natural generalization of the “kangaroo model”.

  19. Optical and application study of gas-liquid discharge excited by bipolar nanosecond pulse in atmospheric air

    NASA Astrophysics Data System (ADS)

    Wang, Sen; Wang, Wen-chun; Yang, De-zheng; Liu, Zhi-jie; Zhang, Shuai

    2014-10-01

    In this study, a bipolar nanosecond pulse with 20 ns rising time is employed to generate air gas-liquid diffuse discharge plasma with room gas temperature in quartz tube at atmospheric pressure. The image of the discharge and optical emission spectra of active species in the plasma are recorded. The plasma gas temperature is determined to be approximately 390 K by compared the experimental spectra with the simulated spectra, which is slightly higher than the room temperature. The result indicated that the gas temperature rises gradually with pulse peak voltage increasing, while decreases slightly with the electrode gap distance increasing. As an important application, bipolar nanosecond pulse discharge is used to sterilize the common microorganisms (Actinomycetes, Candida albicans and Escherichia coli) existing in drinking water, which performs high sterilization efficiency.

  20. The physical nature of the phenomenon of positive column plasma constriction in low-pressure noble gas direct current discharges

    SciTech Connect

    Kurbatov, P. F.

    2014-02-15

    The essence of the positive-column plasma constriction for static (the diffusion mode) and dynamic ionization equilibrium (the stratificated and constricted modes) is analyzed. Two physical parameters, namely, the effective ionization rate of gas atoms and the ambipolar diffusion coefficient of electrons and ions, determine the transverse distribution of discharge species and affect the current states of plasma. Transverse constriction of the positive column takes place as the gas ionization level (discharge current) and pressure increase. The stratified mode (including the constricted one) is observed between the two adjacent types of self-sustained discharge phases when they coexist together at the same time or in the same place as a coherent binary mixture. In the case, a occurrence of the discharge phase with more high electron density presently involve a great decrease in the cross-section of the current channel for d.c. discharges. Additional physical factors, such as cataphoresis and electrophoresis phenomena and spatial gas density inhomogeneity correlated with a circulatory flow in d.c. discharges, are mainly responsible for the current hysteresis and partially constricted discharge.

  1. Studies on gas breakdown in pulsed radio frequency atmospheric pressure glow discharges

    SciTech Connect

    Huo, W. G.; Jian, S. J.; Yao, J.; Ding, Z. F.

    2014-05-15

    In pulsed RF atmospheric pressure glow discharges, the gas breakdown judged by the rapid drop in the amplitude of the pulsed RF voltage is no longer universally true. The steep increment of the plasma-absorbed RF power is proposed to determine the gas breakdown. The averaged plasma-absorbed RF power over a pulse period is used to evaluate effects of the preceding pulsed RF discharge on the breakdown voltage of the following one, finding that the breakdown voltage decreases with the increment in the averaged plasma-absorbed RF power under constant pulse duty ratio. Effects of the pulse off-time on the breakdown voltage and the breakdown delay time are also studied. The obtained dependence of the breakdown voltage on the pulse off-time is indicative of the transitional plasma diffusion processes in the afterglow. The breakdown voltage varies rapidly as the plasma diffuses fast in the region of moderate pulse off-time. The contribution of nitrogen atom recombination at the alumina surface is demonstrated in the prolonged memory effect on the breakdown delay time vs. the pulse off-time and experimentally validated by introducing a trace amount of nitrogen into argon at short and long pulse off-times.

  2. Dust trap formation in a non-self-sustained discharge with external gas ionization

    SciTech Connect

    Filippov, A. V. Babichev, V. N.; Pal’, A. F.; Starostin, A. N.; Cherkovets, V. E.; Rerikh, V. K.; Taran, M. D.

    2015-11-15

    Results from numerical studies of a non-self-sustained gas discharge containing micrometer dust grains are presented. The non-self-sustained discharge (NSSD) was controlled by a stationary fast electron beam. The numerical model of an NSSD is based on the diffusion drift approximation for electrons and ions and self-consistently takes into account the influence of the dust component on the electron and ion densities. The dust component is described by the balance equation for the number of dust grains and the equation of motion for dust grains with allowance for the Stokes force, gravity force, and electric force in the cathode sheath. The interaction between dust grains is described in the self-consistent field approximation. The height of dust grain levitation over the cathode is determined and compared with experimental results. It is established that, at a given gas ionization rate and given applied voltage, there is a critical dust grain size above which the levitation condition in the cathode sheath cannot be satisfied. Simulations performed for the dust component consisting of dust grains of two different sizes shows that such grains levitate at different heights, i.e., size separation of dust drains levitating in the cathode sheath of an NSSD takes place.

  3. Removal of acetaldehyde and skatole in gas by a corona-discharge reactor

    SciTech Connect

    Sano, Noriaki; Nagamoto, Toshiki; Hamon, Hajime; Suzuki, Tetsuo; Okazaki, Morio

    1997-09-01

    Recently, ultrahigh gas purification has been important in many cases, such as, for example, (1) removal of dioxin from incineration plants, (2) complete removal of radioactive iodine compounds from nuclear fuel recycling, (3) simultaneous removal of NO{sub x} and SO{sub x} in exhaust gases from cogeneration plants, (4) removal or decomposition of chlorofluorocarbons, and (5) supply of purified gas for semiconductor industries. A corona-discharge reactor, called a deposition-type reactor, was applied to remove acetaldehyde and skatole from nitrogen and an oxygen-nitrogen mixture. In the removal from nitrogen, acetaldehyde and skatole are negatively ionized and removed by depositing at the anode surface. In simultaneous removals of acetaldehyde and skatole, it is found that skatole has a higher reactivity of electron attachment than acetaldehyde. In the removal of acetaldehyde from an oxygen-nitrogen mixture, 40 molecules of acetaldehyde were removed by one electron. The reason for the extremely high removal efficiency is considered to be based on the ozone reaction and the formation of negative-ion clusters. Stabilization energies of the negative-ion clusters were estimated by ab initio molecular orbital calculation. Skatole was removed from a nitrogen-oxygen mixture perfectly with extremely low discharge current by the ozone reaction. Simultaneous removals of acetaldehyde and skatole from a nitrogen-oxygen mixture suggest that coexisting skatole inhibits the removal of acetaldehyde.

  4. Carbon dioxide laser with an e-beam-initiated discharge produced in the working gas mixture at a pressure up to 5 atm

    SciTech Connect

    Orlovskii, Viktor M; Alekseev, S B; Tarasenko, Viktor F

    2011-11-30

    A high-pressure CO{sub 2} laser with a discharge initiated by an electron beam of sub-nanosecond duration in the laser gas mixture at a pressure up to 5 atm is fabricated. For the 20-ns pulses the energy from the active volume {approx} 4 cm{sup 3} amounted to 40 mJ. The laser operation at a pulse repetition rate up to 5 Hz is demonstrated. In the gas mixture CO{sub 2}:N{sub 2}:He = 1:1:6 at a pressure 5 atm, the specific energy deposition of {approx} 0.07 J cm{sup -3} atm{sup -1} is obtained in the process of a non-self-sustained discharge with ionisation amplification.

  5. Effects of gas temperature on NO(x) removal by dielectric barrier discharge.

    PubMed

    Wang, Tao; Sun, Bao-Min; Xiao, Hai-Ping

    2013-01-01

    The purpose of this investigation is to discuss the effect of gas temperature on NO(x) removal by dielectric barrier discharge. The Boltzmann equation was used to analyse the electron distribution function in the reactor, and experiments were conducted to find out the effects of different temperatures. The calculation results show that, with a rise in the temperature, E/N increases, increasing the ionization rate. When the ratio of electric field strength to total gas density (E/N) rises from 50 to 150 Td, the ionization rate and electron mean energy increase by 2.0 x 10(5) and 2.3, respectively. The experiments show that in the NO/N2 system, when the temperature increases to 1 30 degrees C and the applied voltage is 11.1 kV, the discharge power is 44.7 W, which is higher than the discharge power of 35.4 W found at 25 degrees C; in the NO/O2/N2 system, an increase in the temperature increases the decomposition of active O3 species, producing a negative effect on NO oxidation; in the NO/O2/N2/C2H4 system, when the temperature increases, the quantity of active species HO2 increases and the NO removal reaction rate increases, reflecting an obvious improvement in the NO removal; and in the NO/O2/N2/C2H4/H2O system, at 25 degrees C, 90 degrees C, and 130 degrees C, when the energy density is 239.7 J L(-1), the NO removal efficiencies are 52.8%, 66.4%, and 71.0%, respectively. PMID:24527633

  6. Design and construction of uniform glow discharge plasma system operating under atmospheric condition

    SciTech Connect

    Kocum, C.; Ayhan, H.

    2007-06-15

    The design of a uniform glow discharge plasma system operating without vacuum is presented. A full-bridge switching circuit was used to switch the transformers. The primary windings of transformers were connected in parallel, but in opposite phase to double the output voltage. Theoretically, 20 000 V{sub pp} was obtained. Rectangle copper electrodes were used, and placed parallel to each other. To prevent the spark production that is, to obtain uniformity, two 2 mm Teflon sheets were glued to the electrodes. However, it was observed that the operating frequency also affected the uniformity. For the system presented here, the frequency at which more uniformity was obtained was found to be 14 kHz.

  7. Integrated scheduling of a container handling system with simultaneous loading and discharging operations

    NASA Astrophysics Data System (ADS)

    Li, Chen; Lu, Zhiqiang; Han, Xiaole; Zhang, Yuejun; Wang, Li

    2016-03-01

    The integrated scheduling of container handling systems aims to optimize the coordination and overall utilization of all handling equipment, so as to minimize the makespan of a given set of container tasks. A modified disjunctive graph is proposed and a mixed 0-1 programming model is formulated. A heuristic algorithm is presented, in which the original problem is divided into two subproblems. In the first subproblem, contiguous bay crane operations are applied to obtain a good quay crane schedule. In the second subproblem, proper internal truck and yard crane schedules are generated to match the given quay crane schedule. Furthermore, a genetic algorithm based on the heuristic algorithm is developed to search for better solutions. The computational results show that the proposed algorithm can efficiently find high-quality solutions. They also indicate the effectiveness of simultaneous loading and discharging operations compared with separate ones.

  8. Association of gas hydrate formation in fluid discharges with anomalous hydrochemical profiles

    NASA Astrophysics Data System (ADS)

    Matveeva, T.

    2009-04-01

    Numerous investigations worldwide have shown that active underwater fluid discharge produces specific structures on the seafloor such as submarine seepages, vents, pockmarks, and collapse depressions. Intensive fluxes of fluids, especially of those containing hydrocarbon gases, result in specific geochemical and physical conditions favorable for gas hydrate (GH) formation. GH accumulations associated with fluid discharge are usually controlled by fluid conduits such as mud volcanoes, diapirs or faults. During last decade, subaqueous GHs become the subject of the fuel in the nearest future. However, the expediency of their commercial development can be proved solely by revealing conditions and mechanisms of GH formation. Kinetic of GH growth (although it is incompletely understood) is one of the important parameters controlling their formation among with gas solubility, pressure, temperature, gas quantity and others. Original large dataset on hydrate-related interstitial fluids obtained from different fluid discharge areas at the Sea of Okhotsk, Black Sea, Gulf of Cadiz, Lake Baikal (Eastern Siberia) allow to suggest close relation of the subaqueous GH formation process to anomalous hydrochemical profiles. We have studied the chemical and isotopic composition of interstitial fluids from GH-bearing and GH-free sediments obtained at different GH accumulations. Most attention was paid to possible influence of the interstitial fluid chemistry on the kinetic of GH formation in a porous media. The influence of salts on methane solubility within hydrate stability zones was considered by Handa (1990), Zatsepina & Buffet (1998), and later by Davie et al. (2004) from a theoretical point of view. Our idea is based on the experimentally proved fact that fugacity coefficient of methane dissolved in saline gas-saturated water which is in equilibrium with hydrates, is higher than that in more fresh water though the solubility is lower. Therefore, if a gradient of water salinity

  9. A method for achieving ignition of a low voltage gas discharge device

    DOEpatents

    Kovarik, Vincent J.; Hershcovitch, Ady; Prelec, Krsto

    1988-01-01

    An electronic device of the type wherein current flow is conducted by an ionized gas comprising a cathode of the type heated by ionic bombardment, an anode, means for maintaining a predetermined pressure in the region between the anode and the cathode and means for maintaining a field in the region. The field, which is preferably a combined magnetic and electric field, is oriented so that the mean distance traveled by electrons before reaching the anode is increased. Because of this increased distance traveled electrons moving to the anode will ionize a larger number of gas atoms, thus reducing the voltage necesary to initiate gas breakdown. In a preferred embodiment the anode is a main hollow cathode and the cathode is a smaller igniter hollow cathode located within and coaxial with the main hollow cathode. An axial magnetic field is provided in the region between the hollow cathodes in order to facilitate gas breakdown in that region and initiate plasma discharge from the main hollow cathode.

  10. Spectral line lists of a nitrogen gas discharge for wavelength calibration in the range 4500-11 000 cm-1

    NASA Astrophysics Data System (ADS)

    Boesch, A.; Reiners, A.

    2015-10-01

    Context. A discharge of nitrogen gas, as created in a microwave-induced plasma, exhibits a very dense molecular emission line spectrum. Emission spectra of this kind could serve as wavelength calibrators for high-resolution astrophysical spectrographs in the near-infrared, where only very few calibration sources are currently available. Aims: The compilation of a spectral line list and the characterization of line intensities and line density belong to the initial steps when investigating the feasibility of potential wavelength calibration sources. Although the molecular nitrogen spectrum was extensively studied in the past, to our knowledge, no line list exists that covers a continuous range of several thousand wavenumbers in the near-infrared. Methods: We recorded three high-resolution (Δ tilde{ν = 0.018} cm-1) spectra of a nitrogen gas discharge operated at different microwave powers. The nitrogen gas is kept inside a sealed glass cell at a pressure of 2 mbar. The emission lines in the spectra were fitted by a superposition of Gaussian profiles to determine their position, relative intensity, and width. The line parameters were corrected for an absolute wavelength scale, instrumental line broadening, and intensity modulation. Molecular and atomic transitions of nitrogen were identified with available line positions from the literature. Results: We report line lists with more than 40 000 emission lines in the spectral range 4500-11 000 cm-1 (0.9-2.2 μm). The spectra exhibit emission lines over the complete spectral range under investigation with about 350-1300 lines per 100 cm-1. Depending on the microwave power, a fraction of 35-55% of all lines are blended. The total dynamic range of the detected lines covers about four orders of magnitude. Conclusions: Line density and peak intensities qualify the recorded discharge as a useful wavelength calibrator, and the line list provides an empirical reference for nitrogen spectra in the near-infrared. The line lists

  11. On the physical processes ruling an atmospheric pressure air glow discharge operating in an intermediate current regime

    SciTech Connect

    Prevosto, L. Mancinelli, B.; Chamorro, J. C.; Cejas, E.; Kelly, H.

    2015-02-15

    Low-frequency (100 Hz), intermediate-current (50 to 200 mA) glow discharges were experimentally investigated in atmospheric pressure air between blunt copper electrodes. Voltage–current characteristics and images of the discharge for different inter-electrode distances are reported. A cathode-fall voltage close to 360 V and a current density at the cathode surface of about 11 A/cm{sup 2}, both independent of the discharge current, were found. The visible emissive structure of the discharge resembles to that of a typical low-pressure glow, thus suggesting a glow-like electric field distribution in the discharge. A kinetic model for the discharge ionization processes is also presented with the aim of identifying the main physical processes ruling the discharge behavior. The numerical results indicate the presence of a non-equilibrium plasma with rather high gas temperature (above 4000 K) leading to the production of components such as NO, O, and N which are usually absent in low-current glows. Hence, the ionization by electron-impact is replaced by associative ionization, which is independent of the reduced electric field. This leads to a negative current-voltage characteristic curve, in spite of the glow-like features of the discharge. On the other hand, several estimations show that the discharge seems to be stabilized by heat conduction; being thermally stable due to its reduced size. All the quoted results indicate that although this discharge regime might be considered to be close to an arc, it is still a glow discharge as demonstrated by its overall properties, supported also by the presence of thermal non-equilibrium.

  12. NPDES permit compliance and enforcement: A resource guide for oil and gas operators

    SciTech Connect

    1998-12-01

    During the fall of 1996, the Interstate Oil and Gas Compact Commission sponsored sessions for government and industry representatives to discuss concerns about the National Pollution Discharge Elimination System (NPDES) program under the Clean Water Act. In January 1997, the NPDES Education/Communication/Training Workgroup (ECT Workgroup) was established with co-leaders from the Environmental Protection Agency (EPA) and industry. The ECT Workgroup`s purpose was to develop ideas that would improve communication between NPDES regulators and the oil and gas industry regarding NPDES compliance issues. The Workgroup focused on several areas, including permit compliance monitoring and reporting, enforcement activity and options, and treatment technology. The ECT Workgroup also discussed the need for materials and information to help NPDES regulatory agency personnel understand more about oil and gas industry exploration and extraction operations and treatment processes. This report represents a compendium of the ECT Workgroup`s efforts.

  13. Atmospheric pressure glow discharge generated in nitrogen-methane gas mixture: PTR-MS analyzes of the exhaust gas

    NASA Astrophysics Data System (ADS)

    Torokova, Lucie; Mazankova, Vera; Krcma, Frantisek; Mason, Nigel J.; Matejcik, Stefan

    2015-07-01

    This paper reports the results of an extensive study of with the in situ mass spectrometry analysis of gaseous phase species produced by an atmospheric plasma glow discharge in N2-CH4 gas mixtures (with methane concentrations ranging from 1% to 4%). The products are studied using proton-transfer-reaction mass spectrometry (PTR-MS). HCN and CH3CN are identified as the main gaseous products. Hydrazine, methanimine, methyldiazene, ethylamine, cyclohexadiene, pyrazineacetylene, ethylene, propyne and propene are identified as minor compounds. All the detected compounds and their relative abundances are determined with respect to the experimental conditions (gas composition and applied power). The same molecules were observed by the Cassini-Huygens probe in Titan's atmosphere (which has same N2-CH4 gas mixtures). Such, experiments show that the formation of such complex organics in atmospheres containing C, N and H, like that of Titan, could be a source of prebiotic molecules. Contribution to the topical issue "The 14th International Symposium on High Pressure Low Temperature Plasma Chemistry (HAKONE XIV)", edited by Nicolas Gherardi, Ronny Brandenburg and Lars Stollenwark

  14. FUEL CELL OPERATION ON LANDFILL GAS AT PENROSE POWER STATION

    EPA Science Inventory

    This demonstration test successfully demonstrated operation of a commercial phosphoric acid fuel cell (FC) on landfill gas (LG) at the Penrose Power Station in Sun Valley, CA. Demonstration output included operation up to 137 kW; 37.1% efficiency at 120 kW; exceptionally low sec...

  15. Optimization of wastewater treatment plant operation for greenhouse gas mitigation.

    PubMed

    Kim, Dongwook; Bowen, James D; Ozelkan, Ertunga C

    2015-11-01

    This study deals with the determination of optimal operation of a wastewater treatment system for minimizing greenhouse gas emissions, operating costs, and pollution loads in the effluent. To do this, an integrated performance index that includes three objectives was established to assess system performance. The ASMN_G model was used to perform system optimization aimed at determining a set of operational parameters that can satisfy three different objectives. The complex nonlinear optimization problem was simulated using the Nelder-Mead Simplex optimization algorithm. A sensitivity analysis was performed to identify influential operational parameters on system performance. The results obtained from the optimization simulations for six scenarios demonstrated that there are apparent trade-offs among the three conflicting objectives. The best optimized system simultaneously reduced greenhouse gas emissions by 31%, reduced operating cost by 11%, and improved effluent quality by 2% compared to the base case operation. PMID:26292772

  16. Formation of stable direct current microhollow cathode discharge by venturi gas flow system for remote plasma source in atmosphere

    SciTech Connect

    Park, Ki Wan; Lee, Tae Il; Hwang, Hyeon Seok; Noh, Joo Hyon; Baik, Hong Koo; Song, Kie Moon

    2008-02-11

    We introduce a microhollow cathode configuration with venturi gas flow to ambient air in order to obtain glow discharge at atmospheric pressure. Stable microhollow cathode discharge was formed in a 200 {mu}m diameter at 9 mA and the optimum value of gas velocityxdiameter for hollow cathode effect was obtained in our system. In order to confirm hollow cathode effect, we measured the enhancement of E/N strength for 200 {mu}m (0.31 m{sup 2}/s) and 500 {mu}m (0.78 m{sup 2}/s) air discharge at 8 mA under the velocity of 156 m/s. As a result, an increase of 46.7% in E/N strength of the discharge of 200 {mu}m hole was obtained compare to that of 500 {mu}m.

  17. Operating Experience Review of the INL HTE Gas Monitoring System

    SciTech Connect

    L. C. Cadwallader; K. G. DeWall

    2010-06-01

    This paper describes the operations of several types of gas monitors in use at the Idaho National Laboratory (INL) High Temperature Electrolysis Experiment (HTE) laboratory. The gases monitored at hydrogen, carbon monoxide, carbon dioxide, and oxygen. The operating time, calibration, and unwanted alarms are described. The calibration session time durations are described. Some simple statistics are given for the reliability of these monitors and the results are compared to operating experiences of other types of monitors.

  18. Emission characteristics and parameters of gas-discharge plasma in mixtures of heavy inert gases with chlorine

    NASA Astrophysics Data System (ADS)

    Shuaibov, A. K.; Malinin, A. N.

    2009-04-01

    The ultraviolet (UV) radiation from longitudinal glow-discharge plasma in three- and four-component mixtures of argon, krypton, and xenon with chlorine has been investigated. The total radiation of Ar, Kr, and Xe monochlorides and chlorine molecules in the spectral range 170-310 nm has been optimized with respect to the composition and the pressure of gas mixtures, as well as the discharge current. The mean output power, the electric power of discharge, and the efficiency of a broadband low-pressure exciplex halogen lamp have been determined. Parameters of the glow discharge in Ar-Kr-Cl2 and Kr-Xe-Cl2 mixtures have been simulated numerically. The electron energy distribution functions have been determined through the solution of the Boltzmann kinetic equation. These functions have been used to calculate the plasma parameters, namely, electron transfer characteristics, specific losses of discharge power for electronic processes, and ionization and attachment coefficients.

  19. Physical mechanisms of self-organization and formation of current patterns in gas discharges of the Townsend and glow types

    SciTech Connect

    Raizer, Yu. P.; Mokrov, M. S.

    2013-10-15

    The paper discusses current filamentation and formation of current structures (in particular, hexagonal current patterns) in discharges of the Townsend and glow types. The aim of the paper, which is in part a review, is to reveal basic reasons for formation of current patterns in different cases, namely, in dielectric barrier discharge, discharge with semiconductor cathode, and micro-discharge between metallic electrodes. Pursuing this goal, we give a very brief review of observations and discuss only those theoretical, computational, and experimental papers that shed light on the physical mechanisms involved. The mechanisms are under weak currents—the thermal expansion of the gas as a result of Joule heating; under enhanced currents—the electric field and ionization rate redistribution induced by space charge. Both mechanisms lead to instability of the homogeneous discharges. In addition, we present new results of numerical simulations of observed short-living current filaments which are chaotic in space and time.

  20. VACASULF operation at Citizens Gas and Coke Utility

    SciTech Connect

    Currey, J.H.

    1995-12-01

    Citizens Gas and Coke Utility is a Public Charitable Trust which operates as the Department of Utilities of the City of Indianapolis, Indiana. Indianapolis Coke, the trade name for the Manufacturing Division of the Utility, operates a by-products coke plant in Indianapolis, Indiana. The facility produces both foundry and blast furnace coke. Surplus Coke Oven gas, generated by the process, is mixed with Natural Gas for sale to industrial and residential customers. In anticipation of regulatory developments, beginning in 1990, Indianapolis Coke undertook the task to develop an alternate Coke Oven Gas desulfurization technology for its facility. The new system was intended to perform primary desulfurization of the gas, dramatically extending the oxide bed life, thus reducing disposal liabilities. Citizens Gas chose the VACASULF technology for its primary desulfurization system. VACASULF requires a single purchased material, Potassium Hydroxide (KOH). The KOH reacts with Carbon Dioxide in the coke Oven Gas to form Potassium Carbonate (potash) which in turn absorbs the Hydrogen Sulfide. The rich solution releases the absorbed sulfide under strong vacuum in the desorber column. Operating costs are reduced through utilization of an inherent heat source which is transferred indirectly via attendant reboilers. The Hydrogen Sulfide is transported by the vacuum pumps to the Claus Kiln and Reactor for combustion, reaction, and elemental Sulfur recovery. Regenerated potash solution is returned to the Scrubber.

  1. Sterilization of Fungus in Water by Pulsed Power Gas Discharge Reactor Spraying Water Droplets for Water Treatment

    NASA Astrophysics Data System (ADS)

    Saito, Tsukasa; Handa, Taiki; Minamitani, Yasushi

    We study sterilization of bacteria in water using pulsed streamer discharge of gas phase. This method enhances efficiency of water treatment by spraying pretreatment water in a streamer discharge area. In this paper, yeast was sterilized because we assumed a case that fungus like mold existed in wastewater. As a result, colony forming units decreased rapidly for 2 minutes of the processing time, and all yeast sterilized by 45 minutes of the processing time.

  2. Autonomous portable pulsed-periodical generator of high-power radiofrequency-pulses based on gas discharge with hollow cathode

    NASA Astrophysics Data System (ADS)

    Bulychev, Sergey V.; Dubinov, Alexander E.; L'vov, Igor L.; Popolev, Vyacheslav L.; Sadovoy, Sergey A.; Sadchikov, Eugeny A.; Selemir, Victor D.; Valiulina, Valeria K.; Vyalykh, Dmitry V.; Zhdanov, Victor S.

    2016-05-01

    Portable autonomous generator of high-power RF-pulses based on the gas discharge with hollow cathode has been designed, fabricated, and tested. Input and output characteristics are the following: discharge current amplitude is 800 A, duration of generated RF-pulses is 350 ns, carrier frequency is ˜90 MHz, power in RF-pulse is 0.5 MW, pulse repetition rate is 0.5 kHz, and device efficiency is ˜25%.

  3. Autonomous portable pulsed-periodical generator of high-power radiofrequency-pulses based on gas discharge with hollow cathode.

    PubMed

    Bulychev, Sergey V; Dubinov, Alexander E; L'vov, Igor L; Popolev, Vyacheslav L; Sadovoy, Sergey A; Sadchikov, Eugeny A; Selemir, Victor D; Valiulina, Valeria K; Vyalykh, Dmitry V; Zhdanov, Victor S

    2016-05-01

    Portable autonomous generator of high-power RF-pulses based on the gas discharge with hollow cathode has been designed, fabricated, and tested. Input and output characteristics are the following: discharge current amplitude is 800 A, duration of generated RF-pulses is 350 ns, carrier frequency is ∼90 MHz, power in RF-pulse is 0.5 MW, pulse repetition rate is 0.5 kHz, and device efficiency is ∼25%. PMID:27250451

  4. Operational performance comparisons in the gas processing industry

    SciTech Connect

    Salahor, G.S.

    1996-12-31

    Comparison and benchmarking of operational performance measures in the natural gas processing and gathering industry has helped operators to identify and prioritize improvement initiatives and has led to direct and tangible improvements in operating efficiency. However, proper interpretation and utilization of performance benchmarking data in a complex operation such as gas processing must reflect due consideration of the technical factors which influence the overall economic performance and resource requirements. Plant operators must be able to use the data to understand the key technical influences reflected in their results, and thereby set performance targets commensurate with the structural considerations particular to their facility. Ernst and Young has developed an analytical framework for gas processing and gathering operations incorporating such considerations, and conducted a study involving North American and international participants for the past four years. The information obtained form this work has revealed a wide range of performance results across plants, and has served to challenge much of the conventional wisdom regarding what levels of performance are attainable, and to provide understanding as to how gas processing operational resource requirements are influenced by technical parameters.

  5. Operational river discharge forecasting in poorly gauged basins: the Kavango River Basin case study

    NASA Astrophysics Data System (ADS)

    Bauer-Gottwein, P.; Jensen, I. H.; Guzinski, R.; Bredtoft, G. K. T.; Hansen, S.; Michailovsky, C. I.

    2014-10-01

    Operational probabilistic forecasts of river discharge are essential for effective water resources management. Many studies have addressed this topic using different approaches ranging from purely statistical black-box approaches to physically-based and distributed modelling schemes employing data assimilation techniques. However, few studies have attempted to develop operational probabilistic forecasting approaches for large and poorly gauged river basins. This study is funded by the European Space Agency under the TIGER-NET project. The objective of TIGER-NET is to develop open-source software tools to support integrated water resources management in Africa and to facilitate the use of satellite earth observation data in water management. We present an operational probabilistic forecasting approach which uses public-domain climate forcing data and a hydrologic-hydrodynamic model which is entirely based on open-source software. Data assimilation techniques are used to inform the forecasts with the latest available observations. Forecasts are produced in real time for lead times of 0 to 7 days. The operational probabilistic forecasts are evaluated using a selection of performance statistics and indicators. The forecasting system delivers competitive forecasts for the Kavango River, which are reliable and sharp. Results indicate that the value of the forecasts is greatest for intermediate lead times between 4 and 7 days.

  6. Stream measurements locate thermogenic methane fluxes in groundwater discharge in an area of shale-gas development.

    PubMed

    Heilweil, Victor M; Grieve, Paul L; Hynek, Scott A; Brantley, Susan L; Solomon, D Kip; Risser, Dennis W

    2015-04-01

    The environmental impacts of shale-gas development on water resources, including methane migration to shallow groundwater, have been difficult to assess. Monitoring around gas wells is generally limited to domestic water-supply wells, which often are not situated along predominant groundwater flow paths. A new concept is tested here: combining stream hydrocarbon and noble-gas measurements with reach mass-balance modeling to estimate thermogenic methane concentrations and fluxes in groundwater discharging to streams and to constrain methane sources. In the Marcellus Formation shale-gas play of northern Pennsylvania (U.S.A.), we sampled methane in 15 streams as a reconnaissance tool to locate methane-laden groundwater discharge: concentrations up to 69 μg L(-1) were observed, with four streams ≥ 5 μg L(-1). Geochemical analyses of water from one stream with high methane (Sugar Run, Lycoming County) were consistent with Middle Devonian gases. After sampling was completed, we learned of a state regulator investigation of stray-gas migration from a nearby Marcellus Formation gas well. Modeling indicates a groundwater thermogenic methane flux of about 0.5 kg d(-1) discharging into Sugar Run, possibly from this fugitive gas source. Since flow paths often coalesce into gaining streams, stream methane monitoring provides the first watershed-scale method to assess groundwater contamination from shale-gas development. PMID:25786038

  7. Impacts from oil and gas produced water discharges on the gulf of Mexico hypoxic zone.

    SciTech Connect

    Parker, M. E.; Satterlee, K.; Veil, J. A.; Environmental Science Division; ExxonMobil Production Co.; Shell Offshore

    2006-01-01

    Shallow water areas of the Gulf of Mexico continental shelf experience low dissolved oxygen (hypoxia) each summer. The hypoxic zone is primarily caused by input of nutrients from the Mississippi and Atchafalaya Rivers. The nutrients stimulate the growth of phytoplankton, which leads to reduction of the oxygen concentration near the sea floor. During the renewal of an offshore discharge permit used by the oil and gas industry in the Gulf of Mexico, the U.S. Environmental Protection Agency (EPA) identified the need to assess the potential contribution from produced water discharges to the occurrence of hypoxia. The EPA permit required either that all platforms in the hypoxic zone submit produced water samples, or that industry perform a coordinated sampling program. This paper, based on a report submitted to EPA in August 2005 (1), describes the results of the joint industry sampling program and the use of those results to quantify the relative significance of produced water discharges in the context of other sources on the occurrence of hypoxia in the Gulf of Mexico. In the sampling program, 16 facilities were selected for multiple sampling - three times each at one month intervals-- and another 34 sites for onetime sampling. The goal of the sampling program was to quantify the sources and amount of oxygen demand associated with a variety of Gulf of Mexico produced waters. Data collected included direct oxygen demand measured by BOD5 (5-day biochemical oxygen demand) and TOC (total organic carbon) and indirect oxygen demand measured by nitrogen compounds (ammonia, nitrate, nitrate, and TKN [total Kjeldahl nitrogen]) and phosphorus (total phosphorus and orthophosphate). These data will serve as inputs to several available computer models currently in use for forecasting the occurrence of hypoxia in the Gulf of Mexico. The output of each model will be compared for consistency in their predictions and then a semi-quantitative estimate of the relative significance of

  8. Elongated dust clouds in a uniform DC positive column of low pressure gas discharge

    NASA Astrophysics Data System (ADS)

    Usachev, A. D.; Zobnin, A. V.; Petrov, O. F.; Fortov, V. E.; Thoma, M. H.; Pustylnik, M. Y.; Fink, M. A.; Morfill, G. E.

    2016-06-01

    Experimental investigations of the formation of elongated dust clouds and their influence on the plasma glow intensity of the uniform direct current (DC) positive column (PC) have been performed under microgravity conditions. For the axial stabilization of the dust cloud position a polarity switching DC gas discharge with a switching frequency of 250 Hz was used. During the experiment, a spontaneous division of one elongated dust cloud into two smaller steady state dust clouds has been observed. Quantitative data on the dust cloud shape, size and dust number density distribution were obtained. Axial and radial distributions of plasma emission within the 585.2 nm and 703.2 nm neon spectral lines were measured over the whole discharge volume. It has been found that both spectral line intensities at the dust cloud region grew 1.7 times with respect to the undisturbed positive column region; in this the 585.2 nm line intensity increased by 10% compared to the 703.2 nm line intensity. For a semi-quantitative explanation of the observed phenomena the Schottky approach based on the equation of diffusion was used. The model reasonably explains the observed glow enhancement as an increasing of the ionization rate in the discharge with dust cloud, which compensates ion-electron recombination on the dust grain surfaces. In this, the ionization rate increases due to the growing of the DC axial electric field, and the glow grows directly proportional to the electric field. It is shown that the fundamental condition of the radial stability of the dusty plasma cloud is equal to the ionization and recombination rates within the cloud volume that is possible only when the electron density is constant and the radial electric field is absent within the dust cloud.

  9. Worcester 1 Inch Solenoid Actuated Gas Operated SCHe System Valves

    SciTech Connect

    MISKA, C.R.

    2000-09-03

    1 inch gas-operated full-port ball valves incorporate a solenoid and limit switches as integral parts of the actuator. These valves are normally open and fail safe to the open position (GOV-1*02 and 1*06 fail closed) to provide a flow path of helium gas to the MCO under helium purge and off-normal conditions when the MCO is isolated.

  10. Worcester 1 Inch Solenoid Actuated Gas Operated SCHe System Valves

    SciTech Connect

    VAN KATWIJK, C.

    2000-10-23

    1 inch Gas-operated full-port ball valves incorporate a solenoid and limit switches as integral parts of the actuator. These valves are normally open and fail safe to the open position (GOV-1*02 and 1*06 fall closed) to provide a flow path of helium gas to the MCO under helium purge and off-normal conditions when the MCO is isolated.

  11. Worcester 1 Inch Solenoid Actuated Gas Operated SCHe System Valves

    SciTech Connect

    MISKA, C.R.

    2000-11-13

    1 inch gas-operated full-port ball valves incorporate a solenoid and limit switches as integral parts of the actuator. These valves are normally open and fail safe to the open position (GOV-1*02 and 1*06 fail closed) to provide a flow path of helium gas to the MCO under helium purge and off-normal conditions when the MCO is isolated.

  12. Worcester 1 Inch Solenoid Actuated Gas Operated SCHe System Valves

    SciTech Connect

    VAN KATWIJK, C.

    2000-06-06

    1 inch Gas-operated full-port ball valves incorporate a solenoid and limit switches as integral parts of the actuator. These valves are normally open and fail safe to the open position (GOV-1*02 and 1*06 fail closed) to provide a flow path of helium gas to the MCO under helium purge and off-normal conditions when the MCO is isolated.

  13. Zero Liquid Discharge (ZLD) System for Flue-Gas Derived Water From Oxy-Combustion Process

    SciTech Connect

    Sivaram Harendra; Danylo Oryshchyn; Thomas Ochs; Stephen J. Gerdemann; John Clark

    2011-10-16

    Researchers at the National Energy Technology Laboratory (NETL) located in Albany, Oregon, have patented a process - Integrated Pollutant Removal (IPR) that uses off-the-shelf technology to produce a sequestration ready CO{sub 2} stream from an oxy-combustion power plant. Capturing CO{sub 2} from fossil-fuel combustion generates a significant water product which can be tapped for use in the power plant and its peripherals. Water condensed in the IPR{reg_sign} process may contain fly ash particles, sodium (from pH control), and sulfur species, as well as heavy metals, cations and anions. NETL is developing a treatment approach for zero liquid discharge while maximizing available heat from IPR. Current treatment-process steps being studied are flocculation/coagulation, for removal of cations and fine particles, and reverse osmosis, for anion removal as well as for scavenging the remaining cations. After reverse osmosis process steps, thermal evaporation and crystallization steps will be carried out in order to build the whole zero liquid discharge (ZLD) system for flue-gas condensed wastewater. Gypsum is the major product from crystallization process. Fast, in-line treatment of water for re-use in IPR seems to be one practical step for minimizing water treatment requirements for CO{sub 2} capture. The results obtained from above experiments are being used to build water treatment models.

  14. Self-Organized Patterns in Gas-Discharge: Particle-Like Behaviour and Dissipative Solitons

    SciTech Connect

    Purwins, H.-G.

    2008-03-19

    The understanding of self-organise patterns in spatially extended nonlinear dissipative systems (SOPs) is one of the most challenging subjects in modern natural sciences. In the last 20 years it turned out that research in the field of low temperature gas-discharge can help to obtain insight into important aspect of SOPs. At the same time, due to the practical relevance of plasma systems one might expect interesting applications. In the present paper the focus is on self-organised filamentary patterns in planar dc and ac systems with high ohmic and dielectric barrier, respectively. - In the discharge plane of these systems filaments show up as spots which are also referred to as dissipative solitons (DSs). In many respect experimentally detected DSs exhibit particle-like behaviour. Among other things, isolated stationary or travelling DSs, stationary, travelling or rotating 'molecules' and various kinds of many-body systems have been observed. Also scattering, generation and annihilation of DSs are frequent phenomena. - At least some of these patterns can be described quantitatively in terms of a drift diffusion model. It is also demonstrated that a simple reaction diffusion model allows for an intuitive understanding of many of the observed phenomena. At the same time this model is the basis for a theoretical foundation of the particle picture and the experimentally observed universal behaviour of SOPs. - Finally some hypothetical applications are discussed.

  15. Influence of Nitrogen Gas Flow Rate on the Electrical Behavior of an Atmospheric Pressure Dielectric Barrier Jet Discharge

    SciTech Connect

    Choo, C. Y.; Chin, O. H.

    2011-03-30

    The dielectric barrier discharge configuration used consists of a hemispherical electrode insulated by 1 mm thick borosilicate glass and a grounded plate with a hole through which the jet is formed externally in the surrounding air. The effect of gas flow rate on the behavior of an atmospheric pressure dielectric barrier jet discharge was studied for different air-gap distance and drive voltage, V{sub DD}, to the MOSFET. It is found that at higher rate of nitrogen gas flow, the current spikes reduce in number when the driving voltage and air-gap distance are kept constant.

  16. Case study: City of Industry landfill gas recovery operation

    SciTech Connect

    1981-11-01

    Development of civic, recreation, and conservation facilities throughout a 150-acre site which had been used for waste disposal from 1951 to 1970 is described. The history of the landfill site, the geology of the site, and a test well program to assess the feasibility of recoverying landfill gas economically from the site are discussed. Based on results of the test well program, the City of Industry authorized the design and installation of a full-scale landfill gas recovery system. Design, construction, and operation of the system are described. The landfill gas system provides fuel for use in boilers to meet space heating and hot water demands for site development (MCW)

  17. Gas Breakdown, Low Current diffuse discharges, Townsend's theory: A Friday afternoon experiment

    NASA Astrophysics Data System (ADS)

    Petrovic, Zoran

    2013-09-01

    Numerous aspects of the ``standard model'' of gas breakdown have been addressed in the past 20 years by Art Phelps and his coworkers. First, his studies of excitation coefficients were carried out in the Townsend regime where electric field is quasi uniform so swarm like conditions prevail. These studies have been extended to very high E/N where non-hydrodynamic effects were to be observed but were overshadowed in most cases by fast neutral excitation. Absolute calibration of emission provided a basis to obtain fast neutral cross section sets. This work necessarily overlapped with the left hand side of the Paschen curve and in extension of an ill fated data gathering experiment a review was made of all the processes that contribute to the secondary electron emission. It was shown that, if one includes all the processes, it is possible to fit the available breakdown data, Paschen curves and effective electron yields by binary collision data obtained in separate experiments. While performing measurements in the low current diffuse (Townsend) regime one can find negative differential resistance and oscillations. Both were explained by taking detailed information on properties of particles close to the cathode and small perturbations to the local field by the growing space charge. Last but not the least Phelps managed, with his coworkers to provide a phenomenology and predictions of the anomalously broadened profiles often observed in various discharges. In all those cases deep knowledge of atomic and molecular physics and of gas discharges were combined with best available data to produce quantitative (quantitative, quantitative) agreement with experiments. Coworkers: Dragana Maric. Supported by MPNTR project ON171037 and SANU project 155.

  18. Gas Hydrate Research Coring and Downhole Logging Operational Protocol

    NASA Astrophysics Data System (ADS)

    Collett, T. S.; Riedel, M.; Malone, M.

    2006-12-01

    Recent gas hydrate deep coring and downhole logging projects, including ODP Leg 204, IODP Expedition 311, and the India NGHP-01 effort have contributed greatly to our understanding of the geologic controls on the occurrence of gas hydrate. These projects have also built on the relatively sparse history of gas hydrate drilling experience to collectively develop a unique operational protocol to examine and sample gas hydrate in nature. The ideal gas hydrate research drill site in recent history, consists of at least three drill holes, with the first hole dedicated to LWD/MWD downhole logging in order to identify intervals to be pressurized cored and to collect critical petrophysical data. The second hole is usually dedicated for continuous coring operations. The third hole is used for special downhole tool measurements such as pressure coring and wire line logging. There is a strong scientific need to obtain LWD/MWD data prior to coring. The coring operations are complemented by frequent deployment of the PCS/HYACINTH pressure core systems. It is essential to know what the gas hydrate concentrations and vertical distribution are before deploying the available pressure core systems in order to choose the optimum depths for pressure coring operations. The coring operations are also complemented by frequent sampling for interstitial water, headspace gas, and microbiological analyses. Although those samples will be taken at relatively regular depths, the sampling frequency can be adjusted if gas hydrate concentrations and distribution can be forward predicted through the analysis of the LWD/MWD pre-core logging surveys. After completing the LWD/MWD logging program, usually as a dedicated drilling leg, field efforts will switch to conventional and pressure-controlled coring operations at each of the sites drilled during the LWD/MWD campaign. The standard continuous core hole will usually include APC coring to an expected refusal depth of ~100 mbsf; each hole is usually

  19. Research targets lower gas-processing operating costs

    SciTech Connect

    Meyer, H.S.; Leppin, D.

    1997-12-29

    Increasing natural-gas demand and declining gas quality at the wellhead require the gas-processing industry to look to new technologies to stay competitive. The Gas Research Institute (GRI), Chicago, is managing a research, development, design, and deployment program that could save industry $230 million/year in operating and capital costs from NGL extraction and recovery, dehydration, acid-gas removal/sulfur recovery, and nitrogen rejection. Three technologies are addressed here. (1) Multivariable control (MVC) technology for predictive process control and optimization is installed or in design at 14 facilities, treating a combined total of more than 30 billion normal cu m/year (bcmy; 1.1 trillion standard cu ft/year, tcfy). Simple paybacks are typically less than 6 months. (2) A new acid-gas-removal process based on N-formyl morpholine (NFM) is being field tested that offers 40--50% savings in operating costs and 15--30% savings in capital costs relative to a commercially available physical solvent. (3) The GRI-MemCalc computer program for membrane separations and the GRI-Scavenger CalcBase computer program for scavenging technologies are screening tools that engineers can use to determine the best practice for treating their gas.

  20. Oil and gas operations in federal and coastal waters

    SciTech Connect

    Not Available

    1989-01-01

    This book covers the following topics: history, status, and future of OCS leasing; co-ownership of natural gas in place and as produced; anti-indemnity statutes as applied to offshore contracts; MMS royalty valuation issues and trends; bidding, exploration, and operating agreements; anatomy and preparation of OCS farmout agreements; federal audit procedures and time limitations; FERC developments and other producer-related pipeline regulations; natural gas marketing and transportation; offshore Alaska environmental issues; environmental developments for Gulf Coast mineral operations; seismic data transfer among owners and users.

  1. Description and initial operating performance of the Langley 6-inch expansion tube using heated helium driver gas

    NASA Technical Reports Server (NTRS)

    Moore, J. A.

    1975-01-01

    A general description of the Langley 6-inch expansion tube is presented along with discussion of the basic components, internal resistance heater, arc-discharge assemblies, instrumentation, and operating procedure. Preliminary results using unheated and resistance-heated helium as the driver gas are presented. The driver-gas pressure ranged from approximately 17 to 59 MPa and its temperature ranged from 300 to 510 K. Interface velocities of approximately 3.8 to 6.7 km/sec were generated between the test gas and the acceleration gas using air as the test gas and helium as the acceleration gas. Test flow quality and comparison of measured and predicted expansion-tube flow quantities are discussed.

  2. The Effects of Added Hydrogen on Noble Gas Discharges Used as Ambient Desorption/Ionization Sources for Mass Spectrometry.

    PubMed

    Ellis, Wade C; Lewis, Charlotte R; Openshaw, Anna P; Farnsworth, Paul B

    2016-09-01

    We demonstrate the effectiveness of using hydrogen-doped argon as the support gas for the dielectric barrier discharge (DBD) ambient desorption/ionization (ADI) source in mass spectrometry. Also, we explore the chemistry responsible for the signal enhancement observed when using both hydrogen-doped argon and hydrogen-doped helium. The hydrogen-doped argon was tested for five analytes representing different classes of molecules. Addition of hydrogen to the argon plasma gas enhanced signals for gas-phase analytes and for analytes coated onto glass slides in positive and negative ion mode. The enhancements ranged from factors of 4 to 5 for gas-phase analytes and factors of 2 to 40 for coated slides. There was no significant increase in the background. The limit of detection for caffeine was lowered by a factor of 79 using H2/Ar and 2 using H2/He. Results are shown that help explain the fundamental differences between the pure-gas discharges and those that are hydrogen-doped for both argon and helium. Experiments with different discharge geometries and grounding schemes indicate that observed signal enhancements are strongly dependent on discharge configuration. Graphical Abstract ᅟ. PMID:27380389

  3. The Effects of Added Hydrogen on Noble Gas Discharges Used as Ambient Desorption/Ionization Sources for Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Ellis, Wade C.; Lewis, Charlotte R.; Openshaw, Anna P.; Farnsworth, Paul B.

    2016-09-01

    We demonstrate the effectiveness of using hydrogen-doped argon as the support gas for the dielectric barrier discharge (DBD) ambient desorption/ionization (ADI) source in mass spectrometry. Also, we explore the chemistry responsible for the signal enhancement observed when using both hydrogen-doped argon and hydrogen-doped helium. The hydrogen-doped argon was tested for five analytes representing different classes of molecules. Addition of hydrogen to the argon plasma gas enhanced signals for gas-phase analytes and for analytes coated onto glass slides in positive and negative ion mode. The enhancements ranged from factors of 4 to 5 for gas-phase analytes and factors of 2 to 40 for coated slides. There was no significant increase in the background. The limit of detection for caffeine was lowered by a factor of 79 using H2/Ar and 2 using H2/He. Results are shown that help explain the fundamental differences between the pure-gas discharges and those that are hydrogen-doped for both argon and helium. Experiments with different discharge geometries and grounding schemes indicate that observed signal enhancements are strongly dependent on discharge configuration.

  4. The Effects of Added Hydrogen on Noble Gas Discharges Used as Ambient Desorption/Ionization Sources for Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Ellis, Wade C.; Lewis, Charlotte R.; Openshaw, Anna P.; Farnsworth, Paul B.

    2016-07-01

    We demonstrate the effectiveness of using hydrogen-doped argon as the support gas for the dielectric barrier discharge (DBD) ambient desorption/ionization (ADI) source in mass spectrometry. Also, we explore the chemistry responsible for the signal enhancement observed when using both hydrogen-doped argon and hydrogen-doped helium. The hydrogen-doped argon was tested for five analytes representing different classes of molecules. Addition of hydrogen to the argon plasma gas enhanced signals for gas-phase analytes and for analytes coated onto glass slides in positive and negative ion mode. The enhancements ranged from factors of 4 to 5 for gas-phase analytes and factors of 2 to 40 for coated slides. There was no significant increase in the background. The limit of detection for caffeine was lowered by a factor of 79 using H2/Ar and 2 using H2/He. Results are shown that help explain the fundamental differences between the pure-gas discharges and those that are hydrogen-doped for both argon and helium. Experiments with different discharge geometries and grounding schemes indicate that observed signal enhancements are strongly dependent on discharge configuration.

  5. Pulsed-gas glow discharge for ultrahigh mass resolution measurements with Fourier transform ion cyclotron resonance mass spectrometry

    SciTech Connect

    Watson, C.H.; Eyler, J.R.; Barshick, C.M.; Wronka, J.; Laukien, F.H.

    1996-02-01

    A new pulsed-gas glow discharge (GD) source has been developed for use with an external ion source Fourier transform ion cyclotron resonance (FTICR) mass spectrometer. With pulsed argon gas introduction into the GD source, the gas load and pressure in the mass analyzer region were greatly reduced; this resulted in improved mass resolution. Mass resolution of greater than 145000 (fwhm) has been achieved for Cu{sup +} ions from a brass sample, the highest reported for any type of GD mass spectrometer. The pulsed-gas GD source promises analytical usefulness for ultrahigh resolution measurements in GD mass spectrometry. 16 refs., 3 figs.

  6. Reducing harmful emissions discharged into the atmosphere from operating boilers by applying a combination of low-cost technological measures

    NASA Astrophysics Data System (ADS)

    Roslyakov, P. V.; Ionkin, I. L.; Pleshanov, K. A.

    2010-12-01

    The operational methods for suppressing nitrogen oxide emissions widely used in gas-and-oil-fired boilers are described. Information is given on implementing integrated operational measures in BKZ-75-39GM and TGM-96B boilers.

  7. Operation and planning of coordinated natural gas and electricity infrastructures

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaping

    Natural gas is becoming rapidly the optimal choice for fueling new generating units in electric power system driven by abundant natural gas supplies and environmental regulations that are expected to cause coal-fired generation retirements. The growing reliance on natural gas as a dominant fuel for electricity generation throughout North America has brought the interaction between the natural gas and power grids into sharp focus. The primary concern and motivation of this research is to address the emerging interdependency issues faced by the electric power and natural gas industry. This thesis provides a comprehensive analysis of the interactions between the two systems regarding the short-term operation and long-term infrastructure planning. Natural gas and renewable energy appear complementary in many respects regarding fuel price and availability, environmental impact, resource distribution and dispatchability. In addition, demand response has also held the promise of making a significant contribution to enhance system operations by providing incentives to customers for a more flat load profile. We investigated the coordination between natural gas-fired generation and prevailing nontraditional resources including renewable energy, demand response so as to provide economical options for optimizing the short-term scheduling with the intense natural gas delivery constraints. As the amount and dispatch of gas-fired generation increases, the long-term interdependency issue is whether there is adequate pipeline capacity to provide sufficient gas to natural gas-fired generation during the entire planning horizon while it is widely used outside the power sector. This thesis developed a co-optimization planning model by incorporating the natural gas transportation system into the multi-year resource and transmission system planning problem. This consideration would provide a more comprehensive decision for the investment and accurate assessment for system adequacy and

  8. Soft X-Ray Emission Analysis Of A Pulsed Capillary Discharge Operated In Nitrogen

    NASA Astrophysics Data System (ADS)

    Valdivia, M. P.; Valenzuela, J. C.; Wyndham, E. S.; Favre, M.; Chuaqui, H.; Bhuyan, H.

    2014-05-01

    We present results from a pulsed capillary ns discharge source, operated in Nitrogen and N/He mixtures, in an alumina capillary 2.1mm long with outer diameter of 6.3mm and inner diameter of 1.6mm. The electrical energy stored is 0.5J with peak current of 6kA. Fast charging from an IGBT based pulsed power circuit allows operation at 35-600 Hz with voltages in the range of 18-24kV. Characteristic time-integrated N/He spectra were recorded and analyzed for values of 20-200 Å, with clear evidence of He-like Nitrogen emission at 28.8Å, which represents a possible source for water window soft x-ray microscopy. Filtered diode measurements reveal the influence of axial electron beams, generated by hollow cathode dynamics, on the x-ray emission in the range of 300-450 eV. We discuss optimal voltage applied and pressure conditions for soft x-ray generation. Time-integrated MCP images of a filtered slit-wire system delivered clear evidence of full wall detachment with ~500μm in radial size for the entire emission range and ~200μm for the emission in the 300-450 eV range.

  9. Natural gas operations: considerations on process transients, design, and control.

    PubMed

    Manenti, Flavio

    2012-03-01

    This manuscript highlights tangible benefits deriving from the dynamic simulation and control of operational transients of natural gas processing plants. Relevant improvements in safety, controllability, operability, and flexibility are obtained not only within the traditional applications, i.e. plant start-up and shutdown, but also in certain fields apparently time-independent such as the feasibility studies of gas processing plant layout and the process design of processes. Specifically, this paper enhances the myopic steady-state approach and its main shortcomings with respect to the more detailed studies that take into consideration the non-steady state behaviors. A portion of a gas processing facility is considered as case study. Process transients, design, and control solutions apparently more appealing from a steady-state approach are compared to the corresponding dynamic simulation solutions. PMID:22056010

  10. Occupation Competency Profile: Gas Utility Operator Certificate Program.

    ERIC Educational Resources Information Center

    Alberta Learning, Edmonton. Apprenticeship and Industry Training.

    This document presents information about the apprenticeship training program of Alberta, Canada, in general and the gas utility operator certificate program in particular. The first part of the document discusses the following items: Alberta's apprenticeship and industry training system; the occupation committee and its members; the Alberta…

  11. Pipeliners and gas processors target even cleaner operations

    SciTech Connect

    True, R.W.

    1991-12-16

    With the recent passage of amendments to the federal Clean Air Act and the reauthorization next year of the Resource Conservation and Recovery Act, pipelines and gas processors are looking at more ways to tighten operations and avoid polluting surface water or air. This paper reports that some companies are not waiting for the final rules but are taking actions which anticipate tougher standards.

  12. Influence of discharge production conditions, gas pressure, current intensity and voltage type, on SF6 dissociation under point-plane corona discharges

    NASA Astrophysics Data System (ADS)

    Belarbi, A.; Pradayrol, C.; Casanovas, J.; Casanovas, A. M.

    1995-02-01

    The study of the formation of Sulfur Hexafluoride (SF6) dissociation products under point to plane corona discharges was carried out at P(sub SF(6)) = 300 kPa using different discharges production conditions (50 Hz ac voltage, dc negative polarity voltage, mean discharge current intensity bar-I varying between 2 and 45 micro-A for dc negative polarity voltage), for two plane electrode materials (aluminum and stainless steel), and moisture levels (200 and 2000 ppm(sub v) H2O). The stable gaseous by-products formed (SO2F2, SOF4, SOF2, and S2F10) were assayed by gas-phase chromatography. The results indicate an important effect of the metal constituting the plane electrode and of the moisture conditions whatever the SF6 pressure (100-300 kPa), discharges intensity (bar-I) and voltage type studied. An effect of the increase of SF6 pressure up to 300 kPa was mainly observed for S2F10 and corresponds to a greater formation of this compound with P(sub SF(6)). The influence of the mean discharge current intensity on SF6 by-product formation carried out for a transported charge of 1 C showed that for I less than or equal to 10 micro-A, the effect varies according to the compound considered and depends on the water content of the SF6 and/or on the plane electrode material, whereas for bar-I greater than 10 micro-A, the levels of the four compound studied hardly vary with the current. Comparison of results obtained under ac and dc voltage for a cumulated charge of between 0.5 and 11 C showed that (SO2F2+SOF4) and SOF2 were formed in larger quantities with ac than with dc, unlike S2F10 for which the opposite effect was observed.

  13. Planar excilamp on rare gas chlorides pumped by a transverse self-sustained discharge

    SciTech Connect

    Panchenko, Aleksei N; Tarasenko, Viktor F

    2006-02-28

    The design and parameters of a UV-VUV spontaneous radiation source - an excilamp operating on chlorides of rare gases ArCl{sup *}, KrCl{sup *} and XeCl{sup *} in the wavelength range 175-308 nm are presented. The Ne-Xe(Kr, Ar)-HCl mixtures were excited by a high-pressure self-sustained discharge with spark preionisation. It is shown that upon pumping mixtures of rare gases and halogens by a transverse discharge, the intensities of the B-X emission band of molecules ArCl{sup *}, KrCl{sup *} and XeCl{sup *} are comparable and up to 90% of the emission energy of excilamps can be concentrated in the UV region. The peak UV power density at 222 and 308 nm on the output window of the excilamp was {approx}2 kW cm{sup -2} for the pulse energy up to {approx} 3 mJ. The output emission energy of the excilamp at 175 nm achieved {approx}0.6 mJ and the peak power density was {approx}0.4 kW cm{sup -2}. (laser applications and other topics in quantum electronics)

  14. Oxidation of ammonium sulfite by a multi-needle-to-plate gas phase pulsed corona discharge reactor

    NASA Astrophysics Data System (ADS)

    Ren, Hua; Lu, Na; Shang, Kefeng; Li, Jie; Wu, Yan

    2013-03-01

    The oxidation of ammonium sulfite in the ammonia-based flue gas desulfurization (FGD) process was investigated in a multi-needle-to-plate gas phase pulsed corona discharge reactor in this paper. The effect of several parameters, including capacitance and peak pulse voltage of discharge system, electrode gap and bubbling gas flow rate on the oxidation rate of ammonium sulfite was reviewed. The oxidation rate of ammonium sulfite could reach 47.2% at the capacitance, the peak pulse voltage, electrode gap and bubbling gas flow rate equal to 2 nF, -24.6 k V, 35 mm and 4 L min-1 within treatment time of 40 min The experimental results indicate that the gas phase pulsed discharge system with a multi-needle-to-plate electrode can oxide the ammonium sulfite. The oxidation rate increased with the applied capacitance and peak pulse voltage and decreased with the electrode gap. As the bubbling gas flow rate increased, the oxidation rate increased first and then tended to reach a stationary value. These results would be important for the process optimization of the (NH4)2SO3 to (NH4)2SO4 oxidation.

  15. Operating atmospheric vent collection headers using methane gas enrichment

    SciTech Connect

    Britton, L.G.

    1996-12-31

    Tests at 60{degrees}C and 16psia using ethylene, hydrogen and methyl alcohol {open_quote}fuel vapors{open_quotes} showed that if an atmospheric vent collection header contains 25 vol% of methane and the only source of oxygen is the air, no possible mixture of fuel vapor, nitrogen and residual oxygen is flammable. Addition of these fuel vapors to a header containing 25% by volume of methane in all cases increases the 3.8 vol% oxygen safety factor that exists with zero fuel vapor in the gas stream. It is irrelevant that the fuel vapor has an upper flammable limit (VFL) greater than the methane enrichment gas. The minimum oxygen concentration to sustain a flame (MOC) increases with increased methane:nitrogen ratio in the gas stream, so that the {open_quote}listed{close_quotes} MOC has no relevance under methane enriched conditions. These findings have important ramifications when applying Coast Guard Regulations in 33CFR.154 for Marine Vapor Control Systems, which implies the need to operate at 170% of the combined gas stream UFL and requires operation at less than the MOC ({le} 8% oxygen) when tanks have been partly inerted with nitrogen. Large reductions of enrichment gas usage with attendant environmental benefits are technically possible using flow control of methane rather than gas analysis down-stream of the enrichment station. Operation above the UFL rather than below the MOC can cut enrichment gas usage by 50% or more while actually increasing the assumed 2 vol% oxygen safety factor. A negative flow control error of 7 vol% methane ({minus} 280% of target) is required to achieve flammability under worst case assumptions. 18 refs., 11 figs., 3 tabs.

  16. Effect of Oxygen Gas on the Decomposition of Dye by Pulsed Discharge in Water Droplet Spray

    NASA Astrophysics Data System (ADS)

    Nose, Taisuke; Yokoyama, Yuzo; Nakamura, Akira; Minamitani, Yasushi

    Effect of O2 on the decolorization of indigo carmine and on the production of dissolved species such as NO2-, NO3-, O3 and H2O2 in the treatment water by pulsed discharge in water droplet spray was investigated by controlling the O2/N2 ratios as carrier gases in the reactor. The decolorization rate gradually increased with rise in O2 ratio, which reached a constant value in the range of 50% to 90% O2 ratio and decreased in pure O2. The maximum value was about 2 times as high as that of 20% O2 ratio. The decolorization efficiency was not affected by gas flow rate in the range of 4 L/min to 50 L/min. NO2- in the treatment water was only detected in pure N2, but NO3- was produced in O2/N2. NO2- added to the treatment water was not oxidized in pure N2, but was perfectly converted to NO3- in O2/N2. These results implied that hydroxyl radical produced in gas phase does not directly contribute to the oxidation of substances in water. O3 concentration gradually increased with rise in O2 ratio, whereas H2O2 concentration decreased. In the range of 50 to 80% O2 ratio, O3 and H2O2 concentrations were approximately constant value, similar to the trend of decolorization rate. Moreover rate constants on various gas mixing ratio of O2/N2 were determined from the kinetics study. These results suggested that hydroxyl radical produced in the treatment water by the chain reactions of O3 and hydroperoxy radical (HO2·) plays an important role of the decomposition of molecules in water.

  17. Surface water discharges from onshore stripper wells.

    SciTech Connect

    Veil, J. A.

    1998-01-16

    Under current US Environmental Protection Agency (EPA) rules, small onshore oil producers are allowed to discharge produced water to surface waters with approval from state agencies; but small onshore gas producers, however, are prohibited from discharging produced water to surface waters. The purpose of this report is to identify those states that allow surface water discharges from small onshore oil operations and to summarize the types of permitting controls they use. It is intended that the findings of this report will serve as a rationale to encourage the EPA to revise its rules and to remove the prohibition on surface water discharges from small gas operations.

  18. Plasma density evolution during nanosecond discharge in hydrogen gas at (1-3) × 105 Pa pressure

    NASA Astrophysics Data System (ADS)

    Yatom, S.; Krasik, Ya E.

    2014-05-01

    The results of a study of the nanosecond discharge in H2 gas at pressures of (1-3) × 105 Pa using fast-framing photography and space- and time-resolved spectroscopy are presented. The discharge is initiated by the application of a high-voltage pulse with an amplitude of ˜100 kV and duration of ˜5 ns to a blade cathode placed at a distance of 20 mm from the anode. The results show the dynamics of the discharge formation and the build-up of the plasma electron density in the discharge channels close to and at a distance from the edge of the cathode. The results obtained are compared to those obtained in recent studies of similar discharges in air and He gas. It was shown that the time and space evolution of the plasma light emission in the H2 gas discharge is very similar to that in air. Namely, the generation of the plasma is mainly confined to the plasma channels initiated at the top and bottom edges of the cathode electrode and that there are no new plasma channels formed from the explosive emission centres along the blade as it was obtained in earlier experiments with He gas. Spectroscopic measurements showed that the plasma density reaches 2 × 1017 cm-3 and 1.6 × 1016 cm-3 in the vicinity of the cathode and the middle of the anode-cathode gap, respectively, for a plasma electron temperature of <1.5 eV. The values of plasma electron density and the previously presented results of electric field measurements allow calculation of the resistance of the plasma channels.

  19. The Effect of Operational Parameters on the Characteristics of Gas-Solid Flow Inside the COREX Shaft Furnace

    NASA Astrophysics Data System (ADS)

    Kou, Mingyin; Wu, Shengli; Du, Kaiping; Shen, Wei; Ma, Xiaodong; Chen, Mao; Zhao, Baojun

    2015-02-01

    The COREX shaft furnace is of great importance to the whole C-3000 process. There are many problems with the operation of the COREX shaft furnace, especially with gas and burden distribution, that have as yet been little studied. The present work establishes a three-dimensional quarter model. After validation by operating data in Baosteel, the model is used to investigate the gas utilization rate and the metallization rate of the COREX shaft furnace. The parameters, including the reducing gas flow, the volume fraction of gas phase, and the multilayered burden, are systematically investigated. The results show that the reducing gas flow has a great influence on the gas utilization rate and the metallization rate, while the volume fraction of gas phase has a more significant effect on the metallization rate than on the gas utilization rate. In order to obtain a higher metallization rate, the reducing gas flow needs to be adjusted step by step and the volume fraction of gas phase needs to be increased. In addition, ore and coke need to be discharged separately in order to increase the solid metallization rate.

  20. Operating experience review of an INL gas monitoring system

    SciTech Connect

    Cadwallader, Lee C.; DeWall, K. G.; Herring, J. S.

    2015-03-12

    This article describes the operations of several types of gas monitors in use at the Idaho National Laboratory (INL) High Temperature Electrolysis Experiment (HTE) laboratory. The gases monitored in the lab room are hydrogen, carbon monoxide, carbon dioxide, and oxygen. The operating time, calibration, and both actual and unwanted alarms are described. The calibration session time durations are described. In addition, some simple calculations are given to estimate the reliability of these monitors and the results are compared to operating experiences of other types of monitors.

  1. Operating instructions for the Building 190 gas handling system

    SciTech Connect

    Norman, P.J.; Garbaldi, J.L.; Roberts, M.L.

    1991-11-20

    The physics department of Lawrence Livermore National Laboratory currently operates a multiuser laboratory centered around a tandem Van de Graaff accelerator. The accelerator is a model FN gas insulated electrostatic particle accelerator manufactured by High Voltage Engineering Corporation. Insulating gas for the tandem accelerator is approximately 100 psig of sulfur hexafluoride (SF{sub 6}). This manual was written as a guide for the use and operation of the associated SF{sub 6} gas handling system. To facilitate its use, this manual is broken into separate sections. Each section covers a commonly performed procedure and consists of a sequence of steps that must be followed in order. Most steps are a single command or instruction followed by one or more comments. The comments are intended only as aids in performing the step or as a description of why that particular step is important. A schematic of the gas handling system is shown. A detailed description of individual items in the system including set points on safety valves, pumping speeds, etc. can be found in the LLNL mechanical engineering safety note numbered ENS-88-901A and entitled ``{open_quote}FN{close_quote} Tandem Sulfur Hexafluoride Gas Handling System.``

  2. Linam Ranch cryogenic gas plant: A design and operating retrospective

    SciTech Connect

    Harwell, L.J.; Kuscinski, J.

    1999-07-01

    GPM Gas Corporation's Linam Ranch Gas Plant is the processing hub of their southeastern New Mexico gathering system, producing a y-grade NGL product which is pipelined primarily to the Phillips petrochemical complex at Sweeney, Texas, GPM acquired the facility near Hobbs, N.M. late in 1994 when it was still operating as a refrigerated lean oil plant, renamed it, and commenced an upgrade project culminating in its conversion to a high recovery cryogenic facility in early 1996 with a processing capacity of 150 MMscfd. Facilities that were upgraded included inlet liquids receiving and handling, the amine system, mol sieve dehydration, the sulfur recovery unit, inlet compression, and the propane refrigeration system. A Foxboro I/A DCS was also placed into operation. The lean oil system was replaced with a high recovery turboexpander unit supplied by KTI Fish based on their Flash Vapor Reflux (FVR) process. Resulting ethane recovery was greater than 95% for the new facilities. New residue compression units were installed including steam generators on the turbine exhausts, which complemented the existing plant steam system. During the three years since conversion to cryogenic operation, GPM has steadily improved plant operations. Expansion of the mol sieve dehydration system and retrofit of evaporation combustion air cooling on gas turbines have expanded nameplate capacity to 170 MMscfd while maintaining ethane recovery at 95%. Future expansion to 200 MMscfd with high recovery is achievable. In addition, creative use of the Foxboro DCS has been employed to implement advanced control schemes for handling inlet liquid slugs, gas and amine balancing for parallel amine contactors, improved sulfur recovery unit (SRU) trim air control, and constraint-based process optimization to maximize horsepower utilization and ethane recovery. Some challenges remain, leaving room for additional improvements. However, GPM's progress so far has resulted in a current ethane recovery level in

  3. NO density and gas temperature measurements in atmospheric pressure nanosecond repetitively pulsed (NRP) discharges by Mid-IR QCLAS

    NASA Astrophysics Data System (ADS)

    Simeni Simeni, Marien; Stancu, Gabi-Daniel; Laux, Christophe

    2014-10-01

    Nitric oxide is a key species for many processes: in combustion, in human skin physiology... Recently, NO-ground state absolute density measurements produced by atmospheric pressure NRP discharges were carried out in air as a function of the discharge parameters, using Quantum Cascade Laser Absorption Spectroscopy. These measurements were space averaged and performed in the post-discharge region in a large gas volume. Here we present radial profiles of NO density and temperature measured directly in the discharge for different configurations. Small plasma volume and species densities, high temperature and EM noise environment make the absorption diagnostic challenging. For this purpose the QCLAS sensitivity was improved using a two-detector system. We conducted lateral absorbance measurements with a spatial resolution of 300 μm for two absorption features at 1900.076 and 1900.517 cm-1. The radial temperature and NO density distributions were obtained from the Abel inverted lateral measurements. Time averaged NO densities of about 1.E16 cm-3 and gas temperature of about 1000K were obtained in the center of the discharge. PLASMAFLAME Project (Grant No ANR-11-BS09-0025).

  4. Integrated Operating Scenario to Achieve 100-Second, High Electron Temperature Discharge on EAST

    NASA Astrophysics Data System (ADS)

    Qian, Jinping; Gong, Xianzu; Wan, Baonian; Liu, Fukun; Wang, Mao; Xu, Handong; Hu, Chundong; Wang, Liang; Li, Erzhong; Zeng, Long; Ti, Ang; Shen, Biao; Lin, Shiyao; Shao, Linming; Zang, Qing; Liu, Haiqing; Zhang, Bin; Sun, Youwen; Xu, Guosheng; Liang, Yunfeng; Xiao, Bingjia; Hu, Liqun; Li, Jiangang; EAST Team

    2016-05-01

    Stationary long pulse plasma of high electron temperature was produced on EAST for the first time through an integrated control of plasma shape, divertor heat flux, particle exhaust, wall conditioning, impurity management, and the coupling of multiple heating and current drive power. A discharge with a lower single null divertor configuration was maintained for 103 s at a plasma current of 0.4 MA, q95 ≈7.0, a peak electron temperature of >4.5 keV, and a central density ne(0)∼2.5×1019 m‑3. The plasma current was nearly non-inductive (Vloop <0.05 V, poloidal beta ∼ 0.9) driven by a combination of 0.6 MW lower hybrid wave at 2.45 GHz, 1.4 MW lower hybrid wave at 4.6 GHz, 0.5 MW electron cyclotron heating at 140 GHz, and 0.4 MW modulated neutral deuterium beam injected at 60 kV. This progress demonstrated strong synergy of electron cyclotron and lower hybrid electron heating, current drive, and energy confinement of stationary plasma on EAST. It further introduced an example of integrated “hybrid” operating scenario of interest to ITER and CFETR. supported by the National Magnetic Confinement Fusion Science Foundation of China (Nos. 2015GB102000 and 2014GB103000)

  5. 33 CFR 151.66 - Operating requirements: Discharge of garbage in the Great Lakes and other navigable waters.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) POLLUTION VESSELS CARRYING OIL... Pollution from Ships Garbage Pollution and Sewage § 151.66 Operating requirements: Discharge of garbage in... a 6 mile radius from Stannard Rock Light, at 47°10′57″ N 87°13′34″ W; Superior Shoal Protection...

  6. 33 CFR 151.66 - Operating requirements: Discharge of garbage in the Great Lakes and other navigable waters.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) POLLUTION VESSELS CARRYING OIL... Pollution from Ships Garbage Pollution and Sewage § 151.66 Operating requirements: Discharge of garbage in... a 6 mile radius from Stannard Rock Light, at 47°10′57″ N 87°13′34″ W; Superior Shoal Protection...

  7. 33 CFR 151.66 - Operating requirements: Discharge of garbage in the Great Lakes and other navigable waters.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) POLLUTION VESSELS CARRYING OIL... Pollution from Ships Garbage Pollution and Sewage § 151.66 Operating requirements: Discharge of garbage in... a 6 mile radius from Stannard Rock Light, at 47°10′57″ N 87°13′34″ W; Superior Shoal Protection...

  8. 33 CFR 151.66 - Operating requirements: Discharge of garbage in the Great Lakes and other navigable waters.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Operating requirements: Discharge of garbage in the Great Lakes and other navigable waters. 151.66 Section 151.66 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) POLLUTION VESSELS CARRYING OIL, NOXIOUS LIQUID SUBSTANCES, GARBAGE, MUNICIPAL...

  9. 40 CFR Appendix B to Part 434 - Baseline Determination and Compliance Monitoring for Pre-existing Discharges at Remining Operations

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 29 2010-07-01 2010-07-01 false Baseline Determination and Compliance Monitoring for Pre-existing Discharges at Remining Operations B Appendix B to Part 434 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS COAL MINING...

  10. 40 CFR Appendix B to Part 434 - Baseline Determination and Compliance Monitoring for Pre-existing Discharges at Remining Operations

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Monitoring for Pre-existing Discharges at Remining Operations B Appendix B to Part 434 Protection of.... B Appendix B to Part 434—Baseline Determination and Compliance Monitoring for Pre-existing... per year. d. Accommodating Data Below the Maximum Daily Limit at subpart C of this part. In the...

  11. 40 CFR Appendix B to Part 434 - Baseline Determination and Compliance Monitoring for Pre-existing Discharges at Remining Operations

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Monitoring for Pre-existing Discharges at Remining Operations B Appendix B to Part 434 Protection of.... B Appendix B to Part 434—Baseline Determination and Compliance Monitoring for Pre-existing... per year. d. Accommodating Data Below the Maximum Daily Limit at subpart C of this part. In the...

  12. 40 CFR Appendix B to Part 434 - Baseline Determination and Compliance Monitoring for Pre-existing Discharges at Remining Operations

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Monitoring for Pre-existing Discharges at Remining Operations B Appendix B to Part 434 Protection of.... B Appendix B to Part 434—Baseline Determination and Compliance Monitoring for Pre-existing... per year. d. Accommodating Data Below the Maximum Daily Limit at subpart C of this part. In the...

  13. Benthic foraminiferal responses to operational drill cutting discharge in the SW Barents Sea - a case study.

    NASA Astrophysics Data System (ADS)

    Aagaard-Sørensen, Steffen; Junttila, Juho; Dijkstra, Noortje

    2016-04-01

    Petroleum related exploration activities started in the Barents Sea 1980, reaching 97 exploration wells drilled per January 2013. The biggest operational discharge from drilling operations in the Barents Sea is the release of drill cuttings (crushed seabed and/or bedrock) and water based drilling muds including the commonly used weighing material barite (BaSO4). Barium (Ba), a constituent of barite, does not degrade and can be used to evaluate dispersion and accumulation of drill waste. The environmental impact associated with exploration drilling within the Goliat Field, SW Barents Sea in 2006 was evaluated via a multiproxy investigation of local sediments. The sediments were retrieved in November 2014 at ~350 meters water depth and coring sites were selected at distances of 5, 30, 60, 125 and 250 meters from the drill hole in the eastward downstream direction. The dispersion pattern of drill waste was estimated via measurements of sediment parameters including grain size distribution and water content in addition to heavy metal and total organic carbon contents. The environmental impact was evaluated via micro faunal analysis based on benthic foraminiferal (marine shell bearing protists) fauna composition and concentration changes. Observing the sediment parameters, most notably Ba levels, reveals that dispersion of drill waste was limited to <125 meters from the drill site with drill waste thicknesses decreasing downstream. The abruptness and quantity of drill waste sedimentation initially smothered the foraminiferal fauna at ≤ 30 meters from the drill site, while at a distance of 60 meters, the fauna seemingly survived and bioturbation persisted. Analysis of the live (Nov 2014) foraminiferal fauna reveals a natural species composition at all distances from the drill site within the top sediments (0-5 cm core depth). Furthermore, the fossil foraminiferal fauna composition found within post-impacted top sediment sections, particularly in the cores situated at

  14. Pulsed electromagnetic gas accelleration. [incorporation of hollow cathode in plasma discharge and suitability determination of MPD discharge as plasmadynamic laser source

    NASA Technical Reports Server (NTRS)

    Jahn, R. G.

    1973-01-01

    Direct measurement with thermocouples of the power deposited in the anode of a multi-megawatt magnetoplasmadynamic discharge has shown the fractional anode power to decrease from 50% at 200 kW to 10% at 20 MW. Using local measurements of current density, electric potential, and electron temperature, the traditional model for heat conduction to the anode is found to be inadequate. Other experiments in which the voltage-current characteristics and exhaust velocities of MPD arcs using Plexiglas and boron nitride chamber insulators and various mass injection configurations show that ablation can affect nominal accelerator operation in several distinct ways. The incorporation of a hollow cathode in a 7 kA plasma discharge has shown that a stable current attachment can be realized in the cavity without the aid of cathode heaters, keeper electrodes, or emissive coatings.

  15. Strontium isotope quantification of siderite, brine and acid mine drainage contributions to abandoned gas well discharges in the Appalachian Plateau

    SciTech Connect

    Chapman, Elizabeth C.; Capo, Rosemary C.; Stewart, Brian W.; Hedin, Robert S.; Weaver, Theodore J.; Edenborn, Harry M.

    2013-04-01

    Unplugged abandoned oil and gas wells in the Appalachian region can serve as conduits for the movement of waters impacted by fossil fuel extraction. Strontium isotope and geochemical analysis indicate that artesian discharges of water with high total dissolved solids (TDS) from a series of gas wells in western Pennsylvania result from the infiltration of acidic, low Fe (Fe < 10 mg/L) coal mine drainage (AMD) into shallow, siderite (iron carbonate)-cemented sandstone aquifers. The acidity from the AMD promotes dissolution of the carbonate, and metal- and sulfate-contaminated waters rise to the surface through compromised abandoned gas well casings. Strontium isotope mixing models suggest that neither upward migration of oil and gas brines from Devonian reservoirs associated with the wells nor dissolution of abundant nodular siderite present in the mine spoil through which recharge water percolates contribute significantly to the artesian gas well discharges. Natural Sr isotope composition can be a sensitive tool in the characterization of complex groundwater interactions and can be used to distinguish between inputs from deep and shallow contamination sources, as well as between groundwater and mineralogically similar but stratigraphically distinct rock units. This is of particular relevance to regions such as the Appalachian Basin, where a legacy of coal, oil and gas exploration is coupled with ongoing and future natural gas drilling into deep reservoirs.

  16. Hot-filament discharge plasma in argon gas at 140 K

    NASA Astrophysics Data System (ADS)

    Dickson, Shannon; Robertson, Scott

    2009-11-01

    A hot-filament discharge plasma has been created in a double-walled vacuum chamber with the inner wall cooled by liquid nitrogen vapor. The inner brass chamber (16 cm dia. x 30 cm) is wound with copper tubing for cooling. This chamber has two tungsten filaments 10 cm in length oriented axially about 2.5 cm from the wall. Plasma measurements are made using a Pt wire probe. At 300 K, 0.6 mTorr argon in the outer chamber, and 2 mA emission, the electron density is 1 x10^8 cm-3 and the electron temperature is 0.054 eV. At 140 K, the density is 1.6 x10^8 cm-3 and their temperature is 0.11 eV confirming that the electrons are not cooled by elastic collisions with the gas. The floating potential of the probe is -2.4 V at 300 K and -0.6 V at 140 K as a consequence of the ion current to the probe being about doubled at the lower temperature. The higher ion current may be a consequence of charge-exchange collisions producing cold ions that are more easily captured by the probe. These collisions decrease the ion losses to the wall by slowing ions accelerated by the plasma potential. Electron losses are reduced because of the requirement of quasineutrality, thus reduced evaporative cooling of electrons may be the cause of the increased electron temperature in 140 K gas.

  17. Laser-induced fluorescence monitoring of the gas phase in a glow discharge during reactive sputtering of vanadium

    NASA Astrophysics Data System (ADS)

    Khvostikov, V. A.; Grazhulene, S. S.; Burmii, Zh. P.; Marchenko, V. A.

    2011-11-01

    Processes in the gas phase of a glow discharge during diode and magnetron reactive sputtering of vanadium in an Ar-O2 atmosphere have been investigated by laser-induced fluorescence (LIF) as a function of the parameters of the glow discharge and the composition of the atmosphere. The intensity of the fluorescence spectra increased by 1.5-2.0 orders of magnitude in the magnetron sputtering process compared with that of diode sputtering. Under continuous sputtering conditions, the dependences of the intensities and relative compositions of the fluorescence spectra on the discharge parameters (discharge voltage and current) have been investigated. In pulsed mode of the glow discharge, the dynamics of changes in the spectra have been studied versus variations in the discharge duration and the lag time for recording the fluorescence signal. The dependence of the spectral line intensities on the partial pressure of oxygen has been found for vanadium and its oxide. The cathode surface at pressures of 0.03-0.04 Pa was shown to convert to the oxidized state.

  18. Gas and plasma dynamics of RF discharge jet of low pressure in a vacuum chamber with flat electrodes and inside tube, influence of RF discharge on the steel surface parameters

    NASA Astrophysics Data System (ADS)

    Khristoliubova, V. I.; Kashapov, N. F.; Shaekhov, M. F.

    2016-06-01

    Researches results of the characteristics of the RF discharge jet of low pressure and the discharge influence on the surface modification of high speed and structural steels are introduced in the article. Gas dynamics, power and energy parameters of the RF low pressure discharge flow in the discharge chamber and the electrode gap are studied in the presence of the materials. Plasma flow rate, discharge power, the concentration of electrons, the density of RF power, the ion current density, and the energy of the ions bombarding the surface materials are considered for the definition of basic properties crucial for the process of surface modification of materials as they were put in the plasma jet. The influence of the workpiece and effect of products complex configuration on the RF discharge jet of low pressure is defined. The correlation of the input parameters of the plasma unit on the characteristics of the discharge is established.

  19. Theoretical study of thermal conductivities of various gas mixtures through the generalized Lennard-Jones interaction potential for application in gas-discharge lasers

    NASA Astrophysics Data System (ADS)

    Temelkov, K. A.; Slaveeva, S. I.; Fedchenko, Yu I.

    2016-03-01

    Thermal conductivities of helium, neon, bromine, and hydrogen are calculated on the basis of the (12-6) Lennard-Jones interaction approximation. Where necessary for a more precise approximation, a generalized (n-m) Lennard-Jones interaction potential is used. Thermal conductivities of binary gas systems are calculated and compared through two different empirical methods for the case of gas discharges in He, Ne, and Ne-He mixtures with small admixtures of bromine and hydrogen. A new simple method is proposed for the thermal conductivity determination for the 3- and 4-component gas mixtures of our interest.

  20. Gas discharge plasmas are effective in inactivating Bacillus and Clostridium spores.

    PubMed

    Tseng, Shawn; Abramzon, Nina; Jackson, James O; Lin, Wei-Jen

    2012-03-01

    Bacterial spores are the most resistant form of life and have been a major threat to public health and food safety. Nonthermal atmospheric gas discharge plasma is a novel sterilization method that leaves no chemical residue. In our study, a helium radio-frequency cold plasma jet was used to examine its sporicidal effect on selected strains of Bacillus and Clostridium. The species tested included Bacillus subtilis, Bacillus stearothermophilus, Clostridium sporogenes, Clostridium perfringens, Clostridium difficile, and Clostridium botulinum type A and type E. The plasmas were effective in inactivating selected Bacillus and Clostridia spores with D values (decimal reduction time) ranging from 2 to 8 min. Among all spores tested, C. botulinum type A and C. sporogenes were significantly more resistant to plasma inactivation than other species. Observations by phase contrast microscopy showed that B. subtilis spores were severely damaged by plasmas and the majority of the treated spores were unable to initiate the germination process. There was no detectable fragmentation of the DNA when the spores were treated for up to 20 min. The release of dipicolinic acid was observed almost immediately after the plasma treatment, indicating the spore envelope damage could occur quickly resulting in dipicolinic acid release and the reduction of spore resistance. PMID:22075631

  1. Is gas-discharge plasma a new solution to the old problem of biofilm inactivation?

    PubMed

    Joaquin, Jonathan C; Kwan, Calvin; Abramzon, Nina; Vandervoort, Kurt; Brelles-Mariño, Graciela

    2009-03-01

    Conventional disinfection and sterilization methods are often ineffective with biofilms, which are ubiquitous, hard-to-destroy microbial communities embedded in a matrix mostly composed of exopolysaccharides. The use of gas-discharge plasmas represents an alternative method, since plasmas contain a mixture of charged particles, chemically reactive species and UV radiation, whose decontamination potential for free-living, planktonic micro-organisms is well established. In this study, biofilms were produced using Chromobacterium violaceum, a Gram-negative bacterium present in soil and water and used in this study as a model organism. Biofilms were subjected to an atmospheric pressure plasma jet for different exposure times. Our results show that 99.6 % of culturable cells are inactivated after a 5 min treatment. The survivor curve shows double-slope kinetics with a rapid initial decline in c.f.u. ml(-1) followed by a much slower decline with D values that are longer than those for the inactivation of planktonic organisms, suggesting a more complex inactivation mechanism for biofilms. DNA and ATP determinations together with atomic force microscopy and fluorescence microscopy show that non-culturable cells are still alive after short plasma exposure times. These results indicate the potential of plasma for biofilm inactivation and suggest that cells go through a sequential set of physiological and morphological changes before inactivation. PMID:19246743

  2. Coulomb Crystallization of Charged Microspheres Levitated in a Gas Discharge Plasma

    NASA Technical Reports Server (NTRS)

    Goree, John

    1998-01-01

    The technical topic of the project was the experimental observation of Coulomb crystallization of charged microspheres levitated in a gas discharge plasma. This suspension, sometimes termed a dusty plasma, is closely analogous to a colloidal suspension, except that it has a much faster time response, is more optically thin, and has no buoyancy forces to suspend the particles. The particles are levitated by electric fields. Through their collective Coulomb repulsions, the particles arrange themselves in a lattice with a crystalline symmetry, which undergoes an order-disorder phase transition analogous to melting when the effective temperature of the system is increased. Due to gravitational sedimentation, the particles form a thin layer in the laboratory, so that the experimental system is nearly 2D, whereas in future microgravity experiments they are expected to fill a larger volume and behave like a 3D solid or liquid. The particles are imaged using a video camera by illuminating them with a sheet of laser light. Because the suspension is optically thin, this imaging method will work as well in a 3D microgravity experiment as it does in a 2D laboratory system.

  3. Gas Discharge Visualization: An Imaging and Modeling Tool for Medical Biometrics

    PubMed Central

    Kostyuk, Nataliya; Cole, Phyadragren; Meghanathan, Natarajan; Isokpehi, Raphael D.; Cohly, Hari H. P.

    2011-01-01

    The need for automated identification of a disease makes the issue of medical biometrics very current in our society. Not all biometric tools available provide real-time feedback. We introduce gas discharge visualization (GDV) technique as one of the biometric tools that have the potential to identify deviations from the normal functional state at early stages and in real time. GDV is a nonintrusive technique to capture the physiological and psychoemotional status of a person and the functional status of different organs and organ systems through the electrophotonic emissions of fingertips placed on the surface of an impulse analyzer. This paper first introduces biometrics and its different types and then specifically focuses on medical biometrics and the potential applications of GDV in medical biometrics. We also present our previous experience with GDV in the research regarding autism and the potential use of GDV in combination with computer science for the potential development of biological pattern/biomarker for different kinds of health abnormalities including cancer and mental diseases. PMID:21747817

  4. Gas Hydrate Research Site Selection and Operational Research Plans

    NASA Astrophysics Data System (ADS)

    Collett, T. S.; Boswell, R. M.

    2009-12-01

    In recent years it has become generally accepted that gas hydrates represent a potential important future energy resource, a significant drilling and production hazard, a potential contributor to global climate change, and a controlling factor in seafloor stability and landslides. Research drilling and coring programs carried out by the Ocean Drilling Program (ODP), the Integrated Ocean Drilling Program (IODP), government agencies, and several consortia have contributed greatly to our understanding of the geologic controls on the occurrence of gas hydrates in marine and permafrost environments. For the most part, each of these field projects were built on the lessons learned from the projects that have gone before them. One of the most important factors contributing to the success of some of the more notable gas hydrate field projects has been the close alignment of project goals with the processes used to select the drill sites and to develop the project’s operational research plans. For example, IODP Expedition 311 used a transect approach to successfully constrain the overall occurrence of gas hydrate within the range of geologic environments within a marine accretionary complex. Earlier gas hydrate research drilling, including IODP Leg 164, were designed primarily to assess the occurrence and nature of marine gas hydrate systems, and relied largely on the presence of anomalous seismic features, including bottom-simulating reflectors and “blanking zones”. While these projects were extremely successful, expeditions today are being increasingly mounted with the primary goal of prospecting for potential gas hydrate production targets, and site selection processes designed to specifically seek out anomalously high-concentrations of gas hydrate are needed. This approach was best demonstrated in a recently completed energy resource focused project, the Gulf of Mexico Gas Hydrate Joint Industry Project Leg II (GOM JIP Leg II), which featured the collection of a

  5. Standard operating procedure: Gas atmosphere MELCO brazing furnace

    SciTech Connect

    Waller, C.R.

    1988-08-01

    A hydrogen and argon gas atmosphere furnace facility using electric furnaces is located at the Clinton P. Anderson Meson Physics Facility (LAMPF). This furnace system was acquired to handle smaller jobs with a more rapid response time than was possible with the larger furnaces. Accelerator- and experimental-related components best assembled by atmosphere brazing techniques are routinely processed by this facility in addition to special heat treatment and bakeout heats. The detailed operation sequence and description of the MELCO furnace system are covered by this report. This document is to augment LA-10231-SOP, which describes the operation of the large furnace systems. 6 figs.

  6. Worchester Solenoid Actuated Gas Operated MCO Isolation Valves

    SciTech Connect

    VAN KATWIJK, C.

    2000-06-06

    These valves are 1 inch gas-operated full-port ball valves incorporating a solenoid and limit switches as integral parts of the actuator that are used in process streams within the CVDF hood. The valves fail closed (on loss of pressure or electrical) to prevent MCO vent drain to either reduce air in-leakage or loss of He. The valves have couplings for transverse actuator mounting.

  7. Worchester Solenoid Actuated Gas Operated MCO Isolation Valves

    SciTech Connect

    MISKA, C.R.

    2000-11-13

    These valves are 1 inch gas-operated full-port ball valves incorporating a solenoid and limit switches as integral parts of the actuator that are used in process streams within the CWF hood. The valves fail closed (on loss of pressure or electrical) to prevent MCO vent drain to either reduce air In-leakage or loss of He. The valves have couplings for transverse actuator mounting.

  8. Worcester Solenoid Actuated Gas Operated MCO Isolation Valves

    SciTech Connect

    MISKA, C.R.

    2000-09-03

    These valves are 1 inch gas-operated full-port ball valves incorporating a solenoid and limit switches as integral parts of the actuator that are used in different process streams within the CVDF hood. The valves fail closed (on loss of pressure or electrical) for MCO isolation to either reduce air in leakage or loss of He. All valves have coupling for transverse actuator mounting.

  9. Worcester Solenoid Actuated Gas Operated MCO Isolation Valves

    SciTech Connect

    MISKA, C.R.

    2000-11-13

    These valves are 1 inch gas-operated full-port ball valves incorporating a solenoid and limit switches as integral parts of the actuator that are used in different process streams within the CVDF hood. The valves fail closed (on loss of pressure or electrical) for MCO isolation to either reduce air leakage or loss of He. All valves have coupling for transverse actuator mounting.

  10. Reduction of Gas Contamination in The Operating Room

    PubMed Central

    Shykoff, Henry J.

    1977-01-01

    The level of anesthetic gas considered to be hazardous for operating room personnel is as yet unknown, but the least possible contamination is desirable. This paper discusses methods of reducing contamination from several sources — the anesthetic machine, high pressure leaks, low pressure leaks, and from anesthetists' poor habits. ImagesFig. 1Fig. 2Fig. 3Fig. 4Fig. 5Fig. 6Fig. 7 & 8Fig. 9Fig. 10 PMID:20469279

  11. Gas-phase removal of H{sub 2}S and NH{sub 3} with dielectric barrier discharges

    SciTech Connect

    Chang, M.B.; Tseng, T.D.

    1996-01-01

    Hydrogen sulfide and ammonia are two inorganic compounds that may cause severe odor problems. In this study, the effectiveness of applying dielectric barrier discharges (DBDs) to destroy and remove these two odor-causing compounds from gas streams via the generation of gas-phase radicals and high-energy electrons is experimentally evaluated with a bench-scale apparatus. Experimental results indicate that the removal efficiencies of both H{sub 2}S and NH{sub 3} with DBD plasmas depend on the gas composition, gas residence time, and applied voltage. Electronegative gases, such as O{sub 2} and H{sub 2}O{sub (g)}, tend to increase the electron attachment and therefore decrease removal efficiencies. Simultaneous removal of H{sub 2}S and NH{sub 3} from gas streams is accomplished with DBD technology. Results of this study indicate DBD is an effective technology for controlling inorganic odor-causing compounds.

  12. By-product Generation through Electrical Discharge in CF3I Gas and its Effect to Insulation Characteristics

    NASA Astrophysics Data System (ADS)

    Takeda, Toshinobu; Matsuoka, Shigeyasu; Kumada, Akiko; Hidaka, Kunihiko

    CF3I gas, which is one of promising SF6 substitutions, is investigated from the view point of by-product generated in gas discharge, since its global warming potential (GWP) is quite low and its insulation performance is equivalent or superior to SF6 gas. The insulation performance of CF3I gas is examined through measuring sparkover voltage in various electric fields and flashover voltage on the surface of insulating material together with analyzing by-products of CF3I gas. Gas chromatography analysis shows that C2F6, C2F4, CHF3, C3F8, C3F6, and C2F5I are generated by the sparkover and the flashover. The sparkover voltage after 1300 times sparkover in uniform electric field is decreased by 11%. The flashover voltage for a virgin insulator in CF3I gas is almost equal to that in SF6 gas. The flashover voltage in CF3I gas is, however, 0.6 times lower than that in SF6 gas, when the number of surface flashover is increased.

  13. Strings of liquid beads for gas-liquid contact operations

    SciTech Connect

    Hattori, Kenji; Ishikawa, Mitsukuni; Mori, Y.H. . Dept. of Mechanical Engineering)

    1994-12-01

    Energy recovery from hot gases exhausted from power plants, garbage incineration facilities, and many industrial processes has been growing due to demands for saving the primary-energy consumption. A novel device for gas-liquid contact operations is proposed to feed a liquid onto wires (or threads) hanging down in a gas stream is proposed. The liquid disintegrates into beads strung on each wire at regular intervals; if the wire is moderately wettable, a thin film forms to sheathe the wire, thereby interconnecting the beads. Since the beads fall down slowly, which possibly renews the film flowing down even more slowly, a sufficient gas-liquid contact time is available even in a contactor with considerably limited height. An approximate calculation method is developed for predicting the variation in the temperature effectiveness for the liquid (the fractional approach of the liquid exit temperature to the gas inlet temperature) with the falling distance, assuming an applicability of strings-of-beads contactors to thermal energy recovery from hot gas streams.

  14. Gas geochemistry of the fumarolic discharges from the Tatun Volcanic Complex (Taiwan)

    NASA Astrophysics Data System (ADS)

    Vaselli, Orlando; Tassi, Franco; Bonini, Marco; Lee, Hsiao-Fen; Yang, Tsanyao Frank; Fiebig, Jens; Song, Sheng-Rong; Nisi, Barbara; Venturi, Stefania

    2016-04-01

    The Tatun Volcanic Complex (TVC), mainly consisting of Pleistocene andesitic and pyroclastic volcanics overlying Miocene sedimentary terrains, is located in the northernmost part of Taiwan. TVC is related to the convergent boundary where the Philippine Sea plate is subducting under the Eurasian plate. This volcanic area is characterized by the Mt. Tatun and at least 20 volcanic domes. Despite its age that would suggest to consider this system as extinct, a large number of hot springs and low magnitude background seismicity occur. In this study, we present and discuss the geochemical and isotopic data acquired in the framework of a bilateral project between the Taiwanese NSC (now MoST) and the Italian CNR aimed to evaluate the equilibrium temperature of the fluid reservoir. Gas geothermometry in the H2-CO-CH4-CO2-H2O system based on the composition of the fumarolic discharges distributed throughout the Tatun volcanic complex are suggesting that the hydrothermal gases are strongly affected by secondary processes at shallow depth, causing a strong scattering of the concentrations of the most redox and temperature-sensitive gas species (H2, CO and CH4). Therefore, a reliable estimation of reservoir temperature using this geochemical tool is unlike. Additionally, the carbon isotopic ratios of CH4 were consistent with those typical of a shallow thermogenic source, thus masking any possible contribution of a deep fluid component. Geothermometric calculations based on the propane-propene ratios, which are affected by secondary processes at a limited extent, seem to indicate relatively high equilibrium temperatures (>300 °C) at redox conditions controlled by the volcanic gas buffer, i.e. the SO2-H2S pair. This implies that the hydrothermal system representing the main fluid source for the fumaroles receives strong inputs of magmatic fluids, as also testified by the occurrence of SO2 at low but significant concentrations in the surface fluids. The contribution derived by a

  15. Prospecting for zones of contaminated ground-water discharge to streams using bottom-sediment gas bubbles

    USGS Publications Warehouse

    Vroblesky, Don A.; Lorah, Michelle M.

    1991-01-01

    Decomposition of organic-rich bottom sediment in a tidal creek in Maryland results in production of gas bubbles in the bottom sediment during summer and fall. In areas where volatile organic contaminants discharge from ground water, through the bottom sediment, and into the creek, part of the volatile contamination diffuses into the gas bubbles and is released to the atmosphere by ebullition. Collection and analysis of gas bubbles for their volatile organic contaminant content indicate that relative concentrations of the volatile organic contaminants in the gas bubbles are substantially higher in areas where the same contaminants occur in the ground water that discharges to the streams. Analyses of the bubbles located an area of previously unknown ground-water contamination. The method developed for this study consisted of disturbing the bottom sediment to release gas bubbles, and then capturing the bubbles in a polyethylene bag at the water-column surface. The captured gas was transferred either into sealable polyethylene bags for immediate analysis with a photoionization detector or by syringe to glass tubes containing wires coated with an activated-carbon adsorbent. Relative concentrations were determined by mass spectral analysis for chloroform and trichloroethylene.

  16. Dissociation degree of nitrogen molecule in low-pressure microwave-discharge nitrogen plasma with various rare-gas admixtures

    NASA Astrophysics Data System (ADS)

    Kuwano, Kei; Nezu, Atsushi; Matsuura, Haruaki; Akatsuka, Hiroshi

    2016-08-01

    The dissociation degree of nitrogen molecules is examined in a microwave discharge nitrogen–rare gas mixture plasma with a total discharge pressure of 1 Torr, by actinometry measurement. Although the spectral line from the excited nitrogen atoms is overlapped by the band spectrum of the N2 first positive system (1PS), the subtraction of the 1PS spectrum fitted theoretically can successfully extract the atomic nitrogen line, which enables actinometry measurement. The nitrogen dissociation degree decreases with increasing mixture ratio of Ar to Kr, whereas it increases with He, which is attributed to the variations in the electron temperature and density. When we dilute the nitrogen with neon, however, we find an anomalous increase in the nitrogen dissociation degree by several orders of magnitude even at a downstream region in the discharge tube. The reason for the dissociation enhancement upon adding neon is discussed in terms of atomic and molecular processes in the plasma.

  17. Operation Characteristics of Dielectric Barrier Discharge for Ignition Enhancement in Supersonic Flow

    NASA Astrophysics Data System (ADS)

    Matsubara, Yoshinori; Okazaki, Megumu; Yamamoto, Takamasa; Takita, Kenichi

    The authors developed a method to produce nonequilibrium plasma by dielectric barrier discharge (DBD) in supersonic flow and investigated the possibility for using it as an ignition enhancement technique in a high speed engine, such as a scramjet engine. The discharge characteristics were investigated by varying applied voltage and the flow Mach number. It was revealed from direct photographs that the discharges got stronger and the volume got larger as flow Mach number increased. Estimated discharge power indicated that nonequilibrium plasma could be generated by considerably small energy in comparison with thermal plasma such as a plasma jet torch, which is a typical thermal plasma. The emissions from several excited molecules and atoms were confirmed by spectroscopic measurement of the plasma. Ignition delay analysis revealed that the effect of ozone (O3) addition to shorten the ignition delay time of mixture is almost equal to those of O or H radicals.

  18. Dynamic gas flow during plasma operation in TMX-U

    SciTech Connect

    Pickles, W.L.; Carter, M.R.; Clower, C.A.; Drake, R.P.; Hunt, A.L.; Simonen, T.C.; Turner, W.C.

    1982-11-12

    Control of the neutral density outside of the plasma radius is essential for proper operation of the various plasma configurations in TMX-U. TMX-U excess-beam, stream-gun, gas-box, and beam-reflux gases are pumped internally in regions defined by 73/sup 0/ Ti-gettered liners and warm Ti-gettered plasma liners. The array of fast and slow ion gauges - a large TMX-U diagnostic - has been used to measure the dynamic pressure in many of the liner-defined regions on three time scales. The natural divertor action, or plasma pump effect, of mirror plasmas has been measured using the ion gauge diagnostics on a fast time scale during operation of TMX-U with ECRH start-up. Routine operation of TMX-U is enhanced by the ability to verify the effectiveness of gettering and to locate leaks using pressure data collected on the two slow time scales. A computer code, DYNAVAC 6, which treats TMX-U as a set of conductance-coupled regions with pumping and sources in each region, has been used to successfully model the overall gas dynamics during all phases of TMX-U operation.

  19. Dynamic gas flow during plasma operation in TMX-U

    SciTech Connect

    Pickles, W.L.; Calderon, M.O.; Carter, M.R.; Clower, C.A.; Drake, R.P.; Hunt, A.L.; Lang, D.; Simonen, T.C.; Turner, W.C.

    1983-04-01

    Control of the neutral density outside of the plasma radius is essential for proper operation of the various plasma configurations in Lawrence Livermore National Laboratory's (LLNL) Tandem Mirror Experiment-Upgrade (TMX-U). TMX-U excess-beam, stream-gun, gas-box, and beam-reflux gases are pumped internally in regions defined by 73/sup 0/ Ti-gettered liners and warm Ti-gettered plasma liners. The array of fast and slow ion gauges: a large TMX-U diagnostic: has been used to measure the dynamic pressure in many of the liner-defined regions on three time scales. The natural divertor action, or plasma pump effect, of mirror plasmas has been measured using the ion gauge diagnostics on a fast time scale during operation of TMX-U with ECRH start up. Routine operation of TMX-U is enhanced by the ability to verify the effectiveness of gettering and to locate leaks using pressure data collected on the two slow time scales. A computer code, dynaVac 6, which treats TMX-U as a set of conductance-coupled regions with pumping and sources in each region, has been used to successfully model the overall gas dynamics during all phases of TMX-U operation.

  20. Hydrogen and Oxygen Gas Monitoring System Design and Operation

    SciTech Connect

    Lee C. Cadwallader; Kevin G. DeWall; J. Stephen Herring

    2007-06-01

    This paper describes pertinent design practices of selecting types of monitors, monitor unit placement, setpoint selection, and maintenance considerations for gas monitors. While hydrogen gas monitors and enriched oxygen atmosphere monitors as they would be needed for hydrogen production experiments are the primary focus of this paper, monitors for carbon monoxide and carbon dioxide are also discussed. The experiences of designing, installing, and calibrating gas monitors for a laboratory where experiments in support of the DOE Nuclear Hydrogen Initiative (NHI) are described along with codes, standards, and regulations for these monitors. Information from the literature about best operating practices is also presented. The NHI program has two types of activities. The first, near-term activity is laboratory and pilot-plant experimentation with different processes in the kilogram per day scale to select the most promising types of processes for future applications of hydrogen production. Prudent design calls for indoor gas monitors to sense any hydrogen leaks within these laboratory rooms. The second, longer-term activity is the prototype, or large-scale plants to produce tons of hydrogen per day. These large, outdoor production plants will require area (or “fencepost”) monitoring of hydrogen gas leaks. Some processes will have oxygen production with hydrogen production, and any oxygen releases are also safety concerns since oxygen gas is the strongest oxidizer. Monitoring of these gases is important for personnel safety of both indoor and outdoor experiments. There is some guidance available about proper placement of monitors. The fixed point, stationary monitor can only function if the intruding gas contacts the monitor. Therefore, monitor placement is vital to proper monitoring of the room or area. Factors in sensor location selection include: indoor or outdoor site, the location and nature of potential vapor/gas sources, chemical and physical data of the

  1. Pulsed nanosecond discharge in air at high specific deposited energy: fast gas heating and active particle production

    NASA Astrophysics Data System (ADS)

    Popov, N. A.

    2016-08-01

    The results of a numerical study on kinetic processes initiated by a pulsed nanosecond discharge in air at high specific deposited energy, when the dissociation degree of oxygen molecules is high, are presented. The calculations of the temporal dynamics of the electron concentration, density of atomic oxygen, vibrational distribution function of nitrogen molecules, and gas temperature agree with the experimental data. It is shown that quenching of electronically excited states of nitrogen N2(B3Πg), N2(С3Πu), N2(a‧1 Σ \\text{u}- ) by oxygen molecules leads to the dissociation of O2. This conclusion is based on the comparison of calculated dynamics of atomic oxygen in air, excited by a pulsed nanosecond discharge, with experimental data. In air plasma at a high dissociation degree of oxygen molecules ([O]/[O2]  >  10%), relaxation of the electronic energy of atoms and molecules in reactions with O atoms becomes extremely important. Active production of NO molecules and fast gas heating in the discharge plasma due to the quenching of electronically excited N2(B3Πg, C3Πu, a‧1 Σ \\text{u}- ) molecules by oxygen atoms is notable. Owing to the high O atom density, electrons are effectively detached from negative ions in the discharge afterglow. As a result, the decay of plasma in the afterglow is determined by electron–ion recombination, and the electron density remains relatively high between the pulses. An increase in the vibrational temperature of nitrogen molecules at the periphery of the plasma channel at time delay t  =  1–30 μs after the discharge is obtained. This is due to intense gas heating and, as a result, gas-dynamic expansion of a hot gas channel. Vibrationally excited N2(v) molecules produced near the discharge axis move from the axial region to the periphery. Consequently, at the periphery the vibrational temperature of nitrogen molecules is increased.

  2. Field testing the Raman gas composition sensor for gas turbine operation

    SciTech Connect

    Buric, M.; Chorpening, B.; Mullem, J.; Ranalli, J.; Woodruff, S.

    2012-01-01

    A gas composition sensor based on Raman spectroscopy using reflective metal lined capillary waveguides is tested under field conditions for feed-forward applications in gas turbine control. The capillary waveguide enables effective use of low powered lasers and rapid composition determination, for computation of required parameters to pre-adjust burner control based on incoming fuel. Tests on high pressure fuel streams show sub-second time response and better than one percent accuracy on natural gas fuel mixtures. Fuel composition and Wobbe constant values are provided at one second intervals or faster. The sensor, designed and constructed at NETL, is packaged for Class I Division 2 operations typical of gas turbine environments, and samples gas at up to 800 psig. Simultaneous determination of the hydrocarbons methane, ethane, and propane plus CO, CO2, H2O, H2, N2, and O2 are realized. The capillary waveguide permits use of miniature spectrometers and laser power of less than 100 mW. The capillary dimensions of 1 m length and 300 μm ID also enable a full sample exchange in 0.4 s or less at 5 psig pressure differential, which allows a fast response to changes in sample composition. Sensor operation under field operation conditions will be reported.

  3. Investigations of Biofilm-Forming Bacterial Cells by Atomic Force Microscopy Prior to and Following Treatment from Gas Discharge Plasmas

    NASA Astrophysics Data System (ADS)

    Vandervoort, K. G.; Joaquin, J. C.; Kwan, C.; Bray, J. D.; Torrico, R.; Abramzon, N.; Brelles-Marino, G.

    2007-03-01

    We present investigations of biofilm-forming bacteria before and after treatment from gas discharge plasmas. Gas discharge plasmas represent a way to inactivate bacteria under conditions where conventional disinfection methods are often ineffective. These conditions involve bacteria in biofilm communities, where cooperative interactions between cells make organisms less susceptible to standard killing methods. Rhizobium gallicum and Chromobacterium violaceum were imaged before and after plasma treatment using an atomic force microscope (AFM). In addition, cell wall elasticity was studied by measuring force distance curves as the AFM tip was pressed into the cell surface. Results for cell surface morphology and micromechanical properties for plasma treatments lasting from 5 to 60 minutes were obtained and will be presented.

  4. Pulsed electron-beam sustained discharge CO laser on oxygen-containing gas mixtures

    SciTech Connect

    Ionin, A A; Klimachev, Yu M; Kozlov, A Yu; Kotkov, A A; Seleznev, L V

    2008-02-28

    It is shown that the addition of molecular oxygen to the working mixture of a pulsed electron-beam sustained-discharge (EBSD) laser CO amplifier leads to the increase in the small-signal gain (SSG) at the fundamental vibrational v+1{yields}v transitions in a CO molecule for v=6-13, which is explained by the increase in the population of vibrational levels. In this case, the temporal parameters of the dynamics decrease at all probed transitions. Variations observed in the SSG dynamics are explained by analysing the kinetic processes of vibrational-vibrational exchange between molecules. The study of lasing parameters of a pulsed CO laser showed that the threshold energy input decreased with increasing the oxygen content in the working mixture. It is found that the CO laser efficiency at fundamental transitions increases with the addition of oxygen, the maximum efficiency being achieved at lower energy inputs. It is shown that the pulsed EBSD CO laser can operate on the air working mixture both at the fundamental transitions and the first vibrational overtone transitions v+2{yields}v. (lasers. amplifiers)

  5. Two-dimensional simulation of the development of an inhomogeneous volume discharge in a Ne/Xe/HCl gas mixture

    SciTech Connect

    Bychkov, Yu. I. Yampolskaya, S. A.; Yastremskii, A. G.

    2013-05-15

    The kinetic processes accompanying plasma column formation in an inhomogeneous discharge in a Ne/Xe/HCl gas mixture at a pressure of 4 atm were investigated by using a two-dimensional model. Two cathode spots spaced by 0.7 cm were initiated by distorting the cathode surface at local points, which resulted in an increase in the field strength in the cathode region. Three regimes differing in the charging voltage, electric circuit inductance, and electric field strength at the local cathode points were considered. The spatiotemporal distributions of the discharge current; the electron density; and the densities of excited xenon atoms, HCl(v = 0) molecules in the ground state, and HCl(v > 0) molecules in vibrational levels were calculated. The development of the discharge with increasing the electron density from 10{sup 4} to 10{sup 16} cm{sup -3} was analyzed, and three characteristic stages in the evolution of the current distribution were demonstrated. The width of the plasma column was found to depend on the energy deposited in the discharge. The width of the plasma column was found to decrease in inverse proportion to the deposited energy due to spatiotemporal variations in the rates of electron production and loss. The calculated dependences of the cross-sectional area of the plasma column on the energy deposited in the discharge agree with the experimental results.

  6. An atmospheric air gas-liquid diffuse discharge excited by bipolar nanosecond pulse in quartz container used for water sterilization

    NASA Astrophysics Data System (ADS)

    Wang, Sen; Yang, De-Zheng; Wang, Wen-Chun; Zhang, Shuai; Liu, Zhi-Jie; Tang, Kai; Song, Ying

    2013-12-01

    In this Letter, we report that the air gas-liquid diffuse discharge plasma excited by bipolar nanosecond pulse in quartz container with different bottom structures at atmospheric pressure. Optical diagnostic measurements show that bountiful chemically and biologically active species, which are beneficial for effective sterilization in some areas, are produced. Such diffuse plasmas are then used to treat drinking water containing the common microorganisms (Candida albicans and Escherichia coli). It is found that these plasmas can sterilize the microorganisms efficiently.

  7. Operating the LCLS Gas Attenuator and Gas Detector System with Apertures of 6mm Diameter

    SciTech Connect

    Ryutov, D.D.; Bionta, R.M.; Hau-Riege, S.P.; Kishiyama, K.I.; Roeben, M.D.; Shen, S.; Stefan, P.M.; /SLAC

    2010-11-17

    The possibility of increasing the apertures of the LCLS gas attenuator/gas detector system is considered. It is shown that increase of the apertures from 3 to 6 mm, together with 4-fold reduction of the operation pressure does not adversely affect the vacuum conditions upstream or downstream. No change of the pump speed and the lengths of the differential pumping cells is required. One minor modification is the use of 1.5 cm long tubular apertures in the end cells of the differential pumping system. Reduction of the pressure does not affect performance of the gas attenuator/gas detector system at the FEL energies below, roughly, 2 keV. Some minor performance degradation occurs at higher energies.

  8. Dependence of Ozone Generation on Gas Temperature Distribution in AC Atmospheric Pressure Dielectric Barrier Discharge in Oxygen

    NASA Astrophysics Data System (ADS)

    Takahashi, Go; Akashi, Haruaki

    AC atmospheric pressure multi-filament dielectric barrier discharge in oxygen has been simulated using two dimensional fluid model. In the discharge, three kinds of streamers have been obtained. They are primary streamers, small scale streamers and secondary streamers. The primary streamers are main streamers in the discharge and the small scale streamers are formed after the ceasing of the primary streamers. And the secondary streamers are formed on the trace of the primary streamers. In these streamers, the primary and the small scale streamers are very effective to generate O(3P) oxygen atoms which are precursor of ozone. And the ozone is generated mainly in the vicinity of the dielectrics. In high gas temperature region, ozone generation decreases in general. However, increase of the O(3P) oxygen atom density in high gas temperature region compensates decrease of ozone generation rate coefficient. As a result, amount of ozone generation has not changed. But if the effect of gas temperature was neglected, amount of ozone generation increases 10%.

  9. Operating method for gas turbine with variable inlet vanes

    SciTech Connect

    Morishita, Susumu; Miyake, Yoshiyaki; Uchida, Seishi.

    1993-07-06

    A method is described of operating a gas turbine engine having a centrifugal compressor which is driven by a high-pressure turbine, and wherein the centrifugal compressor is the only compressor of the engine, comprising the steps of: positioning a variable inlet guide vane at an inlet air passage of the centrifugal compressor for adjusting the air flow rate through the engine; and changing the orientation of the guide vane while keeping the speed of rotation of the engine at a high level near its rated value to control the output of the engine by controlling the air flow rate through the engine.

  10. Pilot plant for flue gas treatment-continuous operation tests

    NASA Astrophysics Data System (ADS)

    Chmielewski, A. G.; Tymiński, B.; Licki, J.; Iller, E.; Zimek, Z.; Radzio, B.

    1995-09-01

    Tests of continous operation have been performed on pilot plant at EPS Kawęczyn in the wide range of SO2 concentration (500-3000 ppm).The bag filter has been applied for aerosol separation. The high efficiences of SO2 and NOX removal, approximately 90% were obtained and influenced by such process parameters as: dose, gas temperature and ammonia stoichiometry. The main apparatus of the pilot plant (e.g. both accelerators) have proved their reliability in hard industrial conditions.

  11. Effect of enhanced leachate recirculated (ELR) landfill operation and gas extraction on greenhouse gas emissions

    NASA Astrophysics Data System (ADS)

    Samir, Sonia

    The bioreactor/ enhanced leachate recirculated (ELR) landfill operation with the addition of moisture/ leachate to the landfill, accelerate the process of landfill waste decomposition; and increase the generation of LFG over a shorter period of time. Since emissions from the landfills are directly related to the gas generation, the increase in gas generation might also increase the emission from the landfill. On the contrary, the presence of gas extraction is suggested to mitigate the fugitive emissions from the landfills. Therefore, the motivation of the current study was to evaluate the effect of ELR operation as well as the gas extraction on the greenhouse gas emissions from the landfill. The current study was conducted in the City of Denton Landfill, Texas. Methane emission was investigated using a portable FID and static flux chamber technique from the landfill surface. Emission was measured from an ELR operated cell (cell 2) as well as a conventional cell (cell 0) in the City of Denton Landfill. Methane emission for cell 2 varied from 9544.3 ppm to 0 ppm while for cell 0, it varied from 0 ppm to 47 ppm. High spatial variations were observed during monitoring from both cells 0 and cell 2 which could be recognized as the variation of gas generation below the cover soil. The comparison between emissions from the slope and surface of the landfill showed that more methane emission occurred from the slopes than the top surface. In addition, the average landfill emission showed an increasing trend with increase in temperature and decreasing trend with increasing precipitation. The effect of ELR operation near the recirculation pipes showed a lag period between the recirculation and the maximum emission near the pipe. The emission near the pipe decreased after 1 day of recirculation and after the initial decrease, the emission started to increase and continued to increase up to 7 days after the recirculation. However, approximately after 10 days of recirculation, the

  12. 46 CFR 153.966 - Discharge by liquid displacement.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Discharge by liquid displacement. 153.966 Section 153... SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Operations Cargo Transfer Procedures § 153.966 Discharge by liquid displacement. The person in charge of cargo transfer...

  13. 46 CFR 153.966 - Discharge by liquid displacement.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Discharge by liquid displacement. 153.966 Section 153... SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Operations Cargo Transfer Procedures § 153.966 Discharge by liquid displacement. The person in charge of cargo transfer...

  14. 46 CFR 153.966 - Discharge by liquid displacement.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Discharge by liquid displacement. 153.966 Section 153... SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Operations Cargo Transfer Procedures § 153.966 Discharge by liquid displacement. The person in charge of cargo transfer...

  15. 46 CFR 153.966 - Discharge by liquid displacement.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Discharge by liquid displacement. 153.966 Section 153... SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Operations Cargo Transfer Procedures § 153.966 Discharge by liquid displacement. The person in charge of cargo transfer...

  16. 46 CFR 153.966 - Discharge by liquid displacement.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Discharge by liquid displacement. 153.966 Section 153... SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Operations Cargo Transfer Procedures § 153.966 Discharge by liquid displacement. The person in charge of cargo transfer...

  17. Two-electrode gas switch with electrodynamical acceleration of a discharge channel

    NASA Astrophysics Data System (ADS)

    Kovalchuk, B. M.; Kharlov, A. V.; Kumpyak, E. V.; Tsoy, N. V.

    2015-12-01

    High-energy switches and trigger generators are required for MJ-level capacitor banks. We have developed a compact gas switch and a matched series injection trigger generator. A series inductance is required for isolation of the trigger pulse from the surrounded circuit. A saturable inductor is employed here because low inductance is needed after the switch breakdown. The switch is of coaxial two-electrode design with electrodynamic acceleration of a spark channel. The switch operates at atmospheric pressure. The spark gap can be triggered reliably down to zero voltage (at 50 kV self-breakdown voltage) with less than 35 ns timing jitter. Energy losses in this spark gap have been accurately investigated. The main results are as follows: energy losses in the switch do not exceed 4% at voltages higher than 15 kV, i.e., when operation voltage exceeds ˜36% of the self-breakdown voltage. The spark gap is designed for 24 kV charging voltage, at a current up to 250 kA, and ˜70 C charge transfer. In this paper, we present a design for the spark gap, inductor and trigger generator. Test bed schematics and results of the tests are also described.

  18. Operating modes of a hydrogen ion source based on a hollow-cathode pulsed Penning discharge

    NASA Astrophysics Data System (ADS)

    Oks, E. M.; Shandrikov, M. V.; Vizir, A. V.

    2016-02-01

    An ion source based on a hollow-cathode Penning discharge was switched to a high-current pulsed mode (tens of amperes and tens of microseconds) to produce an intense hydrogen ion beam. With molecular hydrogen (H2), the ion beam contained three species: H+, H2+, and H3+. For all experimental conditions, the fraction of H2+ ions in the beam was about 10 ÷ 15% of the total ion beam current and varied little with ion source parameters. At the same time, the ratio of H+ and H3+ depended strongly on the discharge current, particularly on its distribution in the gap between the hollow and planar cathodes. Increasing the discharge current increased the H+ fraction in ion beam. The maximum fraction of H+ reached 80% of the total ion beam current. Forced redistribution of the discharge current in the cathode gap for increasing the hollow cathode current could greatly increase the H3+ fraction in the beam. At optimum parameters, the fraction of H3+ ions reached 60% of the total ion beam current.

  19. Study of a contracted glow in low-frequency plasma-jet discharges operating with argon

    SciTech Connect

    Minotti, F.; Giuliani, L.; Xaubet, M.; Grondona, D.

    2015-11-15

    In this work, we present an experimental and theoretical study of a low frequency, atmospheric plasma-jet discharge in argon. The discharge has the characteristics of a contracted glow with a current channel of submillimeter diameter and a relatively high voltage cathode layer. In order to interpret the measurements, we consider the separate modeling of each region of the discharge: main channel and cathode layer, which must then be properly matched together. The main current channel was modeled, extending a previous work, as similar to an arc in which joule heating is balanced by lateral heat conduction, without thermal equilibrium between electrons and heavy species. The cathode layer model, on the other hand, includes the emission of secondary electrons by ion impact and by additional mechanisms, of which we considered emission due to collision of atoms excited at metastable levels, and field-enhanced thermionic emission (Schottky effect). The comparison of model and experiment indicates that the discharge can be effectively sustained in its contracted form by the secondary electrons emitted by collision of excited argon atoms, whereas thermionic emission is by far insufficient to provide the necessary electrons.

  20. Study of a contracted glow in low-frequency plasma-jet discharges operating with argon

    NASA Astrophysics Data System (ADS)

    Minotti, F.; Giuliani, L.; Xaubet, M.; Grondona, D.

    2015-11-01

    In this work, we present an experimental and theoretical study of a low frequency, atmospheric plasma-jet discharge in argon. The discharge has the characteristics of a contracted glow with a current channel of submillimeter diameter and a relatively high voltage cathode layer. In order to interpret the measurements, we consider the separate modeling of each region of the discharge: main channel and cathode layer, which must then be properly matched together. The main current channel was modeled, extending a previous work, as similar to an arc in which joule heating is balanced by lateral heat conduction, without thermal equilibrium between electrons and heavy species. The cathode layer model, on the other hand, includes the emission of secondary electrons by ion impact and by additional mechanisms, of which we considered emission due to collision of atoms excited at metastable levels, and field-enhanced thermionic emission (Schottky effect). The comparison of model and experiment indicates that the discharge can be effectively sustained in its contracted form by the secondary electrons emitted by collision of excited argon atoms, whereas thermionic emission is by far insufficient to provide the necessary electrons.

  1. 76 FR 78599 - National Pollutant Discharge Elimination System (NPDES) Concentrated Animal Feeding Operation...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-19

    ..., 2011 (76 FR 65431) (FRL-9481-7) EPA published a proposed rule entitled, National Pollutant Discharge.... Copies of the proposal are available on EPA's Web site at http://www.epa.gov/npdes/regulations/cafo_fr...-54,999........ Less than 16,500. Laying hens or broilers (liquid 30,000 or more..........

  2. Plasma-Assisted Chemical Vapor Deposition of Titanium Oxide Films by Dielectric Barrier Discharge in TiCl4/O2/N2 Gas Mixtures

    NASA Astrophysics Data System (ADS)

    Niu, Jinhai; Zhang, Zhihui; Fan, Hongyu; Yang, Qi; Liu, Dongping; Qiu, Jieshan

    2014-07-01

    Low-pressure dielectric barrier discharge (DBD) TiCl4/O2 and N2 plasmas have been used to deposit titanium oxide films at different power supply driving frequencies. A homemade large area low pressure DBD reactor was applied, characterized by the simplicity of the experimental set-up and a low consumption of feed gas and electric power, as well as being easy to operate. Atomic force microscopy, scanning electron microscopy, energy dispersive spectroscopy, and contact angle measurements have been used to characterize the deposited films. Experimental results show all deposited films are uniform and hydrophilic with a contact angle of about 15°. Compared to titanium oxide films deposited in TiCl4/O2 gas mixtures, those in TiCl4/O2/N2 gas mixtures are much more stable. The contact angle of titanium oxide films in TiCl4/O2/N2 gas mixtures with the addition of 50% N2 and 20% TiCl4 is still smaller than 20°, while that of undoped titanium oxide films is larger than 64° when they are measured after one week. The low-pressure TiCl4/O2 plasmas consist of pulsed glow-like discharges with peak widths of several microseconds, which leads to the uniform deposition of titanium oxide films. Increasing a film thickness over several hundreds of nm leads to the film's fragmentation due to the over-high film stress. Optical emission spectra (OES) of TiCl4/O2 DBD plasmas at various power supply driving frequencies are presented.

  3. Discharge processes of UV pre-ionized electric-discharge pulsed DF laser

    NASA Astrophysics Data System (ADS)

    Pan, Qikun; Xie, Jijiang; Shao, Chunlei; Wang, Chunrui; Shao, Mingzhen; Guo, Jin

    2016-03-01

    The discharge processes of ultraviolet (UV) pre-ionized electric-discharge pulsed DF laser operating with a SF6-D2 gas mixture are studied. A mathematical model based on continuity equation of electrons and Kirchhoff equations for discharge circuit is established to describe the discharge processes. Voltage and current waveforms of main discharge and voltage waveforms of pre-ionization are solved numerically utilizing the model. The calculations correctly display some physical processes, such as the delay time between pre-ionization and main discharge, breakdown of the main electrode and self-sustained volume discharge (SSVD). The results of theory are consistent with the experiments, which are performed in our non-chain pulsed DF laser. Then the delay inductance and peak capacitance are researched to analyze their influences on discharge processes, and the circuit parameters of DF laser are given which is useful to improve the discharge stability.

  4. Laser Wakefield Structures and Electron Acceleration in Gas Jet and Capillary Discharge Plasmas

    NASA Astrophysics Data System (ADS)

    Maksimchuk, Anatoly

    2007-11-01

    Laser-driven plasma wakefield accelerators have the potential to become the next generation of particle accelerators because of the very high acceleration gradients. The beam quality from such accelerators depends critically on the details plasma wave spatial structures. In experiments at the University of Michigan it was possible in a single shot by frequency domain holography (FDH) to visualize individual plasma waves produced by the 40 TW, 30 fs Hercules laser focused to the intensity of 10^19 W/cm^2 onto a supersonic He gas jet [1]. These holographic ``snapshots'' capture the evolution of multiple wake periods, and resolve wavefront curvature seen previously only in simulations. High-energy quasi-monoenergetic electron beams for plasma density in the specific range 1.5x10^19<=ne<=3.5x10^19 cm-3 were generated [2]. The experiments show that the energy, charge, divergence and pointing stability of the beam can be controlled by changing ne, and that higher electron energies and more stable beams are produced for lower densities. An optimized quasi-monoenergetic beam of over 300 MeV and 10 mrad angular divergence is demonstrated at a plasma density of ne=1.5x10^19 cm-3. The resulted relativistic electron beams have been used to perform gamma-neutron activation of ^12C and ^63Cu and photo-fission of ^238U with a record high reaction yields of ˜5x10^5/Joule [3]. Experiments performed with ablative capillary discharge plasma demonstrate stable guiding for laser power up to 10 TW with the transmission of 50% and guided intensity of ˜10^17 W/cm^2. Study of the staged electron acceleration have been performed which uses ablated plasma in front of the capillary to inject electrons into the wakefield structures. [1] N. H. Matlis et. al., Nature Physics 2, 749 (2006). [2] A. Maksimchuk et. al., Journal de Physique IV 133, 1123 (2006). [3] S. A. Reed et. al., Appl. Phys. Lett. 89, 231107 (2006).

  5. Influence of gas temperature on self-sustained volume discharge characteristics in working mixtures of a repetitively pulsed COIL

    SciTech Connect

    Aksinin, V I; Kazantsev, S Yu; Kononov, I G; Podlesnykh, S V; Firsov, K N; Antsiferov, S A; Velikanov, S D; Kalinovskii, V V; Konovalov, V V; Mikhalkin, V N; Sevryugin, I V

    2014-02-28

    The influence of gas temperature on the characteristics of a self-sustained volume discharge was studied in the working mixtures of a chemical oxygen – iodine laser with pulsed electricdischarge production of iodine atoms. In experiments, laser working mixtures were modelled by the mixture of air and iodide C{sub 2}H{sub 5}I. It was established that mixture heating is accompanied by an increase in the voltage across the discharge plasma and by a decrease in the discharge current. By varying the temperature of the mixture with the iodine content of ∼2.7% and initial pressure p=12 Torr from 22 °C to 96 °C, the current amplitude falls by ∼12%, and at the instant corresponding to a maximal current the voltage raises by ∼22%. Such a change in the discharge characteristics is explained by a higher rate of electron attachment to vibrationally excited iodide molecules at elevated temperatures. (active media)

  6. Model of a surface-wave discharge at atmospheric pressure with a fixed profile of the gas temperature

    NASA Astrophysics Data System (ADS)

    Nikovski, M.; Kiss'ovski, Zh; Tatarova, E.

    2016-03-01

    We present a 3D model of a surface-wave-sustained discharge at 2.45 GHz at atmospheric pressure. A small plasma source creates a plasma column in a dielectric tube and a plasma torch is observed above the top. The plasma parameters and the axial profile of the gas temperature are significantly changed in the presence of the substrate above the plasma torch. The Boltzmann equation for electrons under the local approximation is solved, together with the heavy particle balance equations at a fixed axial profile of the gas temperature. The model of this finite length plasma column includes also the dispersion relation of azimuthally-symmetric surface waves. A detailed collisional-radiative model is also implemented for argon discharge at atmospheric pressure, which includes 21 rate balance equations for excited Ar atoms [(Ar(1s5-1s2), Ar(2p10-2p1), Ar(2s3d), Ar(3p)], for positive Ar+ and Ar2 + ions and for excited molecules. The changes in the EEDF shape and the mean electron energy along the plasma column are investigated and the axial structures of the discharge and plasma parameters are obtained.

  7. Landau Damping and Anomalous Skin Effect in Low-pressure Gas Discharges: Self-consistent Treatment of Collisionless Heating

    SciTech Connect

    Igor D. Kaganovich; Oleg V. Polomarov; Constantine E. Theodosiou

    2004-01-30

    In low-pressure discharges, where the electron mean free path is larger or comparable with the discharge length, the electron dynamics is essentially nonlocal. Moreover, the electron energy distribution function (EEDF) deviates considerably from a Maxwellian. Therefore, an accurate kinetic description of the low-pressure discharges requires knowledge of the nonlocal conductivity operator and calculation of the non-Maxwellian EEDF. The previous treatments made use of simplifying assumptions: a uniform density profile and a Maxwellian EEDF. In the present study a self-consistent system of equations for the kinetic description of nonlocal, nonuniform, nearly collisionless plasmas of low-pressure discharges is reported. It consists of the nonlocal conductivity operator and the averaged kinetic equation for calculation of the non-Maxwellian EEDF. This system was applied to the calculation of collisionless heating in capacitively and inductively coupled plasmas. In particular, the importance of accounting for the nonuniform plasma density profile for computing the current density profile and the EEDF is demonstrated. The enhancement of collisionless heating due to the bounce resonance between the electron motion in the potential well and the external radio-frequency electric field is investigated. It is shown that a nonlinear and self-consistent treatment is necessary for the correct description of collisionless heating.

  8. The measurement of electron number density in helium micro hollow gas discharge using asymmetric He I lines

    NASA Astrophysics Data System (ADS)

    Jovović, J.; Šišović, N. M.

    2015-09-01

    The electron number density N e in helium micro hollow gas discharge (MHGD) is measured by means of optical emission spectroscopy (OES) techniques. The structure of MHGD is a gold-alumina-gold sandwich with 250 μm alumina thickness and 100 μm diameter hole. The electron temperature T e and gas temperature T g in the discharge is determined using the relative intensity of He I lines and {{\\text{N}}2}+≤ft({{\\text{B}}2}Σ\\text{u}+- {{X}2}Σ\\text{g}+\\right) R branch lines in the frame of BP technique, respectively. The simple procedure based on spectral line broadening theory was developed in MATLAB to generate synthetic neutral line asymmetric profiles. The synthetic profiles were compared with an experimental He I 447.1 nm and He I 492.2 nm line to obtain N e from the centre of a micro hollow gas discharge (MHGD) source in helium. The N e results were compared with N e values obtained from the forbidden-to-allowed (F/A) intensity ratio technique. The comparison confirmed higher N e determined using a F/A ratio due to large uncertainty of the method. Applying the fitting formula for a He I 492.2 nm line derived from computer simulation (CS) gives the same N e values as the one determined using the MATLAB procedure in this study. The dependence of N e on gas pressure and electric current is investigated as well.

  9. Nitriding molybdenum: Effects of duration and fill gas pressure when using 100-Hz pulse DC discharge technique

    NASA Astrophysics Data System (ADS)

    Ikhlaq, U.; R., Ahmad; Shafiq, M.; Saleem, S.; S. Shah, M.; Hussain, T.; A. Khan, I.; K., Abbas; S. Abbas, M.

    2014-10-01

    Molybdenum is nitrided by a 100-Hz pulsed DC glow discharge technique for various time durations and fill gas pressures to study the effects on the surface properties of molybdenum. X-ray diffractometry (XRD), scanning electron microscopy (SEM), and atomic force microscopy (AFM) are used for the structural and morphological analysis of the nitrided layers. Vickers' microhardness tester is utilized to investigate surface microhardness. Phase analysis shows the formation of more molybdenum nitride molecules for longer nitriding durations at fill gas pressures of 2 mbar and 3 mbar (1 bar = 105 Pa). A considerable increase in surface microhardness (approximately by a factor of 2) is observed for longer duration (10 h) and 2-mbar pressure. Longer duration (10 h) and 2-mbar fill gas pressure favors the formation of homogeneous, smooth, hard layers by the incorporation of more nitrogen.

  10. Discharge dynamics and plasma density recovery by on/off switches of additional gas

    NASA Astrophysics Data System (ADS)

    Lee, Hyo-Chang; Kwon, Deuk-Chul; Oh, SeungJu; Kang, Hyun-Ju; Kim, Yu-Sin; Chung, Chin-Wook

    2016-06-01

    Measurement of the plasma density is investigated to study plasma dynamics by adding reactive gas (O2) or rare gas (He) in Ar plasmas. When the O2 or He gas is added, plasma density is suddenly decreased, while the plasma density recovers slowly with gas off. It is found that the recovery time is strongly dependent on the gas flow rate, and it can be explained by effect of gas residence time. When the He gas is off in the Ar plasma, the plasma density is overshot compared to the case of the O2 gas pulsing due to enhanced ionizations by metastable atoms. Analysis and calculation for correlation between the plasma density dynamics and the gas pulsing are also presented in detail.

  11. Stabilization of electrohydrodynamic jets by gas discharges and applications to printing

    NASA Astrophysics Data System (ADS)

    Korkut, Sibel

    From integrated circuits to DNA hybridization micro arrays, many areas of research require flexible and reliable, high resolution surface patterning tools. A new surface patterning technique, electrohydrodynamic printing (EHDP) [1] provides high resolution and speed at the same time, which was not attainable with the existing direct surface patterning techniques. Stability of electrohydrodynamic (EHD) jets determines the accuracy of deployment in EHD printing [1-3]; therefore, understanding non-axisymmetric instability of the jet, which is caused by the surface charges, is crucial to successful operation. In this thesis, fast imaging and image analysis techniques are used to determine non-axisymmetric disturbance growth rates experimentally. Comparison of experimental instability growth rates with the theoretical estimations based on total current reveals a big discrepancy. It is also found that instability growth rates decrease and stability of EHD filaments is enhanced either by decreasing the electrode separation or by changing the surrounding gas. After considering all possible mechanisms, it is concluded that the main reason for stabilization is the increased ionization of the surrounding gas. Gas ionization results in partial neutralization of surface charges on the filament by the oppositely charged ions in the gas phase and stabilizes the jet. A new current balance including the charge transfer through the gas is developed to estimate the charge density left on the filament. Experimental and theoretical instability growth rates agree much better when the estimated charge density is used for the instability growth rate calculations. The second part of the thesis focuses on pattern formation on the surfaces. The final pattern produced with a colloidal suspension by EHDP depends on not only the stability of the jet but also the dynamics of the suspension and the stability of printed lines after the deployment. Rivulet instability, which causes deployed

  12. Dielectric barrier discharge-based plasma actuator operation in artificial atmospheres for validation of modeling and simulation

    NASA Astrophysics Data System (ADS)

    Mangina, R. S.; Enloe, C. L.; Font, G. I.

    2015-11-01

    We present an experimental case study of time-resolved force production by an aerodynamic plasma actuator immersed in various mixtures of electropositive (N2) and electronegative gases (O2 and SF6) at atmospheric pressure using a fixed AC high-voltage input of 16 kV peak amplitude at 200 Hz frequency. We have observed distinct changes in the discharge structures during both negative- and positive-going voltage half-cycles, with corresponding variations in the actuator's force production: a ratio of 4:1 in the impulse produced by the negative-going half-cycle of the discharge among the various gas mixtures we explored, 2:1 in the impulse produced by the positive-going half-cycle, and cases in which the negative-going half-cycle dominates force production (by a ratio of 1.5:1), where the half-cycles produce identical force levels, and where the positive-going half cycle dominates (by a ratio of 1:5). We also present time-resolved experimental evidence for the first time that shows electrons do play a significant role in the momentum coupling to surrounding neutrals during the negative going voltage half-cycle of the N2 discharge. We show that there is sufficient macroscopic variation in the plasma that the predictions of numerical models at the microscopic level can be validated even though the plasma itself cannot be measured directly on those spatial and temporal scales.

  13. Assessment of economic impact of offshore and coastal discharge requirements on present and future operations in the Gulf of Mexico. Final report

    SciTech Connect

    Lindsey, R.

    1996-06-01

    The high potential costs of compliance associated with new effluent guidelines for offshore and coastal oil and gas operations could significantly affect the economics of finding, developing, and producing oil and gas in the Gulf of Mexico. This report characterizes the potential economic impacts of alternative treatment and discharge regulations for produced water on reserves and production in Gulf of Mexico coastal, territorial and outer continental shelf (OCS) waters, quantifying the impacts of both recent regulatory changes and possible more stringent requirements. The treatment technologies capable of meeting these requirements are characterized in terms of cost, performance, and applicability to coastal and offshore situations. As part of this analysis, an extensive database was constructed that includes oil and gas production forecasts by field, data on existing platforms, and the current treatment methods in place for produced water treatment and disposal on offshore facilities. This work provides the first comprehensive evaluation of the impacts of alternative regulatory requirements for produced water management and disposal in coastal and offshore areas of the Gulf of Mexico.

  14. High frequency excitation waveform for efficient operation of a xenon excimer dielectric barrier discharge lamp

    NASA Astrophysics Data System (ADS)

    Beleznai, Sz; Mihajlik, G.; Maros, I.; Balázs, L.; Richter, P.

    2010-01-01

    The application of a high frequency (~2.5 MHz) burst (amplitude-modulated sinusoidal) excitation voltage waveform is investigated for driving a fluorescent dielectric barrier discharge (DBD) light source. The excitation waveform presents a novel method for generating spatially stable homogeneous Xe DBD possessing a high conversion efficiency from electrical energy to VUV Xe_{2}^{\\ast} excimer radiation (~172 nm), even at a significantly higher electrical energy deposition than realized by pulsed excitation. Simulation and experimental results predict discharge efficiencies around 60%. Lamp efficacy above 74 lm W-1 has been achieved. VUV emission and loss mechanisms are investigated extensively and the performance of burst and pulsed waveforms is compared both theoretically and experimentally.

  15. Materials testing in a gas turbine operating on coal-derived gas. Final report

    SciTech Connect

    White, R.J.; Lyell, G.D.

    1992-11-01

    An aero derived gas turbine engine, the Olympus SK30 ran for 1166 hours on coal derived (slagger) gas at the British Gas site at Westfield, Fife, Scotland. Slagger gas is low in calorific value and high in sulphur content. A ``rainbow`` HP turbine assembly, with a range of corrosion protective overlay coatings on both the vanes and blades was installed to evaluate the protection offered by the various coatings against the highly sulphurous slagger gas. A detailed metallurgical inspection was carried out on a random selection of the coated vanes and blades. None of the components examined showed evidence of any serious erosion. It was concluded that the operating time was too short to cause extensive damage to the coatings. However, the various coatings showed different degrees of degradation and may be ranked as follows: 1. Platinum Aluminide, LDC-2E, 2. Platinum Aluminide, RT22A, 3. Pack Aluminide, 4. EB-PVD* Coating Co-29Cr-5Al-O.34Y, GT-29, 5. EB-PVD* Coating Co-23Cr-lOA1-0.34Y, BC-21 Electron Beam-Plasma Vapour Deposit.

  16. Materials testing in a gas turbine operating on coal-derived gas

    SciTech Connect

    White, R.J.; Lyell, G.D. )

    1992-11-01

    An aero derived gas turbine engine, the Olympus SK30 ran for 1166 hours on coal derived (slagger) gas at the British Gas site at Westfield, Fife, Scotland. Slagger gas is low in calorific value and high in sulphur content. A rainbow'' HP turbine assembly, with a range of corrosion protective overlay coatings on both the vanes and blades was installed to evaluate the protection offered by the various coatings against the highly sulphurous slagger gas. A detailed metallurgical inspection was carried out on a random selection of the coated vanes and blades. None of the components examined showed evidence of any serious erosion. It was concluded that the operating time was too short to cause extensive damage to the coatings. However, the various coatings showed different degrees of degradation and may be ranked as follows: 1. Platinum Aluminide, LDC-2E, 2. Platinum Aluminide, RT22A, 3. Pack Aluminide, 4. EB-PVD* Coating Co-29Cr-5Al-O.34Y, GT-29, 5. EB-PVD* Coating Co-23Cr-lOA1-0.34Y, BC-21 Electron Beam-Plasma Vapour Deposit.

  17. Optical characteristics and parameters of gas-discharge plasma in a mixture of mercury dibromide vapor with neon

    SciTech Connect

    Malinina, A. A. Malinin, A. N.

    2013-12-15

    Results are presented from studies of the optical characteristics and parameters of plasma of a dielectric barrier discharge in a mixture of mercury dibromide vapor with neon—the working medium of a non-coaxial exciplex gas-discharge emitter. The electron energy distribution function, the transport characteristics, the specific power losses for electron processes, the electron density and temperature, and the rate constants for the processes of elastic and inelastic electron scattering by the working mixture components are determined as functions of the reduced electric field. The rate constant of the process leading to the formation of exciplex mercury monobromide molecules is found to be 1.6 × 10{sup −14} m{sup 3}/s for a reduced electric field of E/N = 15 Td, at which the maximum emission intensity in the blue-green spectral region (λ{sub max} = 502 nm) was observed in this experiment.

  18. Optical characteristics and parameters of gas-discharge plasma in a mixture of mercury dibromide vapor with neon

    NASA Astrophysics Data System (ADS)

    Malinina, A. A.; Malinin, A. N.

    2013-12-01

    Results are presented from studies of the optical characteristics and parameters of plasma of a dielectric barrier discharge in a mixture of mercury dibromide vapor with neon—the working medium of a non-coaxial exciplex gas-discharge emitter. The electron energy distribution function, the transport characteristics, the specific power losses for electron processes, the electron density and temperature, and the rate constants for the processes of elastic and inelastic electron scattering by the working mixture components are determined as functions of the reduced electric field. The rate constant of the process leading to the formation of exciplex mercury monobromide molecules is found to be 1.6 × 10-14 m3/s for a reduced electric field of E/ N = 15 Td, at which the maximum emission intensity in the blue-green spectral region (λmax = 502 nm) was observed in this experiment.

  19. Observations of soft X-ray emission and plasma dynamics of a compact capillary discharge operated in xenon

    SciTech Connect

    Valenzuela, J. C.; Wyndham, E. S.; Favre, M.; Chuaqui, H.

    2013-09-15

    We report observations of a low stored energy, low inductance compact capillary discharge operated in xenon. Even though the stored electrical energy is less than 1 J, significant output in the optical windows at 110 and 135 Å is measured. The soft X-ray emission is time-resolved and the conversion energy of the source is obtained. A lower bound to the conversion efficiency at 110 Å ± 2% and 135 Å ± 1% of 3.6% and 1.6% is obtained, respectively. The use of moiré-schlieren optical diagnostic allows the evolution of the line electron density. In particular, we observe a significant degree of compression in a tight on axis pinch as well as radial compression waves. The temporal evolution of the X-ray emission, which occurs during the current reversal and later, is discussed in relation to work in argon discharges and in relation to model calculations.

  20. Removal Dynamics of Nitric Oxide (NO) Pollutant Gas by Pulse-Discharged Plasma Technique

    PubMed Central

    Zhang, Lianshui; Wang, Xiaojun; Lai, Weidong; Cheng, Xueliang; Zhao, Kuifang

    2014-01-01

    Nonthermal plasma technique has drawn extensive attentions for removal of air pollutants such as NOx and SO2. The NO removal mechanism in pulse discharged plasma is discussed in this paper. Emission spectra diagnosis indicates that the higher the discharge voltage is, the more the NO are removed and transformed into O, N, N2, NO2, and so forth. Plasma electron temperature Te is ranged from 6400 K at 2.4 kV discharge voltage to 9500 K at 4.8 kV. After establishing a zero-dimensional chemical reaction kinetic model, the major reaction paths are clarified as the electron collision dissociation of NO into N and O during discharge and followed by single substitution of N on NO to form N2 during and after discharge, compared with the small fraction of NO2 formed by oxidizing NO. The reaction directions can be adjusted by N2 additive, and the optimal N2/NO mixing ratio is 2 : 1. Such a ratio not only compensates the disadvantage of electron competitive consumption by the mixed N2, but also heightens the total NO removal extent through accelerating the NO oxidization process. PMID:24737985

  1. Model operating permits for natural gas processing plants

    SciTech Connect

    Arend, C.

    1995-12-31

    Major sources as defined in Title V of the Clean Air Act Amendments of 1990 that are required to submit an operating permit application will need to: Evaluate their compliance status; Determine a strategic method of presenting the general and specific conditions of their Model Operating Permit (MOP); Maintain compliance with air quality regulations. A MOP is prepared to assist permitting agencies and affected facilities in the development of operating permits for a specific source category. This paper includes a brief discussion of example permit conditions that may be applicable to various types of Title V sources. A MOP for a generic natural gas processing plant is provided as an example. The MOP should include a general description of the production process and identify emission sources. The two primary elements that comprise a MOP are: Provisions of all existing state and/or local air permits; Identification of general and specific conditions for the Title V permit. The general provisions will include overall compliance with all Clean Air Act Titles. The specific provisions include monitoring, record keeping, and reporting. Although Title V MOPs are prepared on a case-by-case basis, this paper will provide a general guideline of the requirements for preparation of a MOP. Regulatory agencies have indicated that a MOP included in the Title V application will assist in preparation of the final permit provisions, minimize delays in securing a permit, and provide support during the public notification process.

  2. The role of gas composition in plasma-dust structures in RF discharge

    SciTech Connect

    Maiorov, S. A.; Golyatina, R. I.

    2015-03-15

    The influence of a mixture of light and heavy gases, i.e., helium and argon, on plasma-dust structures in the radiofrequency discharge has been studied. The dust chains in the sheath of the radiofrequency discharge, the average distance between the dust particles and their chains, have been analyzed. A significant effect of small amounts of argon on the correlation characteristics of dust particles has been observed. The results of numerical simulation of ion and electron drift in the mixture of helium and argon are presented. It is shown that even 1% of argon admixture to helium produces such an effect that argon ions become the main components of the discharge, as they drift with lightweight helium forming a strongly anisotropic velocity distribution function.

  3. The role of gas composition in plasma-dust structures in RF discharge

    NASA Astrophysics Data System (ADS)

    Maiorov, S. A.; Kodanova, S. K.; Dosbolayev, M. K.; Ramazanov, T. S.; Golyatina, R. I.; Bastykova, N. Kh.; Utegenov, A. U.

    2015-03-01

    The influence of a mixture of light and heavy gases, i.e., helium and argon, on plasma-dust structures in the radiofrequency discharge has been studied. The dust chains in the sheath of the radiofrequency discharge, the average distance between the dust particles and their chains, have been analyzed. A significant effect of small amounts of argon on the correlation characteristics of dust particles has been observed. The results of numerical simulation of ion and electron drift in the mixture of helium and argon are presented. It is shown that even 1% of argon admixture to helium produces such an effect that argon ions become the main components of the discharge, as they drift with lightweight helium forming a strongly anisotropic velocity distribution function.

  4. Emissions from oil and natural gas operations in northeastern Utah

    NASA Astrophysics Data System (ADS)

    Petron, G.; Kofler, J. D.; Frost, G. J.; Miller, B. R.; Edwards, P. M.; Dube, W. P.; Montzka, S. A.; Helmig, D.; Hueber, J.; Karion, A.; Sweeney, C.; Conley, S. A.; Brown, S. S.; Geiger, F.; Warneke, C.; Martin, R. S.; Andrews, A. E.; Dlugokencky, E. J.; Lang, P. M.; Trainer, M.; Hardesty, R.; Schnell, R. C.; Tans, P. P.

    2012-12-01

    The Uintah oil and natural gas Basin in Northeastern Utah experienced several days of high ozone levels in early 2011 during cold temperature inversions. To study the chemical and meteorological processes leading to these wintertime ozone pollution events, the State of Utah, EPA region 8 and oil and gas operators pulled together a multi-agency research team, including NOAA ESRL/CIRES scientists. The data gathering took place between January 15 and February 29, 2012.To document the chemical signature of various sources in the Basin, we outfitted a passenger van with in-situ analyzers (Picarro: CH4, CO2, CO, H2O, 13CH4; NOxCaRD: NO, NOx, 2B & NOxCaRD: O3) meteorological sensors, GPS units, discrete flask sampling apparatus, as well as a data logging and "real-time" in-situ data visualization system. The instrumented van, called Mobile Lab, also hosted a KIT Proton Transfer Reaction Mass Spectrometer (suite of VOCs in situ measurements) for part of the campaign. For close to a month, the Mobile Lab traveled the roads of the oil and gas field, documenting ambient levels of several tracers. Close to 180 valid air samples were collected in February by the Mobile Lab for future analysis in the NOAA and CU/INSTAAR labs in Boulder. At the same time as the surface effort was going on, an instrumented light aircraft conducted transects over the Basin collecting air samples mostly in the boundary layer and measuring in situ the following species CH4, CO2, NO2, O3. We will present some of the data collected by the Mobile Lab and the aircraft and discuss analysis results.

  5. Gas mixture studies for streamer operated Resistive Plate Chambers

    NASA Astrophysics Data System (ADS)

    Paoloni, A.; Longhin, A.; Mengucci, A.; Pupilli, F.; Ventura, M.

    2016-06-01

    Resistive Plate Chambers operated in streamer mode are interesting detectors in neutrino and astro-particle physics applications (like OPERA and ARGO experiments). Such experiments are typically characterized by large area apparatuses with no stringent requirements on detector aging and rate capabilities. In this paper, results of cosmic ray tests performed on a RPC prototype using different gas mixtures are presented, the principal aim being the optimization of the TetraFluoroPropene concentration in Argon-based mixtures. The introduction of TetraFluoroPropene, besides its low Global Warming Power, is helpful because it simplifies safety requirements allowing to remove also isobutane from the mixture. Results obtained with mixtures containing SF6, CF4, CO2, N2 and He are also shown, presented both in terms of detectors properties (efficiency, multiple-streamer probability and time resolution) and in terms of streamer characteristics.

  6. Fast gas heating in N2/O2 mixtures under nanosecond surface dielectric barrier discharge: the effects of gas pressure and composition

    PubMed Central

    Nudnova, M. M; Kindysheva, S. V; Aleksandrov, N. L; Starikovskii, A. Yu

    2015-01-01

    The fractional electron power quickly transferred to heat in non-equilibrium plasmas was studied experimentally and theoretically in N2/O2 mixtures subjected to high electric fields. Measurements were performed in and after a nanosecond surface dielectric barrier discharge at various (300–750 Torr) gas pressures and (50–100%) N2 percentages. Observations showed that the efficiency of fast gas heating is almost independent of pressure and becomes more profound when the fraction of O2 in N2/O2 mixtures increases. The processes that contribute towards the fast transfer of electron energy to thermal energy were numerically simulated under the conditions considered. Calculations were compared with measurements and the main channels of fast gas heating were analysed at the gas pressures, compositions and electric fields under study. It was shown that efficient fast gas heating in the mixtures with high fraction of O2 is due to a notable contribution of heat release during quenching of electronically excited N2 states in collisions with O2 molecules and to ion–ion recombination. The effect of hydrocarbon addition to air on fast gas heating was numerically estimated. It was concluded that the fractional electron power transferred to heat in air, as a first approximation, could be used to estimate this effect in lean and stoichiometric hydrocarbon–air mixtures. PMID:26170431

  7. On the Structure of the Two-Dimensional Spatially Periodic Inner Transition Layers in a Gas-Discharge Plasma

    SciTech Connect

    Voronov, A.Ya.

    2005-07-01

    We investigate the structure of the spatially periodic inner boundary layers in the plasma of a positive glow-discharge column produced in a long cylindrical tube with an electropositive gas inside. Asymptotic methods, namely, the method of boundary functions, are used to analyze the initial mathematical model. We consider the formation of contrast burst-type structures. We have found all principal terms of the boundary-layer asymptotics of the solution. The results obtained are compared with the available probe measurements of basic physical parameters of ionization waves (strata) in neon at low pressures.

  8. The role of the gas/plasma plume and self-focusing in a gas-filled capillary discharge waveguide for high-power laser-plasma applications

    SciTech Connect

    Ciocarlan, C.; Wiggins, S. M.; Islam, M. R.; Ersfeld, B.; Abuazoum, S.; Wilson, R.; Aniculaesei, C.; Welsh, G. H.; Vieux, G.; Jaroszynski, D. A.

    2013-09-15

    The role of the gas/plasma plume at the entrance of a gas-filled capillary discharge plasma waveguide in increasing the laser intensity has been investigated. Distinction is made between neutral gas and hot plasma plumes that, respectively, develop before and after discharge breakdown. Time-averaged measurements show that the on-axis plasma density of a fully expanded plasma plume over this region is similar to that inside the waveguide. Above the critical power, relativistic and ponderomotive self-focusing lead to an increase in the intensity, which can be nearly a factor of 2 compared with the case without a plume. When used as a laser plasma wakefield accelerator, the enhancement of intensity can lead to prompt electron injection very close to the entrance of the waveguide. Self-focusing occurs within two Rayleigh lengths of the waveguide entrance plane in the region, where the laser beam is converging. Analytical theory and numerical simulations show that, for a density of 3.0 × 10{sup 18} cm{sup −3}, the peak normalized laser vector potential, a{sub 0}, increases from 1.0 to 1.85 close to the entrance plane of the capillary compared with a{sub 0} = 1.41 when the plume is neglected.

  9. 21 CFR 1020.20 - Cold-cathode gas discharge tubes.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...-rays in excess of allowable limits; and (b) in the case of tubes designed primarily to demonstrate the production of x-radiation, a warning that this device produces x-rays when energized. (iii) The tag or label... discharge tubes designed to demonstrate the effects of a flow of electrons or the production of...

  10. Structural properties of dusty plasma in direct current and radio frequency gas discharges

    SciTech Connect

    Ramazanov, T. S.; Dzhumagulova, K. N.; Jumabekov, A. N.; Dosbolayev, M. K.

    2008-05-15

    This paper presents radial distribution functions of dust particles obtained experimentally in dc and rf discharges. Pressure and interaction energy of dusty particles were calculated on the basis of these functions. The Langevin dynamics computer simulation for each experiment was performed. The comparisons with computer simulations are made.

  11. Study of oxygen gas production phenomenon during stand and discharge in silver-zinc batteries

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Standard production procedures for manufacturing silver zinc batteries are evaluated and modified to reduce oxygen generation during open circuit stand and discharge. Production predictions of several variable combinations using analysis models are listed for minimum gassing, with emphasis on the concentration of potassium hydroxide in plate formation. A recommendation for work optimizing the variables involved in plate processing is included.

  12. Requirements for long-life operation of inert gas hollow cathodes: Preliminary report

    NASA Technical Reports Server (NTRS)

    Verhey, Timothy R.; Macrae, Gregory S.

    1990-01-01

    An experimental investigation was initiated to establish conditioning procedures for reliable hollow cathode operation via the characterization of critical parameters in a representative cathode test facility. From vacuum pumpdown rates, it was found that approximately 1.5 hours were required to achieve pressure levels within 5 percent of the lowest attainable pressure for this facility, depending on the purge conditions. The facility atmosphere was determined by a residual gas analyzer to be composed of primarily air and water vapor. The effects of vacuum pumping and inert gas purging were evaluated. A maximum effective leakage rate of 2.0 x 10(exp -3)sccm was observed and its probable causes were examined. An extended test of a 0.64 cm diameter Mo-Re hollow cathode was successfully completed. This test ran for 504 hours at an emission current of 23.0 amperes and a xenon flow rate of 6.1 sccm. Discharge voltage rose continuously from 15 to 21 volts over the course of the test. The temperature of the cathode body during the test was relatively stable at 1160 C. Post-test examination revealed ion-bombardment texturing of the orifice plate to be the only detectable sign of wear on the hollow cathode.

  13. Requirements for long-life operation of inert gas hollow cathodes - Preliminary results

    NASA Technical Reports Server (NTRS)

    Verhey, Timothy R.; Macrae, Gregory S.

    1990-01-01

    An experimental investigation was initiated to establish conditioning procedures for reliable hollow cathode operation via the characterization of critical parameters in a representative cathode test facility. From vacuum pumpdown rates, it was found that approximately 1.5 hours were required to achieve pressure levels within 5 percent of the lowest attainable pressure for this facility, depending on the purge conditions. The facility atmosphere was determined by a residual gas analyzer to be composed of primarily air and water vapor. The effects of vacuum pumping and inert gas purging were evaluated. A maximum effective leakage rate of 2.0 x 10 (exp -3) sccm was observed and its probable causes were examined. An extended test of a 0.64 cm diameter Mo-Re hollow cathode was successfully completed. This test ran for 504 hours at an emission current of 23.0 amperes and a xenon flow rate of 6.1 sccm. Discharge voltage rose continuously from 15 to 21 volts over the course of the test. The temperature of the cathode body during the test was relatively stable at 1160 C. Post-test examination revealed ion-bombardment texturing of the orifice plate to be the only detectable sign of wear on the hollow cathode.

  14. Adsorption of Decomposition Gases at Overheating and Discharge Malfunctions in Gas-Insulated Transformers

    NASA Astrophysics Data System (ADS)

    Okabe, Shigemitsu; Yamada, Michio; Sakai, Hiroyuki; Kawaguchi, Kenji; Kobayashi, Tsuneo; Saida, Toshiyuki

    Concentration in population and business activities results in high energy demand in urban areas. This requires the construction of underground substations. Oil-less, non-flammable and non-explosive equipment is recommended for underground substations. Therefore, gas-insulated transformers have been developed. Development of the method for diagnosis of gas-insulated transformers is required. In this paper, experimental survey over the main components of decomposes generated by various faults in gas-insulated transformers is described that is carried out through simplified model tests. These results will be used to develop the diagnostics method for gas-insulated transformers.

  15. Electro-optical properties of porous zeolite cathode in the gas discharge electronic devices for plasma light source applications

    NASA Astrophysics Data System (ADS)

    Koseoglu, Kivilcim; Özer, Metin; Ozturk, Sevgul; Salamov, Bahtiyar G.

    2014-08-01

    The stable dc air cold plasma is investigated experimentally functions of pressure p (8-760 Torr), electrode gaps d (50-250 µm), and diameters (9-22 mm) of the cathode areas in the gas discharge electronic devices (GDED) with nanoporous zeolite cathode (ZC). It is found that the current density and plasma emission (PE) intensity increase if the amplitude of the applied voltage reaches given threshold. Moreover, uniform PE inside the ZCs develops from the surface and can be generated in air up to atmospheric pressure (AP). The effect of various diameter of the ZC area on the gas breakdown is also considered. It is shown that breakdown voltage UB is reduced significantly for the larger diameters of the ZC area. Because of the very small d in our GDED, the behavior of charged particles in the electric field is described with the dc Townsend breakdown theory, depending upon the pressure range.

  16. Operation of gas turbine engines in volcanic ash clouds

    SciTech Connect

    Dunn, M.G.; Baran, A.J.; Miatech, J.

    1996-10-01

    Results are reported for a technology program designed to determine the behavior of gas turbine engines when operating in particle-laden clouds. There are several ways that such clouds may be created, i.e., explosive volcanic eruption, sand storm, military conflict, etc. The response of several different engines, among them the Pratt and Whitney JT3D turbofan, the Pratt and Whitney J57 turbojet, a Pratt and Whitney engine of the JT9 vintage, and an engine of the General Electric CF6 vintage has been determined. The particular damage mode that will be dominant when an engine experiences a dust cloud depends upon the particular engine (the turbine inlet temperature at which the engine is operating when it encounters the dust cloud), the concentration of foreign material in the cloud, and the constituents of the foreign material (the respective melting temperature of the various constituents). Further, the rate at which engine damage will occur depends upon all of the factors given above, and the damage is cumulative with continued exposure. An important part of the Calspan effort has been to identify environmental warning signs and to determine which of the engine parameters available for monitoring by the flight crew can provide an early indication of impending difficulty. On the basis of current knowledge, if one knows the location of a particle-laden cloud, then that region should be avoided. However, if the cloud location is unknown, which is generally the case, then it is important to know how to recognize when an encounter has occurred and to understand how to operate safely, which is another part of the Calspan effort.

  17. 78 FR 48895 - Information Collection Activities: Oil and Gas Well-Workover Operations; Proposed Collection...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-12

    ...: [134E1700D2 EEEE500000 ET1SF0000.DAQ000] Information Collection Activities: Oil and Gas Well-Workover... regulations under Subpart F, Oil and Gas Well- Workover Operations. DATE: You must submit comments by October... Gas Well-Workover Operations. OMB Control Number: 1014-0001. Abstract: The Outer Continental...

  18. 78 FR 48893 - Information Collection Activities: Oil and Gas Well-Completion Operations; Proposed Collection...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-12

    ...: 134E1700D2 EEEE500000 ET1SF0000.DAQ000] Information Collection Activities: Oil and Gas Well-Completion... regulations under Subpart E, Oil and Gas Well- Completion Operations. DATE: You must submit comments by... Gas Well-Completion Operations. OMB Control Number: 1014-0004. Abstract: The Outer Continental...

  19. 78 FR 70163 - Communication of Operational Information between Natural Gas Pipelines and Electric Transmission...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-22

    ... Corporation (NERC), Pacific Gas and Electric Company (PG&E), Process Gas Consumers (PGC), Public Utilities... Operational Information Between Natural Gas Pipelines and Electric Transmission Operators, 78 FR 44900 (July... in 2011). \\4\\ See, e.g., North American Electric Reliability Corporation, 2013 Special...

  20. Corrective Action Decision Document (CADD), Area 12 fleet operations steam cleaning discharge area, Nevada Test Site Corrective Action Unit 339

    SciTech Connect

    Bonn, J.F.

    1996-12-01

    This Corrective Action Decision Document (CADD) incorporates the methodology used for evaluating the remedial alternatives completed for a former steam cleaning discharge area at the Nevada Test Site (NTS). The former steam cleaning site is located in Area 12, east of the Fleet Operations Building 12-16. The discharge area has been impacted by Resource Conservation and Recovery Act (RCRA) F Listed volatile organic compounds (VOCs) and petroleum hydrocarbons waste. Based upon these findings, resulting from Phase 1 and Phase 2 site investigations, corrective action is required at the site. To determine the appropriate corrective action to be proposed, an evaluation of remedial alternatives was completed. The evaluation was completed using a Corrective Measures Study (CMS). Based on the results of the CMS, the favored closure alternative for the site is plugging the effluent discharge line, removing the sandbagged barrier, completing excavation of VOC impacted soils, and fencing the soil area impacted by total petroleum hydrocarbons (TPH), east of the discharge line and west of the soil berm. Management of the F Listed VOCs are dictated by RCRA. Due to the small volume of impacted soil, excavation and transportation to a Treatment Storage and Disposal Facility (TSDF) is the most practical method of management. It is anticipated that the TPH (as oil) impacted soils will remain in place based upon; the A through K Analysis, concentrations detected (maximum 8,600 milligrams per kilogram), expected natural degradation of the hydrocarbons over time, and the findings of the Phase 2 Investigation that vertical migration has been minimal.

  1. Modeling of corona discharge combined with Mn²⁺ catalysis for the removal of SO₂ from simulated flue gas.

    PubMed

    Jiwu, Li; Lei, Fan

    2013-05-01

    This study investigated a mass-transfer process of the removal of SO₂ from simulated flue gas by corona discharge combined with Mn(2+) catalysis in wet reactor, including gas migration, liquid phase diffusion, and chemical reaction. The novelty formula of desulphurization efficiency and the flow rate of flue gas, discharge voltage, reaction enhancement factor, and the flow rate of water were established. It is reported that desulphurization efficiency remarkably increased with the increasing of enhancement factor and discharge voltage at 4000 mg m(-3) of SO₂ and 0.05 m(3)s(-1) of gas flow rate. However, the desulphurization efficiency had a slightly increase with the increasing of water flow rate. It is realizable that the energy consumption could be reduced to be lower than 0.3 kJ m(-3), which was acceptable for industrial application. The experimental data were well in accord with the calculated results of theoretical model. PMID:23490184

  2. Measurement of plasma density in the discharge maintained in a nonuniform gas flow by a high-power terahertz-wave gyrotron

    NASA Astrophysics Data System (ADS)

    Sidorov, A. V.; Razin, S. V.; Golubev, S. V.; Safronova, M. I.; Fokin, A. P.; Luchinin, A. G.; Vodopyanov, A. V.; Glyavin, M. Yu.

    2016-04-01

    We performed measurements of plasma density in a "point-like" discharge, which is generated in a nonuniform flow of a gas (argon) under the action of high-power terahertz gyrotron radiation with a frequency of 0.67 THz, a power of 40 kW, and a pulse duration of 20 μs. The nonuniform flow was produced by injecting the gas to the vacuum chamber through a small hole (0.14 mm in diameter) under a background pressure at a level of 0.01 Torr. The discharge developed and was localized only in a small region of space (about 1 mm) near the gas injection hole, where the pressure was high (close to the atmospheric one) and the breakdown conditions (the "point-like" discharge) were fulfilled. The density of electrons in the discharge was measured by observing the Stark broadening of the atomic radiation line Hα of hydrogen (656.3 nm) which was present in the discharge as a minor admixture. The plasma density in the discharge was equal to about 2 × 1016 cm-3, which exceeds the cut-off density for a frequency of 0.67 THz used to maintain the discharge.

  3. Thermal equilibrium in gas-discharge plasma of low pressure mercury lamp

    NASA Astrophysics Data System (ADS)

    Gorbunkov, V. I.; Solomonov, V. I.

    2015-12-01

    A study was conducted emission spectra germicidal low pressure mercury lamp at currents 100-306 mA located in a closed opaque cavity. It is shown that the lamps located in the cavity with perfectly reflecting and absorbing internal surfaces, in the emission resonance line of mercury is dominant at λr = 253.65 nm. The same pattern is observed in the tube placed in a cavity with diffusely reflecting surface at a low current of about 100 mA. However the picture of spectrum changes at higher discharge current. The spectrum of the lamp with arc discharge at a current of 306 mA contains the maxima of the spectral lines. Its intensities are approximately described by Planck's radiation law at the temperature of 9270 +/- 230 K. The mechanisms of establish thermal equilibrium are discussed.

  4. Spectral Luminescent Properties of the Glycine Molecule in a Gas Discharge

    NASA Astrophysics Data System (ADS)

    General, A. A.; Migovich, M. I.; Kelman, V. A.; Zhmenyak, Yu. V.; Zvenigorodsky, V. V.

    2016-01-01

    We have experimentally studied the luminescence spectra of glycine powder in the plasma of a repetitively pulsed longitudinal discharge in argon-glycine and helium-glycine mixtures. We have identified the main fragments of the glycine molecule emitting in the 200-1000 nm region. The emitting molecules due to fragmentation of glycine and dissociation of the carboxyl (-COOH) and amino (-NH2) groups are nitrogen, carbon monoxide, and cyanogen molecules.

  5. Dielectric barrier discharge-based plasma actuator operation in artificial atmospheres for validation of modeling and simulation

    SciTech Connect

    Mangina, R. S.; Enloe, C. L.; Font, G. I.

    2015-11-15

    We present an experimental case study of time-resolved force production by an aerodynamic plasma actuator immersed in various mixtures of electropositive (N{sub 2}) and electronegative gases (O{sub 2} and SF{sub 6}) at atmospheric pressure using a fixed AC high-voltage input of 16 kV peak amplitude at 200 Hz frequency. We have observed distinct changes in the discharge structures during both negative- and positive-going voltage half-cycles, with corresponding variations in the actuator's force production: a ratio of 4:1 in the impulse produced by the negative-going half-cycle of the discharge among the various gas mixtures we explored, 2:1 in the impulse produced by the positive-going half-cycle, and cases in which the negative-going half-cycle dominates force production (by a ratio of 1.5:1), where the half-cycles produce identical force levels, and where the positive-going half cycle dominates (by a ratio of 1:5). We also present time-resolved experimental evidence for the first time that shows electrons do play a significant role in the momentum coupling to surrounding neutrals during the negative going voltage half-cycle of the N{sub 2} discharge. We show that there is sufficient macroscopic variation in the plasma that the predictions of numerical models at the microscopic level can be validated even though the plasma itself cannot be measured directly on those spatial and temporal scales.

  6. Laser flash-photolysis and gas discharge in N2O-containing mixture: kinetic mechanism

    NASA Astrophysics Data System (ADS)

    Kosarev, Ilya; Popov, Nikolay; Starikovskaia, Svetlana; Starikovskiy, Andrey; mipt Team

    2011-10-01

    The paper is devoted to further experimental and theoretical analysis of ignition by ArF laser flash-photolysis and nanosecond discharge in N2O-containing mixture has been done. Additional experiments have been made to assure that laser emission is distributed uniformly throughout the cross-section. The series of experiments was proposed and carried out to check validity of O(1D) determination in experiments on plasma assisted ignition initiated by flash-photolysis. In these experiments, ozone density in the given mixture (mixture composition and kinetics has been preliminary analyzed) was measured using UV light absorption in Hartley band. Good coincidence between experimental data and results of calculations have been obtained Temporal behavior of energy input, electric field and electric current has been measured and analyzed. These data are considered as initial conditions for numerical modeling of the discharge in O2:N2O:H2:Ar = 0.3:1:3:5 mixture. Ion-molecular reactions and reactions of active species production in Ar:H2:O2:N2O mixture were analyzed. The set of reactions to describe chemical transformation in the system due to the discharge action has been selected.

  7. Surface treatment of zinc anodes to improve discharge capacity and suppress hydrogen gas evolution

    NASA Astrophysics Data System (ADS)

    Cho, Yung-Da; Fey, George Ting-Kuo

    The shape change and redistribution of zinc anode material over the electrode during repeated cycling have been identified as the main factors that can limit the life of alkaline zinc-air batteries. Li 2O-2B 2O 3 (lithium boron oxide, LBO) glass with high Li + conductivity and stability can be coated on the surface of zinc powders. The structures of the surface-treated and pristine zinc powders were characterized by XRD, SEM, TEM, ESCA and BET analyses. XRD patterns of LBO-coated zinc powders revealed that the coating did not affect the crystal structure. TEM images of LBO-coated on the zinc particles were compact with an average passivation layer of about 250 nm. The LBO layer can prevent zinc from coming into direct contact with the KOH electrolyte and minimize the side reactions within the batteries. The 0.1 wt.% LBO-coated zinc anode material provided an initial discharge capacity of 1.70 Ah at 0.5 V, while the pristine zinc electrode delivered only 1.57 Ah. A surface-treated zinc electrode can increase discharge capacity, decrease hydrogen evolution reaction, and reduce self-discharge. The results indicated that surface treatment should be effective for improving the comprehensive properties of anode materials for zinc-air batteries.

  8. Leveling the playing field: A new method for measuring operational cost efficiency in gas processing and field operations

    SciTech Connect

    Salahor, G.S.

    1998-12-31

    Per-unit operating cost is a measure which is extremely important from a commercial and competitive perspective in the gas processing industry nd is closely monitored by most operators. However, some operating cost measures are of only limited use in providing true insight into the extent of potential operational efficiency issues which may be actionable by operational management and staff. In fact, there are many cases where analysis and comparison of per-unit operating costs without proper contextual technical information can lead to misleading conclusions regarding the relative operational efficiency of various gas processing and gathering facilities. Because producing assets are all unique to some extent, interpretation and utilization of operating cost data for gas processing and gathering systems must reflect due consideration of the technical factors which influence the overall economic performance and costs. Ernst and Young has used actual industry operating data to develop a complexity and scale index for both gas processing and gathering assets incorporating such considerations, and has utilized this in their consulting work for industry for the past several years. This indexing methodology, when used as a basis for cost efficiency analysis, is very useful in assisting gas processing plants and gathering system operators to set appropriate and realistic cost performance targets which are commensurate with the structural and complexity issues particular to their facility.

  9. Gas-liquid separator and method of operation

    DOEpatents

    Soloveichik, Grigorii Lev; Whitt, David Brandon

    2009-07-14

    A system for gas-liquid separation in electrolysis processes is provided. The system includes a first compartment having a liquid carrier including a first gas therein and a second compartment having the liquid carrier including a second gas therein. The system also includes a gas-liquid separator fluidically coupled to the first and second compartments for separating the liquid carrier from the first and second gases.

  10. Sharp transition between two regimes of operation of dc discharge with two anodes and thermionic emission from cathode

    SciTech Connect

    Mustafaev, A. S.; Grabovskiy, A.; Demidov, V. I.; Kaganovich, I. D.; Koepke, M. E.

    2014-05-15

    In a dc discharge plasma with two anodes and thermionic emission from cathode, the two anodes are used for plasma control. The main anode is placed between the cathode and the other auxiliary anode has a circular opening for passing electron current from the cathode to the second anode. It is experimentally demonstrated that a plasma may exhibit a sudden transition between two quasi-stable conditions as one increases the cathode-electron current collected by the auxiliary anode through an aperture, i.e., hole, in the main anode. In one regime, a bright glowing “ball-shaped double layer” appears on the plasma side having a potential drop of 10–15 eV and concomitant ionization in the neighboring region attached to the opening. The second regime is characterized by a uniform potential profile in plasma and an absence of the ball-shaped double layer. The transition between these regimes is accompanied by a significant change in plasma properties, such as the electron energy distribution function (EEDF). Controlling the EEDF is a valuable capability in technological applications. Increasing the gas pressure leads to the elimination of the first regime for sufficiently high gas pressure, the threshold being a few Torr. The disappearance of a regime transition can be explained by invoking an EEDF transition, from being nonlocal at low pressure to becoming local at high pressure. Local EEDF is determined by local values of electric field. Nonlocal EEDF is determined by electric field values elsewhere, and the electron can travel without energy loss over a path much longer than the discharge dimension.

  11. Development in DIII-D of High Beta Discharges Appropriate for Steady-state Tokamak Operation With Burning Plasmas

    SciTech Connect

    Ferron, J R; Basiuk, V; Casper, T A; Challis, C D; DeBoo, J C; Doyle, E J; Gao, Q; Garofalo, A M; Greenfield, C M; Holcomb, C T; Hyatt, A W; Ide, S; Luce, T C; Murakami, M; Ou, Y; Park, J; Petrie, T W; Petty, C C; Politzer, P A; Reimerdes, H; Schuster, E; Schneider, M; Wang, A

    2008-10-13

    Ideally, tokamak power plants will operate in steady-state at high fusion gain. Recent work at DIII-D on the development of suitable high beta discharges with 100% of the plasma current generated noninductively (f{sub NI} = 1) is described. In a discharge with 1.5 < q{sub min} <2, a scan of the discharge shape squareness was used to find the value that maximizes confinement and achievable {beta}{sub N}. A small bias of the up/down balance of the double-null divertor shape away from the ion B x {del}B drift direction optimizes pumping for minimum density. Electron cyclotron current drive with a broad deposition profile was found to be effective at avoidance of a 2/1 NTM allowing long duration at {beta}{sub N} = 3.7. With these improvements, surface voltage {approx} 0-10 mV, indicating f{sub NI} {approx} 1, was obtained for 0.7 {tau}{sub R} (resistive time). Stationary discharges with {beta}{sub N} = 3.4 and f{sub NI} {approx} 0.9 that project to Q = 5 in ITER have been demonstrated for {tau}{sub R}. For use in development of model based controllers for the q profile, transport code models of the current profile evolution during discharge formation have been validated against the experiment. Tests of available actuators confirm that electron heating during the plasma current ramp up to modify the conductivity is by far the most effective. The empirically designed controller has been improved by use of proportional/integral gain and built-in limits to {beta}{sub N} to avoid instabilities. Two alternate steady-state compatible scenarios predicted to be capable of reaching {beta}{sub N} = 5 have been tested experimentally, motivated by future machines that require high power density and neutron fluence. In a wall stabilized scenario with q{sub min} > 2, {beta}{sub N} = 4 has been achieved for 2 s {approx} {tau}{sub R}. In a high internal inductance scenario, which maximizes the ideal no-wall stability limit, {beta}{sub N} {approx} 4.8 has been reached with f{sub NI} > 1.

  12. 21 CFR 1020.20 - Cold-cathode gas discharge tubes.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... electron flow is produced and sustained by ionization of contained gas atoms and ion bombardment of the... the ions of one sign produced in air when all electrons liberated by photons in a volume element...

  13. 21 CFR 1020.20 - Cold-cathode gas discharge tubes.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... electron flow is produced and sustained by ionization of contained gas atoms and ion bombardment of the... the ions of one sign produced in air when all electrons liberated by photons in a volume element...

  14. Deep gas poses opportunities, challenges to U.S. operators

    SciTech Connect

    Reeves, S.R.; Kuuskraa, J.A.; Kuuskraa, V.A.

    1998-05-04

    The previous article in this series on emerging natural gas resources introduced deep gas--natural gas in deep onshore sedimentary basins (below 15,000 ft)--by presenting a 1996 US Geological Survey assessment for this resource. The USGS estimated that 114 tcf of technically recoverable conventional and nonconventional deep gas remains to be discovered in the Rocky Mountains (57 tcf), Gulf Coast (27 tcf), Alaska (18 tcf), West Texas/New Mexico (4 tcf), and Midcontinent (3 tcf), among others. This article, third in this series and the second on deep gas, takes a closer look at this large and challenging resource by addressing the following key questions: (1) Where are the locations and what are the differences among the major deep gas basins? (2) How successful and active have the deep gas plays been? (3) What obstacles and rewards are likely for developers of deep gas? This article concludes with reviews and case studies of three specific deep gas basins: the mature Anadarko basin, the emerging Green River basin, and the frontier Wind River basin. Reviews of these basins highlight the challenges in finding and producing deep gas, as well as the results and rewards.

  15. Electron density and gas density measurements in a millimeter-wave discharge

    NASA Astrophysics Data System (ADS)

    Schaub, S. C.; Hummelt, J. S.; Guss, W. C.; Shapiro, M. A.; Temkin, R. J.

    2016-08-01

    Electron density and neutral gas density have been measured in a non-equilibrium air breakdown plasma using optical emission spectroscopy and two-dimensional laser interferometry, respectively. A plasma was created with a focused high frequency microwave beam in air. Experiments were run with 110 GHz and 124.5 GHz microwaves at powers up to 1.2 MW. Microwave pulses were 3 μs long at 110 GHz and 2.2 μs long at 124.5 GHz. Electron density was measured over a pressure range of 25 to 700 Torr as the input microwave power was varied. Electron density was found to be close to the critical density, where the collisional plasma frequency is equal to the microwave frequency, over the pressure range studied and to vary weakly with input power. Neutral gas density was measured over a pressure range from 150 to 750 Torr at power levels high above the threshold for initiating breakdown. The two-dimensional structure of the neutral gas density was resolved. Intense, localized heating was found to occur hundreds of nanoseconds after visible plasma formed. This heating led to neutral gas density reductions of greater than 80% where peak plasma densities occurred. Spatial structure and temporal dynamics of gas heating at atmospheric pressure were found to agree well with published numerical simulations.

  16. Simultaneous oxidation of NO, SO2 and Hg0 from flue gas by pulsed corona discharge.

    PubMed

    Xu, Fei; Luo, Zhongyang; Cao, Wei; Wang, Peng; Wei, Bo; Gao, Xiang; Fang, Mengxiang; Cen, Kefa

    2009-01-01

    A process capable of simultaneously oxidizing NO, SO2, and Hg0 was proposed, using a high-voltage and short-duration positive pulsed corona discharge. By focusing on NO, SO2, and Hg0 oxidation efficiencies, the influences of pulse peak voltage, pulse frequency, initial concentration, electrode number, residence time and water vapor addition were investigated. The results indicate that NO, SO2 and Hg0 oxidation efficiencies depend primarily on the radicals (OH, HO2, O) and the active species (O3, H2O2, etc.) produced by the pulsed corona discharge. The NO, SO2 and Hg0 oxidation efficiencies could be improved as pulse peak voltage, pulse frequency, electrode number and residence time increased, but they were reduced with increasing initial concentrations. By adding water vapor, the SO2 oxidation efficiency was improved remarkably, while the NO oxidation efficiency decreased slightly. In our experiments, the simultaneous NO, SO2, and Hg0 oxidation efficiencies reached to 40%, 98%, and 55% with the initial concentrations 479 mg/m3, 1040 mg/m3, and 15.0 microg/m3, respectively. PMID:19634444

  17. Progress toward fully noninductive discharge operation in DIII-D using off-axis neutral beam injectiona)

    NASA Astrophysics Data System (ADS)

    Ferron, J. R.; Holcomb, C. T.; Luce, T. C.; Park, J. M.; Politzer, P. A.; Turco, F.; Heidbrink, W. W.; Doyle, E. J.; Hanson, J. M.; Hyatt, A. W.; In, Y.; La Haye, R. J.; Lanctot, M. J.; Okabayashi, M.; Petrie, T. W.; Petty, C. C.; Zeng, L.

    2013-09-01

    The initial experiments on off-axis neutral beam injection into high noninductive current fraction (fNI), high normalized pressure (βN) discharges in DIII-D [J. L. Luxon, Fusion Sci. Technol. 48, 828 (2005)] have demonstrated changes in the plasma profiles that increase the limits to plasma pressure from ideal low-n instabilities. The current profile is broadened and the minimum value of the safety factor (qmin) can be maintained above 2 where the profile of the thermal component of the plasma pressure is found to be broader. The off-axis neutral beam injection results in a broadening of the fast-ion pressure profile. Confinement of the thermal component of the plasma is consistent with the IPB98(y,2) scaling, but global confinement with qmin>2 is below the ITER-89P scaling, apparently as a result of enhanced transport of fast ions. A 0-D model is used to examine the parameter space for fNI=1 operation and project the requirements for high performance steady-state discharges. Fully noninductive solutions are found with 4<βN<5 and bootstrap current fraction near 0.5 for a weak shear safety factor profile. A 1-D model is used to show that a fNI=1 discharge at the top of this range of βN that is predicted stable to n =1, 2, and 3 ideal MHD instabilities is accessible through further broadening of the current and pressure profiles with off-axis neutral beam injection and electron cyclotron current drive.

  18. Effect of water on sulfur dioxide (SO2) and nitrogen oxides (NOx) removal from flue gas in a direct current corona discharge reactor

    NASA Astrophysics Data System (ADS)

    Yang, Jiaxiang; Chi, Xiaochun; Dong, Limin

    2007-05-01

    A direct current (dc) corona discharge reactor composed of needle-plate electrodes in a glass container filled with flue gas was designed. To clarify the influence of water on discharge characteristics, water was introduced in the plasma reactor as electrode where plate electrode is immersed, under the application of dc voltage. Experiment results show that (1) corona wind forming between high-voltage needle electrode and water by corona discharge enhances the cleaning efficiency of flue gas due to the existence of water and the cleaning efficiency will increase with the increase of applied dc voltage within definite range and (2) both removal efficiencies of NOx and SO2 increased in the presence of water, which reach up to 98% for SO2, and about 85% for NOx under suitable conditions. These results play an important role in flue gas cleanup research.

  19. A novel low-jitter plasma-jet triggered gas switch operated at a low working coefficient.

    PubMed

    Tie, Weihao; Liu, Shanhong; Liu, Xuandong; Zhang, Qiaogen; Pang, Lei; Liu, Longchen

    2014-02-01

    In this paper, we described the fabrication and testing of a novel plasma-jet triggered gas switch (PJTGS) operated at extremely low working coefficients with excellent triggered jitters. While the structure of the PJTGS is similar to that of a traditional three-electrode field-distortion gas switch, to improve its triggered performance we used a conical micro-plasma-gun with a needle-to-plate spark gap embedded in the trigger electrode. Applying a nanosecond pulse to the trigger electrode caused a spark discharge in the micro-plasma-gun. The electric field drove the discharge plasma to spray into the spark gap of the gas switch, causing fast breakdown. We tested the PJTGS with charging voltages of ±25 kV and a trigger voltage of +80 kV (5 ns rise time and 80 ns full width at half maximum) in two working modes. The PJTGS operated in Mode II had a lower triggered jitter and could be operated over a wider range of working coefficients than in Mode I under the same conditions. At working coefficients higher than 70%, we obtained sub-ns triggered jitters (<0.89 ns) from the PJTGS, at working coefficients lower than 50%, we obtained triggered jitters of 1.6-3.5 ns without no-fires or pre-fires. Even at a working coefficient of 27.4%, the PJTGS could still be triggered reliably with a delay time of 96.1 ns and a triggered jitter of 3.5 ns, respectively. PMID:24593358

  20. Study of discharge cleaning process in JIPP T-2 Torus by residual gas analyzer

    NASA Astrophysics Data System (ADS)

    Noda, N.; Hirokura, S.; Taniguchi, Y.; Tanahashi, S.

    1982-12-01

    During discharge cleaning, decay time of water vapor pressure changes when the pressure reaches a certain level. A long decay time observed in the later phase can be interpreted as a result of a slow deoxidization rate of chromium oxide, which may dominate the cleaning process in this phase. Optimization of plasma density for the cleaning is discussed comparing the experimental results on density dependence of water vapor pressure with a result based on a zero dimensional calculation for particle balance. One of the essential points for effective cleaning is the raising of the electron density of the plasma high enough that the dissociation loss rate of H2O is as large as the sticking loss rate. A density as high as 10 to the 11th power/cu cm is required for a clean surface condition where sticking probability is presumed to be around 0.5.

  1. Penning Ionization Electron Spectroscopy in Glow Discharge: A New Dimension for Gas Chromatography Detectors

    NASA Technical Reports Server (NTRS)

    Sheverev, V. A.; Khromov, N. A.; Kojiro, D. R.; Fonda, Mark (Technical Monitor)

    2002-01-01

    Admixtures to helium of 100 ppm and 5 ppm of nitrogen, and 100 ppm and 10 ppm of carbon monoxide were identified and measured in the helium discharge afterglow using an electrical probe placed into the plasma. For nitrogen and carbon monoxide gases, the measured electron energy spectra display distinct characteristic peaks (fingerprints). Location of the peaks on the energy scale is determined by the ionization energies of the analyte molecules. Nitrogen and carbon monoxide fingerprints were also observed in a binary mixture of these gases in helium, and the relative concentration analytes has been predicted. The technically simple and durable method is considered a good candidate for a number of analytical applications, and in particular, in GC and for analytical flight instrumentation.

  2. 78 FR 59632 - Oil and Gas and Sulphur Operations on the Outer Continental Shelf-Oil and Gas Production Safety...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-27

    ... proposed rulemaking on production safety systems on August 22, 2013 (78 FR 52240). The proposed rule would... Bureau of Safety and Environmental Enforcement 30 CFR Part 250 RIN 1014-AA10 Oil and Gas and Sulphur Operations on the Outer Continental Shelf--Oil and Gas Production Safety Systems AGENCY: Bureau of Safety...

  3. Optical characteristics and parameters of gas-discharge plasma in a mixture of mercury dibromide vapor with argon

    SciTech Connect

    Malinina, A. A. Malinin, A. N.

    2015-03-15

    Results are presented from studies of the optical characteristics and parameters of the plasma of a dielectric barrier discharge in a mixture of mercury dibromide vapor with argon—the working medium of an exciplex gas-discharge emitter. It is established that the partial pressures of mercury dibromide vapor and argon at which the average and pulsed emission intensities in the blue—green spectral region (λ{sub max} = 502 nm) reach their maximum values are 0.6 and 114.4 kPa, respectively. The electron energy distribution function, the transport characteristics, the specific power spent on the processes involving electrons, the electron density and temperature, and the rate constants for the processes of elastic and inelastic electron scattering from the molecules and atoms of the working mixture are determined by numerical simulation, and their dependences on the reduced electric field strength are analyzed. The rate constant of the process leading to the formation of exciplex mercury monobromide molecules for a reduced electric field of E/N = 20 Td, at which the maximum emission intensity in the blue—green spectral region was observed in this experiment, is found to be 8.1 × 10{sup −15} m{sup 3}/s.

  4. Optical characteristics and parameters of gas-discharge plasma in a mixture of mercury dibromide vapor with argon

    NASA Astrophysics Data System (ADS)

    Malinina, A. A.; Malinin, A. N.

    2015-03-01

    Results are presented from studies of the optical characteristics and parameters of the plasma of a dielectric barrier discharge in a mixture of mercury dibromide vapor with argon—the working medium of an exciplex gas-discharge emitter. It is established that the partial pressures of mercury dibromide vapor and argon at which the average and pulsed emission intensities in the blue—green spectral region (λmax = 502 nm) reach their maximum values are 0.6 and 114.4 kPa, respectively. The electron energy distribution function, the transport characteristics, the specific power spent on the processes involving electrons, the electron density and temperature, and the rate constants for the processes of elastic and inelastic electron scattering from the molecules and atoms of the working mixture are determined by numerical simulation, and their dependences on the reduced electric field strength are analyzed. The rate constant of the process leading to the formation of exciplex mercury monobromide molecules for a reduced electric field of E/ N = 20 Td, at which the maximum emission intensity in the blue—green spectral region was observed in this experiment, is found to be 8.1 × 10-15 m3/s.

  5. Evaluation of the sensitivity of the gas-discharge gamma-counters to the concomitant neutron radiation

    NASA Astrophysics Data System (ADS)

    Pikalov, G. L.; Kiseev, S. V.

    2015-11-01

    In the fields of gamma-neutron radiation the accuracy measurement of gamma- ray doses depends on their sensitivity to concomitant neutron radiation. In this connection, verification results of gamma-dosimetry on the installation with isotope cobalt or cesium sources are not always adequate to measurement results in real gamma-neutron fields. The data prove, that the sensitivity coefficients of gas-discharge gamma-dosimeters at PRIZ-M reactor is 1.23 larger as compared to Co60 source, due to the effect of the concomitant neutrons on their indications. The error due to the neutrons effect can be significantly reduced or eliminated completely, if gamma-dosimeters calibrated in the field of gamma-neutron radiation, adequate spectral and dose characteristics to radiation fields in which they are used.

  6. High frequency transformerless electronics ballast using double inductor-capacitor resonant power conversion for gas discharge lamps

    SciTech Connect

    Lai, J.S.

    1995-06-20

    A novel high frequency LCLC double resonant electronic ballast has been developed for gas discharge lamp applications. The ballast consists of a half-bridge inverter which switches at zero voltage crossing and an LCLC resonant circuit which converts a low ac voltage to a high ac voltage. The LCLC resonant circuit has two LC stages. The first LC stage produces a high voltage before the lamp is ignited. The second LC stage limits lamp current with the circuit inductance after the lamp is ignited. In another embodiment a filament power supply is provided for soft start up and for dimming the lamp. The filament power supply is a secondary of the second resonant inductor. 27 figs.

  7. TEST RESULTS FOR FUEL-CELL OPERATION ON LANDFILL GAS

    EPA Science Inventory

    Test results from a demonstration of fuel-cell (FC) energy recovery and control of landfill gas emissions are presented. The project addressed two major issues: (i) the design, construction, and testing of a landfill-gas cleanup system; and (ii) a field test of a commercial phos...

  8. Gas-injection valve operates at high speed

    NASA Technical Reports Server (NTRS)

    Hoh, F. C.; Lowder, R. S.

    1966-01-01

    Fast acting gas valve is used for injecting a short pulse of gas into a vacuum chamber during plasma acceleration experiments. It contains a lightweight closure disk that is forced away from the valve seat when an electromagnetic coil is momentarily energized and immediately rebounds from a stop back onto the seat.

  9. Natural Gas Transportation - Infrastructure Issues and Operational Trends

    EIA Publications

    2001-01-01

    This report examines how well the current national natural gas pipeline network has been able to handle today's market demand for natural gas. In addition, it identifies those areas of the country where pipeline utilization is continuing to grow rapidly and where new pipeline capacity is needed or is planned over the next several years.

  10. Internal combustion engine for natural gas compressor operation

    DOEpatents

    Hagen, Christopher L.; Babbitt, Guy; Turner, Christopher; Echter, Nick; Weyer-Geigel, Kristina

    2016-04-19

    This application concerns systems and methods for compressing natural gas with an internal combustion engine. In a representative embodiment, a system for compressing a gas comprises a reciprocating internal combustion engine including at least one piston-cylinder assembly comprising a piston configured to travel in a cylinder and to compress gas in the cylinder in multiple compression stages. The system can further comprise a first pressure tank in fluid communication with the piston-cylinder assembly to receive compressed gas from the piston-cylinder assembly until the first pressure tank reaches a predetermined pressure, and a second pressure tank in fluid communication with the piston-cylinder assembly and the first pressure tank. The second pressure tank can be configured to receive compressed gas from the piston-cylinder assembly until the second pressure tank reaches a predetermined pressure. When the first and second pressure tanks have reached the predetermined pressures, the first pressure tank can be configured to supply gas to the piston-cylinder assembly, and the piston can be configured to compress the gas supplied by the first pressure tank such that the compressed gas flows into the second pressure tank.

  11. Development and practical operation of perfluorocarbon immersed 275kV transformers with compressed SF6 gas insulation

    SciTech Connect

    Hiraishi, K.; Uwano, Y.; Shirakura, K.; Gotanda, Y.; Endoo, K.; Higaki, M.; Horikoshi, M.; Mizuno, K.; Hora, H.

    1995-04-01

    A perfluorocarbon (PFC) immersed 275kV transformer with compressed SF6 gas insulation has been under development. This paper clarified the AC partial discharge inception voltage and time characteristics of PFC immersed insulation and also clarified that a prototype 275kV 100MVA three phase transformer could be worked without any trouble during the long-term over voltage test. This prototype proved that it had the AC partial discharge inception strength of higher than 1.5 times of the AC test voltage and the lightning impulse breakdown strength of 1.5 times of the test voltage. A 275kV 250MVA three phase transformer was developed and practically operated at the outdoor substation of Chubu Electric Power Co., Inc. This transformer has been successfully operated until now and the detailed internal inspection of the transformer was carried out after one year and 9 months of the successful practical operation and no significant abnormal condition was recognized.

  12. 40 CFR 60.107a - Monitoring of emissions and operations for fuel gas combustion devices.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... statement that there are no crossover or entry points for sour gas (high H2S content) to be introduced into... for fuel gas combustion devices. 60.107a Section 60.107a Protection of Environment ENVIRONMENTAL... Commenced After May 14, 2007 § 60.107a Monitoring of emissions and operations for fuel gas...

  13. 40 CFR 60.107a - Monitoring of emissions and operations for fuel gas combustion devices.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... statement that there are no crossover or entry points for sour gas (high H2S content) to be introduced into... for fuel gas combustion devices. 60.107a Section 60.107a Protection of Environment ENVIRONMENTAL... Commenced After May 14, 2007 § 60.107a Monitoring of emissions and operations for fuel gas...

  14. Pulsed discharge production Ar* metastables

    NASA Astrophysics Data System (ADS)

    Han, Jiande; Heaven, Michael C.; Emmons, Daniel; Perram, Glen P.; Weeks, David E.; Bailey, William F.

    2016-03-01

    The production of relatively high densities of Ar* metastables (>1012 cm-3) in Ar/He mixtures, at total pressures close to 1 atm, is essential for the efficient operation of an optically pumped Ar* laser. We have used emission spectroscopy and diode laser absorption spectroscopy measurements to observe the production and decay of Ar* in a parallel plate pulsed discharge. With discharge pulses of 1 μs duration we find that metastable production is dominated by processes occurring within the first 100 ns of the gas break-down. Application of multiple, closely spaced discharge pulses yields insights concerning conditions that favor metastable production. This information has been combined with time-resolved measurements of voltage and current. The experimental results and preliminary modeling of the discharge kinetics are presented.

  15. Recent Operational Experience with the Internal Thermal Control System Dual-Membrane Gas Trap

    NASA Technical Reports Server (NTRS)

    Leimkuehler, Thomas O.; Lukens, Clark; Reeves, Daniel R.; Holt, James M.

    2004-01-01

    A dual-membrane gas trap is currently used to remove gas bubbles from the Internal Thermal Control System (ITCS) coolant on board the International Space Station. The gas trap consists of concentric tube membrane pairs, comprised of outer hydrophilic tubes and inner hydrophobic fibers. Liquid coolant passes through the outer hydrophilic membrane, which traps the gas bubbles. The inner hydrophobic fiber allows the trapped gas bubbles to pass through and vent to the ambient atmosphere in the cabin. The gas removal performance and operational lifetime of the gas trap have been affected by contamination in the ITCS coolant. However, the gas trap has performed flawlessly with regard to its purpose of preventing gas bubbles from causing depriming, overspeed, and shutdown of the ITCS pump. This paper discusses on-orbit events over the course of the last year related to the performance and functioning of the gas trap.

  16. 77 FR 31844 - New Mexico Gas Company, Inc; Notice of Revised Statement of Operating Conditions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-30

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission New Mexico Gas Company, Inc; Notice of Revised Statement of Operating Conditions Take notice that on May 18, 2012, New Mexico Gas Company, Inc. (NMGC) submitted a revised Statement of Operating Conditions (SOC). NMGC...

  17. GC/MS Gas Separator Operates At Lower Temperatures

    NASA Technical Reports Server (NTRS)

    Sinha, Mahadeva P.; Gutnikov, George

    1991-01-01

    Experiments show palladium/silver tube used to separate hydrogen carrier gas from gases being analyzed in gas-chromatography/mass-spectrometry (GC/MS) system functions satisfactorily at temperatures as low as 70 to 100 degrees C. Less power consumed, and catalytic hydrogenation of compounds being analyzed diminished. Because separation efficiency high even at lower temperatures, gas load on vacuum pump of mass spectrometer kept low, permitting use of smaller pump. These features facilitate development of relatively small, lightweight, portable GC/MS system for such uses as measuring concentrations of pollutants in field.

  18. Barium Depletion in the NSTAR Discharge Cathode After 30,000 Hours of Operation

    NASA Technical Reports Server (NTRS)

    Polk, James E.; Capece, Angela M.; Mikellides, Ioannis G.; Katz, Ira

    2010-01-01

    Dispenser hollow cathodes rely on a consumable supply of barium released by impregnant materials in the pores of a tungsten matrix to maintain a low work function surface. Examinations of cathode inserts from long duration ion engine tests show deposits of tungsten at the downstream end that appear to block the flow of barium from the interior. In addition, a numerical model of barium transport in the insert plasma indicates that the barium partial pressure in the insert may exceed the equilibrium vapor pressure of the dominant barium-producing reaction, and it was postulated previously that this would suppress barium loss in the upstream part of the insert. New measurements of the depth of barium depletion from a cathode insert operated for 30,352 hours reveal that barium loss is confined to a narrow region near the downstream end, confirming this hypothesis.

  19. Calculation of the gas temperature in a throughflow atmospheric pressure dielectric barrier discharge torch by spectral line shape analysis

    SciTech Connect

    Ionascut-Nedelcescu, A.; Carlone, C.; Kogelschatz, U.; Gravelle, D. V.; Boulos, M. I

    2008-03-15

    An analysis of spectral line profiles is used to calculate the gas temperature and to estimate the upper limit of the electron density in an atmospheric pressure dielectric barrier discharge torch. Two transitions are studied, that of helium (He) at 587.5 nm and that of hydrogen (H{sub {beta}}) at 486.1 nm, both observed in the spectra of the light emitted from the gap-space region. Relevant broadening mechanisms including the Doppler and Stark effects, as well as the collision processes between an emitter and a neutral particle, are reviewed. It is deduced that the main contribution to the broadened profiles is due to collisions. Through knowledge of the van der Waals interaction potential, a general expression for determining the gas temperature is derived and applied to each transition. The results obtained from both lines are in agreement; i.e., the gas temperature is found to be 460{+-}60 K at the highest voltage applied. This value is consistent with the experimental observation that at these conditions the afterglow plasma cannot ignite paper, whose ignition temperature is 507 K. Since no signature of the Stark effect can be detected either in He or H{sub {beta}} transition, the upper limit of the electron density, estimated from the uncertainty on the H{sub {beta}} linewidth, is 4x10{sup 12} cm{sup -3}. The generality of the method allows one to determine the temperature as a function of other parameters, such as voltage and flow rate. Concerning the applied voltage, the gas temperature increases linearly from 315{+-}30 to 460{+-}60 K, as derived from both lines. Over the same voltage range, a similar behavior is found for the rotational temperature, as deduced from the first negative B({sup 2}{sigma}{sub u}{sup +},v=0){yields}X({sup 2}{sigma}{sub g}{sup +},v=0) transition of the molecular nitrogen ion. However, the temperature varies between 325{+-}30 and 533{+-}15 K, indicating an overestimation of the gas temperature. On the other hand, the gas

  20. Emission of mercury monobromide exciplex in gas-discharge plasma based on mixture of mercury dibromide vapor with sulfur hexafluoride and helium

    NASA Astrophysics Data System (ADS)

    Malinina, A. A.; Shuaibov, A. K.

    2011-02-01

    We present the results of investigations of an emission of a mercury monobromide exciplex in gas-discharge plasma of an atmospheric pressure barrier discharge based on a mixture of mercury dibromide vapor, sulfur hexafluoride, and helium. We optimized the emission power of mercury monobromide exciplexes with respect to the partial pressures of the working mixture. An average emission power of 0.42 W (λmax = 502 nm) is achieved in a cylindrical emission source with a small working volume (0.8 cm3) at a pumping pulse repetition rate of 6 kHz. We determined electron energy distribution functions, transport characteristics, specific discharge power losses for electron processes, electron concentration and temperature, as well as rate constants of elastic and inelastic scattering of electrons by components of the working mixture in relation to the ratio of the field strength to the total concentration of components of the working mixture. We discuss processes that increase the population of the mercury monobromide exciplex. Gas-discharge plasma created in a mixture of mercury dibromide vapor with sulfur hexafluoride and helium can be used as a working medium of an emission source in the blue-green spectral range for the use in scientific research in biotechnology, photonics, and medicine, as well as for creating indicator gas-discharge panels.

  1. A Chemical Detector for Gas Chromatography Using Pulsed Discharge Emission Spectroscopy on a Microchip

    NASA Astrophysics Data System (ADS)

    Luo, X.; Zhu, W.; Mitra, B.; Liu, J.; Liu, T.; Fan, X.; Gianchandani, Y.

    2011-12-01

    There is increasing interest in miniaturized systems for chemical analysis in harsh environments. Chemical detection by emission spectroscopy of on-chip microdischarges [1-3] can be performed at >200°C [4], suggesting utility inspace exploration, volcanic monitoring, and oil well monitoring. This abstract describes the first use of pulsed microdischarge spectroscopy for gas chromatography (GC).This effort supports NASA interests in monitoring closed-loop life support systems for spacecraft. The microdischarge occurs on a 1cm2 glass chip (Fig. 1a), with thin-film Ni electrodes separated by 160μm. A glass lid with a grooved gas-flow channel, and inlet/outlet capillary tubes are epoxy-sealed to the chip. Located downstream of the 1.7m-long, RTX-1-coated, GC separation column, the microdischarge chip is read by a spectrometer. In a typical experiment (Fig. 1b), a mixture of acetone 3.6μg, 1-hexanol 2.8μg and nitrobenzene 3.0μg, is injected, with He carrier gas at 1.56sccm, through the GC. Acetone elutes quickly while nitrobenzene is slower. Microdischarges are triggered at 0.5Hz for 6 min., and 0.04Hz thereafter. Each microdischarge consumes ≈8mJ; the average power is ≈1.14mW. The spectrum (Fig. 1b, inset) shows that the 388nm peak, representing CN/CH fragments [5], is enhanced by carbon compounds. Its strength relative to the 588nm peak of He provides a chromatogram. Fig. 1b also shows a benchmark result from a commercial flame ionization detector (FID). The differences in elution time are attributed to differences in the gas flow paths for the two detectors [1]. REFERENCES [1] Eijkel et al, Anal. Chem, 2000 [2] Mitra et al, IEEE Trans Plasma Sci, 2008 [3] Mitra et al, IEEE Sensors, 2008 [4] Wright et al, APL, 2009 [5] Pearse et al, The Identification of Molecular Spectra, 1963

  2. Spectroscopic study of rare-gas excimer formation in a direct-current discharge with supersonic expansion

    NASA Astrophysics Data System (ADS)

    Kiik, M. J.; Dubé, P.; Stoicheff, B. P.

    1995-02-01

    Emission spectra of the rare-gas excimers Ar2*, Kr2*, and Xe2* were excited in a dc jet discharge with supersonic expansion. Absorption and fluorescence emission measurements provided atomic population densities for levels of the 1s manifold. Changes in intensities of the atomic resonance lines and the VUV bands were examined as the plasma was irradiated with laser radiation tuned to specific atomic transitions between levels of the 1s and 2p manifolds. This technique of optical pumping has established that excimers in the A 3Σ+u state are the main contributors to the observed bands from this source. Rate equations were developed to explain the observed intensity changes. Comparisons of the calculated and observed changes indicated that population mixing amongst levels of the 1s manifold caused by electron collisions is an important process in regulating the population in the 1s5 atomic level that leads to the formation of rare-gas excimers by collisions with ground level atoms.

  3. 78 FR 54417 - Oil and Gas and Sulphur Operations on the Outer Continental Shelf-Oil and Gas Production Safety...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-04

    ... Operations on the Outer Continental Shelf--Oil and Gas Production Safety Systems Correction In proposed rule....802 Design, installation, Sec. 250.819 Specification and operation of surface production- for surface... features. Sec. 250.803 Additional production Sec. 250.850 Production system requirements....

  4. Pulsed electron-beam-sustained discharge in oxygen-containing gas mixtures: electrical characteristics, spectroscopy,and singlet oxygen yield

    SciTech Connect

    Vagin, Nikolai P; Ionin, Andrei A; Klimachev, Yu M; Kotkov, A A; Podmar'kov, Yu P; Seleznev, L V; Sinitsyn, D V; Frolov, M P; Yuryshev, Nikolai N; Kochetov, Igor' V; Napartovich, A P; Hager, G D

    2004-09-30

    The electrical and spectroscopic characteristics of electron-beam-sustained discharge (EBSD) in oxygen and oxygen-containing gas mixtures are studied experimentally under gas pressures up to 100 Torr in a large excitation volume ({approx}18 L). It is shown that the EBSD in pure oxygen and its mixtures with inert gases is unstable and is characterised by a small specific energy contribution. The addition of small amounts ({approx}1%-10%) of carbon monoxide or hydrogen to oxygen or its mixtures with inert gases considerably improves the stability of the discharge, while the specific energy contribution W increases by more then an order of magnitude, achieving {approx}6.5 kJ L{sup -1} atm{sup -1} per molecular component of the gas mixture. A part of the energy supplied to the EBSD is spent to excite vibrational levels of molecular additives. This was demonstrated experimentally by the initiation of a CO laser based on the O{sub 2} : Ar : CO = 1 : 1 : 0.1 mixture. Experimental results on spectroscopy of the excited electronic states O{sub 2}(a{sup 1{Delta}}{sub g}) and O{sub 2}(b{sup 1{Sigma}}{sub g}{sup +}), of oxygen formed in the EBSD are presented. A technique was worked out for measuring the concentration of singlet oxygen in the O{sub 2}(a{sup 1{Delta}}{sub g}) state in the afterglow of the pulsed EBSD by comparing with the radiation intensity of singlet oxygen of a given concentration produced in a chemical generator. Preliminary measurements of the singlet-oxygen yield in the EBSD show that its value {approx}3% for W {approx} 1.0 kJ L{sup -1} atm{sup -1} is in agreement with the theoretical estimate. Theoretical calculations performed for W {approx} 6.5 kJ L{sup -1} atm{sup -1} at a fixed temperature show that the singlet-oxygen yield may be {approx}20%, which is higher than the value required to achieve the lasing threshold in an oxygen-iodine laser at room temperature. (laser applications and other topics in quantum electronics)

  5. Distribution of E/N and N/e/ in a cross-flow electric discharge laser. [electric field to neutral gas density and electron number density

    NASA Technical Reports Server (NTRS)

    Dunning, J. W., Jr.; Lancashire, R. B.; Manista, E. J.

    1976-01-01

    Measurements have been conducted of the effect of the convection of ions and electrons on the discharge characteristics in a large scale laser. The results are presented for one particular distribution of ballast resistance. Values of electric field, current density, input power density, ratio of electric field to neutral gas density (E/N), and electron number density were calculated on the basis of measurements of the discharge properties. In a number of graphs, the E/N ratio, current density, power density, and electron density are plotted as a function of row number (downstream position) with total discharge current and gas velocity as parameters. From the dependence of the current distribution on the total current, it appears that the electron production in the first two rows significantly affects the current flowing in the succeeding rows.

  6. Purge gas protected transportable pressurized fuel cell modules and their operation in a power plant

    DOEpatents

    Zafred, Paolo R.; Dederer, Jeffrey T.; Gillett, James E.; Basel, Richard A.; Antenucci, Annette B.

    1996-01-01

    A fuel cell generator apparatus and method of its operation involves: passing pressurized oxidant gas, (O) and pressurized fuel gas, (F), into fuel cell modules, (10 and 12), containing fuel cells, where the modules are each enclosed by a module housing (18), surrounded by an axially elongated pressure vessel (64), where there is a purge gas volume, (62), between the module housing and pressure vessel; passing pressurized purge gas, (P), through the purge gas volume, (62), to dilute any unreacted fuel gas from the modules; and passing exhaust gas, (82), and circulated purge gas and any unreacted fuel gas out of the pressure vessel; where the fuel cell generator apparatus is transpatable when the pressure vessel (64) is horizontally disposed, providing a low center of gravity.

  7. Purge gas protected transportable pressurized fuel cell modules and their operation in a power plant

    DOEpatents

    Zafred, P.R.; Dederer, J.T.; Gillett, J.E.; Basel, R.A.; Antenucci, A.B.

    1996-11-12

    A fuel cell generator apparatus and method of its operation involves: passing pressurized oxidant gas and pressurized fuel gas into modules containing fuel cells, where the modules are each enclosed by a module housing surrounded by an axially elongated pressure vessel, and where there is a purge gas volume between the module housing and pressure vessel; passing pressurized purge gas through the purge gas volume to dilute any unreacted fuel gas from the modules; and passing exhaust gas and circulated purge gas and any unreacted fuel gas out of the pressure vessel; where the fuel cell generator apparatus is transportable when the pressure vessel is horizontally disposed, providing a low center of gravity. 11 figs.

  8. TECHNOLOGIES TO ENHANCE OPERATION OF THE EXISTING NATURAL GAS COMPRESSION INFRASTRUCTURE

    SciTech Connect

    Anthony J. Smalley; Ralph E. Harris; Gary D. Bourn

    2003-10-01

    This report documents work performed in the fourth quarter of the project entitled: ''Technologies to Enhance Operation of the Existing Natural Gas Compression Infrastructure''. The project objective is to develop and substantiate methods for operating integral engine/compressors in gas pipeline service, which reduce fuel consumption, increase capacity, and enhance mechanical integrity. The report describes the following work: second field test; test data analysis for the first field test; operational optimization plans.

  9. Gas-to-Particle Conversion in Surface Discharge Nonthermal Plasmas and Its Implications for Atmospheric Chemistry

    PubMed Central

    Kim, Hyun-Ha; Ogata, Atsushi

    2011-01-01

    This paper presents some experimental data on gas-to-particle conversion of benzene using nonthermal plasma (NTP) technology and discusses the possibility of its technical application in atmospheric chemistry. Aerosol measurement using a differential mobility analyzer (DMA) revealed that the parts of benzene molecules were converted into a nanometer-sized aerosol. Aerosol formation was found to be highly related with the missing part in carbon balance. Scanning electron microscopy analysis showed that the aerosols formed in synthetic humid air are the collection of nanoparticles. The carbonyl band (C=O) was found to be an important chemical constituent in the aerosol. The potential of the NTP as an accelerated test tool in studying secondary organic aerosol (SOA) formation from VOCs will be also addressed. PMID:22163781

  10. TEST RESULTS FOR FUEL CELL OPERATION ON ANAEROBIC DIGESTER GAS

    EPA Science Inventory

    EPA, in conjunction with ONSI Corp., embarked on a project to define, design, test, and assess a fuel cell energy recovery system for application at anaerobic digester waste water (sewage) treatment plants. Anaerobic digester gas (ADG) is produced at these plants during the proce...

  11. Geochemistry of water and gas discharges from the Mt. Amiata silicic complex and surrounding areas (central Italy)

    NASA Astrophysics Data System (ADS)

    Minissale, A.; Magro, G.; Vaselli, O.; Verrucchi, C.; Perticone, I.

    1997-12-01

    The Mt. Amiata volcano in central Italy is intimately related to the post-orogenic magmatic activity which started in Pliocene times. Major, trace elements, and isotopic composition of thermal and cold spring waters and gas manifestations indicate the occurrence of three main reservoir of the thermal and cold waters in the Mt. Amiata region. The deepest one is located in an extensive carbonate reservoir buried by thick sequences of low-permeability allochthonous and neo-autochthonous formations. Thermal spring waters discharging from this aquifer have a neutral Ca-SO 4 composition due to the presence of anhydrite layers at the base of the carbonate series and, possibly, to absorption of deep-derived H 2S with subsequent oxidation to SO 42- in a system where pH is buffered by the calcite-anhydrite pair ( Marini and Chiodini, 1994). Isotopic signature of these springs and N 2-rich composition of associated gas phases suggest a clear local meteoric origin of the feeding waters, and atmospheric O 2 may be responsible for the oxidation of H 2S. The two shallower aquifers have different chemical features. One is Ca-HCO 3 in composition and located in several sedimentary formations above the Mesozoic carbonates. The other one has a Na-Cl composition and is hosted in marine sediments filling many post-orogenic NW-SE-trending basins. Strontium, Ba, F, and Br contents have been used to group waters associated with each aquifer. Although circulating to some extent in the same carbonate reservoir, the deep geothermal fluids at Latera and Mt. Amiata and thermal springs discharging from their outcropping areas have different composition: Na-Cl and Ca-SO 4 type, respectively. Considering the high permeability of the reservoir rock, the meteoric origin of thermal springs and the two different composition of the thermal waters, self-sealed barriers must be present at the boundaries of the geothermal systems. The complex hydrology of the reservoir rocks greatly affects the

  12. TECHNOLOGIES TO ENHANCE OPERATION OF THE EXISTING NATURAL GAS COMPRESSION INFRASTRUCTURE

    SciTech Connect

    Anthony J. Smalley; Ralph E. Harris; Gary D. Bourn

    2004-03-01

    This report documents work performed in Phase I of the project entitled: ''Technologies to Enhance Operation of the Existing Natural Gas Compression Infrastructure''. The project objective is to develop and substantiate methods for operating integral engine/compressors in gas pipeline service, which reduce fuel consumption, increase capacity, and enhance mechanical integrity. The report describes a number of potential enhancements to the existing natural gas compression infrastructure that have been identified and qualitatively demonstrated in tests on three different integral engine/compressors in natural gas transmission service.

  13. TECHNOLOGIES TO ENHANCE OPERATION OF THE EXISTING NATURAL GAS COMPRESSION INFRASTRUCTURE

    SciTech Connect

    Anthony J. Smalley; Ralph E. Harris; Gary D. Bourn

    2004-08-01

    This report documents work performed in Phase I of the project entitled: ''Technologies to Enhance Operation of the Existing Natural Gas Compression Infracture''. The project objective is to develop and substantiate methods for operating integral engine/compressors in gas pipeline service, which reduce fuel consumption, increase capacity, and enhance mechanical integrity. The report describes a number of potential enhancements to the existing natural gas compression infrastructure that have been identified and tested on four different integral engine/compressors in natural gas transmission service.

  14. Surface modification and stability of detonation nanodiamonds in microwave gas discharge plasma

    NASA Astrophysics Data System (ADS)

    Stanishevsky, Andrei V.; Walock, Michael J.; Catledge, Shane A.

    2015-12-01

    Detonation nanodiamonds (DND), with low hydrogen content, were exposed to microwave plasma generated in pure H2, N2, and O2 gases and their mixtures, and investigated using X-ray diffraction (XRD), Fourier Transform Infrared (FTIR), Raman, and X-ray photoelectron spectroscopies. Considerable alteration of the DND surface was observed under the plasma conditions for all used gases, but the diamond structure of the DND particle core was preserved in most cases. The stabilizing effect of H2 in H2/N2 and H2/O2 binary gas plasmas on the DND structure and the temperature-dependent formation of various CNHx surface groups in N2 and H2/N2 plasmas were observed and discussed for the first time. DND surface oxidation and etching were the main effects of O2 plasma, whereas the N2 plasma led to DND surfaces rich in amide groups below 1073 K and nitrile groups at higher temperatures. Noticeable graphitization of the DND core structure was detected only in N2 plasma when the substrate temperature was above 1103 K.

  15. Steady-state canopy gas exchange: system design and operation

    NASA Technical Reports Server (NTRS)

    Bugbee, B.

    1992-01-01

    This paper describes the use of a commercial growth chamber for canopy photosynthesis, respiration, and transpiration measurements. The system was designed to measure transpiration via water vapor fluxes, and the importance of this measurement is discussed. Procedures for continuous measurement of root-zone respiration are described, and new data is presented to dispel myths about sources of water vapor interference in photosynthesis and in the measurement of CO2 by infrared gas analysis. Mitchell (1992) has described the fundamentals of various approaches to measuring photosynthesis. Because our system evolved from experience with other types of single-leaf and canopy gas-exchange systems, it is useful to review advantages and disadvantages of different systems as they apply to various research objectives.

  16. A Guidance Document for Kentucky's Oil and Gas Operators

    SciTech Connect

    Bender, Rick

    2002-03-18

    The accompanying report, manual and assimilated data represent the initial preparation for submission of an Application for Primacy under the Class II Underground Injection Control (UIC) program on behalf of the Commonwealth of Kentucky. The purpose of this study was to identify deficiencies in Kentucky law and regulation that would prevent the Kentucky Division of Oil and Gas from receiving approval of primacy of the UIC program, currently under control of the United States Environmental Protection Agency (EPA) in Atlanta, Georgia.

  17. The gas electron multiplier (GEM): Operating principles and applications

    NASA Astrophysics Data System (ADS)

    Sauli, Fabio

    2016-01-01

    Introduced by the author in 1997, The Gas Electron Multiplier (GEM) constitutes a powerful addition to the family of fast radiation detectors; originally developed for particle physics experiments, the device and has spawned a large number of developments and applications; a web search yields more than 400 articles on the subject. This note is an attempt to summarize the status of the design, developments and applications of the new detector.

  18. Trace analysis of impurities in bulk gases by gas chromatography-pulsed discharge helium ionization detection with "heart-cutting" technique.

    PubMed

    Weijun, Yao

    2007-10-12

    A method has been developed for the detection of low-nL/L-level impurities in bulk gases such as H(2), O(2), Ar, N(2), He, methane, ethylene and propylene, respectively. The solution presented here is based upon gas chromatography-pulsed discharge helium ionization detection (GC-PDHID) coupled with three two-position valves, one two-way solenoid valve and four packed columns. During the operation, the moisture and heavy compounds are first back-flushed via a pre-column. Then the trace impurities (except CO(2) which is diverted to a separate analytical column for separation and detection) together with the matrix enter onto a main column, followed by the heart-cut of the impurities onto a longer analytical column for complete separation. Finally the detection is performed by PDHID. This method has been applied to different bulk gases and the applicability of detecting impurities in H(2), Ar, and N(2) are herewith demonstrated. As an example, the resulting detection limit of 100 nL/L and a dynamic range of 100-1000 nL/L have been obtained using an Ar sample containing methane. PMID:17850804

  19. 49 CFR 192.1005 - What must a gas distribution operator (other than a master meter or small LPG operator) do to...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false What must a gas distribution operator (other than a master meter or small LPG operator) do to implement this subpart? 192.1005 Section 192.1005...) § 192.1005 What must a gas distribution operator (other than a master meter or small LPG operator) do...

  20. 49 CFR 192.1005 - What must a gas distribution operator (other than a master meter or small LPG operator) do to...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false What must a gas distribution operator (other than a master meter or small LPG operator) do to implement this subpart? 192.1005 Section 192.1005...) § 192.1005 What must a gas distribution operator (other than a master meter or small LPG operator) do...