Science.gov

Sample records for gas plasma sterilization

  1. Gas plasma sterilization--application of space-age technology.

    PubMed

    Crow, S; Smith, J H

    1995-08-01

    Gas plasma sterilization is new to the healthcare field. The first such sterilizer has been manufactured by Advanced Sterilization Products (J&J, Irvine, CA). The system uses hydrogen peroxide as the substrate gas and radio frequency emissions to generate plasma. This system is a low-temperature, quick-acting process with no toxic residues. It appears that this sterilizer system holds promise in the healthcare field and could help to reduce the use of ethylene oxide. PMID:7594394

  2. Gas plasma sterilization of microorganisms and mechanisms of action

    PubMed Central

    SHINTANI, HIDEHARU; SAKUDO, AKIKAZU; BURKE, PETER; McDONNELL, GERALD

    2010-01-01

    The use of true gas plasmas for the inactivation of microorganisms is an area of dynamic research. Many types of gases are used as a source of plasma, and different plasma production methods have been applied. The antimicrobial mechanisms of oxygen-based gas plasmas may be due to an etching effect on microbial structures, particularly bacterial endospores resulting in shrinkage. By contrast, the definite mechanisms of actions of other gas plasma sources, such as N2, He, Ne, Ar and Xe gases, have not been clearly defined and indeed may be distinct. The speculated mechanisms of these gas plasmas involve the direct attack of metastable (excited molecular), UV and/or VUV to microbial structures, specifically the inner membrane and DNA in the core of bacterial endospores. According to this speculation, sterilized spore figures would remain unchanged. However, these mechanisms remain to be clarified. Future perspectives on the use of gas plasma for sterilization are of interest, as it is possible that appropriate sterility assurance levels can be obtained in parallel with material and functional compatibility. Traditional sterilization methods are often limited in these requirements. Therefore, gas plasma sterilization may prove to be an appropriate alternative sterilization procedure. PMID:22993596

  3. Space hardware compatibility tests with hydrogen peroxide gas plasma sterilization

    NASA Astrophysics Data System (ADS)

    Faye, Delphine; Aguila, Alexandre; Debus, Andre; Remaury, Stephanie; Nabarra, Pascale; Darbord, Jacques C.; Soufflet, Caroline; Destrez, Philippe; Coll, Patrice; Coscia, David

    The exploration of the Solar System shall comply with planetary protection requirements handled presently by the Committee of Space Research (COSPAR). The goal of planetary protection is to protect celestial bodies from terrestrial contamination and also to protect the Earth environment from an eventual contamination carried by return samples or by space systems. For project teams, avoiding the biological contamination of other Solar System bodies such as Mars imposes to perform unusual tasks at technical and operational constraints point of view. The main are the reduction of bioburden on space hardware, the sterile integration of landers, the control of the biological cleanliness and the limitation of crash probability. In order to reduce the bioburden on spacecraft, the use of qualified sterilization processes may be envisaged. Since 1992 now, with the Mars96 mission, one of the most often used is the Sterrad(R) process working with hydrogen peroxide gas plasma. In the view of future Mars exploration programs, after tests performed in the frame of previous missions, a new test campaign has been performed on thermal coatings and miscellaneous materials coming from an experiment in order to assess the compatibility of space hardware and material with this sterilization process.

  4. Investigation of Sterilization Effect by various Gas Plasmas and Electron Microscopic Observation of Bacteria

    NASA Astrophysics Data System (ADS)

    Sasaki, Yota; Takamatsu, Toshihiro; Uehara, Kodai; Oshita, Takaya; Miyahara, Hidekazu; Okino, Akitoshi; Ikeda, Keiko; Matsumura, Yuriko; Iwasawa, Atsuo; Kohno, Masahiro

    2014-10-01

    Atmospheric non-thermal plasmas have attracted attention as a new sterilization method. It is considered that factor of plasma sterilization are mainly reactive oxygen species (ROS). However, the sterilization mechanism hasn't been investigated in detail because conventional plasma sources have a limitation in usable gas species and lack variety of ROS. So we developed multi-gas plasma jet which can generate various gas plasmas. In this study, investigation of sterilization effect by various gas plasmas and electron microscopic observation of bacteria were performed. Oxygen, nitrogen, carbon dioxide, argon and air were used as plasma gas. To investigate gas-species dependence of sterilization effect, S.aureus was treated. As a result, nitrogen plasma and carbon dioxide plasma were effective for sterilization. To investigate sterilization mechanism, the surface of S.aureus was observed by scanning electron microscope. As a result, dimples were observed on the surface after irradiation of nitrogen plasma, but no change observed in the case of carbon dioxide plasma. These results suggest that bactericidal mechanism of nitrogen and carbon dioxide plasma should be different. In the presentation, Measurement result of ROS will be reported.

  5. Effects of humidity on sterilization of Geobacillus stearothermophilus spores with plasma-excited neutral gas

    NASA Astrophysics Data System (ADS)

    Matsui, Kei; Ikenaga, Noriaki; Sakudo, Noriyuki

    2015-06-01

    We investigate the effects of relative humidity on the sterilization process using a plasma-excited neutral gas that uniformly sterilizes both the space and inner wall of the reactor chamber at atmospheric pressure. Only reactive neutral species such as plasma-excited gas molecules and radicals were separated from the plasma and sent to the reactor chamber for chemical sterilization. The plasma source gas is nitrogen mixed with 0.1% oxygen, and the relative humidity in the source gas is controlled by changing the mixing ratio of water vapor. The relative humidity near the sample in the reactor chamber is controlled by changing the sample temperature. As a result, the relative humidity near the sample should be kept in the range from 60 to 90% for the sterilization of Geobacillus stearothermophilus spores. When the relative humidity in the source gas increases from 30 to 90%, the sterilization effect is enhanced by the same degree.

  6. Plasma Sterilization Technology for Spacecraft Applications

    NASA Technical Reports Server (NTRS)

    Fraser, S. J.; Olson, R. L.; Leavens, W. M.

    1975-01-01

    The application of plasma gas technology to sterilization and decontamination of spacecraft components is considered. Areas investigated include: effective sterilizing ranges of four separate gases; lethal constituents of a plasma environment; effectiveness of plasma against a diverse group of microorganisms; penetrating efficiency of plasmas for sterilization; and compatibility of spacecraft materials with plasma environments. Results demonstrated that plasma gas, specifically helium plasma, is a highly effective sterilant and is compatible with spacecraft materials.

  7. Sterilization of Bacillus subtilis Spores Using an Atmospheric Plasma Jet with Argon and Oxygen Mixture Gas

    NASA Astrophysics Data System (ADS)

    Shen, Jie; Cheng, Cheng; Fang, Shidong; Xie, Hongbing; Lan, Yan; Ni, Guohua; Meng, Yuedong; Luo, Jiarong; Wang, Xiangke

    2012-03-01

    To determine an efficient sterilization mechanism, Bacillus subtilis spore samples were exposed to an atmospheric plasma jet. By using argon/oxygen mixture gas, the decimal reduction value was reduced from 60 s (using argon gas) to 10 s. More dramatically, after 5 min treatment, the colony-forming unit (CFU) was reduced by six orders. To understand the underlying mechanism of the efficient sterilization by plasma, the contributions from heat, UV radiation, charged particles, ozone, and reactive oxygen radicals were distinguished in this work, showing that charged particles and ozone were the main killing factors. The shape changes of the spores were also discussed.

  8. Effects of additional vapors on sterilization of microorganism spores with plasma-excited neutral gas

    NASA Astrophysics Data System (ADS)

    Matsui, Kei; Ikenaga, Noriaki; Sakudo, Noriyuki

    2015-01-01

    Some fundamental experiments are carried out in order to develop a plasma process that will uniformly sterilize both the space and inner wall of the reactor chamber at atmospheric pressure. Air, oxygen, argon, and nitrogen are each used as the plasma source gas to which mixed vapors of water and ethanol at different ratios are added. The reactor chamber is remotely located from the plasma area and a metal mesh for eliminating charged particles is installed between them. Thus, only reactive neutral particles such as plasma-excited gas molecules and radicals are utilized. As a result, adding vapors to the source gas markedly enhances the sterilization effect. In particular, air with water and/or ethanol vapor and oxygen with ethanol vapor show more than 6-log reduction for Geobacillus stearothermophilus spores.

  9. Optimization of a RF-generated CF4/O2 gas plasma sterilization process.

    PubMed

    Lassen, Klaus S; Nordby, Bolette; Grün, Reinar

    2003-05-15

    A sterilization process with the use of RF-generated (13.56 MHz) CF(4)/O(2) gas plasma was optimized in regards to power, flow rate, exposure time, and RF-system type. The dependency of the sporicidal effect on the spore inoculum positioning in the chamber of the RF systems was also investigated. Dried Bacillus stearothermophilus ATCC 7953 endospores were used as test organisms. The treatments were evaluated on the basis of survival curves and corresponding D values. The only parameter found to affect the sterilization process was the power of the RF system. Higher power resulted in higher kill. Finally, when the samples were placed more than 3-8 cm away from a centrally placed electrode in System 2, the sporicidal effect was reduced. The results are discussed and compared to results from the present literature. The RF excitation source is evaluated to be more appropriate for sterilization processes than the MW source. PMID:12687716

  10. Apparatus Circulates Sterilizing Gas

    NASA Technical Reports Server (NTRS)

    Cross, John H.; Schwarz, Ray P.

    1991-01-01

    Apparatus circulates sterilizing gas containing ethylene oxide and chlorofluorocarbon through laboratory or medical equipment. Confines sterilizing gas, circulating it only through parts to be treated. Consists of two units. One delivers ethylene oxide/chlorofluorocarbon gas mixture and removes gas after treatment. Other warms, humidifies, and circulates gas through equipment to be treated. Process provides reliable sterilization with negligible residual toxicity from ethylene oxide. Particularly suitable for sterilization of interiors of bioreactors, heart/lung machines, dialyzers, or other equipment including complicated tubing.

  11. Evaluation of bactericidal effects of low-temperature nitrogen gas plasma towards application to short-time sterilization.

    PubMed

    Kawamura, Kumiko; Sakuma, Ayaka; Nakamura, Yuka; Oguri, Tomoko; Sato, Natsumi; Kido, Nobuo

    2012-07-01

    To develop a novel low-temperature plasma sterilizer using pure N(2) gas as a plasma source, we evaluated bactericidal ability of a prototype apparatus provided by NGK Insulators. After determination of the sterilizing conditions without the cold spots, the D value of the BI of Geobacillus stearothermophilus endospores on the filter paper was determined as 1.9 min. However, the inactivation efficiency of BI carrying the same endospores on SUS varied to some extent, suggesting that the bactericidal effect might vary by materials of sterilized instruments. Staphylococcus aureus and Escherichia coli were also exposed to the N(2) gas plasma and confirmed to be inactivated within 30 min. Through the evaluation of bactericidal efficiency in a sterilization bag, we concluded that the UV photons in the plasma and the high-voltage pulse to generate the gas plasma were not concerned with the bactericidal effect of the N(2) gas plasma. Bactericidal effect might be exhibited by activated nitrogen atoms or molecular radicals. PMID:22469251

  12. Costs of low-temperature plasma sterilization compared with other sterilization methods.

    PubMed

    Adler, S; Scherrer, M; Daschner, F D

    1998-10-01

    Plasma sterilization is a new technique for decontaminating thermolabile products without the severe drawbacks associated with gas sterilization methods (residues, environment compatibility). The actual costs, per sterilization unit, of three sterilization techniques--plasma, ethylene oxide and formaldehyde--were compared. As plasma sterilization is an alternative to steam sterilization for sterilizing thermostable but easily corroding products or electronic instruments, costs for steam sterilization were calculated and compared as well. If one considers only the cost of the sterilization procedure itself, without taking into account the time-saving element of plasma sterilization, then ethylene oxide sterilization proves to be the most expensive procedure, followed by plasma sterilization; sterilization with formaldehyde was the least expensive. Inclusion of the time required to sterilize an instruments, however, altered the relative costs of the three methods. Because plasma sterilization takes less time to perform than either ethylene oxide or formaldehyde sterilization, fewer instruments need be procured. In order to measure and compare the time-saving advantage that plasma sterilization affords, five groups of instruments were assembled and the total cost of sterilizing an instrument of each group was calculated. The five groups included (1) disposable, (2) electronic, (3) endoscopic, (4) sharp and (5) standard instruments. In all cases, ethylene oxide sterilization was the most expensive method. Formaldehyde sterilization was, in four out of five cases, more expensive than plasma sterilization. Steam sterilization proved to be the cheapest method of sterilizing a laparoscopic set, even when costs due to damage inflicted on the optical instruments were calculated. In the case of a vitrectome, however, plasma sterilization costs were nearly the same as steam sterilization when the lower rate of damage by plasma sterilization was taken into account. PMID:9819691

  13. The application of a non-thermal plasma generated by gas-liquid gliding arc discharge in sterilization

    NASA Astrophysics Data System (ADS)

    Du, Chang Ming; Wang, Jing; Zhang, Lu; Xia Li, Hong; Liu, Hui; Xiong, Ya

    2012-01-01

    Gliding arc discharge has been investigated in recent years as an innovative physicochemical technique for contaminated water treatment at atmospheric pressure and ambient temperature. In this study we tested a gas-liquid gliding arc discharge reactor, the bacterial suspension of which was treated circularly. When the bacterial suspension was passed through the electrodes and circulated at defined flow rates, almost 100% of the bacteria were killed in less than 3.0 min. Experimental results showed that it is possible to achieve an abatement of 7.0 decimal logarithm units within only 30 s. Circulation flow rates and types of feeding gas caused a certain impact on bacteria inactivation, but the influences are not obvious. So, under the promise of sterilization effect, industrial applications can select their appropriate operating conditions. All inactivation curves presented the same three-phase profile showing an apparent sterilization effect. Analysis of the scanning electron microscope images of bacterial cells supports the speculation that the gas-liquid gliding arc discharge plasma is acting under various mechanisms driven essentially by oxidation and the effect of electric field. These results enhance the possibility of applying gas-liquid gliding arc discharge decontamination systems to disinfect bacterial-contaminated water. Furthermore, correlational research indicates the potential applications of this technology in rapid sterilization of medical devices, spacecraft and food.

  14. Comparison of the effects of gamma radiation and low temperature hydrogen peroxide gas plasma sterilization on the molecular structure, fatigue resistance, and wear behavior of UHMWPE.

    PubMed

    Goldman, M; Pruitt, L

    1998-06-01

    The effects of gamma radiation and low temperature hydrogen peroxide gas plasma (HPGP) sterilization on structure and cyclic mechanical properties were examined for orthopedic grade ultra-high-molecular-weight polyethylene (UHMWPE) and compared to each other as well as to no sterilization (control). Density was monitored with a density gradient column and was found to be directly influenced by the sterilization method employed: Gamma radiation led to an increase, while plasma did not. Oxidation of the polymer was studied by observing changes in the carbonyl peak with Fourier transform infrared spectrometry and was found to be strongly affected by both gamma radiation and subsequent aging, while plasma sterilization had little effect. Gamma radiation resulted in embrittlement of the polymer and a decreased resistance to fatigue crack propagation. This mechanical degradation was a direct consequence of postradiation oxidation and molecular evolution of the polymer and was not observed in the plasma-sterilized polymer. Both gamma radiation and plasma sterilization led to improved wear performance of the UHMWPE compared to the nonsterile control material. PMID:9570068

  15. Comparison of low-temperature hydrogen peroxide gas plasma sterilization for endoscopes using various Sterrad models.

    PubMed

    Okpara-Hofmann, J; Knoll, M; Dürr, M; Schmitt, B; Borneff-Lipp, M

    2005-04-01

    This study compared the effectiveness of sterilizing four types of endoscope using different models of the Sterrad system (Sterrad 50, 100, 100S and 200). Sterilization levels meeting international requirements were attained in all cases with carriers inoculated with Geobacillus stearothermophilus spores. The endoscopes were tested in half cycles ('overkill'). This is the first study to compare the Sterrad models marketed to date in terms of effective sterilization of endoscopes with narrow lumens. PMID:15749314

  16. Plasma sterilization using the RF glow discharge

    NASA Astrophysics Data System (ADS)

    Yang, Liqing; Chen, Jierong; Gao, Junling; Guo, Yafei

    2009-08-01

    In the present work, glow discharge oxygen plasma was used to sterilize the Pseudomonas aeruginosa on the polyethylene terephthalate (PET) sheets. In a self-designed plasma reaction equipment, active species (electron, ion, radical, UV light, etc.) were separated effectively, and the discharge area, afterglow area and remote area were plotted out in the plasma field. Before and after plasma treatment the cell morphology was studied by scanning electron microscopy (SEM). The results showed that after treatment of 30 s the germicidal effect is 4.26, 3. 84, 2.61, respectively in the three areas on the following conditions: discharge power was 40 W and gas flux was 20 cm 3/min. SEM results revealed the cell morphology before and after plasma treatment. The walls or cell membrane cracking was testified by determining the content of protein using coomassie light blue technique. The results from electron spin resonance spectroscopy (ESR) and double Langmuir electron probe showed that electron, ion and oxygen free radical played important roles in sterilization in the discharge area, but only oxygen radicals acted to sterilize the bacteria in the afterglow area and the remote area.

  17. Sterilization effects of atmospheric cold plasma brush

    SciTech Connect

    Yu, Q.S.; Huang, C.; Hsieh, F.-H.; Huff, H.; Duan Yixiang

    2006-01-02

    This study investigated the sterilization effects of a brush-shaped plasma created at one atmospheric pressure. A population of 1.0x10{sup 4}-1.0x10{sup 5} Escherichia coli or Micrococcus luteus bacteria was seeded in filter paper media and then subjected to Ar and/or Ar+O{sub 2} plasmas. A complete kill of the Micrococcus luteus required about 3 min argon plasma exposures. With oxygen addition into the argon plasma gas streams, a complete kill of the bacteria needed only less than 1 min plasma exposure for Micrococcus luteus and about 2 min exposure for Escherichia coli. The plasma treatment effects on the different bacteria cell structures were examined using scanning electron microscopy.

  18. Plasma Sterilization: New Epoch in Medical Textiles

    NASA Astrophysics Data System (ADS)

    Senthilkumar, P.; Arun, N.; Vigneswaran, C.

    2015-04-01

    Clothing is perceived to be second skin to the human body since it is in close contact with the human skin most of the times. In hospitals, use of textile materials in different forms and sterilization of these materials is an essential requirement for preventing spread of germs. The need for appropriate disinfection and sterilization techniques is of paramount importance. There has been a continuous demand for novel sterilization techniques appropriate for use on various textile materials as the existing sterilization techniques suffer from various technical and economical drawbacks. Plasma sterilization is the alternative method, which is friendlier and more effective on the wide spectrum of prokaryotic and eukaryotic microorganisms. Basically, the main inactivation factors for cells exposed to plasma are heat, UV radiation and various reactive species. Plasma exposure can kill micro-organisms on a surface in addition to removing adsorbed monolayer of surface contaminants. Advantages of plasma surface treatment are removal of contaminants from the surface, change in the surface energy and sterilization of the surface. Plasma sterilization aims to kill and/or remove all micro-organisms which may cause infection of humans or animals, or which can cause spoilage of foods or other goods. This review paper emphasizes necessity for sterilization, essentials of sterilization, mechanism of plasma sterilization and the parameters influencing it.

  19. Sterilization of Cotton Fabrics Using Plasma Treatment

    NASA Astrophysics Data System (ADS)

    Shahidi, S.; Ghoranneviss, M.

    2013-10-01

    Microbial contamination induces surface deformations and strength degradation of cotton fabrics by invading deeply into the fibers. In this study, the sterilization effects of low pressure plasmas on bacteria-inoculated cotton fabrics were investigated. Oxygen plasma treatment completely sterilized the cotton fabrics inoculated with various concentrations of staphylococcus aureus. Also, the influence of plasma treatment on physical properties of fabrics was examined. It was found that the plasma treatment did not affect ultimate tensile strength and surface morphology of the fabrics because it took advantage of relatively low plasma temperature.

  20. Generation of a nonequlibrium plasma in heterophase atmospheric-pressure gas-liquid media and demonstration of its sterilization ability

    SciTech Connect

    Akishev, Yu. S.; Grushin, M. E.; Karal'nik, V. B.; Monich, A. E.; Pan'kin, M. V.; Trushkin, N. I.; Kholodenko, V. P.; Chugunov, V. A.; Zhirkova, N. A.; Irkhina, I. A.; Kobzev, E. N.

    2006-12-15

    Results are presented from experiments on the generation of a low-temperature nonequilibrium plasma in atmospheric-pressure heterophase gas-liquid media of different compositions: (i) a liquid with air bubbles and (ii) air with liquid aerosol. To illustrate possible application of a low-temperature plasma in a heterophase medium, experiments on the inactivation of some microorganisms by a low-temperature plasma have been performed.

  1. Effect of Dielectric and Liquid on Plasma Sterilization Using Dielectric Barrier Discharge Plasma

    E-print Network

    Roy, Subrata

    Effect of Dielectric and Liquid on Plasma Sterilization Using Dielectric Barrier Discharge Plasma Abstract Plasma sterilization offers a faster, less toxic and versatile alternative to conventional sterilization methods. Using a relatively small, low temperature, atmospheric, dielectric barrier discharge

  2. Observation of Effectiveness of Clinical Sterilization by CASP-80A Low-Temperature Plasma Sterilizer

    NASA Astrophysics Data System (ADS)

    Li, Si; Zhang, Yangde; Liu, Weidong

    2006-09-01

    The influence on the effectiveness of sterilization by low-temperature plasma sterilizer CASP-80A was investigated so as to provide a theoretical basis for reducing medical costs and achieving ideal sterilization effectiveness. To conduct the on-site simulation test, a clinical material sterilization test and a test of the influence of organic substance were conducted, the former by using the representative of Bacillus Stearothermophilus, preparing the bacteria-contaminated carrier through polytetrafluoroethylene (PTFE) simulated hose endoscopes, and the latter by using calf serum as the influence factor of the organic substance. The results show that the CASP-80A low-temperature plasma sterilizer could achieve effective sterilization by either the short-cycle or the long-cycle sterilization method depending on different materials, apparatus, and extent of contamination. The organic substances could influence the effectiveness of sterilization by the low-temperature plasma (H2O2) sterilizer.

  3. [Assessment of the suitability of the sterile Aseptur pack for formaldehyde gas sterilization].

    PubMed

    Heller, G

    1989-02-01

    The wide field of application of formaldehyde-gas sterilization for thermo-unstable materials is confirmed by clinical experiences. Aseptic sterilize packing is also qualified for formaldehyde-gas sterilization. Aseptic sterilize packing is well permeable to formaldehyde. It has high tensile strength and it is germ impermeable for a long time. PMID:2741500

  4. Gas dynamics of ethylene oxide during sterilization

    NASA Astrophysics Data System (ADS)

    Zhu, Z.; Matthews, I. P.; Wang, C.

    1999-07-01

    This article reports a case study of the dynamics of ethylene oxide gas during sterilization using a microwave spectrometer. A diffusion equation is used to describe the processes of gas penetration, gas sorption, and chemical reactions. The three processes, although mathematically related, may be solved separately under simplified assumptions. This permits the prediction of gas penetration and sorption as well as the effect of chemical reactions upon the gas concentration for loads of differing dimensions and densities.

  5. Sterilization of Fusarium oxysporum by treatment of non-thermalequilibrium plasma in nutrient solution

    NASA Astrophysics Data System (ADS)

    Yasui, Shinji; Seki, Satoshi; Yoshida, Ryohei; Shoji, Kazuhiro; Terazoe, Hitoshi

    2016-01-01

    Fusarium wilt of spinach due to F. oxysporum infection is one of the most destructive root diseases in hydroponics in factories using the nutrient film technique. We investigated new technologies for the sterilization of microconidia of F. oxysporum by using a non-thermalequilibrium plasma treatment method in nutrient solution. Specifically, we investigated the sterilization capabilities of five types of gas (air, O2, N2, He, and Ar) used for plasma generation. The highest sterilization capability was achieved by using O2 plasma. However, ozone, which causes growth inhibition, was then generated and released into the atmosphere. The sterilization capability was lower when N2 or air plasma was used in the nutrient solution. It was confirmed that sterilization can be achieved by plasma treatment using inert gases that do not generate ozone; therefore, we determined that Ar plasma is the most preferable. In addition, we investigated the sterilization capabilities of other factors associated with Ar plasma generation, without direct plasma treatment. However, none of these other factors, which included Ar bubbling, pH reduction, increased temperature, hydrogen peroxide concentration, and UV radiation, could completely reproduce the results of direct plasma treatment. We assume that radicals such as O or OH may contribute significantly to the sterilization of microconidia of F. oxysporum in a nutrient solution.

  6. Sterilization of soybean powder with plasma treatment in atmospheric humid air

    NASA Astrophysics Data System (ADS)

    Iwami, R.; Kikuchi, Y.; Fukumoto, N.; Nagata, M.; Nakayama, A.; Nakagawa, K.

    2013-10-01

    Sterilization of foods has been performed by conventional methods such as heat, steam and chemical solutions. However, these sterilization techniques could cause damages to the food material. It is considered that plasma sterilization at atmospheric pressure is one of the promising alternative methods because of the low temperature process. In our previous study, the inactivation of Bacillus atrophaeusspores by a dielectric barrier discharge (DBD) plasma produced in atmospheric humid air was investigated in order to develop low-temperature, low-cost and high-speed plasma sterilization technique. The results showed that the inactivation of Bacillus atrophaeusspores was found to be dependent strongly on the humidity. In the present study, the plasma treatment technique in humid air is applied to sterilization of soybean powder. Effects of plasma sterilization were successfully confirmed by a colony counting method. It was found that the sterilization efficiency was increased by using the humid air as the discharge gas. In the conference, an improvement of the plasma treatment system to enhance the sterilization efficiency will be shown.

  7. Atmospheric-pressure plasma decontamination/sterilization chamber

    SciTech Connect

    Herrmann, Hans W.; Selwyn, Gary S.

    2001-01-01

    An atmospheric-pressure plasma decontamination/sterilization chamber is described. The apparatus is useful for decontaminating sensitive equipment and materials, such as electronics, optics and national treasures, which have been contaminated with chemical and/or biological warfare agents, such as anthrax, mustard blistering agent, VX nerve gas, and the like. There is currently no acceptable procedure for decontaminating such equipment. The apparatus may also be used for sterilization in the medical and food industries. Items to be decontaminated or sterilized are supported inside the chamber. Reactive gases containing atomic and metastable oxygen species are generated by an atmospheric-pressure plasma discharge in a He/O.sub.2 mixture and directed into the region of these items resulting in chemical reaction between the reactive species and organic substances. This reaction typically kills and/or neutralizes the contamination without damaging most equipment and materials. The plasma gases are recirculated through a closed-loop system to minimize the loss of helium and the possibility of escape of aerosolized harmful substances.

  8. Characteristics of plasma sterilizer using microwave torch plasma with AC high-voltage discharge plasma

    NASA Astrophysics Data System (ADS)

    Itarashiki, Tomomasa; Hayashi, Nobuya; Yonesu, Akira

    2016-01-01

    Microwave plasma sterilization has recently been attracting attention for medical applications. However, it is difficult to perform low-temperature sterilization in short time periods. Increasing the output power shortens the time required for sterilization but causes the temperature to increase. To overcome this issue, we have developed a hybrid plasma system that combines a microwave torch plasma and a high-voltage mesh plasma, which allows radicals to be produced at low temperatures. Using this system, successful sterilization was shown to be possible in a period of 45 min at a temperature of 41 °C.

  9. Sterilization of dielectric containers using a fore-vacuum pressure plasma-cathode electron source

    NASA Astrophysics Data System (ADS)

    Zolotukhin, D.; Burdovitsini, V.; Oks, E.; Tyunkov, A.; Yushkov, Yu

    2015-11-01

    We describe our work on sterilization of 10 ml glass and 60 ml plastic cylindrical containers using a fore-vacuum pressure, plasma-cathode, electron beam source. Beam plasma is formed inside the vessel by injection of a low-energy electron beam at 3 - 6 keV energy and current of 50 mA, at a working gas (air) pressure of 8 Pa. The gas composition was tracked by a quadrupole gas analyzer type RGA-100. As a test biological object for sterilization we used E. coli ATCC 25922 bacteria, the inner surface of each vessel was inoculated with a bacterial suspension. We find a smooth dependence of the degree of sterilization on the total energy density injected into the vessel. The efficacy of sterilization of container inner surfaces using a fore-vacuum pressure, plasma-cathode e-beam source of relatively low energy (a few keV) electrons is thus demonstrated.

  10. Cold atmospheric plasma sterilization: from bacteria to biomolecules

    NASA Astrophysics Data System (ADS)

    Kong, Michael

    2009-10-01

    Although ionized gases have been known to have biological effects for more than 100 years, their impact on the practice in healthcare service became very significant only recently. Today, plasma-based surgical tools are used for tissue reduction and blood coagulation as surgical procedures. Most significant however is the speed at which low-temperature gas plasmas are finding new applications in medicine and biology, including plasma sterilization, wound healing, and cancer therapies just to name a few. In the terminology of biotechnology, the ``pipeline'' is long and exciting. This presentation reviews the current status of the field with a particular emphasis on plasma inactivation of microorganisms and biomolecules, for which comprehensive scientific evidence has been obtained. Some of the early speculations of biocidal plasma species are now being confirmed through a combination of optical emission spectroscopy, laser-induced fluorescence, mass spectrometry, fluid simulation and biological sensing with mutated bacteria. Similarly, fundamental studies are being performed to examine cell components targeted by gas plasmas, from membrane, through lipid and membrane proteins, to DNA. Scientific challenge is significant, as the usual complexity of plasma dynamics and plasma chemistry is compounded by the added complication that cells are live and constantly evolving. Nevertheless, the current understanding of plasma inactivation currently provides strong momentum for plasma decontamination technologies to be realized in healthcare. We will discuss the issue of protein and tissue contaminations of surgical instruments and how cold atmospheric plasmas may be used to degrade and reduce their surface load. In the context of plasma interaction with biomolecules, we will consider recent data of plasma degradation of adhesion proteins of melanoma cells. These adhesion proteins are important for cancer cell migration and spread. If low-temperature plasmas could be used to degrade them, it could form a control strategy for cancer spread. This adds to the option of plasma-triggered programmed cell death (apoptosis). Whilst opportunities thus highlighted are significant and exciting, the underpinning science poses many open questions. The presentation will then discuss main requirements for plasma sources appropriate for their biomedical applications, in terms of the scope of up-scaling, the ability to treat uneven surfaces of varying materials, the range of plasma chemistry, and the control of plasma instabilities. Finally a perspective will be offered, in terms of both opportunities and challenges.

  11. Study of Inactivation Factors in Low Temperature Surface-wave Plasma Sterilization

    NASA Astrophysics Data System (ADS)

    Singh, Mrityunjai Kumar; Xu, Lei; Ogino, Akihisa; Nagatsu, Masaaki

    In this study we investigated the low temperature surface-wave plasma sterilization of directly and indirectly exposed Geobacillus stearothermophilus spores with a large-volume microwave plasma device. The air-simulated gas mixture was used to produce the plasma. The water vapor addition to the gas mixture improved the sterilization efficiency significantly. The effect of ultraviolet photons produced along with plasma to inactivate the spores was studied using a separate chamber, which was evacuated to less than one mTorr and was observed that spores were sterilized within 60 min. The scanning electron microscopy images revealed no significant changes in the actual size of the spores with that of untreated spores despite the survival curve shown that the spores were inactivated.

  12. Sterilization of Turmeric by Atmospheric Pressure Dielectric Barrier Discharge Plasma

    NASA Astrophysics Data System (ADS)

    Setareh, Salarieh; Davoud, Dorranian

    2013-11-01

    In this study atmospheric pressure dielectric barrier discharge (DBD) plasma has been employed for sterilizing dry turmeric powders. A 6 kV, 6 kHz frequency generator was used to generate plasma with Ar, Ar/O2, He, and He/O2 gases between the 5 mm gap of two quartz covered electrodes. The complete sterilization time of samples due to plasma treatment was measured. The most important contaminant of turmeric is bacillus subtilis. The results show that the shortest sterilization time of 15 min is achieved by exposing the samples to Ar/O2 plasma. Survival curves of samples are exponential functions of time and the addition of oxygen to plasma leads to a significant increase of the absolute value of time constant of the curves. Magnitudes of protein and DNA in treated samples were increased to a similar value for all samples. Taste, color, and solubility of samples were not changed after the plasma treatment.

  13. Simultaneous Sterilization With Surface Modification Of Plastic Bottle By Plasma-Based Ion Implantation

    SciTech Connect

    Sakudo, N.; Ikenaga, N.; Ikeda, F.; Nakayama, Y.; Kishi, Y.; Yajima, Z.

    2011-01-07

    Dry sterilization of polymeric material is developed. The technique utilizes the plasma-based ion implantation which is same as for surface modification of polymers. Experimental data for sterilization are obtained by using spores of Bacillus subtilis as samples. On the other hand we previously showed that the surface modification enhanced the gas barrier characteristics of plastic bottles. Comparing the implantation conditions for the sterilization experiment with those for the surface modification, we find that both sterilization and surface modification are simultaneously performed in a certain range of implantation conditions. This implies that the present bottling system for plastic vessels will be simplified and streamlined by excluding the toxic peroxide water that has been used in the traditional sterilization processes.

  14. High-speed sterilization technique using dielectric barrier discharge plasmas in atmospheric humid air

    NASA Astrophysics Data System (ADS)

    Miyamae, M.; Kikuchi, Y.; Fukumoto, N.; Nagata, M.

    2010-11-01

    The inactivation of Bacillus atrophaeus spores by a dielectric barrier discharge (DBD) plasma produced by an ac voltage application of 1 kHz in atmospheric humid air was investigated in order to develop low-temperature, low-cost and high-speed plasma sterilization technique. The biological indicators covered with a Tyvek sheet were set just outside the DBD plasma region, where the air temperature and humidity as a discharge gas were precisely controlled by an environmental test chamber. The results show that the inactivation of Bacillus atrophaeus spores was found to be dependent strongly on the humidity, and was completed within 15 min at a relative humidity of 90 % and a temperature of 30 C. The treatment time for sterilization is shorter than those of conventional sterilization methods using ethylene oxide gas and dry heat treatment. It is considered that reactive species such as hydroxyl radicals that are effective for the inactivation of Bacillus atrophaeus spores could be produced by the DBD plasma in the humid air. Repetitive micro-pulsed discharge plasmas in the humid air will be applied for the sterilization experiment to enhance the sterilization efficiency.

  15. Effect of ozone on sterilization of Penicillium digitatum using non-equilibrium atmospheric pressure plasma

    NASA Astrophysics Data System (ADS)

    Ohta, Takayuki; Iseki, Sachiko; Ito, Masafumi; Kano, Hiroyuki; Higashijima, Yasuhiro; Hori, Masaru

    2008-10-01

    Methyl bromide has been sprayed to the crops for protecting from insects and virus, but has high ozone depletion potential. Thus, the development of substitute-technology has been strongly required. We have investigated a plasma sterilization for spores of Penicillium digitatum, which causes green mold disease of the crops, using non-equilibrium atmospheric pressure plasma. The sterilization was caused by UV light, ozone, O and OH radicals. In this study, ozone density was measured and the effect to sterilization was discussed. The plasma was generated at an alternative current of 6kV and Ar gas flow rate of 3L/min. In order to investigate the sterilization mechanism of ozone, the absolute density of ozone was measured using ultraviolet absorption spectroscopy and was from 2 to 8 ppm. The sterilization by this plasma was larger than that by the ozonizer (03:600ppm). It is confirmed that the effect of ozone to the sterilization of Penicillium digitatum would be small.

  16. Permeation barrier coating and plasma sterilization of PET bottles and foils

    NASA Astrophysics Data System (ADS)

    Steves, Simon; Deilmann, Michael; Bibinov, Nikita; Awakowicz, Peter

    2009-10-01

    Modern packaging materials such as polyethylene terephthalate (PET) offer various advantages over glass or metal containers. Beside this they only offer poor barrier properties against gas permeation. Therefore, the shelf-live of packaged food is reduced. Additionally, common sterilization methods like heat, hydrogen peroxide or peracetic acid may not be applicable due to reduced heat or chemical resistance of the plastic packaging material. For the plasma sterilization and permeation barrier coating of PET bottles and foils, a microwave driven low pressure plasma reactor is developed based on a modified Plasmaline antenna. The dependencies of important plasma parameters, such as gas mixture, process pressure, power and pulse conditions on oxygen permeation through packaging foil are investigated. A residual permeation as low as J = 1.0 ±0.3 cm^3m-2day-1bar-1 for 60 nm thick silicon oxide (SiOx) coated PET foils is achieved. To discuss this residual permeation, coating defects are visualized by capacitively coupled atomic oxygen plasma etching of coated substrate. A defect density of 3000 mm-2 is revealed responsible for permeation. For plasma sterilization, optimized plasma parameters based on fundamental research of plasma sterilization mechanisms permit short treatment times of a few seconds.

  17. Spacecraft Sterilization Using Non-Equilibrium Atmospheric Pressure Plasma

    NASA Technical Reports Server (NTRS)

    Cooper, Moogega; Vaze, Nachiket; Anderson, Shawn; Fridman, Gregory; Vasilets, Victor N.; Gutsol, Alexander; Tsapin, Alexander; Fridman, Alexander

    2007-01-01

    As a solution to chemically and thermally destructive sterilization methods currently used for spacecraft, non-equilibrium atmospheric pressure plasmas are used to treat surfaces inoculated with Bacillus subtilis and Deinococcus radiodurans. Evidence of significant morphological changes and reduction in viability due to plasma exposure will be presented, including a 4-log reduction of B. subtilis after 2 minutes of dielectric barrier discharge treatment.

  18. Rapid Sterilization of Escherichia coli by Solution Plasma Process

    NASA Astrophysics Data System (ADS)

    Andreeva, Nina; Ishizaki, Takahiro; Baroch, Pavel; Saito, Nagahiro

    2012-12-01

    Solution plasma (SP), which is a discharge in the liquid phase, has the potential for rapid sterilization of water without chemical agents. The discharge showed a strong sterilization performance against Escherichia coli bacteria. The decimal value (D value) of the reduction time for E. coli by this system with an electrode distance of 1.0 mm was estimated to be approximately 1.0 min. Our discharge system in the liquid phase caused no physical damage to the E. coli and only a small increase in the temperature of the aqueous solution. The UV light generated by the discharge was an important factor in the sterilization of E. coli.

  19. Sterilization of bacterial endospores by an atmospheric-pressure argon plasma jet

    SciTech Connect

    Uhm, Han S.; Lim, Jin P.; Li, Shou Z.

    2007-06-25

    Argon plasma jets penetrate deep into ambient air and create a path for oxygen radicals to sterilize microbes. A sterilization experiment with bacterial endospores indicates that an argon-oxygen plasma jet very effectively kills endospores of Bacillus atrophaeus (ATCC 9372), thereby demonstrating its capability to clean surfaces and its usefulness for reinstating contaminated equipment as free from toxic biological warfare agents. However, the spore-killing efficiency of the atmospheric-pressure argon-oxygen jet depends very sensitively on the oxygen concentration in the argon gas.

  20. Sterilization of Surfaces with a Handheld Atmospheric Pressure Plasma

    NASA Astrophysics Data System (ADS)

    Hicks, Robert; Habib, Sara; Chan, Wai; Gonzalez, Eleazar; Tijerina, A.; Sloan, Mark

    2009-10-01

    Low temperature, atmospheric pressure plasmas have shown great promise for decontaminating the surfaces of materials and equipment. In this study, an atmospheric pressure, oxygen and argon plasma was investigated for the destruction of viruses, bacteria, and spores. The plasma was operated at an argon flow rate of 30 L/min, an oxygen flow rate of 20 mL/min, a power density of 101.0 W/cm^3 (beam area = 5.1 cm^2), and at a distance from the surface of 7.1 mm. An average 6log10 reduction of viable spores was obtained after only 45 seconds of exposure to the reactive gas. By contrast, it takes more than 35 minutes at 121^oC to sterilize anthrax in an autoclave. The plasma properties were investigated by numerical modeling and chemical titration with nitric oxide. The numerical model included a detailed reaction mechanism for the discharge as well as for the afterglow. It was predicted that at a delivered power density of 29.3 W/cm^3, 30 L/min argon, and 0.01 volume% O2, the plasma generated 1.9 x 10^14 cm-3 O atoms, 1.6 x 10^12 cm-3 ozone, 9.3 x 10^13 cm-3 O2(^1?g), and 2.9 x 10^12 cm-3 O2(^1?^+g) at 1 cm downstream of the source. The O atom density measured by chemical titration with NO was 6.0 x 10^14 cm-3 at the same conditions. It is believe that the oxygen atoms and the O2(^1?g) metastables were responsible for killing the anthrax and other microorganisms.

  1. Preservation of imaging capability in sensitive ultrasound contrast agents after indirect plasma sterilization.

    PubMed

    Albala, Lorenzo; Ercan, Utku K; Joshi, Suresh G; Eisenbrey, John R; Teraphongphom, Nutte; Wheatley, Margaret A

    2015-10-15

    Many injectables are not amenable to standard sterilization methods, which destroy sensitive materials. This is particularly true for ultrasound contrast agents (UCA) consisting of gas bubbles stabilized by a surfactant or polymer shell. We investigated a new method to achieve safe and effective sterilization in production by introducing dielectric-barrier discharge non-thermal plasma. A dielectric-barrier discharge was generated to first produce plasma-treated phosphate-buffered saline (PTPBS), which was used as a sterilant solution for our UCA SE61, avoiding direct heat, pressure, chemicals, or radiation. Treated samples were tested for acoustic properties in vitro and in a flow phantom, and for sterility by standard methods. Three minutes plasma treatment of phosphate-buffered saline (PBS) proved effective. The samples showed significant inactivation of inoculated bacteria upon PTPBS treatment as compared to un-treated-PBS (p=0.0022). The treated and untreated samples showed no statistical significance (p>0.05) in acoustic response or bubble diameter (mean±SEM: 2.52±0.31 ?m). Nile Red was used to model intercalation of drug in the hydrophobic shell, intercalated successfully into SE61, and was unaffected by plasma treatment. The PTPBS completely sterilized suspensions of UCA, and it did not compromise the acoustic properties of the agent or its ability to retain a hydrophobic compound. PMID:26241754

  2. An atmospheric air gas-liquid diffuse discharge excited by bipolar nanosecond pulse in quartz container used for water sterilization

    NASA Astrophysics Data System (ADS)

    Wang, Sen; Yang, De-Zheng; Wang, Wen-Chun; Zhang, Shuai; Liu, Zhi-Jie; Tang, Kai; Song, Ying

    2013-12-01

    In this Letter, we report that the air gas-liquid diffuse discharge plasma excited by bipolar nanosecond pulse in quartz container with different bottom structures at atmospheric pressure. Optical diagnostic measurements show that bountiful chemically and biologically active species, which are beneficial for effective sterilization in some areas, are produced. Such diffuse plasmas are then used to treat drinking water containing the common microorganisms (Candida albicans and Escherichia coli). It is found that these plasmas can sterilize the microorganisms efficiently.

  3. Biological and Agricultural Studies on Application of Discharge Plasma and Electromagnetic Fields 2.Sterilization by Electrical Discharges and Plasmas

    NASA Astrophysics Data System (ADS)

    Watanabe, Takayuki

    The use of electrical discharges and plasmas for sterilization is reviewed. Plasmas generated by a silent discharge, a pulse discharge, and a radio frequency discharge under atmospheric pressure have been used for sterilization. Furthermore, a microwave plasma, a radio frequency plasma, and a low temperature plasma with hydrogen peroxide under low pressure conditions have been also used for sterilization. Sterilization results from injury caused by the discharge current, and from the reaction of species affected by the discharge. A silent discharge with air or oxygen is most effective for the sterilization. Nitrogen discharge also has a significant effect, however, argon discharge does not have a significant effect.

  4. Comparison of two radio-frequency plasma sterilization processes using microspot evaluation of microbial inactivation.

    PubMed

    Lassen, Klaus S; Johansen, Jens E; Grün, Reinar

    2006-07-01

    In this study, we evaluated gas plasma surface sterilization methods in a specific sterilizer. We have introduced a new monitoring method using 0.4 microm pore size membranes, which in this study gave the information corresponding to 3000 exposed biological indicators per treatment cycle. This enabled us to compare the fraction of inoculates that showed no growth after exposure for 30 different locations in the chamber, and hereby identify weak and strong spots in the chamber with regard to sporicidal effect. Membranes were also used to expose a broad spectrum of soil bacteria for plasma treatment at four different conditions. The organisms were identified using PCR and sequencing. The test showed that Bacillus stearothermophilus spores were inactivated at the slowest rate among the tested microorganisms. Further alpha-proteobacteria (Gram negative) seemed more sensitive than the rest of the tested organisms. The microspot evaluation approach has been a most useful tool in the assessment of sterilization performance in sterilizers that do not have clear measurable parameters related to the sterilization. PMID:16362959

  5. A novel plasma source for sterilization of living tissues

    NASA Astrophysics Data System (ADS)

    Martines, E.; Zuin, M.; Cavazzana, R.; Gazza, E.; Serianni, G.; Spagnolo, S.; Spolaore, M.; Leonardi, A.; Deligianni, V.; Brun, P.; Aragona, M.; Castagliuolo, I.; Brun, P.

    2009-11-01

    A source for the production of low-power plasmas at atmospheric pressure, to be used for the nondamaging sterilization of living tissues, is presented. The source, powered by radiofrequency and working with a helium flow, has a specific configuration, studied to prevent the formation of electric arcs dangerous to living matter. It is capable of killing different types of bacteria with a decimal reduction time of 1-2 min; on the contrary, human cells such as conjunctival fibroblasts were found to be almost unharmed by the plasma. A high concentration of OH radicals, likely to be the origin of the sterilizing effect, is detected through their UV emission lines. The effect of the UV and the OH radicals on the fibroblasts was analysed and no significant effects were detected.

  6. Long-distance oxygen plasma sterilization: Effects and mechanisms

    NASA Astrophysics Data System (ADS)

    Liu, Hongxia; Chen, Jierong; Yang, Liqing; Zhou, Yuan

    2008-01-01

    The distribution of electrons, ions and oxygen radicals in long-distance oxygen plasma and the germicidal effect (GE) of Escherichia coli on the surface of medical poly(tetrafluoroethylene) (PTFE) film were studied. The quantity of protein leakage and the production of lipid peroxide in bacterial suspension as well as the state of DNA were measured after sterilization to analyse the inactivation mechanisms. The results showed that the concentration of electrons and ions decreased rapidly with increasing the distance from the center of induction coil, which approximated to 0 at 30 cm, whereas the concentration of oxygen radicals reduced slowly, i.e. decreased 30% within 40 cm. GE value reached 3.42 in the active discharge zone (0 cm) and exceeded 3.32 within 40 cm when plasma treatment parameters were set as follows: plasma rf power at 100 W, treatment time at 60 s and oxygen flux at 40 cm 3/min. Fast etching action on cell membrane by electrons, ions and attacking polyunsaturation fatty acid (PUFA) in cell membrane by oxygen radicals are primary reasons of oxygen plasma sterilization in the active discharge and the afterglow zone, respectively. The GE of UV radiation in long-distance oxygen plasma is feebleness.

  7. Effect of dielectric and liquid on plasma sterilization using dielectric barrier discharge plasma.

    PubMed

    Mastanaiah, Navya; Johnson, Judith A; Roy, Subrata

    2013-01-01

    Plasma sterilization offers a faster, less toxic and versatile alternative to conventional sterilization methods. Using a relatively small, low temperature, atmospheric, dielectric barrier discharge surface plasma generator, we achieved ? 6 log reduction in concentration of vegetative bacterial and yeast cells within 4 minutes and ? 6 log reduction of Geobacillus stearothermophilus spores within 20 minutes. Plasma sterilization is influenced by a wide variety of factors. Two factors studied in this particular paper are the effect of using different dielectric substrates and the significance of the amount of liquid on the dielectric surface. Of the two dielectric substrates tested (FR4 and semi-ceramic (SC)), it is noted that the FR4 is more efficient in terms of time taken for complete inactivation. FR4 is more efficient at generating plasma as shown by the intensity of spectral peaks, amount of ozone generated, the power used and the speed of killing vegetative cells. The surface temperature during plasma generation is also higher in the case of FR4. An inoculated FR4 or SC device produces less ozone than the respective clean devices. Temperature studies show that the surface temperatures reached during plasma generation are in the range of 30°C-66 °C (for FR4) and 20 °C-49 °C (for SC). Surface temperatures during plasma generation of inoculated devices are lower than the corresponding temperatures of clean devices. pH studies indicate a slight reduction in pH value due to plasma generation, which implies that while temperature and acidification may play a minor role in DBD plasma sterilization, the presence of the liquid on the dielectric surface hampers sterilization and as the liquid evaporates, sterilization improves. PMID:23951023

  8. Effect of Dielectric and Liquid on Plasma Sterilization Using Dielectric Barrier Discharge Plasma

    PubMed Central

    Mastanaiah, Navya; Johnson, Judith A.; Roy, Subrata

    2013-01-01

    Plasma sterilization offers a faster, less toxic and versatile alternative to conventional sterilization methods. Using a relatively small, low temperature, atmospheric, dielectric barrier discharge surface plasma generator, we achieved ?6 log reduction in concentration of vegetative bacterial and yeast cells within 4 minutes and ?6 log reduction of Geobacillus stearothermophilus spores within 20 minutes. Plasma sterilization is influenced by a wide variety of factors. Two factors studied in this particular paper are the effect of using different dielectric substrates and the significance of the amount of liquid on the dielectric surface. Of the two dielectric substrates tested (FR4 and semi-ceramic (SC)), it is noted that the FR4 is more efficient in terms of time taken for complete inactivation. FR4 is more efficient at generating plasma as shown by the intensity of spectral peaks, amount of ozone generated, the power used and the speed of killing vegetative cells. The surface temperature during plasma generation is also higher in the case of FR4. An inoculated FR4 or SC device produces less ozone than the respective clean devices. Temperature studies show that the surface temperatures reached during plasma generation are in the range of 30°C–66°C (for FR4) and 20°C–49°C (for SC). Surface temperatures during plasma generation of inoculated devices are lower than the corresponding temperatures of clean devices. pH studies indicate a slight reduction in pH value due to plasma generation, which implies that while temperature and acidification may play a minor role in DBD plasma sterilization, the presence of the liquid on the dielectric surface hampers sterilization and as the liquid evaporates, sterilization improves. PMID:23951023

  9. Effects of repeated gas sterilization on closure rates of ameroid ring constrictors in vitro.

    PubMed

    Kimberlin, William W; Wardlaw, Jennifer L; Madsen, Richard W

    2016-01-01

    OBJECTIVE To determine the effect of repeated gas sterilization on rate of closure of ameroid ring constrictors in vitro. SAMPLE Twenty-four 3.5-mm ameroid ring constrictors. PROCEDURES Ameroid ring constrictors were allocated to 1 of 4 treatment groups (6/group) to undergo gas sterilization 0, 1, 5, or 10 times. After sterilization, constrictors were incubated in canine plasma at a protein concentration of 3 g/dL for 27 days. A digital camera was used to obtain images of the constrictors prior to and at various points during incubation, and lumen diameter was measured. RESULTS Mean ± SD percentage of lumen closure for all groups of ameroid ring constrictors combined was 85.2 ± 1.6% at day 0 (prior to plasma incubation) and 95.4 ± 0.8% at day 27. Mean lumen area was 3.64 ± 0.43 mm(2) (95% confidence interval, 2.67 to 4.77 mm(2)) at day 0 and 1.32 ± 0.25 mm(2) (95% confidence interval, 0.76 to 2.04 mm(2)) at day 27. None of the ameroid ring constrictors had closed completely by day 27. CONCLUSIONS AND CLINICAL RELEVANCE Overall closure rates for ameroid ring constrictors appeared to be unaffected by repeated gas sterilization up to 10 times. Findings suggested that veterinary surgeons can resterilize ameroid ring constrictors up to 10 times with confidence that ring properties would remain suitable for clinical use. PMID:26709941

  10. Comparison of Sterilizing Effect of Nonequilibrium Atmospheric-Pressure He/O2 and Ar/O2 Plasma Jets

    NASA Astrophysics Data System (ADS)

    Li, Shouzhe; Lim, Jinpyo

    2008-02-01

    The sterilizing effect of the non-equilibrium atmospheric pressure plasma jet by applying it to the Bacillus subtilis spores is invesigated. A stable glow discharge in argon or helium gas fed with active gas (oxygen), was generated in the coaxial cylindrical reactor powered by the radio-frequency power supply at atmospheric pressure. The experimental results indicated that the efficiency of killing spores by making use of an Ar/O2 plasma jet was much better than with a He/O2 plasma jet. The decimal reduction value of Ar/O2 and He/O2 plasma jets under the same experimental conditions was 4.5 seconds and 125 seconds, respectively. It was found that there exists an optimum oxygen concentration for a certain input power, at which the sterilization efficiency reaches a maximum value. It is believed that the oxygen radicals are generated most efficiently under this optimum condition.

  11. Sterilization of Staphylococcus Aureus by an Atmospheric Non-Thermal Plasma Jet

    NASA Astrophysics Data System (ADS)

    Liu, Xiaohu; Hong, Feng; Guo, Ying; Zhang, Jing; Shi, Jianjun

    2013-05-01

    An atmospheric non-thermal plasma jet was developed for sterilizing the Staphylococcus aureus (S. aureus). The plasma jet was generated by dielectric barrier discharge (DBD), which was characterized by electrical and optical diagnostics. The survival curves of the bacteria showed that the plasma jet could effectively inactivate 106 cells of S. aureus within 120 seconds and the sterilizing efficiency depended critically on the discharge parameter of the applied voltage. It was further confirmed by scanning electron microscopy (SEM) that the cell morphology was seriously damaged by the plasma treatment. The plasma sterilization mechanism of S. aureus was attributed to the active species of OH, N2+ and O, which were generated abundantly in the plasma jet and characterized by OES. Our findings suggest a convenient and low-cost way for sterilization and inactivation of bacteria.

  12. The Effect of Air Plasma on Sterilization of Escherichia coli in Dielectric Barrier Discharge

    NASA Astrophysics Data System (ADS)

    Hu, Miao; Guo, Yun

    2012-08-01

    In this work, a Dielectric Barrier Discharge (DBD) air plasma was used to sterilize Escherichia coli (E. coli) on the surface of medical Polyethylene Terephthalate (PET) film. The leakage of cellular DNA and protein by optical absorbance measurement at 260 nm and 280 nm, together with transmission electron microscopy (TEM) about cell morphology were performed after sterilization to analyse inactivation mechanisms. The results indicated that the DBD air plasma was very effective in E. coli sterilization. The plasma germicidal efficiency depended on the plasma treatment time, the air-gap distance, and the applied voltage. Within 5 min of plasma treatment, the germicidal efficiency against E. coli could reach 99.99%. An etching action on cell membranes by electrons, ions and radicals is the primary mechanism for DBD air plasma sterilization, which leads to the effusion of cellular contents (DNA and protein) and bacterial death.

  13. Surface analysis of long-distance oxygen plasma sterilized PTFE film

    NASA Astrophysics Data System (ADS)

    Liu, Hongxia; Zhang, Huijun; Chen, Jierong

    2009-06-01

    The influence of long-distance oxygen plasma sterilization on surface properties of substrate material, i.e., medical poly(tetrafluoroethylene) (PTFE), and aging effect of these sterilized PTFE film surfaces were investigated by contact angle measurement, mass loss determination, scanning electron microscopy (SEM) as well as bacterial adhesion and platelet adhesion measurements in vitro, respectively. The changes in chemical structure of sterilized PTFE film were followed using X-ray photoelectron spectroscopy (XPS). As a result of plasma sterilization oxygen-containing functional groups (such as C dbnd O and C dbnd O), especially the C dbnd O group are introduced into PTFE surfaces, and thus pronounced increases of surface free energy and surface wettability are presented when the sample positions are within 0-40 cm. The film surface wettability degrades little as the aging time continued as long as 190 days. At the same time, the minimal surface degradation and damage occur on the sterilized PTFE when the sample position is at 40 cm. Moreover, the antibacterial adhesion and blood compatibility of sterilized PTFE surface are enhanced and the optimal effects are also obtained at 40 cm. The essential reason may be due to the optimal equilibrium between surface wettability and surface damage, which is achieved at 40 cm. Overall, of the surface properties of long-distance oxygen plasma sterilized PTFE analyzed, the sterilization at 40 cm is optimal.

  14. Plasma sterilization of Geobacillus Stearothermophilus by O{mathsf2}:N{mathsf2} RF inductively coupled plasma

    NASA Astrophysics Data System (ADS)

    Kylián, O.; Sasaki, T.; Rossi, F.

    2006-05-01

    The aim of this work is to identify the main process responsible for sterilization of Geobacillus Stearothermophilus spores in O{2}:N{2} RF inductively coupled plasma. In order to meet this objective the sterilization efficiencies of discharges in mixtures differing in the initial O{2}/N{2} ratios are compared with plasma properties and with scanning electron microscopy images of treated spores. According to the obtained results it can be concluded that under our experimental conditions the time needed to reach complete sterilization is more related to O atom density than UV radiation intensity, i.e. complete sterilization is not related only to DNA damage as in UV sterilization but more likely to the etching of the spore.

  15. Inductively-Coupled RF Powered O2 Plasma as a Sterilization Source

    NASA Technical Reports Server (NTRS)

    Sharma, S. P.; Rao, M. V. V. S.; Cruden, B. A.; Meyyappan, M.; Mogul, R.; Khare, B.; Chan, S. L.; Arnold, James O. (Technical Monitor)

    2001-01-01

    Low-temperature or cold plasmas have been shown to be effective for the sterilization of sensitive medical devices and electronic equipment. Low-temperature plasma sterilization procedures possess certain advantages over other protocols such as ethylene oxide, gamma radiation, and heat due to the use of inexpensive reagents, the insignificant environmental impacts and the low energy requirements. In addition, plasmas may also be more efficacious in the removal of robust microorganisms due to their higher chemical reactivity. Together, these attributes render cold plasma sterilization as ideal for the surface decontamination requirements for NASA Planetary Protection. Hence, the work described in this study involves the construction, characterization, and application of an inductively-coupled, RF powered oxygen (O2) plasma.

  16. BASICS OF STERILE COMPOUNDING: Sterilization Methods in Sterile Product Manufacturing.

    PubMed

    Akers, Michael J

    2015-01-01

    Sterilization methods to produce sterile preparations include heat, gas, radiation, and filtration. This article focuses on heat, gas, and radiation sterilization, plus a brief introduction to bright-light sterilization. Microbiology basics and microbial death kinetics, key to understanding why these sterilization methods work, will also be briefly discussed. Filtration sterilization will be covered in a separate article. PMID:26685494

  17. Inactivation of microorganisms and endotoxins by low temperature nitrogen gas plasma exposure.

    PubMed

    Shintani, Hideharu; Shimizu, Naohiro; Imanishi, Yuichiro; Sekiya, Takayuki; Tamazawa, Kahoru; Taniguchi, Akira; Kido, Nobuo

    2007-12-01

    The plasma of several different gases has shown a sporicidal activity. From these gases, nitrogen gas was most difficult to produce atomic nitrogen radicals. However, these radicals have a high energy, indicating that nitrogen gas plasma could be used to sterilize microorganisms and inactivate endotoxins. The sterilization mechanism of nitrogen gas plasma is the synergistic effect of a high rising-up voltage pulse, UV irradiation and atomic nitrogen radicals. Thus, the target cells were damaged by degradation, which resulted in death. The biological indicator (BI) used in this study was Geobacillus stearothermophilus ATCC 7953 at a population of 1 x 10(6) CFU/sheet. Sterility assurance was confirmed by using the BI. Moreover, endotoxins were successfully inactivated. More than 5 log reduction of endotoxins could be attained with 30 minutes of nitrogen gas plasma exposure. Material functionality influenced by nitrogen gas plasma presented a satisfactory result. No deterioration of polymers could be observed by nitrogen gas plasma exposure. PMID:18198719

  18. Effects of Environmental Humidity and Temperature on Sterilization Efficiency of Dielectric Barrier Discharge Plasmas in Atmospheric Pressure Air

    NASA Astrophysics Data System (ADS)

    Kikuchi, Yusuke; Miyamae, Masanori; Nagata, Masayoshi; Fukumoto, Naoyuki

    2011-01-01

    The inactivation of Bacillus atrophaeus spores by a dielectric barrier discharge (DBD) plasma in atmospheric humid air was investigated in order to develop a low-temperature, low-cost, and high-speed plasma sterilization technique. The biological indicators covered with a Tyvek sheet were set just outside the DBD plasma region, where air temperature and humidity as a discharge gas were precisely controlled by an environmental test chamber. The results show that the inactivation of B. atrophaeus spores was found to be dependent strongly on humidity, and was completed within 15 min at a relative humidity of 90% and a temperature of 30 °C. The treatment time for sterilization is shorter than those of conventional sterilization methods using ethylene oxide gas and dry heat treatment. The inactivation rates depend on not only relative humidity but also temperature, so that water content in air could determine the generation of reactive species such as hydroxyl radicals that are effective for the inactivation of B. atrophaeus spores.

  19. [Dependency of a microbiological test of a formaldehyde gas sterilization procedure on the shape of objects to be sterilized].

    PubMed

    Spicher, G; Borchers, U

    1983-06-01

    During the last decade, a number of procedures have been developed by different firms for the sterilization of heat-sensitive instruments using a mixture of formaldehyde and water vapor at a temperature of approximately 60 degrees C as means of sterilization. Instruments to be sterilized by this technique as e.g. sounds and catheters normally have long narrow cavities. Therefore, the formaldehyde gas sterilization procedures have to be tested primarily for their capability of achieving a sufficient microbicidal effect within those cavities. For this purpose, the bioindicators are placed into special test pieces. The test pieces commonly in use differ widely in their construction, shape, and size. They mostly consist of some hollow cylinder with an attached capillary or a tube (see Table 1). The authors demonstrated by means of models that the variety of test pieces in use meant that the sterilization procedures had to meet quite different requirements. The models consisted of flexible tubes differing in diameter and length and were connected to short glass tubes. These glass tubes having identical or wider inner diameters than the flexible tubes served as receptacles containing the bioindicators. Spores of Bacillus stearothermophilus served as test organisms. The spores were suspended in defibrinated sheep blood and dried on filter paper. The efficiency of the sterilization technique was measured in terms of the relative number of indicator strips with surviving germs (i.e. non-sterilized indicators) after treatment of the test pieces with the formaldehyde gas. At first, the test results were examined as to their dependency on the length of the flexible tubes. These tubes were 3 mm wide and 5 to 100 cm long, each being sealed at one end and with the bioindicators placed near the sealed end. The percentage of indicators with surviving germs increased with the length of the tubes. After the sterilization process, nearly all indicators (92%) contained in the 1 m tubes proved to be non-sterile (see Table 2). The same results were obtained with tubes open at both ends, with the bioindicators located in the middle section of the tubes (see Table 3). Using tubes of 1 m length, the dependency of the test results on the inner diameter of the test pieces was demonstrated. While all indicators placed into tubes of 3 mm inner diameter still contained surviving germs, those in the tubes of 9 mm inner diameter were all sterile (see Table 4).(ABSTRACT TRUNCATED AT 400 WORDS) PMID:6367309

  20. Sterilization mechanism for Escherichia coli by plasma flow at atmospheric pressure

    SciTech Connect

    Sato, Takehiko; Miyahara, Takashi; Doi, Akiko; Ochiai, Shiroh; Urayama, Takuya; Nakatani, Tatsuyuki

    2006-08-14

    A mechanism for sterilizing Escherichia coli by a flowing postdischarge and UV radiation of argon plasma at atmospheric pressure was investigated by analyzing the surviving cells and the potassium leakage of cytoplasmic material and by morphological observation. Inactivation of E. coli results from the destruction of the cytoplasmic membrane and the outer membrane under plasma exposure and the destruction of nucleic acids by exposure to ultraviolet radiation from the plasma source.

  1. Testing a steam-formaldehyde sterilizer for gas penetration efficiency

    PubMed Central

    Line, Stuart J.; Pickerill, J. K.

    1973-01-01

    A test piece is described for monitoring the performance of low-temperature steam-with-formaldehyde sterilizers. Comparative tests have shown it to be more difficult to penetrate than an arterial catheter when exposed to the same sterilizing conditions. It is permanent and simple to use and maintain. The growth or non-growth of bacterial spores, in the convenient form of spore strips, is used to indicate the efficacy of sterilization. PMID:4752414

  2. Influence of oxygen in atmospheric-pressure argon plasma jet on sterilization of Bacillus atrophaeous spores

    SciTech Connect

    Lim, Jin-Pyo; Uhm, Han S.; Li, Shou-Zhe

    2007-09-15

    A nonequilibrium Ar/O{sub 2} plasma discharge at atmospheric pressure was carried out in a coaxial cylindrical reactor with a stepped electrode configuration powered by a 13.56 MHz rf power supplier. The argon glow discharge with high electron density produces oxygen reactive species in large quantities. Argon plasma jets penetrate deep into ambient air and create a path for oxygen radicals to sterilize microbes. A sterilization experiment with bacterial endospores indicates that an argon-oxygen plasma jet very effectively kills endospores of Bacillus atrophaeus (ATCC 9372), thereby demonstrating its capability to clean surfaces and its usefulness for reinstating contaminated equipment as free from toxic biological warfare agents. The decimal reduction time (D values) of the Ar/O{sub 2} plasma jet at an exposure distance of 0.5-1.5 cm ranges from 5 to 57 s. An actinometric comparison of the sterilization data shows that atomic oxygen radicals play a significant role in plasma sterilization. When observed under a scanning electron microscope, the average size of the spores appears to be greatly reduced due to chemical reactions with the oxygen radicals.

  3. Effects of oxygen radicals in low-pressure surface-wave plasma on sterilization

    SciTech Connect

    Nagatsu, Masaaki; Terashita, Fumie; Nonaka, Hiroyuki; Xu, Lei; Nagata, Toshi; Koide, Yukio

    2005-05-23

    The effects of oxygen radicals on sterilization were studied using a 2.45 GHz surface-wave oxygen plasma. A population of 1.5x10{sup 6} Bacillus stearothermophilus spores was irradiated for 3 min or more with oxygen plasma, generated at pressures between 6 and 14 Pa. The decimal reduction value (D value), a measure of the effectiveness of sterilization, was determined to be about 15-25 s. Using only oxygen radicals, excluding all charged particles, the 1.5x10{sup 6} spores were sterilized with a D value of 30-45 s after 5 min or more of irradiation. On scanning electron microscopy, the length and width of the spores changed significantly due to chemical etching by oxygen radicals.

  4. Analysis of Sterilization Effect of Atmospheric Pressure Pulsed Plasma

    SciTech Connect

    Ekem, N.; Akan, T.; Pat, S.; Akgun, Y.; Kiremitci, A.; Musa, G.

    2007-04-23

    We have developed a new technology, the High Voltage Atmospheric Pressure Pulsed Plasma (HVAPPP), for bacteria killing. The aim of this paper is to present a simple device to generate plasma able to kill efficiently bacteria.

  5. Comparative sterilization effectiveness of plasma in O2-H2O2 mixtures and ethylene oxide treatment.

    PubMed

    Silva, J M F; Moreira, A J; Oliveira, D C; Bonato, C B; Mansano, R D; Pinto, T J A

    2007-01-01

    We investigated the influence of variable parameters of plasma sterilization and compared its effectiveness with that of ethylene oxide using a reactive ion etching plasma reactor at 13.56 MHz. Gases tested were pure oxygen and oxygen-hydrogen peroxide mixtures in 190/10, 180/20, and 160/40 sccm ratios with constant gas flow at 200 sccm, pressure at 0.100 torr, radio-frequency power at 25 W, 50 W, 100 W, and 150 W, and temperature below 60 degrees C. Ethylene oxide sterilization was performed using 450 mg/L at 55 degrees C, 60% humidity, and -0.65 and 0.60 kgf/cm2 pressure. The biological indicator was Bacillus atrophaeus ATCC 9372, with exposure times of 3 to 120 min. Observed D values were 215.91, 55.55, 9.19, and 2.98 min for pure oxygen plasma at 25 W, 50 W, 100 W, and 150 W, respectively. Oxygen-hydrogen peroxide plasma produced D values of 6.41 min (190/10), 6.47 min (180/20), and 4.02 min (160/40) at 100 W and 1.47 min (190/10), 3.11 min (180/20), and 1.94 min (160/40) at 150 W. Ethylene oxide processes resulted in a D value of 2.86 min. Scanning electron microscopy analyses showed damage to the spore cortex. PMID:17722487

  6. Radiative decay of keV-mass sterile neutrinos in a strongly magnetized plasma

    E-print Network

    Alexandra A. Dobrynina; Nicolay V. Mikheev; Georg G. Raffelt

    2015-01-07

    The radiative decay of sterile neutrinos with typical masses of 10 keV is investigated in the presence of a strong magnetic field and degenerate plasma. Full account is taken of the strongly modified photon dispersion relation relative to vacuum. The limiting cases of relativistic and non-relativistic plasma are analyzed. The decay rate in a strongly magnetized plasma as a function of the electron number density is compared with the un-magnetized case. We find that a strong magnetic field suppresses the catalyzing influence of the plasma on the decay rate.

  7. Ternary gas plasma welding torch

    NASA Technical Reports Server (NTRS)

    Rybicki, Daniel J. (inventor); Mcgee, William F. (inventor); Waldron, Douglas J. (inventor)

    1995-01-01

    A plasma arc welding torch is discussed. A first plasma gas is directed through the body of the welding torch and out of the body across the tip of a welding electrode disposed at the forward end of the body. A second plasma gas is disposed for flow through a longitudinal bore in the electrode. The second plasma gas enters one end of the electrode and exits the electrode at the tip thereof for co-acting with the electric welding arc to produce the desired weld. A shield gas is directed through the torch body and circulates around the head of the torch adjacent to the electrode tip.

  8. Battling Bacterial Biofilms with Gas Discharge Plasma

    NASA Astrophysics Data System (ADS)

    Zelaya, Anna; Vandervoort, Kurt; Brelles-Mariño, Graciela

    Most studies dealing with growth and physiology of bacteria have been carried out using free-living cells. However, most bacteria live in communities referred to as biofilms where cooperative interactions among their members make conventional methods of controlling microbial growth often ineffective. The use of gas discharge plasmas represents an alternative to traditional decontamination/sterilization methods. We studied biofilms using two organisms, Chromobacterium violaceum and Pseudomonas aeruginosa. With the first organism we demonstrated almost complete loss of cell culturability after a 5-min plasma treatment. However, additional determinations showed that non-culturable cells were still alive after short exposure times. We have recently reported the effect of plasma on P. aeruginosa biofilms grown on borosilicate coupons. In this paper, we present results for plasma treatments of 1-, 3-, and 7-day old P. aeruginosa biofilms grown on polycarbonate or stainless-steel coupons. Results indicate nearly 100% of ­biofilm inactivation after 5 min of exposure with similar inactivation kinetics for 1-, 3-, and 7-day-old biofilms, and for both materials used. The inactivation kinetics is similar for both organisms, suggesting that the method is useful regardless of the type of biofilm. AFM images show changes in biofilm structure for various plasma exposure times.

  9. Characterization of stationary and pulsed inductively coupled RF discharges for plasma sterilization

    NASA Astrophysics Data System (ADS)

    Gans, T.; Osiac, M.; O'Connell, D.; Kadetov, V. A.; Czarnetzki, U.; Schwarz-Selinger, T.; Halfmann, H.; Awakowicz, P.

    2005-05-01

    Sterilization of bio-medical materials using radio frequency (RF) excited inductively coupled plasmas (ICPs) has been investigated. A double ICP has been developed and studied for homogenous treatment of three-dimensional objects. Sterilization is achieved through a combination of ultraviolet light, ion bombardment and radical treatment. For temperature sensitive materials, the process temperature is a crucial parameter. Pulsing of the plasma reduces the time average heat strain and also provides additional control of the various sterilization mechanisms. Certain aspects of pulsed plasmas are, however, not yet fully understood. Phase resolved optical emission spectroscopy and time resolved ion energy analysis illustrate that a pulsed ICP ignites capacitively before reaching a stable inductive mode. Time resolved investigations of the post-discharge, after switching off the RF power, show that the plasma boundary sheath in front of a substrate does not fully collapse for the case of hydrogen discharges. This is explained by electron heating through super-elastic collisions with vibrationally excited hydrogen molecules.

  10. Cold atmospheric air plasma sterilization against spores and other microorganisms of clinical interest.

    PubMed

    Klämpfl, Tobias G; Isbary, Georg; Shimizu, Tetsuji; Li, Yang-Fang; Zimmermann, Julia L; Stolz, Wilhelm; Schlegel, Jürgen; Morfill, Gregor E; Schmidt, Hans-Ulrich

    2012-08-01

    Physical cold atmospheric surface microdischarge (SMD) plasma operating in ambient air has promising properties for the sterilization of sensitive medical devices where conventional methods are not applicable. Furthermore, SMD plasma could revolutionize the field of disinfection at health care facilities. The antimicrobial effects on Gram-negative and Gram-positive bacteria of clinical relevance, as well as the fungus Candida albicans, were tested. Thirty seconds of plasma treatment led to a 4 to 6 log(10) CFU reduction on agar plates. C. albicans was the hardest to inactivate. The sterilizing effect on standard bioindicators (bacterial endospores) was evaluated on dry test specimens that were wrapped in Tyvek coupons. The experimental D(23)(°)(C) values for Bacillus subtilis, Bacillus pumilus, Bacillus atrophaeus, and Geobacillus stearothermophilus were determined as 0.3 min, 0.5 min, 0.6 min, and 0.9 min, respectively. These decimal reduction times (D values) are distinctly lower than D values obtained with other reference methods. Importantly, the high inactivation rate was independent of the material of the test specimen. Possible inactivation mechanisms for relevant microorganisms are briefly discussed, emphasizing the important role of neutral reactive plasma species and pointing to recent diagnostic methods that will contribute to a better understanding of the strong biocidal effect of SMD air plasma. PMID:22582068

  11. Cold Atmospheric Air Plasma Sterilization against Spores and Other Microorganisms of Clinical Interest

    PubMed Central

    Isbary, Georg; Shimizu, Tetsuji; Li, Yang-Fang; Zimmermann, Julia L.; Stolz, Wilhelm; Schlegel, Jürgen; Morfill, Gregor E.; Schmidt, Hans-Ulrich

    2012-01-01

    Physical cold atmospheric surface microdischarge (SMD) plasma operating in ambient air has promising properties for the sterilization of sensitive medical devices where conventional methods are not applicable. Furthermore, SMD plasma could revolutionize the field of disinfection at health care facilities. The antimicrobial effects on Gram-negative and Gram-positive bacteria of clinical relevance, as well as the fungus Candida albicans, were tested. Thirty seconds of plasma treatment led to a 4 to 6 log10 CFU reduction on agar plates. C. albicans was the hardest to inactivate. The sterilizing effect on standard bioindicators (bacterial endospores) was evaluated on dry test specimens that were wrapped in Tyvek coupons. The experimental D23°C values for Bacillus subtilis, Bacillus pumilus, Bacillus atrophaeus, and Geobacillus stearothermophilus were determined as 0.3 min, 0.5 min, 0.6 min, and 0.9 min, respectively. These decimal reduction times (D values) are distinctly lower than D values obtained with other reference methods. Importantly, the high inactivation rate was independent of the material of the test specimen. Possible inactivation mechanisms for relevant microorganisms are briefly discussed, emphasizing the important role of neutral reactive plasma species and pointing to recent diagnostic methods that will contribute to a better understanding of the strong biocidal effect of SMD air plasma. PMID:22582068

  12. The cold and atmospheric-pressure air surface barrier discharge plasma for large-area sterilization applications

    SciTech Connect

    Wang Dacheng; Zhao Di; Feng Kecheng; Zhang Xianhui; Liu Dongping; Yang Size

    2011-04-18

    This letter reports a stable air surface barrier discharge device for large-area sterilization applications at room temperature. This design may result in visually uniform plasmas with the electrode area scaled up (or down) to the required size. A comparison for the survival rates of Escherichia coli from air, N{sub 2} and O{sub 2} surface barrier discharge plasmas is presented, and the air surface plasma consisting of strong filamentary discharges can efficiently kill Escherichia coli. Optical emission measurements indicate that reactive species such as O and OH generated in the room temperature air plasmas play a significant role in the sterilization process.

  13. Discharge conditions for CW and pulse-modulated surface-wave plasmas in low-temperature sterilization

    NASA Astrophysics Data System (ADS)

    Xu, L.; Terashita, F.; Nonaka, H.; Ogino, A.; Nagata, T.; Koide, Y.; Nanko, S.; Kurawaki, I.; Nagatsu, M.

    2006-01-01

    The discharge conditions required for low-temperature plasma sterilization were investigated using low-pressure surface-wave plasma (SWP). The discharge conditions for both continuous wave (CW) and pulse-modulated SWPs in low-temperature sterilization of Geobacillus stearothermophilus with a population of 1.5 × 106 and 3.0 × 106 were studied by varying the microwave input power from 500 W to 3 kW, and the effective plasma treatment time from 40 to 300 s. Results showed that sterilization was possible in a shorter treatment time using a higher microwave power for both CW and pulse-modulated SWPs. Pulse-modulated SWPs gave effective sterilization at a temperature roughly 10 to 20 °C below that of CW SWPs under the same average microwave power.

  14. Impact of Chlorine Dioxide Gas Sterilization on Nosocomial Organism Viability in a Hospital Room

    PubMed Central

    Lowe, John J.; Gibbs, Shawn G.; Iwen, Peter C.; Smith, Philip W.; Hewlett, Angela L.

    2013-01-01

    To evaluate the ability of ClO2 to decontaminate pathogens known to cause healthcare-associated infections in a hospital room strains of Acinetobacter baumannii, Escherichia coli, Enterococcus faecalis, Mycobacterium smegmatis, and Staphylococcus aureus were spot placed in duplicate pairs at 10 sites throughout a hospital room and then exposed to ClO2 gas. Organisms were collected and evaluated for reduction in colony forming units following gas exposure. Six sterilization cycles with varied gas concentrations, exposure limits, and relative humidity levels were conducted. Reductions in viable organisms achieved ranged from 7 to 10-log reductions. Two sterilization cycles failed to produce complete inactivation of organisms placed in a bathroom with the door closed. Reductions of organisms in the bathroom ranged from 6-log to 10-log reductions. Gas leakage between hospital floors did not occur; however, some minor gas leakage from the door of hospital room was measured which was subsequently sealed to prevent further leakage. Novel technologies for disinfection of hospital rooms require validation and safety testing in clinical environments. Gaseous ClO2 is effective for sterilizing environmental contamination in a hospital room. Concentrations of ClO2 up to 385 ppm were safely maintained in a hospital room with enhanced environmental controls. PMID:23792697

  15. Room temperature sterilization of surfaces and fabrics with a one atmosphere uniform glow discharge plasma.

    PubMed

    Kelly-Wintenberg, K; Montie, T C; Brickman, C; Roth, J R; Carr, A K; Sorge, K; Wadsworth, L C; Tsai, P P

    1998-01-01

    We report the results of an interdisciplinary collaboration formed to assess the sterilizing capabilities of the One Atmosphere Uniform Glow Discharge Plasma (OAUGDP). This newly-invented source of glow discharge plasma (the fourth state of matter) is capable of operating at atmospheric pressure in air and other gases, and of providing antimicrobial active species to surfaces and workpieces at room temperature as judged by viable plate counts. OAUGDP exposures have reduced log numbers of bacteria, Staphylococcus aureus and Escherichia coli, and endospores from Bacillus stearothermophilus and Bacillus subtilis on seeded solid surfaces, fabrics, filter paper, and powdered culture media at room temperature. Initial experimental data showed a two-log10 CFU reduction of bacteria when 2 x 10(2) cells were seeded on filter paper. Results showed > or = 3 log10 CFU reduction when polypropylene samples seeded with E. coli (5 x 10(4)) were exposed, while a 30 s exposure time was required for similar killing with S. aureus-seeded polypropylene samples. The exposure times required to effect > or = 6 log10 CFU reduction of E. coli and S. aureus on polypropylene samples were no longer than 30 s. Experiments with seeded samples in sealed commercial sterilization bags showed little or no differences in exposure times compared to unwrapped samples. Plasma exposure times of less than 5 min generated > or = 5 log10 CFU reduction of commercially prepared Bacillus subtilis spores (1 x 10(5)); 7 min OAUGDP exposures were required to generate a > or = 3 log10 CFU reduction for Bacillus stearothermophilus spores. For all microorganisms tested, a biphasic curve was generated when the number of survivors vs time was plotted in dose-response cures. Several proposed mechanisms of killing at room temperature by the OAUGDP are discussed. PMID:9523458

  16. Sterilization and Mechanism of Microorganisms on A4 Paper by Dielectric Barrier Discharges Plasma at Atmospheric Pressure

    NASA Astrophysics Data System (ADS)

    Xianghong, Jia; Jun, Wan; Jinhua, Yang; Feng, Xu; Shouguo, Wang

    2009-10-01

    This study investigated the microorganisms' sterilization and mechanism by a DBD plasma device at atmospheric pressure. The device including a transfer system and two roller-electrodes is driven by sine-wave high voltages at frequencies of 15 kHz. Normal A4 papers were used to study the effects of the sterilization on their surfaces by analyzing the number of the living bacteria cells. The state of Escherichia coil's DNA were also measured by agarose gel electrophoresis after sterilization to analyze the inactivation mechanisms. Experimental results indicated that microorganisms on the surface of A4 Papers almost were destroyed while the papers went through the device and there was no any damage of the paper during the process. The main reason engendered bacteria death was due to the double chains of the DNA broken by the plasma.

  17. Analysis of emission data from O2 plasmas used for microbe sterilization

    NASA Astrophysics Data System (ADS)

    Sharma, S. P.; Cruden, B. A.; Rao, M. V. V. S.; Bolshakov, A. A.

    2004-04-01

    In order to study the sterilization capabilities of radio frequency driven low pressure oxygen plasmas, the radiative emission was recorded at various pressures and input powers. A distinct transition from the bright mode (primarily inductively coupled) to a dim mode (primarily capacitively coupled) was observed as the pressure was increased and/or the power decreased. The data was further analyzed to estimate the electron temperature, rotational and vibrational temperatures, and various species concentrations. Based on the diffusion and rovibrational relaxation times, it is concluded that the rotational temperatures can be assumed to be in equilibrium with the translational temperature. The ions are produced "hot" and have little time to get equilibrated with the translational temperature. It is further determined that in the bright mode, which is more effective in microbe sterilization, the translational/rotational temperatures are in the 650-850 K range, the electron temperatures are low (3.5-4.5 eV), and the concentrations of atomic O and atomic metastables are at 1 order of magnitude higher than in the dim mode.

  18. Cyclosporine-impregnated allograft bone sterilized with low-temperature plasma.

    PubMed

    Lu, Haibo; Pei, Guoxian; Zhao, Peiran; Liang, Shuangwu; Jin, Dan; Jiang, Shan

    2010-12-01

    Deep-freezing, freeze-drying and gamma (?)-irradiation have deleterious effects on bone healing and mechanical properties of allograft bones. We tried preparing bone allografts using cyclosporine plus low-temperature-plasma sterilization. To explore the feasibility of this method of preparation, segmental defects in the right radii of rabbits were repaired with cyclosporine-impregnated allograft bones (CABs) sterilized with low-temperature-plasma (in the study group) and deep-frozen/freeze-dried irradiated allograft bones (D/FIABs) (in the control group). X-ray and quantitative histological analysis, peripheral blood T lymphocyte subset analysis and CD?? molecule immunohistochemistry stain, the four-point bending test and safety evaluations were respectively conducted to compare bone-healing, immunosuppression, mechanical properties and safety between the two groups. X-ray scores were higher in the study group than those in the control (p = 0.032). There were significant differences in new bone areas at most repairs in both groups (p < 0.05). There were no significant differences in the percentages of CD?(+) T, CD?(+) T, ratios of CD?(+) T:CD?(+) T or serum concentrations of GPT/Cr in both groups (p > 0.05). At 16 weeks postoperatively, the density of CD?? molecules in the control group was higher than that in the study group. The ultimate loading in the study group was significantly higher than that in the control (p = 0.048). Bone marrow stromal cells (BMSCs) grew thickly around and on the surface of a cyclosporine-impregnated allograft. Livers and kidneys in the study and control groups remained histologically normal at 7 days postoperatively. These results indicate that the CAB might be a better material than the D/FIAB in terms of bone healing, preservation of mechanical properties and immunosuppression without severe side-effects. PMID:20665654

  19. Gas Plasma Surface Chemistry for Biological Assays.

    PubMed

    Sahagian, Khoren; Larner, Mikki

    2015-01-01

    Biological systems respond to and interact with surfaces. Gas plasma provides a scalable surface treatment method for designing interactive surfaces. There are many commercial examples of plasma-modified products. These include well plates, filtration membranes, dispensing tools, and medical devices. This chapter presents an overview of gas plasma technology and provides a guide to using gas plasma for modifying surfaces for research or product development. PMID:26160577

  20. Low-temperature sterilization alternatives in the 1990s

    SciTech Connect

    Schneider, P. . Surgical Div.)

    1994-01-01

    Vapor phase hydrogen peroxide, gas plasma, ozone, and peracetic acids have been commercialized as alternative technologies for low-temperature sterilization. None are viewed as a total replacement for ethylene oxide for on-site sterilization of reusable, heat-sensitive medical materials in healthcare facilities.

  1. Gas-discharge plasma sources for nonlocal plasma technology

    SciTech Connect

    Demidov, V. I.; DeJoseph, C. A. Jr.; Simonov, V. Ya.

    2007-11-12

    Nonlocal plasma technology is based on the effect of self-trapping of fast electrons in the plasma volume [V. I. Demidov, C. A. DeJoseph, Jr., and A. A. Kudryavtsev, Phys. Rev. Lett. 95, 215002 (2006)]. This effect can be achieved by changing the ratio of fast electron flux to ion flux incident on the plasma boundaries. This in turn leads to a significant change in plasma properties and therefore can be useful for technological applications. A gas-discharge device which demonstrates control of the plasma properties by this method is described.

  2. Application of Plasma on Reentry Vehicle Communication and Interplanetary Spacecraft Sterilization

    NASA Astrophysics Data System (ADS)

    Fenstermacher, Jarrod J.

    In order to gain a better understanding of the reactions occurring during reentry at the gas-surface interface, a reactive ion etch (RIE) plasma device was augmented to more accurately represent how material may paralyze in the presence of plasma. The device inflow was augmented to include a nitrogen line, and the outflow augmented to allow chemical analysis. A nichrome resistor heater was added to raise sample temperatures to pyrolysis levels. Cryo-focusing was performed on pyrolysis gases in order to test the ability to quantify compounds released during heating. This was done using liquid nitrogen prior to compounds entering the gas chromatography column. The nitrogen line also allowed initial study into the use of the RIE machine for planetary protection experiments due to the biocidal properties of Nitrogen/Oxygen plasma. This included static build-up experiments on equipment sensitive to electrostatic discharge. Experiments were also carried out using George Washington University's Vacuum Arc Thruster (VAT). The VAT was used in an attempt to catalyze spallation from a silicon phenolic thermal protection system material (TPS).

  3. Molecular mechanism of plasma sterilization in solution with the reduced pH method: importance of permeation of HOO radicals into the cell membrane

    NASA Astrophysics Data System (ADS)

    Takai, Eisuke; Ikawa, Satoshi; Kitano, Katsuhisa; Kuwabara, Junpei; Shiraki, Kentaro

    2013-07-01

    Sterilization of certain infected areas of the human body surface is necessary for dental and surgical therapies. Because the blood is filled with body fluid, sterilization in solution is essential. In vitro solution sterilization has been successively carried out using a combination of low-temperature atmospheric-pressure plasma and the reduced pH method, where the solution is sufficiently acidic. Here, we show the molecular mechanism of such plasma sterilization in solution based on microbiology. Three kinds of bacteria were inactivated by plasma treatment under various pH conditions. The theoretical and experimental models revealed that the sterilization was characterized by the concentration of hydroperoxy radicals (HOO·), which were dependent on the pH value. Bacterial inactivation rates were proportional to the HOO· concentrations calculated by the theoretical model. To evaluate the penetration of radicals into the cell membrane, a bacterial model using dye-included micelles was used. Decolouration rates of the model were also in proportion with the calculated HOO· concentrations. These results indicate that the key species for plasma sterilization were hydroperoxy radicals. More importantly, the high permeation of hydroperoxy radicals into the cell membrane plays a key role for efficient bactericidal inactivation using the reduced pH method.

  4. Exploiting novel sterilization techniques for porous polyurethane scaffolds.

    PubMed

    Bertoldi, Serena; Farè, Silvia; Haugen, Håvard Jostein; Tanzi, Maria Cristina

    2015-05-01

    Porous polyurethane (PU) structures raise increasing interest as scaffolds in tissue engineering applications. Understanding the effects of sterilization on their properties is mandatory to assess their potential use in the clinical practice. The aim of this work is the evaluation of the effects of two innovative sterilization techniques (i.e. plasma, Sterrad(®) system, and ozone) on the morphological, chemico-physical and mechanical properties of a PU foam synthesized by gas foaming, using water as expanding agent. In addition, possible toxic effects of the sterilization were evaluated by in vitro cytotoxicity tests. Plasma sterilization did not affect the morphological and mechanical properties of the PU foam, but caused at some extent degradative phenomena, as detected by infrared spectroscopy. Ozone sterilization had a major effect on foam morphology, causing the formation of new small pores, and stronger degradation and oxidation on the structure of the material. These modifications affected the mechanical properties of the sterilized PU foam too. Even though, no cytotoxic effects were observed after both plasma and ozone sterilization, as confirmed by the good values of cell viability assessed by Alamar Blue assay. The results here obtained can help in understanding the effects of sterilization procedures on porous polymeric scaffolds, and how the scaffold morphology, in particular porosity, can influence the effects of sterilization, and viceversa. PMID:25893387

  5. EDITORIAL: Gas plasmas in biology and medicine

    NASA Astrophysics Data System (ADS)

    Stoffels, Eva

    2006-08-01

    It is my great pleasure to introduce this special cluster devoted to recent developments in biomedical plasma technology. It is an even greater pleasure to behold the enormous progress which has been made in this area over the last five years. Research on biomedical plasma applications proceeds hand in hand with the development of new material processing technologies, based on atmospheric plasma sources. In the beginning, major research effort was invested in the development and control of new plasma sources—in this laborious process, novel devices were constructed and characterized, and also new plasma physical phenomena were discovered. Self-constriction of micro-plasmas, pattern formation, filamentation of glow discharges and various mode transitions are just a few examples. It is a real challenge for theorists to gain an understanding of these complex phenomena. Later, the devices had to be thoroughly tested and automated, and various safety issues had to be addressed. At present, many atmospheric plasma sources are ready to use, but not all fundamental and technical problems have been resolved by far. There is still plenty of room for improvement, as in any dynamic area of research. The recent trends are clear: the application area of plasmas expands into processing of unconventional materials such as biological scaffolds, and eventually living human, animal and plant tissues. The gentle, precise and versatile character of cold plasmas simply invites this new application. Firstly, non-living surfaces have been plasma-treated to attain desired effects in biomedical research; tissue engineering will soon fully profit from this powerful technique. Furthermore, studies on cultured plant and animal cells have provided many findings, which are both fundamentally interesting and potentially applicable in health care, veterinary medicine and agriculture. The most important and hitherto unique property of plasma treatment is that it can evade accidental cell death and its attendant complications, such as inflammation and scarring. Another substantial research direction makes use of the bactericidal properties of the plasma. The number of findings on plasma inactivation of bacteria and spores is growing; plasma sterilization has already achieved some commercial success. In future, bacteriostatic properties of cold plasmas will even facilitate non-contact disinfection of human tissues. At this moment, one cannot explicitly list all the medical procedures in which cold plasmas will be involved. My personal intuition predicts widespread use of plasma treatment in dentistry and dermatology, but surely more applications will emerge in the course of this multi-disciplinary research. In fact, some plasma techniques, such as coagulation and coblation, are already used in clinical practice—this is another image of plasma science, which is so far unfamiliar to plasma physicists. Therefore, this particular topic forms a perfect platform for contacts between physicists and medical experts. Our colleagues from the medical scientific community will continue giving us feedback, suggestions or even orders. Biomedical plasmas should not become an isolated research area—we must grow together with medical research, listen to criticism, and eventually serve the physicians. Only then will this new field grow, flourish and bear fruit. All the above-mentioned topics meet in this issue of Journal of Physics D: Applied Physics, comprising the most significant examples of modern biomedical plasma research. Browsing through the contributions, the reader can trace back the progress in this field: from fundamental physical (numerical) studies, through phenomenology and physics of new discharges, studies on plasma-surface modification, bacterial inactivation tests, fundamental cell biological investigations, to final in vivo applications. One may ask why this selection has found its place in a purely physical journal—many contributions are concerned with (micro)-biology rather than physics. To me, the answer is clear: it is important to maintain t

  6. Postpartum Sterilization

    MedlinePLUS

    ... of a baby. What is the most common method of postpartum sterilization? The method used most often ... is postpartum sterilization? • What is the most common method of postpartum sterilization? • When is postpartum sterilization performed? • ...

  7. [Comparison of residues of glutaraldehyde and formaldehyde in urologic instruments after sterilization in aseptic conditions or in a formaldehyde gas sterilizer].

    PubMed

    Fleck, H

    1989-05-01

    The aldehyde residues of thermolabile urological instruments, after the formaldehyde sterilization or sterilization in aseptic preparation from a 2% glutaraldehyde solution will be examined and compared. The results are discussed together with experimental toxicologic work from the literature. It is concluded that after sterilization in the 2% glutaraldehyde solution, the glutaraldehyde residues on the experimental materials are safe. PMID:2505278

  8. [Dependence of microbiologic test results of formaldehyde gas sterilization methods on the nature of the test material].

    PubMed

    Spicher, G; Borchers, U

    1987-05-01

    The efficiency of a formaldehyde gas sterilization procedure was evaluated with the aid of test pieces consisting of various materials. Both rigid and flexible tubes served as test pieces. The tubes were 75 cm long with an inner diameter of 1 mm and were sealed at one end. The bioindicators were placed inside the tubes close to the sealed end. Dried spores of Bacillus stearothermophilus adhering to linen threads served as test organisms. The test results varied according to the material of the test pieces and the thickness of their walls (see Table 1). In flexible tubes made of silicon rubber, all bioindicators became sterile, in tubes of stainless steel, all bioindicators exhibited test organisms that had survived. The findings for materials such as polyvinyl chloride, polyethylene, polyamide and polytetrafluorethylene ranged between these two extremes; the frequencies of bioindicators containing viable germs were 10, 55, 68 and 85%, respectively. Rigid and flexible tubes which had been sealed at both ends served to demonstrate that silicon rubber and polyvinyl chloride were highly permeable for formaldehyde and water vapour. Also the other plastic materials tested were permeable for formaldehyde and water vapour but longer exposure periods were needed to create conditions in the interior of the tubes that would result in a killing of the test organisms (see Fig 2). In this respect, polyamide exhibited a peculiar behaviour. The number of viable spores remained at the initial level for a long period before a decline took place. From the results of testing, it is concluded that test pieces must conform to the objects to be sterilized not only in their dimensions (length, inner diameter) but also in the characteristics of their material. The walls of the test pieces should not have a higher permeability for formaldehyde and water vapour than the material to be sterilized. The highest demands on the efficiency of formaldehyde gas sterilization procedures are those created by mental tubes and thick-walled flexible polytetrafluorethylene. Instruments and devices to be sterilized by a formaldehyde gas procedure should be preferentially made of materials which are sufficiently permeable for formaldehyde and water vapour as e.g. silicon rubber. Such gas-permeable components may considerably facilitate the sterilization of cavities which have a small lumen and are difficult to reach. PMID:3113100

  9. Endotoxin removal by radio frequency gas plasma (glow discharge)

    NASA Astrophysics Data System (ADS)

    Poon, Angela

    2011-12-01

    Contaminants remaining on implantable medical devices, even following sterilization, include dangerous fever-causing residues of the outer lipopolysaccharide-rich membranes of Gram-negative bacteria such as the common gut microorganism E. coli. The conventional method for endotoxin removal is by Food & Drug Administration (FDA)-recommended dry-heat depyrogenation at 250°C for at least 45 minutes, an excessively time-consuming high-temperature technique not suitable for low-melting or heat-distortable biomaterials. This investigation evaluated the mechanism by which E. coli endotoxin contamination can be eliminated from surfaces during ambient temperature single 3-minute to cumulative 15-minute exposures to radio-frequency glow discharge (RFGD)-generated residual room air plasmas activated at 0.1-0.2 torr in a 35MHz electrodeless chamber. The main analytical technique for retained pyrogenic bio-activity was the Kinetic Chromogenic Limulus Amebocyte Lysate (LAL) Assay, sufficiently sensitive to document compliance with FDA-required Endotoxin Unit (EU) titers less than 20 EU per medical device by optical detection of enzymatic color development corresponding to < 0.5 EU/ml in sterile water extracts of each device. The main analytical technique for identification of chemical compositions, amounts, and changes during sequential reference Endotoxin additions and subsequent RFGD-treatment removals from infrared (IR)-transparent germanium (Ge) prisms was Multiple Attenuated Internal Reflection (MAIR) infrared spectroscopy sensitive to even monolayer amounts of retained bio-contaminant. KimaxRTM 60 mm x 15 mm and 50mm x 15mm laboratory glass dishes and germanium internal reflection prisms were inoculated with E. coli bacterial endotoxin water suspensions at increments of 0.005, 0.05, 0.5, and 5 EU, and characterized by MAIR-IR spectroscopy of the dried residues on the Ge prisms and LAL Assay of sterile water extracts from both glass and Ge specimens. The Ge prism MAIR-IR measurements were repeated after employing 3-minute RFGD treatments sequentially for more than 10 cycles to observe removal of deposited matter that correlated with diminished EU titers. The results showed that 5 cycles, for a total exposure time of 15 minutes to low-temperature gas plasma, was sufficient to reduce endotoxin titers to below 0.05 EU/ml, and correlated with concurrent reduction of major endotoxin reference standard absorption bands at 3391 cm-1, 2887 cm-1, 1646 cm -1 1342 cm-1, and 1103 cm-1 to less than 0.05 Absorbance Units. Band depletion varied from 15% to 40% per 3-minute cycle of RFGD exposure, based on peak-to-peak analyses. In some cases, 100% of all applied biomass was removed within 5 sequential 3-minute RFGD cycles. The lipid ester absorption band expected at 1725 cm-1 was not detectable until after the first RFGD cycle, suggesting an unmasking of the actual bacterial endotoxin membrane induced within the gas plasma environment. Future work must determine the applicability of this low-temperature, quick depyrogenation process to medical devices of more complicated geometry than the flat surfaces tested here.

  10. Spacecraft sterilization.

    NASA Technical Reports Server (NTRS)

    Kalfayan, S. H.

    1972-01-01

    Spacecraft sterilization is a vital factor in projects for the successful biological exploration of other planets. The microorganisms of major concern are the fungi and bacteria. Sterilization procedures are oriented toward the destruction of bacterial spores. Gaseous sterilants are examined, giving attention to formaldehyde, beta-propiolactone, ethylene oxide, and the chemistry of the bactericidal action of sterilants. Radiation has been seriously considered as another method for spacecraft sterilization. Dry heat sterilization is discussed together with the effects of ethylene oxide decontamination and dry heat sterilization on materials.

  11. Gas arc constriction for plasma arc welding

    NASA Technical Reports Server (NTRS)

    McGee, William F. (Inventor); Rybicki, Daniel J. (Inventor)

    1994-01-01

    A welding torch for plasma arc welding apparatus has an inert gas applied circumferentially about the arc column externally of the constricting nozzle so as to apply a constricting force on the arc after it has exited the nozzle orifice and downstream of the auxiliary shielding gas. The constricting inert gas is supplied to a plenum chamber about the body of the torch and exits through a series of circumferentially disposed orifices in an annular wall forming a closure at the forward end of the constricting gas plenum chamber. The constricting force of the circumferential gas flow about the arc concentrates and focuses the arc column into a more narrow and dense column of energy after exiting the nozzle orifice so that the arc better retains its energy density prior to contacting the workpiece.

  12. Sterilization/disinfection of medical devices using plasma: the flowing afterglow of the reduced-pressure N2-O2 discharge as the inactivating medium

    NASA Astrophysics Data System (ADS)

    Moisan, Michel; Boudam, Karim; Carignan, Denis; Kéroack, Danielle; Levif, Pierre; Barbeau, Jean; Séguin, Jacynthe; Kutasi, Kinga; Elmoualij, Benaïssa; Thellin, Olivier; Zorzi, Willy

    2013-07-01

    Potential sterilization/disinfection of medical devices (MDs) is investigated using a specific plasma process developed at the Université de Montréal over the last decade. The inactivating medium of the microorganisms is the flowing afterglow of a reduced-pressure N2-O2 discharge, which provides, as the main biocidal agent, photons over a broad ultraviolet (UV) wavelength range. The flowing afterglow is considered less damaging to MDs than the discharge itself. Working at gas pressures in the 400—700 Pa range (a few torr) ensures, through species diffusion, the uniform filling of large volume chambers with the species outflowing from the discharge, possibly allowing batch processing within them. As a rule, bacterial endospores are used as bio-indicators (BI) to validate sterilization processes. Under the present operating conditions, Bacillus atrophaeus is found to be the most resistant one and is therefore utilized as BI. The current paper reviews the main experimental results concerning the operation and characterization of this sterilizer/disinfector, updating and completing some of our previously published papers. It uses modeling results as guidelines, which are particularly useful when the corresponding experimental data are not (yet) available, hopefully leading to more insight into this plasma afterglow system. The species flowing out of the N2-O2 discharge can be divided into two groups, depending on the time elapsed after they left the discharge zone as they move toward the chamber, namely the early afterglow and the late afterglow. The early flowing afterglow from a pure N2 discharge (also called pink afterglow) is known to be comprised of N2+ and N4+ ions. In the present N2-O2 mixture discharge, NO+ ions are additionally generated, with a lifetime that extends over a longer period than that of the nitrogen molecular ions. We shall suppose that the disappearance of the NO+ ions marks the end of the early afterglow regime, thereby stressing our intent to work in an ion-free process chamber to minimize damage to MDs. Therefore, operating conditions should be set such that the sterilizer/disinfector chamber is predominantly filled by N and O atoms, possibly together with long-lived metastable-state O2(1 ?g) (singlet-delta) molecules. Various aspects related to the observed survival curves are examined: the actual existence of two “phases” in the inactivation rate, the notion of UV irradiation dose (fluence) and its implications, the UV photon best wavelength range in terms of inactivation efficiency, the influence of substrate temperature and the reduction of UV intensity through surface recombination of N and O atoms on the object/packaging being processed. To preserve their on-shelf sterility, MDs are sealed/wrapped in packaging material. Porous packaging materials utilized in conventional sterilization systems (where MDs are packaged before being subjected to sterilization) were tested and found inadequate for the N2-O2 afterglow system in contrast to a (non-porous) polyolefin polymer. Because the latter is non-porous, its corresponding pouch must be kept unsealed until the end of the process. Even though it is unsealed, but because the opening is very small the O2(1?g) metastable-state molecules are expected to be strongly quenched by the pouch material as they try to enter it and, as a result, only N and O atoms, together with UV photons, are significantly present within it. Therefore, by examining a given process under pouch and no-pouch conditions, it is possible to determine what are the inactivating agents operating: (i) when packaged, these are predominantly UV photons, (ii) when unpackaged, O2(1?g) molecules together with UV photons can be acting, (iii) comparing the inactivation efficiency under both packaged and unpackaged conditions allows the determination of the relative contribution of UV photons (if any) and O2(1?g) metastable-state molecules. Such a method is applied to pyrogenic molecules and to the enzymatic activity of lysozyme proteins once exposed to the N2-O2 flowing afterglow

  13. Design of experiments on a DC Steady State Atmospheric Pressure Plasma Sterilizer

    NASA Astrophysics Data System (ADS)

    Alexeff, Igor; Balasundaram, Arun; Sawheny, Rapinder

    2009-11-01

    Our Resistive Barrier Discharge has been demonstrated to be successful on E. coli, Pseudomonas fluorescens (5RL), spores and bacteriophages. It has been tested successfully in sterilizing pagers at the St. Jude Research Hospital in Memphis, TN. In this recent work, we evaluate three primary factors in the atmospheric pressure resistive barrier discharge, hydrogen peroxide, charged ions and air (oxygen). The experiment used was Analysis of Variance (ANOVA) and regression analysis. The tests used 144 Petri Dishes and the bacteria used were E. coli. The hydrogen peroxide was used as a replacement for the water conductor on the resistive barrier discharge electrode. The charged ions were removed by a double charged wire mesh between the discharge and the Petri Dish. The air was displaced by a slow flow of nitrogen into the experimental area. The basic conclusions are that air, and charged ions are both extremely effective in killing bacteria. In addition, air and charged ions together strongly enhance each other. Hydrogen peroxide in our experiments did not enhance the kill rate.

  14. Reversible Sterilization

    ERIC Educational Resources Information Center

    Largey, Gale

    1977-01-01

    Notes that difficult questions arise concerning the use of sterilization for alleged eugenic and euthenic purposes. Thus, how reversible sterilization will be used with relation to the poor, mentally ill, mentally retarded, criminals, and minors, is questioned. (Author/AM)

  15. Sterilization/disinfection using reduced-pressure plasmas: some differences between direct exposure of bacterial spores to a discharge and their exposure to a flowing afterglow

    NASA Astrophysics Data System (ADS)

    Moisan, M.; Levif, P.; Séguin, J.; Barbeau, J.

    2014-07-01

    The use of plasma for sterilization or disinfection offers a promising alternative to conventional steam or chemical approaches. Plasma can operate at temperatures less damaging to some heat-sensitive medical devices and, in contrast to chemicals, can be non-toxic and non-polluting for the operator and the environment, respectively. Direct exposure to the gaseous discharge (comprising an electric field and ions/electrons) or exposure to its afterglow (no E-field) can both be envisaged a priori, since these two methods can achieve sterility. However, important issues must be considered besides the sterility goal. Direct exposure to the discharge, although yielding a faster inactivation of microorganisms, is shown to be potentially more aggressive to materials and sometimes subjected to the shadowing effect that precludes the sterilization of complex-form items. These two drawbacks can be successfully minimized with an adequate flowing-afterglow exposure. Most importantly, the current paper shows that direct exposure to the discharge can lead to the dislodgment and release of viable microorganisms from their substratum. Such a phenomenon could be responsible for the recontamination of sterilized devices as well as possible contamination of the ambient surroundings, additionally yielding an erroneous over-appreciation of the inactivation efficiency. The operation of the N2-O2 flowing afterglow system being developed in our group is such that there are no ions and electrons left in the process chamber (late-afterglow regime) in full contrast with their presence in the discharge. The dislodgment and release of spores could be attributed, based on the literature, to their electrostatic charging by electrons, leading to an (outward) electrostatic stress that exceeds the adhesion of the spores on their substrate.

  16. Sterile neutrinos?

    E-print Network

    S. M. Bilenky; C. Giunti

    1999-05-05

    The notion of sterile neutrinos is discussed. The schemes of mixing of four massive neutrinos, which imply the existence of sterile neutrinos, are briefly considered. Several model independent methods that allow to reveal possible transitions of solar neutrinos into sterile states are presented.

  17. Influence of flowing helium gas on plasma plume formation in atmospheric pressure plasma

    SciTech Connect

    Yambe, Kiyoyuki; Konda, Kohmei; Ogura, Kazuo

    2015-05-15

    We have studied atmospheric pressure plasma generated using a quartz tube, helium gas, and a foil electrode by applying RF high voltage. The atmospheric pressure plasma in the form of a bullet is released as a plume into the atmosphere. The helium gas flowing out of quartz tube mixes with air, and the flow channel is composed of the regions of flowing helium gas and air. The plasma plume length is equivalent to the reachable distance of flowing helium gas. Although the amount of helium gas on the flow channel increases by increasing the inner diameter of quartz tube at the same gas flow velocity, the plasma plume length peaks at around 8?m/s of gas flow velocity, which is the result that a flow of helium gas is balanced with the amount of gas. The plasma plume is formed at the boundary region where the flow of helium gas is kept to the wall of the air.

  18. Gas discharge plasmas are effective in inactivating Bacillus and Clostridium spores.

    PubMed

    Tseng, Shawn; Abramzon, Nina; Jackson, James O; Lin, Wei-Jen

    2012-03-01

    Bacterial spores are the most resistant form of life and have been a major threat to public health and food safety. Nonthermal atmospheric gas discharge plasma is a novel sterilization method that leaves no chemical residue. In our study, a helium radio-frequency cold plasma jet was used to examine its sporicidal effect on selected strains of Bacillus and Clostridium. The species tested included Bacillus subtilis, Bacillus stearothermophilus, Clostridium sporogenes, Clostridium perfringens, Clostridium difficile, and Clostridium botulinum type A and type E. The plasmas were effective in inactivating selected Bacillus and Clostridia spores with D values (decimal reduction time) ranging from 2 to 8 min. Among all spores tested, C. botulinum type A and C. sporogenes were significantly more resistant to plasma inactivation than other species. Observations by phase contrast microscopy showed that B. subtilis spores were severely damaged by plasmas and the majority of the treated spores were unable to initiate the germination process. There was no detectable fragmentation of the DNA when the spores were treated for up to 20 min. The release of dipicolinic acid was observed almost immediately after the plasma treatment, indicating the spore envelope damage could occur quickly resulting in dipicolinic acid release and the reduction of spore resistance. PMID:22075631

  19. The Use of Liquid Isopropyl Alcohol and Hydrogen Peroxide Gas Plasma to Biologically Decontaminate Spacecraft Electronics

    NASA Technical Reports Server (NTRS)

    Bonner, J. K.; Tudryn, Carissa D.; Choi, Sun J.; Eulogio, Sebastian E.; Roberts, Timothy J.; Tudryn, Carissa D.

    2006-01-01

    Legitimate concern exists regarding sending spacecraft and their associated hardware to solar system bodies where they could possibly contaminate the body's surface with terrestrial microorganisms. The NASA approved guidelines for sterilization as set forth in NPG 8020.12C, which is consistent with the biological contamination control objectives of the Committee on Space Research (COSPAR), recommends subjecting the spacecraft and its associated hardware to dry heat-a dry heat regimen that could potentially employ a temperature of 110(deg)C for up to 200 hours. Such a temperature exposure could prove detrimental to the spacecraft electronics. The stimulated growth of intermetallic compounds (IMCs) in metallic interconnects and/or thermal degradation of organic materials composing much of the hardware could take place over a prolonged temperature regimen. Such detrimental phenomena would almost certainly compromise the integrity and reliability of the electronics. Investigation of sterilization procedures in the medical field suggests that hydrogen peroxide (H202) gas plasma (HPGP) technology can effectively function as an alternative to heat sterilization, especially for heat-sensitive items. Treatment with isopropyl alcohol (IPA) in liquid form prior to exposure of the hardware to HPGP should also prove beneficial. Although IPA is not a sterilant, it is frequently used as a disinfectant because of its bactericidal properties. The use of IPA in electronics cleaning is widely recognized and has been utilized for many years with no adverse affects reported. In addition, IPA is the principal ingredient of the test fluid used in ionic contamination testers to assess the amount of ionic contamination found on the surfaces of printed wiring assemblies. This paper will set forth experimental data confirming the feasibility of the IPA/H202 approach to reach acceptable microbial reduction (MR) levels of spacecraft electronic hardware. In addition, a proposed process flow in which both IPA liquid and HPGP are utilized will be presented in Section 7.0.

  20. Spectroscopic measurement of plasma gas temperature of the atmospheric-pressure microwave induced nitrogen plasma torch

    NASA Astrophysics Data System (ADS)

    Chen, Chuan-Jie; Li, Shou-Zhe

    2015-06-01

    Atmospheric-pressure microwave induced N2 plasma is diagnosed by optical emission spectroscopy with respect to the plasma gas temperature. The spectroscopic measurement of plasma gas temperature is discussed with respect to the spectral line broadening of Ar I and the various emission rotational-vibrational band systems of N2(B-A), N2(C-B) and \\text{N}2+(\\text{B-X}). It is found that the Boltzmann plot of the selective spectral lines from \\text{N}2+(\\text{B-X}) at 391.4?nm is preferable to others with an accuracy better than 5% for an atmospheric-pressure plasma of high gas temperature. On the basis of the thermal balance equation, the dependences of the plasma gas temperature on the absorbed power, the gas flow rate, and the gas composition are investigated experimentally with photographs recording the plasma morphology.

  1. Relation between plasma plume density and gas flow velocity in atmospheric pressure plasma

    SciTech Connect

    Yambe, Kiyoyuki; Taka, Shogo; Ogura, Kazuo

    2014-04-15

    We have studied atmospheric pressure plasma generated using a quartz tube, helium gas, and copper foil electrode by applying RF high voltage. The atmospheric pressure plasma in the form of a bullet is released as a plume into the atmosphere. To study the properties of the plasma plume, the plasma plume current is estimated from the difference in currents on the circuit, and the drift velocity is measured using a photodetector. The relation of the plasma plume density n{sub plu}, which is estimated from the current and the drift velocity, and the gas flow velocity v{sub gas} is examined. It is found that the dependence of the density on the gas flow velocity has relations of n{sub plu} ? log(v{sub gas}). However, the plasma plume density in the laminar flow is higher than that in the turbulent flow. Consequently, in the laminar flow, the density increases with increasing the gas flow velocity.

  2. Sterilization System

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Cox Sterile Products, Inc.'s Rapid Heat Transfer Sterilizer employs a heat exchange process that induces rapid air movement; the air becomes the heat transfer medium, maintaining a uniform temperature of 375 degrees Fahrenheit. It features pushbutton controls for three timing cycles for different instrument loads, a six-minute cycle for standard unpackaged instruments, eight minutes for certain specialized dental/medical instruments and 12 minutes for packaged instruments which can then be stored in a drawer in sterile condition. System will stay at 375 degrees all day. Continuous operation is not expensive because of the sterilizer's very low power requirements.

  3. Dusty Plasma Structures in Gas Mixtures

    SciTech Connect

    Popova, D. V.; Antipov, S. N.; Petrov, O. F.; Fortov, V. E.

    2008-09-07

    The possibility of attainment of large Mach numbers is analyzed for the case of heavy ions drifting in a light gas. Under conditions of typical experiments with dust structures in plasmas, the use of the mixture of light and heavy gases is shown to make it possible to suppress the ion heating in the electric field and to form supersonic flows characterized by large Mach numbers. The drift of krypton ions in helium is considered as an example. Experiments with dc glow discharge at 1-10% of Kr show that the transition to the discharge in mixture leads to increase of interaction anisotropy and reinforcement of coupling of dust particles in the direction of ion drift. On the other hand, under certain conditions the phenomenon of abnormal 'heating' of dust particles was observed when the particles can obtain high kinetic energy which is several orders of magnitude higher than typical.

  4. Sterilization of space hardware.

    NASA Technical Reports Server (NTRS)

    Pflug, I. J.

    1971-01-01

    Discussion of various techniques of sterilization of space flight hardware using either destructive heating or the action of chemicals. Factors considered in the dry-heat destruction of microorganisms include the effects of microbial water content, temperature, the physicochemical properties of the microorganism and adjacent support, and nature of the surrounding gas atmosphere. Dry-heat destruction rates of microorganisms on the surface, between mated surface areas, or buried in the solid material of space vehicle hardware are reviewed, along with alternative dry-heat sterilization cycles, thermodynamic considerations, and considerations of final sterilization-process design. Discussed sterilization chemicals include ethylene oxide, formaldehyde, methyl bromide, dimethyl sulfoxide, peracetic acid, and beta-propiolactone.

  5. Elimination of transmissible spongiform encephalopathy infectivity and decontamination of surgical instruments by using radio-frequency gas-plasma treatment.

    PubMed

    Baxter, H C; Campbell, G A; Whittaker, A G; Jones, A C; Aitken, A; Simpson, A H; Casey, M; Bountiff, L; Gibbard, L; Baxter, R L

    2005-08-01

    It has now been established that transmissible spongiform encephalopathy (TSE) infectivity, which is highly resistant to conventional methods of deactivation, can be transmitted iatrogenically by contaminated stainless steel. It is important that new methods are evaluated for effective removal of protein residues from surgical instruments. Here, radio-frequency (RF) gas-plasma treatment was investigated as a method of removing both the protein debris and TSE infectivity. Stainless-steel spheres contaminated with the 263K strain of scrapie and a variety of used surgical instruments, which had been cleaned by a hospital sterile-services department, were examined both before and after treatment by RF gas plasma, using scanning electron microscopy and energy-dispersive X-ray spectroscopic analysis. Transmission of scrapie from the contaminated spheres was examined in hamsters by the peripheral route of infection. RF gas-plasma treatment effectively removed residual organic residues on reprocessed surgical instruments and gross contamination both from orthopaedic blades and from the experimentally contaminated spheres. In vivo testing showed that RF gas-plasma treatment of scrapie-infected spheres eliminated transmission of infectivity. The infectivity of the TSE agent adsorbed on metal spheres could be removed effectively by gas-plasma cleaning with argon/oxygen mixtures. This treatment can effectively remove 'stubborn' residual contamination on surgical instruments. PMID:16033987

  6. Impact of Gas Heating in Inductively Coupled Plasmas

    NASA Technical Reports Server (NTRS)

    Hash, D. B.; Bose, D.; Rao, M. V. V. S.; Cruden, B. A.; Meyyappan, M.; Sharma, S. P.; Biegel, Bryan (Technical Monitor)

    2001-01-01

    Recently it has been recognized that the neutral gas in inductively coupled plasma reactors heats up significantly during processing. The resulting gas density variations across the reactor affect reaction rates, radical densities, plasma characteristics, and uniformity within the reactor. A self-consistent model that couples the plasma generation and transport to the gas flow and heating has been developed and used to study CF4 discharges. A Langmuir probe has been used to measure radial profiles of electron density and temperature. The model predictions agree well with the experimental results. As a result of these comparisons along with the poorer performance of the model without the gas-plasma coupling, the importance of gas heating in plasma processing has been verified.

  7. Inert-Gas Diffuser For Plasma Or Arc Welding

    NASA Technical Reports Server (NTRS)

    Gilbert, Jeffrey L.; Spencer, Carl N.; Hosking, Timothy J.

    1994-01-01

    Inert-gas diffuser provides protective gas cover for weld bead as it cools. Follows welding torch, maintaining continuous flow of argon over newly formed joint and prevents it from oxidizing. Helps to ensure welds of consistently high quality. Devised for plasma arc keyhole welding of plates of 0.25-in. or greater thickness, also used in tungsten/inert-gas and other plasma or arc welding processes.

  8. Plasma arc welding torch having means for vortexing plasma gas exiting the welding torch

    NASA Technical Reports Server (NTRS)

    Rybicki, Daniel J. (inventor); Mcgee, William F. (inventor)

    1994-01-01

    A plasma arc welding torch is described wherein a plasma gas is directed through the body of the welding torch and out of the body across the tip of the welding electrode disposed at the forward end of the body. The plasma gas is provided with a vortexing motion prior to exiting the body by a vortex motion imparting member which is mounted in an orifice housing member and carried in the forward portion of the torch body. The orifice housing member is provided with an orifice of an predetermined diameter through which the electric arc and the plasma gas exits.

  9. 21 CFR 610.12 - Sterility.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...require sterility testing for Whole Blood, Cryoprecipitated Antihemophilic Factor, Platelets, Red Blood Cells, Plasma, Source Plasma, Smallpox Vaccine, Reagent Red Blood Cells, Anti-Human Globulin, and Blood Grouping Reagents....

  10. Rare gas flow structuration in plasma jet experiments

    NASA Astrophysics Data System (ADS)

    Robert, E.; Sarron, V.; Darny, T.; Riès, D.; Dozias, S.; Fontane, J.; Joly, L.; Pouvesle, J.-M.

    2014-02-01

    Modifications of rare gas flow by plasma generated with a plasma gun (PG) are evidenced through simultaneous time-resolved ICCD imaging and schlieren visualization. The geometrical features of the capillary inside which plasma propagates before in-air expansion, the pulse repetition rate and the presence of a metallic target are playing a key role on the rare gas flow at the outlet of the capillary when the plasma is switched on. In addition to the previously reported upstream offset of the laminar to turbulent transition, we document the reverse action leading to the generation of long plumes at moderate gas flow rates together with the channeling of helium flow under various discharge conditions. For higher gas flow rates, in the l min-1 range, time-resolved diagnostics performed during the first tens of ms after the PG is turned on, evidence that the plasma plume does not start expanding in a laminar neutral gas flow. Instead, plasma ignition leads to a gradual laminar-like flow build-up inside which the plasma plume is generated. The impact of such phenomena for gas delivery on targets mimicking biological samples is emphasized, as well as their consequences on the production and diagnostics of reactive species.

  11. The effect of sterilization on silk fibroin biomaterial properties.

    PubMed

    Rnjak-Kovacina, Jelena; DesRochers, Teresa M; Burke, Kelly A; Kaplan, David L

    2015-06-01

    The effects of common sterilization techniques on the physical and biological properties of lyophilized silk fibroin sponges are described. Sterile silk fibroin sponges were cast using a pre-sterilized silk fibroin solution under aseptic conditions or post-sterilized via autoclaving, ? radiation, dry heat, exposure to ethylene oxide, or hydrogen peroxide gas plasma. Low average molecular weight and low concentration silk fibroin solutions could be sterilized via autoclaving or filtration without significant loses of protein. However, autoclaving reduced the molecular weight distribution of the silk fibroin protein solution, and silk fibroin sponges cast from autoclaved silk fibroin were significantly stiffer compared to sponges cast from unsterilized or filtered silk fibroin. When silk fibroin sponges were sterilized post-casting, autoclaving increased scaffold stiffness, while decreasing scaffold degradation rate in vitro. In contrast, ? irradiation accelerated scaffold degradation rate. Exposure to ethylene oxide significantly decreased cell proliferation rate on silk fibroin sponges, which was rescued by leaching ethylene oxide into PBS prior to cell seeding. PMID:25761231

  12. Synergistic sterilization effect of microwave-excited nonthermal Ar plasma, H2O2, H2O and TiO2, and a global modeling of the interactions

    NASA Astrophysics Data System (ADS)

    Lee, H. Wk; Lee, H. W.; Kang, S. K.; Y Kim, H.; Won, I. H.; Jeon, S. M.; Lee, J. K.

    2013-10-01

    A microwave-excited atmospheric-pressure plasma jet (uAPPJ) exhibited a synergistic sterilization effect when combined with hydrogen peroxide (H2O2), distilled water (DW) and titanium dioxide (TiO2) photocatalysis. The sterilization efficacy of H2O2-uAPPJ increased as the H2O2 concentration increased. The addition of TiO2 also remarkably increased the sterilization efficacy. To find the main factor for the sterilization effect, optical emission spectra and the degradation rate of a methylene blue solution were measured. Numerical analysis, a newly developed global modeling, was also conducted to discover the mechanisms. Both experimental measurements and global modeling results suggested that combinations of H2O2, DW and TiO2 increased the generation of hydroxyl radicals (·OH), which are known to be strong bactericidal agents. It was revealed that charged species, especially electrons, have a dominant role in the increase of ·OH.

  13. [Orienting studies of the formaldehyde residue in urologic instruments following sterilization with formaldehyde gas].

    PubMed

    Fleck, H; Gabrio, T

    1984-06-01

    At an orientating investigation the formaldehyde residue at catheters and tubing was defined after formaldehyde gas sterilisation and a varying dependence of the residue of the concentration of the agent solution, the sterilisation time and the tube resp. catheter material was found. The formaldehyde residues lay in the region of micrograms/cm2. They are higher as in the judgement of the equipment producer. The necessity of the investigation of toxicological importance of the residue is mentioned. PMID:6483949

  14. Gas chromatographic analysis of metaldehyde in urine and plasma.

    PubMed

    Booze, T F; Oehme, F W

    1985-01-01

    A gas chromatographic assay specific for the direct analysis of metaldehyde in plasma and urine is reported. This assay takes less than 30 min to perform, has good reproducibility, requires only routine equipment, and has a sensitivity of 1 ng/microL for urine and 2 ng/microL for plasma. PMID:4033074

  15. Transition of RF internal antenna plasma by gas control

    SciTech Connect

    Hamajima, Takafumi; Yamauchi, Toshihiko; Kobayashi, Seiji; Hiruta, Toshihito; Kanno, Yoshinori

    2012-07-11

    The transition between the capacitively coupled plasma (CCP) and the inductively coupled plasma (ICP) was investigated with the internal radio frequency (RF) multi-turn antenna. The transition between them showed the hysteresis curve. The radiation power and the period of the self-pulse mode became small in proportion to the gas pressure. It was found that the ICP transition occurred by decreasing the gas pressure from 400 Pa.

  16. Termination of a Magnetized Plasma on a Neutral Gas: The End of the Plasma C. M. Cooper and W. Gekelman

    E-print Network

    Carter, Troy

    by a lanthanum hexaboride (LaB6) cathode terminates entirely within a neutral helium gas. The plasma is weaklyTermination of a Magnetized Plasma on a Neutral Gas: The End of the Plasma C. M. Cooper and W 2013; published 24 June 2013) Experiments are performed at the Enormous Toroidal Plasma Device at UCLA

  17. Electron energy distribution function control in gas discharge plasmas

    SciTech Connect

    Godyak, V. A.

    2013-10-15

    The formation of the electron energy distribution function (EEDF) and electron temperature in low temperature gas discharge plasmas is analyzed in frames of local and non-local electron kinetics. It is shown, that contrary to the local case, typical for plasma in uniform electric field, there is the possibility for EEDF modification, at the condition of non-local electron kinetics in strongly non-uniform electric fields. Such conditions “naturally” occur in some self-organized steady state dc and rf discharge plasmas, and they suggest the variety of artificial methods for EEDF modification. EEDF modification and electron temperature control in non-equilibrium conditions occurring naturally and those stimulated by different kinds of plasma disturbances are illustrated with numerous experiments. The necessary conditions for EEDF modification in gas discharge plasmas are formulated.

  18. Miniaturized Argon Plasma: Neutral Gas Characteristics in Dielectric Barrier Discharge

    NASA Astrophysics Data System (ADS)

    Ashraf, Farahat

    2015-10-01

    Plasma-neutral gas dynamics is computationally investigated in a miniaturized microthruster that encloses Ar and contains dielectric material sandwiched between two metal plates using a two-dimensional plasma mode. Spatial and temporal plasma properties are investigated by solving the Poisson equation with the conservation equations of charged and excited neutral plasma species using the COMSOL Multiphysics 4.2b. The microthruster property is found to depend on the secondary electron emission coefficient. The electrohydrodynamic force (EHD) is calculated and found to be significant in the sheath area near the dielectric layer and is found to affect gas flow dynamics including the Ar excimer formation and density. The effects of pressure and secondary emission coefficient are discussed. The plasma characteristics are affected by small changes in the secondary electron emission coefficient, which could result from the dielectric erosion and aging, and is found to affect the electrohydrodynamic force produced when the microthruster is used to produce thrust for a small spacecraft.

  19. Prospects for Treating Foods with Cold Atmospheric Gas Plasmas

    NASA Astrophysics Data System (ADS)

    Shama, Gilbert; Kong, Michael G.

    In this review the potential applications of cold atmospheric gas plasmas are presented with particular reference to the problems of contamination of foods by biological agents. In addition to the accidental contamination of food, the very real threat arising from the deliberate contamination of the human food chain is also considered. The evidence that has been gained for the efficacy of cold plasmas in inactivating a wide range of biological agents is briefly surveyed. This is followed by an examination of previous work in which ­various types of foodstuffs have been successfully treated using cold gas plasmas. The need to demonstrate that the quality attributes of treated foods is not adversely affected is stressed. Finally, the role which gas plasmas may have in decontaminating food processing equipment is considered.

  20. Hysteroscopic sterilization.

    PubMed

    Cooper, J M

    1992-06-01

    After a brief history of sterilization, this article is devoted to hysteroscopic techniques and instrumentation, and a presentation of hysteroscopic sterilization techniques: electrocoagulation techniques, hysteroscopic injection of chemicals, and hysteroscopically directed placement of intratubal mechanical devices (ceramic plugs, polyethylene plugs, preformed silicone plugs, nylon intratubal plugs, and formed-in-place silicone rubber plugs. Problems are identified that are common to all hysteroscopic sterilization techniques. There are also practical considerations which limit the development of hysteroscopic sterilization techniques, and these considerations are presented. Various means have been used historically to block the tubal ostia, including the insertion of nitric acid in 1984, but it was not until 1927 that the hysteroscope was used for sterilization. Hysteroscopy itself was discovered in 1869 for diagnosis of intrauterine diseases. Even with the hysteroscope and the 1934 procedure of using an electric current in the tubal ostia, hysteroscopic sterilization was little used. In 1973 a convention was convened to discuss the use of the procedure and the ramifications. Currently, the hysteroscope is a modified cytoscope with a 4 mm wide telescope with a fore-oblique lens, a 7 mm wide metallic sheath, a fiberoptic bundle for transmission of light, and additional instruments for intrauterine manipulation or surgical intervention. Under local anesthesia, sterilization is effected by 1) destruction of the interstitial portion of the oviduct by thermal energy, 2) injection techniques for the delivery of sclerosing substances or tissue adhesives, or 3) mechanical occlusive devices or plugs to block the oviduct. Recent uterine, cervical, or adnexal infections and pregnancy prevent the performance of sterilization, because infections are exacerbated by the procedure. Uterine perforation is a complication. Other complications involve allergic reactions to the solutions. The problems involved in performing the procedure are uterotubal spasm; inadequate intrauterine visualization resulting from mucus, blood, and endometrial fragments; and unsuspected uterine pathology. Carbon dioxide is inappropriate for longer procedures and can create diaphragmatic irritation in the peritoneal cavity and edema. 5% dextrose in water impairs visualization. Hyskon has been used for procedures up to 80 minutes. Other problems are discussed. Reversibility is dependent on the extent of tubal destruction. This procedure is unlikely to be as widely applicable ass are traditional procedures. PMID:1638821

  1. ETHYLENE OXIDE CONTROL TECHNOLOGY DEVELOPMENT FOR HOSPITAL STERILIZERS

    EPA Science Inventory

    The report discusses the development of ethylene oxide (EO) control technology for hospital sterilizers. Hospitals sterilize heat-sensitive items in gas sterilizers that use a mixture of EO (12 wt %) and a chlorofluorocarbon (CFC) (88 wt %). The active sterilizing agent is EO. Th...

  2. Calculation of Ion Energy Distribution Functions at the Inner Surface of a Pet Bottle During Sterilization Processes

    NASA Astrophysics Data System (ADS)

    Szeremley, Daniel; Steves, Simon; Brinkmann, Ralf Peter; Awakowicz, Peter; Kushner, Mark J.; Mussenbrock, Thomas

    2012-10-01

    Due to a growing demand for bottles made of polyethylene terephthalate (PET) fast and efficient sterilization processes as well as barrier coating to decrease gas permeation are required. Plasma sterilization is an alternative way of sterilizing PET without using toxic ingredients (e.g. hydrogen peroxide or peracetic acid). To allow investigations in the field of plasma sterilization of PET bottles, a microwave plasma reactor has been developed. A coaxial waveguide combined with a gas-inlet, a modified plasmaline, is used for both coupling the microwave power and injecting the gas mixture into the bottle. One key parameter in the context of plasma treatment of bottles is the ion energy distribution function (IEDF) at the inner surface of the bottle. Additional it is possible to apply a DC bias potential to a metal cage which is placed around the bottle. Numerical results for IEDFs performed by means of the Hybrid Plasma Equipment Model (HPEM) are presented. Plasmas with relevant gas mixtures (Ar and ArO2) at different pressures and input powers are examined. The numerical results are compared with experimentally obtained data and show very good agreement.

  3. Microwave Plasma Sources for Gas Processing

    SciTech Connect

    Mizeraczyk, J.; Jasinski, M.; Dors, M.; Zakrzewski, Z.

    2008-03-19

    In this paper atmospheric pressure microwave discharge methods and devices used for producing the non-thermal plasmas for processing of gases are presented. The main part of the paper concerns the microwave plasma sources (MPSs) for environmental protection applications. A few types of the MPSs, i.e. waveguide-based surface wave sustained MPS, coaxial-line-based and waveguide-based nozzle-type MPSs, waveguide-based nozzleless cylinder-type MPS and MPS for microdischarges are presented. Also, results of the laboratory experiments on the plasma processing of several highly-concentrated (up to several tens percent) volatile organic compounds (VOCs), including Freon-type refrigerants, in the moderate (200-400 W) waveguide-based nozzle-type MPS (2.45 GHz) are presented. The results showed that the microwave discharge plasma fully decomposed the VOCs at relatively low energy cost. The energy efficiency of VOCs decomposition reached 1000 g/kWh. This suggests that the microwave discharge plasma can be a useful tool for environmental protection applications. In this paper also results of the use of the waveguide-based nozzleless cylinder-type MPS to methane reforming into hydrogen are presented.

  4. Operation of Ferroelectric Plasma Sources in a Gas Discharge Mode

    SciTech Connect

    A. Dunaevsky; N.J. Fisch

    2004-03-08

    Ferroelectric plasma sources in vacuum are known as sources of ablative plasma, formed due to surface discharge. In this paper, observations of a gas discharge mode of operation of the ferroelectric plasma sources (FPS) are reported. The gas discharge appears at pressures between approximately 20 and approximately 80 Torr. At pressures of 1-20 Torr, there is a transition from vacuum surface discharge to the gas discharge, when both modes coexist and the surface discharges sustain the gas discharge. At pressures between 20 and 80 Torr, the surface discharges are suppressed, and FPS operate in pure gas discharge mode, with the formation of almost uniform plasma along the entire surface of the ceramics between strips. The density of the expanding plasma is estimated to be about 1013 cm-3 at a distance of 5.5 mm from the surface. The power consumption of the discharge is comparatively low, making it useful for various applications. This paper also presents direct measurements of the yield of secondary electron emission from ferroelectric ceramics, which, at low energies of primary electrons, is high and dependent on the polarization of the ferroelectric material

  5. System and method of applying energetic ions for sterilization

    DOEpatents

    Schmidt, John A.

    2003-12-23

    A method of sterilization of a container is provided whereby a cold plasma is caused to be disposed near a surface to be sterilized, and the cold plasma is then subjected to a pulsed voltage differential for producing energized ions in the plasma. Those energized ions then operate to achieve spore destruction on the surface to be sterilized. Further, a system for sterilization of a container which includes a conductive or non-conductive container, a cold plasma in proximity to the container, and a high voltage source for delivering a pulsed voltage differential between an electrode and the container and across the cold plasma, is provided.

  6. [What should be the length and inner diameter of the testing device for microbiological efficacy testing of formaldehyde gas sterilization methods?].

    PubMed

    Spicher, G; Borchers, U

    1984-10-01

    The series of tests described in a preceding publication (Spicher and Borchers, 1983) has been continued in a modified way. This time, the dependency of the microbiological test results of a formaldehyde gas sterilization procedure on length and inner diameter of the tubes serving as test pieces was examined. The tubes were 1 or 2 m in length with an inner diameter of 1 or 2 mm. The tests were performed with four different preparations of bioindicators. Spores of Bac. stearothermophilus served as test germs. The preparations differed in the type of suspension used for the preparation of the bioindicators: distilled water, diluted blood (10%), undiluted blood, 10% albumin solution. The spore suspensions had been dried on linen thread. During the test procedure, the bioindicators were located near the sealed end of the tube. After completion of the sterilization procedure, the bioindicators were examined for viable germs. In tubes of identical length, the frequency of indicators carrying viable germs was always higher in those of 1 mm than in those of 2 mm inner diameter. In tubes of identical inner diameter, the frequency of indicators carrying viable germs in those of 2 m length was always higher than in those of 1 m length. This regularity was independent of the type of bioindicators used. The bioindicators for the preparation of which a 10% albumin solution had been employed showed the highest resistance. A somewhat lower resistance was found for the bioindicators prepared with undiluted blood. The bioindicators for which the spores had been suspended in diluted blood proved to have the lowest resistance. If the spores had been suspended in distilled water, the resistance of the bioindicators was a little lower than that of those suspended in undiluted blood, but was higher than that of the dried spores with diluted blood. The test results confirm the effectiveness of the method proposed earlier, i.e. to deposit the bioindicators in special test pieces (e.g. tubes or sounds) for the microbiological testing of formaldehyde gas sterilization procedures. These test pieces must be at least as long and as narrow as the longest and narrowest cavity of the object to be sterilized (tubes, catheters). In order to standardize the microbiological testing of formaldehyde gas sterilization procedures and to guarantee a certain minimum efficiency, the bioindicator as well as the test piece and its size (length and inner diameter) should be standardized.(ABSTRACT TRUNCATED AT 400 WORDS) PMID:6524142

  7. Comparative study of different techniques for the sterilization of poly-L-lactide electrospun microfibers: effectiveness vs. material degradation.

    PubMed

    Rainer, Alberto; Centola, Matteo; Spadaccio, Cristiano; Gherardi, Giovanni; Genovese, Jorge A; Licoccia, Silvia; Trombetta, Marcella

    2010-02-01

    Electrospinning of biopolymeric scaffolds is a new and effective approach for creating replacement tissues to repair defects and/or damaged tissues with direct clinical application. However, many hurdles and technical concerns regarding biological issues, such as cell retention and the ability to grow, still need to be overcome to gain full access to the clinical arena. Interaction with the host human tissues, immunogenicity, pathogen transmission as well as production costs, technical expertise, and good manufacturing and laboratory practice requirements call for careful consideration when aiming at the production of a material that is available off-the-shelf, to be used immediately in operative settings. The issue of sterilization is one of the most important steps for the clinical application of these scaffolds. Nevertheless, relatively few studies have been performed to systematically investigate how sterilization treatments may affect the properties of electrospun polymers for tissue engineering. This paper presents the results of a comparative study of different sterilization techniques applied to an electrospun poly-L-lactide scaffold: soaking in absolute ethanol, dry oven and autoclave treatments, UV irradiation, and hydrogen peroxide gas plasma treatment. Morphological and chemical characterization was coupled with microbiological sterility assay to validate the examined sterilization techniques in terms of effectiveness and modifications to the scaffold. The results of this study reveal that UV irradiation and hydrogen peroxide gas plasma are the most effective sterilization techniques, as they ensure sterility of the electrospun scaffolds without affecting their chemical and morphological features. PMID:20306434

  8. System for sterilizing objects. [cleaning space vehicle systems

    NASA Technical Reports Server (NTRS)

    Bryan, C. J.; Wright, E. E., Jr.; Moyers, C. V. (inventors)

    1981-01-01

    A system for producing a stream of humidified sterilizing gas for sterilizing objects such as the water systems of space vehicles and the like includes a source of sterilant gas which is fed to a mixing chamber which has inlet and outlet ports. The level of the water only partially fills the mixing chamber so as to provide an empty space adjacent the top of the chamber. A heater is provided for heating the water in the chamber so as to produce a humidified atmosphere. The sterilant gas is fed through an arcuate shaped tubular member connected to the inlet port of the mixing chamber for producing a vortex type of flow of sterilant gas into the chamber for humidification. A tubular member extends from the mixing chamber for supplying the humidified sterilant gas to the object for being sterilized. Scrubbers are provided for removing the sterilant gas after use.

  9. Characterization of a new VHF-CCP for Sterilization

    NASA Astrophysics Data System (ADS)

    Stapelmann, Katharina; Bibinov, Nikita; Wunderlich, Joachim; Awakowicz, Peter

    2009-10-01

    Plasma sterilization is an upcoming alternative to common sterilization methods. Reduced process times combined with a low treatment temperature lead to proper sterilization and decontamination results even for heat-sensitive materials. The capabilities of plasma sterilization were demonstrated in several laboratory setups. Based on these experiences, a new plasma reactor was developed and realized as capacitive coupled plasma discharge with a variable frequency range between 76 and 80 MHz. The reactor concept is designed to meet industrial needs. Therefore, a specialized chamber design was developed: it is composed of PEEK, a high-performance plastic, and it is shaped like a drawer to make the sterilization process easy and uncomplicated for application. Optical Emission Spectroscopy was performed to obtain detailed information about the plasma parameters. According spectra, intensities and plasma parameters will be presented in comparison to a well established ICP laboratory setup. These data are used for optimization of sterilization efficiency. Furthermore, first microbiological tests were carried out at optimized conditions.

  10. [Sterile packing materials for formaldehyde sterilization].

    PubMed

    Fleck, H; Steiger, E

    1983-08-01

    Apart from the already widely applied sterilization by ethylene oxide, the sterilization by gaseous formaldehyde is another reliable procedure for the sterilization of thermolabile instruments. An essential advantage of the sterilization by gaseous formaldehyde over the so-called wet sterilization is that it can be performed in a recontamination-proof sterile packing. Packing materials produced in the GDR, the germ-tightness and toxicological safety of which were already known, were tested to evaluate their suitability for sterilization by gaseous formaldehyde. An appropriate packing variant was found and tested for microbiological reliability. PMID:6679444

  11. Ponderomotive effects in low temperature gas discharge plasmas

    NASA Astrophysics Data System (ADS)

    Smolyakov, A.

    2002-11-01

    In this talk we review recent experimental results and present a theory of nonlinear effects in low temperature plasmas. Modern gas discharge plasmas at low pressures (in particularly inductively coupled plasmas) have unique set of operating parameters. Recent experiments have shown that nonlinear effects are significant in such plasmas and nonlinear modification of plasma density profile due to time-average (ponderomotive) force as well as higher order nonlinear harmonics of the polarization potential and electric current have been found. Remarkable characteristic of a typical discharge is dominance of the nonlinear Lorentz force associated with the RF magnetic field. [The effective electron cyclotron frequency, eB/mc, in the induced magnetic field B may exceed the electron-neutral collisional frequency ? and characteristic frequency of the oscillations ? by an order of magnitude.] Thus, the nonlinear Lorentz force acting on electrons may become much larger than the force from the inductive electric field. Under these conditions plasmas are in the regime of electron (Hall) magnetohydrodynamics (EMHD). By using basic magnetohydrodynamic equations for a cold plasma one can qualitatively predict basic features of nonlinear harmonics of the electric current and electrostatic potential in inductive plasmas. However, detailed measurements of the ponderomotive force (which only recently had become available) have revealed that quantitative predictions are very different from the values given by the standard expression for the Miller force. We have shown that this discrepancy is attributed to another unique feature of these discharges. It turns out that electrons in such plasmas are almost collisionless, so that the electron mean free path exceds the length of a system. We have shown, that, in addition to such phenomena as the anomalous skin effect and collisionless (Landau) absorption, the electron thermal motion becomes responsible for significant modification of the ponderomotive force and have derived a new expression for the ponderomotive force in a warm plasma. It is ironic that low temperature gas discharge plasma has become the first object where such an effect (of a finite electron temperature) is important and has been measured, while the ponderomotive effects for typical hot temperature plasma (such as laser or RF heated magnetically confined plasmas) in most cases can be described by the standard (Miller) expression for cold plasmas.

  12. Treatment of enterococcus faecalis bacteria by a helium atmospheric cold plasma brush with oxygen addition

    NASA Astrophysics Data System (ADS)

    Chen, Wei; Huang, Jun; Du, Ning; Liu, Xiao-Di; Wang, Xing-Quan; Lv, Guo-Hua; Zhang, Guo-Ping; Guo, Li-Hong; Yang, Si-Ze

    2012-07-01

    An atmospheric cold plasma brush suitable for large area and low-temperature plasma-based sterilization is designed. Results demonstrate that the He/O2 plasma more effectively kills Enterococcus faecalis than the pure He plasma. In addition, the sterilization efficiency values of the He/O2 plasma depend on the oxygen fraction in Helium gas. The atmospheric cold plasma brush using a proper ratio of He/O2 (2.5%) reaches the optimum sterilization efficiency. After plasma treatment, the cell structure and morphology changes can be observed by the scanning electron microscopy. Optical emission measurements indicate that reactive species such as O and OH play a significant role in the sterilization process.

  13. Treatment of enterococcus faecalis bacteria by a helium atmospheric cold plasma brush with oxygen addition

    SciTech Connect

    Chen Wei; Huang Jun; Wang Xingquan; Lv Guohua; Zhang Guoping; Du Ning; Liu Xiaodi; Guo Lihong; Yang Size

    2012-07-01

    An atmospheric cold plasma brush suitable for large area and low-temperature plasma-based sterilization is designed. Results demonstrate that the He/O{sub 2} plasma more effectively kills Enterococcus faecalis than the pure He plasma. In addition, the sterilization efficiency values of the He/O{sub 2} plasma depend on the oxygen fraction in Helium gas. The atmospheric cold plasma brush using a proper ratio of He/O{sub 2} (2.5%) reaches the optimum sterilization efficiency. After plasma treatment, the cell structure and morphology changes can be observed by the scanning electron microscopy. Optical emission measurements indicate that reactive species such as O and OH play a significant role in the sterilization process.

  14. Synergy effect of heat and UV photons on bacterial-spore inactivation in an N2-O2 plasma-afterglow sterilizer

    NASA Astrophysics Data System (ADS)

    Boudam, M. K.; Moisan, M.

    2010-07-01

    As a rule, medical devices (MDs) made entirely from metals and ceramics can withstand, for sterilization purposes, elevated temperatures such as those encountered in autoclaves (moist heat >=120 °C) or Poupinel (Pasteur) ovens (dry heat >=160 °C). This not the case with MDs containing polymers: 70 °C seems to be a limit beyond which their structural and functional integrity will be compromised. Nonetheless, all the so-called low-temperature sterilization techniques, relying essentially on some biocidal chemistry (e.g. ethylene oxide, H2O2, O3), are operated at temperatures close to 65 °C, essentially to enhance the chemical reactivity of the biocidal agent. Based on this fact, we have examined the influence of increasing the temperature of the polystyrene Petri dish containing B. atrophaeus bacterial spores when exposing them to UV radiation coming from an N2-O2 flowing plasma afterglow. We have observed that, for a given UV radiation intensity, the inactivation rate increases with the temperature of the Petri dish, provided heat and UV photons are applied simultaneously, a clear case of synergistic effect. More specifically, it means that (i) simply heating the spores at temperatures below 65 °C without irradiating them with UV photons does not induce mortality; (ii) there is no additional increase in the inactivation rate when the Petri has been pre-heated and then brought back to ambient temperature before the spores are UV irradiated; (iii) no additional inactivation results from post-heating spores previously inactivated with UV radiation. Undoubtedly, the synergistic effect shows up only when the physico-chemical agents (UV photons and temperature) are simultaneously in action.

  15. Observations on a formaldehyde low-temperature steam sterilizer.

    PubMed

    Kuronen, T

    1987-10-01

    In Finnish hospitals, heat labile equipment is mostly sterilized by ethylene oxide (EO) gas. Formaldehyde sterilizers are rarely used. We have tested a new commercial autoclave constructed exclusively for formaldehyde and low-temperature steam (F-LTS) sterilization, offering a potentially safer and cheaper method of sterilization. Both the sterilizing efficacy of the apparatus and the levels of formaldehyde in the processed materials were studied. PMID:10285026

  16. Gas laser with dual plasma mixing

    DOEpatents

    Pinnaduwage, Lal A. (Knoxville, TN)

    1999-01-01

    A gas laser includes an enclosure forming a first chamber, a second chamber and a lasing chamber which communicates through a first opening to the first chamber and through a second opening to the second chamber. The lasing chamber has a pair of reflectors defining a Fabry-Perot cavity. Separate inlets enable different gases to be introduced into the first and second chambers. A first cathode within the first chamber is provided to produce positive ions which travel into the lasing chamber and a second cathode of a pin-hollow type within the second chamber is provided to produce negative ions which travel into the lasing chamber. A third inlet introduces a molecular gas into the lasing chamber, where the molecular gas becomes excited by the positive and negative ions and emits light which lases in the Fabry-Perot cavity.

  17. Gas laser with dual plasma mixing

    DOEpatents

    Pinnaduwage, L.A.

    1999-04-06

    A gas laser includes an enclosure forming a first chamber, a second chamber and a lasing chamber which communicates through a first opening to the first chamber and through a second opening to the second chamber. The lasing chamber has a pair of reflectors defining a Fabry-Perot cavity. Separate inlets enable different gases to be introduced into the first and second chambers. A first cathode within the first chamber is provided to produce positive ions which travel into the lasing chamber and a second cathode of a pin-hollow type within the second chamber is provided to produce negative ions which travel into the lasing chamber. A third inlet introduces a molecular gas into the lasing chamber, where the molecular gas becomes excited by the positive and negative ions and emits light which lases in the Fabry-Perot cavity. 2 figs.

  18. Gas Effect On Plasma Dynamics Of Laser Ablation Zinc Oxide

    NASA Astrophysics Data System (ADS)

    Abdelli-Messaci, S.; Kerdja, T.; Lafane, S.; Malek, S.

    2008-09-01

    In order to synthesis zinc oxide thin films and nanostructures, laser ablation of ZnO target into both vacuum and oxygen atmosphere was performed. The gas effect on the plume dynamics was studied for O2 pressures varied between 10-2 to 70 mbar. Plasma plume evolution was investigated by ICCD camera fast imaging. The plasma was created by a KrF excimer laser (? = 248 nm, ? = 25 ns) at a fluence of 2 J/cm2. The light emitted by the plume was observed along the perpendicular to the ejection direction through a fast intensified charge-coupled device (ICCD). We have found that the plasma dynamics is very affected by the gas pressures. The photographs reveal the stratification of plasma into slow and fast components for 0.5 mbar O2 pressures and beyond. The photographs also show the apparition of hydrodynamic instabilities which are related to chemical reactions between the plasma and the surrounding gas for a certain range of pressures.

  19. Gas phase plasma impact on phenolic compounds in pomegranate juice.

    PubMed

    Herceg, Zoran; Kova?evi?, Danijela Bursa?; Kljusuri?, Jasenka Gajdoš; Jambrak, Anet Režek; Zori?, Zoran; Dragovi?-Uzelac, Verica

    2016-01-01

    The aim of the study was to evaluate the effect of gas phase plasma on phenolic compounds in pomegranate juice. The potential of near infrared reflectance spectroscopy combined with partial least squares for monitoring the stability of phenolic compounds during plasma treatment was explored, too. Experiments are designed to investigate the effect of plasma operating conditions (treatment time 3, 5, 7 min; sample volume 3, 4, 5 cm(3); gas flow 0.75, 1, 1.25 dm(3) min(-1)) on phenolic compounds and compared to pasteurized and untreated pomegranate juice. Pasteurization and plasma treatment resulted in total phenolic content increasing by 29.55% and 33.03%, respectively. Principal component analysis and sensitivity analysis outputted the optimal treatment design with plasma that could match the pasteurized sample concerning the phenolic stability (5 min/4 cm(3)/0.75 dm(3) min(-1)). Obtained results demonstrate the potential of near infrared reflectance spectroscopy that can be successfully used to evaluate the quality of pomegranate juice upon plasma treatment considering the phenolic compounds. PMID:26213024

  20. Mathematical model of gas plasma applied to chronic wounds

    SciTech Connect

    Wang, J. G.; Liu, X. Y.; Liu, D. W.; Lu, X. P.; Zhang, Y. T.

    2013-11-15

    Chronic wounds are a major burden for worldwide health care systems, and patients suffer pain and discomfort from this type of wound. Recently gas plasmas have been shown to safely speed chronic wounds healing. In this paper, we develop a deterministic mathematical model formulated by eight-species reaction-diffusion equations, and use it to analyze the plasma treatment process. The model follows spatial and temporal concentration within the wound of oxygen, chemoattractants, capillary sprouts, blood vessels, fibroblasts, extracellular matrix material, nitric oxide (NO), and inflammatory cell. Two effects of plasma, increasing NO concentration and reducing bacteria load, are considered in this model. The plasma treatment decreases the complete healing time from 25 days (normal wound healing) to 17 days, and the contributions of increasing NO concentration and reducing bacteria load are about 1/4 and 3/4, respectively. Increasing plasma treatment frequency from twice to three times per day accelerates healing process. Finally, the response of chronic wounds of different etiologies to treatment with gas plasmas is analyzed.

  1. Cryoradiation sterilization—Contemporary state and outlook

    NASA Astrophysics Data System (ADS)

    Talrose, V. L.; Trofimov, V. I.

    1995-02-01

    The new approach of radiation sterilization — cryoradiosterilization with programmed freezing — was developed for pharmaceutical solutions. Both scientific and technical problems are solved, the results are discussed. Programmed freezing of vials with the drug's solutions provides the high stability of soluted components with biological activity at sterilizing irradiation without significant change of sterilization doses. Physical, chemical, biological and pharmacological properties of a lot of drug solutions for injection satisfy official requirements after cryoradiation sterilization treatment. This method seems to be especially important for the protein systems which could be infected by dangerous viruses (VIH, hepatitis B): blood plasma, diagnostic sera, protein preparations manufactured from donor's blood, etc.

  2. Plasma Reforming And Partial Oxidation Of Hydrocarbon Fuel Vapor To Produce Synthesis Gas And/Or Hydrogen Gas

    DOEpatents

    Kong, Peter C. (Idaho Falls, ID); Detering, Brent A. (Idaho Falls, ID)

    2004-10-19

    Methods and systems are disclosed for treating vapors from fuels such as gasoline or diesel fuel in an internal combustion engine, to form hydrogen gas or synthesis gas, which can then be burned in the engine to produce more power. Fuel vapor, or a mixture of fuel vapor and exhaust gas and/or air, is contacted with a plasma, to promote reforming reactions between the fuel vapor and exhaust gas to produce carbon monoxide and hydrogen gas, partial oxidation reactions between the fuel vapor and air to produce carbon monoxide and hydrogen gas, or direct hydrogen and carbon particle production from the fuel vapor. The plasma can be a thermal plasma or a non-thermal plasma. The plasma can be produced in a plasma generating device which can be preheated by contact with at least a portion of the hot exhaust gas stream, thereby decreasing the power requirements of the plasma generating device.

  3. Plasma reforming and partial oxidation of hydrocarbon fuel vapor to produce synthesis gas and/or hydrogen gas

    DOEpatents

    Kong, Peter C.; Detering, Brent A.

    2003-08-19

    Methods and systems for treating vapors from fuels such as gasoline or diesel fuel in an internal combustion engine, to form hydrogen gas or synthesis gas, which can then be burned in the engine to produce more power. Fuel vapor, or a mixture of fuel vapor and exhaust gas and/or air, is contacted with a plasma, to promote reforming reactions between the fuel vapor and exhaust gas to produce carbon monoxide and hydrogen gas, partial oxidation reactions between the fuel vapor and air to produce carbon monoxide and hydrogen gas, or direct hydrogen and carbon particle production from the fuel vapor. The plasma can be a thermal plasma or a non-thermal plasma. The plasma can be produced in a plasma generating device which can be preheated by contact with at least a portion of the hot exhaust gas stream, thereby decreasing the power requirements of the plasma generating device.

  4. Modeling and Data Needs of Atmospheric Pressure Gas Plasma and Biomaterial Interaction

    SciTech Connect

    Sakiyama, Yukinori; Graves, David B.

    2009-05-02

    Non-thermal atmospheric pressure plasmas have received considerable attention recently. One promising application of non-thermal plasma devices appears to be biomaterial and biomedical treatment. Various biological and medical effects of non-thermal plasmas have been observed by a variety of investigators, including bacteria sterilization, cell apoptosis, and blood coagulation, among others. The mechanisms of the plasma-biomaterial interaction are however only poorly understood. A central scientific challenge is therefore how to answer the question: 'What plasma-generated agents are responsible for the observed biological effects?' Our modeling efforts are motivated by this question. In this paper, we review our modeling results of the plasma needle discharge. Then, we address data needs for further modeling and understanding of plasma-biomaterial interaction.

  5. Smart coating technology by gas tunnel type plasma spraying

    NASA Astrophysics Data System (ADS)

    Kobayashi, Akira

    2008-10-01

    Nano-science & technology is one of the most important scientific fields, and the material processing using the nano-technology is now advanced towards more precise and controllable smart stage. Regarding thermal processing, plasma system with high precise, has been expected for smart thermal processing. The gas tunnel type plasma system developed by the author exhibits high energy density and also high efficiency. Among the applications to the various thermal processing, one practical application is plasma spraying of ceramics such as A12O3 and ZrO2. The characteristics of these ceramic coatings were superior to the conventional ones. The ZrO2 composite coating has the possibility of the development of high functionally graded TBC (thermal barrier coating). In this study, the performance such as the mechanical properties, thermal behavior and high temperature oxidation resistance of the alumina/zirconia functionally graded TBCs produced by gas tunnel type plasma spraying was investigated and discussed. The results showed that the alumina/zirconia composite system exhibited the improvement of mechanical properties and oxidation resistance. Now, one of the advanced plasma application, a smart coating technology, is expected to obtain the desired characteristics of ceramics with improved corrosion resistance, thermal resistance, and wear resistance.

  6. Dynamic gas flow during plasma operation in TMX-U

    SciTech Connect

    Pickles, W.L.; Calderon, M.O.; Carter, M.R.; Clower, C.A.; Drake, R.P.; Hunt, A.L.; Lang, D.; Simonen, T.C.; Turner, W.C.

    1983-04-01

    Control of the neutral density outside of the plasma radius is essential for proper operation of the various plasma configurations in Lawrence Livermore National Laboratory's (LLNL) Tandem Mirror Experiment-Upgrade (TMX-U). TMX-U excess-beam, stream-gun, gas-box, and beam-reflux gases are pumped internally in regions defined by 73/sup 0/ Ti-gettered liners and warm Ti-gettered plasma liners. The array of fast and slow ion gauges: a large TMX-U diagnostic: has been used to measure the dynamic pressure in many of the liner-defined regions on three time scales. The natural divertor action, or plasma pump effect, of mirror plasmas has been measured using the ion gauge diagnostics on a fast time scale during operation of TMX-U with ECRH start up. Routine operation of TMX-U is enhanced by the ability to verify the effectiveness of gettering and to locate leaks using pressure data collected on the two slow time scales. A computer code, dynaVac 6, which treats TMX-U as a set of conductance-coupled regions with pumping and sources in each region, has been used to successfully model the overall gas dynamics during all phases of TMX-U operation.

  7. Dynamic gas flow during plasma operation in TMX-U

    SciTech Connect

    Pickles, W.L.; Carter, M.R.; Clower, C.A.; Drake, R.P.; Hunt, A.L.; Simonen, T.C.; Turner, W.C.

    1982-11-12

    Control of the neutral density outside of the plasma radius is essential for proper operation of the various plasma configurations in TMX-U. TMX-U excess-beam, stream-gun, gas-box, and beam-reflux gases are pumped internally in regions defined by 73/sup 0/ Ti-gettered liners and warm Ti-gettered plasma liners. The array of fast and slow ion gauges - a large TMX-U diagnostic - has been used to measure the dynamic pressure in many of the liner-defined regions on three time scales. The natural divertor action, or plasma pump effect, of mirror plasmas has been measured using the ion gauge diagnostics on a fast time scale during operation of TMX-U with ECRH start-up. Routine operation of TMX-U is enhanced by the ability to verify the effectiveness of gettering and to locate leaks using pressure data collected on the two slow time scales. A computer code, DYNAVAC 6, which treats TMX-U as a set of conductance-coupled regions with pumping and sources in each region, has been used to successfully model the overall gas dynamics during all phases of TMX-U operation.

  8. Plasma formation using a capillary discharge in water and its application to the sterilization of E. coli

    SciTech Connect

    Hong, Yong Cheol; Park, Hyun Jae; Lee, Bong Ju; Kang, Won-Seok; Uhm, Han Sup

    2010-05-15

    An underwater electrical discharge in a narrow dielectric capillary provides the details of the evolution of microbubbles to plasma as formed by a tungsten electrode inserted in the capillary. An increase in the applied voltage forms microbubbles after water fills the capillary. A further increase in the voltage generates a surface discharge through the boundary of the bubble, elongating the bubble shape, and eventually forming plasma by electrical breakdown. This produces atomic oxygen, atomic hydrogen, and hydroxyl radicals from dissociation of water vapor. Also, a bactericidal test in normal saline solution showed that more than 99.6% of the bacterial cells were killed within 8 s, resulting from chlorine-containing species, in particular hypochlorous acid as a major bactericidal agent.

  9. Plasma formation using a capillary discharge in water and its application to the sterilization of E. coli

    NASA Astrophysics Data System (ADS)

    Hong, Yong Cheol; Park, Hyun Jae; Lee, Bong Ju; Kang, Won-Seok; Uhm, Han Sup

    2010-05-01

    An underwater electrical discharge in a narrow dielectric capillary provides the details of the evolution of microbubbles to plasma as formed by a tungsten electrode inserted in the capillary. An increase in the applied voltage forms microbubbles after water fills the capillary. A further increase in the voltage generates a surface discharge through the boundary of the bubble, elongating the bubble shape, and eventually forming plasma by electrical breakdown. This produces atomic oxygen, atomic hydrogen, and hydroxyl radicals from dissociation of water vapor. Also, a bactericidal test in normal saline solution showed that more than 99.6% of the bacterial cells were killed within 8 s, resulting from chlorine-containing species, in particular hypochlorous acid as a major bactericidal agent.

  10. Sterile neutrinos and structure formation

    E-print Network

    Stasielak, Jaroslaw; Kusenko, Alexander

    2007-01-01

    Warm dark matter is consistent with the observations of the large-scale structure, and it can also explain the cored density profiles on smaller scales. However, it has been argued that warm dark matter could delay the star formation. This does not happen if warm dark matter is made up of keV sterile neutrinos, which can decay into X-ray photons and active neutrinos. The X-ray photons have a catalytic effect on the formation of molecular hydrogen, the essential cooling ingredient in the primordial gas. In all the cases we have examined, the overall effect of sterile dark matter is to facilitate the cooling of the gas and to reduce the minimal mass of the halo prone to collapse. We find that the X-rays from the decay of keV sterile neutrinos facilitate the collapse of the gas clouds and the subsequent star formation at high redshift.

  11. Sterile neutrinos and structure formation

    E-print Network

    Jaroslaw Stasielak; Peter L. Biermann; Alexander Kusenko

    2007-10-29

    Warm dark matter is consistent with the observations of the large-scale structure, and it can also explain the cored density profiles on smaller scales. However, it has been argued that warm dark matter could delay the star formation. This does not happen if warm dark matter is made up of keV sterile neutrinos, which can decay into X-ray photons and active neutrinos. The X-ray photons have a catalytic effect on the formation of molecular hydrogen, the essential cooling ingredient in the primordial gas. In all the cases we have examined, the overall effect of sterile dark matter is to facilitate the cooling of the gas and to reduce the minimal mass of the halo prone to collapse. We find that the X-rays from the decay of keV sterile neutrinos facilitate the collapse of the gas clouds and the subsequent star formation at high redshift.

  12. Sterile Neutrinos and Structure Formation

    NASA Astrophysics Data System (ADS)

    Stasielak, J.; Biermann, P. L.; Kusenko, A.

    2007-12-01

    Warm dark matter is consistent with the observations of the large-scale structure, and it can also explain the cored density profiles on smaller scales. However, it has been argued that warm dark matter could delay the star formation. This does not happen if warm dark matter is made up of keV sterile neutrinos, which can decay into X-ray photons and active neutrinos. The X-ray photons have a catalytic effect on the formation of molecular hydrogen, the essential cooling ingredient in the primordial gas. In all the cases we have examined, the overall effect of sterile dark matter is to facilitate the cooling of the gas and to reduce the minimal mass of the halo prone to collapse. We find that the X-rays from the decay of keV sterile neutrinos facilitate the collapse of the gas clouds and the subsequent star formation at high redshift.

  13. Plasma detachment in a simulated gas target divertor

    NASA Astrophysics Data System (ADS)

    Blush, Lisa Marie

    2001-07-01

    The PISCES-A linear, reflex-arc plasma facility (n ? 2E12 cm-3, Te ? 20 eV) is used to study the plasma edge of a fusion device. In our gas target divertor simulation experiments, we have demonstrated the ability to quench plasmas in the new open divertor simulation configuration, characterized by a greater than two orders of magnitude reduction in total ion saturation flux to the target plate. We have implemented a combination axial Langmuir probe/calorimeter, yielding profiles of ion saturation current, Isat, plasma density, n, electron temperature, Te , and transmitted heat flux, Q. These measurements along with neutral pressure and spectroscopic measurements have been used to extensively characterize plasma conditions from attached to fully detached. We observe that an increase in target pressure results in an axial decrease in Isat of an order of magnitude, reflected mainly by an axial decrease in plasma density. Increasing the target neutral pressure from 1.3 mTorr to ˜25 mTorr (psource = 3.5 mTorr) results in a decrease in n, Te, and Q to the target. Additionally, the n and Q decrease along the magnetic axis toward the target by over an order of magnitude in the target chamber region, to values of 2E11 cm-3 and 5E-3 W cm-2, respectively, near the target. Additionally, we observe an exponential decay in Isat (and n) towards the target. We have demonstrated reasonable agreement between the probe and spectroscopic measurements of electron temperature. Applying the spectroscopic method, we have established unambiguously the electron temperature and axial Te profile. These measurements show that T e never falls below 3 eV, even at high neutral pressures. Measurements also show a small axial gradients in Te (˜1.5 eV along 31 cm towards the target). The plasma density exhibits a broad radial profile at low neutral pressure, indicating anomolously high radial diffusion (˜5--10 times Bohm). We have shown classical recombination to be a negligible process within the PISCES-A plasma column. We simulate divertor plasmas in a steady-state, well diagnosed environment. The results of our studies can be utilized to benchmark predictive modeling codes applicable to fusion devices and has helped elucidate the physical processes governing plasma detachment in the gas target divertor regime that may effective in the operation of fusion devices. This work supported by US-DoE contract DE-FG03-95ER-54301.

  14. Ultra-Intense Laser Pulse Propagation in Gas and Plasma

    SciTech Connect

    Antonsen, T. M.

    2004-10-26

    It is proposed here to continue their program in the development of theories and models capable of describing the varied phenomena expected to influence the propagation of ultra-intense, ultra-short laser pulses with particular emphasis on guided propagation. This program builds upon expertise already developed over the years through collaborations with the NSF funded experimental effort lead by Professor Howard Milchberg here at Maryland, and in addition the research group at the Ecole Polytechnique in France. As in the past, close coupling between theory and experiment will continue. The main effort of the proposed research will center on the development of computational models and analytic theories of intense laser pulse propagation and guiding structures. In particular, they will use their simulation code WAKE to study propagation in plasma channels, in dielectric capillaries and in gases where self focusing is important. At present this code simulates the two-dimensional propagation (radial coordinate, axial coordinate and time) of short pulses in gas/plasma media. The plasma is treated either as an ensemble of particles which respond to the ponderomotive force of the laser and the self consistent electric and magnetic fields created in the wake of pulse or as a fluid. the plasma particle motion is treated kinetically and relativistically allowing for study of intense pulses that result in complete cavitation of the plasma. The gas is treated as a nonlinear medium with rate equations describing the various stages of ionization. A number of important physics issues will be addressed during the program. These include (1) studies of propagation in plasma channels, (2) investigation of plasma channel nonuniformities caused by parametric excitation of channel modes, (3) propagation in dielectric capillaries including harmonic generation and ionization scattering, (4) self guided propagation in gas, (5) studies of the ionization scattering instability recently identified theoretically and experimentally in the group, and (6) studies of propagation in cluster plasmas. New models will be developed for the harmonic generation of radiation and these will be incorporated in the modeling and simulation.

  15. Design and Preliminary Performance Testing of Electronegative Gas Plasma Thruster

    NASA Technical Reports Server (NTRS)

    Liu, Thomas M.; Schloeder, Natalie R.; Walker, Mitchell L. R.; Polzin, Kurt A.; Dankanich, John W.; Aanesland, Ane

    2014-01-01

    In classical gridded electrostatic ion thrusters, positively charged ions are generated from a plasma discharge of noble gas propellant and accelerated to provide thrust. To maintain overall charge balance on the propulsion system, a separate electron source is required to neutralize the ion beam as it exits the thruster. However, if high-electronegativity propellant gases (e.g., sulfur hexafluoride) are instead used, a plasma discharge can result consisting of both positively and negatively charged ions. Extracting such electronegative plasma species for thrust generation (e.g., with time-varying, bipolar ion optics) would eliminate the need for a separate neutralizer cathode subsystem. In addition for thrusters utilizing a RF plasma discharge, further simplification of the ion thruster power system may be possible by also using the RF power supply to bias the ion optics. Recently, the PEGASES (Plasma propulsion with Electronegative gases) thruster prototype successfully demonstrated proof-of-concept operations in alternatively accelerating positively and negatively charged ions from a RF discharge of a mixture of argon and sulfur hexafluoride.i In collaboration with NASA Marshall Space Flight Center (MSFC), the Georgia Institute of Technology High-Power Electric Propulsion Laboratory (HPEPL) is applying the lessons learned from PEGASES design and testing to develop a new thruster prototype. This prototype will incorporate design improvements and undergo gridless operational testing and diagnostics checkout at HPEPL in April 2014. Performance mapping with ion optics will be conducted at NASA MSFC starting in May 2014. The proposed paper discusses the design and preliminary performance testing of this electronegative gas plasma thruster prototype.

  16. Plasma quench technology for natural gas conversion applications

    SciTech Connect

    Detering, B.A.; Kong, P.C.; Thomas, C.P.

    1995-07-01

    This paper describes the experimental demonstration of a process for direct conversion of methane to acetylene in a thermal plasma. The process utilizes a thermal plasma to dissociate methane and form an equilibrium mixture of acetylene followed by a supersonic expansion of the hot gas to preserve the produced acetylene in high yield. The high translational velocities and rapid cooling result in an overpopulation of atomic hydrogen which persists throughout the expansion process. The presence of atomic hydrogen shifts the equilibrium composition by inhibiting complete pyrolysis of methane and acetylene to solid carbon. This process has the potential to reduce the cost of producing acetylene from natural gas. Acetylene and hydrogen produced by this process could be used directly as industrial gases, building blocks for synthesis of industrial chemicals, or oligomerized to long chain liquid hydrocarbons for use as fuels. This process produces hydrogen and ultrafine carbon black in addition to acetylene.

  17. Gas Electron Multiplier produced with the plasma etching method

    E-print Network

    Inuzuka, M; Ozawa, K; Tamagawa, T; Isobe, T

    2004-01-01

    We have produced Gas Electron Multiplier (GEM) using the plasma etching method. The new GEM has holes with a cylindrical shape and can hold up to 520V in nitrogen. Amplification factor was measured as a function of the applied voltage. A gain of 10^4 was obtained in argon-mixture gases. The gain characteristics are very similar to those of the GEMs made at CERN.

  18. [The suitability of commercial bioindicators with spores of B. stearothermophilus for the testing of formaldehyde gas sterilizers].

    PubMed

    Mecke, P; Christiansen, B; Pirk, A

    1991-09-01

    Commercially available biological indicators with spores of B. stearothermophilus were investigated by the Hygiene-Institutes of Kiel and Lubeck. The objective was to find out if those indicators to which sheep blood was added subsequently correspond to the formaldehyde resistance required by. DIN 58948, part 14 (DIN 58948, part 13). Both working groups determined unanimously that the indicators of one producer showed a resistance too low compared to the remaining biological indicators showing a much higher resistance than required. Even biological indicators manufactured strictly in accordance to the testing standard were more resistant than demanded. This also corresponded to the commercially available untreated spores. On the other hand, practice showed that the biological indicators investigated within this study can be easily killed by formaldehyde sterilizers if they respond to the technical standard. In order to realize the testing of these sterilizers with indicators of a generally accepted resistance we propose either to demand for an equivalently higher formaldehyde resistance or to set up a killing period for the spore resistance from 150 to 240 min until experimentally important data are available. Concerning the blood containing indicators the results of both working groups differed considerably within the limits of formaldehyde efficiency whereas this was not the case with untested commercially available spores. As the addition of thinned blood did not cause an increase in resistance we recommend, in the interest of standardized investigative conditions, not to use it. PMID:1953931

  19. IEEE TRANSACTIONS ON PLASMA SCIENCE, VOL. 34, NO. 3, JUNE 2006 755 Nonequilibrium EEDF in Gas Discharge Plasmas

    E-print Network

    Kaganovich, Igor

    , in such plasmas, electrons are not in a thermal equilibrium with neutral species and ions. Indeed, the electron) and inductively coupled plasma (ICP) are considered in Sections IV and V, respectively. ExamplIEEE TRANSACTIONS ON PLASMA SCIENCE, VOL. 34, NO. 3, JUNE 2006 755 Nonequilibrium EEDF in Gas

  20. Yeast Media Sterilization Guidelines

    E-print Network

    Aris, John P.

    bucket (to minimize exposure to heat). 2. Syringe filter sterilize into sterile 100 ml glass bottle. 31 Yeast Media Sterilization Guidelines: Use the following exposure times for liquids and remove temperature. Add carbon source from sterilized 20% solution. SD (Synthetic Dextrose) "Drop In" Medium: 1 L 20

  1. IEEE TRANSACTIONS ON PLASMA SCIENCE, VOL. 42, NO. 10, OCTOBER 2014 3245 Development of a Gas-Fed Plasma Source for

    E-print Network

    Tas, A. Cuneyt

    IEEE TRANSACTIONS ON PLASMA SCIENCE, VOL. 42, NO. 10, OCTOBER 2014 3245 Development of a Gas-Fed Plasma Source for Pulsed High-Density Plasma/Material Interaction Studies Michael V. Pachuilo, Francis, and Kumar Sinha Suraj Abstract--A gas-fed capillary plasma source has been devel- oped to study plasma

  2. High Power Light Gas Helicon Plasma Source For VASMIR

    NASA Technical Reports Server (NTRS)

    Squire, J. P.; Chang-Diaz, F. R.; Glover, T. W.; Jacobson, V. T.; McCaskill, G. E.; Winter, D. S.; Baity, F. W.; Carter, M. D.; Goulding, R. H.

    2004-01-01

    The VASIMR space propulsion development effort relies on a high power (greater than 10kW) helicon source to produce a dense flowing plasma (H, D and He) target for ion cyclotron resonance (ICR) acceleration of the ions. Subsequent expansion in an expanding magnetic field (magnetic nozzle) converts ion lunetic energy to directed momentum. This plasma source must have critical features to enable an effective propulsion device. First, it must ionize most of the input neutral flux of gas, thus producing a plasma stream with a high degree of ionization for application of ICR power. This avoids propellant waste and potential power losses due to charge exchange. Next, the plasma stream must flow into a region of high magnetic field (approximately 0.5 T) for efficient ICR acceleration. Third, the ratio of input power to plasma flux must be low, providing an energy per ion-electron pair approaching 100 eV. Lastly, the source must be robust and capable of very long life-times (years). In our helicon experiment (VX-10) we have measured a ratio of input gas to plasma flux near 100%. The plasma flows from the helicon region (B approximately 0.1 T) into a region with a peak magnetic field of 0.8 T. The energy input per ion-electron pair has been measured at 300 plus or minus 100 eV. Recent results at Oak Ridge National Laboratory (ORNL) show an enhanced efficiency mode of operation with a high power density, over 5 kW in a 5 cm diameter tube. Our helicon is presently 9 cm in diameter and operates up to 3.5 kW of input power. An upgrade to a power level of 10 kW is underway. Much of our recent work has been with a Boswell double-saddle antenna design. We are also converting the antenna design to a helical type. With these modifications, we anticipate an improvement in the ionization efficiency. This paper presents the results from scaling the helicon in the VX-10 device from 3.5 to 10 kW. We also compare the operation with a double-saddle to a helical antenna design. Finally, we discuss modeling of these configurations using ORNL's EMIR code.

  3. Interplay of discharge and gas flow in atmospheric pressure plasma jets Nan Jiang,1

    E-print Network

    Zexian, Cao

    Interplay of discharge and gas flow in atmospheric pressure plasma jets Nan Jiang,1 JingLong Yang,2 2011) Interplay of discharge and gas flow in the atmospheric pressure plasma jets generated with three:10.1063/1.3581067] I. INTRODUCTION The atmospheric pressure plasma jet (APPJ) that is nor- mally

  4. Establishing isokinetic flow for a plasma torch exhaust gas diagnostic for a plasma hearth furnace

    SciTech Connect

    Pollack, B.R.

    1996-05-01

    Real time monitoring of toxic metallic effluents in confined gas streams can be accomplished through use of Microwave Induced Plasmas to perform atomic emission spectroscopy, For this diagnostic to be viable it is necessary that it sample from the flowstream of interest in an isokinetic manner. A method of isokinetic sampling was established for this device for use in the exhaust system of a plasma hearth vitrification furnace. The flow and entrained particulate environment were simulated in the laboratory setting using a variable flow duct of the same dimensions (8-inch diameter, schedule 40) as that in the field and was loaded with similar particulate (less than 10 {mu}m in diameter) of lake bed soil typically used in the vitrification process. The flow from the furnace was assumed to be straight flow. To reproduce this effect a flow straightener was installed in the device. An isokinetic sampling train was designed to include the plasma torch, with microwave power input operating at 2.45 GHz, to match local freestream velocities between 800 and 2400 ft/sec. The isokinetic sampling system worked as planned and the plasma torch had no difficulty operating at the required flowrates. Simulation of the particulate suspension was also successful. Steady particle feeds were maintained over long periods of time and the plasma diagnostic responded as expected.

  5. Continuous gas discharge plasma with 200 K electron temperature

    SciTech Connect

    Dickson, Shannon; Robertson, Scott

    2010-03-15

    A very cold and collisional hot-filament discharge plasma is created in a vacuum chamber with an inner wall cooled by liquid nitrogen. The inner chamber (16.5 cm diameterx30 cm) has two negatively biased tungsten filaments for plasma generation and a Langmuir probe on axis for diagnostic measurements. With the wall at 140 K, 0.5-16 mA filament emission, and 1.6 mTorr carbon monoxide as the working gas, probe data give electron temperatures of 17-28 meV (197-325 K) with corresponding densities of 10{sup 8}-10{sup 9} cm{sup -3}. With He, Ar, H{sub 2}, and N{sub 2} at 140 K, the electron temperatures are >500 K. The lower electron temperature with CO is attributed to the asymmetric CO molecule having a larger cross section for electron excitation of rotational modes as a consequence of its dipole moment.

  6. Ion Species and Charge States of Vacuum Arc Plasma with Gas Feed and Longitudinal Magnetic Field

    E-print Network

    Oks, Efim

    2010-01-01

    close to the cathode region, where plasma is produced fromNear the cathode, the density of metal plasma is much higherplasma and its interaction with gas atoms and external fields. The results have also relevance to the cathode

  7. Supersonic gas jets for laser-plasma experiments.

    PubMed

    Schmid, K; Veisz, L

    2012-05-01

    We present an in-depth analysis of De Laval nozzles, which are ideal for gas jet generation in a wide variety of experiments. Scaling behavior of parameters especially relevant to laser-plasma experiments as jet collimation, sharpness of the jet edges and Mach number of the resulting jet is studied and several scaling laws are given. Special attention is paid to the problem of the generation of microscopic supersonic jets with diameters as small as 150 ?m. In this regime, boundary layers dominate the flow formation and have to be included in the analysis. PMID:22667614

  8. Ethylene Oxide Gaseous Sterilization

    PubMed Central

    Ernst, Robert R.; Shull, James J.

    1962-01-01

    The duration of the equilibration period between admission of water vapor and subsequent introduction of gaseous ethylene oxide to an evacuated sterilizer chamber was studied with respect to its effect on the inactivation of spores of Bacillus subtilis var. niger under simulated practical conditions. Introduction of a water-adsorbing cotton barrier between the spores and an incoming gas mixture of water vapor and ethylene oxide caused a marked increase in the observed thermochemical death time of the spore populations. This effect was negated by admission of water vapor one or more minutes prior to introduction of ethylene oxide gas. Increases in temperature and relative humidity of the system promoted passage of water vapor through the cotton barriers and diminished their effect. PMID:13890660

  9. Plasma polymerization of an ethylene-nitrogen gas mixture

    NASA Technical Reports Server (NTRS)

    Hudis, M.; Wydeven, T.

    1975-01-01

    A procedure has been developed whereby nitrogen can be incorporated into an organic film from an ethylene-nitrogen gas mixture using an internal electrode capacitively coupled radio frequency reactor. The presence of nitrogen has been shown directly by infrared transmittance spectra and electron spectroscopic chemical analysis data, and further indirect evidence was provided by dielectric measurements and by the reverse osmosis properties of the film. Preparation of a nitrogen containing film did not require vapor from an organic nitrogen containing liquid monomer. Some control over the bonding and stoichiometry of the polymer film was provided by the added degree of freedom of the nitrogen partial pressure in the gas mixture. This new parameter strongly affected the dielectric properties of the plasma polymerized film and could affect the reverse osmosis behavior.

  10. EFFECT OF LASER LIGHT ON MATTER. LASER PLASMAS: Boundary instability of an erosion laser plasma expanding into a background gas

    NASA Astrophysics Data System (ADS)

    Anisimov, V. N.; Grishina, V. G.; Derkach, O. N.; Kanevski?, M. F.; Sebrant, A. Yu

    1993-12-01

    The stability of the contact region in the system consisting of an erosion plasma and a gas has been determined experimentally under conditions such that the length of the applied laser pulse is longer than the rise time of the instability, and the expansion of the erosion plume is accompanied by breakdown of the background gas. The evolution of perturbations of the plasma front following the introduction of initial perturbations with a fixed spatial period has been studied. It is possible to model the injection of plasma bunches into a low-pressure gas by studying the dynamics of the vaporization at moderate laser-light intensities, characteristic of technological applications.

  11. Laser ablated copper plasmas in liquid and gas ambient

    SciTech Connect

    Kumar, Bhupesh; Thareja, Raj K.

    2013-05-15

    The dynamics of copper ablated plasma plumes generated using laser ablation of copper targets in both liquid (de-ionized water) and gas (air) ambients is reported. Using time and space resolved visible emission spectroscopy (450-650 nm), the plasma plumes parameters are investigated. The electron density (n{sub e}) determined using Stark broadening of the Cu I (3d{sup 10}4d{sup 1} {sup 2}D{sub 3/2}-3d{sup 10}4p{sup 1} {sup 2}P{sub 3/2} at 521.8 nm) line is estimated and compared for both plasma plumes. The electron temperature (T{sub e}) was estimated using the relative line emission intensities of the neutral copper transitions. Field emission scanning electron microscopy and energy dispersive x-ray spectral analysis of the ablated copper surface indicated abundance of spherical nanoparticles in liquid while those in air are amalgamates of irregular shapes. The nanoparticles suspended in the confining liquid form aggregates and exhibit a surface plasmon resonance at ?590 nm.

  12. Modelling penetration and plasma response of a dense neutral gas jet in a post-thermal quenched plasma

    NASA Astrophysics Data System (ADS)

    Parks, P. B.; Wu, W.

    2014-02-01

    This paper is about the dynamics of gas jet injection and propagation into the cold, current quench (CQ) discharge following the thermal quench (TQ) phase of a disruption event. Understanding the processes involved in the interpenetration between a dense, fast-moving supersonic gas jet and a magnetized plasma is fundamental to the solution of the disruption mitigation problem using massive gas injection. An analytical model was developed that provides the penetration depth of the jet in the CQ discharge. The model developed incorporates the injector, the vacuum space between injector and plasma, and the low beta CQ plasma through which the jet penetrates. The radially moving gas stagnates at some point inside the plasma by formation of a ‘bottle shock’, resulting in a certain penetration depth. Consistent with experimental findings, it is shown that high fuelling efficiency >70% and good penetration beyond the q = 2 surface is possible in such plasma discharges, but in normal (unquenched) plasma discharges penetration of dense gas jets will be quite poor. The paper also sheds light on how the external plasma responds to allow interpenetration of perfectly insulating gas jet through a strong magnetic field B2/2?0 ? ?u2. The paper also develops semi-analytical models for the response of the cold, high-current, collision-dominated plasma to the insertion of a dense neutral jet: the propagation of cooling waves out along the magnetic field lines, the heated and ionized surface layer which also expands outwards along the magnetic field lines, and the electrical breakdown of the neutral gas within the jet volume. Although good penetration in the ITER post-TQ discharge can be achieved, the plasma resistivity is only marginally enhanced. This may render repetitive gas inject ineffective, as the concept requires a sizable resistivity enhancement to initiate a current profile contraction, and resulting kink-tearing activity to suppress runaway avalanching.

  13. Sterilization for Women and Men

    MedlinePLUS

    f AQ FREQUENTLY ASKED QUESTIONS FAQ011 CONTRACEPTION Sterilization for Women and Men • What is sterilization? • How does tubal occlusion work to prevent pregnancy? • How effective is female sterilization? • Does female sterilization ...

  14. On the different regimes of gas heating in air plasmas

    NASA Astrophysics Data System (ADS)

    Pintassilgo, Carlos D.; Guerra, Vasco

    2015-10-01

    Simulations of the gas temperature in air (N2-20%O2) plasma discharges are presented for different values of the reduced electric field, E/N g, electron density n e, pressure and tube radius. This study is based on the solutions to the time-dependent gas thermal balance in a cylindrical geometry coupled to the electron, vibrational and chemical kinetics, for E/{{N}\\text{g}}=50 and 100 Td (1 Td = 10-17 V cm2), 109?????n e?????1011 cm-3, pressure in the range 1-20 Torr, and also considering different tube radius, 0.5, 1 and 1.5?cm. The competing role of different gas heating mechanisms is discussed in detail within the time range 0.01-100?ms. For times below 1?ms, gas heating occurs from O2 dissociation by electron impact through pre-dissociative excited states, e + O2?????e + \\text{O}2* ?????e + 2O(3P) and …?????e + O(3P) + O(1D), as well as through the quenching of N2 electronically excited states by O2. For longer times, simulation results show that gas heating comes from processes N(4S) + NO(X)?????N2(X, v ~ 3) + O, N2(A) + O?????NO(X) + N(2D), V-T N2-O collisions and the recombination of oxygen atoms at the wall. Depending on the given E/N g and n e values, each one of these processes can be an important gas-heating channel. The contribution of V-T N2-O exchanges to gas heating is important in the analysis of the gas temperature for different pressures and values of the tube radius. A global picture of these effects is given by the study of the fraction of the discharge power spent on gas heating, which is always ~15%. The values for the fractional power transferred to gas heating from vibrational and electronic excitation are also presented and discussed.

  15. In situ measurement of gas composition changes in radio frequency plasmas using a quartz sensor

    SciTech Connect

    Suzuki, Atsushi; Nonaka, Hidehiko

    2009-09-15

    A simple method using a quartz sensor (Q-sensor) was developed to observe gas composition changes in radio frequency (rf) plasmas. The output depends on the gases' absolute pressure, molecular weight, and viscosity. The pressure-normalized quartz sensor output depends only on the molecular weight and viscosity of the gas. Consequently, gas composition changes can be detected in the plasmas if a sensor can be used in the plasmas. Influences imparted by the plasmas on the sensor, such as those by reactive particles (e.g., radicals and ions), excited species, electrons, temperature, and electric potentials during measurements were investigated to test the applicability of this quartz sensor measurement to plasma. The Q-sensor measurement results for rf plasmas with argon, hydrogen, and their mixtures are reproducible, demonstrating that the Q-sensor measurement is applicable for plasmas. In this work, pressure- and temperature-normalized Q-sensor output (NQO) were used to obtain the gas composition information of plasma. Temperature-normalization of the Q-sensor output enabled quartz sensor measurements near plasma electrodes, where the quartz sensor temperature increases. The changes in NQO agreed with results obtained by gas analysis using a quadrupole mass spectrometer. Results confirmed that the change in NQO is mainly attributable to changes in the densities and kinds of gas molecules in the plasma gas phase, not by other extrinsic influences of plasma. For argon, hydrogen, and argon-hydrogen plasmas, these changes correspond to reduction in nitrogen, production of carbon monoxide, and dissociation of hydrogen molecules, respectively. These changes in NQO qualitatively and somewhat quantitatively agreed with results obtained using gas analysis, indicting that the measurement has a potential application to obtain the gas composition in plasmas without disturbing industrial plasma processes.

  16. Sterilizing the Poor

    ERIC Educational Resources Information Center

    Rothman, Sheila M.

    1977-01-01

    Suggests that freedom for the middle classes may mean vulnerability for the poor. The enthusiasm for sterilization may be so intense as to deprive the poor of their right not to be sterilized. (Author/AM)

  17. Sterile Delivery of Pigs 

    E-print Network

    Unknown

    2011-08-17

    (sterilization) and trap and translocation (deer removal) efforts in managing white-tailed deer on JSC. In general, single treatments of removals or sterilization (less than 75 percent of female deer treated) were not effective in reducing population growth (R...

  18. The economics of sterilization.

    PubMed

    Brinston, R M

    1995-06-01

    In this approach to selecting the most appropriate sterilization method, comparisons are made of the initial and ongoing costs for sterilization by ethylene oxide, gamma radiation, and electron radiation. Considerations that have an impact on cost include the monetary value of the time that elapses between sending a product for processing and its release for sale, anticipated growth in the level of product to be sterilized, labour, electricity and utilities, and the price of the sterilant. PMID:10155389

  19. Viking heat sterilization - Progress and problems

    NASA Technical Reports Server (NTRS)

    Daspit, L. P.; Cortright, E. M.; Stern, J. A.

    1974-01-01

    The Viking Mars landers to be launched in 1975 will carry experiments in biology, planetology, and atmospheric physics. A terminal dry-heat sterilization process using an inert gas was chosen to meet planetary quarantine requirements and preclude contamination of the biology experiment by terrestrial organisms. Deep sterilization is performed at the component level and terminal surface sterilization at the system level. Solutions to certain component problems relating to sterilization are discussed, involving the gyroscope, tape recorder, battery, electronic circuitry, and outgassing. Heat treatment placed special requirements on electronic packaging, including fastener preload monitoring and solder joints. Chemical and physical testing of nonmetallic materials was performed to establish data on their behavior in heat-treatment and vacuum environments. A Thermal Effects Test Model and a Proof Test Capsule were used. It is concluded that a space vehicle can be designed and fabricated to withstand heat sterilization requirements.

  20. Sterilization: a comparative review.

    PubMed

    Keeping, J D; Chang, A; Morrison, J

    1979-11-01

    Publications relating to surgical procedures for sterilization have been reviewed, and the incidences of complications and subsequent pregnancies compared. Laparoscopic sterilization has the lowest incidence of complication, the morbidity rate being lower than that of laparotomy sterilization or hysterectomy, and the mortality rate lower than that of a single pregnancy or taking oral contraceptives for 1 year. PMID:161703

  1. Sterile neutrino states

    E-print Network

    Alexander Kusenko

    2006-09-17

    Neutrino masses are likely to be a manifestation of the right-handed, or sterile neutrinos. The number of sterile neutrinos and the scales of their Majorana masses are unknown. We explore theoretical arguments in favor of the high and low scale seesaw mechanisms, review the existing experimental results, and discuss the astrophysical hints regarding sterile neutrinos.

  2. Positron transport and thermalization - the plasma-gas interface

    NASA Astrophysics Data System (ADS)

    Marler, Joan

    2008-11-01

    Low energy positrons are now used in many fields including atomic physics, material science and medicine [1]. Plasma physics is providing new tools for this research, including Penning-Malmberg buffer-gas traps to accumulate positrons and the use of rotating electric fields (the ``rotating wall'' technique) to compress positrons radially and create tailored beams [1]. These devices (now available commercially), which rely in key instances on positron-neutral interactions, are a convenient way to create plasmas and beams for a variety of applications. A deeper understanding of the relevant cooling and loss mechanisms is required to take full advantage of this technology. This talk focuses on a recent study of positrons in such a tenuous gaseous environment in the presence of an applied electric field [2]. Energy-resolved collision cross sections and a Monte Carlo code modified to include positrionium (Ps) formation are used to obtain transport coefficients and the thermalization and Ps-formation rates. A markedly different type of negative differential conductivity is observed (i.e., not seen in electron systems), due to the non-conservative nature of the Ps-formation process. It is particularly prominent in gases with large, highly energy dependent Ps-formation cross sections. The relevance of these calculations to other positron applications will also be discussed, including a currently planned study of positrons in gaseous water. It is hoped that these calculations will inspire a new generation of positron transport experiments.*Work done in collaboration with Z.Lj. Petrovi'c, A. Bankovi'c, M. Suvakov, G. Malovi'c, S. Dujko, S.J. Buckman. 1. C. M. Surko and R. G. Greaves, Phys. Plasmas 11, 2333-2348 (2004).2. A. Bankovi'c, J. P. Marler, M. Suvakov, G. Malovi'c, and Z. Lj. Petrovi'c, Nucl. Instrum. and Meth. in Phys. Res. B 266, 462-465 (2008).

  3. Disinfection of Staphylococcus Aureus by pulsed non-thermal atmospheric plasma jet

    NASA Astrophysics Data System (ADS)

    Mirpour, Shahriar; Ghoranneviss, Mahmood; Shahgoli, Farhad

    2011-10-01

    The aim of this paper was to study the effect of low-temperature atmospheric plasma jet on non-pathogenic bacteria's colonies. In this regard, Germicidal effect of time and distance of ICP He and He/N2 plasma jet on Staphylococcus Aureus were reported. The gas discharges were generated by a 40 KHz high voltage power supply which led to the inductively coupled plasma. The results showed that He/N2 enhance the sterilization time in comparison of He plasma. To the best of our knowledge this is the first study which has compared the effect of sterilization of ICP Helium and Helium-Nitrogen plasma in listed conditions. Also, the distance dependence showed that the germicidal effect was not linear the distance of electrode and sample. The protein leakage test and SEM of bacteria morphology confirmed the sterilization effect of non-thermal atmospheric pressure plasma jet.

  4. Tunable Circularly-Polarized Terahertz Radiation from Magnetized Gas Plasma

    E-print Network

    Wang, W -M; Sheng, Z -M; Li, Y -T

    2015-01-01

    It is shown by simulation and theory that circularly or elliptically polarized terahertz radiation can be generated when a static magnetic (B) field is imposed on a gas target along the propagation direction of a two-color laser driver. The radiation frequency is determined by $\\sqrt{\\omega_p^2+{\\omega_c^2}/{4}} + {\\omega_c}/{2}$, where $\\omega_p$ is the plasma frequency and $\\omega_c$ is the electron cyclotron frequency. With the increase of the B field, the radiation changes from a single-cycle broadband waveform to a continuous narrow-band emission. In high B field cases, the radiation strength is proportional to $\\omega_p^2/\\omega_c$. The B field provides a tunability in the radiation frequency, spectrum width, and field strength.

  5. High Power Light Gas Helicon Plasma Source for VASIMR

    NASA Technical Reports Server (NTRS)

    Squire, Jared P.; Chang-Diaz, Franklin R.; Glover, Timothy W.; Jacobson, Verlin T.; Baity, F. Wally; Carter, Mark D.; Goulding, Richard H.

    2004-01-01

    In the Advanced Space Propulsion Laboratory (ASPL) helicon experiment (VX-10) we have measured a plasma flux to input gas rate ratio near 100% for both helium and deuterium at power levels up to 10 kW. Recent results at Oak Ridge National Laboratory (ORNL) show enhanced efficiency operation with a high power density, over 5 kW in a 5 cm diameter tube. Our helicon is presently 9 cm in diameter and operates up to 10 kW of input power. The data here uses a Boswell double-saddle antenna design with a magnetic cusp just upstream of the antenna. Similar to ORNL, for deuterium at near 10 kW, we find an enhanced performance of operation at magnetic fields above the lower hybrid matching condition.

  6. Tunable Circularly Polarized Terahertz Radiation from Magnetized Gas Plasma.

    PubMed

    Wang, W-M; Gibbon, P; Sheng, Z-M; Li, Y-T

    2015-06-26

    It is shown, by simulation and theory, that circularly or elliptically polarized terahertz radiation can be generated when a static magnetic (B) field is imposed on a gas target along the propagation direction of a two-color laser driver. The radiation frequency is determined by ?[?(p)(2)+?(c)(2)/4]+?(c)/2, where ?(p) is the plasma frequency and ?(c) is the electron cyclotron frequency. With the increase of the B field, the radiation changes from a single-cycle broadband waveform to a continuous narrow-band emission. In high-B-field cases, the radiation strength is proportional to ?(p)(2)/?(c). The B field provides a tunability in the radiation frequency, spectrum width, and field strength. PMID:26197126

  7. Experimental Beam Studies of Plasma-generated Species Interaction with Polymeric Materials and Biomolecules

    E-print Network

    Chung, Ting-Ying

    2012-01-01

    including sterilization, therapeutic effects for woundof plasma effects on biomolecules for better sterilization/Effects on Lipid A Abstract Low-pressure plasmas are promising techniques for surface sterilization

  8. Influence of reactive oxygen species on the sterilization of microbes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The influence of reactive oxygen species on living cells, including various microbes, is discussed. A sterilization experiment with bacterial endospores reveals that an argoneoxygen plasma jet very effectively kills endospores of Bacillus atrophaeus (ATCC 9372), thereby indicating that oxygen radic...

  9. Cold flame on Biofilm - Transport of Plasma Chemistry from Gas to Liquid Phase

    NASA Astrophysics Data System (ADS)

    Kong, Michael

    2014-10-01

    One of the most active and fastest growing fields in low-temperature plasma science today is biological effects of gas plasmas and their translation in many challenges of societal importance such as healthcare, environment, agriculture, and nanoscale fabrication and synthesis. Using medicine as an example, there are already three FDA-approved plasma-based surgical procedures for tissue ablation and blood coagulation and at least five phase-II clinical trials on plasma-assisted wound healing therapies. A key driver for realizing the immense application potential of near room-temperature ambient pressure gas plasmas, commonly known as cold atmospheric plasmas or CAP, is to build a sizeable interdisciplinary knowledge base with which to unravel, optimize, and indeed design how reactive plasma species interact with cells and their key components such as protein and DNA. Whilst a logical objective, it is a formidable challenge not least since existing knowledge of gas discharges is largely in the gas-phase and therefore not directly applicable to cell-containing matters that are covered by or embedded in liquid (e.g. biofluid). Here, we study plasma inactivation of biofilms, a jelly-like structure that bacteria use to protect themselves and a major source of antimicrobial resistance. As 60--90% of biofilm is made of water, we develop a holistic model incorporating physics and chemistry in the upstream CAP-generating region, a plasma-exit region as a buffer for as-phase transport, and a downstream liquid region bordering the gas buffer region. A special model is developed to account for rapid chemical reactions accompanied the transport of gas-phase plasma species through the gas-liquid interface and for liquid-phase chemical reactions. Numerical simulation is used to illustrate how key reactive oxygen species (ROS) are transported into the liquid, and this is supported with experimental data of both biofilm inactivation using plasmas and electron spin spectroscopy (ESR) measurement of liquid-phase ROS.

  10. Uranium plasma emission at gas-core reaction conditions

    NASA Technical Reports Server (NTRS)

    Williams, M. D.; Jalufka, N. W.; Hohl, F.; Lee, J. H.

    1976-01-01

    The results of uranium plasma emission produced by two methods are reported. For the first method a ruby laser was focused on the surface of a pure U-238 sample to create a plasma plume with a peak plasma density of about 10 to the 20th power/cu cm and a temperature of about 38,600 K. The absolute intensity of the emitted radiation, covering the range from 300 to 7000 A was measured. For the second method, the uranium plasma was produced in a 20 kilovolt, 25 kilojoule plasma-focus device. The 2.5 MeV neutrons from the D-D reaction in the plasma focus are moderated by polyethylene and induce fissions in the U-235. Spectra of both uranium plasmas were obtained over the range from 30 to 9000 A. Because of the low fission yield the energy input due to fissions is very small compared to the total energy in the plasma.

  11. Gas Kinetic Study of Magnetic Field Effects on Plasma Plumes 

    E-print Network

    Ebersohn, Frans 1987-

    2012-12-07

    Plasma flow physics in magnetic nozzles must be clearly understood for optimal design of plasma propulsion devices. Toward that end, in this thesis we: i) perform an extensive literature survey of magnetic nozzle physics, ii) assess the validity...

  12. Influence of surrounding gas, composition and pressure on plasma plume dynamics of nanosecond pulsed laser-induced aluminum plasmas

    NASA Astrophysics Data System (ADS)

    Dawood, Mahmoud S.; Hamdan, Ahmad; Margot, Joëlle

    2015-10-01

    In this article, we present a comprehensive study of the plume dynamics of plasmas generated by laser ablation of an aluminum target. The effect of both ambient gas composition (helium, nitrogen or argon) and pressure (from ˜5 × 10-7 Torr up to atmosphere) is studied. The time- and space- resolved observation of the plasma plume are performed from spectrally integrated images using an intensified Charge Coupled Device (iCCD) camera. The iCCD images show that the ambient gas does not significantly influence the plume as long as the gas pressure is lower than 20 Torr and the time delay below 300 ns. However, for pressures higher than 20 Torr, the effect of the ambient gas becomes important, the shortest plasma plume length being observed when the gas mass species is highest. On the other hand, space- and time- resolved emission spectroscopy of aluminum ions at ? = 281.6 nm are used to determine the Time-Of-Flight (TOF) profiles. The effect of the ambient gas on the TOF profiles and therefore on the propagation velocity of Al ions is discussed. A correlation between the plasma plume expansion velocity deduced from the iCCD images and that estimated from the TOF profiles is presented. The observed differences are attributed mainly to the different physical mechanisms governing the two diagnostic techniques.

  13. Influence of the gas-flow Reynolds number on a plasma column in a glass tube

    SciTech Connect

    Jin, Dong Jun; Uhm, Han S.; Cho, Guangsup

    2013-08-15

    Atmospheric-plasma generation inside a glass tube is influenced by gas stream behavior as described by the Reynolds number (Rn). In experiments with He, Ne, and Ar, the plasma column length increases with an increase in the gas flow rate under laminar flow characterized by Rn < 2000. The length of the plasma column decreases as the flow rate increases in the transition region of 2000 < Rn < 4000. For a turbulent flow beyond Rn > 4000, the length of the plasma column is short in front of the electrode, eventually leading to a shutdown.

  14. Atomic Force Microscope Investigations of Bacterial Biofilms Treated with Gas Discharge Plasmas

    NASA Astrophysics Data System (ADS)

    Vandervoort, Kurt; Zelaya, Anna; Brelles-Marino, Graciela

    2012-02-01

    We present investigations of bacterial biofilms before and after treatment with gas discharge plasmas. Gas discharge plasmas represent a way to inactivate bacteria under conditions where conventional disinfection methods are often ineffective. These conditions involve biofilm communities, where bacteria grow embedded in an exopolysaccharide matrix, and cooperative interactions between cells make organisms less susceptible to standard inactivation methods. In this study, biofilms formed by the opportunistic bacterium Pseudomonas aeruginosa were imaged before and after plasma treatment using an atomic force microscope (AFM). Through AFM images and micromechanical measurements we observed bacterial morphological damage and reduced AFM tip-sample surface adhesion following plasma treatment.

  15. A study of gas flow pattern, undercutting and torch modification in variable polarity plasma arc welding

    NASA Technical Reports Server (NTRS)

    Mcclure, John C.; Hou, Haihui Ron

    1994-01-01

    A study on the plasma and shield gas flow patterns in variable polarity plasma arc (VPPA) welding was undertaken by shadowgraph techniques. Visualization of gas flow under different welding conditions was obtained. Undercutting is often present with aluminum welds. The effects of torch alignment, shield gas flow rate and gas contamination on undercutting were investigated and suggestions made to minimize the defect. A modified shield cup for the welding torch was fabricated which consumes much less shield gas while maintaining the weld quality. The current torch was modified with a trailer flow for Al-Li welding, in which hot cracking is a critical problem. The modification shows improved weldablility on these alloys.

  16. [Sterilization of rubber medical equipment with formaldehyde].

    PubMed

    Frosin, V K; Tsibikov, V B; Izvekova, G I; Pakhomov, S V; Vyshegorodskaia, R A

    1983-01-01

    The sterilizing procedure of medical rubber pieces have been studied. The gas sterilizer GK-100 has been used the chamber of which was loaded with rubber pieces and with rubber pieces in combination with plastic. The map of the temperature field has been build, and the effect of the exposure and temperature as well as the packaging density in the chamber on sterility of the test-pieces has been derived. The period of formaldehyde neutralization by ammonia has been measured, the action of formaldehyde on physical and mechanical properties of the rubber has been also studied. On the basis of the obtained data the sterilization procedure with formaldehyde for medical rubber pieces has been developed. PMID:6664264

  17. Paraelectric gas flow accelerator

    NASA Technical Reports Server (NTRS)

    Sherman, Daniel M. (Inventor); Wilkinson, Stephen P. (Inventor); Roth, J. Reece (Inventor)

    2001-01-01

    A substrate is configured with first and second sets of electrodes, where the second set of electrodes is positioned asymmetrically between the first set of electrodes. When a RF voltage is applied to the electrodes sufficient to generate a discharge plasma (e.g., a one-atmosphere uniform glow discharge plasma) in the gas adjacent to the substrate, the asymmetry in the electrode configuration results in force being applied to the active species in the plasma and in turn to the neutral background gas. Depending on the relative orientation of the electrodes to the gas, the present invention can be used to accelerate or decelerate the gas. The present invention has many potential applications, including increasing or decreasing aerodynamic drag or turbulence, and controlling the flow of active and/or neutral species for such uses as flow separation, altering heat flow, plasma cleaning, sterilization, deposition, etching, or alteration in wettability, printability, and/or adhesion.

  18. Atmospheric Sterile Neutrinos

    E-print Network

    Takehiko Asaka; Atsushi Watanabe

    2012-07-17

    We study production of sterile neutrinos in the atmosphere and their detection at Super-Kamiokande. A sterile neutrino in the mass range $1\\,{\\rm MeV} \\lesssim M_N \\lesssim 105\\,{\\rm MeV}$ is produced by muon or pion decay, and decays to an electron-positron pair and an active neutrino. Such a decay of the sterile neutrino leaves two electron-like Cherenkov rings in the detector. We estimate the sterile neutrino flux from the well-established active neutrino fluxes and study the number of the decay events in the detector. The upper bounds for the active-sterile mixings are obtained by comparing the $2e$-like events from the sterile neutrino decays and the observed data by Super-Kamiokande. The upper bound for the muon type mixing $\\Theta_\\mu$ is found to be $|\\Theta_\\mu|^2 \\lesssim 5 \\times 10^{-5}$ for $20 \\,{\\rm MeV} \\lesssim M_N \\lesssim 80\\,{\\rm MeV}$, which is significantly loosened compared to the previous estimation. We demonstrate that the opening angle and the total energy of the rings may serve as diagnostic tools to discover the sterile neutrinos in further data accumulation and future upgraded facilities. The directional asymmetry of the events is a sensitive measure of the diminishment of the sterile neutrino flux due to the decays on the way to the detector.

  19. The role of the gas/plasma plume and self-focusing in a gas-filled capillary discharge waveguide for high-power laser-plasma applications

    SciTech Connect

    Ciocarlan, C.; Department of Nuclear Physics, Horia Hulubei National Institute of Physics and Nuclear Engineering, 76900 Bucharest-Magurele ; Wiggins, S. M.; Islam, M. R.; Ersfeld, B.; Abuazoum, S.; Wilson, R.; Aniculaesei, C.; Welsh, G. H.; Vieux, G.; Jaroszynski, D. A.

    2013-09-15

    The role of the gas/plasma plume at the entrance of a gas-filled capillary discharge plasma waveguide in increasing the laser intensity has been investigated. Distinction is made between neutral gas and hot plasma plumes that, respectively, develop before and after discharge breakdown. Time-averaged measurements show that the on-axis plasma density of a fully expanded plasma plume over this region is similar to that inside the waveguide. Above the critical power, relativistic and ponderomotive self-focusing lead to an increase in the intensity, which can be nearly a factor of 2 compared with the case without a plume. When used as a laser plasma wakefield accelerator, the enhancement of intensity can lead to prompt electron injection very close to the entrance of the waveguide. Self-focusing occurs within two Rayleigh lengths of the waveguide entrance plane in the region, where the laser beam is converging. Analytical theory and numerical simulations show that, for a density of 3.0 × 10{sup 18} cm{sup ?3}, the peak normalized laser vector potential, a{sub 0}, increases from 1.0 to 1.85 close to the entrance plane of the capillary compared with a{sub 0} = 1.41 when the plume is neglected.

  20. The role of the gas/plasma plume and self-focusing in a gas-filled capillary discharge waveguide for high-power laser-plasma applications

    E-print Network

    Ciocarlan, C.; Islam, M. R.; Ersfeld, B.; Abuazoum, S.; Wilson, R.; Aniculaesei, C.; Welsh, G. H.; Vieux, G.; Jaroszynski, D. A.

    2013-01-01

    The role of the gas/plasma plume at the entrance of a gas-filled capillary discharge plasma waveguide in increasing the laser intensity has been investigated. Distinction is made between neutral gas and hot plasma plumes that, respectively, develop before and after discharge breakdown. Time-averaged measurements show that the on-axis plasma density of a fully expanded plasma plume over this region is similar to that inside the waveguide. Above the critical power, relativistic and ponderomotive selffocusing lead to an increase in the intensity, which can be nearly a factor of 2 compared with the case without a plume. When used as a laser plasma wakefield accelerator, the enhancement of intensity can lead to prompt electron injection very close to the entrance of the waveguide. Self-focusing occurs within two Rayleigh lengths of the waveguide entrance plane in the region, where the laser beam is converging. Analytical theory and numerical simulations show that, for a density of 3.01018 cm3, the peak normalized...

  1. Effect of Deuterium Gas Puff On The Edge Plasma In NSTX

    SciTech Connect

    Zweben, S. J.

    2014-02-20

    This paper describes a detailed examination of the effects of a relatively small pulsed deuterium gas puff on the edge plasma and edge turbulence in NSTX. This gas puff caused little or no change in the line-averaged plasma density or total stored energy, or in the edge density and electron temperature up to the time of the peak of the gas puff. The radial profile of the D? light emission and the edge turbulence within this gas puff did not vary significantly over its rise and fall, implying that these gas puffs did not significantly perturb the local edge plasma or edge turbulence. These measurements are compared with modeling by DEGAS 2, UEDGE, and with simplified estimates for the expected effects of this gas puff.

  2. Instabilities in fissioning plasmas as applied to the gas-core nuclear rocket-engine

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The compressional wave spectrum excited in a fissioning uranium plasma confined in a cavity such as a gas cored nuclear reactor, is studied. Computer results are presented that solve the fluid equations for this problem including the effects of spatial gradients, nonlinearities, and neutron density gradients in the reactor. Typically the asymptotic fluctuation level for the plasma pressure is of order 1 percent.

  3. Non-thermal plasmas as gas-phase advanced oxidation processes

    SciTech Connect

    Rosocha, L.A.

    1997-08-01

    Non-thermal plasmas are useful for generating reactive species (free radicals) in a gas stream. Because radical attack reaction rate constants are very large for many chemical species, entrained pollutants are readily decomposed by radicals. Such plasmas can generate both oxidative and reductive radicals; therefore, they show promise for treating a wide variety of pollutants.

  4. Performance scaling of gas-fed pulsed plasma thrusters

    NASA Astrophysics Data System (ADS)

    Ziemer, John Kenneth

    The performance scaling of gas-fed pulsed plasma thrusters (GFPPTs) is investigated theoretically and experimentally. Analytical models of the discharge current suggest that close to critically damped current waveforms provide the best energy transfer efficiency. A characteristic velocity for GFPPTs that depends on the inductance-per-unit-length and the square root of the capacitance-to-initial-inductance ratio is also derived in these models. The total efficiency is predicted to be proportional to the ratio of the exhaust velocity to the GFPPT characteristic velocity. A numerical non-dimensional model is used to span a large parameter space of possible operating conditions and suggest optimal configurations. From the non-dimensional model, the exhaust velocity is predicted to scale with a non-dimensional parameter called the dynamic impedance parameter to a power that depends on the mass loading prior to the discharge. To test the validity of the predicted scaling relations, the performance of two rapid-pulse-rate GFPPT designs, PT5 (coaxial electrodes) and PT9 (parallel-plate electrodes), has been measured over 70 different operating conditions with argon propellant. The performance measurements are made in a recently renovated facility that uses liquid nitrogen cooled baffles and a micro-thrust stand capable of measuring impulses <20 muNs within <10%. The measurements demonstrate that the impulse bit scales linearly with the integral of the discharge current squared, as expected for an electromagnetic accelerator. The measured performance scaling in both electrode geometries is shown to be in good agreement with theoretical predictions using the GFPPT characteristic velocity. Normalizing the exhaust velocity and the impulse-to-energy ratio by the GFPPT characteristic velocity collapses almost all the measured data onto single curves that represent the scaling relations for these GFPPTs.

  5. Ozone-mist spray sterilization for pest control in agricultural management

    NASA Astrophysics Data System (ADS)

    Ebihara, Kenji; Mitsugi, Fumiaki; Ikegami, Tomoaki; Nakamura, Norihito; Hashimoto, Yukio; Yamashita, Yoshitaka; Baba, Seiji; Stryczewska, Henryka D.; Pawlat, Joanna; Teii, Shinriki; Sung, Ta-Lun

    2013-02-01

    We developed a portable ozone-mist sterilization system to exterminate pests (harmful insects) in agricultural field and greenhouse. The system is composed of an ozone generator, an ozone-mist spray and a small container of ozone gas. The ozone generator can supply highly concentrated ozone using the surface dielectric barrier discharge. Ozone-mist is produced using a developed nozzle system. We studied the effects of ozone-mist spray sterilization on insects and agricultural plants. The sterilization conditions are estimated by monitoring the behavior of aphids and observing the damage of the plants. It was shown that aphids were exterminated in 30 s without noticeable damages of the plant leaves. The reactive radicals with strong oxidation potential such as hydroxyl radical (*OH), hydroperoxide radical (*HO2), the superoxide ion radical (*O2?) and ozonide radical ion (*O3?) can increase the sterilization rate for aphids. Contribution to the Topical Issue "13th International Symposium on High Pressure Low Temperature Plasma Chemistry (Hakone XIII)", Edited by Nicolas Gherardi, Henryca Danuta Stryczewska and Yvan Ségui.

  6. Two-stage plasma gun based on a gas discharge with a self-heating hollow emittera)

    NASA Astrophysics Data System (ADS)

    Vizir, A. V.; Tyunkov, A. V.; Shandrikov, M. V.; Oks, E. M.

    2010-02-01

    The paper presents the results of tests of a new compact two-stage bulk gas plasma gun. The plasma gun is based on a nonself-sustained gas discharge with an electron emitter based on a discharge with a self-heating hollow cathode. The operating characteristics of the plasma gun are investigated. The discharge system makes it possible to produce uniform and stable gas plasma in the dc mode with a plasma density up to 3×109 cm-3 at an operating gas pressure in the vacuum chamber of less than 2×10-2 Pa. The device features high power efficiency, design simplicity, and compactness.

  7. Influence of the gas mixture temperature on the efficiency of synthesis gas production from ethanol in a nonequilibrium plasma

    NASA Astrophysics Data System (ADS)

    Tsymbalyuk, A. N.; Levko, D. S.; Chernyak, V. Ya.; Martysh, E. V.; Nedybalyuk, O. A.; Solomenko, E. V.

    2013-08-01

    The mechanism behind the plasma conversion of a mixture of ethanol vapor, water vapor, air, and carbon dioxide CO2 in the nonequilibrium plasma of a tornado discharge is studied. The influence of the CO2 flow rate, the current through the discharge, and the gas temperature in the discharge on the concentrations of molecular hydrogen and carbon monoxide CO is studied. Comparison between the concentrations of the gaseous mixture's main components at the output from the reactor obtained experimentally and by numerical simulation shows that the adopted kinetic mechanism adequately describes the plasma kinetics in the mixture.

  8. Fullerene-rare gas mixed plasmas in an electron cyclotron resonance ion source

    E-print Network

    Asaji, T; Uchida, T; Minezaki, H; Ishihara, S; Racz, R; Muramatsu, M; Biri, S; Kitagawa, A; Kato, Y; Yoshida, Y

    2015-01-01

    A synthesis technology of endohedral fullerenes such as Fe@C60 has developed with an electron cyclotron resonance (ECR) ion source. The production of N@C60 was reported. However, the yield was quite low, since most fullerene molecules were broken in the ECR plasma. We have adopted gas-mixing techniques in order to cool the plasma and then reduce fullerene dissociation. Mass spectra of ion beams extracted from fullerene-He, Ar or Xe mixed plasmas were observed with a Faraday cup. From the results, the He gas mixing technique is effective against fullerene destruction.

  9. Fullerene-rare gas mixed plasmas in an electron cyclotron resonance ion source

    SciTech Connect

    Asaji, T. Ohba, T.; Uchida, T.; Yoshida, Y.; Minezaki, H.; Ishihara, S.; Racz, R.; Biri, S.; Kato, Y.

    2014-02-15

    A synthesis technology of endohedral fullerenes such as Fe@C{sub 60} has developed with an electron cyclotron resonance (ECR) ion source. The production of N@C{sub 60} was reported. However, the yield was quite low, since most fullerene molecules were broken in the ECR plasma. We have adopted gas-mixing techniques in order to cool the plasma and then reduce fullerene dissociation. Mass spectra of ion beams extracted from fullerene-He, Ar or Xe mixed plasmas were observed with a Faraday cup. From the results, the He gas mixing technique is effective against fullerene destruction.

  10. Numerical modeling of plasma plume evolution against ambient background gas in laser blow off experiments

    SciTech Connect

    Patel, Bhavesh G.; Das, Amita; Kaw, Predhiman; Singh, Rajesh; Kumar, Ajai

    2012-07-15

    Two dimensional numerical modelling based on simplified hydrodynamic evolution for an expanding plasma plume (created by laser blow off) against an ambient background gas has been carried out. A comparison with experimental observations shows that these simulations capture most features of the plasma plume expansion. The plume location and other gross features are reproduced as per the experimental observation in quantitative detail. The plume shape evolution and its dependence on the ambient background gas are in good qualitative agreement with the experiment. This suggests that a simplified hydrodynamic expansion model is adequate for the description of plasma plume expansion.

  11. Quantification of dimethindene in plasma by gas chromatography-mass fragmentography using ammonia chemical ionization.

    PubMed

    Kauert, G; Herrle, I; Wermeille, M

    1993-08-11

    A gas chromatographic-mass fragmentographic method using ammonia chemical ionization for the determination of dimethindene in human plasma is described. The drug was isolated from plasma by liquid-liquid extraction with hexane-2-methylbutanol. Plasma components were separated on a capillary column coated with chemically bonded methyl silicone. For detection of dimethindene, its quasi-molecular ion (M + H+) was mass fragmentographically monitored after chemical ionization with ammonia as reagent gas. Dimethindene was quantified using methaqualone as the internal standard: the quantification limit in plasma was 0.2 ng/ml, the within-run precision was 8.0% and the inter-run precision 5.6%. The plasma concentration-time profile was established after a single dose of 4 mg of dimethindene with an average maximum concentration of 5.5 ng/ml, detectable up to 48 h post application. PMID:8408399

  12. Sterilization: A Review and Update.

    PubMed

    Moss, Chailee; Isley, Michelle M

    2015-12-01

    Sterilization is a frequently used method of contraception. Female sterilization is performed 3 times more frequently than male sterilization, and it can be performed immediately postpartum or as an interval procedure. Methods include mechanical occlusion, coagulation, or tubal excision. Female sterilization can be performed using an abdominal approach, or via laparoscopy or hysteroscopy. When an abdominal approach or laparoscopy is used, sterilization occurs immediately. When hysteroscopy is used, tubal occlusion occurs over time, and additional testing is needed to confirm tubal occlusion. Comprehensive counseling about sterilization should include discussion about male sterilization (vasectomy) and long-acting reversible contraceptive methods. PMID:26598311

  13. Contribution of Surface Polishing and Sterilization Method to Backside Wear in Total Knee Arthroplasty.

    PubMed

    Teeter, Matthew G; Lanting, Brent A; Shrestha, Kush R; Howard, James L; Vasarhelyi, Edward M

    2015-12-01

    The purpose of this study was to compare the relative contributions of backside wear from polished and roughened tibial baseplates and different sterilization methods. Three groups of tibial inserts of the same design were matched: roughened gamma-air (RGA), polished gamma-air (PGA), and polished gas-plasma (PGP). Visual damage scoring and micro-CT deviation maps were used for evaluation. Total backside damage was higher (P=0.045) in RGA (13.8±3.4) compared to PGA (8.7±3.4) and PGP (8.2±4.8). Backside wear rates were greatest (P=0.02) in RGA (0.038 mm/year), followed by PGA (0.012 mm/year), and lowest in PGP (0.009 mm/year). Use of a roughened tibial baseplate had a greater effect on wear magnitude than sterilization method. PMID:26182981

  14. Control of the area irradiated by the sheet-type plasma jet in atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Kawasaki, T.; Kawano, K.; Mizoguchi, H.; Yano, Y.; Yamashita, K.; Sakai, M.; Uchida, G.; Koga, K.; Shiratani, M.

    2014-06-01

    The sterilization effect has been investigated using the sheet-type plasma jet, which was generated between asymmetric electrodes with dielectric plates in gas flow released into the atmospheric air. In this paper, it is indicated there is a possibility that the plasma jet irradiation area can be controlled only by supplied gases without changing a generator structure. The irradiation area control was evaluated from both the sterilization area size and the oxidizing substances distribution. The oxidizing substance distribution was obtained using the chemical reagent prepared in our laboratory. The width of the sheet-type plasma jet was able to be controlled by N2 addition into He gas. As a result, the width of the sterilization area was able to be controlled within the range of 2 to 12 mm at a constant height without changing the generator structure. On the other hand, the evaluation from the oxidizing substances distribution indicated that the irradiation area cannot be controlled in one direction.

  15. Sterilization by Laparoscopy

    MedlinePLUS

    ... sleep-like state to prevent pain during surgery. Human Immunodeficiency Virus (HIV): A virus that attacks certain cells of the body’s immune system and causes acquired immunodeficiency syndrome (AIDS). Hysteroscopic Sterilization: ...

  16. On anomalous temporal evolution of gas pressure in inductively coupled plasma

    SciTech Connect

    Seo, B. H.; Chang, H. Y.; You, S. J.; Kim, J. H.; Seong, D. J.

    2013-04-01

    The temporal measurement of gas pressure in inductive coupled plasma revealed that there is an interesting anomalous evolution of gas pressure in the early stage of plasma ignition and extinction: a sudden gas pressure change and its relaxation of which time scales are about a few seconds and a few tens of second, respectively, were observed after plasma ignition and extinction. This phenomenon can be understood as a combined result between the neutral heating effect induced by plasma and the pressure relaxation effect for new gas temperature. The temporal measurement of gas temperature by laser Rayleigh scattering and the time dependant calculations for the neutral heating and pressure relaxation are in good agreement with our experimental results. This result and physics behind are expected to provide a new operational perspective of the recent plasma processes of which time is very short, such as a plasma enhanced atomic layer deposition/etching, a soft etch for disposal of residual by-products on wafer, and light oxidation process in semiconductor manufacturing.

  17. The Effects of Gas Composition on the Atmospheric Pressure Plasma Jet Modification of Polyethylene Films

    NASA Astrophysics Data System (ADS)

    Sun, Jie; Qiu, Yiping

    2015-05-01

    Polyethylene (PE) films are treated using an atmospheric pressure plasma jet (APPJ) with He or He/O2 gas for different periods of time. The influence of gas type on the plasma-polymer interactions is studied. The surface contact angle of the PE film can be effectively lowered to 58° after 20 s of He/O2 plasma treatment and then remains almost unchanged for longer treatment durations, while, for He plasma treatment, the film surface contact angle drops gradually to 47° when the time reaches 120 s. Atomic force microscopy (AFM) results show that the root mean square (RMS) roughness was significantly higher for the He/O2 plasma treated samples than for the He plasma treated counterparts, and the surface topography of the He/O2 plasma treated PE films displays evenly distributed dome-shaped small protuberances. Chemical composition analysis reveals that the He plasma treated samples have a higher oxygen content but a clearly lower percentage of -COO than the comparable He/O2 treated samples, suggesting that differences exist in the mode of incorporating oxygen between the two gas condition plasma treatments. Electron spin resonance (ESR) results show that the free radical concentrations of the He plasma treated samples were clearly higher than those of the He/O2 plasma treated ones with other conditions unchanged. supported by the Fundamental Research Funds for the Central Universities of China (Nos. JUSRP1044 and JUSRP1045), National Natural Science Foundation of China (Nos. 51203062 and 51302110), and the Cooperative Innovation Fund, Project of Jiangsu Province, China (Nos. BY2012064, BY2013015-31 and BY2013015-32)

  18. Antimicrobial outcomes in plasma medicine

    NASA Astrophysics Data System (ADS)

    Ryan, Thomas P.; Stalder, Kenneth R.; Woloszko, Jean

    2015-03-01

    Plasma is referred to as the fourth state of matter and is frequently generated in the environment of a strong electric field. The result consists of highly reactive species--ions, electrons, reactive atoms and molecules, and UV radiation. Plasma Medicine unites a number of fields, including Physics, Plasma Chemistry, Cell Biology, Biochemistry, and Medicine. The treatment modality utilizes Cold Atmospheric Plasma (CAP), which is able to sterilize and treat microbes in a nonthermal manner. These gas-based plasma systems operate at close to room temperature and atmospheric pressure, making them very practical for a range of potential treatments and are highly portable for clinical use throughout the health care system. The hypothesis is that gas based plasma kills bacteria, fungus, and viruses but spares mammalian cells. This paper will review systematic work which shows examples of systems and performance in regards to antimicrobial effects and the sparing of mammalian cells. The mechanism of action will be discussed, as well as dosing for the treatment of microbial targets, including sterilization processes, another important healthcare need. In addition, commercial systems will be overviewed and compared, along with evidence-based, patient results. The range of treatments cover wound treatment and biofilms, as well as antimicrobial treatment, with little chance for resistance and tolerance, as in drug regimens. Current clinical studies include applications in dentistry, food treatment, cancer treatment, wound treatment for bacteria and biofilms, and systems to combat health care related infections.

  19. Atmospheric pressure dielectric barrier discharges for sterilization and surface treatment

    SciTech Connect

    Chin, O. H.; Lai, C. K.; Choo, C. Y.; Wong, C. S.; Nor, R. M.; Thong, K. L.

    2015-04-24

    Atmospheric pressure non-thermal dielectric barrier discharges can be generated in different configurations for different applications. For sterilization, a parallel-plate electrode configuration with glass dielectric that discharges in air was used. Gram-negative bacteria (Escherichia coli and Salmonella enteritidis) and Gram-positive bacteria (Bacillus cereus) were successfully inactivated using sinusoidal high voltage of ?15 kVp-p at 8.5?kHz. In the surface treatment, a hemisphere and disc electrode arrangement that allowed a plasma jet to be extruded under controlled nitrogen gas flow (at 9.2?kHz, 20 kVp-p) was applied to enhance the wettability of PET (Mylar) film.

  20. Atmospheric pressure dielectric barrier discharges for sterilization and surface treatment

    NASA Astrophysics Data System (ADS)

    Chin, O. H.; Lai, C. K.; Choo, C. Y.; Wong, C. S.; Nor, R. M.; Thong, K. L.

    2015-04-01

    Atmospheric pressure non-thermal dielectric barrier discharges can be generated in different configurations for different applications. For sterilization, a parallel-plate electrode configuration with glass dielectric that discharges in air was used. Gram-negative bacteria (Escherichia coli and Salmonella enteritidis) and Gram-positive bacteria (Bacillus cereus) were successfully inactivated using sinusoidal high voltage of ˜15 kVp-p at 8.5 kHz. In the surface treatment, a hemisphere and disc electrode arrangement that allowed a plasma jet to be extruded under controlled nitrogen gas flow (at 9.2 kHz, 20 kVp-p) was applied to enhance the wettability of PET (Mylar) film.

  1. Contrib. Plasma Phys. 51, No. 2-3, 293 296 (2011) / DOI 10.1002/ctpp.201000061 LTE Experimental Validation in a Gas Metal Arc Welding Plasma

    E-print Network

    2011-01-01

    Validation in a Gas Metal Arc Welding Plasma Column F. Valensi1,2 , S. Pellerin1 , A. Boutaghane3 , K, France 7 CTAS-Air Liquide Welding, Saint Ouen l'Aum^one, 95315 Cergy-Pontoise cedex, France Received 12 Spectroscopy, Boltzmann Plot, Sola method, LTE. During gas metal arc welding (GMAW), the plasma obtained has

  2. Modification of plasma flows with gas puff in the scrape-off layer of ADITYA tokamak

    SciTech Connect

    Sangwan, Deepak; Jha, Ratneshwar; Brotankova, Jana; Gopalkrishna, M. V.

    2013-06-15

    The parallel Mach numbers are measured at three locations in the scrape-off layer (SOL) plasma of ADITYA tokamak by using Mach probes. The flow pattern is constructed from these measurements and the modification of flow pattern is observed by introducing a small puff of working gas. In the normal discharge, there is an indication of shell structure in the SOL plasma flows, which is removed during the gas puff. The plasma parameters, particle flux and Reynolds stress are also measured in the normal discharge and in the discharge with gas puff. It is observed that Reynolds stress and Mach number are coupled in the near SOL region and decoupled in the far SOL region. The coupling in the near SOL region gets washed away during the gas puff.

  3. Plasma ionization frequency, edge-to-axis density ratio, and density on axis of a cylindrical gas discharge

    SciTech Connect

    Palacio Mizrahi, J. H.

    2014-06-15

    A rigorous derivation of expressions, starting from the governing equations, for the ionization frequency, edge-to-axis ratio of plasma density, plasma density at the axis, and radially averaged plasma density in a cylindrical gas discharge has been obtained. The derived expressions are simple and involve the relevant parameters of the discharge: Cylinder radius, axial current, and neutral gas pressure. The found expressions account for ion inertia, ion temperature, and changes in plasma ion collisionality.

  4. [Sterilization with formaldehyde vapors in a hypobaric procedure: microbiologic and toxicologic aspects].

    PubMed

    Fleck, H; Steiger, E; Raatzsch, H

    1984-06-01

    The use of formaldehyde gas is an alternative for the sterilization of thermolabile instruments. A report is given on the effectivity of a sterilization medium the production of which is not dependent on any imports, and on the suitability of sterile packaging materials produced in the GDR for this process. In further studies the formaldehyde residue on catheters and tubing used in urology following sterilization is measured. The question of whether formaldehyde residue on catheters is of toxicological significance is examined. PMID:6475336

  5. High Sensitive Formaldehyde Gas Sensor Prepared by R.F. Induction Plasma Deposition Method

    NASA Astrophysics Data System (ADS)

    Shi, Liqin; Gao, Wei; Hasegawa, Yuki; Katsube, Teruaki; Nakano, Mamoru; Nakamura, Kiyozumi

    The present work is concerned on developing high sensitive and high performance SnO2-based gas sensors for detecting indoor air pollutant formaldehyde gas. The film was deposited on an alumina substrate using R.F. Induction Plasma Deposition technique. Physical properties of sensing films were examined by SEM, XRD method. The sensors showed high sensitivity to typical HCHO gas at an extremely low gas concentration of 20 parts-per-billion (ppb) with quick response and recovery time at several minutes. The effect of the doping of various metallic additives on the gas-sensing properties and operating temperature dependency were also investigated in the work.

  6. Reduction of NOx and PM in marine diesel engine exhaust gas using microwave plasma

    NASA Astrophysics Data System (ADS)

    Balachandran, W.; FInst, P.; Manivannan, N.; Beleca, R.; Abbod, M.

    2015-10-01

    Abatement of NOx and particulate matters (PM) of marine diesel exhaust gas using microwave (MW) non-thermal plasma is presented in this paper. NOx mainly consist of NO and less concentration of NO2 in a typical two stoke marine diesel engine and microwave plasma generation can completely remove NO. MW was generated using two 2kW microwave sources and a saw tooth passive electrode. Passive electrode was used to generate high electric field region within microwave environment where high energetic electrons (1-3eV) are produced for the generation of non-thermal plasma (NTP). 2kW gen-set diesel exhaust gas was used to test our pilot-scale MW plasma reactor. The experimental results show that almost 100% removal of NO is possible for the exhaust gas flow rate of 60l/s. It was also shown that MW can significantly remove soot particles (PM, 10nm to 365nm) entrained in the exhaust gas of 200kW marine diesel engine with 40% engine load and gas flow rate of 130l/s. MW without generating plasma showed reduction up to 50% reduction of PM and with the plasma up to 90% reduction. The major challenge in these experiments was that igniting the desired plasma and sustaining it with passive electrodes for longer period (10s of minutes) as it required fine tuning of electrode position, which was influenced by many factors such as gas flow rate, geometry of reactor and MW power.

  7. Mechanisms of gas precipitation in plasma-exposed tungsten

    SciTech Connect

    R. D. Kolasinski; D. F. Cowgill; D. C. Donovan; M. Shimada

    2012-05-01

    Precipitation in subsurface bubbles is a key process that governs how hydrogen isotopes migrate through and become trapped within plasma-exposed tungsten. We describe a continuum-scale model of hydrogen diffusion in plasma-exposed materials that includes the effects of precipitation. The model can account for bubble expansion via dislocation loop punching, using an accurate equation of state to determine the internal pressure. This information is used to predict amount of hydrogen trapped by bubbles, as well as the conditions where the bubbles become saturated. In an effort to validate the underlying assumptions, we compare our results with published positron annihilation and thermal desorption spectroscopy data, as well as our own measurements using the tritium plasma experiment (TPE).

  8. Magnetically controlled deposition of metals using gas plasma. Final report

    SciTech Connect

    1998-04-02

    This is the first phase of a project that has the objective to develop a method of spraying materials on a substrate in a controlled manner to eliminate the waste and hazardous material generation inherent in present plating processes. The project is considering plasma spraying of metal on a substrate using magneto-hydrodynamics to control the plasma/metal stream. The process being developed is considering the use of commercially available plasma torches to generate the plasma/metal stream. The plasma stream is collimated, and directed using magnetic forces to the extent required for precise control of the deposition material. The project will be completed in phases. Phase one of the project, the subject of this grant, is the development of an analytical model that can be used to determine the feasibility of the process and to design a laboratory scale demonstration unit. The contracted time is complete, and the research is still continuing. This report provides the results obtained to date. As the model and calculations are completed those results will also be provided. This report contains the results of the computer code that have been completed to date. Results from a ASMEE Benchmark problem, flow over a backward step with heat transfer, Couette flow with magnetic forces, free jet flow are presented along with several other check calculations that are representative of the cases that were calculated in the course of the development process. The final cases that define a velocity field in the exit of a plasma spray torch with and without a magnetic field are in process. A separate program (SPRAY) has been developed that can track the plating material to the substrate and describe the distribution of the material on the substrate. When the jet calculations are complete SPRAY will be used to compare the distribution of material on the substrate with and without the effect of the magnetic focus.

  9. 9 CFR 109.2 - Sterilizers.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ..., SERUMS, TOXINS, AND ANALOGOUS PRODUCTS; ORGANISMS AND VECTORS STERILIZATION AND PASTEURIZATION AT LICENSED ESTABLISHMENTS § 109.2 Sterilizers. Steam and dry-heat sterilizers used in connection with...

  10. 9 CFR 109.2 - Sterilizers.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ..., SERUMS, TOXINS, AND ANALOGOUS PRODUCTS; ORGANISMS AND VECTORS STERILIZATION AND PASTEURIZATION AT LICENSED ESTABLISHMENTS § 109.2 Sterilizers. Steam and dry-heat sterilizers used in connection with...

  11. 9 CFR 109.2 - Sterilizers.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ..., SERUMS, TOXINS, AND ANALOGOUS PRODUCTS; ORGANISMS AND VECTORS STERILIZATION AND PASTEURIZATION AT LICENSED ESTABLISHMENTS § 109.2 Sterilizers. Steam and dry-heat sterilizers used in connection with...

  12. 9 CFR 109.2 - Sterilizers.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ..., SERUMS, TOXINS, AND ANALOGOUS PRODUCTS; ORGANISMS AND VECTORS STERILIZATION AND PASTEURIZATION AT LICENSED ESTABLISHMENTS § 109.2 Sterilizers. Steam and dry-heat sterilizers used in connection with...

  13. 9 CFR 109.2 - Sterilizers.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ..., SERUMS, TOXINS, AND ANALOGOUS PRODUCTS; ORGANISMS AND VECTORS STERILIZATION AND PASTEURIZATION AT LICENSED ESTABLISHMENTS § 109.2 Sterilizers. Steam and dry-heat sterilizers used in connection with...

  14. Atomic Force Microscope Investigations of Biofilms Treated with Gas Discharge Plasmas

    NASA Astrophysics Data System (ADS)

    Vandervoort, Kurt; Stough, Gregory; Zelaya, Anna; Brelles-Marino, Graciela

    2010-03-01

    We present investigations of bacterial biofilms before and after treatment with gas discharge plasmas. Gas discharge plasmas represent a way to inactivate bacteria under conditions where conventional disinfection methods are often ineffective. These conditions involve bacteria in biofilm communities, where cooperative interactions between cells make organisms less susceptible to standard inactivation methods. In this study, biofilms formed by the opportunistic bacterium Pseudomonas aeruginosa were imaged before and after plasma treatment using an atomic force microscope (AFM). Cell morphology and biofilm structure were investigated through AFM images obtained for various plasma exposure times. Also, structural properties of the biofilms were studied through force-distance curves by pressing the AFM tip into the film surface while monitoring the cantilever deflection.

  15. N2 Gas Plasma Inactivates Influenza Virus by Inducing Changes in Viral Surface Morphology, Protein, and Genomic RNA

    PubMed Central

    Shimizu, Naohiro; Imanishi, Yuichiro

    2013-01-01

    We have recently treated with N2 gas plasma and achieved inactivation of bacteria. However, the effect of N2 gas plasma on viruses remains unclear. With the aim of developing this technique, we analyzed the virucidal effect of N2 gas plasma on influenza virus and its influence on the viral components. We treated influenza virus particles with inert N2 gas plasma (1.5?kpps; kilo pulses per second) produced by a short high-voltage pulse generated from a static induction thyristor power supply. A bioassay using chicken embryonated eggs demonstrated that N2 gas plasma inactivated influenza virus in allantoic fluid within 5?min. Immunochromatography, enzyme-linked immunosorbent assay, and Coomassie brilliant blue staining showed that N2 gas plasma treatment of influenza A and B viruses in nasal aspirates and allantoic fluids as well as purified influenza A and B viruses induced degradation of viral proteins including nucleoprotein. Analysis using the polymerase chain reaction suggested that N2 gas plasma treatment induced changes in the viral RNA genome. Scanning electron microscopy analysis showed that aggregation and fusion of influenza viruses were induced by N2 gas plasma treatment. We believe these biochemical changes may contribute to the inactivation of influenza viruses by N2 gas plasma. PMID:24195077

  16. Gas Tungsten Arc Welding and Plasma Arc Cutting. Teacher Edition.

    ERIC Educational Resources Information Center

    Fortney, Clarence; And Others

    This welding curriculum guide treats two topics in detail: the care of tungsten electrodes and the entire concept of contamination control and the hafnium electrode and its importance in dual-air cutting systems that use compressed shop air for plasma arc cutting activities. The guide contains three units of instruction that cover the following…

  17. Biological Sterilization of Returned Mars Samples

    NASA Technical Reports Server (NTRS)

    Allen, C. C.; Albert, F. G.; Combie, J.; Bodnar, R. J.; Hamilton, V. E.; Jolliff, B. L.; Kuebler, K.; Wang, A.; Lindstrom, D. J.; Morris, P. A.

    1999-01-01

    Martian rock and soil, collected by robotic spacecraft, will be returned to terrestrial laboratories early in the next century. Current plans call for the samples to be immediately placed into biological containment and tested for signs of present or past life and biological hazards. It is recommended that "Controlled distribution of unsterilized materials from Mars should occur only if rigorous analyses determine that the materials do not constitute a biological hazard. If any portion of the sample is removed from containment prior to completion of these analyses it should first be sterilized." While sterilization of Mars samples may not be required, an acceptable method must be available before the samples are returned to Earth. The sterilization method should be capable of destroying a wide range of organisms with minimal effects on the geologic samples. A variety of biological sterilization techniques and materials are currently in use, including dry heat, high pressure steam, gases, plasmas and ionizing radiation. Gamma radiation is routinely used to inactivate viruses and destroy bacteria in medical research. Many commercial sterilizers use Co-60 , which emits gamma photons of 1.17 and 1.33 MeV. Absorbed doses of approximately 1 Mrad (10(exp 8) ergs/g) destroy most bacteria. This study investigates the effects of lethal doses of Co-60 gamma radiation on materials similar to those anticipated to be returned from Mars. The goals are to determine the gamma dose required to kill microorganisms in rock and soil samples and to determine the effects of gamma sterilization on the samples' isotopic, chemical and physical properties. Additional information is contained in the original extended abstract.

  18. A gas-puff-driven theta pinch for plasma-surface interaction studies

    NASA Astrophysics Data System (ADS)

    Jung, Soonwook; Kesler, Leigh; Yun, Hyun-Ho; Curreli, Davide; Andruczyk, Daniel; Ruzic, David

    2012-10-01

    DEVeX is a theta pinch device used to investigate fusion-related material interaction such as vapor shielding and ICRF antenna interactions with plasma-pulses in a laboratory setting. The simulator is required to produce high heat-flux plasma enough to induce temperature gradient high enough to study extreme conditions happened in a plasma fusion reactor. In order to achieve it, DEVeX is reconfigured to be combined with gas puff system as gas puffing may reduce heat flux loss resulting from collisions with neutral. A gas puff system as well as a conical gas nozzle is manufactured and several diagnostics including hot wire anemometer and fast ionization gauge are carried out to quantitatively estimate the supersonic flow of gas. Energy deposited on the target for gas puffing and static-filled conditions is measured with thermocouples and its application to TELS, an innovative concept utilizing a thermoelectric-driven liquid metal flow for plasma facing component, is discussed.

  19. Method for generating a highly reactive plasma for exhaust gas aftertreatment and enhanced catalyst reactivity

    DOEpatents

    Whealton, John H. (Oak Ridge, TN); Hanson, Gregory R. (Clinton, TN); Storey, John M. (Oak Ridge, TN); Raridon, Richard J. (Oak Ridge, TN); Armfield, Jeffrey S. (Upsilanti, MI); Bigelow, Timothy S. (Knoxville, TN); Graves, Ronald L. (Knoxville, TN)

    2001-01-01

    A method for non-thermal plasma aftertreatment of exhaust gases the method comprising the steps of providing short risetime (about 40 ps), high frequency (about 5G hz), high power bursts of low-duty factor microwaves sufficient to generate a dielectric barrier discharge and passing a gas to treated through the discharge so as to cause dissociative reduction of the exhaust gases. The invention also includes a reactor for generating the non-thermal plasma.

  20. Studies of Magnetized Plasmas Interacting with Neutral Gas

    NASA Astrophysics Data System (ADS)

    Chiu, Gordon San-Yin

    1995-01-01

    Experiments and computer simulations have been performed in a linear magnetized helium and argon plasma column of similar collisionalities to that expected in ITER to examine heat flow and particle parameters. Plasma properties are found to differ significantly at low and high ambient neutral pressures. At pressures below 100 mT, plasmas obey the low -recycling prediction of approximate plasma pressure balance. Density decreases by a factor of about 2 to 3 with respect to that upstream, and T_{e} remains isothermal. Power flow is predominantly convective. Results obtained with varying neutral pressures and input power are consistent with zero-dimensional modeling of particle and energy balances. Ion are found to be heated by the electrons via classical energy equilibration, moderated by charge-exchange. Neutrals are heated above room temperatures. They exhibit a two-temperature population, the hotter neutrals due to charge-exchange with ions, and the colder via electron -neutral elastic collisions. The 2-d fluid code B2 has been modified to simulate the experimental conditions. Results are in good agreement. A novel regime of abrupt collapse in plasma pressure, affecting both density and T_{e} and accompanied by a dramatic increase in neutral line radiation, has been observed in high (>100 mT) pressure discharges. A potential structure akin to a double layer is calculated to exist. This phenomenon of thermal collapse is favored by a high neutral pressure, a large positive target bias, and a sufficiently long column. It is postulated that the disparate rates of momentum exchange between electrons and ions with neutrals are responsible for the formation of such collapses. The large increase in radiation is partly attributed to 3-body recombination during stagnated flow, although the estimated power loss is insufficient to account for the observations. The B2 neutral particle treatment has been found to be inadequate at these higher pressures. These results motivate the development of edge codes which include breaking the quasi -neutrality condition.

  1. Feather-like He plasma plumes in surrounding N2 gas

    NASA Astrophysics Data System (ADS)

    Xian, Y. B.; Zou, D. D.; Lu, X. P.; Pan, Y.; Ostrikov, K.

    2013-08-01

    Effects of surrounding gases on the propagation of room-temperature atmospheric-pressure plasma jets are reported. A highly unusual feather-like plasma plume is observed only when N2 is used as surrounding gas. The He concentration on the axis at the starting point of the feather-like plume is ˜0.85 of the maximum value and is independent on the He flow rates. High-speed optical imaging reveals that dim diffuse plasmas emerge just behind the bright head of the plasma bullet at the starting point of the feather-like plume. These results help tailoring surface exposure in emerging applications of plasma jets in medicine and nanotechnology.

  2. Measurement of neutral gas temperature in a 13.56 MHz inductively coupled plasma

    SciTech Connect

    Jayapalan, Kanesh K.; Chin, Oi Hoong

    2015-04-24

    Measuring the temperature of neutrals in inductively coupled plasmas (ICP) is important as heating of neutral particles will influence plasma characteristics such as the spatial distributions of plasma density and electron temperature. Neutral gas temperatures were deduced using a non-invasive technique that combines gas actinometry, optical emission spectroscopy and simulation which is described here. Argon gas temperature in a 13.56?MHz ICP were found to fall within the range of 500 ? 800?K for input power of 140 ? 200?W and pressure of 0.05 ? 0.2?mbar. Comparing spectrometers with 0.2?nm and 0.5?nm resolution, improved fitting sensitivity was observed for the 0.2?nm resolution.

  3. Modeling of gas flow in the cylindrical channels of high-voltage plasma torches with rod electrodes

    NASA Astrophysics Data System (ADS)

    Borovskoy, A. M.; Popov, S. D.; Surov, A. V.

    2013-08-01

    The article is devoted to the calculation of gas dynamic parameters of gas flow in various areas of low-temperature plasma generator, therefore, target area's grid was built for the simulation of plasma gas flow in channels of studied high-voltage AC plasma torches and calculations of three-dimensional gas flow was made using GAMBIT and FLUENT soft-ware and Spalart-Allmares turbulence model, air flow was simulated in the tangential feed's areas, in the cylindrical channel, in the tapering nozzle chamber and in the mixing chamber of plasma torches and outside (in the environment); thus, 3D-modelling of the cold plasma-forming gas flow was performed in cylindrical channels of studied high-voltage AC plasma torches with rod electrodes for the first time.

  4. Method for generating a highly reactive plasma for exhaust gas aftertreatment and enhanced catalyst reactivity

    DOEpatents

    Whealton, John H. (Oak Ridge, TN); Hanson, Gregory R. (Clinton, TN); Storey, John M. (Oak Ridge, TN); Raridon, Richard J. (Oak Ridge, TN); Armfield, Jeffrey S. (Ypsilanti, MI); Bigelow, Timothy S. (Knoxville, TN); Graves, Ronald L. (Knoxville, TN)

    2002-01-01

    A method for non-thermal plasma aftertreatment of exhaust gases the method comprising the steps of providing short risetime, high frequency, high power bursts of low-duty factor microwaves sufficient to generate a plasma discharge and passing a gas to be treated through the discharge so as to cause dissociative reduction of the exhaust gases and enhanced catalyst reactivity through application of the pulsed microwave fields directly to the catalyst material sufficient to cause a polarizability catastrophe and enhanced heating of the metal crystallite particles of the catalyst, and in the presence or absence of the plasma. The invention also includes a reactor for aftertreatment of exhaust gases.

  5. Non-thermal plasma destruction of allyl alcohol in waste gas: kinetics and modelling

    NASA Astrophysics Data System (ADS)

    DeVisscher, A.; Dewulf, J.; Van Durme, J.; Leys, C.; Morent, R.; Van Langenhove, H.

    2008-02-01

    Non-thermal plasma treatment is a promising technique for the destruction of volatile organic compounds in waste gas. A relatively unexplored technique is the atmospheric negative dc multi-pin-to-plate glow discharge. This paper reports experimental results of allyl alcohol degradation and ozone production in this type of plasma. A new model was developed to describe these processes quantitatively. The model contains a detailed chemical degradation scheme, and describes the physics of the plasma by assuming that the fraction of electrons that takes part in chemical reactions is an exponential function of the reduced field. The model captured the experimental kinetic data to less than 2 ppm standard deviation.

  6. Wear behavior of gas tunnel type plasma sprayed Zr-based metallic glass composite coatings

    NASA Astrophysics Data System (ADS)

    Yugeswaran, S.; Kobayashi, A.; Suresh, K.; Rao, K. P.; Subramanian, B.

    2012-09-01

    Gas tunnel type plasma spraying is a prospective method to produce metallic glass composite coatings with high quality due to its noteworthy feature of process controllability. In this study, Zr55Cu30Al10Ni5 metallic glass composite coatings were produced by gas tunnel type plasma spraying torch under optimum spraying conditions with selected plasma currents. The formation mechanism, sliding, and erosive wear behaviors of the coatings with respect to plasma current was examined. The phase and thermal analyses as well as microstructure of the plasma sprayed coatings produced at different plasma currents were characterized using X-ray diffraction (XRD), differential scanning calorimetry (DSC), scanning electron microscopy (SEM), and energy dispersive X-ray spectroscopy (EDX) techniques. The sliding and erosive wear behaviors of the coatings were studied using a pin-on-disc and a specially designed erosive wear tester, respectively. The results showed that an increase in plasma current increased the crystalline content in the metallic glass composite coatings, which enhanced the hardness and wear resistance of the coatings.

  7. Terahertz wave generation from gas plasma using a phase compensator with attosecond phase-control accuracy

    SciTech Connect

    Dai Jianming; Zhang, X.-C.

    2009-01-12

    We report the use of a precise phase compensator for the generation of intense terahertz waves from laser-induced gas plasma excited by a femtosecond pulse ({omega}) and its second harmonic (2{omega}) at both close contact and standoff distances. The attosecond accuracy phase-control capability of the device enables further optimization of the terahertz emission from gas plasma and elimination of the temporal walkoff between the {omega} and 2{omega} pulses traveling in dispersive media, resulting in intense terahertz generation at a distance of over 100 m by sending the optical beams far away and focusing them locally.

  8. Evolution dynamics of a dense frozen Rydberg gas to plasma

    SciTech Connect

    Li Wenhui; Noel, Michael W.; Robinson, Michael P.; Tanner, Paul J.; Gallagher, Thomas F.; Comparat, Daniel; Laburthe Tolra, Bruno; Vanhaecke, Nicolas; Vogt, Thibault; Zahzam, Nassim; Pillet, Pierre; Tate, Duncan A.

    2004-10-01

    Dense samples of cold Rydberg atoms have previously been observed to spontaneously evolve to a plasma, despite the fact that each atom may be bound by as much as 100 cm{sup -1}. Initially, ionization is caused by blackbody photoionization and Rydberg-Rydberg collisions. After the first electrons leave the interaction region, the net positive charge traps subsequent electrons. As a result, rapid ionization starts to occur after 1 {mu}s caused by electron-Rydberg collisions. The resulting cold plasma expands slowly and persists for tens of microseconds. While the initial report on this process identified the key issues described above, it failed to resolve one key aspect of the evolution process. Specifically, redistribution of population to Rydberg states other than the one initially populated was not observed, a necessary mechanism to maintain the energy balance in the system. Here we report new and expanded observations showing such redistribution and confirming theoretical predictions concerning the evolution to a plasma. These measurements also indicate that, for high n states of purely cold Rydberg samples, the initial ionization process which leads to electron trapping is one involving the interactions between Rydberg atoms.

  9. Continuous sterilization of plumbing systems

    NASA Technical Reports Server (NTRS)

    Bryan, C. J.; Moyers, C. V.; Wright, E. E., Jr.

    1979-01-01

    Continuous sterilization of plumbing, such as in hospitals, clinics, and biological testing laboratories is possible with ethylene oxide/Freon 12 (ETO/F-12) humidifier developed for sterilization of potable water systems.

  10. Effects of cold atmospheric gas phase plasma on anthocyanins and color in pomegranate juice.

    PubMed

    Bursa? Kova?evi?, Danijela; Putnik, Predrag; Dragovi?-Uzelac, Verica; Pedisi?, Sandra; Režek Jambrak, Anet; Herceg, Zoran

    2016-01-01

    The aim of the study was to evaluate effects of cold atmospheric gas phase plasma on anthocyanins and color in pomegranate juice. Outcomes of plasma treatment were observed at different operating conditions: (i) treatment time (3, 5, 7 min), (ii) treated juice volume (3, 4, 5 cm(3)), and (iii) gas flow (0.75, 1, 1.25 dm(3)/min). The greatest anthocyanin stability was found at: 3 min treatment time, 5 cm(3) sample volume, and 0.75 dm(3)/min gas flow. Plasma treatment yielded higher anthocyanin content from 21% to 35%. Multivariate analysis showed that total color change was not associated with sample volume and treatment time, however it declined with increased gas flow. The change of color increased in comparison treated vs. untreated pomegranate juice. Constructed mathematical equation confirmed that increase of anthocyanin content increased with gas flow, sample volume and change in color. In summary, this study showed that plasma treatment had positive influences on anthocyanins stability and color change in cloudy pomegranate juice. PMID:26212976

  11. Emerging applications of low temperature gas plasmas in the food industry.

    PubMed

    Shaw, Alex; Shama, Gilbert; Iza, Felipe

    2015-01-01

    The global burden of foodborne disease due to the presence of contaminating micro-organisms remains high, despite some notable examples of their successful reduction in some instances. Globally, the number of species of micro-organisms responsible for foodborne diseases has increased over the past decades and as a result of the continued centralization of the food processing industry, outbreaks now have far reaching consequences. Gas plasmas offer a broad range of microbicidal capabilities that could be exploited in the food industry and against which microbial resistance would be unlikely to occur. In addition to reducing the incidence of disease by acting on the micro-organisms responsible for food spoilage, gas plasmas could also play a role in increasing the shelf-life of perishable foods and thereby reduce food wastage with positive financial and environmental implications. Treatment need not be confined to the food itself but could include food processing equipment and also the environment in which commercial food processing occurs. Moreover, gas plasmas could also be used to bring about the degradation of undesirable chemical compounds, such as allergens, toxins, and pesticide residues, often encountered on foods and food-processing equipment. The literature on the application of gas plasmas to food treatment is beginning to reveal an appreciation that attention needs also to be paid to ensuring that the key quality attributes of foods are not significantly impaired as a result of treatment. A greater understanding of both the mechanisms by which micro-organisms and chemical compounds are inactivated, and of the plasma species responsible for this is forming. This is significant, as this knowledge can then be used to design plasma systems with tailored compositions that will achieve maximum efficacy. Better understanding of the underlying interactions will also enable the design and implementation of control strategies capable of minimizing variations in plasma treatment efficacy despite perturbations in environmental and operational conditions. PMID:25779089

  12. The effects of sterilization, processing and aging on the structure and morphology of medical-grade ultrahigh molecular weight polyethylene for use in total joint replacements

    NASA Astrophysics Data System (ADS)

    Goldman, Marni

    A pilot study was performed which examined the effects of gamma radiation sterilization after five years aging in air on the structure of ultrahigh molecular weight polyethylene (UHMWPE) for total joint replacements. A sterilized tibial component and a nonsterile block of polymer which had come from the same compression molded batch of material were characterized by differential scanning calorimetry (DSC), density gradient column (DGC), small angle x-ray scattering (SAXS), transmission electron microscopy (TEM) and fourier transform infrared spectroscopy (FTIR). Increases in crystallinity and density were observed for the sterilized component after five years aging in air. A thickening of the lamellae as well as an increase in their tortuosity was seen in the sterilized material. Oxygen uptake occurred in the irradiated specimens. Results indicated that chain scission was the dominant response to gamma irradiation sterilization and aging in air for five years. Material from four different processing conditions was sterilized by: gamma irradiation, electron beam irradiation, ethylene oxide gas, plasma, or not sterilized as a control. Groups were divided into aging environments: air, hyaluronic acid and hydrogen peroxide. Characterization by DSC, DGC, TEM, SAXS and FTIR was performed periodically over a period of one and a half years. Processing conditions had the least effect on the structure and morphology of UHMWPE. Initial increases in oxygen uptake were higher for those materials with higher nascent crystallinities. Trends observed for all materials as a function of sterilization, aging environment and time were similar. Sterilization method and subsequent aging time were the most important factor in examining the structure of UHMWPE. Ethylene oxide gas and plasma did not appear to alter the polymer. Both forms of irradiation resulted in the most changes with time augmenting some effects. Results indicated chain scission dominated in response to radiation and caused a degradation of the polymer. Aging environment had a significant effect on the polymer with hydrogen peroxide leading to the most dramatic changes including embrittlement of the material. A mechanism for the oxidation of the polymer is proposed in which oxygen attacks the amorphous regions leading to strains and the eventual creation of microcracks.

  13. Sterilization of Native Americans

    ERIC Educational Resources Information Center

    Dillingham, Brint

    1977-01-01

    The U.S. State Department's Agency for International Development (AID) is spending more than $143 million this year for population control measures in over 70 nations around the world and it is estimated that as much as $10 million was spent in one year for surgical sterilization procedures. (JC)

  14. Hierarchically Acting Sterile Neutrinos

    E-print Network

    Chian-Shu Chen; Ryo Takahashi

    2011-12-09

    We propose that a hierarchical spectrum of sterile neutrinos (eV, keV, $10^{13-15}$ GeV) is considered to as the explanations for MiniBooNE and LSND oscillation anomalies, dark matter, and baryon asymmetry of the universe (BAU) respectively. The scenario can also realize the smallness of active neutrino masses by seesaw mechanism.

  15. MINOS Sterile Neutrino Search

    SciTech Connect

    Koskinen, David Jason; /University Coll. London

    2009-09-01

    The Main Injector Neutrino Oscillation Search (MINOS) is a long-baseline accelerator neutrino experiment designed to measure properties of neutrino oscillation. Using a high intensity muon neutrino beam, produced by the Neutrinos at Main Injector (NuMI) complex at Fermilab, MINOS makes two measurements of neutrino interactions. The first measurement is made using the Near Detector situated at Fermilab and the second is made using the Far Detector located in the Soudan Underground laboratory in northern Minnesota. The primary goal of MINOS is to verify, and measure the properties of, neutrino oscillation between the two detectors using the {nu}{sub {mu}} {yields} V{sub {tau}} transition. A complementary measurement can be made to search for the existence of sterile neutrinos; an oft theorized, but experimentally unvalidated particle. The following thesis will show the results of a sterile neutrino search using MINOS RunI and RunII data totaling {approx}2.5 x 10{sup 20} protons on target. Due to the theoretical nature of sterile neutrinos, complete formalism that covers transition probabilities for the three known active states with the addition of a sterile state is also presented.

  16. Nonthermal plasma processor utilizing additive-gas injection and/or gas extraction

    DOEpatents

    Rosocha, Louis A.

    2006-06-20

    A device for processing gases includes a cylindrical housing in which an electrically grounded, metal injection/extraction gas supply tube is disposed. A dielectric tube surrounds the injection/extraction gas supply tube to establish a gas modification passage therearound. Additionally, a metal high voltage electrode circumscribes the dielectric tube. The high voltage electrode is energizable to create nonthermal electrical microdischarges between the high voltage electrode and the injection/extraction gas supply tube across the dielectric tube within the gas modification passage. An injection/extraction gas and a process gas flow through the nonthermal electrical microdischarges within the gas modification passage and a modified process gas results. Using the device contaminants that are entrained in the process gas can be destroyed to yield a cleaner, modified process gas.

  17. 21 CFR 880.6850 - Sterilization wrap.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Sterilization wrap. 880.6850 Section 880.6850 Food... § 880.6850 Sterilization wrap. (a) Identification. A sterilization wrap (pack, sterilization wrapper... sterilized by a health care provider. It is intended to allow sterilization of the enclosed medical...

  18. 21 CFR 880.6850 - Sterilization wrap.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Sterilization wrap. 880.6850 Section 880.6850 Food... § 880.6850 Sterilization wrap. (a) Identification. A sterilization wrap (pack, sterilization wrapper... sterilized by a health care provider. It is intended to allow sterilization of the enclosed medical...

  19. 21 CFR 880.6850 - Sterilization wrap.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Sterilization wrap. 880.6850 Section 880.6850 Food... § 880.6850 Sterilization wrap. (a) Identification. A sterilization wrap (pack, sterilization wrapper... sterilized by a health care provider. It is intended to allow sterilization of the enclosed medical...

  20. 21 CFR 880.6850 - Sterilization wrap.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Sterilization wrap. 880.6850 Section 880.6850 Food... § 880.6850 Sterilization wrap. (a) Identification. A sterilization wrap (pack, sterilization wrapper... sterilized by a health care provider. It is intended to allow sterilization of the enclosed medical...

  1. 21 CFR 880.6850 - Sterilization wrap.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Sterilization wrap. 880.6850 Section 880.6850 Food... § 880.6850 Sterilization wrap. (a) Identification. A sterilization wrap (pack, sterilization wrapper... sterilized by a health care provider. It is intended to allow sterilization of the enclosed medical...

  2. Gas heating and plasma expansion in pulsed microwave-excited microplasmas

    NASA Astrophysics Data System (ADS)

    Hoskinson, Alan R.; Yared, Alexander; Hopwood, Jeffrey

    2015-10-01

    Microwave resonators are used to generate microplasmas in atmospheric-pressure argon and helium. We present observations of the transient behavior of a microplasma after a fast increase in power, including time-resolved photography and spectroscopic gas temperature measurements. The results show that in argon both plasma filamentation and gas heating continue out to millisecond time scales, while helium microplasmas reach steady-state conditions after a few microseconds.

  3. Features of plasma glow in low pressure terahertz gas discharge

    SciTech Connect

    Bratman, V. L.; Golubev, S. V.; Izotov, I. V.; Kalynov, Yu. K.; Koldanov, V. A.; Razin, S. V.; Litvak, A. G.; Sidorov, A. V.; Skalyga, V. A.; Zorin, V. G.; Lobachevsky State University of Nizhny Novgorod , 23 Gagarina st., 603950 Nizhny Novgorod

    2013-12-15

    Investigations of the low pressure (1–100 Torr) gas discharge in the powerful (1 kW) quasi-optical terahertz (0.55 THz) wave beams were made. An intense afterglow was observed after the end of gyrotron terahertz radiation pulse. Afterglow duration significantly exceeded radiation pulse length (8 ?s). This phenomenon could be explained by the strong dependence of the collisional-radiative recombination rate (that is supposed to be the most likely mechanism of electron losses from the low pressure terahertz gas discharge) on electron temperature.

  4. A comparison of gas temperatures measured by ultraviolet laser scattering in atmospheric plasma sources

    NASA Astrophysics Data System (ADS)

    Sommers, Bradley S.; Adams, Steven F.

    2015-12-01

    A laser scattering system utilizing an ultraviolet laser with a triple grating spectrometer has been assembled in order to measure gas temperature in atmospheric plasma sources. Such laser scattering interactions offer a non-invasive technique for investigating atmospheric microplasma sources, which have potential applications in remote optical sensing, materials processing, and environmental decontamination. This particular system is unique in that it utilizes a ultraviolet laser line (266?nm), which increases the cross section for Rayleigh and Raman scattering by a factor of 16 in comparison to the more common 532?nm laser operating in the visible range. In this work, the laser scattering system is used to directly compare the rotational gas temperature (T r) and gas kinetic temperature (T g) in two different atmospheric plasma sources [1]: a direct current plasma jet operating on nitrogen and [2] a conventional pin–pin glow microdischarge in air. Results show agreement between T r and T g both in the low temperature afterglow of the plasma jet (300–700 K) and the hot center of the atmospheric glow (1500–2000 K). These observations lend credence to the common assumption of rotational relaxation in atmospheric plasmas and validate the ultraviolet laser diagnostic for future application in atmospheric microplasma sources.

  5. Thermal behavior of bovine serum albumin after exposure to barrier discharge helium plasma jet

    NASA Astrophysics Data System (ADS)

    Jijie, R.; Pohoata, V.; Topala, I.

    2012-10-01

    Non-thermal plasma jets at atmospheric pressure are useful tools nowadays in plasma medicine. Various applications are tested such as cauterization, coagulation, wound healing, natural and artificial surfaces decontamination, and sterilization. In order to know more about the effects of gas plasma on biological supramolecules, we exposed protein powders to a barrier discharge helium plasma jet. Then, spectroscopic investigations were carried out in order to obtain information on protein secondary, tertiary, and quaternary structures. We obtained a reduction of the protein alpha-helix content after the plasma exposure and a different behavior, for both thermal denaturation/renaturation kinetics and thermal aggregation process.

  6. Electron beam optimization using 3D printed gas cells in a laser-plasma accelerator

    NASA Astrophysics Data System (ADS)

    Behm, Keegan; Vargas, Michael; Schumaker, William; Zhao, Zhen; Chvykov, Vladimir; Maksimchuk, Anatoly; Yanovsky, Victor; Thomas, Alexander; Krushelnick, Karl

    2013-10-01

    Laser driven tabletop accelerators have made it possible to produce tunable relativistic beams of electrons. One of the ways in which these electron beams can be optimized is by changing the plasma environment that creates and accelerates the electrons. Using a rapid prototyped gas cell built with a 3D printer to create a relatively contained environment for the plasma has increased the electron beam pointing stability and has created more monoenergetic beams than what was achieved with a gas jet. Several different gas cell designs have been studied and tested to determine the optimum configuration and gas mixture for stable, monoenergetic electron beams. Two-staged gas cells have produced the highest quality electron beams with greatest pointing and beam stability. The purpose of the two-staged gas cell is to divide the laser wakefield acceleration process into two steps, an injection stage, where a helium-nitrogen mixture is used to inject more charge into the wake of the laser, and an acceleration stage where pure helium is used to create a plasma conducive for accelerating the electrons captured in the first stage.

  7. Plasma-melting and plasma-melt-gas-atomization of high temperature intermetallic compounds (Nb3Al)

    NASA Astrophysics Data System (ADS)

    Kohno, T.; Kohmoto, H.; Murahashi, N.

    There has been much interest in rapidly solidified niobium-aluminides (Nb3Al) as structural materials for ultrahigh temperature applications. Pressurizing melting atmosphere to approximately 0.25 MPa can reduce Al vaporization during plasma melting. A unique plasma-melt-gas-atomization process (PMGA) has been developed for making rapidly-solidified powder of high temperature intermetallic compounds such as Nb3Al. In this technique, we use only water-cooled copper as a tundish for bottom poring, instead of refractories or refractory metals. The crystal structure of PMGA'ed Nb3Al powder consists of an almost Al-saturated solid solution of niobium (bcc). This fact means that the solidification rate of PMGA is sufficiently high.

  8. Method for forming synthesis gas using a plasma-catalyzed fuel reformer

    DOEpatents

    Hartvigsen, Joseph J; Elangovan, S; Czernichowski, Piotr; Hollist, Michele

    2015-04-28

    A method of forming a synthesis gas utilizing a reformer is disclosed. The method utilizes a reformer that includes a plasma zone to receive a pre-heated mixture of reactants and ionize the reactants by applying an electrical potential thereto. A first thermally conductive surface surrounds the plasma zone and is configured to transfer heat from an external heat source into the plasma zone. The reformer further includes a reaction zone to chemically transform the ionized reactants into synthesis gas comprising hydrogen and carbon monoxide. A second thermally conductive surface surrounds the reaction zone and is configured to transfer heat from the external heat source into the reaction zone. The first thermally conductive surface and second thermally conductive surface are both directly exposed to the external heat source. A corresponding apparatus and system are also disclosed herein.

  9. Hybrid Particle-Continuum Methods for Nonequilibrium Gas and Plasma Flows

    SciTech Connect

    Boyd, Iain D.

    2011-05-20

    Two different hybrid particle-continuum methods are described for simulation of nonequilibrium gas and plasma dynamics. The first technique, used for nonequilibrium hypersonic gas flows, uses either a continuum description or a particle method throughout a flow domain based on local conditions. This technique is successful in reproducing the results of full particle simulations at a small fraction of the cost. The second method uses a continuum model of the electrons combined with a particle description of the ions and atoms for simulating plasma jets. The physical accuracy of the method is assessed through comparisons with plasma plume measurements obtained in space. These examples illustrate that the complex physical phenomena associated with nonequilibrium conditions can be simulated with physical accuracy and numerical efficiency using such hybrid approaches.

  10. Investigation of a Gas Jet-Produced Hollow Plasma Wakefield Accelerator

    SciTech Connect

    Kirby, N; Blumenfeld, I.; Hogan, M.J.; Siemann, R.H.; Walz, D.R.; Davidson, A.W.; Huang, C.; /UCLA

    2009-05-21

    The effect of ion motion and the need for practical positron propagation in a plasma wakefield accelerator (PWFA) have incited interest in hollow plasma channels. These channels are typically assumed to be cylindrically symmetric; however, a different geometry might be easier to achieve. The introduction of an obstruction into the outlet of a high Mach number gas jet can produce two parallel slabs of gas separated by a density depression. Here, there is a detailed simulation study of the density depression created in such a system. This investigation reveals that the density depression is insufficient at the desired plasma density. However, insights from the simulations suggest another avenue for the creation of the hollow slab geometry.

  11. Reaction chemistry and optimization of plasma remediation of N,O, from gas streams

    E-print Network

    Kushner, Mark

    oxides of nitrogen (N,O,) from gas streams resulting from the combustion of fossil fuels. Plasma period (during which the densities of various nitrogen oxides are reapportioned with little net removal. INTRODUCTION Oxides of nitrogen (N,O,) in the atmosphere have been shown to be detrimental to human health

  12. Viscosity calculated in simulations of strongly coupled dusty plasmas with gas frictiona)

    E-print Network

    Goree, John

    Viscosity calculated in simulations of strongly coupled dusty plasmas with gas frictiona) Yan Feng. The static viscosity g and the wave-number-dependent viscosity g(k) are calculated from the microscopic shear-number-dependent viscosity g(k) is validated by comparing the results of g(k) from the two simulations. It is also verified

  13. Laser Discharge Initiation for Gas-fed Pulsed Plasma Thrusters J.W. Berkery

    E-print Network

    (GFPPT), it will release from that surface a certain flux of electrons through the photoelectric effect attempted to use ultraviolet light to draw a current pulse through the photoelectric effect. Infared light is to produce spatially uniform current sheet initiation in gas-fed pulsed plasma thrusters. The effect is ex

  14. A reference protocol for comparing the biocidal properties of gas plasma generating devices

    NASA Astrophysics Data System (ADS)

    Shaw, A.; Seri, P.; Borghi, C. A.; Shama, G.; Iza, F.

    2015-12-01

    Growing interest in the use of non-thermal, atmospheric pressure gas plasmas for decontamination purposes has resulted in a multiplicity of plasma-generating devices. There is currently no universally approved method of comparing the biocidal performance of such devices and in the work described here spores of the Gram positive bacterium Bacillus subtilis (ATCC 6633) are proposed as a suitable reference biological agent. In order to achieve consistency in the form in which the biological agent in question is presented to the plasma, a polycarbonate membrane loaded with a monolayer of spores is proposed. The advantages of the proposed protocol are evaluated by comparing inactivation tests in which an alternative microorganism (methicillin resistant Staphylococcus aureus—MRSA) and the widely-used sample preparation technique of directly pipetting cell suspensions onto membranes are employed. In all cases, inactivation tests with either UV irradiation or plasma exposure were more reproducible when the proposed protocol was followed.

  15. Surface modification and stability of detonation nanodiamonds in microwave gas discharge plasma

    NASA Astrophysics Data System (ADS)

    Stanishevsky, Andrei V.; Walock, Michael J.; Catledge, Shane A.

    2015-12-01

    Detonation nanodiamonds (DND), with low hydrogen content, were exposed to microwave plasma generated in pure H2, N2, and O2 gases and their mixtures, and investigated using X-ray diffraction (XRD), Fourier Transform Infrared (FTIR), Raman, and X-ray photoelectron spectroscopies. Considerable alteration of the DND surface was observed under the plasma conditions for all used gases, but the diamond structure of the DND particle core was preserved in most cases. The stabilizing effect of H2 in H2/N2 and H2/O2 binary gas plasmas on the DND structure and the temperature-dependent formation of various CNHx surface groups in N2 and H2/N2 plasmas were observed and discussed for the first time. DND surface oxidation and etching were the main effects of O2 plasma, whereas the N2 plasma led to DND surfaces rich in amide groups below 1073 K and nitrile groups at higher temperatures. Noticeable graphitization of the DND core structure was detected only in N2 plasma when the substrate temperature was above 1103 K.

  16. Removal of Elemental Mercury from a Gas Stream Facilitated by a Non-Thermal Plasma Device

    SciTech Connect

    Charles Mones

    2006-12-01

    Mercury generated from anthropogenic sources presents a difficult environmental problem. In comparison to other toxic metals, mercury has a low vaporization temperature. Mercury and mercury compounds are highly toxic, and organic forms such as methyl mercury can be bio-accumulated. Exposure pathways include inhalation and transport to surface waters. Mercury poisoning can result in both acute and chronic effects. Most commonly, chronic exposure to mercury vapor affects the central nervous system and brain, resulting in neurological damage. The CRE technology employs a series of non-thermal, plasma-jet devices to provide a method for elemental mercury removal from a gas phase by targeting relevant chemical reactions. The technology couples the known chemistry of converting elemental mercury to ionic compounds by mercury-chlorine-oxygen reactions with the generation of highly reactive species in a non-thermal, atmospheric, plasma device. The generation of highly reactive metastable species in a non-thermal plasma device is well known. The introduction of plasma using a jet-injection device provides a means to contact highly reactive species with elemental mercury in a manner to overcome the kinetic and mass-transfer limitations encountered by previous researchers. To demonstrate this technology, WRI has constructed a plasma test facility that includes plasma reactors capable of using up to four plasma jets, flow control instrumentation, an integrated control panel to operate the facility, a mercury generation system that employs a temperature controlled oven and permeation tube, combustible and mercury gas analyzers, and a ductless fume hood designed to capture fugitive mercury emissions. Continental Research and Engineering (CR&E) and Western Research Institute (WRI) successfully demonstrated that non-thermal plasma containing oxygen and chlorine-oxygen reagents could completely convert elemental mercury to an ionic form. These results demonstrate potential the application of this technology for removing elemental mercury from flue gas streams generated by utility boilers. On an absolute basis, the quantity of reagent required to accomplish the oxidation was small. For example, complete oxidation of mercury was accomplished using a 1% volume fraction of oxygen in a nitrogen stream. Overall, the tests with mercury validated the most useful aspect of the CR&E technology: Providing a method for elemental mercury removal from a gas phase by employing a specific plasma reagent to either increase reaction kinetics or promote reactions that would not have occurred under normal circumstances.

  17. Characterization and gas temperature measurements of a waveguide-based microwave plasma torch

    NASA Astrophysics Data System (ADS)

    Hammond, Peter J.

    Research to characterize a microwave plasma torch was initiated at Penn State University. Microwave power input into the device initiates and sustains plasma in an argon gas jet issuing from a copper nozzle into the ambient atmosphere. Protruding through a rectangular waveguide, the nozzle acts to enhance the local electric field when microwaves are excited in the waveguide. The plasma resembles a small flame, approximately 2--4 cm in length and less than 1 cm in total diameter. The primary research interests which have driven experimental design and characterization of the torch include (1) increasing plasma jet control via improved impedance matching; (2) reducing the erosion of the nozzle tips; and (3) determining the viability of applying the Penn State Microwave Plasma Torch (PSMPT) to the cutting and melting of materials via gas temperature measurements. Literature on the similar microwave torches---particularly, those of the single-electrode plasma (SEP) type---was reviewed. Several design issues were encountered during early testing with the torch. Impedance matching and nozzle erosion presented the most significant obstacles. Poor impedance matching was overcome most effectively with an automatic tuner that could determine a match quickly. Nozzle erosion is not often addressed in the literature on SEPs. However, significant erosion was a limiting factor in early tests with the torch. More recent testing reveals that erosion can be mitigated by addition of a secondary flow of argon around the primary nozzle gas flow. Gas temperature in the plasma was deduced via OH rotational temperature measurements. Molecular nitrogen spectral interference with the OH spectra required fitting both the OH and N2 second positive system in the region of 305--318 nm. The results of this testing indicate an OH rotational temperature---and assumed gas temperature---between 2700--3400 K. These results indicate that the torch should prove useful in cutting and heat-treatment applications for some materials. Recommended areas of future study include examining the plasma for possible filamentation and enhanced spectroscopic diagnostics.

  18. Gas-filled targets for large scalelength plasma interaction experiments on Nova

    SciTech Connect

    Powers, L.V.; Berger, R.L.; Munro, D.H.

    1994-11-01

    Stimulated Brillouin backscatter from large scale length gas-filled targets has been measured on Nova. These targets were designed to approximate conditions in indirect drive ignition target designs in underdense plasma electron density (n{sub e}{approximately}10{sup 21}/cm{sup 3}), temperature (T{sub e}>3 keV), and gradient scale lengths (L{sub n}{approximately} mm, L{sub v}>6 mm) as well as calculated gain for stimulated Brillouin scattering (SBS). The targets used in these experiments were gas-filled balloons with polyimide walls (gasbags) and gas-filled hohlraums. Detailed characterization using x-ray imaging and x-ray and optical spectroscopy verifies that the calculated plasma conditions are achieved. Time-resolved SBS backscatter from these targets is <3% for conditions similar to ignition target designs.

  19. Sterile Neutrino Anarchy

    E-print Network

    Julian Heeck; Werner Rodejohann

    2013-02-07

    Lepton mixing, which requires physics beyond the Standard Model, is surprisingly compatible with a minimal, symmetryless and unbiased approach, called anarchy. This contrasts with highly involved flavor symmetry models. On the other hand, hints for light sterile neutrinos have emerged from a variety of independent experiments and observations. If confirmed, their existence would represent a groundbreaking discovery, calling for a theoretical interpretation. We discuss anarchy in the two-neutrino eV-scale seesaw framework. The distributions of mixing angles and masses according to anarchy are in agreement with global fits for the active and sterile neutrino parameters. Our minimal and economical scenario predicts the absence of neutrinoless double beta decay and one vanishing neutrino mass, and can therefore be tested in future experiments.

  20. The testing of sterilizers

    PubMed Central

    Kelsey, J. C.

    1961-01-01

    Satisfactory spore preparations for testing hospital sterilizers can be made from B. stearothermophilus and comparatively simple methods for loading and drying the papers are considered to be valid. Each batch of spore papers should be calibrated by plotting dose-response curves for exposure to steam. A minimum standard in terms of the L.D.50 to moist heat is proposed and confidence limits suggested when such papers are used in pairs or small multiples. PMID:13752417

  1. Low power gas discharge plasma mediated inactivation and removal of biofilms formed on biomaterials

    PubMed Central

    Traba, Christian; Chen, Long; Liang, Jun F.

    2013-01-01

    The antibacterial activity of gas discharge plasma has been studied for quiet some time. However, high biofilm inactivation activity of plasma was only recently reported. Studies indicate that the etching effect associated with plasmas generated represent an undesired effect, which may cause live bacteria relocation and thus contamination spreading. Meanwhile, the strong etching effects from these high power plasmas may also alter the surface chemistry and affect the biocompatibility of biomaterials. In this study, we examined the efficiency and effectiveness of low power gas discharge plasma for biofilm inactivation and removal. Among the three tested gases, oxygen, nitrogen, and argon, discharge oxygen demonstrated the best anti-biofilm activity because of its excellent ability in killing bacteria in biofilms and mild etching effects. Low power discharge oxygen completely killed and then removed the dead bacteria from attached surface but had negligible effects on the biocompatibility of materials. DNA left on the regenerated surface after removal of biofilms did not have any negative impact on tissue cell growth. On the contrary, dramatically increased growth was found for these cells seeded on regenerated surfaces. These results demonstrate the potential applications of low power discharge oxygen in biofilm treatments of biomaterials and indwelling device decontaminations. PMID:23894232

  2. Transition from gas to plasma kinetic equilibria in gravitating axisymmetric structures

    SciTech Connect

    Cremaschini, Claudio; Stuchlík, Zden?k

    2014-04-15

    The problem of the transition from gas to plasma in gravitating axisymmetric structures is addressed under the assumption of having initial and final states realized by kinetic Maxwellian-like equilibria. In astrophysics, the theory applies to accretion-disc scenarios around compact objects. A formulation based on non-relativistic kinetic theory for collisionless systems is adopted. Equilibrium solutions for the kinetic distribution functions describing the initial neutral matter and the resulting plasma state are constructed in terms of single-particle invariants and expressed by generalized Maxwellian distributions. The final plasma configuration is related to the initial gas distribution by the introduction of appropriate functional constraints. Qualitative aspects of the solution are investigated and physical properties of the system are pointed out. In particular, the admitted functional dependences of the fluid fields carried by the corresponding equilibrium distributions are determined. Then, the plasma is proved to violate the condition of quasi-neutrality, implying a net charge separation between ions and electrons. This result is shown to be independent of the precise realization of the plasma distribution function, while a physical mechanism able to support a non-neutral equilibrium state is proposed.

  3. Relic keV sterile neutrinos and reionization

    E-print Network

    Peter L. Biermann; Alexander Kusenko

    2006-03-02

    A sterile neutrino with mass of several keV can account for cosmological dark matter, as well as explain the observed velocities of pulsars. We show that X-rays produced by the decays of these relic sterile neutrinos can boost the production of molecular hydrogen, which can speed up the cooling of gas and the early star formation, which can, in turn, lead to a reionization of the universe at a high enough redshift to be consistent with the WMAP results.

  4. Intense microwave pulse propagation through gas breakdown plasmas in a waveguide

    SciTech Connect

    Byrne, D.P.

    1986-10-08

    High-power microwave pulse-compression techniques are used to generate 2.856 GHz pulses which are propagated in a TE/sub 10/ mode through a gas filled section of waveguide, where the pulses interact with self-generated gas-breakdown plasmas. Pulse envelopes transmitted through the plasmas, with duration varying from 2 ns to greater than 1 ..mu..s, and peak powers of a few kW to nearly 100 MW, are measured as a function of incident pulse and gas pressure for air, nitrogen, and helium. In addition, the spatial and temporal development of the optical radiation emitted by the breakdown plasmas are measured. For transmitted pulse durations greater than or equal to 100 ns, good agreement is found with both theory and existing measurements. For transmitted pulse duration as short as 2 ns (less than 10 rf cycles), a two-dimensional model is used in which the electrons in the plasma are treated as a fluid whose interactions with the microwave pulse are governed by a self-consistent set of fluid equations and Maxwell's equations for the electromagnetic field. The predictions of this model for air are compared with the experimental results over a pressure range of 0.8 torr to 300 torr. Good agreement is obtained above about 1 torr pressure, demonstrating that microwave pulse propagation above the breakdown threshold can be accurately modeled on this time scale. 63 refs., 44 figs., 2 tabs.

  5. Investigation of a Light Gas Helicon Plasma Source for the VASIMR Space Propulsion System

    NASA Technical Reports Server (NTRS)

    Squire, J. P.; Chang-Diaz, F. R.; Jacobson, V. T.; Glover, T. W.; Baity, F. W.; Carter, M. D.; Goulding, R. H.; Bengtson, R. D.; Bering, E. A., III

    2003-01-01

    An efficient plasma source producing a high-density (approx.10(exp 19/cu m) light gas (e.g. H, D, or He) flowing plasma with a high degree of ionization is a critical component of the Variable Specific Impulse Magnetoplasma Rocket (VASIMR) concept. We are developing an antenna to apply ICRF power near the fundamental ion cyclotron resonance to further accelerate the plasma ions to velocities appropriate for space propulsion applications. The high degree of ionization and a low vacuum background pressure are important to eliminate the problem of radial losses due to charge exchange. We have performed parametric (e.g. gas flow, power (0.5 - 3 kW), magnetic field , frequency (25 and 50 MHz)) studies of a helicon operating with gas (H2 D2, He, N2 and Ar) injected at one end with a high magnetic mirror downstream of the antenna. We have explored operation with a cusp and a mirror field upstream. Plasma flows into a low background vacuum (<10(exp -4) torr) at velocities higher than the ion sound speed. High densities (approx. 10(exp 19/cu m) have been achieved at the location where ICRF will be applied, just downstream of the magnetic mirror.

  6. PREFACE: 12th International Conference on Gas Discharge Plasmas and Their Applications

    NASA Astrophysics Data System (ADS)

    Koval, N.; Landl, N.; Bogdan, A.; Yudin, A.

    2015-11-01

    The 12th International Conference ''Gas Discharge Plasmas and Their Applications'' (GDP 2015) was held in Tomsk, Russia, on September 6-11, 2015. GDP 2015 represents a continuation of the conferences on physics of gas discharge held in Russia since 1984 and seminars and conferences on the technological applications of low temperature plasmas traditionally organized in Tomsk. The six-day Conference brought together the specialists from different countries and organizations and provided an excellent opportunity to exchange knowledge, make oral contributions and poster presentations, and initiate discussions on the topics that are of interest to the Conference participants. The selected papers of the Conference cover a wide range of technical areas and modern aspects of the physical processes in the generators of low-temperature plasma, the low and high-pressure discharges, the pulsed plasma sources, the surface modification, and other gas-discharge technologies. The Conference was hosted by Institute of High Current Electronics SB RAS, Tomsk Polytechnic University, Tomsk Scientific Center, and Tomsk State University of Architecture and Building.

  7. Xenon Additives Detection in Helium Micro-Plasma Gas Analytical Sensor

    NASA Astrophysics Data System (ADS)

    Tsyganov, Alexander; Kudryavtsev, Anatoliy; Mustafaev, Alexander

    2012-10-01

    Electron energy spectra of Xe atoms at He filled micro-plasma afterglow gas analyzer were observed using Collisional Electron Spectroscopy (CES) method [1]. According to CES, diffusion path confinement for characteristic electrons makes it possible to measure electrons energy distribution function (EEDF) at a high (up to atmospheric) gas pressure. Simple geometry micro-plasma CES sensor consists of two plane parallel electrodes detector and microprocessor-based acquisition system providing current-voltage curve measurement in the afterglow of the plasma discharge. Electron energy spectra are deduced as 2-nd derivative of the measured current-voltage curve to select characteristic peaks of the species to be detected. Said derivatives were obtained by the smoothing-differentiating procedure using spline least-squares approximation of a current-voltage curve. Experimental results on CES electron energy spectra at 10-40 Torr in pure He and in admixture with 0.3% Xe are discussed. It demonstrates a prototype of the new miniature micro-plasma sensors for industry, safety and healthcare applications. [1]. A.A.Kudryavtsev, A.B.Tsyganov. US Patent 7,309,992. Gas analysis method and ionization detector for carrying out said method, issued December 18, 2007.

  8. Two-stage plasma gun based on a gas discharge with a self-heating hollow emitter.

    PubMed

    Vizir, A V; Tyunkov, A V; Shandrikov, M V; Oks, E M

    2010-02-01

    The paper presents the results of tests of a new compact two-stage bulk gas plasma gun. The plasma gun is based on a nonself-sustained gas discharge with an electron emitter based on a discharge with a self-heating hollow cathode. The operating characteristics of the plasma gun are investigated. The discharge system makes it possible to produce uniform and stable gas plasma in the dc mode with a plasma density up to 3x10(9) cm(-3) at an operating gas pressure in the vacuum chamber of less than 2x10(-2) Pa. The device features high power efficiency, design simplicity, and compactness. PMID:20192469

  9. Two-stage plasma gun based on a gas discharge with a self-heating hollow emitter

    SciTech Connect

    Vizir, A. V.; Tyunkov, A. V.; Shandrikov, M. V.; Oks, E. M.

    2010-02-15

    The paper presents the results of tests of a new compact two-stage bulk gas plasma gun. The plasma gun is based on a nonself-sustained gas discharge with an electron emitter based on a discharge with a self-heating hollow cathode. The operating characteristics of the plasma gun are investigated. The discharge system makes it possible to produce uniform and stable gas plasma in the dc mode with a plasma density up to 3x10{sup 9} cm{sup -3} at an operating gas pressure in the vacuum chamber of less than 2x10{sup -2} Pa. The device features high power efficiency, design simplicity, and compactness.

  10. Gas laser for efficient sustaining a continuous optical discharge plasma in scientific and technological applications

    SciTech Connect

    Zimakov, V P; Kuznetsov, V A; Kedrov, A Yu; Solov'ev, N G; Shemyakin, A N; Yakimov, M Yu

    2009-09-30

    A stable high-power laser is developed for the study and technical applications of a continuous optical discharge (COD). The laser based on the technology of a combined discharge in a scheme with a fast axial gas flow emits 2.2 kW at 10.6 {mu}m per meter of the active medium in continuous and repetitively pulsed regimes with the electrooptical efficiency 20%. The sustaining of the COD plasma in argon and air is demonstrated at the atmospheric pressure. The emission properties of the COD plasma are studied and its possible applications are discussed. (lasers)

  11. [Determination of unchanged clonazepam in plasma by gas-liquid chromatography].

    PubMed

    Marliac, Y; Barazi, S

    1989-01-01

    A gas-liquid chromatography method for unchanged clonazepam determination in plasma using a nitrogen-phosphorus detector is presented. The drug is extracted from buffered plasma at pH 9.0 with benzen. The proposed method is simple, rapid and permits to determine clonazepam with a good precision (delta = 3.10 p. cent) and reproductibility (CV = 3.04 p. cent). The method allows the determination of other benzodiazepins. Plasmatics levels of inchanged clonazepam had been determined on some clinical cases. PMID:2690682

  12. [Determination of endogenous agmatine in rat plasma by isotope dilution-gas chromatography-mass spectrometry].

    PubMed

    Qiu, Zhongli; Lin, Ying; Xiong, Zhili; Xie, Jianwei

    2014-07-01

    A method for the determination of endogenous agmatine in rat plasma was developed by isotope dilution-gas chromatography-negative chemical ionization mass spectrometry (GC-NCI/MS). The plasma samples were analyzed after protein precipitation, evaporation, derivatization by hexafluoroacetone (HFAA), and clean-up on a Florisil SPE column. The GC-MS analysis utilized stable isotope d8-agmatine as internal standard. The samples after treatme were tested by negative chemical ionization with selected ion monitoring (SIM) which was set at m/z 492 (molecular ion of agmatine) and m/z 500 (molecular ion of internal standard). The limit of detection (LOD) of agmatine standard solution was 0.005 7 ng/mL. The calibration curve of the agmatine spiked in rat plasma showed a good linear relationship at the range of 1.14-57.0 ng/mL (r = 0.997). The recoveries of agmatine spiked in rat plasma ranged from 92.3% to 109.8%. Inter-day and intra-day precisions were less than 15%. The average concentration level of agmatine in rat plasma was (22 +/- 9) ng/mL, and there was no significant difference between male and female SD rats (p > 0.05). The method is high sensitive and specific, and can be used for the determination of endogenous agmatine in plasma. It provides a strong support for the subsequent research of agmatine. PMID:25255573

  13. Plasma-produced phase-pure cuprous oxide nanowires for methane gas sensing

    NASA Astrophysics Data System (ADS)

    Cheng, Qijin; Yan, Wei; Randeniya, Lakshman; Zhang, Fengyan; Ken Ostrikov, Kostya

    2014-03-01

    Phase-selective synthesis of copper oxide nanowires is warranted by several applications, yet it remains challenging because of the narrow windows of the suitable temperature and precursor gas composition in thermal processes. Here, we report on the room-temperature synthesis of small-diameter, large-area, uniform, and phase-pure Cu2O nanowires by exposing copper films to a custom-designed low-pressure, thermally non-equilibrium, high-density (typically, the electron number density is in the range of 1011-1013 cm-3) inductively coupled plasmas. The mechanism of the plasma-enabled phase selectivity is proposed. The gas sensors based on the synthesized Cu2O nanowires feature fast response and recovery for the low-temperature (˜140 °C) detection of methane gas in comparison with polycrystalline Cu2O thin film-based gas sensors. Specifically, at a methane concentration of 4%, the response and the recovery times of the Cu2O nanowire-based gas sensors are 125 and 147 s, respectively. The Cu2O nanowire-based gas sensors have a potential for applications in the environmental monitoring, chemical industry, mining industry, and several other emerging areas.

  14. Plasma-produced phase-pure cuprous oxide nanowires for methane gas sensing

    SciTech Connect

    Cheng, Qijin Zhang, Fengyan; Yan, Wei; Randeniya, Lakshman; Ostrikov, Kostya

    2014-03-28

    Phase-selective synthesis of copper oxide nanowires is warranted by several applications, yet it remains challenging because of the narrow windows of the suitable temperature and precursor gas composition in thermal processes. Here, we report on the room-temperature synthesis of small-diameter, large-area, uniform, and phase-pure Cu{sub 2}O nanowires by exposing copper films to a custom-designed low-pressure, thermally non-equilibrium, high-density (typically, the electron number density is in the range of 10{sup 11}–10{sup 13}?cm{sup ?3}) inductively coupled plasmas. The mechanism of the plasma-enabled phase selectivity is proposed. The gas sensors based on the synthesized Cu{sub 2}O nanowires feature fast response and recovery for the low-temperature (?140?°C) detection of methane gas in comparison with polycrystalline Cu{sub 2}O thin film-based gas sensors. Specifically, at a methane concentration of 4%, the response and the recovery times of the Cu{sub 2}O nanowire-based gas sensors are 125 and 147?s, respectively. The Cu{sub 2}O nanowire-based gas sensors have a potential for applications in the environmental monitoring, chemical industry, mining industry, and several other emerging areas.

  15. Characterization of volatile radiolysis products in radiation-sterilized plastics by thermal desorption-gas chromatography-mass spectrometry: screening of six medical polymers

    NASA Astrophysics Data System (ADS)

    Buchalla, Rainer; Boess, Christian; Bögl, Klaus Werner

    1999-09-01

    Volatile radiolysis products of six medical polymers were identified by TDS-GC-MS after sterilizing doses of ca 25 kGy. All the polymers—PS, MABS, PA-6, PVC, PE, and PP—produce detectable amounts of volatiles which remain trapped in the polymer matrix for considerable times; the products and their concentrations are characteristic for each plastic. The main products of PS are acetophenone, benzaldehyde, phenol, 1-phenylethanol, and phenylacetaldehyde; their concentrations are ca one order of magnitude below the residual styrene/styrene dimer levels. Some trace products are formed with still lower yields—with the exception of benzene these are also oxidized aromatic compounds. The same volatiles are observed in MABS, which additionally gives some aliphatic compounds. PA-6 yields pentanamide as the main product, plus traces of some homologous amides. The main products of PVC and PP are fragments of additives, i.e., of stabilizers and phenol-type antioxidants, respectively. The PE produces only traces of hydrocarbons, aldehydes, ketones, and carboxylic acids, which largely disappear within weeks. The effects of irradiation on polymer pellets and injection-molded parts are comparable. The implications of our results for radiation detection and for the safety of irradiated devices and packaging materials are briefly discussed.

  16. Pulsed electromagnetic gas acceleration. [magnetohydrodynamics, plasma power sources and plasma propulsion

    NASA Technical Reports Server (NTRS)

    Jahn, R. G.; Vonjaskowsky, W. F.; Clark, K. E.

    1975-01-01

    Terminal voltage measurements with various cathodes and anodes in a high power, quasi-steady magnetoplasmadynamic (MPD) are discussed. The magnitude of the current at the onset of voltage fluctuations is shown to be an increasing function of cathode area and a weaker decreasing function of anode area. Tests with a fluted cathode indicated that the fluctuations originate in the plasma adjacent to the cathode rather than at the cathode surface. Measurements of radiative output from an optical cavity aligned to examine the current-carrying portion of a two-dimensional, 56 kA magnetoplasmadynamic discharge reveal no lasing in that region, consistent with calculations of electron excitation and resonance radiation trapping. A voltage-swept double probe technique allows single-shot determination of electron temperature and electron number density in the recombining MPD exhaust flow. Current distributions within the cavity of MPD hollow cathodes for various static prefills with no injected mass flow are examined.

  17. Dynamics of plasma expansion and shockwave formation in femtosecond laser-ablated aluminum plumes in argon gas at atmospheric pressures

    E-print Network

    Harilal, S. S.

    in argon gas at atmospheric pressures Alexander Miloshevsky, Sivanandan S. Harilal, Gennady Miloshevsky formation in fs-pulse and ns-pulse laser ablated Al plumes in an ambient gas at atmospheric pressures. VC plasma expansion into a background gas at atmospheric pressure is cru- cial for many engineering

  18. Influence of internal cold gas flow and of nozzle contour on spray properties of an atmospheric plasma spray torch

    SciTech Connect

    Henne, R.H.; Borck, V.; Mayr, W.; Landes, K.; Reusch, A.

    1995-12-31

    With an automated Laser Doppler Anemometry (LDA) equipment trajectories, distributions and velocities of spray particles were measured operating a plasma spray torch under atmospheric pressure conditions. For this purpose a standard APS torch (PT F4) was used, applying different gas distribution rings and nozzle modifications to study the influence of internal plasma gas flow and of plasma jet formation. The main results are: (1) An inclined injection of the plasma cold gas results in a considerable spin of the plasma jet and a significant deviation of the particle trajectories around the plasma jet center. (2) With a plasma cold gas injection parallel to the torch axis no spin is observable, but torch voltage and the plasma jet enthalpy show considerably diminished values. (3) The flow of injected powder may be split up, if it is injected too fast. (4) In comparison with cylindrical nozzles, specially developed nozzles with a controlled expanding contour, lead to broader temperature profiles across the plasma jet and hence to better melting conditions for the particles.

  19. Measurements of large scale-length plasmas produced from gas-filled targets

    SciTech Connect

    Back, C.A.; Berger, R.L.; Estabrook, K.

    1995-06-30

    Apart from their intrinsic interest, plasma physics processes are important because they affect the coupling of the laser energy into laser-irradiated targets. Recently, new gas-filled targets have been developed to create large mm-size plasmas for the study of stimulated Brillouin scattering (SBS) and stimulated Raman scattering (SRS). We present x-ray images and x-ray spectra to characterize these targets, which show that the plasmas are homogeneous, have electron densities of {approximately}10{sup 21} cm{sup {minus}3}, and attain electron temperatures of {approximately}3 keV. We also present SBS measurements to demonstrate how systematic studies of physical phenomena can be performed using these targets.

  20. Determination of clemastine in human plasma by gas chromatography with nitrogen-phosphorus detection.

    PubMed

    Davydova, N N; Yasuda, S U; Woosley, R L; Wainer, I W

    2000-07-01

    A method for the quantitative determination of clemastine in human plasma has been developed and validated. The assay uses gas chromatography with nitrogen-phosphorus detection and a HP-1 capillary column (25 mx0.22 mm, film thickness 0.33 mm) coated with dimethylpolysiloxane. Clemastine (with orphenadrine as internal standard) was isolated from human plasma using liquid-liquid extraction. A linear relationship was observed between 0.1 and 12.8 ng/ml using the peak area ratio of clemastine to orphenadrine with a correlation coefficient greater than 0.99 (the detection limit for clemastine was 0.06 ng/ml). The intra- and inter-day coefficients of variation were less than 11%. The developed method was used for the analysis of plasma samples from healthy volunteers (n = 19) to examine the pharmacokinetics of the antihistamine clemastine after single and multiple oral doses of clemastine fumarate. PMID:10985579

  1. Intense terahertz-pulse generation by four-wave mixing process in induced gas plasma

    NASA Astrophysics Data System (ADS)

    Wicharn, S.; Buranasiri, P.

    2015-08-01

    In this article, we have numerically investigated an intense terahertz (THz) pulses generation in gaseous plasma based on the third-order nonlinear effect, four-wave mixing rectification (FWMR). We have proposed that the fundamental fields and second-harmonic field of ultra-short pulse lasers are combined and focused into a very small gas chamber to induce a gaseous plasma, which intense THz pulse is produced. To understand the THz generation process, the first-order multiple-scale perturbation method (MSPM) has been utilized to derive a set of nonlinear coupled-mode equations for interacting fields such as two fundamental fields, a second-harmonic field, and a THz field. Then, we have simulate the intense THz-pulse generation by using split step-beam propagation method (SS-BPM) and calculated output THz intensities. Finally, the output THz intensities generated from induced air, nitrogen, and argon plasma have been compared.

  2. Investigation of methods for sterilization of potting compounds and mated surfaces

    NASA Technical Reports Server (NTRS)

    Tulius, J. J.; Daley, D. J.; Phillips, G. B.

    1972-01-01

    The feasibility of using formaldehyde-liberating synthetic resins or polymers for the sterilization of potting compounds, mated and occluded areas, and spacecraft surfaces was demonstrated. The detailed study of interrelated parameters of formaldehyde gas sterilization revealed that efficient cycle conditions can be developed for the sterilization of spacecraft components. It was determined that certain parameters were more important than others in the development of cycles for specific applications. The use of formaldehyde gas for the sterilization of spacecraft components provides NASA with a highly efficient method which is inexpensive, reproducible, easily quantitated, materials compatible, operationally simple, generally non-hazardous and not thermally destructive.

  3. Stratification of the plasma column in transverse nanosecond gas discharges with a hollow cathode

    NASA Astrophysics Data System (ADS)

    Ashurbekov, N. A.; Iminov, K. O.

    2015-10-01

    Electric and optical characteristics and the structure of spatial distribution of optical radiation from a transverse nanosecond discharge with a hollow cathode in inert gases are systematically studied experimentally. It is found that for moderate working gas pressures in nanosecond discharges with extended electrodes, a periodic plasma structure appears in the form of standing strata. The strata formation boundaries and the critical values of the discharge voltage and current are determined from the gas pressure in helium, neon, and argon under experimental conditions. It is found that the most probable mechanisms of strata formation are the direct ionization of atoms by an electron impact and electron drift in an electric field. The smearing of the plasma structure upon an increase in the voltage applied to electrodes is explained by the emergence of accelerated electrons in the discharge gap.

  4. Current distribution measurements inside an electromagnetic plasma gun operated in a gas-puff mode

    PubMed Central

    Poehlmann, Flavio R.; Cappelli, Mark A.; Rieker, Gregory B.

    2010-01-01

    Measurements are presented of the time-dependent current distribution inside a coaxial electromagnetic plasma gun. The measurements are carried out using an array of six axially distributed dual-Rogowski coils in a balanced circuit configuration. The radial current distributions indicate that operation in the gas-puff mode, i.e., the mode in which the electrode voltage is applied before injection of the gas, results in a stationary ionization front consistent with the presence of a plasma deflagration. The effects of varying the bank capacitance, transmission line inductance, and applied electrode voltage were studied over the range from 14 to 112 ?F, 50 to 200 nH, and 1 to 3 kV, respectively. PMID:21267082

  5. Current distribution measurements inside an electromagnetic plasma gun operated in a gas-puff mode.

    PubMed

    Poehlmann, Flavio R; Cappelli, Mark A; Rieker, Gregory B

    2010-12-01

    Measurements are presented of the time-dependent current distribution inside a coaxial electromagnetic plasma gun. The measurements are carried out using an array of six axially distributed dual-Rogowski coils in a balanced circuit configuration. The radial current distributions indicate that operation in the gas-puff mode, i.e., the mode in which the electrode voltage is applied before injection of the gas, results in a stationary ionization front consistent with the presence of a plasma deflagration. The effects of varying the bank capacitance, transmission line inductance, and applied electrode voltage were studied over the range from 14 to 112 ?F, 50 to 200 nH, and 1 to 3 kV, respectively. PMID:21267082

  6. Current distribution measurements inside an electromagnetic plasma gun operated in a gas-puff mode

    NASA Astrophysics Data System (ADS)

    Poehlmann, Flavio R.; Cappelli, Mark A.; Rieker, Gregory B.

    2010-12-01

    Measurements are presented of the time-dependent current distribution inside a coaxial electromagnetic plasma gun. The measurements are carried out using an array of six axially distributed dual-Rogowski coils in a balanced circuit configuration. The radial current distributions indicate that operation in the gas-puff mode, i.e., the mode in which the electrode voltage is applied before injection of the gas, results in a stationary ionization front consistent with the presence of a plasma deflagration. The effects of varying the bank capacitance, transmission line inductance, and applied electrode voltage were studied over the range from 14 to 112 ?F, 50 to 200 nH, and 1 to 3 kV, respectively.

  7. Effects of gas atmospheres on poly(lactic acid) film in acrylic acid plasma treatment

    NASA Astrophysics Data System (ADS)

    Zhao, Yun; Fina, Alberto; Venturello, Alberto; Geobaldo, Francesco

    2013-10-01

    Plasma polymerized acrylic acid (AA) coatings were deposited on poly(lactic acid) (PLA) films in various gas atmospheres during the pre-treatment of PLA and the deposition of AA, respectively. Therefore, this work was twofold: the argon pretreated PLA films followed by a deposition in argon were investigated against the mixture of argon and oxygen pretreated ones under the same deposition conditions; the plasma deposition of AA operating in different atmospheres (argon, oxygen and nitrogen) was employed to modify the pretreated PLA in oxygen. Chemical and physical changes on the plasma-treated surfaces were examined using contact angle, X-ray photoelectron spectroscopy (XPS), field emission scanning electron microscopy (FE-SEM) and attenuated total reflection infrared (ATR-FTIR) analysis. The results showed that the discharge gas can have a significant influence on the chemical composition of the PLA surfaces: oxygen plasmas introduced oxygen-containing groups in company with surface etching in pretreatment and deposition, while argon discharges was able to achieve much better hydrophilic behavior and high retention ratio of poly(acrylic acid) (PAA) coating before and after washing in water.

  8. Longitudinal gas-density profilometry for plasma-wakefield acceleration targets

    NASA Astrophysics Data System (ADS)

    Schaper, Lucas; Goldberg, Lars; Kleinwächter, Tobias; Schwinkendorf, Jan-Patrick; Osterhoff, Jens

    2014-03-01

    Precise tailoring of plasma-density profiles has been identified as one of the critical points in achieving stable and reproducible conditions in plasma wakefield accelerators. Here, the strict requirements of next generation plasma-wakefield concepts, such as hybrid-accelerators, with densities around 1017 cm-3 pose challenges to target fabrication as well as to their reliable diagnosis. To mitigate these issues we combine target simulation with fabrication and characterization. The resulting density profiles in capillaries with gas jet and multiple in- and outlets are simulated with the fluid code OpenFOAM. Satisfactory simulation results then are followed by fabrication of the desired target shapes with structures down to the 10 ?m level. The detection of Raman scattered photons using lenses with large collection solid angle allows to measure the corresponding longitudinal density profiles at different number densities and allows a detection sensitivity down to the low 1017 cm-3 density range at high spatial resolution. This offers the possibility to gain insight into steep density gradients as for example in gas jets and at the plasma-to-vacuum transition.

  9. Stopping power of a buffer gas for laser plasma debris mitigation

    SciTech Connect

    Bleiner, Davide; Lippert, Thomas

    2009-12-15

    The stopping power of a buffer gas against laser-plasma debris is quantitatively assessed by means of visualization techniques. For ablation of planar tin targets in an Ar ambient, an expanding wavefront was visualized, whose translation energy was rapidly reduced within a few millimeters above the target surface. The fastest debris component was along the normal to the target with an initial kinetic energy of 1.1 keV. The buffer gas efficiency changed in a line-of-sight-dependent way, thermalizing more efficiently the on-axis components. The maximum stopping power of the gas buffer was determined as high as 0.4 keV/mm. Due to the reduction in stopping power, nonlinearly with the debris kinetic energy, a gas buffer thickness of 10 mm is required at the studied atmospheric pressure in order to mitigate high energy debris below a fiducial threshold of 0.1 keV.

  10. Longitudinal permeability of collisional plasmas under arbitrary degree of degeneration of electron gas

    E-print Network

    A. V. Latyshev; A. A. Yushkanov

    2010-03-04

    Electric conductivity and dielectric permeability of the non-degenerate electronic gas for the collisional plasmas under arbitrary degree of degeneration of electron gas is found. The kinetic equation of Wigner - Vlasov - Boltzmann with collision integral in relaxation form BGK (Bhatnagar, Gross and Krook) in coordinate space is used. Dielectric permeability with using of the relaxation equation in the momentum space has been received by Mermin. Comparison with Mermin's formula has been realized. It is shown, that in the limit when Planck's constant tends to zero expression for dielectric permeability passes in the classical.

  11. Development and characterization of very dense submillimetric gas jets for laser-plasma interaction

    NASA Astrophysics Data System (ADS)

    Sylla, F.; Veltcheva, M.; Kahaly, S.; Flacco, A.; Malka, V.

    2012-03-01

    We report on the characterization of recently developed submillimetric He gas jets with peak density higher than 1021 atoms/cm3 from cylindrical and slightly conical nozzles of throat diameter of less than 400 ?m. Helium gas at pressure 300-400 bar has been developed for this purpose to compensate the nozzle throat diameter reduction that affects the output mass flow rate. The fast-switching electro-valve enables to operate the jet safely for multi-stage vacuum pump assembly. Such gaseous thin targets are particularly suitable for laser-plasma interaction studies in the unexplored near-critical regime.

  12. Atmospheric-pressure plasma jets: Effect of gas flow, active species, and snake-like bullet propagation

    NASA Astrophysics Data System (ADS)

    Wu, S.; Wang, Z.; Huang, Q.; Tan, X.; Lu, X.; Ostrikov, K.

    2013-02-01

    Cold atmospheric-pressure plasma jets have recently attracted enormous interest owing to numerous applications in plasma biology, health care, medicine, and nanotechnology. A dedicated study of the interaction between the upstream and downstream plasma plumes revealed that the active species (electrons, ions, excited OH, metastable Ar, and nitrogen-related species) generated by the upstream plasma plume enhance the propagation of the downstream plasma plume. At gas flows exceeding 2 l/min, the downstream plasma plume is longer than the upstream plasma plume. Detailed plasma diagnostics and discharge species analysis suggest that this effect is due to the electrons and ions that are generated by the upstream plasma and flow into the downstream plume. This in turn leads to the relatively higher electron density in the downstream plasma. Moreover, high-speed photography reveals a highly unusual behavior of the plasma bullets, which propagate in snake-like motions, very differently from the previous reports. This behavior is related to the hydrodynamic instability of the gas flow, which results in non-uniform distributions of long-lifetime active species in the discharge tube and of surface charges on the inner surface of the tube.

  13. Atmospheric-pressure plasma jets: Effect of gas flow, active species, and snake-like bullet propagation

    SciTech Connect

    Wu, S.; Wang, Z.; Huang, Q.; Tan, X.; Lu, X.; Ostrikov, K.

    2013-02-15

    Cold atmospheric-pressure plasma jets have recently attracted enormous interest owing to numerous applications in plasma biology, health care, medicine, and nanotechnology. A dedicated study of the interaction between the upstream and downstream plasma plumes revealed that the active species (electrons, ions, excited OH, metastable Ar, and nitrogen-related species) generated by the upstream plasma plume enhance the propagation of the downstream plasma plume. At gas flows exceeding 2 l/min, the downstream plasma plume is longer than the upstream plasma plume. Detailed plasma diagnostics and discharge species analysis suggest that this effect is due to the electrons and ions that are generated by the upstream plasma and flow into the downstream plume. This in turn leads to the relatively higher electron density in the downstream plasma. Moreover, high-speed photography reveals a highly unusual behavior of the plasma bullets, which propagate in snake-like motions, very differently from the previous reports. This behavior is related to the hydrodynamic instability of the gas flow, which results in non-uniform distributions of long-lifetime active species in the discharge tube and of surface charges on the inner surface of the tube.

  14. Influence of Gas Heating and Vibrational Kinetics on the Ionization Dynamics of Preformed Air Plasma Channels

    NASA Astrophysics Data System (ADS)

    Ladouceur, Harold; Baronavski, Andrew; Petrova, Tzvetelina

    2006-03-01

    An extensive self-consistent air-plasma model based upon the Boltzmann equation for the electron energy distribution function, coupled with a heavy particle kinetics was developed to study electric discharges in a preexisting air plasma column [1]. Incorporated in the model are the steady-state balance equations for various nitrogen and oxygen species in ground and excited states, as well as atomic and molecular ions. The influence of the gas temperature is accounted for by reduction of the neutral density, collisional processes such as recombination, dissociation, V-V and V-T reactions [2], and by reactions involving electronically excited states of O2. The model was applied to study the influence of the gas temperature and vibrational kinetics on the breakdown processes in a preformed air plasma channel. Numerical calculations predict that electrical breakdown occurs at relatively low electric field. The calculated self-consistent breakdown electric field is ˜10 kV/cm for gas temperature of 300 K, while at temperature of 600 K it drops to ˜5.7 kV/cm, in excellent agreement with the experimentally determined breakdown electric field [1]. * NRC-NRL Postdoc [1] Tz.B. Petrova, H.D. Ladouceur, and A.P. Baronavski, 58th Gaseous Electronics Conference, 2005; San Jose, California, FM.00062 [2] J. Loureiro and C.M. Ferreira, J. Phys. D: Appl. Phys 19 (1986) 17-35

  15. Direct evidence of mismatching effect on H emission in laser-induced atmospheric helium gas plasma

    SciTech Connect

    Zener Sukra Lie; Koo Hendrik Kurniawan; May On Tjia; Rinda, Hedwig; Suliyanti, Maria Margaretha; Syahrun Nur Abdulmadjid; Nasrullah Idris; Alion Mangasi Marpaung; Marincan Pardede; Jobiliong, Eric; Muliadi Ramli; Heri Suyanto; Fukumoto, Kenichi; Kagawa, Kiichiro

    2013-02-07

    A time-resolved orthogonal double pulse laser-induced breakdown spectroscopy (LIBS) with helium surrounding gas is developed for the explicit demonstration of time mismatch between the passage of fast moving impurity hydrogen atoms and the formation of thermal shock wave plasma generated by the relatively slow moving major host atoms of much greater masses ablated from the same sample. Although this so-called 'mismatching effect' has been consistently shown to be responsible for the gas pressure induced intensity diminution of hydrogen emission in a number of LIBS measurements using different ambient gases, its explicit demonstration has yet to be reported. The previously reported helium assisted excitation process has made possible the use of surrounding helium gas in our experimental set-up for showing that the ablated hydrogen atoms indeed move faster than the simultaneously ablated much heavier major host atoms as signaled by the earlier H emission in the helium plasma generated by a separate laser prior to the laser ablation. This conclusion is further substantiated by the observed dominant distribution of H atoms in the forward cone-shaped target plasma.

  16. Sterile neutrino dark matter: A tale of weak interactions in the strong coupling epoch

    E-print Network

    Venumadhav, Tejaswi; Abazajian, Kevork N; Hirata, Christopher M

    2015-01-01

    We perform a detailed study of the weak interactions of standard model neutrinos with the primordial plasma and their effect on the resonant production of sterile neutrino dark matter. Motivated by issues in cosmological structure formation on small scales, and reported X-ray signals that could be due to sterile neutrino decay, we consider $7$ keV-scale sterile neutrinos. Oscillation-driven production of such sterile neutrinos occurs at temperatures $T \\gtrsim 100$ MeV, where we study two significant effects of weakly charged species in the primordial plasma: (1) the redistribution of an input lepton asymmetry; (2) the opacity for active neutrinos. We calculate the redistribution analytically above and below the quark-hadron transition, and match with lattice QCD calculations through the transition. We estimate opacities due to tree level processes involving leptons and quarks above the quark-hadron transition, and the most important mesons below the transition. We report final sterile neutrino dark matter ph...

  17. [Voluntary sterilization: USA and China].

    PubMed

    Presl, J

    1978-09-01

    At the present time, there are in the U.S. 9.5 million married people and 2 million single people who have undergone voluntary surgical sterilization. That means that in 29% of married couples, one of the partners has been surgically sterilized. Women are more frequently sterilized than men, in the ratio of about 8:1. In 60% of the cases, women are sterilized after delivery, and in 40% of the cases the procedure is carried out at another time. If present trends continue, voluntary sterilization will soon replace birth control pills as the most frequently used contraceptive method in the U.S. In China, about 34 million married people have been sterilized. This represents about 20% of all married couples. In the Shaghai area, about 30% of women in the child-bearing ages have been sterilized; one Shaghai hospital performed 4000 sterilizations to 3000 deliveries in 1976. In China, the government dicted "norm" is 2 children, and couples experience considerable social pressure to limit their families to this size. The male method of surgical sterilization is vasectomy, while conventional laparotomy, mini-laparotomy, colpotomy, laparoscopy, and culdoscopy can be performed in women. The drawback of surgical sterilization is its relative irreversability. In India, 1% of sterilized women and 4% of sterilized men have had their fertility restored. Furthermore, a study of British sterilized women showed that 3.3-4.6% of them regretted their decision to be sterilized. This study showed that divorce, the death of a child, a change in opinion, and sexual dysfunction were the most common reasons women had for wanting reversals of surgical sterilization. Tubal ligation is theoretically reversible in 10 to 50% of the cases. Success of the reversal procedure depends largely on the skill of the surgeon and the amount of damaged tube. New methods for occluding the tube, namely the Yoon ring, the fallope ring, and the Hulka-Clemens clip damage the least amount of tube and therefore offer the best hope for reversal. PMID:688441

  18. Freezing and Melting of 3D Complex Plasma Structures under Microgravity Conditions Driven by Neutral Gas Pressure Manipulation

    SciTech Connect

    Khrapak, S. A.; Klumov, B. A.; Huber, P.; Thomas, H. M.; Ivlev, A. V.; Morfill, G. E.; Molotkov, V. I.; Lipaev, A. M.; Naumkin, V. N.; Petrov, O. F.; Fortov, V. E.; Malentschenko, Yu.; Volkov, S.

    2011-05-20

    Freezing and melting of large three-dimensional complex plasmas under microgravity conditions is investigated. The neutral gas pressure is used as a control parameter to trigger the phase changes: Complex plasma freezes (melts) by decreasing (increasing) the pressure. The evolution of complex plasma structural properties upon pressure variation is studied. Theoretical estimates allow us to identify the main factors responsible for the observed behavior.

  19. Electrolytic silver ion cell sterilizes water supply

    NASA Technical Reports Server (NTRS)

    Albright, C. F.; Gillerman, J. B.

    1968-01-01

    Electrolytic water sterilizer controls microbial contamination in manned spacecraft. Individual sterilizer cells are self-contained and require no external power or control. The sterilizer generates silver ions which do not impart an unpleasant taste to water.

  20. 21 CFR 880.6880 - Steam sterilizer.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 2012-04-01 2012-04-01 false Steam sterilizer. 880.6880 Section 880.6880...Personal Use Miscellaneous Devices § 880.6880 Steam sterilizer. (a) Identification. A steam sterilizer (autoclave) is a device...

  1. 21 CFR 880.6880 - Steam sterilizer.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 2010-04-01 2010-04-01 false Steam sterilizer. 880.6880 Section 880.6880...Personal Use Miscellaneous Devices § 880.6880 Steam sterilizer. (a) Identification. A steam sterilizer (autoclave) is a device...

  2. 21 CFR 880.6880 - Steam sterilizer.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 2011-04-01 2011-04-01 false Steam sterilizer. 880.6880 Section 880.6880...Personal Use Miscellaneous Devices § 880.6880 Steam sterilizer. (a) Identification. A steam sterilizer (autoclave) is a device...

  3. 21 CFR 880.6880 - Steam sterilizer.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 2013-04-01 2013-04-01 false Steam sterilizer. 880.6880 Section 880.6880...Personal Use Miscellaneous Devices § 880.6880 Steam sterilizer. (a) Identification. A steam sterilizer (autoclave) is a device...

  4. 21 CFR 880.6880 - Steam sterilizer.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 2014-04-01 2014-04-01 false Steam sterilizer. 880.6880 Section 880.6880...Personal Use Miscellaneous Devices § 880.6880 Steam sterilizer. (a) Identification. A steam sterilizer (autoclave) is a device...

  5. Plasma generation in an organic molecular gas by an ultraviolet laser Y. S. Zhang and J. E. Scharer

    E-print Network

    Scharer, John E.

    Plasma generation in an organic molecular gas by an ultraviolet laser pulse Y. S. Zhang and J. E through a one-photonionization processby an ultraviolet laser beamat a 193 nm wavelength.The TMAE plasma characteristicsare studied by meansof a L.angmuirprobe and microwave scattering. A new method is used to measurethe

  6. Sterilization of Extracted Human Teeth.

    ERIC Educational Resources Information Center

    Pantera, Eugene A., Jr.; Schuster, George S.

    1990-01-01

    At present, there is no specific recommendation for sterilization of extracted human teeth used in dental technique courses. The purpose of this study was to determine whether autoclaving would be effective in the sterilization of extracted teeth without compromising the characteristics that make their use in clinical simulations desirable. (MLW)

  7. The Neutral Gas Desorption and Breakdown on a Metal-Dielectric Junction Immersed in a Plasma

    NASA Technical Reports Server (NTRS)

    Vayner, Boris; Galofaro, Joel; Ferguson, Dale; Lyons, Valerie J. (Technical Monitor)

    2002-01-01

    New results are presented of an experimental study and theoretical analysis of arcing on metal-dielectric junctions immersed in a low-density plasma. Two samples of conventional solar arrays have been used to investigate the effects of arcing within a wide range of neutral gas pressures, ion currents, and electron number densities. All data (except video) were obtained in digital form that allowed us to study the correlation between external parameters (plasma density, additional capacitance, bias voltage, etc) and arc characteristics (arc rate, arc current pulse width and amplitude, gas species partial pressures, intensities of spectral lines, and so on). Arc sites were determined by employing a video-camera, and it is shown that the most probable sites for arc inception are trip le-junctions, even though some arcs were initiated in gaps between cells. The effect of surface conditioning (decrease of arc rate due to outgassing) was clearly demonstrated. Moreover, a considerable increase in arc rate due to absorption of molecules from atmospheric air has been confirmed. The analysis of optical spectra (240-800 nm) reveals intense narrow atomic lines (Ag, H) and wide molecular bands (OH, CH, SiH, SiN) that confirm a complicated mechanism of arc plasma generation. The rate of plasma contamination due to arcing was measured by employing a mass-spectrometer. These measurements provided quite reliable data for the development of a theoretical model of plasma contamination, In conclusion, the arc threshold was increased to above 350 V (from 190 V) by keeping a sample in vacuum (20 micronTorr) for seven days. The results obtained are important for the understanding of the arc inception mechanism, which is absolutely essential for progress toward the design of high voltage solar arrays for space applications.

  8. Structure and properties of commercially pure titanium nitrided in the plasma of a low-pressure gas discharge produced by a PINK plasma generator

    NASA Astrophysics Data System (ADS)

    Ivanov, Yu F.; Akhmadeev, Yu H.; Lopatin, I. V.; Petrikova, E. A.; Krysina, V.; Koval, N. N.

    2015-11-01

    The paper analyzes the surface structure and properties of commercially pure VT1-0 titanium nitrided in the plasma of a low-pressure gas discharge produced by a PINK plasma generator. The analysis demonstrates that the friction coefficient of the nitrided material decreases more than four times and its wear resistance and microhardness increases more than eight and three times, respectively. The physical mechanisms responsible for the enhancement of strength and tribological properties of the material are discussed.

  9. Spatiotemporal study of gas heating mechanisms in a radio-frequency electrothermal plasma micro-thruster

    NASA Astrophysics Data System (ADS)

    Greig, Amelia; Charles, Christine; Boswell, Roderick

    2015-10-01

    A spatiotemporal study of neutral gas temperature during the first 100 s of operation for a radio-frequency electrothermal plasma micro-thruster operating on nitrogen at 60 W and 1.5 Torr is performed to identify the heating mechanisms involved. Neutral gas temperature is estimated from rovibrational band fitting of the nitrogen second positive system. A set of baffles are used to restrict the optical image and separate the heating mechanisms occurring in the central bulk discharge region and near the thruster walls. For each spatial region there are three distinct gas heating mechanisms being fast heating from ion-neutral collisions with timescales of tens of milliseconds, intermediate heating with timescales of 10 s from ion bombardment on the inner thruster tube surface creating wall heating, and slow heating with timescales of 100 s from gradual warming of the entire thruster housing. The results are discussed in relation to optimising the thermal properties of future thruster designs.

  10. Formation of a gas-discharge plasma active medium on Kr2F* trimers

    NASA Astrophysics Data System (ADS)

    Panchenko, Yu. N.; Andreev, M. V.; Losev, V. F.; Puchikin, A. V.

    2015-12-01

    The results of experimental investigations of the discharge plasma emission spectrum in high-pressure gases, including fluorides, are presented. For the gas mixtures Ne/Kr/F2 and Ar/Kr/F2, the emission transitions of KrF* and Kr2F* excited molecules emitting in the ultraviolet and visible spectral range are experimentally studied. It is established that growth of Kr content from 10 to 400 mbar in the gas mixture leads to an increase in the fluorescence intensity of Kr2F* molecules. The stable bulk discharge in a few oscillation periods of the current pulse pump in excimer gas mixtures is demonstrated. It is shown that the bulk discharge in Ar/Kr/F2=1000/400/1 mbar mixture forms the active medium on the Kr2F* molecules with a gain of 3.14×10-4 cm-1.

  11. Optical and application study of gas-liquid discharge excited by bipolar nanosecond pulse in atmospheric air.

    PubMed

    Wang, Sen; Wang, Wen-chun; Yang, De-zheng; Liu, Zhi-jie; Zhang, Shuai

    2014-10-15

    In this study, a bipolar nanosecond pulse with 20ns rising time is employed to generate air gas-liquid diffuse discharge plasma with room gas temperature in quartz tube at atmospheric pressure. The image of the discharge and optical emission spectra of active species in the plasma are recorded. The plasma gas temperature is determined to be approximately 390K by compared the experimental spectra with the simulated spectra, which is slightly higher than the room temperature. The result indicated that the gas temperature rises gradually with pulse peak voltage increasing, while decreases slightly with the electrode gap distance increasing. As an important application, bipolar nanosecond pulse discharge is used to sterilize the common microorganisms (Actinomycetes, Candida albicans and Escherichia coli) existing in drinking water, which performs high sterilization efficiency. PMID:24845733

  12. Optical and application study of gas-liquid discharge excited by bipolar nanosecond pulse in atmospheric air

    NASA Astrophysics Data System (ADS)

    Wang, Sen; Wang, Wen-chun; Yang, De-zheng; Liu, Zhi-jie; Zhang, Shuai

    2014-10-01

    In this study, a bipolar nanosecond pulse with 20 ns rising time is employed to generate air gas-liquid diffuse discharge plasma with room gas temperature in quartz tube at atmospheric pressure. The image of the discharge and optical emission spectra of active species in the plasma are recorded. The plasma gas temperature is determined to be approximately 390 K by compared the experimental spectra with the simulated spectra, which is slightly higher than the room temperature. The result indicated that the gas temperature rises gradually with pulse peak voltage increasing, while decreases slightly with the electrode gap distance increasing. As an important application, bipolar nanosecond pulse discharge is used to sterilize the common microorganisms (Actinomycetes, Candida albicans and Escherichia coli) existing in drinking water, which performs high sterilization efficiency.

  13. Generation of a helium inductively coupled plasma in a low-gas-flow torch

    SciTech Connect

    Chan, S.K.; Van Hoven, R.L.; Montaser, A.

    1986-09-01

    In an earlier communication the authors reported the generation of three types of helium inductively coupled plasmas (He ICP) at atmospheric pressure by using modified conventional torches: the hollow He ICP, the filament-type He ICP, and the annular He ICP. Preliminary results indicated that the annular He ICP was capable of exciting elements such as Cl and Br, which possess high excitation energies. Atomic emission detection limits measured for aqueous chloride and bromide solutions were improved by more than 1 order of magnitude, as compared to the results obtained from the Ar ICP. In the present study, the authors report on the design and evaluation of a new demountable, low-gas-flow torch for generating an annular He ICP at atmospheric pressure. For the new design, the total He gas flow has been reduced by a factor of 7 as compared to their previous work, and the procedure for the formation of the plasma has been simplified significantly to a one-step plasma generation. Detection limits of aqueous bromide obtained at Br I 827.24 nm are also reported, using a photodiode array detector.

  14. Measurement of resonance level densities in rare gas plasmas and modeling of their resulting VUV emissions

    NASA Astrophysics Data System (ADS)

    Boffard, J. B.; Culver, C. L.; Wang, S.; Lin, C. C.; Wendt, A. E.; Radovanov, S. B.; Persing, H. M.

    2013-09-01

    In the rare gases, the vacuum ultraviolet (VUV) emissions are dominated by the decays from the 1s2 and 1s4 (Paschen's notation) principal resonance levels. In isolation, atoms excited to these resonance levels have a short radiative lifetime (< 10 ns), but resonance blockade of the VUV transitions to the ground state significantly extend the effective lifetimes of these levels under typical plasma conditions with pressures greater than a mTorr. Despite this re-absorption, rare gas plasmas do produce copious VUV emissions that may play an important role in critical surface reactions under certain process conditions. We have measured the resonance level densities as a function of pressure in rare-gas discharges (Ne,Ar,Kr,Xe) in an inductively coupled plasma using both white-light absorption spectroscopy and optical emission spectroscopy by monitoring changes in the 2px --> 1sy branching fractions. The measured resonance level concentrations are subsequently used as inputs to a simple VUV transport model to determine the VUV flux to surfaces. These model VUV flux calculations are compared to measurements made with an absolutely calibrated VUV photodiode. This work was supported in part by NSF grant PHY-1068670.

  15. Emission spectroscopy of a microhollow cathode discharge plasma in helium-water gas mixtures

    SciTech Connect

    Namba, S.; Yamasaki, T.; Hane, Y.; Fukuhara, D.; Kozue, K.; Takiyama, K.

    2011-10-01

    A dc microhollow cathode discharge (MHCD) plasma was generated inflowing helium gas containing water vapor. The cathode hole diameters were 0.3, 0.7, 1.0, and 2.0 mm, each with a length of 2.0 mm. Emission spectroscopy was carried out to investigate the discharge mode and to determine the plasma parameters. For the 0.3-mm cathode, stable MHCDs in an abnormal glow mode existed at pressures up to 100 kPa, whereas for larger diameters, a plasma was not generated at atmospheric pressure. An analysis of the lineshapes relevant to He at 667.8 nm and to H{alpha} at 656.3 nm implied an electron density and gas temperature of 2 x 10{sup 14} cm{sup -3} and 1100 K, respectively, for a 100-kPa discharge in the negative glow region. The dependence of the OH band, and H{alpha} intensities on the discharge current exhibited different behaviors. Specifically, the OH spectrum had a maximum intensity at a certain current, while the H atom intensity kept increasing with the discharge current. This observation implies that a high concentration of OH radicals results in quenching, leading to the production of H atoms via the reaction OH + e{sup -}{yields} O + H + e{sup -}.

  16. Effects of Gas Flow Rate on the Discharge Characteristics of a DC Excited Plasma Jet

    NASA Astrophysics Data System (ADS)

    Li, Xuechen; Jia, Pengying; Di, Cong; Bao, Wenting; Zhang, Chunyan

    2015-09-01

    A direct current (DC) source excited plasma jet consisting of a hollow needle anode and a plate cathode has been developed to form a diffuse discharge plume in ambient air with flowing argon as the working gas. Using optical and electrical methods, the discharge characteristics are investigated for the diffuse plasma plume. Results indicate that the discharge has a pulse characteristic, under the excitation of a DC voltage. The discharge pulse corresponds to the propagation process of a plasma bullet travelling from the anode to the cathode. It is found that, with an increment of the gas flow rate, both the discharge plume length and the current peak value of the pulsed discharge decrease in the laminar flow mode, reach their minima at about 1.5 L/min, and then slightly increase in the turbulent mode. However, the frequency of the pulsed discharge increases in the laminar mode with increasing the argon flow rate until the argon flow rate equals to about 1.5 L/min, and then slightly decreases in the turbulent mode. supported by National Natural Science Foundation of China (Nos. 10805013, 11375051), Funds for Distinguished Young Scientists of Hebei Province, China (No. A2012201045), Department of Education for Outstanding Youth Project of China (No. Y2011120), and Youth Project of Hebei University of China (No. 2011Q14)

  17. Hollow-cathode plasma electron gun for beam generation at forepump gas pressure

    NASA Astrophysics Data System (ADS)

    Burdovitsin, Viktor; Oks, Efim

    1999-07-01

    The characteristics, performance, and design feature of a filamentless plasma-cathode electron gun for beam generation in the forepump gas pressure range are presented. The plasma cathode is based on a hollow-cathode direct current (dc) discharge. Using the method of "grid stabilization" it was possible to generate an e beam at a background gas pressure as high as about 10-1 Torr. This pressure can be easily obtained by using mechanical pump only. The operation of the gun with a magnetic field up to 0.1 T was investigated. The presence of a magnetic field (B field) is often required, for instance in plasma chemistry and surface treatment processes. The effect of the B field both on discharge and emission parameters of the gun are observed. The results obtained can be explained based on the concept of electron confinement and motion across the B field. With the accelerating voltage up to 8 kV, the gun is able to generate an electron beam of about 0.7 A dc.

  18. Interplay between discharge physics, gas phase chemistry and surface processes in hydrocarbon plasmas

    NASA Astrophysics Data System (ADS)

    Hassouni, Khaled

    2013-09-01

    In this paper we present two examples that illustrate two different contexts of the interplay between plasma-surface interaction process and discharge physics and gas phase chemistry in hydrocarbon discharges. In the first example we address the case of diamond deposition processes and illustrate how a detailed investigation of the discharge physics, collisional processes and transport phenomena in the plasma phase make possible to accurately predict the key local-parameters, i.e., species density at the growing substrate, as function of the macroscopic process parameters, thus allowing for a precise control of diamond deposition process. In the second example, we illustrate how the interaction between a rare gas pristine discharge and carbon (graphite) electrode induce a dramatic change on the discharge nature, i.e., composition, ionization kinetics, charge equilibrium, etc., through molecular growth and clustering processes, solid particle formation and dusty plasma generation. Work done in collaboration with Alix Gicquel, Francois Silva, Armelle Michau, Guillaume Lombardi, Xavier Bonnin, Xavier Duten, CNRS, Universite Paris 13.

  19. Conditional sterility in plants

    DOEpatents

    Meagher, Richard B. (Athens, GA); McKinney, Elizabeth (Athens, GA); Kim, Tehryung (Taejeon, KR)

    2010-02-23

    The present disclosure provides methods, recombinant DNA molecules, recombinant host cells containing the DNA molecules, and transgenic plant cells, plant tissue and plants which contain and express at least one antisense or interference RNA specific for a thiamine biosynthetic coding sequence or a thiamine binding protein or a thiamine-degrading protein, wherein the RNA or thiamine binding protein is expressed under the regulatory control of a transcription regulatory sequence which directs expression in male and/or female reproductive tissue. These transgenic plants are conditionally sterile; i.e., they are fertile only in the presence of exogenous thiamine. Such plants are especially appropriate for use in the seed industry or in the environment, for example, for use in revegetation of contaminated soils or phytoremediation, especially when those transgenic plants also contain and express one or more chimeric genes which confer resistance to contaminants.

  20. Sequelae of postpartum sterilization.

    PubMed

    Rosenfeld, B L; Taskin, O; Kafkashli, A; Rosenfeld, M L; Chuong, C J

    1998-01-01

    This study was designed to investigate the menstrual, psychosexual, psychological and somatic sequelae in a group of women who may be more prone to express regret following postpartum sterilization. The follow-up was conducted by questionnaire at six months and five years following the procedure. Data were available from 242 patient; 76.8% were below the age of 30. Of all patients, 21.9% expressed regrets. About one third had various menstrual disturbances. Patients rated their sex life as generally more enjoyable in many aspects. The most common psychological symptoms were irritability, nervousness and depression; while the common somatic symptoms were pelvic/abdominal pain and backache and tiredness. PMID:9789648

  1. Determination of plasma mexiletine levels with gas chromatography-mass spectrometry and selected-ion monitoring.

    PubMed

    Minnigh, M B; Alvin, J D; Zemaitis, M A

    1994-12-01

    Mexiletine, 1-(2,6-dimethylphenoxy)-2-aminopropane (Mexitil), is an orally effective agent useful in the treatment of serious ventricular arrhythmias. This paper describes a gas chromatographic-mass spectrophotometric assay with selected-ion monitoring for the measurement of plasma or serum mexiletine levels. The drug and internal standard (p-chlorophenylalanine methyl ester) were extracted from plasma into ethyl acetate-hexane-methanol (60:40:1, v/v). After separation and evaporation of the organic phase, the drug and internal standard were derivatized to their pentafluoropropyl derivatives prior to analysis. The reproducibility of the daily standard curve yielded mean inter- and intra-day coefficients of variability from 0.7 to 11.0%. The coefficients of variability for control plasma samples (0.5 and 1.0 micrograms/ml) ranged from 2.6 to 5.0% and the accuracy of the assay was 106 +/- 6 and 100 +/- 5% for the low and high level controls respectively. The limit of quantitation for the assay was 0.1 micrograms/ml. No interfering peaks were detected in any patient samples. This method can be used as a primary analytical method to measure mexiletine plasma levels or can serve as a convenient back-up method to HPLC procedures when contaminating peaks coelute with mexiletine. PMID:7894684

  2. Gas and heat dynamics of a micro-scaled atmospheric pressure plasma reference jet

    NASA Astrophysics Data System (ADS)

    Kelly, Seán; Golda, Judith; Turner, Miles M.; Schulz-von der Gathen, Volker

    2015-11-01

    Gas and heat dynamics of the ‘Cooperation on Science and Technology (COST) Reference Microplasma Jet’ (COST-jet), a European lead reference device for low temperature atmospheric pressure plasma application, are investigated. Of particular interest to many biomedical application scenarios, the temperature characteristics of a surface impacted by the jet are revealed. Schlieren imaging, thermocouple measurements, infrared thermal imaging and numerical modelling are employed. Temperature spatial profiles in the gas domain reveal heating primarily of the helium fraction of the gas mixture. Thermocouple and model temporal data show a bounded exponential temperature growth described by a single characteristic time parameter to reach???63% or (1-1/e) fraction of the temperature increase. Peak temperatures occurred in the gas domain where the carrier jet exits the COST-jet, with values ranging from ambient temperatures to in excess of 100 °C in ‘?-mode’ operation. In a horizontal orientation of the COST-jet a curved trajectory of the helium effluent at low gas flows results from buoyant forces. Gas mixture profiles reveal significant containment of the helium concentrations for a surface placed in close proximity to the COST-jet. Surface heating of a quartz plate follows a similar bounded exponential temporal temperature growth as device heating. Spatial profiles of surface heating are found to correlate strongly to the impacting effluent where peak temperatures occur in regions of maximum surface helium concentration.

  3. Direct analysis of ultra-trace semiconductor gas by inductively coupled plasma mass spectrometry coupled with gas to particle conversion-gas exchange technique.

    PubMed

    Ohata, Masaki; Sakurai, Hiromu; Nishiguchi, Kohei; Utani, Keisuke; Günther, Detlef

    2015-09-01

    An inductively coupled plasma mass spectrometry (ICPMS) coupled with gas to particle conversion-gas exchange technique was applied to the direct analysis of ultra-trace semiconductor gas in ambient air. The ultra-trace semiconductor gases such as arsine (AsH3) and phosphine (PH3) were converted to particles by reaction with ozone (O3) and ammonia (NH3) gases within a gas to particle conversion device (GPD). The converted particles were directly introduced and measured by ICPMS through a gas exchange device (GED), which could penetrate the particles as well as exchange to Ar from either non-reacted gases such as an air or remaining gases of O3 and NH3. The particle size distribution of converted particles was measured by scanning mobility particle sizer (SMPS) and the results supported the elucidation of particle agglomeration between the particle converted from semiconductor gas and the particle of ammonium nitrate (NH4NO3) which was produced as major particle in GPD. Stable time-resolved signals from AsH3 and PH3 in air were obtained by GPD-GED-ICPMS with continuous gas introduction; however, the slightly larger fluctuation, which could be due to the ionization fluctuation of particles in ICP, was observed compared to that of metal carbonyl gas in Ar introduced directly into ICPMS. The linear regression lines were obtained and the limits of detection (LODs) of 1.5 pL L(-1) and 2.4 nL L(-1) for AsH3 and PH3, respectively, were estimated. Since these LODs revealed sufficiently lower values than the measurement concentrations required from semiconductor industry such as 0.5 nL L(-1) and 30 nL L(-1) for AsH3 and PH3, respectively, the GPD-GED-ICPMS could be useful for direct and high sensitive analysis of ultra-trace semiconductor gas in air. PMID:26388365

  4. Influence of secondary gas on control characteristics of ICP-RF plasma torches

    E-print Network

    Bhuyan, P J

    2013-01-01

    Thermal plasma characteristics inside an atmospheric pressure Radio-Frequency Argon plasma torch have been studied by numerically solving axis-symmetric 2-D Magnetohydrodynamics equations, energy transport equations and species conservation equation coupled with 2D Maxwell equations in the vector potential form. A renormalization group k - epsilon model was employed to study the turbulence within the torch. Helium is mixed with Argon for injection as the sheath gas, and its effect on the control characteristics of the torch has been studied. A control volume approach and semi-implicit pressure linked equations revised (SIMPLER) algorithm was used to solve the above set of equations to obtain the flow, temperature, turbulence and EM source fields within the torch. Finally, a comparison of the results obtained in our present calculation has been made with other works of similar nature. The torch geometry, flow rates and power dissipation values used in the present calculation are similar to the standard ones av...

  5. Ionization dynamics in the laser plasma in a low pressure gas target

    NASA Astrophysics Data System (ADS)

    Demidov, R. A.; Kalmykov, S. G.; Mozharov, A. M.; Petrenko, M. V.; Sasin, M. E.

    2012-11-01

    In Xe-laser-plasma short-wave-radiation sources, the laser-energy-to-EUV conversion efficiency (CE) turns out to be substantially lower than theoretical expectations. An estimation made in the present work is evidence of what a long period of the primary ionization, lasting up to a moment when high- Z ions appear to emit short-wave photons, can be considered as a main cause for the low CE values. During that period the plasma remains low-ionized and absorbs weakly the laser energy. Data deduced from laser light absorption measurements confirm the estimation above. A preionization of the gas target with the UV excimer laser pulse is proposed as a method to accelerate the ionization process.

  6. Reactive gas plasma specimen processing for use in microanalysis and imaging in analytical electron microscopy

    SciTech Connect

    Zaluzec, N.J.; Kestel, B.J.; Henriks, D.

    1997-01-01

    It has long been the bane of analytical electron microscopy (AEM) that the use of focused probes during microanalysis of specimens increases the local rate of hydrocarbon contamination. This is most succinctly observed by the formation of contamination deposits during focused probe work typical of AEM studies. While serving to indicate the location of the electron probe, the contamination obliterates the area of the specimen being analyzed and adversely affects all quantitative microanalysis methodologies. A variety of methods including: UV, electron beam flooding, heating and/or cooling can decrease the rate of contamination, however, none of these methods directly attack the source of specimen borne contamination. Research has shown that reactive gas plasmas may be used to clean both the specimen and stage for AEM, in this study the authors report on quantitative measurements of the reduction in contamination rates in an AEM as a function of operating conditions and plasma gases.

  7. Diagnosis of gas temperature, electron temperature, and electron density in helium atmospheric pressure plasma jet

    SciTech Connect

    Chang Zhengshi; Zhang Guanjun; Shao Xianjun; Zhang Zenghui

    2012-07-15

    The optical emission spectra of helium atmospheric pressure plasma jet (APPJ) are captured with a three grating spectrometer. The grating primary spectrum covers the whole wavelength range from 200 nm to 900 nm, with the overlapped grating secondary spectrum appearing from 500 nm to 900 nm, which has a higher resolution than that of the grating primary spectrum. So the grating secondary spectrum of OH (A{sup 2}{Sigma} {sup +}({upsilon} Prime = 0) {yields} X{sup 2}{Pi}({upsilon} Double-Prime = 0)) is employed to calculate the gas temperature (T{sub g}) of helium APPJ. Moreover, the electron temperature (T{sub e}) is deduced from the Maxwellian electron energy distribution combining with T{sub g}, and the electron density (n{sub e}) is extracted from the plasma absorbed power. The results are helpful for understanding the physical property of APPJs.

  8. Simulation of gas dynamics and electromagnetic processes in high-current arc plasmas

    NASA Astrophysics Data System (ADS)

    Schlitz, Lei Zhang

    1998-10-01

    A strategy is developed to numerically study thermal plasma arc columns under high-current conditions. Necessary assumptions are made to focus the investigation on the interactions between gas flow, energy transport and the electromagnetic field. In order to study the macroscopic behavior of a thermal plasma under the conditions of local thermodynamic equilibrium, coupled Navier-Stokes and Maxwell's equations are derived. While the air plasma studied is assumed to be a multi-species ideal gas, the thermodynamic properties (specific heat and enthalpy) and transport properties (electrical conductivity, thermal conductivity, viscosity, and total volumetric radiation emission coefficient) are obtained using molecular theory. A commercially available, finite-volume based computational fluid dynamics code FLUENT is adapted through the use of user-defined subroutines to include the electromagnetic field and its coupling with plasma flow and heat transfer. One of Maxwell's equations-the current continuity equation-is solved in conjunction with the Navier-Stokes equations, while the magnetic field is obtained using the Biot-Savart equation. The non-linearity of the physical properties as functions of temperature and pressure are treated in the programs to ensure solution convergence. The coupling between the fluid field and electromagnetic field is modeled through source terms-an ohmic heating term in the energy equation and a Lorentz force in the momentum equation. In order to validate the code, a two-dimensional, axi- symmetric, steady-state, vertical arc column at low current (<100 A) is modeled without considering the influence of the magnetic force (Lorentz force). The effects of current level, cathode diameter and natural convection are studied. At high current levels (>100 A), the self-induced magnetic field can no longer be ignored. Therefore, a three-dimensional arc column at high current is modeled and again compared with the literature. The comparison between the results from the current study and those from the literature were satisfactory, providing validation of the code. To study the effects of both internal and external effects on a high current arc, a parametric analysis is carried out on a wall-stabilized three-dimensional arc column to investigate the influences of geometric configuration, ambient pressure, gravitational field and various boundary conditions. When the arc column is exposed to a transverse external magnetic field, the arc is bent toward the direction of the magnetic force. The corresponding plasma flow pattern is also altered. Transient analysis is performed in an open-ended arc chamber where a three-dimensional air arc column is under the influence of a transverse external magnetic field. It is found that the arc starts to bend under the magnetic force while the arc voltage increases as a result. Eventually, arc interruption is predicted when the arc voltage undergoes a rapid increase. The effects of gas ablation from sublimation materials on a high current arc column are studied by modeling the mixing of the sublimated gas (hydrogen) and air plasma. The gassing velocity is a function of heat transfer to the material, and therefore is a function of time and position. It is found that gassing in the arc chamber increases the arc voltage rapidly. The current numerical tool developed is shown to be a useful tool in applications involving thermal plasma, such as current interruption technology in switchgear applications and thermal plasma technology. Further development of the model would enable additional real arcing phenomena to be studied.

  9. Surface Decontamination of Simulated Chemical Warfare Agents Using a Nonequilibrium Plasma with Off-Gas Monitoring

    SciTech Connect

    Moeller, Trevor M.; Alexander, M. Lizabeth; Engelhard, Mark H.; Gaspar, Dan J.; Luna, Maria L.; Irving, Patricia M.

    2002-08-01

    InnovaTek is developing a surface decontamination technology that utilizes active species generated in a nonequilibrium corona plasma. The plasma technology was tested against DMMP, a simulant for the chemical agent Sarin. GC-MS analysis showed that a greater than four log10 destruction of the DMMP on an aluminum surface was achieved in a 10 minute treatment. An ion-trap mass spectrometer was utilized to collect time-resolved data on the treatment off-gases. These data indicate that only non-toxic fragments of the broken down DMMP molecule were present in the gas phase. The technology is being further refined to develop a product that will not only decontaminate surfaces but will also sense when decontamination is complete

  10. Terahertz Plasma Waves in Two Dimensional Quantum Electron Gas with Electron Scattering

    NASA Astrophysics Data System (ADS)

    Zhang, Liping

    2015-10-01

    We investigate the Terahertz (THz) plasma waves in a two-dimensional (2D) electron gas in a nanometer field effect transistor (FET) with quantum effects, the electron scattering, the thermal motion of electrons and electron exchange-correlation. We find that, while the electron scattering, the wave number along y direction and the electron exchange-correlation suppress the radiation power, but the thermal motion of electrons and the quantum effects can amplify the radiation power. The radiation frequency decreases with electron exchange-correlation contributions, but increases with quantum effects, the wave number along y direction and thermal motion of electrons. It is worth mentioning that the electron scattering has scarce influence on the radiation frequency. These properties could be of great help to the realization of practical THz plasma oscillations in nanometer FET. supported by National Natural Science Foundation of China (No. 10975114)

  11. Controlling the Neutron Yield from a Small Dense Plasma Focus using Deuterium-Inert Gas Mixtures

    SciTech Connect

    Bures, B. L.; Krishnan, M.; Eshaq, Y.

    2009-01-21

    The dense plasma focus (DPF) is a well known source of neutrons when operating with deuterium. The DPF is demonstrated to scale from 10{sup 4} n/pulse at 40 kA to >10{sup 12} n/pulse at 2 MA by non-linear current scaling as described in [1], which is itself based on the simple yet elegant model developed by Lee [2]. In addition to the peak current, the gas pressure controls the neutron yield. Recent published results suggest that mixing 1-5% mass fractions of Krypton increase the neutron yield per pulse by more than 10x. In this paper we present results obtained by mixing deuterium with Helium, Neon and Argon in a 500 J dense plasma focus operating at 140 kA with a 600 ns rise time. The mass density was held constant in these experiments at the optimum (pure) deuterium mass density for producing neutrons. A typical neutron yield for a pure deuterium gas charge is 2x10{sup 6}{+-}15% n/pulse. Neutron yields in excess of 10{sup 7}{+-}10% n/pulse were observed with low mass fractions of inert gas. Time integrated optical images of the pinch, soft x-ray measurements and optical emission spectroscopy where used to examine the pinch in addition to the neutron yield monitor and the fast scintillation detector. Work supported by Domestic Nuclear Detection Office under contract HSHQDC-08-C-00020.

  12. MINOS Search for Sterile Neutrinos

    E-print Network

    Alexandre Sousa; on behalf of the MINOS Collaboration

    2011-10-16

    Using a NuMI beam exposure of 7.1 /times 10^20 protons-on-target, the MINOS long-baseline experiment has performed a search for active to sterile neutrino mixing over a distance of 735 km. Details of the analysis are provided, along with results from comparisons with standard three neutrino oscillations and fits to a 3+1 model including oscillations into one sterile neutrino. An outlook on the future sterile neutrino related contributions from MINOS and the proposed MINOS+ project is also presented.

  13. The study of gas species on THz generation from laser-induced air plasma

    NASA Astrophysics Data System (ADS)

    Zhao, Ji; Zhang, LiangLiang; Wu, YiJian; Wu, Tong; Yuan, Hui; Zhang, CunLin; Zhao, YueJin

    2015-08-01

    Intense Terahertz waves generated from air-induced plasma and serving as broadband THz source provide a promising broadband source for innovative technology. Terahertz generation in selected gases has attracted more and more researchers' interests in recent years. In this research, the THz emission from different atoms is described, such as nitrogen, argon and helium in Michelson. The THz radiation is detected by a Golay Cell equipped with a 6-mm-diameter diamond-inputting window. It can be seen in the first time that when the pump power lies at a stable level, the THz generation created by the femtosecond laser focusing on the nitrogen is higher than which focusing on the helium, and lower than that produced in the argon gas environment. We believe that the THz intensity is Ar > N > Ne because of its atomic mass, which is Ar > N > Ne as well. It is clear that the Gas molecular decides the release of free electrons ionized from ultra short femtosecond laser through the electronic dynamic analysis. The higher the gas mass is, the stronger the terahertz emission will be. We further explore the THz emission at the different laser power levels, and the experimental results can be commendably quadratic fitted. It can be inferred that THz emission under different gas medium environment still complies with the law of four-wave mixing (FWM) process and has nothing to do with the gas environment: the radiation energy is proportional to the quadratic of incident laser power.

  14. Production of ultra clean gas-atomized powder by the plasma heated tundish technique

    SciTech Connect

    Tingskog, T.A.; Andersson, V.

    1996-12-31

    The paper describes the improvements in cleanliness for different types of gas atomized powders produced by holding the melt in a Plasma Heated Tundish (PHT) before atomization. The cleanliness is measured on Hot Isostatically Pressed (HIP) or extruded samples. Significant improvements in slag levels and material properties have been achieved. On extruded powder metallurgy stainless steel and nickel alloy tubes, the rejection rate in ultra-sonic testing was reduced drastically. Tool steels and high speed steels have greatly improved ductility and bend strength.

  15. 21 CFR 880.6880 - Steam sterilizer.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Steam sterilizer. 880.6880 Section 880.6880 Food... § 880.6880 Steam sterilizer. (a) Identification. A steam sterilizer (autoclave) is a device that is intended for use by a health care provider to sterilize medical products by means of pressurized steam....

  16. 21 CFR 880.6880 - Steam sterilizer.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Steam sterilizer. 880.6880 Section 880.6880 Food... § 880.6880 Steam sterilizer. (a) Identification. A steam sterilizer (autoclave) is a device that is intended for use by a health care provider to sterilize medical products by means of pressurized steam....

  17. 21 CFR 880.6880 - Steam sterilizer.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Steam sterilizer. 880.6880 Section 880.6880 Food... § 880.6880 Steam sterilizer. (a) Identification. A steam sterilizer (autoclave) is a device that is intended for use by a health care provider to sterilize medical products by means of pressurized steam....

  18. 21 CFR 880.6880 - Steam sterilizer.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Steam sterilizer. 880.6880 Section 880.6880 Food... § 880.6880 Steam sterilizer. (a) Identification. A steam sterilizer (autoclave) is a device that is intended for use by a health care provider to sterilize medical products by means of pressurized steam....

  19. 21 CFR 880.6880 - Steam sterilizer.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Steam sterilizer. 880.6880 Section 880.6880 Food... § 880.6880 Steam sterilizer. (a) Identification. A steam sterilizer (autoclave) is a device that is intended for use by a health care provider to sterilize medical products by means of pressurized steam....

  20. Analysis of processes in DC arc plasma torches for spraying that use air as plasma forming gas

    NASA Astrophysics Data System (ADS)

    Frolov, V.; Ivanov, D.; Toropchin, A.

    2014-11-01

    Developed in Saint Petersburg State Polytechnical University technological processes of air-plasma spraying of wear-resistant, regenerating, hardening and decorative coatings used in number of industrial areas are described. The article contains examples of applications of air plasma spraying of coatings as well as results of mathematical modelling of processes in air plasma torches for spraying.

  1. Restrictions on the lifetime of sterile neutrinos from primordial nucleosynthesis

    NASA Astrophysics Data System (ADS)

    Ruchayskiy, Oleg; Ivashko, Artem

    2012-10-01

    We analyze the influence of sterile neutrinos with the masses in the MeV range on the primordial abundances of Helium-4 and Deuterium. We solve explicitly the Boltzmann equations for all particle species, taking into account neutrino flavour oscillations and demonstrate that the abundances are sensitive mostly to the sterile neutrino lifetime and only weakly to the way the active-sterile mixing is distributed between flavours. The decay of these particles also perturbs the spectra of (decoupled) neutrinos and heats photons, changing the ratio of neutrino to photon energy density, that can be interpreted as extra neutrino species at the recombination epoch. We derive upper bounds on the lifetime of sterile neutrinos based on both astrophysical and cosmological measurements of Helium-4 and Deuterium. We also demonstrate that the recent results of Izotov & Thuan [1], who find 2? higher than predicted by the standard primordial nucleosynthesis value of Helium-4 abundance, are consistent with the presence in the plasma of sterile neutrinos with the lifetime 0.01-2 seconds.

  2. Restrictions on the lifetime of sterile neutrinos from primordial nucleosynthesis

    SciTech Connect

    Ruchayskiy, Oleg; Ivashko, Artem E-mail: ivashko@lorentz.leidenuniv.nl

    2012-10-01

    We analyze the influence of sterile neutrinos with the masses in the MeV range on the primordial abundances of Helium-4 and Deuterium. We solve explicitly the Boltzmann equations for all particle species, taking into account neutrino flavour oscillations and demonstrate that the abundances are sensitive mostly to the sterile neutrino lifetime and only weakly to the way the active-sterile mixing is distributed between flavours. The decay of these particles also perturbs the spectra of (decoupled) neutrinos and heats photons, changing the ratio of neutrino to photon energy density, that can be interpreted as extra neutrino species at the recombination epoch. We derive upper bounds on the lifetime of sterile neutrinos based on both astrophysical and cosmological measurements of Helium-4 and Deuterium. We also demonstrate that the recent results of Izotov and Thuan [1], who find 2? higher than predicted by the standard primordial nucleosynthesis value of Helium-4 abundance, are consistent with the presence in the plasma of sterile neutrinos with the lifetime 0.01–2 seconds.

  3. Sterile Technique Sterile (aseptic) technique is essential to avoiding contamination in yeast chronological life span

    E-print Network

    Aris, John P.

    Sterile Technique Sterile (aseptic) technique is essential to avoiding contamination in yeast chronological life span (CLS) experiments. Sterile technique is also highly relevant in the health care setting use. 3. Never allow anything sterile to come into contact with anything nonsterile. 4. Keep sterile

  4. Microbial Inactivation in the Liquid Phase Induced by Multigas Plasma Jet

    PubMed Central

    Takamatsu, Toshihiro; Uehara, Kodai; Sasaki, Yota; Hidekazu, Miyahara; Matsumura, Yuriko; Iwasawa, Atsuo; Ito, Norihiko; Kohno, Masahiro; Azuma, Takeshi; Okino, Akitoshi

    2015-01-01

    Various gas atmospheric nonthermal plasmas were generated using a multigas plasma jet to treat microbial suspensions. Results indicated that carbon dioxide and nitrogen plasma had high sterilization effects. Carbon dioxide plasma, which generated the greatest amount of singlet oxygen than other gas plasmas, killed general bacteria and some fungi. On the other hand, nitrogen plasma, which generated the largest amount of OH radical, killed ?6 log of 11 species of microorganisms, including general bacteria, fungi, acid-fast bacteria, spores, and viruses in 1–15 min. To identify reactive species responsible for bacterial inactivation, antioxidants were added to bacterial suspensions, which revealed that singlet oxygen and OH radicals had greatest inactivation effects. PMID:26173107

  5. Free radicals induced in aqueous solution by non-contact atmospheric-pressure cold plasma

    SciTech Connect

    Tani, Atsushi; Fukui, Satoshi; Ono, Yusuke; Kitano, Katsuhisa; Ikawa, Satoshi

    2012-06-18

    To understand plasma-induced chemical processing in liquids, we investigated the formation of free radicals in aqueous solution exposed to different types of non-contact atmospheric-pressure helium plasma using the spin-trapping technique. Both hydroxyl radical (OH{center_dot}) and superoxide anion radical (O{sub 2}{sup -}{center_dot}) adducts were observed when neutral oxygen gas was additionally supplied to the plasma. In particular, O{sub 2}{sup -}{center_dot} can be dominantly induced in the solution via oxygen flow into the afterglow gas of helium plasma. This type of plasma treatment can potentially be used in medical applications to control infectious diseases, because the O{sub 2}{sup -}{center_dot} is crucial for sterilization of liquids via atmospheric-pressure plasma.

  6. Low density gas and foam targets for ICF long scale length plasma experiments: Fabrication & characterization

    SciTech Connect

    Gobby, P.L.; Mitchell, M.A.; Eliott, N.E.; Salazar, M.A.; Fermandez, J.C.; Hsing, W.W.; Moore, J.E.; Gomez, V.M.

    1994-10-01

    Recent ICF experiments performed by the laser-matter interaction group at Los Alamos using the Nova laser to investigate long scale length plasmas required two types of special targets: gas-filled hohlraums and free-standing low density foams, both with densities in the range of 3-5 mg/cc. The mass in each case was provided by hydrogen and carbon - in the form of polymethylpentyene for the foam case and 2.2-dimethylpropane (i.e., neopentane, C{sub 5}H{sub 12}) at 1 atmosphere for the gas case. Dopants of Cl, Ti, Cr and Mn were added to the foams, while Ti and Cr coated carbon fibers were added to the hohlraums - both for isoelectronic x-ray spectroscopic temperature measurements.

  7. High pressure laser plasma studies. [energy pathways in He-Ar gas mixtures at low pressure

    NASA Technical Reports Server (NTRS)

    Wells, W. E.

    1980-01-01

    The operation of a nuclear pumped laser, operating at a wavelength of 1.79 micron m on the 3d(1/2-4p(3/2) transition in argon with helium-3 as the majority gas is discussed. The energy pathways in He-Ar gas were investigated by observing the effects of varying partial pressures on the emissions of levels lying above the 4p level in argon during a pulsed afterglow. An attempt is made to determine the population mechanisms of the 3d level in pure argon by observing emission from the same transition in a high pressure plasma excited by a high energy electron beam. Both collisional radiative and dissociative recombination are discussed.

  8. Ion Species and Charge States of Vacuum Arc Plasma with Gas Feed and Longitudinal Magnetic Field

    SciTech Connect

    Oks, Efim; Anders, Andre

    2010-06-23

    The evolution of copper ion species and charge state distributions is measured for a long vacuum arc discharge plasma operated in the presence of a longitudinal magnetic field of several 10 mT and working gas (Ar). It was found that changing the cathode-anode distance within 20 cm as well as increasing the gas pressure did not affect the arc burning voltage and power dissipation by much. In contrast, burning voltage and power dissipation were greatly increased as the magnetic field was increased. The longer the discharge gap the greater was the fraction of gaseous ions and the lower the fraction of metal ions, while the mean ion charge state was reduced. It is argued that the results are affected by charge exchange collisions and electron impact ionization.

  9. Effects of argon gas pressure on its metastable-state density in high-density plasmas

    NASA Astrophysics Data System (ADS)

    Seo, B. H.; Kim, J. H.; You, S. J.

    2015-05-01

    The effect of argon gas pressure on its metastable density in inductively coupled plasmas (ICPs) is investigated by using the laser-induced fluorescence method. Our results show that the metastable-state density of argon varies with the gas pressure depending on the measurement position; the density decreases with the pressure at a position far from the ICP antenna, whereas it increases with the pressure at a position near the antenna. This contrast in the metastable-state density trend with the pressure is explained by considering the electron temperature variations at the two measurement positions. The theoretical interpretation and calculation using a global model are also addressed in detail in this paper.

  10. Effects of argon gas pressure on its metastable-state density in high-density plasmas

    SciTech Connect

    Seo, B. H.; Kim, J. H.; You, S. J.

    2015-05-15

    The effect of argon gas pressure on its metastable density in inductively coupled plasmas (ICPs) is investigated by using the laser-induced fluorescence method. Our results show that the metastable-state density of argon varies with the gas pressure depending on the measurement position; the density decreases with the pressure at a position far from the ICP antenna, whereas it increases with the pressure at a position near the antenna. This contrast in the metastable-state density trend with the pressure is explained by considering the electron temperature variations at the two measurement positions. The theoretical interpretation and calculation using a global model are also addressed in detail in this paper.

  11. Persistent Effectivity of Gas Plasma-Treated, Long Time-Stored Liquid on Epithelial Cell Adhesion Capacity and Membrane Morphology

    PubMed Central

    Hoentsch, Maxi; Bussiahn, René; Rebl, Henrike; Bergemann, Claudia; Eggert, Martin; Frank, Marcus; von Woedtke, Thomas; Nebe, Barbara

    2014-01-01

    Research in plasma medicine includes a major interest in understanding gas plasma-cell interactions. The immediate application of gas plasma in vitro inhibits cell attachment, vitality and cell-cell contacts via the liquid. Interestingly, in our novel experiments described here we found that the liquid-mediated plasma effect is long-lasting after storage up to seven days; i. e. the liquid preserves the characteristics once induced by the argon plasma. Therefore, the complete Dulbecco's Modified Eagle cell culture medium was argon plasma-treated (atmospheric pressure, kINPen09) for 60 s, stored for several days (1, 4 and 7 d) at 37°C and added to a confluent mouse hepatocyte epithelial cell (mHepR1) monolayer. Impaired tight junction architecture as well as shortened microvilli on the cell membrane could be observed, which was accompanied by the loss of cell adhesion capacity. Online-monitoring of vital cells revealed a reduced cell respiration. Our first time-dependent analysis of plasma-treated medium revealed that temperature, hydrogen peroxide production, pH and oxygen content can be excluded as initiators of cell physiological and morphological changes. The here observed persisting biological effects in plasma-treated liquids could open new medical applications in dentistry and orthopaedics. PMID:25170906

  12. Persistent effectivity of gas plasma-treated, long time-stored liquid on epithelial cell adhesion capacity and membrane morphology.

    PubMed

    Hoentsch, Maxi; Bussiahn, René; Rebl, Henrike; Bergemann, Claudia; Eggert, Martin; Frank, Marcus; von Woedtke, Thomas; Nebe, Barbara

    2014-01-01

    Research in plasma medicine includes a major interest in understanding gas plasma-cell interactions. The immediate application of gas plasma in vitro inhibits cell attachment, vitality and cell-cell contacts via the liquid. Interestingly, in our novel experiments described here we found that the liquid-mediated plasma effect is long-lasting after storage up to seven days; i. e. the liquid preserves the characteristics once induced by the argon plasma. Therefore, the complete Dulbecco's Modified Eagle cell culture medium was argon plasma-treated (atmospheric pressure, kINPen09) for 60 s, stored for several days (1, 4 and 7 d) at 37°C and added to a confluent mouse hepatocyte epithelial cell (mHepR1) monolayer. Impaired tight junction architecture as well as shortened microvilli on the cell membrane could be observed, which was accompanied by the loss of cell adhesion capacity. Online-monitoring of vital cells revealed a reduced cell respiration. Our first time-dependent analysis of plasma-treated medium revealed that temperature, hydrogen peroxide production, pH and oxygen content can be excluded as initiators of cell physiological and morphological changes. The here observed persisting biological effects in plasma-treated liquids could open new medical applications in dentistry and orthopaedics. PMID:25170906

  13. An Introduction to Nonequilibrium Plasmas at Atmospheric Pressure

    E-print Network

    Ebert, Ute

    , or biofuel; for treatment of water and surfaces; as well as for sterilization, plasma deposition, plasma electromagnetic fields than to uniformly heat and confine a plasma. However, electromagnetic fields naturally

  14. Food irradiation and sterilization

    NASA Astrophysics Data System (ADS)

    Josephson, Edward S.

    Radiation sterilization of food (radappertization) requires exposing food in sealed containers to ionizing radiation at absorbed doses high enough (25-70 kGy) to kill all organisms of food spoilage and public health significance. Radappertization is analogous to thermal canning is achieving shelf stability (long term storage without refrigeration). Except for dry products in which autolysis is negligible, the radappertization process also requires that the food be heated to an internal temperature of 70-80°C (bacon to 53°C) to inactivate autolytic enzymes which catalyze spoilage during storage without refrigeration. To minimize the occurence of irradiation induced off-flavors and odors, undesirable color changes, and textural and nutritional losses from exposure to the high doses required for radappertization, the foods are vacuum sealed and irradiated frozen (-40°C to -20°C). Radappertozed foods have the characteristic of fresh foods prepared for eating. Radappertization can substitute in whole or in part for some chemical food additives such as ethylene oxide and nitrites which are either toxic, carcinogenic, mutagenic, or teratogenic. After 27 years of testing for "wholesomeness" (safety for consumption) of radappertized foods, no confirmed evidence has been obtained of any adverse effecys of radappertization on the "wholesomeness" characteristics of these foods.

  15. Radiation sterilization of skin allograft

    NASA Astrophysics Data System (ADS)

    Kairiyama, E.; Horak, C.; Spinosa, M.; Pachado, J.; Schwint, O.

    2009-07-01

    In the treatment of burns or accidental loss of skin, cadaveric skin allografts provide an alternative to temporarily cover a wounded area. The skin bank facility is indispensable for burn care. The first human skin bank was established in Argentina in 1989; later, 3 more banks were established. A careful donor selection is carried out according to the national regulation in order to prevent transmissible diseases. As cadaveric human skin is naturally highly contaminated, a final sterilization is necessary to reach a sterility assurance level (SAL) of 10 -6. The sterilization dose for 106 batches of processed human skin was determined on the basis of the Code of Practice for the Radiation Sterilization of Tissue Allografts: Requirements for Validation and Routine Control (2004) and ISO 11137-2 (2006). They ranged from 17.6 to 33.4 kGy for bioburdens of >10-162.700 CFU/100 cm 2. The presence of Gram negative bacteria was checked for each produced batch. From the analysis of the experimental results, it was observed that the bioburden range was very wide and consequently the estimated sterilization doses too. If this is the case, the determination of a tissue-specific dose per production batch is necessary to achieve a specified requirement of SAL. Otherwise if the dose of 25 kGy is preselected, a standardized method for substantiation of this dose should be done to confirm the radiation sterilization process.

  16. Organic acids enhanced decoloration of azo dye in gas phase surface discharge plasma system.

    PubMed

    Wang, Tiecheng; Qu, Guangzhou; Ren, Jingyu; Sun, Qiuhong; Liang, Dongli; Hu, Shibin

    2016-01-25

    A gas phase surface discharge plasma combined with organic acids system was developed to enhance active species mass transfer and dye-containing wastewater treatment efficacy, with Acid Orange II (AO7) as the model pollutant. The effects of discharge voltage and various organic acid additives (acetic acid, lactic acid and nonoic acid) on AO7 decoloration efficiency were evaluated. The experimental results showed that an AO7 decoloration efficiency of approximately 69.0% was obtained within 4min of discharge plasma treatment without organic acid addition, which was improved to 82.8%, 83.5% and 88.6% within the same treatment time with the addition of acetic acid, lactic acid and nonoic acid, respectively. The enhancement effects on AO7 decoloration efficiency could be attributed to the decrease in aqueous surface tension, improvement in bubble distribution and shape, and increase in ozone equivalent concentration. The AO7 wastewater was biodegradable after discharge plasma treatment with the addition of organic acid. AO7 decomposition intermediates were analyzed by UV-vis spectrometry and GC-MS; 2-naphthol, 1,4-benzoquinone, phthalic anhydride, coumarin, 1,2-naphthoquinone, and 2-formyl-benzoic acid were detected. A possible pathway for AO7 decomposition in this system was proposed. PMID:26444488

  17. Plasma discharge and time-dependence of its effect to bacteria.

    PubMed

    Justan, I; Cernohorska, L; Dvorak, Z; Slavicek, P

    2014-07-01

    Several types of plasma discharge have been proven to have a capacity for sterilization. Our goal is to introduce new nonthermal plasma pencil. We used it to sterilize different microbial populations with differing ages. We used a plasma discharge of the following characteristics: radio frequency barrier discharger at atmospheric pressure with a working frequency of 13.56 MHz, and the working gas used was argon. We performed 110 tests with the following microbial populations: Pseudomonas aeruginosa, Staphylococcus aureus, Proteus species, and Klebsiella pneumoniae. All populations were inoculated on the previous day and also on the day of our experiment. We made our evaluations the following day and also after 5 days, with all our microbial populations. Eradication of microbial populations is dependent on the plasma discharge exposure time in all cases. With regard to freshly inoculated microbes, we were able to sterilize agar with intensive exposure lasting for 10 s of colonies Pseudomonas, Proteus, and Klebsiella. The most resistant microbe seems to be S. aureus, which survives 5 s of coherent exposure in half of the cases. Using the lightest plasma discharge exposure, we achieved a maximum of 10(4)-10(5) CFU/mL (colony-forming unit - CFU). Regarding older microbial populations inoculated the day before the experiment, we can only decrease population growth to 10(5) CFU/mL approximately, but never completely sterilize. The plasma discharge with our characteristics could be used for the sterilization of the aforementioned superficially growing microbes, but does not sufficiently affect deeper layers and thus seems to be a limitation for eradication of the already erupted colonies. PMID:24464536

  18. Development of a plasma sprayed ceramic gas path seal for high pressure turbine applications

    NASA Technical Reports Server (NTRS)

    Shiembob, L. T.

    1977-01-01

    The plasma sprayed graded layered yittria stabilized zirconia (ZrO2)/metal(CoCrAlY) seal system for gas turbine blade tip applications up to 1589 K (2400 F) seal temperatures was studied. Abradability, erosion, and thermal fatigue characteristics of the graded layered system were evaluated by rig tests. Satisfactory abradability and erosion resistance was demonstrated. Encouraging thermal fatigue tolerance was shown. Initial properties for the plasma sprayed materials in the graded, layered seal system was obtained, and thermal stress analyses were performed. Sprayed residual stresses were determined. Thermal stability of the sprayed layer materials was evaluated at estimated maximum operating temperatures in each layer. Anisotropic behavior in the layer thickness direction was demonstrated by all layers. Residual stresses and thermal stability effects were not included in the analyses. Analytical results correlated reasonably well with results of the thermal fatigue tests. Analytical application of the seal system to a typical gas turbine engine application predicted performance similar to rig specimen thermal fatigue performance. A model for predicting crack propagation in the sprayed ZrO2/CoCrAlY seal system was proposed, and recommendations for improving thermal fatigue resistance were made. Seal system layer thicknesses were analytically optimized to minimize thermal stresses in the abradability specimen during thermal fatigue testing. Rig tests on the optimized seal configuration demonstrated some improvement in thermal fatigue characteristics.

  19. Development of a Swirling Gas/Plasma Experiment for Studying Angular Momentum Transport in Accretion Disks

    NASA Astrophysics Data System (ADS)

    Merino, Enrique; Berrios, William; Greess, Samuel; Ji, Hantao

    2013-10-01

    Fast angular momentum transport in accretion disks is a lasting problem in astrophysics. Classically estimated viscosity of neutral fluid is too small to account for the fast accretion rate accompanied by angular momentum transport. Magnetorotational instability (MRI) and nonlinear hydrodynamic instabilities are proposed to be responsible mechanisms to generate the required turbulence. In addition to ongoing experiments using water, liquid metals and plasmas, a new experimental scheme is being developed at Princeton. High-speed gas is injected tangentially to the large radius in a cylindrical container. The gas gradually spirals-in and is pumped out from the container's center. This principle was successfully tested on a small scale prototype. To overcome large viscous forces, a 2nd generation prototype has been built. To provide information on the rotation profile of this swirling gas, a fog cloud is introduced. Motion is recorded by a hi-speed camera and using Particle Imaging Velocimetry, radial profiles of rotation speeds can be measured. Other improvements in this new device include addition of a three-axis translation mechanism, high-power heater and high-flow gas system. Technical designs and preliminary results will be presented and discussed, including near-future plans.

  20. X-ray imaging of uniform large scale-length plasmas created from gas-filled targets on Nova

    SciTech Connect

    Kalantar, D.H.; MacGowan, B.J.; Bernat, T.P.

    1994-05-01

    We report on the production and characterization of large scale-length plasmas created by illuminating gas-filled thin-walled balloon-like targets using the Nova laser. The targets consisted of a 4--5000 {angstrom} skin surrounding 1 atm of neopentane which when ionized becomes a plasma with 10{sup 21} electrons/cm{sup 3}. Results are presented from x-ray imaging used to evaluate the uniformity of the plasma. The most uniform plasmas were produced by illuminating the target with large converging beams that overlapped to cover most of the surface of the gasbag. An alternate focus geometry using small beam spots resulted in a less uniform plasma with low density holes in it.

  1. Genomic Networks of Hybrid Sterility

    PubMed Central

    Turner, Leslie M.; White, Michael A.; Tautz, Diethard; Payseur, Bret A.

    2014-01-01

    Hybrid dysfunction, a common feature of reproductive barriers between species, is often caused by negative epistasis between loci (“Dobzhansky-Muller incompatibilities”). The nature and complexity of hybrid incompatibilities remain poorly understood because identifying interacting loci that affect complex phenotypes is difficult. With subspecies in the early stages of speciation, an array of genetic tools, and detailed knowledge of reproductive biology, house mice (Mus musculus) provide a model system for dissecting hybrid incompatibilities. Male hybrids between M. musculus subspecies often show reduced fertility. Previous studies identified loci and several X chromosome-autosome interactions that contribute to sterility. To characterize the genetic basis of hybrid sterility in detail, we used a systems genetics approach, integrating mapping of gene expression traits with sterility phenotypes and QTL. We measured genome-wide testis expression in 305 male F2s from a cross between wild-derived inbred strains of M. musculus musculus and M. m. domesticus. We identified several thousand cis- and trans-acting QTL contributing to expression variation (eQTL). Many trans eQTL cluster into eleven ‘hotspots,’ seven of which co-localize with QTL for sterility phenotypes identified in the cross. The number and clustering of trans eQTL—but not cis eQTL—were substantially lower when mapping was restricted to a ‘fertile’ subset of mice, providing evidence that trans eQTL hotspots are related to sterility. Functional annotation of transcripts with eQTL provides insights into the biological processes disrupted by sterility loci and guides prioritization of candidate genes. Using a conditional mapping approach, we identified eQTL dependent on interactions between loci, revealing a complex system of epistasis. Our results illuminate established patterns, including the role of the X chromosome in hybrid sterility. The integrated mapping approach we employed is applicable in a broad range of organisms and we advocate for widespread adoption of a network-centered approach in speciation genetics. PMID:24586194

  2. Debris-free laser plasma sources for EUVL based on gas jets

    SciTech Connect

    Kubiak, G.D.; O`Connell, D.; Krenz, K.D.

    1996-03-01

    EUV sources for EUVL must not only be bright for throughput, they must also be debris-free to increase condenser longevity. Many schemes to achieve bright, clean sources for EUVL have been studied, including mass-limited targets, cryogenic targets, electric discharges, and electron-beam pumped vapor. Several of these sources show promise, with varying degrees of brightness, debris reduction, and system complexity. We have studied pulsed gas jets, which we find to be relatively simple, debris-free sources when used under appropriate conditions. Under transverse, 1.06 {mu}m irradiation of the jet at incident laser intensities in the range of 10{sup 11}-10{sup 12} Watts/cm{sup 2}, the conversion efficiency into 2{pi} steradians is in the range of 0.3-0.4%, or approximately half the value exhibited by solid Au or W targets under similar conditions. Source sizes in the range of 350 {mu}m x 400 {mu}m can be achieved, as shown in Fig. 2, depending sensitively on both laser and gas jet parameters. One issue that must be overcome in the use of gas jet targets is the requirement that the laser-irradiated plasma be located as far from the jet nozzle as possible to avoid debris generation while maintaining adequate EUV conversion. We will describe conditions under which these criteria are met. Measurements of the reflectance lifetimes of multilayer-coated mirrors placed near the plasma source under these conditions will also be presented. The potential for scaling such sources up to meet the requirements of a commercial EUVL system will be discussed.

  3. Portable plasma medical device for infection treatment.

    PubMed

    Thiyagarajan, Magesh; Waldbeser, Lillian

    2012-01-01

    The purpose of this study was to determine the effects of plasma treatment on bacteria in liquid phases. We predict that the plasma gas can penetrate the liquid culture media and plasma treatment will efficiently kill the bacteria at unique time and distance parameters. It is also hypothesized that less stringent plasma treatment will negatively affect the growth rate of some species of bacteria and possibly their pathogenicity. The bacteria were exposed to hot and cold plasma at various time lengths and distance parameters. Our results indicated that 2 minutes of hot plasma treatment with the plasma torch 5 cm away from the liquid culture is effective in killing/sterilizing cultures of S. aureus, S. pyogenes, Salmonella spp, N. meningitidis, and E. coli. Five minutes of cold plasma with the probe immersed 1-2 cm inside the liquid culture were needed to kill the bacteria. The portable nonthermal plasma system can be used for infection treatment and wound healing applications affected by the microbes studied in this research. PMID:22357048

  4. Comparison of surface vacuum ultraviolet emissions with resonance level number densities. II. Rare-gas plasmas and Ar-molecular gas mixtures

    SciTech Connect

    Boffard, John B. Lin, Chun C.; Wang, Shicong; Wendt, Amy E.; Culver, Cody; Radovanov, Svetlana; Persing, Harold

    2015-03-15

    Vacuum ultraviolet (VUV) emissions from excited plasma species can play a variety of roles in processing plasmas, including damaging the surface properties of materials used in semiconductor processing. Depending on their wavelength, VUV photons can easily transmit thin upper dielectric layers and affect the electrical characteristics of the devices. Despite their importance, measuring VUV fluxes is complicated by the fact that few materials transmit at VUV wavelengths, and both detectors and windows are easily damaged by plasma exposure. The authors have previously reported on measuring VUV fluxes in pure argon plasmas by monitoring the concentrations of Ar(3p{sup 5}4s) resonance atoms that produce the VUV emissions using noninvasive optical emission spectroscopy in the visible/near-infrared wavelength range [Boffard et al., J. Vac. Sci. Technol., A 32, 021304 (2014)]. Here, the authors extend this technique to other rare-gases (Ne, Kr, and Xe) and argon-molecular gas plasmas (Ar/H{sub 2}, Ar/O{sub 2}, and Ar/N{sub 2}). Results of a model for VUV emissions that couples radiation trapping and the measured rare-gas resonance level densities are compared to measurements made with both a calibrated VUV photodiode and a sodium salicylate fluorescence detection scheme. In these more complicated gas mixtures, VUV emissions from a variety of sources beyond the principal resonance levels of the rare gases are found to contribute to the total VUV flux.

  5. Investigation of a sterilization system using active oxygen species generated by ultraviolet irradiation.

    PubMed

    Yoshino, Kiyoshi; Matsumoto, Hiroyuki; Iwasaki, Tatsuyuki; Kinoshita, Shinobu; Noda, Kazutoshi; Oya, Kei; Iwamori, Satoru

    2015-01-01

    We have been investigating an advanced sterilization system that employs active oxygen species (AOS). We designed the sterilization equipment, including an evacuation system, which generates AOS from pure oxygen gas using ultraviolet irradiation, in order to study the conditions necessary for sterilization in the system's chamber. Using Geobachillus stearothermophilus spores (10(6) CFU) in a sterile bag as a biological indicator (BI) in the chamber of the AOS sterilization apparatus, we examined the viability of the BI as a function of exposure time, assessing the role of the decompression level in the sterilization performance. We found that the survival curves showed exponential reduction, and that the decompression level did not exert a significant influence on the survival curve. Subsequently, we investigated the sterilization effect as influenced by the spatial and environmental temperature variation throughout the chamber, and found that the sterilization effect varied with position, due to the varying environmental temperature in the respective areas. We confirmed that temperature is one of the most important factors influencing sterilization in the chamber, and estimated the temperature effect on the distribution of atomic oxygen concentration, using the quartz crystal microbalance (QCM) method with fluorocarbon thin film prepared by radio frequency sputtering. PMID:25817808

  6. Reduction of plasma electron density in a gas ionized by an electron beam - Use of a gaseous dielectric

    NASA Technical Reports Server (NTRS)

    Reid, Max B.

    1993-01-01

    Propagation of an electron beam through a gas creates a secondary electron/ion plasma which can have subsequent deleterious effects on the propagation of the beam. In the case of pulsed electron beams with short micropulse durations, these effects can be greatly reduced through the use of a small doping fraction of an electron attachment gas. We present a model which allows the calculation of the reduction in unbound plasma electron density attainable with a gaseous dielectric dopant. Potential problems with a dopant, including increased ionization, increased scattering, altered refractive index, and dopant saturation and fragmentation, are discussed.

  7. Use of non-thermal atmospheric plasmas to reduce the viability of Bacillus subtilis

    E-print Network

    Schuerger, Andrew C.

    , terminal heat-sterilization protocols just prior to launch reduced the probability of launching viable pressure glow-discharge (APGD) plasmas have been proposed for sterilizing spacecraft surfaces prior to launch. The advantages of APGD plasmas for the sterilization of spacecraft surfaces include low

  8. Influence of gas puff location on the coupling of lower hybrid waves in JET ELMy H-mode plasmas

    SciTech Connect

    Ekedahl, A.; Petrzilka, V.; Baranov, Y.; Goniche, M.; Jacquet, P.; Klepper, C Christopher; Mailloux, J.

    2012-01-01

    Reliable coupling of the lower hybrid current drive (LHCD) to H-mode plasmas in JET is made feasible through a dedicated gas injection system, located at the outer wall and magnetically connected to the antenna (Pericoli Ridolfini et al 2004 Plasma Phys. Control. Fusion 46 349, Ekedahl et al 2005 Nucl. Fusion 45 351, Ekedahl et al 2009 Plasma Phys. Control. Fusion 51 044001). An experiment was carried out in JET in order to investigate whether a gas injection from the top of the torus, as is foreseen for the main gas injection in ITER, could also provide good coupling of the LH waves if magnetically connected to the antenna. The results show that a top gas injection was not efficient for providing a reliable LHCD power injection, in spite of being magnetically connected and in spite of using almost twice the amount of gas flow compared with the dedicated outer mid-plane gas puffing system. A dedicated gas injection system, set in the outer wall and magnetically connected to the LHCD antenna, is therefore recommended in order to provide the reliable coupling conditions for an LHCD antenna in ITER.

  9. Charging of nanoparticles in stationary plasma in a gas aggregation cluster source

    NASA Astrophysics Data System (ADS)

    Blažek, J.; Kousal, J.; Biederman, H.; Kylián, O.; Hanuš, J.; Slavínská, D.

    2015-10-01

    Clusters that grow into nanoparticles near the magnetron target of the gas aggregation cluster source (GAS) may acquire electric charge by collecting electrons and ions or through other mechanisms like secondary- or photo-electron emissions. The region of the GAS close to magnetron may be considered as stationary plasma. The steady state charge distribution on nanoparticles can be determined by means of three possible models—fluid model, kinetic model and model employing Monte Carlo simulations—of cluster charging. In the paper the mathematical and numerical aspects of these models are analyzed in detail and close links between them are clarified. Among others it is shown that Monte Carlo simulation may be considered as a particular numerical technique of solving kinetic equations. Similarly the equations of the fluid model result, after some approximation, from averaged kinetic equations. A new algorithm solving an in principle unlimited set of kinetic equations is suggested. Its efficiency is verified on physical models based on experimental input data.

  10. Gas Sensors Based on Tin Oxide Nanoparticles Synthesized from a Mini-Arc Plasma Source

    DOE PAGESBeta

    Lu, Ganhua; Huebner, Kyle L.; Ocola, Leonidas E.; Gajdardziska-Josifovska, Marija; Chen, Junhong

    2006-01-01

    Miniaturized gas sensors or electronic noses to rapidly detect and differentiate trace amount of chemical agents are extremely attractive. In this paper, we report on the fabrication and characterization of a functional tin oxide nanoparticle gas sensor. Tin oxide nanoparticles are first synthesized using a convenient and low-cost mini-arc plasma source. The nanoparticle size distribution is measured online using a scanning electrical mobility spectrometer (SEMS). The product nanoparticles are analyzed ex-situ by high resolution transmission electron microscopy (HRTEM) for morphology and defects, energy dispersive X-ray (EDX) spectroscopy for elemental composition, electron diffraction for crystal structure, and X-ray photoelectron spectroscopy (XPS)more »for surface composition. Nonagglomerated rutile tin oxide (SnO2) nanoparticles as small as a few nm have been produced. Larger particles bear a core-shell structure with a metallic core and an oxide shell. The nanoparticles are then assembled onto an e-beam lithographically patterned interdigitated electrode using electrostatic force to fabricate the gas sensor. The nanoparticle sensor exhibits a fast response and a good sensitivity when exposed to 100 ppm ethanol vapor in air.« less

  11. Computational fluid dynamics analysis of cold plasma carrier gas injected into a fluid using level set method.

    PubMed

    Shahmohammadi Beni, Mehrdad; Yu, K N

    2015-01-01

    A promising application of plasma medicine is to treat living cells and tissues with cold plasma. In cold plasmas, the fraction of neutrals dominates, so the carrier gas could be considered the main component. In many realistic situations, the treated cells are covered by a fluid. The present paper developed models to determine the temperature of the fluid at the positions of the treated cells. Specifically, the authors developed a three-phase-interaction model which was coupled with heat transfer to examine the injection of the helium carrier gas into water and to investigate both the fluid dynamics and heat transfer output variables, such as temperature, in three phases, i.e., air, helium gas, and water. Our objective was to develop a model to perform complete fluid dynamics and heat transfer computations to determine the temperature at the surface of living cells. Different velocities and plasma temperatures were also investigated using finite element method, and the model was built using the comsol multiphysics software. Using the current model to simulate plasma injection into such systems, the authors were able to investigate the temperature distributions in the domain, as well as the surface and bottom boundary of the medium in which cells were cultured. The temperature variations were computed at small time intervals to analyze the temperature increase in cell targets that could be highly temperature sensisitve. Furthermore, the authors were able to investigate the volume of the plasma plume and its effects on the average temperature of the medium layer/domain. Variables such as temperature and velocity at the cell layer could be computed, and the variations due to different plume sizes could be determined. The current models would be very useful for future design of plasma medicine devices and procedures involving cold plasmas. PMID:26467659

  12. [Determination of formaldehyde concentration in a low-pressure sterilizer].

    PubMed

    Steiner, C; Tottoli, M; Reber, H

    1987-05-01

    Two methods are described in determining the concentration of Formaldehyde in the sterilisation chamber of a regular commercial sterilizer. The measurement and flow of the concentration is ascertained during a routine sterilization procedure. With regard to the biological efficiency test of the examined apparatus the stability of the active Formaldehyde concentration is controlled. The difficulty in the determination of the Formaldehyde in such sterilizers is due to the fact that samples must be taken at a reduced pressure of 200 mbar. We have developed two different sampling methods. By employing the first continual collection method Formaldehyde gas is drawn out of the sterilization chamber with a high vacuum pump and conveyed with hydrogen into a nickel catalysator, whereby Methane is formed. The determination of Methane is carried out with a flame ionisation detector (F.I.D.). The results of the F.I.D. method are between 10.1-10.8 mg Formaldehyde per litre of gas. It is possible to detect a slight, even reduction in the Formaldehyde concentration throughout a period of 90 min. With the second discontinual method of determination vacuum tubes are employed which are furnished with external magnetic valves for control. By opening the magnetic valves briefly during the pre-vacuum therewith causing loss of pressure, Formaldehyde gas can be collected in the vacuum tubes throughout the sterilization procedure. The determination of the samples extracted by the discontinual method is carried out spectrophotometrically using the p-Rosanilin method after Miksch et al. The second method of determination shows values of 9.0-9.8 mg/l (Sx = 0.8 mg/l). These results lie somewhat lower than those of the F.I.D. determination. The flow of the concentration during 90 min. shows an average reduction of 7.4% and matches exactly the curve which was obtained by the F.I.D. method. By measuring the Formaldehyde concentrations which goods are subjected to in normal sterilization procedure it is possible to examine the efficacy of Formaldehyde sterilizers under regular conditions. Only by quotation of the Formaldehyde concentration present is it possible to reproduce details on sterilization times of treated articles. PMID:3113101

  13. Neutrinos in a Sterile Throat

    E-print Network

    Ben Gripaios

    2009-12-16

    We consider field-theoretic models of a warped extra dimension with multiple throats, in which fermions that are singlets of the Standard Model gauge group propagate in a separate throat from the Standard Model fields, which we call the sterile throat. The singlets mix with Standard Model fields via interactions localized on the UV brane that connects the two throats. This leads to three, light, mostly-active, Majorana neutrinos via a higher-dimensional see-saw mechanism, together with Kaluza-Klein towers of mostly-sterile neutrinos, whose scale is set by the warp factor in the sterile throat and can be very low if the throat is deep. We suggest that a model of this kind may explain all the neutrino data, reconciling the LSND result with astrophysical constraints.

  14. Sterilization failures and their causes.

    PubMed

    Soderstrom, R M

    1985-06-15

    To say that a sterilization failure rate is expected does not answer why. Forty-seven cases of repeat sterilization have undergone such surgical and pathologic scrutiny. Resection methods failed most frequently because of spontaneous reanastomosis or fistula formation. Fimbriectomy was particularly vulnerable to reanastomosis because the fimbria ovarica was not removed. Mechanical devices failed when the device was defective, placed improperly, or placed in an improper location. Tissue damage was evident but incomplete when the bipolar electrocoagulation method failures were reviewed, and the endosalpinx remained viable. Unipolar method injuries, in contrast, were complete; they failed by fistula formation. Thus bipolar method failures may occur because of the limited range of electrical power available when using bipolar generators. Some sterilization failures are preventable, but many are not. When medicolegal questions arise, these findings may help answer the question, Why? PMID:4014332

  15. Gas-to-Particle Conversion in Surface Discharge Nonthermal Plasmas and Its Implications for Atmospheric Chemistry

    PubMed Central

    Kim, Hyun-Ha; Ogata, Atsushi

    2011-01-01

    This paper presents some experimental data on gas-to-particle conversion of benzene using nonthermal plasma (NTP) technology and discusses the possibility of its technical application in atmospheric chemistry. Aerosol measurement using a differential mobility analyzer (DMA) revealed that the parts of benzene molecules were converted into a nanometer-sized aerosol. Aerosol formation was found to be highly related with the missing part in carbon balance. Scanning electron microscopy analysis showed that the aerosols formed in synthetic humid air are the collection of nanoparticles. The carbonyl band (C=O) was found to be an important chemical constituent in the aerosol. The potential of the NTP as an accelerated test tool in studying secondary organic aerosol (SOA) formation from VOCs will be also addressed. PMID:22163781

  16. Development of a plasma sprayed ceramic gas path seal for high pressure turbine applications

    NASA Technical Reports Server (NTRS)

    Shiembob, L. T.; Hyland, J. F.

    1979-01-01

    Development of the plasma sprayed graded, layered ZrO2/CoCrAlY seal system for gas turbine engine blade tip seal application up to 1589 K (2400 F) surface temperature was continued. Methods of improvement of the cyclic thermal shock resistance of the sprayed zirconia seal system were investigated. The most promising method, reduction of the ceramic thickness and metallic substrate stiffness were selected based upon potential and feasibility. Specimens were fabricated and experimentally evaluated to: (1) substantiate the capacity of the geometry changes to reduce operating stresses in the sprayed structure; and (2) define the abradability, erosion, thermal shock and physical property characteristic for the sprayed ceramic seal system. Thermal stress analysis was performed and correlated with thermal shock test results.

  17. Gas-to-particle conversion in surface discharge nonthermal plasmas and its implications for atmospheric chemistry.

    PubMed

    Kim, Hyun-Ha; Ogata, Atsushi

    2011-01-01

    This paper presents some experimental data on gas-to-particle conversion of benzene using nonthermal plasma (NTP) technology and discusses the possibility of its technical application in atmospheric chemistry. Aerosol measurement using a differential mobility analyzer (DMA) revealed that the parts of benzene molecules were converted into a nanometer-sized aerosol. Aerosol formation was found to be highly related with the missing part in carbon balance. Scanning electron microscopy analysis showed that the aerosols formed in synthetic humid air are the collection of nanoparticles. The carbonyl band (C=O) was found to be an important chemical constituent in the aerosol. The potential of the NTP as an accelerated test tool in studying secondary organic aerosol (SOA) formation from VOCs will be also addressed. PMID:22163781

  18. Ionized Plasma and Neutral Gas Coupling in the Sun's Chromosphere and Earth's Ionosphere/Thermosphere

    NASA Astrophysics Data System (ADS)

    Leake, J. E.; DeVore, C. R.; Thayer, J. P.; Burns, A. G.; Crowley, G.; Gilbert, H. R.; Huba, J. D.; Krall, J.; Linton, M. G.; Lukin, V. S.; Wang, W.

    2014-11-01

    We review physical processes of ionized plasma and neutral gas coupling in the weakly ionized, stratified, electromagnetically-permeated regions of the Sun's chromosphere and Earth's ionosphere/thermosphere. Using representative models for each environment we derive fundamental descriptions of the coupling of the constituent parts to each other and to the electric and magnetic fields, and we examine the variation in magnetization of the components. Using these descriptions we compare related phenomena in the two environments, and discuss electric currents, energy transfer and dissipation. We present examples of physical processes that occur in both atmospheres, the descriptions of which have previously been conducted in contrasting paradigms, that serve as examples of how the chromospheric and ionospheric communities can further collaborate. We also suggest future collaborative studies that will help improve our understanding of these two different atmospheres, which while sharing many similarities, also exhibit large disparities in key quantities.

  19. Co3O4/ZnO nanocomposites: from plasma synthesis to gas sensing applications.

    PubMed

    Bekermann, D; Gasparotto, A; Barreca, D; Maccato, C; Comini, E; Sada, C; Sberveglieri, G; Devi, A; Fischer, R A

    2012-02-01

    Herein, we describe the design, fabrication and gas sensing tests of p-Co(3)O(4)/n-ZnO nanocomposites. Specifically, arrays of (001) oriented ZnO nanoparticles were grown on alumina substrates by plasma enhanced-chemical vapor deposition (PECVD) and used as templates for the subsequent PECVD of Co(3)O(4) nanograins. Structural, morphological and compositional analyses evidenced the successful formation of pure and high-area nanocomposites with a tailored overdispersion of Co(3)O(4) particles on ZnO and an intimate contact between the two oxides. Preliminary functional tests for the detection of flammable/toxic analytes (CH(3)COCH(3), CH(3)CH(2)OH, NO(2)) indicated promising sensing responses and the possibility of discriminating between reducing and oxidizing species as a function of the operating temperature. PMID:22260293

  20. Magnetic Ignition of Pulsed Gas Discharges in Air of Low Pressure in a Coaxial Plasma Gun

    NASA Technical Reports Server (NTRS)

    Thom, Karlheinz; Norwood, Joseph, Jr.

    1961-01-01

    The effect of an axial magnetic field on the breakdown voltage of a coaxial system of electrodes has been investigated by earlier workers. For low values of gas pressure times electrode spacing, the breakdown voltage is decreased by the application of the magnetic field. The electron cyclotron radius now assumes the role held by the mean free path in nonmagnetic discharges and the breakdown voltage becomes a function of the magnetic flux density. In this paper the dependence of the formative time lag as a function of the magnetic flux density is established and the feasibility of using a magnetic field for igniting high-voltage, high-current discharges is shown through theory and experiment. With a 36 microfarad capacitor bank charged to 48,000 volts, a peak current of 1.3 x 10( exp 6) amperes in a coaxial type of plasma gun was achieved with a current rise time of only 2 microseconds.

  1. Neutral Gas Temperature Estimates in an Inductively Coupled CF4 Plasma by Fitting Diatomic Emission Spectra

    NASA Technical Reports Server (NTRS)

    Cruden, Brett A.; Rao, M. V. V. S.; Sharma, Surendra P.; Meyyappan, M.

    2001-01-01

    This work examines the accuracy of plasma neutral temperature estimates by fitting the rotational band envelope of different diatomic species in emission. Experiments are performed in an inductively coupled CF4 plasma generated in a Gaseous Electronics Conference reference cell. Visible and ultraviolet emission spectra are collected at a power of 300 W (approximately 0.7 W/cc) and pressure of 30 mtorr. The emission bands of several molecules (CF, CN, C2, CO, and SiF) are fit simultaneously for rotational and vibrational temperatures and compared. Four different rotational temperatures are obtained: 1250 K for CF and CN, 1600 K for CO, 1800 K for C2, and 2300 K for SiF. The vibrational temperatures obtained vary from 1750-5950 K, with the higher vibrational temperatures generally corresponding to the lower rotational temperatures. These results suggest that the different species have achieved different degrees of equilibration between the rotational and vibrational modes and may not be equilibrated with the translational temperatures. The different temperatures are also related to the likelihood that the species are produced by ion bombardment of the surface, with etch products like SiF, CO, and C2 having higher temperatures than species expected to have formed in the gas phase.

  2. Fabrication of gas turbine water-cooled composite nozzle and bucket hardware employing plasma spray process

    DOEpatents

    Schilke, Peter W. (4 Hempshire Ct., Scotia, NY 12302); Muth, Myron C. (R.D. #3, Western Ave., Amsterdam, NY 12010); Schilling, William F. (301 Garnsey Rd., Rexford, NY 12148); Rairden, III, John R. (6 Coronet Ct., Schenectady, NY 12309)

    1983-01-01

    In the method for fabrication of water-cooled composite nozzle and bucket hardware for high temperature gas turbines, a high thermal conductivity copper alloy is applied, employing a high velocity/low pressure (HV/LP) plasma arc spraying process, to an assembly comprising a structural framework of copper alloy or a nickel-based super alloy, or combination of the two, and overlying cooling tubes. The copper alloy is plamsa sprayed to a coating thickness sufficient to completely cover the cooling tubes, and to allow for machining back of the copper alloy to create a smooth surface having a thickness of from 0.010 inch (0.254 mm) to 0.150 inch (3.18 mm) or more. The layer of copper applied by the plasma spraying has no continuous porosity, and advantageously may readily be employed to sustain a pressure differential during hot isostatic pressing (HIP) bonding of the overall structure to enhance bonding by solid state diffusion between the component parts of the structure.

  3. Adhesive forces and surface properties of cold gas plasma treated UHMWPE

    PubMed Central

    Preedy, Emily Callard; Brousseau, Emmanuel; Evans, Sam L.; Perni, Stefano; Prokopovich, Polina

    2014-01-01

    Cold atmospheric plasma (CAP) treatment was used on ultra-high molecular weight polyethylene (UHMWPE), a common articulating counter material employed in hip and knee replacements. UHMWPE is a biocompatible polymer with low friction coefficient, yet does not have robust wear characteristics. CAP effectively cross-links the polymer chains of the UHMWPE improving wear performance (Perni et al., Acta Biomater. 8(3) (2012) 1357). In this work, interactions between CAP treated UHMWPE and spherical borosilicate sphere (representing model material for bone) were considered employing AFM technique. Adhesive forces increased, in the presence of PBS, after treatment with helium and helium/oxygen cold gas plasmas. Furthermore, a more hydrophilic surface of UHMWPE was observed after both treatments, determined through a reduction of up to a third in the contact angles of water. On the other hand, the asperity density also decreased by half, yet the asperity height had a three-fold decrease. This work shows that CAP treatment can be a very effective technique at enhancing the adhesion between bone and UHMWPE implant material as aided by the increased adhesion forces. Moreover, the hydrophilicity of the CAP treated UHMWPE can lead to proteins and cells adhesion to the surface of the implant stimulating osseointegration process. PMID:25431523

  4. Coulomb Crystallization of Charged Microspheres Levitated in a Gas Discharge Plasma

    NASA Technical Reports Server (NTRS)

    Goree, John

    1998-01-01

    The technical topic of the project was the experimental observation of Coulomb crystallization of charged microspheres levitated in a gas discharge plasma. This suspension, sometimes termed a dusty plasma, is closely analogous to a colloidal suspension, except that it has a much faster time response, is more optically thin, and has no buoyancy forces to suspend the particles. The particles are levitated by electric fields. Through their collective Coulomb repulsions, the particles arrange themselves in a lattice with a crystalline symmetry, which undergoes an order-disorder phase transition analogous to melting when the effective temperature of the system is increased. Due to gravitational sedimentation, the particles form a thin layer in the laboratory, so that the experimental system is nearly 2D, whereas in future microgravity experiments they are expected to fill a larger volume and behave like a 3D solid or liquid. The particles are imaged using a video camera by illuminating them with a sheet of laser light. Because the suspension is optically thin, this imaging method will work as well in a 3D microgravity experiment as it does in a 2D laboratory system.

  5. Development of a plasma sprayed ceramic gas path seal for high pressure turbine application

    NASA Technical Reports Server (NTRS)

    Shiembob, L. T.

    1978-01-01

    Development of the plasma sprayed graded, layered ZRO2/CoCrAlY seal system for gas turbine engine blade tip seal applications up to 1589 K (2400 F) surface temperature was continued. The effect of changing ZRO2/CoCrAlY ratios in the intermediate layers on thermal stresses was evaluated analytically with the goal of identifying the materials combinations which would minimize thermal stresses in the seal system. Three methods of inducing compressive residual stresses in the sprayed seal materials to offset tensile thermal stresses were analyzed. The most promising method, thermal prestraining, was selected based upon potential, feasibility and complexity considerations. The plasma spray equipment was modified to heat, control and monitor the substrate temperature during spraying. Specimens were fabricated and experimentally evaluated to: (1) substantiate the capability of the thermal prestrain method to develop compressive residual stresses in the sprayed structure and (2) define the effect of spraying on a heated substate on abradability, erosion and thermal shock characteristics of the seal system. Thermal stress analysis, including residual stresses and material properties variations, was performed and correlated with thermal shock test results. Seal system performance was assessed and recommendations for further development were made.

  6. Adhesive forces and surface properties of cold gas plasma treated UHMWPE.

    PubMed

    Preedy, Emily Callard; Brousseau, Emmanuel; Evans, Sam L; Perni, Stefano; Prokopovich, Polina

    2014-10-20

    Cold atmospheric plasma (CAP) treatment was used on ultra-high molecular weight polyethylene (UHMWPE), a common articulating counter material employed in hip and knee replacements. UHMWPE is a biocompatible polymer with low friction coefficient, yet does not have robust wear characteristics. CAP effectively cross-links the polymer chains of the UHMWPE improving wear performance (Perni et al., Acta Biomater. 8(3) (2012) 1357). In this work, interactions between CAP treated UHMWPE and spherical borosilicate sphere (representing model material for bone) were considered employing AFM technique. Adhesive forces increased, in the presence of PBS, after treatment with helium and helium/oxygen cold gas plasmas. Furthermore, a more hydrophilic surface of UHMWPE was observed after both treatments, determined through a reduction of up to a third in the contact angles of water. On the other hand, the asperity density also decreased by half, yet the asperity height had a three-fold decrease. This work shows that CAP treatment can be a very effective technique at enhancing the adhesion between bone and UHMWPE implant material as aided by the increased adhesion forces. Moreover, the hydrophilicity of the CAP treated UHMWPE can lead to proteins and cells adhesion to the surface of the implant stimulating osseointegration process. PMID:25431523

  7. Plasma Sprayed Pour Tubes and Other Melt Handling Components for Use in Gas Atomization

    SciTech Connect

    Byrd, David; Rieken, Joel; Heidloff, Andy; Besser, Matthew; Anderson, Iver

    2011-04-01

    Ames Laboratory has successfully used plasma sprayed ceramic components made from yttria stabilized zirconia as melt pouring tubes for gas atomization for many years. These tubes have proven to be strong, thermal shock resistant and versatile. Various configurations are possible both internally and externally. Accurate dimensions are achieved internally with a machined fugitive graphite mandrel and externally by diamond grinding. The previous study of the effect of spray parameters on density was extended to determine the effect of the resulting density on the thermal shock characteristics on down-quenching and up-quenching. Encouraging results also prompted investigation of the use of plasma spraying as a method to construct a melt pour exit stopper that is mechanically robust, thermal shock resistant, and not susceptible to attack by reactive melt additions. The Ames Laboratory operates two close-coupled high pressure gas atomizers. These two atomizers are designed to produce fine and coarse spherical metal powders (5{mu} to 500{mu} diameter) of many different metals and alloys. The systems vary in size, but generally the smaller atomizer can produce up to 5 kg of powder whereas the larger can produce up to 25 kg depending on the charge form and density. In order to make powders of such varying compositions, it is necessary to have melt systems capable of heating and containing the liquid charge to the desired superheat temperature prior to pouring through the atomization nozzle. For some metals and alloys this is not a problem; however for some more reactive and/or high melting materials this can pose unique challenges. Figure 1 is a schematic that illustrates the atomization system and its components.

  8. Sterile neutrinos at the CNGS

    E-print Network

    A. Donini; M. Maltoni; D. Meloni; P. Migliozzi; F. Terranova

    2007-10-11

    We study the potential of the CNGS beam in constraining the parameter space of a model with one sterile neutrino separated from three active ones by an $\\mathcal{O}(\\eVq)$ mass-squared difference, $\\Dmq_\\Sbl$. We perform our analysis using the OPERA detector as a reference (our analysis can be upgraded including a detailed simulation of the ICARUS detector). We point out that the channel with the largest potential to constrain the sterile neutrino parameter space at the CNGS beam is $\

  9. Effect of additive oxygen gas on cellular response of lung cancer cells induced by atmospheric pressure helium plasma jet

    NASA Astrophysics Data System (ADS)

    Joh, Hea Min; Choi, Ji Ye; Kim, Sun Ja; Chung, T. H.; Kang, Tae-Hong

    2014-10-01

    The atmospheric pressure helium plasma jet driven by pulsed dc voltage was utilized to treat human lung cancer cells in vitro. The properties of plasma plume were adjusted by the injection type and flow rate of additive oxygen gas in atmospheric pressure helium plasma jet. The plasma characteristics such as plume length, electric current and optical emission spectra (OES) were measured at different flow rates of additive oxygen to helium. The plasma plume length and total current decreased with an increase in the additive oxygen flow rate. The electron excitation temperature estimated by the Boltzmann plot from several excited helium emission lines increased slightly with the additive oxygen flow. The oxygen atom density in the gas phase estimated by actinometry utilizing argon was observed to increase with the additive oxygen flow. The concentration of intracellular reactive oxygen species (ROS) measured by fluorescence assay was found to be not exactly proportional to that of extracellular ROS (measured by OES), but both correlated considerably. It was also observed that the expression levels of p53 and the phospho-p53 were enhanced in the presence of additive oxygen flow compared with those from the pure helium plasma treatment.

  10. Effect of additive oxygen gas on cellular response of lung cancer cells induced by atmospheric pressure helium plasma jet

    PubMed Central

    Joh, Hea Min; Choi, Ji Ye; Kim, Sun Ja; Chung, T. H.; Kang, Tae-Hong

    2014-01-01

    The atmospheric pressure helium plasma jet driven by pulsed dc voltage was utilized to treat human lung cancer cells in vitro. The properties of plasma plume were adjusted by the injection type and flow rate of additive oxygen gas in atmospheric pressure helium plasma jet. The plasma characteristics such as plume length, electric current and optical emission spectra (OES) were measured at different flow rates of additive oxygen to helium. The plasma plume length and total current decreased with an increase in the additive oxygen flow rate. The electron excitation temperature estimated by the Boltzmann plot from several excited helium emission lines increased slightly with the additive oxygen flow. The oxygen atom density in the gas phase estimated by actinometry utilizing argon was observed to increase with the additive oxygen flow. The concentration of intracellular reactive oxygen species (ROS) measured by fluorescence assay was found to be not exactly proportional to that of extracellular ROS (measured by OES), but both correlated considerably. It was also observed that the expression levels of p53 and the phospho-p53 were enhanced in the presence of additive oxygen flow compared with those from the pure helium plasma treatment. PMID:25319447

  11. Redeposition in plasma-assisted atomic layer deposition: Silicon nitride film quality ruled by the gas residence time

    NASA Astrophysics Data System (ADS)

    Knoops, Harm C. M.; de Peuter, K.; Kessels, W. M. M.

    2015-07-01

    The requirements on the material properties and growth control of silicon nitride (SiNx) spacer films in transistors are becoming ever more stringent as scaling of transistor structures continues. One method to deposit high-quality films with excellent control is atomic layer deposition (ALD). However, depositing SiNx by ALD has turned out to be very challenging. In this work, it is shown that the plasma gas residence time ? is a key parameter for the deposition of SiNx by plasma-assisted ALD and that this parameter can be linked to a so-called "redeposition effect". This previously ignored effect, which takes place during the plasma step, is the dissociation of reaction products in the plasma and the subsequent redeposition of reaction-product fragments on the surface. For SiNx ALD using SiH2(NHtBu)2 as precursor and N2 plasma as reactant, the gas residence time ? was found to determine both SiNx film quality and the resulting growth per cycle. It is shown that redeposition can be minimized by using a short residence time resulting in high-quality films with a high wet-etch resistance (i.e., a wet-etch rate of 0.5 nm/min in buffered HF solution). Due to the fundamental nature of the redeposition effect, it is expected to play a role in many more plasma-assisted ALD processes.

  12. Sterilization of Persons with Mental Retardation.

    ERIC Educational Resources Information Center

    Elkins, Thomas E.; Andersen, H. Frank

    1992-01-01

    This article examines the historical, legal, and ethical concerns regarding sterilization for persons with mental retardation and offers guidelines to help counsel individuals with disabilities or their families regarding decision making about sterilization. (DB)

  13. Formaldehyde emitted by chemical vapor sterilizers.

    PubMed

    Cooley, R L; Stilley, J; Lubow, R M

    1984-01-01

    Formaldehyde has been identified as a potential occupational carcinogen and is a component of chemical solutions used in chemical vapor sterilizers. This study evaluated room air for formaldehyde in rooms where chemical vapor sterilizers were in use. PMID:6582430

  14. Quantitative determination of terbutaline and orciprenaline in human plasma by gas chromatography/negative ion chemical ionization/mass spectrometry.

    PubMed

    Leis, H J; Gleispach, H; Nitsche, V; Malle, E

    1990-06-01

    A method for the determination of unconjugated terbutaline and orciprenaline in human plasma is described. The assay is based on stable isotope dilution gas chromatography/negative ion chemical ionization/mass spectrometry. An inexpensive and rapid method for preparation of stable isotope labelled analogues as well as their use in quantitative gas chromatography/mass spectrometry is shown. A highly efficient sample work-up procedure with product recoveries of more than 95% is presented. The method developed permits quantitative measurement of terbutaline and orciprenaline in human plasma down to 100 pg ml-1, using 1 ml of sample. Plasma levels of terbutaline after oral administration of 5 mg of terbutaline sulphate were estimated. PMID:2357489

  15. Sterilant gas disinfection of fruits and vegetables

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Numerous foodborne outbreaks have been associated with the consumption of fresh fruits and vegetables. Commercial aqueous wash treatments for fresh produce are limited in their ability to inactivate and/or remove human pathogen contaminants. Gases can penetrate into crevices and niches on produce wh...

  16. Surface characteristics and cell-adhesion performance of titanium treated with direct-current gas plasma comprising nitrogen and oxygen

    NASA Astrophysics Data System (ADS)

    Hirano, Mitsuhiro; Yamane, Misao; Ohtsu, Naofumi

    2015-11-01

    In this study, we attempted to form titanium oxynitride (TiOxNy) layers on titanium (Ti) surfaces using direct-current (DC) plasmas generated from gas mixture comprising hydrogen, nitrogen, and oxygen. Additionally, the effect of gas mixture ratio on the surface characteristics and cell-adhesion performance was investigated. Scanning probe microscopy (SPM) images showed that the plasma-treated surfaces were slightly rougher than untreated Ti surfaces, owing to the formation of new layers. Chemical state analysis using X-ray photoelectron spectroscopy (XPS) revealed that the layers were comprised TiOxNy, titanium nitride (TiN), and titanium dioxide (TiO2); the concentrations of TiOxNy and TiN decreased and that of TiO2 increased with an increase in the amount of oxygen in the gas. An increase in the amount of oxygen gas did not affect the layer thickness, which was approximately 25 nm. Furthermore, no differences in cell morphology and cell-adhesion performance were found between the specimens treated with various plasma gases. This is probably because the treatment insufficiently improved the hydrophilicity. Layers composed of TiOxNy, TiN, and TiO2 were formed using the DC plasma treatment; however, the layers did not improve the cell-adhesion at an initial stage after the seeding.

  17. Plasma metabolomic profiling of dairy cows affected with ketosis using gas chromatography/mass spectrometry

    PubMed Central

    2013-01-01

    Background Ketosis is an important problem for dairy cows` production performance. However, it is still little known about plasma metabolomics details of dairy ketosis. Results A gas chromatography/mass spectrometry (GC/MS) technique was used to investigate plasma metabolic differences in cows that had clinical ketosis (CK, n=22), subclinical ketosis (SK, n=32), or were clinically normal controls (NC, n=22). The endogenous plasma metabolome was measured by chemical derivatization followed by GC/MS, which led to the detection of 267 variables. A two-sample t-test of 30, 32, and 13 metabolites showed statistically significant differences between SK and NC, CK and NC, and CK and SK, respectively. Orthogonal signal correction-partial least-square discriminant analysis (OPLS-DA) revealed that the metabolic patterns of both CK and SK were mostly similar, with the exception of a few differences. The development of CK and SK involved disturbances in many metabolic pathways, mainly including fatty acid metabolism, amino acid metabolism, glycolysis, gluconeogenesis, and the pentose phosphate pathway. A diagnostic model arbitrary two groups was constructed using OPLS-DA and receiver–operator characteristic curves (ROC). Multivariate statistical diagnostics yielded the 19 potential biomarkers for SK and NC, 31 for CK and NC, and 8 for CK and SK with area under the curve (AUC) values. Our results showed the potential biomarkers from CK, SK, and NC, including carbohydrates, fatty acids, amino acids, even sitosterol and vitamin E isomers, etc. 2-piperidinecarboxylic acid and cis-9-hexadecenoic acid were closely associated with metabolic perturbations in ketosis as Glc, BHBA and NEFA for dealing with metabolic disturbances of ketosis in clinical practice. However, further research is needed to explain changes of 2,3,4-trihydroxybutyric acid, 3,4-dihydroxybutyric acid, ?-aminobutyric acid, methylmalonic acid, sitosterol and ?-tocopherol in CK and SK, and to reveal differences between CK and SK. Conclusion Our study shows that some new biomarkers of ketosis from plasma may find new metabolic changes to have clinically new utility and significance in diagnosis, prognosis, and prevention of ketosis in the future. PMID:24070026

  18. Plasma/catalytic gas cleaning to deliver high quality syngas from waste biomass

    E-print Network

    -thermal plasmas: A low energy, "low" temperature (200-1000 °C) process · Electrons in the plasma are highly - catalytic plasma tar reduction · Experimental · Process modelling & simulation Plasma-Catalysis of model): · Whole system process modelling and simulation University Partners #12;· Thermitech Solutions Ltd

  19. Atmospheric pressure plasma chemical vapor deposition reactor for 100 mm wafers, optimized for minimum contamination at low gas flow rates

    NASA Astrophysics Data System (ADS)

    Anand, Venu; Nair, Aswathi R.; Shivashankar, S. A.; Mohan Rao, G.

    2015-08-01

    Gas discharge plasmas used for thinfilm deposition by plasma-enhanced chemical vapor deposition (PECVD) must be devoid of contaminants, like dust or active species which disturb the intended chemical reaction. In atmospheric pressure plasma systems employing an inert gas, the main source of such contamination is the residual air inside the system. To enable the construction of an atmospheric pressure plasma (APP) system with minimal contamination, we have carried out fluid dynamic simulation of the APP chamber into which an inert gas is injected at different mass flow rates. On the basis of the simulation results, we have designed and built a simple, scaled APP system, which is capable of holding a 100 mm substrate wafer, so that the presence of air (contamination) in the APP chamber is minimized with as low a flow rate of argon as possible. This is examined systematically by examining optical emission from the plasma as a function of inert gas flow rate. It is found that optical emission from the plasma shows the presence of atmospheric air, if the inlet argon flow rate is lowered below 300 sccm. That there is minimal contamination of the APP reactor built here, was verified by conducting an atmospheric pressure PECVD process under acetylene flow, combined with argon flow at 100 sccm and 500 sccm. The deposition of a polymer coating is confirmed by infrared spectroscopy. X-ray photoelectron spectroscopy shows that the polymer coating contains only 5% of oxygen, which is comparable to the oxygen content in polymer deposits obtained in low-pressure PECVD systems.

  20. What AGN revergeration maps tell us: plasma simulations of dense accreting gas

    NASA Astrophysics Data System (ADS)

    Ferland, Gary

    2014-10-01

    The Cycle 21 large program, "Mapping the AGN Broad-line region by reverberation", will produce the definitive line-continuum reverberation dataset. These HST observations should "clarify the nature of the broad-line region, its role in the apparently complicated accretion/outflow process, and determine definitively the veracity and accuracy of the AGN reverberation-based black hole masses". This proposal aims to improve Cloudy simulations of the dense gas emitting the spectrum so that photoionization theory can meet the challenge posed by these new observations. Two specific advances, implementing physical processes now expected to be important, are proposed. The first involves electron scattering enhancement of H I lines. The lines will be broadened and enhanced by scattering off warm {8 000 K} electrons in the extended neutral gas deep within the cloud or disk, affecting both the line profile and intensity. The second involves collisional suppression of dielectronic recombination, the dominant process responsible for recombination of heavy-element UV lines such as C IV 1549, C III] 1909, Mg II 2798, etc. This is made possible by access to a large body of atomic rates within OpenADAS, and will impact predictions of essentially the entire Broad-line region spectrum. Both advances will become part of Cloudy, a publically available and widely used plasma simulation code.

  1. Ptychographic imaging with a compact gas-discharge plasma extreme ultraviolet light source.

    PubMed

    Odstrcil, M; Bussmann, J; Rudolf, D; Bresenitz, R; Miao, Jianwei; Brocklesby, W S; Juschkin, L

    2015-12-01

    We report the demonstration of a scanning probe coherent diffractive imaging method (also known as ptychographic CDI) using a compact and partially coherent gas-discharge plasma source of extreme ultraviolet (EUV) radiation at a 17.3 nm wavelength. Until now, CDI has been mainly carried out with coherent, high-brightness light sources, such as third generation synchrotrons, x-ray free-electron lasers, and high harmonic generation. Here we performed ptychographic lensless imaging of an extended sample using a compact, lab-scale source. The CDI reconstructions were achieved by applying constraint relaxation to the CDI algorithm. Experimental results indicate that our method can handle the low spatial coherence and broadband nature of the EUV illumination, as well as the residual background due to visible light emitted by the gas-discharge source. The ability to conduct ptychographic imaging with lab-scale and partially coherent EUV sources is expected to significantly expand the applications of this powerful CDI method. PMID:26625054

  2. Modeling of filaments and gas flow in an atmospheric pressure plasma jet

    NASA Astrophysics Data System (ADS)

    Sigeneger, Florian; Loffhagen, Detlef

    2014-10-01

    A non-thermal atmospheric pressure plasma jet is investigated by a combination of different approaches. The jet consists of two concentric capillaries and two ring-shaped electrodes which are twisted around the outer capillary to supply the rf power at 27.12 MHz. One part of the model is devoted to describe one single filament as observed in the active volume between the electrodes. For this purpose a two-dimensional axisymmetric fluid model has been used which comprises continuity equations for electrons and the most important argon species, the electron energy balance equation, Poisson's equation and an equation for the surface charges at the walls of the capillaries. Furthermore, the heat balance equation is solved to determine the temperature of the gas. The inclusion of contraction mechanisms allows to describe the establishment of a constricted filament and even pronounced striations as observed in the experiments. The second part uses results of the first one to model the gas flow through the jet under the influence of local heating at the position of the filament which leads finally to an azimuthal rotation of the filaments as observed in experiments. The work has been supported by the German Research Foundation (DFG) within SFB TRR 24.

  3. 45 CFR 96.73 - Sterilization.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ....73 Sterilization. If a State authorizes sterilization as a family planning service, it must comply with the provisions of 42 CFR Part 441, Subpart F, except that the State plan requirement under 42 CFR... 45 Public Welfare 1 2012-10-01 2012-10-01 false Sterilization. 96.73 Section 96.73 Public...

  4. 45 CFR 96.73 - Sterilization.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ....73 Sterilization. If a State authorizes sterilization as a family planning service, it must comply with the provisions of 42 CFR Part 441, Subpart F, except that the State plan requirement under 42 CFR... 45 Public Welfare 1 2011-10-01 2011-10-01 false Sterilization. 96.73 Section 96.73 Public...

  5. 45 CFR 96.73 - Sterilization.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ....73 Sterilization. If a State authorizes sterilization as a family planning service, it must comply with the provisions of 42 CFR Part 441, Subpart F, except that the State plan requirement under 42 CFR... 45 Public Welfare 1 2010-10-01 2010-10-01 false Sterilization. 96.73 Section 96.73 Public...

  6. 45 CFR 96.73 - Sterilization.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ....73 Sterilization. If a State authorizes sterilization as a family planning service, it must comply with the provisions of 42 CFR Part 441, Subpart F, except that the State plan requirement under 42 CFR... 45 Public Welfare 1 2013-10-01 2013-10-01 false Sterilization. 96.73 Section 96.73 Public...

  7. 45 CFR 96.73 - Sterilization.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ....73 Sterilization. If a State authorizes sterilization as a family planning service, it must comply with the provisions of 42 CFR part 441, subpart F, except that the State plan requirement under 42 CFR... 45 Public Welfare 1 2014-10-01 2014-10-01 false Sterilization. 96.73 Section 96.73 Public...

  8. 21 CFR 610.12 - Sterility.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...procedures for sterility testing that...1) The sterility test method to... (i) If culture-based test...the culture media; (B...shelf-life of the media. (2) For non-culture-based test methods...with the sterility test...

  9. Sterile neutrino signals from supernovae

    E-print Network

    P. Keränen; J. Maalampi; M. Myyryläinen; J. Riittinen

    2007-11-22

    We investigate the effects of a mixing of active and sterile neutrinos on the ratios of supernova electron neutrino flux ($F_e$) and antineutrino flux ($F_{\\bar e}$) to the total flux of the other neutrino and antineutrino flavours ($F_a$). We assume that the heaviest (in the normal hierarchy) Standard Model neutrino $\

  10. Microwave powered sterile access port

    NASA Technical Reports Server (NTRS)

    Sauer, Richard L. (Inventor); Atwater, James E. (Inventor); Dahl, Roger W. (Inventor); Garmon, Frank C. (Inventor); Lunsford, Teddie D. (Inventor); Michalek, William F. (Inventor); Wheeler, Jr., Richard R. (Inventor)

    2000-01-01

    A device and method for elimination of contamination during transfer of materials either into or from bioreactors, food containers, or other microbially vulnerable systems. Using microwave power, thermal sterilizations of mating fixtures are achieved simply, reliably, and quickly by the volatilization of small quantities of water to produce superheated steam which contacts all exposed surfaces.

  11. Sterile pyuria: a forgotten entity

    PubMed Central

    Persad, Raj

    2015-01-01

    Sterile pyuria is a common entity. Yet there are no guidelines to address this issue. We have conducted a systematic review over 20 years and reviewed the results. Guidelines for assessment, diagnosis and management are developed based on these results. PMID:26425144

  12. Phenomenology of Light Sterile Neutrinos

    NASA Astrophysics Data System (ADS)

    Giunti, Carlo

    We consider the extension of standard three-neutrino mixing with the addition of one or two light sterile neutrinos which can explain the anomalies found in short-baseline neutrino oscillation experiments. We review the results of the global analyses of short-baseline neutrino oscillation data in 3 + 1, 3 + 2 and 3 + 1 + 1 neutrino mixing schemes.

  13. The discharge mode transition and O(5p1) production mechanism of pulsed radio frequency capacitively coupled plasma

    NASA Astrophysics Data System (ADS)

    Liu, X. Y.; Hu, J. T.; Liu, J. H.; Xiong, Z. L.; Liu, D. W.; Lu, X. P.; Shi, J. J.

    2012-07-01

    The discharge mode transition from uniform plasma across the gas gap to the ? mode happens at the rising phase of the pulsed radio frequency capacitively coupled plasma (PRF CCP). This transition is attributed to the fast increasing stochastic heating at the edge of sheath. In the second stage with the stable current and voltage amplitude, the consistency between experimental and numerical spatial-temporal 777 nm emission profile suggests that He* and He2* dominate the production of O(5p1) through dissociation and excitation of O2. Finally, the sterilization efficiency of PRF CCP is found to be higher than that of plasma jet.

  14. A simple thermodynamic model of diluted hydrogen gas/plasma for CFD applications

    NASA Astrophysics Data System (ADS)

    Quartapelle, L.; Muzzio, A.

    2015-06-01

    This work describes a simple thermodynamic model of the hydrogen gas at low densities and for temperatures going from those involving quantum rotations of ortho- and para-hydrogen up to the fully ionized state. The closed-form energy levels of Morse rotating oscillator given [D.C. Harris, M.D. Bertolucci, Symmetry and Spectroscopy (Dover, New York, 1989)] (but not those in Morse's original paper) are shown to provide an internal partition function of H2 that is a sufficiently accurate representation of that exploiting the state-of-the-art spectrum of roto-vibrational levels calculated by Pachucki and Komasa [K. Pachucki, J. Komasa, J. Chem. Phys. 130, 164113 (2009)]. A system of two coupled quadratic equations for molecular dissociation and atomic ionization at thermodynamical and chemical equilibrium is derived according to the statistical mechanics by assuming that the system is an ideal mixture containing molecules, neutral atoms and noninteracting protons and electrons. The system of two equations reduces to a single quartic equation for the ionization unknown, with the coefficients dependent on the temperature and the specific volume. Explicit relations for specific energy and entropy of the hydrogen ideal gas/plasma model are derived. These fully compatible equations of state provide a complete thermodynamic description of the system, uniformly valid from low temperatures up to a fully ionized state, with electrons and ions relaxed to one and the same temperature. The comparison with results of other models developed in the framework of the physical and chemical pictures shows that the proposed elementary model is adequate for computational fluid dynamics purposes, in applications with the hydrogen gas under diluted conditions and when the dissociation and ionization can be assumed at thermodynamical and chemical equilibrium.

  15. The impact of plasma-wall interaction on the gas mixing efficiency in electron cyclotron resonance ion source

    SciTech Connect

    Schachter, L.; Dobrescu, S.; Stiebing, K. E.

    2012-02-15

    It is generally accepted that different effects are necessary to explain the gas mixing method of increasing the output of highly charged ions from an ECRIS. The two most important effects are the mass effect and the dilution effect. Their relative weights have not been determined experimentally yet, but it is generally assumed that the mass effect is dominant in standard ECRIS installations with stainless steel plasma chambers. In order to gain more insight into the physics of the gas mixing effect and in particular on the relevance of the dilution process, we have carried out a study where we have investigated the role of the plasma-wall interaction on the gas mixing effect. In this contribution, we shall discuss Charge state distributions spectra, measured at the Frankfurt ECRIS using different working gases, pure argon, a mixture of argon and oxygen, and argon mixed with neon.

  16. Using MiniBooNE NCEL and CCQE cross section results to constrain 3+1 sterile neutrino models

    NASA Astrophysics Data System (ADS)

    Wilkinson, C.; Cartwright, S.; Thompson, L.

    2015-04-01

    The MiniBooNE NCEL and CCQE cross-section measurements (neutrino running) are used to set limits in the ?m2 — sin2 ??s plane for a 3+1 sterile neutrino model with a mass splitting 0.1 ? ?m2 ? 10.0 eV2. GENIE is used, with a relativistic Fermi gas model, to relate Ev and the reconstructed quantities measured. The issue of uncertainty in the underlying cross section model and its effect on the sterile neutrino limits is explored, and robust sterile neutrino limits are produced by fitting the sterile parameters and the axial-mass cross-section parameter simultaneously.

  17. Impact of surface structure and feed gas composition on Bacillus subtilis endospore inactivation during direct plasma treatment.

    PubMed

    Hertwig, Christian; Steins, Veronika; Reineke, Kai; Rademacher, Antje; Klocke, Michael; Rauh, Cornelia; Schlüter, Oliver

    2015-01-01

    This study investigated the inactivation efficiency of cold atmospheric pressure plasma treatment on Bacillus subtilis endospores dependent on the used feed gas composition and on the surface, the endospores were attached on. Glass petri-dishes, glass beads, and peppercorns were inoculated with the same endospore density and treated with a radio frequency plasma jet. Generated reactive species were detected using optical emission spectroscopy. A quantitative polymerase chain reaction (qPCR) based ratio detection system was established to monitor the DNA damage during the plasma treatment. Argon + 0.135% vol. oxygen + 0.2% vol. nitrogen as feed gas emitted the highest amounts of UV-C photons and considerable amount of reactive oxygen and nitrogen species. Plasma generated with argon + 0.135% vol. oxygen was characterized by the highest emission of reactive oxygen species (ROS), whereas the UV-C emission was negligible. The use of pure argon showed a negligible emission of UV photons and atomic oxygen, however, the emission of vacuum (V)UV photons was assumed. Similar maximum inactivation results were achieved for the three feed gas compositions. The surface structure had a significant impact on the inactivation efficiency of the plasma treatment. The maximum inactivation achieved was between 2.4 and 2.8 log10 on glass petri-dishes and 3.9 to 4.6 log10 on glass beads. The treatment of peppercorns resulted in an inactivation lower than 1.0 log10. qPCR results showed a significant DNA damage for all gas compositions. Pure argon showed the highest results for the DNA damage ratio values, followed by argon + 0.135% vol. oxygen + 0.2% vol. nitrogen. In case of argon + 0.135% vol. oxygen the inactivation seems to be dominated by the action of ROS. These findings indicate the significant role of VUV and UV photons in the inactivation process of B. subtilis endospores. PMID:26300855

  18. Impact of surface structure and feed gas composition on Bacillus subtilis endospore inactivation during direct plasma treatment

    PubMed Central

    Hertwig, Christian; Steins, Veronika; Reineke, Kai; Rademacher, Antje; Klocke, Michael; Rauh, Cornelia; Schlüter, Oliver

    2015-01-01

    This study investigated the inactivation efficiency of cold atmospheric pressure plasma treatment on Bacillus subtilis endospores dependent on the used feed gas composition and on the surface, the endospores were attached on. Glass petri-dishes, glass beads, and peppercorns were inoculated with the same endospore density and treated with a radio frequency plasma jet. Generated reactive species were detected using optical emission spectroscopy. A quantitative polymerase chain reaction (qPCR) based ratio detection system was established to monitor the DNA damage during the plasma treatment. Argon + 0.135% vol. oxygen + 0.2% vol. nitrogen as feed gas emitted the highest amounts of UV-C photons and considerable amount of reactive oxygen and nitrogen species. Plasma generated with argon + 0.135% vol. oxygen was characterized by the highest emission of reactive oxygen species (ROS), whereas the UV-C emission was negligible. The use of pure argon showed a negligible emission of UV photons and atomic oxygen, however, the emission of vacuum (V)UV photons was assumed. Similar maximum inactivation results were achieved for the three feed gas compositions. The surface structure had a significant impact on the inactivation efficiency of the plasma treatment. The maximum inactivation achieved was between 2.4 and 2.8 log10 on glass petri-dishes and 3.9 to 4.6 log10 on glass beads. The treatment of peppercorns resulted in an inactivation lower than 1.0 log10. qPCR results showed a significant DNA damage for all gas compositions. Pure argon showed the highest results for the DNA damage ratio values, followed by argon + 0.135% vol. oxygen + 0.2% vol. nitrogen. In case of argon + 0.135% vol. oxygen the inactivation seems to be dominated by the action of ROS. These findings indicate the significant role of VUV and UV photons in the inactivation process of B. subtilis endospores. PMID:26300855

  19. Light Sterile Neutrinos: Models and Phenomenology

    E-print Network

    James Barry; Werner Rodejohann; He Zhang

    2011-07-21

    Motivated by recent hints in particle physics and cosmology, we study the realization of eV-scale sterile neutrinos within both the seesaw mechanism and flavor symmetry theories. We show that light sterile neutrinos can rather easily be accommodated in the popular A_4 flavor symmetry models. The exact tri-bimaximal mixing pattern is perturbed due to active-sterile mixing, which we discuss in detail for one example. In addition, we find an interesting extension of the type I seesaw, which can provide a natural origin for eV-scale sterile neutrinos as well as visible admixtures between sterile and active neutrinos. We also show that the presence of sterile neutrinos would significantly change the observables in neutrino experiments, specifically the oscillation probabilities in short-baseline experiments and the effective mass in neutrino-less double beta decay. The latter can prove particularly helpful to strengthen the case for eV-scale sterile neutrinos.

  20. Implementing AORN recommended practices for sterilization.

    PubMed

    Graybill-D'Ercole, Patricia

    2013-05-01

    Any hospital or facility in which surgery and other invasive procedures are performed should have accommodations for cleaning, decontaminating, disinfecting, and sterilizing instruments, equipment, and other essential supplies that are used for patient procedures. Sterilization is essential to reducing or preventing the risk of surgical site infections. This is a collaborative process and should include all health care providers who handle these instruments, including perioperative nurses. The revised AORN "Recommended practices for sterilization," which became effective June 15, 2012, includes updates on sterilizing single-use items, inspecting critical items before sterilization, using low-temperature hydrogen peroxide vapor sterilization methods, and immediate use steam sterilization. This RP document is the first AORN document to be evidence rated and accepted for inclusion in the Agency for Healthcare Research and Quality National Guideline Clearinghouse. PMID:23622825

  1. Innovative microwave-assisted oximation and silylation procedures for metabolomic analysis of plasma samples using gas chromatography-mass spectrometry.

    PubMed

    Hong, Zhanying; Lin, Zebin; Liu, Yue; Tan, Guangguo; Lou, Ziyang; Zhu, Zhenyu; Chai, Yifeng; Fan, Guorong; Zhang, Junping; Zhang, Liming

    2012-09-01

    Analysis of plasma metabolomic samples by gas chromatography-mass spectrometry always requires comprehensive pretreatment including oximation and silylation. Although heating block (HB) is a commonly used method, it is time consuming. This study describes an extremely time-effective microwave-assisted (MA) oximation and silylation approach for metabolomic study of plasma samples. The Box-Behnken design was employed to optimize the MA conditions by means of oximation at 65 W for 100 s and then silylation through 180 s incubation with 230 W microwave irradiation. The results showed that microwave irradiation decreased the sample preparation time from approximately 180 min to 5 min without loss of information for the metabolites in plasma samples. Both the HB method and the developed MA method were applied in plasma metabolomic study of sulfur mustard intoxication. Partial least-squares discriminant analysis (PLS-DA) was used to globally understand the metabolic changes, and multi-criteria assessment was used to select the most significant and reliable variables as potential biomarkers. The data obtained by the MA method were in good correlation with the HB method. Compared with HB method, the newly developed MA oximation and silylation of plasma metabolome samples was more efficient and time-effective and may prove to be an attractive alternative for high-throughput sample preparation in plasma metabolomics. PMID:22841665

  2. Microwave Sterilization and Depyrogenation System

    NASA Technical Reports Server (NTRS)

    Akse, James R.; Dahl, Roger W.; Wheeler, Richard R., Jr.

    2009-01-01

    A fully functional, microgravity-compatible microwave sterilization and depyrogenation system (MSDS) prototype was developed that is capable of producing medical-grade water (MGW) without expendable supplies, using NASA potable water that currently is available aboard the International Space Station (ISS) and will be available for Lunar and planetary missions in the future. The microwave- based, continuous MSDS efficiently couples microwaves to a single-phase, pressurized, flowing water stream that is rapidly heated above 150 C. Under these conditions, water is rapidly sterilized. Endotoxins, significant biological toxins that originate from the cell walls of gram-negative bacteria and which represent another defining MGW requirement, are also deactivated (i.e., depyrogenated) albeit more slowly, with such deactivation representing a more difficult challenge than sterilization. Several innovations culminated in the successful MSDS prototype design. The most significant is the antenna-directed microwave heating of a water stream flowing through a microwave sterilization chamber (MSC). Novel antenna designs were developed to increase microwave transmission efficiency. These improvements resulted in greater than 95-percent absorption of incident microwaves. In addition, incorporation of recuperative heat exchangers (RHxs) in the design reduced the microwave power required to heat a water stream flowing at 15 mL/min to 170 C to only 50 W. Further improvements in energy efficiency involved the employment of a second antenna to redirect reflected microwaves back into the MSC, eliminating the need for a water load and simplifying MSDS design. A quick connect (QC) is another innovation that can be sterilized and depyrogenated at temperature, and then cooled using a unique flow design, allowing collection of MGW at atmospheric pressure and 80 C. The final innovation was the use of in-line mixers incorporated in the flow path to disrupt laminar flow and increase contact time at a given flow rate. These technologies can be employed in small-scale systems for efficient production of MGW in the laboratory or in a range of larger systems that meet various industrial requirements. The microwave antennas can also be adapted to selectively sterilize vulnerable connections to ultra-pure water production facilities or biologically vulnerable systems where microorganisms may intrude.

  3. Impact of localized gas injection on ICRF coupling and SOL parameters in JET-ILW H-mode plasmas

    NASA Astrophysics Data System (ADS)

    Lerche, E.; Goniche, M.; Jacquet, P.; Van Eester, D.; Bobkov, V.; Colas, L.; Czarnecka, A.; Brezinsek, S.; Brix, M.; Crombe, K.; Graham, M.; Groth, M.; Monakhov, I.; Mathurin, T.; Matthews, G.; Meneses, L.; Noble, C.; Petrzilka, V.; Rimini, F.; Shaw, A.

    2015-08-01

    Recent JET-ILW [1,2] experiments reiterated the importance of tuning the plasma fuelling in order to optimize ion cyclotron resonance frequency (ICRF) heating in high power H-mode discharges. By fuelling the plasma from gas injection modules (GIMs) located in the mid-plane and on the top of the machine instead of adopting the more standardly used divertor GIMs, a considerable increase of the ICRF antenna coupling resistances was achieved with moderate gas injection rates (<1.5 × 1022 e/s). This effect is explained by an increase of the scrape-off-layer density in front of the antennas when mid-plane and top fuelling is used. By distributing the gas injection to optimize the coupling of all ICRF antenna arrays simultaneously, a substantial increase in the ICRF power capability and reliability was attained. Although similar core/pedestal plasma properties were observed for the different injection cases, the experiments indicate that the RF-induced impurity sources are reduced when switching from divertor to main chamber gas injection.

  4. General solution of the diffusion equation: application to formaldehyde sterilization and desorption of polymers.

    PubMed

    Hennebert, P

    1987-09-01

    A general solution of the diffusion equation for gas in polymers is developed by a numerical method. This solution allows diffusion to be calculated in all cases, by gas desorption after an incomplete adsorption, which is not the case for analytical solutions. When the analytical solutions are valid, both types of solution give identical results. The effect of equivalent sterilization treatment at different temperatures and gas concentrations on formaldehyde residuals in 9 polymers is calculated. High temperature gives lower residual content. Short sterilization times at high gas concentration produce a higher residual content at the end of the adsorption and a lower residual content during desorption than longer sterilization times with lower gas concentration. This is due to sharper gradients of diffusant in the polymer. PMID:3676420

  5. Phenomenology of Light Sterile Neutrinos

    NASA Astrophysics Data System (ADS)

    Laveder, Marco; Giunti, Carlo

    2015-07-01

    After a short review of the current status of standard three-neutrino mixing, we consider its extension with the addition of one or two light sterile neutrinos which can explain the anomalies found in short-baseline neutrino oscillation experiments. We review the results of the global analyses of short-baseline neutrino oscillation data in 3+1, 3+2 and 3+1+1 neutrino mixing schemes.

  6. Method of sterilization using ozone

    NASA Technical Reports Server (NTRS)

    Murphy, Oliver J. (Inventor); Hitchens, G. Duncan (Inventor)

    2002-01-01

    Methods of using ozone have been developed which sterilize instruments and medical wastes, oxidize, organics found in wastewater, clean laundry, break down contaminants in soil into a form more readily digested by microbes, kill microorganisms present in food products, and destroy toxins present in food products. The preferred methods for killing microorganism and destroying toxins use pressurized, humidified, and concentrated ozone produced by an electrochemical cell.

  7. Characterization of gas tunnel type plasma sprayed hydroxyapatite-nanostructure titania composite coatings

    NASA Astrophysics Data System (ADS)

    Yugeswaran, S.; Kobayashi, A.; Ucisik, A. Hikmet; Subramanian, B.

    2015-08-01

    Hydroxyapatite (HA) can be coated onto metal implants as a ceramic biocompatible coating to bridge the growth between implants and human tissue. Meanwhile many efforts have been made to improve the mechanical properties of the HA coatings without affecting its bioactivity. In the present study, nanostructure titania (TiO2) was mixed with HA powder and HA-nanostructure TiO2 composite coatings were produced by gas tunnel type plasma spraying torch under optimized spraying conditions. For this purpose, composition of 10 wt% TiO2 + 90 wt% HA, 20 wt% TiO2 + 80 wt% HA and 30 wt% TiO2 + 70 wt% HA were selected as the feedstock materials. The phase, microstructure and mechanical properties of the coatings were characterized. The obtained results validated that the increase in weight percentage of nanostructure TiO2 in HA coating significantly increased the microhardness, adhesive strength and wear resistance of the coatings. Analysis of the in vitro bioactivity and cytocompatibility of the coatings were done using conventional simulated body fluid (c-SBF) solution and cultured green fluorescent protein (GFP) labeled marrow stromal cells (MSCs) respectively. The bioactivity results revealed that the composite coating has bio-active surface with good cytocompatibility.

  8. Plasma steam reforming of E85 for hydrogen rich gas production

    NASA Astrophysics Data System (ADS)

    Zhu, Xinli; Hoang, Trung; Lobban, Lance L.; Mallinson, Richard G.

    2011-07-01

    E85 (85 vol% ethanol and 15 vol% gasoline) is a partly renewable fuel that is increasing in supply availability. Hydrogen production from E85 for fuel cell or internal combustion engine applications is a potential method for reducing CO2 emissions. Steam reforming of E85 using a nonthermal plasma (pulse corona discharge) reactor has been exploited at low temperature (200-300 °C) without external heating, diluent gas, oxidant or catalyst in this work. Several operational parameters, including the discharge current, E85 concentration and feed flow rate, have been investigated. The results show that hydrogen rich gases (63-67% H2 and 22-29% CO, with small amounts of CO2, C2 hydrocarbons and CH4) can be produced by this method. A comparison with ethanol reforming and gasoline reforming under identical conditions has also been made and the behaviour of E85 reforming is found to be close to that of ethanol reforming with slightly higher C2 hydrocarbons yields.

  9. Friction and wear performance of diamondlike carbon films grown in various source gas plasmas

    SciTech Connect

    Erdemir, A.; Nilufer, I. B.; Eryilmaz, O. L.; Beschliesser, M.; Fenske, G. R.

    2000-01-18

    In this study, the authors investigated the effects of various source gases (methane, ethane, ethylene, and acetylene) on the friction and wear performance of diamondlike carbon (DLC) films prepared in a plasma enhanced chemical vapor deposition (PECVD) system. Films were deposited on AISI H13 steel substrates and tested in a pin-on-disk machine against DLC-coated M50 balls in dry nitrogen. They found a close correlation between friction coefficient and source gas composition. Specifically, films grown in source gases with higher hydrogen-to-carbon ratios exhibited lower friction coefficients and higher wear resistance than films grown in source gases with lower hydrogen-to-carbon (H/C) ratios. The lowest friction coefficient (0.014) was achieved with a film derived from methane with an WC ratio of 4, whereas the coefficient of films derived from acetylene (H/C = 1) was of 0.15. Similar correlations were observed for wear rates. Specifically, films derived from gases with lower H/C values were worn out and the substrate material was exposed, whereas films from methane and ethane remained intact and wore at rates that were nearly two orders of magnitude lower than films obtained from acetylene.

  10. Determination of Menthol in Plasma and Urine by Gas Chromatography/Mass Spectrometry (GC/MS).

    PubMed

    Peat, Judy; Frazee, Clint; Kearns, Gregory; Garg, Uttam

    2016-01-01

    Menthol, a monoterpene, is a principal component of peppermint oil and is used extensively in consumer products as a flavoring aid. It is also commonly used medicinally as a topical skin coolant; to treat inflammation of the mucous membranes, digestive problems, and irritable bowel syndrome (IBS); and in preventing spasms during endoscopy and for its spasmolytic effect on the smooth muscle of the gastrointestinal tract. Menthol has a half life of 3-6 h and is rapidly metabolized to menthol glucuronide which is detectable in urine and serum following menthol use. We describe a method for the determination of total menthol in human plasma and urine using liquid/liquid extraction, gas chromatography/mass spectrometry (GC/MS) in selected ion monitoring mode and menthol-d4 as the internal standard. Controls are prepared with menthol glucuronide and all samples undergo enzymatic hydrolysis for the quantification of total menthol. The method has a linear range of 5-1000 ng/mL, and coefficient of variation <10 %. PMID:26660189

  11. Thermal Evolution of the Primordial Clouds in Warm Dark Matter Models with keV Sterile Neutrinos

    NASA Astrophysics Data System (ADS)

    Stasielak, Jaroslaw; Biermann, Peter L.; Kusenko, Alexander

    2007-01-01

    We analyze the processes relevant for star formation in a model with dark matter in the form of sterile neutrinos. Sterile neutrino decays produce an X-ray background radiation that has a twofold effect on the collapsing clouds of hydrogen. First, the X-rays ionize the gas and cause an increase in the fraction of molecular hydrogen, which makes it easier for the gas to cool and to form stars. Second, the same X-rays deposit a certain amount of heat, which could, in principle, thwart the cooling of gas. We find that in all the cases we have examined the overall effect of sterile dark matter is to facilitate the cooling of gas. Hence, we conclude that dark matter in the form of sterile neutrinos can help the early collapse of gas clouds and the subsequent star formation.

  12. Thermal evolution of the primordial clouds in warm dark matter models with keV sterile neutrinos

    E-print Network

    Jaroslaw Stasielak; Peter L. Biermann; Alexander Kusenko

    2006-09-14

    We analyze the processes relevant for star formation in a model with dark matter in the form of sterile neutrinos. Sterile neutrino decays produce an X-ray background radiation that has a two-fold effect on the collapsing clouds of hydrogen. First, the X-rays ionize the gas and cause an increase in the fraction of molecular hydrogen, which makes it easier for the gas to cool and to form stars. Second, the same X-rays deposit a certain amount of heat, which could, in principle, thwart the cooling of gas. We find that, in all the cases we have examined, the overall effect of sterile dark matter is to facilitate the cooling of gas. Hence, we conclude that dark matter in the form of sterile neutrinos can help the early collapse of gas clouds and the subsequent star formation.

  13. Dynamics of a femtosecond/picosecond laser-induced aluminum plasma out of thermodynamic equilibrium in a nitrogen background gas

    NASA Astrophysics Data System (ADS)

    Morel, Vincent; Bultel, Arnaud; Annaloro, Julien; Chambrelan, Cédric; Edouard, Guillaume; Grisolia, Christian

    2015-01-01

    Beyond the experimental studies, the assessment of the ability of ultra-short (femto or picosecond) laser pulses to provide correct estimates of the elemental composition of unknown samples using laser-induced breakdown spectroscopy requires the modeling of a typical situation. The present article deals with this modeling for aluminum in nitrogen. A spherical layer model is developed. The central aluminum plasma is produced by the ultra-short pulse. This plasma is described using our collisional-radiative model CoRaM-Al in an upgraded version involving 250 levels. Its expansion and relaxation take place in nitrogen, where the formation and the propagation of a shock wave are taken into account. In this shocked nitrogen layer, the equilibrium conditions are assumed. Mass, momentum and energy conservation equations written under an Eulerian form are used to correctly model the global dynamics. Energy losses are due to radiative recombination, thermal Bremsstrahlung and spontaneous emission. These elementary processes are implemented. The only input parameters are the pulse energy E0, the ablated mass M of the sample and the pressure p0 of the surrounding gas. The equilibrium composition involving N2, N, N2+, N+ and free electrons of the shocked nitrogen layer is calculated from the thermodynamic database of our collisional-radiative model CoRaM-N2. The conditions E0 = 10 mJ and M ? 10- 10 kg corresponding to a 532 nm laser pulse are chosen. The model assumes the initial equilibrium of the aluminum plasma produced by the laser pulse absorbed by the sample. Then, owing to the significant overpressure with respect to the background gas (p0 is assumed atmospheric), the surrounding gas starts to be compressed while the propagation of a shock wave takes place. The shock layer maximum pressure is obtained at approximately 20 ns. At this characteristic time, the nitrogen pressure is around 400 times the atmospheric pressure. A shock velocity of 7 km s- 1 is predicted. The central plasma is characterized by a rapidly decreasing pressure, which leads for a while to a very low temperature (3500 K) with respect to the initial one (65,000 K). Then, the aluminum plasma is in a moderate nonequilibrium situation for Al. For Al+, the nonequilibrium degree is higher and the excited states are very weakly populated. Then, the aluminum plasma temperature increases due to the compression by the shock layer. Later, the pressure converges to p0 owing to the momentum transfer with the shock layer, and the shock velocity decreases. The central plasma progressively tends to equilibrium. A maximum expansion of approximately 1 mm in radius and a lifetime of 40 ?s are predicted for the aluminum plasma.

  14. Modelling of plasma performance and transient density behaviour in the H-mode access for ITER gas fuelled scenarios

    NASA Astrophysics Data System (ADS)

    Romanelli, M.; Parail, V.; da Silva Aresta Belo, P.; Corrigan, G.; Garzotti, L.; Harting, D.; Koechl, F.; Militello-Asp, E.; Ambrosino, R.; Cavinato, M.; Kukushkin, A.; Loarte, A.; Mattei, M.; Sartori, R.

    2015-09-01

    ITER operations require effective fuelling of the core plasma for conditions in which neutral dynamics through the scrape-off layer is expected to significantly affect the efficiency of gas penetration. On the basis of the previous analysis for stationary conditions, pellets are foreseen to provide core fuelling of high-Q DT scenarios. In this paper we present a modelling study of the gas fuelling efficiency in ITER providing an estimate of the maximum plasma density achievable with gas fuelling only in various DT reference scenarios. Dynamical integrated core-edge plasma simulations for various phases of ITER DT H-mode discharges have been carried out with the JINTRAC suite of codes. Simulations of the L-mode phase show that divertor detachment sets the maximum density achievable at the separatrix by deuterium-tritium gas fuelling. The maximum volume-average density is achieved for 15 MA/5.3 T and it is close to the requirement for stationary application of neutral beam injection heating at full power (16.5 MW per injector) and ion energy (1 MeV) compatible with acceptable shine-through loads on the first wall. The achievable density in gas fuelled H-modes is typically a factor of 2-3 larger than in L-modes. The fusion performance of gas fuelled H-modes at 15 MA is typically found to be moderately high (Q ~ 6-8). Sensitivity of the above predictions to modelling assumptions and validation of the physics models are discussed.

  15. Electro-optical properties of porous zeolite cathode in the gas discharge electronic devices for plasma light source applications

    NASA Astrophysics Data System (ADS)

    Koseoglu, Kivilcim; Özer, Metin; Ozturk, Sevgul; Salamov, Bahtiyar G.

    2014-08-01

    The stable dc air cold plasma is investigated experimentally functions of pressure p (8-760 Torr), electrode gaps d (50-250 µm), and diameters (9-22 mm) of the cathode areas in the gas discharge electronic devices (GDED) with nanoporous zeolite cathode (ZC). It is found that the current density and plasma emission (PE) intensity increase if the amplitude of the applied voltage reaches given threshold. Moreover, uniform PE inside the ZCs develops from the surface and can be generated in air up to atmospheric pressure (AP). The effect of various diameter of the ZC area on the gas breakdown is also considered. It is shown that breakdown voltage UB is reduced significantly for the larger diameters of the ZC area. Because of the very small d in our GDED, the behavior of charged particles in the electric field is described with the dc Townsend breakdown theory, depending upon the pressure range.

  16. Design and initial results from a kilojoule level dense plasma focus with hollow anode and cylindrically symmetric gas puff

    NASA Astrophysics Data System (ADS)

    Ellsworth, J. L.; Falabella, S.; Tang, V.; Schmidt, A.; Guethlein, G.; Hawkins, S.; Rusnak, B.

    2014-01-01

    We have designed and built a Dense Plasma Focus (DPF) Z-pinch device using a kJ-level capacitor bank and a hollow anode, and fueled by a cylindrically symmetric gas puff. Using this device, we have measured peak deuteron beam energies of up to 400 keV at 0.8 kJ capacitor bank energy and pinch lengths of ˜6 mm, indicating accelerating fields greater than 50 MV/m. Neutron yields of on the order of 107 per shot were measured during deuterium operation. The cylindrical gas puff system permitted simultaneous operation of DPF with a radiofrequency quadrupole accelerator for beam-into-plasma experiments. This paper describes the machine design, the diagnostic systems, and our first results.

  17. Gas convection caused by electron pressure drop in the afterglow of a pulsed inductively coupled plasma discharge

    SciTech Connect

    Cunge, G.; Vempaire, D.; Sadeghi, N.

    2010-03-29

    Neutral depletion is an important phenomenon in high-density plasmas. We show that in pulsed discharges, the neutral depletion caused by the electron pressure P{sub e} plays an important role on radical transport. In the afterglow, P{sub e} drops rapidly by electron cooling. So, a neutral pressure gradient built up between the plasma bulk and the reactor walls, which forces the cold surrounding gas to move rapidly toward the reactor center. Measured drift velocity of Al atoms in the early afterglow of Cl{sub 2}/Ar discharge by time-resolved laser induced fluorescence is as high as 250 ms{sup -1}. This is accompanied by a rapid gas cooling.

  18. Four-fluid MHD Simulations of the Plasma and Neutral Gas Environment of Comet Churyumov-Gerasimenko Near Perihelion

    NASA Astrophysics Data System (ADS)

    Huang, Z.; Toth, G.; Gombosi, T.; Jia, X.; Rubin, M.; Fougere, N.; Tenishev, V.; Combi, M.; Bieler, A.; Hansen, K.; Shou, Y.; Altwegg, K.

    2015-10-01

    We develop a 3-D four fluid model to study the plasma environment of comet Churyumov- Gerasimenko (CG), which is the target of the Rosetta mission. Our model is based on BATS-R-US within the SWMF (Space Weather Modeling Framework) that solves the governing multifluid MHD equations and and the Euler equations for the neutral gas fluid. These equations describe the behavior and interactions of the cometary heavy ions, the solar wind protons, the electrons, and the neutrals. This model incorporates mass loading processes, including photo and electron impact ionization, furthermore taken into account are charge exchange, dissociative ion-electron recombination, as well as collisional interactions between different fluids. We simulate the near nucleus plasma and neutral gas environment with a realistic shape model of CG near perihelion and compare our simulation results with Rosetta observations.

  19. Generation and characterization of plasma channels in gas puff targets using soft X-ray radiography technique

    SciTech Connect

    Wachulak, P. W. Bartnik, A.; Jarocki, R.; Fok, T.; W?grzy?ski, ?.; Kostecki, J.; Szczurek, M.; Jabczy?ski, J.; Fiedorowicz, H.

    2014-10-15

    We present our recent results of a formation and characterization of plasma channels in elongated krypton and xenon gas puff targets. The study of their formation and temporal expansion was carried out using a combination of a soft X-ray radiography (shadowgraphy) and pinhole camera imaging. Two high-energy short laser pulses were used to produce the channels. When a pumping laser pulse was shaped into a line focus, using cylindrical and spherical lenses, the channels were not produced because much smaller energy density was deposited in the gas puff target. However, when a point focus was obtained, using just a spherical lens, the plasma channels appeared. The channels were up to 9?mm in length, had a quite uniform density profile, and expanded in time with velocities of about 2?cm/?s.

  20. Design and initial results from a kilojoule level Dense Plasma Focus with hollow anode and cylindrically symmetric gas puff.

    PubMed

    Ellsworth, J L; Falabella, S; Tang, V; Schmidt, A; Guethlein, G; Hawkins, S; Rusnak, B

    2014-01-01

    We have designed and built a Dense Plasma Focus (DPF) Z-pinch device using a kJ-level capacitor bank and a hollow anode, and fueled by a cylindrically symmetric gas puff. Using this device, we have measured peak deuteron beam energies of up to 400 keV at 0.8 kJ capacitor bank energy and pinch lengths of ?6 mm, indicating accelerating fields greater than 50 MV/m. Neutron yields of on the order of 10(7) per shot were measured during deuterium operation. The cylindrical gas puff system permitted simultaneous operation of DPF with a radiofrequency quadrupole accelerator for beam-into-plasma experiments. This paper describes the machine design, the diagnostic systems, and our first results. PMID:24517762

  1. Modeling of electron behaviors under microwave electric field in methane and air pre-mixture gas plasma assisted combustion

    NASA Astrophysics Data System (ADS)

    Akashi, Haruaki; Sasaki, K.; Yoshinaga, T.

    2011-10-01

    Recently, plasma-assisted combustion has been focused on for achieving more efficient combustion way of fossil fuels, reducing pollutants and so on. Shinohara et al has reported that the flame length of methane and air premixed burner shortened by irradiating microwave power without increase of gas temperature. This suggests that electrons heated by microwave electric field assist the combustion. They also measured emission from 2nd Positive Band System (2nd PBS) of nitrogen during the irradiation. To clarify this mechanism, electron behavior under microwave power should be examined. To obtain electron transport parameters, electron Monte Carlo simulations in methane and air mixture gas have been done. A simple model has been developed to simulate inside the flame. To make this model simple, some assumptions are made. The electrons diffuse from the combustion plasma region. And the electrons quickly reach their equilibrium state. And it is found that the simulated emission from 2nd PBS agrees with the experimental result. Recently, plasma-assisted combustion has been focused on for achieving more efficient combustion way of fossil fuels, reducing pollutants and so on. Shinohara et al has reported that the flame length of methane and air premixed burner shortened by irradiating microwave power without increase of gas temperature. This suggests that electrons heated by microwave electric field assist the combustion. They also measured emission from 2nd Positive Band System (2nd PBS) of nitrogen during the irradiation. To clarify this mechanism, electron behavior under microwave power should be examined. To obtain electron transport parameters, electron Monte Carlo simulations in methane and air mixture gas have been done. A simple model has been developed to simulate inside the flame. To make this model simple, some assumptions are made. The electrons diffuse from the combustion plasma region. And the electrons quickly reach their equilibrium state. And it is found that the simulated emission from 2nd PBS agrees with the experimental result. This work was supported by KAKENHI (22340170).

  2. Effect of temperature on the formation of silicon nanoislands on noncrystalline substrates in microwave low-pressure gas discharge plasma

    NASA Astrophysics Data System (ADS)

    Nefedov, D. V.; Yafarov, R. K.

    2008-01-01

    Conditions for the synthesis of nanodimensional silicon islands on noncrystalline substrates in microwave low-pressure gas discharge plasma have been studied in the case of weak interactions at the deposit-substrate interface. It is established that the formation of silicon nanoislands proceeds via the overgrowth (healing) of depressions on the initial substrate surface. The effect of temperature on the kinetics of nanoisland growth and the possibilities of controlling the parameters of nanoisland morphology are determined.

  3. On the interplay of gas dynamics and the electromagnetic field in an atmospheric Ar/H2 microwave plasma torch

    NASA Astrophysics Data System (ADS)

    Synek, Petr; Obrusník, Adam; Hübner, Simon; Nijdam, Sander; Zají?ková, Lenka

    2015-04-01

    A complementary simulation and experimental study of an atmospheric pressure microwave torch operating in pure argon or argon/hydrogen mixtures is presented. The modelling part describes a numerical model coupling the gas dynamics and mixing to the electromagnetic field simulations. Since the numerical model is not fully self-consistent and requires the electron density as an input, quite extensive spatially resolved Stark broadening measurements were performed for various gas compositions and input powers. In addition, the experimental part includes Rayleigh scattering measurements, which are used for the validation of the model. The paper comments on the changes in the gas temperature and hydrogen dissociation with the gas composition and input power, showing in particular that the dependence on the gas composition is relatively strong and non-monotonic. In addition, the work provides interesting insight into the plasma sustainment mechanism by showing that the power absorption profile in the plasma has two distinct maxima: one at the nozzle tip and one further upstream.

  4. Influence of the radial profile of the electric potential on the confinement of a high-{beta} two-component plasma in a gas-dynamic trap

    SciTech Connect

    Soldatkina, E. I.; Bagryansky, P. A.; Solomakhin, A. L.

    2008-04-15

    One of the most important problems to be studied in the gas-dynamic trap (GDT) facility is the investigation of MHD stability and cross-field transport in a plasma with a relatively high value of {beta} = {pi}p/B{sup 2}. Recent experiments demonstrated that the radial electric field produced in the plasma by using radial limiters and coaxial end plasma collectors improves plasma stability in axisymmetric magnetic mirror systems without applying special MHD stabilizers. The experimental data presented in this work show that stable plasma confinement can be achieved by producing a radial potential drop across a narrow region near the plasma boundary. Creating radial electric fields of strength 15-40 V/cm causes a shear plasma flow, thereby substantially increasing the plasma confinement time. When all the radial electrodes were grounded, the confinement was unstable and the plasma confinement time was much shorter than the characteristic time of plasma outflow through the magnetic mirrors. Measurements of cross-field plasma fluxes with the use of a specially designed combined probe show that, in confinement modes with differential plasma rotation, transverse particle losses are negligibly small as compared to longitudinal ones and thus can be ignored. It is also shown that, when the GDT plasma is in electric contact with the radial limiters and end collectors, the growth rate of interchange instability decreases considerably; such a contact, however, does not ensure complete MHD stability when the electrodes are at the same potential.

  5. Sterilization of auto-crosslinked hyaluronic acid scaffolds structured in microparticles and sponges.

    PubMed

    Shimojo, Andréa Arruda Martins; de Souza Brissac, Isabela Cambraia; Pina, Lucas Martins; Lambert, Carlos Salles; Santana, Maria Helena Andrade

    2015-12-17

    This work evaluated the effects of UV irradiation, plasma radiation, steam and 70% ethanol treatments on the sterilization and integrity of auto-crosslinked hyaluronic acid (HA-ACP) scaffolds structured in microparticles and sponges aiming in vivo applications for regenerative medicine of bone tissue. The integrity of the microparticles was characterized by rheological behavior, while for the sponges, it was characterized by scanning electron microscopy, Fourier transform infrared spectroscopy and differential scanning calorimetry. The effectiveness of the sterilization treatment was verified by the number of microorganism colonies in the samples after the treatments. In conclusion, plasma radiation was the best treatment for the sponges, while steam sterilization in the autoclave at 126°C (1.5 kgf/cm2) for 5 min was the best treatment for the microparticles. PMID:26684890

  6. Effect of atmospheric pressure plasma on inactivation of pathogens inoculated onto bacon using two different gas compositions.

    PubMed

    Kim, Binna; Yun, Hyejeong; Jung, Samooel; Jung, Yeonkook; Jung, Heesoo; Choe, Wonho; Jo, Cheorun

    2011-02-01

    Atmospheric pressure plasma (APP) is an emerging non-thermal pasteurization method for the enhancement of food safety. In this study, the effect of APP on the inactivation of pathogens inoculated onto bacon was observed. Sliced bacon was inoculated with Listeria monocytogenes (KCTC 3596), Escherichia coli (KCTC 1682), and Salmonella Typhimurium (KCTC 1925). The samples were treated with APP at 75, 100, and 125 W of input power for 60 and 90 s. Two gases, helium (10 lpm) or a mixture of helium and oxygen, (10 lpm and 10 sccm, respectively) were used for the plasma generation. Plasma with helium could only reduce the number of inoculated pathogens by about 1-2 Log cycles. On the other hand, the helium/oxygen gas mixture was able to achieve microbial reduction of about 2-3 Log cycles. The number of total aerobic bacteria showed 1.89 and 4.58 decimal reductions after plasma treatment with helium and the helium/oxygen mixture, respectively. Microscopic observation of the bacon after plasma treatment did not find any significant changes, except that the L?-value of the bacon surface was increased. These results clearly indicate that APP treatment is effective for the inactivation of the three pathogens used in this study, although further investigation is needed for elucidating quality changes after treatment. PMID:21056769

  7. Development of Electromagnetically Pulled-Out Gas Plasma (EPOP) Gun for Medium Vacuum and its Fundamental Discharge Characteristics

    NASA Astrophysics Data System (ADS)

    Yanagita, Taichiro; Tanoue, Hideto; Kamiya, Masao; Suda, Yoshiyuki; Takikawa, Hirofumi; Taki, Makoto; Hasegawa, Yushi; Ishikawa, Takeshi

    Electromagnetically pulled-out gas plasma (EPOP) gun was developed, which will be applied to the filtered arc deposition system in order to enhance the nitriding of preparing thin film under medium vacuum. A hot cathode of tungsten (W) filament was employed and DC discharge was generated between the cathode and anode (SUS304). The distance of electrodes was 100 mm. Electromagnetic coils were placed around the cathode, anode and plasma pulled-out duct, separately. Experimental pressure was 0.1 Pa. The following results were obtained. Ignition voltage became lower when the same direction magnetic field was axially applied to the cathode and anode. Minimum voltage for sustaining the discharge became lower when the magnetic filed was applied to the anode. With increasing discharge voltage, the discharge current increased dramatically for the discharge voltage less than 50 V and increased gradually for the voltage more than that. The plasma between the cathode and anode was able to be pulled out to the process chamber by applying magnetic field perpendicular to the discharge axis. The amount of pulled-out plasma increased with increasing the filament current and magnetic flux density for plasma pulling-out.

  8. Laser-induced carbon plasma emission spectroscopic measurements on solid targets and in gas-phase optical breakdown

    SciTech Connect

    Nemes, Laszlo; Keszler, Anna M.; Hornkohl, James O.; Parigger, Christian

    2005-06-20

    We report measurements of time- and spatially averaged spontaneous-emission spectra following laser-induced breakdown on a solid graphite/ambient gas interface and on solid graphite in vacuum, and also emission spectra from gas-phase optical breakdown in allene C3H4 and helium, and in CO2 and helium mixtures. These emission spectra were dominated by CII (singly ionized carbon), CIII (doubly ionized carbon), hydrogen Balmer beta (H{sub b}eta), and Swan C2 band features. Using the local thermodynamic equilibrium and thin plasma assumptions, we derived electron number density and electron temperature estimates. The former was in the 1016 cm{sup -3} range, while the latter was found to be near 20000 K. In addition, the vibration-rotation temperature of the Swan bands of the C2 radical was determined to be between 4500 and 7000 K, using an exact theoretical model for simulating diatomic emission spectra. This temperature range is probably caused by the spatial inhomogeneity of the laser-induced plasma plume. Differences are pointed out in the role of ambient CO2 in a solid graphite target and in gas-phase breakdown plasma.

  9. Overview of plasma technology used in medicine

    NASA Astrophysics Data System (ADS)

    Ryan, Thomas P.; Stalder, Kenneth R.; Woloszko, Jean

    2013-02-01

    Plasma Medicine is a growing field that is having an impact in several important areas in therapeutic patient care, combining plasma physics, biology, and clinical medicine. Historically, plasmas in medicine were used in electrosurgery for cautery and non-contact hemostasis. Presently, non-thermal plasmas have attained widespread use in medicine due to their effectiveness and compatibility with biological systems. The paper will give a general overview of how low temperature, non-equilibrium, gas plasmas operate, both from physics and biology perspectives. Plasma is commonly described as the fourth state of matter and is typically comprised of charged species, active molecules and atoms, as well as a source of UV and photons. The most active areas of plasma technology applications are in wound treatment; tissue regeneration; inactivation of pathogens, including biofilms; treating skin diseases; and sterilization. There are several means of generating plasmas for use in medical applications, including plasma jets, dielectric barrier discharges, capacitively or inductively coupled discharges, or microplasmas. These systems overcome the former constraints of high vacuum, high power requirements and bulky systems, into systems that use room air and other gases and liquids at low temperature, low power, and hand-held operation at atmospheric pressure. Systems will be discussed using a variety of energy sources: pulsed DC, AC, microwave and radiofrequency, as well as the range of frequency, pulse duration, and gas combinations in an air environment. The ionic clouds and reactive species will be covered in terms of effects on biological systems. Lastly, several commercial products will be overviewed in light of the technology utilized, health care problems being solved, and clinical trial results.

  10. Radiation sterilization of new drug delivery systems

    PubMed Central

    Abuhano?lu, Gürhan

    2014-01-01

    Radiation sterilization has now become a commonly used method for sterilization of several active ingredients in drugs or drug delivery systems containing these substances. In this context, many applications have been performed on the human products that are required to be sterile, as well as on pharmaceutical products prepared to be developed. The new drug delivery systems designed to deliver the medication to the target tissue or organ, such as microspheres, nanospheres, microemulsion, and liposomal systems, have been sterilized by gamma (?) and beta (?) rays, and more recently, by e-beam sterilization. In this review, the sterilization of new drug delivery systems was discussed other than conventional drug delivery systems by ? irradiation. PMID:24936306

  11. Surgical sterilization, regret, and race: contemporary patterns.

    PubMed

    Shreffler, Karina M; McQuillan, Julia; Greil, Arthur L; Johnson, David R

    2015-03-01

    Surgical sterilization is a relatively permanent form of contraception that has been disproportionately used by Black, Hispanic, and Native American women in the United States in the past. We use a nationally representative sample of 4592 women ages 25-45 to determine whether sterilization continues to be more common and consequential by race for reproductive-age women. Results indicate that Native American and Black women are more likely to be sterilized than non-Hispanic White women, and Hispanic and Native American women are more likely than non-Hispanic White women to report that their sterilization surgeries prevent them from conceiving children they want. Reasons for sterilization differ significantly by race. These findings suggest that stratified reproduction has not ended in the United States and that the patterns and consequences of sterilization continue to vary by race. PMID:25592919

  12. A Desorbed Gas Molecular Ionization Mechanism for Arcing Onset in Solar Arrays Immersed in a Low-Density Plasma

    NASA Technical Reports Server (NTRS)

    Galofaro, J.; Vayner, B.; Ferguson, D.; Degroot, W.

    2002-01-01

    Previous experimental studies have hypothesized that the onset of Solar Array Arc (SAA) initiation in low-density space plasmas is caused by a desorbed gas molecular ionization mechanism. Indeed past investigations performed at the NASA Glenn Plasma Interaction Facility tend to not only support the desorbed gas molecular ionization mechanism, but have gone as far as identifying the crucial molecular species that must be present for molecular ion dominated process to occur. When electrical breakdown occurs at a triple junction site on a solar array panel, a quasi-neutral plasma cloud is ejected. Assuming the main component of the expelled plasma cloud by weight is due to water vapor, the fastest process available is due to HO molecules and OH(+) ions, or more succinctly, dissociative molecular-ion dominated recombination processes: H2O(+) + e(-) yields H* + OH*. Recently published spectroscopic observations of solar array arc spectra in ground tests have revealed the well-known molecular OH band (302 to 309nm), as well as the molecular SiH band (387nm peak), and the molecular CH band (432nm peak). Note that the OH band is observed in emission arcs where water vapor is present. Strong atomic lines were also observed for H(sub beta) at 486nm and H(sub alpha) at 656.3nm in prior ground testing. Independent supporting evidence of desorbed gas molecular ionization mechanisms also come from measurements of arc current pulse widths at different capacitances. We will revisit an earlier first order approximation demonstrating the dependence of arc current pulse widths on the square root of the capacitance. The simple arc current pulse width model will be then be used to estimate the temperature of the arc plasma (currently believed to be somewhere in the range of 3 to 5 eV). The current paper then seeks to extend the outlined work by including numerous vacuum chamber measurements obtained with a quadrupole mass spectrometer. A small solar array was mounted inside the vacuum chamber. A plasma source, also mounted inside the vacuum chamber, is used to simulate a low-density plasma environment. The solar array is then biased to a high negative potential and allowed to arc while a mass spectrometer is used to record the partial pressure of H2O and to track other significant changes in mass (1 to 150) AMU.

  13. Development of a sterilizing in-place application for a production machine using Vaporized Hydrogen Peroxide.

    PubMed

    Mau, T; Hartmann, V; Burmeister, J; Langguth, P; Häusler, H

    2004-01-01

    The use of steam in sterilization processes is limited by the implementation of heat-sensitive components inside the machines to be sterilized. Alternative low-temperature sterilization methods need to be found and their suitability evaluated. Vaporized Hydrogen Peroxide (VHP) technology was adapted for a production machine consisting of highly sensitive pressure sensors and thermo-labile air tube systems. This new kind of "cold" surface sterilization, known from the Barrier Isolator Technology, is based on the controlled release of hydrogen peroxide vapour into sealed enclosures. A mobile VHP generator was used to generate the hydrogen peroxide vapour. The unit was combined with the air conduction system of the production machine. Terminal vacuum pumps were installed to distribute the gas within the production machine and for its elimination. In order to control the sterilization process, different physical process monitors were incorporated. The validation of the process was based on biological indicators (Geobacillus stearothermophilus). The Limited Spearman Karber Method (LSKM) was used to statistically evaluate the sterilization process. The results show that it is possible to sterilize surfaces in a complex tube system with the use of gaseous hydrogen peroxide. A total microbial reduction of 6 log units was reached. PMID:15233253

  14. Heavy sterile neutrinos and supernova explosions

    E-print Network

    George M. Fuller; Alexander Kusenko; Kalliopi Petraki

    2008-10-01

    We consider sterile neutrinos with rest masses ~0.2 GeV. Such sterile neutrinos could augment core collapse supernova shock energies by enhancing energy transport from the core to the vicinity of the shock front. The decay of these neutrinos could produce a flux of very energetic active neutrinos, detectable by future neutrino observations from a galactic supernova. The relevant range of sterile neutrino masses and mixing angles can be probed in future laboratory experiments.

  15. Dynamics of plasma expansion and shockwave formation in femtosecond laser-ablated aluminum plumes in argon gas at atmospheric pressures

    SciTech Connect

    Miloshevsky, Alexander; Harilal, Sivanandan S.; Miloshevsky, Gennady Hassanein, Ahmed

    2014-04-15

    Plasma expansion with shockwave formation during laser ablation of materials in a background gasses is a complex process. The spatial and temporal evolution of pressure, temperature, density, and velocity fields is needed for its complete understanding. We have studied the expansion of femtosecond (fs) laser-ablated aluminum (Al) plumes in Argon (Ar) gas at 0.5 and 1 atmosphere (atm). The expansion of the plume is investigated experimentally using shadowgraphy and fast-gated imaging. The computational fluid dynamics (CFD) modeling is also carried out. The position of the shock front measured by shadowgraphy and fast-gated imaging is then compared to that obtained from the CFD modeling. The results from the three methods are found to be in good agreement, especially during the initial stage of plasma expansion. The computed time- and space-resolved fields of gas-dynamic parameters have provided valuable insights into the dynamics of plasma expansion and shockwave formation in fs-pulse ablated Al plumes in Ar gas at 0.5 and 1?atm. These results are compared to our previous data on nanosecond (ns) laser ablation of Al [S. S. Harilal et al., Phys. Plasmas 19, 083504 (2012)]. It is observed that both fs and ns plumes acquire a nearly spherical shape at the end of expansion in Ar gas at 1?atm. However, due to significantly lower pulse energy of the fs laser (5 mJ) compared to pulse energy of the ns laser (100 mJ) used in our studies, the values of pressure, temperature, mass density, and velocity are found to be smaller in the fs laser plume, and their time evolution occurs much faster on the same time scale. The oscillatory shock waves clearly visible in the ns plume are not observed in the internal region of the fs plume. These experimental and computational results provide a quantitative understanding of plasma expansion and shockwave formation in fs-pulse and ns-pulse laser ablated Al plumes in an ambient gas at atmospheric pressures.

  16. Natural gas conversion to higher hydrocarbons using plasma interactions with surfaces. Final report

    SciTech Connect

    Sackinger, W.M.; Kamath, V.A.; Morgan, B.L.; Airey, R.W.

    1993-12-01

    Experiments are reported in which a methane plasma is created, and the methyl ions and hydrogen ions are accelerated within a microchannel array so that they interact with neutral methane molecules on the inside surfaces of the microchannels. No catalysts are used, and the device operates at room temperature. Impact energies of the ions are in the range of 10 eV to greater than 100 eV, and the energy delivered in the interaction at the surfaces causes the production of larger hydrocarbon molecules, such as C{sub 2}H{sub 2}, C{sub 2}H{sub 4}, and C{sub 2}H{sub 6}, along with C{sub 3}, C{sub 4}, C{sub 5}m C{sub 6}, C{sub 7}m and C{sub 8} molecules. There is a decreasing percentage of larger molecules produced, in comparison with the C{sub 2} and C{sub 3} types. Conversion effectiveness is greater at higher pressure, due to the increased ionic activity. The yield of the higher hydrocarbons depends upon the external voltage used, and voltage can be used as a control parameter to adjust the output mixture proportions. A conversion energy of 2.59 kilowatt hours/killogram of output has been demonstrated, and a reduction of this by a factor of 10 is possible using known techniques. In batch experiments, the selectivity for C{sub 2} has varied from 47% to 88%, and selectivity for C{sub 6} has ranged from 0% to 12.8%. Other hydrocarbon selectivities also span a wide and useful range. The estimated costs for hydrocarbons produced with this technology are in the range of $200 per tonne, in production quantities, depending upon natural gas costs. Pilot production experiments are recommended to make these estimates more precise, and to address strategies for scaling the technology up to production levels. Applications are discussed.

  17. Study of the desorption of ethylene oxide fixed on various materials during sterilization by a new procedure

    NASA Technical Reports Server (NTRS)

    Lacomme, M.; Chaigneau, M.; Lemoan, G.

    1977-01-01

    A continuous sterilization process using ethylene oxide was studied in comparison with a classical method in order to evaluate gas retention as a function of time and temperature on polyethylene, PVC, and rubber materials.

  18. Effects of gas flow on oxidation reaction in liquid induced by He/O2 plasma-jet irradiation

    NASA Astrophysics Data System (ADS)

    Nakajima, Atsushi; Uchida, Giichiro; Kawasaki, Toshiyuki; Koga, Kazunori; Sarinont, Thapanut; Amano, Takaaki; Takenaka, Kosuke; Shiratani, Masaharu; Setsuhara, Yuichi

    2015-07-01

    We present here analysis of oxidation reaction in liquid by a plasma-jet irradiation under various gas flow patterns such as laminar and turbulence flows. To estimate the total amount of oxidation reaction induced by reactive oxygen species (ROS) in liquid, we employ a KI-starch solution system, where the absorbance of the KI-starch solution near 600 nm behaves linear to the total amount of oxidation reaction in liquid. The laminar flow with higher gas velocity induces an increase in the ROS distribution area on the liquid surface, which results in a large amount of oxidation reaction in liquid. However, a much faster gas flow conversely results in a reduction in the total amount of oxidation reaction in liquid under the following two conditions: first condition is that the turbulence flow is triggered in a gas flow channel at a high Reynolds number of gas flow, which leads to a marked change of the spatial distribution of the ROS concentration in gas phase. Second condition is that the dimpled liquid surface is formed by strong gas flow, which prevents the ROS from being transported in radial direction along the liquid surface.

  19. Energy deposition into heavy gas plasma via pulsed inductive theta-pinch

    NASA Astrophysics Data System (ADS)

    Pahl, Ryan Alan

    The objective of this research is to study the formation processes of a pulsed inductive plasma using heavy gases, specifically the coupling of stored capacitive energy into plasma via formation in a theta pinch coil. To aid in this research, the Missouri Plasmoid Experiment Mk. I (and later Mk. II) was created. In the first paper, the construction of differential magnetic field probes are discussed. The effects of calibration setup on B-dot probes is studied using a Helmholtz coil driven by a vector network analyzer and a pulsed-power system. Calibration in a pulsed-power environment yielded calibration factors at least 9.7% less than the vector network analyzer. In the second paper, energy deposition into various gases using a pulsed inductive test article is investigated. Experimental data are combined with a series RLC model to quantify the energy loss associated with plasma formation in Argon, Hydrogen, and Xenon at pressures from 10-100 mTorr. Plasma resistance is found to vary from 25.8-51.6 m? and plasma inductance varies from 41.3--47.0 nH. The greatest amount of initial capacitively stored energy that could be transferred to the plasma was 6.4 J (8.1%) of the initial 79.2 +/- 0.1 J. In the third paper, the effects of a DC preionization source on plasma formation energy is studied. The preionization source radial location is found to have negligible impact on plasma formation repeatability while voltage is found to be critical at low pressures. Without preionization, plasma formation was not possible. At 20 mTorr, 0.20 W of power was sufficient to stabilize plasma formation about the first zero-crossing of the discharge current. Increasing power to 1.49 W increased inductively coupled energy by 39%. At 200 mTorr, 4.3 mW was sufficient to produce repeatable plasma properties.

  20. Synthesis of aluminum nitride films by plasma immersion ion implantation-deposition using hybrid gas-metal cathodic arc gun

    NASA Astrophysics Data System (ADS)

    Shen, Liru; Fu, Ricky K. Y.; Chu, Paul K.

    2004-03-01

    Aluminum nitride (AlN) is of interest in the industry because of its excellent electronic, optical, acoustic, thermal, and mechanical properties. In this work, aluminum nitride films are deposited on silicon wafers (100) by metal plasma immersion ion implantation and deposition (PIIID) using a modified hybrid gas-metal cathodic arc plasma source and with no intentional heating to the substrate. The mixed metal and gaseous plasma is generated by feeding the gas into the arc discharge region. The deposition rate is found to mainly depend on the Al ion flux from the cathodic arc source and is only slightly affected by the N2 flow rate. The AlN films fabricated by this method exhibit a cubic crystalline microstructure with stable and low internal stress. The surface of the AlN films is quite smooth with the surface roughness on the order of 1/2 nm as determined by atomic force microscopy, homogeneous, and continuous, and the dense granular microstructures give rise to good adhesion with the substrate. The N to Al ratio increases with the bias voltage applied to the substrates. A fairly large amount of O originating from the residual vacuum is found in the samples with low N:Al ratios, but a high bias reduces the oxygen concentration. The compositions, microstructures and crystal states of the deposited films are quite stable and remain unchanged after annealing at 800 °C for 1 h. Our hybrid gas-metal source cathodic arc source delivers better AlN thin films than conventional PIIID employing dual plasmas.

  1. MOLECULAR MAPPING OF THE MALE-STERILE, FEMALE-STERILE MUTANT (ST8) IN SOYBEAN

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soybean male-sterile, female-sterile mutant genes have been identified by genetic and cytological studies. St8 has been identified as a desynaptic mutation resulting in male and female sterility. This mutant gene was derived from a gene-tagging study using the soybean w4-mutable line. In this report...

  2. Quinacrine sterilization (QS): informed consent.

    PubMed

    2003-10-01

    Informed consent is a basic human right for any medical procedure. It is particularly important that women know what is involved in any sterilization method, and how it will affect their health and their emotional life. Over 140,000 QS procedures have been performed in 34 countries. In no country has there been any formal effort to advance the acceptance of this method. Instead, satisfied users have been the promoters. Thoroughly informed consent is vital to patient satisfaction. A working group undertook an initiative to create an ideal consent form. The product of that initiative is presented. PMID:14763204

  3. Cosmology with self-interacting sterile neutrinos and dark matter - A pseudoscalar model

    E-print Network

    Maria Archidiacono; Steen Hannestad; Rasmus Sloth Hansen; Thomas Tram

    2015-03-27

    Short baseline neutrino oscillation experiments have shown hints of the existence of additional sterile neutrinos in the eV mass range. Such sterile neutrinos are incompatible with cosmology because they suppress structure formation unless they can be prevented from thermalising in the early Universe or removed by subsequent decay or annihilation. Here we present a novel scenario in which both sterile neutrinos and dark matter are coupled to a new, light pseudoscalar. This can prevent thermalisation of sterile neutrinos and make dark matter sufficiently self-interacting to have an impact on galactic dynamics and possibly resolve some of the known problems with the standard cold dark matter scenario. Even more importantly it leads to a strongly self-interacting plasma of sterile neutrinos and pseudoscalars at late times and provides an excellent fit to CMB data. The usual cosmological neutrino mass problem is avoided by sterile neutrino annihilation to pseudoscalars. The preferred value of $H_0$ is substantially higher than in standard $\\Lambda$CDM and in much better agreement with local measurements.

  4. Chemically reactive species in liquids generated by atmospheric-pressure plasmas and their roles in plasma medicine

    SciTech Connect

    Hamaguchi, Satoshi

    2013-07-11

    Plasmas whose gas temperatures are close to room temperature may be generated in ambient air or a gas at atmospheric pressure with the use of low-frequency high voltage or low-power radio-frequency (RF) or microwave power applied to electrodes. Such plasmas can serve as a powerful source of free radicals and/or chemically reactive species that arise from atoms and molecules of the ambient gas. Recently use of such plasmas for medical purposes has attracted much attention as they can be implemented in possible medical devices that can cause blood coagulation, heal wounds, facilitate angiogenesis, sterilize surgical devices as well as living tissues without harming healthy cells, and selectively inactivate cancer cells. Especially of interest among reactive species generated by atmospheric-pressure plasmas (APP) are reactive oxygen species (ROS) and reactive nitrogen species (RNS) that are generated in liquid phase. Since most living tissues and cells are immersed in liquids (such as blood or culture media), reactive species generated by APPs in the gas phase are transported to the liquid phase and possibly converted to different types of reactive species therein before causing some influence on the tissues or cells. In this study, the rate equations are solved to evaluate concentrations of various reactive species in pure water that are originated by plasma reactions in atmosphere and possible effects of such species (including ROS/RNS) on living tissues and cells are discussed.

  5. Enhanced growth of high quality single crystal diamond by microwave plasma assisted chemical vapor deposition at high gas pressures

    SciTech Connect

    Liang Qi; Chin Chengyi; Lai, Joseph; Yan Chihshiue; Meng Yufei; Mao Hokwang; Hemley, Russell J.

    2009-01-12

    Single crystals of diamond up to 18 mm in thickness have been grown by microwave plasma assisted chemical vapor deposition at gas pressures of up to 350 torr. Growth rates of up to 165 {mu}m/h at 300 torr at high power density have been achieved. The processes were evaluated by optical emission spectroscopy. The high-quality single-crystal diamond grown at optimized conditions was characterized by UV-visible absorption and photoluminescence spectroscopy. The measurements reveal a direct relationship between residual absorption and nitrogen content in the gas chemistry. Fabrication of high quality single-crystal diamond at higher growth rates should be possible with improved reactor design that allows still higher gas synthesis pressures.

  6. Sterile neutrino dark matter: A tale of weak interactions in the strong coupling epoch

    E-print Network

    Tejaswi Venumadhav; Francis-Yan Cyr-Racine; Kevork N. Abazajian; Christopher M. Hirata

    2015-07-23

    We perform a detailed study of the weak interactions of standard model neutrinos with the primordial plasma and their effect on the resonant production of sterile neutrino dark matter. Motivated by issues in cosmological structure formation on small scales, and reported X-ray signals that could be due to sterile neutrino decay, we consider $7$ keV-scale sterile neutrinos. Oscillation-driven production of such sterile neutrinos occurs at temperatures $T \\gtrsim 100$ MeV, where we study two significant effects of weakly charged species in the primordial plasma: (1) the redistribution of an input lepton asymmetry; (2) the opacity for active neutrinos. We calculate the redistribution analytically above and below the quark-hadron transition, and match with lattice QCD calculations through the transition. We estimate opacities due to tree level processes involving leptons and quarks above the quark-hadron transition, and the most important mesons below the transition. We report final sterile neutrino dark matter phase space densities that are significantly influenced by these effects, and yet relatively robust to remaining uncertainties in the nature of the quark-hadron transition. We also provide transfer functions for cosmological density fluctuations with cutoffs at $k \\simeq 10 \\ h \\ {\\rm Mpc}^{-1}$, that are relevant to galactic structure formation.

  7. Fast Plasma Shutdowns Obtained With Massive Hydrogenic, Noble and Mixed-Gas Injection in DIII-D

    SciTech Connect

    Wesley, J; Hollmann, E; Jernigan, T; Van Zeeland, M; Baylor, L; Boedo, J; Combs, S; Evans, T; Groth, M; Humphreys, D; Hyatt, A; Izzo, V; James, A; Moyer, R; Parks, P; Rudakov, D; Strait, E; Wu, W; Yu, J

    2008-10-14

    Massive gas injection (MGI) experiments with H{sub 2}, D{sub 2}, He, Ne and Ar and 'mixed' (H{sub 2} + Ar and D{sub 2} + Ne) gases injected into 'ITER-similar' 1.3-MA H-mode plasmas are described. Gas species, injected quantity Q, delivery time, t{sub inj}, rate-of-rise and intrinsic and added impurities are found to affect the attributes and 'disruption mitigation' efficacies of the resulting fast plasma shutdowns. With sufficient Q and t{sub inj} < {approx}2 ms, all species provide fast (within {le} {approx}3 ms), more-or-less uniform radiative dissipation of the 0.7-MJ plasma thermal energy and fast but benign current decays with reduced vacuum vessel vertical force impulse. With pure and mixed low-Z gases, free-electron densities up to 2 x 10{sup 21} m{sup -3} are obtained. While these densities are high relative to normal tokamak densities, they are still an order of magnitude smaller than the densities required for unconditional mitigation of the runaway electron avalanche process. Key information relevant to the design of effective MGI systems for larger tokamaks and ITER has been obtained and the collective species and Q-variation data provides a rich basis for validation of emerging 2D + t MHD/transport/radiation models.

  8. Analytical performance of a low-gas-flow torch optimized for inductively coupled plasma atomic emission spectrometry

    USGS Publications Warehouse

    Montaser, A.; Huse, G.R.; Wax, R.A.; Chan, S.-K.; Golightly, D.W.; Kane, J.S.; Dorrzapf, A.F., Jr.

    1984-01-01

    An inductively coupled Ar plasma (ICP), generated in a lowflow torch, was investigated by the simplex optimization technique for simultaneous, multielement, atomic emission spectrometry (AES). The variables studied included forward power, observation height, gas flow (outer, intermediate, and nebulizer carrier) and sample uptake rate. When the ICP was operated at 720-W forward power with a total gas flow of 5 L/min, the signal-to-background ratios (S/B) of spectral lines from 20 elements were either comparable or inferior, by a factor ranging from 1.5 to 2, to the results obtained from a conventional Ar ICP. Matrix effect studies on the Ca-PO4 system revealed that the plasma generated in the low-flow torch was as free of vaporizatton-atomizatton interferences as the conventional ICP, but easily ionizable elements produced a greater level of suppression or enhancement effects which could be reduced at higher forward powers. Electron number densities, as determined via the series until line merging technique, were tower ht the plasma sustained in the low-flow torch as compared with the conventional ICP. ?? 1984 American Chemical Society.

  9. Enantioselective gas chromatographic assay with electron-capture detection for dl-fenfluramine and dl-norfenfluramine in plasma.

    PubMed

    Srinivas, N R; Hubbard, J W; Cooper, J K; Midha, K K

    1988-12-01

    An enantioselective gas chromatographic assay utilising electron-capture detection has been developed for the simultaneous quantitation of enantiomers of fenfluramine and nonfenfluramine in plasma. The assay involves the conversion of the enantiomers of both fenfluramine and norfenfluramine into their corresponding diastereomeric amide derivatives by an acylation reaction with n-heptafluorobutyryl-S-prolyl chloride under Schotten-Baumann conditions prior to gas chromatographic separation on an achiral polar OV-225 capillary column. Linear and reproducible standard curves were obtained over the concentration ranges 4.30-86.3 ng/ml per enantiomer and 1.25-42.25 ng/ml per enantiomer for the enantiomers of fenfluramine and norfenfluramine, respectively. The method was applied to a single-dose pharmacokinetic study in a healthy adult subject. Stereoselective differences were observed in the plasma concentration versus time profiles of the enantiomers of both fenfluramine and norfenfluramine. The area under the plasma concentration versus time curve values obtained for the l-isomers of fenfluramine or norfenfluramine were higher than the values of their corresponding d-antipodes. PMID:3235539

  10. AURORA: A FORTRAN program for modeling well stirred plasma and thermal reactors with gas and surface reactions

    SciTech Connect

    Meeks, E.; Grcar, J.F.; Kee, R.J.; Moffat, H.K.

    1996-02-01

    The AURORA Software is a FORTRAN computer program that predicts the steady-state or time-averaged properties of a well mixed or perfectly stirred reactor for plasma or thermal chemistry systems. The software was based on the previously released software, SURFACE PSR which was written for application to thermal CVD reactor systems. AURORA allows modeling of non-thermal, plasma reactors with the determination of ion and electron concentrations and the electron temperature, in addition to the neutral radical species concentrations. Well stirred reactors are characterized by a reactor volume, residence time or mass flow rate, heat loss or gas temperature, surface area, surface temperature, the incoming temperature and mixture composition, as well as the power deposited into the plasma for non-thermal systems. The model described here accounts for finite-rate elementary chemical reactions both in the gas phase and on the surface. The governing equations are a system of nonlinear algebraic relations. The program solves these equations using a hybrid Newton/time-integration method embodied by the software package TWOPNT. The program runs in conjunction with the new CHEMKIN-III and SURFACE CHEMKIN-III packages, which handle the chemical reaction mechanisms for thermal and non-thermal systems. CHEMKIN-III allows for specification of electron-impact reactions, excitation losses, and elastic-collision losses for electrons.

  11. Dark Matter and Sterile Neutrinos

    E-print Network

    Peter L. Biermann; Faustin Munyaneza

    2007-02-06

    Dark matter has been recognized as an essential part of matter for over 70 years now, and many suggestions have been made, what it could be. Most of these ideas have centered on Cold Dark Matter, particles that are predicted in extensions of standard particle physics, such as supersymmetry. Here we explore the concept that dark matter is sterile neutrinos, particles that are commonly referred to as Warm Dark Matter. Such particles have keV masses, and decay over a very long time, much longer than the Hubble time. In their decay they produce X-ray photons which modify the ionization balance in the very early universe, increasing the fraction of molecular Hydrogen, and thus help early star formation. Sterile neutrinos may also help to understand the baryon-asymmetry, the pulsar kicks, the early growth of black holes, the minimum mass of dwarf spheroidal galaxies, as well as the shape and smoothness of dark matter halos. As soon as all these tests have been made quantitative in their various parameters, we may focus on the creation mechanism of these particles, and could predict the strength of the sharp X-ray emission line, expected from any large dark matter assembly. A measurement of this X-ray emission line would be definitive proof for the existence of may be called weakly interacting neutrinos, or WINs.

  12. Ramifications of a sterile Mars

    NASA Astrophysics Data System (ADS)

    Levin, Gilbert V.

    2011-10-01

    The seldom considered ramifications of a sterile Mars are explored. Very much is now known about the environment on Mars. Herein, the individual and collective environmental parameters are examined with particular consideration of those that might be inimical to life as we know it, or as might reasonably be assumed to be so to alien life. It is shown that no single measurement or combination of them precludes the ability of Mars to support even a wide number of terrestrial microbial species, let alone the likely greater tolerance and/or adaptability of possible alien life forms. Some yet unknown factor or combination of factors would have to be responsible for Mars' failure to generate life or to successfully harbor viable forms received from space. Since Mars is so Earth-like, the red planet's sterility could deliver a fatal blow to the growing concept of a cosmic Biologic Imperative, and would raise the daunting prospect that Earth is a unique or a very rare habitat.

  13. Comparative analysis of barium titanate thin films dry etching using inductively coupled plasmas by different fluorine-based mixture gas

    PubMed Central

    2014-01-01

    In this work, the inductively coupled plasma etching technique was applied to etch the barium titanate thin film. A comparative study of etch characteristics of the barium titanate thin film has been investigated in fluorine-based (CF4/O2, C4F8/O2 and SF6/O2) plasmas. The etch rates were measured using focused ion beam in order to ensure the accuracy of measurement. The surface morphology of etched barium titanate thin film was characterized by atomic force microscope. The chemical state of the etched surfaces was investigated by X-ray photoelectron spectroscopy. According to the experimental result, we monitored that a higher barium titanate thin film etch rate was achieved with SF6/O2 due to minimum amount of necessary ion energy and its higher volatility of etching byproducts as compared with CF4/O2 and C4F8/O2. Low-volatile C-F compound etching byproducts from C4F8/O2 were observed on the etched surface and resulted in the reduction of etch rate. As a result, the barium titanate films can be effectively etched by the plasma with the composition of SF6/O2, which has an etch rate of over than 46.7 nm/min at RF power/inductively coupled plasma (ICP) power of 150/1,000 W under gas pressure of 7.5 mTorr with a better surface morphology. PMID:25278821

  14. An Air Plasma Off-Gas Emission Monitor (APO-GEM) For On-line Toxic Metal Monitoring

    NASA Astrophysics Data System (ADS)

    Miller, G. P.; Zhu, Z.; Baldwin, D. P.

    1998-10-01

    Increasing regulatory demands requiring significant reductions in the emission of hazardous air pollutants have led to the need for techniques capable of providing real-time monitoring of toxic metals in combustion gas streams. These waste streams range from coal-fired boilers, municipal waste combustors to plasma vitrification systems used for the remediation of low level radioactive waste. Our solution to this problem is the development of APO-GEM. This instrument incorporates an atmospheric-pressure inductively-coupled air plasma powered by a 3.5 kW solid-state 27.12 MHz rf generator coupled with an isokinetic sampling system. The detection system includes both a 1-m monochromator and a novel solid-state AOTF high-resolution spectrometer. The air plasma readily tolerates the introduction of combustion gases as well as the significant particle loading that can be present in exhaust streams. Plasma properties and performance characteristics, including results obtained recently at the DOE/EPA-sponsored Demonstration of Toxic Metal Continuous Emission Monitors, will be discussed.

  15. Production of fissioning uranium plasma to approximate gas-core reactor conditions

    NASA Technical Reports Server (NTRS)

    Lee, J. H.; Mcfarland, D. R.; Hohl, F.; Kim, K. H.

    1974-01-01

    The intense burst of neutrons from the d-d reaction in a plasma-focus apparatus is exploited to produce a fissioning uranium plasma. The plasma-focus apparatus consists of a pair of coaxial electrodes and is energized by a 25 kJ capacitor bank. A 15-g rod of 93% enriched U-235 is placed in the end of the center electrode where an intense electron beam impinges during the plasma-focus formation. The resulting uranium plasma is heated to about 5 eV. Fission reactions are induced in the uranium plasma by neutrons from the d-d reaction which were moderated by the polyethylene walls. The fission yield is determined by evaluating the gamma peaks of I-134, Cs-138, and other fission products, and it is found that more than 1,000,000 fissions are induced in the uranium for each focus formation, with at least 1% of these occurring in the uranium plasma.

  16. Nonthermal plasma systems and methods for natural gas and heavy hydrocarbon co-conversion

    DOEpatents

    Kong, Peter C.; Nelson, Lee O.; Detering, Brent A.

    2005-05-24

    A reactor for reactive co-conversion of heavy hydrocarbons and hydrocarbon gases and includes a dielectric barrier discharge plasma cell having a pair of electrodes separated by a dielectric material and passageway therebetween. An inlet is provided for feeding heavy hydrocarbons and other reactive materials to the passageway of the discharge plasma cell, and an outlet is provided for discharging reaction products from the reactor. A packed bed catalyst may optionally be used in the reactor to increase efficiency of conversion. The reactor can be modified to allow use of a variety of light sources for providing ultraviolet light within the discharge plasma cell. Methods for upgrading heavy hydrocarbons are also disclosed.

  17. Eugenics and Involuntary Sterilization: 1907-2015.

    PubMed

    Reilly, Philip R

    2015-01-01

    In England during the late nineteenth century, intellectuals, especially Francis Galton, called for a variety of eugenic policies aimed at ensuring the health of the human species. In the United States, members of the Progressive movement embraced eugenic ideas, especially immigration restriction and sterilization. Indiana enacted the first eugenic sterilization law in 1907, and the US Supreme Court upheld such laws in 1927. State programs targeted institutionalized, mentally disabled women. Beginning in the late 1930s, proponents rationalized involuntary sterilization as protecting vulnerable women from unwanted pregnancy. By World War II, programs in the United States had sterilized approximately 60,000 persons. After the horrific revelations concerning Nazi eugenics (German Hereditary Health Courts approved at least 400,000 sterilization operations in less than a decade), eugenic sterilization programs in the United States declined rapidly. Simplistic eugenic thinking has faded, but coerced sterilization remains widespread, especially in China and India. In many parts of the world, involuntary sterilization is still intermittently used against minority groups. PMID:26322647

  18. The physical nature of the phenomenon of positive column plasma constriction in low-pressure noble gas direct current discharges

    SciTech Connect

    Kurbatov, P. F.

    2014-02-15

    The essence of the positive-column plasma constriction for static (the diffusion mode) and dynamic ionization equilibrium (the stratificated and constricted modes) is analyzed. Two physical parameters, namely, the effective ionization rate of gas atoms and the ambipolar diffusion coefficient of electrons and ions, determine the transverse distribution of discharge species and affect the current states of plasma. Transverse constriction of the positive column takes place as the gas ionization level (discharge current) and pressure increase. The stratified mode (including the constricted one) is observed between the two adjacent types of self-sustained discharge phases when they coexist together at the same time or in the same place as a coherent binary mixture. In the case, a occurrence of the discharge phase with more high electron density presently involve a great decrease in the cross-section of the current channel for d.c. discharges. Additional physical factors, such as cataphoresis and electrophoresis phenomena and spatial gas density inhomogeneity correlated with a circulatory flow in d.c. discharges, are mainly responsible for the current hysteresis and partially constricted discharge.

  19. Experimental Results from Plasma Shell on Deuterium Gas-puff Z-pinch on the Current Level of 3 MA

    NASA Astrophysics Data System (ADS)

    Rezac, K.; Klir, D.; Kubes, P.; Kravarik, J.; Shishlov, A.; Labetsky, A.; Kokshenev, V.; Ratakhin, N.; GIT-12 Team

    2013-10-01

    The experiments with a plasma shell on deuterium gas-puff Z-pinch were carried out on the GIT-12 generator at IHCE in Tomsk. We diagnosed Z-pinch shots with deuterium linear mass of about 100 ?g/cm. The outer shell of the load was formed by 48 plasma guns positioned on diameter of 350 mm, the diameter of the nozzle producing deuterium inner shell gas-puff was 80 mm. Results obtained from X-ray and neutron diagnostics, especially neutron time-of-flight signals, where 15 MeV neutrons (in radial direction) and 22 MeV neutrons (in axial direction) were registered, are presented. Obtained implosion velocity of the gas-puff had the value of 4 . 5 ×107 cm/s, neutron yield from D(d,n)3He reaction was in order of 1012 neutrons/shot on a current level of about 2.7 MA. The time correlations of the TOF diagnostics with other diagnostics such as electrical characteristics, an MCP frames, and a visible streak camera are also presented. Work supported by MEYS CR research programs No. ME090871, No. LG13029, by GACR grant No. P205/12/0454, grant CRA IAEA No. 17088 and RFBR research project No. 13-08-00479-a.

  20. Effect of spark plasma sintering on plasma electrolytic oxidation coatings on gas-atomized Mg-Zn-Y alloy containing nano-sized powders.

    PubMed

    Lee, Du Hyung; Kim, Bo Sik; Song, Yo-seung; Kim, Sung Ho; Lee, Chan Bok; Chang, Si Young

    2010-01-01

    Mg-1.0wt%Zn-2.0wt%Y alloy powders were produced by gas atomization, and subsequently sintered by spark plasma sintering (SPS). The SPSed Mg-1.0wt%Zn-2.0wt%Y alloy, which showed a microstructure of well-bonded grains containing nano-sized powders of approximately 100 nm in diameter, was coated by a plasma electrolytic oxidation (PEO) method. Microstructure, mechanical properties and corrosion properties of PEO coatings were investigated and compared to those of normally sintered Mg-1.0wt%Zn-2.0wt%Y and cast Mg-1.0wt%Zn alloys. All coatings consisted of MgO and Mg2SiO4. The micro-hardness and friction coefficient of coatings on the SPSed Mg-1.0wt%Zn-2.0wt%Y alloy were higher than those on normally sintered Mg-1.0wt%Zn-2.0wt%Y and cast Mg-l.0wt%Zn alloys. However, the corrosion resistance in 3.5% NaCl solution for the SPSed Mg-1.0wt%Zn-2.0wt%Y alloy was between that for normally sintered Mg-1.0wt%Zn-2.0wt%Y alloy and cast Mg-1.0wt%Zn alloy. PMID:20352816