Science.gov

Sample records for gas poor transition

  1. Gas turbine combustor transition

    DOEpatents

    Coslow, Billy Joe; Whidden, Graydon Lane

    1999-01-01

    A method of converting a steam cooled transition to an air cooled transition in a gas turbine having a compressor in fluid communication with a combustor, a turbine section in fluid communication with the combustor, the transition disposed in a combustor shell and having a cooling circuit connecting a steam outlet and a steam inlet and wherein hot gas flows from the combustor through the transition and to the turbine section, includes forming an air outlet in the transition in fluid communication with the cooling circuit and providing for an air inlet in the transition in fluid communication with the cooling circuit.

  2. Gas turbine combustor transition

    DOEpatents

    Coslow, B.J.; Whidden, G.L.

    1999-05-25

    A method is described for converting a steam cooled transition to an air cooled transition in a gas turbine having a compressor in fluid communication with a combustor, a turbine section in fluid communication with the combustor, the transition disposed in a combustor shell and having a cooling circuit connecting a steam outlet and a steam inlet and wherein hot gas flows from the combustor through the transition and to the turbine section, includes forming an air outlet in the transition in fluid communication with the cooling circuit and providing for an air inlet in the transition in fluid communication with the cooling circuit. 7 figs.

  3. Biographies of Exclusion: Poor Work and Poor Transitions

    ERIC Educational Resources Information Center

    Shildrick, Tracy; MacDonald, Robert

    2007-01-01

    The usefulness of the concept of transition has been hotly contested in Anglophone youth studies over the past decade. A variety of criticisms have been ranged against it, including that it: presumes the continuing predominance of linear, obvious, mainstream pathways to adulthood; excludes wider youth questions in focusing narrowly on educational…

  4. UNVEILING THE MASK ON THE ULIRG-TO-QSO TRANSITION OBJECT [H89]1821+643 AT z = 0.3: A GAS-POOR/GAS-RICH GALAXY MERGER AND THE IMPLICATIONS FOR CO-BASED DYNAMICAL MASS ESTIMATES

    SciTech Connect

    Aravena, M.; Wagg, J.; Papadopoulos, P. P.; Feain, I. J.

    2011-08-20

    We report the detection of the {sup 12}CO J = 1-0 emission line in [H89]1821+643, one of the most optically luminous quasi-stellar objects (QSOs) in the local universe, and a template ULIRG-to-QSO transition object, located in a rich, cool-core cluster at z = 0.297. The CO emission is likely to be extended, highly asymmetric with respect to the center of the host elliptical where the QSO resides, and correspond with a molecular gas mass of {approx}8.0 x 10{sup 9} M{sub sun}. The dynamical mass enclosed by the CO emission-line region could amount to {approx}1.7 x 10{sup 12} M{sub sun} (80% of the total mass of the elliptical host). The bulk of the CO emission is located at {approx}9 kpc southeast from the nuclei position, close to a faint optical structure, suggesting that the CO emission could either represent a gas-rich companion galaxy merging with the elliptical host or a tail-like structure reminiscent of a previous interaction. We argue that the first scenario is more likely given the large masses implied by the CO source, which would imply a highly asymmetric elliptical host. The close alignment between the CO emission's major axis and the radio plume suggests a possible role in the excitation of the ambient gas reservoir by the latter. The stacking technique was used to search for CO emission and 3-mm continuum emission from galaxies in the surrounding cluster. However, no detection was found toward individual galaxies or the stacked ensemble of galaxies, with a 3{sigma} limit of <1.1 x 10{sup 9} M{sub sun} for the molecular gas.

  5. DUST-TO-GAS RATIO IN THE EXTREMELY METAL-POOR GALAXY I Zw 18

    SciTech Connect

    Herrera-Camus, Rodrigo; Fisher, David B.; Bolatto, Alberto D.; Leroy, Adam K.; Walter, Fabian; Gordon, Karl D.; Roman-Duval, Julia; Donaldson, Jessica; Melendez, Marcio; Cannon, John M.

    2012-06-20

    The blue compact dwarf galaxy I Zw 18 is one of the most metal-poor systems known in the local universe (12+log(O/H) = 7.17). In this work we study I Zw 18 using data from Spitzer, Herschel Space Telescope, and IRAM Plateau de Bure Interferometer. Our data set includes the most sensitive maps of I Zw 18, to date, in both the far-infrared and the CO J = 1 {yields} 0 transition. We use dust emission models to derive a dust mass upper limit of only M{sub dust} {<=} 1.1 Multiplication-Sign 10{sup 4} M{sub Sun} (3{sigma} limit). This upper limit is driven by the non-detection at 160 {mu}m, and it is a factor of 4-10 times smaller than previous estimates (depending on the model used). We also estimate an upper limit to the total dust-to-gas mass ratio of M{sub Dust}/M{sub gas} {<=} 5.0 Multiplication-Sign 10{sup -5}. If a linear correlation between the dust-to-gas mass ratio and metallicity (measured as O/H) were to hold, we would expect a ratio of 3.9 Multiplication-Sign 10{sup -4}. We also show that the infrared spectral energy distribution is similar to that of starbursting systems.

  6. Conformational transitions of single polymer adsorption in poor solvent: Wetting transition due to molecular confinement induced line tension.

    PubMed

    Wei, Hsien-Hung; Li, Yen-Ching

    2016-07-01

    We report a theory capable of describing conformational transitions for single polymer adsorption in a poor solvent. We show that an additional molecular confinement effect near the contact line can act exactly like line tension, playing a critical role in the behavior of an absorbed polymer chain. Using this theory, distinct conformational states: desorbed globule (DG), surface attached cap (SAC), and adsorbed lens (AL), can be vividly revealed, resembling the drying-wetting transition of a nanodroplet. But the transitions between these states can behave rather differently from those in the usual wetting transitions. The DG-SAC transition is discrete, occurring at the adsorption threshold when the globule size at the desorbed state is equal to the adsorption blob. The SAC-AL transition is smooth for finite chain lengths, but can change to discontinuous in the infinite chain limit, characterized by the different end-to-end exponent 3/8 and the unique crossover exponent 1/4. Distinctive critical exponents near this transition are also determined, indicating that it is an additional universality class of phase transitions. This work also sheds light on nanodrop spreading, wherein the important role played by line tension might simply be a manifestation of the local molecular confinement near the contact line. PMID:27575170

  7. Conformational transitions of single polymer adsorption in poor solvent: Wetting transition due to molecular confinement induced line tension

    NASA Astrophysics Data System (ADS)

    Wei, Hsien-Hung; Li, Yen-Ching

    2016-07-01

    We report a theory capable of describing conformational transitions for single polymer adsorption in a poor solvent. We show that an additional molecular confinement effect near the contact line can act exactly like line tension, playing a critical role in the behavior of an absorbed polymer chain. Using this theory, distinct conformational states: desorbed globule (DG), surface attached cap (SAC), and adsorbed lens (AL), can be vividly revealed, resembling the drying-wetting transition of a nanodroplet. But the transitions between these states can behave rather differently from those in the usual wetting transitions. The DG-SAC transition is discrete, occurring at the adsorption threshold when the globule size at the desorbed state is equal to the adsorption blob. The SAC-AL transition is smooth for finite chain lengths, but can change to discontinuous in the infinite chain limit, characterized by the different end-to-end exponent 3/8 and the unique crossover exponent 1/4. Distinctive critical exponents near this transition are also determined, indicating that it is an additional universality class of phase transitions. This work also sheds light on nanodrop spreading, wherein the important role played by line tension might simply be a manifestation of the local molecular confinement near the contact line.

  8. Gas Poor Galaxies in MKW/AWM Clusters

    NASA Astrophysics Data System (ADS)

    Williams, B. A.

    1995-03-01

    Follow-up observations were made of the neutral hydrogen content of 129 galaxies near the cores of MKW 4, MKW 8, MKW 11, AWM 4, and AWM 5. The neutral hydrogen content of these galaxies appears to be lower than that of galaxies of similar type in the field or in loose groups and are more consistent with those of galaxies in the richer Abell clusters. Of the 14 galaxies that appear to be spirals in MKW 4, only one was detected above a sensitivity limit of ~ 10(5) Msun /Mpc(2) . The low detection rate of galaxies in MKW 4 suggest that its core is truly deficient in neutral hydrogen gas.

  9. Extremely metal-poor gas at a redshift of 7.

    PubMed

    Simcoe, Robert A; Sullivan, Peter W; Cooksey, Kathy L; Kao, Melodie M; Matejek, Michael S; Burgasser, Adam J

    2012-12-01

    In typical astrophysical environments, the abundance of heavy elements ranges from 0.001 to 2 times the solar value. Lower abundances have been seen in selected stars in the Milky Way's halo and in two quasar absorption systems at redshift z = 3 (ref. 4). These are widely interpreted as relics from the early Universe, when all gas possessed a primordial chemistry. Before now there have been no direct abundance measurements from the first billion years after the Big Bang, when the earliest stars began synthesizing elements. Here we report observations of hydrogen and heavy-element absorption in a spectrum of a quasar at z =  7.04, when the Universe was just 772 million years old (5.6 per cent of its present age). We detect a large column of neutral hydrogen but no corresponding metals (defined as elements heavier than helium), limiting the chemical abundance to less than 1/10,000 times the solar level if the gas is in a gravitationally bound proto-galaxy, or to less than 1/1,000 times the solar value if it is diffuse and unbound. If the absorption is truly intergalactic, it would imply that the Universe was neither ionized by starlight nor chemically enriched in this neighbourhood at z ≈ 7. If it is gravitationally bound, the inferred abundance is too low to promote efficient cooling, and the system would be a viable site to form the predicted but as yet unobserved massive population III stars. PMID:23222611

  10. The geodynamic province of transitional crust adjacent to magma-poor continental margins

    NASA Astrophysics Data System (ADS)

    Sibuet, J.; Tucholke, B. E.

    2011-12-01

    Two types of 'transitional crust' have been documented along magma-poor rifted margins. One consists of apparently sub-continental mantle that has been exhumed and serpentinized in a regime of brittle deformation during late stages of rifting. A second is highly thinned continental crust, which in some cases is known to have been supported near sea level until very late in the rift history and thus is interpreted to reflect depth-dependent extension. In both cases it is typically assumed that formation of oceanic crust occurs shortly after the breakup of brittle continental crust and thus that the transitional crust has relatively limited width. We here examine two representative cases of transitional crust, one in the Newfoundland-Iberia rift (exhumed mantle) and one off the Angola-Gabon margin (highly thinned continental crust). Considering the geological and geophysical evidence, we propose that depth-dependent extension (riftward flow of weak lower/middle continental crust and/or upper mantle) may be a common phenomenon on magma-poor margins and that this can result in a much broader zone of transitional crust than has hitherto been assumed. Transitional crust in this extended zone may consist of sub-continental mantle, lower to middle continental crust, or some combination thereof, depending on the strength profile of the pre-rift continental lithosphere. Transitional crust ceases to be emplaced (i.e., final 'breakup' occurs) only when emplacement of heat and melt from the rising asthenosphere becomes dominant over lateral flow of the weak lower lithosphere. This model implies a two-stage breakup: first the rupture of the brittle upper crust and second, the eventual emplacement of oceanic crust. Well-defined magnetic anomalies can form in transitional crust consisting of highly serpentinized, exhumed mantle, and they therefore are not diagnostic of oceanic crust. Where present in transitional crust, these anomalies can be helpful in interpreting the rifting

  11. Superfluid Transition in a Chiron Gas

    SciTech Connect

    Chapline, G F

    2007-12-10

    Low temperature measurements of the magnetic susceptibility of LSCO suggest that the superconducting transition is associated with the disappearance of a vortex liquid. In this note we wish to draw attention to the fact that spin-orbit-like interactions in a poorly conducting layered material can lead to a new type of quantum ground state with spin polarized soliton-like charge carriers as the important quantum degree of freedom. In 2-dimensions these solitons are vortex-like, while in 3-dimensional systems they are monopole-like. In either case there is a natural mechanism for the pairing of spin up and spin down solitons, and we find that at low temperatures there is a cross-over transition as a function of carrier density between a state where the solitons are free and a condensate state where the spin up and spin down solitons in neighboring layers are paired.

  12. Transitional Gas Jet Diffusion Flames in Microgravity

    NASA Technical Reports Server (NTRS)

    Agrawal, Ajay K.; Alammar, Khalid; Gollahalli, S. R.; Griffin, DeVon (Technical Monitor)

    2000-01-01

    Drop tower experiments were performed to identify buoyancy effects in transitional hydrogen gas jet diffusion flames. Quantitative rainbow schlieren deflectometry was utilized to optically visualize the flame and to measure oxygen concentration in the laminar portion of the flame. Test conditions consisted of atmospheric pressure flames burning in quiescent air. Fuel from a 0.3mm inside diameter tube injector was issued at jet exit Reynolds numbers (Re) of 1300 to 1700. Helium mole percentage in the fuel was varied from 0 to 40%. Significant effects of buoyancy were observed in near field of the flame even-though the fuel jets were momentum-dominated. Results show an increase of breakpoint length in microgravity. Data suggest that transitional flames in earth-gravity at Re<1300 might become laminar in microgravity.

  13. CAUSES OF POOR SEALANT PERFORMANCE IN SOIL-GAS- RESISTANT FOUNDATIONS

    EPA Science Inventory

    The paper discusses causes of poor sealant performance in soil-gas-resistant foundations. ealants for radon-resistant foundation construction must seal the gap between concrete sections. odern sealants have such low permeability that seal performance depends only on the permeabil...

  14. Energy level transitions of gas in a 2D nanopore

    SciTech Connect

    Grinyaev, Yurii V.; Chertova, Nadezhda V.; Psakhie, Sergei G.

    2015-10-27

    An analytical study of gas behavior in a 2D nanopore was performed. It is shown that the temperature dependence of gas energy can be stepwise due to transitions from one size-quantized subband to another. Taking into account quantum size effects results in energy level transitions governed by the nanopore size, temperature and gas density. This effect leads to an abrupt change of gas heat capacity in the nanopore at the above varying system parameters.

  15. Gas-rich and gas-poor structures through the stream velocity effect

    NASA Astrophysics Data System (ADS)

    Popa, Cristina; Naoz, Smadar; Marinacci, Federico; Vogelsberger, Mark

    2016-08-01

    Using adiabatic high-resolution numerical simulations, we quantify the effect of the streaming motion of baryons with respect to dark matter at the time of recombination on structure formation and evolution. Formally a second-order effect, the baryonic stream velocity has proven to have significant impact on dark matter halo abundance, as well as on the gas content and morphology of small galaxy clusters. In this work, we study the impact of stream velocity on the formation and gas content of haloes with masses up to 109 M⊙, an order of magnitude larger than previous studies. We find that the non-zero stream velocity has a sizable impact on the number density of haloes with masses ≲ few × 107 M⊙ up to z = 10, the final redshift of our simulations. Furthermore, the gas stream velocity induces a suppression of the gas fraction in haloes, which at z = 10 is ˜10 per cent for objects with M ˜ 107 M⊙, as well as a flattening of the gas density profiles in the inner regions of haloes. We further identify and study the formation, in the context of a non-zero stream velocity, of moderately long lived gas-dominated structures at intermediate redshifts 10 < z < 20, which Naoz and Narayan have recently proposed as potential progenitors of globular clusters.

  16. Gas-rich and gas poor structures through the stream velocity effect

    NASA Astrophysics Data System (ADS)

    Popa, Cristina; Naoz, Smadar; Marinacci, Federico; Vogelsberger, Mark

    2016-05-01

    Using adiabatic high-resolution numerical simulations we quantify the effect of the streaming motion of baryons with respect to dark matter at the time of recombination on structure formation and evolution. Formally a second order effect, the baryonic stream velocity has proven to have significant impact on dark matter halo abundance, as well as on the gas content and morphology of small galaxy clusters. In this work, we study the impact of stream velocity on the formation and gas content of haloes with masses up to 109M⊙, an order of magnitude larger than previous studies. We find that the non-zero stream velocity has a sizable impact on the number density of haloes with masses ≲ few× 107M⊙ up to z = 10, the final redshift of our simulations. Furthermore, the gas stream velocity induces a suppression of the gas fraction in haloes, which at z=10 is ˜10% for objects with M ˜ 107M⊙, as well as a flattening of the gas density profiles in the inner regions of haloes. We further identify and study the formation, in the context of a non-zero stream velocity, of moderately long lived gas dominated structures at intermediate redshifts 10 < z < 20, which Naoz and Narayan have recently proposed as potential progenitors of globular clusters.

  17. HI content and X-ray gas pressure in Morgan poor clusters

    NASA Astrophysics Data System (ADS)

    Williams, B. A.; Mushotzky, R. F.

    1997-05-01

    We have analyzed archival ROSAT PSPC observations of the poor clusters, MKW 4, AWM 4, and AWM 5. Assuming an isothermal gas model, we find extended emission that is smooth, centrally peaked, and reasonably symmetric with X-ray temperatures in the range of 2-4 keV. These findings are consistent with previous observations of the clusters. Surface brightness emission extracted from the X-ray images is fit to a model that is used to obtain density and pressure profiles of the hot intra cluster gas in each cluster. In the direction of these poor clusters, we have observed in the 21-cm line more than 70 galaxies. The neutral hydrogen content of the spiral galaxies is investigated as a function of their location within these clusters. We examine, in particular, the neutral hydrogen content of the spiral members as a function of the local density and pressure of the hot intra cluster medium.

  18. Phase transitions in a gas of anyons

    NASA Astrophysics Data System (ADS)

    MacKenzie, R.; Nebia-Rahal, F.; Paranjape, M. B.; Richer, J.

    2010-10-01

    We continue our numerical Monte Carlo simulation of a gas of closed loops on a 3 dimensional lattice, however, now in the presence of a topological term added to the action which corresponds to the total linking number between the loops. We compute the linking number using a novel approach employing certain notions from knot theory. Adding the topological term converts the particles into anyons. Interpreting the model as an effective theory that describes the 2+1-dimensional Abelian Higgs model in the asymptotic strong-coupling regime, the topological linking number simply corresponds to the addition to the action of the Chern-Simons term. The system continues to exhibit a phase transition as a function of the vortex mass as it becomes small. We find the following new results. The Chern-Simons term has no effect on the Wilson loop. On the other hand, it does effect the ’t Hooft loop of a given configuration, adding the linking number of the ’t Hooft loop with all of the dynamical vortex loops. We find the unexpected result that both the Wilson loop and the ’t Hooft loop exhibit a perimeter law even though there are no massless particles in the theory, in both phases of the theory. It should be noted that our method suffers from numerical instabilities if the coefficient of the Chern-Simons term is too large; thus, we have restricted our results to small values of this parameter. Furthermore, interpreting the lattice loop gas as an effective theory describing the Abelian Higgs model is only known to be true in the infinite coupling limit; for strong but finite coupling this correspondence is only a conjecture, the validity of which is beyond the scope of this article.

  19. Phase transitions in a gas of anyons

    SciTech Connect

    MacKenzie, R.; Nebia-Rahal, F.; Paranjape, M. B.; Richer, J.

    2010-10-01

    We continue our numerical Monte Carlo simulation of a gas of closed loops on a 3 dimensional lattice, however, now in the presence of a topological term added to the action which corresponds to the total linking number between the loops. We compute the linking number using a novel approach employing certain notions from knot theory. Adding the topological term converts the particles into anyons. Interpreting the model as an effective theory that describes the 2+1-dimensional Abelian Higgs model in the asymptotic strong-coupling regime, the topological linking number simply corresponds to the addition to the action of the Chern-Simons term. The system continues to exhibit a phase transition as a function of the vortex mass as it becomes small. We find the following new results. The Chern-Simons term has no effect on the Wilson loop. On the other hand, it does effect the 't Hooft loop of a given configuration, adding the linking number of the 't Hooft loop with all of the dynamical vortex loops. We find the unexpected result that both the Wilson loop and the 't Hooft loop exhibit a perimeter law even though there are no massless particles in the theory, in both phases of the theory. It should be noted that our method suffers from numerical instabilities if the coefficient of the Chern-Simons term is too large; thus, we have restricted our results to small values of this parameter. Furthermore, interpreting the lattice loop gas as an effective theory describing the Abelian Higgs model is only known to be true in the infinite coupling limit; for strong but finite coupling this correspondence is only a conjecture, the validity of which is beyond the scope of this article.

  20. Transition of RF internal antenna plasma by gas control

    SciTech Connect

    Hamajima, Takafumi; Yamauchi, Toshihiko; Kobayashi, Seiji; Hiruta, Toshihito; Kanno, Yoshinori

    2012-07-11

    The transition between the capacitively coupled plasma (CCP) and the inductively coupled plasma (ICP) was investigated with the internal radio frequency (RF) multi-turn antenna. The transition between them showed the hysteresis curve. The radiation power and the period of the self-pulse mode became small in proportion to the gas pressure. It was found that the ICP transition occurred by decreasing the gas pressure from 400 Pa.

  1. Transition metal catalysis in the generation of natural gas

    SciTech Connect

    Mango, F.D.

    1995-12-31

    The view that natural gas is thermolytic, coming from decomposing organic debris, has remained almost unchallenged for nearly half a century. Disturbing contradictions exist, however: Oil is found at great depth, at temperatures where only gas should exist and oil and gas deposits show no evidence of the thermolytic debris indicative of oil decomposing to gas. Moreover, laboratory attempts to duplicate the composition of natural gas, which is typically between 60 and 95+ wt% methane in C{sub 1}-C{sub 4}, have produced insufficient amounts of methane (10 to 60%). It has been suggested that natural gas may be generated catalytically, promoted by the transition metals in carbonaceous sedimentary rocks. This talk will discuss experimental results that support this hypothesis. Various transition metals, as pure compounds and in source rocks, will be shown to generate a catalytic gas that is identical to natural gas. Kinetic results suggest robust catalytic activity under moderate catagenetic conditions.

  2. Seismic Illumination Analysis in Poor Oil & Gas Field Data by Using Focal Beam Method

    NASA Astrophysics Data System (ADS)

    Latiff, A. H. Abdul; Ghosh, D. P.; Harith, Z. Z. Tuan

    2014-03-01

    The area underneath shallow gas cloud is an area where the image of subsurface data is generally poor. This distorted image underneath gas zones usually contains precious information of hydrocarbon accumulation. Previously, we analyse the factors contribute to poor subsurface seismic image underneath the gas cloud model and use focal beam technique to understand subsurface illumination information. Encourage by model-based success, we shift our focus to data-based application by applying the focal beam technique into a real field data. The results from this field were analyse in term of resolution function and amplitude versus ray parameter (AVP) imprint for different reflector depth, followed by acquisition analysis on the surface level. For this purpose, a velocity data of a field located in Malay Basin was built before applying the focal beam calculation. We will demonstrate that by using focal beam analysis for this field, we will able to obtain good imaging particularly for target reflector at 2000ms, 4000ms and 6000ms depth, provided the full 3D acquisition geometry was used during focal beam application.

  3. Demonstration and evaluation of gas turbine transit buses

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The Gas Turbine Transit Bus Demonstration Program was designed to demonstrate and evaluate the operation of gas turbine engines in transit coaches in revenue service compared with diesel powered coaches. The main objective of the program was to accelerate development and commercialization of automotive gas turbines. The benefits from the installation of this engine in a transit coach were expected to be reduced weight, cleaner exhaust emissions, lower noise levels, reduced engine vibration and maintenance requirements, improved reliability and vehicle performance, greater engine braking capability, and superior cold weather starting. Four RTS-II advanced design transit coaches were converted to gas turbine power using engines and transmissions. Development, acceptance, performance and systems tests were performed on the coaches prior to the revenue service demonstration.

  4. Imaging the Elusive H-poor Gas in the High adf Planetary Nebula NGC 6778

    NASA Astrophysics Data System (ADS)

    García-Rojas, Jorge; Corradi, Romano L. M.; Monteiro, Hektor; Jones, David; Rodríguez-Gil, Pablo; Cabrera-Lavers, Antonio

    2016-06-01

    We present the first direct image of the high-metallicity gas component in a planetary nebula (NGC 6778), taken with the OSIRIS Blue Tunable Filter centered on the O ii λ4649+50 Å optical recombination lines (ORLs) at the 10.4 m Gran Telescopio Canarias. We show that the emission of these faint O ii ORLs is concentrated in the central parts of the planetary nebula and is not spatially coincident either with emission coming from the bright [O iii] λ5007 Å collisionally excited line (CEL) or the bright Hα recombination line. From monochromatic emission line maps taken with VIMOS at the 8.2 m Very Large Telescope, we find that the spatial distribution of the emission from the auroral [O iii] λ4363 line resembles that of the O ii ORLs but differs from nebular [O iii] λ5007 CEL distribution, implying a temperature gradient inside the planetary nebula. The centrally peaked distribution of the O ii emission and the differences with the [O iii] and H i emission profiles are consistent with the presence of an H-poor gas whose origin may be linked to the binarity of the central star. However, determination of the spatial distribution of the ORLs and CELs in other PNe and a comparison of their dynamics are needed to further constrain the geometry and ejection mechanism of the metal-rich (H-poor) component and hence, understand the origin of the abundance discrepancy problem in PNe.

  5. Gas flow through rough microchannels in the transition flow regime.

    PubMed

    Deng, Zilong; Chen, Yongping; Shao, Chenxi

    2016-01-01

    A multiple-relaxation-time lattice Boltzmann model of Couette flow is developed to investigate the rarified gas flow through microchannels with roughness characterized by fractal geometry, especially to elucidate the coupled effects of roughness and rarefaction on microscale gas flow in the transition flow regime. The results indicate that the surface roughness effect on gas flow behavior becomes more significant in rarefied gas flow with the increase of Knudsen number. We find the gas flow behavior in the transition flow regime is more sensitive to roughness height than that in the slip flow regime. In particular, the influence of fractal dimension on rarefied gas flow behavior is less significant than roughness height. PMID:26871175

  6. Deflagration to detonation transition in combustible gas mixtures

    SciTech Connect

    Smirnov, N.N.; Panfilov, I.I.

    1995-04-01

    This paper presents the results of a computational investigation of the process of deflagration to detonation transition in a combustible gas mixture. The type of combustion (i.e., deflagration or detonation) supported by a two-step reaction scheme is studied as a function of the activation energies. It is shown that both a deflagration to detonation transition and a deflagration wave that lags behind a leading shock are possible. Two types of deflagration to detonation transitions are found theoretically: initiation of detonation from the flame zone and initiation of detonation along a contact discontinuity in the compressed gas near the primary shock wave.

  7. Long-term tillage and drainage influences on greenhouse gas fluxes from a poorly-drained soil of central Ohio

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Intensive tillage practices and poorly-drained soils of Midwestern USA are the prime reasons for greenhouse gas (GHG) fluxes from agriculture. The naturally poorly-drained soils prevalent in this region require subsurface drainage for improved aeration and improved crop productivity. Soil surface GH...

  8. Simulating extremely metal-poor gas and DLA metal content at redshift z ≃ 7

    NASA Astrophysics Data System (ADS)

    Maio, Umberto; Ciardi, Benedetta; Müller, Volker

    2013-10-01

    We present the first theoretical study of metals in damped-Lyα (DLA) systems at redshift z ≃ 7. The features of cold, primordial gas are studied by means of N-body, hydro, chemistry simulations, including atomic and molecular non-equilibrium chemistry, cooling, star formation for Population III and Population II-I regimes, stellar evolution, cosmic metal spreading according to proper yields (for He, C, O, Si, Fe, Mg, S, etc.) and lifetimes and feedback effects. Theoretical expectations are then compared to recently available constraints from DLA observations. We find that DLA galaxies at z ≃ 7 account for ˜10 per cent of the whole galaxy population and for most of the metal-poor galaxies at these epochs. About 7 per cent of these DLA galaxies contain purely pristine material and ˜34 per cent of them consist of very weakly polluted gas, being, therefore, suitable candidates as Population III sites. The remaining ˜59 per cent are enriched above ˜10-4 Z⊙. Additionally, DLA candidates appear to have: gas masses ≲ 2 × 108 M⊙; very low star formation rate, ˜ 10- 3 - 10- 2 M⊙ yr- 1 (significantly weaker than late-time counterparts); mean molecular fractions covering a fairly wide range, xmol ˜ 10- 3-10- 6; typical metallicities Z ≲ 10-3 Z⊙ and H I column densities N_{H I}≳ 3× 10^{20} cm^{-2} (in agreement with recent observations). They present no or weak correlations between their gas mass and Z, N_{H I}, or xmol; a moderate correlation between xmol and Z, linked to the ongoing molecular-driven star formation and metal pollution processes; a mild anticorrelation between N_{H I} and xmol, due to H depletion into molecules; and a chemical content that is subject to environmental dependences.

  9. Gas-flow experiments in the transition region

    SciTech Connect

    Santeler, D.J. )

    1994-07-01

    A special gas-flow facility was designed and constructed for the purpose of accurately measuring UF[sub 6] gas flow through a variety of gas-flow restrictions. The facility was used to measure the gas flow through 15 different orifices and 20 short tubes over a nominal pressure range from 0.002 to 100 Torr. The intent of the experiments was to confirm a new theoretical approach to gas flow through short tubes in the transition range between laminar viscous flow and molecular flow. The theoretical approach previously discussed [Santeler, J. Vac. Sci. Technol. A [bold 4], 338, 348 (1986)] (1986) became a part of the basis for several computer programs used for calculating gas flow in vacuum systems. A number of interesting results in turbulent flow were observed during the experiments and are discussed in the paper. The results of the experiments confirmed the proposed model and were used to evaluate specific parameters of the proposed equations.

  10. Shape transitions in bistable carbon nanotubes coupled to encapsulated gas

    NASA Astrophysics Data System (ADS)

    Shklyaev, Oleg; Mockensturm, Eric; Cole, Milton; Crespi, Vincent

    2014-03-01

    Large-diameter single-wall carbon nanotubes are bistable (i.e. can have inflated or collapsed cross-sections) and can be used to design nano-electromechanical systems such as engines, generators, and heat pumps. The underlying physical mechanism for these devices is the sensitivity of the tube's equilibrium shape to external stimuli such as temperature and applied voltage. Fixing one end in the inflated state and the other in the collapsed state creates a mobile transition region separating these states. Gas encapsulated inside the tube provides an additional means to control the tube shape by coupling its thermodynamic parameters to the equilibrium tube configuration. Depending on the conditions, the encapsulated gas can remain vapor or condense layer-by-layer on the inner wall surface. We analyze such a system with lattice-gas model and molecular dynamics simulations. Changing the gas temperature or number of gas atoms changes the relative fraction of collapsed and inflated regions, while external forces that change the tube shape also affect the phase of the encapsulated gas. Surprisingly, squashing an inflated tube that has gas condensed on its inner surface decreases the surface area available to the wetting layer, so that gas atoms are forced back into the vapor phase: a paradoxical effect where compression induces a transition from condensed to vapor phases.

  11. No tillage and liming reduce greenhouse gas emissions from poorly drained agricultural soils in Mediterranean regions.

    PubMed

    García-Marco, Sonia; Abalos, Diego; Espejo, Rafael; Vallejo, Antonio; Mariscal-Sancho, Ignacio

    2016-10-01

    No tillage (NT) has been associated to increased N2O emission from poorly drained agricultural soils. This is the case for soils with a low permeable Bt horizon, which generates a perched water layer after water addition (via rainfall or irrigation) over a long period of time. Moreover, these soils often have problems of acidity and require liming application to sustain crop productivity; changes in soil pH have large implications for the production and consumption of soil greenhouse gas (GHG) emissions. Here, we assessed in a split-plot design the individual and interactive effects of tillage practices (conventional tillage (CT) vs. NT) and liming (Ca-amendment vs. not-amendment) on N2O and CH4 emissions from poorly drained acidic soils, over a field experiment with a rainfed triticale crop. Soil mineral N concentrations, pH, temperature, moisture, water soluble organic carbon, GHG fluxes and denitrification capacity were measured during the experiment. Tillage increased N2O emissions by 68% compared to NT and generally led to higher CH4 emissions; both effects were due to the higher soil moisture content under CT plots. Under CT, liming reduced N2O emissions by 61% whereas no effect was observed under NT. Under both CT and NT, CH4 oxidation was enhanced after liming application due to decreased Al(3+) toxicity. Based on our results, NT should be promoted as a means to improve soil physical properties and concurrently reduce N2O and CH4 emissions. Raising the soil pH via liming has positive effects on crop yield; here we show that it may also serve to mitigate CH4 emissions and, under CT, abate N2O emissions. PMID:27235901

  12. DISCOVERY OF A GAS-RICH COMPANION TO THE EXTREMELY METAL-POOR GALAXY DDO 68

    SciTech Connect

    Cannon, John M.; Alfvin, Erik D.; Johnson, Megan; Koribalski, Baerbel; McQuinn, Kristen B. W.; Skillman, Evan D.; Bailin, Jeremy; Ford, H. Alyson; Girardi, Léo; Hirschauer, Alec S.; Janowiecki, Steven; Salzer, John J.; Van Sistine, Angela; Dolphin, Andrew; Elson, E. C.; Marigo, Paola; Rosenfield, Philip; Rosenberg, Jessica L.; Venkatesan, Aparna; Warren, Steven R.

    2014-05-20

    We present H I spectral-line imaging of the extremely metal-poor galaxy DDO 68. This system has a nebular oxygen abundance of only ∼3% Z {sub ☉}, making it one of the most metal-deficient galaxies known in the local volume. Surprisingly, DDO 68 is a relatively massive and luminous galaxy for its metal content, making it a significant outlier in the mass-metallicity and luminosity-metallicity relationships. The origin of such a low oxygen abundance in DDO 68 presents a challenge for models of the chemical evolution of galaxies. One possible solution to this problem is the infall of pristine neutral gas, potentially initiated during a gravitational interaction. Using archival H I spectral-line imaging obtained with the Karl G. Jansky Very Large Array, we have discovered a previously unknown companion of DDO 68. This low-mass (M{sub H} {sub I} = 2.8 × 10{sup 7} M {sub ☉}), recently star-forming (SFR{sub FUV} = 1.4 × 10{sup –3} M {sub ☉} yr{sup –1}, SFR{sub Hα} < 7 × 10{sup –5} M {sub ☉} yr{sup –1}) companion has the same systemic velocity as DDO 68 (V {sub sys} = 506 km s{sup –1}; D = 12.74 ± 0.27 Mpc) and is located at a projected distance of ∼42 kpc. New H I maps obtained with the 100 m Robert C. Byrd Green Bank Telescope provide evidence that DDO 68 and this companion are gravitationally interacting at the present time. Low surface brightness H I gas forms a bridge between these objects.

  13. A gas-poor planetesimal capture model for the formation of giant planet satellite systems

    NASA Astrophysics Data System (ADS)

    Estrada, Paul R.; Mosqueira, Ignacio

    2006-04-01

    Assuming that an unknown mechanism (e.g., gas turbulence) removes most of the subnebula gas disk in a timescale shorter than that for satellite formation, we develop a model for the formation of regular (and possibly at least some of the irregular) satellites around giant planets in a gas-poor environment. In this model, which follows along the lines of the work of Safronov et al. [1986. Satellites. Univ. of Arizona Press, Tucson, pp. 89-116], heliocentric planetesimals collide within the planet's Hill sphere and generate a circumplanetary disk of prograde and retrograde satellitesimals extending as far out as ˜R/2. At first, the net angular momentum of this proto-satellite swarm is small, and collisions among satellitesimals leads to loss of mass from the outer disk, and delivers mass to the inner disk (where regular satellites form) in a timescale ≲10 years. This mass loss may be offset by continued collisional capture of sufficiently small <1 km interlopers resulting from the disruption of planetesimals in the feeding zone of the giant planet. As the planet's feeding zone is cleared in a timescale ≲10 years, enough angular momentum may be delivered to the proto-satellite swarm to account for the angular momentum of the regular satellites of Jupiter and Saturn. This feeding timescale is also roughly consistent with the independent constraint that the Galilean satellites formed in a timescale of 10-10 years, which may be long enough to accommodate Callisto's partially differentiated state [Anderson et al., 1998. Science 280, 1573; Anderson et al., 2001. Icarus 153, 157-161]. In turn, this formation timescale can be used to provide plausible constraints on the surface density of solids in the satellitesimal disk (excluding satellite embryos ˜1 gcm for satellitesimals of size ˜1 km), which yields a total disk mass smaller than the mass of the regular satellites, and means that the satellites must form in several ˜10 collisional cycles. However, much more

  14. From magma-poor Ocean Continent Transitions to steady state oceanic spreading: the balance between tectonic and magmatic processes

    NASA Astrophysics Data System (ADS)

    Gillard, Morgane; Manatschal, Gianreto; Autin, Julia; Decarlis, Alessandro; Sauter, Daniel

    2016-04-01

    The evolution of magma-poor rifted margins is linked to the development of a transition zone whose basement is neither clearly continental nor oceanic. The development of this Ocean-Continent Transition (OCT) is generally associated to the exhumation of serpentinized mantle along one or several detachment faults. That model is supported by numerous observations (IODP wells, dredges, fossil margins) and by numerical modelling. However, if the initiation of detachment faults in a magma-poor setting tends to be better understood by numerous studies in various area, the transition with the first steady state oceanic crust and the associated processes remain enigmatic and poorly studied. Indeed, this latest stage of evolution appears to be extremely gradual and involves strong interactions between tectonic processes and magmatism. Contrary to the proximal part of the exhumed domain where we can observe magmatic activity linked to the exhumation process (exhumation of gabbros, small amount of basalts above the exhumed mantle), in the most distal part the magmatic system appears to be independent and more active. In particular, we can observe large amounts of extrusive material above a previously exhumed and faulted basement (e.g. Alps, Australia-Antarctica margins). It seems that some faults can play the role of feeder systems for the magma in this area. Magmatic underplating is also important, as suggested by basement uplift and anomalously thick crust (e.g. East Indian margin). It results that the transition with the first steady state oceanic crust is marked by the presence of a hybrid basement, composed by exhumed mantle and magmatic material, whose formation is linked to several tectonic and magmatic events. One could argue that this basement is not clearly different from an oceanic basement. However, we consider that true, steady state oceanic crust only exists, if the entire rock association forming the crust is created during a single event, at a localized

  15. Phase Transition of Methane Gas Hydrate and Response of Marine Gas Hydrate Systems to Environmental Changes

    NASA Astrophysics Data System (ADS)

    Xu, W.

    2003-12-01

    Gas hydrates, which contain mostly methane as the gas component in marine sediment, are stable under relatively high pressure and low temperature conditions such as those found along continental margins and permafrost regions. Its stability is mostly controlled by in-situ pressure, temperature and salinity of pore fluid. Environmentally introduced changes in pressure and temperature can affect the stability of gas hydrate in marine sediment. While certain changes may enhance the process of gas hydrate formation, we are much more interested in the resultant dissociation processes, which may contribute to sub-marine slope instability, seafloor sediment failure, formation of mud volcanoes and pock marks, potential vulnerability of engineering structures, and the risk to drilling and production. We have been developing models to quantify phase transition processes of marine gas hydrates and to investigate the response of marine gas hydrate systems to environmental changes. Methane gas hydrate system is considered as a three-component (water, methane, salt) four-phase (liquid, gas, hydrate, halite) system. Pressure, temperature and salinity of pore fluid constrain the stability of gas hydrate and affect phase transition processes via their effects on methane solubility and fluid density and enthalpy. Compared to the great quantity of studies on its stability in the literature, in-depth research on phase transition of gas hydrate is surprisingly much less. A method, which employs pressure, enthalpy, salinity and methane content as independent variables, is developed to calculate phase transition processes of the three-component four-phase system. Temperature, an intensive thermodynamic parameter, is found not sufficient in describing phase transition of gas hydrate. The extensive thermodynamic parameter enthalpy, on the other hand, is found to be sufficient both in calculation of the phase transition processes and in modeling marine gas hydrate systems. Processes

  16. WASP-36b: A NEW TRANSITING PLANET AROUND A METAL-POOR G-DWARF, AND AN INVESTIGATION INTO ANALYSES BASED ON A SINGLE TRANSIT LIGHT CURVE

    SciTech Connect

    Smith, A. M. S.; Anderson, D. R.; Hellier, C.; Maxted, P. F. L.; Smalley, B.; Southworth, J.; Collier Cameron, A.; Gillon, M.; Jehin, E.; Lendl, M.; Queloz, D.; Triaud, A. H. M. J.; Pepe, F.; Segransan, D.; Udry, S.; West, R. G.; Barros, S. C. C.; Pollacco, D.; Street, R. A.

    2012-04-15

    We report the discovery, from WASP and CORALIE, of a transiting exoplanet in a 1.54 day orbit. The host star, WASP-36, is a magnitude V = 12.7, metal-poor G2 dwarf (T{sub eff} = 5959 {+-} 134 K), with [Fe/H] =-0.26 {+-} 0.10. We determine the planet to have mass and radius, respectively, 2.30 {+-} 0.07 and 1.28 {+-} 0.03 times that of Jupiter. We have eight partial or complete transit light curves, from four different observatories, which allow us to investigate the potential effects on the fitted system parameters of using only a single light curve. We find that the solutions obtained by analyzing each of these light curves independently are consistent with our global fit to all the data, despite the apparent presence of correlated noise in at least two of the light curves.

  17. Radial inflow gas turbine engine with advanced transition duct

    SciTech Connect

    Wiebe, David J

    2015-03-17

    A gas turbine engine (10), including: a turbine having radial inflow impellor blades (38); and an array of advanced transition combustor assemblies arranged circumferentially about the radial inflow impellor blades (38) and having inner surfaces (34) that are adjacent to combustion gases (40). The inner surfaces (34) of the array are configured to accelerate and orient, for delivery directly onto the radial inflow impellor blades (38), a plurality of discrete flows of the combustion gases (40). The array inner surfaces (34) define respective combustion gas flow axes (20). Each combustion gas flow axis (20) is straight from a point of ignition until no longer bound by the array inner surfaces (34), and each combustion gas flow axis (20) intersects a unique location on a circumference defined by a sweep of the radial inflow impellor blades (38).

  18. Liquid-gas phase transition in nuclear matter including strangeness

    SciTech Connect

    Wang, P.; Leinweber, D.B.; Williams, A.G.; Thomas, A.W.

    2004-11-01

    We apply the chiral SU(3) quark mean field model to study the properties of strange hadronic matter at finite temperature. The liquid-gas phase transition is studied as a function of the strangeness fraction. The pressure of the system cannot remain constant during the phase transition, since there are two independent conserved charges (baryon and strangeness number). In a range of temperatures around 15 MeV (precise values depending on the model used) the equation of state exhibits multiple bifurcates. The difference in the strangeness fraction f{sub s} between the liquid and gas phases is small when they coexist. The critical temperature of strange matter turns out to be a nontrivial function of the strangeness fraction.

  19. Soft band X/K luminosity ratios for gas-poor early-type galaxies

    NASA Astrophysics Data System (ADS)

    Bogdán, Á.; Gilfanov, M.

    2010-03-01

    Aims: We aim to place upper limits on the combined X-ray emission from the population of steady nuclear-burning white dwarfs in galaxies. In the framework of the single-degenerate scenario, these systems, known as supersoft sources, are believed to be likely progenitors of Type Ia supernovae. Methods: From the Chandra archive, we selected normal early-type galaxies with the point source detection sensitivity better than 1037 erg s-1 in order to minimize the contribution of unresolved low-mass X-ray binaries. The galaxies, contaminated by emission from ionized ISM, were identified based on the analysis of radial surface brightness profiles and energy spectra. The sample was complemented by the bulge of M 31 and the data for the solar neighborhood. To cover a broad range of ages, we also included NGC 3377 and NGC 3585 which represent the young end of the age distribution for elliptical galaxies. Our final sample includes eight gas-poor galaxies for which we determine LX/LK ratios in the 0.3-0.7 keV energy band. This choice of the energy band was optimized to detect soft emission from thermonuclear-burning on the surface of an accreting white dwarf. In computing the LX we included both unresolved emission and soft resolved sources with the color temperature of kTbb ≤ 200 eV. Results: We find that the X/K luminosity ratios are in a rather narrow range of (1.7-3.2) × 1027 erg s-1 LK,⊙. The data show no obvious trends with mass, age, or metallicity of the host galaxy, although a weak anti-correlation with the Galactic NH appears to exist. It is much flatter than predicted for a blackbody emission spectrum with temperature of ~ 50-75 eV, suggesting that sources with such soft spectra contribute significantly less than a half to the observed X/K ratios. However, the correlation of the X/K ratios with NH has a significant scatter and in the strict statistical sense cannot be adequately described by a superposition of a power law and a blackbody components with

  20. Natural Gas Regulation in Transition: The Effects of Geopolitics and Prerequisites for Change in Transition Economies

    SciTech Connect

    Evans, Meredydd

    2009-01-01

    Natural gas has become a major geopolitical concern in relations among transition countries and other European states. Transition economies have embarked on very different paths in using and regulating natural gas. Countries to the East, like Russia, by and large have undertaken few market-oriented reforms of their natural gas sectors. The new European Union member states have undertaken much broader reforms. These differences often lead to tension. Two factors seem particularly important in understanding when countries may embark on natural gas reforms. The first is energy efficiency, since low energy efficiency can make energy reforms socially and economically difficult. The second is corruption: vested interested and a captive state can play powerful roles in inhibiting reform. The article looks at the arguments behind each of these potential prerequisites for reform, and also examines comparative data on energy intensity and corruption. Interestingly, the countries with the lowest energy intensity and the lowest levels of corruption (and the fastest improvements in these areas) also undertook the most extensive natural gas reforms. The article concludes with a few brief examples of the cost with the status quo.

  1. CHARACTERIZING TRANSITION TEMPERATURE GAS IN THE GALACTIC CORONA

    SciTech Connect

    Wakker, Bart P.; Savage, Blair D.; Fox, Andrew J.; Benjamin, Robert A.; Shapiro, Paul R. E-mail: savage@astro.wisc.edu E-mail: benjamir@uww.edu

    2012-04-20

    We present a study of the properties of the transition temperature (T {approx} 10{sup 5} K) gas in the Milky Way corona, based on the measurements of O VI, N V, C IV, Si IV, and Fe III absorption lines seen in the far-ultraviolet spectra of 58 sight lines to extragalactic targets, obtained with the Far-Ultraviolet Spectroscopic Explorer and the Space Telescope Imaging Spectrograph. In many sight lines the Galactic absorption profiles show multiple components, which are analyzed separately. We find that the highly ionized atoms are distributed irregularly in a layer with a scale height of about 3 kpc, which rotates along with the gas in the disk, without an obvious gradient in the rotation velocity away from the Galactic plane. Within this layer the gas has randomly oriented velocities with a dispersion of 40-60 km s{sup -1}. On average the integrated column densities are log N(O VI) = 14.3, log N(N V) = 13.5, log N(C IV) = 14.2, log N(Si IV) = 13.6, and log N(Fe III) = 14.2, with a dispersion of just 0.2 dex in each case. In sight lines around the Galactic center and Galactic north pole, all column densities are enhanced by a factor {approx}2, while at intermediate latitudes in the southern sky there is a deficit in N(O VI) of about a factor of two, but no deficit for the other ions. We compare the column densities and ionic ratios to a series of theoretical predictions: collisional ionization equilibrium, shock ionization, conductive interfaces, turbulent mixing, thick disk supernovae, static non-equilibrium ionization (NIE) radiative cooling, and an NIE radiative cooling model in which the gas flows through the cooling zone. None of these models can fully reproduce the data, but it is clear that NIE radiative cooling is important in generating the transition temperature gas.

  2. Metallicity inhomogeneities in local star-forming galaxies as a sign of recent metal-poor gas accretion

    SciTech Connect

    Sánchez Almeida, J.; Morales-Luis, A. B.; Muñoz-Tuñón, C.; Méndez-Abreu, J.; Elmegreen, D. M.; Elmegreen, B. G. E-mail: abml@iac.es E-mail: elmegreen@vassar.edu E-mail: jma20@st-andrews.ac.uk

    2014-03-01

    We measure the oxygen metallicity of the ionized gas along the major axis of seven dwarf star-forming galaxies. Two of them, SDSSJ1647+21 and SDSSJ2238+14, show ≅0.5 dex metallicity decrements in inner regions with enhanced star formation activity. This behavior is similar to the metallicity drop observed in a number of local tadpole galaxies by Sánchez Almeida et al., and was interpreted as showing early stages of assembling in disk galaxies, with the star formation sustained by external metal-poor gas accretion. The agreement with tadpoles has several implications. (1) It proves that galaxies other than the local tadpoles present the same unusual metallicity pattern. (2) Our metallicity inhomogeneities were inferred using the direct method, thus discarding systematic errors usually attributed to other methods. (3) Taken together with the tadpole data, our findings suggest a threshold around one-tenth the solar value for the metallicity drops to show up. Although galaxies with clear metallicity drops are rare, the physical mechanism responsible for them may sustain a significant part of the star formation activity in the local universe. We argue that the star formation dependence of the mass-metallicity relationship, as well as other general properties followed by most local disk galaxies, is naturally interpreted as side effects of pristine gas infall. Alternatives to the metal-poor gas accretion are examined as well.

  3. Growth rate and transition to turbulence of a gas curtain

    SciTech Connect

    Vorobieff, P.; Rightley, P.; Benjamin, R.

    1997-09-01

    The authors conduct shock-tube experiments to investigate Richtmyer-Meshkov (RM) instability of a narrow curtain of heavy gas (SF{sub 6}) embedded in lighter gas (air). Initial perturbations of the curtain can be varied, producing different flow patterns in the subsequent evolution of the curtain. Multiple-exposure video flow visualization provides images of the growth of the instability and its transition to turbulence, making it possible to extract quantitative information such as the width of the perturbed curtain. They demonstrate that the width of the curtain with initial perturbation on the downstream side is non-monotonic. As the initial perturbation undergoes phase inversion, the width of the curtain actually decreases before beginning to grow as the RM instability evolves.

  4. Semiphenomenological model for gas-liquid phase transitions.

    PubMed

    Benilov, E S; Benilov, M S

    2016-03-01

    We examine a rarefied gas with inter-molecular attraction. It is argued that the attraction force amplifies random density fluctuations by pulling molecules from lower-density regions into high-density regions and thus may give rise to an instability. To describe this effect, we use a kinetic equation where the attraction force is taken into account in a way similar to how electromagnetic forces in plasma are treated in the Vlasov model. It is demonstrated that the instability occurs when the temperature T is lower than a certain threshold value T(s) depending on the gas density. It is further shown that, even if T is only marginally lower than T(s), the instability generates clusters with density much higher than that of the gas. These results suggest that the instability should be interpreted as a gas-liquid phase transition, with T(s) being the temperature of saturated vapor and the high-density clusters representing liquid droplets. PMID:27078333

  5. The X-ray emitting gas in poor clusters with central dominant galaxies

    NASA Technical Reports Server (NTRS)

    Kriss, G. A.; Cioffi, D. F.; Canizares, C. R.

    1983-01-01

    The 12 clusters detected in the present study by the Einstein Observatory's X-ray imaging proportional counter show X-ray emission centered on the dominant galaxy in all cases. Comparison of the deduced distribution of binding mass with the light distribution of the central galaxies of four clusters indicates that the mass/luminosity ratio rises to over 200 solar masses/solar luminosity in the galaxy halos. These halos must therefore, like the clusters themselves, posses dark matter. The X-ray data clearly show that the dominant galaxies sit at the bottoms of the poor cluster gravitational potential wells, suggesting a similar origin for dominant galaxies in poor and rich clusters, perhaps through the merger and cannibalism of cluster galaxies. It is the luminosity of the distended cD envelope that reflects the relative wealth of the cluster environment.

  6. Is atomic carbon a good tracer of molecular gas in metal-poor galaxies?

    NASA Astrophysics Data System (ADS)

    Glover, Simon C. O.; Clark, Paul C.

    2016-03-01

    Carbon monoxide (CO) is widely used as a tracer of molecular hydrogen (H2) in metal-rich galaxies, but is known to become ineffective in low-metallicity dwarf galaxies. Atomic carbon has been suggested as a superior tracer of H2 in these metal-poor systems, but its suitability remains unproven. To help us to assess how well atomic carbon traces H2 at low metallicity, we have performed a series of numerical simulations of turbulent molecular clouds that cover a wide range of different metallicities. Our simulations demonstrate that in star-forming clouds, the conversion factor between [C I] emission and H2 mass, XCI, scales approximately as XCI ∝ Z-1. We recover a similar scaling for the CO-to-H2 conversion factor, XCO, but find that at this point in the evolution of the clouds, XCO is consistently smaller than XCI, by a factor of a few or more. We have also examined how XCI and XCO evolve with time. We find that XCI does not vary strongly with time, demonstrating that atomic carbon remains a good tracer of H2 in metal-poor systems even at times significantly before the onset of star formation. On the other hand, XCO varies very strongly with time in metal-poor clouds, showing that CO does not trace H2 well in starless clouds at low metallicity.

  7. The Evolution of Inner Disk Gas in Transition Disks

    NASA Astrophysics Data System (ADS)

    Hoadley, K.; France, K.; Alexander, R. D.; McJunkin, M.; Schneider, P. C.

    2015-10-01

    Investigating the molecular gas in the inner regions of protoplanetary disks (PPDs) provides insight into how the molecular disk environment changes during the transition from primordial to debris disk systems. We conduct a small survey of molecular hydrogen (H2) fluorescent emission, using 14 well-studied Classical T Tauri stars at two distinct dust disk evolutionary stages, to explore how the structure of the inner molecular disk changes as the optically thick warm dust dissipates. We simulate the observed Hi-Lyman α-pumped H2 disk fluorescence by creating a 2D radiative transfer model that describes the radial distributions of H2 emission in the disk atmosphere and compare these to observations from the Hubble Space Telescope. We find the radial distributions that best describe the observed H2 FUV emission arising in primordial disk targets (full dust disk) are demonstrably different than those of transition disks (little-to-no warm dust observed). For each best-fit model, we estimate inner and outer disk emission boundaries (rin and rout), describing where the bulk of the observed H2 emission arises in each disk, and we examine correlations between these and several observational disk evolution indicators, such as n13-31, rin, CO, and the mass accretion rate. We find strong, positive correlations between the H2 radial distributions and the slope of the dust spectral energy distribution, implying the behavior of the molecular disk atmosphere changes as the inner dust clears in evolving PPDs. Overall, we find that H2 inner radii are ˜4 times larger in transition systems, while the bulk of the H2 emission originates inside the dust gap radius for all transitional sources.

  8. Very metal-poor galaxies: ionized gas kinematics in nine objects

    NASA Astrophysics Data System (ADS)

    Moiseev, A. V.; Pustilnik, S. A.; Kniazev, A. Y.

    2010-07-01

    The study of ionized gas morphology and kinematics in nine extremely metal-deficient (XMD) galaxies with the scanning Fabry-Perot interferometer on the Special Astrophysical Observatory (SAO) 6-m telescope is presented. Some of these very rare objects (with currently known range of O/H of 7.12 < 12 + log(O/H) < 7.65, or ) are believed to be the best proxies of `young' low-mass galaxies in the high-redshift Universe. One of the main goals of this study is to look for possible evidence of star formation (SF) activity induced by external perturbations. Recent results from HI mapping of a small subsample of XMD star-forming galaxies provided confident evidence for the important role of interaction-induced SF. Our observations provide complementary or new information that the great majority of the studied XMD dwarfs have strongly disturbed gas morphology and kinematics or the presence of detached components. We approximate the observed velocity fields by simple models of a rotating tilted thin disc, which allows us the robust detection of non-circular gas motions. These data, in turn, indicate the important role of current/recent interactions and mergers in the observed enhanced SF. As a by-product of our observations, we obtained data for two Low Surface Brightness (LSB) dwarf galaxies: Anon J012544+075957 that is a companion of the merger system UGC 993, and SAO 0822+3545 which shows off-centre, asymmetric, low star formation rate star-forming regions, likely induced by the interaction with the companion XMD dwarf HS 0822+3542. Based on observations obtained with the Special Astrophysical Observatory RAS 6-m telescope. E-mail: moisav@gmail.com (AVM); sap@sao.ru (SAP); akniazev@saao.ac.za (AYK)

  9. Actin‐like 6A predicts poor prognosis of hepatocellular carcinoma and promotes metastasis and epithelial‐mesenchymal transition

    PubMed Central

    Xiao, Shuai; Chang, Rui‐Min; Yang, Ming‐Yang; Lei, Xiong; Liu, Xiao; Gao, Wen‐Bin; Xiao, Jing‐Lei

    2016-01-01

    Hepatocellular carcinoma (HCC) is one of the most lethal cancers worldwide because of metastasis. Epithelial‐mesenchymal transition (EMT) is widely considered to be crucial to the invasion‐metastasis cascade during cancer progression. Actin‐like 6A (ACTL6A) is initially verified important for cell proliferation, differentiation, and migration. In this study, we find that ACTL6A plays an essential role in metastasis and EMT of HCC. ACTL6A expression is up‐regulated in HCC cells and tissues. A high level of ACTL6A in HCCs is correlated with aggressive clinicopathological features and is an independent poor prognostic factor for overall and disease‐free survival of HCC patients. Ectopic expression of ACTL6A markedly promotes HCC cells migration, invasion, as well as EMT in vitro and promotes tumor growth and metastasis in the mouse xenograft model. Opposite results are observed when ACTL6A is knocked down. Mechanistically, ACTL6A promotes metastasis and EMT through activating Notch signaling. ACTL6A knockdown has the equal blockage effect as the Notch signaling inhibitor, N‐[N‐(3,5‐difluorophenacetyl)‐L‐alanyl]‐S‐phenylglycine t‐butylester, in HCC cells. Further studies indicate that ACTL6A might manipulate SRY (sex determining region Y)‐box 2 (SOX2) expression and then activate Notch1 signaling. Conclusions: ACTL6A promotes metastasis and EMT by SOX2/Notch1 signaling, indicating a prognostic biomarker candidate and a potential therapeutic target for HCC. (Hepatology 2016;63:1256–1271) PMID:26698646

  10. Overexpression of SPARC correlates with poor prognosis in patients with cervical carcinoma and regulates cancer cell epithelial-mesenchymal transition

    PubMed Central

    SHI, DEHUAN; JIANG, KAN; FU, YING; FANG, RUI; LIU, XI; CHEN, JIE

    2016-01-01

    Secreted protein acidic and rich in cysteine (SPARC) is associated with the progression of numerous types of cancer. However, the role of SPARC in the progression of cervical cancer has not yet been adequately elucidated. In the current study, reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and immunohistochemistry were employed to evaluate the mRNA and protein expression of SPARC in normal cervical tissue, cervical intraepithelial neoplasia (CIN) and cervical cancer. In addition, three epithelial-mesenchymal transition (EMT) markers (E-cadherin, N-cadherin and vimentin) were detected by immunohistochemistry in the same specimens, and an enzyme-linked immunosorbent assay was conducted to detect the serum levels of SPARC in patients with cervical neoplasia. In highly invasive subclones of human cervical carcinoma cells, HeLa-1 and SiHa-1, lentiviral transfections were performed and RT-qPCR and western blot were used to investigate the effects of downregulated EGF-containing fibulin-like extracellular matrix protein 1 on the expression of E-cadherin, N-cadherin and vimentin. The results revealed that, in cervical carcinoma tissue, SPARC expression was significantly upregulated in a manner that positively correlated with N-cadherin and vimentin expression, and negatively correlated with E-cadherin expression. SPARC overexpression and high serum levels were significantly associated with the progression of cervical cancer and adverse prognosis of cervical cancer patients. Downregulation of SPARC can markedly reduce the expression of N-cadherin and vimentin and increase the expression of E-cadherin. Thus, overexpression of SPARC is significantly associated with poor prognostic clinicopathological characteristics in cervical carcinoma, and may be important in EMT. The results of the current study suggest that SPARC may be a potential therapeutic option for individuals diagnosed with cervical carcinoma. PMID:27123099

  11. h-Prune is associated with poor prognosis and epithelial-mesenchymal transition in patients with colorectal liver metastases.

    PubMed

    Hashimoto, Masakazu; Kobayashi, Tsuyoshi; Tashiro, Hirotaka; Arihiro, Koji; Kikuchi, Akira; Ohdan, Hideki

    2016-08-15

    The prognosis of patients with colorectal liver metastases (CRLM) remains low despite advances in chemotherapy and surgery. The expression of h-prune (human homolog of Drosophila prune protein; HGNC13420), an exopolyphosphatase, is correlated with progression and aggressiveness in several cancers and promotes migration and invasion. We investigated the role of h-prune in CRLM. To investigate the role of h-prune, immunohistochemical analysis for h-prune was performed in 87 surgically resected specimens of CRLM obtained between 2001 and 2009 at the Hiroshima University Hospital. Immunohistochemical analysis revealed positive staining for h-prune in 24 (28%) cases. The overall survival rate was significantly lower in h-prune-positive cases than in h-prune-negative cases (p = 0.003). Multivariate analysis showed that h-prune positivity was the only independent factor related to poor overall survival of patients after curative hepatectomy of CRLM. In vitro and in vivo, h-prune-knocked-down and h-prune-overexpressing cells were analyzed. In vitro, h-prune was associated with increased cell motility and upregulation of epithelial-mesenchymal transition (EMT) markers. In a mouse model, h-prune was associated with invasion of the tumor and distant metastases. In summary, h-prune expression is a useful marker to identify high-risk patients for resectable colorectal liver metastasis. h-Prune expression is necessary for cancer cell motility and EMT and is associated with liver and lung metastasis in colorectal cancer cells. h-Prune could be a new prognostic marker and molecular target for CRLM. PMID:27037526

  12. Comparison of the optical responses of O-poor and O-rich thermochromic VOX films during semiconductor-to-metal transition

    NASA Astrophysics Data System (ADS)

    Luo, Zhenfei; Wu, Zhiming; Wang, Tao; Xu, Xiangdong; Li, Weizhi; Li, Wei; Jiang, Yadong

    2012-09-01

    O-poor and O-rich thermochromic vanadium oxide (VOX) nanostructured thin films were prepared by applying reactive direct current magnetron sputtering and post-annealing in oxygen ambient. UV-visible spectrophotometer and spectroscopic ellipsometry were used to investigate the optical properties of films. It was found that, when the O-poor VOX thin film underwent semiconductor-to-metal transition, the values of optical conductivity and extinction coefficient in the visible region increased due to the existence of occupied band-gap states. This noticeable feature, however, was not observed for the O-rich film, which showed a similar optical behavior with the stoichiometric crystalline VO2 films reported in the literatures. Moreover, the O-poor VOX film exhibits consistent variations of transmission values in the visible/near-infrared region when it undergoes semiconductor-to-metal transition.

  13. ALFALFA Discovery of the Most Metal-poor Gas-rich Galaxy Known: AGC 198691

    NASA Astrophysics Data System (ADS)

    Hirschauer, Alec S.; Salzer, John J.; Skillman, Evan D.; Berg, Danielle; McQuinn, Kristen B. W.; Cannon, John M.; Gordon, Alex J. R.; Haynes, Martha P.; Giovanelli, Riccardo; Adams, Elizabeth A. K.; Janowiecki, Steven; Rhode, Katherine L.; Pogge, Richard W.; Croxall, Kevin V.; Aver, Erik

    2016-05-01

    We present spectroscopic observations of the nearby dwarf galaxy AGC 198691. This object is part of the Survey of H i in Extremely Low-Mass Dwarfs project, which is a multi-wavelength study of galaxies with H i masses in the range of 106–107.2 M ⊙, discovered by the Arecibo Legacy Fast ALFA (ALFALFA) survey. We have obtained spectra of the lone H ii region in AGC 198691 with the new high-throughput KPNO Ohio State Multi-Object Spectrograph on the Mayall 4 m, as well as with the Blue Channel spectrograph on the MMT 6.5 m telescope. These observations enable the measurement of the temperature-sensitive [O iii]λ4363 line and hence the determination of a “direct” oxygen abundance for AGC 198691. We find this system to be an extremely metal-deficient (XMD) system with an oxygen abundance of 12+log(O/H) = 7.02 ± 0.03, making AGC 198691 the lowest-abundance star-forming galaxy known in the local universe. Two of the five lowest-abundance galaxies known have been discovered by the ALFALFA blind H i survey; this high yield of XMD galaxies represents a paradigm shift in the search for extremely metal-poor galaxies.

  14. Safety analysis of natural gas vehicles transiting highway tunnel

    SciTech Connect

    Shaaban, S.H.; Zuzovsky, M.; Anigstein, R.

    1989-01-01

    A safety analysis was performed to assess the relative hazard of compressed natural gas (CNG) fueled vehicles traveling on various tunnels and bridges in New York City. The study considered those hazards arising from the release of fuel from CNG vehicles ranging in size from a passenger sedan to a full size 53 passenger bus. The approach used was to compare the fuel hazard of CNG vehicles to the fuel hazard of gasoline vehicles. The risk was assessed by estimating the frequency of occurrence and the severity of the hazard. The methodology was a combination of analyzing accident data, performing a diffusion analysis of the gas released in the tunnel and determining the consequences of ignition. Diffusion analysis was performed using the TEMPEST code for various accident scenarios resulting in CNG release inside the Holland Tunnel. The study concluded that the overall hazard of CNG vehicles transiting a ventilated tunnel is less than the hazard from a comparable gasoline fueled vehicle. 134 refs., 23 figs., 24 tabs.

  15. Specific, trace gas induced phase transition in copper(II)oxide for highly selective gas sensing

    NASA Astrophysics Data System (ADS)

    Kneer, J.; Wöllenstein, J.; Palzer, S.

    2014-08-01

    Here, we present results on the investigation of the percolation phase transition in copper(II)oxide (CuO) and show how it may be used to determine trace gas concentrations. This approach provides a highly selective sensing mechanism for the detection of hydrogen sulfide even in oxygen depleted atmospheres. In real-world applications, this scenario is encountered in biogas plants and natural gas facilities, where reliable H2S sensing and filtering are important because of the destructive effects H2S has on machinery. As opposed to gas detection via standard metal-oxide reaction routes, the percolation dynamics are demonstrated to be independent of the surface morphology in accordance with the universality of phase transitions. The sensing behavior of ink-jet printed CuO layers was tested for a large set of parameters including layer temperature, hydrogen sulfide (H2S) and oxygen concentration, as well as the sensitivity towards other gas species. The electrical percolation of the sensing layer is heralded by a dramatic drop in the overall resistivity of the CuO layer for temperatures below 200 °C. The observed percolation phenomena in this temperature regime are unique to H2S even in comparison with related volatile thio-compounds making the sensing mechanism highly selective. At elevated temperatures above 300 °C, the phase transition does not occur. This enables two distinct operational modes which are tunable via the sensor temperature and also allows for resetting the sensing layer after an electrical breakthrough.

  16. The VOrtex Ring Transit EXperiment (VORTEX) GAS project

    NASA Technical Reports Server (NTRS)

    Bilen, Sven G.; Langenderfer, Lynn S.; Jardon, Rebecca D.; Cutlip, Hansford H.; Kazerooni, Alexander C.; Thweatt, Amber L.; Lester, Joseph L.; Bernal, Luis P.

    1995-01-01

    Get Away Special (GAS) payload G-093, also called VORTEX (VOrtex Ring Transit EXperiment), is an investigation of the propagation of a vortex ring through a liquid-gas interface in microgravity. This process results in the formation of one or more liquid droplets similar to earth based liquid atomization systems. In the absence of gravity, surface tension effects dominate the drop formation process. The Shuttle's microgravity environment allows the study of the same fluid atomization processes as using a larger drop size than is possible on Earth. This enables detailed experimental studies of the complex flow processes encountered in liquid atomization systems. With VORTEX, deformations in both the vortex ring and the fluid surface will be measured closely for the first time in a parameters range that accurately resembles liquid atomization. The experimental apparatus will record images of the interactions for analysis after the payload has been returned to earth. The current design of the VORTEX payload consists of a fluid test cell with a vortex ring generator, digital imaging system, laser illumination system, computer based controller, batteries for payload power, and an array of housekeeping and payload monitoring sensors. It is a self-contained experiment and will be flown on board the Space Shuttle in a 5 cubic feet GAS canister. The VORTEX Project is entirely run by students at the University of Michigan but is overseen by a faculty advisor acting as the payload customer and the contact person with NASA. This paper summarizes both the technical and programmatic aspects of the VORTEX Project.

  17. A Gas-poor Planetesimal Feeding Model for the Formation of Giant Planet Satellite Systems: Disk Size and Formation Timescale

    NASA Astrophysics Data System (ADS)

    Estrada, P. R.; Mosqueira, I.

    2003-05-01

    Mosqueira and Estrada (2003a) argue that following giant planet accretion a largely quiescent circumplanetary disk may form with most of the mass inside a radius located outside, but perhaps close to, the centrifugal radius rc = RH/48, where the specific angular momentum of the collapsing giant planet gaseous envelope achieves centrifugal balance, and extending as far as the irregular satellites at RH/5 due to the high specific angular momentum of parcels of gas accreted from distances several times RH during the final stages of planetary growth (Lubow et al. 1999). Provided that allowances are made for the capture of Triton from heliocentric orbit, this picture fits well with the primordial satellite systems of all four giant planets. Because strong gas turbulence would smooth out the gas surface density of the disk, this description can only apply if the turbulence subsides as planetary accretion ceases. Although the viability of a hydrodynamic shear instability in Keplerian disks that can sustain significant post-accretion turbulence and drive evolution of the gas disk is in serious doubt (see Mosqueira et al. this conference), the possibility has not yet been totally ruled out. This leads us to consider gas-poor scenarios that might produce a close-in regular satellite system. To this end, we re-examine the ideas of Safronov et al. (1986) to see whether a gas-free (or nearly gas-free) model can be made consistent with the extent of the regular satellites of the giant planets. In this model, planetesimals containing most of the mass of solids (Mizuno et al. 1978; Weidenschilling 1997) that are de-coupled from the gas and whose dynamics must be followed independently are collisionally captured and form a swarm of circumplanetary objects lasting for perhaps ˜ 106 years. While such a swarm might occupy a significant fraction of the Hill radius of the planet, the small net angular momentum of the swarm might lead to the formation of close-in prograde satellites as

  18. Stuck in Unhealthy Places: How Entering, Exiting, and Remaining in Poor and Nonpoor Neighborhoods Is Associated with Obesity during the Transition to Adulthood.

    PubMed

    Lippert, Adam M

    2016-03-01

    Adolescents from poor versus nonpoor neighborhoods are more likely to become obese during the transition to adulthood. It is unclear whether this pertains to all adolescents from poor neighborhoods or only those who remain in disadvantaged settings. Further, it is unknown how neighborhood poverty entries and exits are associated with obesity. Using census and interview data from 12,164 National Longitudinal Study of Adolescent Health participants, I find that those who consistently live in poor neighborhoods are more likely to become or remain obese by adulthood than those who never live in poor neighborhoods. Exiting severe neighborhood poverty curtails this risk, while entering and remaining in neighborhood poverty in adulthood increases it. These patterns are more pronounced for young women and robust to adjustments for health behaviors and selection bias. Findings support accumulation of risks and social mobility perspectives and highlight how previous and current neighborhood contexts are relevant for health. PMID:26957132

  19. An optical transmission spectrum of the transiting hot Jupiter in the metal-poor WASP-98 planetary system

    NASA Astrophysics Data System (ADS)

    Mancini, L.; Giordano, M.; Mollière, P.; Southworth, J.; Brahm, R.; Ciceri, S.; Henning, Th.

    2016-09-01

    The WASP-98 planetary system represents a rare case of a hot Jupiter hosted by a metal-poor main-sequence star. We present a follow-up study of this system based on multiband photometry and high-resolution spectroscopy. Two new transit events of WASP-98 b were simultaneously observed in four passbands (g', r', i', z'), using the telescope-defocusing technique, yielding eight high-precision light curves with point-to-point scatters of less than 1 mmag. We also collected three spectra of the parent star with a high-resolution spectrograph, which we used to remeasure its spectral characteristics, in particular its metallicity. We found this to be very low, [Fe/H] = -0.49 ± 0.10, but larger than was previously reported, [Fe/H] = -0.60 ± 0.19. We used these new photometric and spectroscopic data to refine the orbital and physical properties of this planetary system, finding that the stellar and planetary mass measurements are significantly larger than those in the discovery paper. In addition, the multiband light curves were used to construct an optical transmission spectrum of WASP-98 b and probe the characteristics of its atmosphere at the terminator. We measured a lower radius at z' compared with the other three passbands. The maximum variation is between the r' and z' bands, has a confidence level of roughly 6σ and equates to 5.5 pressure scale heights. We compared this spectrum to theoretical models, investigating several possible types of atmospheres, including hazy, cloudy, cloud-free, and clear atmospheres with titanium and vanadium oxide opacities. We could not find a good fit to the observations, except in the extreme case of a clear atmosphere with TiO and VO opacities, in which the condensation of Ti and V was suppressed. As this case is unrealistic, our results suggest the presence of an additional optical-absorbing species in the atmosphere of WASP-98 b, of unknown chemical nature.

  20. An optical transmission spectrum of the transiting hot Jupiter in the metal-poor WASP-98 planetary system

    NASA Astrophysics Data System (ADS)

    Mancini, L.; Giordano, M.; Mollière, P.; Southworth, J.; Brahm, R.; Ciceri, S.; Henning, Th.

    2016-06-01

    The WASP-98 planetary system represents a rare case of a hot Jupiter hosted by a metal-poor main-sequence star. We present a follow-up study of this system based on multi-band photometry and high-resolution spectroscopy. Two new transit events of WASP-98 b were simultaneously observed in four passbands (g', r', i', z'), using the telescope-defocussing technique, yielding eight high-precision light curves with point-to-point scatters of less than 1 mmag. We also collected three spectra of the parent star with a high-resolution spectrograph, which we used to remeasure its spectral characteristics, in particular its metallicity. We found this to be very low, [Fe/H] = -0.49 ± 0.10, but larger than was previously reported, [Fe/H] = -0.60 ± 0.19. We used these new photometric and spectroscopic data to refine the orbital and physical properties of this planetary system, finding that the stellar and planetary mass measurements are significantly larger than those in the discovery paper. In addition, the multi-band light curves were used to construct an optical transmission spectrum of WASP-98 b and probe the characteristics of its atmosphere at the terminator. We measured a lower radius at z' compared with the other three passbands. The maximum variation is between the r' and z' bands, has a confidence level of roughly 6σ and equates to 5.5 pressure scale heights. We compared this spectrum to theoretical models, investigating several possible types of atmospheres, including hazy, cloudy, cloud-free, and clear atmospheres with titanium and vanadium oxide opacities. We could not find a good fit to the observations, except in the extreme case of a clear atmosphere with TiO and VO opacities, in which the condensation of Ti and V was suppressed. As this case is unrealistic, our results suggest the presence of an additional optical-absorbing species in the atmosphere of WASP-98 b, of unknown chemical nature.

  1. WASP-80b: a gas giant transiting a cool dwarf

    NASA Astrophysics Data System (ADS)

    Triaud, A. H. M. J.; Anderson, D. R.; Collier Cameron, A.; Doyle, A. P.; Fumel, A.; Gillon, M.; Hellier, C.; Jehin, E.; Lendl, M.; Lovis, C.; Maxted, P. F. L.; Pepe, F.; Pollacco, D.; Queloz, D.; Ségransan, D.; Smalley, B.; Smith, A. M. S.; Udry, S.; West, R. G.; Wheatley, P. J.

    2013-03-01

    We report the discovery of a planet transiting the star WASP-80 (1SWASP J201240.26-020838.2; 2MASS J20124017-0208391; TYC 5165-481-1; BPM 80815; V = 11.9, K = 8.4). Our analysis shows this is a 0.55 ± 0.04 Mjup, 0.95 ± 0.03 Rjup gas giant on a circular 3.07 day orbit around a star with a spectral type between K7V and M0V. This system produces one of the largest transit depths so far reported, making it a worthwhile target for transmission spectroscopy. We find a large discrepancy between the vsini⋆ inferred from stellar line broadening and the observed amplitude of the Rossiter-McLaughlin effect. This can be understood either by an orbital plane nearly perpendicular to the stellar spin or by an additional, unaccounted for source of broadening. Using WASP-South photometric observations, from Sutherland (South Africa), confirmed with the 60 cm TRAPPIST robotic telescope, EulerCam, and the CORALIE spectrograph on the Swiss 1.2 m Euler Telescope, and HARPS on the ESO 3.6 m (Prog ID 089.C-0151), all three located at La Silla Observatory, Chile.Radial velocity and photometric data are available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr(130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/551/A80

  2. Cooling air recycling for gas turbine transition duct end frame and related method

    DOEpatents

    Cromer, Robert Harold; Bechtel, William Theodore; Sutcu, Maz

    2002-01-01

    A method of cooling a transition duct end frame in a gas turbine includes the steps of a) directing cooling air into the end frame from a region external of the transition duct and the impingement cooling sleeve; and b) redirecting the cooling air from the end frame into the annulus between the transition duct and the impingement cooling sleeve.

  3. WASP-37b: A 1.8 M{sub J} EXOPLANET TRANSITING A METAL-POOR STAR

    SciTech Connect

    Simpson, E. K.; Faedi, F.; Barros, S. C. C.; Pollacco, D.; Todd, I.; McCormac, J.; Brown, D. J. A.; Cameron, A. Collier; Miller, G. R. M.; Hebb, L.; Smalley, B.; Anderson, D. R.; Butters, O. W.; Hebrard, G.; Boisse, I.; Santerne, A.; Street, R. A.; Skillen, I.; Triaud, A. H. M. J.; Bento, J.

    2011-01-15

    We report on the discovery of WASP-37b, a transiting hot Jupiter orbiting an m{sub v} = 12.7 G2-type dwarf, with a period of 3.577469 {+-} 0.000011 d, transit epoch T{sub 0} = 2455338.6188 {+-} 0.0006 (HJD; dates throughout the paper are given in Coordinated Universal Time (UTC)), and a transit duration 0.1304{sup +0.0018}{sub -0.0017} d. The planetary companion has a mass M{sub p} = 1.80 {+-} 0.17 M{sub J} and radius R{sub p} = 1.16{sup +0.07}{sub -0.06} R{sub J}, yielding a mean density of 1.15{sup +0.12}{sub -0.15} {rho}{sub J}. From a spectral analysis, we find that the host star has M{sub *} = 0.925 {+-} 0.120 M{sub sun}, R{sub *} = 1.003 {+-} 0.053 R{sub sun}, T{sub eff} = 5800 {+-} 150 K, and [Fe/H] = -0.40 {+-} 0.12. WASP-37 is therefore one of the lowest metallicity stars to host a transiting planet.

  4. Preventing Poor Mental Health and School Dropout of Mexican American Adolescents Following the Transition to Junior High School

    ERIC Educational Resources Information Center

    Gonzales, Nancy A.; Dumka, Larry E.; Deardorff, Julianna; Carter, Sara Jacobs; McCray, Adam

    2004-01-01

    This study provided an initial test of the Bridges to High School Program, an intervention designed to prevent school disengagement and negative mental health trajectories during the transition to junior high school. The intervention included an adolescent coping skills intervention, a parenting skills intervention, and a family strengthening…

  5. Physical model of the vapor-liquid (insulator-metal) transition in an exciton gas

    SciTech Connect

    Khomkin, A. L. Shumikhin, A. S.

    2015-04-15

    We propose a simple physical model describing the transition of an exciton gas to a conducting exciton liquid. The transition occurs due to cohesive coupling of excitons in the vicinity of the critical point, which is associated with transformation of the exciton ground state to the conduction band and the emergence of conduction electrons. We calculate the cohesion binding energy for the exciton gas and, using it, derive the equations of state, critical parameters, and binodal. The computational method is analogous to that used by us earlier [5] for predicting the vapor-liquid (insulator-metal) phase transition in atomic (hypothetical, free of molecules) hydrogen and alkali metal vapors. The similarity of the methods used for hydrogen and excitons makes it possible to clarify the physical nature of the transition in the exciton gas and to predict more confidently the existence of a new phase transition in atomic hydrogen.

  6. Gas and dust hydrodynamical simulations of massive lopsided transition discs - I. Gas distribution

    NASA Astrophysics Data System (ADS)

    Zhu, Zhaohuan; Baruteau, Clément

    2016-06-01

    Motivated by lopsided structures observed in some massive transition discs, we have carried out 2D numerical simulations to study vortex structure in massive discs, including the effects of disc self-gravity and the indirect force which is due to the displacement of the central star from the barycentre of the system by the lopsided structure. When only the indirect force is included, we confirm the finding by Mittal & Chiang that the vortex becomes stronger and can be more than two pressure scale heights wide, as long as the disc-to-star mass ratio is ≳1 per cent. Such wide vortices can excite strong density waves in the disc and therefore migrate inwards rapidly. However, when disc self-gravity is also considered in simulations, self-gravity plays a more prominent role on the vortex structure. We confirm that when the disc Toomre Q parameter is smaller than π/(2h), where h is the disc's aspect ratio, the vortices are significantly weakened and their inward migration slows down dramatically. Most importantly, when the disc is massive enough (e.g. Q ˜ 3), we find that the lopsided gas structure orbits around the star at a speed significantly slower than the local Keplerian speed. This sub-Keplerian pattern speed can lead to the concentration of dust particles at a radius beyond the lopsided gas structure (as shown in Paper II). Overall, disc self-gravity regulates the vortex structure in massive discs and the radial shift between the gas and dust distributions in vortices within massive discs may be probed by future observations.

  7. Upregulation of H19 indicates a poor prognosis in gallbladder carcinoma and promotes epithelial-mesenchymal transition

    PubMed Central

    Wang, Shou-Hua; Wu, Xiao-Cai; Zhang, Ming-Di; Weng, Ming-Zhe; Zhou, Di; Quan, Zhi-Wei

    2016-01-01

    The imprinted oncofetal long non-coding RNA H19 has been reported to be involved in many kinds of human cancers. However, whether lncRNA H19 implicate in oncogenesis and cancer progression in gallbladder cancer remain largely unknown. In the present study, compared with adjacent normal tissues, the level of H19 was significantly upregulated in gallbladder cancer tissues and was positively associated with lymphatic metastasis and tumor size. The overall survival is shorter in those who had higher H19 expression among GBC patients. In vitro, both TGF-β1 and IL-6 treatment induced upregulation of H19, downregulated the protein level of E-cadherin while increased Vimentin, indicating an epithelial-mesenchymal transition (EMT) phenotype in GBC. The overexpression of H19 in GBC cells enhanced tumor invasion and promoted EMT by upregulated transcription factor Twist1. On the contrary, Loss of function studies indicated that H19 interference in GBC suppressed tumor cell invasion and promoted mesenchymal-epithelial transition (MET) via suppressing Twist expression. In vivo, the volume of the tumors in H19-inteference group was significantly decreased compared to those in the control group of nude mice. Both western-blot and immunohistochemistry confirmed that a MET phenotype existed in the H19 interference group when compared to control group. These results defined H19 as a novel prognostic factor for GBC, and indicated that it might play important regulatory roles in the EMT process. PMID:27186437

  8. Upregulation of H19 indicates a poor prognosis in gallbladder carcinoma and promotes epithelial-mesenchymal transition

    PubMed Central

    Wang, Shou-Hua; Wu, Xiao-Cai; Zhang, Ming-Di; Weng, Ming-Zhe; Zhou, Di; Quan, Zhi-Wei

    2016-01-01

    The imprinted oncofetal long non-coding RNA H19 has been reported to be involved in many kinds of human cancers. However, whether lncRNA H19 implicate in oncogenesis and cancer progression in gallbladder cancer remain largely unknown. In the present study, compared with adjacent normal tissues, the level of H19 was significantly upregulated in gallbladder cancer tissues and was positively associated with lymphatic metastasis and tumor size. The overall survival is shorter in those who had higher H19 expression among GBC patients. In vitro, both TGF-β1 and IL-6 treatment induced upregulation of H19, downregulated the protein level of E-cadherin while increased Vimentin, indicating an epithelial-mesenchymal transition (EMT) phenotype in GBC. The overexpression of H19 in GBC cells enhanced tumor invasion and promoted EMT by upregulated transcription factor Twist1. On the contrary, Loss of function studies indicated that H19 interference in GBC suppressed tumor cell invasion and promoted mesenchymal-epithelial transition (MET) via suppressing Twist expression. In vivo, the volume of the tumors in H19-inteference group was significantly decreased compared to those in the control group of nude mice. Both western-blot and immunohistochemistry confirmed that a MET phenotype existed in the H19 interference group when compared to control group. These results defined H19 as a novel prognostic factor for GBC, and indicated that it might play important regulatory roles in the EMT process. PMID:27073719

  9. Discontinuous phase transition in a dimer lattice gas

    NASA Astrophysics Data System (ADS)

    Dickman, Ronald

    2012-05-01

    I study a dimer model on the square lattice with nearest neighbor exclusion as the only interaction. Detailed simulations using tomographic entropic sampling show that as the chemical potential is varied, there is a strongly discontinuous phase transition, at which the particle density jumps by about 18% of its maximum value, 1/4. The transition is accompanied by the onset of orientational order, to an arrangement corresponding to the {1/2, 0, 1/2} structure identified by Phares et al. [Physica B 409, 1096 (2011)] in a dimer model with finite repulsion at fixed density. Using finite-size scaling and Binder's cumulant, the expected scaling behavior at a discontinuous transition is verified in detail. The discontinuous transition can be understood qualitatively given that the model possesses eight equivalent maximum-density configurations, so that its coarse-grained description corresponds to that of the q = 8 Potts model.

  10. 75 FR 18942 - FY 2010 Discretionary Sustainability Funding Opportunity; Transit Investments for Greenhouse Gas...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-13

    ... Investments for Greenhouse Gas and Energy Reduction (TIGGER) Program and Clean Fuels Grant Program, Augmented... clean energy sources that will both enhance the environment through improved air quality and curb our... funds in Fiscal Year (FY) 2010 for the Transit Investments for Greenhouse Gas and Energy...

  11. Transition in Hypersonic Flows Including High-temperature Gas Effects

    NASA Technical Reports Server (NTRS)

    Stemmer, Christian

    2003-01-01

    Hypersonic transition poses a special challenge for direct numerical simulations. Comparable data from Wind-tunnel tests or free-flight testing are not available or not accurate enough for comparison. The wind-tunnel testing does not allow for the exact match to the free-flight conditions at such high Mach-numbers. Flat-plate boundary-layer transition at high Mach-numbers is investigated in this work. A simulation case was chosen where chemical non-equilibrium plays an important role but ionization can be neglected. The chosen case at an altitude of H=50Km lies close to one point on the descent path of the Space Shuttle. The failure of the Space Shuttle has shown that an improved vehicle for space transportation is imperative in the close future. Transition research for an improved space-transportation vehicle is crucial in order to estimate the heat load during re-entry.

  12. Effect of impurities on the transition temperature of a dilute dipolar trapped Bose gas

    NASA Astrophysics Data System (ADS)

    Yavari, H.; Afsaneh, E.

    2013-01-01

    By using a two-fluid model the effect of impurities on the transition temperature of a dipolar trapped Bose gas is investigated. By treating Gaussian spatial correlation for impurities from the interaction modified spectra of the system, the formula for the shift of the transition temperature is derived. The shift of the transition temperature contains essentially three contributions due to contact, dipole-dipole, and impurity interactions. Applying our results to dipolar Bose gases shows that the shift of the transition temperature due to impurities could be measured for an isotropic trap (dipole-dipole contribution is zero) and the Feshbach resonance technique (contact potential contribution is negligible).

  13. CO2 Capture from Flue Gas by Phase Transitional Absorption

    SciTech Connect

    Liang Hu

    2009-06-30

    A novel absorption process called Phase Transitional Absorption was invented. What is the Phase Transitional Absorption? Phase Transitional Absorption is a two or multi phase absorption system, CO{sub 2} rich phase and CO{sub 2} lean phase. During Absorption, CO{sub 2} is accumulated in CO{sub 2} rich phase. After separating the two phases, CO{sub 2} rich phase is forward to regeneration. After regeneration, the regenerated CO{sub 2} rich phase combines CO{sub 2} lean phase to form absorbent again to complete the cycle. The advantage for Phase Transitional Absorption is obvious, significantly saving on regeneration energy. Because CO{sub 2} lean phase was separated before regeneration, only CO{sub 2} rich phase was forward to regeneration. The absorption system we developed has the features of high absorption rate, high loading and working capacity, low corrosion, low regeneration heat, no toxic to environment, etc. The process evaluation shows that our process is able to save 80% energy cost by comparing with MEA process.

  14. A pressure-amplifying framework material with negative gas adsorption transitions.

    PubMed

    Krause, Simon; Bon, Volodymyr; Senkovska, Irena; Stoeck, Ulrich; Wallacher, Dirk; Többens, Daniel M; Zander, Stefan; Pillai, Renjith S; Maurin, Guillaume; Coudert, François-Xavier; Kaskel, Stefan

    2016-04-21

    Adsorption-based phenomena are important in gas separations, such as the treatment of greenhouse-gas and toxic-gas pollutants, and in water-adsorption-based heat pumps for solar cooling systems. The ability to tune the pore size, shape and functionality of crystalline porous coordination polymers--or metal-organic frameworks (MOFs)--has made them attractive materials for such adsorption-based applications. The flexibility and guest-molecule-dependent response of MOFs give rise to unexpected and often desirable adsorption phenomena. Common to all isothermal gas adsorption phenomena, however, is increased gas uptake with increased pressure. Here we report adsorption transitions in the isotherms of a MOF (DUT-49) that exhibits a negative gas adsorption; that is, spontaneous desorption of gas (methane and n-butane) occurs during pressure increase in a defined temperature and pressure range. A combination of in situ powder X-ray diffraction, gas adsorption experiments and simulations shows that this adsorption behaviour is controlled by a sudden hysteretic structural deformation and pore contraction of the MOF, which releases guest molecules. These findings may enable technologies using frameworks capable of negative gas adsorption for pressure amplification in micro- and macroscopic system engineering. Negative gas adsorption extends the series of counterintuitive phenomena such as negative thermal expansion and negative refractive indices and may be interpreted as an adsorptive analogue of force-amplifying negative compressibility transitions proposed for metamaterials. PMID:27049950

  15. A pressure-amplifying framework material with negative gas adsorption transitions

    NASA Astrophysics Data System (ADS)

    Krause, Simon; Bon, Volodymyr; Senkovska, Irena; Stoeck, Ulrich; Wallacher, Dirk; Többens, Daniel M.; Zander, Stefan; Pillai, Renjith S.; Maurin, Guillaume; Coudert, François-Xavier; Kaskel, Stefan

    2016-04-01

    Adsorption-based phenomena are important in gas separations, such as the treatment of greenhouse-gas and toxic-gas pollutants, and in water-adsorption-based heat pumps for solar cooling systems. The ability to tune the pore size, shape and functionality of crystalline porous coordination polymers—or metal–organic frameworks (MOFs)—has made them attractive materials for such adsorption-based applications. The flexibility and guest-molecule-dependent response of MOFs give rise to unexpected and often desirable adsorption phenomena. Common to all isothermal gas adsorption phenomena, however, is increased gas uptake with increased pressure. Here we report adsorption transitions in the isotherms of a MOF (DUT-49) that exhibits a negative gas adsorption; that is, spontaneous desorption of gas (methane and n-butane) occurs during pressure increase in a defined temperature and pressure range. A combination of in situ powder X-ray diffraction, gas adsorption experiments and simulations shows that this adsorption behaviour is controlled by a sudden hysteretic structural deformation and pore contraction of the MOF, which releases guest molecules. These findings may enable technologies using frameworks capable of negative gas adsorption for pressure amplification in micro- and macroscopic system engineering. Negative gas adsorption extends the series of counterintuitive phenomena such as negative thermal expansion and negative refractive indices and may be interpreted as an adsorptive analogue of force-amplifying negative compressibility transitions proposed for metamaterials.

  16. Toward the renewables - A natural gas/solar energy transition strategy

    NASA Technical Reports Server (NTRS)

    Hanson, J. A.; Escher, W. J. D.

    1979-01-01

    The inevitability of an energy transition from today's non-renewable fossil base toward a renewable energy base is considered from the viewpoint of the need for a national transition strategy. Then, one such strategy is offered. Its technological building blocks are described in terms of both energy use and energy supply. The strategy itself is then sketched at four points in its implementation; (1) initiation, (2) early transition, (3) late transition, and (4) completion. The transition is assumed to evolve from a heavily natural gas-dependent energy economy. It then proceeds through its transition toward a balanced, hybrid energy system consisting of both centralized and dispersed energy supply technologies supplying hydrogen and electricity from solar energy. Related institutional, environmental and economic factors are examined briefly.

  17. Resonance transition 795-nm Rubidium laser using 3He buffer gas

    SciTech Connect

    Wu, S S; Soules, T F; Page, R H; Mitchell, S C; Kanz, V K; Beach, R J

    2007-08-02

    We report the first demonstration of a 795-nm Rubidium resonance transition laser using a buffer gas consisting of pure {sup 3}He. This follows our recent demonstration of a hydrocarbon-free 795-nm Rubidium resonance laser which used naturally-occurring He as the buffer gas. Using He gas that is isotopically enriched with {sup 3}He yields enhanced mixing of the Rb fine-structure levels. This enables efficient lasing at reduced He buffer gas pressure, improving thermal management in high average power Rb lasers and enhancing the power scaling potential of such systems.

  18. Evaluating transition-metal catalysis in gas generation from the Permian Kupferschiefer by hydrous pyrolysis

    NASA Astrophysics Data System (ADS)

    Lewan, M. D.; Kotarba, M. J.; Więcław, D.; Piestrzyński, A.

    2008-08-01

    Transition metals in source rocks have been advocated as catalysts in determining extent, composition, and timing of natural gas generation (Mango, F. D. (1996) Transition metal catalysis in the generation of natural gas. Org. Geochem.24, 977-984). This controversial hypothesis may have important implications concerning gas generation in unconventional shale-gas accumulations. Although experiments have been conducted to test the metal-catalysis hypothesis, their approach and results remain equivocal in evaluating natural assemblages of transition metals and organic matter in shale. The Permian Kupferschiefer of Poland offers an excellent opportunity to test the hypothesis with immature to marginally mature shale rich in both transition metals and organic matter. Twelve subsurface samples containing similar Type-II kerogen with different amounts and types of transition metals were subjected to hydrous pyrolysis at 330° and 355 °C for 72 h. The gases generated in these experiments were quantitatively collected and analyzed for molecular composition and stable isotopes. Expelled immiscible oils, reacted waters, and spent rock were also quantitatively collected. The results show that transition metals have no effect on methane yields or enrichment. δ 13C values of generated methane, ethane, propane and butanes show no systematic changes with increasing transition metals. The potential for transition metals to enhance gas generation and oil cracking was examined by looking at the ratio of the generated hydrocarbon gases to generated expelled immiscible oil (i.e., GOR), which showed no systematic change with increasing transition metals. Assuming maximum yields at 355 °C for 72 h and first-order reaction rates, pseudo-rate constants for methane generation at 330 °C were calculated. These rate constants showed no increase with increasing transition metals. The lack of a significant catalytic effect of transition metals on the extent, composition, and timing of

  19. Evaluating transition-metal catalysis in gas generation from the Permian Kupferschiefer by hydrous pyrolysis

    USGS Publications Warehouse

    Lewan, M.D.; Kotarba, M.J.; Wieclaw, D.; Piestrzynski, A.

    2008-01-01

    Transition metals in source rocks have been advocated as catalysts in determining extent, composition, and timing of natural gas generation (Mango, F. D. (1996) Transition metal catalysis in the generation of natural gas. Org. Geochem.24, 977–984). This controversial hypothesis may have important implications concerning gas generation in unconventional shale-gas accumulations. Although experiments have been conducted to test the metal-catalysis hypothesis, their approach and results remain equivocal in evaluating natural assemblages of transition metals and organic matter in shale. The Permian Kupferschiefer of Poland offers an excellent opportunity to test the hypothesis with immature to marginally mature shale rich in both transition metals and organic matter. Twelve subsurface samples containing similar Type-II kerogen with different amounts and types of transition metals were subjected to hydrous pyrolysis at 330° and 355 °C for 72 h. The gases generated in these experiments were quantitatively collected and analyzed for molecular composition and stable isotopes. Expelled immiscible oils, reacted waters, and spent rock were also quantitatively collected. The results show that transition metals have no effect on methane yields or enrichment. δ13C values of generated methane, ethane, propane and butanes show no systematic changes with increasing transition metals. The potential for transition metals to enhance gas generation and oil cracking was examined by looking at the ratio of the generated hydrocarbon gases to generated expelled immiscible oil (i.e., GOR), which showed no systematic change with increasing transition metals. Assuming maximum yields at 355 °C for 72 h and first-order reaction rates, pseudo-rate constants for methane generation at 330 °C were calculated. These rate constants showed no increase with increasing transition metals. The lack of a significant catalytic effect of transition metals on the extent, composition, and timing of

  20. Comparative analysis of liquefied natural gas (LNG) and compressed natural gas (CNG) used by transit agencies in Texas. Research report

    SciTech Connect

    Lede, N.W.

    1997-09-01

    This study is a detailed comparative analysis of liquefied natural gas (LNG) and compressed natural gas (CNG). The study provides data on two alternative fuels used by transit agencies in Texas. First, we examine the `state-of-the- art` in alternative fuels to established a framework for the study. Efforts were made to examine selected characteristics of two types of natural gas demonstrations in terms of the following properties: energy source characteristics, vehicle performance and emissions, operations, maintenance, reliability, safety costs, and fuel availability. Where feasible, two alternative fuels were compared with conventional gasoline and diesel fuel. Environmental considerations relative to fuel distribution and use are analyzed, with a focus on examining flammability an other safety-related issues. The objectives of the study included: (1) assess the state-of-the-art and document relevant findings pertaining to alternative fuels; (2) analyze and synthesize existing databases on two natural gas alternatives: liquefied natural gas (LNG) and compressed natural gas (CNG): and (3) compare two alterative fuels used by transit properties in Texas, and address selected aspects of alternative fuels such as energy source characteristics, vehicle performance and emissions, safety, costs, maintenance and operations, environmental and related issues.

  1. Transition and Damping of Collective Modes in a Trapped Fermi Gas between BCS and Unitary Limits near the Phase Transition

    NASA Astrophysics Data System (ADS)

    Dong, Hang; Zhang, Wenyuan; Zhou, Li; Ma, Yongli

    2015-11-01

    We investigate the transition and damping of low-energy collective modes in a trapped unitary Fermi gas by solving the Boltzmann-Vlasov kinetic equation in a scaled form, which is combined with both the T-matrix fluctuation theory in normal phase and the mean-field theory in order phase. In order to connect the microscopic and kinetic descriptions of many-body Feshbach scattering, we adopt a phenomenological two-fluid physical approach, and derive the coupling constants in the order phase. By solving the Boltzmann-Vlasov steady-state equation in a variational form, we calculate two viscous relaxation rates with the collision probabilities of fermion’s scattering including fermions in the normal fluid and fermion pairs in the superfluid. Additionally, by considering the pairing and depairing of fermions, we get results of the frequency and damping of collective modes versus temperature and s-wave scattering length. Our theoretical results are in a remarkable agreement with the experimental data, particularly for the sharp transition between collisionless and hydrodynamic behaviour and strong damping between BCS and unitary limits near the phase transition. The sharp transition originates from the maximum of viscous relaxation rate caused by fermion-fermion pair collision at the phase transition point when the fermion depair, while the strong damping due to the fast varying of the frequency of collective modes from BCS limit to unitary limit.

  2. Transition and Damping of Collective Modes in a Trapped Fermi Gas between BCS and Unitary Limits near the Phase Transition

    PubMed Central

    Dong, Hang; Zhang, Wenyuan; Zhou, Li; Ma, Yongli

    2015-01-01

    We investigate the transition and damping of low-energy collective modes in a trapped unitary Fermi gas by solving the Boltzmann-Vlasov kinetic equation in a scaled form, which is combined with both the T-matrix fluctuation theory in normal phase and the mean-field theory in order phase. In order to connect the microscopic and kinetic descriptions of many-body Feshbach scattering, we adopt a phenomenological two-fluid physical approach, and derive the coupling constants in the order phase. By solving the Boltzmann-Vlasov steady-state equation in a variational form, we calculate two viscous relaxation rates with the collision probabilities of fermion’s scattering including fermions in the normal fluid and fermion pairs in the superfluid. Additionally, by considering the pairing and depairing of fermions, we get results of the frequency and damping of collective modes versus temperature and s-wave scattering length. Our theoretical results are in a remarkable agreement with the experimental data, particularly for the sharp transition between collisionless and hydrodynamic behaviour and strong damping between BCS and unitary limits near the phase transition. The sharp transition originates from the maximum of viscous relaxation rate caused by fermion-fermion pair collision at the phase transition point when the fermion depair, while the strong damping due to the fast varying of the frequency of collective modes from BCS limit to unitary limit. PMID:26522094

  3. Transition and Damping of Collective Modes in a Trapped Fermi Gas between BCS and Unitary Limits near the Phase Transition.

    PubMed

    Dong, Hang; Zhang, Wenyuan; Zhou, Li; Ma, Yongli

    2015-01-01

    We investigate the transition and damping of low-energy collective modes in a trapped unitary Fermi gas by solving the Boltzmann-Vlasov kinetic equation in a scaled form, which is combined with both the T-matrix fluctuation theory in normal phase and the mean-field theory in order phase. In order to connect the microscopic and kinetic descriptions of many-body Feshbach scattering, we adopt a phenomenological two-fluid physical approach, and derive the coupling constants in the order phase. By solving the Boltzmann-Vlasov steady-state equation in a variational form, we calculate two viscous relaxation rates with the collision probabilities of fermion's scattering including fermions in the normal fluid and fermion pairs in the superfluid. Additionally, by considering the pairing and depairing of fermions, we get results of the frequency and damping of collective modes versus temperature and s-wave scattering length. Our theoretical results are in a remarkable agreement with the experimental data, particularly for the sharp transition between collisionless and hydrodynamic behaviour and strong damping between BCS and unitary limits near the phase transition. The sharp transition originates from the maximum of viscous relaxation rate caused by fermion-fermion pair collision at the phase transition point when the fermion depair, while the strong damping due to the fast varying of the frequency of collective modes from BCS limit to unitary limit. PMID:26522094

  4. Comparison of fluctuating potentials and donor-acceptor pair transitions in a Cu-poor Cu{sub 2}ZnSnS{sub 4} based solar cell

    SciTech Connect

    Teixeira, J. P.; Sousa, R. A.; Sousa, M. G.; Cunha, A. F. da; Leitão, J. P.; Fernandes, P. A.; Salomé, P. M. P.; González, J. C.

    2014-10-20

    The structure of the electronic energy levels of a single phase Cu{sub 2}ZnSnS{sub 4} film, as confirmed by Raman Scattering and x-ray diffraction, is investigated through a dependence on the excitation power of the photoluminescence (PL). The behavior of the observed asymmetric band, with a peak energy at ∼1.22 eV, is compared with two theoretical models: (i) fluctuating potentials and (ii) donor-acceptor pair transitions. It is shown that the radiative recombination channels in the Cu-poor film are strongly influenced by tail states in the bandgap as a consequence of a heavy doping and compensation levels. The contribution of the PL for the evaluation of secondary phases is also highlighted.

  5. Phase transitions in a 3 dimensional lattice loop gas

    NASA Astrophysics Data System (ADS)

    MacKenzie, Richard; Nebia-Rahal, F.; Paranjape, M. B.

    2010-06-01

    We investigate, via Monte Carlo simulations, the phase structure of a system of closed, nonintersecting but otherwise noninteracting, loops in 3 Euclidean dimensions. The loops correspond to closed trajectories of massive particles and we find a phase transition as a function of their mass. We identify the order parameter as the average length of the loops at equilibrium. This order parameter exhibits a sharp increase as the mass is decreased through a critical value, the behavior seems to be a crossover transition. We believe that the model represents an effective description of the broken-symmetry sector of the 2+1 dimensional Abelian Higgs model, in the extreme strong coupling limit. The massive gauge bosons and the neutral scalars are decoupled, and the relevant low-lying excitations correspond to vortices and antivortices. The functional integral can be approximated by a sum over simple, closed vortex loop configurations. We present a novel fashion to generate nonintersecting closed loops, starting from a tetrahedral tessellation of three space. The two phases that we find admit the following interpretation: the usual Higgs phase and a novel phase which is heralded by the appearance of effectively infinitely long loops. We compute the expectation value of the Wilson loop operator and that of the Polyakov loop operator. The Wilson loop exhibits perimeter law behavior in both phases implying that the transition corresponds neither to the restoration of symmetry nor to confinement. The effective interaction between external charges is screened in both phases, however there is a dramatic increase in the polarization cloud in the novel phase as shown by the energy shift introduced by the Wilson loop.

  6. Using Rare Gas Permeation to Probe Methanol Diffusion near the Glass Transition Temperature

    NASA Astrophysics Data System (ADS)

    Matthiesen, Jesper; Smith, R. Scott; Kay, Bruce D.

    2009-12-01

    The permeation of rare-gas atoms through deeply supercooled metastable liquid methanol films is used to probe the diffusivity. The technique allows for measurement of supercooled liquid mobility at temperatures near the glass transition. The temperature dependence of the diffusivity is well described by a Vogel-Fulcher-Tamman equation. These new measurements and the temperature dependent kinetic parameters obtained from their analysis provide clear evidence that methanol is a fragile liquid near the glass transition.

  7. Using rare gas permeation to probe methanol diffusion near the glass transition temperature.

    PubMed

    Matthiesen, Jesper; Smith, R Scott; Kay, Bruce D

    2009-12-11

    The permeation of rare-gas atoms through deeply supercooled metastable liquid methanol films is used to probe the diffusivity. The technique allows for measurement of supercooled liquid mobility at temperatures near the glass transition. The temperature dependence of the diffusivity is well described by a Vogel-Fulcher-Tamman equation. These new measurements and the temperature dependent kinetic parameters obtained from their analysis provide clear evidence that methanol is a fragile liquid near the glass transition. PMID:20366212

  8. The Transit Transmission Spectrum of a Cold Gas Giant Planet

    NASA Astrophysics Data System (ADS)

    Dalba, Paul A.; Muirhead, Philip S.; Fortney, Jonathan J.; Hedman, Matthew M.; Nicholson, Philip D.; Veyette, Mark J.

    2015-12-01

    We use solar occultations observed by the Visual and Infrared Mapping Spectrometer on board the Cassini Spacecraft to extract the 1-5 μm transmission spectrum of Saturn, as if it were a transiting exoplanet. We detect absorption from methane, ethane, acetylene, aliphatic hydrocarbons, and possibly carbon monoxide, with peak-to-peak features of up to 90 parts-per-million despite the presence of ammonia clouds. We also find that atmospheric refraction, as opposed to clouds or haze, determines the minimum altitude that could be probed during mid-transit. Self-consistent exoplanet atmosphere models show good agreement with Saturn’s transmission spectrum but fail to reproduce a large absorption feature near 3.4 μm, likely caused by gaseous ethane and a C-H stretching mode of an unknown aliphatic hydrocarbon. This large feature is located in one of the Spitzer Space Telescope bandpasses and could alter interpretations of transmission spectra if not properly modeled. The large signal in Saturn’s transmission spectrum suggests that transmission spectroscopy of cold, long-period gaseous exoplanets should be possible with current and future observatories. Motivated by these results, we briefly consider the feasibility of using a survey to search for and characterize cold exoplanets that are analogous to Jupiter and Saturn utilizing a target-of-opportunity approach.

  9. Reactive Gas Environment Induced Structural Modification of Noble-Transition Metal Alloy Nanoparticles

    NASA Astrophysics Data System (ADS)

    Petkov, V.; Yang, L.; Yin, J.; Loukrakpam, R.; Shan, S.; Wanjala, B.; Luo, J.; Chapman, K. W.; Zhong, C. J.

    2012-09-01

    Noble-transition metal (noble=Pt,Au; transition=Co,Ni,Cu) alloy particles with sizes of about 5 nm have been studied by in situ high-energy x-ray diffraction while subjected to oxidizing (O2) and reducing (H2) gas atmospheres at elevated temperatures. The different gas atmospheres do not affect substantially the random alloy, face-centered-cubic structure type of the particles but do affect the way the metal atoms pack together. In an O2 atmosphere, atoms get extra separated from each other, whereas, in an H2 atmosphere, they come closer together. The effect is substantial, amounting to 0.1 Å difference in the first neighbor atomic distances, and concurs with a dramatic change of the particle catalytic properties. It is argued that such reactive gas induced “expansion shrinking” is a common phenomenon that may be employed for the engineering of “smart” nanoparticles responding advantageously to envisaged gas environments.

  10. Tradeoffs between costs and greenhouse gas emissions in the design of urban transit systems

    NASA Astrophysics Data System (ADS)

    Griswold, Julia B.; Madanat, Samer; Horvath, Arpad

    2013-12-01

    Recent investments in the transit sector to address greenhouse gas emissions have concentrated on purchasing efficient replacement vehicles and inducing mode shift from the private automobile. There has been little focus on the potential of network and operational improvements, such as changes in headways, route spacing, and stop spacing, to reduce transit emissions. Most models of transit system design consider user and agency cost while ignoring emissions and the potential environmental benefit of operational improvements. We use a model to evaluate the user and agency costs as well as greenhouse gas benefit of design and operational improvements to transit systems. We examine how the operational characteristics of urban transit systems affect both costs and greenhouse gas emissions. The research identifies the Pareto frontier for designing an idealized transit network. Modes considered include bus, bus rapid transit (BRT), light rail transit (LRT), and metro (heavy) rail, with cost and emissions parameters appropriate for the United States. Passenger demand follows a many-to-many travel pattern with uniformly distributed origins and destinations. The approaches described could be used to optimize the network design of existing bus service or help to select a mode and design attributes for a new transit system. The results show that BRT provides the lowest cost but not the lowest emissions for our large city scenarios. Bus and LRT systems have low costs and the lowest emissions for our small city scenarios. Relatively large reductions in emissions from the cost-optimal system can be achieved with only minor increases in user travel time.

  11. HAT-P-12b: A LOW-DENSITY SUB-SATURN MASS PLANET TRANSITING A METAL-POOR K DWARF

    SciTech Connect

    Hartman, J. D.; Bakos, G. A.; Torres, G.; Noyes, R. W.; Pal, A.; Latham, D. W.; Sipocz, B.; Esquerdo, G. A.; Sasselov, D. D.; Kovacs, Gabor; Stefanik, R. P.; Fernandez, J. M.; Kovacs, Geza; Fischer, D. A.; Johnson, J. A.; Marcy, G. W.; Howard, A. W.; Butler, R. P.; Lazar, J.; Papp, I.

    2009-11-20

    We report on the discovery of HAT-P-12b, a transiting extrasolar planet orbiting the moderately bright V approx 12.8 K4 dwarf GSC 03033 - 00706, with a period P = 3.2130598 +- 0.0000021 d, transit epoch T{sub c} = 2454419.19556 +- 0.00020 (BJD), and transit duration 0.0974 +- 0.0006 d. The host star has a mass of 0.73 +- 0.02 M{sub sun}, radius of 0.70{sup +0.02}{sub -0.01} R{sub sun}, effective temperature 4650 +- 60 K, and metallicity [Fe/H] = -0.29 +- 0.05. We find a slight correlation between the observed spectral line bisector spans and the radial velocity, so we consider, and rule out, various blend configurations including a blend with a background eclipsing binary, and hierarchical triple systems where the eclipsing body is a star or a planet. We conclude that a model consisting of a single star with a transiting planet best fits the observations, and show that a likely explanation for the apparent correlation is contamination from scattered moonlight. Based on this model, the planetary companion has a mass of 0.211 +- 0.012 M{sub J} and radius of 0.959{sup +0.029}{sub -0.021} R{sub J} yielding a mean density of 0.295 +- 0.025 g cm{sup -3}. Comparing these observations with recent theoretical models, we find that HAT-P-12b is consistent with a approx1-4.5 Gyr, mildly irradiated, H/He-dominated planet with a core mass M{sub C} approx< 10 M {sub +}. HAT-P-12b is thus the least massive H/He-dominated gas giant planet found to date. This record was previously held by Saturn.

  12. Herschel evidence for disk flattening or gas depletion in transitional disks

    SciTech Connect

    Keane, J. T.; Pascucci, I.; Espaillat, C.; Woitke, P.; Andrews, S.; Kamp, I.; Thi, W.-F.; Meeus, G.; Dent, W. R. F.

    2014-06-01

    Transitional disks are protoplanetary disks characterized by reduced near- and mid-infrared emission, with respect to full disks. This characteristic spectral energy distribution indicates the presence of an optically thin inner cavity within the dust disk believed to mark the disappearance of the primordial massive disk. We present new Herschel Space Observatory PACS spectra of [O I] 63.18 μm for 21 transitional disks. Our survey complements the larger Herschel GASPS program ({sup G}as in Protoplanetary Systems{sup )} by quadrupling the number of transitional disks observed with PACS in this wavelength. [O I] 63.18 μm traces material in the outer regions of the disk, beyond the inner cavity of most transitional disks. We find that transitional disks have [O I] 63.18 μm line luminosities ∼2 times fainter than their full disk counterparts. We self-consistently determine various stellar properties (e.g., bolometric luminosity, FUV excess, etc.) and disk properties (e.g., disk dust mass, etc.) that could influence the [O I] 63.18 μm line luminosity, and we find no correlations that can explain the lower [O I] 63.18 μm line luminosities in transitional disks. Using a grid of thermo-chemical protoplanetary disk models, we conclude that either transitional disks are less flared than full disks or they possess lower gas-to-dust ratios due to a depletion of gas mass. This result suggests that transitional disks are more evolved than their full disk counterparts, possibly even at large radii.

  13. METAL-POOR, COOL GAS IN THE CIRCUMGALACTIC MEDIUM OF A z = 2.4 STAR-FORMING GALAXY: DIRECT EVIDENCE FOR COLD ACCRETION?

    SciTech Connect

    Crighton, Neil H. M.; Hennawi, Joseph F.; Prochaska, J. Xavier

    2013-10-20

    In our current galaxy formation paradigm, high-redshift galaxies are predominantly fueled by accretion of cool, metal-poor gas from the intergalactic medium. Hydrodynamical simulations predict that this material should be observable in absorption against background sightlines within a galaxy's virial radius, as optically thick Lyman limit systems (LLSs) with low metallicities. Here we report the discovery of exactly such a strong metal-poor absorber at an impact parameter R = 58 kpc from a star-forming galaxy at z = 2.44. Besides strong neutral hydrogen (N{sub H{sup 0}}=10{sup 19.50±0.16} cm{sup -2}) we detect neutral deuterium and oxygen, allowing a precise measurement of the metallicity: log{sub 10}(Z/Z {sub ☉}) = –2.0 ± 0.17, or (7-15) × 10{sup –3} solar. Furthermore, the narrow deuterium linewidth requires a cool temperature <20,000 K. Given the striking similarities between this system and the predictions of simulations, we argue that it represents the direct detection of a high-redshift cold-accretion stream. The low-metallicity gas cloud is a single component of an absorption system exhibiting a complex velocity, ionization, and enrichment structure. Two other components have metallicities >0.1 solar, 10 times larger than the metal-poor component. We conclude that the photoionized circumgalactic medium (CGM) of this galaxy is highly inhomogeneous: the majority of the gas is in a cool, metal-poor and predominantly neutral phase, but the majority of the metals are in a highly ionized phase exhibiting weak neutral hydrogen absorption but strong metal absorption. If such inhomogeneity is common, then high-resolution spectra and detailed ionization modeling are critical to accurately appraise the distribution of metals in the high-redshift CGM.

  14. Numerical study of the unitary Fermi gas across the superfluid transition

    NASA Astrophysics Data System (ADS)

    Goulko, Olga; Wingate, Matthew

    2016-05-01

    We present results from Monte Carlo calculations investigating the properties of the homogeneous, spin-balanced unitary Fermi gas in three dimensions. The temperature is varied across the superfluid transition allowing us to determine the temperature dependence of the chemical potential, the energy per particle, and the contact density. Numerical artifacts due to finite volume and discretization are systematically studied, estimated, and reduced.

  15. Transition metal catalysis in the generation of petroleum and natural gas. Progress report, [1992--1993

    SciTech Connect

    Mango, F.

    1993-08-01

    A new hypothesis is introduced for the generation of petroleum and natural gas. The transition metals, activated under the reducing conditions of diagenesis, are proposed as catalysts in the generation of light hydrocarbons. The objective of this proposal is to test that hypothesis. Transition metals (Ni, V, Ti, Co, Fe), in kerogen, porphyrins, and as pure compounds, will be tested under catagenic conditions for catalytic activity in the conversion of normal paraffins and hydrogen into light hydrocarbons. If the hypothesis is correct, kerogenous transition metals should become catalytically active under the reducing conditions of diagenesis and catalyze the conversion of paraffins into the light hydrocarbons seen in petroleum. Moreover, the C{sub 1}-C{sub 4} hydrocarbons generated catalytically should be similar in molecular and isotopic compositions to natural gas.

  16. TRANSITION STATE FOR THE GAS-PHASE REACTION OF URANIUM HEXAFLUORIDE WITH WATER

    SciTech Connect

    Garrison, S; James Becnel, J

    2008-03-18

    Density Functional Theory and small-core, relativistic pseudopotentials were used to look for symmetric and asymmetric transitions states of the gas-phase hydrolysis reaction of uranium hexafluoride, UF{sub 6}, with water. At the B3LYP/6-31G(d,p)/SDD level, an asymmetric transition state leading to the formation of a uranium hydroxyl fluoride, U(OH)F{sub 5}, and hydrogen fluoride was found with an energy barrier of +77.3 kJ/mol and an enthalpy of reaction of +63.0 kJ/mol (both including zero-point energy corrections). Addition of diffuse functions to all atoms except uranium led to only minor changes in the structure and relative energies of the reacting complex and transition state. However, a significant change in the product complex structure was found, significantly reducing the enthalpy of reaction to +31.9 kJ/mol. Similar structures and values were found for PBE0 and MP2 calculations with this larger basis set, supporting the B3LYP results. No symmetric transition state leading to the direct formation of uranium oxide tetrafluoride, UOF{sub 4}, was found, indicating that the reaction under ambient conditions likely includes several more steps than the mechanisms commonly mentioned. The transition state presented here appears to be the first published transition state for the important gas-phase reaction of UF{sub 6} with water.

  17. Transition state for the gas-phase reaction of uranium hexafluoride with water.

    PubMed

    Garrison, Stephen L; Becnel, James M

    2008-06-19

    Density functional theory and small-core, relativistic pseudopotentials were used to look for symmetric and asymmetric transition states of the gas-phase hydrolysis reaction of uranium hexafluoride, UF 6, with water. At the B3LYP/6-31G(d,p)/SDD level, an asymmetric transition state leading to the formation of a uranium hydroxyl fluoride, U(OH)F 5, and hydrogen fluoride was found with an energy barrier of +77.3 kJ/mol and an enthalpy of reaction of +63.0 kJ/mol (both including zero-point energy corrections). Addition of diffuse functions to all atoms except uranium led to only minor changes in the structures and relative energies of the reacting complex and transition state. However, a significant change in the structure of the product complex was found, significantly reducing the enthalpy of reaction to +31.9 kJ/mol. Similar structures and values were found for PBE0 and MP2 calculations with this larger basis set, supporting the B3LYP results. No symmetric transition state leading to the direct formation of uranium oxide tetrafluoride, UOF 4, was found, indicating that the reaction under ambient conditions likely includes several more steps than the mechanisms commonly mentioned. The transition state presented here appears to be the first published transition state for the important gas-phase reaction of UF 6 with water. PMID:18500792

  18. Neuropilin-1 Promotes Epithelial-to-Mesenchymal Transition by Stimulating Nuclear Factor-Kappa B and Is Associated with Poor Prognosis in Human Oral Squamous Cell Carcinoma

    PubMed Central

    Chu, Weiming; Song, Xiaomeng; Yang, Xueming; Ma, Lu; Zhu, Jiang; He, Mengying; Wang, Zilu; Wu, Yunong

    2014-01-01

    Background The epithelial-to-mesenchymal transition (EMT) is a key process in carcinogenesis, invasion, and metastasis of oral squamous cell carcinoma (OSCC). In our previous studies, we found that neuropilin-1 (NRP1) is overexpressed in tongue squamous cell carcinoma and that this overexpression is associated with cell migration and invasion. Nuclear factor-kappa B (NF-κB) plays an essential role both in the induction and the maintenance of EMT and tumor metastasis. Therefore, we hypothesized that NRP1 induces EMT, and that NRP1-induced migration and invasion may be an important mechanism for promoting invasion and metastasis of OSCC through NF-κB activation. Methods/Results The variations in gene and protein expression and the changes in the biological behavior of OSCC cell lines transfected with a vector encoding NRP1, or the corresponding vector control, were evaluated. NRP1 overexpression promoted EMT and was associated with enhanced invasive and metastatic properties. Furthermore, the induction of EMT promoted the acquisition of some cancer stem cell (CSC)-like characteristics in OSCC cells. We addressed whether selective inhibition of NF-κB suppresses the NRP1-mediated EMT by treating cells with pyrrolidinedithiocarbamate ammonium (PDTC), an inhibitor of NF-κB. Immunohistochemical analysis of NRP1 in OSCC tissue samples further supported a key mediator role for NRP1 in tumor progression, lymph node metastasis, and indicated that NRP1 is a predictor for poor prognosis in OSCC patients. Conclusion Our results indicate that NRP1 may regulate the EMT process in OSCC cell lines through NF-κB activation, and that higher NRP1 expression levels are associated with lymph node metastasis and poor prognosis in OSCC patients. Further investigation of the role of NRP1 in tumorigenesis may help identify novel targets for the prevention and therapy of oral cancers. PMID:24999732

  19. KELT-6b: A P ∼ 7.9 day hot Saturn transiting a metal-poor star with a long-period companion

    SciTech Connect

    Collins, Karen A.; Kielkopf, John F.; Eastman, Jason D.; Beatty, Thomas G.; Gaudi, B. Scott; Siverd, Robert J.; Pepper, Joshua; Stassun, Keivan G.; Johnson, John Asher; Howard, Andrew W.; Fulton, Benjamin J.; Fischer, Debra A.; Manner, Mark; Bieryla, Allyson; Latham, David W.; Gregorio, Joao; Buchhave, Lars A.; Jensen, Eric L. N.; Penev, Kaloyan; Crepp, Justin R.; and others

    2014-02-01

    We report the discovery of KELT-6b, a mildly inflated Saturn-mass planet transiting a metal-poor host. The initial transit signal was identified in KELT-North survey data, and the planetary nature of the occulter was established using a combination of follow-up photometry, high-resolution imaging, high-resolution spectroscopy, and precise radial velocity measurements. The fiducial model from a global analysis including constraints from isochrones indicates that the V = 10.38 host star (BD+31 2447) is a mildly evolved, late-F star with T {sub eff} = 6102 ± 43 K, log g{sub ⋆}=4.07{sub −0.07}{sup +0.04}, and [Fe/H] = –0.28 ± 0.04, with an inferred mass M {sub *} = 1.09 ± 0.04 M {sub ☉} and radius R{sub ⋆}=1.58{sub −0.09}{sup +0.16} R{sub ⊙}. The planetary companion has mass M{sub P} = 0.43 ± 0.05 M {sub Jup}, radius R{sub P}=1.19{sub −0.08}{sup +0.13} R{sub Jup}, surface gravity log g{sub P}=2.86{sub −0.08}{sup +0.06}, and density ρ{sub P}=0.31{sub −0.08}{sup +0.07} g cm{sup −3}. The planet is on an orbit with semimajor axis a = 0.079 ± 0.001 AU and eccentricity e=0.22{sub −0.10}{sup +0.12}, which is roughly consistent with circular, and has ephemeris of T {sub c}(BJD{sub TDB}) = 2456347.79679 ± 0.00036 and P = 7.845631 ± 0.000046 days. Equally plausible fits that employ empirical constraints on the host-star parameters rather than isochrones yield a larger planet mass and radius by ∼4)-7). KELT-6b has surface gravity and incident flux similar to HD 209458b, but orbits a host that is more metal poor than HD 209458 by ∼0.3 dex. Thus, the KELT-6 system offers an opportunity to perform a comparative measurement of two similar planets in similar environments around stars of very different metallicities. The precise radial velocity data also reveal an acceleration indicative of a longer-period third body in the system, although the companion is not detected in Keck adaptive optics images.

  20. KELT-6b: A P ~ 7.9 Day Hot Saturn Transiting a Metal-poor Star with a Long-period Companion

    NASA Astrophysics Data System (ADS)

    Collins, Karen A.; Eastman, Jason D.; Beatty, Thomas G.; Siverd, Robert J.; Gaudi, B. Scott; Pepper, Joshua; Kielkopf, John F.; Johnson, John Asher; Howard, Andrew W.; Fischer, Debra A.; Manner, Mark; Bieryla, Allyson; Latham, David W.; Fulton, Benjamin J.; Gregorio, Joao; Buchhave, Lars A.; Jensen, Eric L. N.; Stassun, Keivan G.; Penev, Kaloyan; Crepp, Justin R.; Hinkley, Sasha; Street, Rachel A.; Cargile, Phillip; Mack, Claude E.; Oberst, Thomas E.; Avril, Ryan L.; Mellon, Samuel N.; McLeod, Kim K.; Penny, Matthew T.; Stefanik, Robert P.; Berlind, Perry; Calkins, Michael L.; Mao, Qingqing; Richert, Alexander J. W.; DePoy, Darren L.; Esquerdo, Gilbert A.; Gould, Andrew; Marshall, Jennifer L.; Oelkers, Ryan J.; Pogge, Richard W.; Trueblood, Mark; Trueblood, Patricia

    2014-02-01

    We report the discovery of KELT-6b, a mildly inflated Saturn-mass planet transiting a metal-poor host. The initial transit signal was identified in KELT-North survey data, and the planetary nature of the occulter was established using a combination of follow-up photometry, high-resolution imaging, high-resolution spectroscopy, and precise radial velocity measurements. The fiducial model from a global analysis including constraints from isochrones indicates that the V = 10.38 host star (BD+31 2447) is a mildly evolved, late-F star with T eff = 6102 ± 43 K, log g_\\star =4.07_{-0.07}^{+0.04}, and [Fe/H] = -0.28 ± 0.04, with an inferred mass M sstarf = 1.09 ± 0.04 M ⊙ and radius R_\\star =1.58_{-0.09}^{+0.16} \\,R_\\odot. The planetary companion has mass MP = 0.43 ± 0.05 M Jup, radius R_{P}=1.19_{-0.08}^{+0.13} \\,R_Jup, surface gravity log g_{P}=2.86_{-0.08}^{+0.06}, and density \\rho _{P}=0.31_{-0.08}^{+0.07}\\,g\\,cm^{-3}. The planet is on an orbit with semimajor axis a = 0.079 ± 0.001 AU and eccentricity e=0.22_{-0.10}^{+0.12}, which is roughly consistent with circular, and has ephemeris of T c(BJDTDB) = 2456347.79679 ± 0.00036 and P = 7.845631 ± 0.000046 days. Equally plausible fits that employ empirical constraints on the host-star parameters rather than isochrones yield a larger planet mass and radius by ~4}-7}. KELT-6b has surface gravity and incident flux similar to HD 209458b, but orbits a host that is more metal poor than HD 209458 by ~0.3 dex. Thus, the KELT-6 system offers an opportunity to perform a comparative measurement of two similar planets in similar environments around stars of very different metallicities. The precise radial velocity data also reveal an acceleration indicative of a longer-period third body in the system, although the companion is not detected in Keck adaptive optics images. KELT is a joint project of The Ohio State University, Vanderbilt University, and Lehigh University.

  1. Transition metal catalysis in the generation of petroleum and natural gas. Final report

    SciTech Connect

    Mango, F.D.

    1997-01-21

    This project originated on the premise that natural gas could be formed catalytically in the earth rather than thermally as commonly believed. The intention was to test this hypothetical view and to explore generally the role of sedimentary metals in the generation of light hydrocarbons (C1 - C9). We showed the metalliferous source rocks are indeed catalytic in the generation of natural gas. Various metal compounds in the pure state show the same levels of catalytic activity as sedimentary rocks and the products are identical. Nickel is particularly active among the early transition metals and is projected to remain catalytically robust at all stages of catagenesis. Nickel oxide promotes the formation of n-alkanes in addition to natural gas (NG), demonstrating the full scope of the hypothetical catalytic process: The composition of catalytic gas duplicates the entire range of natural gas, from so-called wet gas to dry gas (60 to 95+ wt % methane), while gas generated thermally is consistently depleted in methane (10 to 60 wt % methane). These results support the view that metal catalysis is a major pathway through which natural gas is formed in the earth.

  2. Line-profile tomography of exoplanet transits - II. A gas-giant planet transiting a rapidly rotating A5 star

    NASA Astrophysics Data System (ADS)

    Collier Cameron, A.; Guenther, E.; Smalley, B.; McDonald, I.; Hebb, L.; Andersen, J.; Augusteijn, Th.; Barros, S. C. C.; Brown, D. J. A.; Cochran, W. D.; Endl, M.; Fossey, S. J.; Hartmann, M.; Maxted, P. F. L.; Pollacco, D.; Skillen, I.; Telting, J.; Waldmann, I. P.; West, R. G.

    2010-09-01

    Most of our knowledge of extrasolar planets rests on precise radial-velocity measurements, either for direct detection or for confirmation of the planetary origin of photometric transit signals. This has limited our exploration of the parameter space of exoplanet hosts to solar- and later-type, sharp-lined stars. Here we extend the realm of stars with known planetary companions to include hot, fast-rotating stars. Planet-like transits have previously been reported in the light curve obtained by the SuperWASP survey of the A5 star HD15082 (WASP-33 V = 8.3, v sini = 86 km s-1). Here we report further photometry and time-series spectroscopy through three separate transits, which we use to confirm the existence of a gas-giant planet with an orbital period of 1.22d in orbit around HD15082. From the photometry and the properties of the planet signal travelling through the spectral line profiles during the transit, we directly derive the size of the planet, the inclination and obliquity of its orbital plane and its retrograde orbital motion relative to the spin of the star. This kind of analysis opens the way to studying the formation of planets around a whole new class of young, early-type stars, hence under different physical conditions and generally in an earlier stage of formation than in sharp-lined late-type stars. The reflex orbital motion of the star caused by the transiting planet is small, yielding an upper mass limit of 4.1MJupiter on the planet. We also find evidence of a third body of substellar mass in the system, which may explain the unusual orbit of the transiting planet. In HD 15082, the stellar line profiles also show evidence of non-radial pulsations, clearly distinct from the planetary transit signal. This raises the intriguing possibility that tides raised by the close-in planet may excite or amplify the pulsations in such stars. Based on observations at Tautenburg Observatory, McDonald Observatory and the Nordic Optical Telescope. E-mail: acc4@st-and.ac.uk

  3. ADP-ribosylation factor 1 expression regulates epithelial-mesenchymal transition and predicts poor clinical outcome in triple-negative breast cancer.

    PubMed

    Schlienger, Sabrina; Campbell, Shirley; Pasquin, Sarah; Gaboury, Louis; Claing, Audrey

    2016-03-29

    Metastatic capacities are fundamental features of tumor malignancy. ADP-ribosylation factor (ARF) 1 has emerged as a key regulator of invasion in breast cancer cells. However, the importance of this GTPase, in vivo, remains to be demonstrated. We report that ARF1 is highly expressed in breast tumors of the most aggressive and advanced subtypes. Furthermore, we show that lowered expression of ARF1 impairs growth of primary tumors and inhibits lung metastasis in a murine xenograft model. To understand how ARF1 contributes to invasiveness, we used a poorly invasive breast cancer cell line, MCF7 (ER+), and examined the effects of overexpressing ARF1 to levels similar to that found in invasive cell lines. We demonstrate that ARF1 overexpression leads to the epithelial-mesenchymal transition (EMT). Mechanistically, ARF1 controls cell-cell adhesion through ß-catenin and E-cadherin, oncogenic Ras activation and expression of EMT inducers. We further show that ARF1 overexpression enhances invasion, proliferation and resistance to a chemotherapeutic agent. In vivo, ARF1 overexpressing MCF7 cells are able to form more metastases to the lung. Overall, our findings demonstrate that ARF1 is a molecular switch for cancer progression and thus suggest that limiting the expression/activation of this GTPase could help improve outcome for breast cancer patients. PMID:26908458

  4. High tumor-associated macrophages infiltration is associated with poor prognosis and may contribute to the phenomenon of epithelial–mesenchymal transition in gastric cancer

    PubMed Central

    Yan, Yan; Zhang, Jia; Li, Jun-Hai; Liu, Xu; Wang, Ji-Zhao; Qu, Hang-Ying; Wang, Jian-Sheng; Duan, Xiao-Yi

    2016-01-01

    Background Recent studies show that epithelial–mesenchymal transition (EMT) and tumor-associated macrophages (TAMs) contribute to the progression and poor prognosis of carcinoma through multiple mechanisms. Both inflammation and changing of epithelium have a close relationship with tumorigenesis of gastric cancer. However, the relevance between EMT and TAMs is still unclear in gastric cancer and needs more scientific research. This study is designed to explore the relationship between EMT and TAMs in gastric cancer. Materials and methods Immunohistochemistry was used to detect the expression of EMT-related proteins and TAM markers in cancer tissues and normal gastric tissues. Results High levels of EMT and TAMs infiltration are related to aggressive features and independent prognostic factors in gastric cancer, respectively. In addition, expression of the two indicators is associated with expression of transforming growth factor-β1 (TGF-β1). Infiltration of TAMs is also associated with EMT-related marker in gastric cancer. Conclusion Our results suggest that high levels of EMT and TAMs infiltration are related to aggressive features and independent prognostic factors in gastric cancer, respectively. A correlation was found between EMT- and TAM-related indicators, which may be associated with TGF-β signaling pathway. The level of TAMs infiltration plays an important role in gastric cancer, the markers of which can be used as prognostic indicators. PMID:27418840

  5. ADP-ribosylation factor 1 expression regulates epithelial-mesenchymal transition and predicts poor clinical outcome in triple-negative breast cancer

    PubMed Central

    Schlienger, Sabrina; Campbell, Shirley; Pasquin, Sarah; Gaboury, Louis; Claing, Audrey

    2016-01-01

    Metastatic capacities are fundamental features of tumor malignancy. ADP-ribosylation factor (ARF) 1 has emerged as a key regulator of invasion in breast cancer cells. However, the importance of this GTPase, in vivo, remains to be demonstrated. We report that ARF1 is highly expressed in breast tumors of the most aggressive and advanced subtypes. Furthermore, we show that lowered expression of ARF1 impairs growth of primary tumors and inhibits lung metastasis in a murine xenograft model. To understand how ARF1 contributes to invasiveness, we used a poorly invasive breast cancer cell line, MCF7 (ER+), and examined the effects of overexpressing ARF1 to levels similar to that found in invasive cell lines. We demonstrate that ARF1 overexpression leads to the epithelial-mesenchymal transition (EMT). Mechanistically, ARF1 controls cell–cell adhesion through ß-catenin and E-cadherin, oncogenic Ras activation and expression of EMT inducers. We further show that ARF1 overexpression enhances invasion, proliferation and resistance to a chemotherapeutic agent. In vivo, ARF1 overexpressing MCF7 cells are able to form more metastases to the lung. Overall, our findings demonstrate that ARF1 is a molecular switch for cancer progression and thus suggest that limiting the expression/activation of this GTPase could help improve outcome for breast cancer patients. PMID:26908458

  6. Phase transition to Bose-Einstein condensation for a bosonic gas confined in a combined trap

    SciTech Connect

    Lue Baolong; Xiong Hongwei; Tan Xinzhou; Wang Bing; Cao Lijuan

    2010-11-15

    We present a study of phase transition to macroscopic superfluidity for an ultracold bosonic gas confined in a combined trap formed by a one-dimensional optical lattice and a harmonic potential, focusing on the critical temperature of this system and the interference patterns of the Bose gas released from the combined trap. Based on a semiclassical energy spectrum, we develop an analytic approximation for the critical temperature T{sub c}, and compare the analytic results with that obtained by numerical computations. For finite temperatures below T{sub c}, we calculate the interference patterns for both the normal gas and the superfluid gas. The total interference pattern shows a feature of 'peak on a peak'. As a comparison, we also present the experimentally observed interference patterns of {sup 87}Rb atoms released from a one-dimensional optical lattice system in accord with our theoretical model. Our observations are consistent with the theoretical results.

  7. Compressed Natural Gas (CNG) Transit Bus Experience Survey: April 2009--April 2010

    SciTech Connect

    Adams, R.; Horne, D. B.

    2010-09-01

    This survey was commissioned by the U.S. Department of Energy (DOE) and the National Renewable Energy Laboratory (NREL) to collect and analyze experiential data and information from a cross-section of U.S. transit agencies with varying degrees of compressed natural gas (CNG) bus and station experience. This information will be used to assist DOE and NREL in determining areas of success and areas where further technical or other assistance might be required, and to assist them in focusing on areas judged by the CNG transit community as priority items.

  8. Lattice-Boltzmann simulation for pressure driven microscale gas flows in transition regime

    NASA Astrophysics Data System (ADS)

    Yue, Xiang-Ji; Wu, Ze-Huan; Ba, Yao-Shuai; Lu, Yan-Jun; Zhu, Zhi-Peng; Ba, De-Chun

    2015-09-01

    This paper carries out numerical simulation for pressure driven microscale gas flows in transition flow regime. The relaxation time of LBM model was modified with the application of near wall effective mean free path combined with a combination of Bounce-back and Specular Reflection (BSR) boundary condition. The results in this paper are more close to those of DSCM and IP-DSCM compared with the results obtained by other LBM models. The calculation results show that in transition regime, with the increase of Knudsen number, the dimensionless slip velocity at the wall significantly increases, but the maximum linear deviation of nonlinear pressure distribution gradually decreases.

  9. Lattice-gas models of phase separation: interfaces, phase transitions, and multiphase flow

    SciTech Connect

    Rothman, D.H. ); Zaleski, S. )

    1994-10-01

    Momentum-conserving lattice gases are simple, discrete, microscopic models of fluids. This review describes their hydrodynamics, with particular attention given to the derivation of macroscopic constitutive equations from microscopic dynamics. Lattice-gas models of phase separation receive special emphasis. The current understanding of phase transitions in these momentum-conserving models is reviewed; included in this discussion is a summary of the dynamical properties of interfaces. Because the phase-separation models are microscopically time irreversible, interesting questions are raised about their relationship to real fluid mixtures. Simulation of certain complex-fluid problems, such as multiphase flow through porous media and the interaction of phase transitions with hydrodynamics, is illustrated.

  10. 33 CFR 165.1709 - Security Zones: Liquefied Natural Gas Tanker Transits and Operations at Phillips Petroleum LNG...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...: Liquefied Natural Gas Tanker Transits and Operations at Phillips Petroleum LNG Pier, Cook Inlet, AK. (a... navigable waters within a 1000-yard radius of the Liquefied Natural Gas (LNG) tankers during their inbound... Natural Gas tankers while they are moored at Phillips Petroleum LNG Pier, 60°40′43″ N and 151°24′10″ W....

  11. 33 CFR 165.1709 - Security Zones: Liquefied Natural Gas Tanker Transits and Operations at Phillips Petroleum LNG...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...: Liquefied Natural Gas Tanker Transits and Operations at Phillips Petroleum LNG Pier, Cook Inlet, AK. (a... navigable waters within a 1000-yard radius of the Liquefied Natural Gas (LNG) tankers during their inbound... Natural Gas tankers while they are moored at Phillips Petroleum LNG Pier, 60°40′43″ N and 151°24′10″ W....

  12. 33 CFR 165.1709 - Security Zones: Liquefied Natural Gas Tanker Transits and Operations at Phillips Petroleum LNG...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...: Liquefied Natural Gas Tanker Transits and Operations at Phillips Petroleum LNG Pier, Cook Inlet, AK. (a... navigable waters within a 1000-yard radius of the Liquefied Natural Gas (LNG) tankers during their inbound... Natural Gas tankers while they are moored at Phillips Petroleum LNG Pier, 60°40′43″ N and 151°24′10″ W....

  13. 33 CFR 165.1709 - Security Zones: Liquefied Natural Gas Tanker Transits and Operations at Phillips Petroleum LNG...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...: Liquefied Natural Gas Tanker Transits and Operations at Phillips Petroleum LNG Pier, Cook Inlet, AK. (a... navigable waters within a 1000-yard radius of the Liquefied Natural Gas (LNG) tankers during their inbound... Natural Gas tankers while they are moored at Phillips Petroleum LNG Pier, 60°40′43″ N and 151°24′10″ W....

  14. 33 CFR 165.1709 - Security Zones: Liquefied Natural Gas Tanker Transits and Operations at Phillips Petroleum LNG...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...: Liquefied Natural Gas Tanker Transits and Operations at Phillips Petroleum LNG Pier, Cook Inlet, AK. (a... navigable waters within a 1000-yard radius of the Liquefied Natural Gas (LNG) tankers during their inbound... Natural Gas tankers while they are moored at Phillips Petroleum LNG Pier, 60°40′43″ N and 151°24′10″ W....

  15. Investigation of a New Monte Carlo Method for the Transitional Gas Flow

    SciTech Connect

    Luo, X.; Day, Chr.

    2011-05-20

    The Direct Simulation Monte Carlo method (DSMC) is well developed for rarefied gas flow in transition flow regime when 0.0110, the gas flow is free molecular and can be simulated by the Test Particle Monte Carlo method (TPMC) without any problem even for a complex 3D vacuum system. In this paper we will investigate the approach to extend the TPMC to the transition flow regime by considering the collision between gas molecules as an interaction between a probe molecule and the gas background. Recently this collision mechanism has been implemented into ProVac3D, a new TPMC simulation program developed by Karlsruhe Institute of Technology (KIT). The preliminary simulation result shows a correct nonlinear increasing of the gas flow. However, there is still a quantitative discrepancy with the experimental data, which means further improvement is needed.

  16. Hydrodynamic Modes in a Trapped Bose Gas above the Bose-Einstein Transition

    SciTech Connect

    Griffin, A.; Wu, W.; Stringari, S.

    1997-03-01

    We discuss the collective modes of a trapped Bose gas in the hydrodynamic regime where atomic collisions ensure local thermal equilibrium for the distribution function. Starting from the conservation laws, in the linearized limit we derive a closed equation for the velocity fluctuations in a trapped Bose gas above the Bose-Einstein transition temperature. Explicit solutions for a parabolic trap are given. We find that the surface modes above the transition have the same dispersion relation as the one recently obtained by Stringari for the oscillations of the condensate at T=0 within the Thomas-Fermi approximation. Results are also given for the monopole {open_quotes}breathing{close_quote}{close_quote} mode as well as for the m=0 excitations which result from the coupling of the monopole and quadrupole modes in an anisotropic parabolic well. {copyright} {ital 1997} {ital The American Physical Society}

  17. Epithelial-Mesenchymal Transition Phenotype Is Associated with Clinicopathological Factors That Indicate Aggressive Biological Behavior and Poor Clinical Outcomes in Invasive Breast Cancer

    PubMed Central

    Choi, Jung Eun; Kang, Su Hwan; Lee, Soo Jung

    2015-01-01

    Purpose Cancer tissue may display a wide spectrum of expression phenotypes of epithelial-mesenchymal transition (EMT)-related proteins. The purpose of this study was to investigate the clinical significance of EMT phenotypes in breast cancer. Methods We evaluated the expression pattern of the EMT-related proteins E-cadherin and fibronectin in samples from 1,495 patients with invasive breast carcinoma (IBC) on tissue microarrays using immunohistochemistry to investigate the clinical significance of EMT phenotypes in IBC. EMT phenotypes were divided into complete type (E-cadherin-negative/fibronectin-positive), incomplete type (hybrid type, E-cadherinpositive/fibronectin-positive; null type, E-cadherin-negative/fibronectin-negative), and wild-type (E-cadherin-positive/fibronectin-negative). We analyzed the correlation of EMT phenotype with clinicopathological factors and patient survival. Results Loss of E-cadherin was observed in 302 patients (20.2%), and fibronectin was expressed in the cancer cells of 354 patients (23.7%). In total, 64 (4.3%), 290 (19.4%), 238 (15.9%), and 903 (60.4%) samples were categorized as complete, hybrid, null, and wild-type, respectively. The complete EMT phenotype exhibited significant associations with young age (p=0.017), advanced pT (p<0.001) and pN (p<0.001) stages, higher histological grade (p<0.001), lymphovascular invasion (p<0.001), and triple negativity (p<0.001). Patients with complete and hybrid EMT phenotypes had poorer overall survival (OS) and disease-free survival (DFS) than those with the wild-type phenotype (OS, p=0.001; DFS, p<0.001). In multivariate analysis, the hybrid EMT phenotype was an independent prognostic factor for DFS in patients with IBC (p=0.032). Conclusion EMT phenotypes exhibited significant associations with clinicopathological factors indicating aggressive biologic behavior and poor outcome in patients with IBC. PMID:26472976

  18. Gas-liquid type phase transition in semiivietals at low temperatures and high magnetic fields

    NASA Astrophysics Data System (ADS)

    Mase, Shoichi; Fukami, Takeshi; Mori, Masatoshi; Inoue, Tomnio

    1982-07-01

    Remarkable anomalies have been found in the temperature and frequency dependences of the attenuation coefficient of sound waves in bismuth, antimony and pyrolytic graphite at low temperatures and high magnetic fields. The result for bismuth in particular is app]arently similar to those observed in second-order phase transition phenomena. On the basis of the Nakajima-Yoshioka-Kuramoto theory of the gas-liquid type phase transition in the electron-hole system, these anomalies are fairly well explained in terms of the fluctuation effect above the phase transition temperature, provided that the electron-hole correlation interaction is assumed to be sensitively dependent on the state of the overlapping of the electron and hole Landau levels.

  19. Gas-phase activation of methane by ligated transition-metal cations

    PubMed Central

    Schröder, Detlef; Schwarz, Helmut

    2008-01-01

    Motivated by the search for ways of a more efficient usage of the large, unexploited resources of methane, recent progress in the gas-phase activation of methane by ligated transition-metal ions is discussed. Mass spectrometric experiments demonstrate that the ligands can crucially influence both reactivity and selectivity of transition-metal cations in bond-activation processes, and the most reactive species derive from combinations of transition metals with the electronegative elements fluorine, oxygen, and chlorine. Furthermore, the collected knowledge about intramolecular kinetic isotope effects associated with the activation of C–H(D) bonds of methane can be used to distinguish the nature of the bond activation as a mere hydrogen-abstraction, a metal-assisted mechanism or more complex reactions such as formation of insertion intermediates or σ-bond metathesis. PMID:18955709

  20. Calculators for Estimating Greenhouse Gas Emissions from Public Transit Agency Vehicle Fleet Operations

    SciTech Connect

    Weigel, Brent; Southworth, Frank; Meyer, Michael D

    2010-01-01

    This paper reviews calculation tools available for quantifying the greenhouse gas emissions associated with different types of public transit service, and their usefulness in helping a transit agency to reduce its carbon footprint through informed vehicle and fuel procurement decisions. Available calculators fall into two categories: registry/inventory based calculators most suitable for standardized voluntary reporting, carbon trading, and regulatory compliance; and multi-modal life cycle analysis calculators that seek comprehensive coverage of all direct and indirect emissions. Despite significant progress in calculator development, no single calculator as yet contains all of the information needed by transit agencies to develop a truly comprehensive, life cycle analysis-based accounting of the emissions produced by its vehicle fleet operations, and for a wide range of vehicle/fuel technology options.

  1. Transition metal catalysis in the generation of petroleum and natural gas

    SciTech Connect

    Mango, F.D. )

    1992-01-01

    Certain ratios of light hydrocarbons remain virtually invariant over the course of petroleum generation, indicating steady-state catalysis rather than thermal cracking as the central feature to the mechanism of petroleum generation. Although the evidence for catalytic intervention is now compelling, the nature of the catalytic agent, its mode of activation and action are not clear. The author proposes that the transition metals, activated in the lipophilic domains of kerogen, are the catalytic agents in the conversion of normal paraffins into light hydrocarbons and natural gas. The process proceeds through specific catalytic steps involving 3-, 5-, and 6-carbon ring-closures and the cleavage of carbon-carbon bonds in the key steps. This hypothesis is analyzed in the context of published literature on catalysis by Ni, V, Ti, Co, and related transition metals. Activated under anaerobic conditions, these metals express extraordinary catalytic activity in each of the postulated steps. Moreover, metal-catalysis provides a reasonable kinetic pathway through which hydrogen and normal paraffins may combine to form a methane-enriched a natural gas. Given the anaerobic conditions of diagenesis and a kerogenous source of hydrogen, it is concluded that the transition metals, under catagenic conditions, are potentially active catalysts in the conversion of hydrogen and paraffins into light hydrocarbons and natural gas.

  2. Transition metal catalysis in the generation of petroleum and natural gas

    NASA Astrophysics Data System (ADS)

    Mango, Frank D.

    1992-01-01

    Certain ratios of light hydrocarbons remain virtually invariant over the course of petroleum generation, indicating steady-state catalysis rather than thermal cracking as the central feature to the mechanism of petroleum generation. Although the evidence for catalytic intervention is now compelling, the nature of the catalytic agent, its mode of activation and action are not clear. I propose that the transition metals, activated in the lipophilic domains of kerogen, are the catalytic agents in the conversion of normal paraffins into light hydrocarbons and natural gas. The process proceeds through specific catalytic steps involving 3-, 5-, and 6-carbon ring-closures and the cleavage of carbon-carbon bonds in the key steps. This hypothesis is analyzed in the context of published literature on catalysis by Ni, V, Ti, Co, and related transition metals. Activated under anaerobic conditions, these metals express extraordinary catalytic activity in each of the postulated steps. Moreover, metal-catalysis provides a reasonable kinetic pathway through which hydrogen and normal paraffins may combine to form a methane-enriched natural gas. Given the anaerobic conditions of diagenesis and a kerogenous source of hydrogen, it is concluded that the transition metals, under catagenic conditions, are potentially active catalysts in the conversion of hydrogen and paraffins into light hydrocarbons and natural gas.

  3. Developing a Natural Gas-Powered Bus Rapid Transit Service: A Case Study

    SciTech Connect

    Mitchell, G.

    2015-11-03

    The Roaring Fork Transit Authority (RFTA) and its VelociRFTA Bus Rapid Transit (BRT) program are unique in many ways. For example, VelociRFTA was the first rural BRT system in the United States and the operational environment of the VelociRFTA BRT is one of the most severe in the country, with extreme winter temperatures and altitudes close to 8,000 feet. RFTA viewed high altitude operation as the most challenging characteristic when it began considering the use of natural gas. RFTA is the second-largest public transit system in Colorado behind Denver's Regional Transportation District (RTD), and it is one of the largest rural public transit systems in the country. In 2013, RFTA accepted delivery of 22 new compressed natural gas (CNG) buses that went into service after completion of maintenance and refueling facilities earlier that year. This paper examines the lessons learned from RFTA's experience of investigating--and ultimately choosing--CNG for their new BRT program and focuses on the unique environment of RFTA's BRT application; the decision process to include CNG fueling in the project; unforeseen difficulties encountered in the operation of CNG buses; public perception; cost comparison to competing fuels; and considerations for indoor fueling facilities and project funding.

  4. Developing a Natural Gas-Powered Bus Rapid Transit Service. A Case Study

    SciTech Connect

    Mitchell, George

    2015-11-01

    The Roaring Fork Transit Authority (RFTA) and its VelociRFTA Bus Rapid Transit (BRT) program are unique in many ways. For example, VelociRFTA was the first rural BRT system in the United States and the operational environment of the VelociRFTA BRT is one of the most severe in the country, with extreme winter temperatures and altitudes close to 8,000 feet. RFTA viewed high altitude operation as the most challenging characteristic when it began considering the use of natural gas. RFTA is the second-largest public transit system in Colorado behind Denver's Regional Transportation District (RTD), and it is one of the largest rural public transit systems in the country. In 2013, RFTA accepted delivery of 22 new compressed natural gas (CNG) buses that went into service after completion of maintenance and refueling facilities earlier that year. This paper examines the lessons learned from RFTA's experience of investigating--and ultimately choosing--CNG for their new BRT program and focuses on the unique environment of RFTA's BRT application; the decision process to include CNG fueling in the project; unforeseen difficulties encountered in the operation of CNG buses; public perception; cost comparison to competing fuels; and considerations for indoor fueling facilities and project funding.

  5. Kerr-AdS analogue of triple point and solid/liquid/gas phase transition

    NASA Astrophysics Data System (ADS)

    Altamirano, Natacha; Kubizňák, David; Mann, Robert B.; Sherkatghanad, Zeinab

    2014-02-01

    We study the thermodynamic behavior of multi-spinning d = 6 Kerr-anti de Sitter black holes in the canonical ensemble of fixed angular momenta J1 and J2. We find, dependent on the ratio q = J2/J1, qualitatively different interesting phenomena known from the ‘every day thermodynamics’ of simple substances. For q = 0 the system exhibits recently observed reentrant large/small/large black hole phase transitions, but for 0 < q ≪ 1 we find an analogue of a ‘solid/liquid’ phase transition. Furthermore, for q ∈ (0.00905, 0.0985) the system displays the presence of a large/intermediate/small black hole phase transition with two critical and one triple (or tricritical) points. This behavior is reminiscent of the solid/liquid/gas phase transition except that the coexistence line of small and intermediate black holes does not continue for an arbitrary value of pressure (similar to the solid/liquid coexistence line) but rather terminates at one of the critical points. Finally, for q > 0.0985 we observe the ‘standard liquid/gas behavior’ of the Van der Waals fluid.

  6. Transitions.

    ERIC Educational Resources Information Center

    Nathanson, Jeanne H., Ed.

    1993-01-01

    This theme issue on transitions for individuals with disabilities contains nine papers discussing transition programs and issues. "Transition Issues for the 1990s," by Michael J. Ward and William D. Halloran, discusses self-determination, school responsibility for transition, continued educational engagement of at-risk students, and service…

  7. Effects of wood ash fertilization on forest floor greenhouse gas emissions and tree growth in nutrient poor drained peatland forests.

    PubMed

    Ernfors, M; Sikström, U; Nilsson, M; Klemedtsson, L

    2010-09-15

    Wood ash (3.1, 3.3 or 6.6 tonnes dry weight ha(-1)) was used to fertilize two drained and forested peatland sites in southern Sweden. The sites were chosen to represent the Swedish peatlands that are most suitable for ash fertilization, with respect to stand growth response. The fluxes of carbon dioxide (CO(2)), methane (CH(4)) and nitrous oxide (N(2)O) from the forest floor, measured using opaque static chambers, were monitored at both sites during 2004 and 2005 and at one of the sites during the period 1 October 2007-1 October 2008. No significant (p>0.05) changes in forest floor greenhouse gas exchange were detected. The annual emissions of CO(2) from the sites varied between 6.4 and 15.4 tonnes ha(-1), while the CH(4) fluxes varied between 1.9 and 12.5 kg ha(-1). The emissions of N(2)O were negligible. Ash fertilization increased soil pH at a depth of 0-0.05 m by up to 0.9 units (p<0.01) at one site, 5 years after application, and by 0.4 units (p<0.05) at the other site, 4 years after application. Over the first 5 years after fertilization, the mean annual tree stand basal area increment was significantly larger (p<0.05) at the highest ash dose plots compared with control plots (0.64 m(2) ha(-1) year(-1) and 0.52 m(2) ha(-1) year(-1), respectively). The stand biomass, which was calculated using tree biomass functions, was not significantly affected by the ash treatment. The groundwater levels during the 2008 growing season were lower in the high ash dose plots than in the corresponding control plots (p<0.05), indicating increased evapotranspiration as a result of increased tree growth. The larger basal area increment and the lowered groundwater levels in the high ash dose plots suggest that fertilization promoted tree growth, while not affecting greenhouse gas emissions. PMID:20667583

  8. Onset conditions for gas phase reaction and nucleation in the CVD of transition metal oxides

    NASA Technical Reports Server (NTRS)

    Collins, J.; Rosner, D. E.; Castillo, J.

    1992-01-01

    A combined experimental/theoretical study is presented of the onset conditions for gas phase reaction and particle nucleation in hot substrate/cold gas CVD of transition metal oxides. Homogeneous reaction onset conditions are predicted using a simple high activation energy reacting gas film theory. Experimental tests of the basic theory are underway using an axisymmetric impinging jet CVD reactor. No vapor phase ignition has yet been observed in the TiCl4/O2 system under accessible operating conditions (below substrate temperature Tw = 1700 K). The goal of this research is to provide CVD reactor design and operation guidelines for achieving acceptable deposit microstructures at the maximum deposition rate while simultaneously avoiding homogeneous reaction/nucleation and diffusional limitations.

  9. A Gas-poor Planetesimal Feeding Model for the Formation of Giant Planet Satellite Systems: Constraints on the Planetesimal Size Distribution

    NASA Astrophysics Data System (ADS)

    Estrada, P. R.; Mosqueira, I.

    2004-11-01

    Given our presently inadequate understanding of the turbulent state of the solar nebula and planetary nebulae, there are two sensible approaches to satellite formation that avoid over-reliance on specific choices for essentially free parameters. The first one postulates turbulence decay. If so, Keplerian disks must eventually pass through quiescent phases, so that the survival of satellites (and planets) ultimately hinges on gap-opening. In this scenario, the criterion for gap-opening itself sets the value for the gas surface density of the satellite disk (Mosqueira and Estrada 2003b). The second approach assumes that steady turbulence is sufficiently strong to cause the evolution of the gas disk on a shorter timescale than that for satellite formation. This approach uses the turbulence of the subnebula to remove gas from the disk but not to fine-tune the conditions of the subnebular environment. In this case, the gas surface density is left unspecified, though the presence of some gas may help to explain the observations. Satellite formation is then understood in terms of planetesimal dynamics that are largely uncoupled from the gas (somewhat analogous to the case of the terrestrial planets). We will discuss a gas-poor model with the following features: First, collisions between planetesimals in the vicinity of the giant planet leads to the formation of a protosatellite swarm of prograde and retrograde objects extending as far as ˜ RH/2 (Ruskol 1975, Safronov et al. 1986). Second, this circumplanetary swarm has a small net specific angular momentum which results in the formation of close-in, prograde satellites. Third, close to the planet, hypervelocity impacts can ultimately lead to a variety of outcomes (i.e., Jovian-like versus Saturnian-like satellite systems). Fourth, satellitesimal collisional removal from the outer disk is balanced by planetesimal collisional capture. Excluding satellite embryos, at any given time this disk mass is less than the mass of

  10. Polarization of the light from the 3P(1)-2S(1) transition in proton beam excited helium. Ph.D. Thesis; [target gas pressure effects

    NASA Technical Reports Server (NTRS)

    Weinhous, M. S.

    1973-01-01

    Measurements of the polarization of the light from the 3 1p-2 1s transition in proton beam excited Helium have shown both a proton beam energy and Helium target gas pressure dependence. Results for the linear polarization fraction range from +2.6% at 100 keV proton energy to -5.5% at 450 keV. The zero crossover occurs at approximately 225 keV. This is in good agreement with other experimental work in the field, but in poor agreement with theoretical predictions. Measurements at He target gas pressures as low as .01 mtorr show that the linear polarization fraction is still pressure dependent at .01 mtorr.

  11. Transitions.

    ERIC Educational Resources Information Center

    Field, David; And Others

    1992-01-01

    Includes four articles: "Career Aspirations" (Field); "Making the Transition to a New Curriculum" (Baker, Householder); "How about a 'Work to School' Transition?" (Glasberg); and "Technological Improvisation: Bringing CNC to Woodworking" (Charles, McDuffie). (SK)

  12. Poor weaning transition average daily gain in pigs is not correlated with pathological or immunological markers of enteric disease during a porcine reproductive and respiratory syndrome virus outbreak.

    PubMed

    Jones, C K; Madson, D M; Main, R G; Gabler, N K; Patience, J F

    2014-06-01

    Previous research suggests that enteric disease and poor gut health interact to decrease pig performance. Our objective was to determine if light birth weight pigs or those from the bottom 10th percentile of transition ADG (tADG) have a higher incidence of pathogen presence or enteric lesions than heavier or faster-growing contemporaries. A total of 1,500 pigs were weighed at birth and divided into 5 birth weight (BRW) categories: <1, 1 to 1.25, 1.26 to 1.5, 1.51 to 1.75, and >1.76 kg. At weaning, 1,054 random pigs were moved to a commercial wean-to-finish barn. Pigs were weighed individually at 0 and 3 wk postweaning. Transition ADG was calculated as the ADG between wk 0 and 3 postweaning. One pig from each of the 10th, 30th, and 70th percentiles of tADG was used to create 1 set of 3 pigs with the same litter size and from the same parity sow. Forty pigs from each of the 3 tADG percentiles were matched for sex, litter size, and sow parity but not BRW to create 20 matched sets of 60 pigs. This allowed for the main effects of BRW and tADG to be studied as a 5 × 3 factorial design. At 3 and 22 wk postweaning, pigs were euthanized for organ system tissue evaluation. Lung, lymph node, and digesta were analyzed for presence of pathogens and for severity of microscopic lesions (0 = not present, 1 = present, with slight erosion, 2 = present, with moderate erosion, and 3 = present and severe erosion). Data were analyzed using PROC GENMOD and GLIMMIX, where pig served as the experimental unit. The fixed effects were BRW and tADG and the random effects were pen and set. There were no BRW × tADG interactions (P = 0.16). There was no correlation (P = 0.12) between tADG and pathogen presence at either 3 or 22 wk postweaning. Incidence and severity of microscopic lesions in the large intestine at 3 wk postweaning decreased linearly with increasing tADG (P = 0.01). Lesion incidence and severity were also affected (P < 0.04) by tADG at 22 wk postweaning, with greater stomach

  13. Physical understanding of gas-liquid annular flow and its transition to dispersed droplets

    NASA Astrophysics Data System (ADS)

    Kumar, Parmod; Das, Arup Kumar; Mitra, Sushanta K.

    2016-07-01

    Transformation from annular to droplet flow is investigated for co-current, upward gas-liquid flow through a cylindrical tube using grid based volume of fluid framework. Three transitional routes, namely, orificing, rolling, and undercutting are observed for flow transformation at different range of relative velocities between the fluids. Physics behind these three exclusive phenomena is described using circulation patterns of gaseous phase in the vicinity of a liquid film which subsequently sheds drop leading towards transition. Orifice amplitude is found to grow exponentially towards the core whereas it propagates in axial direction in a parabolic path. Efforts have been made to fit the sinusoidal profile of wave structure with the numerical interface contour at early stages of orificing. Domination of gas inertia over liquid flow has been studied in detail at the later stages to understand the asymmetric shape of orifice, leading towards lamella formation and droplet generation. Away from comparative velocities, circulations in the dominant phase dislodge the drop by forming either a ligament (rolling) or a bag (undercut) like protrusion in liquid. Study of velocity patterns in the plane of droplet dislodge reveals the underlying physics behind the disintegration and its dynamics at the later stages. Using numerical phase distributions, rejoining of dislodged droplet with liquid film as post-rolling consequences has been also proposed. A flow pattern map showing the transitional boundaries based on the physical mechanism is constructed for air-water combination.

  14. Quantifying the Gas Inside Dust Cavities in Transitional Disks: Implications for Young Planets

    NASA Astrophysics Data System (ADS)

    van Dishoeck, E. F.; van der Marel, N.; Bruderer, S.; Pinilla, P.

    2015-12-01

    ALMA observations of a small sample of transitional disks with large dust cavities observed in Cycle 0 and 1 are summarized. The gas and dust surface density structures are inferred from the continuum and 12CO, 13CO and C18O line data using the DALI physical-chemical code. Thanks to its ability to self-shield, CO can survive inside dust cavities in spite of being exposed to intense UV radiation and can thus be used as a probe of the gas structure. Modeling of the existing data shows that gas is present inside the dust cavities in all cases, but at a reduced level compared with the gas surface density profile of the outer disk. The gas density decrease inside the dust cavity radius by factors of up to 104 suggests clearing by one or more planetary-mass companions. The accompanying pressure bumps naturally lead to trapping of the mm-sized dust grains observed in the ALMA images.

  15. Transition.

    ERIC Educational Resources Information Center

    Thompson, Sandy, Ed.; And Others

    1990-01-01

    This "feature issue" focuses on transition from school to adult life for persons with disabilities. Included are "success stories," brief program descriptions, and a list of resources. Individual articles include the following titles and authors: "Transition: An Energizing Concept" (Paul Bates); "Transition Issues for the 1990s" (William Halloran…

  16. Adsorption of gas molecules on transition metal embedded graphene: a search for high-performance graphene-based catalysts and gas sensors

    NASA Astrophysics Data System (ADS)

    Zhou, Miao; Lu, Yun-Hao; Cai, Yong-Qing; Zhang, Chun; Feng, Yuan-Ping

    2011-09-01

    We report an investigation on the adsorption of small gas molecules (O2, CO, NO2 and NH3) on pristine and various transition metal embedded graphene samples using a first-principles approach based on density-functional theory (DFT). The most stable adsorption geometry, energy, charge transfer, and magnetic moment of these molecules on graphene embedded with different transition metal elements are thoroughly discussed. Our calculations found that embedded transition metal elements in general can significantly enhance the interactions between gas molecules and graphene, and for applications of graphene-based catalysis, Ti and Au may be the best choices among all transition metal elements. We also expect a detailed analysis of the electronic structures and magnetic properties of these systems to shed light on future applications of graphene-based gas sensing and spintronics.

  17. Simulation of the transition radiation detection conditions in the ATLAS TRT detector filled with argon and krypton gas mixtures

    SciTech Connect

    Boldyrev, A. S.; Maevskiy, A. S.

    2015-12-15

    Performance of the Transition Radiation Tracker (TRT) at the ATLAS experiment with argon and krypton gas mixtures was simulated. The efficiency of transition radiation registration, which is necessary for electron identification, was estimated along with the electron identification capabilities under such conditions.

  18. A Gas-poor Planetesimal Feeding Model for the Formation of Giant Planet Satellite Systems: Prediction for the Composition of Iapetus

    NASA Astrophysics Data System (ADS)

    Estrada, P. R.; Mosqueira, I.

    2004-12-01

    Given our presently inadequate understanding of the turbulent state of the solar nebula and planetary nebulae, there are two sensible approaches to satellite formation that avoid over-reliance on specific choices for essentially free parameters. The first one postulates turbulence decay. If so, Keplerian disks must eventually pass through quiescent phases, so that the survival of satellites (and planets) ultimately hinges on gap-opening. In this scenario, the criterion for gap-opening itself sets the value for the gas surface density of the satellite disk (Mosqueira and Estrada 2003b). The second approach assumes that steady turbulence is sufficiently strong to cause the evolution of the gas disk on a shorter timescale than that for satellite formation. This approach uses the turbulence of the subnebula to remove gas from the disk but not to fine-tune the conditions of the subnebular environment. In this case, the gas surface density is left unspecified, though the presence of some gas may help to explain the observations. Satellite formation is then understood in terms of planetesimal dynamics that are largely uncoupled from the gas (somewhat analogous to the case of the terrestrial planets). We will discuss a gas-poor model with the following features: First, collisions between planetesimals in the vicinity of the giant planet leads to the formation of a protosatellite swarm of prograde and retrograde objects extending as far as ˜ RH/2 (Ruskol 1975, Safronov et al. 1986). Second, this circumplanetary swarm has a small net specific angular momentum which results in the formation of close-in, prograde satellites. Third, close to the planet, hypervelocity impacts can ultimately lead to a variety of outcomes (i.e., Jovian-like versus Saturnian-like satellite systems). Fourth, satellitesimal collisional removal from the outer disk is balanced by planetesimal collisional capture. Excluding satellite embryos, at any given time this disk mass is less than the mass of

  19. Thermal phase transitions in a honeycomb lattice gas with three-body interactions.

    PubMed

    Lohöfer, Maximilian; Bonnes, Lars; Wessel, Stefan

    2013-11-01

    We study the thermal phase transitions in a classical (hard-core) lattice gas model with nearest-neighbor three-body interactions on the honeycomb lattice, based on parallel tempering Monte Carlo simulations. This system realizes incompressible low-temperature phases at fractional fillings of 9/16, 5/8, and 3/4 that were identified in a previous study of a related quantum model. In particular, both the 9/16 and the 5/8 phase exhibit an extensive ground-state degeneracy reflecting the frustrated nature of the three-body interactions on the honeycomb lattice. The thermal melting of the 9/16 phase is found to be a first-order, discontinuous phase transition. On the other hand, from the thermodynamic behavior we obtain indications for a four-states Potts-model thermal transition out of the 5/8 phase. We find that this thermal Potts-model transition relates to the selection of one out of four extensive sectors within the low-energy manifold of the 5/8 phase, which we obtain via an exact mapping of the ground-state manifold to a hard-core dimer model on an embedded honeycomb superlattice. PMID:24329242

  20. Multiple phase transitions in extended hard-core lattice gas models in two dimensions.

    PubMed

    Nath, Trisha; Rajesh, R

    2014-07-01

    We study the k-NN hard-core lattice gas model in which the first k next-nearest-neighbor sites of a particle are excluded from occupation by other particles on a two-dimensional square lattice. This model is the lattice version of the hard-disk system with increasing k corresponding to decreasing lattice spacing. While the hard-disk system is known to undergo a two-step freezing process with increasing density, the lattice model has been known to show only one transition. Here, based on Monte Carlo simulations and high-density expansions of the free energy and density, we argue that for k = 4,10,11,14,⋯, the lattice model undergoes multiple transitions with increasing density. Using Monte Carlo simulations, we confirm the same for k = 4,...,11. This, in turn, resolves an existing puzzle as to why the 4-NN model has a continuous transition against the expectation of a first-order transition. PMID:25122264

  1. Quantum criticality of a Bose gas in an optical lattice near the Mott transition

    NASA Astrophysics Data System (ADS)

    Rançon, A.; Dupuis, N.

    2012-01-01

    We derive the equation of state of bosons in an optical lattice in the framework of the Bose-Hubbard model. Near the density-driven Mott transition, the expression of the pressure P(μ,T) versus chemical potential and temperature is similar to that of a dilute Bose gas but with renormalized mass m* and scattering length a*. Here m* is the mass of the elementary excitations at the quantum critical point governing the transition from the superfluid phase to the Mott-insulating phase, while a* is related to their effective interaction at low energy. We use a nonperturbative renormalization-group approach to compute these parameters as a function of the ratio t/U between hopping amplitude and on-site repulsion.

  2. Influence of spin polarizability on liquid gas phase transition in the nuclear matter

    NASA Astrophysics Data System (ADS)

    Rezaei, Z.; Bigdeli, M.; Bordbar, G. H.

    2015-10-01

    In this paper, we investigate the liquid gas phase transition for the spin polarized nuclear matter. Applying the lowest order constrained variational (LOCV) method, and using two microscopic potentials, AV18 and UV14+TNI, we calculate the free energy, equation of state (EOS), order parameter, entropy, heat capacity and compressibility to derive the critical properties of spin polarized nuclear matter. Our results indicate that for the spin polarized nuclear matter, the second-order phase transition takes place at lower temperatures with respect to the unpolarized one. It is also shown that the critical temperature of our spin polarized nuclear matter with a specific value of spin polarization parameter is in good agreement with the experimental result.

  3. Glass transition in the quenched and annealed version of the frustrated lattice gas model

    NASA Astrophysics Data System (ADS)

    Fierro, Annalisa; de Candia, Antonio; Coniglio, Antonio

    2000-12-01

    In this paper we study the three-dimensional frustrated lattice gas model in the annealed version, where the disorder is allowed to evolve in time with a suitable kinetic constraint. Although the model does not exhibit any thermodynamic transition it shows a diverging peak at some characteristic time in the dynamical nonlinear susceptibility, similar to the results on the p-spin model in mean field and the Lennard-Jones mixture recently found by Donati et al. (e-print cond-mat/9905433). Comparing these results to those obtained in the model with quenched interactions, we conclude that the critical behavior of the dynamical susceptibility is reminiscent of the thermodynamic transition present in the quenched model, and signaled by the divergence of the static nonlinear susceptibility, suggesting therefore a similar mechanism also in supercooled glass-forming liquids.

  4. Buoyancy Effects on Flow Transition in Hydrogen Gas Jet Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Albers, Burt W.; Agrawal, Ajay K.; Griffin, DeVon (Technical Monitor)

    2000-01-01

    Experiments were performed in earth-gravity to determine how buoyancy affected transition from laminar to turbulent flow in hydrogen gas jet diffusion flames. The jet exit Froude number characterizing buoyancy in the flame was varied from 1.65 x 10(exp 5) to 1.14 x 10(exp 8) by varying the operating pressure and/or burner inside diameter. Laminar fuel jet was discharged vertically into ambient air flowing through a combustion chamber. Flame characteristics were observed using rainbow schlieren deflectometry, a line-of-site optical diagnostic technique. Results show that the breakpoint length for a given jet exit Reynolds number increased with increasing Froude number. Data suggest that buoyant transitional flames might become laminar in the absence of gravity. The schlieren technique was shown as effective in quantifying the flame characteristics.

  5. DYNAMIC MODELING STRATEGY FOR FLOW REGIME TRANSITION IN GAS-LIQUID TWO-PHASE FLOWS

    SciTech Connect

    X. Wang; X. Sun; H. Zhao

    2011-09-01

    In modeling gas-liquid two-phase flows, the concept of flow regime has been used to characterize the global interfacial structure of the flows. Nearly all constitutive relations that provide closures to the interfacial transfers in two-phase flow models, such as the two-fluid model, are often flow regime dependent. Currently, the determination of the flow regimes is primarily based on flow regime maps or transition criteria, which are developed for steady-state, fully-developed flows and widely applied in nuclear reactor system safety analysis codes, such as RELAP5. As two-phase flows are observed to be dynamic in nature (fully-developed two-phase flows generally do not exist in real applications), it is of importance to model the flow regime transition dynamically for more accurate predictions of two-phase flows. The present work aims to develop a dynamic modeling strategy for determining flow regimes in gas-liquid two-phase flows through the introduction of interfacial area transport equations (IATEs) within the framework of a two-fluid model. The IATE is a transport equation that models the interfacial area concentration by considering the creation and destruction of the interfacial area, such as the fluid particle (bubble or liquid droplet) disintegration, boiling and evaporation; and fluid particle coalescence and condensation, respectively. For the flow regimes beyond bubbly flows, a two-group IATE has been proposed, in which bubbles are divided into two groups based on their size and shape (which are correlated), namely small bubbles and large bubbles. A preliminary approach to dynamically identifying the flow regimes is provided, in which discriminators are based on the predicted information, such as the void fraction and interfacial area concentration of small bubble and large bubble groups. This method is expected to be applied to computer codes to improve their predictive capabilities of gas-liquid two-phase flows, in particular for the applications in

  6. The role of gas phase reactions in the deflagration-to-detonation transition of high energy propellants

    NASA Technical Reports Server (NTRS)

    Boggs, T. L.; Price, C. F.; Atwood, A. I.; Zurn, D. E.; Eisel, J. L.; Derr, R. L.

    1980-01-01

    The inadequacies of the two commonly used assumptions are shown, along with the need for considering gas phase reactions. Kinetic parameters that describe the gas phase reactions for several ingredients are provided, and the first steps in convective combustion leading to deflagration to detonation transition are described.

  7. 33 CFR 165.110 - Safety and Security Zone; Liquefied Natural Gas Carrier Transits and Anchorage Operations, Boston...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...; Liquefied Natural Gas Carrier Transits and Anchorage Operations, Boston, Massachusetts. 165.110 Section 165... Limited Access Areas First Coast Guard District § 165.110 Safety and Security Zone; Liquefied Natural Gas.... Deepwater port means any facility or structure meeting the definition of deepwater port in 33 CFR...

  8. 33 CFR 165.110 - Safety and Security Zone; Liquefied Natural Gas Carrier Transits and Anchorage Operations, Boston...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...; Liquefied Natural Gas Carrier Transits and Anchorage Operations, Boston, Massachusetts. 165.110 Section 165... Limited Access Areas First Coast Guard District § 165.110 Safety and Security Zone; Liquefied Natural Gas.... Deepwater port means any facility or structure meeting the definition of deepwater port in 33 CFR...

  9. 33 CFR 165.110 - Safety and Security Zone; Liquefied Natural Gas Carrier Transits and Anchorage Operations, Boston...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...; Liquefied Natural Gas Carrier Transits and Anchorage Operations, Boston, Massachusetts. 165.110 Section 165... Limited Access Areas First Coast Guard District § 165.110 Safety and Security Zone; Liquefied Natural Gas.... Deepwater port means any facility or structure meeting the definition of deepwater port in 33 CFR...

  10. 33 CFR 165.110 - Safety and Security Zone; Liquefied Natural Gas Carrier Transits and Anchorage Operations, Boston...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...; Liquefied Natural Gas Carrier Transits and Anchorage Operations, Boston, Massachusetts. 165.110 Section 165... Limited Access Areas First Coast Guard District § 165.110 Safety and Security Zone; Liquefied Natural Gas.... Deepwater port means any facility or structure meeting the definition of deepwater port in 33 CFR...

  11. 33 CFR 165.110 - Safety and Security Zone; Liquefied Natural Gas Carrier Transits and Anchorage Operations, Boston...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...; Liquefied Natural Gas Carrier Transits and Anchorage Operations, Boston, Massachusetts. 165.110 Section 165... Limited Access Areas First Coast Guard District § 165.110 Safety and Security Zone; Liquefied Natural Gas.... Deepwater port means any facility or structure meeting the definition of deepwater port in 33 CFR...

  12. Phase transitions and damage spreading in a nonequilibrium lattice gas model with mixed dynamic rules

    NASA Astrophysics Data System (ADS)

    Rubio Puzzo, M. Leticia; Saracco, Gustavo P.; Bab, Marisa A.

    2016-02-01

    Phase transitions and damage spreading for a lattice gas model with mixed driven lattice gas (DLG)-Glauber dynamics are studied by means of Monte Carlo simulations. In order to control the number of sites updated according to the nonconservative Glauber dynamics, a parameter pɛ [ 0 , 1 ] is defined. In this way, for p = 0 the system corresponds to the DLG model with biased Kawasaki conservative dynamics, while for p = 1 it corresponds to the Ising model with Glauber dynamics. The results obtained show that the introduction of nonconservative dynamics dramatically affects the behavior of the DLG model, leading to the existence of Ising-like phase transitions from fully occupied to disordered states. The short-time dynamics results suggest that this transition is second order for values of p = 0.1 and p > 0.6 and first order for 0.1 < p ≤ 0.6. On the other hand, damage always spreads within the investigated temperature range and reaches a saturation value Dsat that depends on the system size, the temperature, and p. The value of Dsat in the thermodynamic limit is estimated by performing a finite-size analysis. For p < 0.6 the results show a change in the behavior of Dsat with temperature, similar to those reported for the pure (p = 0) DLG model. However, for p ≥ 0.6 the data remind us of the Ising (p = 1) curves. In each case, a damage temperature TD(p) can be defined as the value where either Dsat reaches a maximum or it becomes nonzero. This temperature is, within error bars, similar to the reported values of the temperatures that characterize the mentioned phase transitions.

  13. Finite-momentum superfluidity and phase transitions in a p-wave resonant Bose gas

    SciTech Connect

    Choi, Sungsoo; Radzihovsky, Leo

    2011-10-15

    We study a degenerate two-species gas of bosonic atoms interacting through a p-wave Feshbach resonance as, for example, realized in a {sup 85}Rb-{sup 87}Rb mixture. We show that, in addition to a conventional atomic and a p-wave molecular spinor-1 superfluidity at large positive and negative detunings, respectively, the system generically exhibits a finite-momentum atomic-molecular superfluidity at intermediate detuning around the unitary point. We analyze the detailed nature of the corresponding phases and the associated quantum and thermal phase transitions.

  14. Quantum Phase Transition Between a Luttinger Liquid and a Gas of Cold Molecules

    SciTech Connect

    Law, K. T.; Feldman, D. E.

    2008-08-29

    We consider cold polar molecules confined in a helical optical lattice similar to those used in holographic microfabrication. An external electric field polarizes molecules along the axis of the helix. The large-distance intermolecular dipolar interaction is attractive but the short-scale interaction is repulsive due to geometric constraints and thus prevents collapse. The interaction strength depends on the electric field. We show that a zero-temperature second-order liquid-gas transition occurs at a critical field. It can be observed under experimentally accessible conditions.

  15. Molecular-scale remnants of the liquid-gas transition in supercritical polar fluids.

    PubMed

    Sokhan, V P; Jones, A; Cipcigan, F S; Crain, J; Martyna, G J

    2015-09-11

    An electronically coarse-grained model for water reveals a persistent vestige of the liquid-gas transition deep into the supercritical region. A crossover in the density dependence of the molecular dipole arises from the onset of nonpercolating hydrogen bonds. The crossover points coincide with the Widom line in the scaling region but extend farther, tracking the heat capacity maxima, offering evidence for liquidlike and gaslike state points in a "one-phase" fluid. The effect is present even in dipole-limit models, suggesting that it is common for all molecular liquids exhibiting dipole enhancement in the liquid phase. PMID:26406855

  16. Critical temperature for the nuclear liquid-gas phase transition (from multifragmentation and fission)

    SciTech Connect

    Karnaukhov, V. A.; Oeschler, H.; Budzanowski, A.; Avdeyev, S. P.; Botvina, A. S.; Cherepanov, E. A.; Karcz, W.; Kirakosyan, V. V.; Rukoyatkin, P. A.; Skwirczynska, I.; Norbeck, E.

    2008-12-15

    Critical temperature T{sub c} for the nuclear liquid-gas phase transition is estimated from both the multifragmentation and fission data. In the first case, the critical temperature is obtained by analysis of the intermediate-mass-fragment yields in p(8.1 GeV) + Au collisions within the statistical model of multifragmentation. In the second case, the experimental fission probability for excited {sup 188}Os is compared with the calculated one with T{sub c} as a free parameter. It is concluded for both cases that the critical temperature is higher than 15 MeV.

  17. Molecular-Scale Remnants of the Liquid-Gas Transition in Supercritical Polar Fluids

    NASA Astrophysics Data System (ADS)

    Sokhan, V. P.; Jones, A.; Cipcigan, F. S.; Crain, J.; Martyna, G. J.

    2015-09-01

    An electronically coarse-grained model for water reveals a persistent vestige of the liquid-gas transition deep into the supercritical region. A crossover in the density dependence of the molecular dipole arises from the onset of nonpercolating hydrogen bonds. The crossover points coincide with the Widom line in the scaling region but extend farther, tracking the heat capacity maxima, offering evidence for liquidlike and gaslike state points in a "one-phase" fluid. The effect is present even in dipole-limit models, suggesting that it is common for all molecular liquids exhibiting dipole enhancement in the liquid phase.

  18. Application of four dimensional matrix for thermal analysis of Slovak transit gas pipeline by program FENIX

    NASA Astrophysics Data System (ADS)

    Széplaky, Dávid; Varga, Augustín

    2016-06-01

    The contribution describes the principle of the FENIX program operation, which was designed to determine the temperature field of the transit pipeline for the transportation of natural gas. The program itself consists of several modules which are reciprocally linked. The basis of the program is the elementary balance method by means of which the unsteady heat transfer is assigned in several layers in different directions. The first step was to assess both the pressure and temperature of the natural gas mode, the second step is to determine the heat transfer through the walls of the pipes, and the last one is to determine the distribution of the temperature field in the surroundings of the pipeline.

  19. Jet-gas interactions and hotspots in FR I/II transition sources

    NASA Astrophysics Data System (ADS)

    Worrall, Diana; Birkinshaw, Mark

    2016-07-01

    Sources with intermediate FR I/II morphologies, and with powers in the decade straddling the FR I/II boundary, provide an opportunity to understand triggers responsible for the different workings of the two classes. Illustrated by deep Chandra observations of several sources, this presentation will show evidence that the physics changes within the transition range, and the work done in driving shocks can exceed that in evacuating the cavities common in FR I sources. Hotspots can be absent, seen only on one side (jet-side or counter-jet-side), or both, in which case X-ray/radio correspondence can be very different on the two sides. Evidence will be shown for radio-emitting plasma running along boundaries between gas of different temperature, apparently lubricating the gas flows and inhibiting heat transfer.

  20. Surface and Column Aerosol Impacts of the United States' Natural Gas Transition

    NASA Astrophysics Data System (ADS)

    Burney, J. A.

    2015-12-01

    This paper quantifies the air pollution and climate impacts of the natural gas transition over the past decade in the United States. We integrate satellite and ground measurements with chemical transport modeling to understand the impact of of the large-scale shift from coal to natural gas on the quantity and chemical composition of column aerosol and surface particulate matter. We leverage the natural experiment of individual units that changed technologies (a sharp discontinuity) as well as state-level changes from old plants being taken offline and new ones being brought online (a soft discontinuity) and connect technology changes to emissions changes to detected aerosol / particulate matter changes. We use this methodology to estimate the size of the 'sulfate' mask due to coal consumption in the United States and understand more fully the climate implications of energy technology changes.

  1. Interfacial Friction in Gas-Liquid Annular Flow: Analogies to Full and Transition Roughness

    SciTech Connect

    Bauer, R.C.; Beus, S.G.; Fore, L.B.

    1999-03-01

    New film thickness and pressure gradient data were obtained in a 5.08 by 101.6 mm duct for nitrogen and water in annular flow. Pressures of 3.4 and 17 atm and temperatures of 38 and 93 C were used to vary the gas density and liquid viscosity. These data are used to compute interfacial shear stresses and interfacial friction factors for comparison with several accepted literature correlations. These comparisons are reasonable for small values of the relative film thickness. However, the new data cover conditions not approached by the data used to construct those correlations. By combining the current data with the results of two other comprehensive modern experimental studies, a new correlation for the interfacial friction factor has been developed. This correlation adds elements of transition roughness to Wallis' fully-rough analogy to better predict interfacial friction factors over a wide range of gas Reynolds numbers and liquid film thicknesses.

  2. Hydrodynamics during the Deconfinement Phase Transition from a Hadronic Gas to a Colorless QGP

    NASA Astrophysics Data System (ADS)

    Ladrem, M.; Zaki-Al-Full, Z.; Herbadji, S.

    2011-10-01

    The collective flow of hot and dense matter (partonic plasma and hadronic gas) created in an ultra relativistic heavy ion collision can be usually described by hydrodynamics if only the thermalization is achieved and if it can be locally maintained during the subsequent expansion. It requires knowledge of the equation of state, which gives a relation between pressure P, energy density ɛ, entropy density s and sound velocitycs, but no detailed knowledge of the microscopic dynamics. After the study of these hydrodynamical collective observables in a previous work, we investigate in the present work some correlations between them outshining some relevant features of the equation of state and the hydrodynamical expansion of the system undergoing a deconfinement phase transition from hadronic gas to colorless quark gluon plasma. We also investigate the finite volume effect on the collective dynamical evolution of the system.

  3. Hydrodynamics during the Deconfinement Phase Transition from a Hadronic Gas to a Colorless QGP

    SciTech Connect

    Ladrem, M.; Zaki-Al-Full, Z.; Herbadji, S.

    2011-10-27

    The collective flow of hot and dense matter (partonic plasma and hadronic gas) created in an ultra relativistic heavy ion collision can be usually described by hydrodynamics if only the thermalization is achieved and if it can be locally maintained during the subsequent expansion. It requires knowledge of the equation of state, which gives a relation between pressure P, energy density {epsilon}, entropy density s and sound velocityc{sub s}, but no detailed knowledge of the microscopic dynamics. After the study of these hydrodynamical collective observables in a previous work, we investigate in the present work some correlations between them outshining some relevant features of the equation of state and the hydrodynamical expansion of the system undergoing a deconfinement phase transition from hadronic gas to colorless quark gluon plasma. We also investigate the finite volume effect on the collective dynamical evolution of the system.

  4. Two-dimensional imaging of gas-to-particle transition in flames by laser-induced nanoplasmas

    NASA Astrophysics Data System (ADS)

    Zhang, Yiyang; Li, Shuiqing; Ren, Yihua; Yao, Qiang; Law, Chung K.

    2014-01-01

    Two-dimensional imaging of gas/particle phase transition of metal oxides in their native high-temperature flow conditions, using laser-driven localized nanoplasmas, was obtained by utilizing the gap between the excitation energies of the gas and particle phases such that only the Ti atoms in the particle phase were selectively excited without detectable Bremsstrahlung background. These in situ images of the particle phase Ti distribution allow the quantitative visualization of the transition of the gas precursors to the nanoparticle phase across the flame sheet as well as diffusion of the particle concentration in the post-flame zone.

  5. Two-dimensional imaging of gas-to-particle transition in flames by laser-induced nanoplasmas

    SciTech Connect

    Zhang, Yiyang; Li, Shuiqing Ren, Yihua; Yao, Qiang; Law, Chung K.

    2014-01-13

    Two-dimensional imaging of gas/particle phase transition of metal oxides in their native high-temperature flow conditions, using laser-driven localized nanoplasmas, was obtained by utilizing the gap between the excitation energies of the gas and particle phases such that only the Ti atoms in the particle phase were selectively excited without detectable Bremsstrahlung background. These in situ images of the particle phase Ti distribution allow the quantitative visualization of the transition of the gas precursors to the nanoparticle phase across the flame sheet as well as diffusion of the particle concentration in the post-flame zone.

  6. IMPROVED log(gf) VALUES FOR LINES OF Ti I AND ABUNDANCE DETERMINATIONS IN THE PHOTOSPHERES OF THE SUN AND METAL-POOR STAR HD 84937 (ACCURATE TRANSITION PROBABILITIES FOR Ti I)

    SciTech Connect

    Lawler, J. E.; Guzman, A.; Wood, M. P.; Sneden, C.; Cowan, J. J. E-mail: adrianaguzman2014@u.northwestern.edu E-mail: chris@verdi.as.utexas.edu

    2013-04-01

    New atomic transition probability measurements for 948 lines of Ti I are reported. Branching fractions from Fourier transform spectra and from spectra recorded using a 3 m echelle spectrometer are combined with published radiative lifetimes from laser-induced fluorescence measurements to determine these transition probabilities. Generally good agreement is found in comparisons to the NIST Atomic Spectra Database. The new Ti I data are applied to re-determine the Ti abundance in the photospheres of the Sun and metal-poor star HD 84937 using many lines covering a range of wavelength and excitation potential to explore possible non-local thermal equilibrium effects. The variation of relative Ti/Fe abundance with metallicity in metal-poor stars observed in earlier studies is supported in this study.

  7. An experimental trace gas investigation of fluid transport and mixing in a circular-to-rectangular transition duct

    NASA Technical Reports Server (NTRS)

    Reichert, B. A.; Hingst, W. R.; Okiishi, T. H.

    1991-01-01

    An ethylene trace gas technique was used to map out fluid transport and mixing within a circular-to-rectangular transition duct. Ethylene gas was injected at several points in a cross stream plane upstream of the transition duct. Ethylene concentration contours were determined at several cross stream measurement planes spaced axially within the duct. The flow involved a uniform inlet flow at a Mach number level of 0.5. Statistical analyses were used to quantitatively interpret the trace gas results. Also, trace gas data were considered along with aerodynamic and surface flow visualization results to ascertain transition duct flow phenomena. Convection of wall boundary layer fluid by vortices produced regions of high total pressure loss in the duct. The physical extent of these high loss regions is governed by turbulent diffusion.

  8. An experimental trace gas investigation of fluid transport and mixing in a circular-to-rectangular transition duct

    NASA Technical Reports Server (NTRS)

    Reichert, B. A.; Hingst, W. R.; Okiishi, T. H.

    1991-01-01

    An ethylene trace gas technique was used to map out fluid transport and mixing within a circular to rectangular transition duct. Ethylene gas was injected at several points in a cross stream plane upstream of the transition duct. Ethylene concentration contours were determined at several cross stream measurement planes spaced axially within the duct. The flow involved a uniform inlet flow at a Mach number level of 0.5. Statistical analyses were used to quantitatively interpret the trace gas results. Also, trace gas data were considered along with aerodynamic and surface flow visualization results to ascertain transition duct flow phenomena. Convection of wall boundary layer fluid by vortices produced regions of high total pressure loss in the duct. The physical extent of these high loss regions is governed by turbulent diffusion.

  9. Observation of 2D Ising criticality of liquid-gas transition by the flowgram method

    NASA Astrophysics Data System (ADS)

    Yarmolinsky, Max; Kuklov, Anatoly

    We study the critical properties of the transition in 2D liquid-gas system with the square-well potential interaction by Monte Carlo simulations in the grand canonical ensemble. Due to lack of the underlying Ising symmetry, the analysis cannot be done reliably by the standard methods applicable to lattice systems. In contrast, the analysis based on the flowgram method allowed us to find the critical point to significantly higher (and controllable) accuracy than in previous studies by other authors. Simulations were performed in a progression of sizes L up to size L = 84 , with the particle numbers varying over 3 orders of magnitude and the subcritical behavior not extending beyond L = 10 - 15 . The finite size scaling analysis of the critical exponents and their ratio, μ and γ / ν , gives values consistent with the 2D Ising universality class within 1-2% of errors. Our result essentially closes proposals that the nature of the liquid-gas transition might be different from the Ising model in systems with short-range interactions. This work was supported by the NSF Grant PHY1314469.

  10. Realization of a multipath ultrasonic gas flowmeter based on transit-time technique.

    PubMed

    Chen, Qiang; Li, Weihua; Wu, Jiangtao

    2014-01-01

    A microcomputer-based ultrasonic gas flowmeter with transit-time method is presented. Modules of the flowmeter are designed systematically, including the acoustic path arrangement, ultrasound emission and reception module, transit-time measurement module, the software and so on. Four 200 kHz transducers forming two acoustic paths are used to send and receive ultrasound simultaneously. The synchronization of the transducers can eliminate the influence caused by the inherent switch time in simple chord flowmeter. The distribution of the acoustic paths on the mechanical apparatus follows the Tailored integration, which could reduce the inherent error by 2-3% compared with the Gaussian integration commonly used in the ultrasonic flowmeter now. This work also develops timing modules to determine the flight time of the acoustic signal. The timing mechanism is different from the traditional method. The timing circuit here adopts high capability chip TDC-GP2, with the typical resolution of 50 ps. The software of Labview is used to receive data from the circuit and calculate the gas flow value. Finally, the two paths flowmeter has been calibrated and validated on the test facilities for air flow in Shaanxi Institute of Measurement & Testing. PMID:23809902

  11. Contact line motion in confined liquid-gas systems: Slip versus phase transition

    NASA Astrophysics Data System (ADS)

    Xu, Xinpeng; Qian, Tiezheng

    2010-11-01

    In two-phase flows, the interface intervening between the two fluid phases intersects the solid wall at the contact line. A classical problem in continuum fluid mechanics is the incompatibility between the moving contact line and the no-slip boundary condition, as the latter leads to a nonintegrable stress singularity. Recently, various diffuse-interface models have been proposed to explain the contact line motion using mechanisms missing from the sharp-interface treatments in fluid mechanics. In one-component two-phase (liquid-gas) systems, the contact line can move through the mass transport across the interface while in two-component (binary) fluids, the contact line can move through diffusive transport across the interface. While these mechanisms alone suffice to remove the stress singularity, the role of fluid slip at solid surface needs to be taken into account as well. In this paper, we apply the diffuse-interface modeling to the study of contact line motion in one-component liquid-gas systems, with the fluid slip fully taken into account. The dynamic van der Waals theory has been presented for one-component fluids, capable of describing the two-phase hydrodynamics involving the liquid-gas transition [A. Onuki, Phys. Rev. E 75, 036304 (2007)]. This theory assumes the local equilibrium condition at the solid surface for density and also the no-slip boundary condition for velocity. We use its hydrodynamic equations to describe the continuum hydrodynamics in the bulk region and derive the more general boundary conditions by introducing additional dissipative processes at the fluid-solid interface. The positive definiteness of entropy production rate is the guiding principle of our derivation. Numerical simulations based on a finite-difference algorithm have been carried out to investigate the dynamic effects of the newly derived boundary conditions, showing that the contact line can move through both phase transition and slip, with their relative contributions

  12. Contact line motion in confined liquid-gas systems: Slip versus phase transition.

    PubMed

    Xu, Xinpeng; Qian, Tiezheng

    2010-11-28

    In two-phase flows, the interface intervening between the two fluid phases intersects the solid wall at the contact line. A classical problem in continuum fluid mechanics is the incompatibility between the moving contact line and the no-slip boundary condition, as the latter leads to a nonintegrable stress singularity. Recently, various diffuse-interface models have been proposed to explain the contact line motion using mechanisms missing from the sharp-interface treatments in fluid mechanics. In one-component two-phase (liquid-gas) systems, the contact line can move through the mass transport across the interface while in two-component (binary) fluids, the contact line can move through diffusive transport across the interface. While these mechanisms alone suffice to remove the stress singularity, the role of fluid slip at solid surface needs to be taken into account as well. In this paper, we apply the diffuse-interface modeling to the study of contact line motion in one-component liquid-gas systems, with the fluid slip fully taken into account. The dynamic van der Waals theory has been presented for one-component fluids, capable of describing the two-phase hydrodynamics involving the liquid-gas transition [A. Onuki, Phys. Rev. E 75, 036304 (2007)]. This theory assumes the local equilibrium condition at the solid surface for density and also the no-slip boundary condition for velocity. We use its hydrodynamic equations to describe the continuum hydrodynamics in the bulk region and derive the more general boundary conditions by introducing additional dissipative processes at the fluid-solid interface. The positive definiteness of entropy production rate is the guiding principle of our derivation. Numerical simulations based on a finite-difference algorithm have been carried out to investigate the dynamic effects of the newly derived boundary conditions, showing that the contact line can move through both phase transition and slip, with their relative contributions

  13. Microphase formation at a 2D solid-gas phase transition.

    PubMed

    Schuman, Adam W; Bsaibes, Thomas S; Schlossman, Mark L

    2014-10-01

    Density modulated micro-separated phases (microphases) occur at 2D liquid interfaces in the form of alternating regions of high and low density domains. Brewster angle microscopy (BAM) images demonstrate the existence of microphases in cluster, stripe, and mosaic morphologies at the buried interface between hexane and water with fluoro-alkanol surfactant dissolved in the bulk hexane. At high temperature, the surfactant assembles at the interface in a 2D gaseous state. As the system is cooled additional surfactants condense onto the interface, which undergoes a 2D gas-solid phase transition. Microphase structure is observed within a few degrees of this transition in the form of clusters and labyrinthine stripes. Microphases have been observed previously in a number of other systems; nevertheless, we demonstrate that adsorption transitions at the liquid-liquid interface provide a convenient way to observe a full sequence of temperature-dependent 2D phases, from gas to cluster to stripe to mosaic to inverted stripe phases, as well as coexistence between some of these microphases. Cracking and fracture of the clusters reveal that they are a solid microphase. Theories of microphases often predict a single length scale for cluster and stripe phases as a result of the competition between an attractive and a repulsive interaction. Our observation that two characteristic length scales are required to describe clusters whose diameter is much larger than the stripe period, combined with the solid nature of the clusters, suggests that a long-range elastic interaction is relevant. These results complement earlier X-ray measurements on the same system. PMID:25088351

  14. Coherent Control of Multiphoton Transitions in the Gas and Condensed Phases with Shaped Ultrashort Pulses

    SciTech Connect

    Marcos Dantus

    2008-09-23

    Controlling laser-molecule interactions has become an integral part of developing devices and applications in spectroscopy, microscopy, optical switching, micromachining and photochemistry. Coherent control of multiphoton transitions could bring a significant improvement of these methods. In microscopy, multi-photon transitions are used to activate different contrast agents and suppress background fluorescence; coherent control could generate selective probe excitation. In photochemistry, different dissociative states are accessed through two, three, or more photon transitions; coherent control could be used to select the reaction pathway and therefore the yield-specific products. For micromachining and processing a wide variety of materials, femtosecond lasers are now used routinely. Understanding the interactions between the intense femtosecond pulse and the material could lead to technologically important advances. Pulse shaping could then be used to optimize the desired outcome. The scope of our research program is to develop robust and efficient strategies to control nonlinear laser-matter interactions using ultrashort shaped pulses in gas and condensed phases. Our systematic research has led to significant developments in a number of areas relevant to the AMO Physics group at DOE, among them: generation of ultrashort phase shaped pulses, coherent control and manipulation of quantum mechanical states in gas and condensed phases, behavior of isolated molecules under intense laser fields, behavior of condensed phase matter under intense laser field and implications on micromachining with ultrashort pulses, coherent control of nanoparticles their surface plasmon waves and their nonlinear optical behavior, and observation of coherent Coulomb explosion processes at 10^16 W/cm^2. In all, the research has resulted in 36 publications (five journal covers) and nine invention disclosures, five of which have continued on to patenting

  15. Gas and dust hydrodynamical simulations of massive lopsided transition discs - II. Dust concentration

    NASA Astrophysics Data System (ADS)

    Baruteau, Clément; Zhu, Zhaohuan

    2016-06-01

    We investigate the dynamics of large dust grains in massive lopsided transition discs via 2D hydrodynamical simulations including both gas and dust. Our simulations adopt a ring-like gas density profile that becomes unstable against the Rossby-wave instability and forms a large crescent-shaped vortex. When gas self-gravity is discarded, but the indirect force from the displacement of the star by the vortex is included, we confirm that dust grains with stopping times of order the orbital time, which should be typically a few centimetres in size, are trapped ahead of the vortex in the azimuthal direction, while the smallest and largest grains concentrate towards the vortex centre. We obtain maximum shift angles of about 25°. Gas self-gravity accentuates the concentration differences between small and large grains. At low to moderate disc masses, the larger the grains, the farther they are trapped ahead of the vortex. Shift angles up to 90° are reached for 10 cm-sized grains, and we show that such large offsets can produce a double-peaked continuum emission observable at mm/cm wavelengths. This behaviour comes about because the large grains undergo horseshoe U-turns relative to the vortex due to the vortex's gravity. At large disc masses, since the vortex's pattern frequency becomes increasingly slower than Keplerian, small grains concentrate slightly beyond the vortex and large grains form generally non-axisymmetric ring-like structures around the vortex's radial location. Gas self-gravity therefore imparts distinct trapping locations for small and large dust grains, which may be probed by current and future observations.

  16. Gas6 induces cancer cell migration and epithelial–mesenchymal transition through upregulation of MAPK and Slug

    SciTech Connect

    Lee, Yunhee; Lee, Mira; Kim, Semi

    2013-04-26

    Highlights: •We investigated the molecular mechanisms underlying Gas6-mediated cancer cell migration. •Gas6 treatment and subsequent Axl activation induce cell migration and EMT via upregulation of Slug. •Slug expression mediated by Gas6 is mainly through c-Jun and ATF-2 in an ERK1/2 and JNK-dependent manner. •The Gas6/Axl-Slug axis may be exploited as a target for anti-cancer metastasis therapy. -- Abstract: Binding of Gas6 to Axl (Gas6/Axl axis) alters cellular functions, including migration, invasion, proliferation, and survival. However, the molecular mechanisms underlying Gas6-mediated cell migration remain poorly understood. In this study, we found that Gas6 induced the activation of JNK and ERK1/2 signaling in cancer cells expressing Axl, resulting in the phosphorylation of activator protein-1 (AP-1) transcription factors c-Jun and ATF-2, and induction of Slug. Depletion of c-Jun or ATF-2 by siRNA attenuated the Gas6-induced expression of Slug. Slug expression was required for cell migration and E-cadherin reduction/vimentin induction induced by Gas6. These results suggest that Gas6 induced cell migration via Slug upregulation in JNK- and ERK1/2-dependent mechanisms. These data provide an important insight into the molecular mechanisms mediating Gas6-induced cell migration.

  17. Gas exchange pattern transitions in the workers of the harvester termite.

    PubMed

    Inder, Isabelle M; Duncan, Frances D

    2015-04-01

    The evolutionary genesis and the current adaptive significance of the use of the discontinuous gas exchange cycle (DGC) for respiration by insects is the subject of intense debate. Years of research have resulted in several leading hypotheses, one of which is the emergent-property hypothesis. This hypothesis states that DGC is an emergent property or consequence of interactions between the O2 and CO2 set points that regulate spiracular function, i.e. opening and closing. Workers of the harvester termite, Hodotermes mossambicus were selected as a model to test this hypothesis. The respiratory patterns of major workers, investigated using flow-through respirometry, were obtained at 100% relative humidity (RH) under varying temperature to evaluate the assumptions of the emergent-property hypothesis. Metabolic rate, measured as VCO2 increased significantly after 15 °C. As VCO2 increased in response to increasing temperature and activity, the gas exchange pattern displayed by workers transitioned to a continuous gas exchange. A true DGC, defined as showing all three phases and a coefficient of variation value close to 2, was not expressed under the experimental conditions. The conclusion drawn from this study of termite workers is that changes in respiratory patterns are most likely an emergent property of the insects' nervous and respiratory system. PMID:25770978

  18. Gas content of transitional disks: a VLT/X-Shooter study of accretion and winds

    NASA Astrophysics Data System (ADS)

    Manara, C. F.; Testi, L.; Natta, A.; Rosotti, G.; Benisty, M.; Ercolano, B.; Ricci, L.

    2014-08-01

    Context. Transitional disks are thought to be a late evolutionary stage of protoplanetary disks whose inner regions have been depleted of dust. The mechanism responsible for this depletion is still under debate. To constrain the various models it is mandatory to have a good understanding of the properties of the gas content in the inner part of the disk. Aims: Using X-Shooter broad band - UV to near-infrared - medium-resolution spectroscopy, we derive the stellar, accretion, and wind properties of a sample of 22 transitional disks. The analysis of these properties allows us to place strong constraints on the gas content in a region very close to the star (≲0.2 AU) that is not accessible with any other observational technique. Methods: We fitted the spectra with a self-consistent procedure to simultaneously derive spectral type, extinction, and accretion properties of the targets. From the continuum excess at near-infrared wavelength we distinguished whether our targets have dust free inner holes. By analyzing forbidden emission lines, we derived the wind properties of the targets. We then compared our findings with results for classical T Tauri stars. Results: The accretion rates and wind properties of 80% of the transitional disks in our sample, which is strongly biased toward stongly accreting objects, are comparable to those of classical T Tauri stars. Thus, there are (at least) some transitional disks with accretion properties compatible with those of classical T Tauri stars, irrespective of the size of the dust inner hole. Only in two cases are the mass accretion rates much lower, while the wind properties remain similar. We detected no strong trend of the mass accretion rates with the size of the dust-depleted cavity or with the presence of a dusty optically thick disk very close to the star. These results suggest that, close to the central star, there is a gas-rich inner disk with a density similar to that of classical T Tauri star disks. Conclusions: The

  19. Asymptotic behavior of apparent generalized oscillator strengths for optically forbidden transitions in rare-gas atoms

    SciTech Connect

    Suzuki, T. Y.; Suzuki, H.; Ohtani, S.; Takayanagi, T.; Okada, K.

    2007-03-15

    Apparent generalized oscillator strengths (apparent GOS's) have been measured for three types of optically forbidden transitions in rare-gas atoms as functions of the squared momentum transfer K{sup 2} at small K{sup 2} range ({<=}0.4 a.u.). The apparent GOS's were deduced from the differential cross sections for excitation, which were measured by means of the electron energy-loss spectroscopy. Electron impact energies were 100, 300, and 500 eV, and the scattering angles were from 0.8 degree sign to 10 degree sign . In the case where the first Born approximation does not hold, the apparent GOS as a function of K{sup 2} (the apparent GOS function) shows characteristic dependence on the electron collision energy according to the character of the transition. In the present observation, for the np{sup 6} {sup 1}S{sub 0}{yields}np{sup 5}(n+1)p{sup '}[1/2]{sub 0} transitions, the specific behavior has been observed in the apparent GOS functions characteristic of that for the {sup 1}S{sub 0}{yields}{sup 1}S{sub 0} type transition, in which the term symbols of the initial and the final states do not change. For the np{sup 6} {sup 1}S{sub 0}{yields}np{sup 5}(n+1)p[5/2]{sub 2,3}; [3/2]{sub 1,2} transitions, a certain new type of deviations from the first Born approximation, which is interpreted to be characteristic of the {sup 1}S{sub 0}{yields}{sup 1}D{sub 2} type transition, have been observed in the apparent GOS functions with some modifications depending on respective atomic species. For the 5p{sup 6} {sup 1}S{sub 0}{yields}5p{sup 5}5d [7/2]{sub 3}; [5/2]{sub 3} transitions in Xe, it is observed that the apparent GOS curves have no impact energy dependence for impact energies from 100 eV to 500 eV, which suggests that the first Born approximation is valid for such low impact energies and the curves agree with the Bethe-GOS. It is found that the GOS's varies in proportional to K{sup 4} at small K{sup 2} region ({<=}0.1 a.u.), which suggests that the octupole moment is

  20. Body Dissatisfaction, Living Away from Parents, and Poor Social Adjustment Predict Binge Eating Symptoms in Young Women Making the Transition to University

    ERIC Educational Resources Information Center

    Barker, Erin T.; Galambos, Nancy L.

    2007-01-01

    The current study explored how body dissatisfaction and challenges associated with the transition to university predicted symptoms of binge eating. Participants were 101 female full-time first-year university students (M=18.3 years of age; SD=0.50) who completed a background questionnaire and a web-based daily checklist assessing binge eating.…

  1. Education and Change in Rich, Poor and National Minority Areas in China: Two Decades of Transition. CREATE Pathways to Access. Research Monograph No. 61

    ERIC Educational Resources Information Center

    Lewin, Keith M.; Lu, Wang

    2011-01-01

    This study traces education and change over two decades in three areas, Tongzhou on the periphery of Beijing chosen as one of the richest 300 counties in 1990; Ansai in Yan'an which was one of the poorest 300 counties and a famous base for the 8th Route Army at the end of the Long March, and Zhaojue a poor Yi national minority area in the…

  2. Polaron-molecule transitions in a two-dimensional Fermi gas

    SciTech Connect

    Parish, Meera M.

    2011-05-15

    We address the problem of a single 'spin-down' impurity atom interacting attractively with a spin-up Fermi gas in two dimensions (2D). We consider the case where the mass of the impurity is greater than or equal to the mass of a spin-up fermion. Using a variational approach, we resolve the questions raised by previous studies and show that there is, in fact, a transition between polaron and molecule (dimer) ground states in 2D. For the molecule state, we use a variational wave function with a single particle-hole excitation on the Fermi sea and we find that its energy matches that of the exact solution in the limit of infinite impurity mass. Thus, we expect the variational approach to provide a reliable tool for investigating 2D systems.

  3. Structural and technological changes of greenhouse gas emissions during the transition period in Polish industry

    NASA Astrophysics Data System (ADS)

    Pasierb, Slawomir; Niedziela, Karol; Wojtulewicz, Jerzy

    1996-01-01

    We analyzed the patterns of energy use and greenhouse gas (GHG) emissions in Polish industry arising during the transition from a centrally planned economy to a market economy. A method of analyzing industry energy use and GHG emissions is discussed. Using this method, the impact of changes in industrial production value, the share of specific industry branches in the total industrial production, energy intensity, and the mix of the energy carriers in the 1989 1993 period has been analyzed. The last year of the analyzed period shows favorable trends in efficiency and signs of production structure shift to a less energy-intensive one. Economic reform implemented after 1989, which released energy carriers' prices from government control, had important effects on the industrial sector. Energy efficiency and emission intensity trends of 1992 1994 were favorable; if they continue, production will return to 1989 levels with much lower energy consumption and significantly decreased GHG emissions.

  4. Gas-phase electronic transitions of C₁₇H₁₂N⁺ at 15 K.

    PubMed

    Hardy, F-X; Rice, C A; Gause, O; Maier, J P

    2015-03-01

    The electronic spectrum of C17H12N(+), phenanthrene with a side chain, was measured in the gas phase at a vibrational and rotational temperature of ∼15 K in an ion trap using a resonant multiphoton dissociation technique. The C17H12N(+) structure was produced in a chemical ionization source and identified by a comparison with theoretical calculations of stable structures and excitation energies. The (3), (2), (1) (1)A ← X (1)A electronic transitions of this nitrogen-containing aromatic species with 30 atoms have origin band maxima at 23,586 ± 1 cm(-1), 16,120 ± 50 cm(-1), and 14,519 ± 30 cm(-1). Distinct vibrational structure in the (3) (1)A state is observed, and assignments are made. Astronomical aspects are considered. PMID:25264926

  5. Dynamic Modeling Strategy for Flow Regime Transition in Gas-Liquid Two-Phase Flows

    SciTech Connect

    Xia Wang; Xiaodong Sun; Benjamin Doup; Haihua Zhao

    2012-12-01

    In modeling gas-liquid two-phase flows, the concept of flow regimes has been widely used to characterize the global interfacial structure of the flows. Nearly all constitutive relations that provide closures to the interfacial transfers in two-phase flow models, such as the two-fluid model, are flow regime dependent. Current nuclear reactor safety analysis codes, such as RELAP5, classify flow regimes using flow regime maps or transition criteria that were developed for steady-state, fully-developed flows. As twophase flows are dynamic in nature, it is important to model the flow regime transitions dynamically to more accurately predict the two-phase flows. The present work aims to develop a dynamic modeling strategy to determine flow regimes in gas-liquid two-phase flows through introduction of interfacial area transport equations (IATEs) within the framework of a two-fluid model. The IATE is a transport equation that models the interfacial area concentration by considering the creation of the interfacial area, fluid particle (bubble or liquid droplet) disintegration, boiling and evaporation, and the destruction of the interfacial area, fluid particle coalescence and condensation. For flow regimes beyond bubbly flows, a two-group IATE has been proposed, in which bubbles are divided into two groups based on their size and shapes, namely group-1 and group-2 bubbles. A preliminary approach to dynamically identify the flow regimes is discussed, in which discriminator s are based on the predicted information, such as the void fraction and interfacial area concentration. The flow regime predicted with this method shows good agreement with the experimental observations.

  6. Phase transition dynamics of liquid phase precipitation from a supersaturated gas mixture.

    PubMed

    Pines, V; Zlatkowski, M; Chait, A

    2004-11-01

    This work presents a self-consistent description of phase transition dynamics of disperse liquid phase precipitating from a supersaturated gas mixture. The unified approach integrates the macroscale transport phenomena of cloud dynamics with the essential microphysical kinetic processes of droplet condensation, evaporation, and droplet collisions simultaneously taking place in stochastic population of liquid droplets. A complete set of governing equations with well-defined dissipative fluxes and kinetic rates is derived for phase transition dynamics from nucleation to postnucleation to coarsening stages. The local thermodynamics of precipitating system, which is considered as ternary mixture of disperse liquid phase and water vapor with dry air, is redefined to explicitly include on equal basis both the vapor content and liquid content into the fundamental thermodynamic relations and equation of state. The molecular kinetic flux regularization method for growth of submicron droplets is reexamined to include, among others, significant contribution of vapor molecular energy flux into total heat flux, resulting in new expressions for the droplet temperature, growth rate, and effective diffusion coefficients. The local kinetic rates are determined on the basis of microscale kinetic equation for the droplet distribution function. This is in contrast to commonly used semiempirical parametrization schemes for kinetic rates with adjustable parameters, wherein the probabilistic aspects of microphysical processes are not rigorously addressed. Stochastic diffusion interactions among droplets competing for the available water vapor and modifications in the kinetic equation for droplets growing in stochastic population with direct long-range diffusion interactions amongst them are discussed and formulated as well. PMID:15527359

  7. Reentrant Phenomenon in the Quantum Phase Transitions of a Gas of Bosons Trapped in an Optical Lattice

    NASA Astrophysics Data System (ADS)

    Kleinert, H.; Schmidt, S.; Pelster, A.

    2004-10-01

    We calculate the location of the quantum phase transitions of a Bose gas trapped in an optical lattice as a function of effective scattering length aeff and temperature T. Knowledge of recent high-loop results on the shift of the critical temperature at weak couplings is used to locate a nose in the phase diagram above the free Bose-Einstein critical temperature T(0)c, thus predicting the existence of a reentrant transition above T(0)c, where a condensate should form when increasing aeff. At zero temperature, the transition to the normal phase produces the experimentally observed Mott insulator.

  8. Mean-field dynamics of the superfluid-insulator phase transition in a gas of ultracold atoms

    NASA Astrophysics Data System (ADS)

    Zakrzewski, Jakub

    2005-04-01

    A large-scale dynamical simulation of the superfluid-Mott-insulator transition in a gas of ultracold atoms placed in an optical lattice is performed using the time-dependent Gutzwiller mean-field approach. This approximate treatment allows us to take into account most of the details of the recent experiment [Greiner , Nature (London) 415, 39 (2002)] where by changing the depth of the lattice potential an adiabatic transition from a superfluid to a Mott insulator state has been reported. Our simulations reveal a significant excitation of the system with a transition to insulator in restricted regions of the trap only.

  9. Study of the spray to globular transition in gas metal arc welding: a spectroscopic investigation

    NASA Astrophysics Data System (ADS)

    Valensi, F.; Pellerin, S.; Castillon, Q.; Boutaghane, A.; Dzierzega, K.; Zielinska, S.; Pellerin, N.; Briand, F.

    2013-06-01

    The gas metal arc welding (GMAW) process is strongly influenced by the composition of the shielding gas. In particular, addition of CO2 increases the threshold current for the transition from unstable globular to more stable spray transfer mode. We report on the diagnostics—using optical emission spectroscopy—of a GMAW plasma in pure argon and in mixtures of argon, CO2 and N2 while operated in spray and globular transfer modes. The spatially resolved plasma parameters are obtained by applying the Abel transformation to laterally integrated emission data. The Stark widths of some iron lines are used to determine both electron density and temperature, and line intensities yield relative contents of neutral and ionized iron to argon. Our experimental results indicate a temperature drop on the arc axis in the case of spray arc transfer. This drop reduces with addition of N2 and disappears in globular transfer mode when CO2 is added. Despite the temperature increase, the electron density decreases with CO2 concentration. The highest concentration of iron is observed in the plasma column upper part (close to the anode) and for GMAW with CO2. Our results are compared with recently published works where the effect of non-homogeneous metal vapour concentration has been taken into account.

  10. Dynamics of a driven quantum gas: Non-hermiticity, pseudo-spectra and phase transitions

    NASA Astrophysics Data System (ADS)

    Makris, Konstantinos; Kulkarni, Manas; Tureci, Hakan

    2015-03-01

    System of an optically driven quantum gas coupled to a single mode of a leaky cavity offers a unique platform to study open quantum systems. This system displays two exceptional points and a quantum critical point when the drive strength (equivalently, the light-matter coupling) is tuned. Here, we study the non-normal properties of this system especially near these special points. Adapting the rich mathematics behind the theory of pseudo-spectra, we characterize the open quantum phase transitions in this system by studying the fluctuations. Our method offers a novel way to understand physics near criticality beyond the traditional approach of arriving at a phase diagram using the semi-classical solutions arising from a mean field approach. We further show that the quench dynamics of a driven dissipative quantum gas displays a non-Markovian dynamics featuring substantial transient amplification of the photon flux near the critical point. We also investigate the non-Hermitian physics behind two-operator products thereby shining light on higher order quantum correlations in an open quantum system.

  11. Transition from gas to plasma kinetic equilibria in gravitating axisymmetric structures

    SciTech Connect

    Cremaschini, Claudio; Stuchlík, Zdeněk

    2014-04-15

    The problem of the transition from gas to plasma in gravitating axisymmetric structures is addressed under the assumption of having initial and final states realized by kinetic Maxwellian-like equilibria. In astrophysics, the theory applies to accretion-disc scenarios around compact objects. A formulation based on non-relativistic kinetic theory for collisionless systems is adopted. Equilibrium solutions for the kinetic distribution functions describing the initial neutral matter and the resulting plasma state are constructed in terms of single-particle invariants and expressed by generalized Maxwellian distributions. The final plasma configuration is related to the initial gas distribution by the introduction of appropriate functional constraints. Qualitative aspects of the solution are investigated and physical properties of the system are pointed out. In particular, the admitted functional dependences of the fluid fields carried by the corresponding equilibrium distributions are determined. Then, the plasma is proved to violate the condition of quasi-neutrality, implying a net charge separation between ions and electrons. This result is shown to be independent of the precise realization of the plasma distribution function, while a physical mechanism able to support a non-neutral equilibrium state is proposed.

  12. Critical dynamics of the jamming transition in one-dimensional nonequilibrium lattice-gas models

    NASA Astrophysics Data System (ADS)

    Priyanka; Jain, Kavita

    2016-04-01

    We consider several one-dimensional driven lattice-gas models that show a phase transition in the stationary state between a high-density fluid phase in which the typical length of a hole cluster is of order unity and a low-density jammed phase where a hole cluster of macroscopic length forms in front of a particle. Using a hydrodynamic equation for an interface growth model obtained from the driven lattice-gas models of interest here, we find that in the fluid phase, the roughness exponent and the dynamic exponent that, respectively, characterize the scaling of the saturation width and the relaxation time of the interface with the system size are given by the Kardar-Parisi-Zhang exponents. However, at the critical point, we show analytically that when the equal-time density-density correlation function decays slower than inverse distance, the roughness exponent varies continuously with a parameter in the hop rates, but it is one-half otherwise. Using these results and numerical simulations for the density-density autocorrelation function, we further find that the dynamic exponent z =3 /2 in all cases.

  13. Radio Continuum Variability and Molecular Gas Reservoirs in the Type-Transitioning Seyfert Galaxy Mrk 590

    NASA Astrophysics Data System (ADS)

    Koay, Jun Yi; Vestergaard, Marianne; Casasola, Viviana; Peterson, Bradley M.

    2015-08-01

    Sometime between 2006 and 2012, the broad Hβ emission line of Mrk 590, once classified as a bona-fide Seyfert 1 galaxy, has completely disappeared! The optical-UV continuum emission has decreased to the point where it can be fully accounted for by stellar population models of the host galaxy. As such, Mrk 590 would now be classified as a Seyfert 1.9 or 2 galaxy, which goes against the prevailing scheme of AGN classification and unification where the presence of broad emission lines depends only on source orientation. Similar decreases in X-ray and radio continuum fluxes show that the central engine of Mrk 590 may be turning off or transitioning into a radiatively inefficient mode of accretion. We discuss the origin of the compact, unresolved radio emission in Mrk 590 and the physics of its variability in relation to the variability observed at other wavelengths, based on archival radio data and new VLBI observations. We also present recent ALMA observations of the CO(3-2) spectral line and sub-mm continuum emission; these provide the strongest limits to date on the molecular gas mass in the central ~100 pc, plus reveal the gas distribution and kinematics in the central kpc, to determine if this intriguing AGN is indeed running out of fuel.

  14. Unregulated emissions from compressed natural gas (CNG) transit buses configured with and without oxidation catalyst.

    PubMed

    Okamoto, Robert A; Kado, Norman Y; Kuzmicky, Paul A; Ayala, Alberto; Kobayashi, Reiko

    2006-01-01

    The unregulated emissions from two in-use heavy-duty transit buses fueled by compressed natural gas (CNG) and equipped with oxidation catalyst (OxiCat) control were evaluated. We tested emissions from a transit bus powered by a 2001 Cummins Westport C Gas Plus 8.3-L engine (CWest), which meets the California Air Resources Board's (CARB) 2002 optional NOx standard (2.0 g/bhp-hr). In California, this engine is certified only with an OxiCat, so our study did not include emissions testing without it. We also tested a 2000 New Flyer 40-passenger low-floor bus powered by a Detroit Diesel series 50G engine (DDCs50G) that is currently certified in California without an OxiCat. The original equipment manufacturer (OEM) offers a "low-emission" package for this bus that includes an OxiCat for transit bus applications, thus, this configuration was also tested in this study. Previously, we reported that formaldehyde and other volatile organic emissions detected in the exhaust of the DDCs50G bus equipped with an OxiCat were significantly reduced relative to the same DDCs50G bus without OxiCat. In this paper, we examine othertoxic unregulated emissions of significance. The specific mutagenic activity of emission sample extracts was examined using the microsuspension assay. The total mutagenic activity of emissions (activity per mile) from the OxiCat-equipped DDC bus was generally lower than that from the DDC bus without the OxiCat. The CWest bus emission samples had mutagenic activity that was comparable to that of the OxiCat-equipped DDC bus. In general, polycyclic aromatic hydrocarbon (PAH) emissions were lower forthe OxiCat-equipped buses, with greater reductions observed for the volatile and semivolatile PAH emissions. Elemental carbon (EC) was detected in the exhaust from the all three bus configurations, and we found that the total carbon (TC) composition of particulate matter (PM) emissions was primarily organic carbon (OC). The amount of carbon emissions far exceeded the

  15. Study on gas kinetic unified algorithm for flows from rarefied transition to continuum

    NASA Astrophysics Data System (ADS)

    Li, Zhi-Hui; Zhang, Han-Xin

    2004-01-01

    The modified BGK equation adapted to various flow regimes can be presented by the aid of the basic characteristics on molecular movement and collision approaching to equilibrium. The discrete velocity ordinate method is developed and applied to the velocity distribution function to remove its continuous dependency on the velocity space, and then the velocity distribution function equation is cast into hyperbolic conservation law form with nonlinear source terms. Based on the unsteady time-splitting method and the non-oscillatory, containing no free parameters, and dissipative (NND) scheme, the gas kinetic finite difference second-order scheme is constructed for the computation of the discrete velocity distribution functions. The mathematical model on the interaction of molecules with solid surface is studied and used in the numerical method. Four types of numerical quadrature rules, such as the modified Gauss-Hermite formula, the composite Newton-Cotes integration method, the Gauss-Legendre numerical quadrature rule, and the Golden Section number-theoretic integral method, are developed and applied to the discretized velocity space to evaluate the macroscopic flow parameters at each point in the physical space. As a result, a unified simplified gas kinetic algorithm is established for the flows from rarefied transition to continuum regime. Based on analyzing the inner parallel degree of the unified algorithm, the parallel strategy adapted to the gas kinetic numerical algorithm is studied, and then the HPF parallel processing software for the unified algorithm is developed. To test the present method, the one-dimensional shock-tube problems, the flows past two-dimensional circular cylinder, and the flows around three-dimensional sphere and spacecraft shape with various Knudsen numbers are simulated. The computational results are found in high resolution of the flow fields and good agreement with the theoretical, DSMC, N-S, and experimental results.

  16. Central metabolism in Mycobacterium smegmatis during the transition from O2-rich to O2-poor conditions as studied by isotopomer-assisted metabolite analysis.

    PubMed

    Tang, Yinjie J; Shui, Wenqing; Myers, Samuel; Feng, Xueyang; Bertozzi, Carolyn; Keasling, Jay D

    2009-08-01

    Isotopomer-assisted metabolite analysis was used to investigate the central metabolism of Mycobacterium smegmatis and its transition from normal growth to a non-replicating state under a hypoxic environment. Tween 80 significantly promoted aerobic growth by improving O(2) transfer, while only small amount was degraded and metabolized via the TCA cycle for biomass synthesis. As the bacillus encountered hypoxic stress, isotopomer analysis suggested: (1) isocitrate lyase activity increased, which further induced glyoxylate pathway and glycine dehydrogenase for replenishing NAD(+); (2) the relative amount of acetyl-CoA entering the TCA cycle was doubled, whereas little entered the glycolytic and pentose phosphate pathways. PMID:19357814

  17. Mid-section of a can-annular gas turbine engine with a cooling system for the transition

    SciTech Connect

    Wiebe, David J.; Rodriguez, Jose L.

    2015-12-08

    A cooling system is provided for a transition (420) of a gas turbine engine (410). The cooling system includes a cowling (460) configured to receive an air flow (111) from an outlet of a compressor section of the gas turbine engine (410). The cowling (460) is positioned adjacent to a region of the transition (420) to cool the transition region upon circulation of the air flow within the cowling (460). The cooling system further includes a manifold (121) to directly couple the air flow (111) from the compressor section outlet to an inlet (462) of the cowling (460). The cowling (460) is configured to circulate the air flow (111) within an interior space (426) of the cowling (460) that extends radially outward from an inner diameter (423) of the cowling to an outer diameter (424) of the cowling at an outer surface.

  18. Long non-coding RNA ATB promotes growth and epithelial-mesenchymal transition and predicts poor prognosis in human prostate carcinoma.

    PubMed

    Xu, Song; Yi, Xiao-Ming; Tang, Chao-Peng; Ge, Jing-Ping; Zhang, Zheng-Yu; Zhou, Wen-Quan

    2016-07-01

    Long non-coding RNAs (lncRNAs) have been identified to be critical mediators in various tumors associated with cancer progression. Long non-coding RNA activated by TGF-β (lncRNA-ATB) is a stimulator of epithelial-mesenchymal transition (EMT) and serves as a novel prognostic biomarker for hepatocellular carcinoma. However, the biological role and clinical significance of lncRNA-ATB in human prostate cancer have yet to be fully elucidated. The present study was designed to explore the expression of lncRNA-ATB in human prostate cancer patients and the role of lncRNA-ATB in prostate cancer cells. We showed that lncRNA-ATB expression was significantly upregulated in tumor tissues in patients with prostate cancer in comparison with adjacent non-tumor tissues. Further analysis indicted that high lncRNA-ATB expression may be an independent prognostic factor for biochemical recurrence (BCR)-free survival in prostate cancer patients. Overexpression of lncRNA-ATB promoted, and knockdown of lncRNA-ATB inhibited the growth of prostate cancer cells via regulations of cell cycle regulatory protein expression levels. In addition, lncRNA-ATB stimulated epithelial-mesenchymal transition (EMT) associated with ZEB1 and ZNF217 expression levels via ERK and PI3K/AKT signaling pathways. These results indicated that lncRNA-ATB may be considered as a new predictor in the clinical prognosis of patients with prostate cancer. Overexpression of lncRNA-ATB exerts mitogenic and EMT effects of prostate cancer via activation of ERK and PI3K/AKT signaling pathways. PMID:27176634

  19. Long non-coding RNA ATB promotes growth and epithelial-mesenchymal transition and predicts poor prognosis in human prostate carcinoma

    PubMed Central

    XU, SONG; YI, XIAO-MING; TANG, CHAO-PENG; GE, JING-PING; ZHANG, ZHENG-YU; ZHOU, WEN-QUAN

    2016-01-01

    Long non-coding RNAs (lncRNAs) have been identified to be critical mediators in various tumors associated with cancer progression. Long non-coding RNA activated by TGF-β (lncRNA-ATB) is a stimulator of epithelial-mesenchymal transition (EMT) and serves as a novel prognostic biomarker for hepatocellular carcinoma. However, the biological role and clinical significance of lncRNA-ATB in human prostate cancer have yet to be fully elucidated. The present study was designed to explore the expression of lncRNA-ATB in human prostate cancer patients and the role of lncRNA-ATB in prostate cancer cells. We showed that lncRNA-ATB expression was significantly upregulated in tumor tissues in patients with prostate cancer in comparison with adjacent non-tumor tissues. Further analysis indicted that high lncRNA-ATB expression may be an independent prognostic factor for biochemical recurrence (BCR)-free survival in prostate cancer patients. Overexpression of lncRNA-ATB promoted, and knockdown of lncRNA-ATB inhibited the growth of prostate cancer cells via regulations of cell cycle regulatory protein expression levels. In addition, lncRNA-ATB stimulated epithelial-mesenchymal transition (EMT) associated with ZEB1 and ZNF217 expression levels via ERK and PI3K/AKT signaling pathways. These results indicated that lncRNA-ATB may be considered as a new predictor in the clinical prognosis of patients with prostate cancer. Overexpression of lncRNA-ATB exerts mitogenic and EMT effects of prostate cancer via activation of ERK and PI3K/AKT signaling pathways. PMID:27176634

  20. Transition metal catalysis in the generation of petroleum and natural gas. Final report, September 1, 1992--October 31, 1995

    SciTech Connect

    Mango, F.D.

    1997-01-21

    This project originated on the premise that natural gas could be formed catalytically in the earth rather than thermally as commonly believed. The intention was to test this hypothetical view and to explore generally the role of sedimentary metals in the generation of light hydrocarbons (C1 - C9). We showed the metalliferous source rocks are indeed catalytic in the generation of natural gas. Various metal compounds in the pure state show the same levels of catalytic activity as sedimentary rocks and the products are identical. Nickel is particularly active among the early transition metals and is projected to remain catalytically robust at all stages of catagenesis. Nickel oxide promotes the formation of n-alkanes in addition to natural gas (NG), demonstrating the full scope of the hypothetical catalytic process. The composition of catalytic gas duplicates the entire range of natural gas, from so-called wet gas to dry gas (60 to 95+ wt % methane), while gas generated thermally is consistently depleted in methane (10 to 60 wt % methane). These results support the view that metal catalysis is a major pathway through which natural gas is formed in the earth.

  1. Thermodynamics of a Bose gas near the superfluid-Mott-insulator transition

    NASA Astrophysics Data System (ADS)

    Rançon, A.; Dupuis, N.

    2012-10-01

    We study the thermodynamics near the generic (density-driven) superfluid-Mott-insulator transition in the three-dimensional Bose-Hubbard model using the nonperturbative renormalization-group approach. At low energy, the physics is controlled by the Gaussian fixed point and becomes universal. Thermodynamic quantities can then be expressed in terms of the universal scaling functions of the dilute Bose gas universality class while the microscopic physics enters only via two nonuniversal parameters, namely, the effective mass m* and the “scattering length” a* of the elementary excitations at the quantum critical point between the superfluid and Mott-insulating phases. A notable exception is the condensate density in the superfluid phase which is proportional to the quasiparticle weight Zqp of the elementary excitations. The universal regime is defined by m*a*2T≪1 and m*a*2|δμ|≪1 or, equivalently, |n¯-n¯c|a*3≪1, where δμ=μ-μc is the chemical potential shift from the quantum critical point (μ=μc,T=0) and n¯-n¯c the doping with respect to the commensurate density n¯c of the T=0 Mott insulator. We compute Zqp, m*, and a* and find that they vary strongly with both the ratio t/U between hopping amplitude and onsite repulsion and the value of the (commensurate) density n¯c. Finally, we discuss the experimental observation of universality and the measurement of Zqp, m*, and a* in a cold-atomic gas in an optical lattice.

  2. Noble-transition metal nanoparticle breathing in a reactive gas atmosphere.

    PubMed

    Petkov, Valeri; Shan, Shiyao; Chupas, Peter; Yin, Jun; Yang, Lefu; Luo, Jin; Zhong, Chuan-Jian

    2013-08-21

    In situ high-energy X-ray diffraction coupled to atomic pair distribution function analysis is used to obtain fundamental insight into the effect of the reactive gas environment on the atomic-scale structure of metallic particles less than 10 nm in size. To substantiate our recent discovery we investigate a wide range of noble-transition metal nanoparticles and confirm that they expand and contract radially when treated in oxidizing (O2) and reducing (H2) atmospheres, respectively. The results are confirmed by supplementary XAFS experiments. Using computer simulations guided by the experimental diffraction data we quantify the effect in terms of both relative lattice strain and absolute atomic displacements. In particular, we show that the effect leads to a small percent of extra surface strain corresponding to several tenths of Ångström displacements of the atoms at the outmost layer of the particles. The effect then gradually decays to zero within 4 atomic layers inside the particles. We also show that, reminiscent of a breathing type structural transformation, the effect is reproducible and reversible. We argue that because of its significance and widespread occurrence the effect should be taken into account in nanoparticle research. PMID:23828235

  3. Overexpression of CIP2A in clear cell renal cell carcinoma promotes cellular epithelial-mesenchymal transition and is associated with poor prognosis.

    PubMed

    Tang, Qizhen; Wang, Qifei; Zeng, Guang; Li, Quanlin; Jiang, Tao; Zhang, Zhiwei; Zheng, Wei; Wang, Kenan

    2015-11-01

    Cancerous inhibitor of protein phosphatase 2A (CIP2A) is a newly characterized oncoprotein involved in a variety of malignant tumors. However, its expression pattern and biological functions in clear cell renal cell carcinoma (ccRCC) remain unclear. In the present study, our findings demonstrated that expressions of CIP2A mRNA and protein in ccRCC tissues and cell lines were significantly higher than those in paired normal renal tissues or normal renal tubular epithelial cells (P<0.05). High CIP2A level was closely correlated with T stage (P=0.001), tumor size (P=0.009), lymph node metastasis (P=0.014), vascular invasion (P=0.018) and high Snail expression (P<0.001). Additionally, ccRCC patients with high CIP2A expression had significantly shorter overall survival (OS, P<0.001) and disease-free survival (DFS, P<0.001) when compared with patients with the low expression of CIP2A. On Cox multivariate analysis, CIP2A overexpression was an independent and significant prognostic factor for OS (P=0.010) and DFS (P=0.004). Furthermore, knockdown of the CIP2A expression significantly reduced ccRCC cell invasion, with decreased Snail and Vimentin expression, and increased E-cadherin expression. Taken together, our data identified CIP2A as a critical oncoprotein involved in cell invasion and epithelial mesenchymal transition (EMT), which could serve as a therapeutic target in ccRCC. PMID:26327467

  4. Transitional regimes of natural convection in a differentially heated cubical cavity under the effects of wall and molecular gas radiation

    SciTech Connect

    Soucasse, L.; Rivière, Ph.; Soufiani, A.; Xin, S.

    2014-02-15

    The transition to unsteadiness and the dynamics of weakly turbulent natural convection, coupled to wall or gas radiation in a differentially heated cubical cavity with adiabatic lateral walls, are studied numerically. The working fluid is air with small contents of water vapor and carbon dioxide whose infrared spectral radiative properties are modelled by the absorption distribution function model. A pseudo spectral Chebyshev collocation method is used to solve the flow field equations and is coupled to a direct ray tracing method for radiation transport. Flow structures are identified by means of either the proper orthogonal decomposition or the dynamic mode decomposition methods. We first retrieve the classical mechanism of transition to unsteadiness without radiation, characterized by counter-rotating streamwise-oriented vortices generated at the exit of the vertical boundary layers. Wall radiation through a transparent medium leads to a homogenization of lateral wall temperatures and the resulting transition mechanism is similar to that obtained with perfectly conducting lateral walls. The transition is due to an unstable stratification upstream the vertical boundary layers and is characterized by periodically oscillating transverse rolls of axis perpendicular to the main flow. When molecular gas radiation is accounted for, no periodic solution is found and the transition to unsteadiness displays complex structures with chimneys-like rolls whose axes are again parallel to the main flow. The origin of this instability is probably due to centrifugal forces, as suggested previously for the case without radiation. Above the transition to unsteadiness, at Ra = 3 × 10{sup 8}, it is shown that both wall and gas radiation significantly intensify turbulent fluctuations, decrease the thermal stratification in the core of the cavity, and increase the global circulation.

  5. Generation of widely tunable intense far-infrared radiation pulses by stimulated Raman transitions in methylfluoride gas

    SciTech Connect

    Lang, P.T.; Sessler, F.; Werling, U.; Renk, K.F. )

    1989-12-18

    We report on the generation of widely tunable intense far-infrared radiation pulses by stimulated Raman transitions in methylfluoride gas. Using a tunable high-pressure CO{sub 2} laser we achieved, by {ital P}-branch tuning of stimulated Raman transitions in {sup 12}CH{sub 3}F and {sup 13}CH{sub 3}F gases, tunable generation of radiation in a series of intervals in the spectral range from 37 to 72 cm{sup {minus}1} covering 20% of this range. Possibilities of further extension of the tuning regions are also discussed.

  6. Development, Application, and Transition of Aerosol and Trace Gas Products Derived from Next-Generation Satellite Observations to Operations

    NASA Technical Reports Server (NTRS)

    Berndt, Emily; Naeger, Aaron; Zavodsky, Bradley; McGrath, Kevin; LaFontaine, Frank

    2016-01-01

    NASA Short-term Prediction Research and Transition (SPoRT) Center has a history of successfully transitioning unique observations and research capabilities to the operational weather community to improve short-term forecasts. SPoRTstrives to bridge the gap between research and operations by maintaining interactive partnerships with end users to develop products that match specific forecast challenges, provide training, and assess the products in the operational environment. This presentation focuses on recent product development, application, and transition of aerosol and trace gas products to operations for specific forecasting applications. Recent activities relating to the SPoRT ozone products, aerosol optical depth composite product, sulfur dioxide, and aerosol index products are discussed.

  7. A model for the relative intensities among ion pair → valence transitions in the heavier halogens and rare gas halides

    NASA Astrophysics Data System (ADS)

    Jewsbury, Philip; Lawley, Kenneth

    1990-03-01

    The separated atom or ( JAMAJBMB) coupling scheme is applied to the electronic structure of both ion pair and valence states of the heavier halogens and rare gas halides. Relative transition moments from low vibrational levels of selected ion pair states to all the valence states and the resulting radiative lifetimes are derived. σ↔σ electron transfer between atomic orbitals is assumed for parallel transitions. Russell-Saunders coupling is used for the atomic or ionic basis functions in the reference model. Departures from the model arising from partial jj coupling in the halogen positive ions and from intramolecular electrostatic effects each produce characteristic changes in the relative intensities of the various fluorescent systems from a given ion pair state. The effect of J and MJ state mixing between asymptotically degenerate valence states is discussed and ion pair → valence transition intensities are shown to be a sensitive function of this mixing.

  8. IMPROVED LABORATORY TRANSITION PROBABILITIES FOR Ce II, APPLICATION TO THE CERIUM ABUNDANCES OF THE SUN AND FIVE r-PROCESS-RICH, METAL-POOR STARS, AND RARE EARTH LAB DATA SUMMARY

    SciTech Connect

    Lawler, J. E.; Den Hartog, E. A.; Sneden, C.; Cowan, J. J.; Ivans, I. I. E-mail: eadenhar@wisc.edu E-mail: cowan@nhn.ou.edu

    2009-05-15

    Recent radiative lifetime measurements accurate to {+-}5% using laser-induced fluorescence (LIF) on 43 even-parity and 15 odd-parity levels of Ce II have been combined with new branching fractions measured using a Fourier transform spectrometer (FTS) to determine transition probabilities for 921 lines of Ce II. This improved laboratory data set has been used to determine a new solar photospheric Ce abundance, log {epsilon} = 1.61 {+-} 0.01 ({sigma} = 0.06 from 45 lines), a value in excellent agreement with the recommended meteoritic abundance, log {epsilon} = 1.61 {+-} 0.02. Revised Ce abundances have also been derived for the r-process-rich metal-poor giant stars BD+17{sup 0}3248, CS 22892-052, CS 31082-001, HD 115444, and HD 221170. Between 26 and 40 lines were used for determining the Ce abundance in these five stars, yielding a small statistical uncertainty of {+-}0.01 dex similar to the solar result. The relative abundances in the metal-poor stars of Ce and Eu, a nearly pure r-process element in the Sun, matches r-process-only model predictions for solar system material. This consistent match with small scatter over a wide range of stellar metallicities lends support to these predictions of elemental fractions. A companion paper includes an interpretation of these new precision abundance results for Ce as well as new abundance results and interpretation for Pr, Dy, and Tm.

  9. Phase transition from poor to diverse ecosystems

    NASA Astrophysics Data System (ADS)

    Murase, Yohsuke; Shimada, Takashi; Yukawa, Satoshi; Ito, Nobuyasu

    A mathematical model of ecoevolution is studied. The model treats ecosystems as large dimensional dynamical systems. The preying interaction term between species have the scale invariant form of x i λ xj1-λ. In addition, simple rules for addition and elimination of species are included. This model is called the "scale-invariant" model. The model makes it possible to construct ecosystems with thousands of species with a totally random invasion process, although it is not impossible when the interaction terms are the quadratic form of xixj like Lotka-Volterra equation. We studied the relation between the number of species and the interspecies interactions. As a result, it is shown the model can describe both simple ecosystems and diverse ecosystems, because this model has two phases. In one phase, the number of species remains in finite range. In the other phase, the number of species grows without limit.

  10. Generation, Detection and characterization of Gas-Phase Transition Metal containing Molecules

    SciTech Connect

    Steimle, Timothy

    2015-12-15

    The objective of this project was to generate, detect, and characterize small, gas-phase, metal containing molecules. In addition to being relevant to high temperature chemical environments (e.g. plasmas and combustion), gas-phase experiments on metal containing molecules serve as the most direct link to a molecular-level theoretical model for catalysis. Catalysis (i.e. the addition of a small about of recoverable material to control the rate and direction of a chemical reaction) is critical to the petroleum and pharmaceutical industries as well as environmental remediation. Currently, the majority of catalytic materials are based on very expensive metals such as platinum (Pt), palladium (Pd), iridium (Ir,) rhenium (Re), and rhodium (Rh). For example, the catalyst used for converting linear hydrocarbon molecules (e.g. hexane) to cyclic molecules (e.g. cyclohexane) is a mixture of Pt and Re suspended on alumina. It enables straight chain alkanes to be converted into branched-chain alkanes, cyclohexanes and aromatic hydrocarbons which are used, amongst other things, to enhance the octane number of petrol. A second example is the heterogeneous catalysis used in automobile exhaust systems to: a) decrease nitrogen oxide; b) reduce carbon monoxide; and c) oxidize unburned hydrocarbons. The exhaust is vented through a high-surface area chamber lined with Pt, Pd, and Rh. For example, the carbon monoxide is catalytically converted to carbon dioxide by reaction with oxygen. The research results from this work have been published in readily accessible journals1-28. The ground and excited electronic state properties of small metal containing molecules that we determine were: a) electronic state distributions and lifetimes, b) vibrational frequencies, c) bond lengths and angles, d) hyperfine interactions, e) permanent electric dipole moments, mel, and f) magnetic dipoles, μm. In general terms, μel, gives insight into the charge distribution and mm into

  11. Poor Americans: How the Poor White Live.

    ERIC Educational Resources Information Center

    Pilisuk, Marc; Pilisuk, Phyllis

    Contents of this book include the following essays which originally appeared in "Transaction" magazine: (1) "Poor Americans: an introduction," Marc Pilisuk and Phyllis Pilisuk; (2) "How the white poor live," Marc Pilisuk and Phyllis Pilisuk; (3) "The culture of poverty," Oscar Lewis; (4) "Life in Appalachia--the case of Hugh McCaslin," Robert…

  12. Direct detection of Rydberg-Rydberg millimeter-wave transitions in a buffer gas cooled molecular beam

    NASA Astrophysics Data System (ADS)

    Zhou, Yan; Grimes, David D.; Barnum, Timothy J.; Patterson, David; Coy, Stephen L.; Klein, Ethan; Muenter, John S.; Field, Robert W.

    2015-11-01

    Millimeter-wave transitions between molecular Rydberg states (n ∼ 35) of barium monofluoride are directly detected via Free Induction Decay (FID). Two powerful technologies are used in combination: Chirped-Pulse millimeter-Wave (CPmmW) spectroscopy and a buffer gas cooled molecular beam photoablation source. Hundreds of Rydberg-Rydberg transitions are recorded in 1 h with >10:1 signal:noise ratio and ∼150 kHz resolution. This high resolution, high spectral velocity experiment promises new strategies for rapid measurements of structural and dynamical information, such as the electric structure (multipole moments and polarizabilities) of the molecular ion-core and the strengths and mechanisms of resonances between Rydberg electron and ion-core motions. Direct measurements of Rydberg-Rydberg transitions with kilo-Debye dipole moments support efficient and definitive spectral analysis techniques, such as the Stark demolition and polarization diagnostics, which enable semi-automatic assignments of core-nonpenetrating Rydberg states. In addition, extremely strong radiation-mediated collective effects (superradiance) in a dense Rydberg gas of barium atoms are observed.

  13. EFFECTS OF TRITIUM GAS EXPOSURE ON THE GLASS TRANSITION TEMPERATURE OF EPDM ELASTOMER AND ON THE CONDUCTIVITY OF POLYANILINE

    SciTech Connect

    Clark, E; Marie Kane, M

    2008-12-12

    Four formulations of EPDM (ethylene-propylene diene monomer) elastomer were exposed to tritium gas initially at one atmosphere and ambient temperature for between three and four months in closed containers. Material properties that were characterized include density, volume, mass, appearance, flexibility, and dynamic mechanical properties. The glass transition temperature was determined by analysis of the dynamic mechanical property data per ASTM standards. EPDM samples released significant amounts of gas when exposed to tritium, and the glass transition temperature increased by about 3 C. during the exposure. Effects of ultraviolet and gamma irradiation on the surface electrical conductivity of two types of polyaniline films are also documented as complementary results to planned tritium exposures. Future work will determine the effects of tritium gas exposure on the electrical conductivity of polyaniline films, to demonstrate whether such films can be used as a sensor to detect tritium. Surface conductivity was significantly reduced by irradiation with both gamma rays and ultraviolet light. The results of the gamma and UV experiments will be correlated with the tritium exposure results.

  14. Mobility of Supercooled liquid Toluene, Ethylbenzene, and Benzene near their Glass Transition Temperatures Investigated using Inert Gas Permeation

    SciTech Connect

    May, Robert A.; Smith, R. Scott; Kay, Bruce D.

    2013-11-21

    We investigate the mobility of supercooled liquid toluene, ethylbenzene, and benzene near their respective glass transition temperatures (Tg). The permeation rate of Ar, Kr, and Xe through the supercooled liquid created when initially amorphous overlayers heated above their glass transition temperature is used to determine the diffusivity. Amorphous benzene crystallizes at temperatures well below its Tg and as a result the inert gas underlayer remains trapped until the onset of benzene desorption. In contrast, for toluene and ethylbenzene the onset of inert gas permeation is observed at temperatues near Tg. The inert gas desorption peak temperature as a function of the heating rate and overlayer thickness is used to quantify the diffusivity of supercooled liquid toluene and ethylbenzene from 115 K to 135 K. In this temperature range, diffusivities are found to vary across five orders of magnitude (~10-14 to 10-9 cm2/s). These data are compared to viscosity measurements and used to determine the low temperature fractional Stokes-Einstein exponent. Efforts to determine the diffusivity of a mixture of benzene and ethylbenzene are detailed, and the effect of mixing these materials on benzene crystallization is explored using infrared spectroscopy.

  15. Optically pumped gas laser using electronic transitions in the NaRb molecule

    SciTech Connect

    Kaslin, V.M.; Yakushev, O.F.

    1983-12-01

    Laser superradiance was achieved for the first time as a result of an electronic transition in a diatomic heteronuclear molecule as a result of direct optical pumping. This superradiance was observed in the region of 670 nm due to a transition to the ground state X/sup 1/..sigma../sup +/ of the intermetallic alkali molecule NaRb pumped by radiation from a pulsed copper vapor laser (lambda = 510.6 nm).

  16. Buoyancy Effects on Flow Transition in Low-Density Inertial Gas Jets

    NASA Technical Reports Server (NTRS)

    Pasumarthi, Kasyap S.; Agrawal, Ajay K.

    2005-01-01

    Effects of buoyancy on transition from laminar to turbulent flow are presented for momentum-dominated helium jet injected into ambient air. The buoyancy was varied in a 2.2-sec drop tower facility without affecting the remaining operating parameters. The jet flow in Earth gravity and microgravity was visualized using the rainbow schlieren deflectometry apparatus. Results show significant changes in the flow structure and transition behavior in the absence of buoyancy.

  17. Dynamical instability of a spin spiral in an interacting Fermi gas as a probe of the Stoner transition

    SciTech Connect

    Conduit, G. J.; Altman, E.

    2010-10-15

    We propose an experiment to probe ferromagnetic phenomena in an ultracold Fermi gas, while alleviating the sensitivity to three-body loss and competing many-body instabilities. The system is initialized in a small pitch spin spiral, which becomes unstable in the presence of repulsive interactions. To linear order the exponentially growing collective modes exhibit critical slowing down close to the Stoner transition point. Also, to this order, the dynamics are identical on the paramagnetic and ferromagnetic sides of the transition. However, we show that scattering off the exponentially growing modes qualitatively alters the collective mode structure. The critical slowing down is eliminated and in its place a new unstable branch develops at large wave vectors. Furthermore, long-wavelength instabilities are quenched on the paramagnetic side of the transition. We study the experimental observation of the instabilities, specifically addressing the trapping geometry and how phase-contrast imaging will reveal the emerging domain structure. These probes of the dynamical phenomena could allow experiments to detect the transition point and distinguish between the paramagnetic and ferromagnetic regimes.

  18. Ultrabright multikilovolt x-ray source: saturated amplification on noble gas transition arrays from hollow atom states

    DOEpatents

    Rhodes, Charles K.; Boyer, Keith

    2004-02-17

    An apparatus and method for the generation of ultrabright multikilovolt x-rays from saturated amplification on noble gas transition arrays from hollow atom states is described. Conditions for x-ray amplification in this spectral region combine the production of cold, high-Z matter, with the direct, selective multiphoton excitation of hollow atoms from clusters using ultraviolet radiation and a nonlinear mode of confined, self-channeled propagation in plasmas. Data obtained is consistent with the presence of saturated amplification on several transition arrays of the hollow atom Xe(L) spectrum (.lambda..about.2.9 .ANG.). An estimate of the peak brightness achieved is .about.10.sup.29 .gamma..multidot.s.sup.-1.multidot.mm.sup.-2.multidot.mr.sup.-2 (0.1% Bandwidth).sup.-1, that is .about.10.sup.5 -fold higher than presently available synchotron technology.

  19. Numerical modeling of transition to turbulence in low-pressure axial gas turbines

    NASA Astrophysics Data System (ADS)

    Flitan, Horia Constantin

    2002-09-01

    Experimental data from modern turbofan engines indicate that the low-pressure turbine stages experience a significant drop in efficiency as the aircraft reaches its cruise conditions at high altitude. Under these circumstances, the low Reynolds number flow allows the apparition of a boundary layer which is no longer turbulent but transitional in nature. A further decrease in velocity may lead to the separation of the highly unstable laminar portion accompanied by a dramatic growth in aerodynamic losses. The methods for numerically simulating the transitional flows occurring over turbine blades were reviewed. Two large categories were identified as suitable for numerical implementation into a fully-implicit, finite-difference, Navier-Stokes code. The first involved a Baldwin-Lomax turbulence model corrected for attached flow transition with an intermittency factor distribution. The general expression of Solomon, Walker and Gostelow was added to the code, in parallel with the zero-pressure gradient form of Narasimha, used for reference. In both cases transition inception is detected with the Abu-Ghannam Shaw correlation. Whenever laminar separation takes place, Robert's correlation for short bubble transition is activated. The second category comprised the two-equation, low Reynolds number turbulence models of Chien and Launder-Sharma. They have a certain ability to predict bypass transition and seem to better comprehend the physics of wake-induced transition. For the approximate factorization solution algorithm, the implicit part of the Launder-Sharma system was expressed in an original form. Also, the Kato-Launder correction was added to be used as an option. Numerical investigations of attached flow bypass transition and separated flow short bubble transitions were performed on two cascade geometries. The Abu-Ghannam Shaw criterion proved to be inaccurate for curved surfaces. The Solomon, Walker Gostelow distribution did not perform better than Narasimha

  20. Comment on "Dynamic transition of supercritical hydrogen: Defining the boundary between interior and atmosphere in gas giants"

    NASA Astrophysics Data System (ADS)

    Bryk, Taras

    2015-03-01

    Trachenko et al. [Phys. Rev. E 89, 032126 (2014), 10.1103/PhysRevE.89.032126] have argued for the existence of a "Frenkel line" in fluid hydrogen that separates "rigid" and "nonrigid" regimes in a supercritical region. On that basis, they proposed a criterion for locating the boundary between the interior and the atmosphere for gas giants. This Comment shows that the two methods they use to locate the transition between the rigid and nonrigid states are both questionable, which casts doubt on the claims in the paper.

  1. Comparison of the dust and gas radial structure in the transition disk [PZ99] J160421.7-213028

    SciTech Connect

    Zhang, Ke; Isella, Andrea; Carpenter, John M.; Blake, Geoffrey A.

    2014-08-10

    We present ALMA observations of the 880 μm continuum and CO J = 3-2 line emission from the transition disk around [PZ99] J160421.7-213028, a solar mass star in the Upper Scorpius OB association. Analysis of the continuum data indicates that 80% of the dust mass is concentrated in an annulus extending between 79 and 114 AU in radius. Dust is robustly detected inside the annulus, at a mass surface density 100 times lower than that at 80 AU. The CO emission in the inner disk also shows a significantly decreased mass surface density, but we infer a cavity radius of only 31 AU for the gas. The large separation of the dust and gas cavity edges, as well as the high radial concentration of millimeter-sized dust grains, is qualitatively consistent with the predictions of pressure trap models that include hydrodynamical disk-planet interactions and dust coagulation/fragmentation processes.

  2. Absorbing phase transition in a conserved lattice gas model with next-nearest-neighbor hopping in one dimension.

    PubMed

    Lee, Sang Bub

    2015-12-01

    The absorbing phase transition of the modified conserved lattice gas (m-CLG) model was investigated in one dimension. The m-CLG model was modified from the conserved lattice gas (CLG) model in such a way that each active particle hops to one of the nearest-neighbor and next-nearest-neighbor empty sites. The order parameter exponent, the dynamic exponent, and the correlation length exponent were estimated from the power-law behavior and finite-size scaling of the active particle densities. The exponents were found to differ considerably from those of the ordinary CLG model and were also distinct from those of the Manna model, suggesting that next-nearest-neighbor hopping is a relevant factor that alters the critical behavior in the one-dimensional CLG model. PMID:26764627

  3. Gas-phase chemistry of transition-metal ions with alkanes: do initial electrostatic interaction control final product distributions

    SciTech Connect

    Hankinson, D.J.; Allison, J.

    1987-09-24

    There are features of the dynamics of gas-phase ion/molecule reactions that make them unique when compared to neutral/neutral reactions and solution processes. Exceedingly rich and complex chemistry can be observed in gas-phase systems in which a reactant is charged, due, in part, to the relatively long lifetime of the ion/molecule complex that is initially formed. Here possible correlations between final reaction products and geometry-specific complexes that are initially formed are discussed. The chemistry under study is that for univalent first-row transition-metal ions with n-butane, in which cleavage of C-H and C-C bonds is observed for some metals.

  4. A Gas-Poor Planetesimal Feeding Model for the Formation of Giant Planet Satellite Systems: Consequences for the Atmosphere of Titan

    NASA Technical Reports Server (NTRS)

    Estrada, P. R.; Mosqueira, I.

    2005-01-01

    Given our presently inadequate understanding of the turbulent state of the solar and planetary nebulae, we believe the way to make progress in satellite formation is to consider two end member models that avoid over-reliance on specific choices of the turbulence (alpha), which is essentially a free parameter. The first end member model postulates turbulence decay once giant planet accretion ends. If so, Keplerian disks must eventually pass through the quiescent phases, so that the survival of satellites (and planets) ultimately hinges on gap-opening. In this scenario, the criterion for gap-opening itself sets the value for the gas surface density of the satellite disk.

  5. Unintended greenhouse gas consequences of lowering level of service in urban transit systems

    NASA Astrophysics Data System (ADS)

    Griswold, Julia B.; Cheng, Han; Madanat, Samer; Horvath, Arpad

    2014-12-01

    Public transit is often touted as a ‘green’ transportation option and a way for users to reduce their environmental footprint by avoiding automobile emissions, but that may not be the case when systems run well below passenger capacity. In previous work, we explored an approach to optimizing the design and operations of transit systems for both costs and emissions, using continuum approximation models and assuming fixed demand. In this letter, we expand upon our previous work to explore how the level of service for users impacts emissions. We incorporate travel time elasticities into the optimization to account for demand shifts from transit to cars, resulting from increases in transit travel time. We find that emissions reductions are moderated, but not eliminated, for relatively inelastic users. We consider two scenarios: the first is where only the agency faces an emissions budget; the second is where the entire city faces an emissions budget. In the latter scenario, the emissions reductions resulting from reductions in transit level of service are mitigated as users switch to automobile.

  6. Zipper-interacting protein kinase promotes epithelial-mesenchymal transition, invasion and metastasis through AKT and NF-kB signaling and is associated with metastasis and poor prognosis in gastric cancer patients.

    PubMed

    Li, Jian; Deng, Zhijuan; Wang, Zhu; Wang, Dong; Zhang, Longjuan; Su, Qiao; Lai, Yingrong; Li, Bin; Luo, Zexing; Chen, Xu; Chen, Yu; Huang, Xiaohui; Ma, Jieyi; Wang, Wenjian; Bi, Jiong; Guan, Xinyuan

    2015-04-10

    Zipper-interacting Protein Kinase (ZIPK) belongs to the death-associated protein kinase family. ZIPK has been characterized as a tumor suppressor in various tumors, including gastric cancer. On the other hand, ZIPK also promotes cell survival. In this study, both in vitro and in vivo assays indicated that ZIPK promoted cell growth, proliferation, migration, invasion, tumor formation and metastasis in nude mice. ZIPK induced epithelial-mesenchymal transition (EMT) with increasing expression of β-catenin, mesenchymal markers, Snail and Slug, and with decreasing expression of E-cadherin. Furthermore, ZIPK activated the AKT/IκB/NF-κB pathway, which can promote EMT and metastasis. Additionally, ZIPK expression was detected in human primary gastric cancer and their matched metastatic lymph node samples by immunohistochemistry. Increased expression of ZIPK in lymph node metastases was significantly associated with stage VI and abdominal organ invasion. Survival analysis revealed that patients with increased ZIPK expression in metastatic lymph nodes had poor disease-specific survival. Taken together, our study reveals that ZIPK is a pro-oncogenic factor, which promotes cancer metastasis. PMID:25831050

  7. Effect of Non-Condensable Gas on Cavity Dynamics and Sheet to Cloud Transition

    NASA Astrophysics Data System (ADS)

    Makiharju, Simo; Ganesh, Harish; Ceccio, Steven

    2014-11-01

    Partial cavitation occurs in numerous industrial and naval applications. Cavities on lifting surfaces, in cryogenic rocket motors or in fuel injectors can damage equipment and in general be detrimental to the system performance, especially as partial cavities can undergo auto-oscillation causing large pressure pulsations, unsteady loading of machinery and generate significant noise. In the current experiments incipient, intermittent cloud shedding and fully shedding cavities forming in the separated flow region downstream of a wedge were investigated. The Reynolds number based on hydraulic diameter was of the order of one million. Gas was injected directly into the cavitation region downstream of the wedge's apex or into the recirculating region such that with the same amount of injected gas less ended up in the shear layer. The cavity dynamics were studied with and without gas injection. The hypothesis to be tested were that i) relatively miniscule amounts of gas introduced into the shear layer at the cavity interface can reduce vapor production and ii) gas introduced into the separated region can dampen the auto oscillations. The authors also examined whether the presence of gas can switch the shedding mechanism from one dominated by condensation shock to one dominantly by re-entrant jet. The work was supported by ONR Grant Number N00014-11-1-0449.

  8. Sterilizing the Poor

    ERIC Educational Resources Information Center

    Rothman, Sheila M.

    1977-01-01

    Suggests that freedom for the middle classes may mean vulnerability for the poor. The enthusiasm for sterilization may be so intense as to deprive the poor of their right not to be sterilized. (Author/AM)

  9. Quantum phase transition of a Bose gas in a lattice with a controlled number of atoms per site

    NASA Astrophysics Data System (ADS)

    Du, Xu

    2005-05-01

    We have studied the superfluid-Mott insulator quantum phase transition [1] of a gas of ^87Rb atoms in an optical lattice. We are able to prepare the gas with a controllable number of one, two, or three atoms per lattice site, as verified with photoassociation spectroscopy. We measure momentum distributions using standard time-of-flight imaging techniques. These are similar to those of ref. [1], and exhibit narrow peaks at moderate lattice strengths. We find that the width of these peaks increases for lattice heights greater than about 13 times the recoil energy [2], and we observe interesting differences in this behavior, depending on the number of atoms per site. The data suggest that the quantum phase transition occurs at higher lattice strength with larger site occupation. We acknowledge the support of this work by the R. A. Welch Foundation, The N. S. F., and the D.O.E. Quantum Optics Initiative. [1] Markus Greiner et al., Nature 415, 39 (2002). [2] Thilo St"oferle et al., Phys. Rev. Lett. 92, 130403 (2004).

  10. Nuclear liquid-gas phase transition at large N{sub c} in the van der Waals approximation

    SciTech Connect

    Torrieri, Giorgio; Mishustin, Igor

    2010-11-15

    We examine the nuclear liquid-gas phase transition at a large number of colors (N{sub c}) within the framework of the van der Waals (VdW) We argue that the VdW equation is appropriate for describing internucleon forces, and discuss how each parameter scales with N{sub c}. We demonstrate that N{sub c}=3 (our world) is not large with respect to the other dimensionless scale relevant to baryonic matter, the number of neighbors in a dense system N{sub N}. Consequently, we show that the liquid-gas phase transition looks dramatically different at N{sub c{yields}{infinity}} with respect to our world: The critical-point temperature becomes of the order of {Lambda}{sub QCD} rather than below it. The critical-point density becomes of the order of the baryonic density, rather than an order of magnitude below it. These are precisely the characteristics usually associated with the ''quarkyonic phase.'' We therefore conjecture that quarkyonic matter is simply the large-N{sub c} limit of the nuclear liquid, and the interplay between N{sub c} and N{sub N} is the reason that the nuclear liquid in our world is so different from quarkyonic matter. We conclude by suggesting ways in which our conjecture can be tested in future lattice measurements.

  11. Schlieren Measurements of Buoyancy Effects on Flow Transition in Low-Density Gas Jets

    NASA Technical Reports Server (NTRS)

    Pasumarthi, Kasyap S.; Agrawal, Ajay K.

    2005-01-01

    The transition from laminar to turbulent flow in helium jets discharged into air was studied using Rainbow Schlieren Deflectometry technique. In particular, the effects of buoyancy on jet oscillations and flow transition length were considered. Experiments to simulate microgravity were conducted in the 2.2s drop tower at NASA Glenn Research Center. The jet Reynolds numbers varied from 800 to1200 and the jet Richardson numbers ranged between 0.01 and 0.004. Schlieren images revealed substantial variations in the flow structure during the drop. Fast Fourier Transform (FFT) analysis of the data obtained in Earth gravity experiments revealed the existence of a discrete oscillating frequency in the transition region, which matched the frequency in the upstream laminar regime. In microgravity, the transition occurred farther downstream indicating laminarization of the jet in the absence of buoyancy. The amplitude of jet oscillations was reduced by up to an order of magnitude in microgravity. Results suggest that jet oscillations were buoyancy induced and that the brief microgravity period may not be sufficient for the oscillations to completely subside.

  12. Nature of the Blue-Phase-III{endash}isotropic critical point: An analogy with the liquid-gas transition

    SciTech Connect

    Anisimov, M.A.; Agayan, V.A.; Collings, P.J.

    1998-01-01

    The analogy with the liquid-gas critical point is analyzed to clarify the nature of the pretransitional behavior of physical properties in the vicinity of the Blue-Phase-III{endash}isotropic transition in chiral liquid crystalline systems. The analogy is unusual: temperature serves as the ordering field and entropy plays the role of the order parameter. Both mean field and parametric equations of state are formulated in terms of scaling fields. The scaling fields are linear combinations of the physical fields, which are temperature and chirality. It is shown that mixing of the physical field variables naturally leads to a strong asymmetry with respect to the transition temperature in the behavior of the physical properties that cannot be described by simple power laws. While the mean field theory gives a good description of the experimental data, the scaling theory, if one incorporates mixing of the field variables, gives even better agreement with the experimental data, placing this transition in the same universality class as the three-dimensional Ising model. {copyright} {ital 1998} {ital The American Physical Society}

  13. First and second sound in a two-dimensional harmonically trapped Bose gas across the Berezinskii–Kosterlitz–Thouless transition

    SciTech Connect

    Liu, Xia-Ji Hu, Hui

    2014-12-15

    We theoretically investigate first and second sound of a two-dimensional (2D) atomic Bose gas in harmonic traps by solving Landau’s two-fluid hydrodynamic equations. For an isotropic trap, we find that first and second sound modes become degenerate at certain temperatures and exhibit typical avoided crossings in mode frequencies. At these temperatures, second sound has significant density fluctuation due to its hybridization with first sound and has a divergent mode frequency towards the Berezinskii–Kosterlitz–Thouless (BKT) transition. For a highly anisotropic trap, we derive the simplified one-dimensional hydrodynamic equations and discuss the sound-wave propagation along the weakly confined direction. Due to the universal jump of the superfluid density inherent to the BKT transition, we show that the first sound velocity exhibits a kink across the transition. These predictions might be readily examined in current experimental setups for 2D dilute Bose gases with a sufficiently large number of atoms, where the finite-size effect due to harmonic traps is relatively weak.

  14. Water and greenhouse gas tradeoffs associated with a transition to a low carbon transportation system

    EPA Science Inventory

    Transportation fuels are heavily dominated by the use of petroleum, but concerns over oil depletion, energy security, and greenhouse gas emissions from petroleum combustion are driving the search for alternatives. As we look to shift away from petroleum-based transportation fuels...

  15. Percolation transition in the gas-induced conductance of nanograin metal oxide films with defects

    NASA Astrophysics Data System (ADS)

    Dräger, Julia; Russ, Stefanie; Sauerwald, Tilman; Kohl, Claus-Dieter; Bunde, Armin

    2013-06-01

    We use Monte-Carlo Simulations to study the conductance switching generated by gas-induced electron trapping/-releasing in films of sintered metal oxide nanoparticles by using a site-bond percolation model. We explore the possibilities of gas sensors based on these mechanisms. In our study, we model films of different thicknesses where the conductance values of the grains (sites) and of the contacts (bonds) between these grains depend on the surface density Nr of adsorbed gas molecules from the ambient atmosphere. Below a critical density Nr=Nr ,c, the system is insulating due to the interruption of current flow, either through the connecting bonds or through the grain interior. This leads to two competing critical gas covering thresholds Nr,c(bond) and Nr,c(site), respectively, that separate the insulating from the conducting phase. For Nr,c(site)>Nr,c(bond), the characteristic curve of monodisperse sensors shows a noticeable jump from zero to a finite conductance at Nr=Nr,c(site), while for polydisperse sensors site percolation effects modify the jump into a steep increase of the characteristic curve and thus lead to an enhanced sensitivity. For Nr,c(site)

  16. Changes in time-use and drug use by young adults in poor neighbourhoods of Greater Buenos Aires, Argentina, after the political transitions of 2001-2002: Results of a survey

    PubMed Central

    2011-01-01

    Background In some countries, "Big Events" like crises and transitions have been followed by large increases in drug use, drug injection and HIV/AIDS. Argentina experienced an economic crisis and political transition in 2001/2002 that affected how people use their time. This paper studies how time use changes between years 2001 and 2004, subsequent to these events, were associated with drug consumption in poor neighbourhoods of Greater Buenos Aires. Methods In 2003-2004, 68 current injecting drug users (IDUs) and 235 young non-IDUs, aged 21-35, who lived in impoverished drug-impacted neighbourhoods in Greater Buenos Aires, were asked about time use then and in 2001. Data on weekly hours spent working or looking for work, doing housework/childcare, consuming drugs, being with friends, and hanging out in the neighbourhood, were studied in relation to time spent using drugs. Field observations and focus groups were also conducted. Results After 2001, among both IDUs and non-IDUs, mean weekly time spent working declined significantly (especially among IDUs); time spent looking for work increased, and time spent with friends and hanging out in the neighbourhood decreased. We found no increase in injecting or non-injecting drug consumption after 2001. Subjects most affected by the way the crises led to decreased work time and/or to increased time looking for work--and by the associated increase in time spent in one's neighbourhood--were most likely to increase their time using drugs. Conclusions Time use methods are useful to study changes in drug use and their relationships to every day life activities. In these previously-drug-impacted neighbourhoods, the Argentinean crisis did not lead to an increase in drug use, which somewhat contradicts our initial expectations. Nevertheless, those for whom the crises led to decreased work time, increased time looking for work, and increased time spent in indoor or outdoor neighbourhood environments, were likely to spend more time

  17. Properties of the most metal-poor gas-rich LSB dwarf galaxies SDSS J0015+0104 and J2354-0005 residing in the Eridanus void

    NASA Astrophysics Data System (ADS)

    Pustilnik, S. A.; Martin, J.-M.; Lyamina, Y. A.; Kniazev, A. Y.

    2013-07-01

    SDSS J0015+0104 is the lowest metallicity low surface brightness dwarf (LSBD) galaxy known. The oxygen abundance in its H II region SDSS J001520.70+010436.9 (at ˜1.5 kpc from the galaxy centre) is 12+log (O/H) = 7.07 (Guseva et al.). This galaxy, at the distance of 28.4 Mpc, appears to reside deeply in the volume devoid of luminous massive galaxies, known as the Eridanus void. SDSS J235437.29-000501.6 is another Eridanus void LSBD galaxy, with parameter 12+log (O/H) = 7.36 (also Guseva et al.). We present the results of their H I observations with the Nançay Radio Telescope revealing their high ratios of M(H I)/LB ˜ 2.3. Based on the Sloan Digital Sky Survey images, we derived for both galaxies their radial surface brightness profiles and the main photometric parameters. Their colours and total magnitudes are used to estimate the galaxy stellar mass and ages. The related gas mass fractions, fg ˜ 0.98 and ˜0.97, and the extremely low metallicities (much lower than for their more typical counterparts with the same luminosity) indicate their unevolved status. We compare these Eridanus void LSBDs with several extreme LSBD galaxies residing in the nearby Lynx-Cancer void. Based on the combination of all their unusual properties, the two discussed LSBD galaxies are similar to the unusual LSBDs residing in the closer void. This finding presents additional evidence for the existence in voids of a sizeable fraction of low-mass unevolved galaxies. Their dedicated search might result in the substantial increase of the number of such objects in the local Universe and in the advancement of understanding their nature.

  18. Regulation of COX-2 expression and epithelial-to-mesenchymal transition by hypoxia-inducible factor-1α is associated with poor prognosis in hepatocellular carcinoma patients post TACE surgery

    PubMed Central

    HUANG, MINGSHENG; WANG, LONG; CHEN, JUNWEI; BAI, MINGJUN; ZHOU, CHUREN; LIU, SUJUAN; LIN, QU

    2016-01-01

    Currently, it is not entirely clear whether hypoxia-inducible factor-1α (HIF-1α) is involved in the regulation of COX-2 expression and epithelial-to-mesenchymal transition (EMT), and whether these events affect the prognosis of hepatocellular carcinoma (HCC) patients treated with transcatheter arterial chemoembolization (TACE). In this report the relationship between HIF-1α and COX-2 protein expression, EMT in tumor specimens from HCC patients after TACE surgery and the clinical significance of HIF-1α and COX-2 expression were analyzed using statistical approaches. HepG2 cells treated with CoCl2 was employed as a hypoxia cell model in vitro to study hypoxia-induced HIF-1α, COX-2 expression, and EMT alteration. The results showed that HIF-1α and COX-2 protein expression increased in HCC tissues after TACE surgery. Moreover, there was positive correlation between upregulation of HIF-1α and COX-2. Elevated expression of HIF-1α increased both Snail and Vimentin protein expression, while it reduced E-cadherin protein expression. It was further verified that hypoxia enhanced protein expression of HIF-1α and COX-2 in HepG2 cells treated with CoCl2. Upregulation of HIF-1α and COX-2, together with EMT alteration resulted in increased migration and invasion of HepG2 cells under hypoxia. In conclusion, TACE surgery results in aggravated hypoxia status, leading to increased HIF-1α protein expression in HCC tissue. To adapt to hypoxic environment, HIF-1α stimulates COX-2 protein expression and promotes EMT process in hepatocellular cancer cells, which enhances HCC invasion and metastasis, and might contribute to poor prognosis in HCC patients post TACE treatment. PMID:26984380

  19. The transition from silicon to gas detection media in nuclear physics

    NASA Astrophysics Data System (ADS)

    Pollacco, Emanuel C.

    2016-06-01

    Emerging radioactive beams and multi petawatt laser facilities are sturdily transforming our base concepts in instruments in nuclear physics. The changes are fuelled by studies of nuclei close to the drip-line or exotic reactions. This physics demands high luminosity, wide phase space cover with good resolution in energy, time, position and sampled waveform. By judiciously modifying the micro-world of the particle or space physics instruments (Double Sided Strip Si Detectors, Micro-Pattern Gas Amplifiers, microelectronics), we are on the path to initiate dream experiments. In the following a brief status in the domain is reported for selected instruments that highlight the present trends with silicon and the growing shift towards gas media for charged particle detection.

  20. The effects of neutral gas heating on H mode transition and maintenance currents in a 13.56 MHz planar coil inductively coupled plasma reactor

    SciTech Connect

    Jayapalan, Kanesh K.; Chin, Oi-Hoong

    2012-09-15

    The H mode transition and maintenance currents in a 13.56 MHz laboratory 6 turn planar coil inductively coupled plasma (ICP) reactor are simulated for low pressure argon discharge range of 0.02-0.3 mbar with neutral gas heating and at ambient temperature. An experimentally fitted 3D power evolution plot for 0.02 mbar argon pressure is also shown to visualize the effects of hysteresis in the system. Comparisons between simulation and experimental measurements show good agreement in the pressure range of 0.02-0.3 mbar for transition currents and 0.02-0.1 mbar for maintenance currents only when neutral gas heating is considered. This suggests that neutral gas heating plays a non-negligible role in determining the mode transition points of a rf ICP system.

  1. Is there evidence for a liquid-gas phase transition in nuclear matter?

    SciTech Connect

    Hirsch, A.S.; EOS Collaboration

    1994-09-01

    The multifragmentation of gold nuclei at 1 GeV/nucleon has been studied using reverse kinematics. The moments of the resulting charged fragment distribution have been analyzed using methods borrowed from percolation theory. These moments provide clear evidence for critical behavior occurring in a system of about 200 nucleons. The critical exponents extracted from the data are close to those of liquid-gas systems.

  2. a Measurement of the Optical Oscillator Strengths of Noble Gas Resonance Transitions in the Vacuum Ultraviolet

    NASA Astrophysics Data System (ADS)

    Ligtenberg, Robert Coenraad Gerard

    We report the results of an accurate measurement of optical oscillator strengths of the prominent resonance lines of He, Ne, Ar and Kr in the vacuum ultraviolet. To measure the oscillator strength of a resonance line we make use of the absorption of the resonance radiation as it passes through the gas to a detector. The transmission of this radiation through a layer of gas of finite thickness is measured as a function of the number density of the gas. The transmission function is fitted to this data to obtain the absorption oscillator strength. The accuracy of the present measurements ranges from 2.5% to 4% and is reflected in the uncertainties presented below. The results are for He I (58.4 nm) 0.2683 +/- 0.0075 (2.8%), He I (53.7 nm) 0.0717 +/- 0.0024 (3.4%), Ne I (74.4 nm) 0.01017 +/- 0.00030 (2.9%), Ne I (73.6 nm) 0.1369 +/- 0.0035 (2.6%), Ar I (106.7 nm) 0.0616 +/- 0.0021 (3.4%), Ar I (104.8 nm) 0.2297 +/- 0.0093 (4.0%), Kr I (123.6 nm) 0.1751 +/- 0.0049 (2.8%) and Kr I (116.5 nm) 0.1496 +/- 0.0038 (2.5%).

  3. Induced Interactions and the Superfluid Transition Temperature in a Three-Component Fermi Gas

    SciTech Connect

    Martikainen, J.-P.; Kinnunen, J. J.; Toermae, P.; Pethick, C. J.

    2009-12-31

    We study many-body contributions to the effective interaction between fermions in a three-component Fermi mixture. We find that effective interactions induced by the third component can lead to a phase diagram different from that predicted if interactions with the third component are neglected. As a result, in a confining potential a superfluid shell structure can arise even for equal populations of the components. We also find a critical temperature for the BCS transition in a {sup 6}Li mixture which can deviate strongly from the one in a weakly interacting two-component system.

  4. Infrared Spectroscopy of Transition Metal-Molecular interactions in the Gas Phase

    SciTech Connect

    Duncan, Michael A.

    2008-11-14

    Transition metal-molecular complexes produced in a molecular beam are mass-selected and studied with infrared laser photodissociation spectroscopy. Metal complexes with carbon monoxide, carbon dioxide, nitrogen, water, acetylene or benzene are studied for a variety of metals. The number and intensity of infrared active bands are compared to the predictions of density functional theory calculations to derive structures, spin states and coordination numbers in these systems. These studied provide new insights into subtle details of metal-molecular interactions important in heterogeneous catalysis, metal-ligand bonding and metal ion solvation.

  5. Research on Instabilities and Transition in Three-Dimensional Boundary Layers, with Emphasis on Gas-Turbine-Blade Flows

    NASA Astrophysics Data System (ADS)

    Ryzhov, Olef S.

    2000-01-01

    Absolute instability of (Gortler vortices on the severely curved concave pressure side of a gas-turbine blade is the main thrust of the third-year work under this grant. For the most part, the Gortler vortices have been investigated in an incompressible boundary layer over thin-wing sections or artificial inserts on an otherwise flat plate. The cascade of modern aircraft engines operate in the high subsonic Mach number regime with velocity fields strongly affected by centrifugal forces maintained by the large curvature of profiles. Unsteady spiral-type vortices developing in these environments provoke the absolute instability in the streamwise direction of the boundary layer leading to earlier transition. An effort undertaken after the meeting in Shalimar (May 29-31, 2002) show that the heat transfer coefficient is even more susceptible to enhancing oscillations in the upstream moving wave packets than the pressure.

  6. Exact Calculation of Hydrodynamical Response Functions during the Deconfinement Phase Transition from a Hadronic Gas to a Colorless QGP

    NASA Astrophysics Data System (ADS)

    Ladrem, M.; Zaki-Al-Full, Z.

    2011-05-01

    In our previous work we have performed an exact calculation using the colorless partition function of the QGP by probing the behavior of some useful thermodynamic response functions on the whole range of temperature. If the system formed in an ultra relativistic heavy ion collision reaches a state of local thermodynamic equilibrium and if it can be locally maintained during the subsequent expansion, the further evolution of the QGP and Hadronic Gas can be described conveniently by Relativistic Hydrodynamics. It requires knowledge of the equation of state, which gives a relation between pressure P, energy density ɛ, entropy density s and sound velocity cs. Precisely, in the present work we have performed the study of these hydrodynamical response functions, outshining the physics of the evolution of the system undergoing a deconfinement phase transition, when the colorless condition is taken into account.

  7. Exact Calculation of Hydrodynamical Response Functions during the Deconfinement Phase Transition from a Hadronic Gas to a Colorless QGP

    SciTech Connect

    Ladrem, M.; Zaki-Al-Full, Z.

    2011-05-23

    In our previous work we have performed an exact calculation using the colorless partition function of the QGP by probing the behavior of some useful thermodynamic response functions on the whole range of temperature. If the system formed in an ultra relativistic heavy ion collision reaches a state of local thermodynamic equilibrium and if it can be locally maintained during the subsequent expansion, the further evolution of the QGP and Hadronic Gas can be described conveniently by Relativistic Hydrodynamics. It requires knowledge of the equation of state, which gives a relation between pressure P, energy density {epsilon}, entropy density s and sound velocity c{sub s}. Precisely, in the present work we have performed the study of these hydrodynamical response functions, outshining the physics of the evolution of the system undergoing a deconfinement phase transition, when the colorless condition is taken into account.

  8. The Ionized Gas in Nearby Galaxies as Traced by the [N II] 122 and 205 μm Transitions

    NASA Astrophysics Data System (ADS)

    Herrera-Camus, R.; Bolatto, A.; Smith, J. D.; Draine, B.; Pellegrini, E.; Wolfire, M.; Croxall, K.; de Looze, I.; Calzetti, D.; Kennicutt, R.; Crocker, A.; Armus, L.; van der Werf, P.; Sandstrom, K.; Galametz, M.; Brandl, B.; Groves, B.; Rigopoulou, D.; Walter, F.; Leroy, A.; Boquien, M.; Tabatabaei, F. S.; Beirao, P.

    2016-08-01

    The [N ii] 122 and 205 μm transitions are powerful tracers of the ionized gas in the interstellar medium. By combining data from 21 galaxies selected from the Herschel KINGFISH and Beyond the Peak surveys, we have compiled 141 spatially resolved regions with a typical size of ˜1 kpc, with observations of both [N ii] far-infrared lines. We measure [N ii] 122/205 line ratios in the ˜0.6–6 range, which corresponds to electron gas densities of n e ˜ 1–300 cm‑3, with a median value of n e = 30 cm‑3. Variations in the electron density within individual galaxies can be as high as a factor of ˜50, frequently with strong radial gradients. We find that n e increases as a function of infrared color, dust-weighted mean starlight intensity, and star-formation rate (SFR) surface density (ΣSFR). As the intensity of the [N ii] transitions is related to the ionizing photon flux, we investigate their reliability as tracers of the SFR. We derive relations between the [N ii] emission and SFR in the low-density limit and in the case of a log-normal distribution of densities. The scatter in the correlation between [N ii] surface brightness and ΣSFR can be understood as a property of the n e distribution. For regions with n e close to or higher than the [N ii] line critical densities, the low-density limit [N ii]-based SFR calibration systematically underestimates the SFR because the [N ii] emission is collisionally quenched. Finally, we investigate the relation between [N ii] emission, SFR, and n e by comparing our observations to predictions from the MAPPINGS-III code.

  9. Rich Donors, Poor Countries

    ERIC Educational Resources Information Center

    Thomas, M. A.

    2012-01-01

    The shifting ideological winds of foreign aid donors have driven their policy towards governments in poor countries. Donors supported state-led development policies in poor countries from the 1940s to the 1970s; market and private-sector driven reforms during the 1980s and 1990s; and returned their attention to the state with an emphasis on…

  10. Inference in `poor` languages

    SciTech Connect

    Petrov, S.

    1996-10-01

    Languages with a solvable implication problem but without complete and consistent systems of inference rules (`poor` languages) are considered. The problem of existence of finite complete and consistent inference rule system for a ``poor`` language is stated independently of the language or rules syntax. Several properties of the problem arc proved. An application of results to the language of join dependencies is given.