Science.gov

Sample records for gas reservoir bluebell-altamont

  1. Identifying compartmentalization in gas reservoirs

    SciTech Connect

    Junkin, J.; Cooper, K.; Sippel, M.

    1997-01-01

    Compartmentalization as a function of depositional systems is now recognized as a common type of reservoir heterogeneity that limits recovery from oil and gas reservoirs. US Department of Energy (DOE) estimates indicate that substantial quantities of gas resources will not be recovered from presently identified reservoirs under historic development practices. The Secondary Natural Gas Recovery (SGR) project sponsored by the Gas Research Institute (GRI), state of Texas and DOE quantified compartmentalization over intervals as large as 2,000 feet in several different fluvial deltaic reservoirs. Early recognition of compartmentalized behavior can be used to pursue a more rapid development plan including efficient well spacing and elimination of redundant wells. Three classes of reservoir compartment sizes were delineated in the SGR project using methods discussed in this article. Forward stochastic modeling of gas recovery from these compartment-size classes established well spacing requirements that would yield maximum gas contact efficiency. The presence of reservoir compartmentalization was also shown to correlate with reserve growth. Also, those reservoirs classified as having smaller compartment sizes exhibited the greatest reserve growth potential. Utilization of tools, such as personal computer-based methods discussed, enables better engineering interpretation of actual field behavior. Some of these tools require minimal production data, which is readily available on CD-ROM or via modem at very low cost.

  2. Heat pipe with hot gas reservoir

    NASA Technical Reports Server (NTRS)

    Marcus, B. D.

    1974-01-01

    Heat pipe can reverse itself with gas reservoir acting as evaporator, leading to rapid recovery from liquid in reservoir. Single layer of fine-mesh screen is included inside reservoir to assure uniform liquid distribution over hottest parts of internal surface until liquid is completely removed.

  3. Gas reaction in the Cerro Prieto reservoir

    SciTech Connect

    Nehring, N.L.; Valette-Silver, J.N.

    1982-08-10

    Gases in an undisturbed geothermal reservoir should be in equilibrium with the surrounding rock and water. Production of fluid at rapid rates may cause physical changes in the reservoir that are reflected as changes in gas composition. At Cerro Prieto production has lowered the reservoir pressure enough in places to induce boiling in the aquifer, leading to high enthalpy, low production and eventual drawndown of cold water into the reservoir. These changes are reflected in gas compositions. Differences, in gas composition between well and surface samples reflect changing equilibrium in temperature-dependent chemical reactions and a mixture of gases dissolved in groundwater.

  4. Reservoir Greenhouse Gas Emissions at Russian HPP

    SciTech Connect

    Fedorov, M. P.; Elistratov, V. V.; Maslikov, V. I.; Sidorenko, G. I.; Chusov, A. N.; Atrashenok, V. P.; Molodtsov, D. V.; Savvichev, A. S.; Zinchenko, A. V.

    2015-05-15

    Studies of greenhouse-gas emissions from the surfaces of the world’s reservoirs, which has demonstrated ambiguity of assessments of the effect of reservoirs on greenhouse-gas emissions to the atmosphere, is analyzed. It is recommended that greenhouse- gas emissions from various reservoirs be assessed by the procedure “GHG Measurement Guidelines for Fresh Water Reservoirs” (2010) for the purpose of creating a data base with results of standardized measurements. Aprogram for research into greenhouse-gas emissions is being developed at the St. Petersburg Polytechnic University in conformity with the IHA procedure at the reservoirs impounded by the Sayano-Shushenskaya and Mainskaya HPP operated by the RusHydro Co.

  5. Underground natural gas storage reservoir management

    SciTech Connect

    Ortiz, I.; Anthony, R.

    1995-06-01

    The objective of this study is to research technologies and methodologies that will reduce the costs associated with the operation and maintenance of underground natural gas storage. This effort will include a survey of public information to determine the amount of natural gas lost from underground storage fields, determine the causes of this lost gas, and develop strategies and remedial designs to reduce or stop the gas loss from selected fields. Phase I includes a detailed survey of US natural gas storage reservoirs to determine the actual amount of natural gas annually lost from underground storage fields. These reservoirs will be ranked, the resultant will include the amount of gas and revenue annually lost. The results will be analyzed in conjunction with the type (geologic) of storage reservoirs to determine the significance and impact of the gas loss. A report of the work accomplished will be prepared. The report will include: (1) a summary list by geologic type of US gas storage reservoirs and their annual underground gas storage losses in ft{sup 3}; (2) a rank by geologic classifications as to the amount of gas lost and the resultant lost revenue; and (3) show the level of significance and impact of the losses by geologic type. Concurrently, the amount of storage activity has increased in conjunction with the net increase of natural gas imports as shown on Figure No. 3. Storage is playing an ever increasing importance in supplying the domestic energy requirements.

  6. Tight gas reservoirs: A visual depiction

    SciTech Connect

    Not Available

    1993-12-01

    Future gas supplies in the US will depend on an increasing contribution from unconventional sources such as overpressured and tight gas reservoirs. Exploitation of these resources and their conversion to economically producible gas reserves represents a major challenge. Meeting this challenge will require not only the continuing development and application of new technologies, but also a detailed understanding of the complex nature of the reservoirs themselves. This report seeks to promote understanding of these reservoirs by providing examples. Examples of gas productive overpressured tight reservoirs in the Greater Green River Basin, Wyoming are presented. These examples show log data (raw and interpreted), well completion and stimulation information, and production decline curves. A sampling of wells from the Lewis and Mesaverde formations are included. Both poor and good wells have been chosen to illustrate the range of productivity that is observed. The second section of this document displays decline curves and completion details for 30 of the best wells in the Greater Green River Basin. These are included to illustrate the potential that is present when wells are fortuitously located with respect to local stratigraphy and natural fracturing, and are successfully hydraulically fractured.

  7. Recent resource assessments of tight gas reservoirs

    SciTech Connect

    Spencer, C.W.

    1984-04-01

    Two fairly recent estimates of natural gas recoverable from tight gas reservoirs in the US have been made. One was prepared in 1978, by Lewin and Associates for DOE (US Department of Energy) and the second was made by the NPC (National Petroleum Council) in 1980. Lewin estimated about 200 tcf is recoverable from the 14 most favorable regions in the US. The NPC estimated that about 500 tcf is recoverable from the entire onshore US. These studies involved a careful analysis of available data; however, both studies excluded large areas and great thicknesses of rock strata from their resource data base. The reasons for these exclusions were mostly lack of good well control and not absence of gas potential. Therefore, both assessments were conservative and the potential recoverable resource is probably much larger than even the 500 tcf estimated by the NPC. Unfortunately present-day technology is not able to consistently identify, stimulate, and produce large volumes of gas from lenticular and (or) deep tight reservoirs. The NPC recognized these problems and listed many research topics and programs, in their report, that should be undertaken to increase the amount of recoverable gas. A few of the more important informational needs are: (1) better methods to predict geometry of reservoirs, (2) improvement of log interpretation, (3) better prediction of natural fracture systems, (4) control of, and prediction of, hydraulic fracture height, length, and orientation, (5) elimination of formation damage, and (6) development of innovative reservoir stimulation methods. DOE has supported a number of research efforts directed toward solving many of these problems.

  8. Naturally fractured tight gas reservoir detection optimization

    SciTech Connect

    Decker, D.

    1995-05-01

    Exploration strategies are needed to identify subtle basement features critical to locating fractured regions in advance of drilling in tight gas reservoirs. The Piceance Basin served as a demonstration site for an analysis utilizing aeromagnetic surveys, remote sensing, Landsat Thematic Mapper, and Side Looking Airborne Radar imagery for the basin and surrounding areas. Spatially detailed aeromagnetic maps were used to to interpret zones of basement structure.

  9. Exploitation of subsea gas hydrate reservoirs

    NASA Astrophysics Data System (ADS)

    Janicki, Georg; Schlüter, Stefan; Hennig, Torsten; Deerberg, Görge

    2016-04-01

    Natural gas hydrates are considered to be a potential energy resource in the future. They occur in permafrost areas as well as in subsea sediments and are stable at high pressure and low temperature conditions. According to estimations the amount of carbon bonded in natural gas hydrates worldwide is two times larger than in all known conventional fossil fuels. Besides technical challenges that have to be overcome climate and safety issues have to be considered before a commercial exploitation of such unconventional reservoirs. The potential of producing natural gas from subsea gas hydrate deposits by various means (e.g. depressurization and/or injection of carbon dioxide) is numerically studied in the frame of the German research project »SUGAR«. The basic mechanisms of gas hydrate formation/dissociation and heat and mass transport in porous media are considered and implemented into a numerical model. The physics of the process leads to strong non-linear couplings between hydraulic fluid flow, hydrate dissociation and formation, hydraulic properties of the sediment, partial pressures and seawater solution of components and the thermal budget of the system described by the heat equation. This paper is intended to provide an overview of the recent development regarding the production of natural gas from subsea gas hydrate reservoirs. It aims at giving a broad insight into natural gas hydrates and covering relevant aspects of the exploitation process. It is focused on the thermodynamic principles and technological approaches for the exploitation. The effects occurring during natural gas production within hydrate filled sediment layers are identified and discussed by means of numerical simulation results. The behaviour of relevant process parameters such as pressure, temperature and phase saturations is described and compared for different strategies. The simulations are complemented by calculations for different safety relevant problems.

  10. Monitoring gas reservoirs by seismic interferometry

    NASA Astrophysics Data System (ADS)

    Grigoli, Francesco; Cesca, Simone; Sens-Schoenfelder, Christoph; Priolo, Enrico

    2014-05-01

    Ambient seismic noise can be used to image spatial anomalies in the subsurface, without the need of recordings from seismic sources, such as earthquakes or explosions. Furthermore, the temporal variation of ambient seismic noise's can be used to infer temporal changes of the seismic velocities in the investigated medium. Such temporal variations can reflect changes of several physical properties/conditions in the medium. For example, they may be consequence of stress changes, variation of hydrogeological parameters, pore pressure and saturation changes due to fluid injection or extraction. Passive image interferometry allows to continuously monitor small temporal changes of seismic velocities in the subsurface, making it a suitable tool to monitor time-variant systems such as oil and gas reservoirs or volcanic environments. The technique does not require recordings from seismic sources in the classical sense, but is based on the processing of noise records. Moreover, it requires only data from one or two seismic stations, their locations constraining the sampled target area. Here we apply passive image interferometry to monitor a gas storage reservoir in northern Italy. The Collalto field (Northern Italy) is a depleted gas reservoir located at 1500 m depth, now used as a gas storage facility. The reservoir experience a significant temporal variation in the amount of stored gas: the injection phases mainly occur in the summer, while the extraction take place mostly in winter. In order to monitor induced seismicity related to gas storage operations, a seismic network (the Collalto Seismic Network) has been deployed in 2011. The Collalto Seismic Network is composed by 10 broadband stations, deployed within an area of about 20 km x 20 km, and provides high-quality continuous data since January 1st, 2012. In this work we present preliminary results from ambient noise interferometry using a two-months sample of continuous seismic data, i.e. from October 1st, 2012, to the

  11. Shale Gas reservoirs characterization using neural network

    NASA Astrophysics Data System (ADS)

    Ouadfeul, Sid-Ali; Aliouane, Leila

    2014-05-01

    In this paper, a tentative of shale gas reservoirs characterization enhancement from well-logs data using neural network is established. The goal is to predict the Total Organic carbon (TOC) in boreholes where the TOC core rock or TOC well-log measurement does not exist. The Multilayer perceptron (MLP) neural network with three layers is established. The MLP input layer is constituted with five neurons corresponding to the Bulk density, Neutron porosity, sonic P wave slowness and photoelectric absorption coefficient. The hidden layer is forms with nine neurons and the output layer is formed with one neuron corresponding to the TOC log. Application to two boreholes located in Barnett shale formation where a well A is used as a pilot and a well B is used for propagation shows clearly the efficiency of the neural network method to improve the shale gas reservoirs characterization. The established formalism plays a high important role in the shale gas plays economy and long term gas energy production.

  12. Naturally fractured tight gas reservoir detection optimization

    SciTech Connect

    1998-11-30

    The goal of the work this quarter has been to partition and high-grade the Greater Green River basin for exploration efforts in the Upper Cretaceous tight gas play and to initiate resource assessment of the basin. The work plan for the quarter of July 1-September 30, 1998 comprised three tasks: (1) Refining the exploration process for deep, naturally fractured gas reservoirs; (2) Partitioning of the basin based on structure and areas of overpressure; (3) Examination of the Kinney and Canyon Creek fields with respect to the Cretaceous tight gas play and initiation of the resource assessment of the Vermilion sub-basin partition (which contains these two fields); and (4) Initiation analysis of the Deep Green River Partition with respect to the Stratos well and assessment of the resource in the partition.

  13. Naturally fractured tight gas reservoir detection optimization

    SciTech Connect

    1999-06-01

    Building upon the partitioning of the Greater Green River Basin (GGRB) that was conducted last quarter, the goal of the work this quarter has been to conclude evaluation of the Stratos well and the prototypical Green River Deep partition, and perform the fill resource evaluation of the Upper Cretaceous tight gas play, with the goal of defining target areas of enhanced natural fracturing. The work plan for the quarter of November 1-December 31, 1998 comprised four tasks: (1) Evaluation of the Green River Deep partition and the Stratos well and examination of potential opportunity for expanding the use of E and P technology to low permeability, naturally fractured gas reservoirs, (2) Gas field studies, and (3) Resource analysis of the balance of the partitions.

  14. Naturally fractured tight gas reservoir detection optimization

    SciTech Connect

    1998-09-30

    During this quarter, work began on the regional structural and geologic analysis of the greater Green River basin (GGRB) in southwestern Wyoming, northwestern Colorado and northeastern Utah. The ultimate objective of the regional analysis is to apply the techniques developed and demonstrated during earlier phases of the project to sweet-spot delineation in a relatively new and underexplored play: tight gas from continuous-type Upper Cretaceous reservoirs of the GGRB. The primary goal of this work is to partition and high-grade the greater Green River basin for exploration efforts in the Cretaceous tight gas play. The work plan for the quarter of January 1, 1998--March 31, 1998 consisted of three tasks: (1) Acquire necessary data and develop base map of study area; (2) Process data for analysis; and (3) Initiate structural study. The first task and second tasks were completed during this reporting period. The third task was initiated and work continues.

  15. De Wijk gas field: Reservoir mapping with amplitude anomalies

    SciTech Connect

    Bruijn, B. )

    1993-09-01

    De Wijk field, discovered in 1949, is located in the northeastern part of Netherlands. The main gas accumulation is contained in cretaceous and Triassic sandstone reservoirs trapped in a broad salt-induced structure of around 80 km[sup 2] areal extent. The field contains gas in the tertiary, Chalk, Zechstein 2 Carbonate, and Carboniferous reservoirs as well. De Wijk field is unique in the Netherlands as most gas-producing reservoirs in the Cretaceous/Triassic are of no commercial interest. Post-depositional leaching has positively affected the reservoir properties of the Triassic formations subcropping below the Cretaceous unconformity. Optimum, interpretation of 3-D seismic data acquired in 1989 resulted in spectacular displays highlighting the uniqueness of the field. Most gas-bearing reservoirs are expressed on seismic by amplitude anomalies. Various attribute-measurement techniques show the effect of gas fill, leaching, and sand distribution in the various reservoirs.

  16. [Greenhouse gas emission from reservoir and its influence factors].

    PubMed

    Zhao, Xiao-jie; Zhao, Tong-qian; Zheng, Hua; Duan, Xiao-nan; Chen, Fa-lin; Ouyang, Zhi-yun; Wang, Xiao-ke

    2008-08-01

    Reservoirs are significant sources of emissions of the greenhouse gases. Discussing greenhouse gas emission from the reservoirs and its influence factors are propitious to evaluate emission of the greenhouse gas accurately, reduce gas emission under hydraulic engineering and hydropower development. This paper expatiates the mechanism of the greenhouse gas production, sums three approaches of the greenhouse gas emission, which are emissions from nature emission of the reservoirs, turbines and spillways and downstream of the dam, respectively. Effects of greenhouse gas emission were discussed from character of the reservoirs, climate, pH of the water, vegetation growing in the reservoirs and so on. Finally, it has analyzed the heterogeneity of the greenhouse gas emission as well as the root of the uncertainty and carried on the forecast with emphasis to the next research. PMID:18839604

  17. Reservoir Engineering for Unconventional Gas Reservoirs: What Do We Have to Consider?

    SciTech Connect

    Clarkson, Christopher R

    2011-01-01

    The reservoir engineer involved in the development of unconventional gas reservoirs (UGRs) is required to integrate a vast amount of data from disparate sources, and to be familiar with the data collection and assessment. There has been a rapid evolution of technology used to characterize UGR reservoir and hydraulic fracture properties, and there currently are few standardized procedures to be used as guidance. Therefore, more than ever, the reservoir engineer is required to question data sources and have an intimate knowledge of evaluation procedures. We propose a workflow for the optimization of UGR field development to guide discussion of the reservoir engineer's role in the process. Critical issues related to reservoir sample and log analysis, rate-transient and production data analysis, hydraulic and reservoir modeling and economic analysis are raised. Further, we have provided illustrations of each step of the workflow using tight gas examples. Our intent is to provide some guidance for best practices. In addition to reviewing existing methods for reservoir characterization, we introduce new methods for measuring pore size distribution (small-angle neutron scattering), evaluating core-scale heterogeneity, log-core calibration, evaluating core/log data trends to assist with scale-up of core data, and modeling flow-back of reservoir fluids immediately after well stimulation. Our focus in this manuscript is on tight and shale gas reservoirs; reservoir characterization methods for coalbed methane reservoirs have recently been discussed.

  18. Mid-continent natural gas reservoirs and plays

    SciTech Connect

    Bebout, D.G. )

    1993-09-01

    Natural gas reservoirs of the mid-continent states of Oklahoma, Kansas, and Arkansas (northern part) have produced 103 trillion cubic ft (tcf) of natural gas. Oklahoma has produced the most, having a cumulative production of 71 tcf. The major reservoirs (those that have produced more than 10 billion ft[sup 3]) have been identified and organized into 28 plays based on geologic age, lithology, and depositional environment. The Atlas of Major Midcontinent Gas Reservoirs, published in 1993, provides the documentation for these plays. This atlas was a collaborative effort of the Gas Research Institute; Bureau of Economic Geology. The University of Texas at Austin; Arkansas Geological Commission; Kansas Geological survey; and Oklahoma Geological Survey. Total cumulative production for 530 major reservoirs is 66 tcf associated and nonassociated gas. Oklahoma has the highest production with 39 tcf from 390 major reservoirs, followed by Kansas with 26 tcf from 105 major reservoirs. Most of the mid-continent production is from Pennsylvanian (46%) and Permian (41%) reservoirs; Mississippian reservoirs account for 10% production, and lower Paleozoic reservoirs, 3%. The largest play by far is the Wolfcampian Shallow Shelf Carbonate-Hugoton Embayment play with 25 tcf cumulative production, most of which is from the Hugoton and Panoma fields in Kansas and Guymon-Hugoton gas area in Oklahoma. A total of 53% of the mid-continent gas production is from dolostone and limestone reservoirs; 39% is from sandstone reservoirs. The remaining 8% is from chert conglomerate and granite-wash reservoirs. Geologically based plays established from the distribution of major gas reservoirs provide important support for the extension of productive trends, application of new resource technology to more efficient field development, and further exploration in the mid-continent region.

  19. Geologic characterization of tight gas reservoirs

    SciTech Connect

    Law, B.E.

    1990-12-01

    The objectives of US Geological Survey (USGS) work during FY 89 were to conduct geologic research characterizing tight gas-bearing sandstone reservoirs and their resources in the western United States. Our research has been regional in scope but, in some basins, our investigations have focused on single wells or small areas containing several wells where a large amount of data is available. The investigations, include structure, stratigraphy, petrography, x-ray mineralogy, source-rock evaluation, formation pressure and temperature, borehole geophysics, thermal maturity mapping, fission-track age dating, fluid-inclusion thermometry, and isotopic geochemistry. The objectives of these investigations are to provide geologic models that can be compared and utilized in tight gas-bearing sequences elsewhere. Nearly all of our work during FY 89 was devoted to developing a computer-based system for the Uinta basin and collecting, analyzing, and storage of data. The data base, when completed will contain various types of stratigraphic, organic chemistry, petrographic, production, engineering, and other information that relate to the petroleum geology of the Uinta basin, and in particular, to the tight gas-bearing strata. 16 refs., 3 figs.

  20. Reservoir model for Hillsboro gas storage field management

    USGS Publications Warehouse

    Udegbunam, Emmanuel O.; Kemppainen, Curt; Morgan, Jim

    1995-01-01

    A 3-dimensional reservoir model is used to understand the behavior of the Hillsboro Gas Storage Field and to investigate the field's performance under various future development. Twenty-two years of the gas storage reservoir history, comprising the initial gas bubble development and seasonal gas injection and production cycles, are examined with a full-field, gas water, reservoir simulation model. The results suggest that the gas-water front is already in the vicinity of the west observation well that increasing the field's total gas-in-place volume would cause gas to migrate beyond the east, north and west observation well. They also suggest that storage enlargement through gas injection into the lower layers may not prevent gas migration. Moreover, the results suggest that the addition of strategically-located new wells would boost the simulated gas deliverabilities.

  1. 30 CFR 250.121 - What happens when the reservoir contains both original gas in place and injected gas?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 2 2011-07-01 2011-07-01 false What happens when the reservoir contains both... reservoir contains both original gas in place and injected gas? If the reservoir contains both original gas in place and injected gas, when you produce gas from the reservoir you must use an...

  2. Naturally fractured tight gas reservoir detection optimization

    SciTech Connect

    1998-11-30

    The work plan for October 1, 1997 to September 30, 1998 consisted of investigation of a number of topical areas. These topical areas were reported in four quarterly status reports, which were submitted to DOE earlier. These topical areas are reviewed in this volume. The topical areas covered during the year were: (1) Development of preliminary tests of a production method for determining areas of natural fracturing. Advanced Resources has demonstrated that such a relationship exists in the southern Piceance basin tight gas play. Natural fracture clusters are genetically related to stress concentrations (also called stress perturbations) associated with local deformation such a faulting. The mechanical explanation of this phenomenon is that deformation generally initiates at regions where the local stress field is elevated beyond the regional. (2) Regional structural and geologic analysis of the Greater Green River Basin (GGRB). Application of techniques developed and demonstrated during earlier phases of the project for sweet-spot delineation were demonstrated in a relatively new and underexplored play: tight gas from continuous-typeUpper Cretaceous reservoirs of the Greater Green River Basin (GGRB). The effort included data acquisition/processing, base map generation, geophysical and remote sensing analysis and the integration of these data and analyses. (3) Examination of the Table Rock field area in the northern Washakie Basin of the Greater Green River Basin. This effort was performed in support of Union Pacific Resources- and DOE-planned horizontal drilling efforts. The effort comprised acquisition of necessary seismic data and depth-conversion, mapping of major fault geometry, and analysis of displacement vectors, and the development of the natural fracture prediction. (4) Greater Green River Basin Partitioning. Building on fundamental fracture characterization work and prior work performed under this contract, namely structural analysis using satellite and

  3. Characterization of oil and gas reservoir heterogeneity

    SciTech Connect

    Sharma, G.D.

    1992-01-01

    The ultimate objective of this cooperative research project is to characterize Alaskan petroleum reservoirs in terms of their reserves, physical and chemical properties, geologic configuration in relation to lithofacies and structure, and development potential. The project has two tasks: Task 1 is a geological description of the reservoirs including petrophysical properties, i.e., porosity, permeability, permeability variation, formation depth, temperature, and net pay, facies changes and reservoir structures as drawn from cores, well logs, and other geological data. Task 2 is reservoir fluid characterization-determination of physical properties of reservoir fluids including density, viscosity, phase distributions and composition as well as petrogenesis-source rock identification; and the study of asphaltene precipitation for Alaskan crude oils. Results are discussed.

  4. Characterization of oil and gas reservoir heterogeneity

    SciTech Connect

    Sharma, G.D.

    1992-01-01

    The ultimate objective of this cooperative research project is to characterize Alaskan petroleum reservoirs in terms of their reserves, physical and chemical properties, geologic configuration in relation to lithofacies and structure, and development potential. The project has two tasks: Task 1 is a geological description of the reservoirs including petrophysical properties, i.e., porosity, permeability, permeability variation, formation depth, temperature, and net pay, facies changes and reservoir structures as drawn from cores, well logs, and other geological data. Task 2 is reservoir fluid characterization -- determination of physical properties of reservoir fluids including density, viscosity, phase distributions and composition as well as petrogenesis -- source rock identification; and the study of asphaltene precipitation for Alaskan crude oils.

  5. Characterization of oil and gas reservoir heterogeneity

    SciTech Connect

    Sharma, G.D.

    1992-01-01

    The ultimate oojective of this cooperative research project is to characterize Alaskan petroleum reservoirs in terms of their reserves, physical and chemical properties, geologic configuration in relation to lithofacies and structure, and development potential. The project has two tasks: Task 1 is a geological description of the reservoirs including petrophysical properties, i.e., porosity, permeability, permeability variation, formation depth, temperature, and net pay, facies changes and reservoir structures as drawn from cores, well logs, and other geological data. Task 2 is reservoir fluid characterization--determination of physical properties of reservoir fluids including density, viscosity, phase distributions and composition as well as petrogenesis--source rock identification; and the study of asphaltene precipitation for Alaskan crude oils. This report presents a summary of technical progress of the well log analysis of Kuparuk Field, Northslope, Alaska.

  6. Gas condensate reservoir characterisation for CO2 geological storage

    NASA Astrophysics Data System (ADS)

    Ivakhnenko, A. P.

    2012-04-01

    During oil and gas production hydrocarbon recovery efficiency is significantly increased by injecting miscible CO2 gas in order to displace hydrocarbons towards producing wells. This process of enhanced oil recovery (EOR) might be used for the total CO2 storage after complete hydrocarbon reservoir depletion. This kind of potential storage sites was selected for detailed studies, including generalised development study to investigate the applicability of CO2 for storages. The study is focused on compositional modelling to predict the miscibility pressures. We consider depleted gas condensate field in Kazakhstan as important target for CO2 storage and EOR. This reservoir being depleted below the dew point leads to retrograde condensate formed in the pore system. CO2 injection in the depleted gas condensate reservoirs may allow enhanced gas recovery by reservoir pressurisation and liquid re-vaporisation. In addition a number of geological and petrophysical parameters should satisfy storage requirements. Studied carbonate gas condensate and oil field has strong seal, good petrophysical parameters and already proven successful containment CO2 and sour gas in high pressure and high temperature (HPHT) conditions. The reservoir is isolated Lower Permian and Carboniferous carbonate platform covering an area of about 30 km. The reservoir contains a gas column about 1.5 km thick. Importantly, the strong massive sealing consists of the salt and shale seal. Sour gas that filled in the oil-saturated shale had an active role to form strong sealing. Two-stage hydrocarbon saturation of oil and later gas within the seal frame were accompanied by bitumen precipitation in shales forming a perfect additional seal. Field hydrocarbon production began three decades ago maintaining a strategy in full replacement of gas in order to maintain pressure of the reservoir above the dew point. This was partially due to the sour nature of the gas with CO2 content over 5%. Our models and

  7. Gas-well production decline in multiwell reservoirs

    SciTech Connect

    Aminian, K.; Ameri, S. ); Stark, J.J. ); Yost, A.B. II )

    1990-12-01

    This paper introduces a pseudosteady-state constant-pressure solution for gas wells. The solution was used to develop a type-curve-based method to history match and predict multiwell gas reservoir production. Good agreements between the predicted and actual gas well production rates were obtained.

  8. Some modern notions on oil and gas reservoir production regulation

    SciTech Connect

    Lohrenz, J.; Monash, E.A.

    1980-05-21

    The historic rhetoric of oil and gas reservoir production regulations has been burdened with misconceptions. One was that most reservoirs are rate insensitive. Another was that a reservoir's decline is primarily a function of reservoir mechaism rather than a choice unconstrained by the laws of physics. Relieved of old notions like these, we introduce some modern notions, the most basic being that production regulation should have the purpose of obtaining the highest value from production per irreversible diminution of thermodynamically available energy. The laws of thermodynamics determine the available energy. What then is value. Value may include contributions other than production per se and purely monetary economic outcomes.

  9. US production of natural gas from tight reservoirs

    SciTech Connect

    Not Available

    1993-10-18

    For the purposes of this report, tight gas reservoirs are defined as those that meet the Federal Energy Regulatory Commission`s (FERC) definition of tight. They are generally characterized by an average reservoir rock permeability to gas of 0.1 millidarcy or less and, absent artificial stimulation of production, by production rates that do not exceed 5 barrels of oil per day and certain specified daily volumes of gas which increase with the depth of the reservoir. All of the statistics presented in this report pertain to wells that have been classified, from 1978 through 1991, as tight according to the FERC; i.e., they are ``legally tight`` reservoirs. Additional production from ``geologically tight`` reservoirs that have not been classified tight according to the FERC rules has been excluded. This category includes all producing wells drilled into legally designated tight gas reservoirs prior to 1978 and all producing wells drilled into physically tight gas reservoirs that have not been designated legally tight. Therefore, all gas production referenced herein is eligible for the Section 29 tax credit. Although the qualification period for the credit expired at the end of 1992, wells that were spudded (began to be drilled) between 1978 and May 1988, and from November 5, 1990, through year end 1992, are eligible for the tax credit for a subsequent period of 10 years. This report updates the EIA`s tight gas production information through 1991 and considers further the history and effect on tight gas production of the Federal Government`s regulatory and tax policy actions. It also provides some high points of the geologic background needed to understand the nature and location of low-permeability reservoirs.

  10. Nonlinear filtering in oil/gas reservoir simulation: filter design

    SciTech Connect

    Arnold, E.M.; Voss, D.A.; Mayer, D.W.

    1980-10-01

    In order to provide an additional mode of utility to the USGS reservoir model VARGOW, a nonlinear filter was designed and incorporated into the system. As a result, optimal (in the least squares sense) estimates of reservoir pressure, liquid mass, and gas cap plus free gas mass are obtained from an input of reservoir initial condition estimates and pressure history. These optimal estimates are provided continuously for each time after the initial time, and the input pressure history is allowed to be corrupted by measurement error. Preliminary testing of the VARGOW filter was begun and the results show promise. Synthetic data which could be readily manipulated during testing was used in tracking tests. The results were positive when the initial estimates of the reservoir initial conditions were reasonably close. Further testing is necessary to investigate the filter performance with real reservoir data.

  11. Gas content of Gladys McCall reservoir brine

    SciTech Connect

    Hayden, C.G.; Randolph, P.L.

    1987-05-29

    On October 8, 1983, after the first full day of production from Sand No.8 in the Gladys McCall well, samples of separator gas and separator brine were collected for laboratory P-V-T (pressure, volume, temperature) studies. Recombination of amounts of these samples based upon measured rates at the time of sample collection, and at reservoir temperature (290 F), revealed a bubble point pressure of 9200 psia. This is substantially below the reported reservoir pressure of 12,783 psia. The gas content of the recombined fluids was 30.19 SCF of dry gas/STB of brine. In contrast, laboratory studies indicate that 35.84 SCF of pure methane would dissolve in each STB of 95,000 mg/L sodium chloride brine. These results indicate that the reservoir brine was not saturated with natural gas. By early April, 1987, production of roughly 25 million barrels of brine had reduced calculated flowing bottomhole pressure to about 6600 psia at a brine rate of 22,000 STB/D. If the skin factor(s) were as high as 20, flowing pressure drop across the skin would still be only about 500 psi. Thus, some portion of the reservoir volume was believed to have been drawn down to below the bubble point deduced from the laboratory recombination of separator samples. When the pressure in a geopressured geothermal reservoir is reduced to below the bubble point pressure for solution gas, gas is exsolved from the brine flowing through the pores in the reservoir rock. This exsolved gas is trapped in the reservoir until the fractional gas saturation of pore volume becomes large enough for gas flow to commence through a continuous gas-filled channel. At the same time, the gas/brine ratio becomes smaller and the chemistry of the remaining solution gas changes for the brine from which gas is exsolved. A careful search was made for the changes in gas/brine ratio or solution gas chemistry that would accompany pressure dropping below the bubble point pressure. Changes of about the same magnitude as the scatter in

  12. Microbial Life in an Underground Gas Storage Reservoir

    NASA Astrophysics Data System (ADS)

    Bombach, Petra; van Almsick, Tobias; Richnow, Hans H.; Zenner, Matthias; Krüger, Martin

    2015-04-01

    While underground gas storage is technically well established for decades, the presence and activity of microorganisms in underground gas reservoirs have still hardly been explored today. Microbial life in underground gas reservoirs is controlled by moderate to high temperatures, elevated pressures, the availability of essential inorganic nutrients, and the availability of appropriate chemical energy sources. Microbial activity may affect the geochemical conditions and the gas composition in an underground reservoir by selective removal of anorganic and organic components from the stored gas and the formation water as well as by generation of metabolic products. From an economic point of view, microbial activities can lead to a loss of stored gas accompanied by a pressure decline in the reservoir, damage of technical equipment by biocorrosion, clogging processes through precipitates and biomass accumulation, and reservoir souring due to a deterioration of the gas quality. We present here results from molecular and cultivation-based methods to characterize microbial communities inhabiting a porous rock gas storage reservoir located in Southern Germany. Four reservoir water samples were obtained from three different geological horizons characterized by an ambient reservoir temperature of about 45 °C and an ambient reservoir pressure of about 92 bar at the time of sampling. A complementary water sample was taken at a water production well completed in a respective horizon but located outside the gas storage reservoir. Microbial community analysis by Illumina Sequencing of bacterial and archaeal 16S rRNA genes indicated the presence of phylogenetically diverse microbial communities of high compositional heterogeneity. In three out of four samples originating from the reservoir, the majority of bacterial sequences affiliated with members of the genera Eubacterium, Acetobacterium and Sporobacterium within Clostridiales, known for their fermenting capabilities. In

  13. Characterization of oil and gas reservoir heterogeneity

    SciTech Connect

    Tyler, N.; Barton, M.D.; Bebout, D.G.; Fisher, R.S.; Grigsby, J.D.; Guevara, E.; Holtz, M.; Kerans, C.; Nance, H.S.; Levey, R.A.

    1992-10-01

    Research described In this report addresses the internal architecture of two specific reservoir types: restricted-platform carbonates and fluvial-deltaic sandstones. Together, these two reservoir types contain more than two-thirds of the unrecovered mobile oil remaining ill Texas. The approach followed in this study was to develop a strong understanding of the styles of heterogeneity of these reservoir types based on a detailed outcrop description and a translation of these findings into optimized recovery strategies in select subsurface analogs. Research targeted Grayburg Formation restricted-platform carbonate outcrops along the Algerita Escarpment and In Stone Canyon In southeastern New Mexico and Ferron deltaic sandstones in central Utah as analogs for the North Foster (Grayburg) and Lake Creek (Wilcox) units, respectively. In both settings, sequence-stratigraphic style profoundly influenced between-well architectural fabric and permeability structure. It is concluded that reservoirs of different depositional origins can therefore be categorized Into a heterogeneity matrix'' based on varying intensity of vertical and lateral heterogeneity. The utility of the matrix is that it allows prediction of the nature and location of remaining mobile oil. Highly stratified reservoirs such as the Grayburg, for example, will contain a large proportion of vertically bypassed oil; thus, an appropriate recovery strategy will be waterflood optimization and profile modification. Laterally heterogeneous reservoirs such as deltaic distributary systems would benefit from targeted infill drilling (possibly with horizontal wells) and improved areal sweep efficiency. Potential for advanced recovery of remaining mobile oil through heterogeneity-based advanced secondary recovery strategies In Texas is projected to be an Incremental 16 Bbbl. In the Lower 48 States this target may be as much as 45 Bbbl at low to moderate oil prices over the near- to mid-term.

  14. Characterization of oil and gas reservoir heterogeneity

    SciTech Connect

    Not Available

    1991-01-01

    The objective of the cooperative research program is to characterize Alaskan reservoirs in terms of their reserves, physical and chemical properties, geologic configuration and structure, and the development potential. The tasks completed during this period include: (1) geologic reservoir description of Endicott Field; (2) petrographic characterization of core samples taken from selected stratigraphic horizons of the West Sak and Ugnu (Brookian) wells; (3) development of a polydispersed thermodynamic model for predicting asphaltene equilibria and asphaltene precipitation from crude oil-solvent mixtures, and (4) preliminary geologic description of the Milne Point Unit.

  15. US Geological Survey publications on western tight gas reservoirs

    SciTech Connect

    Krupa, M.P.; Spencer, C.W.

    1989-02-01

    This bibliography includes reports published from 1977 through August 1988. In 1977 the US Geological Survey (USGS), in cooperation with the US Department of Energy's, (DOE), Western Gas Sands Research program, initiated a geological program to identify and characterize natural gas resources in low-permeability (tight) reservoirs in the Rocky Mountain region. These reservoirs are present at depths of less than 2,000 ft (610 m) to greater than 20,000 ft (6,100 m). Only published reports readily available to the public are included in this report. Where appropriate, USGS researchers have incorporated administrative report information into later published studies. These studies cover a broad range of research from basic research on gas origin and migration to applied studies of production potential of reservoirs in individual wells. The early research included construction of regional well-log cross sections. These sections provide a basic stratigraphic framework for individual areas and basins. Most of these sections include drill-stem test and other well-test data so that the gas-bearing reservoirs can be seen in vertical and areal dimensions. For the convenience of the reader, the publications listed in this report have been indexed by general categories of (1) authors, (2) states, (3) geologic basins, (4) cross sections, (5) maps (6) studies of gas origin and migration, (7) reservoir or mineralogic studies, and (8) other reports of a regional or specific topical nature.

  16. Estimating greenhouse gas emissions from future Amazonian hydroelectric reservoirs

    NASA Astrophysics Data System (ADS)

    de Faria, Felipe A. M.; Jaramillo, Paulina; Sawakuchi, Henrique O.; Richey, Jeffrey E.; Barros, Nathan

    2015-12-01

    Brazil plans to meet the majority of its growing electricity demand with new hydropower plants located in the Amazon basin. However, large hydropower plants located in tropical forested regions may lead to significant carbon dioxide and methane emission. Currently, no predictive models exist to estimate the greenhouse gas emissions before the reservoir is built. This paper presents two different approaches to investigate the future carbon balance of eighteen new reservoirs in the Amazon. The first approach is based on a degradation model of flooded carbon stock, while the second approach is based on flux data measured in Amazonian rivers and reservoirs. The models rely on a Monte Carlo simulation framework to represent the balance of the greenhouse gases into the atmosphere that results when land and river are converted into a reservoir. Further, we investigate the role of the residence time/stratification in the carbon emissions estimate. Our results imply that two factors contribute to reducing overall emissions from these reservoirs: high energy densities reservoirs, i.e., the ratio between the installed capacity and flooded area, and vegetation clearing. While the models’ uncertainties are high, we show that a robust treatment of uncertainty can effectively indicate whether a reservoir in the Amazon will result in larger greenhouse gas emissions when compared to other electricity sources.

  17. 30 CFR 250.1157 - How do I receive approval to produce gas-cap gas from an oil reservoir with an associated gas cap?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... gas from an oil reservoir with an associated gas cap? 250.1157 Section 250.1157 Mineral Resources... Production § 250.1157 How do I receive approval to produce gas-cap gas from an oil reservoir with an... producing gas-cap gas from each completion in an oil reservoir that is known to have an associated gas...

  18. 30 CFR 250.1157 - How do I receive approval to produce gas-cap gas from an oil reservoir with an associated gas cap?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... gas from an oil reservoir with an associated gas cap? 250.1157 Section 250.1157 Mineral Resources... Production § 250.1157 How do I receive approval to produce gas-cap gas from an oil reservoir with an... producing gas-cap gas from each completion in an oil reservoir that is known to have an associated gas...

  19. 30 CFR 250.1157 - How do I receive approval to produce gas-cap gas from an oil reservoir with an associated gas cap?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... gas from an oil reservoir with an associated gas cap? 250.1157 Section 250.1157 Mineral Resources... Production § 250.1157 How do I receive approval to produce gas-cap gas from an oil reservoir with an... producing gas-cap gas from each completion in an oil reservoir that is known to have an associated gas...

  20. Measuring and managing reservoir greenhouse gas emissions

    EPA Science Inventory

    Methane (CH4) is the second most important anthropogenic greenhouse gas with a heat trapping capacity 34 times greater than that of carbon dioxide on a 100 year time scale. Known anthropogenic CH4 sources include livestock production, rice agriculture, landfills, and natural gas...

  1. 30 CFR 250.1157 - How do I receive approval to produce gas-cap gas from an oil reservoir with an associated gas cap?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... gas from an oil reservoir with an associated gas cap? 250.1157 Section 250.1157 Mineral Resources... do I receive approval to produce gas-cap gas from an oil reservoir with an associated gas cap? (a... from each completion in an oil reservoir that is known to have an associated gas cap. (2) To...

  2. Prediction of Gas Injection Performance for Heterogeneous Reservoirs

    SciTech Connect

    Blunt, Martin J.; Orr, Jr., Franklin M.

    1999-12-20

    This report describes research carried out in the Department of Petroleum Engineering at Stanford University from September 1998 - September 1998 under the third year of a three-year Department of Energy (DOE) grant on the ''Prediction of Gas Injection Performance for Heterogeneous Reservoirs''. The research effort is an integrated study of the factors affecting gas injection, from the pore scale to the field scale, and involves theoretical analysis, laboratory experiments and numerical simulation. The research is divided into four main areas: (1) Pore scale modeling of three-phase flow in porous media; (2) Laboratory experiments and analysis of factors influencing gas injection performance at the core scale with an emphasis on the fundamentals of three-phase flow; (3) Benchmark simulations of gas injection at the field scale; and (4) Development of streamline-based reservoir simulator.

  3. Velocities of fragments from bursting gas reservoirs.

    NASA Technical Reports Server (NTRS)

    Taylor, D. E.; Price, C. F.

    1971-01-01

    A solution is obtained from a simplified approach for the problem of the motion of two fragments driven into a vacuum after rupture of a container filled with gas. Following rupture, the two container fragments are driven in opposite directions. From the separation developed between the moving fragments, the originally contained gas escapes to the vacuum, perpendicular to the direction of motion of the fragments, and with locally sonic velocity. The present solution removes two restrictions of an earlier similar approach: (1) the speed of the gas within the original volume (and consequently, by inference, that of the fragments) is small relative to the sonic escape velocity, and (2) the volume between the separating fragments while they are accelerating undergoes negligible change from the original volume.

  4. 30 CFR 250.121 - What happens when the reservoir contains both original gas in place and injected gas?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 2 2014-07-01 2014-07-01 false What happens when the reservoir contains both... CONTINENTAL SHELF General Performance Standards § 250.121 What happens when the reservoir contains both original gas in place and injected gas? If the reservoir contains both original gas in place and...

  5. 30 CFR 250.121 - What happens when the reservoir contains both original gas in place and injected gas?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false What happens when the reservoir contains both... SHELF General Performance Standards § 250.121 What happens when the reservoir contains both original gas in place and injected gas? If the reservoir contains both original gas in place and injected...

  6. 30 CFR 250.121 - What happens when the reservoir contains both original gas in place and injected gas?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 2 2012-07-01 2012-07-01 false What happens when the reservoir contains both... CONTINENTAL SHELF General Performance Standards § 250.121 What happens when the reservoir contains both original gas in place and injected gas? If the reservoir contains both original gas in place and...

  7. 30 CFR 250.121 - What happens when the reservoir contains both original gas in place and injected gas?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 2 2013-07-01 2013-07-01 false What happens when the reservoir contains both... CONTINENTAL SHELF General Performance Standards § 250.121 What happens when the reservoir contains both original gas in place and injected gas? If the reservoir contains both original gas in place and...

  8. Noble Gas Tracing of Fluid Transport in Shale Reservoirs

    NASA Astrophysics Data System (ADS)

    Heath, J. E.; Gardner, W. P.; Kuhlman, K. L.; Robinson, D. G.; Bauer, S. J.

    2014-12-01

    We investigate fluid transport mechanisms in a shale reservoir using natural noble gas tracers. Noble gas tracing is promising due to sensitivity of transport to: pore structure and sizes; phase partitioning between groundwater and liquid and gaseous hydrocarbons; and deformation from hydraulic fracturing and creation of surface area. A time-series of over thirty wellhead fluid samples were collected from two hydraulically-fractured wells with different oil-to-gas ratios, along with production data (i.e., flowrate and pressure). Tracer and production data sets can be combined to infer production flow regimes, to estimate reservoir transport parameters, and to improve forecasts of production decline. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  9. 30 CFR 250.1157 - How do I receive approval to produce gas-cap gas from an oil reservoir with an associated gas cap?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... gas from an oil reservoir with an associated gas cap? 250.1157 Section 250.1157 Mineral Resources... reservoir with an associated gas cap? (a) You must request and receive approval from the Regional Supervisor: (1) Before producing gas-cap gas from each completion in an oil reservoir that is known to have...

  10. Naturally fractured tight gas reservoir detection optimization

    SciTech Connect

    1999-04-30

    In March, work continued on characterizing probabilities for determining natural fracturing associated with the GGRB for the Upper Cretaceous tight gas plays. Structural complexity, based on potential field data and remote sensing data was completed. A resource estimate for the Frontier and Mesa Verde play was also completed. Further, work was also conducted to determine threshold economics for the play based on limited current production in the plays in the Wamsutter Ridge area. These analyses culminated in a presentation at FETC on 24 March 1999 where quantified natural fracture domains, mapped on a partition basis, which establish ''sweet spot'' probability for natural fracturing, were reviewed. That presentation is reproduced here as Appendix 1. The work plan for the quarter of January 1, 1999--March 31, 1999 comprised five tasks: (1) Evaluation of the GGRB partitions for structural complexity that can be associated with natural fractures, (2) Continued resource analysis of the balance of the partitions to determine areas with higher relative gas richness, (3) Gas field studies, (4) Threshold resource economics to determine which partitions would be the most prospective, and (5) Examination of the area around the Table Rock 4H well.

  11. Permeability effects on the seismic response of gas reservoirs

    NASA Astrophysics Data System (ADS)

    Rubino, J. Germán.; Velis, Danilo R.; Holliger, Klaus

    2012-04-01

    In this work, we analyse the role of permeability on the seismic response of sandstone reservoirs characterized by patchy gas-water saturation. We do this in the framework of Johnson's model, which is a generalization of White's seminal model allowing for patches of arbitrary geometry. We first assess the seismic attenuation and velocity dispersion characteristics in response to wave-induced fluid flow. To this end, we perform an exhaustive analysis of the sensitivity of attenuation and velocity dispersion of compressional body waves to permeability and explore the roles played by the Johnson parameters T and S/V, which characterize the shape and size of the gas-water patches. Our results indicate that, within the typical frequency range of exploration seismic data, this sensitivity may indeed be particularly strong for a variety of realistic and relevant scenarios. Next, we extend our analysis to the corresponding effects on surface-based reflection seismic data for two pertinent models of typical sandstone reservoirs. In the case of softer and more porous formations and in the presence of relatively low levels of gas saturation we observe that the effects of permeability on seismic reflection data are indeed significant. These prominent permeability effects prevail for normal-incidence and non-normal-incidence seismic data and for a very wide range of sizes and shapes of the gas-water patches. For harder and less porous reservoirs, the normal-incidence seismic responses exhibit little or no sensitivity to permeability, but the corresponding non-normal-incidence responses show a clear dependence on this parameter, again especially so for low gas saturations. The results of this study therefore suggest that, for a range of fairly common and realistic conditions, surface-based seismic reflection data are indeed remarkably sensitive to the permeability of gas reservoirs and thus have the potential of providing corresponding first-order constraints.

  12. Moomba Lower Daralingie Beds (LDB) gas storage project: Reservoir management using a novel numerical simulation technique

    SciTech Connect

    Jamal, F.G.

    1994-12-31

    Engineers managing underground gas storage projects are often faced with challenges involving gas migration, inventory variance, gas quality and inventory-pressures. This paper discusses a unique underground gas storage project where sales gas and ethane are stored in two different but communicating regions of the same reservoir. A commercially available reservoir simulator was used to model the fluid flow behavior in this reservoir, hence, providing a tool for better management and use of the existing gas storage facilities.

  13. Calculation of hydrocarbon-in-place in gas and gas-condensate reservoirs - Carbon dioxide sequestration

    USGS Publications Warehouse

    Verma, Mahendra K.

    2012-01-01

    The Energy Independence and Security Act of 2007 (Public Law 110-140) authorized the U.S. Geological Survey (USGS) to conduct a national assessment of geologic storage resources for carbon dioxide (CO2), requiring estimation of hydrocarbon-in-place volumes and formation volume factors for all the oil, gas, and gas-condensate reservoirs within the U.S. sedimentary basins. The procedures to calculate in-place volumes for oil and gas reservoirs have already been presented by Verma and Bird (2005) to help with the USGS assessment of the undiscovered resources in the National Petroleum Reserve, Alaska, but there is no straightforward procedure available for calculating in-place volumes for gas-condensate reservoirs for the carbon sequestration project. The objective of the present study is to propose a simple procedure for calculating the hydrocarbon-in-place volume of a condensate reservoir to help estimate the hydrocarbon pore volume for potential CO2 sequestration.

  14. Mechanistic Processes Controlling Gas Sorption in Shale Reservoirs

    NASA Astrophysics Data System (ADS)

    Schaef, T.; Loring, J.; Ilton, E. S.; Davidson, C. L.; Owen, T.; Hoyt, D.; Glezakou, V. A.; McGrail, B. P.; Thompson, C.

    2014-12-01

    Utilization of CO2 to stimulate natural gas production in previously fractured shale-dominated reservoirs where CO2 remains in place for long-term storage may be an attractive new strategy for reducing the cost of managing anthropogenic CO2. A preliminary analysis of capacities and potential revenues in US shale plays suggests nearly 390 tcf in additional gas recovery may be possible via CO2 driven enhanced gas recovery. However, reservoir transmissivity properties, optimum gas recovery rates, and ultimate fate of CO2 vary among reservoirs, potentially increasing operational costs and environmental risks. In this paper, we identify key mechanisms controlling the sorption of CH4 and CO2 onto phyllosilicates and processes occurring in mixed gas systems that have the potential of impacting fluid transfer and CO2 storage in shale dominated formations. Through a unique set of in situ experimental techniques coupled with molecular-level simulations, we identify structural transformations occurring to clay minerals, optimal CO2/CH4 gas exchange conditions, and distinguish between adsorbed and intercalated gases in a mixed gas system. For example, based on in situ measurements with magic angle spinning NMR, intercalation of CO2 within the montmorillonite structure occurs in CH4/CO2 gas mixtures containing low concentrations (<5 mol%) of CO2. A stable montmorillonite structure dominates during exposure to pure CH4 (90 bar), but expands upon titration of small fractions (1-3 mol%) of CO2. Density functional theory was used to quantify the difference in sorption behavior between CO2 and CH4 and indicates complex interactions occurring between hydrated cations, CH4, and CO2. The authors will discuss potential impacts of these experimental results on CO2-based hydrocarbon recovery processes.

  15. Earthquakes and depleted gas reservoirs: which comes first?

    NASA Astrophysics Data System (ADS)

    Mucciarelli, M.; Donda, F.; Valensise, G.

    2014-12-01

    While scientists are paying increasing attention to the seismicity potentially induced by hydrocarbon exploitation, little is known about the reverse problem, i.e. the impact of active faulting and earthquakes on hydrocarbon reservoirs. The recent 2012 earthquakes in Emilia, Italy, raised concerns among the public for being possibly human-induced, but also shed light on the possible use of gas wells as a marker of the seismogenic potential of an active fold-and-thrust belt. Based on the analysis of over 400 borehole datasets from wells drilled along the Ferrara-Romagna Arc, a large oil and gas reserve in the southeastern Po Plain, we found that the 2012 earthquakes occurred within a cluster of sterile wells surrounded by productive ones. Since the geology of the productive and sterile areas is quite similar, we suggest that past earthquakes caused the loss of all natural gas from the potential reservoirs lying above their causative faults. Our findings have two important practical implications: (1) they may allow major seismogenic zones to be identified in areas of sparse seismicity, and (2) suggest that gas should be stored in exploited reservoirs rather than in sterile hydrocarbon traps or aquifers as this is likely to reduce the hazard of triggering significant earthquakes.

  16. Nuclear Well Log Properties of Natural Gas Hydrate Reservoirs

    NASA Astrophysics Data System (ADS)

    Burchwell, A.; Cook, A.

    2015-12-01

    Characterizing gas hydrate in a reservoir typically involves a full suite of geophysical well logs. The most common method involves using resistivity measurements to quantify the decrease in electrically conductive water when replaced with gas hydrate. Compressional velocity measurements are also used because the gas hydrate significantly strengthens the moduli of the sediment. At many gas hydrate sites, nuclear well logs, which include the photoelectric effect, formation sigma, carbon/oxygen ratio and neutron porosity, are also collected but often not used. In fact, the nuclear response of a gas hydrate reservoir is not known. In this research we will focus on the nuclear log response in gas hydrate reservoirs at the Mallik Field at the Mackenzie Delta, Northwest Territories, Canada, and the Gas Hydrate Joint Industry Project Leg 2 sites in the northern Gulf of Mexico. Nuclear logs may add increased robustness to the investigation into the properties of gas hydrates and some types of logs may offer an opportunity to distinguish between gas hydrate and permafrost. For example, a true formation sigma log measures the thermal neutron capture cross section of a formation and pore constituents; it is especially sensitive to hydrogen and chlorine in the pore space. Chlorine has a high absorption potential, and is used to determine the amount of saline water within pore spaces. Gas hydrate offers a difference in elemental composition compared to water-saturated intervals. Thus, in permafrost areas, the carbon/oxygen ratio may vary between gas hydrate and permafrost, due to the increase of carbon in gas hydrate accumulations. At the Mallik site, we observe a hydrate-bearing sand (1085-1107 m) above a water-bearing sand (1107-1140 m), which was confirmed through core samples and mud gas analysis. We observe a decrease in the photoelectric absorption of ~0.5 barnes/e-, as well as an increase in the formation sigma readings of ~5 capture units in the water-bearing sand as

  17. Seismic analysis applied to the delimiting of a gas reservoir

    SciTech Connect

    Ronquillo, G.; Navarro, M.; Lozada, M.; Tafolla, C.

    1996-08-01

    We present the results of correlating seismic models with petrophysical parameters and well logs to mark the limits of a gas reservoir in sand lenses. To fulfill the objectives of the study, we used a data processing sequence that included wavelet manipulation, complex trace attributes and pseudovelocities inversion, along with several quality control schemes to insure proper amplitude preservation. Based on the analysis and interpretation of the seismic sections, several areas of interest were selected to apply additional signal treatment as preconditioning for petrophysical inversion. Signal classification was performed to control the amplitudes along the horizons of interest, and to be able to find an indirect interpretation of lithologies. Additionally, seismic modeling was done to support the results obtained and to help integrate the interpretation. The study proved to be a good auxiliary tool in the location of the probable extension of the gas reservoir in sand lenses.

  18. Performance of fractured horizontal well with stimulated reservoir volume in unconventional gas reservoir

    NASA Astrophysics Data System (ADS)

    Zhao, Yu-Long; Zhang, Lie-Hui; Luo, Jian-Xin; Zhang, Bo-Ning

    2014-05-01

    This paper extended the conventional multiple hydraulic fractured horizontal (MFH) well into a composite model to describe the stimulated reservoir volume (SRV) caused by hydraulic fracturing. Employing the Laplace transform, Source function, and Dirac delta function methods, the continuous linear source function for general composite dual-porosity is derived, and the solution of the MFH well in a composite gas reservoir is obtained with the numerical discrete method. Through the Stehfest numerical algorithm and Gauss elimination method, the transient pressure responses for well producing at a constant production rate and the production rate vs. time for constant bottomhole pressure are analyzed. The effects of related parameters such as natural permeability and radial of the SRV region, formation permeability and interporosity coefficient on transient pressure and production performance are analyzed as well. The presented model and obtained results in this paper not only enrich the well testing models of such unconventional reservoir, but also can use to interpret on-site data which have significance on efficient reservoir development.

  19. Earthquakes and depleted gas reservoirs: which comes first?

    NASA Astrophysics Data System (ADS)

    Mucciarelli, M.; Donda, F.; Valensise, G.

    2015-10-01

    While scientists are paying increasing attention to the seismicity potentially induced by hydrocarbon exploitation, so far, little is known about the reverse problem, i.e. the impact of active faulting and earthquakes on hydrocarbon reservoirs. The 20 and 29 May 2012 earthquakes in Emilia, northern Italy (Mw 6.1 and 6.0), raised concerns among the public for being possibly human-induced, but also shed light on the possible use of gas wells as a marker of the seismogenic potential of an active fold and thrust belt. We compared the location, depth and production history of 455 gas wells drilled along the Ferrara-Romagna arc, a large hydrocarbon reserve in the southeastern Po Plain (northern Italy), with the location of the inferred surface projection of the causative faults of the 2012 Emilia earthquakes and of two pre-instrumental damaging earthquakes. We found that these earthquake sources fall within a cluster of sterile wells, surrounded by productive wells at a few kilometres' distance. Since the geology of the productive and sterile areas is quite similar, we suggest that past earthquakes caused the loss of all natural gas from the potential reservoirs lying above their causative faults. To validate our hypothesis we performed two different statistical tests (binomial and Monte Carlo) on the relative distribution of productive and sterile wells, with respect to seismogenic faults. Our findings have important practical implications: (1) they may allow major seismogenic sources to be singled out within large active thrust systems; (2) they suggest that reservoirs hosted in smaller anticlines are more likely to be intact; and (3) they also suggest that in order to minimize the hazard of triggering significant earthquakes, all new gas storage facilities should use exploited reservoirs rather than sterile hydrocarbon traps or aquifers.

  20. Incremental natural gas resources through infield reserve growth/secondary natural gas recovery. [Compartmented natural gas reservoir

    SciTech Connect

    Finley, R.J.; Levey, R.A.

    1992-01-01

    The objectives of the Infield Growth/Secondary Natural Gas Recovery project have been: To establish how depositional and diagenetic heterogeneities in reservoirs of conventional permeability cause reservoir compartmentalization and, hence, incomplete recovery of natural gas. To document practical, field-oriented examples of reserve growth from fluvial and deltaic sandstones of the Texas gulf coast basin and to use these gas reservoirs as a natural laboratory for developing concepts and testing applications of both tools and techniques to find secondary gas. To demonstrate how the integration of geology, reservoir engineering, geophysics, and well log analysis/petrophysics leads to strategic recompletion and well placement opportunities for reserve growth in mature fields. To transfer project results to natural gas producers, not just as field case studies, but as conceptual models of how heterogeneities determine natural gas flow and how to recognize the geologic and engineering clues that operators can use in a cost-effective manner to identify secondary gas. Accomplishments are presented for: reservoir characterization; integrated formation evaluation and engineering testing; compartmented reservoir simulator; and reservoir geophysics.

  1. Prediction of Gas Injection Performance for Heterogeneous Reservoirs

    SciTech Connect

    Franklin M. Orr, Jr; Martin J. Blunt

    1998-03-31

    This project performs research in four main areas: laboratory experiments to measure three-phase relative permeability; network modeling to predict three-phase relative perme- ability; benchmark simulations of gas injection and waterfl ooding at the field scale; and the development of fast streamline techniques to study field-scale oil. The aim of the work is to achieve a comprehensive description of gas injection processes from the pore to the core to the reservoir scale. In this report we provide a detailed description of our measurements of three-phase relative permeability.

  2. Performance of wells in solution-gas-drive reservoirs

    SciTech Connect

    Camacho-V, R.G. ); Raghavan, R. )

    1989-12-01

    The authors examine buildup responses in solution-gas-drive reservoirs. The development presented here parallels the development for single-phase liquid flow. Analogs from pseudopressures and time transformations are presented and gas-drive-solutions are correlated with appropriate liquid-flow solutions. The influence of the skin region is documented. The basis for the success of the producing GOR method to compute the saturation distribution at shut-in is presented. The consequences of using the Perrine-Martin analog to analyze buildup data are discussed.

  3. Naturally fractured tight gas reservoir detection optimization. Final report

    SciTech Connect

    1997-11-19

    This DOE-funded research into seismic detection of natural fractures is one of six projects within the DOE`s Detection and Analysis of Naturally Fractured Gas Reservoirs Program, a multidisciplinary research initiative to develop technology for prediction, detection, and mapping of naturally fractured gas reservoirs. The demonstration of successful seismic techniques to locate subsurface zones of high fracture density and to guide drilling orientation for enhanced fracture permeability will enable better returns on investments in the development of the vast gas reserves held in tight formations beneath the Rocky Mountains. The seismic techniques used in this project were designed to capture the azimuthal anisotropy within the seismic response. This seismic anisotropy is the result of the symmetry in the rock fabric created by aligned fractures and/or unequal horizontal stresses. These results may be compared and related to other lines of evidence to provide cross-validation. The authors undertook investigations along the following lines: Characterization of the seismic anisotropy in three-dimensional, P-wave seismic data; Characterization of the seismic anisotropy in a nine-component (P- and S-sources, three-component receivers) vertical seismic profile; Characterization of the seismic anisotropy in three-dimensional, P-to-S converted wave seismic data (P-wave source, three-component receivers); and Description of geological and reservoir-engineering data that corroborate the anisotropy: natural fractures observed at the target level and at the surface, estimation of the maximum horizontal stress in situ, and examination of the flow characteristics of the reservoir.

  4. Quantitative evaluation of oil-leg potential in gas reservoirs

    SciTech Connect

    Lisk, M.; Krieger, F.W.; Eadington, P.J.; O`Brien, G.W.

    1996-12-31

    Oil bearing fluid inclusions in sandstone represent hidden oil shows. The frequency of quartz grains containing these inclusions (GOI number) reflects maximum palaeo-oil saturation irrespective of the present fluid phase. In this way fluid inclusion data can be used to both identify palaeo-oil columns and to map original oil water contacts (OWC) in wells where oil has been displaced by later gas charge. Studies conducted on gas fields from the North West Shelf of Australia have shown that substantial oil columns were once present. Moreover, detailed GOI mapping has been used to define the location of the original OWC in these reservoirs allowing the height of the palaeo-column to be determined and an estimate to be made of original oil in place (OOIP). At Oliver-1 in the Timor Sea the reservoir is presently filled to spill with a 164m gas, and 14.5m oil, column. GOI mapping has, however, delineated a 96m thick palaeo-oil column within the gas leg. This is almost seven times thicker than the present oil leg which suggests that perhaps 170-190 million barrels of oil were displaced from this structure. In the Pepper gas field in the Carnarvon Basin GOI mapping has demonstrated the presence of a gross palaeo-oil column between 15 and 30 m thick, suggesting that between about 50 and 70 million barrels of oil has been displaced. This is more oil than that reservoired in any of the surrounding oil discoveries, which emphasizes the importance, from an exploration standpoint, of defining these remigration pathways.

  5. Quantitative evaluation of oil-leg potential in gas reservoirs

    SciTech Connect

    Lisk, M.; Krieger, F.W.; Eadington, P.J. ); O'Brien, G.W. )

    1996-01-01

    Oil bearing fluid inclusions in sandstone represent hidden oil shows. The frequency of quartz grains containing these inclusions (GOI number) reflects maximum palaeo-oil saturation irrespective of the present fluid phase. In this way fluid inclusion data can be used to both identify palaeo-oil columns and to map original oil water contacts (OWC) in wells where oil has been displaced by later gas charge. Studies conducted on gas fields from the North West Shelf of Australia have shown that substantial oil columns were once present. Moreover, detailed GOI mapping has been used to define the location of the original OWC in these reservoirs allowing the height of the palaeo-column to be determined and an estimate to be made of original oil in place (OOIP). At Oliver-1 in the Timor Sea the reservoir is presently filled to spill with a 164m gas, and 14.5m oil, column. GOI mapping has, however, delineated a 96m thick palaeo-oil column within the gas leg. This is almost seven times thicker than the present oil leg which suggests that perhaps 170-190 million barrels of oil were displaced from this structure. In the Pepper gas field in the Carnarvon Basin GOI mapping has demonstrated the presence of a gross palaeo-oil column between 15 and 30 m thick, suggesting that between about 50 and 70 million barrels of oil has been displaced. This is more oil than that reservoired in any of the surrounding oil discoveries, which emphasizes the importance, from an exploration standpoint, of defining these remigration pathways.

  6. Prediction of Gas Injection Performance for Heterogeneous Reservoirs

    SciTech Connect

    Blunt, Martin J.; Orr, Franklin M.

    1999-05-17

    This report describes research carried out in the Department of Petroleum Engineering at Stanford University from September 1997 - September 1998 under the second year of a three-year grant from the Department of Energy on the "Prediction of Gas Injection Performance for Heterogeneous Reservoirs." The research effort is an integrated study of the factors affecting gas injection, from the pore scale to the field scale, and involves theoretical analysis, laboratory experiments, and numerical simulation. The original proposal described research in four areas: (1) Pore scale modeling of three phase flow in porous media; (2) Laboratory experiments and analysis of factors influencing gas injection performance at the core scale with an emphasis on the fundamentals of three phase flow; (3) Benchmark simulations of gas injection at the field scale; and (4) Development of streamline-based reservoir simulator. Each state of the research is planned to provide input and insight into the next stage, such that at the end we should have an integrated understanding of the key factors affecting field scale displacements.

  7. Compressed air energy storage in depleted natural gas reservoirs: effects of porous media and gas mixing

    NASA Astrophysics Data System (ADS)

    Oldenburg, C. M.; Pan, L.

    2015-12-01

    Although large opportunities exist for compressed air energy storage (CAES) in aquifers and depleted natural gas reservoirs, only two grid-scale CAES facilities exist worldwide, both in salt caverns. As such, experience with CAES in porous media, what we call PM-CAES, is lacking and we have relied on modeling to elucidate PM-CAES processes. PM-CAES operates similarly to cavern CAES. Specifically, working gas (air) is injected through well(s) into the reservoir compressing the cushion gas (existing air in the reservoir). During energy recovery, high-pressure air from the reservoir flows first into a recuperator, then into an expander, and subsequently is mixed with fuel in a combustion turbine to produce electricity, thereby reducing compression costs. Energy storage in porous media is complicated by the solid matrix grains which provide resistance to flow (via permeability in Darcy's law); in the cap rock, low-permeability matrix provides the seal to the reservoir. The solid grains also provide storage capacity for heat that might arise from compression, viscous flow effects, or chemical reactions. The storage of energy in PM-CAES occurs variably across pressure gradients in the formation, while the solid grains of the matrix can release/store heat. Residual liquid (i.e., formation fluids) affects flow and can cause watering out at the production well(s). PG&E is researching a potential 300 MW (for ten hours) PM-CAES facility in a depleted gas reservoir near Lodi, California. Special considerations exist for depleted natural gas reservoirs because of mixing effects which can lead to undesirable residual methane (CH4) entrainment and reactions of oxygen and CH4. One strategy for avoiding extensive mixing of working gas (air) with reservoir CH4 is to inject an initial cushion gas with reduced oxygen concentration providing a buffer between the working gas (air) and the residual CH4 gas. This reduces the potential mixing of the working air with the residual CH4

  8. The Noble Gas Fingerprint in a UK Unconventional Gas Reservoir

    NASA Astrophysics Data System (ADS)

    McKavney, Rory; Gilfillan, Stuart; Györe, Domokos; Stuart, Fin

    2016-04-01

    In the last decade, there has been an unprecedented expansion in the development of unconventional hydrocarbon resources. Concerns have arisen about the effect of this new industry on groundwater quality, particularly focussing on hydraulic fracturing, the technique used to increase the permeability of the targeted tight shale formations. Methane contamination of groundwater has been documented in areas of gas production1 but conclusively linking this to fugitive emissions from unconventional hydrocarbon production has been controversial2. A lack of baseline measurements taken before drilling, and the equivocal interpretation of geochemical data hamper the determination of possible contamination. Common techniques for "fingerprinting" gas from discrete sources rely on gas composition and isotopic ratios of elements within hydrocarbons (e.g. δ13CCH4), but the original signatures can be masked by biological and gas transport processes. The noble gases (He, Ne, Ar, Kr, Xe) are inert and controlled only by their physical properties. They exist in trace quantities in natural gases and are sourced from 3 isotopically distinct environments (atmosphere, crust and mantle)3. They are decoupled from the biosphere, and provide a separate toolbox to investigate the numerous sources and migration pathways of natural gases, and have found recent utility in the CCS4 and unconventional gas5 industries. Here we present a brief overview of noble gas data obtained from a new coal bed methane (CBM) field, Central Scotland. We show that the high concentration of helium is an ideal fingerprint for tracing fugitive gas migration to a shallow groundwater. The wells show variation in the noble gas signatures that can be attributed to differences in formation water pumping from the coal seams as the field has been explored for future commercial development. Dewatering the seams alters the gas/water ratio and the degree to which noble gases degas from the formation water. Additionally the

  9. Production decline analysis for a multi-fractured horizontal well considering elliptical reservoir stimulated volumes in shale gas reservoirs

    NASA Astrophysics Data System (ADS)

    Wei, Mingqiang; Duan, Yonggang; Fang, Quantang; Zhang, Tiantian

    2016-06-01

    Multi-fractured horizontal wells (MFHWs) are an effective technique for developing shale gas reservoirs. After fracturing, stimulated reservoir volumes (SRVs) invariably exist around the wellbore. In this paper, a composite elliptical SRV model for each hydraulic fracturing stage is established, based on micro-seismic events. Both the SRV and the outer regions are assumed as single-porosity media with different formation physical parameters. Based on unstructured perpendicular bisection (PEBI) grids, a mathematical model considering Darcy flow, diffusion and adsorption/desorption in shale gas reservoirs is presented. The numerical solution is obtained by combining the control volume finite element method with the fully implicit method. The model is verified by a simplified model solution. The MFHW Blasingame production decline curves, which consider elliptical SRVs in shale gas reservoirs, are plotted by computer programming. The flow regions can be divided into five flow regimes: early formation linear flow, radial flow in the SRV region, transient flow, pseudo radial flow and boundary dominated flow. Finally, the effect of six related parameters, including the SRV area size, outer region permeability, SRV region permeability, Langmuir pressure, Langmuir volume and diffusion coefficient, are analyzed on type curves. The model presented in this paper can expand our understanding of MFHW production decline behaviors in shale gas reservoirs and can be applied to estimate reservoir properties, the SRV area, and reserves in these types of reservoirs by type curve matching.

  10. Methodologies for Reservoir Characterization Using Fluid Inclusion Gas Chemistry

    SciTech Connect

    Dilley, Lorie M.

    2015-04-13

    The purpose of this project was to: 1) evaluate the relationship between geothermal fluid processes and the compositions of the fluid inclusion gases trapped in the reservoir rocks; and 2) develop methodologies for interpreting fluid inclusion gas data in terms of the chemical, thermal and hydrological properties of geothermal reservoirs. Phase 1 of this project was designed to conduct the following: 1) model the effects of boiling, condensation, conductive cooling and mixing on selected gaseous species; using fluid compositions obtained from geothermal wells, 2) evaluate, using quantitative analyses provided by New Mexico Tech (NMT), how these processes are recorded by fluid inclusions trapped in individual crystals; and 3) determine if the results obtained on individual crystals can be applied to the bulk fluid inclusion analyses determined by Fluid Inclusion Technology (FIT). Our initial studies however, suggested that numerical modeling of the data would be premature. We observed that the gas compositions, determined on bulk and individual samples were not the same as those discharged by the geothermal wells. Gases discharged from geothermal wells are CO2-rich and contain low concentrations of light gases (i.e. H2, He, N, Ar, CH4). In contrast many of our samples displayed enrichments in these light gases. Efforts were initiated to evaluate the reasons for the observed gas distributions. As a first step, we examined the potential importance of different reservoir processes using a variety of commonly employed gas ratios (e.g. Giggenbach plots). The second technical target was the development of interpretational methodologies. We have develop methodologies for the interpretation of fluid inclusion gas data, based on the results of Phase 1, geologic interpretation of fluid inclusion data, and integration of the data. These methodologies can be used in conjunction with the relevant geological and hydrological information on the system to

  11. Production Characteristics of Oceanic Natural Gas Hydrate Reservoirs

    NASA Astrophysics Data System (ADS)

    Max, M. D.; Johnson, A. H.

    2014-12-01

    Oceanic natural gas hydrate (NGH) accumulations form when natural gas is trapped thermodynamically within the gas hydrate stability zone (GHSZ), which extends downward from the seafloor in open ocean depths greater than about 500 metres. As water depths increase, the thickness of the GHSZ thickens, but economic NGH deposits probably occur no deeper than 1 km below the seafloor. Natural gas (mostly methane) appears to emanate mostly from deeper sources and migrates into the GHSZ. The natural gas crystallizes as NGH when the pressure - temperature conditions within the GHSZ are reached and when the chemical condition of dissolved gas concentration in pore water is high enough to favor crystallization. Although NGH can form in both primary and secondary porosity, the principal economic target appears to be turbidite sands on deep continental margins. Because these are very similar to the hosts of more deeply buried conventional gas and oil deposits, industry knows how to explore for them. Recent improvements in a seismic geotechnical approach to NGH identification and valuation have been confirmed by drilling in the northern Gulf of Mexico and allow for widespread exploration for NGH deposits to begin. NGH concentrations occur in the same semi-consolidated sediments in GHSZs worldwide. This provides for a narrow exploration window with low acoustic attenuation. These sediments present the same range of relatively easy drilling conditions and formation pressures that are only slightly greater than at the seafloor and are essentially equalized by water in wellbores. Expensive conventional drilling equipment is not required. NGH is the only hydrocarbon that is stable at its formation pressures and incapable of converting to gas without artificial stimulation. We suggest that specialized, NGH-specific drilling capability will offer opportunities for much less expensive drilling, more complex wellbore layouts that improve reservoir connectivity and in which gas

  12. Gas trapping and mobilization through water influx in natural gas reservoirs

    NASA Astrophysics Data System (ADS)

    Ding, Minghua

    2005-11-01

    Residual gas saturation is important in determining recovery from a gas reservoir, with water influx. This research addressed residual gas saturation, and other variables, resulting from imbibition tests in porous media, which included spontaneous and forced imbibition; co-current and counter-current imbibition; primary and secondary imbibition; water imbibition and oil imbibition. Several hundred water and oil imbibition experiments were performed on 47 core plugs, consisting of sandstone and carbonate samples. Concurrently, automated experimental rigs were developed, employing a balance in one case, and NMR in the other. The experimental techniques were critically evaluated with regard to repeatability and accuracy. The residual gas saturation, and gas saturation as a function of imbibition time, liquid distribution in different pore sizes, and relative wettability were investigated. A new Critical Capillary Number for gas-liquid system is postulated. A simple procedure was developed for determining wettability from imbibition data. Capillary pressure and relative permeability curves were extracted from the experimental data, and used in 1D and 3D numerical simulations of co-current and counter-current laboratory imbibition tests. The simulations showed the important role of gas compressibility and verified the residual gas saturation. Additionally, a gas reservoir with strong water influx was simulated, and methods for improving gas recovery were examined via many sensitivity studies. It is concluded that because of gas compressibility, residual gas saturation is important in low pressure systems, such as laboratory experiments, but is not important in a gas reservoir, unless the abandonment pressure is close to the initial pressure.

  13. Advanced reservoir management for independent oil and gas producers

    SciTech Connect

    Sgro, A.G.; Kendall, R.P.; Kindel, J.M.; Webster, R.B.; Whitney, E.M.

    1996-11-01

    There are more than fifty-two hundred oil and gas producers operating in the United States today. Many of these companies have instituted improved oil recovery programs in some form, but very few have had access to state-of-the-art modeling technologies routinely used by major producers to manage these projects. Since independent operators are playing an increasingly important role in the production of hydrocarbons in the United States, it is important to promote state-of-the-art management practices, including the planning and monitoring of improved oil recovery projects, within this community. This is one of the goals of the Strategic Technologies Council, a special interest group of independent oil and gas producers. Reservoir management technologies have the potential to increase oil recovery while simultaneously reducing production costs. These technologies were pioneered by major producers and are routinely used by them. Independent producers confront two problems adopting this approach: the high cost of acquiring these technologies and the high cost of using them even if they were available. Effective use of reservoir management tools requires, in general, the services of a professional (geoscientist or engineer) who is already familiar with the details of setting up, running, and interpreting computer models.

  14. Petrophysical approach of tight gas reservoir including shaly sand

    NASA Astrophysics Data System (ADS)

    Kim, Taeyoun; Hwang, Seho; Jang, Seonghyung

    2016-04-01

    Since porosity of tight gas reservoir is very small, it is very important to estimate porosity from well logs precisely. If well logging porosity is not appropriate or does not match with core-tested porosity, other rock properties related to porosity cannot be estimated correctly. In case of shaly sand, we have to consider clay volume for estimating water saturation and effective porosity. The purpose of this study is to address a process issue for estimating total porosity, water saturation of tight gas reservoir including shaly sand from well logs. The methods for estimating total porosity with difference well logging responses include neutron-density method, neutron-sonic method, density method, sonic method and compared with core-tested porosity. After calculating correlation coefficient between well logging total porosity and core-tested porosity, we select a best matched result. Using this result, we try to estimate water saturation from well logs. Normally, Archie's method is very famous for calculating water saturation. Since it assumes clean sand condition, we tried to apply other methods considering clay volume. In this study, we applied Archie's method, dual water method, and Indonesian method for estimating water saturation from well logs and compared with core-tested water saturation.

  15. Advanced Hydraulic Fracturing Technology for Unconventional Tight Gas Reservoirs

    SciTech Connect

    Stephen Holditch; A. Daniel Hill; D. Zhu

    2007-06-19

    The objectives of this project are to develop and test new techniques for creating extensive, conductive hydraulic fractures in unconventional tight gas reservoirs by statistically assessing the productivity achieved in hundreds of field treatments with a variety of current fracturing practices ranging from 'water fracs' to conventional gel fracture treatments; by laboratory measurements of the conductivity created with high rate proppant fracturing using an entirely new conductivity test - the 'dynamic fracture conductivity test'; and by developing design models to implement the optimal fracture treatments determined from the field assessment and the laboratory measurements. One of the tasks of this project is to create an 'advisor' or expert system for completion, production and stimulation of tight gas reservoirs. A central part of this study is an extensive survey of the productivity of hundreds of tight gas wells that have been hydraulically fractured. We have been doing an extensive literature search of the SPE eLibrary, DOE, Gas Technology Institute (GTI), Bureau of Economic Geology and IHS Energy, for publicly available technical reports about procedures of drilling, completion and production of the tight gas wells. We have downloaded numerous papers and read and summarized the information to build a database that will contain field treatment data, organized by geographic location, and hydraulic fracture treatment design data, organized by the treatment type. We have conducted experimental study on 'dynamic fracture conductivity' created when proppant slurries are pumped into hydraulic fractures in tight gas sands. Unlike conventional fracture conductivity tests in which proppant is loaded into the fracture artificially; we pump proppant/frac fluid slurries into a fracture cell, dynamically placing the proppant just as it occurs in the field. From such tests, we expect to gain new insights into some of the critical issues in tight gas fracturing, in

  16. Atlas of Northern Gulf of Mexico Gas and Oil Reservoirs: Procedures and examples of resource distribution

    SciTech Connect

    Seni, S.J.; Finley, R.J.

    1995-06-01

    The objective of the program is to produce a reservoir atlas series of the Gulf of Mexico that (1) classifies and groups offshore oil and gas reservoirs into a series of geologically defined reservoir plays, (2) compiles comprehensive reservoir play information that includes descriptive and quantitative summaries of play characteristics, cumulative production, reserves, original oil and gas in place, and various other engineering and geologic data, (3) provides detailed summaries of representative type reservoirs for each play, and (4) organizes computerized tables of reservoir engineering data into a geographic information system (GIS). The primary product of the program will be an oil and gas atlas series of the offshore Northern Gulf of Mexico and a computerized geographical information system of geologic and engineering data linked to reservoir location.

  17. a Review of Hydropower Reservoir and Greenhouse Gas Emissions

    NASA Astrophysics Data System (ADS)

    Rosa, L. P.; Dos Santos, M. A.

    2013-05-01

    Like most manmade projects, hydropower dams have multiple effects on the environment that have been studied in some depth over the past two decades. Among their most important effects are potential changes in water movement, flowing much slower than in the original river. This favors the appearance of phytoplankton as nutrients increase, with methanogenesis replacing oxidative water and generating anaerobic conditions. Although research during the late 1990s highlighted the problems caused by hydropower dams emitting greenhouse gases, crucial aspects of this issue still remain unresolved. Similar to natural water bodies, hydropower reservoirs have ample biota ranging from microorganisms to aquatic vertebrates. Microorganisms (bacteria) decompose organic matter producing biogenic gases under water. Some of these biogenic gases cause global warming, including methane, carbon dioxide and nitrous oxide. The levels of GHG emissions from hydropower dams are a strategic matter of the utmost importance, and comparisons with other power generation options such as thermo-power are required. In order to draw up an accurate assessment of the net emissions caused by hydropower dams, significant improvements are needed in carbon budgets and studies of representative hydropower dams. To determine accurately the net emissions caused by hydro reservoir formation is required significant improvement of carbon budgets studies on different representatives' hydro reservoirs at tropical, boreal, arid, semi arid and temperate climate. Comparisons must be drawn with emissions by equivalent thermo power plants, calculated and characterized as generating the same amount of energy each year as the hydropower dams, burning different fuels and with varying technology efficiency levels for steam turbines as well as coal, fuel oil and natural gas turbines and combined cycle plants. This paper brings to the scientific community important aspects of the development of methods and techniques applied

  18. Modeling and optimizing a gas-water reservoir: Enhanced recovery with waterflooding

    USGS Publications Warehouse

    Johnson, M.E.; Monash, E.A.; Waterman, M.S.

    1979-01-01

    Accepted practice dictates that waterflooding of gas reservoirs should commence, if ever, only when the reservoir pressure has declined to the minimum production pressure. Analytical proof of this hypothesis has yet to appear in the literature however. This paper considers a model for a gas-water reservoir with a variable production rate and enhanced recovery with waterflooding and, using an initial dynamic programming approach, confirms the above hypothesis. ?? 1979 Plenum Publishing Corporation.

  19. Material point method modeling in oil and gas reservoirs

    DOEpatents

    Vanderheyden, William Brian; Zhang, Duan

    2016-06-28

    A computer system and method of simulating the behavior of an oil and gas reservoir including changes in the margins of frangible solids. A system of equations including state equations such as momentum, and conservation laws such as mass conservation and volume fraction continuity, are defined and discretized for at least two phases in a modeled volume, one of which corresponds to frangible material. A material point model technique for numerically solving the system of discretized equations, to derive fluid flow at each of a plurality of mesh nodes in the modeled volume, and the velocity of at each of a plurality of particles representing the frangible material in the modeled volume. A time-splitting technique improves the computational efficiency of the simulation while maintaining accuracy on the deformation scale. The method can be applied to derive accurate upscaled model equations for larger volume scale simulations.

  20. Reservoir controls on the occurrence and production of gas hydrates in nature

    USGS Publications Warehouse

    Collett, Timothy Scott

    2014-01-01

    modeling has shown that concentrated gas hydrate occurrences in sand reservoirs are conducive to existing well-based production technologies. The resource potential of gas hydrate accumulations in sand-dominated reservoirs have been assessed for several polar terrestrial basins. In 1995, the U.S. Geological Survey (USGS) assigned an in-place resource of 16.7 trillion cubic meters of gas for hydrates in sand-dominated reservoirs on the Alaska North Slope. In a more recent assessment, the USGS indicated that there are about 2.42 trillion cubic meters of technically recoverable gas resources within concentrated, sand-dominated, gas hydrate accumulations in northern Alaska. Estimates of the amount of in-place gas in the sand dominated gas hydrate accumulations of the Mackenzie Delta Beaufort Sea region of the Canadian arctic range from 1.0 to 10 trillion cubic meters of gas. Another prospective gas hydrate resources are those of moderate-to-high concentrations within sandstone reservoirs in marine environments. In 2008, the Bureau of Ocean Energy Management estimated that the Gulf of Mexico contains about 190 trillion cubic meters of gas in highly concentrated hydrate accumulations within sand reservoirs. In 2008, the Japan Oil, Gas and Metals National Corporation reported on a resource assessment of gas hydrates in which they estimated that the volume of gas within the hydrates of the eastern Nankai Trough at about 1.1 trillion cubic meters, with about half concentrated in sand reservoirs. Because conventional production technologies favor sand-dominated gas hydrate reservoirs, sand reservoirs are considered to be the most viable economic target for gas hydrate production and will be the prime focus of most future gas hydrate exploration and development projects.

  1. OPTIMIZATION OF INFILL DRILLING IN NATURALLY-FRACTURED TIGHT-GAS RESERVOIRS

    SciTech Connect

    Lawrence W. Teufel; Her-Yuan Chen; Thomas W. Engler; Bruce Hart

    2004-05-01

    A major goal of industry and the U.S. Department of Energy (DOE) fossil energy program is to increase gas reserves in tight-gas reservoirs. Infill drilling and hydraulic fracture stimulation in these reservoirs are important reservoir management strategies to increase production and reserves. Phase II of this DOE/cooperative industry project focused on optimization of infill drilling and evaluation of hydraulic fracturing in naturally-fractured tight-gas reservoirs. The cooperative project involved multidisciplinary reservoir characterization and simulation studies to determine infill well potential in the Mesaverde and Dakota sandstone formations at selected areas in the San Juan Basin of northwestern New Mexico. This work used the methodology and approach developed in Phase I. Integrated reservoir description and hydraulic fracture treatment analyses were also conducted in the Pecos Slope Abo tight-gas reservoir in southeastern New Mexico and the Lewis Shale in the San Juan Basin. This study has demonstrated a methodology to (1) describe reservoir heterogeneities and natural fracture systems, (2) determine reservoir permeability and permeability anisotropy, (3) define the elliptical drainage area and recoverable gas for existing wells, (4) determine the optimal location and number of new in-fill wells to maximize economic recovery, (5) forecast the increase in total cumulative gas production from infill drilling, and (6) evaluate hydraulic fracture simulation treatments and their impact on well drainage area and infill well potential. Industry partners during the course of this five-year project included BP, Burlington Resources, ConocoPhillips, and Williams.

  2. Well test analysis for gas-condensate reservoirs

    SciTech Connect

    Vo, D.T.

    1989-01-01

    This dissertation provides a detailed description of the performance of gas condensate producing wells and proposes well test analysis procedures for such systems as well as far volatile oil and black-oil reservoirs. Synthetic well test data generated from a compositional simulator are used in the analysis of drawdown and buildup tests. For wells producing at constant rate during the transient flow period, the use of the pseudopressure approach is reviewed. Several existing analysis methods are compared. These include the single-phase gas pseudopressure, the steady-state analogue, the pressure-squared function, and the GOR method. A new method, based on pressure derivatives, for computing the appropriate pseudopressure function is introduced. For wells producing multiple phases at constant pressure during the transient flow period, a new method for approximating the pseudopressure is introduced. The advantage of this approach is that relative permeability data are not required. The method allows for approximate procedures to calculate sandface effective permeability and skin factor from either the semilog method or the use of constant pressure type curves. For multiphase flow during the boundary-dominated flow period, the procedure of plotting p/Z versus cumulative production is extended for a wide range of fluid systems. Appropriate pseudopressure and pseudotimes are introduced to correlate the responses of gas condensate producing wells to the constant rate liquid solution for the depletion period. Analysis of the isochronal testing for gas condensate producing wells is briefly examined. The effects of liquid condensation, rate sequence, rock and fluid properties, and near-well skin damage on the slope of the back-pressure curves and AOF estimate are investigated.

  3. Case history of pressure maintenance by gas injection in the 26R gravity drainage reservoir

    SciTech Connect

    Wei, M.H.; Yu, J.P.; Moore, D.M.; Ezekwe, N.; Querin, M.E.; Williams, L.L.

    1992-02-01

    This paper is a field case history on the performance of the 26R Reservoir. This is a gravity drainage reservoir under pressure maintenance by crestal gas injection. The 26R Reservoir is a highly layered Stevens turbidite sandstone. The reservoir is located in the Naval Petroleum Reserve No. 1 (NPR{number_sign}1) in Elk Hills, Kern County, California. The 26R Reservoir is contained within the steeply dipping southwestern limb of the 31S Anticline. The reservoir had an initial oil column of 1800 feet. Original oil-in-place (OOIP) was estimated at 424 million barrels. Pressure maintenance by crestal gas injection was initiated immediately after production began in October 1976. The total volume of gas injected is about 586 BCF. This exceeds one reservoir pore volume. Reservoir pressure has declined from 3030 psi to 2461 psi. This pressure decline believe to be due to migration of injected gas into the overlaying shale reservoirs. Under the gas injection pressure maintenance strategy, reserves are estimated to be approximately 212 million barrels. Reservoir studies have concluded that the aquifer at the base of the reservoir has been relatively inactive. Well recompletions, deepenings, and horizontal wells are used to improve oil recovery. An aggressive program of controlling gas production began in the mid 1980`s by the installation of multiple packers and sleeves. As the gas-oil contact (GOC) has dropped, sand intervals have subsequently been isolated behind packers. A cased hole logging program was recently undertaken to identify possible remaining reserves in the gas cap. 15 refs., 24 figs., 2 tabs.

  4. Inflow performance relationships for solution-gas-drive reservoirs

    SciTech Connect

    Camacho-V, R.G.; Raghavan, R.

    1989-05-01

    In this theoretical study, a numerical model was used to examine the influence of pressure level and skin factor on the inflow performance relationships (IPR's) of wells producing under solution-gas-drive systems. Examination of the synthetic deliverability curves suggests that the exponent of the deliverability curve is a function of time and that the exponent is usually greater than unity. The implication of this observation to field data is discussed. The accuracy of procedures given in the literature to predict oilwell deliverabilities is also examined. It is shown that these methods can be used to predict future performance provided that the exponent of the deliverability curve is known and that extrapolations over large time ranges are avoided. If single-point tests are used to predict future performance (such tests assume that the exponent of the deliverability curve is constant), then errors in predictions will be minimized. Although relative permeability and fluid property data are required, the Muskat material-balance equation and the assumption that GOR is independent of distance can be used to predict future production rates. This method avoids problems associated with other methods in the literature and always yields reliable results. New methods to modify the IPR curve to incorporate changes in skin factor are presented. A new flow-efficiency definition based on the structure of the deliverability equations for solution-gas-drive reservoirs is proposed. This definition avoids problems that result when the currently available methods are applied to heavily stimulated wells.

  5. Naturally fractured tight gas - gas reservoir detection optimization. Quarterly report, June 1, 1996--September 30, 1996

    SciTech Connect

    Maxwell, J.M.; Ortoleva, P.; Payne, D.; Sibo, W.

    1996-11-15

    This document contains the status report for the Naturally Fractured Tight Gas-Gas Reservoir Detection Optimization project for the contract period 9/30/93 to 3/31/97. Data from seismic surveys are analyzed for structural imaging of reflector units. The data were stacked using the new, improved statics and normal moveout velocities. The 3-D basin modeling effort is continuing with code development. The main activities of this quarter were analysis of fluid pressure data, improved sedimentary history, lithologic unit geometry reconstruction algorithm and computer module, and further improvement, verification, and debugging of the basin stress and multi-phase reaction transport module.

  6. CO2 Utilization and Storage in Shale Gas Reservoirs

    NASA Astrophysics Data System (ADS)

    Schaef, T.; Glezakou, V.; Owen, T.; Miller, Q.; Loring, J.; Davidson, C.; McGrail, P.

    2013-12-01

    Surging natural gas production from fractured shale reservoirs and the emerging concept of utilizing anthropogenic CO2 for secondary recovery and permanent storage is driving the need for understanding fundamental mechanisms controlling gas adsorption and desorption processes, mineral volume changes, and impacts to transmissivity properties. Early estimates indicate that between 10 and 30 gigatons of CO2 storage capacity may exist in the 24 shale gas plays included in current USGS assessments. However, the adsorption of gases (CO2, CH4, and SO2) is not well understood and appears unique for individual clay minerals. Using specialized experimental techniques developed at PNNL, pure clay minerals were examined at relevant pressures and temperatures during exposure to CH4, CO2, and mixtures of CO2-SO2. Adsorbed concentrations of methane displayed a linear behavior as a function of pressure as determined by a precision quartz crystal microbalance. Acid gases produced differently shaped adsorption isotherms, depending on temperature and pressure. In the instance of kaolinite, gaseous CO2 adsorbed linearly, but in the presence of supercritical CO2, surface condensation increased significantly to a peak value before desorbing with further increases in pressure. Similarly shaped CO2 adsorption isotherms derived from natural shale samples and coal samples have been reported in the literature. Adsorption steps, determined by density functional theory calculations, showed they were energetically favorable until the first CO2 layer formed, corresponding to a density of ~0.35 g/cm3. Interlayer cation content (Ca, Mg, or Na) of montmorillonites influenced adsorbed gas concentrations. Measurements by in situ x-ray diffraction demonstrate limited CO2 diffusion into the Na-montmorillonite interlayer spacing, with structural changes related to increased hydration. Volume changes were observed when Ca or Mg saturated montmorillonites in the 1W hydration state were exposed to

  7. Characterization of oil and gas reservoirs and recovery technology deployment on Texas State Lands

    SciTech Connect

    Tyler, R.; Major, R.P.; Holtz, M.H.

    1997-08-01

    Texas State Lands oil and gas resources are estimated at 1.6 BSTB of remaining mobile oil, 2.1 BSTB, or residual oil, and nearly 10 Tcf of remaining gas. An integrated, detailed geologic and engineering characterization of Texas State Lands has created quantitative descriptions of the oil and gas reservoirs, resulting in delineation of untapped, bypassed compartments and zones of remaining oil and gas. On Texas State Lands, the knowledge gained from such interpretative, quantitative reservoir descriptions has been the basis for designing optimized recovery strategies, including well deepening, recompletions, workovers, targeted infill drilling, injection profile modification, and waterflood optimization. The State of Texas Advanced Resource Recovery program is currently evaluating oil and gas fields along the Gulf Coast (South Copano Bay and Umbrella Point fields) and in the Permian Basin (Keystone East, Ozona, Geraldine Ford and Ford West fields). The program is grounded in advanced reservoir characterization techniques that define the residence of unrecovered oil and gas remaining in select State Land reservoirs. Integral to the program is collaboration with operators in order to deploy advanced reservoir exploitation and management plans. These plans are made on the basis of a thorough understanding of internal reservoir architecture and its controls on remaining oil and gas distribution. Continued accurate, detailed Texas State Lands reservoir description and characterization will ensure deployment of the most current and economically viable recovery technologies and strategies available.

  8. Establishment of an oil and gas database for increased recovery and characterization of oil and gas carbonate reservoir heterogeneity

    SciTech Connect

    Mancini, E.A.

    1991-01-01

    The objective of this project is to augment the National Reservoir Database (TORIS database), to increase our understanding of how geologic heterogeneity affects the recovery of oil and gas from carbonate reservoirs in the State of Alabama, and to identify resources that are producible at moderate cost. This objective will be achieved through detailed geological, geostatistical, and engineering characterization of typical Jurassic Smackover Formation hydrocarbon reservoirs in selected productive fields in the State of Alabama. The results of these studies will be used to develop and test mathematical models for prediction of the effects of reservoir heterogeneity on hydrocarbon production. The paper reports on the progress of several subtasks. The subjects discussed are: controls on reservoir heterogeneity in the Smackover; pore facies and Smackover reservoir heterogeneity; geological and petrophysical reservoir characterization; geologic flow modeling; and geostatistical modeling. Accomplishments this quarter are summarized and their significance to EOR research is discussed. 1 ref., 4 figs. (CK)

  9. AVO in North of Paria, Venezuela: Gas methane versus condensate reservoirs

    SciTech Connect

    Regueiro, J.; Pena, A.

    1996-07-01

    The gas fields of North of Paria, offshore eastern Venezuela, present a unique opportunity for amplitude variations with offset (AVO) characterization of reservoirs containing different fluids: gas-condensate, gas (methane) and water (brine). AVO studies for two of the wells in the area, one with gas-condensate and the other with gas (methane) saturated reservoirs, show interesting results. Water sands and a fluid contact (condensate-water) are present in one of these wells, thus providing a control point on brine-saturated properties. The reservoirs in the second well consist of sands highly saturated with methane. Clear differences in AVO response exist between hydrocarbon-saturated reservoirs and those containing brine. However, it is also interesting that subtle but noticeable differences can be interpreted between condensate-and methane-saturated sands. These differences are attributed to differences in both in-situ fluid density and compressibility, and rock frame properties.

  10. Shallow, low-permeability reservoirs of northern Great Plains - assessment of their natural gas resources.

    USGS Publications Warehouse

    Rice, D.D.; Shurr, G.W.

    1980-01-01

    Major resources of natural gas are entrapped in low-permeability, low-pressure reservoirs at depths less than 1200m in the N.Great Plains. This shallow gas is the product of the immature stage of hydrocarbon generation and is referred to as biogenic gas. Prospective low-permeability, gas-bearing reservoirs range in age from late Early to Late Cretaceous. The following facies were identified and mapped: nonmarine rocks, coastal sandstones, shelf sandstones, siltstones, shales, and chalks. The most promising low-permeability reservoirs are developed in the shelf sandstone, siltstone, and chalk facies. Reservoirs within these facies are particularly attractive because they are enveloped by thick sequences of shale which serve as both a source and a seal for the gas.-from Author

  11. Naturally fractured tight gas reservoir detection optimization. Quarterly report, January--March 1995

    SciTech Connect

    1995-05-01

    This report describes progress in the following five projects: (1) Geologic assessment of the Piceance Basin; (2) Regional stratigraphic studies, Upper Cretaceous Mesaverde Group, southern Piceance Basin, Colorado; (3) Structurally controlled and aligned tight gas reservoir compartmentalization in the San Juan and Piceance Basins--Foundation for a new approach to exploration and resource assessments of continuous type deposits; (4) Delineation of Piceance Basin basement structures using multiple source data--Implications for fractured reservoir exploration; and (5) Gas and water-saturated conditions in the Piceance Basin, western Colorado--Implications for fractured reservoir detection in a gas-centered coal basin.

  12. The urgency of assessing the greenhouse gas budgets of hydroelectric reservoirs in China

    NASA Astrophysics Data System (ADS)

    Hu, Yuanan; Cheng, Hefa

    2013-08-01

    Already the largest generator of hydroelectricity, China is accelerating dam construction to increase the share of hydroelectricity in its primary energy mix to reduce greenhouse gas emissions. Here, we review the evidence on emissions of GHGs, particularly methane, from the Three Gorges Reservoir, and argue that although the hydroelectric reservoirs may release large amounts of methane, they contribute significantly to greenhouse gas reduction by substitution of thermal power generation in China. Nonetheless, more systematic monitoring and modelling studies on greenhouse gas emissions from representative reservoirs are necessary to better understand the climate impact of hydropower development in China.

  13. Biogenic gas production from major Amazon reservoirs, Brazil

    NASA Astrophysics Data System (ADS)

    Pinguelli Rosa, Luiz; Aurelio Dos Santos, Marco; Matvienko, Bohdan; Sikar, Elisabeth; Lourenço, Ronaldo Sérgio M.; Frederico Menezes, Carlos

    2003-05-01

    Methane (CH4) and carbon dioxide (CO2) emissions from Brazilian reservoirs were assessed. Point measurements were made during 1998 and 1999 (using inverted funnels for bubbles and air and water concentration gradients for diffusion) in the 559 km2 Samuel reservoir, which was initially flooded in 1988, and the 2430 km2 Tucuruí reservoir, which was flooded in 1984, and the data were evaluated with respect to historical measurements in other Brazilian reservoirs. Bubble emissions of CH4 were higher in Samuel (ranging from 2 to 70 mgCH4 m-2 day-1) than in Tucuruí (ranging from 0·5 to 30 mgCH4 m-2 day-1), with the highest values occurring the shallowest regions in each reservoir. CH4 from diffusion for the Tucuruí reservoir ranged from 5 to 30 mgCH4 m-2 dayreservoir, which ranged from 10 to 80 mgCHreservoir was filled. The COreservoir, and ranged from 1000 to 10 000 mgCO

  14. Establishment of an oil and gas database for increased recovery and characterization of oil and gas carbonate reservoir heterogeneity

    SciTech Connect

    Mancini, E.A.

    1989-01-01

    The objective of this project is to augment the National Reservoir Database (TORIS database) and to increase our understanding of geologic heterogeneities that affect the recoveries of oil and gas from carbonate reservoirs in the State of Alabama and to identify those resources that are producible at moderate cost. This objective will be achieved through detailed geological, geostatistical, and engineering characterization of typical Jurassic Smackover Formation hydrocarbon reservoirs in selected productive fields in the State of Alabama. These studies will be utilized to develop and test mathematical models for prediction of the effects of reservoirs heterogeneities.

  15. Establishment of an oil and gas database for increased recovery and characterization of oil and gas carbonate reservoir heterogeneity

    SciTech Connect

    Mancini, E.A.

    1990-01-01

    The objective of this project is to augment the National Reservoir Database (TORIS database) and to increase our understanding of geologic heterogeneities that effect the recoveries of oil and gas from carbonate reservoirs in the State of Alabama and to identify those resources that are producible at moderate cost. This objective will be achieved through detailed geological, geostatistical, or engineering characterization of typical Jurassic Smackover Formation hydrocarbon reservoirs in selected productive fields in the State of Alabama. The results of these studies will be used to develop and test mathematical models for prediction of the effects of reservoir heterogeneities in hydrocarbon production.

  16. GLOBAL GREENHOUSE GAS EMISSIONS FROM RESERVOIRS: A MATTER OF METHANE

    EPA Science Inventory

    More than a decade ago, St. Louis et al. demonstrated that, collectively, manmade reservoirs play an important role in the global balance of greenhouse gases (GHGs). To update and build upon this important seminal work, we compiled reservoir CO2, CH4, and N2O flux estimates from...

  17. Underground natural gas storage reservoir management: Phase 2. Final report, June 1, 1995--March 30, 1996

    SciTech Connect

    Ortiz, I.; Anthony, R.V.

    1996-12-31

    Gas storage operators are facing increased and more complex responsibilities for managing storage operations under Order 636 which requires unbundling of storage from other pipeline services. Low cost methods that improve the accuracy of inventory verification are needed to optimally manage this stored natural gas. Migration of injected gas out of the storage reservoir has not been well documented by industry. The first portion of this study addressed the scope of unaccounted for gas which may have been due to migration. The volume range was estimated from available databases and reported on an aggregate basis. Information on working gas, base gas, operating capacity, injection and withdrawal volumes, current and non-current revenues, gas losses, storage field demographics and reservoir types is contained among the FERC Form 2, EIA Form 191, AGA and FERC Jurisdictional databases. The key elements of this study show that gas migration can result if reservoir limits have not been properly identified, gas migration can occur in formation with extremely low permeability (0.001 md), horizontal wellbores can reduce gas migration losses and over-pressuring (unintentionally) storage reservoirs by reinjecting working gas over a shorter time period may increase gas migration effects.

  18. Production of Natural Gas and Fluid Flow in Tight Sand Reservoirs

    SciTech Connect

    Maria Cecilia Bravo

    2006-06-30

    This document reports progress of this research effort in identifying relationships and defining dependencies between macroscopic reservoir parameters strongly affected by microscopic flow dynamics and production well performance in tight gas sand reservoirs. These dependencies are investigated by identifying the main transport mechanisms at the pore scale that should affect fluids flow at the reservoir scale. A critical review of commercial reservoir simulators, used to predict tight sand gas reservoir, revealed that many are poor when used to model fluid flow through tight reservoirs. Conventional simulators ignore altogether or model incorrectly certain phenomena such as, Knudsen diffusion, electro-kinetic effects, ordinary diffusion mechanisms and water vaporization. We studied the effect of Knudsen's number in Klinkenberg's equation and evaluated the effect of different flow regimes on Klinkenberg's parameter b. We developed a model capable of explaining the pressure dependence of this parameter that has been experimentally observed, but not explained in the conventional formalisms. We demonstrated the relevance of this, so far ignored effect, in tight sands reservoir modeling. A 2-D numerical simulator based on equations that capture the above mentioned phenomena was developed. Dynamic implications of new equations are comprehensively discussed in our work and their relative contribution to the flow rate is evaluated. We performed several simulation sensitivity studies that evidenced that, in general terms, our formalism should be implemented in order to get more reliable tight sands gas reservoirs' predictions.

  19. Evaluation of Gas Production Potential of Hydrate Deposits in Alaska North Slope using Reservoir Simulations

    NASA Astrophysics Data System (ADS)

    Nandanwar, M.; Anderson, B. J.

    2015-12-01

    Over the past few decades, the recognition of the importance of gas hydrates as a potential energy resource has led to more and more exploration of gas hydrate as unconventional source of energy. In 2002, U.S. Geological Survey (USGS) started an assessment to conduct a geology-based analysis of the occurrences of gas hydrates within northern Alaska. As a result of this assessment, many potential gas hydrate prospects were identified in the eastern National Petroleum Reserve Alaska (NPRA) region of Alaska North Slope (ANS) with total gas in-place of about 2 trillion cubic feet. In absence of any field test, reservoir simulation is a powerful tool to predict the behavior of the hydrate reservoir and the amount of gas that can be technically recovered using best suitable gas recovery technique. This work focuses on the advanced evaluation of the gas production potential of hydrate accumulation in Sunlight Peak - one of the promising hydrate fields in eastern NPRA region using reservoir simulations approach, as a part of the USGS gas hydrate development Life Cycle Assessment program. The main objective of this work is to develop a field scale reservoir model that fully describes the production design and the response of hydrate field. Due to the insufficient data available for this field, the distribution of the reservoir properties (such as porosity, permeability and hydrate saturation) are approximated by correlating the data from Mount Elbert hydrate field to obtain a fully heterogeneous 3D reservoir model. CMG STARS is used as a simulation tool to model multiphase, multicomponent fluid flow and heat transfer in which an equilibrium model of hydrate dissociation was used. Production of the gas from the reservoir is carried out for a period of 30 years using depressurization gas recovery technique. The results in terms of gas and water rate profiles are obtained and the response of the reservoir to pressure and temperature changes due to depressurization and hydrate

  20. GEOLOGIC ASPECTS OF TIGHT GAS RESERVOIRS IN THE ROCKY MOUNTAIN REGION.

    USGS Publications Warehouse

    Spencer, Charles W.

    1985-01-01

    The authors describe some geologic characteristics of tight gas reservoirs in the Rocky Mountain region. These reservoirs usually have an in-situ permeability to gas of 0. 1 md or less and can be classified into four general geologic and engineering categories: (1) marginal marine blanket, (2) lenticular, (3) chalk, and (4) marine blanket shallow. Microscopic study of pore/permeability relationships indicates the existence of two varieties of tight reservoirs. One variety is tight because of the fine grain size of the rock. The second variety is tight because the rock is relatively tightly cemented and the pores are poorly connected by small pore throats and capillaries.

  1. Transient pressure analysis of fractured well in bi-zonal gas reservoirs

    NASA Astrophysics Data System (ADS)

    Zhao, Yu-Long; Zhang, Lie-Hui; Liu, Yong-hui; Hu, Shu-Yong; Liu, Qi-Guo

    2015-05-01

    For hydraulic fractured well, how to evaluate the properties of fracture and formation are always tough jobs and it is very complex to use the conventional method to do that, especially for partially penetrating fractured well. Although the source function is a very powerful tool to analyze the transient pressure for complex structure well, the corresponding reports on gas reservoir are rare. In this paper, the continuous point source functions in anisotropic reservoirs are derived on the basis of source function theory, Laplace transform method and Duhamel principle. Application of construction method, the continuous point source functions in bi-zonal gas reservoir with closed upper and lower boundaries are obtained. Sequentially, the physical models and transient pressure solutions are developed for fully and partially penetrating fractured vertical wells in this reservoir. Type curves of dimensionless pseudo-pressure and its derivative as function of dimensionless time are plotted as well by numerical inversion algorithm, and the flow periods and sensitive factors are also analyzed. The source functions and solutions of fractured well have both theoretical and practical application in well test interpretation for such gas reservoirs, especial for the well with stimulated reservoir volume around the well in unconventional gas reservoir by massive hydraulic fracturing which always can be described with the composite model.

  2. Appraisal of transport and deformation in shale reservoirs using natural noble gas tracers

    SciTech Connect

    Heath, Jason E.; Kuhlman, Kristopher L.; Robinson, David G.; Bauer, Stephen J.; Gardner, William Payton

    2015-09-01

    This report presents efforts to develop the use of in situ naturally-occurring noble gas tracers to evaluate transport mechanisms and deformation in shale hydrocarbon reservoirs. Noble gases are promising as shale reservoir diagnostic tools due to their sensitivity of transport to: shale pore structure; phase partitioning between groundwater, liquid, and gaseous hydrocarbons; and deformation from hydraulic fracturing. Approximately 1.5-year time-series of wellhead fluid samples were collected from two hydraulically-fractured wells. The noble gas compositions and isotopes suggest a strong signature of atmospheric contribution to the noble gases that mix with deep, old reservoir fluids. Complex mixing and transport of fracturing fluid and reservoir fluids occurs during production. Real-time laboratory measurements were performed on triaxially-deforming shale samples to link deformation behavior, transport, and gas tracer signatures. Finally, we present improved methods for production forecasts that borrow statistical strength from production data of nearby wells to reduce uncertainty in the forecasts.

  3. Gas filtration from an underground reservoir at a large initial pressure gradient

    NASA Astrophysics Data System (ADS)

    Miroshnichenko, T. P.; Lutsenko, N. A.; Levin, V. A.

    2015-09-01

    Gas filtration from an underground reservoir through a layer of a porous medium due to an instantaneous increase in the gas pressure in the reservoir is studied. The problem is considered in a one-dimensional formulation in the general case where the temperatures of the gas and the porous medium are different and unstable, and in the case of a high specific heat of the solid phase and a high interfacial heat-transfer rate. The dynamics of the gas flow at the inlet and outlet of the underground reservoir is analyzed, the time of unloading of the system is estimated as a function of the permeability of the porous medium. It is shown that, depending on the properties of the porous layer, two characteristic gas flow regimes are possible: a fast discharge regime and a slow regime which is determined mainly by barodiffusion.

  4. Structurally controlled and aligned tight gas reservoir compartmentalization in the San Juan and Piceance Basins

    SciTech Connect

    Decker, A.D.; Kuuskraa, V.A.; Klawitter, A.L.

    1995-10-01

    Recurrent basement faulting is the primary controlling mechanism for aligning and compartmentalizing upper Cretaceous aged tight gas reservoirs of the San Juan and Piceance Basins. Northwest trending structural lineaments that formed in conjunction with the Uncompahgre Highlands have profoundly influenced sedimentation trends and created boundaries for gas migration; sealing and compartmentalizing sedimentary packages in both basins. Fractures which formed over the structural lineaments provide permeability pathways which allowing gas recovery from otherwise tight gas reservoirs. Structural alignments and associated reservoir compartments have been accurately targeted by integrating advanced remote sensing imagery, high resolution aeromagnetics, seismic interpretation, stratigraphic mapping and dynamic structural modelling. This unifying methodology is a powerful tool for exploration geologists and is also a systematic approach to tight gas resource assessment in frontier basins.

  5. Natural gas plays in Jurassic reservoirs of southwestern Alabama and the Florida panhandle area

    SciTech Connect

    Mancini, E.A. Univ. of Alabama, Tuscaloosa ); Mink, R.M.; Tew, B.H.; Bearden, B.L. )

    1990-09-01

    Three Jurassic natural gas trends can be delineated in Alabama and the Florida panhandle area. They include a deep natural gas trend, a natural gas and condensate trend, and an oil and associated natural gas trend. These trends are recognized by hydrocarbon types, basinal position, and relationship to regional structural features. Within these natural gas trends, at least eight distinct natural gas plays can be identified. These plays are recognized by characteristic petroleum traps and reservoirs. The deep natural gas trend includes the Mobile Bay area play, which is characterized by faulted salt anticlines associated with the Lower Mobile Bay fault system and Norphlet eolian sandstone reservoirs exhibiting primary and secondary porosity at depths exceeding 20,000 ft. The natural gas and condensate trend includes the Mississippi Interior Salt basin play, Mobile graben play, Wiggins arch flank play, and the Pollard fault system play. The Mississippi Interior Salt basin play is typified by salt anticlines associated with salt tectonism in the Mississippi Interior Salt basin and Smackover dolomitized peloidal and pelmoldic grainstone and packstone reservoirs at depths of approximately 16,000 ft. The Mobile graben play is exemplified by faulted salt anticlines associated with the Mobile graben and Smackover dolostone reservoirs at depths of approximately 18,000 ft. The Wiggins arch flank play is characterized by structural traps consisting of salt anticlines associated with stratigraphic thinning and Smackover dolostone reservoirs at depths of approximately 18,000 ft. The Pollard fault system play is typified by combination petroleum traps. The structural component is associated with the Pollard fault system and reservoirs at depths of approximately 15,000 ft. These reservoirs are dominantly Smackover dolomitized oomoldic and pelmoldic grainstones and packstones and Norphlet marine, eolian, and wadi sandstones exhibiting primary and secondary porosity.

  6. Advancing New 3D Seismic Interpretation Methods for Exploration and Development of Fractured Tight Gas Reservoirs

    SciTech Connect

    James Reeves

    2005-01-31

    In a study funded by the U.S. Department of Energy and GeoSpectrum, Inc., new P-wave 3D seismic interpretation methods to characterize fractured gas reservoirs are developed. A data driven exploratory approach is used to determine empirical relationships for reservoir properties. Fractures are predicted using seismic lineament mapping through a series of horizon and time slices in the reservoir zone. A seismic lineament is a linear feature seen in a slice through the seismic volume that has negligible vertical offset. We interpret that in regions of high seismic lineament density there is a greater likelihood of fractured reservoir. Seismic AVO attributes are developed to map brittle reservoir rock (low clay) and gas content. Brittle rocks are interpreted to be more fractured when seismic lineaments are present. The most important attribute developed in this study is the gas sensitive phase gradient (a new AVO attribute), as reservoir fractures may provide a plumbing system for both water and gas. Success is obtained when economic gas and oil discoveries are found. In a gas field previously plagued with poor drilling results, four new wells were spotted using the new methodology and recently drilled. The wells have estimated best of 12-months production indicators of 2106, 1652, 941, and 227 MCFGPD. The latter well was drilled in a region of swarming seismic lineaments but has poor gas sensitive phase gradient (AVO) and clay volume attributes. GeoSpectrum advised the unit operators that this location did not appear to have significant Lower Dakota gas before the well was drilled. The other three wells are considered good wells in this part of the basin and among the best wells in the area. These new drilling results have nearly doubled the gas production and the value of the field. The interpretation method is ready for commercialization and gas exploration and development. The new technology is adaptable to conventional lower cost 3D seismic surveys.

  7. Establishment of an oil and gas database for increased recovery and characterization of oil and gas carbonate reservoir heterogeneity

    SciTech Connect

    Mancini, E.A.

    1990-01-01

    The objectives of this project are to augment the National Reservoir Database (TORIS database) and to increase our understanding of geologic heterogeneities that affect the recoveries of oil and gas from carbonate reservoirs in the State of Alabama and to identify those resources that are producible at moderate cost. These objectives will be achieved through detailed geological, engineering, and geostatistical characterization of typical Jurassic Smackover Formation hydrocarbon reservoirs in selected productive fields in the State of Alabama. The results of these studies will be used to develop and test mathematical models for prediction of the effects of reservoir heterogeneities in hydrocarbon production. Work to date has focused on the completion of Subtasks 1, 2, and 3. Subtask 1 included the survey and tabulation of available reservoir engineering and geological data relevant to the Smackover reservoir in southwestern Alabama. Subtask 2 comprises the geological and engineering characterization of Smackover reservoir lithofacies. This has been accomplished through detailed examination and analysis of geophysical well logs, core material, well cuttings, and well-test data from wells penetrating Smackover reservoirs in southwestern Alabama. From these data, reservoir heterogeneities, such as lateral and vertical changes in lithology, porosity, permeability, and diagenetic overprint, have been recognized and used to produce maps, cross sections, graphs, and other graphic representations to aid in interpretation of the geologic parameters that affect these reservoirs. Subtask 3 includes the geologic modeling of reservoir heterogeneities for Smackover reservoirs. This research has been based primarily on the evaluation of key geologic and engineering data from selected Smackover fields. 1 fig.

  8. Evaluation of in situ stress changes with gas depletion of coalbed methane reservoirs

    NASA Astrophysics Data System (ADS)

    Liu, Shimin; Harpalani, Satya

    2014-08-01

    A sound knowledge of the stress path for coalbed methane (CBM) reservoirs is critical for a variety of applications, including dynamic formation stability evaluation, long-term gas production management, and carbon sequestration in coals. Although this problem has been extensively studied for traditional oil and gas reservoirs, it is somewhat unclear for CBM reservoirs. The difference between the stress paths followed in the two reservoir types is expected to be significant given the unique sorption-induced deformation phenomenon associated with gas production from coal. This results in an additional reservoir volumetric strain, which induces a rather "abnormal" loss of horizontal stress with depletion, leading to continuous changes in the subsurface formation stresses, both effective as well as total. It is suspected that stress changes within the reservoir triggers formation failure after significant depletion. This paper describes an experimental study, carried out to measure the horizontal stress under in situ depletion conditions. The results show that the horizontal stress decreases linearly with depletion under in situ conditions. The dynamic stress evolution is theoretically analyzed, based on modified poroelasticity associated with sorption-induced strain effect. Additionally, the failure tendency of the reservoir under in situ conditions is analyzed using the traditional Mohr-Coulomb failure criterion. The results indicate that depletion may lead to coal failure, particularly in deeper coalbeds and ones exhibiting large matrix shrinkage.

  9. Numerical simulation of the environmental impact of hydraulic fracturing of tight/shale gas reservoirs on near-surface groundwater: Background, base cases, shallow reservoirs, short-term gas, and water transport

    NASA Astrophysics Data System (ADS)

    Reagan, Matthew T.; Moridis, George J.; Keen, Noel D.; Johnson, Jeffrey N.

    2015-04-01

    Hydrocarbon production from unconventional resources and the use of reservoir stimulation techniques, such as hydraulic fracturing, has grown explosively over the last decade. However, concerns have arisen that reservoir stimulation creates significant environmental threats through the creation of permeable pathways connecting the stimulated reservoir with shallower freshwater aquifers, thus resulting in the contamination of potable groundwater by escaping hydrocarbons or other reservoir fluids. This study investigates, by numerical simulation, gas and water transport between a shallow tight-gas reservoir and a shallower overlying freshwater aquifer following hydraulic fracturing operations, if such a connecting pathway has been created. We focus on two general failure scenarios: (1) communication between the reservoir and aquifer via a connecting fracture or fault and (2) communication via a deteriorated, preexisting nearby well. We conclude that the key factors driving short-term transport of gas include high permeability for the connecting pathway and the overall volume of the connecting feature. Production from the reservoir is likely to mitigate release through reduction of available free gas and lowering of reservoir pressure, and not producing may increase the potential for release. We also find that hydrostatic tight-gas reservoirs are unlikely to act as a continuing source of migrating gas, as gas contained within the newly formed hydraulic fracture is the primary source for potential contamination. Such incidents of gas escape are likely to be limited in duration and scope for hydrostatic reservoirs. Reliable field and laboratory data must be acquired to constrain the factors and determine the likelihood of these outcomes.

  10. Numerical simulation of the environmental impact of hydraulic fracturing of tight/shale gas reservoirs on near-surface groundwater: Background, base cases, shallow reservoirs, short-term gas, and water transport

    SciTech Connect

    Reagan, Matthew T.; Moridis, George J.; Keen, Noel D.; Johnson, Jeffrey N.

    2015-04-18

    Hydrocarbon production from unconventional resources and the use of reservoir stimulation techniques, such as hydraulic fracturing, has grown explosively over the last decade. However, concerns have arisen that reservoir stimulation creates significant environmental threats through the creation of permeable pathways connecting the stimulated reservoir with shallower freshwater aquifers, thus resulting in the contamination of potable groundwater by escaping hydrocarbons or other reservoir fluids. This study investigates, by numerical simulation, gas and water transport between a shallow tight-gas reservoir and a shallower overlying freshwater aquifer following hydraulic fracturing operations, if such a connecting pathway has been created. We focus on two general failure scenarios: (1) communication between the reservoir and aquifer via a connecting fracture or fault and (2) communication via a deteriorated, preexisting nearby well. We conclude that the key factors driving short-term transport of gas include high permeability for the connecting pathway and the overall volume of the connecting feature. Production from the reservoir is likely to mitigate release through reduction of available free gas and lowering of reservoir pressure, and not producing may increase the potential for release. We also find that hydrostatic tight-gas reservoirs are unlikely to act as a continuing source of migrating gas, as gas contained within the newly formed hydraulic fracture is the primary source for potential contamination. Such incidents of gas escape are likely to be limited in duration and scope for hydrostatic reservoirs. Reliable field and laboratory data must be acquired to constrain the factors and determine the likelihood of these outcomes.

  11. Establishment of an oil and gas database for increased recovery and characterization of oil and gas carbonate reservoir heterogeneity

    SciTech Connect

    Mancini, E.A.

    1990-01-01

    The objective of this project is to augment the National Reservoir Database (TORIS database) and to increase our understanding of geologic heterogeneities that affect the recoveries of oil and gas from carbonate reservoirs in the State of Alabama and to identify those resources that are producible at moderate cost. This objective will be achieved through detailed geological, geostatistical, and engineering characterization of typical Jurassic Smackover Formation hydrocarbon reservoirs in selected productive fields in the State of Alabama. The results of these studies will be used to develop and test mathematical models for prediction of the effects of reservoir heterogeneities in hydrocarbon production. Geological research this quarter has focused on descriptions of core material and petrographic thin sections from reservoirs producing from the Smackover Formation in southwestern Alabama, computer entry of pertinent data, and generation of maps and cross-sections.

  12. Characterization of oil and gas reservoir heterogeneity. Final report

    SciTech Connect

    Tyler, N.; Barton, M.D.; Bebout, D.G.; Fisher, R.S.; Grigsby, J.D.; Guevara, E.; Holtz, M.; Kerans, C.; Nance, H.S.; Levey, R.A.

    1992-10-01

    Research described In this report addresses the internal architecture of two specific reservoir types: restricted-platform carbonates and fluvial-deltaic sandstones. Together, these two reservoir types contain more than two-thirds of the unrecovered mobile oil remaining ill Texas. The approach followed in this study was to develop a strong understanding of the styles of heterogeneity of these reservoir types based on a detailed outcrop description and a translation of these findings into optimized recovery strategies in select subsurface analogs. Research targeted Grayburg Formation restricted-platform carbonate outcrops along the Algerita Escarpment and In Stone Canyon In southeastern New Mexico and Ferron deltaic sandstones in central Utah as analogs for the North Foster (Grayburg) and Lake Creek (Wilcox) units, respectively. In both settings, sequence-stratigraphic style profoundly influenced between-well architectural fabric and permeability structure. It is concluded that reservoirs of different depositional origins can therefore be categorized Into a ``heterogeneity matrix`` based on varying intensity of vertical and lateral heterogeneity. The utility of the matrix is that it allows prediction of the nature and location of remaining mobile oil. Highly stratified reservoirs such as the Grayburg, for example, will contain a large proportion of vertically bypassed oil; thus, an appropriate recovery strategy will be waterflood optimization and profile modification. Laterally heterogeneous reservoirs such as deltaic distributary systems would benefit from targeted infill drilling (possibly with horizontal wells) and improved areal sweep efficiency. Potential for advanced recovery of remaining mobile oil through heterogeneity-based advanced secondary recovery strategies In Texas is projected to be an Incremental 16 Bbbl. In the Lower 48 States this target may be as much as 45 Bbbl at low to moderate oil prices over the near- to mid-term.

  13. Variations in dissolved gas compositions of reservoir fluids from the Coso geothermal field

    SciTech Connect

    Williams, Alan E.; Copp, John F.

    1991-01-01

    Gas concentrations and ratios in 110 analyses of geothermal fluids from 47 wells in the Coso geothermal system illustrate the complexity of this two-phase reservoir in its natural state. Two geographically distinct regions of single-phase (liquid) reservoir are present and possess distinctive gas and liquid compositions. Relationships in soluble and insoluble gases preclude derivation of these waters from a common parent by boiling or condensation alone. These two regions may represent two limbs of fluid migration away from an area of two-phase upwelling. During migration, the upwelling fluids mix with chemically evolved waters of moderately dissimilar composition. CO{sub 2} rich fluids found in the limb in the southeastern portion of the Coso field are chemically distinct from liquids in the northern limb of the field. Steam-rich portions of the reservoir also indicate distinctive gas compositions. Steam sampled from wells in the central and southwestern Coso reservoir is unusually enriched in both H{sub 2}S and H{sub 2}. Such a large enrichment in both a soluble and insoluble gas cannot be produced by boiling of any liquid yet observed in single-phase portions of the field. In accord with an upflow-lateral mixing model for the Coso field, at least three end-member thermal fluids having distinct gas and liquid compositions appear to have interacted (through mixing, boiling and steam migration) to produce the observed natural state of the reservoir.

  14. CONCEPTUAL MODEL FOR ORIGIN OF ABNORMALLY PRESSURED GAS ACCUMULATIONS IN LOW-PERMEABILITY RESERVOIRS.

    USGS Publications Warehouse

    Law, B.E.; Dickinson, W.W.

    1985-01-01

    The paper suggests that overpressured and underpressured gas accumulations of this type have a common origin. In basins containing overpressured gas accumulations, rates of thermogenic gas accumulation exceed gas loss, causing fluid (gas) pressure to rise above the regional hydrostatic pressure. Free water in the larger pores is forced out of the gas generation zone into overlying and updip, normally pressured, water-bearing rocks. While other diagenetic processes continue, a pore network with very low permeability develops. As a result, gas accumulates in these low-permeability reservoirs at rates higher than it is lost. In basins containing underpressured gas accumulations, rates of gas generation and accumulation are less than gas loss. The basin-center gas accumulation persists, but because of changes in the basin dynamics, the overpressured accumulation evolves into an underpressured system.

  15. Geology, reservoir engineering and methane hydrate potential of the Walakpa Gas Field, North Slope, Alaska

    SciTech Connect

    Glenn, R.K.; Allen, W.W.

    1992-12-01

    The Walakpa Gas Field, located near the city of Barrow on Alaska's North Slope, has been proven to be methane-bearing at depths of 2000--2550 feet below sea level. The producing formation is a laterally continuous, south-dipping, Lower Cretaceous shelf sandstone. The updip extent of the reservoir has not been determined by drilling, but probably extends to at least 1900 feet below sea level. Reservoir temperatures in the updip portion of the reservoir may be low enough to allow the presence of in situ methane hydrates. Reservoir net pay however, decreases to the north. Depths to the base of permafrost in the area average 940 feet. Drilling techniques and production configuration in the Walakpa field were designed to minimize formation damage to the reservoir sandstone and to eliminate methane hydrates formed during production. Drilling development of the Walakpa field was a sequential updip and lateral stepout from a previously drilled, structurally lower confirmation well. Reservoir temperature, pressure, and gas chemistry data from the development wells confirm that they have been drilled in the free-methane portion of the reservoir. Future studies in the Walakpa field are planned to determine whether or not a component of the methane production is due to the dissociation of updip in situ hydrates.

  16. Mathematical simulation of gas-liquid mixture flow in a reservoir and a wellbore with allowance for the dynamical interactions in the reservoir-well system

    NASA Astrophysics Data System (ADS)

    Abbasov, E. M.; Feyzullayev, Kh. A.

    2016-01-01

    Fluid dynamic processes related to mature oil field development are simulated by applying a numerical algorithm based on the gas-liquid mixture flow equations in a reservoir and a wellbore with allowance for the dynamical interaction in the reservoir-well system. Numerical experiments are performed in which well production characteristics are determined from wellhead parameters.

  17. Results of high resolution seismic imaging experiments for defining permeable pathways in fractured gas reservoirs

    SciTech Connect

    Majer, E.L.; Peterson, J.E.; Daley, T.

    1997-10-01

    As part of its Department of Energy (DOE) Industry cooperative program in oil and gas, Berkeley Lab has an ongoing effort in cooperation with Industry partners to develop equipment, field techniques, and interpretational methods to further the practice of characterizing fractured heterogeneous reservoirs. The goal of this work is to demonstrate the combined use of state-of-the-art technology in fluid flow modeling and geophysical imaging into an interdisciplinary approach for predicting the behavior of heterogeneous fractured gas reservoirs. The efforts in this program have mainly focused on using seismic methods linked with geologic and reservoir engineering analysis for the detection and characterization of fracture systems in tight gas formations, i.e., where and how to detect the fractures, what are the characteristics of the fractures, and how the fractures interact with the natural stresses, lithology, and their effect on reservoir performance. The project has also integrated advanced reservoir engineering methods for analyzing flow in fractured systems such that reservoir management strategies can be optimized. The work at Berkeley Lab focuses on integrating high resolution seismic imaging, (VSP, crosswell, and single well imaging), geologic information and well test data to invert for flow paths in fractured systems.

  18. Production of Natural Gas and Fluid Flow in Tight Sand Reservoirs

    SciTech Connect

    Maria Cecilia Bravo; Mariano Gurfinkel

    2005-06-30

    This document reports progress of this research effort in identifying possible relationships and defining dependencies between macroscopic reservoir parameters strongly affected by microscopic flow dynamics and production well performance in tight gas sand reservoirs. Based on a critical review of the available literature, a better understanding of the main weaknesses of the current state of the art of modeling and simulation for tight sand reservoirs has been reached. Progress has been made in the development and implementation of a simple reservoir simulator that is still able to overcome some of the deficiencies detected. The simulator will be used to quantify the impact of microscopic phenomena in the macroscopic behavior of tight sand gas reservoirs. Phenomena such as, Knudsen diffusion, electro-kinetic effects, ordinary diffusion mechanisms and water vaporization are being considered as part of this study. To date, the adequate modeling of gas slippage in porous media has been determined to be of great relevance in order to explain unexpected fluid flow behavior in tight sand reservoirs.

  19. Gas Flow Tightly Coupled to Elastoplastic Geomechanics for Tight- and Shale-Gas Reservoirs: Material Failure and Enhanced Permeability

    SciTech Connect

    Kim, Jihoon; Moridis, George J.

    2014-12-01

    We investigate coupled flow and geomechanics in gas production from extremely low permeability reservoirs such as tight and shale gas reservoirs, using dynamic porosity and permeability during numerical simulation. In particular, we take the intrinsic permeability as a step function of the status of material failure, and the permeability is updated every time step. We consider gas reservoirs with the vertical and horizontal primary fractures, employing the single and dynamic double porosity (dual continuum) models. We modify the multiple porosity constitutive relations for modeling the double porous continua for flow and geomechanics. The numerical results indicate that production of gas causes redistribution of the effective stress fields, increasing the effective shear stress and resulting in plasticity. Shear failure occurs not only near the fracture tips but also away from the primary fractures, which indicates generation of secondary fractures. These secondary fractures increase the permeability significantly, and change the flow pattern, which in turn causes a change in distribution of geomechanical variables. From various numerical tests, we find that shear failure is enhanced by a large pressure drop at the production well, high Biot's coefficient, low frictional and dilation angles. Smaller spacing between the horizontal wells also contributes to faster secondary fracturing. When the dynamic double porosity model is used, we observe a faster evolution of the enhanced permeability areas than that obtained from the single porosity model, mainly due to a higher permeability of the fractures in the double porosity model. These complicated physics for stress sensitive reservoirs cannot properly be captured by the uncoupled or flow-only simulation, and thus tightly coupled flow and geomechanical models are highly recommended to accurately describe the reservoir behavior during gas production in tight and shale gas reservoirs and to smartly design production

  20. Numerical simulation of the electrical properties of shale gas reservoir rock based on digital core

    NASA Astrophysics Data System (ADS)

    Nie, Xin; Zou, Changchun; Li, Zhenhua; Meng, Xiaohong; Qi, Xinghua

    2016-08-01

    In this paper we study the electrical properties of shale gas reservoir rock by applying the finite element method to digital cores which are built based on an advanced Markov Chain Monte Carlo method and a combination workflow. Study shows that the shale gas reservoir rock has strong anisotropic electrical conductivity because the conductivity is significantly different in both horizontal and vertical directions. The Archie formula is not suitable for application in shale reservoirs. The formation resistivity decreases in two cases; namely (a) with the increase of clay mineral content and the cation exchange capacity of clay, and (b) with the increase of pyrite content. The formation resistivity is not sensitive to the solid organic matter but to the clay and gas in the pores.

  1. Modeling of Gas Production from Shale Reservoirs Considering Multiple Transport Mechanisms.

    PubMed

    Guo, Chaohua; Wei, Mingzhen; Liu, Hong

    2015-01-01

    Gas transport in unconventional shale strata is a multi-mechanism-coupling process that is different from the process observed in conventional reservoirs. In micro fractures which are inborn or induced by hydraulic stimulation, viscous flow dominates. And gas surface diffusion and gas desorption should be further considered in organic nano pores. Also, the Klinkenberg effect should be considered when dealing with the gas transport problem. In addition, following two factors can play significant roles under certain circumstances but have not received enough attention in previous models. During pressure depletion, gas viscosity will change with Knudsen number; and pore radius will increase when the adsorption gas desorbs from the pore wall. In this paper, a comprehensive mathematical model that incorporates all known mechanisms for simulating gas flow in shale strata is presented. The objective of this study was to provide a more accurate reservoir model for simulation based on the flow mechanisms in the pore scale and formation geometry. Complex mechanisms, including viscous flow, Knudsen diffusion, slip flow, and desorption, are optionally integrated into different continua in the model. Sensitivity analysis was conducted to evaluate the effect of different mechanisms on the gas production. The results showed that adsorption and gas viscosity change will have a great impact on gas production. Ignoring one of following scenarios, such as adsorption, gas permeability change, gas viscosity change, or pore radius change, will underestimate gas production. PMID:26657698

  2. Modeling of Gas Production from Shale Reservoirs Considering Multiple Transport Mechanisms

    PubMed Central

    Guo, Chaohua; Wei, Mingzhen; Liu, Hong

    2015-01-01

    Gas transport in unconventional shale strata is a multi-mechanism-coupling process that is different from the process observed in conventional reservoirs. In micro fractures which are inborn or induced by hydraulic stimulation, viscous flow dominates. And gas surface diffusion and gas desorption should be further considered in organic nano pores. Also, the Klinkenberg effect should be considered when dealing with the gas transport problem. In addition, following two factors can play significant roles under certain circumstances but have not received enough attention in previous models. During pressure depletion, gas viscosity will change with Knudsen number; and pore radius will increase when the adsorption gas desorbs from the pore wall. In this paper, a comprehensive mathematical model that incorporates all known mechanisms for simulating gas flow in shale strata is presented. The objective of this study was to provide a more accurate reservoir model for simulation based on the flow mechanisms in the pore scale and formation geometry. Complex mechanisms, including viscous flow, Knudsen diffusion, slip flow, and desorption, are optionally integrated into different continua in the model. Sensitivity analysis was conducted to evaluate the effect of different mechanisms on the gas production. The results showed that adsorption and gas viscosity change will have a great impact on gas production. Ignoring one of following scenarios, such as adsorption, gas permeability change, gas viscosity change, or pore radius change, will underestimate gas production. PMID:26657698

  3. Spatial and Temporal Variations in Greenhouse Gas Emissions from an Agricultural Reservoir

    NASA Astrophysics Data System (ADS)

    Smolenski, R. L.; Beaulieu, J.; Townsend-Small, A.; Nietch, C.

    2012-12-01

    Reservoirs are being built at an increasing rate each year to provide humans with resources such as hydroelectric power and drinking water. These man-made systems have provided society with important services, but these have come at the cost of enhanced greenhouse gas (GHG) emissions. Recent estimates suggest reservoirs are a globally significant source of GHG emissions, but these estimates are largely based on studies of oligotrophic boreal and tropical reservoirs. Reservoirs draining agricultural basins are common throughout much of the developed world and are subject to high nutrient loading rates from the watershed. Excess nutrient loading stimulates algae blooms and degrades water quality in these reservoirs, but surprisingly little is known about how nutrients and algal blooms affect GHG dynamics. To assess GHG dynamics in an agricultural reservoir we measured GHG emission rates, dissolved concentrations, and nutrient chemistry in William H. Harsha Lake, an agricultural reservoir located in southwestern Ohio (USA), on a monthly basis since October, 2011. Dissolved N2O was negatively related to nitrate (r2=.91, p<0.001) in October 2011, suggesting denitrification was an important source of N2O in the reservoir during fall turnover. Relationships between dissolved N2O and nitrate concentrations were inconsistent during the winter and spring, suggesting nitrate was not limited during these seasons. There was no consistent pattern in dissolved gas concentrations across the length of the reservoir, but concentrations were greater in hypolimnetic than eplimnetic waters during warmer months. The highest N2O and CH4 emissions occurred during lake turn over in the fall (CH4 flux= 4.76E+1 mg CH4 hr-1m-2, N2O flux= 9.24E+1 μg N2O-N hr-1m-2, and CO2 flux = 8.62E+2 mg CO2 hr-1m-2), while the lowest emission rates were observed during the winter. We found no clear spatial pattern in GHG emission rates across the length of the reservoir. On an annual basis, we estimate the

  4. Radon in unconventional natural gas from gulf coast geopressured-geothermal reservoirs

    USGS Publications Warehouse

    Kraemer, T.F.

    1986-01-01

    Radon-222 has been measured in natural gas produced from experimental geopressured-geothermal test wells. Comparison with published data suggests that while radon activity of this unconventional natural gas resource is higher than conventional gas produced in the gulf coast, it is within the range found for conventional gas produced throughout the U.S. A method of predicting the likely radon activity of this unconventional gas is described on the basis of the data presented, methane solubility, and known or assumed reservoir conditions of temperature, fluid pressure, and formation water salinity.

  5. Hydraulic Fracturing Fluid Reaction with Shale in Experiments at Unconventional Gas Reservoir Conditions

    NASA Astrophysics Data System (ADS)

    Paukert, A. N.; Hakala, A.; Jarvis, K. B.

    2015-12-01

    Despite the marked increase in hydraulic fracturing for unconventional natural gas production over the past decade, reactions between hydraulic fracturing fluids (HFF) and shale reservoirs remain poorly reported in the scientific literature. Shale-HFF interaction could cause mineral dissolution, releasing matter from the shale, or mineral precipitation that degrades reservoir permeability. Furthermore, data are limited on whether scale inhibitors are effective at preventing mineral precipitation and whether these inhibitors adversely affect reservoir fluid chemistry and permeability. To investigate HFF-rock interaction within shale reservoirs, we conducted flow-through experiments exposing Marcellus Shale to synthetic HFF at reservoir conditions (66oC, 20MPa). Outcrop shale samples were cored, artificially fractured, and propped open with quartz sand. Synthetic HFFs were mixed with chemical additives similar to those used for Marcellus Shale gas wells in Ohio and Southwestern Pennsylvania (FracFocus.org). We evaluated differences between shale reactions with HFF made from natural freshwater and reactions with HFF made from synthetic produced water (designed to simulate produced water that is diluted and re-used for subsequent hydraulic fracturing). We also compared reactions with HFFs including hydrochloric acid (HCl) to represent the initial acid stage, and HFFs excluding HCl. Reactions were determined through changes in fluid chemistry and X-ray CT and SEM imaging of the shale before and after experiments. Results from experiments with HFF containing HCl showed dissolution of primary calcite, as expected. Experiments using HFF made from synthetic produced water had significant mineral precipitation, particularly of barium and calcium sulfates. X-ray CT images from these experiments indicate precipitation of minerals occurred either along the main fracture or within smaller splay fractures, depending on fluid composition. These experiments suggest that HFF

  6. Gas Flow Tightly Coupled to Elastoplastic Geomechanics for Tight- and Shale-Gas Reservoirs: Material Failure and Enhanced Permeability

    DOE PAGESBeta

    Kim, Jihoon; Moridis, George J.

    2014-12-01

    We investigate coupled flow and geomechanics in gas production from extremely low permeability reservoirs such as tight and shale gas reservoirs, using dynamic porosity and permeability during numerical simulation. In particular, we take the intrinsic permeability as a step function of the status of material failure, and the permeability is updated every time step. We consider gas reservoirs with the vertical and horizontal primary fractures, employing the single and dynamic double porosity (dual continuum) models. We modify the multiple porosity constitutive relations for modeling the double porous continua for flow and geomechanics. The numerical results indicate that production of gasmore » causes redistribution of the effective stress fields, increasing the effective shear stress and resulting in plasticity. Shear failure occurs not only near the fracture tips but also away from the primary fractures, which indicates generation of secondary fractures. These secondary fractures increase the permeability significantly, and change the flow pattern, which in turn causes a change in distribution of geomechanical variables. From various numerical tests, we find that shear failure is enhanced by a large pressure drop at the production well, high Biot's coefficient, low frictional and dilation angles. Smaller spacing between the horizontal wells also contributes to faster secondary fracturing. When the dynamic double porosity model is used, we observe a faster evolution of the enhanced permeability areas than that obtained from the single porosity model, mainly due to a higher permeability of the fractures in the double porosity model. These complicated physics for stress sensitive reservoirs cannot properly be captured by the uncoupled or flow-only simulation, and thus tightly coupled flow and geomechanical models are highly recommended to accurately describe the reservoir behavior during gas production in tight and shale gas reservoirs and to smartly design

  7. Numerical simulation of the environmental impact of hydraulic fracturing of tight/shale gas reservoirs on near-surface groundwater: Background, base cases, shallow reservoirs, short-term gas, and water transport

    PubMed Central

    Reagan, Matthew T; Moridis, George J; Keen, Noel D; Johnson, Jeffrey N

    2015-01-01

    Hydrocarbon production from unconventional resources and the use of reservoir stimulation techniques, such as hydraulic fracturing, has grown explosively over the last decade. However, concerns have arisen that reservoir stimulation creates significant environmental threats through the creation of permeable pathways connecting the stimulated reservoir with shallower freshwater aquifers, thus resulting in the contamination of potable groundwater by escaping hydrocarbons or other reservoir fluids. This study investigates, by numerical simulation, gas and water transport between a shallow tight-gas reservoir and a shallower overlying freshwater aquifer following hydraulic fracturing operations, if such a connecting pathway has been created. We focus on two general failure scenarios: (1) communication between the reservoir and aquifer via a connecting fracture or fault and (2) communication via a deteriorated, preexisting nearby well. We conclude that the key factors driving short-term transport of gas include high permeability for the connecting pathway and the overall volume of the connecting feature. Production from the reservoir is likely to mitigate release through reduction of available free gas and lowering of reservoir pressure, and not producing may increase the potential for release. We also find that hydrostatic tight-gas reservoirs are unlikely to act as a continuing source of migrating gas, as gas contained within the newly formed hydraulic fracture is the primary source for potential contamination. Such incidents of gas escape are likely to be limited in duration and scope for hydrostatic reservoirs. Reliable field and laboratory data must be acquired to constrain the factors and determine the likelihood of these outcomes. Key Points: Short-term leakage fractured reservoirs requires high-permeability pathways Production strategy affects the likelihood and magnitude of gas release Gas release is likely short-term, without additional driving forces PMID

  8. Integrated reservoir description of the Lexington gas storage field. Final report, November 15, 1995-March 31, 1996

    SciTech Connect

    Broetz, R.J.; Dennis, M.K.; Cowsert, P.; Carr, D.L.; Bues, A.D.

    1996-05-01

    It is the overall objective of the study described by the report to update the previous Geoquest Reservoir Technologies reservoir model by incorporating the 3-D seismic acquired over the Lexington gas storage by the end of 1994. Historical production and recent reservoir studies indicate the reservoir is a non-homogeneous media and better characterization would help improve the ability to manage the field.

  9. Reservoir compaction and surface subsidence in the Central Luconia gas bearing carbonates, offshore Sarawak, East Malaysia

    SciTech Connect

    vanDitzhunzen, P.J.D.; de Waai, J.A.

    1984-02-01

    In the Central Luconia area, offshore Sarawak, substantial gas reserves are present in Miocene carbonate buildups. The carbonates consist of limestones and dolomites with porosities ranging from 0 to 40 percent. From core analysis it became evident that there exists a potential problem with regard to the compaction of the carbonate reservoir matrix as a result of effective stress increase as the reservoirs are depleted. Triaxial compaction tests were carried out on core samples from several carbonte reservoirs. It was found that highly porous mouldic limestones show pore collapse at relatively low effective stresses. After pore collapse the uniaxial compressibility coefficient increases significantly. Reservoir compressibility parameters can be derived from core data, for collapsing as well as non-collapsing rocks. These can be used to calculate reservoir compaction from well logs for a particular pressure decline. An estimate of the expected surface subsidence can be made based on the theory of poro-elasticity and the nucleus of strain concept as described by Geertsma. Predicted subsidence figures have been taken into account in platform design. The gas reservoirs have large aquifers within the carbonate buildups. As these aquifers have not all been fully appraised, there exists some uncertainty concerning their actual compaction behaviour.

  10. Shale gas reservoir characteristics of Ordovician-Silurian formations in the central Yangtze area, China

    NASA Astrophysics Data System (ADS)

    Shan, Chang'an; Zhang, Tingshan; Wei, Yong; Zhang, Zhao

    2016-07-01

    The characteristics of a shale gas reservoir and the potential of a shale gas resource of Ordovician-Silurian age in the north of the central Yangtze area were determined. Core samples from three wells in the study area were subjected to thin-section examination, scanning electron microscopy, nuclear magnetic resonance testing, X-ray diffraction mineral analysis, total organic carbon (TOC) testing, maturity testing, gas-bearing analysis, and gas component and isothermal adsorption experiments. A favorable segment of the gas shale reservoir was found in both the Wufeng Formation and the lower part of the Longmaxi Formation; these formations were formed from the late Katian to early Rhuddanian. The high-quality shale layers in wells J1, J2, and J3 featured thicknesses of 54.88 m, 48.49 m, and 52.00 m, respectively, and mainly comprised carbonaceous and siliceous shales. Clay and brittle minerals showed average contents of 37.5% and 62.5% (48.9% quartz), respectively. The shale exhibited type II1 kerogens with a vitrinite reflectance ranging from 1.94% to 3.51%. TOC contents of 0.22%-6.05% (average, 2.39%) were also observed. The reservoir spaces mainly included micropores and microfractures and were characterized by low porosity and permeability. Well J3 showed generally high gas contents, i.e., 1.12-3.16 m3/t (average 2.15 m3/t), and its gas was primarily methane. The relatively thick black shale reservoir featured high TOC content, high organic material maturity, high brittle mineral content, high gas content, low porosity, and low permeability. Shale gas adsorption was positively correlated with TOC content and organic maturity, weakly positive correlated with quartz content, and weakly negatively correlated with clay content. Therefore, the Wufeng and Longmaxi formations in the north of the central Yangtze area have a good potential for shale gas exploration.

  11. Characterization of Tight Gas Reservoir Pore Structure Using USANS/SANS and Gas Adsorption Analysis

    SciTech Connect

    Clarkson, Christopher R; He, Lilin; Agamalian, Michael; Melnichenko, Yuri B; Mastalerz, Maria; Bustin, Mark; Radlinski, Andrzej Pawell; Blach, Tomasz P

    2012-01-01

    Small-angle and ultra-small-angle neutron scattering (SANS and USANS) measurements were performed on samples from the Triassic Montney tight gas reservoir in Western Canada in order to determine the applicability of these techniques for characterizing the full pore size spectrum and to gain insight into the nature of the pore structure and its control on permeability. The subject tight gas reservoir consists of a finely laminated siltstone sequence; extensive cementation and moderate clay content are the primary causes of low permeability. SANS/USANS experiments run at ambient pressure and temperature conditions on lithologically-diverse sub-samples of three core plugs demonstrated that a broad pore size distribution could be interpreted from the data. Two interpretation methods were used to evaluate total porosity, pore size distribution and surface area and the results were compared to independent estimates derived from helium porosimetry (connected porosity) and low-pressure N{sub 2} and CO{sub 2} adsorption (accessible surface area and pore size distribution). The pore structure of the three samples as interpreted from SANS/USANS is fairly uniform, with small differences in the small-pore range (< 2000 {angstrom}), possibly related to differences in degree of cementation, and mineralogy, in particular clay content. Total porosity interpreted from USANS/SANS is similar to (but systematically higher than) helium porosities measured on the whole core plug. Both methods were used to estimate the percentage of open porosity expressed here as a ratio of connected porosity, as established from helium adsorption, to the total porosity, as estimated from SANS/USANS techniques. Open porosity appears to control permeability (determined using pressure and pulse-decay techniques), with the highest permeability sample also having the highest percentage of open porosity. Surface area, as calculated from low-pressure N{sub 2} and CO{sub 2} adsorption, is significantly less

  12. The deep Madden Field, a super-deep Madison gas reservoir, Wind River Basin, Wyoming

    SciTech Connect

    Moore, C.H.; Hawkins, C.

    1996-12-31

    Madison dolomites form the reservoir of a super deep, potential giant sour gas field developed on the Madden Anticline immediately in front of the Owl Creek Thrust along the northern rim of the Wind River Basin, central Wyoming. The Madison reservoir dolomites are presently buried to some 25,000 feet at Madden Field and exhibit porosity in excess of 15%. An equivalent dolomitized Madison sequence is exposed in outcrop only 5 miles to the north on the hanging wall of the Owl Creek thrust at Lysite Mountain. Preliminary comparative stratigraphic, geochemical and petrologic data, between outcrop and available cores and logs at Deep Madden suggests: (1) early, sea level-controlled, evaporite-related dolomitization of the reservoir and outcrop prior to significant burial; (2) both outcrop and deep reservoir dolomites underwent significant recrystallization during a common burial history until their connection was severed during Laramide faulting in the Eocene; (3) While the dolomite reservoir at Madden suffered additional diagenesis during an additional 7-10 thousand feet of burial, the pore systems between outcrop and deep reservoir are remarkably similar. The two existing deep Madison wells at Madden are on stream, with a third deep Madison well currently drilling. The sequence stratigraphic framework and the diagenetic history of the Madison strongly suggests that outcrops and surface cores of the Madison in the Owl Creek Mountains will be useful in further development and detailed reservoir modeling of the Madden Deep Field.

  13. The deep Madden Field, a super-deep Madison gas reservoir, Wind River Basin, Wyoming

    SciTech Connect

    Moore, C.H. ); Hawkins, C. )

    1996-01-01

    Madison dolomites form the reservoir of a super deep, potential giant sour gas field developed on the Madden Anticline immediately in front of the Owl Creek Thrust along the northern rim of the Wind River Basin, central Wyoming. The Madison reservoir dolomites are presently buried to some 25,000 feet at Madden Field and exhibit porosity in excess of 15%. An equivalent dolomitized Madison sequence is exposed in outcrop only 5 miles to the north on the hanging wall of the Owl Creek thrust at Lysite Mountain. Preliminary comparative stratigraphic, geochemical and petrologic data, between outcrop and available cores and logs at Deep Madden suggests: (1) early, sea level-controlled, evaporite-related dolomitization of the reservoir and outcrop prior to significant burial; (2) both outcrop and deep reservoir dolomites underwent significant recrystallization during a common burial history until their connection was severed during Laramide faulting in the Eocene; (3) While the dolomite reservoir at Madden suffered additional diagenesis during an additional 7-10 thousand feet of burial, the pore systems between outcrop and deep reservoir are remarkably similar. The two existing deep Madison wells at Madden are on stream, with a third deep Madison well currently drilling. The sequence stratigraphic framework and the diagenetic history of the Madison strongly suggests that outcrops and surface cores of the Madison in the Owl Creek Mountains will be useful in further development and detailed reservoir modeling of the Madden Deep Field.

  14. Study on Oil-Gas Reservoir Detecting Methods Using Hyperspectral Remote Sensing

    NASA Astrophysics Data System (ADS)

    Tian, Q.

    2012-07-01

    Oil-gas reservoir exploration using hyperspectral remote sensing, which based on the theory of hydrocarbon microseepage information and fine spectral response of target, is a new direction for the application of remote sensing technology. In this paper, Qaidam Basin and Liaodong Bay in China were selected as the study areas. Based on the hydrocarbon microseepage theory, the analysis of crude oil in soil in Qaidam Basin and spectral experiment of crude oil in sea water in Liaodong Bay, Hyperion hyperspectral remote sensing images were used to develop the method of oil-gas exploration. The results indicated that the area of oil-gas reservoir in Qaidam Basin could be delimited in two ways: the oil-gas reservoir can be obtained directly by the absorption bands near 1730nm in Hyperion image; and Linear Spectral Unmixing (LSU) and Spectral Angle Matching (SAM) of alteration mineral (e.g. kaolinite, illite) could be used to indirectly detect the target area in Qaidam Basin. In addition, combined with the optimal bands in the region of visible/near-infrared, SAM was used to extract the thin oil slick of microseepage in Liaodong Bay. Then the target area of oil-gas reservoir in Liaodong Bay can be delineated.

  15. Modeling of Devonian shale gas reservoirs. Task 16. Mathematical modeling of shale gas production (2D model). Final report

    SciTech Connect

    Not Available

    1980-07-31

    The Department of Energy (DOE), Morgantown Energy Technology Center (METC) has been supporting the development of flow models for Devonian shale gas reservoirs. The broad objectives of this modeling program are to: (1) develop and validate a mathematical model which describes gas flow through Devonian shales; (2) determine the sensitive parameters that affect deliverability and recovery of gas from Devonian shales; (3) recommend laboratory and field measurements for determination of those parameters critical to the productivity and timely recovery of gas from the Devonian shales; (4) analyze pressure and rate transient data from observation and production gas wells to determine reservoir parameters and well performance; and (5) study and determine the overall performance of Devonian shale reservoirs in terms of well stimulation, well spacing, and resource recovery as a function of gross reservoir properties such as anisotropy, porosity and thickness variations, and boundary effects. During the previous annual period, a mathematical model describing gas flow through Devonian shales and the software for a radial one-dimensional numerical model for single well performance were completed and placed into operation. Although the radial flow model is a powerful tool for studying single well behavior, it is inadequate for determining the effects of well spacing, stimulation treatments, and variation in reservoir properties. Hence, it has been necessary to extend the model to two-dimensions, maintaining full capability regarding Klinkerberg effects, desorption, and shale matrix parameters. During the current annual period, the radial flow model has been successfully extended to provide the two-dimensional capability necessary for the attainment of overall program objectives, as described above.

  16. Secondary natural gas recovery in mature fluvial sandstone reservoirs, Frio Formation, Agua Dulce Field, South Texas

    SciTech Connect

    Ambrose, W.A.; Levey, R.A. ); Vidal, J.M. ); Sippel, M.A. ); Ballard, J.R. ); Coover, D.M. Jr. ); Bloxsom, W.E. )

    1993-09-01

    An approach that integrates detailed geologic, engineering, and petrophysical analyses combined with improved well-log analytical techniques can be used by independent oil and gas companies of successful infield exploration in mature Gulf Coast fields that larger companies may consider uneconomic. In a secondary gas recovery project conducted by the Bureau of Economic Geology and funded by the Gas Research Institute and the U.S. Department of Energy, a potential incremental natural gas resource of 7.7 bcf, of which 4.0 bcf may be technically recoverable, was identified in a 490-ac lease in Agua Dulce field. Five wells in this lease had previously produced 13.7 bcf from Frio reservoirs at depths of 4600-6200 ft. The pay zones occur in heterogeneous fluvial sandstones offset by faults associated with the Vicksburg fault zone. The compartments may each contain up to 1.0 bcf of gas resources with estimates based on previous completions and the recent infield drilling experience of Pintas Creek Oil Company. Uncontacted gas resources occur in thin (typically less than 10 ft) bypassed zones that can be identified through a computed log evaluation that integrates open-hole logs, wireline pressure tests, fluid samples, and cores. At Agua Dulce field, such analysis identified at 4-ft bypassed zone uphole from previously produced reservoirs. This reservoir contained original reservoir pressure and flowed at rates exceeding 1 mmcf/d. The expected ultimate recovery is 0.4 bcf. Methodologies developed in the evaluation of Agua Dulce field can be successfully applied to other mature gas fields in the south Texas Gulf Coast. For example, Stratton and McFaddin are two fields in which the secondary gas recovery project has demonstrated the existence of thin, potentially bypassed zones that can yield significant incremental gas resources, extending the economic life of these fields.

  17. Brine production as an exploration tool for water drive gas reservoirs

    SciTech Connect

    Randolph, P.L.

    1982-01-01

    Data from detailed analyses of production from geopressured geothermal aquifers suggest that appropriate brine production tests may well result in production of otherwise undiscoverable hydrocarbons. This paper reviews concepts for the biogenic origin of natural gas, subsurface migration of natural gas, and trapping of that gas in commercially producible reservoirs. Data are presented to demonstrate discovery of free natural gas by brine production from two dry wildcat wells. Finally, conditions under which brine production testing may be a prudent investment are discussed. 5 figures.

  18. Naturally fractured tight gas reservoir detection optimization. Quarterly technical progress report, April 1995--June 1995

    SciTech Connect

    1995-08-01

    Research continued on methods to detect naturally fractured tight gas reservoirs. This report contains a seismic survey map, and reports on efforts towards a source test to select the source parameters for a 37 square mile compressional wave 3-D seismic survey. Considerations of the source tests are discussed.

  19. Spatial and Temporal Variations in Greenhouse Gas Emissions from an Agricultural Reservoir

    EPA Science Inventory

    Reservoirs are being built at an increasing rate each year to provide humans with resources such as hydroelectric power and drinking water. These man-made systems have provided society with important services, but these have come at the cost of enhanced greenhouse gas (GHG) emiss...

  20. Naturally fractured tight gas reservoir detection optimization. Quarterly report, January 1 - March 31, 1996

    SciTech Connect

    1996-12-31

    The objective is to determine methods for detection and mapping of naturally fractured systems for economic production of natural gas from fractured reservoirs. This report contains: 3D P-wave alternate processing; down hole 3C geophone analysis; fracture pattern analysis of the Fort Union and Wind River Basin; 3D-3C seismic processing; and technology transfer.

  1. Offshore Adriatic marginal gas fields: An approach to the technique of reservoir development

    SciTech Connect

    Montanari, A.; Bolelli, V.; Piccoli, G.

    1986-01-01

    The application of accelerated gas blowdown and wire line techniques in reservoir development and exploitation is presented for an off-shore Adriatic marginal gas field. The approach discussed in this paper utilizes selective completion, very low reserves/production ratio, sequential production, Through Tubing Bridge Plug and Through Tubing Perforation techniques to avoid the use of costly workover rigs and to allow economically convenient exploitation of a structure which otherwise would have been abandoned.

  2. Naturally fractured tight gas reservoir detection optimization. Quarterly report, January 1, 1997--March 31, 1997

    SciTech Connect

    1998-04-01

    This document contains the quarterly report dated January 1-March 31, 1997 for the Naturally Fractured Tight Gas Reservoir Detection Optimization project. Topics covered in this report include AVOA modeling using paraxial ray tracing, AVOA modeling for gas- and water-filled fractures, 3-D and 3-C processing, and technology transfer material. Several presentations from a Geophysical Applications Workshop workbook, workshop schedule, and list of workshop attendees are also included.

  3. Stress change and fault slip in produced gas reservoirs used for storage of natural gas and carbon-dioxide

    NASA Astrophysics Data System (ADS)

    Orlic, Bogdan; Wassing, Brecht

    2013-04-01

    Gas extraction and subsequent storage of natural gas or CO2 in produced gas reservoirs will change the state of stress in a reservoir-seal system due to poro-mechanical, thermal and possibly chemical effects. Depletion- and injection-induced stresses can mechanically damage top- and side-seals, re-activate pre-existing sealing faults and create new fractures, allowing fluid migration out of the storage reservoir and causing induced seismicity. The first case study describes a field scale three-dimensional geomechanical numerical modelling of a depleted gas field in the Netherlands, which will be used for underground gas storage (UGS). The field experienced induced seismicity associated with gas production in the past and concerns were raised regarding the risk of future injection-related seismicity. The numerical modelling study aimed at investigating the potential of major faults for reactivation during UGS operations. The geomechanical model was calibrated to match the location and timing of the fault slip on the main central fault, which has most likely caused past seismic events during gas production. Simulation results showed that the part of the central fault most sensitive to slip during reservoir depletion is located at partial juxtaposition of the two main reservoir blocks across the central fault, which is in agreement with the seismological localization of the recorded seismic events. UGS operations with annual cycles of gas injection and production will largely have stabilizing effects on fault stability. The potential for fault slip on the central fault will therefore be low throughout annual operational cycles of this storage facility. The second case study describes a field scale two-dimensional geomechanical modelling of an offshore depleted gas field in the Netherlands, which is being considered for CO2 storage. The geomechanical modelling study aimed at investigating the mechanical impact of induced stress changes, resulting from past gas

  4. Prediction of Gas Injection Performance for Heterogeneous Reservoirs

    SciTech Connect

    Blunt, M.J.; Orr, F.M. Jr.

    2001-03-26

    This report was an integrated study of the physics and chemistry affecting gas injection, from the pore scale to the field scale, and involved theoretical analysis, laboratory experiments and numerical simulation. Specifically, advances were made on streamline-based simulation, analytical solutions to 1D compositional displacements, and modeling and experimental measures of three-phase flow.

  5. Variation of galactic cold gas reservoirs with stellar mass

    NASA Astrophysics Data System (ADS)

    Maddox, Natasha; Hess, Kelley M.; Obreschkow, Danail; Jarvis, M. J.; Blyth, S.-L.

    2015-02-01

    The stellar and neutral hydrogen (H I) mass functions at z ˜ 0 are fundamental benchmarks for current models of galaxy evolution. A natural extension of these benchmarks is the two-dimensional distribution of galaxies in the plane spanned by stellar and H I mass, which provides a more stringent test of simulations, as it requires the H I to be located in galaxies of the correct stellar mass. Combining H I data from the Arecibo Legacy Fast ALFA survey, with optical data from Sloan Digital Sky Survey, we find a distinct envelope in the H I-to-stellar mass distribution, corresponding to an upper limit in the H I fraction that varies monotonically over five orders of magnitude in stellar mass. This upper envelope in H I fraction does not favour the existence of a significant population of dark galaxies with large amounts of gas but no corresponding stellar population. The envelope shows a break at a stellar mass of ˜109 M⊙, which is not reproduced by modern models of galaxy populations tracing both stellar and gas masses. The discrepancy between observations and models suggests a mass dependence in gas storage and consumption missing in current galaxy evolution prescriptions. The break coincides with the transition from galaxies with predominantly irregular morphology at low masses to regular discs at high masses, as well as the transition from cold to hot accretion of gas in simulations.

  6. Numerical simulation of the environmental impact of hydraulic fracturing of tight/shale gas reservoirs on near-surface groundwater: Background, base cases, shallow reservoirs, short-term gas, and water transport

    DOE PAGESBeta

    Reagan, Matthew T.; Moridis, George J.; Keen, Noel D.; Johnson, Jeffrey N.

    2015-04-18

    Hydrocarbon production from unconventional resources and the use of reservoir stimulation techniques, such as hydraulic fracturing, has grown explosively over the last decade. However, concerns have arisen that reservoir stimulation creates significant environmental threats through the creation of permeable pathways connecting the stimulated reservoir with shallower freshwater aquifers, thus resulting in the contamination of potable groundwater by escaping hydrocarbons or other reservoir fluids. This study investigates, by numerical simulation, gas and water transport between a shallow tight-gas reservoir and a shallower overlying freshwater aquifer following hydraulic fracturing operations, if such a connecting pathway has been created. We focus on twomore » general failure scenarios: (1) communication between the reservoir and aquifer via a connecting fracture or fault and (2) communication via a deteriorated, preexisting nearby well. We conclude that the key factors driving short-term transport of gas include high permeability for the connecting pathway and the overall volume of the connecting feature. Production from the reservoir is likely to mitigate release through reduction of available free gas and lowering of reservoir pressure, and not producing may increase the potential for release. We also find that hydrostatic tight-gas reservoirs are unlikely to act as a continuing source of migrating gas, as gas contained within the newly formed hydraulic fracture is the primary source for potential contamination. Such incidents of gas escape are likely to be limited in duration and scope for hydrostatic reservoirs. Reliable field and laboratory data must be acquired to constrain the factors and determine the likelihood of these outcomes.« less

  7. Comparison of Gross Greenhouse Gas Fluxes from Hydroelectric Reservoirs in Brazil with Thermopower Generation

    NASA Astrophysics Data System (ADS)

    Rogerio, J. P.; Dos Santos, M. A.; Matvienko, B.; dos Santos, E.; Rocha, C. H.; Sikar, E.; Junior, A. M.

    2013-05-01

    shown a large variation in the data on greenhouse gas emissions, which would suggest that more care, should be taken in the choice of future projects by the Brazilian electrical sector. The emission of CH4 by hydroelectric reservoirs is always unfavorable, since even if the carbon has originated with natural sources, it is part of a gas with higher GWP in the final calculation. Emissions of CO2 can be attributed in part to the natural carbon cycle between the atmosphere and the water of the reservoir. Another part could be attributed to the decomposition of organic material, caused by the hydroelectric dam.

  8. Numerical Simulation of Subsurface Transport and Groundwater Impacts from Hydraulic Fracturing of Tight/Shale Gas Reservoirs

    NASA Astrophysics Data System (ADS)

    Reagan, M. T.; Moridis, G. J.; Keen, N. D.

    2014-12-01

    The use of reservoir stimulation techniques, such as hydraulic fracturing, has grown tremendously over the last decade, and concerns have arisen that reservoir stimulation creates environmental threats through the creation of permeable pathways that could connect the stimulated reservoir to shallower groundwater aquifers. This study investigates, by numerical simulation, gas and water transport between a deeper tight-gas reservoir and a shallower overlying groundwater aquifer following hydraulic fracturing operations, assuming that the formation of a connecting pathway has already occurred. We focus on two general transport scenarios: 1) communication between the reservoir and aquifer via a connecting fracture or fault and 2) communication via a deteriorated, preexisting nearby well. The simulations explore a range of permeabilities and geometries over time scales, and evaluate the mechanisms and factors that could lead to the escape of gas or reservoir fluid and the contamination of groundwater resources. We also examine the effects of overpressured reservoirs, and explore long-term transport processes as part of a continuing study. We conclude that the key factors driving short-term transport of gas include high permeability for the connecting pathway and the overall volume of the connecting feature. Gas production from the reservoir via a horizontal well is likely to mitigate release through the reduction of available free gas and the lowering of reservoir pressure. We also find that fractured tight-gas reservoirs are unlikely to act as a continuing source of large volumes of migrating gas, and incidents of gas escape are likely to be limited in duration and scope. Reliable field and laboratory data must be acquired to constrain the factors and determine the likelihood of these outcomes.

  9. Strategies to diagnose and control microbial souring in natural gas storage reservoirs and produced water systems

    SciTech Connect

    Morris, E.A.; Derr, R.M.; Pope, D.H.

    1995-12-31

    Hydrogen sulfide production (souring) in natural gas storage reservoirs and produced water systems is a safety and environmental problem that can lead to operational shutdown when local hydrogen sulfide standards are exceeded. Systems affected by microbial souring have historically been treated using biocides that target the general microbial community. However, requirements for more environmentally friendly solutions have led to treatment strategies in which sulfide production can be controlled with minimal impact to the system and environment. Some of these strategies are based on microbial and/or nutritional augmentation of the sour environment. Through research sponsored by the Gas Research Institute (GRI) in Chicago, Illinois, methods have been developed for early detection of microbial souring in natural gas storage reservoirs, and a variety of mitigation strategies have been evaluated. The effectiveness of traditional biocide treatment in gas storage reservoirs was shown to depend heavily on the methods by which the chemical is applied. An innovative strategy using nitrate was tested and proved ideal for produced water and wastewater systems. Another strategy using elemental iodine was effective for sulfide control in evaporation ponds and is currently being tested in microbially sour natural gas storage wells.

  10. Wellbore stability in shale gas reservoirs, a case study of the Barnett Shale (USA).

    NASA Astrophysics Data System (ADS)

    Ouadfeul, Sid-Ali; Aliouane, Leila

    2015-04-01

    Wellbore stability in shale gas reservoirs is one of the major problems during the drilling phase; bad stability can induce the breakouts and drilling induced fractures. Wellbore stability requires the good knowledge of horizontal maximum and minimum stress, the overburden stress and the pore pressure. In this paper, we show a case study of the wellbore stability and how to estimate the mud weight in shale gas reservoir of the Barnett shale formation before drilling. The overburden stress is calculated from the seismic inversion, the minimum stress is calculated using the poro-elastic model, and however the pore pressure is calculated using the Eaton's model. Keywords: Wellbore stability, shale gas, maximum stress, minimum stress, overburden, mud weight, pore pressure.

  11. Short-range, overpressure-driven methane migration in coarse-grained gas hydrate reservoirs

    DOE PAGESBeta

    Nole, Michael; Daigle, Hugh; Cook, Ann E.; Malinverno, Alberto

    2016-08-31

    Two methane migration mechanisms have been proposed for coarse-grained gas hydrate reservoirs: short-range diffusive gas migration and long-range advective fluid transport from depth. Herein we demonstrate that short-range fluid flow due to overpressure in marine sediments is a significant additional methane transport mechanism that allows hydrate to precipitate in large quantities in thick, coarse-grained hydrate reservoirs. Two-dimensional simulations demonstrate that this migration mechanism, short-range advective transport, can supply significant amounts of dissolved gas and is unencumbered by limitations of the other two end-member mechanisms. Here, short-range advective migration can increase the amount of methane delivered to sands as compared tomore » the slow process of diffusion, yet it is not necessarily limited by effective porosity reduction as is typical of updip advection from a deep source.« less

  12. Gas-cap effects in pressure-transient response of naturally fractured reservoirs

    SciTech Connect

    Al-Bemani, A.S.; Ershaghi, I.

    1997-03-01

    During the primary production life of an oil reservoir, segregation of oil and gas within the fissures before reaching the producing wells could create a secondary gas cap if no original gas cap were present, or will join the expanding original gas-cap gas. This paper presents a theoretical framework of gas-cap effects in naturally fractured reservoirs. General pressure solutions are derived for both pseudosteady-state and unsteady-state matrix-fracture interporosity flow. Deviation from the fracture or fracture-matrix response occurs as the gas-cap effect is felt. Anomalous slope changes during the transition period depend entirely on the contrast between the fracture anisotropy parameter, {lambda}{sub l}, and matrix-fracture interporosity parameter, {lambda}, and between the total gas-cap storage capacitance (1 {minus} {omega}{sub 1}) and oil-zone matrix storage (1 {minus} {omega}). A composite double-porosity response is observed for {omega}{sub 1} {le} {omega}{sub 1c} and 1.0 {le} {lambda}{sub 1}/{lambda} {le} 1,000. A triple-porosity response is observed for {omega}{sub 1} {ge} {omega}{sub k} and 140 < {omega}{lambda}{sub 1}/{lambda} < 1.0E05.

  13. Chemical stimulation of gas condensate reservoirs: An experimental and simulation study

    NASA Astrophysics Data System (ADS)

    Kumar, Viren

    Well productivity in gas condensate reservoirs is reduced by condensate banking when the bottom hole flowing pressure drops below the dewpoint pressure. Several methods have been proposed to restore gas production rates after a decline due to condensate blocking. Gas injection, hydraulic fracturing, horizontal wells and methanol injection have been tried with limited success. These methods of well stimulation either offer only temporary productivity restoration or are applicable only in some situations. Wettability alteration of the rock in the near well bore region is an economic and efficient method for the enhancement of gas-well deliverability. Altering the wettability of porous media from strongly water-wet or oil-wet to intermediate-wet decreases the residual liquid saturations and results in an increase in the relative permeability to gas. Such treatments also increase the mobility and recovery of condensate from the reservoir. This study validates the above hypothesis and provides a simple and cost-efficient solution to the condensate blocking problem. Screening studies were carried out to identify the chemicals based on structure, solubility and reactivity at reservoir temperature and pressure. Experiments were performed to evaluate these chemicals to improve gas and condensate relative permeabilities. The improvement in relative permeability after chemical treatment was quantified by performing high pressure and high temperature coreflood experiments in Berea sandstone, Texas Cream limestone and reservoir cores using synthetic gas mixtures at reservoir conditions. Experiments were done at high flow rates and for long time periods to evaluate the durability of the treatment. Single well simulation studies were conducted to demonstrate the performance of the chemical treatment in the field. The experimental relative permeability data was modeled using a trapping number dependent relative permeability model and incorporated in the simulations. Effect of

  14. Norg underground gas storage - an integrated 3-D geological and geophysical reservoir modeling study

    SciTech Connect

    Cohen, J.; Smith, S. ); Huis, R.; Copper, J.; Whyte, S. )

    1993-09-01

    The Netherlands have an extensive gas distribution infrastructure supplying 80 x 10[sup 9] m[sup 3] per annum to the domestic and European market. The capacity requirement exceeds 600 x 10[sup 6] sm[sup 3]/d, of which 430 x 10[sup 6] sm[sup 3]/d is provided by the giant Groningen gas field. The Groningen field will soon reach a pressure at which this capacity can no longer be met without considerable investments. It will also become difficult to maintain the market gas quality, because of the increasing supply from small fields with widely varying gas qualities. Underground Gas Storage (UGS) will satisfy both capacity and gas-quality requirements. This UGS must eventually store 4.5 x 10[sup 9] m[sup 3] with injection/production capacities of 36/80-100 x 10[sup 6] sm[sup 3]/d, making it one of the largest UGS projects in the world. These extremely high-capacity requirements demand both high-matrix permeability and good understanding of vertical and lateral reservoir continuity. Matrix permeability is predictable due to the close relationship with the lithofacies defined within the primary Rotliegende depositional model. Minor faults, identified on three-dimensional (3-D) seismic attribute maps, represent potential transmissibility impairment zones, compartmentalizing the reservoir. This was initially suggested by core fracture studies and confirmed by a subsequent field shut-in and pressure buildup test. Lithofacies and seismic structural data are integrated within a computerized reservoir geological modeling system known as [open quotes]Monarch[close quotes] to provide a highly detailed 3-D permeability model that is then tranformed into a model for dynamic reservoir simulation. The results confirm the required working volume for the UGS operation and provide a basis for the initial field development planning.

  15. Some effects of non-condensible gas in geothermal reservoirs with steam-water counterflow

    SciTech Connect

    McKibbin, R.; Pruess, K.

    1988-01-01

    A mathematical model is developed for fluid and heat flow in two-phase geothermal reservoirs containing non-condensible gas (CO{sub 2}). Vertical profiles of temperature, pressures and phase saturations in steady-state conditions are obtained by numerically integrating the coupled ordinary differential equations describing conservation of water, CO{sub 2}, and energy. Solutions including binary diffusion effects in the gas phase are generated for cases with net mass throughflow as well as for balanced liquid-vapor counterflow. Calculated examples illustrate some fundamental characteristics of two-phase heat transmission systems with non-condensible gas. 14 refs., 3 figs.

  16. Some effects of non-condensible gas in geothermal reservoirs with steam-water counterflow

    SciTech Connect

    McKibbin, Robert; Pruess, Karsten

    1988-01-01

    A mathematical model is developed for fluid and heat flow in two-phase geothermal reservoirs containing non-condensible gas (CO{sub 2}). Vertical profiles of temperature, pressures and phase saturations in steady-state conditions are obtained by numerically integrating the coupled ordinary differential equations describing conservation of water, CO{sub 2}, and energy. Solutions including binary diffusion effects in the gas phase are generated for cases with net mass throughflow as well as for balanced liquid-vapor counterflow. Calculated examples illustrate some fundamental characteristics of two-phase heat transmission systems with non-condensible gas.

  17. Numerical simulations of CO2 -assisted gas production from hydrate reservoirs

    NASA Astrophysics Data System (ADS)

    Sridhara, P.; Anderson, B. J.; Myshakin, E. M.

    2015-12-01

    A series of experimental studies over the last decade have reviewed the feasibility of using CO2 or CO2+N2 gas mixtures to recover CH4 gas from hydrates deposits. That technique would serve the dual purpose of CO2 sequestration and production of CH4 while maintaining the geo-mechanical stability of the reservoir. In order to analyze CH4 production process by means of CO2 or CO2+N2 injection into gas hydrate reservoirs, a new simulation tool, Mix3HydrateResSim (Mix3HRS)[1], was previously developed to account for the complex thermodynamics of multi-component hydrate phase and to predict the process of CH4 substitution by CO2 (and N2) in the hydrate lattice. In this work, Mix3HRS is used to simulate the CO2 injection into a Class 2 hydrate accumulation characterized by a mobile aqueous phase underneath a hydrate bearing sediment. That type of hydrate reservoir is broadly confirmed in permafrost and along seashore. The production technique implies a two-stage approach using a two-well design, one for an injector and one for a producer. First, the CO2 is injected into the mobile aqueous phase to convert it into immobile CO2 hydrate and to initiate CH4 release from gas hydrate across the hydrate-water boundary (generally designating the onset of a hydrate stability zone). Second, CH4 hydrate decomposition is induced by the depressurization method at a producer to estimate gas production potential over 30 years. The conversion of the free water phase into the CO2 hydrate significantly reduces competitive water production in the second stage, thereby improving the methane gas production. A base case using only the depressurization stage is conducted to compare with enhanced gas production predicted by the CO2-assisted technique. The approach also offers a possibility to permanently store carbon dioxide in the underground formation to greater extent comparing to a direct injection of CO2 into gas hydrate sediment. Numerical models are based on the hydrate formations at the

  18. CO2 utilization and storage in shale gas reservoirs: Experimental results and economic impacts

    DOE PAGESBeta

    Schaef, Herbert T.; Davidson, Casie L.; Owen, Antionette Toni; Miller, Quin R. S.; Loring, John S.; Thompson, Christopher J.; Bacon, Diana H.; Glezakou, Vassiliki Alexandra; McGrail, B. Peter

    2014-12-31

    Natural gas is considered a cleaner and lower-emission fuel than coal, and its high abundance from advanced drilling techniques has positioned natural gas as a major alternative energy source for the U.S. However, each ton of CO2 emitted from any type of fossil fuel combustion will continue to increase global atmospheric concentrations. One unique approach to reducing anthropogenic CO2 emissions involves coupling CO2 based enhanced gas recovery (EGR) operations in depleted shale gas reservoirs with long-term CO2 storage operations. In this paper, we report unique findings about the interactions between important shale minerals and sorbing gases (CH4 and CO2) andmore » associated economic consequences. Where enhanced condensation of CO2 followed by desorption on clay surface is observed under supercritical conditions, a linear sorption profile emerges for CH4. Volumetric changes to montmorillonites occur during exposure to CO2. Theory-based simulations identify interactions with interlayer cations as energetically favorable for CO2 intercalation. Thus, experimental evidence suggests CH4 does not occupy the interlayer and has only the propensity for surface adsorption. Mixed CH4:CO2 gas systems, where CH4 concentrations prevail, indicate preferential CO2 sorption as determined by in situ infrared spectroscopy and X-ray diffraction techniques. Collectively, these laboratory studies combined with a cost-based economic analysis provide a basis for identifying favorable CO2-EOR opportunities in previously fractured shale gas reservoirs approaching final stages of primary gas production. Moreover, utilization of site-specific laboratory measurements in reservoir simulators provides insight into optimum injection strategies for maximizing CH4/CO2 exchange rates to obtain peak natural gas production.« less

  19. Noble gas as tracers for CO2 deep input in petroleum reservoirs

    NASA Astrophysics Data System (ADS)

    Pujol, Magali; Stuart, Finlay; Gilfillan, Stuart; Montel, François; Masini, Emmanuel

    2016-04-01

    The sub-salt hydrocarbon reservoirs in the deep offshore part of the Atlantic Ocean passive margins are a new key target for frontier oil and gas exploration. Type I source rocks locally rich in TOC (Total Organic Carbon) combined with an important secondary connected porosity of carbonate reservoirs overlain by an impermeable salt layer gives rise to reservoirs with high petroleum potential. However, some target structures have been found to be mainly filled with CO2 rich fluids. δ13C of the CO2 is generally between -9 and -4 permil, compatible with a deep source (metamorphic or mantle). Understanding the origin of the CO2 and the relative timing of its input into reservoir layers in regard to the geodynamic context appears to be a key issue for CO2 risk evaluation. The inertness and ubiquity of noble gases in crustal fluids make them powerful tools to trace the origin and migration of mixed fluids (Ballentine and Burnard 2002). The isotopic signature of He, Ne and Ar and the elemental pattern (He to Xe) of reservoir fluid from pressurized bottom hole samples provide an insight into fluid source influences at each reservoir depth. Three main end-members can be mixed into reservoir fluids (e.g. Gilfillan et al., 2008): atmospheric signature due to aquifer recharge, radiogenic component from organic fluid ± metamorphic influence, and mantle input. Their relative fractionation provides insights into the nature of fluid transport (Burnard et al., 2012)and its relative migration timing. In the studied offshore passive margin reservoirs, from both sides of South Atlantic margin, a strong MORB-like magmatic CO2 influence is clear. Hence, CO2 charge must have occurred during or after lithospheric break-up. CO2 charge(s) history appears to be complex, and in some cases requires several inputs to generate the observed noble gas pattern. Combining the knowledge obtained from noble gas (origin, relative timing, number of charges) with organic geochemical and thermodynamic

  20. The Noble Gas Record of Gas-Water Phase Interaction in the Tight-Gas-Sand Reservoirs of the Rocky Mountains

    NASA Astrophysics Data System (ADS)

    Ballentine, C. J.; Zhou, Z.; Harris, N. B.

    2015-12-01

    The mass of hydrocarbons that have migrated through tight-gas-sandstone systems before the permeability reduces to trap the hydrocarbon gases provides critical information in the hydrocarbon potential analysis of a basin. The noble gas content (Ne, Ar, Kr, Xe) of the groundwater has a unique isotopic and elemental composition. As gas migrates through the water column, the groundwater-derived noble gases partition into the hydrocarbon phase. Determination of the noble gases in the produced hydrocarbon phase then provides a record of the type of interaction (simple phase equilibrium or open system Rayleigh fractionation). The tight-gas-sand reservoirs of the Rocky Mountains represent one of the most significant gas resources in the United States. The producing reservoirs are generally developed in low permeability (averaging <0.1mD) Upper Cretaceous fluvial to marginal marine sandstones and commonly form isolated overpressured reservoir bodies encased in even lower permeability muddy sediments. We present noble gas data from producing fields in the Greater Green River Basin, Wyoming; the the Piceance Basin, Colorado; and in the Uinta Basin, Utah. The data is consistent from all three basins. We show how in each basin the noble gases record open system gas migration through a water column at maximum basin burial. The data within an open system model indicates that the gas now in-place represents the last ~10% of hydrocarbon gas to have passed through the water column, most likely prior to permeability closedown.

  1. Facies, faults and potential sweet spots in a tight gas reservoir: Almond Formation, Wyoming

    SciTech Connect

    Martinsen, R.; Iverson, W.; Surdam, R.

    1996-12-31

    The Almond Formation is a major producer of gas in southwestern Wyoming. Although exploration generally is aimed at finding conventional reservoirs in upper Almond marine sandstones, the majority of Almond gas is contained in the underlying main Almond, a succession of dominantly non-marine, interbedded tight sandstones, siltstones, carbonaceous shales and coals. Production data indicate that some of the best gas wells completed in upper Almond sands show little production decline and have already produced more gas than calculations indicate they contain. This implies that these wells have somehow successfully tapped into the vast supply of gas contained in the main Almond. We believe that the more permeable reservoirs, in addition to providing {open_quotes}sweet spots{close_quotes} for exploration, also serve as lateral conduits capable of draining gas over a broad area from the main Almond. The {open_quotes}sweet spots{close_quotes} themselves do not need to be volumetrically large, only permeable and laterally continuous. Previously unrecognized marine sands, similar to those in the upper Almond, are favorably located in the middle of the main Almond succession and may provide additional lateral conduits. Studies also show that syndepositional faults significantly influenced deposition and may also be important in terms of fluid flow. At least some syndepositional faults are associated with anomalously high gas and/or water production within fields, and may be vertical conduits for fluid flow.

  2. Facies, faults and potential sweet spots in a tight gas reservoir: Almond Formation, Wyoming

    SciTech Connect

    Martinsen, R.; Iverson, W.; Surdam, R. )

    1996-01-01

    The Almond Formation is a major producer of gas in southwestern Wyoming. Although exploration generally is aimed at finding conventional reservoirs in upper Almond marine sandstones, the majority of Almond gas is contained in the underlying main Almond, a succession of dominantly non-marine, interbedded tight sandstones, siltstones, carbonaceous shales and coals. Production data indicate that some of the best gas wells completed in upper Almond sands show little production decline and have already produced more gas than calculations indicate they contain. This implies that these wells have somehow successfully tapped into the vast supply of gas contained in the main Almond. We believe that the more permeable reservoirs, in addition to providing [open quotes]sweet spots[close quotes] for exploration, also serve as lateral conduits capable of draining gas over a broad area from the main Almond. The [open quotes]sweet spots[close quotes] themselves do not need to be volumetrically large, only permeable and laterally continuous. Previously unrecognized marine sands, similar to those in the upper Almond, are favorably located in the middle of the main Almond succession and may provide additional lateral conduits. Studies also show that syndepositional faults significantly influenced deposition and may also be important in terms of fluid flow. At least some syndepositional faults are associated with anomalously high gas and/or water production within fields, and may be vertical conduits for fluid flow.

  3. HIGH RESOLUTION PREDICTION OF GAS INJECTION PROCESS PERFORMANCE FOR HETEROGENEOUS RESERVOIRS

    SciTech Connect

    Thomas A. Hewett; Franklin M. Orr Jr.

    2000-12-31

    Gas injection in oil reservoirs offers huge potential for improved oil recovery. However, successful design of a gas injection process requires a detailed understanding of a variety of different significant processes, including the phase behavior of multicomponent mixtures and the approach to multi-contact miscibility in the reservoir, the flow of oil, water and gas underground, and the interaction of phase behavior reservoir heterogeneity and gravity on overall performance at the field scale. This project attempts to tackle all these issues using a combination of theoretical, numerical and laboratory studies of gas injection. The aim of this work is to develop a set of ultra-fast compositional simulation tools that can be used to make field-scale predictions of the performance of gas injection processes. To achieve the necessary accuracy, these tools must satisfy the fundamental physics and chemistry of the displacement from the pore to the reservoir scales. Thus this project focuses on four main research areas: (1) determination of the most appropriate methods of mapping multicomponent solutions to streamlines and streamtubes in 3D; (2) development of techniques for automatic generation of analytical solutions for one-dimensional flow along a streamline; (3) experimental investigations to improve the representation of physical mechanisms that govern displacement efficiency along a streamline; and (4) Theoretical and experimental investigations to establish the limitations of the streamline/streamtube approach. In this report they briefly review the status of the research effort in each area. They then give a more in depth discussion of the development of a CT scanning technique which can measure compositions in a two-phase, three-component system in-situ.

  4. Diagenesis of an 'overmature' gas reservoir: The Spiro sand of the Arkoma Basin, USA

    USGS Publications Warehouse

    Spotl, C.; Houseknecht, D.W.; Burns, S.J.

    1996-01-01

    The Spiro sand is a laterally extensive thin sandstone of earliest Atokan (Pennsylvanian) age that forms a major natural gas reservoir in the western Arkoma Basin, Oklahoma. Petrographic analysis reveals a variety of diagenetic alterations, the majority of which occurred during moderate to deep burial. Early diagenetic processes include calcite cementation and the formation of Fe-clay mineral peloids and coatings around quartz framework grains. These clays, which underwent transformation to well-crystallized chamosite [polytype Ib(?? = 90??)] on burial, are particularly abundant in medium-grained channel sandstones, whereas illitic clays are predominant in fine-grained interchannel sandstones. Subsequent to mechanical compaction, saddle ankerite precipitated in the reservoir at temperatures in excess of 70??C. Crude oil collected in favourable structural locations during and after ankeritization. Whereas hydrocarbons apparently halted inorganic diagenesis in oil-saturated zones, cementation continued in the underlying water-saturated zones. As reservoir temperatures increased further, hydrocarbons were cracked and a solid pyrobitumen residue remained in the reservoir. At temperatures exceeding ???140-150??C, non-syntaxial quartz cement, ferroan calcite and traces of dickite(?) locally reduced the reservoir quality. Local secondary porosity was created by carbonate cement dissolution. This alteration post-dated hydrocarbon emplacement and is probably related to late-stage infiltration of freshwater along 'leaky' faults. The study shows that the Spiro sandstone locally retained excellent porosities despite deep burial and thermal conditions that correspond to the zone of incipient very low grade metamorphism.

  5. Estimating Deliverability in Multi-Layered Gas Reservoirs Using Artificial Intelligence

    NASA Astrophysics Data System (ADS)

    Al-Arfaj, Malik Khalid

    In this research, an artificial intelligence (AI) model has been created to estimate the production rate of each layer in a multi-layered gas reservoir using static properties such as those obtained from well logging, in addition to dynamic properties such as pressure. This approach will be helpful in several reservoir engineering applications, such as understanding layers' depletion, or targeting specific layers for workover. It could also be used for PLT analysis where the measured PLT values are compared to the expected values and a variance analysis could be performed. Data were collected from more than 100 wells in a certain reservoir spanning over four fields. They were combined in related input variables and fed to the AI model for learning purposes. To compare different AI methods, the data were fed to 5 methods, namely ANFIS, MLP, RBF, SVM, and GRNN, and results were optimized for each method. Between the tested AI methods, SVM and GRNN performed best as shown by a low mean absolute percentage error and a very high correlation coefficient. This research shows promising use for AI methods in estimating production rate from each layer in a multi-layered gas reservoir.

  6. Potential hazards of compressed air energy storage in depleted natural gas reservoirs.

    SciTech Connect

    Cooper, Paul W.; Grubelich, Mark Charles; Bauer, Stephen J.

    2011-09-01

    This report is a preliminary assessment of the ignition and explosion potential in a depleted hydrocarbon reservoir from air cycling associated with compressed air energy storage (CAES) in geologic media. The study identifies issues associated with this phenomenon as well as possible mitigating measures that should be considered. Compressed air energy storage (CAES) in geologic media has been proposed to help supplement renewable energy sources (e.g., wind and solar) by providing a means to store energy when excess energy is available, and to provide an energy source during non-productive or low productivity renewable energy time periods. Presently, salt caverns represent the only proven underground storage used for CAES. Depleted natural gas reservoirs represent another potential underground storage vessel for CAES because they have demonstrated their container function and may have the requisite porosity and permeability; however reservoirs have yet to be demonstrated as a functional/operational storage media for compressed air. Specifically, air introduced into a depleted natural gas reservoir presents a situation where an ignition and explosion potential may exist. This report presents the results of an initial study identifying issues associated with this phenomena as well as possible mitigating measures that should be considered.

  7. Simulation study to determine the feasibility of injecting hydrogen sulfide, carbon dioxide and nitrogen gas injection to improve gas and oil recovery oil-rim reservoir

    NASA Astrophysics Data System (ADS)

    Eid, Mohamed El Gohary

    This study is combining two important and complicated processes; Enhanced Oil Recovery, EOR, from the oil rim and Enhanced Gas Recovery, EGR from the gas cap using nonhydrocarbon injection gases. EOR is proven technology that is continuously evolving to meet increased demand and oil production and desire to augment oil reserves. On the other hand, the rapid growth of the industrial and urban development has generated an unprecedented power demand, particularly during summer months. The required gas supplies to meet this demand are being stretched. To free up gas supply, alternative injectants to hydrocarbon gas are being reviewed to support reservoir pressure and maximize oil and gas recovery in oil rim reservoirs. In this study, a multi layered heterogeneous gas reservoir with an oil rim was selected to identify the most optimized development plan for maximum oil and gas recovery. The integrated reservoir characterization model and the pertinent transformed reservoir simulation history matched model were quality assured and quality checked. The development scheme is identified, in which the pattern and completion of the wells are optimized to best adapt to the heterogeneity of the reservoir. Lateral and maximum block contact holes will be investigated. The non-hydrocarbon gases considered for this study are hydrogen sulphide, carbon dioxide and nitrogen, utilized to investigate miscible and immiscible EOR processes. In November 2010, re-vaporization study, was completed successfully, the first in the UAE, with an ultimate objective is to examine the gas and condensate production in gas reservoir using non hydrocarbon gases. Field development options and proces schemes as well as reservoir management and long term business plans including phases of implementation will be identified and assured. The development option that maximizes the ultimate recovery factor will be evaluated and selected. The study achieved satisfactory results in integrating gas and oil

  8. Simultaneous water and gas injection pilot at the Kuparuk River Field, reservoir impact

    SciTech Connect

    Ma, T.D.; Rugen, J.A.; Stoisits, R.F.

    1995-12-31

    Immiscible water-alternating-gas injection has effectively managed produced gas at the Kuparuk River Field, increasing field oil rate and recovery. Although IWAG economics are very favorable, a pilot study was undertaken to ascertain whether the separate gas injection system can be eliminated by simultaneously injecting water and gas in waterflood lines. Static mixers were found to be necessary to disperse gas in a multiphase mixture flowing through a network of pipes. However, scale-up criteria for gas dispersing static mixers in multiphase pipe networks require additional refinement. Reservoir simulation done to support the pilot project showed that simultaneous water-and-gas injection should provide better control of gas mobility than IWAG. This resulted in increased oil recovery and more steady gas production. During the typical IWAG process, the magnitude and the cyclic nature of GOR responses have caused problems for gas handling at the field facilities. During the pilot loss of injection rate was observed as the gas fraction in the injection mixture increased and the surface injection pressure was kept stable at about 2800 psi. Examination of Well 2D-16 data suggests that the observed rate loss was more likely due to the lower bottom-hole pressures than the relative permeability effects expected of two-phase flow in porous media.

  9. FMS/FMI borehole imaging of carbonate gas reservoirs, Central Luconia Province, offshore Sarawak, Malaysia

    SciTech Connect

    Singh, U.; Van der Baan, D. )

    1994-07-01

    The Central Luconia Province, offshore Sarawak, is a significant gas province characterized by extensive development of late Miocene carbonate buildups. Some 200 carbonate structures have been seismically mapped of which 70 have been drilled. FMS/FMI borehole images were obtained from three appraisal wells drilled in the [open quotes]M[close quotes] cluster gas fields situated in the northwestern part of the province. The [open quotes]M[close quotes] cluster fields are currently part of an upstream gas development project to supply liquefied natural gas. Log facies recognition within these carbonate gas reservoirs is problematic due mainly to the large gas effect. This problem is being addressed by (1) application of neural network techniques and (2) using borehole imaging tools. Cores obtained from the M1, M3, and M4 gas fields were calibrated with the FMS/FMI images. Reservoir characterization was obtained at two different scales. The larger scale (i.e., 1:40 and 1:200) involved static normalized images where the vertical stacking pattern was observed based on recognition of bed boundaries. In addition, the greater vertical resolution of the FMS/FMI images allowed recognition of thin beds. For recognition of specific lithofacies, dynamically normalized images were used to highlight lithofacies-specific sedimentary features, e.g., clay seams/stylolites, vugs, and breccia zones. In general, the FMS/FMI images allowed (1) easier recognition of reservoir features, e.g., bed boundaries, and (2) distinction between lithofacies that are difficult to characterize on conventional wireline logs.

  10. Deep microbial life in the Altmark natural gas reservoir: baseline characterization prior CO2 injection

    NASA Astrophysics Data System (ADS)

    Morozova, Daria; Shaheed, Mina; Vieth, Andrea; Krüger, Martin; Kock, Dagmar; Würdemann, Hilke

    2010-05-01

    Within the framework of the CLEAN project (CO2 Largescale Enhanced gas recovery in the Altmark Natural gas field) technical basics with special emphasis on process monitoring are explored by injecting CO2 into a gas reservoir. Our study focuses on the investigation of the in-situ microbial community of the Rotliegend natural gas reservoir in the Altmark, located south of the city Salzwedel, Germany. In order to characterize the microbial life in the extreme habitat we aim to localize and identify microbes including their metabolism influencing the creation and dissolution of minerals. The ability of microorganisms to speed up dissolution and formation of minerals might result in changes of the local permeability and the long-term safety of CO2 storage. However, geology, structure and chemistry of the reservoir rock and the cap rock as well as interaction with saline formation water and natural gases and the injected CO2 affect the microbial community composition and activity. The reservoir located at the depth of about 3500m, is characterised by high salinity fluid and temperatures up to 127° C. It represents an extreme environment for microbial life and therefore the main focus is on hyperthermophilic, halophilic anaerobic microorganisms. In consequence of the injection of large amounts of CO2 in the course of a commercial EGR (Enhanced Gas Recovery) the environmental conditions (e.g. pH, temperature, pressure and solubility of minerals) for the autochthonous microorganisms will change. Genetic profiling of amplified 16S rRNA genes are applied for detecting structural changes in the community by using PCR- SSCP (PCR-Single-Strand-Conformation Polymorphism) and DGGE (Denaturing Gradient Gel Electrophoresis). First results of the baseline survey indicate the presence of microorganisms similar to representatives from other saline, hot, anoxic, deep environments. However, due to the hypersaline and hyperthermophilic reservoir conditions, cell numbers are low, so that

  11. Mapping the Fluid Pathways and Permeability Barriers of a Large Gas Hydrate Reservoir

    NASA Astrophysics Data System (ADS)

    Campbell, A.; Zhang, Y. L.; Sun, L. F.; Saleh, R.; Pun, W.; Bellefleur, G.; Milkereit, B.

    2012-12-01

    An understanding of the relationship between the physical properties of gas hydrate saturated sedimentary basins aids in the detection, exploration and monitoring one of the world's upcoming energy resources. A large gas hydrate reservoir is located in the MacKenzie Delta of the Canadian Arctic and geophysical logs from the Mallik test site are available for the gas hydrate stability zone (GHSZ) between depths of approximately 850 m to 1100 m. The geophysical data sets from two neighboring boreholes at the Mallik test site are analyzed. Commonly used porosity logs, as well as nuclear magnetic resonance, compressional and Stoneley wave velocity dispersion logs are used to map zones of elevated and severely reduced porosity and permeability respectively. The lateral continuity of horizontal permeability barriers can be further understood with the aid of surface seismic modeling studies. In this integrated study, the behavior of compressional and Stoneley wave velocity dispersion and surface seismic modeling studies are used to identify the fluid pathways and permeability barriers of the gas hydrate reservoir. The results are compared with known nuclear magnetic resonance-derived permeability values. The aim of investigating this heterogeneous medium is to map the fluid pathways and the associated permeability barriers throughout the gas hydrate stability zone. This provides a framework for an understanding of the long-term dissociation of gas hydrates along vertical and horizontal pathways, and will improve the knowledge pertaining to the production of such a promising energy source.

  12. Hydrothermal origin of oil and gas reservoirs in basement rock of the South Vietnam continental shelf

    SciTech Connect

    Dmitriyevskiy, A.N.; Kireyev, F.A.; Bochko, R.A.; Fedorova, T.A. )

    1993-07-01

    Oil-saturated granites, with mineral parageneses typical of hydrothermal metasomatism and leaching haloes, have been found near faults in the crystalline basement of the South Vietnam continental shelf. The presence of native silver, barite, zincian copper, and iron chloride indicates a deep origin for the mineralizing fluids. Hydrothermally altered granites are a new possible type of reservoir and considerably broaden the possibilities of oil and gas exploration. 15 refs., 22 figs., 1 tab.

  13. HIGH RESOLUTION PREDICTION OF GAS INJECTION PROCESS PERFORMANCE FOR HETEROGENEOUS RESERVOIRS

    SciTech Connect

    Franklin M. Orr, Jr.

    2001-06-30

    This report outlines progress in the third 3 quarter of the first year of the DOE project ''High Resolution Prediction of Gas Injection Process Performance for Heterogeneous Reservoirs.'' A simple theoretical formulation of vertical flow with capillary/gravity equilibrium is described. Also reported are results of experimental measurements for the same systems. The results reported indicate that displacement behavior is strongly affected by the interfacial tension of phases that form on the tie line that extends through the initial oil composition.

  14. Computing gas solubility in reservoir waters for environmental chemistry applications: the role of satellite observations

    NASA Astrophysics Data System (ADS)

    Rosa, R.; Lima, I.; Ramos, F.; Bambace, L.; Assireu, A.; Stech, J.; Novo, E.; Lorenzeti, L.

    Atmospheric greenhouse gases concentration has increased during the past centuries basically due to biogenic and pyrogenic anthopogenic emissions Recent investigations have shown that gas emission methane as an important example from tropical hydroelectric reservoirs may comprise a considerable fraction of the total anthropogenic bulk In order to evaluate the concentration of gases of potential importance in environmental chemistry the solubility of such gases have been collected and converted into a uniform format using the Henry s law which states that the solubility of a gas in a liquid is directly proportional to its partial pressure However the Henry s law can be derived as a function of temperature density molar mixing ratio in the aqueous phase and molar mass of water In this paper we show that due to the complex temperature variation and water composition measured in brazilian tropical reservoirs as Serra da Mesa and Manso expressive secular variation on the traditional solubility constants concentration of a species in the aqueous phase by the partial pressure of that species in the gas phase can change in a rate of approximately 30 in 6 decades This estimation comes from a computational analysis of temperature variation measured during 6 months in Serra da Mesa and Manso reservoirs taking into account a simulated density and molar mass variation of the aqueous composition in these environments As an important global change issue from this preliminary analysis we discuss its role in the current estimations on the concentration emission rates

  15. The big fat LARS - a LArge Reservoir Simulator for hydrate formation and gas production

    NASA Astrophysics Data System (ADS)

    Beeskow-Strauch, Bettina; Spangenberg, Erik; Schicks, Judith M.; Giese, Ronny; Luzi-Helbing, Manja; Priegnitz, Mike; Klump, Jens; Thaler, Jan; Abendroth, Sven

    2013-04-01

    Simulating natural scenarios on lab scale is a common technique to gain insight into geological processes with moderate effort and expenses. Due to the remote occurrence of gas hydrates, their behavior in sedimentary deposits is largely investigated on experimental set ups in the laboratory. In the framework of the submarine gas hydrate research project (SUGAR) a large reservoir simulator (LARS) with an internal volume of 425 liter has been designed, built and tested. To our knowledge this is presently a word-wide unique set up. Because of its large volume it is suitable for pilot plant scale tests on hydrate behavior in sediments. That includes not only the option of systematic tests on gas hydrate formation in various sedimentary settings but also the possibility to mimic scenarios for the hydrate decomposition and subsequent natural gas extraction. Based on these experimental results various numerical simulations can be realized. Here, we present the design and the experimental set up of LARS. The prerequisites for the simulation of a natural gas hydrate reservoir are porous sediments, methane, water, low temperature and high pressure. The reservoir is supplied by methane-saturated and pre-cooled water. For its preparation an external gas-water mixing stage is available. The methane-loaded water is continuously flushed into LARS as finely dispersed fluid via bottom-and-top-located sparger. The LARS is equipped with a mantle cooling system and can be kept at a chosen set temperature. The temperature distribution is monitored at 14 reasonable locations throughout the reservoir by Pt100 sensors. Pressure needs are realized using syringe pump stands. A tomographic system, consisting of a 375-electrode-configuration is attached to the mantle for the monitoring of hydrate distribution throughout the entire reservoir volume. Two sets of tubular polydimethylsiloxan-membranes are applied to determine gas-water ratio within the reservoir using the effect of permeability

  16. Simulator for unconventional gas resources multi-dimensional model SUGAR-MD. Volume I. Reservoir model analysis and validation

    SciTech Connect

    Not Available

    1982-01-01

    The Department of Energy, Morgantown Energy Technology Center, has been supporting the development of flow models for Devonian shale gas reservoirs. The broad objectives of this modeling program are: (1) To develop and validate a mathematical model which describes gas flow through Devonian shales. (2) To determine the sensitive parameters that affect deliverability and recovery of gas from Devonian shales. (3) To recommend laboratory and field measurements for determination of those parameters critical to the productivity and timely recovery of gas from the Devonian shales. (4) To analyze pressure and rate transient data from observation and production gas wells to determine reservoir parameters and well performance. (5) To study and determine the overall performance of Devonian shale reservoirs in terms of well stimulation, well spacing, and resource recovery as a function of gross reservoir properties such as anisotropy, porosity and thickness variations, and boundary effects. The flow equations that are the mathematical basis of the two-dimensional model are presented. It is assumed that gas transport to producing wells in Devonian shale reservoirs occurs through a natural fracture system into which matrix blocks of contrasting physical properties deliver contained gas. That is, the matrix acts as a uniformly distributed gas source in a fracture medium. Gas desorption from pore walls is treated as a uniformly distributed source within the matrix blocks. 24 references.

  17. Prediction of subtle thin gas reservoir in the loess desert area in the north of Ordos basin

    NASA Astrophysics Data System (ADS)

    Yang, Hua; Fu, Jinhua; Wang, Daxing

    2004-10-01

    For thin gas reservoir of low-porosity and low-permeability in the loess desert area, a suite of lateral reservoir prediction techniques has been developed by Changqing Oil Company and the excellent effects achieved in exploration and exploitation in the areas such as Yulin, Wushenqi, Suligemiao, Shenmu etc., so that the Upper Paleozoic gas reserve has been stably increasing for eight years in Changqing Oilfield. The paper analyzed the effects and experience of the application of these techniques in detail.

  18. DEVELOPMENT OF MORE-EFFICIENT GAS FLOODING APPLICABLE TO SHALLOW RESERVOIRS

    SciTech Connect

    William R. Rossen; Russell T. Johns; Gary A. Pope

    2003-08-21

    The objective of this research is to widen the applicability of gas flooding to shallow oil reservoirs by reducing the pressure required for miscibility using gas enrichment and increasing sweep efficiency with foam. Task 1 examines the potential for improved oil recovery with enriched gases. Subtask 1.1 examines the effect of dispersion processes on oil recovery and the extent of enrichment needed in the presence of dispersion. Subtask 1.2 develops a fast, efficient method to predict the extent of enrichment needed for crude oils at a given pressure. Task 2 develops improved foam processes to increase sweep efficiency in gas flooding. Subtask 2.1 comprises mechanistic experimental studies of foams with N2 gas. Subtask 2.2 conducts experiments with CO{sub 2} foam. Subtask 2.3 develops and applies a simulator for foam processes in field application.

  19. Hydrocarbon transfer pathways from Smackover source rocks to younger reservoir traps in the Monroe gas field, NE Louisiana

    SciTech Connect

    Zimmerman, R.K. )

    1993-09-01

    The Monroe gas field contained more than 7 tcf of gas in its virgin state. Much of the original gas reserves have been produced through wells penetrating the Upper Cretaceous Monroe Gas Rock Formation reservoir. Other secondary reservoirs in the field area are Eocene Wilcox, the Upper Cretaceous Arkadelphia, Nacatoch, Ozan, Lower Cretaceous, Hosston, Jurassic Schuler, and Smackover. As producing zones, these secondary producing zones reservoirs have contributed an insignificant amount gas to the field. The source of much of this gas appears to have been in the lower part of the Jurassic Smackover Formation. Maturation and migration of the hydrocarbons from a Smackover source into Upper Cretaceous traps was enhanced and helped by igneous activity, and wrench faults/unconformity conduits, respectively. are present in the pre-Paleocene section. Hydrocarbon transfer pathways appear to be more vertically direct in the Jurassic and Lower Cretaceous section than the complex pattern present in the Upper Cretaceous section.

  20. Characterization of oil and gas reservoir heterogeneity; Final report, November 1, 1989--June 30, 1993

    SciTech Connect

    Sharma, G.D.

    1993-09-01

    The Alaskan North Slope comprises one of the Nation`s and the world`s most prolific oil province. Original oil in place (OOIP) is estimated at nearly 70 BBL (Kamath and Sharma, 1986). Generalized reservoir descriptions have been completed by the University of Alaska`s Petroleum Development Laboratory over North Slope`s major fields. These fields include West Sak (20 BBL OOIP), Ugnu (15 BBL OOIP), Prudhoe Bay (23 BBL OOIP), Kuparuk (5.5 BBL OOIP), Milne Point (3 BBL OOIP), and Endicott (1 BBL OOIP). Reservoir description has included the acquisition of open hole log data from the Alaska Oil and Gas Conservation Commission (AOGCC), computerized well log analysis using state-of-the-art computers, and integration of geologic and logging data. The studies pertaining to fluid characterization described in this report include: experimental study of asphaltene precipitation for enriched gases, CO{sup 2} and West Sak crude system, modeling of asphaltene equilibria including homogeneous as well as polydispersed thermodynamic models, effect of asphaltene deposition on rock-fluid properties, fluid properties of some Alaskan north slope reservoirs. Finally, the last chapter summarizes the reservoir heterogeneity classification system for TORIS and TORIS database.

  1. Fracture detection, mapping, and analysis of naturally fractured gas reservoirs using seismic technology. Final report, November 1995

    SciTech Connect

    1995-10-01

    Many basins in the Rocky Mountains contain naturally fractured gas reservoirs. Production from these reservoirs is controlled primarily by the shape, orientation and concentration of the natural fractures. The detection of gas filled fractures prior to drilling can, therefore, greatly benefit the field development of the reservoirs. The objective of this project was to test and verify specific seismic methods to detect and characterize fractures in a naturally fractured reservoir. The Upper Green River tight gas reservoir in the Uinta Basin, Northeast Utah was chosen for the project as a suitable reservoir to test the seismic technologies. Knowledge of the structural and stratigraphic geologic setting, the fracture azimuths, and estimates of the local in-situ stress field, were used to guide the acquisition and processing of approximately ten miles of nine-component seismic reflection data and a nine-component Vertical Seismic Profile (VSP). Three sources (compressional P-wave, inline shear S-wave, and cross-line, shear S-wave) were each recorded by 3-component (3C) geophones, to yield a nine-component data set. Evidence of fractures from cores, borehole image logs, outcrop studies, and production data, were integrated with the geophysical data to develop an understanding of how the seismic data relate to the fracture network, individual well production, and ultimately the preferred flow direction in the reservoir. The multi-disciplinary approach employed in this project is viewed as essential to the overall reservoir characterization, due to the interdependency of the above factors.

  2. Tritium Transport at the Rulison Site, a Nuclear-stimulated Low-permeability Natural Gas Reservoir

    SciTech Connect

    C. Cooper; M. Ye; J. Chapman

    2008-04-01

    The U.S. Department of Energy (DOE) and its predecessor agencies conducted a program in the 1960s and 1970s that evaluated technology for the nuclear stimulation of low-permeability natural gas reservoirs. The second project in the program, Project Rulison, was located in west-central Colorado. A 40-kiltoton nuclear device was detonated 2,568 m below the land surface in the Williams Fork Formation on September 10, 1969. The natural gas reservoirs in the Williams Fork Formation occur in low permeability, fractured sandstone lenses interbedded with shale. Radionuclides derived from residual fuel products, nuclear reactions, and activation products were generated as a result of the detonation. Most of the radionuclides are contained in a cooled, solidified melt glass phase created from vaporized and melted rock that re-condensed after the test. Of the mobile gas-phase radionuclides released, tritium ({sup 3}H or T) migration is of most concern. The other gas-phase radionuclides ({sup 85}Kr, {sup 14}C) were largely removed during production testing in 1969 and 1970 and are no longer present in appreciable amounts. Substantial tritium remained because it is part of the water molecule, which is present in both the gas and liquid (aqueous) phases. The objectives of this work are to calculate the nature and extent of tritium contamination in the subsurface from the Rulison test from the time of the test to present day (2007), and to evaluate tritium migration under natural-gas production conditions to a hypothetical gas production well in the most vulnerable location outside the DOE drilling restriction. The natural-gas production scenario involves a hypothetical production well located 258 m horizontally away from the detonation point, outside the edge of the current drilling exclusion area. The production interval in the hypothetical well is at the same elevation as the nuclear chimney created by the detonation, in order to evaluate the location most vulnerable to

  3. Using gas geochemistry to delineate structural compartments and assess petroleum reservoir-filling directions: A Venezuelan case study

    NASA Astrophysics Data System (ADS)

    Márquez, G.; Escobar, M.; Lorenzo, E.; Gallego, J. R.; Tocco, R.

    2013-04-01

    Here we examined the light hydrocarbon and nitrogen content and isotopic signatures of eleven gaseous samples in order to evaluate lateral intra-reservoir continuity in a Venezuelan reservoir in the central area of Lake Maracaibo Basin. At least three single compartments, located in the northern-central and southern parts of the reservoir, are revealed by nitrogen concentrations showing clear step-like compositional breaks. The occurrence of step-breaks was also supported by the isotopic signature of individual hydrocarbon compounds in the range of C1-C4 alkanes. Samples presented only slight differences in N2 and hydrocarbon gas compositions within the central and northern parts of the reservoir, and therefore it was not possible to infer structural barriers in coherence with the geological section. Some oil bulk parameters corroborate gradual changes that provide additional information on the reservoir-filling history, thus suggesting that the lateral physical-chemical equilibrium of fluids was not reached in this reservoir.

  4. A critical compilation of 1,500 large onshore gas reservoirs in Texas Gulf Coast and East Texas

    SciTech Connect

    Kosters, E.C.; Finley, R.J.; Tyler, N.

    1988-01-01

    About 1,500 gas reservoirs in the Texas Gulf Coast and east Texas have a cumulative production of at least 10 bcf. The Gulf Coast contains nearly 90% of these reservoirs. One-third of all reservoirs have produced more than 30 bcf, and another 10% have produced more than 100 bcf. In the Gulf Coast, total production from the greater than 30 bcf reservoirs is 66 to 75% of the cumulative production of all greater than 10 bcf reservoirs, the Oligocene Frio Formation accounting for about 55% of reservoirs and cumulative production. In east Texas, the greater than 30 bcf reservoirs represent 75 to 80% of the cumulative production. Reservoirs are segregated into plays, each identified on the basis of structural and depositional setting, trapping mechanism, and lithology. In the Gulf Coast, 33 gas plays, including 20 subplays, are defined. East Texas contains 12 plays with 7 subplays. Important gas plays occurs in multiple formations in each region. Fluviodeltaic sandstones of the upper Vicksburg and lower Frio Formations, overlying the south Texas Vicksburg fault zone, form the most prolific play of both regions. Other important Tertiary plays are south Texas upper Wilcox shelf-edge deltaic and reworked shallow marine sandstones, deltaic Yegua sandstones in the Houston salt basin, and Miocene stream-plain reservoirs in the central coastal region. Play designation enhances understanding of critical geologic and engineering parameters and is crucial to increasing effectiveness in exploration and production. Future detailed development studies of representative reservoirs within important plays will help define reservoir behavior, allow predictions of potential ultimate recovery, and where applicable, aid in suggesting appropriate recovery enhancement techniques such as infill drilling and recompletion of bypassed zones.

  5. Reservoir fluid and gas chemistry during CO2 injection at the Cranfield field, Mississippi, USA

    NASA Astrophysics Data System (ADS)

    Lu, J.; Kharaka, Y. K.; Cole, D. R.; Horita, J.; Hovorka, S.

    2009-12-01

    At Cranfield field, Mississippi, USA, a monitored CO2-EOR project provides a unique opportunity to understand geochemical interactions of injected CO2 within the reservoir. Cranfield field, discovered in 1943, is a simple anticlinal four-way closure and had a large gas cap surrounded by an oil ring (Mississippi Oil and Gas Board, 1966). The field was abandoned in 1966. The reservoir returned to original reservoir pressure (hydrostatic pressure) by a strong aquifer drive by 2008. The reservoir is in the lower Tuscaloosa Formation at depths of more than 3000 m. It is composed of stacked and incised channel fills and is highly heterogeneous vertically and horizontally. A variable thickness (5 to 15 m) of terrestrial mudstone directly overlies the basal sandstone providing the primary seal, isolating the injection interval from a series of fluvial sand bodies occurring in the overlying 30 m of section. Above these fluvial channels, the marine mudstone of the Middle Tuscaloosa forms a continuous secondary confining system of approximately 75 m. The sandstones of the injection interval are rich in iron, containing abundant diagenetic chamosite (ferroan chlorite), hematite and pyrite. Geochemical modeling suggests that the iron-bearing minerals will be dissolved in the face of high CO2 and provide iron for siderite precipitation. CO2 injection by Denbury Resources Inc. begun in mid-July 2008 on the north side of the field with rates at ~500,000 tones per year. Water and gas samples were taken from seven production wells after eight months of CO2 injection. Gas analyses from three wells show high CO2 concentrations (up to 90 %) and heavy carbon isotopic signatures similar to injected CO2, whereas the other wells show original gas composition and isotope. The mixing ratio between original and injected CO2 is calculated based on its concentration and carbon isotope. However, there is little variation in fluid samples between the wells which have seen various levels of CO2

  6. Paving the road for hydraulic fracturing in Paleozoic tight gas reservoirs in Abu Dhabi

    NASA Astrophysics Data System (ADS)

    Alzarouni, Asim

    This study contributes to the ongoing efforts of Abu Dhabi National Oil Company (ADNOC) to improve gas production and supply in view of increasing demand and diminishing conventional gas reservoirs in the region. The conditions of most gas reservoirs with potentially economical volumes of gas in Abu Dhabi are tight abrasive deep sand reservoirs at high temperature and pressures. Thus it inevitably tests the limit of both conventional thinking and technology. Accurate prediction of well performance is a major challenge that arises during planning phase. The primary aim is to determine technical feasibility for the implementation of the hydraulic fracture technology in a new area. The ultimate goal is to make economical production curves possible and pave the road to tap new resource of clean hydrocarbon energy source. The formation targeted in this study is characterized by quartzitic sandstone layers and variably colored shale and siltstones with thin layers of anhydrites. It dates back from late Permian to Carboniferous age. It forms rocks at the lower reservoir permeability ranging from 0.2 to less than 1 millidarcy (mD). When fractured, the expected well flow in Abu Dhabi offshore deep gas wells will be close to similar tight gas reservoir in the region. In other words, gas production can be described as transient initially with high rates and rapidly declining towards a pseudo-steady sustainable flow. The study results estimated fracturing gradient range from 0.85 psi/ft to 0.91 psi/ft. In other words, the technology can be implemented successfully to the expected rating without highly weighted brine. Hence, it would be a remarkable step to conduct the first hydraulic fracturing successfully in Abu Dhabi which can pave the road to tapping on a clean energy resource. The models predicted a remarkable conductivity enhancement and an increase of production between 3 to 4 times after fracturing. Moreover, a sustainable rate above 25 MMSCFD between 6 to 10 years is

  7. Factors Influencing Greenhouse Gas Emissions from Three Gorges Reservoir of China

    NASA Astrophysics Data System (ADS)

    Zhao, Y.; Zhao, X.; Wu, B.; Zeng, Y.

    2013-05-01

    Three gorges reservoir (TGR) of China located in a subtropical climate region. It has attracted tremendous attentions on greenhouse gas (GHG) emissions from TGR, including carbon dioxide (CO2), methane (CH4) and nitrous Oxide (N2O). Results on monthly fluxes and their spatial and seasonal variations have been determined by a static chamber method and have published elsewhere recently. Here we made further discussions on the factors influencing GHG emissions from TGR. We conclude that the hydrodynamic situation was the key parameter controlling the fluxes. TGR was a typical valley-type reservoir and with a complex terrain in the surrounding catchment, where almost 94% of the region was occupied by mountainous, this situation made the reservoir had sufficient allochthonous organic carbon input origin from eroded soil. But no significant relationship between organic carbon (both dissolved and particulate form) and GHG fluxes, we thought that TGR was not a carbon-limited reservoir on the GHG issue. In the mainstream of the reservoir, dissolved CO2 and CH4 were supersaturation in the water, the relative high flow together with the narrow-deep channel result in great disturbance, which would promote more dissolved gas escape into the atmosphere. This could also approved by the differences in CO2 and CH4 fluxes in different reach from up to downstream of the reservoir. In the reservoir tail water, the mainstream remained the high flow rate, both CO2 and CH4 fluxes is relative high, while downwards, the fluxes were gradually dropped, as after the impoundment of the reservoir, flow rate have greatly decreased. Another evidence was the relative higher CO2 and CH4 fluxes in the rainy season. As the rainy season approaches, TGR would empty the storage to prepare for retention and mitigation. The interplay between water inflows and outflows produced marked variations in the water residence times. During the rainy season times, this could be as short as 6 days with higher water

  8. Geochemical constraints on microbial methanogenesis in an unconventional gas reservoir: Devonian Antrim shale, Michigan

    SciTech Connect

    Martini, A.M.; Budal, J.M.; Walter, L.M.

    1996-12-31

    The Upper Devonian Antrim Shale is a self-sourced, highly fractured gas reservoir. It subcrops around the margin of the Michigan Basin below Pleistocene glacial drift, which has served as a source of meteoric recharge to the unit. The Antrim Shale is organic-rich (>10% total organic carbon), hydrogen-rich (Type I kerogen) and thermally immature (R{sub o} = 0.4 to 0.6). Reserve estimates range from 4-8 Tcf, based on assumptions of a thermogenic gas play. Chemical and isotopic properties measured in the formation waters show significant regional variations and probably delineate zones of increased fluid flow controlled by the fracture network. {sup 14}C determinations on dissolved inorganic carbon indicate that freshwater recharge occurred during the period between the last glacial advance and the present. The isotopic composition of Antrim methane ({delta}{sup 13}C = -49 to -59{per_thousand}) has been used to suggest that the gas is of early thermogenic origin. However, the highly positive carbon of co-produced CO{sub 2} gas ({delta}{sup 13}C {approximately} +22{per_thousand}) and DIC in associated Antrim brines ({delta}{sup 13}C = +19 to +31{per_thousand}) are consistent with bacterially mediated fractionation. The correlation of deuterium in methane ({delta}D = -200 to -260{per_thousand}) with that of the co-produced waters (SD = -20 to -90176) suggests that the major source of this microbial gas is via the CO{sub 2} reduction pathway within the reservoir. Chemical and isotopic results also demonstrate a significant (up to 25%) component of thermogenic gas as the production interval depth increases. The connection between the timing of groundwater recharge, hydrogeochemistry and gas production within the Antrim Shale, Michigan Basin, is likely not unique and may find application to similar resources elsewhere.

  9. Naturally fractured tight gas reservoir detection optimization. Quarterly report, July--September 1994

    SciTech Connect

    1994-11-01

    This report details the field work undertaken by Coleman Energy and Environmental Systems--Blackhawk Geosciences Division (CEES-BGD) and Lynn, Inc. during the summer of 1994 at a gas field in the Wind River Basin in central Wyoming. The field work described herein consisted of two parts: multicomponent feasibility studies during the 3D P-wave survey on the site, and 9C VSP in a well at the site. The objectives of both surveys were to characterize the nature of anisotropy in the reservoir. With the 9C VSP, established practices were used to achieve this objective in the immediate vicinity of the well. With the multicomponent studies, tests were conducted to establish the feasibility of surface recording of the anisotropic reservoir rocks.

  10. Geology and diagenetic history of overpressured sandstone reservoirs, Venture Gas field, offshore Nova Scotia, Canada

    SciTech Connect

    Jansa, L.F. Dalhousie Univ., Halifax, Nova Scotia ); Urrea V.H.N. )

    1990-10-01

    Deep exploratory wells in the Scotian Basin, offshore Nova Scotia, Canada, have encountered overpressured formations with pressures 1.9 {times} the normal hydrostatic gradient. The overpressures occur over an area of approximately 10,000 km{sup 2}. In the Venture field, the abnormal pressures are confined below a depth of 4,500 m and are associated with Upper Jurassic-Lower Cretaceous gas- and condensate-bearing sandstone reservoirs. The overpressures occur within normally compacted shales containing numerous overpressured sandstone reservoir beds. The development of overpressures, seals, and secondary reservoirs are all diagenetically driven. Three secondary porosity depth levels, which top at 2,500 m (65C), 3,700 m (95C), and 4,600 m (130C), correlate with major steps in the organic matter maturation in the basin. Secondary porosity is initially achieved by aluminosilicate dissolution, with ferroan sparry calcite cement dissolution dominating below 4,000 m. Porosity enhancement and preservation is not the result of a single diagenetic event but instead the result of a series of diagenetic events that overlapped in time. Formation of dynamic diagenetic barriers within the zone of peak gas generation helps retard the diffusive migration of hydrocarbons and other fluids expelled during shale diagenesis resulting in pressure build up. The preservation of up to 32% porosity under 500-1,000 atm of pressure could not be achieved without simultaneous pressuring of developing voids. Significant for hydrocarbon exploration is that Venture-type diagenetic overpressures are not associated with undercompacted sediments and, hence, they cannot be predicted from compaction trends during drilling. Petrographic diagenetic, and lithofacies studies can be instrumental in predicting potential areas of deep subsurface secondary reservoirs dependent.

  11. Reservoir Characterization using geostatistical and numerical modeling in GIS with noble gas geochemistry

    NASA Astrophysics Data System (ADS)

    Vasquez, D. A.; Swift, J. N.; Tan, S.; Darrah, T. H.

    2013-12-01

    The integration of precise geochemical analyses with quantitative engineering modeling into an interactive GIS system allows for a sophisticated and efficient method of reservoir engineering and characterization. Geographic Information Systems (GIS) is utilized as an advanced technique for oil field reservoir analysis by combining field engineering and geological/geochemical spatial datasets with the available systematic modeling and mapping methods to integrate the information into a spatially correlated first-hand approach in defining surface and subsurface characteristics. Three key methods of analysis include: 1) Geostatistical modeling to create a static and volumetric 3-dimensional representation of the geological body, 2) Numerical modeling to develop a dynamic and interactive 2-dimensional model of fluid flow across the reservoir and 3) Noble gas geochemistry to further define the physical conditions, components and history of the geologic system. Results thus far include using engineering algorithms for interpolating electrical well log properties across the field (spontaneous potential, resistivity) yielding a highly accurate and high-resolution 3D model of rock properties. Results so far also include using numerical finite difference methods (crank-nicholson) to solve for equations describing the distribution of pressure across field yielding a 2D simulation model of fluid flow across reservoir. Ongoing noble gas geochemistry results will also include determination of the source, thermal maturity and the extent/style of fluid migration (connectivity, continuity and directionality). Future work will include developing an inverse engineering algorithm to model for permeability, porosity and water saturation.This combination of new and efficient technological and analytical capabilities is geared to provide a better understanding of the field geology and hydrocarbon dynamics system with applications to determine the presence of hydrocarbon pay zones (or

  12. Gas reservoir potential of the Lower Ordovician Beekmantown Group, Quebec Lowlands, Canada

    SciTech Connect

    Dykstra, J.C.F.; Longman, M.W.

    1995-04-01

    The Beekmantown Group in the Quebec Lowlands was deposited as part of an extensive Early Ordovician coastal and shallow marine complex on the eastern margin of the North American craton. The Beekmantown is stratigraphically equivalent to the Beekmantown, Knox, Arbuckle, and Ellenburger rocks of the United States, and is subdivided into two formations: the sandstone-rich Theresa Formation and the overlying dolomite-rich Beauharnois. Dolomites of the Beekmantown provide an important exploration target in both the autochthon and the overlying thrust sheets of the Canadian and U.S. Appalachians. The reservoir potential of the autochthonous Beekmantown Group in the Quebec Lowlands can be determined from seismic data, well logs, cuttings, and petrographic analyses of depositional and diagenetic textures. Deposition of the Beekmantown occurred alongson the western passive margin of the Iapetus Ocean. By the Late Ordovician, the passive margin had been transformed into a foreland basin. Faulting locally positioned Upper Ordovician Utica source rocks against the Beekmantown and contributed to forming hydrocarbon reservoirs. The largest Beekmantown reservoir found to date is the St. Flavien field, with 7.75 bcf of original gas (methane) in place in fractured and possibly karst-influenced allochthonous dolomites within a thrust-fault anticline. Seven major depositional units can be distinguished in cuttings and correlated with wireline logs. Dolomites in the Beekmantown contain vuggy, moldic, intercrystalline, and fracture porosity. Early porosity formed at the top of the major depositional units in peritidal dolomites; however, much of this porosity was later filled by late-stage calcite cement after hydrocarbon migration. Thus, a key to finding gas reservoirs in the autochthonous Beekmantown is to define Ordovician poleostructures in which early and continuous entrapment of hydrocarbons prevented later cementation.

  13. Simulating the gas hydrate production test at Mallik using the pilot scale pressure reservoir LARS

    NASA Astrophysics Data System (ADS)

    Heeschen, Katja; Spangenberg, Erik; Schicks, Judith M.; Priegnitz, Mike; Giese, Ronny; Luzi-Helbing, Manja

    2014-05-01

    LARS, the LArge Reservoir Simulator, allows for one of the few pilot scale simulations of gas hydrate formation and dissociation under controlled conditions with a high resolution sensor network to enable the detection of spatial variations. It was designed and built within the German project SUGAR (submarine gas hydrate reservoirs) for sediment samples with a diameter of 0.45 m and a length of 1.3 m. During the project, LARS already served for a number of experiments simulating the production of gas from hydrate-bearing sediments using thermal stimulation and/or depressurization. The latest test simulated the methane production test from gas hydrate-bearing sediments at the Mallik test site, Canada, in 2008 (Uddin et al., 2011). Thus, the starting conditions of 11.5 MPa and 11°C and environmental parameters were set to fit the Mallik test site. The experimental gas hydrate saturation of 90% of the total pore volume (70 l) was slightly higher than volumes found in gas hydrate-bearing formations in the field (70 - 80%). However, the resulting permeability of a few millidarcy was comparable. The depressurization driven gas production at Mallik was conducted in three steps at 7.0 MPa - 5.0 MPa - 4.2 MPa all of which were used in the laboratory experiments. In the lab the pressure was controlled using a back pressure regulator while the confining pressure was stable. All but one of the 12 temperature sensors showed a rapid decrease in temperature throughout the sediment sample, which accompanied the pressure changes as a result of gas hydrate dissociation. During step 1 and 2 they continued up to the point where gas hydrate stability was regained. The pressure decreases and gas hydrate dissociation led to highly variable two phase fluid flow throughout the duration of the simulated production test. The flow rates were measured continuously (gas) and discontinuously (liquid), respectively. Next to being discussed here, both rates were used to verify a model of gas

  14. Western Greece unconventional hydrocarbon potential from oil shale and shale gas reservoirs

    NASA Astrophysics Data System (ADS)

    Karakitsios, Vasileios; Agiadi, Konstantina

    2013-04-01

    It is clear that we are gradually running out of new sedimentary basins to explore for conventional oil and gas and that the reserves of conventional oil, which can be produced cheaply, are limited. This is the reason why several major oil companies invest in what are often called unconventional hydrocarbons: mainly oil shales, heavy oil, tar sand and shale gas. In western Greece exist important oil and gas shale reservoirs which must be added to its hydrocarbon potential1,2. Regarding oil shales, Western Greece presents significant underground immature, or close to the early maturation stage, source rocks with black shale composition. These source rock oils may be produced by applying an in-situ conversion process (ICP). A modern technology, yet unproven at a commercial scale, is the thermally conductive in-situ conversion technology, developed by Shell3. Since most of western Greece source rocks are black shales with high organic content, those, which are immature or close to the maturity limit have sufficient thickness and are located below 1500 meters depth, may be converted artificially by in situ pyrolysis. In western Greece, there are several extensive areas with these characteristics, which may be subject of exploitation in the future2. Shale gas reservoirs in Western Greece are quite possibly present in all areas where shales occur below the ground-water level, with significant extent and organic matter content greater than 1%, and during their geological history, were found under conditions corresponding to the gas window (generally at depths over 5,000 to 6,000m). Western Greece contains argillaceous source rocks, found within the gas window, from which shale gas may be produced and consequently these rocks represent exploitable shale gas reservoirs. Considering the inevitable increase in crude oil prices, it is expected that at some point soon Western Greece shales will most probably be targeted. Exploration for conventional petroleum reservoirs

  15. Carbon dioxide and helium emissions from a reservoir of magmatic gas beneath Mammoth Mountain, California

    USGS Publications Warehouse

    Sorey, M.L.; Evans, William C.; Kennedy, B.M.; Farrar, C.D.; Hainsworth, L.J.; Hausback, B.

    1998-01-01

    Carbon dioxide and helium with isotopic compositions indicative of a magmatic source (??13C = -4.5 to -5???, 3He/4He = 4.5 to 6.7 RA) are discharging at anomalous rates from Mammoth Mountain, on the southwestern rim of the Long Valley caldera in eastern California. The gas is released mainly as diffuse emissions from normal-temperature soils, but some gas issues from steam vents or leaves the mountain dissolved in cold groundwater. The rate of gas discharge increased significantly in 1989 following a 6-month period of persistent earthquake swarms and associated strain and ground deformation that has been attributed to dike emplacement beneath the mountain. An increase in the magmatic component of helium discharging in a steam vent on the north side of Mammoth Mountain, which also began in 1989, has persisted until the present time. Anomalous CO2 discharge from soils first occurred during the winter of 1990 and was followed by observations of several areas of tree kill and/or heavier than normal needlecast the following summer. Subsequent measurements have confirmed that the tree kills are associated with CO2 concentrations of 30-90% in soil gas and gas flow rates of up to 31,000 g m-2 d-1 at the soil surface. Each of the tree-kill areas and one area of CO2 discharge above tree line occurs in close proximity to one or more normal faults, which may provide conduits for gas flow from depth. We estimate that the total diffuse CO2 flux from the mountain is approximately 520 t/d, and that 30-50 t/d of CO2 are dissolved in cold groundwater flowing off the flanks of the mountain. Isotopic and chemical analyses of soil and fumarolic gas demonstrate a remarkable homogeneity in composition, suggesting that the CO2 and associated helium and excess nitrogen may be derived from a common gas reservoir whose source is associated with some combination of magmatic degassing and thermal metamorphism of metasedimentary rocks. Furthermore, N2/Ar ratios and nitrogen isotopic values

  16. HIGH RESOLUTION PREDICTION OF GAS INJECTION PROCESS PERFORMANCE FOR HETEROGENEOUS RESERVOIRS

    SciTech Connect

    Franklin M. Orr, Jr.

    2004-05-01

    This final technical report describes and summarizes results of a research effort to investigate physical mechanisms that control the performance of gas injection processes in heterogeneous reservoirs and to represent those physical effects in an efficient way in simulations of gas injection processes. The research effort included four main lines of research: (1) Efficient compositional streamline methods for 3D flow; (2) Analytical methods for one-dimensional displacements; (3) Physics of multiphase flow; and (4) Limitations of streamline methods. In the first area, results are reported that show how the streamline simulation approach can be applied to simulation of gas injection processes that include significant effects of transfer of components between phases. In the second area, the one-dimensional theory of multicomponent gas injection processes is extended to include the effects of volume change as components change phase. In addition an automatic algorithm for solving such problems is described. In the third area, results on an extensive experimental investigation of three-phase flow are reported. The experimental results demonstrate the impact on displacement performance of the low interfacial tensions between the gas and oil phases that can arise in multicontact miscible or near-miscible displacement processes. In the fourth area, the limitations of the streamline approach were explored. Results of an experimental investigation of the scaling of the interplay of viscous, capillary, and gravity forces are described. In addition results of a computational investigation of the limitations of the streamline approach are reported. The results presented in this report establish that it is possible to use the compositional streamline approach in many reservoir settings to predict performance of gas injection processes. When that approach can be used, it requires substantially less (often orders of magnitude) computation time than conventional finite difference

  17. Geophysical assessments of renewable gas energy compressed in geologic pore storage reservoirs.

    PubMed

    Al Hagrey, Said Attia; Köhn, Daniel; Rabbel, Wolfgang

    2014-01-01

    Renewable energy resources can indisputably minimize the threat of global warming and climate change. However, they are intermittent and need buffer storage to bridge the time-gap between production (off peak) and demand peaks. Based on geologic and geochemical reasons, the North German Basin has a very large capacity for compressed air/gas energy storage CAES in porous saltwater aquifers and salt cavities. Replacing pore reservoir brine with CAES causes changes in physical properties (elastic moduli, density and electrical properties) and justify applications of integrative geophysical methods for monitoring this energy storage. Here we apply techniques of the elastic full waveform inversion FWI, electric resistivity tomography ERT and gravity to map and quantify a gradually saturated gas plume injected in a thin deep saline aquifer within the North German Basin. For this subsurface model scenario we generated different synthetic data sets without and with adding random noise in order to robust the applied techniques for the real field applications. Datasets are inverted by posing different constraints on the initial model. Results reveal principally the capability of the applied integrative geophysical approach to resolve the CAES targets (plume, host reservoir, and cap rock). Constrained inversion models of elastic FWI and ERT are even able to recover well the gradual gas desaturation with depth. The spatial parameters accurately recovered from each technique are applied in the adequate petrophysical equations to yield precise quantifications of gas saturations. Resulting models of gas saturations independently determined from elastic FWI and ERT techniques are in accordance with each other and with the input (true) saturation model. Moreover, the gravity technique show high sensitivity to the mass deficit resulting from the gas storage and can resolve saturations and temporal saturation changes down to ±3% after reducing any shallow fluctuation such as that of

  18. HIGH RESOLUTION PREDICTION OF GAS INJECTION PROCESS PERFORMANCE FOR HETEROGENEOUS RESERVOIRS

    SciTech Connect

    Franklin M. Orr, Jr.

    2001-03-31

    This report outlines progress in the second 3 months of the first year of the DOE project ''High Resolution Prediction of Gas Injection Process Performance for Heterogeneous Reservoirs.'' The development of an automatic technique for analytical solution of one-dimensional gas flow problems with volume change on mixing is described. The aim of this work is to develop a set of ultra-fast compositional simulation tools that can be used to make field-scale predictions of the performance of gas injection processes. To achieve the necessary accuracy, these tools must satisfy the fundamental physics and chemistry of the displacement from the pore to the reservoir scales. Thus this project focuses on four main research areas: (1) determination of the most appropriate methods of mapping multicomponent solutions to streamlines and streamtubes in 3D; (2) development of techniques for automatic generation of analytical solutions for one-dimensional flow along a streamline; (3) experimental investigations to improve the representation of physical mechanisms that govern displacement efficiency along a streamline; and (4) theoretical and experimental investigations to establish the limitations of the streamline/streamtube approach. In this report they briefly review the status of the research effort in each area. They then give a more in depth discussion of their development of techniques for analytic solutions along a streamline including volume change on mixing for arbitrary numbers of components.

  19. Natural and Induced Fracture Diagnostics from 4-D VSP Low Permeability Gas Reservoirs

    SciTech Connect

    Mark E. Willis; Daniel R. Burns; M. Nafi Toksoz

    2008-09-30

    Tight gas sand reservoirs generally contain thick gas-charged intervals that often have low porosity and very low permeability. Natural and induced fractures provide the only means of production. The objective of this work is to locate and characterize natural and induced fractures from analysis of scattered waves recorded on 4-D (time lapse) VSP data in order to optimize well placement and well spacing in these gas reservoirs. Using model data simulating the scattering of seismic energy from hydraulic fractures, we first show that it is possible to characterize the quality of fracturing based upon the amount of scattering. In addition, the picked arrival times of recorded microseismic events provide the velocity moveout for isolating the scattered energy on the 4-D VSP data. This concept is applied to a field dataset from the Jonah Field in Wyoming to characterize the quality of the induced hydraulic fractures. The time lapse (4D) VSP data from this field are imaged using a migration algorithm that utilizes shot travel time tables derived from the first breaks of the 3D VSPs and receiver travel time tables based on the microseismic arrival times and a regional velocity model. Four azimuthally varying shot tables are derived from picks of the first breaks of over 200 VSP records. We create images of the fracture planes through two of the hydraulically fractured wells in the field. The scattered energy shows correlation with the locations of the microseismic events. In addition, the azimuthal scattering is different from the azimuthal reflectivity of the reservoir, giving us more confidence that we have separated the scattered signal from simple formation reflectivity. Variation of the scattered energy along the image planes suggests variability in the quality of the fractures in three distinct zones.

  20. Relief-well requirements to kill a high-rate gas blowout from a deepwater reservoir

    SciTech Connect

    Warriner, R.A. ); Cassity, T.G. )

    1988-12-01

    Relief-well requirements were investigated for a dynamic kill of a high-rate gas blowout from a deepwater reservoir to define any necessary special procedures or equipment. Results of the investigation show that a high injection rate and a special-design large-diameter injection riser are required to dynamically kill such a blowout with seawater. The injection riser is necessary to limit surface pump pressure during the high-rate kill operation. Procedures to complete the kill operation hydrostatically with heavy fluid following the dynamic kill are outlined.

  1. Characterization of the deep microbial life in the Altmark natural gas reservoir

    NASA Astrophysics Data System (ADS)

    Morozova, D.; Alawi, M.; Vieth-Hillebrand, A.; Kock, D.; Krüger, M.; Wuerdemann, H.; Shaheed, M.

    2010-12-01

    Within the framework of the CLEAN project (CO2 Largescale Enhanced gas recovery in the Altmark Natural gas field) technical basics with special emphasis on process monitoring are explored by injecting CO2 into a gas reservoir. Our study focuses on the investigation of the in-situ microbial community of the Rotliegend natural gas reservoir in the Altmark, located south of the city Salzwedel, Germany. In order to characterize the microbial life in the extreme habitat we aim to localize and identify microbes including their metabolism influencing the creation and dissolution of minerals. The ability of microorganisms to speed up dissolution and formation of minerals might result in changes of the local permeability and the long-term safety of CO2 storage. However, geology, structure and chemistry of the reservoir rock and the cap rock as well as interaction with saline formation water and natural gases and the injected CO2 affect the microbial community composition and activity. The reservoir located at the depth of approximately 3500 m, is characterised by high salinity (420 g/l) and temperatures up to 127°C. It represents an extreme environment for microbial life and therefore the main focus is on hyperthermophilic, halophilic anaerobic microorganisms. In consequence of the injection of large amounts of CO2 in the course of a commercial EGR (Enhanced Gas Recovery), the environmental conditions (e.g. pH, temperature, pressure and solubility of minerals) for the autochthonous microorganisms will change. Genetic profiling of amplified 16S rRNA genes are applied for detecting structural changes in the community by using PCR- SSCP (PCR-Single-Strand-Conformation Polymorphism), DGGE (Denaturing Gradient Gel Electrophoresis) and 16S rRNA cloning. First results of the baseline survey indicate the presence of microorganisms similar to representatives from other deep environments. The sequence analyses revealed the presence of several H2-oxidising bacteria (Hydrogenophaga sp

  2. Core acid treatment influence on well reservoir properties in Kazan oil-gas condensate field

    NASA Astrophysics Data System (ADS)

    Janishevskii, A.; Ezhova, A.

    2015-11-01

    The research involves investigation of the influence of hydrochloric acid (HCI-12%) and mud acid (mixture: HCl - 10% and HF - 3%) treatment on the Upper-Jurassic reservoir properties in Kazan oil-gas condensate field wells. The sample collection included three lots of core cylinders from one and the same depth (all in all 42). Two lots of core cylinders were distributed as following: first lot - reservoir properties were determined, and, then thin sections were cut off from cylinder faces; second lot- core cylinders were exposed to hydrochloric acid treatment, then, after flushing the reservoir properties were determined, and thin sections were prepared. Based on the quantitative petrographic rock analysis, involvin 42 thin sections, the following factors were determined: granulometric mineral composition, cement content, intergranular contacts and pore space structure. According to the comparative analysis of initial samples, the following was determined: content decrease of feldspar, clay and mica fragments, mica, clay and carbonate cement; increase of pore spaces while in the investigated samples- on exposure of rocks to acids effective porosity and permeability value range is ambiguous.

  3. Role of organic matter fractions in the Montney tight gas reservoir quality

    NASA Astrophysics Data System (ADS)

    Sanei, Hamed; Wood, James M.; Haeri Ardakani, Omid; Clarkson, Chris R.

    2015-04-01

    This study presents a new approach in Rock-Eval analysis to quantify various organic matter fractions in unconventional reservoirs. The results of study on core samples from the Triassic Montney Formation tight gas reservoir in the Western Canadian Sedimentary Basin show that operationally-defined S1 and S2 hydrocarbon peaks from conventional Rock-Eval analysis may not adequately characterize the organic constituents of unconventional reservoir rocks. Modification of the thermal recipe for Rock-Eval analysis, in conjunction with manual peak integration, provides important information with significance for the evaluation of reservoir quality. An adapted Rock-Eval method, herein called the extended slow heating (ESH) cycle, was developed in which the heating rate was slowed to 10°C per minute over an extended temperature range (150 to 650°C). For Montney core samples from the wet gas window, this method provided quantitative distinctions between major organic matter components of the rock. We show that the traditional S1 and S2 peaks can now be quantitatively divided into three components: (S1ESH) free light oil, (S2a ESH) condensed hydrocarbon residue (CHCR), and (S2b ESH + residual carbon) solid bitumen (refractory, consolidated bitumen/pyrobitumen). The majority of the total organic carbon (TOC) in the studied Montney core samples consists of solid bitumen that represents a former liquid oil phase which migrated into the larger paleo-intergranular pore spaces. Subsequent physicochemical changes to the oil environment led to the precipitation of asphaltene aggregates. Further diagenetic and thermal maturity processes consolidated these asphaltene aggregates into "lumps" of solid bitumen (or pyrobitumen at higher thermal maturity). Solid bitumen obstructs porosity and hinders fluid flow, and thus shows strong negative correlations with reservoir qualities such as porosity and pore throat size. We also find a strong positive correlation between the quantities of

  4. Influence of depositional environment and diagenesis on gas reservoir properties in St. Peter Sandstone, Michigan basin

    SciTech Connect

    Harrison, W.B. III; Turmelle, T.M.; Barnes, D.A.

    1987-05-01

    The St. Peter Sandstone in the Michigan basin subsurface is rapidly becoming a major exploration target for natural gas. This reservoir was first proven with the successful completion of the Dart-Edwards 7-36 (Falmouth field, Missaukee County, Michigan) in 1981. Fifteen fields now are known, with a maximum of three producing wells in any one field. The production from these wells ranges from 1 to more than 10 MMCFGD on choke, with light-gravity condensate production of up to 450 b/d. Depth to the producing intervals ranges from about 7000 ft to more than 11,000 ft. The St. Peter Sandstone is an amalgamated stack of shoreface and shelf sequences more than 1100 ft in thickness in the basin center and thinning to zero at the basin margins. Sandstone composition varies from quartzarenite in the coarser sizes to subarkose and arkose in the finer sizes. Thin salty/shaly lithologies and dolomite-cemented sandstone intervals separate the porous sandstone packages. Two major lithofacies are recognized in the basin: a coarse-grained, well-sorted quartzarenite with various current laminations and a fine-grained, more poorly sorted subarkose and arkose with abundant bioturbation and distinct vertical and horizontal burrows. Reservoir quality is influenced by original depositional and diagenetic fabrics, but there is inversion of permeability and porosity with respect to primary textures in the major lithofacies. The initially highly porous and permeable, well-sorted, coarser facies is now tightly cemented with syntaxial quartz cement, resulting in a low-permeability, poor quality reservoir. The more poorly sorted, finer facies with initially lower permeabilities did not receive significant fluid flux until it passed below the zone of quartz cementation. This facies was cemented with carbonate which has subsequently dissolved to form a major secondary porosity reservoir.

  5. Geology, reservoir engineering and methane hydrate potential of the Walakpa Gas Field, North Slope, Alaska. Final report

    SciTech Connect

    Glenn, R.K.; Allen, W.W.

    1992-12-01

    The Walakpa Gas Field, located near the city of Barrow on Alaska`s North Slope, has been proven to be methane-bearing at depths of 2000--2550 feet below sea level. The producing formation is a laterally continuous, south-dipping, Lower Cretaceous shelf sandstone. The updip extent of the reservoir has not been determined by drilling, but probably extends to at least 1900 feet below sea level. Reservoir temperatures in the updip portion of the reservoir may be low enough to allow the presence of in situ methane hydrates. Reservoir net pay however, decreases to the north. Depths to the base of permafrost in the area average 940 feet. Drilling techniques and production configuration in the Walakpa field were designed to minimize formation damage to the reservoir sandstone and to eliminate methane hydrates formed during production. Drilling development of the Walakpa field was a sequential updip and lateral stepout from a previously drilled, structurally lower confirmation well. Reservoir temperature, pressure, and gas chemistry data from the development wells confirm that they have been drilled in the free-methane portion of the reservoir. Future studies in the Walakpa field are planned to determine whether or not a component of the methane production is due to the dissociation of updip in situ hydrates.

  6. Timing and Duration of Gas Charge-Driven Fracturing in Tight-Gas Sandstone Reservoirs Based on Fluid Inclusion Observations: Piceance Basin, Colorado

    NASA Astrophysics Data System (ADS)

    Fall, A.; Eichhubl, P.; Laubach, S.; Bodnar, R. J.

    2012-12-01

    Natural fractures are universally present in tight-gas sandstone reservoirs. Fractures are recognized to enhance permeability of the reservoir, provide gas-migration pathways during charge, and boost connectivity with well bore during production of natural gas. "Sweet spots", or higher than average permeability and production regions, have been attributed to the presence of open fractures in the reservoir. Thus it is essential to understand the opening history of natural fractures, such as the timing with respect to hydrocarbon generation and migration in the reservoirs. The natural opening-mode fractures in the tight-gas sandstone of the Mesaverde Group in the Piceance Basin, Colorado, are partially or completely cemented by quartz and/or calcite that precipitated syn- or postkinematically relative to fracture opening. Fluid inclusions trapped in the cements record pressure, temperature, and fluid composition during subsequent fracture opening and cementation. SEM-CL imaging of cements combined with fluid inclusion microthermometry and Raman spectroscopy constrain fluid evolution trends during fracturing, and timing of fracture opening in the tight-gas sandstone reservoirs. Fluid inclusions indicate a thermal history varying from ~150°C to ~188°C to ~140°C in sandstones of the Piceance Basin. Based on microthermometry, Raman spectroscopy, and equation of state modeling calculated pore-fluid pressures varied from ~40 to 100 MPa suggesting fracture opening under significant pore-fluid overpressures. Observed variability in pore-fluid pressure over time is interpreted to reflect dynamic conditions of episodic gas charge. Models of gas and oil generation in the Piceance Basin suggest that fracture opening and elevated pore-fluid pressures coincided with maximum gas generation within the Mesaverde Group. These observations demonstrate that protracted growth of the pervasive fracture system was the consequence of gas maturation and reservoir charge, and that fracture

  7. The Net Impact of Hydroelectric Reservoir Creation on Greenhouse Gas Emissions: A Study of the Eastmain-1 Reservoir in the Eastern James Bay region of Quebec, Canada

    NASA Astrophysics Data System (ADS)

    Strachan, I. B.; Lemieux, M.; Bonneville, M.; Roulet, N.; Tremblay, A.

    2009-05-01

    In order to satisfy present and future energy demands and to minimize greenhouse gas (GHG) emissions, there is a growing need to develop energy sources that are not based on combustion. In the boreal regions of Canada, there is a huge potential for hydroelectricity production. However, in most cases, large areas of the boreal ecosystem must be inundated to create hydroelectric reservoirs. Previous studies have established that reservoirs emit GHGs, but these studies have typically focused on emissions some years after reservoir creation. The critical question that has not been asked is 'what is the net change in the exchange of GHG that results directly from the creation of the reservoir?' - i.e. 'what is the net difference between the landscape scale exchange of GHGs before and after reservoir creation, and how does that net difference change over time from when the reservoir was first created to when it reaches a steady-state condition?'. The Eastmain-1 (EM-1) hydroelectric reservoir, located in the James Bay region of Quebec was created in late 2005 and provides a tremendous opportunity to study the impacts of reservoir creation on GHG emissions which are still largely unknown for this type of land conversion. The creation of the EM-1 hydroelectric reservoir required the flooding of over 600 km2 of the boreal ecosystem along the Eastmain River, of which 65% was occupied by forest, 14% by peatland, and 21% by lakes and rivers. In order to assess the impacts of the creation of the reservoir on GHG emissions, three eddy covariance (EC) tower flux sites were established in a black spruce forest, peatland and on an island in the reservoir itself to measure continuous net ecosystem exchange (NEE) of CO2. Together, these represent the dominant terrestrial pre-flooded (forest and peatland) and post-flooded (reservoir) environments. The forest and reservoir EC systems were installed and operational by the end of summer 2006 with the peatland site coming on-line summer of

  8. Electrochromically switched, gas-reservoir metal hydride devices with application to energy-efficient windows

    SciTech Connect

    Anders, Andre; Slack, Jonathan L.; Richardson, Thomas J.

    2008-05-05

    Proof-of-principle gas-reservoir MnNiMg electrochromic mirror devices have been investigated. In contrast to conventional electrochromic approaches, hydrogen is stored (at low concentration) in the gas volume between glass panes of the insulated glass units (IGUs). The elimination of a solid state ion storage layer simplifies the layer stack, enhances overall transmission, and reduces cost. The cyclic switching properties were demonstrated and system durability improved with the incorporation a thin Zr barrier layer between the MnNiMg layer and the Pd catalyst. Addition of 9 percent silver to the palladium catalyst further improved system durability. About 100 full cycles have been demonstrated before devices slow considerably. Degradation of device performance appears to be related to Pd catalyst mobility, rather than delamination or metal layer oxidation issues originally presumed likely to present significant challenges.

  9. Gulf of Mexico Oil and Gas Atlas Series: Play analysis of oligocene and miocene reservoirs from Texas State Offshore Waters

    SciTech Connect

    Seni, S.J.; Finley, R.J.

    1993-12-31

    The objective of the Offshore Northern Gulf of Mexico Oil and Gas Resource Atlas Series is to define hydrocarbon plays by integrating geologic and engineering data for oil and gas reservoirs with large-scale patterns of depositional basin fill and geologic age. The primary product of the program will be an oil and gas atlas set for the offshore northern Gulf of Mexico and a computerized geographical information system of geologic and engineering data linked to reservoir location. The oil and gas atlas for the Gulf of Mexico will provide a critically compiled, comprehensive reference that is needed to more efficiently develop reservoirs, to extend field limits, and to better assess the opportunities for intrafield exploration. The play atlas will provide an organizational framework to aid development in mature areas and to extend exploration paradigms from mature areas into frontier areas deep below the shelf and into deep waters of the continental slope. In addition to serving as a model for exploration and education, the offshore atlas will aid resource assessment efforts of State, Federal, and private agencies by allowing for greater precision in the extrapolation of variables within and between plays. Classification and organization of reservoirs into plays have proved to be effective in previous atlases produced by the Bureau, including the Texas oil and gas atlases, the Midcontinent gas atlas, and Central and Eastern Gulf Coast gas atlas.

  10. ALMA probes the molecular gas reservoirs in the changing-look Seyfert galaxy Mrk 590

    NASA Astrophysics Data System (ADS)

    Koay, J. Y.; Vestergaard, M.; Casasola, V.; Lawther, D.; Peterson, B. M.

    2016-01-01

    We investigate if the active galactic nucleus (AGN) of Mrk 590, whose supermassive black hole was until recently highly accreting, is turning off due to a lack of central gas to fuel it. We analyse new subarcsecond resolution Atacama Large Millimetre/submilllimetre Array maps of the 12CO(3-2) line and 344 GHz continuum emission in Mrk 590. We detect no 12CO(3-2) emission in the inner 150 pc, constraining the central molecular gas mass to M(H2) ≲ 1.6 × 105 M⊙, no more than a typical giant molecular gas cloud, for a CO luminosity to gas mass conversion factor of αCO ˜ 0.8 M⊙ (K km s- 1 pc2)- 1. However, there is still potentially enough gas to fuel the black hole for another 2.6 × 105 yr assuming Eddington-limited accretion. We therefore cannot rule out that the AGN may just be experiencing a temporary feeding break, and may turn on again in the near future. We discover a ring-like structure at a radius of ˜1 kpc, where a gas clump exhibiting disturbed kinematics and located just ˜200 pc west of the AGN, may be refuelling the centre. Mrk 590 does not have significantly less gas than other nearby AGN host galaxies at kpc scales, confirming that gas reservoirs at these scales provide no direct indication of on-going AGN activity and accretion rates. Continuum emission detected in the central 150 pc likely originates from warm AGN-heated dust, although contributions from synchrotron and free-free emission cannot be ruled out.

  11. Optimized Design and Use of Induced Complex Fractures in Horizontal Wellbores of Tight Gas Reservoirs

    NASA Astrophysics Data System (ADS)

    Zeng, F. H.; Guo, J. C.

    2016-04-01

    Multistage hydraulic fracturing is being increasing use in the establishment of horizontal wells in tight gas reservoirs. Connecting hydraulic fractures to natural and stress-induced fractures can further improve well productivity. This paper investigates the fracture treatment design issues involved in the establishment of horizontal wellbores, including the effects of geologic heterogeneity, perforation parameters, fracturing patterns, and construction parameters on stress anisotropy during hydraulic fracturing and on natural fractures during hydraulic fracture propagation. The extent of stress reversal and reorientation was calculated for fractures induced by the creation of one or more propped fractures. The effects of stress on alternate and sequential fracturing horizontal well and on the reservoir's mechanical properties, including the spatial extent of stress reorientation caused by the opening of fractures, were assessed and quantified. Alternate sequencing of transverse fractures was found to be an effective means of enhancing natural fracture stimulation by allowing fractures to undergo less stress contrast during propagation. The goal of this paper was to present a new approach to design that optimizes fracturing in a horizontal wellbore from the perspectives of both rock mechanics and fluid production. The new design is a modified version of alternate fracturing, where the fracture-initiation sequence was controlled by perforation parameters with a staggered pattern within a horizontal wellbore. Results demonstrated that the modified alternate fracturing performed better than original sequence fracturing and that this was because it increased the contact area and promoted more gas production in completed wells.

  12. System-level modeling for economic evaluation of geological CO2storage in gas reservoirs

    SciTech Connect

    Zhang, Yingqi; Oldenburg, Curtis M.; Finsterle, Stefan; Bodvarsson, Gudmundur S.

    2006-03-02

    One way to reduce the effects of anthropogenic greenhousegases on climate is to inject carbon dioxide (CO2) from industrialsources into deep geological formations such as brine aquifers ordepleted oil or gas reservoirs. Research is being conducted to improveunderstanding of factors affecting particular aspects of geological CO2storage (such as storage performance, storage capacity, and health,safety and environmental (HSE) issues) as well as to lower the cost ofCO2 capture and related processes. However, there has been less emphasisto date on system-level analyses of geological CO2 storage that considergeological, economic, and environmental issues by linking detailedprocess models to representations of engineering components andassociated economic models. The objective of this study is to develop asystem-level model for geological CO2 storage, including CO2 capture andseparation, compression, pipeline transportation to the storage site, andCO2 injection. Within our system model we are incorporating detailedreservoir simulations of CO2 injection into a gas reservoir and relatedenhanced production of methane. Potential leakage and associatedenvironmental impacts are also considered. The platform for thesystem-level model is GoldSim [GoldSim User's Guide. GoldSim TechnologyGroup; 2006, http://www.goldsim.com]. The application of the system modelfocuses on evaluating the feasibility of carbon sequestration withenhanced gas recovery (CSEGR) in the Rio Vista region of California. Thereservoir simulations are performed using a special module of the TOUGH2simulator, EOS7C, for multicomponent gas mixtures of methane and CO2.Using a system-level modeling approach, the economic benefits of enhancedgas recovery can be directly weighed against the costs and benefits ofCO2 injection.

  13. Numerical simulations of the Macondo well blowout reveal strong control of oil flow by reservoir permeability and exsolution of gas.

    PubMed

    Oldenburg, Curtis M; Freifeld, Barry M; Pruess, Karsten; Pan, Lehua; Finsterle, Stefan; Moridis, George J

    2012-12-11

    In response to the urgent need for estimates of the oil and gas flow rate from the Macondo well MC252-1 blowout, we assembled a small team and carried out oil and gas flow simulations using the TOUGH2 codes over two weeks in mid-2010. The conceptual model included the oil reservoir and the well with a top boundary condition located at the bottom of the blowout preventer. We developed a fluid properties module (Eoil) applicable to a simple two-phase and two-component oil-gas system. The flow of oil and gas was simulated using T2Well, a coupled reservoir-wellbore flow model, along with iTOUGH2 for sensitivity analysis and uncertainty quantification. The most likely oil flow rate estimated from simulations based on the data available in early June 2010 was about 100,000 bbl/d (barrels per day) with a corresponding gas flow rate of 300 MMscf/d (million standard cubic feet per day) assuming the well was open to the reservoir over 30 m of thickness. A Monte Carlo analysis of reservoir and fluid properties provided an uncertainty distribution with a long tail extending down to 60,000 bbl/d of oil (170 MMscf/d of gas). The flow rate was most strongly sensitive to reservoir permeability. Conceptual model uncertainty was also significant, particularly with regard to the length of the well that was open to the reservoir. For fluid-entry interval length of 1.5 m, the oil flow rate was about 56,000 bbl/d. Sensitivity analyses showed that flow rate was not very sensitive to pressure-drop across the blowout preventer due to the interplay between gas exsolution and oil flow rate. PMID:21730177

  14. Numerical simulations of the Macondo well blowout reveal strong control of oil flow by reservoir permeability and exsolution of gas

    PubMed Central

    Oldenburg, Curtis M.; Freifeld, Barry M.; Pruess, Karsten; Pan, Lehua; Finsterle, Stefan; Moridis, George J.

    2012-01-01

    In response to the urgent need for estimates of the oil and gas flow rate from the Macondo well MC252-1 blowout, we assembled a small team and carried out oil and gas flow simulations using the TOUGH2 codes over two weeks in mid-2010. The conceptual model included the oil reservoir and the well with a top boundary condition located at the bottom of the blowout preventer. We developed a fluid properties module (Eoil) applicable to a simple two-phase and two-component oil-gas system. The flow of oil and gas was simulated using T2Well, a coupled reservoir-wellbore flow model, along with iTOUGH2 for sensitivity analysis and uncertainty quantification. The most likely oil flow rate estimated from simulations based on the data available in early June 2010 was about 100,000 bbl/d (barrels per day) with a corresponding gas flow rate of 300 MMscf/d (million standard cubic feet per day) assuming the well was open to the reservoir over 30 m of thickness. A Monte Carlo analysis of reservoir and fluid properties provided an uncertainty distribution with a long tail extending down to 60,000 bbl/d of oil (170 MMscf/d of gas). The flow rate was most strongly sensitive to reservoir permeability. Conceptual model uncertainty was also significant, particularly with regard to the length of the well that was open to the reservoir. For fluid-entry interval length of 1.5 m, the oil flow rate was about 56,000 bbl/d. Sensitivity analyses showed that flow rate was not very sensitive to pressure-drop across the blowout preventer due to the interplay between gas exsolution and oil flow rate. PMID:21730177

  15. Coupling Hydraulic Fracturing Propagation and Gas Well Performance for Simulation of Production in Unconventional Shale Gas Reservoirs

    NASA Astrophysics Data System (ADS)

    Wang, C.; Winterfeld, P. H.; Wu, Y. S.; Wang, Y.; Chen, D.; Yin, C.; Pan, Z.

    2014-12-01

    Hydraulic fracturing combined with horizontal drilling has made it possible to economically produce natural gas from unconventional shale gas reservoirs. An efficient methodology for evaluating hydraulic fracturing operation parameters, such as fluid and proppant properties, injection rates, and wellhead pressure, is essential for the evaluation and efficient design of these processes. Traditional numerical evaluation and optimization approaches are usually based on simulated fracture properties such as the fracture area. In our opinion, a methodology based on simulated production data is better, because production is the goal of hydraulic fracturing and we can calibrate this approach with production data that is already known. This numerical methodology requires a fully-coupled hydraulic fracture propagation and multi-phase flow model. In this paper, we present a general fully-coupled numerical framework to simulate hydraulic fracturing and post-fracture gas well performance. This three-dimensional, multi-phase simulator focuses on: (1) fracture width increase and fracture propagation that occurs as slurry is injected into the fracture, (2) erosion caused by fracture fluids and leakoff, (3) proppant subsidence and flowback, and (4) multi-phase fluid flow through various-scaled anisotropic natural and man-made fractures. Mathematical and numerical details on how to fully couple the fracture propagation and fluid flow parts are discussed. Hydraulic fracturing and production operation parameters, and properties of the reservoir, fluids, and proppants, are taken into account. The well may be horizontal, vertical, or deviated, as well as open-hole or cemented. The simulator is verified based on benchmarks from the literature and we show its application by simulating fracture network (hydraulic and natural fractures) propagation and production data history matching of a field in China. We also conduct a series of real-data modeling studies with different combinations of

  16. Noble gas and hydrocarbon tracers in multiphase unconventional hydrocarbon systems: Toward integrated advanced reservoir simulators

    NASA Astrophysics Data System (ADS)

    Darrah, T.; Moortgat, J.; Poreda, R. J.; Muehlenbachs, K.; Whyte, C. J.

    2015-12-01

    Although hydrocarbon production from unconventional energy resources has increased dramatically in the last decade, total unconventional oil and gas recovery from black shales is still less than 25% and 9% of the totals in place, respectively. Further, the majority of increased hydrocarbon production results from increasing the lengths of laterals, the number of hydraulic fracturing stages, and the volume of consumptive water usage. These strategies all reduce the economic efficiency of hydrocarbon extraction. The poor recovery statistics result from an insufficient understanding of some of the key physical processes in complex, organic-rich, low porosity formations (e.g., phase behavior, fluid-rock interactions, and flow mechanisms at nano-scale confinement and the role of natural fractures and faults as conduits for flow). Noble gases and other hydrocarbon tracers are capably of recording subsurface fluid-rock interactions on a variety of geological scales (micro-, meso-, to macro-scale) and provide analogs for the movement of hydrocarbons in the subsurface. As such geochemical data enrich the input for the numerical modeling of multi-phase (e.g., oil, gas, and brine) fluid flow in highly heterogeneous, low permeability formations Herein we will present a combination of noble gas (He, Ne, Ar, Kr, and Xe abundances and isotope ratios) and molecular and isotopic hydrocarbon data from a geographically and geologically diverse set of unconventional hydrocarbon reservoirs in North America. Specifically, we will include data from the Marcellus, Utica, Barnett, Eagle Ford, formations and the Illinois basin. Our presentation will include geochemical and geological interpretation and our perspective on the first steps toward building an advanced reservoir simulator for tracer transport in multicomponent multiphase compositional flow (presented separately, in Moortgat et al., 2015).

  17. Establishment of an oil and gas database for increased recovery and characterization of oil and gas carbonate reservoir heterogeneity. [Jurassic Smackover Formation

    SciTech Connect

    Mancini, E.A.

    1990-01-01

    The objective of this project is to augment the National Reservoir Database (TORIS database), to increase our understanding of geologic heterogeneities that affect the recoveries of oil and gas from carbonate reservoirs in the State of Alabama, and to identify resources that are producible at moderate cost. This objective will be achieved through detailed geological, geostatistical, and engineering characterization of typical Jurassic Smackover Formation hydrocarbon, and engineering characterization of typical Jurassic Smackover Formation hydrocarbon reservoirs in selected productive fields in the state of Alabama. The results of these studies will be used to develop and test mathematical models for prediction of the effects of reservoir heterogeneities in hydrocarbon production. Work to date has focused on completion of Subtasks 1, 2, and 3 of this project. Work on Subtask 4 began in this quarter, and substantial additional work has been accomplished on Subtask 2. Subtask 1 included the survey and tabulation of available reservoir engineering and geological data. Subtask 2 comprises the geologic and engineering characterization of smackover reservoir lithofacies. Subtask 3 includes the geologic modeling of reservoir heterogeneities. Subtask 4 includes the development of reservoir exploitation methodologies for strategic infill drilling. 1 fig.

  18. An evaluation of the deep reservoir conditions of the Bacon-Manito geothermal field, Philippines using well gas chemistry

    SciTech Connect

    D'Amore, Franco; Maniquis-Buenviaje, Marinela; Solis, Ramonito P.

    1993-01-28

    Gas chemistry from 28 wells complement water chemistry and physical data in developing a reservoir model for the Bacon-Manito geothermal project (BMGP), Philippines. Reservoir temperature, THSH, and steam fraction, y, are calculated or extrapolated from the grid defined by the Fischer-Tropsch (FT) and H2-H2S (HSH) gas equilibria reactions. A correction is made for H2 that is lost due to preferential partitioning into the vapor phase and the reequilibration of H2S after steam loss.

  19. A Theoretical Investigation of Radial Lateral Wells with Shockwave Completion in Shale Gas Reservoirs

    NASA Astrophysics Data System (ADS)

    Shan, Jia

    As its role in satisfying the energy demand of the U.S. and as a clean fuel has become more significant than ever, the shale gas production in the U.S. has gained increasing momentum over recent years. Thus, effective and environmentally friendly methods to extract shale gas are critical. Hydraulic fracturing has been proven to be efficient in the production of shale gas. However, environmental issues such as underground water contamination and high usage of water make this technology controversial. A potential technology to eliminate the environmental issues concerning water usage and contamination is to use blast fracturing, which uses explosives to create fractures. It can be further aided by HEGF and multi-pulse pressure loading technology, which causes less crushing effect near the wellbore and induces longer fractures. Radial drilling is another relatively new technology that can bypass damage zones due to drilling and create a larger drainage area through drilling horizontal wellbores. Blast fracturing and radial drilling both have the advantage of cost saving. The successful combination of blast fracturing and radial drilling has a great potential for improving U.S. shale gas production. An analytical productivity model was built in this study, considering linear flow from the reservoir rock to the fracture face, to analyze factors affecting shale gas production from radial lateral wells with shockwave completion. Based on the model analyses, the number of fractures per lateral is concluded to be the most effective factor controlling the productivity index of blast-fractured radial lateral wells. This model can be used for feasibility studies of replacing hydraulic fracturing by blast fracturing in shale gas well completions. Prediction of fracture geometry is recommended for future studies.

  20. Geochemical analysis of atlantic rim water, carbon county, wyoming: New applications for characterizing coalbed natural gas reservoirs

    USGS Publications Warehouse

    McLaughlin, J.F.; Frost, C.D.; Sharma, S.

    2011-01-01

    Coalbed natural gas (CBNG) production typically requires the extraction of large volumes of water from target formations, thereby influencing any associated reservoir systems. We describe isotopic tracers that provide immediate data on the presence or absence of biogenic natural gas and the identify methane-containing reservoirs are hydrologically confined. Isotopes of dissolved inorganic carbon and strontium, along with water quality data, were used to characterize the CBNG reservoirs and hydrogeologic systems of Wyoming's Atlantic Rim. Water was analyzed from a stream, springs, and CBNG wells. Strontium isotopic composition and major ion geochemistry identify two groups of surface water samples. Muddy Creek and Mesaverde Group spring samples are Ca-Mg-S04-type water with higher 87Sr/86Sr, reflecting relatively young groundwater recharged from precipitation in the Sierra Madre. Groundwaters emitted from the Lewis Shale springs are Na-HCO3-type waters with lower 87Sr/86Sr, reflecting sulfate reduction and more extensive water-rock interaction. To distinguish coalbed waters, methanogenically enriched ??13CDIC wasused from other natural waters. Enriched ??13CDIC, between -3.6 and +13.3???, identified spring water that likely originates from Mesaverde coalbed reservoirs. Strongly positive ??13CDIC, between +12.6 and +22.8???, identified those coalbed reservoirs that are confined, whereas lower ??13CDIC, between +0.0 and +9.9???, identified wells within unconfined reservoir systems. Copyright ?? 2011. The American Association of Petroleum Geologists. All rights reserved.

  1. Non-equilibrium simulation of CH4 production through the depressurization method from gas hydrate reservoirs

    NASA Astrophysics Data System (ADS)

    Qorbani, Khadijeh; Kvamme, Bjørn

    2016-04-01

    Natural gas hydrates (NGHs) in nature are formed from various hydrate formers (i.e. aqueous, gas, and adsorbed phases). As a result, due to Gibbs phase rule and the combined first and second laws of thermodynamics CH4-hydrate cannot reach thermodynamic equilibrium in real reservoir conditions. CH4 is the dominant component in NGH reservoirs. It is formed as a result of biogenic degradation of biological material in the upper few hundred meters of subsurface. It has been estimated that the amount of fuel-gas reserve in NGHs exceed the total amount of fossil fuel explored until today. Thus, these reservoirs have the potential to satisfy the energy requirements of the future. However, released CH4 from dissociated NGHs could find its way to the atmosphere and it is a far more aggressive greenhouse gas than CO2, even though its life-time is shorter. Lack of reliable field data makes it difficult to predict the production potential, as well as safety of CH4 production from NGHs. Computer simulations can be used as a tool to investigate CH4 production through different scenarios. Most hydrate simulators within academia and industry treat hydrate phase transitions as an equilibrium process and those which employ the kinetic approach utilize simple laboratory data in their models. Furthermore, it is typical to utilize a limited thermodynamic description where only temperature and pressure projections are considered. Another widely used simplification is to assume only a single route for the hydrate phase transitions. The non-equilibrium nature of hydrate indicates a need for proper kinetic models to describe hydrate dissociation and reformation in the reservoir with respect to thermodynamics variables, CH4 mole-fraction, pressure and temperature. The RetrasoCodeBright (RCB) hydrate simulator has previously been extended to model CH4-hydrate dissociation towards CH4 gas and water. CH4-hydrate is added to the RCB data-base as a pseudo mineral. Phase transitions are treated

  2. Electrical anisotropy of gas hydrate-bearing sand reservoirs in the Gulf of Mexico

    USGS Publications Warehouse

    Cook, Anne E.; Anderson, Barbara I.; Rasmus, John; Sun, Keli; Li, Qiming; Collett, Timothy S.; Goldberg, David S.

    2012-01-01

    We present new results and interpretations of the electricalanisotropy and reservoir architecture in gashydrate-bearingsands using logging data collected during the Gulf of MexicoGasHydrate Joint Industry Project Leg II. We focus specifically on sandreservoirs in Hole Alaminos Canyon 21 A (AC21-A), Hole Green Canyon 955 H (GC955-H) and Hole Walker Ridge 313 H (WR313-H). Using a new logging-while-drilling directional resistivity tool and a one-dimensional inversion developed by Schlumberger, we resolve the resistivity of the current flowing parallel to the bedding, R| and the resistivity of the current flowing perpendicular to the bedding, R|. We find the sandreservoir in Hole AC21-A to be relatively isotropic, with R| and R| values close to 2 Ω m. In contrast, the gashydrate-bearingsandreservoirs in Holes GC955-H and WR313-H are highly anisotropic. In these reservoirs, R| is between 2 and 30 Ω m, and R| is generally an order of magnitude higher. Using Schlumberger's WebMI models, we were able to replicate multiple resistivity measurements and determine the formation resistivity the gashydrate-bearingsandreservoir in Hole WR313-H. The results showed that gashydrate saturations within a single reservoir unit are highly variable. For example, the sand units in Hole WR313-H contain thin layers (on the order of 10-100 cm) with varying gashydrate saturations between 15 and 95%. Our combined modeling results clearly indicate that the gashydrate-bearingsandreservoirs in Holes GC955-H and WR313-H are highly anisotropic due to varying saturations of gashydrate forming in thin layers within larger sand units.

  3. Carbon dioxide and helium emissions from a reservoir of magmatic gas beneath Mammoth Mountain, California

    SciTech Connect

    Sorey, M.L.; Evans, W.C. Kennedy, B.M. Farrar, C.D. Hainsworth, L.J. Hausback, B.

    1998-07-01

    Carbon dioxide and helium with isotopic compositions indicative of a magmatic source ({delta}thinsp{sup 13}C={minus}4.5 to {minus}5{per_thousand}, {sup 3}He/{sup 4}He=4.5 to 6.7 R{sub A}) are discharging at anomalous rates from Mammoth Mountain, on the southwestern rim of the Long Valley caldera in eastern California. The gas is released mainly as diffuse emissions from normal-temperature soils, but some gas issues from steam vents or leaves the mountain dissolved in cold groundwater. The rate of gas discharge increased significantly in 1989 following a 6-month period of persistent earthquake swarms and associated strain and ground deformation that has been attributed to dike emplacement beneath the mountain. An increase in the magmatic component of helium discharging in a steam vent on the north side of Mammoth Mountain, which also began in 1989, has persisted until the present time. Anomalous CO{sub 2} discharge from soils first occurred during the winter of 1990 and was followed by observations of several areas of tree kill and/or heavier than normal needlecast the following summer. Subsequent measurements have confirmed that the tree kills arc associated with CO{sub 2} concentrations of 30{endash}90{percent} in soil gas and gas flow rates of up to 31,000 gthinspm{sup {minus}2}thinspd{sup {minus}1} at the soil surface. Each of the tree-kill areas and one area of CO{sub 2} discharge above tree line occurs in close proximity to one or more normal faults, which may provide conduits for gas flow from depth. We estimate that the total diffuse CO{sub 2} flux from the mountain is approximately 520 t/d, and that 30{endash}50 t/d of CO{sub 2} are dissolved in cold groundwater flowing off the flanks of the mountain. Isotopic and chemical analyses of soil and fumarolic gas demonstrate a remarkable homogeneity in composition, suggesting that the CO{sub 2} and associated helium and excess nitrogen may be derived from a common gas reservoir whose source is associated with

  4. Scale-dependent gas hydrate saturation estimates in sand reservoirs in the Ulleung Basin, East Sea of Korea

    USGS Publications Warehouse

    Lee, Myung Woong; Collett, Timothy S.

    2013-01-01

    Through the use of 2-D and 3-D seismic data, several gas hydrate prospects were identified in the Ulleung Basin, East Sea of Korea and thirteen drill sites were established and logging-while-drilling (LWD) data were acquired from each site in 2010. Sites UBGH2–6 and UBGH2–10 were selected to test a series of high amplitude seismic reflections, possibly from sand reservoirs. LWD logs from the UBGH2–6 well indicate that there are three significant sand reservoirs with varying thickness. Two upper sand reservoirs are water saturated and the lower thinly bedded sand reservoir contains gas hydrate with an average saturation of 13%, as estimated from the P-wave velocity. The well logs at the UBGH2–6 well clearly demonstrated the effect of scale-dependency on gas hydrate saturation estimates. Gas hydrate saturations estimated from the high resolution LWD acquired ring resistivity (vertical resolution of about 5–8 cm) reaches about 90% with an average saturation of 28%, whereas gas hydrate saturations estimated from the low resolution A40L resistivity (vertical resolution of about 120 cm) reaches about 25% with an average saturation of 11%. However, in the UBGH2–10 well, gas hydrate occupies a 5-m thick sand reservoir near 135 mbsf with a maximum saturation of about 60%. In the UBGH2–10 well, the average and a maximum saturation estimated from various well logging tools are comparable, because the bed thickness is larger than the vertical resolution of the various logging tools. High resolution wireline log data further document the role of scale-dependency on gas hydrate calculations.

  5. Numerical simulations of depressurization-induced gas production from gas hydrate reservoirs at the Walker Ridge 312 site, northern Gulf of Mexico

    SciTech Connect

    Myshakin, Evgeniy M.; Gaddipati, Manohar; Rose, Kelly; Anderson, Brian J.

    2012-06-01

    In 2009, the Gulf of Mexico (GOM) Gas Hydrates Joint-Industry-Project (JIP) Leg II drilling program confirmed that gas hydrate occurs at high saturations within reservoir-quality sands in the GOM. A comprehensive logging-while-drilling dataset was collected from seven wells at three sites, including two wells at the Walker Ridge 313 site. By constraining the saturations and thicknesses of hydrate-bearing sands using logging-while-drilling data, two-dimensional (2D), cylindrical, r-z and three-dimensional (3D) reservoir models were simulated. The gas hydrate occurrences inferred from seismic analysis are used to delineate the areal extent of the 3D reservoir models. Numerical simulations of gas production from the Walker Ridge reservoirs were conducted using the depressurization method at a constant bottomhole pressure. Results of these simulations indicate that these hydrate deposits are readily produced, owing to high intrinsic reservoir-quality and their proximity to the base of hydrate stability. The elevated in situ reservoir temperatures contribute to high (5–40 MMscf/day) predicted production rates. The production rates obtained from the 2D and 3D models are in close agreement. To evaluate the effect of spatial dimensions, the 2D reservoir domains were simulated at two outer radii. The results showed increased potential for formation of secondary hydrate and appearance of lag time for production rates as reservoir size increases. Similar phenomena were observed in the 3D reservoir models. The results also suggest that interbedded gas hydrate accumulations might be preferable targets for gas production in comparison with massive deposits. Hydrate in such accumulations can be readily dissociated due to heat supply from surrounding hydrate-free zones. Special cases were considered to evaluate the effect of overburden and underburden permeability on production. The obtained data show that production can be significantly degraded in comparison with a case using

  6. Eos modeling and reservoir simulation study of bakken gas injection improved oil recovery in the elm coulee field, Montana

    NASA Astrophysics Data System (ADS)

    Pu, Wanli

    The Bakken Formation in the Williston Basin is one of the most productive liquid-rich unconventional plays. The Bakken Formation is divided into three members, and the Middle Bakken Member is the primary target for horizontal wellbore landing and hydraulic fracturing because of its better rock properties. Even with this new technology, the primary recovery factor is believed to be only around 10%. This study is to evaluate various gas injection EOR methods to try to improve on that low recovery factor of 10%. In this study, the Elm Coulee Oil Field in the Williston Basin was selected as the area of interest. Static reservoir models featuring the rock property heterogeneity of the Middle Bakken Member were built, and fluid property models were built based on Bakken reservoir fluid sample PVT data. By employing both compositional model simulation and Todd-Longstaff solvent model simulation methods, miscible gas injections were simulated and the simulations speculated that oil recovery increased by 10% to 20% of OOIP in 30 years. The compositional simulations yielded lower oil recovery compared to the solvent model simulations. Compared to the homogeneous model, the reservoir model featuring rock property heterogeneity in the vertical direction resulted in slightly better oil recovery, but with earlier CO2 break-through and larger CO2 production, suggesting that rock property heterogeneity is an important property for modeling because it has a big effect on the simulation results. Long hydraulic fractures shortened CO2 break-through time greatly and increased CO 2 production. Water-alternating-gas injection schemes and injection-alternating-shut-in schemes can provide more options for gas injection EOR projects, especially for gas production management. Compared to CO2 injection, separator gas injection yielded slightly better oil recovery, meaning separator gas could be a good candidate for gas injection EOR; lean gas generated the worst results. Reservoir

  7. Pore-scale mechanisms of gas flow in tight sand reservoirs

    SciTech Connect

    Silin, D.; Kneafsey, T.J.; Ajo-Franklin, J.B.; Nico, P.

    2010-11-30

    Tight gas sands are unconventional hydrocarbon energy resource storing large volume of natural gas. Microscopy and 3D imaging of reservoir samples at different scales and resolutions provide insights into the coaredo not significantly smaller in size than conventional sandstones, the extremely dense grain packing makes the pore space tortuous, and the porosity is small. In some cases the inter-granular void space is presented by micron-scale slits, whose geometry requires imaging at submicron resolutions. Maximal Inscribed Spheres computations simulate different scenarios of capillary-equilibrium two-phase fluid displacement. For tight sands, the simulations predict an unusually low wetting fluid saturation threshold, at which the non-wetting phase becomes disconnected. Flow simulations in combination with Maximal Inscribed Spheres computations evaluate relative permeability curves. The computations show that at the threshold saturation, when the nonwetting fluid becomes disconnected, the flow of both fluids is practically blocked. The nonwetting phase is immobile due to the disconnectedness, while the permeability to the wetting phase remains essentially equal to zero due to the pore space geometry. This observation explains the Permeability Jail, which was defined earlier by others. The gas is trapped by capillarity, and the brine is immobile due to the dynamic effects. At the same time, in drainage, simulations predict that the mobility of at least one of the fluids is greater than zero at all saturations. A pore-scale model of gas condensate dropout predicts the rate to be proportional to the scalar product of the fluid velocity and pressure gradient. The narrowest constriction in the flow path is subject to the highest rate of condensation. The pore-scale model naturally upscales to the Panfilov's Darcy-scale model, which implies that the condensate dropout rate is proportional to the pressure gradient squared. Pressure gradient is the greatest near the matrix

  8. Establishment of an oil and gas database for increased recovery and characterization of oil and gas carbonate reservoir heterogeneity. Appendix 1, Volume 1

    SciTech Connect

    Kopaska-Merkel, D.C.; Moore, H.E. Jr.; Mann, S.D.; Hall, D.R.

    1992-06-01

    This volume contains maps, well logging correlated to porosity and permeability, structural cross section, graph of production history, porosity vs. natural log permeability plot, detailed core log, paragenetic sequence and reservoir characterization sheet of the following fields in southwest Alabama: Appleton oil field; Barnett oil field; Barrytown oil field; Big Escambia Creek gas and condensate field; Blacksher oil field; Broken Leg Creed oil field; Bucatunna Creed oil field; Chappell Hill oil field; Chatom gas and condensate field; Choctaw Ridge oil field; Chunchula gas and condensate field; Cold Creek oil field; Copeland gas and condensate field; Crosbys Creed gas and condensate field; and East Barnett oil field. (AT)

  9. Establishment of an oil and gas database for increased recovery and characterization of oil and gas carbonate reservoir heterogeneity. [Jurassic Smackover Formation

    SciTech Connect

    Kopaska-Merkel, D.C.; Moore, H.E. Jr.; Mann, S.D.; Hall, D.R.

    1992-06-01

    This volume contains maps, well logging correlated to porosity and permeability, structural cross section, graph of production history, porosity vs. natural log permeability plot, detailed core log, paragenetic sequence and reservoir characterization sheet of the following fields in southwest Alabama: Appleton oil field; Barnett oil field; Barrytown oil field; Big Escambia Creek gas and condensate field; Blacksher oil field; Broken Leg Creed oil field; Bucatunna Creed oil field; Chappell Hill oil field; Chatom gas and condensate field; Choctaw Ridge oil field; Chunchula gas and condensate field; Cold Creek oil field; Copeland gas and condensate field; Crosbys Creed gas and condensate field; and East Barnett oil field. (AT)

  10. Total Organic Carbon prediction in shale gas reservoirs using fuzzy logic

    NASA Astrophysics Data System (ADS)

    Ouadfeul, Sid-Ali; Aliouane, Leila

    2015-04-01

    Here, we suggest the use the fuzzy logic approach for the prediction of the Total Organic Carbon (TOC) from well-logs data in shale gas reservoirs, two models are used for the estimation of the TOC from well-logs data; the first one is called the Schmoker's model while the second one is called the Passey's model. Scmocker's model requires the continuous measurement of the Bulk density, in case of absence of the bulk density measurement the Schmoker's model is not able to predict the TOC. In this case we suggest the use fuzzy logic system able to predict the total organic carbon in shale gas formations. The input of the fuzzy system is the four raw well-logs data measurements corresponding to the natural gamma ray, the neutron porosity, the slowness of the primary and shear waves. The desired output is the calculated TOC using the Schmoker's model. Application to well-logs data of two horizontal wells drilled in the lower Barnett shale clearly shows the ability of the fuzzy logic approach to suggest values of the total organic carbon in case of no bulk density measurement. Keywords TOC, Schmoker's model, Fuzzy logic, shale gas, Barnett shale, prediction.

  11. Comparison of the physical and geotechnical properties of gas-hydrate-bearing sediments from offshore India and other gas-hydrate-reservoir systems

    USGS Publications Warehouse

    Winters, William J.; Wilcox-Cline, R.W.; Long, P.; Dewri, S.K.; Kumar, P.; Stern, Laura A.; Kerr, Laura A.

    2014-01-01

    The sediment characteristics of hydrate-bearing reservoirs profoundly affect the formation, distribution, and morphology of gas hydrate. The presence and type of gas, porewater chemistry, fluid migration, and subbottom temperature may govern the hydrate formation process, but it is the host sediment that commonly dictates final hydrate habit, and whether hydrate may be economically developed.In this paper, the physical properties of hydrate-bearing regions offshore eastern India (Krishna-Godavari and Mahanadi Basins) and the Andaman Islands, determined from Expedition NGHP-01 cores, are compared to each other, well logs, and published results of other hydrate reservoirs. Properties from the hydrate-free Kerala-Konkan basin off the west coast of India are also presented. Coarser-grained reservoirs (permafrost-related and marine) may contain high gas-hydrate-pore saturations, while finer-grained reservoirs may contain low-saturation disseminated or more complex gas-hydrates, including nodules, layers, and high-angle planar and rotational veins. However, even in these fine-grained sediments, gas hydrate preferentially forms in coarser sediment or fractures, when present. The presence of hydrate in conjunction with other geologic processes may be responsible for sediment porosity being nearly uniform for almost 500 m off the Andaman Islands.Properties of individual NGHP-01 wells and regional trends are discussed in detail. However, comparison of marine and permafrost-related Arctic reservoirs provides insight into the inter-relationships and common traits between physical properties and the morphology of gas-hydrate reservoirs regardless of location. Extrapolation of properties from one location to another also enhances our understanding of gas-hydrate reservoir systems. Grain size and porosity effects on permeability are critical, both locally to trap gas and regionally to provide fluid flow to hydrate reservoirs. Index properties corroborate more advanced

  12. Prediction of pressure drawdown in gas reservoirs using a semi-analytical solution of the non-linear gas flow equation

    SciTech Connect

    Mattar, L.; Adegbesan, L.O.

    1980-01-01

    The differential equation for flow of gases in a porous medium is nonlinear and cannot be solved by strictly analytical methods. Previous studies in the literature have obtained analytical solutions to this equation by linearlization (i.e., treating viscosity and compressibilty as constant). In this study, the solution for nonlinear gas flow equation is obtained using the semianalytical technique developed by Kale and Mattar which solves the nonlinear equation by the method of perturbation. Results obtained, for prediction of pressure drawdown in gas reservoirs, indicate that the solution of the linearlized form of the equation is valid for both low and high permeability reservoirs.

  13. DOE THREE-DIMENSIONAL STRUCTURE AND PHYSICAL PROPERTIES OF A METHANE HYDRATE DEPOSIT AND GAS RESERVOIR, BLAKE RIDGE

    SciTech Connect

    W. Steven Holbrook

    2004-11-11

    This report contains a summary of work conducted and results produced under the auspices of award DE-FC26-00NT40921, ''DOE Three-Dimensional Structure and Physical Properties of a Methane Hydrate Deposit and Gas Reservoir, Blake Ridge.'' This award supported acquisition, processing, and interpretation of two- and three-dimensional seismic reflection data over a large methane hydrate reservoir on the Blake Ridge, offshore South Carolina. The work supported by this project has led to important new conclusions regarding (1) the use of seismic reflection data to directly detect methane hydrate, (2) the migration and possible escape of free gas through the hydrate stability zone, and (3) the mechanical controls on the maximum thickness of the free gas zone and gas escape.

  14. Naturally fractured tight gas: Gas reservoir detection optimization. Quarterly report, January 1--March 31, 1997

    SciTech Connect

    1997-12-31

    Economically viable natural gas production from the low permeability Mesaverde Formation in the Piceance Basin, Colorado requires the presence of an intense set of open natural fractures. Establishing the regional presence and specific location of such natural fractures is the highest priority exploration goal in the Piceance and other western US tight, gas-centered basins. Recently, Advanced Resources International, Inc. (ARI) completed a field program at Rulison Field, Piceance Basin, to test and demonstrate the use of advanced seismic methods to locate and characterize natural fractures. This project began with a comprehensive review of the tectonic history, state of stress and fracture genesis of the basin. A high resolution aeromagnetic survey, interpreted satellite and SLAR imagery, and 400 line miles of 2-D seismic provided the foundation for the structural interpretation. The central feature of the program was the 4.5 square mile multi-azimuth 3-D seismic P-wave survey to locate natural fracture anomalies. The interpreted seismic attributes are being tested against a control data set of 27 wells. Additional wells are currently being drilled at Rulison, on close 40 acre spacings, to establish the productivity from the seismically observed fracture anomalies. A similar regional prospecting and seismic program is being considered for another part of the basin. The preliminary results indicate that detailed mapping of fault geometries and use of azimuthally defined seismic attributes exhibit close correlation with high productivity gas wells. The performance of the ten new wells, being drilled in the seismic grid in late 1996 and early 1997, will help demonstrate the reliability of this natural fracture detection and mapping technology.

  15. Permeable weak layer in the gas hydrate reservoir presumed by logging-while-drilling log data

    NASA Astrophysics Data System (ADS)

    Suzuki, K.; Fujii, T.; Takayama, T.

    2015-12-01

    One of the specific intervals attracted attention to analyze the 2012 gas-production test from methane-hydrate reservoir, because its pressure and temperature behavior was different from other intervals of the production zone. The pressure and temperature behavior implied the interval should be high permeability. We analyzed the interval to characterize the properties before gas-production test; i.e. the original properties of the interval. We checked the data of the logging-while-drilling data of AT1-MC, which was one of the monitoring wells at the gas-production test. The specific interval was described as 1290-1298m, where was boundary between upper sand and mud alteration layer and middle clayey zone. The first, we noticed that there were several layers that showed broad T2 distributions of nuclear magnetic resonance (NMR). On the basis of the T2 distributions and the resistivity data of the interval, there were large pores that showed the T2 distribution around 100ms, even though some amount of methane hydrate were contained. This result could be explained the interval showed high permeability below the 1294m. After checking their ultra-sonic caliper data in detail, we found interesting difference in the interval. The specific interval of 1294-1295m had different borehole-enlargement direction from other intervals of the methane-hydrate bearing zone, even though diameter of borehole was slightly enlarged. Other layers in the methane hydrate reservoir showed NW-SE directions of enlargement, however, the specific interval had NE-SW direction of enlargement. Hence, H-max stress and H-min stress of this specific interval could be very close values. Thus, near the 1294m, the lithology of the layer was permeable and weak. It might be useful to understand many phenomena occured during the gas-production test. This research was conducted as a part of the MH21 research, and the authors would like to express their sincere appreciation to MH21 and the Ministry of Economy

  16. The model of the oil-gas bearing molasse reservoirs in the Peri-Adriatic depression, Albania

    SciTech Connect

    Hysen, K.N.; Skender, T.G. )

    1996-01-01

    The Peri-Adriatic Depression (PAD) represents the eastern extension of the Cenozoic Adriatic basin into onshore Albania. Several oil, gas condensate, dry gas fields have been discovered in this basin. Dry gas fields occur mainly in the western sector of the basin, whereas the oil fields are found in the eastern one. Reservoir rocks are well sorted to poorly, fine grained to pebbly sandstones and silstones of Miocene (Serravalian) to Pliocene age, deposited in deep water (turbidite), deltaic and littoral environments. Reservoir beds range in thickness from I to 40 in and are generally regionally distributed. The porosity varies from 3 to 37%, the permeability ranges from low values up to 2200-2500 mD. The minimal value of the porosity measured from oil flowing reservoirs varies from 12% to 16% and for the dry gas 12-21%. Geothermal gradient range from 1.4-2 C/100m. The dimensions of the reservoirs are very different and its geometric shape differs from beds to irregular shape. The types of the traps are also different : lithologo-stratigraphic, lithologic, structural-lithologic ones, etc. The upper part of the Pliocene basin belongs to the delta deposits. The deltaic sandstones are coarse grain to conglomeratic ones, of barriers type, saturated with fresh water and have vast distribution.

  17. The model of the oil-gas bearing molasse reservoirs in the Peri-Adriatic depression, Albania

    SciTech Connect

    Hysen, K.N.; Skender, T.G.

    1996-12-31

    The Peri-Adriatic Depression (PAD) represents the eastern extension of the Cenozoic Adriatic basin into onshore Albania. Several oil, gas condensate, dry gas fields have been discovered in this basin. Dry gas fields occur mainly in the western sector of the basin, whereas the oil fields are found in the eastern one. Reservoir rocks are well sorted to poorly, fine grained to pebbly sandstones and silstones of Miocene (Serravalian) to Pliocene age, deposited in deep water (turbidite), deltaic and littoral environments. Reservoir beds range in thickness from I to 40 in and are generally regionally distributed. The porosity varies from 3 to 37%, the permeability ranges from low values up to 2200-2500 mD. The minimal value of the porosity measured from oil flowing reservoirs varies from 12% to 16% and for the dry gas 12-21%. Geothermal gradient range from 1.4-2 C/100m. The dimensions of the reservoirs are very different and its geometric shape differs from beds to irregular shape. The types of the traps are also different : lithologo-stratigraphic, lithologic, structural-lithologic ones, etc. The upper part of the Pliocene basin belongs to the delta deposits. The deltaic sandstones are coarse grain to conglomeratic ones, of barriers type, saturated with fresh water and have vast distribution.

  18. Gas-and water-saturated conditions in the Piceance Basin, Western Colorado: Implications for fractured reservoir detection in a gas-centered coal basin

    SciTech Connect

    Hoak, T.E.; Decker, A.D.

    1995-10-01

    Mesaverde Group reservoirs in the Piceance Basin, Western Colorado contain a large reservoir base. Attempts to exploit this resource base are stymied by low permeability reservoir conditions. The presence of abundant natural fracture systems throughout this basin, however, does permit economic production. Substantial production is associated with fractured reservoirs in Divide Creek, Piceance Creek, Wolf Creek, White River Dome, Plateau, Shire Gulch, Grand Valley, Parachute and Rulison fields. Successful Piceance Basin gas production requires detailed information about fracture networks and subsurface gas and water distribution in an overall gas-centered basin geometry. Assessment of these three parameters requires an integrated basin analysis incorporating conventional subsurface geology, seismic data, remote sensing imagery analysis, and an analysis of regional tectonics. To delineate the gas-centered basin geometry in the Piceance Basin, a regional cross-section spanning the basin was constructed using hydrocarbon and gamma radiation logs. The resultant hybrid logs were used for stratigraphic correlations in addition to outlining the trans-basin gas-saturated conditions. The magnitude of both pressure gradients (paludal and marine intervals) is greater than can be generated by a hydrodynamic model. To investigate the relationships between structure and production, detailed mapping of the basin (top of the Iles Formation) was used to define subtle subsurface structures that control fractured reservoir development. The most productive fields in the basin possess fractured reservoirs. Detailed studies in the Grand Valley-Parachute-Rulison and Shire Gulch-Plateau fields indicate that zones of maximum structural flexure on kilometer-scale structural features are directly related to areas of enhanced production.

  19. PRELIMINARY CHARACTERIZATION OF CO2 SEPARATION AND STORAGE PROPERTIES OF COAL GAS RESERVOIRS

    SciTech Connect

    John Kemeny; Satya Harpalani

    2004-03-01

    An attractive alternative of sequestering CO{sub 2} is to inject it into coalbed methane reservoirs, particularly since it has been shown to enhance the production of methane during near depletion stages. The basis for enhanced coalbed methane recovery and simultaneous sequestration of carbon dioxide in deep coals is the preferential sorption property of coal, with its affinity for carbon dioxide being significantly higher than that for methane. Yet, the sorption behavior of coal under competitive sorptive environment is not fully understood. Hence, the original objective of this research study was to carry out a laboratory study to investigate the effect of studying the sorption behavior of coal in the presence of multiple gases, primarily methane, CO{sub 2} and nitrogen, in order to understand the mechanisms involved in displacement of methane and its movement in coal. This had to be modified slightly since the PVT property of gas mixtures is still not well understood, and any laboratory work in the area of sorption of gases requires a definite equation of state to calculate the volumes of different gases in free and adsorbed forms. This research study started with establishing gas adsorption isotherms for pure methane and CO{sub 2}. The standard gas expansion technique based on volumetric analysis was used for the experimental work with the additional feature of incorporating a gas chromatograph for analysis of gas composition. The results were analyzed first using the Langmuir theory. As expected, the Langmuir analysis indicated that CO{sub 2} is more than three times as sorptive as methane. This was followed by carrying out a partial desorption isotherm for methane, and then injecting CO{sub 2} to displace methane. The results indicated that CO{sub 2} injection at low pressure displaced all of the sorbed methane, even when the total pressure continued to be high. However, the displacement appeared to be occurring due to a combination of the preferential

  20. Compaction bands in high temperature/pressure diagenetically altered unconventional shale gas reservoirs

    NASA Astrophysics Data System (ADS)

    Regenauer-Lieb, K.; Veveakis, M.; Poulet, T.

    2014-12-01

    Unconventional energy and mineral resources are typically trapped in a low porosity/permeability environment and are difficult to produce. An extreme end-member is the shale gas reservoir in the Cooper Basin (Australia) that is located at 3500-4000 m depth and ambient temperature conditions around 200oC. Shales of lacustrine origin (with high clay content) are diagenetically altered. Diagenesis involves fluid release mineral reactions of the general type Asolid ↔ Bsolid +Cfluid and switches on suddenly in the diagenetic window between 100-200oC. Diagenetic reactions can involve concentrations of smectite, aqueous silica compound, illite, potassium ions, aqueous silica, quartz, feldspar, kerogen, water and gas . In classical petroleum engineering such interlayer water/gas release reactions are considered to cause cementation and significantly reduce porosity and permeability. Yet in contradiction to the expected permeability reduction gas is successfully being produced. We propose that the success is based on the ductile equivalent of classical compaction bands in solid mechanics. The difference being that that the rate of the volumetric compaction is controlled by the diagenetic reactions. Ductile compaction bands are forming high porosity fluid channels rather than low porosity crushed grains in the solid mechanical equivalent. We show that this new type of volumetric instability appears in rate-dependent heterogenous materials as Cnoidal waves. These are nonlinear and exact periodic stationary waves, well known in the shallow water theory of fluid mechanics. Their distance is a direct function of the hydromechanical diffusivities. These instabilities only emerge in low permeability environment where the fluid diffusivity is about an order of magnitude lower than the mechanical loading. The instabilities are expected to be of the type as shown in the image below. The image shows a CT-scan of a laboratory experiment kindly provided by Papamichos (pers

  1. 3-D seismic improves structural mapping of a gas storage reservoir (Paris basin)

    SciTech Connect

    Huguet, F. ); Pinson, C. )

    1993-09-01

    In the Paris basin, anticlinal structures with closure of no more than 80 m and surface area of a few km[sup 2] are used for underground gas storage. At Soings-en-Sologne, a three-dimensional (3-D) survey (13 km[sup 2]) was carried out over such a structure to establish its exact geometry and to detail its fault network. Various reflectors were picked automatically on the migrated data: the top of the Kimmeridgian, the top of the Bathoinian and the base of the Hettangian close to the top of the reservoir. The isochron maps were converted into depth using data from 12 wells. Horizon attributes (amplitude, dip, and azimuth) were used to reconstruct the fault's pattern with much greater accuracy than that supplied by interpretation from previous two-dimensional seismic. The Triassic and the Jurassic are affected by two systems of conjugate faults (N10-N110, inherited from the Hercynian basement and N30-N120). Alternating clay and limestone are the cause of numerous structural disharmonies, particularly on both sides of the Bathonian. Ridges associated with N30-N120 faults suggest compressive movements contemporaneous with the tertiary events. The northern structure in Soings-en-Sologne thus appear to be the result of polyphased tectonics. Its closure (25 m), which is associated either with dips or faults, is described in detail by 3-D seismic, permitting more accurate forecast of the volume available for gas storage.

  2. Sedimentology and reservoir characteristics of tight gas sandstones, Frontier formation, southwestern Wyoming

    SciTech Connect

    Moslow, T.F.; Tillman, R.W.

    1984-04-01

    The lower Frontier Formation, Moxa arch area, southwestern Wyoming, is one of the most prolific gas-producing formations in the Rocky Mountain region. Lower Frontier sediments were deposited as strandplains and coalescing wave-dominated deltas that prograding into the western margin of the Cretaceous interior seaway during the Cenomanian. In this study, sedimentologic, petrologic, and stratigraphic analyses were conducted on cores and logs of Frontier wells from the Whiskey Buttes and Moxa fields. Twelve sedimentary facies have been identified. The most common sequence consists of burrowed to cross-bedded near shore marine (delta-front and inner-shelf) sandstones disconformably overlain by cross-bedded (active) to deformed (abandoned) distributary-channel sandstones and conglomerates. The sequence is capped by delta-plain mudstones and silty sandstones. Tight-gas sandstone reservoir facies are non-homogenous and include crevasse splay, abandoned and active distributary channel, shoreface, foreshore, and inner shelf sandstones. Distributary-channel facies represent 80% of perforated intervals in wells in the southern part of the Moxa area, but only 50% to the north. Channel sandstone bodies are occasionally stacked, occur on the same stratigraphic horizon, and are laterally discontinuous with numerous permeability barriers. Percentage of perforated intervals in upper shoreface and foreshore facies increases from 20% in the south to 50% in the north.

  3. Sedimentology and reservoir characteristics of tight gas sandstones, Frontier formation, southwestern Wyoming

    SciTech Connect

    Moslow, T.F.; Tillman, R.W.

    1984-04-01

    The lower Frontier Formation, Moxa arch area, southwestern Wyoming, is one of the most prolific gas-producing formations in the Rocky Mountain region. Lowr Frontier sediments were deposited as strandplains and coalescing wave-dominated deltas that prograding into the western margin of the Cretaceous interior seaway during the Cenomanian. In this study, sedimentologic, petrologic, and stratigraphic analyses were conducted on cores and logs of Frontier wells from the Whiskey Buttes and Moxa fields. Twelve sedimentary facies have been identified. The most common sequence consists of burrowed to cross-bedded near shore marine (delta-front and inner-shelf) sandstones disconformably overlain by crossbedded (active) to deformed (abandoned) distributary-channel sandstones and conglomerates. The sequence is capped by delta-plain mudstones and silty sandstones. Tight-gas sandstone reservoir facies are nonhomogenous and include crevasse splay, abandoned and active distributary channel, shoreface, foreshore, and inner shelf sandstones. Distributary-channel facies represent 80% of perforated intervals in wells in the southern part of the Moxa area, but only 50% to the north. Channel sandstone bodies are occasionally stacked, occur on the same stratigraphic horizon, and are laterally discontinuous with numerous permeability barriers. Percentage of perforated intervals in upper shoreface and foreshore facies increases from 20% in the south to 50% in the north.

  4. HIGH RESOLUTION PREDICTION OF GAS INJECTION PROCESS PERFORMANCE FOR HETEROGENEOUS RESERVOIRS

    SciTech Connect

    Franklin M. Orr, Jr.

    2003-03-31

    This report outlines progress in the second quarter of the third year of the DOE project ''High Resolution Prediction of Gas Injection Process Performance for Heterogeneous Reservoirs''. This report presents results of an investigation of the effects of variation in interfacial tension (IFT) on three-phase relative permeability. We report experimental results that demonstrate the effect of low IFT between two of three phases on the three-phase relative permeabilities. In order to create three-phase systems, in which IFT can be controlled systematically, we employed analog liquids composing of hexadecane, n-butanol, isopropanol, and water. Phase composition, phase density and viscosity, and IFT of three-phase system were measured and are reported here. We present three-phase relative permeabilities determined from recovery and pressure drop data using the Johnson-Bossler-Naumann (JBN) method. The phase saturations were obtained from recovery data by the Welge method. The experimental results indicate that the wetting phase relative permeability was not affected by IFT variation whereas the other two-phase relative permeabilities were clearly affected. As IFT decreases the ''oil'' and ''gas'' phases become more mobile at the same phase saturations.

  5. Efficiency optimization of a closed indirectly fired gas turbine cycle working under two variable-temperature heat reservoirs

    NASA Astrophysics Data System (ADS)

    Ma, Zheshu; Wu, Jieer

    2011-08-01

    Indirectly or externally fired gas turbines (IFGT or EFGT) are interesting technologies under development for small and medium scale combined heat and power (CHP) supplies in combination with micro gas turbine technologies. The emphasis is primarily on the utilization of the waste heat from the turbine in a recuperative process and the possibility of burning biomass even "dirty" fuel by employing a high temperature heat exchanger (HTHE) to avoid the combustion gases passing through the turbine. In this paper, finite time thermodynamics is employed in the performance analysis of a class of irreversible closed IFGT cycles coupled to variable temperature heat reservoirs. Based on the derived analytical formulae for the dimensionless power output and efficiency, the efficiency optimization is performed in two aspects. The first is to search the optimum heat conductance distribution corresponding to the efficiency optimization among the hot- and cold-side of the heat reservoirs and the high temperature heat exchangers for a fixed total heat exchanger inventory. The second is to search the optimum thermal capacitance rate matching corresponding to the maximum efficiency between the working fluid and the high-temperature heat reservoir for a fixed ratio of the thermal capacitance rates of the two heat reservoirs. The influences of some design parameters on the optimum heat conductance distribution, the optimum thermal capacitance rate matching and the maximum power output, which include the inlet temperature ratio of the two heat reservoirs, the efficiencies of the compressor and the gas turbine, and the total pressure recovery coefficient, are provided by numerical examples. The power plant configuration under optimized operation condition leads to a smaller size, including the compressor, turbine, two heat reservoirs and the HTHE.

  6. Data assimilation of surface displacements to improve geomechanical parameters of gas storage reservoirs

    NASA Astrophysics Data System (ADS)

    Zoccarato, C.; Baó, D.; Ferronato, M.; Gambolati, G.; Alzraiee, A.; Teatini, P.

    2016-03-01

    Although the beginning of reservoir geomechanics dates back to the late 1960s, only recently stochastical geomechanical modelling has been introduced into the general framework of reservoir operational planning. In this study, the ensemble smoother (ES) algorithm, i.e., an ensemble-based data assimilation method, is employed to reduce the uncertainty of the constitutive parameters characterizing the geomechanical model of an underground gas storage (UGS) field situated in the upper Adriatic sedimentary basin (Italy), the Lombardia UGS. The model is based on a nonlinear transversely isotropic stress-strain constitutive law and is solved by 3-D finite elements. The Lombardia UGS experiences seasonal pore pressure change caused by fluid extraction/injection leading to land settlement/upheaval. The available observations consist of vertical and horizontal time-lapse displacements accurately measured by persistent scatterer interferometry (PSI) on RADARSAT scenes acquired between 2003 and 2008. The positive outcome of preliminary tests on simplified cases has supported the use of the ES to jointly assimilate vertical and horizontal displacements. The ES approach is shown to effectively reduce the spread of the uncertain parameters, i.e., the Poisson's ratio, the ratio between the horizontal and vertical Young and shear moduli, and the ratio between the virgin loading (I cycle) and unloading/reloading (II cycle) compressibility. The outcomes of the numerical simulations point out that the updated parameters depend on the assimilated measurement locations as well as the error associated to the PSI measurements. The parameter estimation may be improved by taking into account possible model and/or observation biases along with the use of an assimilation approach, e.g., the Iterative ensemble smoother, more appropriate for nonlinear problems.

  7. Micro and nano-size pores of clay minerals in shale reservoirs: Implication for the accumulation of shale gas

    NASA Astrophysics Data System (ADS)

    Chen, Shangbin; Han, Yufu; Fu, Changqin; Zhang, han; Zhu, Yanming; Zuo, Zhaoxi

    2016-08-01

    A pore is an essential component of shale gas reservoirs. Clay minerals are the adsorption carrier second only to organic matter. This paper uses the organic maturity test, Field-Emission Scanning Electron Microscopy (FE-SEM), and X-ray Diffraction (XRD) to study the structure and effect of clay minerals on storing gas in shales. Results show the depositional environment and organic maturity influence the content and types of clay minerals as well as their structure in the three types of sedimentary facies in China. Clay minerals develop multi-size pores which shrink to micro- and nano-size by close compaction during diagenesis. Micro- and nano-pores can be divided into six types: 1) interlayer, 2) intergranular, 3) pore and fracture in contact with organic matter, 4) pore and fracture in contact with other types of minerals, 5) dissolved and, 6) micro-cracks. The contribution of clay minerals to the presence of pores in shale is evident and the clay plane porosity can even reach 16%, close to the contribution of organic matter. The amount of clay minerals and pores displays a positive correlation. Clay minerals possess a strong adsorption which is affected by moisture and reservoir maturity. Different pore levels of clay minerals are mutually arranged, thus essentially producing distinct reservoir adsorption effects. Understanding the structural characteristics of micro- and nano-pores in clay minerals can provide a tool for the exploration and development of shale gas reservoirs.

  8. Investigation of gas hydrate-bearing sandstone reservoirs at the "Mount Elbert" stratigraphic test well, Milne Point, Alaska

    SciTech Connect

    Boswell, R.M.; Hunter, R.; Collett, T.; Digert, S. Inc., Anchorage, AK); Hancock, S.; Weeks, M. Inc., Anchorage, AK); Mt. Elbert Science Team

    2008-01-01

    In February 2007, the U.S. Department of Energy, BP Exploration (Alaska), Inc., and the U.S. Geological Survey conducted an extensive data collection effort at the "Mount Elbert #1" gas hydrates stratigraphic test well on the Alaska North Slope (ANS). The 22-day field program acquired significant gas hydrate-bearing reservoir data, including a full suite of open-hole well logs, over 500 feet of continuous core, and open-hole formation pressure response tests. Hole conditions, and therefore log data quality, were excellent due largely to the use of chilled oil-based drilling fluids. The logging program confirmed the existence of approximately 30 m of gashydrate saturated, fine-grained sand reservoir. Gas hydrate saturations were observed to range from 60% to 75% largely as a function of reservoir quality. Continuous wire-line coring operations (the first conducted on the ANS) achieved 85% recovery through 153 meters of section, providing more than 250 subsamples for analysis. The "Mount Elbert" data collection program culminated with open-hole tests of reservoir flow and pressure responses, as well as gas and water sample collection, using Schlumberger's Modular Formation Dynamics Tester (MDT) wireline tool. Four such tests, ranging from six to twelve hours duration, were conducted. This field program demonstrated the ability to safely and efficiently conduct a research-level openhole data acquisition program in shallow, sub-permafrost sediments. The program also demonstrated the soundness of the program's pre-drill gas hydrate characterization methods and increased confidence in gas hydrate resource assessment methodologies for the ANS.

  9. Evaluation of the 3-D channeling flow in a fractured type of oil/gas reservoir

    NASA Astrophysics Data System (ADS)

    Ishibashi, T.; Watanabe, N.; Tsuchiya, N.; Tamagawa, T.

    2013-12-01

    An understanding of the flow and transport characteristics through rock fracture networks is of critical importance in many engineering and scientific applications. These include effective recovery of targeted fluid such as oil/gas, geothermal, or potable waters, and isolation of hazardous materials. Here, the formation of preferential flow path (i.e. channeling flow) is one of the most significant characteristics in considering fluid flow through rock fracture networks; however, the impact of channeling flow remains poorly understood. In order to deepen our understanding of channeling flow, the authors have developed a novel discrete fracture network (DFN) model simulator, GeoFlow. Different from the conventional DFN model simulators, we can characterize each fracture not by a single aperture value but by a heterogeneous aperture distribution in GeoFlow [Ishibashi et al., 2012]. As a result, the formation of 3-D preferential flow paths within fracture network can be considered by using this simulator. Therefore, we would challenge to construct the precise fracture networks whose fractures have heterogeneous aperture distributions in field scale, and to analyze fluid flows through the fracture networks by GeoFlow. In the present study, the Yufutsu oil/gas field in Hokkaido, Japan is selected as the subject area for study. This field is known as the fractured type of reservoir, and reliable DFN models can be constructed for this field based on the 3-D seismic data, well logging, in-situ stress measurement, and acoustic emission data [Tamagawa et al., 2012]. Based on these DFN models, new DFN models for 1,080 (East-West) × 1,080 (North-South) × 1,080 (Depth) m^3, where fractures are represented by squares of 44-346 m on a side, are re-constructed. In these new models, scale-dependent aperture distributions are considered for all fractures constructing the fracture networks. Note that the multi-scale modeling of fracture flow has been developed by the authors

  10. Expanding the range for predicting critical flow rates of gas wells producing from normally pressured waterdrive reservoirs

    SciTech Connect

    Upchurch, E.R. )

    1989-08-01

    The critical flow rate of a gas well is the minimum flow rate required to prevent accumulation of liquids in the tubing. Theoretical models currently available for estimating critical flow rates are restricted to wells with water/gas ratios less than 150bbl/MMcf (0.84 X 10/sup -3/ m/sup 3//m/sup 3/). For wells producing at higher water/gas ratios from normally pressured waterdrive reservoirs, a method of estimating critical flow rates is derived through use of an empirical multiphase-flow correlation.