Science.gov

Sample records for gas solar energy

  1. Advanced solar energy conversion. [solar pumped gas lasers

    NASA Technical Reports Server (NTRS)

    Lee, J. H.

    1981-01-01

    An atomic iodine laser, a candidate for the direct solar pumped lasers, was successfully excited with a 4 kW beam from a xenon arc solar simulator, thus proving the feasibility of the concept. The experimental set up and the laser output as functions of operating conditions are presented. The preliminary results of the iodine laser amplifier pumped with the HCP array to which a Q switch for giant pulse production was coupled are included. Two invention disclosures - a laser driven magnetohydrodynamic generator for conversion of laser energy to electricity and solar pumped gas lasers - are also included.

  2. Assessment of residential passive solar/gas-fired energy systems

    NASA Astrophysics Data System (ADS)

    Hartman, D. L.; Hirshberg, A. S.

    1982-12-01

    The study was made to provide a comprehensive analysis of the issues involved in integrating passive solar with gas-fired back-up energy systems including: characterize major passive solar technologies; analyze technical and economic requirements of back-up heating and cooling systems; evaluate potential improvements for gas-fired heating equipment that could enhance its fit with passive solar heating; investigate the feasibility of passive solar cooling coupled with gas dehumidification equipment; and identify R&D opportunities for GRI which offer benefits to the gas ratepayer and to the gas industry. Passive solar heating, because of its potential to significantly reduce home heating loads and of the ease with which electric backup systems can be installed could result in a decrease in gas market share, as a primary heating fuel in new housing.

  3. A solar simulator-pumped gas laser for the direct conversion of solar energy

    NASA Technical Reports Server (NTRS)

    Weaver, W. R.; Lee, J. H.

    1981-01-01

    Most proposed space power systems are comprised of three general stages, including the collection of the solar radiation, the conversion to a useful form, and the transmission to a receiver. The solar-pumped laser, however, effectively eliminates the middle stage and offers direct photon-to-photon conversion. The laser is especially suited for space-to-space power transmission and communication because of minimal beam spread, low power loss over large distances, and extreme energy densities. A description is presented of the first gas laser pumped by a solar simulator that is scalable to high power levels. The lasant is an iodide C3F7I that as a laser-fusion driver has produced terawatt peak power levels.

  4. Solar Energy.

    ERIC Educational Resources Information Center

    Eaton, William W.

    Presented is the utilization of solar radiation as an energy resource principally for the production of electricity. Included are discussions of solar thermal conversion, photovoltic conversion, wind energy, and energy from ocean temperature differences. Future solar energy plans, the role of solar energy in plant and fossil fuel production, and…

  5. Personalized energy: the home as a solar power station and solar gas station.

    PubMed

    Nocera, Daniel G

    2009-01-01

    Point-of-use solar energy would generate the exact amount of energy any one individual needs, at the location where it is needed. Such a means of energy supply would create a revolution in society's approach to energy use, and allow a more level playing field for all. This Viewpoint considers some of the key enablers for this technology. PMID:19408259

  6. Solar-assisted gas-energy water-heating feasibility for apartments

    NASA Technical Reports Server (NTRS)

    Davis, E. S.

    1975-01-01

    Studies of residential energy use, solar-energy technology for buildings, and the requirements for implementing technology in the housing industry led to a project to develop a solar water heater for apartments. A design study for a specific apartment was used to establish a solar water-heater cost model which is based on plumbing contractor bids and manufacturer estimates. The cost model was used to size the system to minimize the annualized cost of hot water. The annualized cost of solar-assisted gas-energy water heating is found to be less expensive than electric water heating but more expensive than gas water heating. The feasibility of a natural gas utility supplying the auxiliary fuel is evaluated. It is estimated that gas-utilizing companies will find it profitable to offer solar water heating as part of a total energy service option or on a lease basis when the price of new base-load supplies of natural gas reaches $2.50-$3.00 per million Btu.

  7. Solar energy

    NASA Technical Reports Server (NTRS)

    Rapp, D.

    1981-01-01

    The book opens with a review of the patterns of energy use and resources in the United States, and an exploration of the potential of solar energy to supply some of this energy in the future. This is followed by background material on solar geometry, solar intensities, flat plate collectors, and economics. Detailed attention is then given to a variety of solar units and systems, including domestic hot water systems, space heating systems, solar-assisted heat pumps, intermediate temperature collectors, space heating/cooling systems, concentrating collectors for high temperatures, storage systems, and solar total energy systems. Finally, rights to solar access are discussed.

  8. A space-based combined thermophotovoltaic electric generator and gas laser solar energy conversion system

    NASA Technical Reports Server (NTRS)

    Yesil, Oktay

    1989-01-01

    This paper describes a spaceborne energy conversion system consisting of a thermophotovoltaic electric generator and a gas laser. As a power source for the converson, the system utilizes an intermediate blackbody cavity heated to a temperature of 2000-2400 K by concentrated solar radiation. A double-layer solar cell of GaAs and Si forms a cylindrical surface concentric to this blackbody cavity, receiving the blackbody radiation and converting it into electricity with cell conversion efficiency of 50 percent or more. If the blackbody cavity encloses a laser medium, the blackbody radiation can also be used to simultaneously pump a lasing gas. The feasibility of blackbody optical pumping at 4.3 microns in a CO2-He gas mixture was experimentally demonstrated.

  9. Toward the renewables - A natural gas/solar energy transition strategy

    NASA Technical Reports Server (NTRS)

    Hanson, J. A.; Escher, W. J. D.

    1979-01-01

    The inevitability of an energy transition from today's non-renewable fossil base toward a renewable energy base is considered from the viewpoint of the need for a national transition strategy. Then, one such strategy is offered. Its technological building blocks are described in terms of both energy use and energy supply. The strategy itself is then sketched at four points in its implementation; (1) initiation, (2) early transition, (3) late transition, and (4) completion. The transition is assumed to evolve from a heavily natural gas-dependent energy economy. It then proceeds through its transition toward a balanced, hybrid energy system consisting of both centralized and dispersed energy supply technologies supplying hydrogen and electricity from solar energy. Related institutional, environmental and economic factors are examined briefly.

  10. Solar Energy

    ERIC Educational Resources Information Center

    Building Design and Construction, 1977

    1977-01-01

    Describes 21 completed projects now using solar energy for heating, cooling, or electricity. Included are elementary schools in Atlanta and San Diego, a technical school in Detroit, and Trinity University in San Antonio, Texas. (MLF)

  11. Energy map of southwestern Wyoming, Part B: oil and gas, oil shale, uranium, and solar

    USGS Publications Warehouse

    Biewick, Laura R.H.; Wilson, Anna B.

    2014-01-01

    The U.S. Geological Survey (USGS) has compiled Part B of the Energy Map of Southwestern Wyoming for the Wyoming Landscape Conservation Initiative (WLCI). Part B consists of oil and gas, oil shale, uranium, and solar energy resource information in support of the WLCI. The WLCI represents the USGS partnership with other Department of the Interior Bureaus, State and local agencies, industry, academia, and private landowners, all of whom collaborate to maintain healthy landscapes, sustain wildlife, and preserve recreational and grazing uses while developing energy resources in southwestern Wyoming. This product is the second and final part of the Energy Map of Southwestern Wyoming series (also see USGS Data Series 683, http://pubs.usgs.gov/ds/683/), and encompasses all of Carbon, Lincoln, Sublette, Sweetwater, and Uinta Counties, as well as areas in Fremont County that are in the Great Divide and Green River Basins.

  12. Solar Energy Systems

    NASA Technical Reports Server (NTRS)

    1981-01-01

    A waste water treatment plant in Wilton, Maine, where sludge is converted to methane gas, and Monsanto Company's Environmental Health Laboratory in St. Louis Missouri, where more than 200 solar collectors provide preheating of boiler feed water for laboratory use are representative of Grumman's Sunstream line of solar energy equipment. This equipment was developed with technology from NASA's Apollo lunar module program.

  13. Solar thermal energy receiver

    NASA Technical Reports Server (NTRS)

    Baker, Karl W. (Inventor); Dustin, Miles O. (Inventor)

    1992-01-01

    A plurality of heat pipes in a shell receive concentrated solar energy and transfer the energy to a heat activated system. To provide for even distribution of the energy despite uneven impingement of solar energy on the heat pipes, absence of solar energy at times, or failure of one or more of the heat pipes, energy storage means are disposed on the heat pipes which extend through a heat pipe thermal coupling means into the heat activated device. To enhance energy transfer to the heat activated device, the heat pipe coupling cavity means may be provided with extensions into the device. For use with a Stirling engine having passages for working gas, heat transfer members may be positioned to contact the gas and the heat pipes. The shell may be divided into sections by transverse walls. To prevent cavity working fluid from collecting in the extensions, a porous body is positioned in the cavity.

  14. Solar Energy: Solar System Economics.

    ERIC Educational Resources Information Center

    Knapp, Henry H., III

    This module on solar system economics is one of six in a series intended for use as supplements to currently available materials on solar energy and energy conservation. Together with the recommended texts and references (sources are identified), these modules provide an effective introduction to energy conservation and solar energy technologies.…

  15. Solar Energy: Solar System Economics.

    ERIC Educational Resources Information Center

    Knapp, Henry H., III

    This module on solar system economics is one of six in a series intended for use as supplements to currently available materials on solar energy and energy conservation. Together with the recommended texts and references (sources are identified), these modules provide an effective introduction to energy conservation and solar energy technologies.

  16. Collecting Solar Energy. Solar Energy Education Project.

    ERIC Educational Resources Information Center

    O'Brien, Alexander

    This solar energy learning module for use with junior high school students offers a list of activities, a pre-post test, job titles, basic solar energy vocabulary, and diagrams of solar energy collectors and installations. The purpose is to familiarize students with applications of solar energy and titles of jobs where this knowledge could be

  17. Collecting Solar Energy. Solar Energy Education Project.

    ERIC Educational Resources Information Center

    O'Brien, Alexander

    This solar energy learning module for use with junior high school students offers a list of activities, a pre-post test, job titles, basic solar energy vocabulary, and diagrams of solar energy collectors and installations. The purpose is to familiarize students with applications of solar energy and titles of jobs where this knowledge could be…

  18. Solar energy collector

    DOEpatents

    Brin, Raymond L.; Pace, Thomas L.

    1978-01-01

    The invention relates to a solar energy collector comprising solar energy absorbing material within chamber having a transparent wall, solar energy being transmitted through the transparent wall, and efficiently absorbed by the absorbing material, for transfer to a heat transfer fluid. The solar energy absorbing material, of generally foraminous nature, absorbs and transmits the solar energy with improved efficiency.

  19. The Feasibility of Wind and Solar Energy Application for Oil and Gas Offshore Platform

    NASA Astrophysics Data System (ADS)

    Tiong, Y. K.; Zahari, M. A.; Wong, S. F.; Dol, S. S.

    2015-04-01

    Renewable energy is an energy which is freely available in nature such as winds and solar energy. It plays a critical role in greening the energy sector as these sources of energy produce little or no pollution to environment. This paper will focus on capability of renewable energy (wind and solar) in generating power for offshore application. Data of wind speeds and solar irradiation that are available around SHELL Sabah Water Platform for every 10 minutes, 24 hours a day, for a period of one year are provided by SHELL Sarawak Sdn. Bhd. The suitable wind turbine and photovoltaic panel that are able to give a high output and higher reliability during operation period are selected by using the tabulated data. The highest power output generated using single wind energy application is equal to 492 kW while for solar energy application is equal to 20 kW. Using the calculated data, the feasibility of renewable energy is then determined based on the platform energy demand.

  20. Solar Energy and You.

    ERIC Educational Resources Information Center

    Conservation and Renewable Energy Inquiry and Referral Service (DOE), Silver Spring, MD.

    This booklet provides an introduction to solar energy by discussing: (1) how a home is heated; (2) how solar energy can help in the heating process; (3) the characteristics of passive solar houses; (4) the characteristics of active solar houses; (5) how solar heat is stored; and (6) other uses of solar energy. Also provided are 10 questions to…

  1. Solar Energy Reporting

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Last year the people of Cleveland, Ohio were troubled by natural gas shortages during one of the coldest winters on record. The severe winter generated a great deal of interest in solar energy as an alternative source of heat. Home owners, home builders and civic officials wanted to know just how much solar energy is available in Cleveland. Now they get a daily report through the city's news media, from information supplied as a community service by NASA's Lewis Research Center. Lewis routinely makes daily measurements of solar energy as part of its continuing research in behalf of the Department of Energy. The measuring device is a sun sensor called a pyranometer (upper photo) located atop a building at the NASA Center. To make the information conveniently available to news media, Lewis developed a Voice Output Integrating Insolometer, an automated system that acquires information from the sun sensor and translates it into a recorded telephone message. The Lewis pyranometer collects sun data for 15 hours daily and measures the total solar energy yield. For reporting to the public, the information is electronically converted to a specific reading. A media representative calling in gets a voice-synthesized announcement of a two or three digit number; the number corresponds to the kilowatt-hours of solar energy that would be available to a typical 500-square-foot solar collector system. Response in Cleveland has been favorable and interest is developing in other parts of the country.

  2. Solar energy system

    SciTech Connect

    Langley, D.T.

    1983-01-25

    A solar energy system is disclosed in which the solar energy is converted to electrical energy for immediate use or the energy may be stored for use at a later date. The solar energy is converted to electrical energy by a large photo-voltaic array and the output of the photo-voltaic array is fed through an inverter and other control circuitry to produce an A.C. electrical output of a predetermined magnitude. The A.C. electrical output may be used directly or the electrical energy may be fed to a storage system for later use. In one embodiment the A.C. electrical energy is employed to drive a pneumatic pump or air compressor for storing the energy in the form of a compressed gas, either in a rigid tank or in a resiliently expandable tank. The compressed air from the tank is released through a control valve and is fed through a pneumatic motor. The pneumatic motor drives an electric generator for producing an A.C. electrical output at the desired times. In another embodiment of the invention, the electrical storage system comprises a system suitable to lift a weight. The potential energy is later converted to kinetic energy by lowering the weight and through a linkage system, is utilized for the generation of electricity through an electric generator.

  3. Solar Energy Systems

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Calibrated in kilowatt hours per square meter, the solar counter produced by Dodge Products, Inc. provides a numerical count of the solar energy that has accumulated on a surface. Solar energy sensing, measuring and recording devices in corporate solar cell technology developed by Lewis Research Center. Customers for their various devices include architects, engineers and others engaged in construction and operation of solar energy facilities; manufacturers of solar systems or solar related products, such as glare reducing windows; and solar energy planners in federal and state government agencies.

  4. Alternatives in solar energy

    NASA Technical Reports Server (NTRS)

    Schueler, D. G.

    1978-01-01

    Although solar energy has the potential of providing a significant source of clean and renewable energy for a variety of applications, it is expected to penetrate the nation's energy economy very slowly. The alternative solar energy technologies which employ direct collection and conversion of solar radiation as briefly described.

  5. National Energy Act statutes and solar energy

    SciTech Connect

    Howard, J.

    1980-02-01

    The National Energy Act of 1978 contains many provisions that will significantly affect solar technology commercialization and solar energy users. Four of the five statutes that comprise the National Energy Act deserve close attention. The National Energy Conservation Policy Act will promote residential solar installations. The Energy Tax Act will accelerate both residential and commercial solar system applications. The Public Utilities Regulatory Policies Act promotes efficient use of utility resources as well as decentralized power production. And, the Power Plan and Industrial Fuel Use Act places severe restrictions on future burning of petroleum and natural gas, which should lead some operators to build or convert to solar energy systems. Each of the preceding acts are considered in separate sections of this report. Federal regulations issued pursuant to the various provisions are also identified and discussed, and some of the problems with the provisions and regulations are noted.

  6. Gas-grain energy transfer in solar nebula shock waves: Implications for the origin of chondrules

    NASA Technical Reports Server (NTRS)

    Hood, L. L.; Horanyi, M.

    1993-01-01

    Meteoritic chondrules provide evidence for the occurrence of rapid transient heating events in the protoplanetary nebula. Astronomical evidence suggests that gas dynamic shock waves are likely to be excited in protostellar accretion disks by processes such as protosolar mass ejections, nonaxisymmetric structures in an evolving disk, and impact on the nebula surface of infalling 'clumps' of circumstellar gas. Previous detailed calculations of gas-grain energy and momentum transfer have supported the possibility that such shock waves could have melted pre-existing chondrule-sized grains. The main requirement for grains to reach melting temperatures in shock waves with plausibly low Mach numbers is that grains existed in dust-rich zones (optical depth greater than 1) where radiative cooling of a given grain can be nearly balanced by radiation from surrounding grains. Localized dust-rich zones also provide a means of explaining the apparent small spatial scale of heating events. For example, the scale size of at least some optically thick dust-rich zones must have been relatively small (less than 10 kilometers) to be consistent with petrologic evidence for accretion of hot material onto cold chondrules. The implied number density of mm-sized grains for these zones would be greater than 30 m(exp -3). In this paper, we make several improvements of our earlier calculations to include radiation self-consistently in the shock jump conditions, and we include heating of grains due to radiation from the shocked gas. In addition, we estimate the importance of momentum feedback of dust concentrations onto the shocked gas which would tend to reduce the efficiency of gas dynamic heating of grains in the center of the dust cloud.

  7. Solar Energy Usage.

    ERIC Educational Resources Information Center

    Crank, Ron

    This instructional unit is one of 10 developed by students on various energy-related areas that deals specifically with solar energy use. Its objective is for the student to be able to discuss the broad aspects of solar energy use and to explain the general operation of solar systems. Some topics covered are availability and economics of solar…

  8. Benefit assessment of solar-augmented natural gas systems

    NASA Technical Reports Server (NTRS)

    Davis, E. S.; French, R. L.; Sohn, R. L.

    1980-01-01

    Report details how solar-energy-augmented system can reduce natural gas consumption by 40% to 70%. Applications discussed include: domestic hot water system, solar-assisted gas heat pumps, direct heating from storage tank. Industrial uses, solar-assisted appliances, and economic factors are discussed.

  9. Solar Energy Technician/Installer

    ERIC Educational Resources Information Center

    Moore, Pam

    2007-01-01

    Solar power (also known as solar energy) is solar radiation emitted from the sun. Large panels that absorb the sun's energy as the sun beats down on them gather solar power. The energy in the rays can be used for heat (solar thermal energy) or converted to electricity (photovoltaic energy). Each solar energy project, from conception to

  10. Solar Energy Technician/Installer

    ERIC Educational Resources Information Center

    Moore, Pam

    2007-01-01

    Solar power (also known as solar energy) is solar radiation emitted from the sun. Large panels that absorb the sun's energy as the sun beats down on them gather solar power. The energy in the rays can be used for heat (solar thermal energy) or converted to electricity (photovoltaic energy). Each solar energy project, from conception to…

  11. Solar energy emplacement developer

    NASA Technical Reports Server (NTRS)

    Mortensen, Michael; Sauls, Bob

    1991-01-01

    A preliminary design was developed for a Lunar Power System (LPS) composed of photovoltaic arrays and microwave reflectors fabricated from lunar materials. The LPS will collect solar energy on the surface of the Moon, transform it into microwave energy, and beam it back to Earth where it will be converted into usable energy. The Solar Energy Emplacement Developer (SEED) proposed will use a similar sort of solar energy collection and dispersement to power the systems that will construct the LPS.

  12. Experimenting with Solar Energy

    ERIC Educational Resources Information Center

    Roman, Harry T.

    2004-01-01

    Over the past 25 years, the author has had the opportunity to study the subject of solar energy and to get involved with the installation, operation, and testing of solar energy systems. His work has taken him all over the United States and put him in contact with solar experts from around the world. He has also had the good fortune of seeing some

  13. Experimenting with Solar Energy

    ERIC Educational Resources Information Center

    Roman, Harry T.

    2004-01-01

    Over the past 25 years, the author has had the opportunity to study the subject of solar energy and to get involved with the installation, operation, and testing of solar energy systems. His work has taken him all over the United States and put him in contact with solar experts from around the world. He has also had the good fortune of seeing some…

  14. [Efficiency of oxidant gas generator cells powered by electric or solar energy].

    PubMed

    Brust Carmona, H; Benitez, A; Zarco, J; Sánchez, E; Mascher, I

    1998-02-01

    Diseases caused by microbial contaminants in drinking water continue to be a serious problem in countries like Mexico. Chlorination, using chlorine gas or chlorine compounds, is one of the best ways to treat drinking water. However, difficulties in handling chlorine gas and the inefficiency of hypochlorite solution dosing systems--due to sociopolitical, economic, and cultural factors--have reduced the utility of these chlorination procedures, especially in far-flung and inaccessible rural communities. These problems led to the development of appropriate technologies for the disinfection of water by means of the on-site generation of mixed oxidant gases (chlorine and ozone). This system, called MOGGOD, operates through the electrolysis of a common salt solution. Simulated system evaluation using a hydraulic model allowed partial and total costs to be calculated. When powered by electrical energy from the community power grid, the system had an efficiency of 90%, and in 10 hours it was able to generate enough gases to disinfect about 200 m3 of water at a cost of approximately N$8 (US $1.30). When the electrolytic cell was run on energy supplied through a photoelectric cell, the investment costs were higher. A system fed by photovoltaic cells could be justified in isolated communities that lack electricity but have a gravity-fed water distribution system. PMID:9542448

  15. Solar energy modulator

    NASA Technical Reports Server (NTRS)

    Hale, R. R. (Inventor); Mcdougal, A. R.

    1984-01-01

    A module is described with a receiver having a solar energy acceptance opening and supported by a mounting ring along the optic axis of a parabolic mirror in coaxial alignment for receiving solar energy from the mirror, and a solar flux modulator plate for varying the quantity of solar energy flux received by the acceptance opening of the module. The modulator plate is characterized by an annular, plate-like body, the internal diameter of which is equal to or slightly greater than the diameter of the solar energy acceptance opening of the receiver. Slave cylinders are connected to the modulator plate for supporting the plate for axial displacement along the axis of the mirror, therby shading the opening with respect to solar energy flux reflected from the surface of the mirror to the solar energy acceptance opening.

  16. Solar Energy: Heat Storage.

    ERIC Educational Resources Information Center

    Knapp, Henry H., III

    This module on heat storage is one of six in a series intended for use as supplements to currently available materials on solar energy and energy conservation. Together with the recommended texts and references (sources are identified), these modules provide an effective introduction to energy conservation and solar energy technologies. The module…

  17. Solar Energy: Heat Transfer.

    ERIC Educational Resources Information Center

    Knapp, Henry H., III

    This module on heat transfer is one of six in a series intended for use as supplements to currently available materials on solar energy and energy conservation. Together with the recommended texts and references (sources are identified), these modules provide an effective introduction to energy conservation and solar energy technologies. The…

  18. Solar Energy: Home Heating.

    ERIC Educational Resources Information Center

    Knapp, Henry H., III

    This module on home heating is one of six in a series intended for use as supplements to currently available materials on solar energy and energy conservation. Together with the recommended texts and references (sources are identified), these modules provide an effective introduction to energy conservation and solar energy technologies. The module…

  19. Solar Energy Development Progresses

    ERIC Educational Resources Information Center

    Chemical and Engineering News, 1975

    1975-01-01

    Discusses an engineering conference at which participants agreed that solar energy is a feasible energy source, although costs of such technology are presently very high. Also describes recent developments in solar energy research, and estimates the costs of this technology. (MLH)

  20. The energy impacts of solar heating.

    PubMed

    Whipple, C

    1980-04-18

    The energy required to build and install solar space- and water-heating equipment is compared to the energy it saves under two solar growth paths corresponding to high and low rates of implementation projected by the Domestic Policy Review of Solar Energy. For the rapid growth case, the cumulative energy invested to the year 2000 is calculated to be (1/2) to 1(1/2) times the amount saved. An impact of rapid solar heating implementation is to shift energy demand from premium heating fuels (natural gas and oil) to coal and nuclear power use in the industries that provide materials for solar equipment. PMID:17820033

  1. Solar ADEPT: Efficient Solar Energy Systems

    SciTech Connect

    2011-01-01

    Solar ADEPT Project: The 7 projects that make up ARPA-E's Solar ADEPT program, short for 'Solar Agile Delivery of Electrical Power Technology,' aim to improve the performance of photovoltaic (PV) solar energy systems, which convert the sun's rays into electricity. Solar ADEPT projects are integrating advanced electrical components into PV systems to make the process of converting solar energy to electricity more efficient.

  2. Fluid absorption solar energy receiver

    NASA Technical Reports Server (NTRS)

    Bair, Edward J.

    1993-01-01

    A conventional solar dynamic system transmits solar energy to the flowing fluid of a thermodynamic cycle through structures which contain the gas and thermal energy storage material. Such a heat transfer mechanism dictates that the structure operate at a higher temperature than the fluid. This investigation reports on a fluid absorption receiver where only a part of the solar energy is transmitted to the structure. The other part is absorbed directly by the fluid. By proportioning these two heat transfer paths the energy to the structure can preheat the fluid, while the energy absorbed directly by the fluid raises the fluid to its final working temperature. The surface temperatures need not exceed the output temperature of the fluid. This makes the output temperature of the gas the maximum temperature in the system. The gas can have local maximum temperatures higher than the output working temperature. However local high temperatures are quickly equilibrated, and since the gas does not emit radiation, local high temperatures do not result in a radiative heat loss. Thermal radiation, thermal conductivity, and heat exchange with the gas all help equilibrate the surface temperature.

  3. Solar Energy: Solar and the Weather.

    ERIC Educational Resources Information Center

    Knapp, Henry H., III

    This module on solar and the weather is one of six in a series intended for use as supplements to currently available materials on solar energy and energy conservation. Together with the recommended texts and references (sources are identified), these modules provide an effective introduction to energy conservation and solar energy technologies.…

  4. Solar energy: principles and possibilities.

    PubMed

    Rhodes, Christopher J

    2010-01-01

    As the world faces an impending dearth of fossil fuels, most immediately oil, alternative sources of energy must be found. 174 PW worth of energy falls onto the top of the Earth's atmosphere in the form of sunlight which is almost 10,000 times the total amount of energy used by humans on Earth, as taken from all sources, oil, coal, natural gas, nuclear and hydroelectric power combined. If even a fraction of this could be harvested efficiently, the energy crunch could in principle be averted. Various means for garnering energy from the Sun are presented, including photovoltaics (PV), thin film solar cells, quantum dot cells, concentrating PV and thermal solar power stations, which are more efficient in practical terms. Finally the prospects of space based (satellite) solar power are considered. The caveat is that even if the entire world electricity budget could be met using solar energy, the remaining 80% of energy which is not used as electricity but thermal power (heat) still needs to be found in the absence of fossil fuels. Most pressingly, the decline of cheap plentiful crude oil (peak oil) will not find a substitution via solar unless a mainly electrified transportation system is devised and it is debatable that there is sufficient time and conventional energy remaining to accomplish this. The inevitable contraction of transportation will default a deconstruction of the globalised world economy into that of a system of localised communities. PMID:20222355

  5. A comparison of the solar-gas and solar-electric interface

    NASA Astrophysics Data System (ADS)

    Mannella, G. G.

    1982-01-01

    The introduction of large-scale solar-derived gas, electricity, and home heat into the national pipeline, electric grid, and fuel supply systems is discussed. Natural gas is shown to be substitutable for most other energy sources, having a lower cost per energy unit than electricity or oil, and able to be augmented by biomass derived methane or solar derived hydrogen. The latter is perceived as an unproven technology, both economically and technically. Solar home heating systems will lower the utilities' rate base and lead to minimum charge rates for solar customers and higher rates for regular customers unless utilities are permitted to enter the solar heating business as an extension of their role as a service institution. Dispersed solar electric systems are seen to be the least economical use of solar systems, while the solar-gas system offers the greatest potential as a bridge for solar technologies into residential, institutional, and commercial markets.

  6. Solar energy collection system

    NASA Technical Reports Server (NTRS)

    Selcuk, M. K. (Inventor)

    1977-01-01

    An improved solar energy collection system, having enhanced energy collection and conversion capabilities, is delineated. The system is characterized by a plurality of receivers suspended above a heliostat field comprising a multiplicity of reflector surfaces, each being adapted to direct a concentrated beam of solar energy to illuminate a target surface for a given receiver. A magnitude of efficiency, suitable for effectively competing with systems employed in collecting and converting energy extracted from fossil fuels, is indicated.

  7. Solar energy - Industrial applications

    NASA Astrophysics Data System (ADS)

    Kearney, D.; Lewandowski, A.

    1983-12-01

    Improved system efficiencies and reduced capital costs are identified as goals in the operation of solar energy industrial projects. An analysis by the Solar Energy Research Institute and DOE of the field performance of six industrial systems using the computer code SOLIPH showed that for well-designed and constructed steam systems a range of thermal efficiencies of 30 to 35 percent can be expected. The Modular Industrial Solar Retrofit program of Sandia National Laboratories is examined. The economics of industrial solar systems is considered with emphasis on technology costs and major economic parameters. It was found that the solar industrial process heat system was potentially competitive, both in the present and through 1998, only under the most favorable conditions. Local energy rates, solar conditions, land availability and tax incentives are shown to impact strongly on the feasibility of individual projects.

  8. Solar Renewable Energy. Teaching Unit.

    ERIC Educational Resources Information Center

    Buchanan, Marion; And Others

    This unit develops the concept of solar energy as a renewable resource. It includes: (1) an introductory section (developing understandings of photosynthesis and impact of solar energy); (2) information on solar energy use (including applications and geographic limitations of solar energy use); and (3) future considerations of solar energy…

  9. Solar Energy: Solar System Design Fundamentals.

    ERIC Educational Resources Information Center

    Knapp, Henry H., III

    This module on solar system design fundamentals is one of six in a series intended for use as supplements to currently available materials on solar energy and energy conservation. Together with the recommended texts and references (sources are identified), these modules provide an effective introduction to energy conservation and solar energy…

  10. Components for solar energy

    NASA Technical Reports Server (NTRS)

    1973-01-01

    A requirement for the direct technological utilization of solar energy is a device for capturing and absorbing the available sunlight. These devices are commonly termed collectors. Because of the highly variable nature of sunlight, a facility for storing the collected energy is often essential. A device for direct conversion of light into electricity, which depends for operation on incident sunlight, is the photovoltaic cell. These components for solar energy systems are considered.

  11. Solar energy for industrial process heat

    NASA Technical Reports Server (NTRS)

    Barbieri, R. H.; Pivirotto, D. L.

    1979-01-01

    Findings of study of potential use for solar energy utilization by California dairy industry, prove that applicable solar energy system furnish much of heat needed for milk processing with large savings in expenditures for oil and gas and ensurance of adequate readily available sources of process heat.

  12. Solar energy collection system

    NASA Technical Reports Server (NTRS)

    Miller, C. G.; Stephens, J. B. (Inventor)

    1979-01-01

    A fixed, linear, ground-based primary reflector having an extended curved sawtooth-contoured surface covered with a metalized polymeric reflecting material, reflects solar energy to a movably supported collector that is kept at the concentrated line focus reflector primary. The primary reflector may be constructed by a process utilizing well known freeway paving machinery. The solar energy absorber is preferably a fluid transporting pipe. Efficient utilization leading to high temperatures from the reflected solar energy is obtained by cylindrical shaped secondary reflectors that direct off-angle energy to the absorber pipe. A seriatim arrangement of cylindrical secondary reflector stages and spot-forming reflector stages produces a high temperature solar energy collection system of greater efficiency.

  13. Solar Energy Project: Text.

    ERIC Educational Resources Information Center

    Tullock, Bruce, Ed.; And Others

    The text is a compilation of background information which should be useful to teachers wishing to obtain some technical information on solar technology. Twenty sections are included which deal with topics ranging from discussion of the sun's composition to the legal implications of using solar energy. The text is intended to provide useful…

  14. The Solar Energy Notebook.

    ERIC Educational Resources Information Center

    Rankins, William H., III; Wilson, David A.

    This publication is a handbook for the do-it-yourselfer or anyone else interested in solar space and water heating. Described are methods for calculating sun angles, available energy, heating requirements, and solar heat storage. Also described are collector and system designs with mention of some design problems to avoid. Climatological data for…

  15. Solar energy in Peru

    SciTech Connect

    Pierson, H.

    1981-12-01

    The past, present, and future of Peru is discussed in terms of solar energy development and the social, economic, climatic, and technical factors involved. It is pointed out that there are 3 geographical divisions in Peru including: (1) the foggy coastal strip where rain is infrequent, insolation is low and population is high; (2) the mountainous Andes region with high insolation and many populated high mountain valleys; and (3) the rainy, Amazon basin covered with jungle, and sparcely populated with high but inconsistent insolation. Since there is little competition with other forms of energy, solar energy shows promise. Passive solar heating of buildings, particularly in the Andes region, is described, as well as the use of solar water heaters. Prototypes are described and illustrated. Industrial use of solar heated water in the wool industry as well as solar food drying and solar desalination are discussed. High temperature applications (electrical generators and refrigeration) as well as photovoltaic systems are discussed briefly. It is concluded that social and political factors are holding back the development of solar energy but a start (in the form of prototypes and demonstration programs) is being made. (MJJ)

  16. Solar Energy Project: Reader.

    ERIC Educational Resources Information Center

    Tullock, Bruce, Ed.; And Others

    This document is designed to give both teachers and students the opportunity to review a variety of representative articles on solar energy. Consideration is given to the sun's role in man's past, present, and future. The present state of solar technology is examined theoretically, economically, and comparatively in light of growing need for…

  17. Solar energy collector system

    SciTech Connect

    Natter, H.

    1981-12-29

    A solar energy collector system is described having an array of solar concentrators mounted at spaced intervals along a conduit network through which a heat transfer fluid is circulated. The concentrators include an arcuate channel providing a heat absorption surface and a saddle member for mounting the channel section to the conduit. An insulation shroud surrounds the channel member and conduit. An elongate lens panel is positionable over the absorption surface for focusing incident solar radiation. The angle of inclination of the lens panel can be varied by manual rotation of the solar concentrators about the longitudinal axis of the conduit.

  18. Solar energy computer models directory

    NASA Astrophysics Data System (ADS)

    1985-08-01

    This directory describes models developed and available in the US for six solar and renewable energy technologies. These technologies are: biomass; solar heating, cooling, and conservation; ocean energy; photovoltaics; solar thermal; and wind.

  19. Energy 101: Solar PV

    ScienceCinema

    None

    2013-05-29

    Solar photovoltaic (PV) systems can generate clean, cost-effective power anywhere the sun shines. This video shows how a PV panel converts the energy of the sun into renewable electricity to power homes and businesses.

  20. Energy 101: Solar PV

    SciTech Connect

    2011-01-01

    Solar photovoltaic (PV) systems can generate clean, cost-effective power anywhere the sun shines. This video shows how a PV panel converts the energy of the sun into renewable electricity to power homes and businesses.

  1. Bright Idea: Solar Energy Primer.

    ERIC Educational Resources Information Center

    Missouri State Dept. of Natural Resources, Jefferson City.

    This booklet is intended to address questions most frequently asked about solar energy. It provides basic information and a starting point for prospective solar energy users. Information includes discussion of solar space heating, solar water heating, and solar greenhouses. (Author/RE)

  2. Solar energy collector

    SciTech Connect

    Penney, R.J.

    1980-09-02

    A sun tracking solar energy collector assembly having both a longitudinally extending flat plate absorber and a tube absorber spaced from and extending longitudinally generally parallel to the flat plate absorber. In one form a parabolic reflector focuses direct rays of solar radiation on the tube absorber and directs diffused rays of solar radiation onto the plate absorber. In another form a fresnel lens plate focuses direct rays of solar radiation on the tube absorber and flat reflector surfaces direct diffused solar radiation passing through the lens plate onto the plate absorber. In both forms a fluid is first heated as it circulates through passages in the flat plate absorber and then is further heated to a higher temperature as it passes through the tube absorber.

  3. The Energy Crisis and Solar Energy

    ERIC Educational Resources Information Center

    Bockris, J. O'M.

    1974-01-01

    Examines the status of the energy crisis in Australia. Outlines energy alternatives for the 1990's and describes the present status of solar energy research and the economics of solar energy systems. (GS)

  4. Solar Energy Project, Activities: General Solar Topics.

    ERIC Educational Resources Information Center

    Tullock, Bruce, Ed.; And Others

    This guide contains lesson plans and outlines of activities which introduce students to concepts and issues relating to solar energy. Lessons frequently presented in the context of solar energy as it relates to contemporary energy problems. Each unit presents an introduction; objectives; necessary skills and knowledge; materials; method;

  5. Solar Energy Demonstrations

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Solar energy furnishes all of the heating and hot water needs, plus 80 percent of the air conditioning, for the two-story Reedy Creek building. A unique feature of this installation is that the 16 semi-cylindrical solar collectors (center photo on opposite page with closeup of a single collector below it) are not mounted atop the roof as is customary, they actually are the roof. This arrangement eliminates the usual trusses, corrugated decking and insulating concrete in roof construction; that, in turn, reduces overall building costs and makes the solar installation more attractive economically. The Reedy Creek collectors were designed and manufactured by AAI Corporation of Baltimore, Maryland.

  6. Solar energy unit

    SciTech Connect

    Jones, J.M.

    1980-06-03

    A solar energy collection device, the present invention provides a transparent housing formed in the shape of a pyramid, a fluid being directed through the interior of the pyramid for absorption of heat energy concentrated within the interior of said pyramid by the walls thereof.

  7. Solar energy to meet the nation's energy needs

    NASA Technical Reports Server (NTRS)

    Rom, F. E.; Thomas, R. L.

    1973-01-01

    Discussion of the possibilities afforded by solar energy as one of the alternative energy sources capable to take the place of the dwindling oil and gas reserves. Solar energy, being a nondepleting clean source of energy, is shown to be capable of providing energy in all the forms in which it is used today. Steps taken toward providing innovative solutions that are economically competitive with other systems are briefly reviewed.

  8. Solar energy conversion.

    SciTech Connect

    Crabtree, G. W.; Lewis, N. S.

    2008-03-01

    If solar energy is to become a practical alternative to fossil fuels, we must have efficient ways to convert photons into electricity, fuel, and heat. The need for better conversion technologies is a driving force behind many recent developments in biology, materials, and especially nanoscience. The Sun has the enormous untapped potential to supply our growing energy needs. The barrier to greater use of the solar resource is its high cost relative to the cost of fossil fuels, although the disparity will decrease with the rising prices of fossil fuels and the rising costs of mitigating their impact on the environment and climate. The cost of solar energy is directly related to the low conversion efficiency, the modest energy density of solar radiation, and the costly materials currently required. The development of materials and methods to improve solar energy conversion is primarily a scientific challenge: Breakthroughs in fundamental understanding ought to enable marked progress. There is plenty of room for improvement, since photovoltaic conversion efficiencies for inexpensive organic and dye-sensitized solar cells are currently about 10% or less, the conversion efficiency of photosynthesis is less than 1%, and the best solar thermal efficiency is 30%. The theoretical limits suggest that we can do much better. Solar conversion is a young science. Its major growth began in the 1970s, spurred by the oil crisis that highlighted the pervasive importance of energy to our personal, social, economic, and political lives. In contrast, fossil-fuel science has developed over more than 250 years, stimulated by the Industrial Revolution and the promise of abundant fossil fuels. The science of thermodynamics, for example, is intimately intertwined with the development of the steam engine. The Carnot cycle, the mechanical equivalent of heat, and entropy all played starring roles in the development of thermodynamics and the technology of heat engines. Solar-energy science faces an equally rich future, with nanoscience enabling the discovery of the guiding principles of photonic energy conversion and their use in the development of cost-competitive new technologies.

  9. Activities for Teaching Solar Energy.

    ERIC Educational Resources Information Center

    Mason, Jack Lee; Cantrell, Joseph S.

    1980-01-01

    Plans and activities are suggested for teaching elementary children about solar energy. Directions are included for constructing a flat plate collector and a solar oven. Activities for a solar field day are given. (SA)

  10. Solar energy collector

    SciTech Connect

    Meckler, G.

    1981-12-08

    A solar energy collector is disclosed. The collector includes a photo-voltaic cell, a reflector for directing solar energy from the sun to the photo-voltaic cell, a mount for the reflector, vacuum means and positioning means for the reflector. The vacuum means separates the photo-voltaic cell and the reflector from the atmosphere to prevent conduction and convection heat losses therefrom and corrosion of the reflector. The mounting means supports the reflector within the vacuum means for rotation about an axis along which the photo-voltaic cell extends. The positioning means is operable to produce a magnetic field which attracts a ferromagnetic portion of the reflector and to rotate the magnetic field about the axis to cause rotation of the reflector and maximizing the amount of solar energy directed to the photo-voltaic cell.

  11. Classic papers in Solar Energy: Solar distillation

    SciTech Connect

    Howe, E.D.

    1990-06-01

    The following Classic Paper was presented by Professor Howe at the first international Conference on Solar Energy at Tucson, Arizona, USA in 1955. That conference was sponsored by the Association of Applied solar Energy (AFASE), the precursor of ISES. Although this paper does not represent the many developments in solar distillation later applied by Professor Howe in the South Pacific, it is a classic paper because it presents Professor Howe's pioneering work in setting up the Seawater Conversion Laboratory in Richmond for the University of California at Berkeley, US. The research of Professor Howe and his colleagues at the Seawater Conversion Laboratory formed the foundation of contemporary solar energy desalination and distillation systems.

  12. Gas Turbine/Solar Parabolic Trough Hybrid Designs: Preprint

    SciTech Connect

    Turchi, C. S.; Ma, Z.; Erbes, M.

    2011-03-01

    A strength of parabolic trough concentrating solar power (CSP) plants is the ability to provide reliable power by incorporating either thermal energy storage or backup heat from fossil fuels. Yet these benefits have not been fully realized because thermal energy storage remains expensive at trough operating temperatures and gas usage in CSP plants is less efficient than in dedicated combined cycle plants. For example, while a modern combined cycle plant can achieve an overall efficiency in excess of 55%; auxiliary heaters in a parabolic trough plant convert gas to electricity at below 40%. Thus, one can argue the more effective use of natural gas is in a combined cycle plant, not as backup to a CSP plant. Integrated solar combined cycle (ISCC) systems avoid this pitfall by injecting solar steam into the fossil power cycle; however, these designs are limited to about 10% total solar enhancement. Without reliable, cost-effective energy storage or backup power, renewable sources will struggle to achieve a high penetration in the electric grid. This paper describes a novel gas turbine / parabolic trough hybrid design that combines solar contribution of 57% and higher with gas heat rates that rival that for combined cycle natural gas plants. The design integrates proven solar and fossil technologies, thereby offering high reliability and low financial risk while promoting deployment of solar thermal power.

  13. Solar Energy Education. Reader, Part IV. Sun schooling

    SciTech Connect

    Not Available

    1981-05-01

    A collection of magazine articles which focus on solar energy is presented. This is the final book of the four part series of the Solar Energy Reader. The articles include brief discussions on energy topics such as the sun, ocean energy, methane gas from cow manure, and solar homes. Instructions for constructing a sundial and a solar stove are also included. A glossary of energy related terms is provided. (BCS)

  14. Electricity production using solar energy

    SciTech Connect

    Demirbas, M.F.

    2007-07-01

    In this study, a solar-powered development project is used to identify whether it is possible to utilize solar technologies in the electricity production sector. Electricity production from solar energy has been found to be a promising method in the future. Concentrated solar energy can be converted to chemical energy via high-temperature endothermic reactions. Coal and biomass can be pyrolyzed or gasified by using concentrated solar radiation for generating power. Conventional energy will not be enough to meet the continuously increasing need for energy in the future. In this case, renewable energy sources will become important. Solar energy is an increasing need for energy in the future. Solar energy is a very important energy source because of its advantages. Instead of a compressor system, which uses electricity, an absorption cooling system, using renewable energy and kinds of waste heat energy, may be used for cooling.

  15. Solar Photovoltaic Energy.

    ERIC Educational Resources Information Center

    Ehrenreich, Henry; Martin, John H.

    1979-01-01

    The goals of solar photovoltaic technology in contributing to America's future energy needs are presented in this study conducted by the American Physical Society. Although the time needed for photovoltaics to become popular is several decades away, according to the author, short-range applications are given. (Author/SA)

  16. Solar Energy Now.

    ERIC Educational Resources Information Center

    Rose, Harvey, Ed.

    Twenty articles addressing different aspects of solar energy are compiled in this book. They represent the views of different governmental and non-governmental organizations, members of congress, and other individuals including, for example, Barry Commoner and Amory Lovins. Topics discussed include the need for federal support, passive solar…

  17. Brayton cycle solarized advanced gas turbine

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Described is the development of a Brayton Engine/Generator Set for solar thermal to electrical power conversion, authorized under DOE/NASA Contract DEN3-181. The objective was to design, fabricate, assemble, and test a small, hybrid, 20-kW Brayton-engine-powered generator set. The latter, called a power conversion assembly (PCA), is designed to operate with solar energy obtained from a parobolic dish concentrator, 11 meters in diameter, or with fossil energy supplied by burning fuels in a combustor, or by a combination of both (hybrid model). The CPA consists of the Brayton cycle engine, a solar collector, a belt-driven 20-kW generator, and the necessary control systems for automatic operation in solar-only, fuel-only, and hybrid modes to supply electrical power to a utility grid. The original configuration of the generator set used the GTEC Model GTP36-51 gas turbine engine for the PCA prime mover. However, subsequent development of the GTEC Model AGT101 led to its selection as the powersource for the PCA. Performance characteristics of the latter, thermally coupled to a solar collector for operation in the solar mode, are presented. The PCA was successfully demonstrated in the fuel-only mode at the GTEC Phoenix, Arizona, facilities prior to its shipment to Sandia National Laboratory in Albuquerque, New Mexico, for installation and testing on a test bed concentractor (parabolic dish). Considerations relative to Brayton-engine development using the all-ceramic AGT101 when it becomes available, which would satisfy the DOE heat engine efficiency goal of 35 to 41 percent, are also discussed in the report.

  18. Solar energy research and utilization

    NASA Technical Reports Server (NTRS)

    Cherry, W. R.

    1974-01-01

    The role of solar energy is visualized in the heating and cooling of buildings, in the production of renewable gaseous, liquid and solid fuels, and in the production of electric power over the next 45 years. Potential impacts of solar energy on various energy markets, and estimated costs of such solar energy systems are discussed. Some typical solar energy utilization processes are described in detail. It is expected that at least 20% of the U.S. total energy requirements by 2020 will be delivered from solar energy.

  19. Purdue Solar Energy Utilization Laboratory

    SciTech Connect

    Agrawal, Rakesh

    2014-01-21

    The objective of this project is to establish and set-up a laboratory that will facilitate research and development of new low-cost and high-efficiency solar energy utilization technologies at Purdue University. The outcome will help spur the creation of solar energy start-up companies and eventually a solar energy industry in Indiana that can help fulfill the growing national demand for solar energy.

  20. Central solar energy receiver

    DOEpatents

    Drost, M. Kevin

    1983-01-01

    An improved tower-mounted central solar energy receiver for heating air drawn through the receiver by an induced draft fan. A number of vertically oriented, energy absorbing, fin-shaped slats are radially arranged in a number of concentric cylindrical arrays on top of the tower coaxially surrounding a pipe having air holes through which the fan draws air which is heated by the slats which receive the solar radiation from a heliostat field. A number of vertically oriented and wedge-shaped columns are radially arranged in a number of concentric cylindrical clusters surrounding the slat arrays. The columns have two mirror-reflecting sides to reflect radiation into the slat arrays and one energy absorbing side to reduce reradiation and reflection from the slat arrays.

  1. An approach for cooling by solar energy

    NASA Astrophysics Data System (ADS)

    Rabeih, S. M.; Wahhab, M. A.; Asfour, H. M.

    The present investigation is concerned with the possibility to base the operation of a household refrigerator on solar energy instead of gas fuel. The currently employed heating system is to be replaced by a solar collector with an absorption area of two sq m. Attention is given to the required changes in the generator design, the solar parameters at the location of refrigerator installation, the mathematical approach for the thermal analysis of the solar collector, the development of a computer program for the evaluation of the important parameters, the experimental test rig, and the measurement of the experimental parameters. A description is given of the obtained optimum operating conditions for the considered system.

  2. SOLARES - A new hope for solar energy

    NASA Technical Reports Server (NTRS)

    Billman, K. W.; Gilbreath, W. P.; Bowen, S. W.

    1978-01-01

    A system of orbiting reflectors, SOLARES, has been studied as a possible means of reducing the diurnal variation and enhancing the average intensity of sunlight with a space system of minimum mass and complexity. The key impact that such a system makes on the economic viability of solar farming and other solar applications is demonstrated. The system is compatible with incremental implementation and continual expansion to meet the world's power needs. Key technology, environmental, and economic issues and payoffs are identified. SOLARES appears to be economically superior to other advanced, and even competitive with conventional, energy systems and could be scaled to completely abate our fossil fuel usage for power generation. Development of the terrestrial solar conversion technique, optimized for this new artificial source of solar radiation, yet remains.

  3. Solar eclipse monitoring for solar energy applications

    NASA Astrophysics Data System (ADS)

    Reda, Ibrahim

    2015-04-01

    In recent years, the interest in using solar energy as a major contributor to renewable energy applications has increased, and the focus to optimize the use of electrical energy based on demand and resources from different locations has strengthened. This article includes a procedure for implementing an algorithm to calculate the Moon's zenith angle with uncertainty of 0.001 and azimuth angle with uncertainty of 0.003. In conjunction with Solar Position Algorithm, the angular distance between the Sun and the Moon is used to develop a method to instantaneously monitor the partial or total solar eclipse occurrence for solar energy applications. This method can be used in many other applications for observers of the Sun and the Moon positions for applications limited to the stated uncertainty.

  4. Solar energy: Technology and applications

    NASA Technical Reports Server (NTRS)

    Williams, J. R.

    1974-01-01

    It is pointed out that in 1970 the total energy consumed in the U.S. was equal to the energy of sunlight received by only 0.15% of the land area of the continental U.S. The utilization of solar energy might, therefore, provide an approach for solving the energy crisis produced by the consumption of irreplaceable fossil fuels at a steadily increasing rate. Questions regarding the availability of solar energy are discussed along with the design of solar energy collectors and various approaches for heating houses and buildings by utilizing solar radiation. Other subjects considered are related to the heating of water partly or entirely with solar energy, the design of air conditioning systems based on the use of solar energy, electric power generation by a solar thermal and a photovoltaic approach, solar total energy systems, industrial and agricultural applications of solar energy, solar stills, the utilization of ocean thermal power, power systems based on the use of wind, and solar-energy power systems making use of geosynchronous power plants.

  5. SERI Solar Energy Storage Program

    SciTech Connect

    Copeland, R. J.; Wright, J. D.; Wyman, C. E.

    1980-02-01

    The SERI Solar Energy Storage Program provides research on advanced technologies, system analyses, and assessments of thermal energy storage for solar applications in support of the Thermal and Chemical Energy Storage Program of the DOE Division of Energy Storage Systems. Currently, research is in progress on direct contact latent heat storage and thermochemical energy storage and transport. Systems analyses are being performed of thermal energy storage for solar thermal applications, and surveys and assessments are being prepared of thermal energy storage in solar applications.

  6. Politics of solar energy

    SciTech Connect

    Dornsife, C.J.

    1982-01-01

    Investigated are the federal government's strategy for developing solar energy technologies in response to the problems associated with the environmental-energy crises. The central hypothesis is that, if the federal government promotes and maintains the development of technology to meet the growth needs of the free-market economy then economic interests of elite groups will be served, foremost, and the environmental and consumer needs will be served secondary, at best. Using Congressional testimony as evidence of the federal strategy, the results of this research support the hypothesis under investigation.

  7. New England solar energy atlas

    NASA Astrophysics Data System (ADS)

    Cook, David Lionel

    1986-07-01

    The available data on solar energy in New England are discussed. It is not intended as a guide to solar collector and/or home design; however, the information should aid the engineer, architect, or layman in using solar radiation as a renewable energy resource.

  8. New Directions for Solar Energy

    ERIC Educational Resources Information Center

    Glaser, Peter E.; Burke, James C.

    1973-01-01

    Describes new applications being found for solar energy as a result of technical advances and a variety of economic and social forces. Discusses the basic requirements for a solar climate control system and outlines factors that should stimulate greater use of solar energy in the near future. (JR)

  9. Energy 101: Concentrating Solar Power

    SciTech Connect

    2010-01-01

    From towers to dishes to linear mirrors to troughs, concentrating solar power (CSP) technologies reflect and collect solar heat to generate electricity. A single CSP plant can generate enough power for about 90,000 homes. This video explains what CSP is, how it works, and how systems like parabolic troughs produce renewable power. For more information on the Office of Energy Efficiency and Renewable Energy's CSP research, see the Solar Energy Technology Program's Concentrating Solar Power Web page at http://www1.eere.energy.gov/solar/csp_program.html.

  10. Energy 101: Concentrating Solar Power

    ScienceCinema

    None

    2013-05-29

    From towers to dishes to linear mirrors to troughs, concentrating solar power (CSP) technologies reflect and collect solar heat to generate electricity. A single CSP plant can generate enough power for about 90,000 homes. This video explains what CSP is, how it works, and how systems like parabolic troughs produce renewable power. For more information on the Office of Energy Efficiency and Renewable Energy's CSP research, see the Solar Energy Technology Program's Concentrating Solar Power Web page at http://www1.eere.energy.gov/solar/csp_program.html.

  11. Advances in solar energy technology. Volume 3. Heating, agricultural and photovoltaic applications of solar energy

    SciTech Connect

    Garg, H.P.

    1987-01-01

    This volume discusses the heating, agricultural and photovoltaic applications of solar energy, and contains the following chapters, solar cookers, solar desalination, solar food drying, solar-powered water pumps, solar greenhouses, solar cells.

  12. Solar energy receiver

    DOEpatents

    Schwartz, Jacob

    1978-01-01

    An improved long-life design for solar energy receivers provides for greatly reduced thermally induced stress and permits the utilization of less expensive heat exchanger materials while maintaining receiver efficiencies in excess of 85% without undue expenditure of energy to circulate the working fluid. In one embodiment, the flow index for the receiver is first set as close as practical to a value such that the Graetz number yields the optimal heat transfer coefficient per unit of pumping energy, in this case, 6. The convective index for the receiver is then set as closely as practical to two times the flow index so as to obtain optimal efficiency per unit mass of material.

  13. A rare gas optics-free absolute photon flux and energy analyzer for solar and planetary observations

    NASA Technical Reports Server (NTRS)

    Judge, Darrell L.

    1994-01-01

    We have developed a prototype spectrometer for space applications requiring long term absolute EUV photon flux measurements. In this recently developed spectrometer, the energy spectrum of the incoming photons is transformed directly into an electron energy spectrum by taking advantage of the photoelectric effect in one of several rare gases at low pressures. Using an electron energy spectrometer, followed by an electron multiplier detector, pulses due to individual electrons are counted. The overall efficiency of this process can be made essentially independent of gain drifts in the signal path, and the secular degradation of optical components which is often a problem in other techniques is avoided. A very important feature of this approach is its freedom from the problem of overlapping spectral orders that plagues grating EUV spectrometers. An instrument with these features has not been flown before, but is essential to further advances in our understanding of solar EUV flux dynamics, and the coupled dynamics of terrestrial and planetary atmospheres. The detailed characteristics of this optics-free spectrometer are presented in the publications section.

  14. Biological solar energy.

    PubMed

    Barber, James

    2007-04-15

    Through the process of photosynthesis, the energy of sunlight has been harnessed, not only to create the biomass on our planet today, but also the fossil fuels. The overall efficiency of biomass formation, however, is low and despite being a valuable source of energy, it cannot replace fossil fuels on a global scale and provide the huge amount of power needed to sustain the technological aspirations of the world population now and in the future. However, at the heart of the photosynthetic process is the highly efficient chemical reaction of water splitting, leading to the production of hydrogen equivalents and molecular oxygen. This reaction takes place in an enzyme known as photosystem II, and the recent determination of its structure has given strong hints of how nature uses solar energy to generate hydrogen and oxygen from water. This new information provides a blue print for scientists to seriously consider constructing catalysts that mimic the natural system and thus stimulate new technologies to address the energy/CO2 problem that humankind must solve. After all, there is no shortage of water for this non-polluting reaction and the energy content of sunlight falling on our planet well exceeds our needs. PMID:17272238

  15. Hydrogen production from solar energy

    NASA Technical Reports Server (NTRS)

    Eisenstadt, M. M.; Cox, K. E.

    1975-01-01

    Three alternatives for hydrogen production from solar energy have been analyzed on both efficiency and economic grounds. The analysis shows that the alternative using solar energy followed by thermochemical decomposition of water to produce hydrogen is the optimum one. The other schemes considered were the direct conversion of solar energy to electricity by silicon cells and water electrolysis, and the use of solar energy to power a vapor cycle followed by electrical generation and electrolysis. The capital cost of hydrogen via the thermochemical alternative was estimated at $575/kW of hydrogen output or $3.15/million Btu. Although this cost appears high when compared with hydrogen from other primary energy sources or from fossil fuel, environmental and social costs which favor solar energy may prove this scheme feasible in the future.

  16. Determination of solar proton fluxes and energies at high solar latitudes by UV radiation measurements

    NASA Technical Reports Server (NTRS)

    Witt, N.; Blum, P. W.; Ajello, J. M.

    1981-01-01

    The latitudinal variation of the solar proton flux and energy causes a density increase at high solar latitudes of the neutral gas penetrating the heliosphere. Measurements of the neutral density by UV resonance radiation observations from interplanetary spacecraft thus permit deductions on the dependence of the solar proton flux on heliographic latitude. Using both the results of Mariner 10 measurements and of other off-ecliptic solar wind observations, the values of the solar proton fluxes and energies at polar heliographic latitudes are determined for several cases of interest. The Mariner 10 analysis, together with IPS results, indicate a significant decrease of the solar proton flux at polar latitudes.

  17. Solar energy trap

    NASA Technical Reports Server (NTRS)

    Brantley, L. W., Jr. (Inventor)

    1976-01-01

    An apparatus is described for trapping solar energy for heating a fluid that could be subsequently used in turbines and similar devices. The apparatus includes an elongated vertical light pipe having an open end through which the visible spectrum of electromagnetic radiation from the sun passes to strike a tubular absorber. The light pipe has a coated interior surface of a low absorptivity and a high reflectivity at the visible wavelengths and a high absorptivity/emissivity ratio at infrared wavelengths. The tubular absorber has a coating on the surface for absorbing visible wavelengths to heat the fluid passing through. Infrared wave lengths are radiated from the tubular absorber back into the light pipe for heating fluid passing through a tubular coil wound around it.

  18. SOLAR ENERGY FOR POLLUTION CONTROL

    EPA Science Inventory

    A study was conducted to determine which existing or emerging pollution control processes are best suited to make use of solar energy input and to determine the potential benefits of such applications. Pollution control processes were matched with compatible solar energy systems,...

  19. Solar Energy Project: Teacher's Guide.

    ERIC Educational Resources Information Center

    Tullock, Bruce, Ed.; And Others

    This collection of materials supports the teaching of solar energy concepts in the context of secondary school science. Included in this collection are a basic teacher's guide to activities involved in the curriculum; a discussion of multi-disciplinary extensions of solar energy education by subject area; a section on hardware needed for the

  20. Solar Energy Project: Teacher's Guide.

    ERIC Educational Resources Information Center

    Tullock, Bruce, Ed.; And Others

    This collection of materials supports the teaching of solar energy concepts in the context of secondary school science. Included in this collection are a basic teacher's guide to activities involved in the curriculum; a discussion of multi-disciplinary extensions of solar energy education by subject area; a section on hardware needed for the…

  1. Solar cooling in Madrid: Available solar energy

    SciTech Connect

    Izquierdo, M.; Hernandez, F.; Martin, E. )

    1994-11-01

    This paper analyzes the behaviour of an absorption chiller lithium bromide installation fed by a field of flat-plate solar collectors and condensed by swimming pool water. A method of calculation in a variable regime is developed in terms of the obtained experimental results. Starting from the meteorological variables of a clear summer day and from the project data (collector normalization curve, collector and installation mass), the minimum solar radiation level necessary to initiate the process, I[sub min], and the instantaneous available solar energy, Q[sub u] + W[sub 1] is determined. The solar radiation threshold, I[sub min], necessary to obtain the process temperature, t[sub ave], in each instant, is obtained by adding to the corrected Klein radiation threshold, I[sub k,c], the heat capacity effects of the collector, HCE[sub CO], and of the installation, HCE[sub ins], as well as the losses of heat of the pipes to the surroundings, Q[sub 1]. The instantaneous available solar energy, available useful heat, in addition to the wind collector losses to the surroundings, Q[sub u] + W[sub 1], is the difference, in each instant, between the radiation, I[sub g1T], and the radiation threshold, I[sub min].The integration during the day of the instantaneous available solar energy allows us to calculate the daily available function, H[sub T]. The value of H[sub T], measured in the swimming-pool water condensation installation reached 6.92 MJ/(m[sup 2] day ). The calculated values of H[sub T] for a conventional installation condensed by tower water, or air, have been 6.35 and 0.56 MJ/(m[sup 2] day). respectively.

  2. Diffusion and adoption of an efficient, integrated alternative energy system: a producer gas-solar greenhouse for farmstead operation. Final technical report, September 1, 1980-October 1983

    SciTech Connect

    Peterson, G.T.

    1983-10-10

    The Department of Energy awarded College of the Siskiyous a grant to provide a demonstration project that coordinated a variety of energy-related technologies: a 100-foot, two-podded solar greenhouse, a producer gas generator fired by wood chips, thermal storage devices (fish tanks, water filled drums, hydroponic reservoirs), and a group of related activities: alcohol fuels production with the carbon dioxide by-product being used in one pod of the greenhouse; growing small meat animals who would eat greens from the facility, would provide manure for the gardens, and would put off some heat for the facility; tank fish farming; an eleven acre appropriate technology homestead which would surround the greenhouse. At the time of this report, the greenhouse has been completed though devices (fans, stoves, louvers, shades)to minimize temperature shifts continue to be developed. The producer gas generator has had problems with tar buildup which gum up engines. Rather than running a motor off the unit to produce electricity for the greenhouse, the unit is being used to demonstrate how wood gasification can be used to run motors which in turn can be used to run generators, automobiles, etc. The facility is being used to experiment with a variety of growing periods, conditions, and materials.

  3. High flux solar energy transformation

    DOEpatents

    Winston, Roland; Gleckman, Philip L.; O'Gallagher, Joseph J.

    1991-04-09

    Disclosed are multi-stage systems for high flux transformation of solar energy allowing for uniform solar intensification by a factor of 60,000 suns or more. Preferred systems employ a focusing mirror as a primary concentrative device and a non-imaging concentrator as a secondary concentrative device with concentrative capacities of primary and secondary stages selected to provide for net solar flux intensification of greater than 2000 over 95 percent of the concentration area. Systems of the invention are readily applied as energy sources for laser pumping and in other photothermal energy utilization processes.

  4. High flux solar energy transformation

    DOEpatents

    Winston, R.; Gleckman, P.L.; O'Gallagher, J.J.

    1991-04-09

    Disclosed are multi-stage systems for high flux transformation of solar energy allowing for uniform solar intensification by a factor of 60,000 suns or more. Preferred systems employ a focusing mirror as a primary concentrative device and a non-imaging concentrator as a secondary concentrative device with concentrative capacities of primary and secondary stages selected to provide for net solar flux intensification of greater than 2000 over 95 percent of the concentration area. Systems of the invention are readily applied as energy sources for laser pumping and in other photothermal energy utilization processes. 7 figures.

  5. The Geography of Solar Energy.

    ERIC Educational Resources Information Center

    LaHart, David E.; Allen, Rodney F.

    1984-01-01

    After learning about two promising techniques for generating electricity--photovoltaic cells and wind energy conversion systems--secondary students analyze two maps of the United States showing solar radiation and available wind power to determine which U.S. regions have potential for these solar electric systems. (RM)

  6. Heat pumps and solar energy

    SciTech Connect

    Bellamy, J.M.

    1981-03-01

    The applications of solar energy used in conjunction with a heat pump are discussed, as well as the Reverse Carnot Cycle and the coefficient of performance of a heat pump. One of the most vital components of a solar-assisted heat pump system is the solar collector apparatus. This collection unit is used to heat the water from the water storage area to minimize the temperature difference between the high-temperature and the low-temperature reservoirs. Some basic design considerations for the solar collection system are discussed.

  7. Solar '80s: A Teacher's Handbook for Solar Energy Education.

    ERIC Educational Resources Information Center

    LaHart, David E.

    This guide is intended to assist the teacher in exploring energy issues and the technology of solar energy conversion and associated technologies. Sections of the guide include: (1) Rationale; (2) Technology Overview; (3) Sun Day Suggestions for School; (4) Backyard Solar Water Heater; (5) Solar Tea; (6) Biogas; (7) Solar Cells; (8) Economics; (9)

  8. Solar '80s: A Teacher's Handbook for Solar Energy Education.

    ERIC Educational Resources Information Center

    LaHart, David E.

    This guide is intended to assist the teacher in exploring energy issues and the technology of solar energy conversion and associated technologies. Sections of the guide include: (1) Rationale; (2) Technology Overview; (3) Sun Day Suggestions for School; (4) Backyard Solar Water Heater; (5) Solar Tea; (6) Biogas; (7) Solar Cells; (8) Economics; (9)…

  9. The Energy Impacts of Solar Heating.

    ERIC Educational Resources Information Center

    Whipple, Chris

    1980-01-01

    The energy required to build and install solar space- and water-heating equipment is compared to the energy saved under two solar growth paths corresponding to high and low rates of solar technology implementation. (Author/RE)

  10. Solar energy storage and utilization

    NASA Technical Reports Server (NTRS)

    Yuan, S. W.; Bloom, A. M.

    1976-01-01

    A method of storing solar energy in the ground for heating residential buildings is described. The method would utilize heat exchanger pipes with a circulating fluid to transfer the energy beneath the surface as well as to extract the stored energy.

  11. Solar energy parking canopy demonstration project

    SciTech Connect

    Cylwik, Joe; David, Lawrence

    2015-09-24

    The goal of this pilot/demonstration program is to measure the viability of using solar photovoltaic (PV) technology at three locations in a mountain community environment given the harsh weather conditions. An additional goal is to reduce long-term operational costs, minimize green house gas emissions, lower the dependency on energy produced from fossil fuels, and improve the working environment and health of city employees and residents.

  12. Shenandoah Solar Total Energy Project

    SciTech Connect

    Leonard, J.A.; Hunke, R.W.

    1981-01-01

    The design of the world's first solar total energy plant in the private sector has been completed and construction is underway. The project, a major element of the Department of Energy's Solar Thermal Program, is the Solar Total Energy Project at Shenandoah, Georgia. When operational in early 1982, the solar plant will furnish electrical power, process steam, and other thermal energy to a nearby knitwear factory. The solar system consists of a collector field containing 114 parabolic dish collectors which supply thermal energy at 400/sup 0/C to drive a 400 kW multi-stage Rankine cycle turbine generator. Some steam is extracted from the turbine and supplied to the knitwear manufacturing processes. The system will be grid-connected, and the Georgia Power Company, through a cooperative agreement with DOE, is a participant in the project. Included are: (1) a description of the system and components being installed; (2) a summary of performance testing of the extraction turbine and of four prototype parabolic dish collectors; and (3) a discussion of design considerations and insights which have general applicability to solar thermal system designs.

  13. Science Activities in Energy: Solar Energy II.

    ERIC Educational Resources Information Center

    Oak Ridge Associated Universities, TN.

    Included in this science activities energy package are 14 activities related to solar energy for secondary students. Each activity is outlined on a single card and is introduced by a question such as: (1) how much solar heat comes from the sun? or (2) how many times do you have to run water through a flat-plate collector to get a 10 degree rise in…

  14. Solar coal gasification reactor with pyrolysis gas recycle

    DOEpatents

    Aiman, William R.; Gregg, David W.

    1983-01-01

    Coal (or other carbonaceous matter, such as biomass) is converted into a duct gas that is substantially free from hydrocarbons. The coal is fed into a solar reactor (10), and solar energy (20) is directed into the reactor onto coal char, creating a gasification front (16) and a pyrolysis front (12). A gasification zone (32) is produced well above the coal level within the reactor. A pyrolysis zone (34) is produced immediately above the coal level. Steam (18), injected into the reactor adjacent to the gasification zone (32), reacts with char to generate product gases. Solar energy supplies the energy for the endothermic steam-char reaction. The hot product gases (38) flow from the gasification zone (32) to the pyrolysis zone (34) to generate hot char. Gases (38) are withdrawn from the pyrolysis zone (34) and reinjected into the region of the reactor adjacent the gasification zone (32). This eliminates hydrocarbons in the gas by steam reformation on the hot char. The product gas (14) is withdrawn from a region of the reactor between the gasification zone (32) and the pyrolysis zone (34). The product gas will be free of tar and other hydrocarbons, and thus be suitable for use in many processes.

  15. Chemistry of Personalized Solar Energy

    PubMed Central

    Nocera, Daniel G.

    2012-01-01

    Personalized energy (PE) is a transformative idea that provides a new modality for the planet’s energy future. By providing solar energy to the individual, an energy supply becomes secure and available to people of both legacy and non-legacy worlds, and minimally contributes to increasing the anthropogenic level of carbon dioxide. Because PE will be possible only if solar energy is available 24 hours a day, 7 day a week, the key enabler for solar PE is an inexpensive storage mechanism. HX (X = halide or OH−) splitting is a fuel-forming reaction of sufficient energy density for large scale solar storage but the reaction relies on chemical transformations that are not understood at the most basic science level. Critical among these are multielectron transfers that are proton-coupled and involve the activation of bonds in energy poor substrates. The chemistry of these three italicized areas is developed, and from this platform, discovery paths leading to new HX and H2O splitting catalysts are delineated. For the case of the water splitting catalyst, it captures many of the functional elements of photosynthesis. In doing so, a highly manufacturable and inexpensive method has been discovered for solar PE storage. PMID:19775081

  16. Science Activities in Energy: Solar Energy.

    ERIC Educational Resources Information Center

    Oak Ridge Associated Universities, TN.

    Presented is a science activities in energy package which includes 12 activities relating to solar energy. Activities are simple, concrete experiments for fourth, fifth, and sixth grades, which illustrate principles and problems relating to energy. Each activity is outlined on a single card which is introduced by a question. A teacher's supplement

  17. Science Activities in Energy: Solar Energy.

    ERIC Educational Resources Information Center

    Oak Ridge Associated Universities, TN.

    Presented is a science activities in energy package which includes 12 activities relating to solar energy. Activities are simple, concrete experiments for fourth, fifth, and sixth grades, which illustrate principles and problems relating to energy. Each activity is outlined on a single card which is introduced by a question. A teacher's supplement…

  18. Surface meteorology and Solar Energy

    NASA Technical Reports Server (NTRS)

    Stackhouse, Paul W. (Principal Investigator)

    The Release 5.1 Surface meteorology and Solar Energy (SSE) data contains parameters formulated for assessing and designing renewable energy systems. Parameters fall under 11 categories including: Solar cooking, solar thermal applications, solar geometry, tilted solar panels, energy storage systems, surplus product storage systems, cloud information, temperature, wind, other meteorological factors, and supporting information. This latest release contains new parameters based on recommendations by the renewable energy industry and it is more accurate than previous releases. On-line plotting capabilities allow quick evaluation of potential renewable energy projects for any region of the world. The SSE data set is formulated from NASA satellite- and reanalysis-derived insolation and meteorological data for the 10-year period July 1983 through June 1993. Results are provided for 1 degree latitude by 1 degree longitude grid cells over the globe. Average daily and monthly measurements for 1195 World Radiation Data Centre ground sites are also available. [Mission Objectives] The SSE project contains insolation and meteorology data intended to aid in the development of renewable energy systems. Collaboration between SSE and technology industries such as the Hybrid Optimization Model for Electric Renewables ( HOMER ) may aid in designing electric power systems that employ some combination of wind turbines, photovoltaic panels, or diesel generators to produce electricity. [Temporal_Coverage: Start_Date=1983-07-01; Stop_Date=1993-06-30] [Spatial_Coverage: Southernmost_Latitude=-90; Northernmost_Latitude=90; Westernmost_Longitude=-180; Easternmost_Longitude=180].

  19. Solar energy tracking structure incorporating wind spoilers

    SciTech Connect

    Frohardt, M.W.; Hartz, K.H.; Hardee, P.C.

    1989-12-19

    This patent describes a solar energy tracking assembly. The assembly producing reduced torque loading forces due to wind on the rotating portion of the tracking assembly. The solar energy tracking assembly comprised of: a fixed position base having one end securely fixed to the ground and having the second end supporting the remaining tracking assembly components; solar energy collecting means comprising a moving structure frame and at least one solar collecting element attached thereto means for rotating the solar energy collecting means in relation to the sun in order that the solar energy collecting means maintain the proper attitude for collection of incident solar energy; and a wind spoiler assembly.

  20. Solar energy research and utilization

    NASA Technical Reports Server (NTRS)

    Cherry, W. R.

    1974-01-01

    The role is described that solar energy will play in the heating and cooling of buildings, the production of renewable gaseous, liquid and solid fuels, and the production of electric power over the next 45 years. Potential impacts on the various energy markets and estimated costs of such systems are discussed along with illustrations of some of the processes to accomplish the goals. The conclusions of the NSF/NASA Solar Energy Panel (1972) are given along with the estimated costs to accomplish the 15 year recommended program and also the recent and near future budget appropriations and recommendations are included.

  1. Photochemical conversion of solar energy.

    PubMed

    Balzani, Vincenzo; Credi, Alberto; Venturi, Margherita

    2008-01-01

    Energy is the most important issue of the 21st century. About 85% of our energy comes from fossil fuels, a finite resource unevenly distributed beneath the Earth's surface. Reserves of fossil fuels are progressively decreasing, and their continued use produces harmful effects such as pollution that threatens human health and greenhouse gases associated with global warming. Prompt global action to solve the energy crisis is therefore needed. To pursue such an action, we are urged to save energy and to use energy in more efficient ways, but we are also forced to find alternative energy sources, the most convenient of which is solar energy for several reasons. The sun continuously provides the Earth with a huge amount of energy, fairly distributed all over the world. Its enormous potential as a clean, abundant, and economical energy source, however, cannot be exploited unless it is converted into useful forms of energy. This Review starts with a brief description of the mechanism at the basis of the natural photosynthesis and, then, reports the results obtained so far in the field of photochemical conversion of solar energy. The "grand challenge" for chemists is to find a convenient means for artificial conversion of solar energy into fuels. If chemists succeed to create an artificial photosynthetic process, "... life and civilization will continue as long as the sun shines!", as the Italian scientist Giacomo Ciamician forecast almost one hundred years ago. PMID:18605661

  2. Thin film solar energy collector

    DOEpatents

    Aykan, Kamran; Farrauto, Robert J.; Jefferson, Clinton F.; Lanam, Richard D.

    1983-11-22

    A multi-layer solar energy collector of improved stability comprising: (1) a substrate of quartz, silicate glass, stainless steel or aluminum-containing ferritic alloy; (2) a solar absorptive layer comprising silver, copper oxide, rhodium/rhodium oxide and 0-15% by weight of platinum; (3) an interlayer comprising silver or silver/platinum; and (4) an optional external anti-reflective coating, plus a method for preparing a thermally stable multi-layered solar collector, in which the absorptive layer is undercoated with a thin film of silver or silver/platinum to obtain an improved conductor-dielectric tandem.

  3. Solar Energy - Solution or Pipedream?

    ERIC Educational Resources Information Center

    Polk, Joyce

    This series of lessons and class activities is designed for presentation in a sequence of nine class days. The collection is intended to provide the student in advanced science classes with awareness of the possibilities and limitations of solar energy as a potential solution to the energy crisis. Included are discussion of the following: (1)…

  4. Solar energy, its conversion and utilization

    NASA Technical Reports Server (NTRS)

    Farber, E. A.

    1972-01-01

    The work being carried out at the University of Florida Solar Energy and Energy Conversion Laboratory in converting solar energy, our only income, into other needed and useful forms of energy is described. A treatment such as this demonstrates, in proper perspective, how solar energy can benefit mankind with its many problems of shortages and pollution. Descriptions were given of the conversion processes, equipment, and performance. The testing of materials, solar water heating, space heating, cooking and baking, solar distillation, refrigeration and air-conditioning, work with the solar furnace, conversion to mechanical power, hot air engines, solar-heated sewage digestion, conversion to electricity, and other devices will be discussed.

  5. Solar Energy-An Everyday Occurrence

    ERIC Educational Resources Information Center

    Keister, Carole; Cornell, Lu Beth

    1978-01-01

    Describes a solar energy research project sponsored by the Energy Research and Development Administration and conducted at Timonium School in Maryland. Elementary student involvement in solar energy studies resulting from the project is noted. (MDR)

  6. Institutionalizing solar energy education

    SciTech Connect

    Arwood, J.W.

    1997-12-31

    As America entered the final decade of the 20th century, millions of people turned out to celebrate Earth Day`s 20th anniversary. Environmental awareness was on an upswing, and as a result, environmental education became a priority across the country. Environmental education was making significant headway into the public school system, and recycling emerged as the vanguard of this movement. At first the exclusive province of school children, recycling soon became a household habit. As children collected cans for cash, they also taught their parents to recycle. In its movement from classroom to curbside, recycling rode the school bus to Main Street and, within a few short years, became institutionalized. In this paper, the author demonstrates how the Solar Information and Education Program has evolved to the point where it has become an institutionalized, lasting part of the school experience for thousands of Arizona students. It is hoped that the solar experience for the state`s young people will duplicate the recycling experience of a decade ago, this time taking solar technology from chalkboard to rooftop.

  7. 77 FR 28618 - Notice of Availability of the San Diego Gas & Electric Ocotillo Sol Solar Project Draft...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-15

    ... alternatives. The CDCA plan, while recognizing the potential compatibility of solar energy facilities on public... Bureau of Land Management Notice of Availability of the San Diego Gas & Electric Ocotillo Sol Solar... San Diego Gas & Electric (SDG&E) Ocotillo Sol Solar Project in Imperial County, California, and...

  8. Solar Program Assessment: Environmental Factors - Solar Total Energy Systems.

    ERIC Educational Resources Information Center

    Energy Research and Development Administration, Washington, DC. Div. of Solar Energy.

    The purpose of this report is to present and prioritize the major environmental, safety, and social/institutional issues associated with the further development of Solar Total Energy Systems (STES). Solar total energy systems represent a specific application of the Federally-funded solar technologies. To provide a background for this analysis, the…

  9. Noble gases in solar-gas-rich and solar-gas-free polymict breccias

    NASA Astrophysics Data System (ADS)

    Takahito, Osawa; Keisuke, Nagao

    Polymict breccias are useful for research of solar activity because some preserve plenty of solar noble gases implanted during asteroidal formation processes. In this study, noble gas compositions of Antarctic and non-Antarctic polymict breccias were determined using laser gas-extraction and stepwise pyrolysis techniques. Of the polymict breccias measured in this work, 5 of 18 were identified as gas-rich meteorites (regolith breccias) and 4 of those 5 are H chondrites. The high population of gas-rich H chondrites compared with L and LL chondrites was presumably related to the depth of regolith formed on each parent body. It is notable that the major part of polymict breccias did not have solar noble gases. Noble gas analyses with stepwise heating method were done for 11 polymict breccias. Gas-rich meteorites have high concentrations of solar-derived He and Ne, which were released at relatively low temperature steps. Cosmogenic nuclides were comparatively dominant at high temperature steps. Five sources determined the observed Ar isotopic compositions. The components were: atmospheric, radiogenic, solar wind (SW), solar energetic particles (SEP), and cosmogenic. In contrast, Ne isotopic compositions of most regolith breccias can be explained simply by three-component mixing, such as SW, SEP, and cosmogenic. Indications of primordial trapped components were observed only in Willard (b), in which carbonaceous chondrite clasts were discovered previously. Cosmic-ray exposure ages were calculated from excess ^3He, ^(21)Ne, and ^(38)Ar. Regolith breccias did not have systematically longer ages than gas-poor samples, indicating that the parent body exposure ages of the meteorites on the order of tens of millions of years at most.

  10. Solar energy education. Renewable energy: A background text

    NASA Astrophysics Data System (ADS)

    Some of the most common forms of renewable energy are presented. The topics include solar energy, wind power hydroelectric power, biomass ocean thermal energy, and tidal and geothermal energy. The main emphasis of the text is on the Sun and the solar energy that it yields. Discussions on the Sun's composition and the relationship between the Earth, Sun and atmosphere are provided. Insolation, active and passive solar systems, and solar collectors are the subtopics included under solar energy.

  11. Solar Energy for Rural Egypt

    NASA Astrophysics Data System (ADS)

    Abdelsalam, Tarek I.; Darwish, Ziad; Hatem, Tarek M.

    Egypt is currently experiencing the symptoms of an energy crisis, such as electricity outage and high deficit, due to increasing rates of fossil fuels consumption. Conversely, Egypt has a high solar availability of more than 18.5 MJ daily. Additionally, Egypt has large uninhabited deserts on both sides of the Nile valley and Sinai Peninsula, which both represent more than 96.5 % of the nation's total land area. Therefore, solar energy is one of the promising solutions for the energy shortage in Egypt. Furthermore, these vast lands are advantageous for commissioning large-scaled solar power projects, not only in terms of space availability, but also of availability of high quality silicon (sand) required for manufacturing silicon wafers used in photovoltaic (PV) modules. Also, rural Egypt is considered market a gap for investors, due to low local competition, and numerous remote areas that are not connected to the national electricity grid. Nevertheless, there are some obstacles that hinder the progress of solar energy in Egypt; for instance, the lack of local manufacturing capabilities, security, and turbulent market in addition to other challenges. This paper exhibits an experience of the authors designing and installing decentralized PV solar systems, with a total rated power of about 11 kW, installed at two rural villages in at the suburbs of Fayoum city, in addition to a conceptual design of a utility scale, 2 MW, PV power plant to be installed in Kuraymat. The outcomes of this experience asserted that solar PV systems can be a more technically and economically feasible solution for the energy problem in rural villages.

  12. Universal solar energy desalination system

    SciTech Connect

    Fusco, V.S.

    1982-08-01

    The design which has been developed for a solar-powered water desalination plant is a highly flexible one; and thus, suitable for worldwide application. The system is modular in nature, utilizing a combination of solar thermal and wind energy to operate the reverse osmosis desalination unit. The system's flexibility lies in the fact that the configuration of the plant can be altered so that it is suitable for any given site. Plant capacity and the size of the solar thermal and wind energy systems are dependent upon a variety of site-specific characteristics. Furthermore, the design of each of the subsystems is also highly interdependent. Examination of the site characteristics and their interactions will allow a design which is optimal for the site.

  13. Solar energy and substainable development

    NASA Astrophysics Data System (ADS)

    Roux, Maria Carmen; Nalin, Olivier

    2010-05-01

    At the dawn of the 21st century, the world population doesn't stop rising. More than ever, energy and environment problems remain at the heart of our society concerns. What will we leave to the future generations ? Therefore, a twenty pupil class of 4e (13 and 14 year old pupils) has made a specific work about this topic, called "solar power and sustainable development". Initially, the pupils participated to the settlement of a meteorological station on the school grounds. This station, which provides readings about temperature, relative humidity, rainfall, sun radiations, wind power and wind heading is fed by photovoltaic cells and thus works independently. The pupils have then come to realize the ecological and practical interests of such a functioning (e.g. : for the latter : neither batteries nor electrical wires are needed). These past few years, in Provence (a highly sunny region), many solar panel installations have been created and many private house roofs have been equipped with photovoltaic cells. Indeed, this energy presents some significant assets : it is free, clean and will never run out. The village of Vinon sur Verdon, where stands our college, is partly fed by a solar panel park, located a few kilometers away. Strongly sensitive to the assets of this energy source, the pupils have made a poster asserting the benefits of solar power. Another side of solar energy has been asserted : the output of hot sanitary water. They have built a miniature on this topic. In order to be thorough, some elements remain in shadow, such as environment impacts done by the making, the transport and the recycling of solar panels that will be brought up in a collaboration with research establishments.

  14. Solar Energy Education Bibliography.

    ERIC Educational Resources Information Center

    Center for Renewable Resources, Washington, DC.

    This annotated bibliography lists publications and audiovisual materials devoted to renewable energy sources: sun, wind, water and biomass. A few general texts are included that present concepts fundamental to all energy sources. Materials were selected to be adaptable to classroom, workshops, and training sessions. Also, many do-it-yourself

  15. Solar Energy Education Bibliography.

    ERIC Educational Resources Information Center

    Center for Renewable Resources, Washington, DC.

    This annotated bibliography lists publications and audiovisual materials devoted to renewable energy sources: sun, wind, water and biomass. A few general texts are included that present concepts fundamental to all energy sources. Materials were selected to be adaptable to classroom, workshops, and training sessions. Also, many do-it-yourself…

  16. Solar Energy. Instructional Materials.

    ERIC Educational Resources Information Center

    Jordan, Kenneth; Thessing, Dan

    This document is one of five learning packets on alternative energy developed as part of a descriptive curriculum research project in Arkansas (see note). The overall objectives of the learning packets are to improve the level of instruction in the alternative energies by vocational exploration teachers, and to facilitate the integration of new…

  17. Food dehydration by solar energy.

    PubMed

    Bolin, H R; Salunkhe, D K

    1982-01-01

    Solar driers that are currently being investigated for drying of agricultural products can be divided into two major divisions, depending upon how they transfer the incident solar energy to the product to be dried. These two divisions are direct and indirect drying, with some work also being done on combination drying procedures. In direct solar driers, the product to be dried is usually either inside a tent, greenhouse, or a glass-topped box, where the product to be dried is heated by the direct rays from the sun and the moist air is removed by ambient wind movement. These dryers do accelerate moisture loss rate and the product is usually safe from inclement weather. These dryers usually do not require fans for forced air circulation. With indirect drying, the opposite is true, where most require powered fans for forced air circulation. With this type of dryer, both flatplate and inflated tube solar heat absorbers are used, with each offering certain advantages. Also, combination dryers have been built that utilize both direct and indirect principles. Product evaluation of solar dried foods indicate that in most cases the physical properties, flavor, and vitamin A and C retention were as good as, or better than, conventional dried foods. The economics of the solar systems indicate that most drying procedures are economically feasible for use in small-scale operations only, with the exception of grain drying. PMID:7047079

  18. Solar Energy Project, Activities: Biology.

    ERIC Educational Resources Information Center

    Tullock, Bruce, Ed.; And Others

    This guide contains lesson plans and outlines of science activities which present concepts of solar energy in the context of biology experiments. Each unit presents an introduction; objectives; skills and knowledge needed; materials; methods; questions; recommendations for further work; and a teacher information sheet. The teacher information

  19. Solar energy and the aeronautics industry. Thesis

    NASA Technical Reports Server (NTRS)

    Benedek, L.

    1985-01-01

    An introduction to the physical aspects of solar energy, incidental energy and variations in solar flux is presented, along with an explanation of the physical principles of obtaining solar energy. The history of the application of solar energy to aeronautics, including the Gossamer Penguin and the Solar Challenger is given. Finally, an analysis of the possibilities of using a reaction motor with hybrid propulsion combining solar energy with traditional fuels as well as calculations of the proposed cycle and its mode of operation are given.

  20. Solar energy conversion.

    SciTech Connect

    Crabtree, G. W.; Lewis, N. S.; Materials Science Division; Cal Tech

    2007-03-01

    The Sun provides Earth with a staggering amount of energy - enough to power the great oceanic and atmospheric currents, the cycle of evaporation and condensation that brings fresh water inland and drives river flow, and the typhoons, hurricanes, and tornadoes that so easily destroy the natural and built landscape. The San Francisco earthquake of 1906, with magnitude 7.8, released an estimated 10{sup 17} joules of energy, the amount the Sun delivers to Earth in one second. Earth's ultimate recoverable resource of oil, estimated at 3 trillion barrels, contains 1.7 x 10{sup 22} joules of energy, which the Sun supplies to Earth in 1.5 days. The amount of energy humans use annually, about 4.6 x 10{sup 20} joules, is delivered to Earth by the Sun in one hour. The enormous power that the Sun continuously delivers to Earth, 1.2 x 10{sup 5} terawatts, dwarfs every other energy source, renewable or nonrenewable. It dramatically exceeds the rate at which human civilization produces and uses energy, currently about 13 TW.

  1. Solar Total Energy Project construction cost history

    SciTech Connect

    Hunke, R.W.; Pappas, G.N.

    1983-03-01

    A solar energy project using parabolic dish collectors was designed, fabricated, and installed near Shenandoah, GA. A cost history of the construction of the Solar Total Energy Project is presented. Costs are broken down into the various project elements.

  2. PRELIMINARY ENVIRONMENTAL ASSESSMENT OF SOLAR ENERGY SYSTEMS

    EPA Science Inventory

    This report addresses the environmental consequences of three kinds of solar energy utilization: photovoltaic, concentrator (steam electric) and flat plate. The application of solar energy toward central power generating stations is emphasized. Discussions of combined modes and o...

  3. Relative energy risk: is solar energy riskier than nuclear

    SciTech Connect

    Inhaber, H.

    1981-01-01

    The discussion of risk analysis is divided into three parts: (a) a brief discussion of the methodology which can be used, (b) a listing of some of the major assumptions, and (c) the results of a comparison of eleven energy systems. The energy systems considered here can be divided into two groups: conventional, i.e., those in fairly widespread use, like coal or nuclear, and non-conventional, i.e., all others, like solar and wind. In general, although some of these non-conventional systems have been described as risk-free, they are not. In fact, compared to some conventional systems like natural gas and nuclear, technologies like solar and windpower have relatively high risk. The reason is simple. Because of the dilute nature of the energy they handle, solar and wind systems, when compared on the quantity of their energy production, require a considerable amount of apparatus as compared to other systems. In turn, this apparatus requires a large amount of material and construction labor to build and install. Associated with each ton of material and hour of labor is a definite number of accidents, diseases and deaths, according to labor statistics. When the risk is summed up in this way, we find that non-conventional systems generally have high risk. In particular, to answer the question posed in the title of this talk, solar energy seems to have a higher risk than nuclear power, when the methodology outlined below is used.

  4. Solar-assisted low energy dwellings

    SciTech Connect

    Esbensen, T V

    1980-02-01

    The Zero Energy House Group was formed as a subproject of the CCMS Solar Energy Pilot Study in 1974 by seven participating countries experimenting with solar-assisted low-energy dwellings for temperate and northern European climatic conditions. A Zero Energy House is one in which solar energy is used to meet the reduced energy needs of buildings incorporating various thermal energy conservation features. This final report of the Zero Energy House Group includes brief descriptions of 13 major low-energy dwellings in the participating CCMS countries. An overall assessment of the state-of-the-art in solar-assisted low-energy dwellings is also included.

  5. Central solar-energy receiver

    DOEpatents

    Not Available

    1981-10-27

    An improved tower-mounted central solar energy receiver for heating air drawn through the receiver by an induced draft fan is described. A number of vertically oriented, energy absorbing, fin-shaped slats are radially arranged in a number of concentric cylindrical arrays on top of the tower coaxially surrounding a pipe having air holes through which the fan draws air which is heated by the slats which receive the solar radiation from a heliostat field. A number of vertically oriented and wedge-shaped columns are radially arranged in a number of concentric cylindrical clusters surrounding the slat arrays. The columns have two mirror-reflecting sides to reflect radiation into the slat arrays and one energy absorbing side to reduce reradiation and reflection from the slat arrays.

  6. Solar energy for village development.

    PubMed

    Brown, N L; Howe, J W

    1978-02-10

    The National Academy of Sciences held a joint workshop with the Government of Tanzania last August on the potential of solar energy for the villages of that country. Costs of five solar technologies (mini-hydroelectric generators, wind, methane generation from organic wastes, photovoltaic cells, and flat-plate solar collectors) were compared with costs of diesel-generated electricity and with electricity from the national grid. Each of the five technologies is either now competitive with diesel or will be in a few years. Although the figures presented are not conclusive since they are derived from calculations rather than an actual test, the results are encouraging enough to warrant serious testing in Third World villages. PMID:17788101

  7. Universal solar energy desalination system

    NASA Astrophysics Data System (ADS)

    Fusco, V. S.

    Design considerations to allow site-dependent flexibility in the choice of solar/wind powered desalinization plant configurations are discussed. A prototype design was developed for construction of 6300 cu m per day brackish water treatment in Brownsville, TX. The water is treated to reduce the amount of suspended solids and prevent scaling. A reverse osmosis unit processes the treated liquid to recover water at a ratio of 90%. The power system comprises a parabolic trough solar thermal system with an organic Rankine cycle generator, rock-oil thermal storage, and 200 kW wind turbines. Analysis of the complementarity of the solar and wind subsystems indicates that at any site one system will supplement the other. Energy storage, e.g., battery banks, would increase system costs to unacceptable levels. Climatic conditions will significantly influence the sizing of each segment of the total power system.

  8. Non-tracking solar energy collector system

    NASA Technical Reports Server (NTRS)

    Selcuk, M. K. (Inventor)

    1978-01-01

    A solar energy collector system is described characterized by an improved concentrator for directing incident rays of solar energy on parallel strip-like segments of a flatplate receiver. Individually mounted reflector modules of a common asymmetrical triangular cross-sectional configuration supported for independent orientation are asymmetric included with vee-trough concentrators for deflecting incident solar energy toward the receiver.

  9. Solar Energy in the Home. Revised.

    ERIC Educational Resources Information Center

    Roeder, Allen A.; Woodland, James A.

    Recommended for grades 10-12 physical, earth, or general science classes, this 5-7 day unit is designed to give students a general understanding of solar energy and its use as a viable alternative to present energy sources. Along with this technology, students examine several factors of solar energy which influence the choice of solar home site

  10. Solar Energy in the Home. Revised.

    ERIC Educational Resources Information Center

    Roeder, Allen A.; Woodland, James A.

    Recommended for grades 10-12 physical, earth, or general science classes, this 5-7 day unit is designed to give students a general understanding of solar energy and its use as a viable alternative to present energy sources. Along with this technology, students examine several factors of solar energy which influence the choice of solar home site…

  11. Comparative evaluation of solar, fission, fusion, and fossil energy resources. Part 1: Solar energy

    NASA Technical Reports Server (NTRS)

    Williams, J. R.

    1974-01-01

    The utilization of solar energy to meet the energy needs of the U.S. is discussed. Topics discussed include: availability of solar energy, solar energy collectors, heating for houses and buildings, solar water heater, electric power generation, and ocean thermal power.

  12. Decentalized solar photovoltaic energy systems

    SciTech Connect

    Krupka, M. C.

    1980-09-01

    Environmental data for decentralized solar photovoltaic systems have been generated in support of the Technology Assessment of Solar Energy Systems program (TASE). Emphasis has been placed upon the selection and use of a model residential photovoltaic system to develop and quantify the necessary data. The model consists of a reference home located in Phoenix, AZ, utilizing a unique solar cell array-roof shingle combination. Silicon solar cells, rated at 13.5% efficiency at 28/sup 0/C and 100 mW/cm/sup 2/ (AMI) insolation are used to generate approx. 10 kW (peak). An all-electric home is considered with lead-acid battery storage, dc-ac inversion and utility backup. The reference home is compared to others in regions of different insolation. Major material requirements, scaled to quad levels of end-use energy include significant quantities of silicon, copper, lead, antimony, sulfuric acid and plastics. Operating residuals generated are negligible with the exception of those from the storage battery due to a short (10-year) lifetime. A brief general discussion of other environmental, health, and safety and resource availability impacts is presented. It is suggested that solar cell materials production and fabrication may have the major environmental impact when comparing all facets of photovoltaic system usage. Fabrication of the various types of solar cell systems involves the need, handling, and transportation of many toxic and hazardous chemicals with attendant health and safety impacts. Increases in production of such materials as lead, antimony, sulfuric acid, copper, plastics, cadmium and gallium will be required should large scale usage of photovoltaic systems be implemented.

  13. Solar Energy - An Option for Future Energy Production

    ERIC Educational Resources Information Center

    Glaser, Peter E.

    1972-01-01

    Discusses the exponential growth of energy consumption and future consequences. Possible methods of converting solar energy to power such as direct energy conversion, focusing collectors, selective rediation absorbers, ocean thermal gradient, and space solar power are considered. (DF)

  14. Solar Energy Monitor In Space (SEMIS)

    NASA Technical Reports Server (NTRS)

    Thekaekara, M. P.

    1974-01-01

    Measurements made at high altitudes from aircraft have resulted in the establishment of standard values of the solar constant and extraterrestrial solar spectral irradiance. These standard values and other solar spectral curves are described. The problem of possible variations of the solar constant and solar spectrum and their influence on the earth-atmosphere system and weather related phenomena is examined. It is shown that the solar energy input parameters should be determined with considerably greater accuracy and precision than has been possible. An instrument package designed as a compact, low weight solar energy monitor in space (SEMIS) is described.

  15. Solar total energy project Shenandoah

    NASA Astrophysics Data System (ADS)

    1980-01-01

    A description of the final design for the Solar Total Energy System to be installed at the Shenandoah, Georgia, site of utilization by the Bleyle knitwear plant, is presented. The system is a fully cascaded total energy system design featuring high temperature paraboloidal dish solar collectors with a 235 concentration ratio, a steam Rankine cycle power conversion system capable of supplying 100 to 400 kW(e) output with an intermediate process steam take-off point, and a back pressure condenser for heating and cooling. The design also includes an integrated control system employing the supervisory control concept to allow maximum experimental flexibility. The system design criteria and requirements are presented including the performance criteria and operating requirements, environmental conditions of operation; interface requirements with the Bleyle plant and the Georgia Power Company lines; maintenance, reliability, and testing requirements; health and safety requirements; and other applicable ordinances and codes.

  16. Assessment of solar-assisted gas-fired heat pump systems

    NASA Technical Reports Server (NTRS)

    Lansing, F. L.

    1981-01-01

    As a possible application for the Goldstone Energy Project, the performance of a 10 ton heat pump unit using a hybrid solar gas energy source was evaluated in an effort to optimize the solar collector size. The heat pump system is designed to provide all the cooling and/or heating requirements of a selected office building. The system performance is to be augmented in the heating mode by utilizing the waste heat from the power cycle. A simplified system analysis is described to assess and compute interrrelationships of the engine, heat pump, and solar and building performance parameters, and to optimize the solar concentrator/building area ratio for a minimum total system cost. In addition, four alternative heating cooling systems, commonly used for building comfort, are described; their costs are compared, and are found to be less competitive with the gas solar heat pump system at the projected solar equipment costs.

  17. Discuss on Energy Release in Solar Flare

    NASA Astrophysics Data System (ADS)

    Lu, Runbao

    In this paper I give a shortly discuss on current theory and give a new mechanism of energy release in solar flare "electron-ions bound state and its introducing nuclear reaction " model. Main opinions of this model are following : There are two independent process in solar flare, soft x-ray emission ( 12.5keV) and hard x-ray emission (?25keV). There are three kinds of line emission: 12.5keV(p-e-p 12.5keV), 25keV(p-e-A+ 25keV), 25keV(d+-e-d+ 25keV), There is (d,d) fusion in solar flare. The analysis about these phenomena is given. Producing mechanism of x-ray emission and energetic particle production is very different between current theory and new one "electron-ions bound state and its introducing nuclear reaction " model. I think that solar flare is process of glow discharge with hydrogen or deuterium gas in the sun. Observations of RHESSI proved evidence.

  18. Solar energy collector/storage system

    SciTech Connect

    Bettis, J.R.; Clearman, F.R.

    1983-05-24

    A solar energy collector/storage system which includes an insulated container having working fluid inlets and outlets and an opening, a light-transmitting member positioned over the opening, and a heat-absorbing member which is centrally situated, is supported in the container, and is made of a mixture of gypsum , lampblack, and water. A light-reflecting liner made of corrugated metal foil preferably is attached to the internal surface of the container. The opening of the container is positioned in optical alignment with a source of solar energy. A light-reflecting cover optionally can be hingedly attached to the container, and can be positioned such as to reflect solar energy rays into the container. The system is adaptable for use with a working gas (e.g., air) and/or a working liquid (e.g., water) in separated flows which absorb heat from the heat-absorbing member, and which are useable per se or in an associated storage and/or circulatory system that is not part of this invention. The heatabsorbing mixture can also contain glass fibers. The heatabsorbing member is of such great load-bearing strength that it can also be used simultaneously as a structural member, e.g., a wall or ceiling of a room; and, thereby, the system can be used to heat a room, if a window of the room is the light-transmitting member and is facing the sun, and if the heat-absorbing member is a wall and/or the ceiling of the room and receives solar energy through the window.

  19. Alternative energy sources 6: Vol. 1: Solar energy and applications

    SciTech Connect

    Verziroglu, T.N.

    1985-01-01

    This volume provides information on insolation, solar collectors, and thermal energy storage. Phase change energy storage, chemical energy storage and heat pipes are also included as topics of discussion. The volume highlights solar drying, desalination, and heat pumps. Papers regarding solar energy applications are provided in this volume.

  20. Renewable Energy: Solar Fuels GRC and GRS

    SciTech Connect

    Nathan Lewis Nancy Ryan Gray

    2010-02-26

    This Gordon Research Conference seeks to bring together chemists, physicists, materials scientists and biologists to address perhaps the outstanding technical problem of the 21st Century - the efficient, and ultimately economical, storage of energy from carbon-neutral sources. Such an advance would deliver a renewable, environmentally benign energy source for the future. A great technological challenge facing our global future is energy. The generation of energy, the security of its supply, and the environmental consequences of its use are among the world's foremost geopolitical concerns. Fossil fuels - coal, natural gas, and petroleum - supply approximately 90% of the energy consumed today by industrialized nations. An increase in energy supply is vitally needed to bring electric power to the 25% of the world's population that lacks it, to support the industrialization of developing nations, and to sustain economic growth in developed countries. On the geopolitical front, insuring an adequate energy supply is a major security issue for the world, and its importance will grow in proportion to the singular dependence on oil as a primary energy source. Yet, the current approach to energy supply, that of increased fossil fuel exploration coupled with energy conservation, is not scaleable to meet future demands. Rising living standards of a growing world population will cause global energy consumption to increase significantly. Estimates indicate that energy consumption will increase at least two-fold, from our current burn rate of 12.8 TW to 28 - 35 TW by 2050. - U.N. projections indicate that meeting global energy demand in a sustainable fashion by the year 2050 will require a significant fraction of the energy supply to come carbon free sources to stabilize atmospheric carbon dioxide levels at twice the pre-anthropogenic levels. External factors of economy, environment, and security dictate that this global energy need be met by renewable and sustainable sources from a carbon-neutral source. Sunlight is by far the most abundant global carbon-neutral energy resource. More solar energy strikes the surface of the earth in one hour than is obtained from all of the fossil fuels consumed globally in a year. Sunlight may be used to power the planet. However, it is intermittent, and therefore it must be converted to electricity or stored chemical fuel to be used on a large scale. The 'grand challenge' of using the sun as a future energy source faces daunting challenges - large expanses of fundamental science and technology await discovery. A viable solar energy conversion scheme must result in a 10-50 fold decrease in the cost-to-efficiency ratio for the production of stored fuels, and must be stable and robust for a 20-30 year period. To reduce the cost of installed solar energy conversion systems to $0.20/peak watt of solar radiation, a cost level that would make them economically attractive in today's energy market, will require revolutionary technologies. This GRC seeks to present a forum for the underlying science needed to permit future generations to use the sun as a renewable and sustainable primary energy source. Speakers will discuss recent advances in homoogeneous and heterogeneous catalysis of multi-electron transfer processes of importance to solar fuel production, such as water oxidation and reduction, and carbon dioxide reduction. Speakers will also discuss advances in scaleably manufacturable systems for the capture and conversion of sunlight into electrical charges that can be readily coupled into, and utilized for, fuel production in an integrated system.

  1. Solar energy applications in telecommunications

    NASA Astrophysics Data System (ADS)

    Girard, J.

    The results of a half-decade of a coupled wind-photovoltaic powered, remotely sited telecommunications installation called 'Aerosolec' are reported. A station is examined which was situated at 500 m altitude between Nice and Monaco and comprised a 4 module solar cell plant generating 180 W, a 300 W windpowered generator, and a battery bank. The batteries were linked by a diode, charged by the photovoltaics only when load was met, and provided voltage when the wind/solar cell configuration failed to produce enough power to meet demand. Output of the generators and meteorological parameters were recorded for two years. The station drew a nominal 180W, which was met by the power systems, and involved an actual extra discharge of excess energy. Other, similar stations are outlined, and the use of coupled wind/solar systems for telephone service in remote sites, for optic fiber repeaters, and for telephone relay station are recommended. Cost advantages are seen with the solar/wind systems over liquid hydrocarbon fueled generator systems for low power demand installations.

  2. The economy of solar energy

    SciTech Connect

    Scheer, H. |

    1994-12-31

    Solar energy is often regarded as environmentally-friendly, but, at the same time as not economical. A global economical view shows, however, that renewable energies can bring about substantial economic and social benefits today, even before their wide market introduction has begun. They are a basic economic innovation for durably overcoming the ever increasing risk innate in the current economic development: they provide new jobs in industry, crafts, and agriculture; a long-term reduction of administrative and health costs; reduced subsidies, increased foreign exchange assets for national economies; reduced military expenses to secure the energy supply structure; and preservation of agriculture on a sustainable basis. In the medium- and long-term, they are a precondition for reducing operation and management costs of the energy supply system. On the basis of a completely new tax system - the entropy tax - solar energy can become the trigger of a new economic dynamics which remains within the ecological limits of growth. 27 refs., 2 figs., 4 tabs.

  3. Solar energy in buildings: Implications for California energy policy

    NASA Technical Reports Server (NTRS)

    Hirshberg, A. S.; Davis, E. S.

    1977-01-01

    An assessment of the potential of active solar energy systems for buildings in California is summarized. The technology used for solar heating, cooling, and water heating in buildings is discussed. The major California weather zones and the solar energy designs are described, as well as the sizing of solar energy systems and their performance. The cost of solar energy systems is given both at current prices and at prices consistent with optimistic estimates for the cost of collectors. The main institutional barriers to the wide spread use of solar energy are summarized.

  4. High efficiency flat plate solar energy collector

    SciTech Connect

    Butler, R. F.

    1985-04-30

    A concentrating flat plate collector for the high efficiency collection of solar energy. Through an arrangement of reflector elements, incoming solar radiation, either directly or after reflection from the reflector elements, impinges upon both surfaces of a collector element.

  5. Solar: A Clean Energy Source for Utilities

    SciTech Connect

    Solar Energy Technologies Program

    2010-09-28

    The fact sheet summarizes the goals and activities of the DOE Solar Energy Technologies Program efforts with utilities to remove the technical, regulatory, and market challenges they face in deploying solar technologies.

  6. Cocoon drying through solar energy

    SciTech Connect

    Kulunk, M.

    1983-12-01

    In this paper, silk cocoon drying operations through solar energy have been presented. Nearly no comprehensive work has been appeared in literature on this unusual application. General mechanism of solar drying methods are presented by some authors for instance, Roman and Jindal. This application seems vitally significant for silk cocoon producer countries like Turkey. The rate of production accelerates year by year and it is about 3000 tons per year presently in Turkey. In Turkey, by now and currently, a water vapour chamber is utilized in the killing process of silkworm. Vapour produced by burning of conventional fuels posses many drawbacks beside being very expensive and also non-renewable. Vapour effects the quality and quantity of silk thread negatively. For instance, the colour of silk cocoon tends to turn to pale instead of being gleamy. This is not tolerable. The length and mass of silk thread obtained per a typical cocoon sample is increased about 10.1 and 16.5 per cent respectively in the average by using solar energy.

  7. Solar total energy project Shenandoah

    SciTech Connect

    1980-01-10

    This document presents the description of the final design for the Solar Total Energy System (STES) to be installed at the Shenandoah, Georgia, site for utilization by the Bleyle knitwear plant. The system is a fully cascaded total energy system design featuring high temperature paraboloidal dish solar collectors with a 235 concentration ratio, a steam Rankine cycle power conversion system capable of supplying 100 to 400 kW(e) output with an intermediate process steam take-off point, and a back pressure condenser for heating and cooling. The design also includes an integrated control system employing the supervisory control concept to allow maximum experimental flexibility. The system design criteria and requirements are presented including the performance criteria and operating requirements, environmental conditions of operation; interface requirements with the Bleyle plant and the Georgia Power Company lines; maintenance, reliability, and testing requirements; health and safety requirements; and other applicable ordinances and codes. The major subsystems of the STES are described including the Solar Collection Subysystem (SCS), the Power Conversion Subsystem (PCS), the Thermal Utilization Subsystem (TUS), the Control and Instrumentation Subsystem (CAIS), and the Electrical Subsystem (ES). Each of these sections include design criteria and operational requirements specific to the subsystem, including interface requirements with the other subsystems, maintenance and reliability requirements, and testing and acceptance criteria. (WHK)

  8. Energy Conversion: Nano Solar Cell

    NASA Astrophysics Data System (ADS)

    Yahaya, Muhammad; Yap, Chi Chin; Mat Salleh, Muhamad

    2009-09-01

    Problems of fossil-fuel-induced climate change have sparked a demand for sustainable energy supply for all sectors of economy. Most laboratories continue to search for new materials and new technique to generate clean energy at affordable cost. Nanotechnology can play a major role in solving the energy problem. The prospect for solar energy using Si-based technology is not encouraging. Si photovoltaics can produce electricity at 20-30 c//kWhr with about 25% efficiency. Nanoparticles have a strong capacity to absorb light and generate more electrons for current as discovered in the recent work of organic and dye-sensitized cell. Using cheap preparation technique such as screen-printing and self-assembly growth, organic cells shows a strong potential for commercialization. Thin Films research group at National University Malaysia has been actively involved in these areas, and in this seminar, we will present a review works on nanomaterials for solar cells and particularly on hybrid organic solar cell based on ZnO nanorod arrays. The organic layer consisting of poly[2-methoxy-5-(2-ethylhexyloxy)-1, 4-phenylenevinylene] (MEHPPV) and [6, 6]-phenyl C61-butyric acid 3-ethylthiophene ester (PCBE) was spin-coated on ZnO nanorod arrays. ZnO nanorod arrays were grown on FTO glass substrates which were pre-coated with ZnO nanoparticles using a low temperature chemical solution method. A gold electrode was used as the top contact. The device gave a short circuit current density of 2.49×10-4 mA/cm2 and an open circuit voltage of 0.45 V under illumination of a projector halogen light at 100 mW/cm2.

  9. Solar energy in the context of energy use, energy transportation and energy storage.

    PubMed

    MacKay, David J C

    2013-08-13

    Taking the UK as a case study, this paper describes current energy use and a range of sustainable energy options for the future, including solar power and other renewables. I focus on the area involved in collecting, converting and delivering sustainable energy, looking in particular detail at the potential role of solar power. Britain consumes energy at a rate of about 5000 watts per person, and its population density is about 250 people per square kilometre. If we multiply the per capita energy consumption by the population density, then we obtain the average primary energy consumption per unit area, which for the UK is 1.25 watts per square metre. This areal power density is uncomfortably similar to the average power density that could be supplied by many renewables: the gravitational potential energy of rainfall in the Scottish highlands has a raw power per unit area of roughly 0.24 watts per square metre; energy crops in Europe deliver about 0.5 watts per square metre; wind farms deliver roughly 2.5 watts per square metre; solar photovoltaic farms in Bavaria, Germany, and Vermont, USA, deliver 4 watts per square metre; in sunnier locations, solar photovoltaic farms can deliver 10 watts per square metre; concentrating solar power stations in deserts might deliver 20 watts per square metre. In a decarbonized world that is renewable-powered, the land area required to maintain today's British energy consumption would have to be similar to the area of Britain. Several other high-density, high-consuming countries are in the same boat as Britain, and many other countries are rushing to join us. Decarbonizing such countries will only be possible through some combination of the following options: the embracing of country-sized renewable power-generation facilities; large-scale energy imports from country-sized renewable facilities in other countries; population reduction; radical efficiency improvements and lifestyle changes; and the growth of non-renewable low-carbon sources, namely 'clean' coal, 'clean' gas and nuclear power. If solar is to play a large role in the future energy system, then we need new methods for energy storage; very-large-scale solar either would need to be combined with electricity stores or it would need to serve a large flexible demand for energy that effectively stores useful energy in the form of chemicals, heat, or cold. PMID:23816908

  10. Solar Flares and the High Energy Solar Spectroscopic Imager (HESSI)

    NASA Technical Reports Server (NTRS)

    Holman, Gordon D.; Fisher, Richard R. (Technical Monitor)

    2001-01-01

    Solar flares are the biggest explosions in the solar system. They are important both for understanding explosive events in the Universe and for their impact on human technology and communications. The satellite-based HESSI is designed to study the explosive release of energy and the acceleration of electrons, protons, and other charged particles to high energies in solar flares. HESSI produces "color" movies of the Sun in high-energy X rays and gamma rays radiated by these energetic particles. HESSI's X-ray and gamma-ray images of flares are obtained using techniques similar to those used in radio interferometry. Ground-based radio observations of the Sun provide an important complement to the HESSI observations of solar flares. I will describe the HESSI Project and the high-energy aspects of solar flares, and how these relate to radio astronomy techniques and observations.

  11. Relative energy risk: Is solar energy riskier than nuclear

    NASA Astrophysics Data System (ADS)

    Inhaber, H.

    The discussion of risk analysis is divided into three parts: (1) a discussion of the methodology which can be used; (2) a listing of some of the major assumptions; and (3) the results of a comparison of eleven energy systems. The energy systems considered are divided into two groups: conventional, i.e., those in fairly widespread use, like coal or nuclear, and nonconventional, i.e., all others, like solar and wind. Compared to some conventional systems like natural gas and nuclear, technologies like solar and windpower have relatively high risk. Because of the dilute nature of the energy they handle, solar and wind systems, when compared on the quality of their energy production, require a considerable amount of apparatus as compared to other systems. In turn, this apparatus requires a large amount of material and construction labor to build and install. Associated with each ton of material and hour of labor is a definite number of accidents, diseases and deaths, according to labor statistics.

  12. Closed landfills to solar energy power plants: Estimating the solar potential of closed landfills in California

    NASA Astrophysics Data System (ADS)

    Munsell, Devon R.

    Solar radiation is a promising source of renewable energy because it is abundant and the technologies to harvest it are quickly improving. An ongoing challenge is to find suitable and effective areas to implement solar energy technologies without causing ecological harm. In this regard, one type of land use that has been largely overlooked for siting solar technologies is closed or soon to be closed landfills. Utilizing Geographic Information System (GIS) based solar modeling; this study makes an inventory of solar generation potential for such sites in the state of California. The study takes account of various site characteristics in relation to the siting needs of photovoltaic (PV) geomembrane and dish-Stirling technologies (e.g., size, topography, closing date, solar insolation, presence of landfill gas recovery projects, and proximity to transmission grids and roads). This study reaches the three principal conclusions. First, with an estimated annual solar electricity generation potential of 3.7 million megawatt hours (MWh), closed or soon to be closed landfill sites could provide an amount of power significantly larger than California's current solar electric generation. Secondly, the possibility of combining PV geomembrane, dish-Stirling, and landfill gas (LFG) to energy technologies at particular sites deserves further investigation. Lastly, there are many assumptions, challenges, and limitations in conducting inventory studies of solar potential for specific sites, including the difficulty in finding accurate data regarding the location and attributes of potential landfills to be analyzed in the study. Furthermore, solar modeling necessarily simplifies a complex phenomenon, namely incoming solar radiation. Additionally, site visits, while necessary for finding details of the site, are largely impractical for a large scale study.

  13. Solar Energy Education. Renewable energy activities for earth science

    SciTech Connect

    Not Available

    1980-01-01

    A teaching manual is provided to aid teachers in introducing renewable energy topics to earth science students. The main emphasis is placed on solar energy. Activities for the student include a study of the greenhouse effect, solar gain for home heating, measuring solar radiation, and the construction of a model solar still to obtain fresh water. Instructions for the construction of apparatus to demonstrate a solar still, the greenhouse effect and measurement of the altitude and azimuth of the sun are included. (BCS)

  14. Solar energy recorder. [for converter site selection

    NASA Technical Reports Server (NTRS)

    Lollar, R. B.; Mandt, R. R.

    1974-01-01

    A serious obstacle to the large-scale terrestrial application of solar energy lies in the scarcity of reliable data on the amount of solar energy at candidate converter sites. This paper describes a system designed to monitor and record, automatically, the values of the direct and total (sun and sky) solar radiation which would be seen by either tracking or fixed-type solar converters. A further pressing need addressed by the system is the means for efficiency testing and evaluation of solar cells, solar collectors and solar concentrator systems, under outdoor exposure to natural sunlight and weather conditions for extended periods. The design was accomplished in support of the Marshall Space Flight Center, NASA, where design concepts and materials for large-scale terrestrial solar energy converters are currently being evaluated.

  15. Solar Energy Education. Renewable energy: a background text. [Includes glossary

    SciTech Connect

    Not Available

    1985-01-01

    Some of the most common forms of renewable energy are presented in this textbook for students. The topics include solar energy, wind power hydroelectric power, biomass ocean thermal energy, and tidal and geothermal energy. The main emphasis of the text is on the sun and the solar energy that it yields. Discussions on the sun's composition and the relationship between the earth, sun and atmosphere are provided. Insolation, active and passive solar systems, and solar collectors are the subtopics included under solar energy. (BCS)

  16. More Efficient Solar Thermal-Energy Receiver

    NASA Technical Reports Server (NTRS)

    Dustin, M. O.

    1987-01-01

    Thermal stresses and reradiation reduced. Improved design for solar thermal-energy receiver overcomes three major deficiencies of solar dynamic receivers described in literature. Concentrator and receiver part of solar-thermal-energy system. Receiver divided into radiation section and storage section. Concentrated solar radiation falls on boiling ends of heat pipes, which transmit heat to thermal-energy-storage medium. Receiver used in number of applications to produce thermal energy directly for use or to store thermal energy for subsequent use in heat engine.

  17. Gas Turbine/Solar Parabolic Trough Hybrid Design Using Molten Salt Heat Transfer Fluid: Preprint

    SciTech Connect

    Turchi, C. S.; Ma, Z.

    2011-08-01

    Parabolic trough power plants can provide reliable power by incorporating either thermal energy storage (TES) or backup heat from fossil fuels. This paper describes a gas turbine / parabolic trough hybrid design that combines a solar contribution greater than 50% with gas heat rates that rival those of natural gas combined-cycle plants. Previous work illustrated benefits of integrating gas turbines with conventional oil heat-transfer-fluid (HTF) troughs running at 390?C. This work extends that analysis to examine the integration of gas turbines with salt-HTF troughs running at 450 degrees C and including TES. Using gas turbine waste heat to supplement the TES system provides greater operating flexibility while enhancing the efficiency of gas utilization. The analysis indicates that the hybrid plant design produces solar-derived electricity and gas-derived electricity at lower cost than either system operating alone.

  18. Solar energy project: An overview

    NASA Astrophysics Data System (ADS)

    1980-01-01

    The secondary school project is described which was developed by divisions of the University of the State of New York including the State Education Department, the University at Albany's Atmospheric Sciences Research Center and secondary schools represented by 80 participating science teachers. This cooperative effort of scientist and educator resulted in 43 classroom-tested activities suitable for infusion into five science curriculum areas, including junior high science, earth science, biology, chemistry and physics. These activities are also appropriate for the development of a separate solar energy course of study. National dissemination and pilot testing of this project will begin during the fall of 1978.

  19. Solar Energy Project: an overview

    SciTech Connect

    Not Available

    1980-01-01

    This booklet describes the secondary school project developed by divisions of the University of the State of New York including the State Education Department, the University at Albany's Atmospheric Sciences Research Center and secondary schools represented by 80 participating science teachers. This cooperative effort of scientist and science educator resulted in 43 classroom-tested activities suitable for infusion into five science curriculum areas, including junior high science, earth science, biology, chemistry and physics. These activities are also appropriate for the development of a separate solar energy course of study. National dissemination and pilot testing of this project will begin during the fall of 1978.

  20. MULTIFUNCTIONAL SOLAR ENERGY SYSTEMS RESEARCH PROJECT

    SciTech Connect

    Byard Wood, Lance Seefeldt, Ronald Sims, Bradley Wahlen, and Dan Dye

    2012-06-29

    The solar energy available within the visible portion of the solar spectrum is about 300 W/m2 (43%) and that available in the UV and IR portion is about 400 W/m2 (57%). This provides opportunities for developing integrated energy systems that capture and use specific wavelengths of the solar spectrum for different purposes. For example: biofuels from photosynthetic microbes use only the visible light; solar cells use a narrow band of the solar spectrum that could be either mostly in the visible or in the IR regions of the solar spectrum, depending on the photovoltaic materials, e.g., gallium antimonide (GaSb) cells utilize predominately IR radiation; and finally, solar panels that heat water utilize a broad range of wavelengths (visible plus IR). The basic idea of this research is that sunlight has many possible end-use applications including both direct use and energy conversion schemes; it is technically feasible to develop multifunctional solar energy systems capable of addressing several end-use needs while increasing the overall solar energy utilization efficiency when compared to single-purpose solar technologies. Such a combination of technologies could lead to more cost-competitive ?multifunctional? systems that add value and broaden opportunities for integrated energy systems. The goal of this research is to increase the overall energy efficacy and cost competitiveness of solar systems. The specific objectives of this research were: 1) Evaluate the efficacy of a combined photobioreactor and electric power system; 2) Improve the reliability and cost effectiveness of hybrid solar lighting systems ? a technology in which sunlight is collected and distributed via optical fibers into the interior of a building; 3) Evaluate the efficacy of using filtered light to increase the production of biomass in photobioreactors and provide more solar energy for other uses; 4) Evaluates several concepts for wavelength shifting such that a greater percentage of the solar spectrum energy can be used for photosynthesis.

  1. Nanostructured solar irradiation control materials for solar energy conversion

    NASA Astrophysics Data System (ADS)

    Kang, Jin Ho; Marshall, Iseley A.; Torrico, Mattew N.; Taylor, Chase R.; Ely, Jeffry; Henderson, Angel; Sauti, Godfrey; Gibbons, Luke J.; Kim, Jae-Woo; Park, Cheol; Lowther, Sharon E.; Lillehei, Peter T.; Bryant, Robert G.

    2012-10-01

    Tailoring the solar absorptivity (?s) and thermal emissivity (?T) of materials constitutes an innovative approach to solar energy control and energy conversion. Numerous ceramic and metallic materials are currently available for solar absorbance/thermal emittance control. However, conventional metal oxides and dielectric/metal/dielectric multi-coatings have limited utility due to residual shear stresses resulting from the different coefficient of thermal expansion of the layered materials. This research presents an alternate approach based on nanoparticle-filled polymers to afford mechanically durable solar-absorptive and thermally-emissive polymer nanocomposites. The ?s and ?T were measured with various nano inclusions, such as carbon nanophase particles (CNPs), at different concentrations. Research has shown that adding only 5 wt% CNPs increased the ?s and ?T by a factor of about 47 and 2, respectively, compared to the pristine polymer. The effect of solar irradiation control of the nanocomposite on solar energy conversion was studied. The solar irradiation control coatings increased the power generation of solar thermoelectric cells by more than 380% compared to that of a control power cell without solar irradiation control coatings.

  2. Nanostructured Solar Irradiation Control Materials for Solar Energy Conversion

    NASA Technical Reports Server (NTRS)

    Kang, Jinho; Marshall, I. A.; Torrico, M. N.; Taylor, C. R.; Ely, Jeffry; Henderson, Angel Z.; Kim, J.-W.; Sauti, G.; Gibbons, L. J.; Park, C.; Lowther, S. E.; Lillehei, P. T.; Bryant, R. G.

    2012-01-01

    Tailoring the solar absorptivity (alpha(sub s)) and thermal emissivity (epsilon(sub T)) of materials constitutes an innovative approach to solar energy control and energy conversion. Numerous ceramic and metallic materials are currently available for solar absorbance/thermal emittance control. However, conventional metal oxides and dielectric/metal/dielectric multi-coatings have limited utility due to residual shear stresses resulting from the different coefficient of thermal expansion of the layered materials. This research presents an alternate approach based on nanoparticle-filled polymers to afford mechanically durable solar-absorptive and thermally-emissive polymer nanocomposites. The alpha(sub s) and epsilon(sub T) were measured with various nano inclusions, such as carbon nanophase particles (CNPs), at different concentrations. Research has shown that adding only 5 wt% CNPs increased the alpha(sub s) and epsilon(sub T) by a factor of about 47 and 2, respectively, compared to the pristine polymer. The effect of solar irradiation control of the nanocomposite on solar energy conversion was studied. The solar irradiation control coatings increased the power generation of solar thermoelectric cells by more than 380% compared to that of a control power cell without solar irradiation control coatings.

  3. Improving Air Quality with Solar Energy

    DOE R&D Accomplishments Database

    2008-04-01

    This fact sheet series highlights how renewable energy and energy efficiency technologies can and are being used to reduce air emissions and meet environmental goals, showcasing case studies and technology-specific topics. This one focus on solar energy technologies.

  4. Combined solar collector and energy storage system

    NASA Technical Reports Server (NTRS)

    Jensen, R. N. (Inventor)

    1980-01-01

    A combined solar energy collector, fluid chiller and energy storage system is disclosed. A movable interior insulated panel in a storage tank is positionable flush against the storage tank wall to insulate the tank for energy storage. The movable interior insulated panel is alternately positionable to form a solar collector or fluid chiller through which the fluid flows by natural circulation.

  5. Teaching Children to Value Solar Energy

    ERIC Educational Resources Information Center

    Hugerat, Muhamad; Saker, Salem; Odeh, Saeed; Agbaria, Adnan

    2011-01-01

    In this educational initiative, we suggest to build a real model of solar village inside the school, which uses only solar energy. These educational initiatives emphasize the importance of energy for a technological society and the advantage of alternative energy sources. In this scientific educational initiative, the pupils in three elementary…

  6. Adaptive, full-spectrum solar energy system

    DOEpatents

    Muhs, Jeffrey D.; Earl, Dennis D.

    2003-08-05

    An adaptive full spectrum solar energy system having at least one hybrid solar concentrator, at least one hybrid luminaire, at least one hybrid photobioreactor, and a light distribution system operably connected to each hybrid solar concentrator, each hybrid luminaire, and each hybrid photobioreactor. A lighting control system operates each component.

  7. Battle Keeps Solar Energy in Receiver

    NASA Technical Reports Server (NTRS)

    Mcdougal, A. R.; Hale, R. R.

    1982-01-01

    Mirror structure in solar concentrator reduces heat loss by reflection and reradiation. Baffle reflects entering rays back and forth in solar-concentrator receiver until they reach heat exchanger. Similarly, infrared energy reradiated by heat exchanger is prevented from leaving receiver. Surfaces of baffle and inside wall of receiver are polished and highly reflective at solar and infrared wavelengths.

  8. Solar Energy for Pacific Northwest Buildings.

    ERIC Educational Resources Information Center

    Reynolds, John S.

    Data presented in this report indicate that solar space and water heating are possible in the Pacific Northwest. The first section of the report contains solar records from several stations in the region illustrating space heating needs that could be met, on an average daily basis, by solar energy. The data are summarized, and some preliminary…

  9. The Solar Energy Timetable. Worldwatch Paper 19.

    ERIC Educational Resources Information Center

    Hayes, Denis

    This publication proposes a timetable for converting the world economy to solar energy. The contents include: (1) A solar-powered world by 2025; (2) Heating and cooling; (3) Renewable fuels; (4) Electricity; (5) Getting there from here; and (6) Notes. Numerous facts are presented within these sections. International solar research programs are…

  10. Summary of solar energy technology characterizations

    SciTech Connect

    D'Alessio, Dr., Gregory J.; Blaunstein, Dr., Robert R.

    1980-09-01

    This report summarizes the design, operating, energy, environmental, and economic characteristics of 38 model solar systems used in the Technology Assessment of Solar Energy Systems Project including solar heating and cooling of buildings, agricultural and industrial process heat, solar electric conversion, and industrial biomass systems. The generic systems designs utilized in this report were based on systems studies and mission analyses performed by the DOE National Laboratories and the MITRE Corporation. The purpose of those studies were to formulate materials and engineering cost data and performance data of solar equipment once mass produced.

  11. Simple Experiments on the Use of Solar Energy

    ERIC Educational Resources Information Center

    Vella, G. J.; Goldsmid, H. J.

    1976-01-01

    Describes 5 solar energy experiments that can be used in secondary school: flat-plate collector, solar thermoelectric generator, simple concentrators, solar cell, and natural storage of solar energy. (MLH)

  12. Compact, high energy gas laser

    DOEpatents

    Rockwood, Stephen D.; Stapleton, Robert E.; Stratton, Thomas F.

    1976-08-03

    An electrically pumped gas laser amplifier unit having a disc-like configuration in which light propagation is radially outward from the axis rather than along the axis. The input optical energy is distributed over a much smaller area than the output optical energy, i.e., the amplified beam, while still preserving the simplicity of parallel electrodes for pumping the laser medium. The system may thus be driven by a comparatively low optical energy input, while at the same time, owing to the large output area, large energies may be extracted while maintaining the energy per unit area below the threshold of gas breakdown.

  13. Reducing fuel usage through applications of conservation and solar energy

    SciTech Connect

    May, E. K.; Hooker, D. W.

    1980-04-01

    Solar thermal technology, coupled with aggressive conservation measures, offers the prospect of greatly reducing the dependence of industry on oil and natural gas. The near-term market for solar technology is largely in industrial processes operating at temperatures below 288/sup 0/C (550/sup 0/F). Such process heat can be supplied by the relatively unsophisticated solar equipment available today. The number and diversity of industrial plants using process heat at this temperature allows favorable matches between solar technologies and industrial processes. The problems involved with the installation and maintenance of conservation and solar equipment are similar. Both compete for scarce investment capital, and each complicates industrial operations and increases maintenance requirements. Technological innovations requiring new types of equipment and reducing the temperature requirements of industrial processes favor the introduction of solar hardware. The industrial case studies program at the Solar Energy Research Institute has examined technical, economic, and other problems facing the near-term application of solar thermal technology to provide industrial process heat. The plant engineer is in the front line of any measure to reduce energy consumption or to supplement existing fuel supplies. The conditions most favorable to the integration of solar technology are presented and illustrated with examples from actual industrial plants.

  14. Environmental aspects of solar energy technologies

    SciTech Connect

    Strojan, C.L.

    1980-09-01

    Solar energy technologies have environmental effects, and these may be positive or negative compared with current ways of producing energy. In this respect, solar energy technologies are no different from other energy systems. Where solar energy technologies differ is that no unresolvable technological problems (e.g., CO/sub 2/ emissions) or sociopolitical barriers (e.g., waste disposal, catastrophic accidents) have been identified. This report reviews some of the environmental aspects of solar energy technologies and ongoing research designed to identify and resolve potential environmental concerns. It is important to continue research and assessment of environmental aspects of solar energy to ensure that unanticipated problems do not arise. It is also important that the knowledge gained through such environmental research be incorporated into technology development programs and policy initiatives.

  15. Solar Energy Systems for Ohioan Residential Homeowners

    NASA Astrophysics Data System (ADS)

    Luckett, Rickey D.

    Dwindling nonrenewable energy resources and rising energy costs have forced the United States to develop alternative renewable energy sources. The United States' solar energy industry has seen an upsurge in recent years, and photovoltaic holds considerable promise as a renewable energy technology. The purpose of this case study was to explore homeowner's awareness of the benefits of solar energy. Disruptive-innovation theory was used to explore marketing strategies for conveying information to homeowners about access to new solar energy products and services. Twenty residential homeowners were interviewed face-to-face to explore (a) perceived benefits of solar energy in their county in Ohio, and (b) perceptions on the rationale behind the marketing strategy of solar energy systems sold for residential use. The study findings used inductive analyses and coding interpretation to explore the participants' responses that revealed 3 themes: the existence of environmental benefits for using solar energy systems, the expensive cost of equipment associated with government incentives, and the lack of marketing information that is available for consumer use. The implications for positive social change include the potential to enable corporate leaders, small business owners, and entrepreneurs to develop marketing strategies for renewable energy systems. These strategies may promote use of solar energy systems as a clean, renewable, and affordable alternative electricity energy source for the 21st century.

  16. Natural Gas Energy Educational Kit.

    ERIC Educational Resources Information Center

    American Gas Association, Arlington, VA. Educational Services.

    Prepared by energy experts and educators to introduce middle school and high school students to natural gas and its role in our society, this kit is designed to be incorporated into existing science and social studies curricula. The materials and activities focus on the origin, discovery, production, delivery, and use of natural gas. The role of

  17. Natural Gas Energy Educational Kit.

    ERIC Educational Resources Information Center

    American Gas Association, Arlington, VA. Educational Services.

    Prepared by energy experts and educators to introduce middle school and high school students to natural gas and its role in our society, this kit is designed to be incorporated into existing science and social studies curricula. The materials and activities focus on the origin, discovery, production, delivery, and use of natural gas. The role of…

  18. Economic Evaluation of Townhouse Solar Energy System

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Solar-energy site in Columbia, South Carolina, is comprised of four townhouse apartments. Report summarizes economic evaluation of solar--energy system and projected performance of similar systems in four other selected cities. System is designed to supply 65 percent of heating and 75 percent of hot water.

  19. Projects in a Solar Energy Course.

    ERIC Educational Resources Information Center

    Lindsay, Richard H.

    1983-01-01

    Describes student projects on applications of solar energy optics to home design. Project criterion (requiring sketches and detailed calculations of time rate of energy flow/production) is that half the heat for the heating season be taken from the solar resource; calculations must be based on meteorological data for a specific location. (JM)

  20. Solar Energy for Space Heating & Hot Water.

    ERIC Educational Resources Information Center

    Energy Research and Development Administration, Washington, DC. Div. of Solar Energy.

    This pamphlet reviews the direct transfer of solar energy into heat, particularly for the purpose of providing space and hot water heating needs. Owners of buildings and homes are provided with a basic understanding of solar heating and hot water systems: what they are, how they perform, the energy savings possible, and the cost factors involved.…

  1. Non-tracking solar energy collector system

    NASA Technical Reports Server (NTRS)

    Selcuk, M. K. (Inventor)

    1978-01-01

    A solar energy collector system characterized by an improved concentrator for directing incident rays of solar energy on parallel vacuum-jacketed receivers or absorbers is described. Numerous individually mounted reflector modules of a common asymmetrical triangular cross-sectional configuration are supported for independent reorientation. Asymmetric vee-trough concentrators are defined.

  2. Unites solar, San Diego Gas & Electric complete urban PV system

    SciTech Connect

    Aldrich, C.

    1996-12-01

    A solar electric system developed for a public restroom and parking lot is very briefly described. The system was developed by San Diego Gas and Electric, the California Department of Parks and Recreation, and United Solar Systems Corporation. The specifications of the 2.4 kilowatt photovoltaic array system and the solar roof are outlined. The system was installed at a cost of $52,000; an electrical line extension to the site had been estimated to cost $135,000.

  3. 78 FR 45268 - Notice of Availability of the San Diego Gas & Electric Ocotillo Sol Solar Project Final...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-26

    ... compatibility of solar energy facilities on public lands, requires that all sites associated with power... suitable or unsuitable for solar energy development. The Final EIS describes the following three... Bureau of Land Management Notice of Availability of the San Diego Gas & Electric Ocotillo Sol...

  4. Energy portfolio of Iran: A case study of solar desalination

    NASA Astrophysics Data System (ADS)

    Besharati, Adib

    Energy plays a very important role in the economic development of a country such as Iran where industrial progress and higher living standards increase demand for energy. Iran is one of the countries in the world that simultaneously produces and consumes large amounts of energy. Because of its geographic latitude and weather conditions, Iran has the potential to develop and use of both fossil and renewable energy sources. In South Iran, there are huge oil and gas resources, and at the same time high potential of solar radiation. However, at the present large-scale utilization, solar energy is prohibitively expensive for Iran. Therefore, this study investigates an economical way to utilize solar energy in a meaningful way for Iran. One of the possible uses of solar energy that is both economical and technically feasible is desalination of water using solar energy. People in South Iran live in different areas with relatively low population density. One of the critical problems in those areas is a lack of clean drinking water. As a result, there is an urgent need to investigate ways to produce clean water from the saltwater. Therefore, the present study conducts a case study of solar desalination in south Iran using solar. Different desalination methods, such as humidification dehumidification by using a solar collector, and reverse osmosis, are discussed. In the case study, a prototype desalination plant was considered and both technical and economic aspects of the plant were investigated in details. The results showed higher productivity of drinking water in reverse osmosis method for south Iran.

  5. Magnetic energy flow in the solar wind.

    NASA Technical Reports Server (NTRS)

    Modisette, J. L.

    1972-01-01

    Discussion of the effect of rotation (tangential flow) of the solar wind on the conclusions of Whang (1971) suggesting an increase in the solar wind velocity due to the conversion of magnetic energy to kinetic energy. It is shown that the effect of the rotation of the sun on the magnetic energy flow results in most of the magnetic energy being transported by magnetic shear stress near the sun.

  6. Solar energy food dehydration system: Concept development

    SciTech Connect

    Pham, L.V.

    1988-01-01

    The research activities to be carried out to form the body of this work were planned, first, to increase the general knowledge in the areas of solar energy application and, secondly, to provide sufficient data for the development of a new solar energy powered food dehydrating system. The research work does not aim merely at pursuing the study and development of a new component or a new type of material to be used in the solar industry. But the final and main part of this research is devoted to the development and design of a solar energy system uncharted before the purpose of dehydrating various agricultural products. This proposed solar powered system development is thereby a contribution of technological knowledge to the field of Applied Sciences. It is one of the viable and effective solutions to solving the world's food and energy shortage problem, especially in the less developed regions of the world. The body of this work, thus is divided into three major parts as follows: (1) The search for a thorough understanding of the origin and fundamental characteristics of solar energy. (2) Past and present applications of solar energy. (3) The development and design of a new solar energy powered system for the dehydration of food crops.

  7. Space solar power - An energy alternative

    NASA Technical Reports Server (NTRS)

    Johnson, R. W.

    1978-01-01

    The space solar power concept is concerned with the use of a Space Power Satellite (SPS) which orbits the earth at geostationary altitude. Two large symmetrical solar collectors convert solar energy directly to electricity using photovoltaic cells woven into blankets. The dc electricity is directed to microwave generators incorporated in a transmitting antenna located between the solar collectors. The antenna directs the microwave beam to a receiving antenna on earth where the microwave energy is efficiently converted back to dc electricity. The SPS design promises 30-year and beyond lifetimes. The SPS is relatively pollution free as it promises earth-equivalence of 80-85% efficient ground-based thermal power plant.

  8. Solar energy for electricity and fuels.

    PubMed

    Inganäs, Olle; Sundström, Villy

    2016-01-01

    Solar energy conversion into electricity by photovoltaic modules is now a mature technology. We discuss the need for materials and device developments using conventional silicon and other materials, pointing to the need to use scalable materials and to reduce the energy payback time. Storage of solar energy can be achieved using the energy of light to produce a fuel. We discuss how this can be achieved in a direct process mimicking the photosynthetic processes, using synthetic organic, inorganic, or hybrid materials for light collection and catalysis. We also briefly discuss challenges and needs for large-scale implementation of direct solar fuel technologies. PMID:26667056

  9. Solar energy innovation and Silicon Valley

    NASA Astrophysics Data System (ADS)

    Kammen, Daniel M.

    2015-03-01

    The growth of the U. S. and global solar energy industry depends on a strong relationship between science and engineering innovation, manufacturing, and cycles of policy design and advancement. The mixture of the academic and industrial engine of innovation that is Silicon Valley, and the strong suite of environmental policies for which California is a leader work together to both drive the solar energy industry, and keep Silicon Valley competitive as China, Europe and other area of solar energy strength continue to build their clean energy sectors.

  10. New prosperity: building a sustainable energy future. The SERI solar conservation study

    SciTech Connect

    Not Available

    1981-01-01

    The technical potential of energy conservation and solar energy in residential buildings is assessed. Residential and commercial building policies are studied. Technical potential for conservation and renewable resources are assessed for commercial buildings to determine those of least cost. Industrial energy consumption targets, solar technologies, and public policy recommendations are discussed. Near, mid and long term energy efficiency in transportation and use of renewable energy in transportation are examined. Regulation and deregulation of utilities, and the role of Federal Power Marketing Authorities are discussed. Solar electric technologies are assessed. The role of the gas industry and of renewable gas supplies are considered. (LEW)

  11. National solar total energy program (STEP) Shenandoah Solar Center

    SciTech Connect

    Ashmore, A.

    1982-10-01

    The nation's largest industrial solar energy cogeneration facility which uses waste heat from electrical power to accommodate other energy needs is described. The purpose of this US DOE and the Georgia Power Co. project is to provide electrical power, process steam, and air conditioning for a knitwear factory.

  12. Solar energy information user study: military engineers

    SciTech Connect

    Marle, T.L.; Belew, W.W.

    1981-09-01

    This report summarizes data from questionnaires administered to military engineers and architects attending a 2-day solar design workshop at Lowry Air Force Base, February 17 and 18, 1981. The workshop was designed to inform engineers when and where solar energy could be used more effectively. The study aimed to identify the (a) solar energy information needs and information habits of the professionals, (b) their familiarity with and appraisal of relevant military publications containing solar energy information currently available, and (c) the overall effectiveness of the workshops (including structure and content). To measure the effectiveness of the workshop itself and provide input on producing an effective and comprehensive information dissemination plan for military engineers nationwide, 2 questionnaires were designed and administered to the participants. The Pre-Workshop Questionnaire assessed the participant's knowledge of solar energy prior to attending the workshop.

  13. Solar energy education. Renewable energy activities for general science

    SciTech Connect

    Not Available

    1985-01-01

    Renewable energy topics are integrated with the study of general science. The literature is provided in the form of a teaching manual and includes such topics as passive solar homes, siting a home for solar energy, and wind power for the home. Other energy topics are explored through library research activities. (BCS)

  14. Solar Energy Education. Renewable energy activities for biology

    SciTech Connect

    Not Available

    1982-01-01

    An instructional aid for teachers is presented that will allow biology students the opportunity to learn about renewable energy sources. Some of the school activities include using leaves as collectors of solar energy, solar energy stored in wood, and a fuel value test for green and dry woods. A study of organic wastes as a source of fuel is included. (BCS)

  15. Solar Energy Education. Renewable energy activities for chemistry and physics

    SciTech Connect

    Not Available

    1985-01-01

    Information on renewable energy sources is provided for students in this teachers' guide. With the chemistry and physics student in mind, solar energy topics such as absorber plate coatings for solar collectors and energy collection and storage methods are studied. (BCS)

  16. Solar power. [comparison of costs to wind, nuclear, coal, oil and gas

    NASA Technical Reports Server (NTRS)

    Walton, A. L.; Hall, Darwin C.

    1990-01-01

    This paper describes categories of solar technologies and identifies those that are economic. It compares the private costs of power from solar, wind, nuclear, coal, oil, and gas generators. In the southern United States, the private costs of building and generating electricity from new solar and wind power plants are less than the private cost of electricity from a new nuclear power plant. Solar power is more valuable than nuclear power since all solar power is available during peak and midpeak periods. Half of the power from nuclear generators is off-peak power and therefore is less valuable. Reliability is important in determining the value of wind and nuclear power. Damage from air pollution, when factored into the cost of power from fossil fuels, alters the cost comparison in favor of solar and wind power. Some policies are more effective at encouraging alternative energy technologies that pollute less and improve national security.

  17. Solar Total Energy Project Shenandoah, Georgia

    SciTech Connect

    King, J.W.; Geurts, G.F.

    1983-06-01

    The Solar Total Energy Project (STEP) at Shenandoah, Georgia is the world's largest industrial application of solar cogeneration. It is a cooperative effort between the U. S. Department of Energy (DOE) and the Georgia Power Company to further America's search for alternative sources of energy. It is an outgrowth of research started in 1972 by Sandia National Laboratories for the U. S. Energy Research and Development Administration. The objective of the Shenandoah project is to evaluate a solar total energy system that provides electrical power, process steam, and air conditioning for a knitwear factory operated by Bleyle of America, Inc. Solar energy will displace a large part of the electricity and fossil fuels normally used to run the factory and produce the clothing.

  18. Solar Energy: Its Technologies and Applications

    DOE R&D Accomplishments Database

    Auh, P. C.

    1978-06-01

    Solar heat, as a potential source of clean energy, is available to all of us. Extensive R and D efforts are being made to effectively utilize this renewable energy source. A variety of different technologies for utilizing solar energy have been proven to be technically feasible. Here, some of the most promising technologies and their applications are briefly described. These are: Solar Heating and Cooling of Buildings (SHACOB), Solar Thermal Energy Conversion (STC), Wind Energy Conversion (WECS), Bioconversion to Fuels (BCF), Ocean Thermal Energy Conversion (OTEC), and Photovoltaic Electric Power Systems (PEPS). Special emphasis is placed on the discussion of the SHACOB technologies, since the technologies are being expeditiously developed for the near commercialization.

  19. Low cost solar energy collection system

    NASA Technical Reports Server (NTRS)

    Miller, C. G.; Stephans, J. B. (Inventor)

    1977-01-01

    A fixed, linear, ground-based primary reflector having an extended, curved sawtooth contoured surface covered with a metallized polymeric reflecting material, reflected solar energy to a movably supported collector that was kept at the concentrated line focus of the reflector primary. Efficient utilization leading to high temperatures from the reflected solar energy was obtained by cylindrical shaped secondary reflectors that directed off-angle energy to the absorber pipe.

  20. Antisoiling Coatings for Solar-Energy Devices

    NASA Technical Reports Server (NTRS)

    Cuddihy, E. F.; Willis, P.

    1986-01-01

    Fluorocarbons resist formation of adherent deposits. Promising coating materials reduce soiling of solar photovoltaic modules and possibly solar thermal collectors. Contaminating layers of various degrees of adherence form on surfaces of devices, partially blocking incident solar energy, reducing output power. Loose soil deposits during dry periods but washed off by rain. New coatings help prevent formation of more-adherent, chemically and physically bonded layers rain alone cannot wash away.

  1. Space solar power - An available energy source

    NASA Technical Reports Server (NTRS)

    Ferdman, S.; Kline, R. L.

    1976-01-01

    The development of satellite solar power stations is described with attention given to station design and assembly in space. Problems associated with conversion of solar energy into microwaves and with getting the station into orbit are considered. The use of a solar propulsion system for pushing the station to high orbit is discussed along with questions of station lifetime (estimated to be about thirty years). The paper is copiously illustrated with drawings projecting various aspects of station design and utilization.

  2. Solar energy at Sandia National Laboratories

    SciTech Connect

    1981-12-31

    Basic concepts for using the energy of the sun have been known for centuries. The challenge today, the goal of the Department of Energy`s National Solar Energy Program is to create the technology needed to establish solar energy as a practical, economical alternative to energy produced by depletable fuels--and to use that solar-produced energy in a wide variety of applications. To assist the DOE in this national effort, Sandia sponsors industrial and university research and development, manages a series of technical programs, operates solar experimental facilities, and carries out its own scientific and engineering research. This booklet describes their projects, their technical objectives, and explains how their experimental facilities are used to find the answers we`re seeking. Prospective participants from companies involved in solar-energy development or applications should find it especially useful since it outlines broad areas of opportunity. Projects include: central receiver technology; line-focus thermal technology; photovoltaic systems technology; wind turbine development; energy storage technology; and applied research in improved polycrystalline materials for solar cells and photoelectrolysis of water.

  3. Solar energy storage researchers information user study

    SciTech Connect

    Belew, W.W.; Wood, B.L.; Marle, T.L.; Reinhardt, C.L.

    1981-03-01

    The results of a series of telephone interviews with groups of users of information on solar energy storage are described. In the current study only high-priority groups were examined. Results from 2 groups of researchers are analyzed: DOE-Funded Researchers and Non-DOE-Funded Researchers. The data will be used as input to the determination of information products and services the Solar Energy Research Institute, the Solar Energy Information Data Bank Network, and the entire information outreach community should be preparing and disseminating.

  4. Polymers in solar energy utilization

    NASA Technical Reports Server (NTRS)

    Liang, R. H.; Coulter, D. R.; Dao, C.; Gupta, A.

    1983-01-01

    A laser photoacoustic technique (LPAT) has been verified for performing accelerated life testing of outdoor photooxidation of polymeric materials used in solar energy applications. Samples of the material under test are placed in a chamber with a sensitive microphone, then exposed to chopped laser radiation. The sample absorbs the light and converts it to heat by a nonradiative deexcitation process, thereby reducing pressure fluctuations within the cell. The acoustic signal detected by the microphone is directly proportional to the amount of light absorbed by the specimen. Tests were performed with samples of ethylene/methylacrylate copolymer (EMA) reprecipitated from hot cyclohexane, compressed, and molded into thin (25-50 microns) films. The films were exposed outdoors and sampled by LPAT weekly. The linearity of the light absorbed with respect to the acoustic signal was verified.Correlations were established between the photoacoustic behavior of the materials aged outdoors and the same kinds of samples cooled and heated in a controlled environment reactor. The reactor tests were validated for predicting outdoor exosures up to 55 days.

  5. Unveiling extensive clouds of dark gas in the solar neighborhood.

    PubMed

    Grenier, Isabelle A; Casandjian, Jean-Marc; Terrier, Régis

    2005-02-25

    From the comparison of interstellar gas tracers in the solar neighborhood (HI and CO lines from the atomic and molecular gas, dust thermal emission, and g rays from cosmic-ray interactions with gas), we unveil vast clouds of cold dust and dark gas, invisible in HI and CO but detected in gamma rays. They surround all the nearby CO clouds and bridge the dense cores to broader atomic clouds, thus providing a key link in the evolution of interstellar clouds. The relation between the masses in the molecular, dark, and atomic phases in the local clouds implies a dark gas mass in the Milky Way comparable to the molecular one. PMID:15731450

  6. Dormitory Solar-Energy-System Economics

    NASA Technical Reports Server (NTRS)

    1982-01-01

    102-page report analyzes long-term economic performance of a prepackaged solar energy assembly system at a dormitory installation and extrapolates to four additional sites about the U.S. Method of evaluation is f-chart procedure for solar-heating and domestic hotwater systems.

  7. Tower Power: Producing Fuels from Solar Energy

    ERIC Educational Resources Information Center

    Antal, M. J., Jr.

    1976-01-01

    This article examines the use of power tower technologies for the production of synthetic fuels. This process overcomes the limitations of other processes by using a solar furnace to drive endothermic fuel producing reactions and the resulting fuels serve as a medium for storing solar energy. (BT)

  8. Heat-Energy Analysis for Solar Receivers

    NASA Technical Reports Server (NTRS)

    Lansing, F. L.

    1982-01-01

    Heat-energy analysis program (HEAP) solves general heat-transfer problems, with some specific features that are "custom made" for analyzing solar receivers. Can be utilized not only to predict receiver performance under varying solar flux, ambient temperature and local heat-transfer rates but also to detect locations of hotspots and metallurgical difficulties and to predict performance sensitivity of neighboring component parameters.

  9. Luminescent solar concentrators and all-inorganic nanoparticle solar cells for solar energy harvesting

    NASA Astrophysics Data System (ADS)

    Sholin, Veronica

    Increasing energy demand and the parallel increase of greenhouse gas emissions are challenging researchers to find new and cleaner energy sources. Solar energy harvesting is arguably the most promising candidate for replacing fossil-fuel power generation. Photovoltaics are the most direct way of collecting solar energy; cost continues to hinder large-scale implementation of photovoltaics, however. Therefore, alternative technologies that will allow the extraction of solar power, while maintaining the overall costs of fabrication, installation, collection, and distribution low, must be explored. This thesis focuses on the fabrication and testing of two types of devices that step up to this challenge: the luminescent solar concentrator (LSC) and all-inorganic nanoparticle solar cells. In these devices I make use of novel materials, semiconducting polymers and inorganic nanoparticles, both of which have lower costs than the crystalline materials used in the fabrication of traditional photovoltaics. Furthermore, the cost of manufacturing LSCs and the nanoparticle solar cells is lower than the manufacturing cost of traditional optics-based concentrators and crystalline solar cells. An LSC is essentially a slab of luminescent material that acts as a planar light pipe. The LSC absorbs incoming photons and channels fluoresced photons toward appropriately located solar cells, which perform the photovoltaic conversion. By covering large areas with relatively inexpensive fluorescing organic dyes or semiconducting polymers, the area of solar cell needed is greatly reduced. Because semiconducting polymers and quantum dots may have small absorption/emission band overlaps, tunable absorption, and longer lifetimes, they are good candidates for LSC fabrication, promising improvement with respect to laser dyes traditionally used to fabricate LSCs. Here the efficiency of LSCs consisting of liquid solutions of semiconducting polymers encased in glass was measured and compared to the efficiency of LSCs based on small molecule laser dyes and on quantum dots. Factors affecting the optical efficiency of the system such as the luminescing properties of the fluorophors were examined. The experimental results were compared to Monte-Carlo simulations. Our results suggest that commercially available quantum dots cannot serve as viable LSC dyes because of large absorption/emission band overlap and relatively low quantum yield. Materials such as Red F demonstrate that semi-conducting polymers with high quantum yield and small absorption/emission band overlap are good candidates for LSCs. Recently, a solar cell system based purely on CdSe and Cite nanoparticles as the absorbing materials was proposed ans it was suggested that its operational mechanism was that of polymer donor/acceptor systems. Here we present solar cells consisting of a sintered active bilayer of CdSe and PbSe nanoparticles in the structure ITO/CdSe/interlayer/PbSe/Al, where an interlayer of LiF or Al2O3 was found necessary to prevent low shunt resistance from suppressing the photovoltaic behavior. We fabricated unoptimized solar cells with a short-circuit current of 6 mA/cm2, an open-circuit voltage of 0.18 V, and a fill factor of 41%. External quantum efficiency spectra revealed that photons from the infrared portion of the spectrum were not collected, suggesting that the low bandgap PbSe film did not contribute to the photocurrent of the structure despite exhibiting photoconductivity. Other measurements, however, showed that the PbSe film was indeed necessary to produce a photovoltage and transport electrons. Through sintering, the nanoparticle films acquired bandgaps similar to those of the corresponding bulk materials and became more conductive. Because the PbSe films were found to be considerably more conductive than the CdSe ones, we suggest that the PbSe layer is effectively behaving like a low conductivity electrical contact. Therefore, in contrast to the photovoltaics presented in the seminal research on CdSe/Cite solar cells, the CdSe/PbSe solar cell system presented here does not follow typical type-II heterojunction donor/acceptor models used to describe organic polymer solar cells.

  10. Solar Energy: Progress and Promise.

    ERIC Educational Resources Information Center

    Council on Environmental Quality, Washington, DC.

    This report discusses many of the economic and policy questions related to the widespread introduction of solar power, presents recent progress in developing solar technologies and advancing their economic feasibility, and reviews some recommendations that have been made for achieving the early introduction and sustained application of solar…

  11. New View of Gas and Dust in the Solar Nebula

    NASA Astrophysics Data System (ADS)

    Taylor, G. J.

    2010-08-01

    The recognizable components in meteorites differ in their relative abundances of the three oxygen isotopes (16O, 17O, and 18O). In particular, the amount of 16O varies from being like that of the Earth to substantially enriched compared to the other two isotopes. The current explanation for this interesting range in isotopic composition is that dust and gas in the solar nebula (the cloud of gas and dust surrounding the primitive Sun) began with the same 16O-rich composition, but the solids evolved towards the terrestrial value. A new analysis of the problem by Alexander Krot (University of Hawaii) and colleagues at the University of Hawaii, the University of Chicago, Clemson University, and Lawrence Livermore National Laboratory leads to the bold assertion that primordial dust and gas differed in isotopic composition. The gas was rich in 16O as previously thought (possibly slightly richer in 16O than the measurements of the solar wind returned by the Genesis Mission), but that the dust had a composition close to the 16O-depleted terrestrial average. In this new view, the dust had a different history than did the gas before being incorporated into the Solar System. Solids with compositions near the terrestrial line may have formed in regions of the solar nebula where dust had concentrated compared to the mean solar dust/gas ratio (1 : ~100). The idea has great implications for understanding the oxygen-isotope composition of the inner Solar System and the origin of materials in the molecular cloud from which the Solar System formed.

  12. General solar energy information user study

    SciTech Connect

    Belew, W.W.; Wood, B.L.; Marle, T.L.; Reinhardt, C.L.

    1981-03-01

    This report describes the results of a series of telephone interviews with groups of users of information on general solar energy. These results, part of a larger study on many different solar technologies, identify types of information each group needed and the best ways to get information to each group. The report is 1 of 10 discussing study results. The overall study provides baseline data about information needs in the solar community. An earlier study identified the information user groups in the solar community and the priority (to accelerate solar energy commercialization) of getting information to each group. In the current study only high-priority groups were examined. Results from 13 groups of respondents are analyzed in this report: Loan Officers, Real Estate Appraisers, Tax Assessors, Insurers, Lawyers, Utility Representatives, Public Interest Group Representatives, Information and Agricultural Representatives, Public Interest Group Representatives, Information and Agricultural Specialists at State Cooperative Extension Service Offices, and State Energy Office Representatives. The data will be used as input to the determination of information products and services the Solar Energy Research Institute, the Solar Energy Information Data Bank Network, and the entire information outreach community should be preparing and disseminating.

  13. Our prodigal sun. [solar energy technology

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Characteristics of the sun are reported indicating it as a source of energy. Data from several space missions are discussed, and the solar activity cycle is presented. The corona, flares, prominences, spots, and wind of the sun are also discussed.

  14. Tower-supported solar-energy collector

    NASA Technical Reports Server (NTRS)

    Selcuk, M. K.

    1977-01-01

    Multiple-collector tower system supports three receiver/concentrators that absorb solar energy reflected from surrounding field of heliostats. System overcomes disadvantages of tower-supported collectors. Booms can be lowered during heavy winds to protect arms and collectors.

  15. Research opportunities to advance solar energy utilization.

    PubMed

    Lewis, Nathan S

    2016-01-22

    Major developments, as well as remaining challenges and the associated research opportunities, are evaluated for three technologically distinct approaches to solar energy utilization: solar electricity, solar thermal, and solar fuels technologies. Much progress has been made, but research opportunities are still present for all approaches. Both evolutionary and revolutionary technology development, involving foundational research, applied research, learning by doing, demonstration projects, and deployment at scale will be needed to continue this technology-innovation ecosystem. Most of the approaches still offer the potential to provide much higher efficiencies, much lower costs, improved scalability, and new functionality, relative to the embodiments of solar energy-conversion systems that have been developed to date. PMID:26798020

  16. Solar Spots - Activities to Introduce Solar Energy into the K-8 Curricula.

    ERIC Educational Resources Information Center

    Longe, Karen M.; McClelland, Michael J.

    Following an introduction to solar technology which reviews solar heating and cooling, passive solar systems (direct gain systems, thermal storage walls, sun spaces, roof ponds, and convection loops), active solar systems, solar electricity (photovoltaic and solar thermal conversion systems), wind energy, and biomass, activities to introduce solar…

  17. Solar-wind krypton and solid/gas fractionation in the early solar nebula

    NASA Technical Reports Server (NTRS)

    Wiens, Roger C.; Burnett, D. S.; Neugebauer, M.; Pepin, R. O.

    1991-01-01

    The solar-system Kr abundance is calculated from solar-wind noble-gas ratios, determined previously by low-temperature oxidations of lunar ilmenite grains, normalized to Si by spacecraft solar-wind measurements. The estimated Kr-83 abundance of 4.1 + or - 1.5 per million Si atoms is within uncertainty of estimates assuming no fractionation, determined from CI-chondrite abundances of surrounding elements. This is significant because it is the first such constraint on solid/gas fractionation, though the large uncertainty only confines it to somewhat less than a factor of two.

  18. Energy savings obtainable through passive solar techniques

    SciTech Connect

    Balcomb, J.D.

    1980-01-01

    A passive solar energy system is one in which the thermal energy flow is by natural means, that is by radiation, conduction, or natural convection. The purpose of the paper is to provide a survey of passive solar heating experience, especially in the US. Design approaches are reviewed and examples shown. Misconceptions are discussed. Advantages are listed. The Los Alamos program of performance simulation and evaluation is described and a simplified method of performance estimation is outlined.

  19. Solar energy control system. [temperature measurement

    NASA Technical Reports Server (NTRS)

    Currie, J. R. (Inventor)

    1981-01-01

    A solar energy control system for a hot air type solar energy heating system wherein thermocouples are arranged to sense the temperature of a solar collector, a space to be heated, and a top and bottom of a heat storage unit is disclosed. Pertinent thermocouples are differentially connected together, and these are employed to effect the operation of dampers, a fan, and an auxiliary heat source. In accomplishing this, the differential outputs from the thermocouples are amplified by a single amplifier by multiplexing techniques. Additionally, the amplifier is corrected as to offset by including as one multiplex channel a common reference signal.

  20. Solar energy thermalization and storage device

    DOEpatents

    McClelland, John F.

    1981-09-01

    A passive solar thermalization and thermal energy storage assembly which is visually transparent. The assembly consists of two substantial parallel, transparent wall members mounted in a rectangular support frame to form a liquid-tight chamber. A semitransparent thermalization plate is located in the chamber, substantially paralled to and about equidistant from the transparent wall members to thermalize solar radiation which is stored in a transparent thermal energy storage liquid which fills the chamber. A number of the devices, as modules, can be stacked together to construct a visually transparent, thermal storage wall for passive solar-heated buildings.

  1. Solar energy thermalization and storage device

    DOEpatents

    McClelland, J.F.

    A passive solar thermalization and thermal energy storage assembly which is visually transparent is described. The assembly consists of two substantial parallel, transparent wall members mounted in a rectangular support frame to form a liquid-tight chamber. A semitransparent thermalization plate is located in the chamber, substantially paralled to and about equidistant from the transparent wall members to thermalize solar radiation which is stored in a transparent thermal energy storage liquid which fills the chamber. A number of the devices, as modules, can be stacked together to construct a visually transparent, thermal storage wall for passive solar-heated buildings.

  2. Solar energy utilization in the USSR

    NASA Astrophysics Data System (ADS)

    Shpilrain, E. E.

    1991-05-01

    The conditions for solar energy utilization in the USSR are not too favorable. Only in the country's southern regions is there sufficient insolation to make solar energy utilization economic. In higher latitudes, only seasonal use of solar energy is reasonable. Up to now, the main application of solar energy has been to produce low-temperature heat for hot water production, drying of agricultural goods, space heating and thermal treatment of concrete. A substantial proportion of the solar heating installations are flat plate solar collectors. The total installed area of solar collectors slightly exceeds 100,000 square meters. The collectors are produced by large- and small-scale industry. Where selective coatings are applied to the absorber plates, black nickel or chromium are the main coating materials. Recently launched new projects aim to develop and produce advanced collectors, with enhanced efficiency and reliability. There has been substantial progress in developing photovoltaic (PV) cells for space applications, but terrestrial application of PV is still in a very early stage. Annual production of PV cells totals about 100 kW, based on mono- or polycrystalline silicon. R&D work on thin-film PV cells is in progress. Work is in progress on the development of automated production lines to manufacture 1 MW/yr of crystalline and amorphous silicon. A 5-MW tower-type demonstration plant, with a circular heliostat field, uses steam as the working fluid. Experience with this plant has revealed several disadvantages, including commonwealth of independent states.

  3. Solar energy to meet the nation's energy needs

    NASA Technical Reports Server (NTRS)

    Rom, F. E.; Thomas, R. L.

    1973-01-01

    Solar energy, being a non-depleting clean source of energy, is shown to be capable of providing energy in all the forms in which it is used today. It can be used to generate electricity, for heating and cooling buildings, and for producing clean renewable gaseous, liquid and solid fuel. There is little question of the technical feasibility for utilizing solar energy. The chief problem is rapidly providing innovative solutions that are economically competititive with other systems.

  4. 24 CFR 203.18a - Solar energy system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 24 Housing and Urban Development 2 2013-04-01 2013-04-01 false Solar energy system. 203.18a... § 203.18a Solar energy system. (a) The dollar limitation provided in § 203.18(a) may be increased by up... to the installation of a solar energy system. (b) Solar energy system is defined as any...

  5. 24 CFR 203.18a - Solar energy system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 24 Housing and Urban Development 2 2012-04-01 2012-04-01 false Solar energy system. 203.18a... § 203.18a Solar energy system. (a) The dollar limitation provided in § 203.18(a) may be increased by up... to the installation of a solar energy system. (b) Solar energy system is defined as any...

  6. 24 CFR 203.18a - Solar energy system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 24 Housing and Urban Development 2 2014-04-01 2014-04-01 false Solar energy system. 203.18a... § 203.18a Solar energy system. (a) The dollar limitation provided in § 203.18(a) may be increased by up... to the installation of a solar energy system. (b) Solar energy system is defined as any...

  7. 24 CFR 203.18a - Solar energy system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 24 Housing and Urban Development 2 2011-04-01 2011-04-01 false Solar energy system. 203.18a... § 203.18a Solar energy system. (a) The dollar limitation provided in § 203.18(a) may be increased by up... to the installation of a solar energy system. (b) Solar energy system is defined as any...

  8. 24 CFR 203.18a - Solar energy system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 24 Housing and Urban Development 2 2010-04-01 2010-04-01 false Solar energy system. 203.18a... § 203.18a Solar energy system. (a) The dollar limitation provided in § 203.18(a) may be increased by up... to the installation of a solar energy system. (b) Solar energy system is defined as any...

  9. The Case for the Large Scale Development of Solar Energy

    ERIC Educational Resources Information Center

    O'Reilly, S. A.

    1977-01-01

    Traces the history of solar energy development. Discusses global effects (temperature, particle and other pollution) of burning fossil fuels. Provides energy balance equations for solar energy distribution and discusses flat plate collectors, solar cells, photochemical and photobiological conversion of solar energy, heat pumps. (CS)

  10. Emerging NOAA Surface Solar Radiation for Solar Energy

    NASA Astrophysics Data System (ADS)

    Kondratovich, V.; Laszlo, I.; Liu, H.

    2012-12-01

    Solar power has been growing at an annual rate of 40% in recent years. By 2025 it could grow to 10% of U.S. power needs. Sunlight is the fuel for solar power generation technologies, and as such one needs to know the quality and future availability of the fuel for accurate analysis of system performance. Sunlight (solar radiation) at the surface has been routinely estimated in real time from measurements of the Geostationary Operational Environmental Satellite (GOES) operated by the US National Oceanic and Atmospheric Administration (NOAA), National Environmental Satellite, Data and Information Service (NESDIS). The GOES solar radiation data have been made available in the GOES Surface and Insolation Product (GSIP) suite since January 1996 for the contiguous U.S. every daytime hour at a spatial resolution of ~50 km (GSIP-V1). Since April 2009, solar radiation retrievals have been performed at a higher spatial resolution (~14 km) and cover larger areas (GSIP-V2). The GSIP-V1 data have recently been screened for quality, adjusted for changes in calibration, and parameters useful for the solar energy sector have been derived for the period of 1999-2009. In this presentation, we describe the quality control process and various adjustments applied, and provide examples of selected solar energy parameters (average, midday and clear-sky insolation, clear-sky days, diffuse and direct normal radiation, etc.) and their evaluation. The Advanced Baseline Imager (ABI), one of the flagship instruments of NOAA's new geostationary satellite, GOES-R, will expand frequency and coverage of multispectral remote sensing of atmospheric and surface properties. The planned rapid observations (5-15 minutes) from ABI provide an opportunity to obtain information needed for solar energy applications where frequent observations of solar radiation reaching the surface are essential for planning and load management. The ABI algorithm, that is quite different from the one applied in GSIP-V1 and V2, uses atmospheric and surface data retrieved from multiple narrow bands using algorithms dedicated to the retrieval of these data. The algorithm is currently run with proxy data from the Moderate Resolution Imaging Spectroradiometer (MODIS) onboard the EOS satellites Terra and Aqua and the Visible and Infrared Imaging Radiometer Suite (VIIRS) onboard the recently launched Suomi National Polar-orbiting Partnership (NPP) satellite. The ABI algorithm will be explained as well as examples will be shown.

  11. Bio-Inspired Solar Energy Conversion

    NASA Astrophysics Data System (ADS)

    Warncke, Kurt

    2009-11-01

    The areas of solar-powered catalysts for energy rich fuels formation and bio-inspired molecular assemblies for integrating photon-to-fuels pathways have been identified by the Office of Basic Energy Sciences of the U. S. Department of Energy as challenges for the next generation of sustainable, high-efficiency solar energy conversion systems [1]. The light-harvesting, energy-transducing and carbon compound-synthesizing (carbon dioxide-fixing) reactions that are encompassed by natural photosynthesis offer molecular paradigms for efficient free energy capture and storage. We seek to emulate these features in cell-free, protein-based systems. Our goal is to transform the robust (alpha,beta)8-barrel fold of an enzyme that naturally catalyzes radical reactions into a catalytic module for the reduction of carbon dioxide to formate, by using the cobalt-containing cobalamins and other organocobalt centers. The activation of the catalytic center will be driven by photo-reduction, by using soluble and attached organic or semiconductor architectures. Progress on the biochemical, chemical, physical, and molecular biological (including rational design of high binding affinity and reactivity towards carbon dioxide) approaches to the development of the photocatalytic system will be presented.[4pt] [1] Lewis, N.; Crabtree, G. In: Basic Research Needs for Solar Energy Utilization, Basic Energy Sciences Workshop on Solar Energy Utilization, Energy, U.S. Department of Energy, Office of Science: 2005.

  12. Solar energy applications at Army ammunition plants

    NASA Astrophysics Data System (ADS)

    Lowry, A. P.; Moy, S. M.

    1982-06-01

    The Army Ammunition Plants use significant quantities of fossil fuels. To reduce dependence on these scarce, costly, and non-renewable fuels, a study was conducted to investigate potential solar energy applications at the AAPs. Solar energy is a low-level energy source which is best applied to low temperature applications. It can be used at the AAPs to preheat boiler feedwater, provide hot air for dry-houses, provide domestic hot water and heat for administration buildings, and provide hot water for manufacturing processes such as metal cleaning, phosphating, and X-ray film processing. Use of the flat plate collectors, evacuated tube collectors, or solar ponds with the possible addition of a heat pump, offers reasonably economical means of applying solar technology to AAP needs.

  13. Shenandoah Solar Total-Energy Project

    NASA Astrophysics Data System (ADS)

    Leonard, J. A.; Hunke, R. W.

    1982-12-01

    The design and construction of the world's first solar total energy plant in the private sector was completed and checkout is underway. During its operational phase, the solar plant will furnish electrical power, process steam, and other thermal energy to a nearby knitwear factory. The solar system consists of a collector field containing 114 parabolic dish collectors which supply thermal energy at 4000 C to drive a 400 kW multistage Rankine cycle turbine generator. Some steam is extracted from the turbine and supplied to the knitwear manufacturing processes. The system will be grid connected. Presented are a description of the system and components being installed; a summary of performance testing of the extraction turbine and of four prototype parabolic dish collectors; and a discussion of design considerations and insights which have general applicability to solar thermal system designs.

  14. Shenandoah Solar Total-Energy Project

    SciTech Connect

    Leonard, J.A.; Hunke, R.W.

    1982-12-01

    The design and construction of the world's first solar total-energy plant in the private sector has been completed and checkout is underway. During its operational phase, the solar plant will furnish electrical power, process steam, and other thermal energy to a nearby knitwear factory. The solar system consists of a collector field containing 114 parabolic-dish collectors which supply thermal energy at 400/sup 0/C to drive a 400 kW multi-stage Rankine-cycle turbine generator. Some steam is extracted from the turbine and supplied to the knitwear manufacturing processes. The system will be grid-connected. Presented are: (1) a description of the system and components being installed; (2) a summary of performance testing of the extraction turbine and of four prototype parabolic-dish collectors; and (3) a discussion of design considerations and insights which have general applicability to solar-thermal-system designs.

  15. Focusing on the future: Solar thermal energy systems emerge as competitive technologies with major economic potential

    NASA Astrophysics Data System (ADS)

    1989-03-01

    Hundreds of thousands of U.S. citizens are now receiving a portion of their daily demand for electricity from large-scale solar thermal electric generating stations-power plants that use concentrated solar energy to drive electric power generators. Just as with coal, fuel oil, natural gas, and nuclear energy, concentrated solar energy can create working temperatures of around 600C and much higher. Also, solar power plants contribute almost nothing to the atmospheric greenhouse effect and pose few, if any, of the other environmental problems associated with conventional energy sources. As a result of research and development within the national Solar Thermal Technology Program of the U.S. Department of Energy (DOE), solar thermal energy is on the threshold of competing economically with conventional power plants and is now viable for international markets. Its potential for spurring American economic growth and exports is significant.

  16. The solar system/interstellar medium connection - Gas phase abundances

    NASA Technical Reports Server (NTRS)

    Lutz, Barry L.

    1987-01-01

    Gas-phase abundances in the outer solar system are presented as diagnostics of the interstellar medium at the time of the solar system formation, some 4.55 billion years ago. Possible influences of the thermal and chemical histories of the primitive solar nebula and of the processes which led to the formation and evolution of the outer planets and comets on the elemental and molecular composition of the primordial matter are outlined. The major components of the atmospheres of the outer planets and of the comae of comets are identified, and the cosmogonical and cosmological implications are discussed.

  17. Solar energy supplied mobile water purification unit

    NASA Astrophysics Data System (ADS)

    Speidel, K.

    1983-09-01

    Energy self supporting water purification systems for developing countries were developed. A prototype with reduced energy requirements was built, making solar energy supply of such units economically attractive. The prototype delivers 10 to 12 cum drinking water per day, sufficient for about 1000 inhabitants. The solar field design is based on an average radiation of 4 to 4.5 kWh/sqm per day. A storage battery covers lack of sunshine during 2 days out of 10. Water treatment is done by the upward filtration method, which is especially suited for minimization of the required energy. Maintenance is very limited.

  18. The HESP (High Energy Solar Physics) project

    NASA Technical Reports Server (NTRS)

    Kai, K.

    1986-01-01

    A project for space observations of solar flares for the coming solar maximum phase is briefly described. The main objective is to make a comprehensive study of high energy phenomena of flares through simultaneous imagings in both hard and soft X-rays. The project will be performed with collaboration from US scientists. The HESP (High Energy Solar Physics) WG of ISAS (Institute of Space and Astronautical Sciences) has extensively discussed future aspects of space observations of high energy phenomena of solar flares based on successful results of the Hinotori mission, and proposed a comprehensive research program for the next solar maximum, called the HESP (SOLAR-A) project. The objective of the HESP project is to make a comprehensive study of both high energy phenomena of flares and quiet structures including pre-flare states, which have been left uncovered by SMM and Hinotori. For such a study simultaneous imagings with better resolutions in space and time in a wide range of energy will be extremely important.

  19. Benefits of solar/fossil hybrid gas turbine systems

    NASA Technical Reports Server (NTRS)

    Bloomfield, H. S.

    1979-01-01

    The potential benefits of solar/fossil hybrid gas turbine power systems were assessed. Both retrofit and new systems were considered from the aspects of cost of electricity, fuel conservation, operational mode, technology requirements, and fuels flexibility. Hybrid retrofit (repowering) of existing combustion (simple Brayton cycle) turbines can provide near-term fuel savings and solar experience, while new and advanced recuperated or combined cycle systems may be an attractive fuel saving and economically competitive vehicle to transition from today's gas and oil-fired powerplants to other more abundant fuels.

  20. Benefits of solar/fossil hybrid gas turbine systems

    NASA Technical Reports Server (NTRS)

    Bloomfield, H. S.

    1978-01-01

    The potential benefits of solar/fossil hybrid gas turbine power systems were assessed. Both retrofit and new systems were considered from the aspects of; cost of electricity, fuel conservation, operational mode, technology requirements, and fuels flexibility. Hybrid retrofit (repowering) of existing combustion (simple Brayton cycle) turbines can provide near-term fuel savings and solar experience, while new and advanced recuperated or combined cycle systems may be an attractive fuel saving and economically competitive vehicle to transition from today's gas and oil-fired powerplants to other more abundant fuels.

  1. Passive solar energy information user study

    SciTech Connect

    Belew, W.W.; Wood, B.L.; Marle, T.L.; Reinhardt, C.L.

    1980-11-01

    The results of a series of telephone interviews with groups of users of information on passive solar heating and cooling are described. These results, part of a larger study on many different solar technologies, identify types of information each group needed and the best ways to get information to each group. The overall study provides baseline data about information needs in the solar community. An earlier study identified the information user groups in the solar community and the priority (to accelerate solar energy commercialization) of getting information to each group. In the current study only high-priority groups were examined. Results from seven passive groups respondents are analyzed in this report: Federally Funded Researchers, Manufacturer Representatives, Architects, Builders, Educators, Cooperative Extension Service County Agents, and Homeowners. The data will be used as input to the determination of information products and services the Solar Energy Research Institute, the Solar Energy Information Data Bank Network, and the entire information outreach community should be preparing and disseminating.

  2. Zero energy homes: Combining energy efficiency and solar energy technologies

    SciTech Connect

    NREL

    2000-03-09

    In a typical Florida house, air-conditioning accounts for about 35% of all the electricity the home uses. As the largest single source of energy consumption in Florida, a home's air-conditioning load represents the biggest energy challenge facing Florida residents. The Florida Solar Energy Center designed a project to meet this challenge. Two homes were built with the same floor plan on near-by lots. The difference was that one (the control home) conformed to local residential building practices, and the other (the Zero Energy home) was designed with energy efficiency in mind and a solar technology system on the roof. The homes were then monitored carefully for energy use. The projects designers were looked to answer two questions: (1) could a home in a climate such as central Florida be engineered and built so efficiently that a relatively small PV system would serve the majority of its cooling needs--and even some of its daytime electrical needs; and (2) would that home be as comfortable and appealing as the conventional model built alongside it? The answer was yes, even though it was conducted in the summer of 1998--one of the hottest summers on record in Florida.

  3. Solar Energy Education. Home economics: student activities. Field test edition

    SciTech Connect

    Not Available

    1981-03-01

    A view of solar energy from the standpoint of home economics is taken in this book of activities. Students are provided information on solar energy resources while performing these classroom activities. Instructions for the construction of a solar food dryer and a solar cooker are provided. Topics for study include window treatments, clothing, the history of solar energy, vitamins from the sun, and how to choose the correct solar home. (BCS)

  4. Explore engineering with solar energy

    SciTech Connect

    Davidson, J.H.

    1995-11-01

    An outreach program was initiated at the University of Minnesota by faculty and student members of the Society of Women Engineers in the spring of 1994 to interest students in 3rd through 9th grade, particularly girls, in careers in engineering. Interaction with elementary and junior high students focuses on hands-on experiences with portable solar devices. This paper reports progress of the program including descriptions of the solar devices, their use in visits to local schools, day visits to the University, and week-long summer camps, and continuing education programs for elementary and secondary school teachers.

  5. Dye-sensitized Solar Cells for Solar Energy Harvesting

    NASA Astrophysics Data System (ADS)

    Roy, M. S.; Deol, Y. S.; Kumar, Manish; Prasad, Narottam; Janu, Yojana

    2011-10-01

    Dye-sensitized solar cells (DSSCs) also known as Gratzel cells, have attracted the interests of researchers to a great extent because of its cost effective and easy manufacturing process without involving highly sophisticated lithographic technique and high cost raw materials as usually seen in conventional solar cell. Based on simple photo-electrochemical process, it has got immense potential in converting solar energy to electrical power in remote and desert area where the supply of conventional power is not possible. The overall peak power-production efficiency of dye-sensitized solar cells has been reported around 11 percent, so they are best suited to low-density applications and the price-to-performance ratio obtained through these solar cells is superior to others. DSSCs have ability to absorb even diffused sunlight and therefore work in cloudy whether as well without much impact over the efficiency. The present communication deals with a review of our work on DSSCs wherein we have used cost effective natural dyes/pigments as a sensitizer of nc-TiO2 and discussed about various key factors affecting the conversion efficiency of DSSC.

  6. Mathematics and Solar Energy. Solar Energy Education Project.

    ERIC Educational Resources Information Center

    Humer, Barbara

    This learning module for use with junior high school students offers some basic career awareness in the energy field while covering some basic principles and aspects of energy use, such as vocabulary, basic electricity, energy efficiency, and home utility meter reading. Math problems are offered in volume and surface area, energy efficiency,

  7. Mathematics and Solar Energy. Solar Energy Education Project.

    ERIC Educational Resources Information Center

    Humer, Barbara

    This learning module for use with junior high school students offers some basic career awareness in the energy field while covering some basic principles and aspects of energy use, such as vocabulary, basic electricity, energy efficiency, and home utility meter reading. Math problems are offered in volume and surface area, energy efficiency,…

  8. Port of Galveston Solar Energy Project

    SciTech Connect

    Falcioni, Diane; Cuclis, Alex; Freundlich, Alex

    2014-03-31

    This study on the performance characteristics of existing solar technologies in a maritime environment was funded by an award given to The Port of Galveston (POG) from the U.S. Department of Energy (DOE). The study includes research performed by The Center for Advanced Materials at the University of Houston (UH). The UH researchers examined how solar cell efficiencies and life spans can be improved by examining the performance of a variety of antireflective (AR) coatings mounted on the top of one of the POG’s Cruise Terminals. Supplemental supporting research was performed at the UH laboratories. An educational Kiosk was constructed with a 55” display screen providing information about solar energy, the research work UH performed at POG and real time data from the solar panels located on the roof of the Cruise Terminal. The Houston Advanced Research Center (HARC) managed the project.

  9. Solar Energy of the North

    SciTech Connect

    Davis St. Peter Director of Faclities Charles Bonin Vice President of Administration & Finance

    2012-01-12

    The concept of this project was to design a solar array that would not only provide electricity for the major classroom building of the campus but would also utilize that electricity to enhance the learning environment. It was also understood that the project would be a research and data gathering project.

  10. Decentralized solar photovoltaic energy systems

    NASA Astrophysics Data System (ADS)

    Krupka, M. C.

    1980-09-01

    Emphasis was placed upon the selection and use of a model residential photovoltaic system to develop and quantify the necessary data. The model consists of a reference home located in Phoenix, AZ utilizing a unique solar cell array roof shingle combination. Silicon solar cells, rated at 13.5 percent efficiency at 28 C and 100 mW/sq cm insolation are used to generate 10 kW (peak). An all electric home is considered with lead acid battery storage, DC AC inversion and utility backup. The reference home is compared to others in regions of different insolation. It is suggested that solar cell materials production and fabrication may have the major environmental impact when comparing all facets of photovoltaic system usage. Fabrication of the various types of solar cell systems involves the need, handling, and transportation of many toxic and hazardous chemicals with attendant health and safety impacts. Increases in production of such materials as lead, antimony, sulfuric acid, copper, plastics, cadmium and gallium will be required should large scale usage of photovoltaic systems be implemented.

  11. Desalting system utilizing solar energy

    SciTech Connect

    Iida, T.

    1985-06-25

    A heat-transfer medium is heated by a solar heat collector and then adiabatically compressed. The heat-transfer medium thus compressed exchanges heat with the seawater to heat it, and is then adiabatically expanded with the heated seawater being evaporated and the steam thus produced, upon heat exchange with the seawater, changed into fresh water.

  12. Endoreversible thermodynamics of solar energy conversion

    SciTech Connect

    De Vos, A.

    1992-01-01

    This is a book for every scientist interested in thermodynamics, solar energy, or both. It describes in a very clear and often subtly humoristic way the physical limits governing the conversion of solar energy into work, into wind energy, into electricity, and into chemical substances of high energy level, like carbohydrates. Endoreversible thermodynamics is a subset of irreversible thermodynamics in which thermodynamical losses are restricted to the coupling of an engine and/or reactor to the outside world. The book may serve highly diverse purposes. The scientist, the teacher, the higher level student, and the solar engineer all will find useful information and applications. The author indicates that the book is not a textbook, nor a reference manual but rather it illustrates general principles using idealised models.

  13. General solar energy information user study

    NASA Astrophysics Data System (ADS)

    Belew, W. W.; Wood, B. L.; Marle, T. L.; Reinhardt, C. L.

    1981-03-01

    The results of a series of telephone interviews with groups of users of information on general solar energy are presented. These results identify types of information each group needed and the best ways to get information to each group. Results from 13 groups of respondents are analyzed: loan officers, real estate appraisers, tax assessors, insurers, lawyers, utility respresentatives, public interest group representatives, information and agricultural representatives, public interest group representatives, information and agricultural specialists at state cooperative extension service offices, and state energy office representatives. The data will be used as input to the determination of information products and services the Solar Energy Research Institute, the Solar Energy Information Data Bank Network, and the entire information outreach community should be preparing and disseminating.

  14. Energy analysis of the solar power satellite.

    PubMed

    Herendeen, R A; Kary, T; Rebitzer, J

    1979-08-01

    The energy requirements to build and operate the proposed Solar Power Satellite are evaluated and compared with the energy it produces. Because the technology is so speculative, uncertainty is explicitly accounted for. For a proposed 10-gigawatt satellite system, the energy ratio, defined as the electrical energy produced divided by the primary nonrenewable energy required over the lifetime of the system, is of order 2, where a ratio of 1 indicates the energy breakeven point. This is significantly below the energy ratio of today's electricity technologies such as light-water nuclear or coal-fired electric plants. PMID:17758765

  15. Using Solar Energy to Desalinate Water.

    ERIC Educational Resources Information Center

    Tabor, Harry Z.

    1978-01-01

    Material presented is adapted from Desalination with Solar Energy, a paper presented before the International Symposium on Energy Sources and Development, held in Spain in 1977. Desalination systems energized by the sun, conditions governing their efficiency, and their costs are discussed. (HM)

  16. The Status of Solar Energy as Fuel.

    ERIC Educational Resources Information Center

    Hall, D. O.

    1979-01-01

    Discused is the biological conversion of solar energy via photosynthesis into stored energy in the form of biomass. Detailed are the research and development programs on biomass of the United States, Canada, Australia, New Zealand, Europe, Brazil, Philippines, Sahel, India, and China. (BT)

  17. Energy Primer: Solar, Water, Wind, and Biofuels.

    ERIC Educational Resources Information Center

    Portola Inst., Inc., Menlo Park, CA.

    This is a comprehensive, fairly technical book about renewable forms of energy--solar, water, wind, and biofuels. The biofuels section covers biomass energy, agriculture, aquaculture, alcohol, methane, and wood. The focus is on small-scale systems which can be applied to the needs of the individual, small group, or community. More than one-fourth…

  18. Energy Primer: Solar, Water, Wind, and Biofuels.

    ERIC Educational Resources Information Center

    Portola Inst., Inc., Menlo Park, CA.

    This is a comprehensive, fairly technical book about renewable forms of energy--solar, water, wind, and biofuels. The biofuels section covers biomass energy, agriculture, aquaculture, alcohol, methane, and wood. The focus is on small-scale systems which can be applied to the needs of the individual, small group, or community. More than one-fourth

  19. Solar energy system with wind vane

    SciTech Connect

    Grip, Robert E

    2015-11-03

    A solar energy system including a pedestal defining a longitudinal axis, a frame that is supported by the pedestal and that is rotateable relative to the pedestal about the longitudinal axis, the frame including at least one solar device, and a wind vane operatively connected to the frame to urge the frame relative to the pedestal about the longitudinal axis in response to wind acting on the wind vane.

  20. Solar energy: a history of the RANN energy program

    SciTech Connect

    Not Available

    1980-09-01

    The development of solar energy research under the Research Applied to National Needs (RANN) program of the National Science Foundation (NSF) is described. The information is derived from three primary sources: (1) NSF/RANN planning and administrative documentation, including that provided for congressional hearings, interagency studies, and special program reports; (2) reports on NSF/RANN projects; and (3) proceedings and reports from NSF/RANN workshops and conferences. The period from the program's inception in 1971 through 1980 is covered. Topics discussed include solar schools; solar heating and cooling of buildings; photovoltaic energy conversion; solar thermal energy; wind energy; bioconversion; and ocean thermal energy conversion. NSF awards for the various projects, citing the institution, principal investigator, title, grant number, award amount and duration are provided in the appendices.

  1. Solar-pumped electronic-to-vibrational energy transfer lasers

    NASA Technical Reports Server (NTRS)

    Harries, W. L.; Wilson, J. W.

    1981-01-01

    The possibility of using solar-pumped lasers as solar energy converters is examined. The absorbing media considered are halogens or halogen compounds, which are dissociated to yield excited atoms, which then hand over energy to a molecular lasing medium. Estimates of the temperature effects for a Br2-CO2-He system with He as the cooling gas are given. High temperatures can cause the lower energy levels of the CO2 laser transition to be filled. The inverted populations are calculated and lasing should be possible. However, the efficiency is less than 0.001. Examination of other halogen-molecular lasant combinations (where the rate coefficients are known) indicate efficiencies in all cases of less than 0.005.

  2. Radiation energy receiver for laser and solar propulsion systems

    NASA Technical Reports Server (NTRS)

    Rault, D. F. G.; Hertzberg, A.

    1983-01-01

    The concept of remotely heating a rocket propellant with a high intensity radiant energy flux is especially attractive due to its high specific impulse and large payload mass capabilities. In this paper, a radiation receiver-thruster which is especially suited to the particular thermodynamic and spectral characteristics of highly concentrated solar energy is proposed. In this receiver, radiant energy is volumetrically absorbed within a hydrogen gas seeded with alkali metal vapors. The alkali atoms and molecules absorb the radiant flux and, subsequently, transfer their internal excitation to hydrogen molecules through collisional quenching. It is shown that such a radiation receiver would outperform a blackbody cavity type receiver in both efficiency and maximum operating temperatures. A solar rocket equipped with such a receiver-thruster would deliver thrusts of several hundred newtons at a specific impulse of 1000 seconds.

  3. Solar heating, cooling and domestic hot water system installed at Columbia Gas System Service Corp. , Columbus, Ohio. Final report

    SciTech Connect

    1980-11-01

    The Solar Energy System located at the Columbia Gas Corporation, Columbus, Ohio, has 2978 ft/sup 2/ of Honeywell single axis tracking, concentrating collectors and provides solar energy for space heating, space cooling and domestic hot water. A 1,200,000 Btu/h Bryan water-tube gas boiler provides hot water for space heating. Space cooling is provided by a 100 ton Arkla hot water fired absorption chiller. Domestic hot water heating is provided by a 50 gallon natural gas domestic storage water heater. Extracts are included from the site files, specification references, drawings, installation, operation and maintenance instructions.

  4. The Prospects of Solar Energy for Developing Nations.

    ERIC Educational Resources Information Center

    Ramachandran, A.; Gururaja, J.

    1979-01-01

    Discussed are the potential application of solar energy and its possible benefits to developing countries. Various energy needs, including domestic, agricultural, and household, that could be met by using solar energy are discussed. (BT)

  5. Solar: A Clean Energy Source for Utilities (Fact Sheet)

    SciTech Connect

    Not Available

    2009-07-01

    Summarizes the activities that the DOE Solar Energy Technologies Program conducts to collaborate with and benenfit utilities with the goal of accelerating solar technologies adoption by removing barriers to solar deployment.

  6. Failure testing of active solar energy components

    SciTech Connect

    Farrington, R.B.

    1984-07-01

    Component and system reliability of active solar energy systems continue to be a major concern of designers, manufacturers, installers, and consumers. Six test loops were constructed and the Solar Energy Research Institute, in Golden, Colorado, to thermally cycle active solar energy system components. Drain valves, check valves, air vents, vacuum breakers, tempering valves, and polybutylene pipe were included in the testing. The test methods and results are discussed in this report. Test results show poor reliability of some of the components and limited performance from others. The results lead to a better understanding of certain failures in the field and present designers with realistic expectations for these components. Recommendations are given to improve component reliability and for further testing.

  7. Surface Plasmon-Assisted Solar Energy Conversion.

    PubMed

    Dodekatos, Georgios; Schünemann, Stefan; Tüysüz, Harun

    2016-01-01

    The utilization of localized surface plasmon resonance (LSPR) from plasmonic noble metals in combination with semiconductors promises great improvements for visible light-driven photocatalysis, in particular for energy conversion. This review summarizes the basic principles of plasmonic photocatalysis, giving a comprehensive overview about the proposed mechanisms for enhancing the performance of photocatalytically active semiconductors with plasmonic devices and their applications for surface plasmon-assisted solar energy conversion. The main focus is on gold and, to a lesser extent, silver nanoparticles in combination with titania as semiconductor and their usage as active plasmonic photocatalysts. Recent advances in water splitting, hydrogen generation with sacrificial organic compounds, and CO2 reduction to hydrocarbons for solar fuel production are highlighted. Finally, further improvements for plasmonic photocatalysts, regarding performance, stability, and economic feasibility, are discussed for surface plasmon-assisted solar energy conversion. PMID:26092694

  8. Something new under the sun -- Office of Solar Energy Technologies

    SciTech Connect

    NREL

    2000-01-07

    Three of the U.S. Department of Energy's solar technology programs are now under one umbrella: the Office of Solar Energy Technologies or the Solar Office. The solar programs of photovoltaics, concentrating solar power, and solar buildings are now integrated into this office where DOE can combine administrative efforts, build on the strengths of each program, and encourage cooperation that bolsters the impact of each technology.

  9. Selling solar energy as a cash crop

    NASA Technical Reports Server (NTRS)

    Brantley, L. W.

    1978-01-01

    The paper considers solar energy equipment which, besides supplying energy for farmstead needs, would convert excess energy to a transportable form to sell to a power company. It is suggested that a concentrating two-axis tracking spheroidal collector would cost as little as $5/sq ft if mass produced. The proposed system uses 7854 sq ft of collector area (set in about one acre of land), and the cost payback is estimated.

  10. An assessment of solar energy as a national energy resource

    NASA Technical Reports Server (NTRS)

    Donovan, P.; Woodward, W.; Cherry, W. E.; Morse, F. H.; Herwig, L. O.

    1972-01-01

    The applications are discussed of solar energy for thermal energy for buildings; chemical and biological conversion of organic materials to liquid, solid, and gaseous fuels; and the generation of electricity. It is concluded that if solar development programs are successful, building heating for public use is possible within 5 years, building cooling in 6 to 10 years, synthetic fuels from organic materials in 5 to 8 years, and electricity production in 10 to 15 years.

  11. Solar Total Energy Project summary description

    NASA Astrophysics Data System (ADS)

    Hunke, R. W.; Leonard, J. A.

    1983-03-01

    The Solar Total Energy Project (STEP) at Shenandoah, GA is described. A summary description of the energy system, its location, and the project site are presented. The system is further described including design criteria and requirements, performance criteria, and operating requirements. The major subsystems of the STEP - the solar collection subsystem (SCS), the power conversion subsystem, the thermal utilization subsystem, the control and instrumentation subsystem, and the electrical subsystem are described, including their major components. Specific features of the control and instrumentation provisions for the system and subsystem operational modes are also described and the costs of construction presented.

  12. Solar total energy project summary description

    SciTech Connect

    Hunke, R.W.; Leonard, J.A.

    1983-03-01

    The Solar Total Energy Project (STEP) at Shenandoah, GA is described. A summary description of the energy system, its location, and the project site are presented. The system is further described including design criteria and requirements, performance criteria, and operating requirements. The major subsystems of the STEP--the Solar Collection Subsystem (SCS), the Power Conversion Subsystem (PCS), the Thermal Utilization Subsystem (TUS), the Control and Instrumentation Subsystem (CAIS), and the Electrical Subsystem (ES)--are described, including their major components. Specific features of the control and instrumentation provisions for the system and subsystem operational modes are also described and the costs of construction presented.

  13. Manufacture of silicon carbide using solar energy

    DOEpatents

    Glatzmaier, Gregory C.

    1992-01-01

    A method is described for producing silicon carbide particles using solar energy. The method is efficient and avoids the need for use of electrical energy to heat the reactants. Finely divided silica and carbon are admixed and placed in a solar-heated reaction chamber for a time sufficient to cause a reaction between the ingredients to form silicon carbide of very small particle size. No grinding of silicon carbide is required to obtain small particles. The method may be carried out as a batch process or as a continuous process.

  14. Development of solar energy in Peru

    SciTech Connect

    Pierson, H.O.; Nahui, A.

    1981-06-01

    Peru receives a high degree of solar radiation, except for part of its coastal area, and has almost an ideal climate for the development of solar energy. However, only recently has a concerted effort been made in Peru to take advantage of these conditions. Work focuses on the development of low-temperature applications, including the design of passive solar-heated buildings for the high Andes, the design and evaluation of various types of solar water heaters and crop dryers for both household and industrial uses (based on flat-plate collectors), and the construction of a desalinization prototype plant. Photovoltaic systems are being investigated for suitable applications and have an excellent potential, especially in telecommunications.

  15. Solar energy apparatus with apertured shield

    NASA Technical Reports Server (NTRS)

    Collings, Roger J. (Inventor); Bannon, David G. (Inventor)

    1989-01-01

    A protective apertured shield for use about an inlet to a solar apparatus which includesd a cavity receiver for absorbing concentrated solar energy. A rigid support truss assembly is fixed to the periphery of the inlet and projects radially inwardly therefrom to define a generally central aperture area through which solar radiation can pass into the cavity receiver. A non-structural, laminated blanket is spread over the rigid support truss in such a manner as to define an outer surface area and an inner surface area diverging radially outwardly from the central aperture area toward the periphery of the inlet. The outer surface area faces away from the inlet and the inner surface area faces toward the cavity receiver. The laminated blanket includes at least one layer of material, such as ceramic fiber fabric, having high infra-red emittance and low solar absorption properties, and another layer, such as metallic foil, of low infra-red emittance properties.

  16. Urban air pollution and solar energy

    NASA Technical Reports Server (NTRS)

    Gammon, R. B.; Huning, J. R.; Reid, M. S.; Smith, J. H.

    1981-01-01

    The design and performance of solar energy systems for many potential applications (industrial/residential heat, electricity generation by solar concentration and photovoltaics) will be critically affected by local insolation conditions. The effects of urban air pollution are considered and reviewed. A study of insolation data for Alhambra, California (9 km south of Pasadena) shows that, during a recent second-stage photochemical smog alert (greater than or equal to 0.35 ppm ozone), the direct-beam insolation at solar noon was reduced by 40%, and the total global by 15%, from clean air values. Similar effects have been observed in Pasadena, and are attributable primarily to air pollution. Effects due to advecting smog have been detected 200 km away, in the Mojave Desert. Preliminary performance and economic simulations of solar thermal and photovoltaic power systems indicate increasing nonlinear sensitivity of life cycle plant cost to reductions in insolation levels due to pollution.

  17. Urban air pollution and solar energy

    NASA Astrophysics Data System (ADS)

    Gammon, R. B.; Huning, J. R.; Reid, M. S.; Smith, J. H.

    1981-10-01

    The design and performance of solar energy systems for many potential applications (industrial/residential heat, electricity generation by solar concentration and photovoltaics) will be critically affected by local insolation conditions. The effects of urban air pollution are considered and reviewed. A study of insolation data for Alhambra, California (9 km south of Pasadena) shows that, during a recent second-stage photochemical smog alert (greater than or equal to 0.35 ppm ozone), the direct-beam insolation at solar noon was reduced by 40%, and the total global by 15%, from clean air values. Similar effects have been observed in Pasadena, and are attributable primarily to air pollution. Effects due to advecting smog have been detected 200 km away, in the Mojave Desert. Preliminary performance and economic simulations of solar thermal and photovoltaic power systems indicate increasing nonlinear sensitivity of life cycle plant cost to reductions in insolation levels due to pollution.

  18. Impacts of solar energy utilization

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Various methods of conducting surveys and analyses to determine the attitude of the public toward the energy crisis are discussed. Models to determine the impact of the energy crisis and proposed alternative sources of energy on the social structure are analyzed. The various interest groups which are concerned with energy and the nature of their interest are identified. The government structure for controlling resource production and allocation is defined.

  19. Solar America: A Solar Energy Tour of the United States (CD-ROM)

    SciTech Connect

    Not Available

    2001-12-01

    This CDROM contains nearly 500 photos and captions of solar energy technologies at work throughout the United States. Every state of the union is represented, as well as Puerto Rico, the U.S. Virgin Islands, the District of Columbia, and U.S. outposts in Antarctica. The technologies represented are photovoltaics, solar thermal, solar hot water, and concentrating solar power. The CD promotes solar energy as a wise energy choice for America's present and future.

  20. Solar America: A Solar Energy Tour of the United States (Revised)

    SciTech Connect

    Not Available

    2003-06-01

    This CDROM contains nearly 500 photos and captions of solar energy technologies at work throughout the United States. Every state of the union is represented, as well as Puerto Rico, the U.S. Virgin Islands, the District of Columbia, and U.S. outposts in Antarctica. The technologies represented are photovoltaics, solar thermal, solar hot water, and concentrating solar power. The CD promotes solar energy as a wise energy choice for America's present and future.

  1. Incentives for solar energy in industry

    NASA Astrophysics Data System (ADS)

    Bergeron, K. D.

    1981-05-01

    Several issues are analyzed on the effects that government subsidies and other incentives have on the use of solar energy in industry, as well as on other capital-intensive alternative energy supplies. Discounted cash flow analysis is used to compare tax deductions for fuel expenses with tax credits for capital investments for energy. The result is a simple expression for tax equity. The effects that market penetration of solar energy has on conventional energy prices are analyzed with a free market model. It is shown that net costs of a subsidy program to the society can be significantly reduced by price. Several government loan guarantee concepts are evaluated as incentives that may not require direct outlays of government funds; their relative effectiveness in achieving loan leverage through project financing, and their cost and practicality, are discussed.

  2. Plasmonic Enhancement Mechanisms in Solar Energy Harvesting

    NASA Astrophysics Data System (ADS)

    Cushing, Scott K.

    Semiconductor photovoltaics (solar-to-electrical) and photocatalysis (solar-to-chemical) requires sunlight to be converted into excited charge carriers with sufficient lifetimes and mobility to drive a current or photoreaction. Thin semiconductor films are necessary to reduce the charge recombination and mobility losses, but thin films also limit light absorption, reducing the solar energy conversion efficiency. Further, in photocatalysis, the band edges of semiconductor must straddle the redox potentials of a photochemical reaction, reducing light absorption to half the solar spectrum in water splitting. Plasmonics transforms metal nanoparticles into antennas with resonances tuneable across the solar spectrum. If energy can be transferred from the plasmon to the semiconductor, light absorption in the semiconductor can be increased in thin films and occur at energies smaller than the band gap. This thesis investigates why, despite this potential, plasmonic solar energy harvesting techniques rarely appear in top performing solar architectures. To accomplish this goal, the possible plasmonic enhancement mechanisms for solar energy conversion were identified, isolated, and optimized by combining systematic sample design with transient absorption spectroscopy, photoelectrochemical and photocatalytic testing, and theoretical development. Specifically, metal semiconductor nanostructures were designed to modulate the plasmon's scattering, hot carrier, and near field interactions as well as remove heating and self-catalysis effects. Transient absorption spectroscopy then revealed how the structure design affected energy and charge carrier transfer between metal and semiconductor. Correlating this data with wavelength-dependent photoconversion efficiencies and theoretical developments regarding metal-semiconductor interactions identified the origin of the plasmonic enhancement. Using this methodology, it has first been proven that three plasmonic enhancement routes are possible: i) increasing light absorption in the semiconductor by light trapping through scattering, ii) transferring hot carriers from metal to semiconductor after light absorption in the metal, and iii) non-radiative excitation of interband transitions in the semiconductor by plasmon-induced resonant energy transfer (PIRET). The effects of the metal on charge transport and carrier recombination were also revealed. Next, it has been shown that the strength and balance of the three enhancement mechanisms is rooted in the plasmon's dephasing time, or how long it takes the collective electron oscillations to stop being collective. The importance of coherent effects in plasmonic enhancement is also shown. Based on these findings, a thermodynamic balance framework has been used to predict the theoretical maximum efficiency of solar energy conversion in plasmonic metal-semiconductor heterojunctions. These calculations have revealed how plasmonics is best used to address the different light absorption problems in semiconductors, and that not taking into account the plasmon's dephasing is the origin of low plasmonic enhancement Finally, to prove these guidelines, each of the three enhancement mechanisms has been translated into optimal device geometries, showing the plasmon's potential for solar energy harvesting. This dissertation identifies the three possible plasmonic enhancement mechanisms for the first time, discovering a new enhancement mechanism (PIRET) in the process. It has also been shown for the first time that the various plasmon-semiconductor interactions could be rooted in the plasmon's dephasing. This has allowed for the first maximum efficiency estimates which have combined all three enhancement mechanisms to be performed, and revealed that changes in the plasmon's dephasing leads to the disparity in reported plasmonic enhancements. These findings are combined to create optimal device design guidelines, which are proven by fabrication of several devices with top efficiencies in plasmonic solar energy conversion. The knowledge obtained will guide the design of efficient photovoltaics and photocatalysts, helping usher in a renewable energy economy and address current needs of climate change.

  3. Solar Total Energy Project: Summary report

    SciTech Connect

    Not Available

    1988-05-01

    The purpose of this summary is to present the Key Operational Experiences of the Georgia Power Company (GPC) team during its participation in the Solar Total Energy Project (STEP) from May, 1977, to the termination of the Department of Energy (DOE) Cooperative Agreement in September 1985. The original program between DOE and the GPC, and under the technical direction of Sandia National Laboratories (SNLA), was conceived to further the search for new sources of energy. STEP is continuing to supply valuable research data through support contracts from SNLA and funding from Electric Power Research Institute (EPRI) along with technical coordination with Solar Energy Research Institute (SERI) and other electric utilities and solar energy industries. The STEP is viewed as an absolute success as a concept demonstration and experimental facility. Although portions of the system were derated and the expected loads never developed, the overall systems worked well and continues to operate. Most of the problems encountered were solved. The technical achievement and lessons learned at STEP should be considered for use by other solar technologies in the national and international communities. 7 refs., 10 figs., 12 tabs.

  4. Tandem photovoltaic solar cells and increased solar energy conversion efficiency

    NASA Technical Reports Server (NTRS)

    Loferski, J. J.

    1976-01-01

    Tandem photovoltaic cells, as proposed by Jackson (1955) to increase the efficiency of solar energy conversion, involve the construction of a system of stacked p/n homojunction photovoltaic cells composed of different semiconductors. It had been pointed out by critics, however, that the total power which could be extracted from the cells in the stack placed side by side was substantially greater than the power obtained from the stacked cells. A reexamination of the tandem cell concept in view of the development of the past few years is conducted. It is concluded that the use of tandem cell systems in flat plate collectors, as originally envisioned by Jackson, may yet become feasible as a result of the development of economically acceptable solar cells for large scale terrestrial power generation.

  5. Solar Energy Employment and Requirements, 1978-1985.

    ERIC Educational Resources Information Center

    Levy, Girard W.; Field, Jennifer

    Based on data collected from a mailed survey of 2800 employers engaged in solar energy activities, a study identified the characteristics of establishments engaged in solar work and the number and occupational distribution of persons working in solar energy activities in 1978, and projected solar labor requirements through 1983. The scope of the…

  6. Development of a Conceptual Structure for Architectural Solar Energy Systems.

    ERIC Educational Resources Information Center

    Ringel, Robert F.

    Solar subsystems and components were identified and conceptual structure was developed for architectural solar energy heating and cooling systems. Recent literature related to solar energy systems was reviewed and analyzed. Solar heating and cooling system, subsystem, and component data were compared for agreement and completeness. Significant

  7. Development of a Conceptual Structure for Architectural Solar Energy Systems.

    ERIC Educational Resources Information Center

    Ringel, Robert F.

    Solar subsystems and components were identified and conceptual structure was developed for architectural solar energy heating and cooling systems. Recent literature related to solar energy systems was reviewed and analyzed. Solar heating and cooling system, subsystem, and component data were compared for agreement and completeness. Significant…

  8. Lawrence Berkeley Laboratory, Berkeley, California solar energy system performance evaluation, July 1980-June 1981

    SciTech Connect

    Wetzel, P.E.

    1981-01-01

    The Lawrence Berkeley Laboratory site is an office building in California with an active solar energy system designed to supply from 23 to 33% of the space heating load and part of the hot water load. The solar heating system is equipped with 1428 square feet of flat-plate collectors, a 2000-gallon water storage tank, and two gas-fired boilers to supply auxiliary heat for both space heating and domestic hot water. Poor performance is reported, with the solar fraction being only 4%. Also given are the solar savings ratio, conventional fuel savings, system performance factor, and the coefficient of performance. The performance data are given for the collector, storage, solar water heating and solar space heating subsystems as well as the total system. Typical system operation and solar energy utilization are briefly described. The system design, performance evaluation techniques, weather data, and sensor technology are presented. (LEW)

  9. Solar Energy Education. Reader, Part II. Sun story. [Includes glossary

    SciTech Connect

    Not Available

    1981-05-01

    Magazine articles which focus on the subject of solar energy are presented. The booklet prepared is the second of a four part series of the Solar Energy Reader. Excerpts from the magazines include the history of solar energy, mythology and tales, and selected poetry on the sun. A glossary of energy related terms is included. (BCS)

  10. Energy release in solar flares

    NASA Technical Reports Server (NTRS)

    Brown, John C.; Correia, Emilia; Farnik, Frantisek; Garcia, Howard; Henoux, Jean-Claude; La Rosa, Ted N.; Machado, Marcos E. (Compiler); Nakajima, Hiroshi; Priest, Eric R.

    1994-01-01

    Team 2 of the Ottawa Flares 22 Workshop dealt with observational and theoretical aspects of the characteristics and processes of energy release in flares. Main results summarized in this article stress the global character of the flaring phenomenon in active regions, the importance of discontinuities in magnetic connectivity, the role of field-aligned currents in free energy storage, and the fragmentation of energy release in time and space.

  11. Energy Dissipation Processes in Solar Wind Turbulence

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Wei, F. S.; Feng, X. S.; Xu, X. J.; Zhang, J.; Sun, T. R.; Zuo, P. B.

    2015-12-01

    Turbulence is a chaotic flow regime filled by irregular flows. The dissipation of turbulence is a fundamental problem in the realm of physics. Theoretically, dissipation ultimately cannot be achieved without collisions, and so how turbulent kinetic energy is dissipated in the nearly collisionless solar wind is a challenging problem. Wave particle interactions and magnetic reconnection (MR) are two possible dissipation mechanisms, but which mechanism dominates is still a controversial topic. Here we analyze the dissipation region scaling around a solar wind MR region. We find that the MR region shows unique multifractal scaling in the dissipation range, while the ambient solar wind turbulence reveals a monofractal dissipation process for most of the time. These results provide the first observational evidences for intermittent multifractal dissipation region scaling around a MR site, and they also have significant implications for the fundamental energy dissipation process.

  12. Geostellar: Remote Solar Energy Assessments Personalized

    SciTech Connect

    2015-10-01

    Geostellar has produced an online tool that generates a unique solar profile for homeowners to learn about the financial benefits to installing rooftop solar panels on their home. The website incorporates the physical building characteristics of the home, including shading, slope, and orientation of the roof, and applies electricity costs and incentives to determine the best solar energy estimated energy production values against actual installed rooftop photovoltaic systems. The validation conducted by NREL concluded that over three-quarters of Geostellar's potential size estimates are at least as large as the actual installed systems, indicating a correct assessment of roof availability. In addition, 87% of Geostellar's 25-year production estimates are within 90% of the actual PV Watts results.

  13. Solar Adoption and Energy Consumption in the Residential Sector

    NASA Astrophysics Data System (ADS)

    McAllister, Joseph Andrew

    This dissertation analyzes the energy consumption behavior of residential adopters of solar photovoltaic systems (solar-PV). Based on large data sets from the San Diego region that have been assembled or otherwise acquired by the author, the dissertation quantifies changes in energy consumption after solar-PV installation and determines whether certain household characteristics are correlated with such changes. In doing so, it seeks to answer two related questions: First, "Do residential solar adopters increase or decrease their electricity consumption after they install a solar-PV system?" Assuming that certain categories of residential adopters increase and others decrease, the second question is "Which residential adopters increase and which decrease their consumption and why?" The database that was used to conduct this analysis includes information about 5,243 residential systems in San Diego Gas & Electric's (SDG&E) service territory installed between January 2007 and December 2010. San Diego is a national leader in the installation of small-scale solar-electric systems, with over 12,000 systems in the region installed as of January 2012, or around 14% of the total number installed in California. The author performed detailed characterization of a significant subset of the solar installations in the San Diego region. Assembled data included technical and economic characteristics of the systems themselves; the solar companies that sold and installed them; individual customer electric utility billing data; metered PV production data for a subgroup of these solar systems; and data about the properties where the systems are located. Primarily, the author was able to conduct an electricity consumption analysis at the individual household level for 2,410 PV systems installed in SDG&E service territory between January 2007 and December 2010. This analysis was designed to detect changes in electricity consumption from the pre-solar to the post-installation period. To the extent increases are present for some solar adopters, the analysis seeks to determine whether there is a "solar rebound" effect analogous to the "rebound" or "take-back" effect that has been observed and studied within the energy efficiency literature. Similarly, to the extent that electric users may decrease overall consumption after installation of a solar system, the study seeks to explore the possibility that solar adoption is part of a continued effort towards clean energy practices more generally, such as energy efficiency and conservation. In this way, the study seeks to determine whether there is a synergistic effect between solar and decreased consumption, for solar adopters generally or for some subsets therein. The assembled data allowed testing of various hypotheses that could help explain observed changes in consumption in different households. One variable that was carefully examined was the sizing of the solar system. As part of the study, analysis of 4,355 systems was conducted to determine how each residential solar system was sized with respect to pre-installation energy consumption. Other potentially interesting or explanatory variables for which information was available include total and net costs of the solar system; age of the home; the climate zone (inland or coastal) where the home is located; the home's pre-installation energy consumption; home characteristics such as assessed value and square footage; and the identity of the solar installation contractor. Aside from extending the literature on the rebound effect to the context of home-based energy generation, this study links to the innovation diffusion literature by focusing on solar "innovators" to understand more about the characteristics that may drive behavior, or conditions under which they also adopt clean energy technologies and practices. The results have clear policy relevance with regard to the development and coordination of policies to promote integration of solar and energy efficiency. Currently several public policies are being developed at various levels of government to encourage both, based on application of the economically rational concept of the "loading order", the California policy that places energy efficiency as the state's highest priority energy resource. However, there has been little study of the interrelationships between them or how these innovations are implemented in practice. This dissertation begins to fill that gap.

  14. Kinetic Analysis of Gas Splitting on Oxide Surfaces for Solar Thermochemical Fuel Production

    NASA Astrophysics Data System (ADS)

    Hansen, Heine; Meredig, Bryce; Wolverton, Chris

    2010-03-01

    Solar thermochemical cycles have the potential to convert solar energy into chemical fuels at high thermodynamic efficiency. This can be done by reducing an oxide at high temperature and oxidizing the reduced oxide at a lower temperature in H2O or CO2 to produce H2 or CO. The gas splitting reaction at low temperature is kinetically limited, possibly from slow kinetics of the surface processes. For example, the rate of H2O splitting over CeO2 is increased by the addition of a rhodium catalyst. Little is known about the gas splitting reactions at the atomic level. In this work we use density functional theory to investigate the mechanism for the gas splitting reactions on oxide surfaces such as CeO2 (111) or on precious metal catalyst particles such as Rh or Pt.

  15. Solar Energy Directory: A Directory of Domestic and International Firms Involved in Solar Energy.

    ERIC Educational Resources Information Center

    Centerline Co., Phoenix, AZ.

    This directory is intended to provide a link between suppliers of solar energy technology and information and potential users of these products. Included are over 1400 national and international entries. These listings include architects, associations, education sources, wind power technology and information sources, solar research organizations,…

  16. Solar Energy Directory: A Directory of Domestic and International Firms Involved in Solar Energy.

    ERIC Educational Resources Information Center

    Centerline Co., Phoenix, AZ.

    This directory is intended to provide a link between suppliers of solar energy technology and information and potential users of these products. Included are over 1400 national and international entries. These listings include architects, associations, education sources, wind power technology and information sources, solar research organizations,

  17. Economical solar-heating or cooling system with new solar-energy concentrators

    NASA Technical Reports Server (NTRS)

    Shimada, K.

    1975-01-01

    Economical solar energy collector, made from array of cylindrical Fresnel lenses, does not require tracking mechanism. As the sun changes position, lenses focus solar energy on different collector elements.

  18. Primary reflector for solar energy collection systems

    NASA Technical Reports Server (NTRS)

    Miller, C. G. (Inventor); Stephens, J. B.

    1978-01-01

    A fixed, linear, ground-based primary reflector is disclosed which has an extended curved sawtooth-contoured surface covered with a metalized polymeric reflecting material. The device reflects solar energy to a movably supported collector that is kept at the concentrated line focus of the reflector primary. The primary reflector may be constructed by a process utilizing well-known freeway paving machinery.

  19. Prototype residential solar-energy system

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Complete solar-energy domestic-hot-water system for single-family residences is described in brochure. It contains data on procurement, installation, operation, and maintainance of system in residential or light commercial buildings. Appendix includes vendor brochures for major system components. Drawings, tables, and graphs complement text.

  20. Solar Energy Project, Activities: Junior High Science.

    ERIC Educational Resources Information Center

    Tullock, Bruce, Ed.; And Others

    This guide contains lesson plans and outlines of science activities which present concepts of solar energy in the context of the junior high science curriculum. Each unit presents an introduction; objectives; skills and knowledge needed; materials; methods; questions; recommendations for further work; and a teacher information sheet. The teacher

  1. Solar Energy Project, Activities: Earth Science.

    ERIC Educational Resources Information Center

    Tullock, Bruce, Ed.; And Others

    This guide contains lesson plans and outlines of science activities which present concepts of solar energy in the context of earth science experiments. Each unit presents an introduction; objectives; skills and knowledge needed; materials; method; questions; recommendations for further study; and a teacher information sheet. The teacher

  2. Electron energy flux in the solar wind.

    NASA Technical Reports Server (NTRS)

    Ogilvie, K. W.; Scudder, J. D.; Sugiura, M.

    1971-01-01

    Description of studies of electrons between 10 eV and 9.9 keV in the solar wind. The transport of energy in the rest frame of the plasma is evaluated and shown to be parallel to the interplanetary magnetic field. The presence of electrons from solar events causes this energy-flux density to exceed the heat flow due to thermal electrons. In one such event, the observations are shown to be consistent with the solar-electron observations made at higher energies. When observations are made at a point connected to the earth's bow shock by an interplanetary-field line, a comparatively large energy flux along the field toward the sun is observed, but the heat flow remains outwardly directed during this time interval. In either situation the heat flow is found to be consistent with measurements made on Vela satellites by a different method. These values, less than .01 ergs/sq cm/sec, are sufficiently low to require modifications to the Spitzer-Harm conductivity formula for use in solar-wind theories.

  3. Solar Energy Experiment for Beginning Chemistry.

    ERIC Educational Resources Information Center

    Davis, Clyde E.

    1983-01-01

    Describes an experiment illustrating how such chemical concepts as light absorption, thermodynamics, and solid-state photovoltaics can be incorporated into solar energy education. Completed in a three-hour period, the experiment requires about two hours for data collections with the remaining hour devoted to calculations and comparison of results.…

  4. Solar Energy Project, Activities: Chemistry & Physics.

    ERIC Educational Resources Information Center

    Tullock, Bruce, Ed.; And Others

    This guide contains lesson plans and outlines of science activities which present concepts of solar energy in the context of chemistry and physics experiments. Each unit presents an introduction to the unit; objectives; required skills and knowledge; materials; method; questions; recommendations for further work; and a teacher information sheet.…

  5. Solar Energy Installers Curriculum Guides. Final Report.

    ERIC Educational Resources Information Center

    Walker, Gene C.

    A project was conducted to develop solar energy installers curriculum guides for use in high school vocational centers and community colleges. Project activities included researching job competencies for the heating, ventilation, and air conditioning industry and determining through interviews and manufacturers' literature what additional…

  6. Solar Energy Experiment for Beginning Chemistry.

    ERIC Educational Resources Information Center

    Davis, Clyde E.

    1983-01-01

    Describes an experiment illustrating how such chemical concepts as light absorption, thermodynamics, and solid-state photovoltaics can be incorporated into solar energy education. Completed in a three-hour period, the experiment requires about two hours for data collections with the remaining hour devoted to calculations and comparison of results.

  7. Integrated solar reforming for thermochemical energy transport

    NASA Astrophysics Data System (ADS)

    Rozenman, T.

    1987-12-01

    This report presents a design study of two reforming processes as applied to the concept of solar thermochemical energy transport. Conceptual designs were carried out for steam-methane and CO2-methane reforming plants. A solar central receiver reformer was designed as an integrated reactor with the chemical reaction tubes placed inside the receiver cavity. The two plant designs were compared for their energy efficiency and capital cost. The CO2 reforming plant design results in higher energy efficiency but requires a catalyst which is still in an experimental stage of development. A third design was performed as a modification of the steam reforming plant utilizing a Direct Contact system, in which the process steam is generated by utilizing the heat of condensation. This system resulted in the highest energy efficiency. A comparison of the capital cost of these three plant designs shows them to be equivalent within the estimation accuracy of 25 percent.

  8. Online National Solar Energy Directory and 2005 Solar Decathlon Product Directory. Final report

    SciTech Connect

    Hamm, Julia; Taylor, Mike

    2008-12-31

    The Solar Electric Power Association (SEPA), in partnership with the American Solar Energy Society, developed an online National Solar Energy Directory with clear, comprehensive information on suppliers and purchasing options. The site was originally located at FindSolar.com, but has recently been moved to Find-Solar.org. The original FindSolar.com domain name has been taken by the American Solar Energy Society (a partner in this project) and utilized for a similar but different project. This Find-Solar.org directory offers the rapidly growing base of potential solar customers a simple, straightforward destination to learn about their solar options. Members of the public are able to easily locate contractors in their geographic area and verify companies?? qualifications with accurate third-party information. It allows consumers to obtain key information on the economics, incentives, desirability, and workings of a solar energy system, as well as competing quotes from different contractors and reviews from customers they have worked with previously. Find-Solar.org is a means of facilitating the growing public interest in solar power and overcoming a major barrier to widespread development of U.S. solar markets. In addition to the development of Find-Solar.org, SEPA developed a separate online product directory for the 2005 DOE Solar Decathlon to facilitate the communication of information about the energy efficiency and renewable energy products used in each university team??s home.

  9. Multi-thermal Energies of Solar Flares

    NASA Astrophysics Data System (ADS)

    Ryan, Daniel; Aschwanden, Markus; Boerner, Paul; Caspi, Amir; McTiernan, James; Warren, Harry

    2015-04-01

    Measuring energy partition in solar eruptions is key to understanding how different processes affect their evolution. In order to improve our knowledge on this topic, we are participating in a multi-study project to measure the energy partition of 400 M- and X-class flares and associated coronal mass ejections (CMEs). In this study we focus on the flare thermal energies of 391 of these events. We improve upon previous studies in the following ways: 1) We determine thermal energy using spatially resolved multi-thermal differential emission measures (DEMs) determined from AIA (Atmospheric Imaging Assembly) rather than relying on the isothermal assumption; 2) We determine flare volumes by thresholding these DEM maps rather than relying on single passband observations which may not show the full flare volume; 3) We analyze a greater number of events than previous similar studies to increase the statistical reliability of our results. We find that the thermal energies of these flares lie in the range 10^26.8—10^32 erg. These results are compared to those of Aschwanden et al. (2014) who examined a subset of these events. They determined the dissipated non-potential magnetic energy which is thought to be the total energy available to drive solar eruptions. For the 171 events common to both studies, we find that the ratio of flare thermal energy to dissipated magnetic energy ranges from 2%—40%. This is an order of magnitude higher than previously found by Emslie et al. (2012). This may be because Emslie et al. (2012) had to assume the amount of non-potential magnetic energy, or that they relied on the isothermal assumption to determine flare thermal energies. The improved results found here will help us better understand the role played by flare thermal processes in dissipating the overall energy of solar eruptions.

  10. Energy in Mexico: a profile of solar energy activity in its national context

    SciTech Connect

    Hawkins, D.

    1980-04-01

    The geopolitical, economic, and cultural aspects of the United States of Mexico are presented. Mexico's energy profile includes the following: energy policy objectives, government energy structure, organizations for implementation, indigeneous energy sources, imported energy sources, solar energy research and development, solar energy organizations and solar energy related legislation and administrative policies. International agreements, contacts, manufacturers, and projects are listed. (MRH)

  11. Solar energy utilization by physical methods.

    PubMed

    Wolf, M

    1974-04-19

    On the basis of the estimated contributions of these differing methods of the utilization of solar energy, their total energy delivery impact on the projected U.S. energy economy (9) can be evaluated (Fig. 5). Despite this late energy impact, the actual sales of solar energy utilization equipment will be significant at an early date. Potential sales in photovoltaic arrays alone could exceed $400 million by 1980, in order to meet the projected capacity buildup (10). Ultimately, the total energy utilization equipment industry should attain an annual sales volume of several tens of billion dollars in the United States, comparable to that of several other energy related industries. Varying amounts of technology development are required to assure the technical and economic feasibility of the different solar energy utilization methods. Several of these developments are far enough along that the paths can be analyzed from the present time to the time of demonstration of technical and economic feasibility, and from there to production and marketing readiness. After that point, a period of market introduction will follow, which will differ in duration according to the type of market addressed. It may be noted that the present rush to find relief from the current energy problem, or to be an early leader in entering a new market, can entail shortcuts in sound engineering practice, particularly in the areas of design for durability and easy maintenance, or of proper application engineering. The result can be loss of customer acceptance, as has been experienced in the past with various products, including solar water heaters. Since this could cause considerable delay in achieving the expected total energy impact, it will be important to spend adequate time at this stage for thorough development. Two other aspects are worth mentioning. The first is concerned with the economic impacts. Upon reflection on this point, one will observe that largescale solar energy utilization will not cause a greater impact than other new energy sources, based on the reasoning that a self-consistent set of conditions will have to be fulfilled in order to achieve such large-scale use. Without cost competitiveness, other energy resources would fill the requirements, or, if their resource and cost structure also would create severe problems, the economic forecasts simply cannot be fulfilled. We also should not think of a "solar-only" energy future. First, there is still enough coal to last for several hundred years. Second, there should be enough fissionable fuel available to operate breeder reactors for a similar time span, and geothermal energy could satisfy some requirements for a long time. And finally, there may be fusion. It would be unlikely that any one of the available options should play a really dominant role. Rather, we should expect to be using an energy mix, just as we do now, with each energy source supplying the requirements which it can satisfy in the most suitable way, and solar energy should play an important role in this long-range future. PMID:17792569

  12. Is Solar Energy the Fuel of the Future?

    ERIC Educational Resources Information Center

    Cetincelik, Mauammer

    1974-01-01

    Describes the present distribution of solar energy, traces its use through history, explores its potential utilization in the future, and presents the effects of the use of solar energy on pollution. (GS)

  13. High Energy Gas Fracturing Test

    SciTech Connect

    Schulte, R.

    2001-02-27

    The Rocky Mountain Oilfield Testing Center (RMOTC) has recently completed two tests of a high-energy gas fracturing system being developed by Western Technologies of Crossville, Tennessee. The tests involved the use of two active wells located at the Naval Petroleum Reserve No. 3 (NPR-3), thirty-five miles north of Casper, Wyoming (See Figure 1). During the testing process the delivery and operational system was enhanced by RMOTC, Western Technologies, and commercial wireline subcontractors. RMOTC has assisted an industrial client in developing their technology for high energy gas fracturing to a commercial level. The modifications and improvements implemented during the technology testing process are instrumental in all field testing efforts at RMOTC. The importance of well selection can also be critical in demonstrating the success of the technology. To date, significant increases in well productivity have been clearly proven in well 63-TPX-10. Gross fluid production was initially raised by a factor of three. Final production rates increased by a factor of six with the use of a larger submersible pump. Well productivity (bbls of fluid per foot of drawdown) increased by a factor of 15 to 20. The above results assume that no mechanical damage has occurred to the casing or cast iron bridge plug which could allow well production from the Tensleep ''B'' sand. In the case of well 61-A-3, a six-fold increase in total fluid production was seen. Unfortunately, the increase is clouded by the water injection into the well that was necessary to have a positive fluid head on the propellant tool. No significant increase in oil production was seen. The tools which were retrieved from both 63-TPX-10 and 61-A-3 indicated a large amount of energy, similar to high gram perforating, had been expended downhole upon the formation face.

  14. Solar energy conversion using surface plasmons for broadband energy transport

    NASA Technical Reports Server (NTRS)

    Anderson, L. M.

    1982-01-01

    A new strategy for efficient solar energy conversion based on parallel processing with surface plasmons is introduced. The approach is unique in identifying: (1) a broadband carrier with suitable range for energy transport, and (2) a technique to extract more energy from the more energetic photons, without sequential losses or unique materials for each frequency band. The aim is to overcome the fundamental losses associated with the broad solar spectrum and to achieve a higher level of spectrum splitting than has been possible in semiconductor systems.

  15. Possible solar noble-gas component in Hawaiian basalts

    USGS Publications Warehouse

    Honda, M.; McDougall, I.; Patterson, D.B.; Doulgeris, A.; Clague, D.A.

    1991-01-01

    THE noble-gas elemental and isotopic composition in the Earth is significantly different from that of the present atmosphere, and provides an important clue to the origin and history of the Earth and its atmosphere. Possible candidates for the noble-gas composition of the primordial Earth include a solar-like component, a planetary-like component (as observed in primitive meteorites) and a component similar in composition to the present atmosphere. In an attempt to identify the contributions of such components, we have measured isotope ratios of helium and neon in fresh basaltic glasses dredged from Loihi seamount and the East Rift Zone of Kilauea1-3. We find a systematic enrichment in 20Ne and 21Ne relative to 22Ne, compared with atmospheric neon. The helium and neon isotope signatures observed in our samples can be explained by mixing of solar, present atmospheric, radiogenic and nucleogenic components. These data suggest that the noble-gas isotopic composition of the mantle source of the Hawaiian plume is different from that of the present atmosphere, and that it includes a significant solar-like component. We infer that this component was acquired during the formation of the Earth.

  16. Assessment of solar and wind energy resources in Ethiopia. I. Solar energy

    SciTech Connect

    Drake, F.; Mulugetta, Y.

    1996-09-01

    This paper describes how data from a variety of sources are merged to present new countrywide maps of the solar energy distribution over Ethiopia. The spatial coverage of stations with radiation data was found to be unsatisfactory for the purpose of a countrywide solar energy assessment exercise. Therefore, radiation had to be predicted from sunshine hours by employing empirical models. Using data from seven stations in Ethiopia, linear and quadratic correlation relationships between monthly mean daily solar radiation and sunshine hours per day have been developed. These regional models show a distinct improvement over previously employed countrywide models. To produce a national solar-energy distribution profile, a spatial extension of the radiation/sunshine relationships had to be carried out. To do this, the intercepts(a) and slopes(b) of each of the seven linear regression equations and another six from previous studies, completed in neighbouring Sudan, Kenya and Yemen, were used to interpolate the corresponding values to areas between them. Subsequent to these procedures, 142 stations providing only sunshine data were assigned their `appropriate` a and b values to estimate the amount of solar radiation received, which was then used to produce annual and monthly solar radiation distribution maps for Ethiopia. The results show that in all regions solar energy is an abundant resource. 19 refs., 11 figs., 4 tabs.

  17. Harnessing surface plasmons for solar energy conversion

    NASA Technical Reports Server (NTRS)

    Anderson, L. M.

    1983-01-01

    NASA research on the feasibility of solar-energy conversion using surface plasmons is reviewed, with a focus on inelastic-tunnel-diode techniques for power extraction. The need for more efficient solar converters for planned space missions is indicated, and it is shown that a device with 50-percent efficiency could cost up to 40 times as much per sq cm as current Si cells and still be competitive. The parallel-processing approach using broadband carriers and tunable diodes is explained, and the physics of surface plasmons on metal surfaces is outlined. Technical problems being addressed include phase-matching sunlight to surface plasmons, minimizing ohmic losses and reradiation in energy transport, coupling into the tunnels by mode conversion, and gaining an understanding of the tunnel-diode energy-conversion process. Diagrams illustrating the design concepts are provided.

  18. EXTERNAL PHOTOEVAPORATION OF THE SOLAR NEBULA: JUPITER's NOBLE GAS ENRICHMENTS

    SciTech Connect

    Monga, Nikhil; Desch, Steven

    2015-01-01

    We present a model explaining the elemental enrichments in Jupiter's atmosphere, particularly the noble gases Ar, Kr, and Xe. While He, Ne, and O are depleted, seven other elements show similar enrichments (∼3 times solar, relative to H). Being volatile, Ar is difficult to fractionate from H{sub 2}. We argue that external photoevaporation by far-ultraviolet (FUV) radiation from nearby massive stars removed H{sub 2}, He, and Ne from the solar nebula, but Ar and other species were retained because photoevaporation occurred at large heliocentric distances where temperatures were cold enough (≲ 30 K) to trap them in amorphous water ice. As the solar nebula lost H, it became relatively and uniformly enriched in other species. Our model improves on the similar model of Guillot and Hueso. We recognize that cold temperatures alone do not trap volatiles; continuous water vapor production is also necessary. We demonstrate that FUV fluxes that photoevaporated the disk generated sufficient water vapor in regions ≲ 30 K to trap gas-phase species in amorphous water ice in solar proportions. We find more efficient chemical fractionation in the outer disk: whereas the model of Guillot and Hueso predicts a factor of three enrichment when only <2% of the disk mass remains, we find the same enrichments when 30% of the disk mass remains. Finally, we predict the presence of ∼0.1 M {sub ⊕} of water vapor in the outer solar nebula and protoplanetary disks in H II regions.

  19. External Photoevaporation of the Solar Nebula: Jupiter's Noble Gas Enrichments

    NASA Astrophysics Data System (ADS)

    Monga, Nikhil; Desch, Steven

    2015-01-01

    We present a model explaining the elemental enrichments in Jupiter's atmosphere, particularly the noble gases Ar, Kr, and Xe. While He, Ne, and O are depleted, seven other elements show similar enrichments (~3 times solar, relative to H). Being volatile, Ar is difficult to fractionate from H2. We argue that external photoevaporation by far-ultraviolet (FUV) radiation from nearby massive stars removed H2, He, and Ne from the solar nebula, but Ar and other species were retained because photoevaporation occurred at large heliocentric distances where temperatures were cold enough (lsim 30 K) to trap them in amorphous water ice. As the solar nebula lost H, it became relatively and uniformly enriched in other species. Our model improves on the similar model of Guillot & Hueso. We recognize that cold temperatures alone do not trap volatiles; continuous water vapor production is also necessary. We demonstrate that FUV fluxes that photoevaporated the disk generated sufficient water vapor in regions <~ 30 K to trap gas-phase species in amorphous water ice in solar proportions. We find more efficient chemical fractionation in the outer disk: whereas the model of Guillot & Hueso predicts a factor of three enrichment when only <2% of the disk mass remains, we find the same enrichments when 30% of the disk mass remains. Finally, we predict the presence of ~0.1 M ⊕ of water vapor in the outer solar nebula and protoplanetary disks in H II regions.

  20. Coupled Gas Giant Atmospheres: Solar Heating vs. Interior Heating

    NASA Astrophysics Data System (ADS)

    O'Neill, Morgan E.; Kaspi, Yohai; Galanti, Eli

    2015-11-01

    The weather layers of Jupiter and Saturn receive both solar radiation and heat from the deep interior. Currently, numerical models fall into two broad categories: deep, convecting interiors that lack an outer, solar-heated troposphere, or thin shells that represent only a troposphere, with parameterized heating from the lower boundary. Here we present results from a new coupled circulation model that allows deep convective plumes and columnar structures to interact with a stable troposphere that is heated by the sun. Equatorial superrotation, observed on Jupiter and Saturn, extends in axially-aligned columns from the deep interior through the troposphere. A tropospheric midlatitude baroclinic zone due to solar heating competes with the outer edges of the deep rotating columns to characterize midlatitude jet and temperature structure. We demonstrate this interplay between solar heating and interior heating in setting the strength and depth of the jets for a range of idealized gas giants. The relative impact of each is modulated by the static stability of the troposphere, which acts as a proxy for water abundance. We also show the impact of axial tilt, with respect to solar radiation, on asymmetries between the Northern and Southern hemispheres.

  1. Mobil Solar Energy Corporation thin EFG octagons

    NASA Astrophysics Data System (ADS)

    Kalejs, J. P.

    1994-06-01

    Mobil Solar Energy Corporation manufactures photovoltaic modules based on its unique Edge-defined Film-fed Growth (EFG) process for producing octagon-shaped hollow polycrystalline silicon tubes. The octagons are cut by lasers into 100 mm x 100 mm wafers which are suitable for solar cell processing. This process avoids slicing, grinding and polishing operations which are wasteful of material and are typical of most other wafer production methods. EFG wafers are fabricated into solar cells and modules using processes that have been specially developed to allow scaling up to high throughput rates. The goals of the Photovoltaic Manufacturing Technology Initiative (PVMaT) program at Mobil Solar were to improve the EFG manufacturing line through technology advances that accelerate cost reduction in production and stimulate market growth for its product. The program was structured into three main tasks: to decrease silicon utilization by lowering wafer thickness from 400 to 200 (mu)m; to enhance laser cutting yields and throughput while improving the wafer strength; and to raise crystal growth productivity and yield. The technical problems faced and the advances made in the Mobil Solar PVMaT program are described. The author concludes with a presentation of the results of a detailed cost model for EFT module production. This model describes the accelerated reductions in manufacturing costs which are already in place and the future benefits anticipated to result from the technical achievements of the PVMaT program.

  2. Solar heating, cooling and domestic hot water system installed at Columbia Gas System Service Corporation, Columbus, Ohio

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The solar energy system installed in the building has 2,978 sq ft of single axis tracking, concentrating collectors and provides solar energy for space heating, space cooling and domestic hot water. A 1,200,000 Btu/hour water tube gas boiler provides hot water for space heating. Space cooling is provided by a 100 ton hot water fired absorption chiller. Domestic hot water heating is provided by a 50 gallon natural gas domestic storage water heater. Extracts from the site files, specification references, drawings, installation, operation and maintenance instructions are included.

  3. Solar heating, cooling and domestic hot water system installed at Columbia Gas System Service Corporation, Columbus, Ohio

    NASA Astrophysics Data System (ADS)

    1980-11-01

    The solar energy system installed in the building has 2,978 sq ft of single axis tracking, concentrating collectors and provides solar energy for space heating, space cooling and domestic hot water. A 1,200,000 Btu/hour water tube gas boiler provides hot water for space heating. Space cooling is provided by a 100 ton hot water fired absorption chiller. Domestic hot water heating is provided by a 50 gallon natural gas domestic storage water heater. Extracts from the site files, specification references, drawings, installation, operation and maintenance instructions are included.

  4. Solar energy converter using surface plasma waves

    NASA Technical Reports Server (NTRS)

    Anderson, L. M. (Inventor)

    1984-01-01

    Sunlight is dispersed over a diffraction grating formed on the surface of a conducting film on a substrate. The angular dispersion controls the effective grating period so that a matching spectrum of surface plasmons is excited for parallel processing on the conducting film. The resulting surface plasmons carry energy to an array of inelastic tunnel diodes. This solar energy converter does not require different materials for each frequency band, and sunlight is directly converted to electricity in an efficient manner by extracting more energy from the more energetic photons.

  5. Study of combined /photovoltaic-thermal/ solar energy systems

    NASA Astrophysics Data System (ADS)

    Neville, R. C.

    A theoretical analysis of a combined photovoltaic-thermal energy system for converting solar energy is presented. Optical concentration is employed to intensify the available solar energy density. The thermal energy extraction works both to cool the solar cells and to provide heat energy. Overall system efficiencies (total output energy, both thermal and electrical, divided by the available insolation) are shown to reach values close to 40%, with predicted capital costs less than 0.1 cent per kWh.

  6. Solar Energy Forecast System Development and Implementation

    NASA Astrophysics Data System (ADS)

    Jascourt, S. D.; Kirk-Davidoff, D. B.; Cassidy, C.

    2012-12-01

    Forecast systems for predicting real-time solar energy generation are being developed along similar lines to those of more established wind forecast systems, but the challenges and constraints are different. Clouds and aerosols play a large role, and for tilted photovoltaic panels and solar concentrating plants, the direct beam irradiance, which typically has much larger forecast errors than global horizontal irradiance, must be utilized. At MDA Information Systems, we are developing a forecast system based on first principles, with the well-validated REST2 clear sky model (Gueymard, 2008) at its backbone. In tuning the model and addressing aerosol scattering and surface albedo, etc., we relied upon the wealth of public data sources including AERONET (aerosol optical depth at different wavelengths), Suominet (GPS integrated water vapor), NREL MIDC solar monitoring stations, SURFRAD (includes upwelling shortwave), and MODIS (albedo in different wavelength bands), among others. The forecast itself utilizes a blend of NWP model output, which must be brought down to finer time resolution based on the diurnal cycle rather than simple interpolation. Many models currently do not output the direct beam irradiance, and one that does appears to have a bias relative to its global horizontal irradiance, with equally good performance attained by utilizing REST2 and the model global radiation to estimate the direct component. We will present a detailed assessment of various NWP solar energy products, evaluating forecast skill at a range of photovoltaic installations.

  7. Energy Storage in the Solar Corona

    NASA Astrophysics Data System (ADS)

    Wolfson, R.

    2000-12-01

    Coronal mass ejections (CMEs) involve the expulsion of some 1016 g of solar material into interplanetary space, at hundreds of kilometers per second. In one common scenario, the energy that powers a CME is stored gradually in the solar corona until a triggering event, instability, or loss of equilibrium initiates the mass ejection. Energy is required to open the coronal magnetic field, to accelerate the ejected material, and to lift the ejecta against solar gravity. In this work, we develop a model corona that includes both field-aligned (force-free) and cross-field electric currents supporting a mass distribution like that of the coronal helmet streamers in which many CMEs originate. We show how magnetic shear, when coupled with an appropriate mass distribution, can result in the buildup of energy sufficient to power a CME. We explore a range of shear profiles, and show that the ability of the corona to store sufficient energy for a CME may depend on the details of the shear applied to its magnetic footpoints. This work was supported by NASA grant NAG5-9733 to Middlebury College.

  8. Solar energy system performance evaluation seasonal report for Elcam San Diego, San Diego, California

    SciTech Connect

    Not Available

    1980-05-01

    The solar energy system, Elcam San Diego, was designed to supply domestic hot water heating for a single family residence located in Encinitas, California. The contents of this document have been divided into System Description, Performance Assessment, Operating Energy, Energy Savings, Maintenance and Summary and Conclusions. The system is a Sunspot two tank cascade type, where solar energy is supplied to either a 66 gallon preheat tank (solar storage) or a 40 gallon domestic hot water tank. Water is pumped directly from one of the two tanks, through the 65 square feet collector array and back into the same tank. Freeze protection is provided by automatically circulating hot water from the hot water tank through the collectors and exposed plumbing when freezing conditions exist. Auxiliary energy is supplied by natural gas. The Elcam San Diego solar energy system has three modes of operation.

  9. Solar Energy Education. Renewable energy activities for junior high/middle school science

    SciTech Connect

    Not Available

    1985-01-01

    Some basic topics on the subject of solar energy are outlined in the form of a teaching manual. The manual is geared toward junior high or middle school science students. Topics include solar collectors, solar water heating, solar radiation, insulation, heat storage, and desalination. Instructions for the construction of apparatus to demonstrate the solar energy topics are provided. (BCS)

  10. Solar energy, conservation, and rental housing

    SciTech Connect

    Levine, A.; Raab, J.

    1981-03-01

    Renters must pay the majority of energy costs either directly or in their rents. They have limited financial and legal abilities to make improvements necessary to increase substantially the energy efficiency of rental housing. This report discusses the problem of how to increase investments in energy conservation and solar energy devices for rental housing, which constitutes over one-third of US housing. As background, this report characterizes the rental-housing market, including owners' decision-making criteria. Federal, state, and local policies that affect energy-related investments in rental housing are described. Programs are divided into five major categories: (1) programs for tenants, (2) financial incentives for owners, (3) leasing of solar energy equipment, (4) mediation between tenants and landlords, and (5) regulation. The report concludes that energy and conservation programs aimed at the residential sector must disaggregate owner-occupied housing from rental housing for maximum effect. No one program is advocated since local rental-housing markets differ substantially. For improvements greater than no-cost or low-cost items, programs must be directed at rental-housing owners and not only at tenants.

  11. Solar Energy Research Center Instrumentation Facility

    SciTech Connect

    Meyer, Thomas, J.; Papanikolas, John, P.

    2011-11-11

    SOLAR ENERGY RESEARCH CENTER INSTRUMENTATION FACILITY The mission of the Solar Energy Research Center (UNC SERC) at the University of North Carolina at Chapel Hill (UNC-CH) is to establish a world leading effort in solar fuels research and to develop the materials and methods needed to fabricate the next generation of solar energy devices. We are addressing the fundamental issues that will drive new strategies for solar energy conversion and the engineering challenges that must be met in order to convert discoveries made in the laboratory into commercially available devices. The development of a photoelectrosynthesis cell (PEC) for solar fuels production faces daunting requirements: (1) Absorb a large fraction of sunlight; (2) Carry out artificial photosynthesis which involves multiple complex reaction steps; (3) Avoid competitive and deleterious side and reverse reactions; (4) Perform 13 million catalytic cycles per year with minimal degradation; (5) Use non-toxic materials; (6) Cost-effectiveness. PEC efficiency is directly determined by the kinetics of each reaction step. The UNC SERC is addressing this challenge by taking a broad interdisciplinary approach in a highly collaborative setting, drawing on expertise across a broad range of disciplines in chemistry, physics and materials science. By taking a systematic approach toward a fundamental understanding of the mechanism of each step, we will be able to gain unique insight and optimize PEC design. Access to cutting-edge spectroscopic tools is critical to this research effort. We have built professionally-staffed facilities equipped with the state-of the-art instrumentation funded by this award. The combination of staff, facilities, and instrumentation specifically tailored for solar fuels research establishes the UNC Solar Energy Research Center Instrumentation Facility as a unique, world-class capability. This congressionally directed project funded the development of two user facilities: TASK 1: SOLAR DEVICE FABRICATION LABORATORY DEVELOPMENT The space allocated for this laboratory was “shell space” that required an upfit in order to accommodate nano-fabrication equipment in a quasi-clean room environment. This construction project (cost $279,736) met the non-federal cost share requirement of $250,000 for this award. The central element of the fabrication laboratory is a new $400,000+ stand-alone system, funded by other sources, for fabricating and characterizing photovoltaic devices, in a state-of-the-art nanofabrication environment. This congressionally directed project also included the purchase of an energy dispersive x-ray analysis (EDX) detector for a pre-existing transmission electron microscope (TEM). This detector allows elemental analysis and elemental mapping of materials used to fabricate solar energy devices which is a key priority for our research center. TASK 2: SOLAR ENERGY SPECTROSCOPY LABORATORY DEVELOPMENT (INSTRUMENTATION) This laboratory provides access to modern spectroscopy and photolysis instrumentation for characterizing devices, materials and components on time scales ranging from femtoseconds to seconds and for elucidating mechanisms. The goals of this congressionally directed project included the purchase and installation of spectroscopy and photolysis instrumentation that would substantially and meaningfully enhance the capabilities of this laboratory. Some changes were made to the list of equipment proposed in the original budget. These changes did not represent a change in scope, approach or aims of this project. All of the capabilities and experiments represented in the original budget were maintained. The outcome of this Congressionally Directed Project has been the development of world-class fabrication and spectroscopy user facilities for solar fuels research at UNC-CH. This award has provided a significant augmentation of our pre-existing instrumentation capabilities which were funded by earlier UNC SERC projects, including the Energy Frontier Research Center UNC EFRC, funded by the US Department of Energy Office of Basic Energy Sciences. Equipment funded by this congressional award has provided important new capabilities for UNC SERC and has greatly facilitated collaborative research by many multi-institutional teams in the six partner institutions of the UNC EFRC, including Duke University, North Carolina Central University, and North Carolina State University. This state-of-the-art instrumentation has allowed us to design cutting-edge experiments that provide insight into the molecular structure and dynamics of materials and components for solar energy conversion under real working conditions. This research has resulted in ten publications already published or in preparation that acknowledge support from DOE EERE for this congressionally directed project.

  12. Solar energy storage using surfactant micelles

    NASA Astrophysics Data System (ADS)

    Srivastava, R. C.; Marwadi, P. R.; Latha, P. K.; Bhise, S. B.

    1982-09-01

    The results of experiments designed to test the soluble reduced form of thionine dye as a suitable solar energy storage agent inside the hydrophobic core of surfactant micelles are discussed. Aqueous solutions of thionine, methylene blue, cetyl pyridinium bromide, sodium lauryl sulphate, iron salts, and iron were employed as samples of anionic, cationic, and nonionic surfactants. The solutions were exposed to light until the dye disappeared, and then added drop-by-drop to surfactant solutions. The resultant solutions were placed in one cell compartment while an aqueous solution with Fe(2+) and Fe(3+) ions were placed in another, with the compartments being furnished with platinum electrodes connected using a saturated KCl-agar bridge. Data was gathered on the short circuit current, maximum power, and internal resistance encountered. Results indicate that dye-surfactant systems are viable candidates for solar energy storage for later conversion to electrical power.

  13. Operational experience from solar thermal energy projects

    SciTech Connect

    Cameron, C.P.

    1984-03-01

    Over the past few years, Sandia National Laboratories were involved in the design, construction, and operation of a number of DOE-sponsored solar thermal energy systems. Among the systems currently in operation are several industrial process heat projects and the Modular Industrial Solar Retrofit qualification test systems, all of which use parabolic troughs, and the Shenandoah Total Energy Project, which uses parabolic dishes. Operational experience has provided insight to both desirable and undesirable features of the designs of these systems. Features of these systems which are also relevant to the design of parabolic concentrator thermal electric systems are discussed. Other design features discussed are system control functions which were found to be especially convenient or effective, such as local concentrator controls, rainwash controls, and system response to changing isolation. Drive systems are also discussed with particular emphasis of the need for reliability and the usefulness of a manual drive capability.

  14. Operational Experience from Solar Thermal Energy Projects

    NASA Technical Reports Server (NTRS)

    Cameron, C. P.

    1984-01-01

    Over the past few years, Sandia National Laboratories were involved in the design, construction, and operation of a number of DOE-sponsored solar thermal energy systems. Among the systems currently in operation are several industrial process heat projects and the Modular Industrial Solar Retrofit qualification test systems, all of which use parabolic troughs, and the Shenandoah Total Energy Project, which uses parabolic dishes. Operational experience has provided insight to both desirable and undesirable features of the designs of these systems. Features of these systems which are also relevant to the design of parabolic concentrator thermal electric systems are discussed. Other design features discussed are system control functions which were found to be especially convenient or effective, such as local concentrator controls, rainwash controls, and system response to changing isolation. Drive systems are also discussed with particular emphasis of the need for reliability and the usefulness of a manual drive capability.

  15. Solar Energy Education. Reader, Part I. Energy, Society, and the Sun

    SciTech Connect

    Not Available

    1981-05-01

    A collection of magazine articles which were selected for information on solar energy is presented in this booklet. This booklet is the first of a four part series of the Solar Energy Reader. The articles provide brief discussions on topics such as the power of the sun, solar energy developments for homes, solar energy versus power plants, solar access laws, and the role of utilities with respect to the sun's energy. (BCS)

  16. Calculating solar radiation received by tubular solar energy collectors

    SciTech Connect

    Perez, R.; Seals, R.; Anderson, J.; Menicucci, D.

    1995-11-01

    Cylindrical (tubular) absorbers installed inside evacuated tubes represent an increasingly common design for low temperature solar collectors (e.g., the SunFamily{trademark} design). However, whereas much work has been done on the subject of solar radiation received by flat plate collectors, little has been done for collectors of tubular design. It is important to estimate the irradiance impinging on a collector to: (1) evaluate its efficiency and (2) be able to predict its performance in a given location. Applying flat plate irradiance calculations without change to tubular collector arrays would result in sizable errors. In this paper the authors present and discuss the main assumptions of an algorithm developed by the authors to estimate irradiance impinging on tubular arrays, including specific collector/array design parameters, treatment of direct and anisotropic diffuse radiation, treatment of shading from one tube to another and treatment of ground and support-reflected radiation. Key examples are provided to illustrate the difference of energy collected between flat plate and tubular collectors.

  17. Solar power for energy sustainability and environmental friendliness of Curtin University Sarawak

    NASA Astrophysics Data System (ADS)

    Palanichamy, C.; Goh, Alvin

    2016-03-01

    The demand on electrical energy is rapidly increasing. Everything around us requires electrical energy either during its production or usage stage. Sustainability has become the main concern nowadays as the availability of fossil fuels is limited. As renewable energy is the path-way to energy sustainability and environmental friendly environment, this paper proposes a solar power system for Curtin University Sarawak to reduce its electricity consumption and greenhouse gas emissions. The proposed 208 kW solar system saves an energy consumption of more than 380,000 kWh per year, and a CO2 offset by 285 Tons per year

  18. Solar energy in Italy: a profile of renewable energy activity in its national context

    SciTech Connect

    Shea, C.A.

    1980-12-01

    The following are included: country overview; energy summary; Italian Republic-geopolitical, economic, and cultural aspects; the energy profile; imported energy sources; solar energy research and development; solar energy organizations; solar energy related legislation and administration policies; and international agreements, contacts, manufacturers, and projects. (MHR)

  19. Gas concentration cells for utilizing energy

    DOEpatents

    Salomon, R.E.

    1987-06-30

    An apparatus and method are disclosed for utilizing energy, in which the apparatus may be used for generating electricity or as a heat pump. When used as an electrical generator, two gas concentration cells are connected in a closed gas circuit. The first gas concentration cell is heated and generates electricity. The second gas concentration cell repressurizes the gas which travels between the cells. The electrical energy which is generated by the first cell drives the second cell as well as an electrical load. When used as a heat pump, two gas concentration cells are connected in a closed gas circuit. The first cell is supplied with electrical energy from a direct current source and releases heat. The second cell absorbs heat. The apparatus has no moving parts and thus approximates a heat engine. 4 figs.

  20. Gas concentration cells for utilizing energy

    DOEpatents

    Salomon, Robert E.

    1987-01-01

    An apparatus and method for utilizing energy, in which the apparatus may be used for generating electricity or as a heat pump. When used as an electrical generator, two gas concentration cells are connected in a closed gas circuit. The first gas concentration cell is heated and generates electricity. The second gas concentration cell repressurizes the gas which travels between the cells. The electrical energy which is generated by the first cell drives the second cell as well as an electrical load. When used as a heat pump, two gas concentration cells are connected in a closed gas circuit. The first cell is supplied with electrical energy from a direct current source and releases heat. The second cell absorbs heat. The apparatus has no moving parts and thus approximates a heat engine.

  1. Solar Energy Systems for Lunar Oxygen Generation

    NASA Technical Reports Server (NTRS)

    Colozza, Anthony J.; Heller, Richard S.; Wong, Wayne A.; Hepp, Aloysius F.

    2010-01-01

    An evaluation of several solar concentrator-based systems for producing oxygen from lunar regolith was performed. The systems utilize a solar concentrator mirror to provide thermal energy for the oxygen production process. Thermal energy to power a Stirling heat engine and photovoltaics are compared for the production of electricity. The electricity produced is utilized to operate the equipment needed in the oxygen production process. The initial oxygen production method utilized in the analysis is hydrogen reduction of ilmenite. Utilizing this method of oxygen production a baseline system design was produced. This baseline system had an oxygen production rate of 0.6 kg/hr with a concentrator mirror size of 5 m. Variations were performed on the baseline design to show how changes in the system size and process (rate) affected the oxygen production rate. An evaluation of the power requirements for a carbothermal lunar regolith reduction reactor has also been conducted. The reactor had a total power requirement between 8,320 to 9,961 W when producing 1000 kg/year of oxygen. The solar concentrator used to provide the thermal power (over 82 percent of the total energy requirement) would have a diameter of less than 4 m.

  2. The Department of Energy`s Solar Industrial Program: 1994 review

    SciTech Connect

    1995-03-01

    This is a report on DOE`s Solar Industrial Program. The topics of the report include an overview of the program, it`s participants and it`s objectives; solar detoxification--using solar energy to destroy environmental contaminants in air, water, and soil; solar process heat--generating industrial quantities of hot water, steam, and hot air from solar energy; and advanced processes--using concentrated solar energy to manufacture high-technology materials and develop new industrial processes.

  3. Energy resource potential of natural gas hydrates

    USGS Publications Warehouse

    Collett, T.S.

    2002-01-01

    The discovery of large gas hydrate accumulations in terrestrial permafrost regions of the Arctic and beneath the sea along the outer continental margins of the world's oceans has heightened interest in gas hydrates as a possible energy resource. However, significant to potentially insurmountable technical issues must be resolved before gas hydrates can be considered a viable option for affordable supplies of natural gas. The combined information from Arctic gas hydrate studies shows that, in permafrost regions, gas hydrates may exist at subsurface depths ranging from about 130 to 2000 m. The presence of gas hydrates in offshore continental margins has been inferred mainly from anomalous seismic reflectors, known as bottom-simulating reflectors, that have been mapped at depths below the sea floor ranging from about 100 to 1100 m. Current estimates of the amount of gas in the world's marine and permafrost gas hydrate accumulations are in rough accord at about 20,000 trillion m3. Disagreements over fundamental issues such as the volume of gas stored within delineated gas hydrate accumulations and the concentration of gas hydrates within hydrate-bearing strata have demonstrated that we know little about gas hydrates. Recently, however, several countries, including Japan, India, and the United States, have launched ambitious national projects to further examine the resource potential of gas hydrates. These projects may help answer key questions dealing with the properties of gas hydrate reservoirs, the design of production systems, and, most important, the costs and economics of gas hydrate production.

  4. Energy transfer processes in solar energy conversion

    SciTech Connect

    Fayer, M.D.

    1986-11-01

    By combining picosecond optical experiments and detailed statistical mechanics theory we continue to increase our understanding of the complex interplay of structure and dynamics in important energy transfer situations. A number of different types of problems will be focused on experimentally and theoretically. They are excitation transport among chromophores attached to finite size polymer coils; excitation transport among chromophores in monolayers, bilayers, and finite and infinite stacks of layers; excitation transport in large vesicle systems; and photoinduced electron transfer in glasses and liquids, focusing particularly on the back transfer of the electron from the photogenerated radical anion to the radical cation. 33 refs., 13 figs.

  5. Solar-hydrogen energy system for Pakistan

    SciTech Connect

    Lutfi, N.

    1990-01-01

    A solar-hydrogen energy system has been proposed for Pakistan as the best replacement for the present fossil fuel based energy system. It has been suggested to produce hydrogen via photovoltaic-electrolysis, utilizing the available non-agricultural sunny terrain in Baluchistan region. There will be a desalination plant for sea water desalination. The area under the photovoltaic panels with the availability of water would provide suitable environment for growing some cash crops. This would change the cast useless desert land into green productive farms. In order to show the quantitative benefits of the proposed system, future trends of important energy and economical parameters have been studied with and without hydrogen introduction. The following parameters have been included: population, energy demand (fossil + hydrogen), energy production (fossil + hydrogen), gross national product, fossil energy imports, world energy prices, air pollution, quality of life, environmental savings due to hydrogen introduction, savings due to the higher utilization efficiency of hydrogen, by-product credit, agricultural income, income from hydrogen sale, photovoltaic cell area, total land area, water desalination plant capacity, capital investment, operating and maintenance cost, and total income from the system. The results indicate that adopting the solar-hydrogen energy system would eliminate the import dependency of fossil fuels, increase gross product per capita, reduce pollution, improve quality of life and establish a permanent and clean energy system. The total annual expenditure on the proposed system is less than the total income from the proposed system. The availability of water, the cash crop production, electricity and hydrogen would result in rapid development of Baluchistan, the largest province of Pakistan.

  6. Gas heat conduction in an evacuated tube solar collector

    SciTech Connect

    Beikircher, T.; Goldemund, G.; Benz, N.

    1996-10-01

    We investigated experimentally the pressure dependency of the gas heat conduction in an evacuated plate-in-tube solar collector. A stationary heat loss experiment was built up with an electrically heated real-size collector model. The gas pressure was varied from 10{sup -3} to 10{sup 4} Pa, the temperatures of the absorber and the casing were held at 150{degree}C (electrical heaters) and 30{degree}C (water cooling), respectively. Losses by radiation and solid conduction were determined experimentally at pressures below 0.1 Pa. At higher pressures these background losses were subtracted from the total heat losses, to receive the heat losses by gas heat conduction. The experimental results were compared with approximate theoretical models. The onset of convection is in agreement with the usual theories for parallel plates taking the largest distance between the absorber and the gas tube as the plate distance. As a first approximation the pressure dependency of the gas heat conduction is described by the usual theory for parallel plates, taking the smallest distance between the absorber and the glass tube as the plate distance. 11 refs., 3 figs.

  7. Solar: A Clean Energy Source for Utilities (Fact Sheet)

    SciTech Connect

    Not Available

    2010-09-01

    The fact sheet summarizes the goals and activities of the DOE Solar Energy Technologies Program efforts with utilities to remove the technical, regulatory, and market challenges they face in deploying solar technologies.

  8. Solar Energy Research Institute Validation Test House Site Handbook

    SciTech Connect

    Burch, J.; Wortman, D.; Judkoff, R.; Hunn, B.

    1985-05-01

    The Validation Test House at the Solar Energy Research Institute in Golden, Colorado, is being used to collect performance data for analysis/design tool validation as part of the DOE Passive Solar Class A Performance Evaluation Program.

  9. 1981 Solar Energy Technical Training Directory. Third edition

    SciTech Connect

    Not Available

    1981-05-01

    Solar energy technical training is defined to include all programs or courses offered by post-secondary educational institutions that lead to a degree or substantial training skill in a solar or solar-related vocational or technical field. Technical skills range from design and installation to the maintenance of solar energy systems or components. This directory lists all schools which offer a technical degree - usually a certificate, associate, or equivalent - in a solar or solar energy-related area. In most cases, the institutions offering these programs consisted of vocational/technical schools and junior or community colleges. All schools listed in the 1981 directory have responded at least once in the last two years to the national solar education survey. Data which is over one year-old is marked with an asterick after the course or program listing. In all, the 1981 Solar Energy Technical Training Directory contains information from over 150 schools.

  10. Energy Conservation and Passive Solar Techniques in Campus Renovation.

    ERIC Educational Resources Information Center

    Probasco, Jack; And Others

    1981-01-01

    The analysis of a building from an energy conservation and passive solar potential has three aspects: building envelope, landscaping, and room utilization. Typical conservation and solar control modifications are listed. (Author/MLF)

  11. A Simple and Inexpensive Solar Energy Experiment.

    ERIC Educational Resources Information Center

    Evans, J. H.; Pedersen, L. G.

    1979-01-01

    An experiment is presented which utilizes the current solid state technology to demonstrate electrochemical generation of hydrogen gas, direct generation of electricity for pumping water, and energy conversion efficiency. The experimental module costs about $100 and can be used repeatedly. (BB)

  12. Thermodynamic and design considerations of organic Rankine cycles in combined application with a solar thermal gas turbine

    NASA Astrophysics Data System (ADS)

    Braun, R.; Kusterer, K.; Sugimoto, T.; Tanimura, K.; Bohn, D.

    2013-12-01

    Concentrated Solar Power (CSP) technologies are considered to provide a significant contribution for the electric power production in the future. Different kinds of technologies are presently in operation or under development, e.g. parabolic troughs, central receivers, solar dish systems and Fresnel reflectors. This paper takes the focus on central receiver technologies, where the solar radiation is concentrated by a field of heliostats in a receiver on the top of a tall tower. To get this CSP technology ready for the future, the system costs have to reduce significantly. The main cost driver in such kind of CSP technologies are the huge amount of heliostats. To reduce the amount of heliostats, and so the investment costs, the efficiency of the energy conversion cycle becomes an important issue. An increase in the cycle efficiency results in a decrease of the solar heliostat field and thus, in a significant cost reduction. The paper presents the results of a thermodynamic model of an Organic Rankine Cycle (ORC) for combined cycle application together with a solar thermal gas turbine. The gas turbine cycle is modeled with an additional intercooler and recuperator and is based on a typical industrial gas turbine in the 2 MW class. The gas turbine has a two stage radial compressor and a three stage axial turbine. The compressed air is preheated within a solar receiver to 950°C before entering the combustor. A hybrid operation of the gas turbine is considered. In order to achieve a further increase of the overall efficiency, the combined operation of the gas turbine and an Organic Rankine Cycle is considered. Therefore an ORC has been set up, which is thermally connected to the gas turbine cycle at two positions. The ORC can be coupled to the solar-thermal gas turbine cycle at the intercooler and after the recuperator. Thus, waste heat from different cycle positions can be transferred to the ORC for additional production of electricity. Within this investigation different working fluids and ORC conditions have been analyzed in order to evaluate the best configuration. The investigations have been performed by application of improved thermodynamic and process analysis tools, which consider the real gas behavior of the analyzed fluids. The results show that by combined operation of the solar thermal gas turbine and the ORC, the combined cycle efficiency is approximately 4%-points higher than in the solar-thermal gas turbine cycle.

  13. Energy resources of the developing countries and some priority markets for the use of solar energy

    NASA Technical Reports Server (NTRS)

    Siddiqi, T. A.; Hein, G. F.

    1977-01-01

    Energy consumption for the developed and non-developed world is expressed as a function of GNP. An almost straight-line graph results when energy consumption statistics are treated in this manner. The richest countries consume the most energy, and the poorest countries the least. It therefore follows that greater energy production in the developing countries (leading to greater energy consumption) will contribute to their economic growth. Energy resources in the developing countries are compared, including: solid fossil fuels, crude oil, natural gas, oil shale, and uranium. Mention is also made of the potential of renewable energy resources, such as solar, wind, and hydroelectric power, in the underdeveloped world; and it is these resources which offer the greatest possibilities for economic improvement if the money is forthcoming, i.e., from the world bank, to fund the necessary technology.

  14. Energy balance in solar and stellar chromospheres

    NASA Technical Reports Server (NTRS)

    Avrett, E. H.

    1981-01-01

    Net radiative cooling rates for quiet and active regions of the solar chromosphere and for two stellar chromospheres are calculated from corresponding atmospheric models. Models of chromospheric temperature and microvelocity distributions are derived from observed spectra of a dark point within a cell, the average sun and a very bright network element on the quiet sun, a solar plage and flare, and the stars Alpha Boo and Lambda And. Net radiative cooling rates due to the transitions of various atoms and ions are then calculated from the models as a function of depth. Large values of the net radiative cooling rate are found at the base of the chromosphere-corona transition region which are due primarily to Lyman alpha emission, and a temperature plateau is obtained in the transition region itself. In the chromospheric regions, the calculated cooling rate is equal to the mechanical energy input as a function of height and thus provides a direct constraint on theories of chromospheric heating.

  15. Meeting the Energy Needs--Solar Technician Training Programs.

    ERIC Educational Resources Information Center

    Panitz, Theodore

    1980-01-01

    Differentiates between solar technicians and energy technicians; points out that, with the energy crisis, there has been much activity in the solar energy field, with the result that it could become saturated. Describes a program to train energy technicians that was developed at Cape Cod Community College. (JOW)

  16. Solar energy market penetration models - Science or number mysticism

    NASA Technical Reports Server (NTRS)

    Warren, E. H., Jr.

    1980-01-01

    The forecast market potential of a solar technology is an important factor determining its R&D funding. Since solar energy market penetration models are the method used to forecast market potential, they have a pivotal role in a solar technology's development. This paper critiques the applicability of the most common solar energy market penetration models. It is argued that the assumptions underlying the foundations of rigorously developed models, or the absence of a reasonable foundation for the remaining models, restrict their applicability.

  17. Argonne OutLoud presents: The Solar Energy Challenge

    ScienceCinema

    Seth Darling

    2013-06-05

    To better understand the current and future role of solar energy, Argonne's Seth Darling framed the global energy supply and demand outlook over the next 40 years while examining potential energy sources from a feasibility and sustainability perspective. He also discussed the promise and challenges of solar energy while providing a broad overview of related research taking place at Argonne as well as his group's work on organic solar cells.

  18. RESIDUAL ENERGY SPECTRUM OF SOLAR WIND TURBULENCE

    SciTech Connect

    Chen, C. H. K.; Bale, S. D.; Salem, C. S.; Maruca, B. A.

    2013-06-20

    It has long been known that the energy in velocity and magnetic field fluctuations in the solar wind is not in equipartition. In this paper, we present an analysis of 5 yr of Wind data at 1 AU to investigate the reason for this. The residual energy (difference between energy in velocity and magnetic field fluctuations) was calculated using both the standard magnetohydrodynamic (MHD) normalization for the magnetic field and a kinetic version, which includes temperature anisotropies and drifts between particle species. It was found that with the kinetic normalization, the fluctuations are closer to equipartition, with a mean normalized residual energy of {sigma}{sub r} = -0.19 and mean Alfven ratio of r{sub A} = 0.71. The spectrum of residual energy, in the kinetic normalization, was found to be steeper than both the velocity and magnetic field spectra, consistent with some recent MHD turbulence predictions and numerical simulations, having a spectral index close to -1.9. The local properties of residual energy and cross helicity were also investigated, showing that globally balanced intervals with small residual energy contain local patches of larger imbalance and larger residual energy at all scales, as expected for nonlinear turbulent interactions.

  19. Solar energy in California industry - Applications, characteristics and potential

    NASA Technical Reports Server (NTRS)

    Barbieri, R. H.; Pivirotto, D. S.

    1978-01-01

    Results of a survey to determine the potential applicability of solar thermal energy to industrial processes in California are presented. It is found that if the heat for all industrial processes at temperatures below 212 F were supplied by solar energy, total state energy consumption could be reduced by 100 trillion Btus (2%), while the use of solar energy in processes between 212 and 350 F could displace 500 trillion Btus. The issues and problems with which solar energy must contend are illustrated by a description of fluid milk processing operations. Solar energy application is found to be technically feasible for processes with thermal energy requirements below 212 F, with design, and degree of technical, economic and management feasibility being site specific. It is recommended that the state provide support for federal and industrial research, development and demonstration programs in order to stimulate acceptance of solar process heat application by industry.

  20. Off-farm applications of solar energy in agriculture

    SciTech Connect

    Berry, R.E.

    1980-01-01

    Food processing applications make up almost all present off-farm studies of solar energy in agriculture. Research, development and demonstration projects on solar food processing have shown significant progress over the past 3 years. Projects have included computer simulation and mathematical models, hardware and process development for removing moisture from horticultural or animal products, integration of energy conservation with solar energy augmentation in conventional processes, and commercial scale demonstrations. The demonstration projects include solar heated air for drying prunes and raisins, soy beans and onions/garlic; and solar generated steam for orange juice pasteurization. Several new and planned projects hold considerable promise for commerical exploitation in future food processes.

  1. Use of solar energy to produce process heat for industry

    NASA Astrophysics Data System (ADS)

    Brown, K.

    1980-04-01

    The role of solar energy in supplying heat and hot water to residential and commerical buildings is familiar. On the other hand, the role that solar energy may play in displacing imported energy supplies in the industrial and utility sectors often goes unrecognized. The versatility of solar technology lends itself well to applications in industry; particulary to the supplemental supply for process heat. The status of solar thermal technology for industrial process heat applications, including a description of current costs and operating histories is surveyed. The most important objectives to be met in improving system performance, reducing cost, and identifying markets for solar industrial process heat are outlined.

  2. Solar Thermal Energy Storage Device: Hybrid Nanostructures for High-Energy-Density Solar Thermal Fuels

    SciTech Connect

    2012-01-09

    HEATS Project: MIT is developing a thermal energy storage device that captures energy from the sun; this energy can be stored and released at a later time when it is needed most. Within the device, the absorption of sunlight causes the solar thermal fuel’s photoactive molecules to change shape, which allows energy to be stored within their chemical bonds. A trigger is applied to release the stored energy as heat, where it can be converted into electricity or used directly as heat. The molecules would then revert to their original shape, and can be recharged using sunlight to begin the process anew. MIT’s technology would be 100% renewable, rechargeable like a battery, and emissions-free. Devices using these solar thermal fuels—called Hybrisol—can also be used without a grid infrastructure for applications such as de-icing, heating, cooking, and water purification.

  3. Optical Waveguide Solar Energy System for Lunar Materials Processing

    NASA Technical Reports Server (NTRS)

    Nakamura, T.; Case, J. A.; Senior, C. L.

    1997-01-01

    This paper discusses results of our work on development of the Optical Waveguide (OW) Solar Energy System for Lunar Materials Processing. In the OW system as shown, solar radiation is collected by the concentrator which transfers the concentrated solar radiation to the OW transmission line consisting of low-loss optical fibers. The OW line transmits the solar radiation to the thermal reactor of the lunar materials processing plant. The feature of the OW system are: (1) Highly concentrated solar radiation (up to 104 suns) can be transmitted via flexible OW lines directly into the thermal reactor for materials processing: (2) Solar radiation intensity or spectra can be tailored to specific materials processing steps; (3) Provide solar energy to locations or inside of enclosures that would not otherwise have an access to solar energy; and (4) The system can be modularized and can be easily transported to and deployed at the lunar base.

  4. Analysis of PURPA and solar energy

    SciTech Connect

    Rice, M.

    1980-03-01

    The Public Utility Regulatory Policies Act of 1978 (PURPA) is designed to promote energy conservation, the efficient use of utility resources, and equitable rates. PURPA specifically directs the Federal Energy Regulatory Commission (FERC) to encourage small power production from renewable resources (and also cogeneration of electric energy as well as heat) by setting standards under which facilities qualify for interconnection, and guidelines for sales between utilities and independent facilities. The way FERC carries out this mandate may critically affect the development of solar alternatives to electric power production from fossil and nuclear resources. This report comments on proposed FERC regulations and suggests ways to encourage small power production within the PURPA mandate. In addition, some internal strains within PURPA are analyzed that seem to limit the effectiveness with which FERC can encourage independent facilities, and possible modifications to PURPA are suggested. 255 references.

  5. Energy Flow Continuity in Solar Active Regions

    NASA Technical Reports Server (NTRS)

    Schatten, K. H.

    1984-01-01

    The models for sunspots are combined into an active region model with consideration for the energy flow beneath active regions. An apparent average energy balance exists between the sunspot deficit and the facular excess, i.e., no 11 year variations in solar luminosity associated with the activity centers. This is seen as a consequence of the upper convection zone's inability to store these significant amounts of energy for periods greatly in excess of weeks. This view is supported by observed active region behavior and detailed numerical modelling. Increases in facular and spot brightness are nearly commensurate, with the faculae outlasting the spots on time scales of the order of weeks to a couple of months. Foukal finds the radiation (deficit from a sunspot blocking model) recovers slowly on a timescale of approximately 83 days.

  6. Solar Total Energy Project final test report

    SciTech Connect

    Nelson, R.F.; Abney, L.O.; Towner, M.L. )

    1990-09-01

    The Solar Total Energy Project (STEP), a cooperative effort between the United States Department of Energy (DOE) and Georgia Power Company (GPC) located at Shenandoah, Georgia, has undergone several design modifications based on experience from previous operations and test programs. The experiences encountered were discussed in detail in the Solar Total Energy Project Summary Report'' completed in 1987 for DOE. Most of the proposed changes discussed in this report were installed and tested in 1987 as part of two 15-day test programs (SNL Contract No. 06-3049). However, several of the suggested changes were not completed before 1988. These plant modifications include a new distributed control system for the balance of plant (BOP), a fiber a optical communications ring for the field control system, and new control configuration reflecting the new operational procedures caused by the plant modifications. These modifications were tested during a non-consecutive day test, and a 60-day field test conducted during the autumn of 1989. These test were partially funded by SNL under Contract No. 42-4859, dated June 22, 1989. Results of these tests and preliminary analysis are presented in this test summary report. 9 refs., 19 figs., 7 tabs.

  7. Multi-purpose solar energy base

    SciTech Connect

    Hong Mingche.

    1993-07-06

    A multi-purpose solar energy base is described comprising: a main body portion having a solar energy heat converging circuit therein and a threaded center hole provided with two conductors connected with an electrical wire extending downwardly through a hole of said main body portion to a recess, said main portion further having spiral lines on the top, said recess being formed with an edge around which is a groove, the vertical side of said recess having two passages which extend through said main body portion to form elongated slots, a first conductor being arranged between a passage and an elongated slot while a second conductor being located between the other passage and the other elongated slot, said conductors being respectively connected with electrical wires which extends through said main body portion into said recess; and a cover engaged with the bottom of said main body portion and having a raised rectangular edge on which is mounted an energy conversion circuit with a rechargeable battery; whereby the threaded hole of said main body portion may be engageable with various accessories.

  8. Solar-energy treatment of ceramic tiles

    NASA Astrophysics Data System (ADS)

    Harris, J. N.; Clayton, M. E.

    1981-12-01

    The 400 kW Advanced Components Test Facility was used to provide a concentrated source of solar energy for firing ceramic wall tile. A domed top cylindrical cavity with a white refractory fiber lining provided diffuse reflection of the concentrated solar beam directly onto the upper surface of the unfired wall tile. The tile were placed directly on the cavity floor in a circular pattern, centered at 450 intervals so that eight tile could be fired at one time. The tile and cavity walls were instrumented with thermocouples, and pyrometric cones were used to determine temperature distribution within the cavity. The glazed and unglazed solar fired titles were tested for flatness, modulus of rupture, water absorption, porosity, bulk density, apparent specific gravity, percent linear thermal expansion and crystalline phases present in the fired bodies. The major problems encountered are: cracking by thermal shock, and uneven shrinkage and glaze maturity across individual tile. The cavity failed to provide even heating at all eight tile positions.

  9. Lightweight, low-cost solar energy collector

    NASA Technical Reports Server (NTRS)

    Hochberg, Eric B. (Inventor); Costen, Michael K. (Inventor)

    2006-01-01

    A lightweight solar concentrator of the reflecting parabolic or trough type is realized via a thin reflecting film, an inflatable structural housing and tensioned fibers. The reflector element itself is a thin, flexible, specularly-reflecting sheet or film. The film is maintained in the parabolic trough shape by means of a plurality of identical tensioned fibers arranged to be parallel to the longitudinal axis of the parabola. Fiber ends are terminated in two identical spaced anchorplates, each containing a plurality of holes which lie on the desired parabolic contour. In a preferred embodiment, these fibers are arrayed in pairs with one fiber contacting the front side of the reflecting film and the other contacting the back side of the reflecting film. The reflective surface is thereby slidably captured between arrays of fibers which control the shape and position of the reflective film. Gas pressure in the inflatable housing generates fiber tension to achieve a truer parabolic shape.

  10. Organohalide Perovskites for Solar Energy Conversion.

    PubMed

    Lin, Qianqian; Armin, Ardalan; Burn, Paul L; Meredith, Paul

    2016-03-15

    Lead-based organohalide perovskites have recently emerged as arguably the most promising of all next generation thin film solar cell technologies. Power conversion efficiencies have reached 20% in less than 5 years, and their application to other optoelectronic device platforms such as photodetectors and light emitting diodes is being increasingly reported. Organohalide perovskites can be solution processed or evaporated at low temperatures to form simple thin film photojunctions, thus delivering the potential for the holy grail of high efficiency, low embedded energy, and low cost photovoltaics. The initial device-driven "perovskite fever" has more recently given way to efforts to better understand how these materials work in solar cells, and deeper elucidation of their structure-property relationships. In this Account, we focus on this element of organohalide perovskite chemistry and physics in particular examining critical electro-optical, morphological, and architectural phenomena. We first examine basic crystal and chemical structure, and how this impacts important solar-cell related properties such as the optical gap. We then turn to deeper electronic phenomena such as carrier mobilities, trap densities, and recombination dynamics, as well as examining ionic and dielectric properties and how these two types of physics impact each other. The issue of whether organohalide perovskites are predominantly nonexcitonic at room temperature is currently a matter of some debate, and we summarize the evidence for what appears to be the emerging field consensus: an exciton binding energy of order 10 meV. Having discussed the important basic chemistry and physics we turn to more device-related considerations including processing, morphology, architecture, thin film electro-optics and interfacial energetics. These phenomena directly impact solar cell performance parameters such as open circuit voltage, short circuit current density, internal and external quantum efficiency, fill factor, and ultimately the all-important power conversion efficiency. Finally, we address the key challenges pertinent to actually delivering a new and viable solar cell technology. These include long-term cell stability, scaling to the module level, and the toxicity associated with lead. Organohalide perovskites not only offer exciting possibilities for next generation optoelectronics and photovoltaics, but are an intriguing class of material crossing the boundaries of molecular solids and banded inorganic semiconductors. This is a potential area of rich new chemistry, materials science, and physics. PMID:26863507

  11. Design and measured performance of a solar chimney for natural circulation solar energy dryers

    SciTech Connect

    Ekechukwu, O.V.; Norton, B.

    1996-02-01

    An experimental solar chimney consisted of a cylindrical polyethylene-clad vertical chamber supported by steel framework and draped internally with a selectively absorbing surface. The performance of the chimney which was monitored extensively is reported. Issues related to the design and construction of solar chimneys for natural circulation solar energy dryers are discussed.

  12. Schools Going Solar: A Guide to Schools Enjoying the Power of Solar Energy. Volume 2.

    ERIC Educational Resources Information Center

    Hitchcock, Susan Tyler

    This companion document updates an April 1998 volume on designing schools to use solar energy as a power source. Volume 2 presents numerous case studies of solar installations in new and existing schools across the United States and Europe, updates and presents new examples of solar education programs, and offers an updated resource listing of…

  13. Residential Solar Design Review: A Manual on Community Architectural Controls and Solar Energy Use.

    ERIC Educational Resources Information Center

    Jaffe, Martin; Erley, Duncan

    Presented are architectural design issues associated with solar energy use, and procedures for design review committees to consider in examining residential solar installation in light of existing aesthetic goals for their communities. Recommended design review criteria include the type of solar system being used and the ways in which the system…

  14. Progress in passive solar energy systems. Volume 8. Part 1

    SciTech Connect

    Hayes, J.; Andrejko, D.A.

    1983-01-01

    This book presents the papers given at a conference sponsored by the US DOE, the Solar Energy Research Institute, SolarVision, Inc., and the Southern California Solar Energy Society. The topics considered at the conference included sizing solar energy systems for agricultural applications, a farm scale ethanol production plant, the EEC wind energy RandD program, the passive solar performance assessment of an earth-sheltered house, the ARCO 1 MW photovoltaic power plant, the performance of a dendritic web photovoltaic module, second generation point focused concentrators, linear fresnel lens concentrating photovoltaic collectors, photovoltaic conversion efficiency, amorphous silicon thin film solar cells, a photovoltaic system for a shopping center, photovoltaic power generation for the utility industry, spectral solar radiation, and the analysis of insolation data.

  15. (seminario usos de la energia solar en la vivienda) solar energy applications for dwellings. Seminar 17-19 nov 80

    SciTech Connect

    Not Available

    1980-11-01

    Contents include: National Ecoplan; National Urban Development Plan; The National Housing Program and the Use of Solar Systems and not Conventional Energies in Human Settlements; National Infrastructure for the Development of Solar Energy; Plans to Incorporate Solar Energy Systems into Mexican Communities; General Panorama of Solar Energy Projects Being Carried out in Mexico; and Recent Demonstration Projects in Mexico.

  16. Solar Energy: Progress and Design Concerns of Nanostructured Solar Energy Harvesting Devices (Small 19/2016).

    PubMed

    Leung, Siu-Fung; Zhang, Qianpeng; Tavakoli, Mohammad Mahdi; He, Jin; Mo, Xiaoliang; Fan, Zhiyong

    2016-05-01

    Nanoengineered materials and structures can harvest light efficiently for photovoltaic applications. Device structure design optimization and material property improvement are equally important for high performance. On page 2536, X. Mo, Z. Fan, and co-workers summarize the design guidelines of solar energy harvesting devices to assist with a better understanding of device physics. PMID:27167321

  17. U.S. Department of Energy Solar Decathlon

    SciTech Connect

    2011-12-16

    The U.S. Department of Energy Solar Decathlon is an award-winning program that challenges 20 collegiate teams to design, build, and operate solar-powered houses that are cost-effective, energy-efficient, and attractive. In addition to showcasing the cost savings and environmental benefits of market-ready solar technologies, the event encourages participating students to think in new ways about incorporating practical, affordable clean-energy solutions into residential applications.

  18. Modular assembly of a photovoltaic solar energy receiver

    DOEpatents

    Graven, Robert M.; Gorski, Anthony J.; Schertz, William W.; Graae, Johan E. A.

    1978-01-01

    There is provided a modular assembly of a solar energy concentrator having a photovoltaic energy receiver with passive cooling. Solar cell means are fixedly coupled to a radiant energy concentrator. Tension means bias a large area heat sink against the cell thereby allowing the cell to expand or contract with respect to the heat sink due to differential heat expansion.

  19. Thermodynamic Inefficiency of Conversion of Solar Energy to Work.

    ERIC Educational Resources Information Center

    Adamson, Arthur W.; And Others

    1984-01-01

    Considers the thermodynamic limitation to the efficiency with which light energy can be converted into work, indicating that no single chemical system converting solar energy into useful work can be very efficient. Also indicates that if solar energy is absorbed as heat for heating purposes, it is almost completely used. (JN)

  20. Modelling and simulation of energy harvesting with solar cell

    NASA Astrophysics Data System (ADS)

    Marghescu, Cristina; Drumea, Andrei

    2015-02-01

    The paper focuses on modelling and simulation of energy consumption of an autonomous embedded system with a solar cell as energy source. Mathematical models for energy consumption/generation for solar cell, microcontroller and its peripherals are elaborated, tested and coupled together for complete system simulations that allow system configuration and optimization for specific cases.

  1. Employment from Solar Energy: A Bright but Partly Cloudy Future.

    ERIC Educational Resources Information Center

    Smeltzer, K. K.; Santini, D. J.

    A comparison of quantitative and qualitative employment effects of solar and conventional systems can prove the increased employment postulated as one of the significant secondary benefits of a shift from conventional to solar energy use. Current quantitative employment estimates show solar technology-induced employment to be generally greater…

  2. Solar Energy Education. Industrial arts: student activities. Field test edition

    SciTech Connect

    Not Available

    1981-02-01

    In this teaching manual several activities are presented to introduce students to information on solar energy through classroom instruction. Wind power is also included. Instructions for constructing demonstration models for passive solar systems, photovoltaic cells, solar collectors and water heaters, and a bicycle wheel wind turbine are provided. (BCS)

  3. Propagation of low energy solar electrons

    NASA Technical Reports Server (NTRS)

    Anderson, K. A.; Mcfadden, J. P.; Lin, R. P.

    1981-01-01

    Two events are reported in which 2-10 keV electrons of solar energy have undergone significant adiabatic mirroring and pitch angle scattering in large scale magnetic structures in the interplanetary medium within a distance of about 0.5 AU from the earth. Electrons of 3 keV, typical of the energies measured, have a speed of about one-tenth of the speed of light, so that their travel time from the sun at 0 deg pitch angle would be about 100 minutes. Their cyclotron radius is about 20 km for a pitch angle of 30 deg, and a field of magnitude of 5 nT, and the cyclotron period is about 7.1 milliseconds. The electrons are scattered by spatial variations in the interplanetary magnetic field. When the spatial variations are convected past a stationary spacecraft by a 500 km/sec solar wind, they are seen as temporal fluctuations at a frequency of about 3 Hz.

  4. Black metallurgical silicon for solar energy conversion

    NASA Astrophysics Data System (ADS)

    Li, Xiaopeng; Lee, Jung-Ho; Sprafke, Alexander N.; Wehrspohn, Ralf B.

    2016-01-01

    Metal impurities are known to create deep traps in the silicon (Si) bandgap, significantly reducing the minority carrier lifetime and consequently deteriorating the efficiency of a Si-based solar conversion system. Traditional purification methods via ‘Siemens’ and metallurgical routes involve complex and energy-intensive processes. Therefore, it is highly desirable to develop novel Si treatment technologies. With the radical evolution of nanotechnology in the past decades, new nano-approaches are offering opportunities to diminish the detrimental impacts of metal impurities or upgrade low quality Si in a cost-effective and energy-saving way. Here we review various recently developed dry and wet chemical etching methods including reactive ion etching, electrochemical etching, stain etching and metal assisted chemical etching. The current progress and the application prospects of those methods in nanostructure creation and Si upgrading are given and discussed in detail.

  5. THE SOLAR WIND CHARGE-TRANSFER X-RAY EMISSION IN THE 1/4 keV ENERGY RANGE: INFERENCES ON LOCAL BUBBLE HOT GAS AT LOW Z

    SciTech Connect

    Koutroumpa, D.; Lallement, R.

    2009-05-10

    We present calculations of the heliospheric solar wind charge-exchange (SWCX) emission spectra and the resulting contributions of this diffuse background in the ROSAT 1/4 keV bands. We compare our results with the soft X-ray background (SXRB) emission detected in front of 378 identified shadowing regions during the ROSAT All-Sky Survey. This foreground component is principally attributed to the hot gas of the so-called Local Bubble (LB), an irregularly shaped cavity of {approx}50-150 pc around the Sun, which is supposed to contain {approx}10{sup 6} K plasma. Our results suggest that the SWCX emission from the heliosphere is bright enough to account for most of the foreground emission toward the majority of low galactic latitude directions, where the LB is the least extended. On the other hand, in a large part of directions with galactic latitude above 30 deg., the heliospheric SWCX intensity is significantly smaller than the measured one. However, the SWCX R2/R1 band ratio differs slightly from the data in the galactic center direction, and more significantly in the galactic anticentre direction where the observed ratio is the smallest. Assuming that both SWCX and hot gas emission are present and their relative contributions vary with direction, we tested a series of thermal plasma spectra for temperatures ranging from 10{sup 5} to 10{sup 6.5} K and searched for a combination of SWCX spectra and thermal emission matching the observed intensities and band ratios, while simultaneously being compatible with O VI emission measurements. In the frame of collisional equilibrium models and for solar abundances, the range we derive for hot gas temperature and emission measure cannot reproduce the Wisconsin C/B band ratio. This implies that accounting for SWCX contamination does not remove these known disagreements between data and classical hot gas models. We emphasize the need for additional atomic data, describing consistently EUV and X-ray photon spectra of the charge-exchange emission of heavier solar wind ions.

  6. Role of the Atmospheric Sciences for Solar Energy

    NASA Astrophysics Data System (ADS)

    Kleissl, J. P.; Lave, M.; Urquhart, B. G.; Mathiesen, P. J.; Bosch, J. L.; Chow, C. W.; Luoma, J. K.; Jamaly, M.; Nottrott, A. A.; Wegener, J.

    2011-12-01

    Solar energy is the fastest growing renewable energy source. Public interest, practically unlimited solar resources, and dramatic cost reductions have fueled the hopes for grid parity of solar energy production and dramatic growth of the industry. However, the variability of the solar fuel presents perceived and real challenges that can increase grid-integration costs of solar energy. Variability in global irradiance at the surface is dominated by solar geometry and atmospheric transmissivity effects with clouds explaining the majority of the non-geometry variance. Atmospheric scientists can play a major role in quantifying resource variability and improving solar forecasting models. I will start by presenting the state of the solar energy industry. Various studies of scaling of solar variability in space and time will be reviewed. Solar forecasting tools such as satellites, sky imagery, and numerical weather prediction will be introduced and state-of-the-art applications in the solar forecasting industry will be reviewed. Directions for RD&D in the atmospheric sciences will be presented.

  7. Foaming of aluminium-silicon alloy using concentrated solar energy

    SciTech Connect

    Cambronero, L.E.G.; Ruiz-Roman, J.M.; Canadas, I.; Martinez, D.

    2010-06-15

    Solar energy is used for the work reported here as a nonconventional heating system to produce aluminium foam from Al-Si alloy precursors produced by powder metallurgy. A commercial precursor in cylindrical bars enclosed in a stainless-steel mould was heated under concentrated solar radiation in a solar furnace with varied heating conditions (heating rate, time, and temperature). Concentrated solar energy close to 300 W/cm{sup 2} on the mould is high enough to achieve complete foaming after heating for only 200 s. Under these conditions, the density and pore distribution in the foam change depending on the solar heating parameters and mould design. (author)

  8. Model for Cumulative Solar Heavy Ion Energy and LET Spectra

    NASA Technical Reports Server (NTRS)

    Xapsos, Mike; Barth, Janet; Stauffer, Craig; Jordan, Tom; Mewaldt, Richard

    2007-01-01

    A probabilistic model of cumulative solar heavy ion energy and lineary energy transfer (LET) spectra is developed for spacecraft design applications. Spectra are given as a function of confidence level, mission time period during solar maximum and shielding thickness. It is shown that long-term solar heavy ion fluxes exceed galactic cosmic ray fluxes during solar maximum for shielding levels of interest. Cumulative solar heavy ion fluences should therefore be accounted for in single event effects rate calculations and in the planning of space missions.

  9. Space satellite power system. [conversion of solar energy by photovoltaic solar cell arrays

    NASA Technical Reports Server (NTRS)

    Glaser, P. E.

    1974-01-01

    The concept of a satellite solar power station was studied. It is shown that it offers the potential to meet a significant portion of future energy needs, is pollution free, and is sparing of irreplaceable earth resources. Solar energy is converted by photovoltaic solar cell arrays to dc energy which in turn is converted into microwave energy in a large active phased array. The microwave energy is beamed to earth with little attenuation and is converted back to dc energy on the earth. Economic factors are considered.

  10. Photovoltaic and photoelectrochemical conversion of solar energy.

    PubMed

    Grätzel, Michael

    2007-04-15

    The Sun provides approximately 100,000 terawatts to the Earth which is about 10000 times more than the present rate of the world's present energy consumption. Photovoltaic cells are being increasingly used to tap into this huge resource and will play a key role in future sustainable energy systems. So far, solid-state junction devices, usually made of silicon, crystalline or amorphous, and profiting from the experience and material availability resulting from the semiconductor industry, have dominated photovoltaic solar energy converters. These systems have by now attained a mature state serving a rapidly growing market, expected to rise to 300 GW by 2030. However, the cost of photovoltaic electricity production is still too high to be competitive with nuclear or fossil energy. Thin film photovoltaic cells made of CuInSe or CdTe are being increasingly employed along with amorphous silicon. The recently discovered cells based on mesoscopic inorganic or organic semiconductors commonly referred to as 'bulk' junctions due to their three-dimensional structure are very attractive alternatives which offer the prospect of very low cost fabrication. The prototype of this family of devices is the dye-sensitized solar cell (DSC), which accomplishes the optical absorption and the charge separation processes by the association of a sensitizer as light-absorbing material with a wide band gap semiconductor of mesoporous or nanocrystalline morphology. Research is booming also in the area of third generation photovoltaic cells where multi-junction devices and a recent breakthrough concerning multiple carrier generation in quantum dot absorbers offer promising perspectives. PMID:17272237

  11. How Solar Energy Can Work for You

    ERIC Educational Resources Information Center

    Iker, Sam

    1978-01-01

    The future of solar heated homes looks bright. The increase in availability of solar hardware and information along with tax credits point to an increase in both solar water and space heating. Solar systems can add to the value of a house. (BB)

  12. Solar energy grid integration systems "SEGIS"

    SciTech Connect

    None, None

    2007-10-01

    The inevitable transformation of the electrical grid to a more distributed generation configuration requires solar system capabilities well beyond simple net-metered, grid-connected approaches. Time-of-use and peak-demand rate structures will require more sophisticated systems designs that integrate energy management and/or energy storage into the system architecture. Controlling power flow into and from the utility grid will be required to ensure grid reliability and power quality. Alternative protection strategies will also be required to accommodate large numbers of distributed energy sources. This document provides an overview of the R&D needs and describes some pathways to promising solutions. The solutions will, in many cases, require R&D of new components, innovative inverter/controllers, energy management systems, innovative energy storage and a suite of advanced control algorithms, technical methodologies, protocols and the associated communications. It is expected that these solutions will help to push the “advanced integrated system” and “smart grid” evolutionary processes forward in a faster but focused manner.

  13. Bidirectional control system for energy flow in solar powered flywheel

    NASA Technical Reports Server (NTRS)

    Nola, Frank J. (Inventor)

    1987-01-01

    An energy storage system for a spacecraft is provided which employs a solar powered flywheel arrangement including a motor/generator which, in different operating modes, drives the flywheel and is driven thereby. A control circuit, including a threshold comparator, senses the output of a solar energy converter, and when a threshold voltage is exceeded thereby indicating the availability of solar power for the spacecraft loads, activates a speed control loop including the motor/generator so as to accelerate the flywheel to a constant speed and thereby store mechanical energy, while also supplying energy from the solar converter to the loads. Under circumstances where solar energy is not available and thus the threshold voltage is not exceeded, the control circuit deactivates the speed control loop and activates a voltage control loop that provides for operation of the motor as a generator so that mechanical energy from the flywheel is converted into electrical energy for supply to the spacecraft loads.

  14. Solar energy system performance evaluation-seasonal report for Elcam San Diego, San Diego, California

    NASA Astrophysics Data System (ADS)

    1980-05-01

    The solar energy system, Elcam San Diego, was designed to supply domestic hot water heating for a single family residence located in Encinitas, California. System description, performance assessment, operating energy, energy savings, maintenance, and conclusions are presented. The system is a 'Sunspot' two tank cascade type, where solar energy is supplied to either a 66 gallon preheat tank (solar storage) or a 40 gallon domestic hot water tank. Water is pumped directly from one of the two tanks, through the 65 square feet collector array and back into the same tank. Freeze protection is provided by automatically circulating hot water from the hot water tank through the collectors and exposed plumbing when freezing conditions exist. Auxiliary energy is supplied by natural gas. Analysis is based on instrumented system data monitored and collected for one full season of operation.

  15. Solar energy system performance evaluation-seasonal report for Elcam San Diego, San Diego, California

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The solar energy system, Elcam San Diego, was designed to supply domestic hot water heating for a single family residence located in Encinitas, California. System description, performance assessment, operating energy, energy savings, maintenance, and conclusions are presented. The system is a 'Sunspot' two tank cascade type, where solar energy is supplied to either a 66 gallon preheat tank (solar storage) or a 40 gallon domestic hot water tank. Water is pumped directly from one of the two tanks, through the 65 square feet collector array and back into the same tank. Freeze protection is provided by automatically circulating hot water from the hot water tank through the collectors and exposed plumbing when freezing conditions exist. Auxiliary energy is supplied by natural gas. Analysis is based on instrumented system data monitored and collected for one full season of operation.

  16. Solar energy system performance evaluation: final report for Honeywell OTS 41, Shenandoah (Newnan), Georgia

    SciTech Connect

    Mathur, A K; Pederson, S

    1982-08-01

    The operation and technical performance of the Solar Operational Test Site (OTS 41) located at Shenandoah, Georgia, are described, based on the analysis of data collected between January and August 1981. The following topics are discussed: system description, performance assessment, operating energy, energy savings, system maintenance, and conclusions. The solar energy system at OTS 41 is a hydronic heating and cooling system consisting of 702 square feet of liquid-cooled flat-plate collectors; a 1000-gallon thermal storage tank; a 3-ton capacity organic Rankine-cycle-engine-assisted air conditioner; a water-to-air heat exchanger for solar space heating; a finned-tube coil immersed in the storage tank to preheat water for a gas-fired hot water heater; and associated piping, pumps, valves, and controls. The solar system has six basic modes of operation and several combination modes. The system operation is controlled automatically by a Honeywell-designed microprocessor-based control system, which also provides diagnostics. Based on the instrumented test data monitored and collected during the 7 months of the Operational Test Period, the solar system collected 53 MMBtu of thermal energy of the total incident solar energy of 219 MMBtu and provided 11.4 MMBtu for cooling, 8.6 MMBtu for heating, and 8.1 MMBtu for domestic hot water. The projected net annual energy savings due to the solar system were approximately 50 MMBtu of fossil energy (49,300 cubic feet of natural gas) and a loss of 280 kWh(e) of electrical energy.

  17. SOLAR ENERGY PROGRAM: CHAPTER FROM THE ENERGY AND ENVIRONMENT ANNUAL REPORT 1979

    SciTech Connect

    Authors, Various

    1980-10-01

    Solar energy has become a major alternative for supplying a substantial fraction of the nation's future energy needs. The Department of Energy (DOE) supports activities ranging from the demonstration of existing technology to research on future possibilities; and at LBL projects are in progress which span that range of activities. To assess various solar applications it is important to quantify the solar resource. In one project, LBL is cooperating with the Pacific Gas and Electric Company in the implementation and operation of a solar radiation data collection network in northern California. Special instruments have been developed and are now in use to measure the solar and circumsolar (around the sun) radiation. These measurements serve to predict the performance of solar designs which use focusing collectors (mirrors or lenses) to concentrate the sunlight. Efforts are being made to assist DOE in demonstrating existing solar technology. DOE's San Francisco Operations Office (SAN) has been given technical support for its management of commercial-building solar demonstration projects. The installation of a solar hot water and space heating system on an LBL building established model techniques and procedures as part of the DOE Facilities Solar Demonstration Program. Technical support is also provided for SAN in a DOE small scale technology pilot program in which grants are awarded to individuals and organizations to develop and demonstrate solar technologies appropriate to small scale use. In the near future it is expected that research will exert a substantial impact in the areas of solar heating and cooling. An absorption air conditioner is being developed that is air cooled yet suitable for use with temperatures available from flat plate collectors. With inexpensive but sophisticated micro-electronics to control their operation, the performance of many-component solar heating and cooling systems may be improved, and work is under way to develop such a controller and to evaluate commercially available units. Research is continuing on 'passive' approaches to solar heating and cooling where careful considerations of architectural design, construction materials, and the environment are used to moderate a building's interior climate. Computer models of passive concepts are being developed in a collaborative project with Los Alamos Scientific Laboratory. These models will be incorporated into public domain building energy analysis computer programs to be used in systems studies and in the design of commercial buildings on a case study basis. The investigation of specific passive cooling methods is an ongoing project; for example, a process is being studied in which heat storage material would be cooled by radiation to the night sky, then provide 'coolness' to the building. The laboratory personnel involved in the solar cooling, controls, and passive projects are also providing technical support to the Solar Heating and Cooling Research and Development Branch of DOE in developing program plans, evaluating proposals, and making technical reviews of projects at other institutions and in industry. Low grade heat is a widespread energy resource that could make a significant contribution to energy needs if economical methods can be developed for converting it to useful work. Investigations continued this year on the feasibility of using the 'shape-memory' alloy, Nitinol, as a basis for constructing heat engines that could operate from energy sources such as solar heated water, industrial waste heat, geothermal brines, and ocean thermal gradients. Several projects are investigating longer-term possibilities for utilizing solar energy. One project involves the development of a new type of solar thermal receiver that would be placed at the focus of a central receiver system or a parabolic dish. The conversion of the concentrated sunlight to thermal energy would be accomplished by the absorption of the light by a dispersion of very small particles suspended in a gas. Work continued this year on chemical storage processes (such as 2SO{sub 3} = 2SO{sub 2} + O{sub 2}) that could play an important role in providing long-term storage for high temperature power generation cycles. Another project is exploring biological systems. The possibility is being explored of developing a photovoltaic cell, based on a catalyst (bacteriorhodopsin) which converts light to electrical ion flow across the cell membrane of a particular bacteria.

  18. Hot-Wire Chemical Vapor Deposition Of Polycrystalline Silicon : From Gas Molecule To Solar Cell

    NASA Astrophysics Data System (ADS)

    van Veenendaal, P. A. T. T.

    2002-10-01

    Although the effort to investigate the use of renewable energy sources, such as wind and solar energy, has increased, their contribution to the total energy consumption remains insignificant. The conversion of solar energy into electricity through solar cells is one of the most promising techniques, but the use of these cells is limited by the high cost of electricity. The major contributions to these costs are the material and manufacturing costs. Over the past decades, the development of silicon based thin film solar cells has received much attention, because the fabrication costs are low. A promising material for use in thin film solar cells is polycrystalline silicon (poly-Si:H). A relatively new technique to deposit poly-Si:H is Hot-Wire Chemical Vapor Deposition (Hot-Wire CVD), in which the reactant gases are catalytically decomposed at the surface of a hot filament, mainly tungsten and tantalum. The main advantages of Hot-Wire CVD over PE-CVD are absence of ion bombardment, high deposition rate, low equipment cost and high gas utilization. This thesis deals with the full spectrum of deposition, characterization and application of poly-Si:H thin films, i.e. from gas molecule to solar cell. Studies on the decomposition of silane on the filament showed that the process is catalytic of nature and that silane is decomposed into Si and 4H. The dominant gas phase reaction is the reaction of Si and H with silane, resulting in SiH3, Si2H6, Si3H6 and H2SiSiH2. The film growth precursors are Si, SiH3 and Si2H4. Also, XPS results on used tantalum and tungsten filaments are discussed. The position dependent measurements show larger silicon contents at the ends of the tungsten filament, as compared to the middle, due to a lower filament temperature. This effect is insignificant for a tantalum filament. Deposition time dependent measurements show an increase in silicon content of the tungsten filament with time, while the silicon content on the tantalum filament saturates rather quickly. The deposition of poly-Si:H layers using tantalum as filament material has been investigated by ellipsometry. Spectroscopic ellipsometry studies on a series of films deposited at increasing hydrogen dilution revealed that the crystallinity of the layers increased. The deposition of profiled layers, using a highly crystalline seed layer was studied by both spectroscopic and kinetic ellipsometry. Both studies showed that by using a seed layer, more crystalline layers could be deposited using higher silane flows at which normally amorphous silicon layers are grown. Poly-Si:H thin films deposited using tungsten, tantalum and rhenium as filament material have been characterized. Device-quality poly-Si:H layers have been deposited using tungsten as filament material. The materials deposited using tantalum and rhenium showed properties that are less than device-quality. Finally, some solar cell results are given. The highest efficiency obtained was 4.41% for a n-i-p solar cell with a thickness <1.5 mu-m without the use of a back reflector. An increase in solar cell performance could be achieved by (i) using a lower substrate temperature, (ii) incorporating a textured back reflector to increase the effective pathway of the light and (iii) by using a more stable n-layer, possibly deposited by Hot-Wire CVD.

  19. On the rate of energy input in thermal solar flares

    NASA Technical Reports Server (NTRS)

    Feldman, U.; Doschek, G. A.; Mckenzie, D. L.

    1984-01-01

    The rise phases of solar soft X-ray flares observed by X-ray crystal spectrometers on P78-1 are discussed in terms of the rate of change of X-ray flux as a function of time. It is shown that the flux increases exponentially over most of the rise time. The e-folding time (tau) has a cutoff at approximately 13 s. Soft X-ray flares with smaller values of tau are not observed. It is suggested that this phenomenon is due to the ability of the solar atmosphere to absorb the input energy and convert it into a typical soft X-ray flare, when the value of tau is greater than about 13 s. For energy input rates with tau greater than about 13 s, the temperature attained by the plasma is typically around 2 x 10 to the 7th K, but for values of tau less than 13 s, the gas is heated to much higher temperatures (about 10 to the 8th K), producing a certain class of hard X-ray flares.

  20. The metal abundance and specific energy of intracluster gas

    NASA Technical Reports Server (NTRS)

    White, Raymond E., III

    1991-01-01

    The hot gas in the cores of rich galaxy clusters is metal-rich with nearly solar abundances of metals. It is not clear whether the metals were shed from galaxies via protogalactic winds or via ram-pressure stripping. It has been suggested that if metals were injected via centrally concentrated stripping, the overall abundances could be much less than those observed in cluster cores, diminishing the degree of stellar processing required. The observed energetics of intracluster gas can be used to deduce the metal injection mechanism, which in turn may allow the global metal abundance uncertainty to be resolved in the absence of spatially resolved X-ray spectra. Existing X-ray spectral and surface brightness data for galaxy clusters indicate that the gas in cool clusters has substantially greater specific energy than could have been gained through cluster collapse. Supernovae-driven protogalactic winds can provide this extra energy, while ram-pressure stripping cannot. Such protogalactic winds will distribute metals fairly homogeneously. Much processing of gas through stars is then required, with protogalaxies losing perhaps one-half of their initial luminous mass in metal-rich winds. Furthermore, the oxygen-to-iron ratio observed in two clusters indicates that the bulk of the iron in cluster gas was produced by Type II supernovae, not Type I supernovae, as is usually supposed.

  1. MAGNETIC ENERGY SPECTRA IN SOLAR ACTIVE REGIONS

    SciTech Connect

    Abramenko, Valentyna; Yurchyshyn, Vasyl

    2010-09-01

    Line-of-sight magnetograms for 217 active regions (ARs) with different flare rates observed at the solar disk center from 1997 January until 2006 December are utilized to study the turbulence regime and its relationship to flare productivity. Data from the SOHO/MDI instrument recorded in the high-resolution mode and data from the BBSO magnetograph were used. The turbulence regime was probed via magnetic energy spectra and magnetic dissipation spectra. We found steeper energy spectra for ARs with higher flare productivity. We also report that both the power index, {alpha}, of the energy spectrum, E(k) {approx} k{sup -}{alpha}, and the total spectral energy, W = {integral}E(k)dk, are comparably correlated with the flare index, A, of an AR. The correlations are found to be stronger than those found between the flare index and the total unsigned flux. The flare index for an AR can be estimated based on measurements of {alpha} and W as A = 10{sup b}({alpha}W){sup c}, with b = -7.92 {+-} 0.58 and c = 1.85 {+-} 0.13. We found that the regime of the fully developed turbulence occurs in decaying ARs and in emerging ARs (at the very early stage of emergence). Well-developed ARs display underdeveloped turbulence with strong magnetic dissipation at all scales.

  2. Schools Going Solar: A Guide to Schools Enjoying the Power of Solar Energy.

    ERIC Educational Resources Information Center

    Gibson, Bob; Mayotte, Jenna; Cochran, Jacquie

    Schools today are hosting the solar energy systems that will become commonplace tomorrow in public buildings, homes, and businesses. This publication serves as a guide to how schools are using solar energy, listing scores of schools currently using the sun for lighting, heating, and cooling as well as highlights of innovative programs to expand…

  3. Technical Potential of Solar Water Heating to Reduce Fossil Fuel Use and Greenhouse Gas Emissions in the United States

    SciTech Connect

    Denholm, P.

    2007-03-01

    Use of solar water heating (SWH) in the United States grew significantly in the late 1970s and early 1980s, as a result of increasing energy prices and generous tax credits. Since 1985, however, expiration of federal tax credits and decreased energy prices have virtually eliminated the U.S. market for SWH. More recently, increases in energy prices, concerns regarding emissions of greenhouse gases, and improvements in SWH systems have created new interest in the potential of this technology. SWH, which uses the sun to heat water directly or via a heat-transfer fluid in a collector, may be particularly important in its ability to reduce natural gas use. Dependence on natural gas as an energy resource in the United States has significantly increased in the past decade, along with increased prices, price volatility, and concerns about sustainability and security of supply. One of the readily deployable technologies available to decrease use of natural gas is solar water heating. This report provides an overview of the technical potential of solar water heating to reduce fossil fuel consumption and associated greenhouse gas emissions in U.S. residential and commercial buildings.

  4. High heat flux engineering in solar energy applications

    SciTech Connect

    Cameron, C.P.

    1993-07-01

    Solar thermal energy systems can produce heat fluxes in excess of 10,000 kW/m{sup 2}. This paper provides an introduction to the solar concentrators that produce high heat flux, the receivers that convert the flux into usable thermal energy, and the instrumentation systems used to measure flux in the solar environment. References are incorporated to direct the reader to detailed technical information.

  5. The heating of the solar wind by the interstellar neutral gas

    NASA Technical Reports Server (NTRS)

    Isenberg, P. A.; Chih, P. P.; Fisk, L. A.

    1985-01-01

    Solar wind heating by ionization and assimilation of the interstellar neutral wind is investigated using a numerical model of the interaction. The model is a time-dependent, one-dimensional, spherically symmetric, one-fluid code which includes mass, momentum, and energy sources due to the efficient incorporation of ionized interstellar hydrogen. Solar wind data at 1 AU from October 12, 1978 to February 25, 1980 were input to the inner boundary of the model and propagated out to 10 AU. Then, 52-day averages of proton temperature as functions of radius were produced for three values of the interstellar hydrogen density: 0.0, 0.03, and 0.1 per cu cm. It is concluded that, within the context of the model, the observations of solar wind proton temperatures at Voyager 1 and Pioneer 11 are consistent with heating of the solar wind by an interaction with inflowing interstellar neutral hydrogen. The density of this inflowing gas is near 0.03/cu cm.

  6. Experimental and theoretical studies on solar energy for energy conversion

    NASA Technical Reports Server (NTRS)

    Thomas, A. P.; Thekaekara, M. P.

    1976-01-01

    This paper presents the results of investigations made experimentally and theoretically to evaluate the various parameters that affect the amount of solar energy received on a collector surface. Measurements were made over a long period of time using both pyranometer and pyrheliometer. Computation of spectral and total irradiance at ground level have been made for a large variety of combinations of atmospheric parameters for ozone density, precipitable water vapor, turbidity-coefficients and air mass. A study of the air mass as a function of irradiance measured at GSFC, and comparison of the data with the computed values of total direct solar irradiance for various parameters indicate that turbidity changes with time of the day; atmospheric opacity is less in the afternoon than in the morning.

  7. Solar energy conversion by chloroplast photoelectrochemical cells

    NASA Astrophysics Data System (ADS)

    Bhardwaj, R.; Pan, R. L.; Gross, E. L.

    1981-01-01

    A photoelectrochemical cell based on chloroplasts which generates large photovoltages and photocurrents from solar energy is presented. The cell contains broken Type C chloroplasts placed on a filter separating compartments containing an electron acceptor and electron donor with platinum electrodes in each. Photovoltages were observed across a load resistance of 3000 ohms with either flavin mononucleotide or anthroquinone 2-sulphonate as the electron acceptor and dichlorophenol indophenol as the donor, and persisted for 1-2 hr after the light was turned off. The powers and short circuit currents obtained in the chloroplast cells are nearly equal to those obtained in cells based on isolated photosystem I particles. Finally, an efficiency of 2.3% has been measured for the chloroplast contribution to the total power in flavin mononucleotide cells.

  8. Advanced materials manufacturing for solar energy

    NASA Astrophysics Data System (ADS)

    van Mierlo, Frank

    2012-02-01

    The US has a robust technical roadmap to get to a 1/W total installed cost with several potential winners in the race. We dominate in the new technology arena and there is a good chance that tomorrow's winning technology will be from the current crop of contenders. One potential breakthrough is Direct Wafer^TM a new manufacturing technique to make silicon wafers at a fraction of the traditional cost. Current wafer manufacturing is a multi-step, energy- and capital-intensive process that wastes half of the valuable silicon feedstock. 1366's Direct Wafer technology forms a standard, 156mm multi-crystalline wafer directly from molten silicon in a semi-continuous, efficient, high-throughput process that eliminates silicon waste. Direct Wafer^TM cuts the amount of consumables by a factor of four and requires only half the capital per GigaWatt production capacity thus enabling solar to compete successfully with coal generated electricity.

  9. National solar energy education directory. Second edition

    SciTech Connect

    Corcoleotes, G; Cronin, S; Kramer, K; O'Connor, K

    1980-01-01

    The information contained in this directory is derived from responses to a national survey of educational institutions and organizations involved in solar energy educational activities beyond the secondary school level. Phone calls and follow-up mail requests were used to gather additional information when necessary. Every survey instrument was read, coded, and edited before entry into the data base from which this directory was produced. The Directory is organized alphabetically by state. Institutions and organizations within each state are categorized according to type (Colleges and Universities, Junior/Community Colleges, Vocational/Technical Schools, and Other Educational Institutions and Organizations) and listed alphabetically within these categories. Within each institutional listing the amount of information provided will vary according to the completeness of the survey response received from that institution. (MHR)

  10. Solar Energy Program: Chapter from the Energy and EnvironmentalDivision Annual Report 1980

    SciTech Connect

    Energy and Environment Division

    1981-03-01

    Solar energy has become a major alternative for supplying a substantial fraction of the nation's future energy needs. The U.S. Department of Energy (DOE) supports activities ranging from the demonstration of existing technology to research on future possibilities. At Lawrence Berkeley Laboratory (LBL), projects are in progress that span a wide range of activities, with the emphasis on research to extend the scientific basis for solar energy applications, and on preliminary development of new approaches to solar energy conversion. To assess various solar applications, it is important to quantify the solar resource. Special instruments have been developed and are now in use to measure both direct solar radiation and circum-solar radiation, i.e., the radiation from near the sun resulting from the scattering of sunlight by small particles in the atmosphere. These measurements serve to predict the performance of solar designs that use focusing collectors employing mirrors or lenses to concentrate the sunlight. Efforts have continued at a low level to assist DOE in demonstrating existing solar technology by providing the San Francisco Operations Office (SAN) with technical support for its management of commercial-building solar demonstration projects. Also, a hot water and space-heating system has been installed on an LBL building as part of the DOE facilities Solar Demonstration Program. LBL continues to provide support for the DOE Appropriate Energy Technology grants program. Evaluations are made of the program's effectiveness by, for example, estimating the resulting potential energy savings. LBL also documents innovative features and improvements in economic feasibility as compared to existing conventional systems or applications. In the near future, we expect that LBL research will have a substantial impact in the areas of solar heating and cooling. Conventional and new types of high-performance absorption air conditioners are being developed that are air-cooled and suitable for use with flat plate or higher-temperature collectors. Operation of the controls test facility and computer modeling of collector loop and building load dynamics are yielding quantitative evaluations of the performance of different control strategies for active solar-heating systems. Research is continuing on ''passive'' approaches to solar heating and cooling, where careful considerations of architectural design, construction materials, and the environment are used to moderate a building's interior climate. Computer models of passive concepts are being developed and incorporated into building energy analysis computer programs which are in the public domain. The resulting passive analysis capabilities are used in systems studies leading to design tools and in the design of commercial buildings on a case study basis. The investigation of specific passive cooling methods is an ongoing project; for example, a process is being studied in which heat-storage material would be cooled by radiation to the night sky, and would then provide ''coolness'' to the building. Laboratory personnel involved in the solar cooling, controls, and passive projects are also providing technical support to the Active Heating and Cooling Division and the Passive and Hybrid Division of DOE in developing program plans, evaluating proposals, and making technical reviews of projects at other institutions and in industry. Low-grade heat is a widespread energy resource that could make a significant contribution to energy needs if economical methods can be developed for converting it to useful work. Investigations continued this year on the feasibility of using the ''shape-memory'' alloy, Nitinol, as a basis for constructing heat engines that could operate from energy sources, such as solar-heated water, industrial waste heat, geothermal brines, and ocean thermal gradients. Several projects are investigating longer-term possibilities for utilizing solar energy. One project involves the development of a new type of solar thermal receiver that would be placed at the focus of a central receiver system or a parabolic dish. The conversion of the concentrated sunlight to thermal energy would be accomplished by the absorption of the light by a dispersion of very small particles suspended in a gas. Another project is exploring biological systems. In particular, we are investigating the possibility of developing a photovoltaic cell, based on a catalyst (bacteriorhodopsin) which converts light to electrical ion flow across the cell membrane of a particular bacteria.

  11. Solar Energy: The State of the Art, Part 3

    ERIC Educational Resources Information Center

    Miller, Charles D.; Pinelli, Tomas E.

    1976-01-01

    Bioconversion to fuels, ocean thermal-gradient power conversion, and energy systems are discussed in this last article of a three-part series on solar energy. It is noted that solar research has near-term and long-term implications for the housing industry, manufacturers of components designed for homes, and the public in general, and that…

  12. Wintering With Solar: One School's Response to Scarce Energy

    ERIC Educational Resources Information Center

    Shore, Ron

    1978-01-01

    Through a course in energy conservation and domestic solar energy technology, students evaluated the thermal performance of existing campus structures and made suggestions for improvements in thermal efficiency. Besides making some of these improvements, the students also designed, built, and operated a solar greenhouse. (MA)

  13. SURVEY OF EPA FACILITIES FOR SOLAR THERMAL ENERGY APPLICATIONS

    EPA Science Inventory

    A study was done to assess the feasibility of applying solar thermal energy systems to EPA facilities. A survey was conducted to determine those EPA facilities where solar energy could best be used. These systems were optimized for each specific application and the system/facilit...

  14. Solar Power Plants: Dark Horse in the Energy Stable

    ERIC Educational Resources Information Center

    Caputo, Richard S.

    1977-01-01

    Twelfth in a series of reports on solar energy, this article provides information relating to the following questions: (1) economic cost of solar-thermal-electric central power plants; (2) cost comparison with nuclear or coal plants; (3) locations of this energy source; and (4) its use and social costs. (CS)

  15. Solar Energy Task Force Report: Technical Training Guidelines.

    ERIC Educational Resources Information Center

    O'Connor, Kevin

    This task force report offers guidelines and information for the development of vocational education programs oriented to the commercial application of solar energy in water and space heating. After Section I introduces the Solar Energy Task Force and its activities, Section II outlines the task force's objectives and raises several issues and…

  16. Energy Saving and GHG Emission Reduction in a Micro-CCHP System by Use of Solar Energy

    NASA Astrophysics Data System (ADS)

    Ion, Ion V.; Ciocea, Gheorghe; Popescu, Florin

    2012-12-01

    In this work, the reduction of greenhouse gas emission, and the energy saving by integrating solar collectors and photovoltaic panels in a Stirling engine based microcombined cooling, heating and power (mCCHP) system are studied. The mCCHP system consists of a natural gas Stirling CHP and an adsorber chiller. When the thermal outputs of the Stirling CHP and solar collectors are not sufficient to cover the heat demand for domestic hot water (DHW), heating/cooling, an auxiliary heating boiler starts to operate. The energy saving by using solar energy varies from 13.35% in December to 59.62% in April, in the case of solar collectors usage and from 7.47% in December to 28.27% in July, in the case of photovoltaic panels usage. By using solar energy the annual GHG emission decreases by 31.98% and the fuel cost reduction varies from 12.73% in December to 49.78% in June.

  17. Solar and Geothermal Energy: New Competition for the Atom

    ERIC Educational Resources Information Center

    Carter, Luther J.

    1974-01-01

    Describes new emphasis on research into solar and geothermal energy resources by governmental action and recent legislation and the decreased emphasis on atomic power in supplementing current energy shortages. (BR)

  18. Exploring new models of solar energy development

    SciTech Connect

    Asmus, Peter

    2008-04-15

    The era of the highly centralized systems such as our current electricity grid may be coming to an end. It's time for citizens to get familiar with new concepts like ''community solar'' and ''solar safety net''. (author)

  19. Refocused energy policy: a natural gas perspective

    SciTech Connect

    Mares, J.W.

    1981-09-01

    The present adminstration's policy on energy development is briefly summarized. While the Department of Energy will be dismantled, several important functions will be preserved and will continue elsewhere in government. The administration's aim is not to present an energy blueprint to predetermine energy solutions, rather, policy is based on the belief that the marketplace must be allowed to determine the most economic and durable energy sources. Revision of the federal leasing policy is discussed. Free market pricing of oil and gas is another key aspect of the new energy policy. The development of advanced technology in the areas of natural gas recovery, methane from coalbed, development of tight sands deposits, geopressured aquifers, and coal gasification is also discussed.

  20. Potential utilization of solar energy for industrial processes in Egypt

    SciTech Connect

    Abd El-Salam, E.M.

    1980-12-01

    During the last decade, people all over the world are using in alarming rates the costly supply of fossil and conventional fuels as the main source of energy. As the strategic reserves of these natural resources being quickly depleted, it appears as an urgent problem of special importance to mankind to search for alternative natural resources of energy which can replace the conventional fuels in the ever increasing applied fields, which cover every aspect of the activity of mankind. Solar energy, as the inexhaustible major clean source of energy is the only alternative. This investigation gives a survey of the possible utilization of solar energy in various industrial processes. The main objectives of the study is: Characterization of the requirements in each process; The choice of the suitable application of solar systems; Computations of the expected performance of solar systems of various designs that could be used; and Economic comparison of the different solar systems.

  1. Application of solar thermal energy to buildings and industry

    SciTech Connect

    Kutscher, C. F.

    1981-05-01

    Flat plate collectors and evacuated tube collectors are described, as are parabolic troughs, Fresnel lenses, and compound parabolic concentrators. Use of solar energy for domestic hot water and for space heating and cooling are discussed. Some useful references and methods of system design and sizing are given. This includes mention of the importance of economic analysis. The suitability of solar energy for industrial use is discussed, and solar ponds, point-focus receivers and central receivers are briefly described. The use of solar energy for process hot water, drying and dehydration, and process steam are examined, industrial process heat field tests by the Department of Energy are discussed, and a solar total energy system in Shenandoah, GA is briefly described. (LEW)

  2. Regional variation in solar energy economic performance

    NASA Astrophysics Data System (ADS)

    Brunton, D.; Kirschner, C.; Ben-David, S.; Roach, F.

    1981-03-01

    A solar economic performance code (EASE-III) was used to indicate the extent of production function variations as applied to a Trombe wall solar design incorporated in a new home. The economic performance of the solar heated residence was compared to the alternative non solar home heated by the characteristic conventional fuel of each region. These economic results are used to discuss the impact of subsidy programs.

  3. Impact of solar-energy development. The aggregate impact on basic economic objectives

    NASA Astrophysics Data System (ADS)

    Parker, A.; Kirschner, C.; Roach, F.

    Two categories of incentives for the development of solar energy are described: those that increase the benefits associated with the ownership of a solar energy system and those that reduce the cost of the system. The impact of two alternative programs are presented. Short run and long run impacts expected to result from the installation of passive solar designs on existing housing rock are distinguished. Impacts associated with a program to deregulate natural gas and one combining tax credits and low interest loans are compared. The impacts of solar programs on seven basic economic goals are analyzed. The goals are full employment, price stability, economic efficienty, equitable distribution of income, economic growth, balancing the federal budget, and a strong national defense.

  4. DOE Solar Energy Technologies Program FY 2006 Annual Report

    SciTech Connect

    Not Available

    2007-07-01

    The DOE Solar Energy Technologies Program FY 2006 Annual Report chronicles the R&D results of the U.S. Department of Energy Solar Energy Technologies Program for Fiscal Year 2005. In particular, the report describes R&D performed by the Program's national laboratories (National Renewable Energy Laboratory, Sandia National Laboratories, Oak Ridge National Laboratory, and Brookhaven National Laboratory) and university and industry partners.

  5. DOE Solar Energy Technologies Program 2007 Annual Report

    SciTech Connect

    Not Available

    2008-07-01

    The DOE Solar Energy Technologies Program FY 2007 Annual Report chronicles the R&D results of the U.S. Department of Energy Solar Energy Technologies Program from October 2006 to September 2007. In particular, the report describes R&D performed by the Program's national laboratories (National Renewable Energy Laboratory, Sandia National Laboratories, Oak Ridge National Laboratory, and Brookhaven National Laboratory) and university and industry partners.

  6. DOE Solar Energy Technologies Program FY 2005 Annual Report

    SciTech Connect

    Not Available

    2006-03-01

    The DOE Solar Energy Technologies Program FY 2005 Annual Report chronicles the R&D results of the U.S. Department of Energy Solar Energy Technologies Program for Fiscal Year 2005. In particular, the report describes R&D performed by the Program?s national laboratories (National Renewable Energy Laboratory, Sandia National Laboratories, Oak Ridge National Laboratory, and Brookhaven National Laboratory) and university and industry partners.

  7. DOE Solar Energy Technologies Program: FY 2004 Annual Report

    SciTech Connect

    Not Available

    2005-10-01

    The DOE Solar Energy Technologies Program FY 2004 Annual Report chronicles the R&D results of the U.S. Department of Energy Solar Energy Technologies Program for Fiscal Year 2004. In particular, the report describes R&D performed by the Program's national laboratories (National Renewable Energy Laboratory, Sandia National Laboratories, Oak Ridge National Laboratory, and Brookhaven National Laboratory) and university and industry partners.

  8. SOLERAS - Solar Energy Water Desalination Project: Boeing Engineering and Construction. System design final report

    SciTech Connect

    Not Available

    1986-01-01

    The system design for a future commercial solar energy brackish water desalination plant is described. Key features of the plant are discussed along with its configuration selection rationale, design objectives, operation, and performance. The water treatment technology used in the plant is ion exchange pretreatment and single stage reverse osmosis desalination utilizing high-flux membranes. Electrical power needed for plant operation is produced by a solar energy system, which is based on the Brayton cycle having air as the working fluid. Primary solar system components are: heliostat field, central cavity-tube receiver, receiver support tower, thermal energy storage, and a commercial gas turbine generator set. The thermal energy storage subsystem is of the sensible heat brick type and provides a capability for continuous day/night power generation during most weather conditions. This system design was selected in a study of various system alternatives and their life cycle product water costs for a representative site in western Texas.

  9. Solar Energy Technologies Program Newsletter - September 2009

    SciTech Connect

    2009-10-01

    This quarterly newsletter is intended for participants and stakeholders in the DOE Solar Program. The content includes features on technology development, market transformation, and policy analysis for solar. Highlights include solar industry updates, DOE funding opportunity announcements and awards, and national laboratory technology developments.

  10. Solar Energy Technologies Program Newsletter - July 2009

    SciTech Connect

    2009-07-01

    This quarterly newsletter is intended for participants and stakeholders in the DOE Solar Program. The content includes features on technology development, market transformation, and policy analysis for solar. Highlights include solar industry updates, DOE funding opportunity announcements and awards, and national laboratory technology developments.

  11. Solar-energy-system performance evaluation, Cathedral Square, Burlington, Vermont, July-December 1981

    SciTech Connect

    Welch, K.M.

    1981-01-01

    The Cathedral Square solar site is a 10-story multiunit apartment building in Vermont. Its active solar energy system is designed to supply 51% of the hot water load, and consists of 1798 square feet of flat plate collectors, 2699-gallon water tank in an enclosed mechanical room on the roof, and two auxiliary natural gas boilers to supply hot water to immersed heat exchanger in an auxiliary storage tank. The measured solar fraction was only 28%, not 51%, which, it is concluded, is an unreasonable expectation. Other performance data include the solar savings ratio, conventional fuel savings, system performance factor, and solar system coefficient of performance. Monthly performance data are given for the solar system overall, and for the collector, storage, and hot water subsystems. Also included are insolation data, typical storage fluid temperatures, domestic hot water consumption, and solar heat exchangers inlet/outlet temperatures, and typical domestic hot water subsystem temperatures. In addition, the system operating sequence and solar energy utilization are given. Appended are a system description, performance evaluation techniques, long-term weather data. (LEW)

  12. Solar-Heated Gasifier

    NASA Technical Reports Server (NTRS)

    Qader, S. A.

    1985-01-01

    Catalytic coal and biomass gasifer system heated by solar energy. Sunlight from solar concentrator focused through quartz window onto ceramic-honeycomb absorber surface, which raises temperature of reactant steam, fluidizing gas, and reactor walls.

  13. Game-theory approach to consumer incentives for solar energy

    SciTech Connect

    Sharp, J.K.

    1981-11-01

    Solar energy is currently not competitive with fossil fuels. Fossil fuel price increases may eventually allow solar to compete, but incentives can change the relative price between fossil fuel and solar energy, and make solar compete sooner. Examples are developed of a new type of competitive game using solar energy incentives. Competitive games must have players with individual controls and conflicting objectives, but recent work also includes incentives offered by one of the players to the others. In the incentive game presented here, the Government acts as the leader and offers incentives to consumers, who act as followers. The Government incentives offered in this leader-follower (Stackelberg) game reduce the cost of solar energy to the consumer. Both the Government and consumers define their own objectives with the Government determining an incentive (either in the form of a subsidy or tax) that satisfies its objective. The two hypothetical examples developed show how the Government can achieve a stated solar utilization rate with the proper incentives. In the first example the consumer's utility function guarantees some purchases of solar energy. In the second example, the consumer's utility function allows for no solar purchases because utility is derived only from the amount of energy used and not from the source of the energy. The two examples discuss both subsidy and tax incentives, with the best control over control use coming from fossil fuel taxes dependent upon the amount of solar energy used. Future work will expand this static analysis to develop time varying incentives along a time and quantity dependent learning curve for the solar industry.

  14. Solar energy grid integration systems - Energy storage (SEGIS-ES)

    SciTech Connect

    Ton, Dan; Peek, Georgianne H.; Hanley, Charles; Boyes, John

    2008-05-01

    In late 2007, the U.S. Department of Energy (DOE) initiated a series of studies to address issues related to potential high penetration of distributed photovoltaic (PV) generation systems on our nation’s electric grid. This Renewable Systems Interconnection (RSI) initiative resulted in the publication of 14 reports and an Executive Summary that defined needs in areas related to utility planning tools and business models, new grid architectures and PV systems configurations, and models to assess market penetration and the effects of high-penetration PV systems. As a result of this effort, the Solar Energy Grid Integration Systems (SEGIS) program was initiated in early 2008. SEGIS is an industry-led effort to develop new PV inverters, controllers, and energy management systems that will greatly enhance the utility of distributed PV systems.

  15. Summary report of technical discussion, NASA-ERDA solar energy proposal

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The impact of the reduced energy requirements and cooling loads of solar collectors is assessed. Energy conservation measures to reduce the energy consumption have been implemented. It is indicated that solar chemical dehumidification was more efficient than solar absorption.

  16. Nontechnical Barriers to Solar Energy Use: Review of Recent Literature

    SciTech Connect

    Margolis, R.; Zuboy, J.

    2006-09-01

    This paper reviews the nontechnical barriers to solar energy use, drawing on recent literature to help identify key barriers that must be addressed as part of the Technology Acceptance efforts under the U.S. Department of Energy (DOE) Solar America Initiative. A broad literature search yielded more than 400 references, which were narrowed to 19 recent documents on nontechnical barriers to the use of solar energy and other energy efficiency and renewable energy (EE/RE) technologies. Some of the most frequently identified barriers included lack of government policy supporting EE/RE, lack of information dissemination and consumer awareness about energy and EE/RE, high cost of solar and other EE/RE technologies compared with conventional energy, and inadequate financing options for EE/RE projects.

  17. Conclusions and recommendations of the United States Solar Energy Panel

    NASA Technical Reports Server (NTRS)

    Cherry, W. R.; Morse, F. H.

    1973-01-01

    The United States Solar Energy Panel was charged with assessing the potential of solar energy as a national energy resource. Three areas evolved where solar energy could supply significant amounts of the U.S. future energy needs: (1) energy for heating and cooling of buildings, (2) the production of fuels, and (3) the generation of electrical power. It was concluded that with adequate R&D support over the next 30 years, solar energy could provide at least 35 percent of the heating and cooling of future buildings, greater than 30 percent of the methane and hydrogen needed in the U.S. for gaseous fuels, and greater than 20 percent of the electrical power needs of the U.S. All of this could be done with a minimal effect on the environment and a substantial savings of nonrenewable fuels.

  18. Global Solar Radiation Distribution and Available Solar Energy Potential in Tanzania

    NASA Astrophysics Data System (ADS)

    Alfayo, R.; Uiso, C. B. S.

    Solar energy is found to be the best source of energy for the rural poor. It is cheap and environmentally friendly. However its potential application in Tanzania is not well researched and documented. This paper describes a prospect on solar radiation distribution and available solar energy potential. Modelling of solar energy systems requires knowledge of incoming solar radiation. An empirical model based on meteorological data collected between 1965 and 1990 in Tanzania has been developed to estimate global solar radiation on horizontal surfaces. Meteorological parameters such as sunshine hours, relative humidity, air temperature and atmospheric conditions were used in the model. The values of global solar radiation predicted by the model are in close agreement with those measured for all locations and zones where the model has been tested. The deviation was found to lie between -5% and 5%. Measured and predicted mean monthly and mean annual global solar radiation values as observed from the developed radiation maps and graphs indicate that Tanzania has high solar power potential. The lowest annual average radiation value in the country is found to be 15 MJm-2 day-1, while the maximum value is 24 MJm-2 day-1. The lowest radiation value in the country is obtained in July (winter), which should be sufficient to satisfy the needs of rural family demands.

  19. Potential of solar domestic hot water systems in rural areas for greenhouse gas emission reduction in Poland

    SciTech Connect

    Skowronski, P.; Wisniewski, G.

    1996-09-01

    Application of solar energy for preparing domestic hot water is one of the easiest methods of utilization of this energy. At least part of the needs for warm tap water could be covered by solar systems. At present, mainly coal is used for water heating at dwellings in rural areas in Poland. Warm tap water consumption will increase significantly in the future as standards of living are improved. This can result in the growth of electricity use and an increase in primary fuel consumption. Present and future methods of warm sanitary water generation in rural areas in Poland is discussed, and associated greenhouse gas (GHG) emissions are estimated. It is predicted that the emission of CO{sub 2} and NOx will increase. The emission of CO and CH{sub 4} will decrease because of changes in the structure of the final energy carriers used. The economic and market potentials of solar energy for preparing warm water in rural areas are discussed. It is estimated that solar systems can meet 30%-45% of the energy demand for warm water generation in rural areas at a reasonable cost, with a corresponding CO{sub 2} emission reduction. The rate of realization of the economic potential of solar water heaters depends on subsidies for the installation of equipment. 13 refs., 9 tabs.

  20. Potential of solar domestic hot water systems in rural areas for greenhouse gas emission reduction in Poland

    NASA Astrophysics Data System (ADS)

    Skowronski, Pawel; Wisniewski, Grzegorz

    1996-01-01

    Application of solar energy for preparing domestic hot water is one of the easiest methods of utilization of this energy. At least part of the needs for warm tap water could be covered by solar systems. At present, mainly coal is used for water heating at dwellings in rural areas in Poland. Warm tap water consumption will increase significantly in the future as standards of living are improved. This can result in the growth of electricity use and an increase in primary fuel consumption. Present and future methods of warm sanitary water generation in rural areas in Poland is discussed, and associated greenhouse gas (GHG) emissions are estimated. It is predicted that the emission of CO2 and NO x will increase. The emission of CO and CH4 will decrease because of changes in the structure of the final energy carriers used. The economic and market potentials of solar energy for preparing warm water in rural areas are discussed. It is estimated that solar systems can meet 30% 45% of the energy demand for warm water generation in rural areas at a reasonable cost, with a corresponding CO2 emission reduction. The rate of realization of the economic potential of solar water heaters depends on subsidies for the installation of equipment.

  1. Mars Solar Balloon Landed Gas Chromatograph Mass Spectrometer

    NASA Technical Reports Server (NTRS)

    Mahaffy, P.; Harpold, D.; Niemann, H.; Atreya, S.; Gorevan, S.; Israel, G.; Bertaux, J. L.; Jones, J.; Owen, T.; Raulin, F.

    1999-01-01

    A Mars surface lander Gas Chromatograph Mass Spectrometer (GCMS) is described to measure the chemical composition of abundant and trace volatile species and isotope ratios for noble gases and other elements. These measurements are relevant to the study of atmospheric evolution and past climatic conditions. A Micromission plan is under study where a surface package including a miniaturized GCMS would be delivered to the surface by a solar heated hot air balloon based system. The balloon system would be deployed about 8 km above the surface of Mars, wherein it would rapidly fill with Martian atmosphere and be heated quickly by the sun. The combined buoyancy and parachuting effects of the solar balloon result in a surface package impact of about 5 m/sec. After delivery of the package to the surface, the balloon would ascend to about 4 km altitude, with imaging and magnetometry data being taken for the remainder of the daylight hours as the balloon is blown with the Martian winds. Total atmospheric entry mass of this mission is estimated to be approximately 50 kg, and it can fit as an Ariane 5 piggyback payload. The GCMS would obtain samples directly from the atmosphere at the surface and also from gases evolved from solid phase material collected from well below the surface with a Sample Acquisition and Transport Mechanism (SATM). The experiment envisioned in the Mars Micromission described would obtain samples from a much greater depth of up to one meter below the surface, and would search for organic molecules trapped in ancient stratified layers well below the oxidized surface. Insitu instruments on upcoming NASA missions working in concert with remote sensing measurement techniques have the potential to provide a more detailed investigation of mineralogy and the extent of simple volatiles such as CO2 and H2O in surface and subsurface solid phase materials. Within the context of subsequent mission opportunities such as those provided by the Ariane 5 piggyback payload based Micromissions, it is essential to implement an even broader chemical analysis and to enable a significant extension of previous isotope measurements. Such a development would enhance the presently very active study of questions of atmospheric evolution and loss and past climatic conditions. The method selected to implement this program can be based on well-established mass spectrometry techniques. Sampled gas is chemically and physically processed to separate the gas mixture into components using gas chromatograph and related enrichment techniques. This allows trace species to be identified and reveals isotopic distributions in many cases with improved precision. Samples of interest, such as organic molecules, may lie deep below the highly oxidized surface layer and the suggested program includes enhanced sampling techniques to measure volatiles preserved in solid phase material deep below the surface as well as gas from the well mixed atmosphere.

  2. Comparative evaluation of solar, fission, fusion, and fossil energy resources. Part 5: Conclusions and recomendations

    NASA Technical Reports Server (NTRS)

    Williams, J. R.

    1974-01-01

    Air pollution resulting from the use of fossil fuels is discussed. Phenomena relating to the emission of CO2 such as the greenhouse effect and multiplier effect are explored. Particulate release is also discussed. The following recommendations are made for the elimination of fossil fuel combustion products in the United States: development of nuclear breeder reactors, use of solar energy systems, exploration of energy alternatives such as geothermal and fusion, and the substitution of coal for gas and oil use.

  3. High temperature solid oxide regenerative fuel cell for solar photovoltaic energy storage

    NASA Technical Reports Server (NTRS)

    Bents, David J.

    1987-01-01

    A hydrogen-oxygen regenerative fuel cell (RFC) energy storage system based on high temperature solid oxide fuel cell (SOFC) technology is described. The reactants are stored as gases in lightweight insulated pressure vessels. The product water is stored as a liquid in saturated equilibrium with the fuel gas. The system functions as a secondary battery and is applicable to darkside energy storage for solar photovoltaics.

  4. The Wind Program at the Northeast Solar Energy Center

    NASA Astrophysics Data System (ADS)

    Bisplinghoff, R. L.

    The Northeast Solar Energy Center, established in 1977, is one of four regional centers created by the Department of Energy to encourage the use of solar technologies to help meet the nation's energy needs. To this end, the Center's staff works closely with state and local governments, community groups, industry, utilities, contractors, architects, engineers, educators and the legal, financial and insurance communities. The nine states (New York, New Jersey, Pennsylvania, and New England) served by NESEC participate directly in its activities through two gubernatorial designees for each state. Also, NESEC funds two solar professionals in each state energy office who form NESEC's Regional Information Network.

  5. Technology for Bayton-cycle powerplants using solar and nuclear energy

    NASA Technical Reports Server (NTRS)

    English, R. E.

    1986-01-01

    Brayton cycle gas turbines have the potential to use either solar heat or nuclear reactors for generating from tens of kilowatts to tens of megawatts of power in space, all this from a single technology for the power generating system. Their development for solar energy dynamic power generation for the space station could be the first step in an evolution of such powerplants for a very wide range of applications. At the low power level of only 10 kWe, a power generating system has already demonstrated overall efficiency of 0.29 and operated 38 000 hr. Tests of improved components show that these components would raise that efficiency to 0.32, a value twice that demonstrated by any alternate concept. Because of this high efficiency, solar Brayton cycle power generators offer the potential to increase power per unit of solar collector area to levels exceeding four times that from photovoltaic powerplants using present technology for silicon solar cells. The technologies for solar mirrors and heat receivers are reviewed and assessed. This Brayton technology for solar powerplants is equally suitable for use with the nuclear reactors. The available long time creep data on the tantalum alloy ASTAR-811C show that such Brayton cycles can evolve to cycle peak temperatures of 1500 K (2240 F). And this same technology can be extended to generate 10 to 100 MW in space by exploiting existing technology for terrestrial gas turbines in the fields of both aircraft propulsion and stationary power generation.

  6. Technology for Brayton-cycle powerplants using solar and nuclear energy

    SciTech Connect

    English, R.E.

    1986-02-01

    Brayton cycle gas turbines have the potential to use either solar heat or nuclear reactors for generating from tens of kilowatts to tens of megawatts of power in space, all this from a single technology for the power generating system. Their development for solar energy dynamic power generation for the space station could be the first step in an evolution of such powerplants for a very wide range of applications. At the low power level of only 10 kWe, a power generating system has already demonstrated overall efficiency of 0.29 and operated 38 000 hr. Tests of improved components show that these components would raise that efficiency to 0.32, a value twice that demonstrated by any alternate concept. Because of this high efficiency, solar Brayton cycle power generators offer the potential to increase power per unit of solar collector area to levels exceeding four times that from photovoltaic powerplants using present technology for silicon solar cells. The technologies for solar mirrors and heat receivers are reviewed and assessed. This Brayton technology for solar powerplants is equally suitable for use with the nuclear reactors. The available long time creep data on the tantalum alloy ASTAR-811C show that such Brayton cycles can evolve to cycle peak temperatures of 1500 K (2240 F). And this same technology can be extended to generate 10 to 100 MW in space by exploiting existing technology for terrestrial gas turbines in the fields of both aircraft propulsion and stationary power generation.

  7. Solar energy grid integration systems : final report of the Florida Solar Energy Center Team.

    SciTech Connect

    Ropp, Michael; Gonzalez, Sigifredo; Schaffer, Alan; Katz, Stanley; Perkinson, Jim; Bower, Ward Isaac; Prestero, Mark; Casey, Leo; Moaveni, Houtan; Click, David; Davis, Kristopher; Reedy, Robert; Kuszmaul, Scott S.; Sena-Henderson, Lisa; David, Carolyn; Akhil, Abbas Ali

    2012-03-01

    Initiated in 2008, the Solar Energy Grid Integration Systems (SEGIS) program is a partnership involving the U.S. DOE, Sandia National Laboratories, private sector companies, electric utilities, and universities. Projects supported under the program have focused on the complete-system development of solar technologies, with the dual goal of expanding utility-scale penetration and addressing new challenges of connecting large-scale solar installations in higher penetrations to the electric grid. The Florida Solar Energy Center (FSEC), its partners, and Sandia National Laboratories have successfully collaborated to complete the work under the third and final stage of the SEGIS initiative. The SEGIS program was a three-year, three-stage project that include conceptual design and market analysis in Stage 1, prototype development and testing in Stage 2, and moving toward commercialization in Stage 3. Under this program, the FSEC SEGIS team developed a comprehensive vision that has guided technology development that sets one methodology for merging photovoltaic (PV) and smart-grid technologies. The FSEC team's objective in the SEGIS project is to remove barriers to large-scale general integration of PV and to enhance the value proposition of photovoltaic energy by enabling PV to act as much as possible as if it were at the very least equivalent to a conventional utility power plant. It was immediately apparent that the advanced power electronics of these advanced inverters will go far beyond conventional power plants, making high penetrations of PV not just acceptable, but desirable. This report summarizes a three-year effort to develop, validate and commercialize Grid-Smart Inverters for wider photovoltaic utilization, particularly in the utility sector.

  8. Low energy particle composition. [cosmic rays produced in solar system

    NASA Technical Reports Server (NTRS)

    Gloeckler, G.

    1975-01-01

    A review is given of current knowledge of low-energy cosmic ray particles produced in the solar system. It is argued that the notion that the sun alone can accelerate particles in the solar system must be abandoned in light of evidence that Jupiter and earth may be sources of observed low-energy particles. Measurements of the composition and energy spectra of low-energy particles during quiet times are examined, emphasizing the abundance of protons and helium and of anomalous N, O, and Ne. The abundance of heavy particles (B, C, N, O, Ne, Ca and Fe) of unknown origin in the earth magnetosphere is examined. Reported observations of Jovian electrons are discussed and solar particle events with anomalous compositions (He-3 rich events and Fe rich events) are treated in detail. Nuclear abundances of solar particles, emphasizing their temporal and spatial variations are considered together with the nature of nuclear reaction products in solar flares.

  9. Solar energy related applications, education, and building retrofits

    NASA Astrophysics Data System (ADS)

    Ding, Yunhua

    Solar energy technologies have been well development for a wide range of applications. However, research on solar photovoltaics is still being conducted to improve performance and lower installation costs. For example, the power generation potential is not only determined by the intensity or location of solar radiation, but also related to the incident angle of the light. Chapter one explores the effect of angle-dependent characteristic on overall power output for different fixed orientations and configurations by hourly modeling, and the results show substantial improvements are possible. Michigan State University (MSU) has been promoting building retrofits combining renewable energy, and the Students Planning Advanced Retrofit Technology Applications (SPARTA) is a group that helps MSU address energy initiatives on campus. Chapter two summarizes the overall successes of building retrofit projects including solar rooftop, LED lighting, and window film conducted by the SPARTA group. The last chapter describes the development of paintable luminescent solar concentrator modules for renewable energy education. The activity is designed for middle school students to understand how energy is generated from solar energy in an inexpensive alternative, which also generates both excitement in solar energy and motivates students to become creative participants in the energy problems.

  10. Conversion of laser energy to gas kinetic energy

    NASA Technical Reports Server (NTRS)

    Caledonia, G. E.

    1977-01-01

    Techniques for the gas-phase absorption of laser energy with ultimate conversion to heat or directed kinetic energy are reviewed. It is shown that the efficiency of resonance absorption by the vibration/rotation bands of the working gas can be enhanced by operating at sufficiently high pressures so that the linewidths of the absorbing transition exceed the line spacing. Within this limit, the gas can absorb continuously over the full spectral region of the band, and bleaching can be minimized since the manifold of molecular vibrational levels can simultaneously absorb the laser radiation.

  11. Spearfish High School, Sparfish, South Dakota solar energy system performance evaluation, September 1980-June 1981

    SciTech Connect

    Howard, B.D.

    1981-01-01

    Spearfish High School in South Dakota contains 43,000 square feet of conditioned space. Its active solar energy system is designed to supply 57% of the space heating and 50% of the hot water demand. The system is equipped with 8034 square feet of flat plate collectors, 4017 cubic feet of rock bin sensible heat storage, and auxiliary equipment including 8 heat pumps, 6 of which are solar supplied and instrumented, air conditioning units, and natural-gas-fired boilers. Performance data are given for the system including the solar fraction, solar savings ratio, conventional fuel savings, system performance factor and solar system coefficient of performance. Insolation, solar energy utilization and operation data are also given. The performance of the collector, storage, domestic hot water and space heating subsystems, the operating energy, energy savings, and weather conditions are also evaluated. Appended are a system description, performance evaluation techniques and equations, site history, long-term weather data, sensor technology, and typical monthly data. (LEW)

  12. Use of solar energy to produce process heat for industry

    SciTech Connect

    Brown, K.

    1980-04-01

    The role of solar energy in supplying heat and hot water to residential and commercial buildings is familiar. On the other hand, the role that solar energy may play in displacing imported energy supplies in the industrial and utility sectors often goes unrecognized. The versatility of solar technology lends itself well to applications in industry; particularly to the supplemental supply of process heat of all kinds. The realization of that potential will depend, however, on the identification of the most suitable applications and locations for industrial solar energy and the continued improvement in cost, durability, and reliability of solar equipment. The status of solar thermal technology for industrial process heat applications is surveyed, including a description of current costs and operating histories. Because the current status is unsatisfactory in view of the goals established by President Carter for solar industrial energy, the most important objectives to be met in improving system performance, reducing cost, and identifying markets for solar IPH are outlined. The effect of government tax policy will be of little impact until technical efficiency and cost effectiveness are significantly improved.

  13. Conservation and solar energy program: congressional budget request, FY 1982

    SciTech Connect

    1981-01-01

    Funding summaries are presented for the Conservation and Solar Energy Program funding information and program overview on energy conservation (Volume 7 of 7, DOE/CR-0011/2) are included for the Buildings and Community Systems, Industrial, Transportation; State and Local, Multi-Sector, Energy Impact Assistance, and Residential/Commercial retrofit programs. Funding information and program overviews on solar technology (Volume 2 of 7, DOE/CR-011/2) are included for Active and Passive Solar Heating and Cooling, Photovoltaics Energy Systems, Solar Thermal Power Systems, Biomass Energy Systems, Wind Energy Conversion Systems, Ocean Systems, Solar International Activities, Solar Information Systems, SERI Facility, MX-RES, Program Direction, and Alcohol Fuels programs. Information and overviews on energy production, demonstration, and distribution (Volume 6 of 7, DOE/CR-0011/2) are given for the solar program. A funding summary and a program overview are included for electrochemical and physical and chemical storage systems as appearing in DOE/CR-0011/2, Volume 3 of 7. Relevant tabulated data from the FY 1981. Request to the Congress are presented for Supplementals, Rescissions, and Deferrals. (MCW)

  14. Solar energy system economic evaluation for Wormser Columbia, South Carolina

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The Solar Energy System is not economically beneficial under the assumed economic conditions at the sites considered. Economic benefits from this system depend on decreasing the initial investment and the continued increase in the cost of conventional energy. Decreasing the cost depends on favorable tax treatment and continuing development of solar energy technology. Fuel cost would have to increase drastically while the cost of the system would have to remain constant or decrease for the system to become economically feasible.

  15. Solar energy system economic evaluation for Wormser Columbia, South Carolina

    NASA Astrophysics Data System (ADS)

    1980-09-01

    The Solar Energy System is not economically beneficial under the assumed economic conditions at the sites considered. Economic benefits from this system depend on decreasing the initial investment and the continued increase in the cost of conventional energy. Decreasing the cost depends on favorable tax treatment and continuing development of solar energy technology. Fuel cost would have to increase drastically while the cost of the system would have to remain constant or decrease for the system to become economically feasible.

  16. Assessment of solar energy as an alternative energy source for the Republic of Panama

    SciTech Connect

    Pytlinski, J.T.; Soderstrom, K.G.; Bryson, T.; Osorio, A.

    1982-01-01

    A number of different applications of solar energy were selected for an assessment of the potential solar use in the industrial, commercial and agricultural sectors of the Panamanian economy. Various solar technologies are taken into consideration with the solar water heating for industrial, commercial and institutional uses being designated as preferable for a large scale implementation. The anticipated energy saving by using solar energy to provide 50% of the energy contribution for water heating for selected applications is presented. Data showing the cost of materials required for such a solar energy contribution are given. Data for the monthly average of the daily total insolation and the reliability of these data are discussed. Finally, the expected impact of solar energy use in the Republic of Panama is discussed.

  17. Radial evolution of the energy density of solar wind fluctuations

    NASA Technical Reports Server (NTRS)

    Zank, G. P.; Matthaeus, W. H.; Smith, C. W.

    1995-01-01

    On the basis of transport theories appropriate to a radially expanding solar wind, we describe new results for the radial evolution of the energy density in solar wind fluctuations at MHD scales. These models include the effects of 'mixing' and driving as well as the possibility of non-isotropic MHD turbulence. Implications of these results for solar wind heating, cosmic ray diffusion and interstellar pick-up ions will also be addressed.

  18. Application of solar energy to air conditioning systems

    NASA Technical Reports Server (NTRS)

    Nash, J. M.; Harstad, A. J.

    1976-01-01

    The results of a survey of solar energy system applications of air conditioning are summarized. Techniques discussed are both solar powered (absorption cycle and the heat engine/Rankine cycle) and solar related (heat pump). Brief descriptions of the physical implications of various air conditioning techniques, discussions of status, proposed technological improvements, methods of utilization and simulation models are presented, along with an extensive bibliography of related literature.

  19. Physical Limits of Solar Energy Conversion in the Earth System.

    PubMed

    Kleidon, Axel; Miller, Lee; Gans, Fabian

    2016-01-01

    Solar energy provides by far the greatest potential for energy generation among all forms of renewable energy. Yet, just as for any form of energy conversion, it is subject to physical limits. Here we review the physical limits that determine how much energy can potentially be generated out of sunlight using a combination of thermodynamics and observed climatic variables. We first explain how the first and second law of thermodynamics constrain energy conversions and thereby the generation of renewable energy, and how this applies to the conversions of solar radiation within the Earth system. These limits are applied to the conversion of direct and diffuse solar radiation - which relates to concentrated solar power (CSP) and photovoltaic (PV) technologies as well as biomass production or any other photochemical conversion - as well as solar radiative heating, which generates atmospheric motion and thus relates to wind power technologies. When these conversion limits are applied to observed data sets of solar radiation at the land surface, it is estimated that direct concentrated solar power has a potential on land of up to 11.6 PW (1 PW=10(15) W), whereas photovoltaic power has a potential of up to 16.3 PW. Both biomass and wind power operate at much lower efficiencies, so their potentials of about 0.3 and 0.1 PW are much lower. These estimates are considerably lower than the incoming flux of solar radiation of 175 PW. When compared to a 2012 primary energy demand of 17 TW, the most direct uses of solar radiation, e.g., by CSP or PV, have thus by far the greatest potential to yield renewable energy requiring the least space to satisfy the human energy demand. Further conversions into solar-based fuels would be reduced by further losses which would lower these potentials. The substantially greater potential of solar-based renewable energy compared to other forms of renewable energy simply reflects much fewer and lower unavoidable conversion losses when solar radiation is directly converted into renewable energy. PMID:26003563

  20. Comparison of solar-thermal and fossil total-energy systems for selected industrial applications

    NASA Astrophysics Data System (ADS)

    Pine, G. D.

    1980-06-01

    Economic analyses of a conventional system and total energy systems based on phosphoric acid fuel cells, diesel piston engines, and central receiver solar thermal systems were performed for each of four industrial applications; a concrete block plant in Arizona, a fluid milk processing plant in California, a sugar beet processing plant in Colorado, and a meat packing plant in Texas. A series of sensitivity analyses was performed to show the effects of variations in fuel price, system size, cost of capital, and system initial cost. Solar total energy systems (STES) are more capital intensive than the other systems, and significant economies of scale are associated with the STES. If DOE solar system cost goals are met, STES can compete with the other systems for facilities with electrical demands greater than two or three megawatts, but STES are not competitive for smaller facilities. Significant energy resource savings, especially of oil and gas, resulted from STES implementation in the four industries.

  1. Solar energy system performance evaluation. Seasonal report for Fern Lansing, Lansing, Michigan

    SciTech Connect

    Not Available

    1980-06-01

    The Solar Energy System was designed by Fern Engineering Company, Bourne, Massachusetts to provide space heating and domestic hot water preheating for a 1300 square foot single-family residence located in Lansing, Michigan. The Solar Energy System consists of a 278 square foot flat-plate air collector subsystem, a three 120-gallon tank storage subsystem, a 40 gallon domestic hot water tank subsystem, a liquid/air heat exchanger, an energy transport module, pumps, controls and heat transfer medium lines. Natural gas provides the auxiliary energy for the space heating (100,000 Btu/h) and hot water (70,000 Btu/h) subsystems. The system is shown schematically and has five modes of operation. Typical system operation, system operating sequence, performance assessment, system performance, subsystems performance (collector array, storage, hot water, space heating), operating energy, energy savings, and maintenance are discussed. A brief summary of all pertinent parameters is presented.

  2. Solar Energy Technologies Program - Growing Solar Power Industry Brightens Job Market (Green Jobs)

    SciTech Connect

    2010-04-01

    U.S. solar power capacity is expanding rapidly as part of the national initiative to double renewable energy resources in three years. This growth is helping to generate many new, well-paid jobs in solar power for American workers.

  3. Solar power satellite life-cycle energy recovery consideration

    SciTech Connect

    Weingartner, S.; Blumenberg, J. |

    1994-12-31

    The construction, in-orbit installation and maintenance of a solar power satellite (SPS) will demand large amounts of energy. As a minimum requirement for an energy effective power satellite it is asked that this amount of energy be recovered. The energy effectiveness in this sense resulting in a positive net energy balance is a prerequisite for cost-effective power satellite. This paper concentrates on life-cycle energy recovery instead on monetary aspects. The trade-offs between various power generation systems (different types of solar cells, solar dynamic), various construction and installation strategies (using terrestrial or extra-terrestrial resources) and the expected/required lifetime of the SPS are reviewed. The presented work is based on a 2-year study performed at the Technical University of Munich. The study showed that the main energy which is needed to make a solar power satellite a reality is required for the production of the solar power components (up to 65%), especially for the solar cell production. Whereas transport into orbit accounts in the order of 20% and the receiving station on earth (rectenna) requires about 15% of the total energy investment. The energetic amortization time, i.e. the time the SPS has to be operational to give back the amount of energy which was needed for its production installation and operation, is about two years.

  4. Electron energy deposition in carbon monoxide gas

    NASA Technical Reports Server (NTRS)

    Liu, Weihong; Victor, G. A.

    1994-01-01

    A comprehensive set of electron impact cross sections for carbon monoxide molecules is presented on the basis of the most recent experimental measurements and theoretical calculations. The processes by which energetic electrons lose energy in CO gas are analyzed with these input cross sections. The efficiencies are computed of vibrational and electronic excitation, dissociation, ionization, and heating for CO gas with fractional ionization ranging from 0% to 10%. The calculated mean energy per ion pair for neutral CO gas is 32.3 eV, which is in excellent agreement with the experimental value of 32.2 eV. It increases to 35.6 eV at a fractional ionization of 1%, typical of supernovae ejecta.

  5. 78 FR 31997 - Greatmat Technology Corp., Kentucky USA Energy, Inc., Solar Energy Ltd., and Visiphor Corp...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-28

    ... COMMISSION Greatmat Technology Corp., Kentucky USA Energy, Inc., Solar Energy Ltd., and Visiphor Corp., Order... lack of current and accurate information concerning the securities of Solar Energy Ltd. because it has... concerning the securities of Kentucky USA Energy, Inc. because it has not filed any periodic reports...

  6. Permeability enhancement using high energy gas fracturing

    SciTech Connect

    Chu, T.Y.; Cuderman, J.F.; Jung, J.; Jacobson, R.D.

    1986-01-01

    This paper reports the results of a preliminary study of using High Energy Gas Fracturing (HEGF) techniques for geothermal well stimulation. Experiments conducted in the G-tunnel complex at the Nevada Test Site (NTS) showed that multiple fractures could be created in water-filled boreholes using HEGF. Therefore, the method is potentially useful for geothermal well stimulation. 4 refs., 11 figs.

  7. Permeability Enhancement Using High Energy Gas Fracturing

    SciTech Connect

    Chu, T.Y.; Cuderman, J.F.; Jung, J.; Jacobson, R.D.

    1986-01-21

    This paper reports the results of a preliminary study of using High Energy Gas Fracturing (HEGF) techniques for geothermal well stimulation. Experiments conducted in the G-tunnel complex at the Nevada Test Site (NTS) showed that multiple fractures could be created in water-filled boreholes using HEGF. Therefore, the method is potentially useful for geothermal well stimulation.

  8. FUEL CELL ENERGY RECOVERY FROM LANDFILL GAS

    EPA Science Inventory

    International Fuel Cells Corporation is conducting a US Environmental Protection Agency (EPA) sponsored program to demonstrate energy recovery from landfill gas using a commercial phosphoric acid fuel cell power plant. The US EPA is interested in fuel cells for this application b...

  9. Solar Energy Education Packet for Elementary & Secondary Students.

    ERIC Educational Resources Information Center

    Center for Renewable Resources, Washington, DC.

    The arrangement of this packet is essentially evolutionary, with a conscious effort to alternate reading assignments, activities and experiments. It begins with solar energy facts and terminology as background to introduce the reader to basic concepts. It progresses into a discussion of passive solar systems. This is followed by several projects…

  10. Solar and energy-conserving food technologies: a training manual

    SciTech Connect

    Elliot, J.; Goldman, L.

    1985-01-01

    The report is designed to help plan and implement in-service trainings in solar and other energy-conserving food technologies. It focuses on design, construction, and use of solar dryers for fruits, vegetables, meat, fish and herbs, along with fireless cookery. It emphasizes integrating technical and nontechnical information.

  11. SOLAR THERMAL HEATING SYSTEM FOR A ZERO ENERGY HOUSE

    EPA Science Inventory

    Technical Challenge to Sustainability: The inter-disciplinary team, Pittsburgh Synergy, plans to design and build an 800sf home powered by site-based solar energy systems for the 2005 Solar Decathlon. The house employs a home-based business and related transportation needs,...

  12. PASTEURIZATION USING A LENS AND SOLAR ENERGY (PULSE) METHOD

    EPA Science Inventory

    Water pasteurization using Fresnel lenses and preexisting solar disinfection methods will be evaluated. Preliminary tests were conducted using two types of Fresnel lenses: spot and linear, which concentrate solar energy onto a point and a line respectively on a water contai...

  13. Solar Energy Task Force Report on Education and Training.

    ERIC Educational Resources Information Center

    O'Connor, J. Kevin

    The Solar Energy Task Force Report summarizes data, information, and discussions focusing on solar space and water heating applications. The report is intended to fill a need for curriculum and course development and direction for technical training programs, especially in vocational/technical schools and community colleges. It addresses

  14. Small integrated solar energy systems for developing countries

    NASA Astrophysics Data System (ADS)

    Schreitmueller, K. R.

    1982-11-01

    Solar enegy applications in developing countries cover processing of food and other agricultural products, fresh water production, operation of cooling and freezing equipment, of water pumps and processing machinery. Evacuated tubular collectors turn out to be best suited for process heat generation; photovoltaic generators for electricity production. The Mexican fisher village of Las Barrancas gives a good example of an integrated solar energy system.

  15. Solar Energy Task Force Report on Education and Training.

    ERIC Educational Resources Information Center

    O'Connor, J. Kevin

    The Solar Energy Task Force Report summarizes data, information, and discussions focusing on solar space and water heating applications. The report is intended to fill a need for curriculum and course development and direction for technical training programs, especially in vocational/technical schools and community colleges. It addresses…

  16. Solar Energy Education Packet for Elementary & Secondary Students.

    ERIC Educational Resources Information Center

    Center for Renewable Resources, Washington, DC.

    The arrangement of this packet is essentially evolutionary, with a conscious effort to alternate reading assignments, activities and experiments. It begins with solar energy facts and terminology as background to introduce the reader to basic concepts. It progresses into a discussion of passive solar systems. This is followed by several projects

  17. Solar Energy Education Packet for Elementary & Secondary Students. Revised Edition.

    ERIC Educational Resources Information Center

    Center for Renewable Resources, Washington, DC.

    The arrangement of this packet is essentially evolutionary, with a conscious effort to alternate reading assignments, activities and experiments. It begins with solar energy facts and terminology as background to introduce the reader to basic concepts. It progresses into a discussion of passive solar systems. This is followed by several projects…

  18. The Potential of Solar as Alternative Energy Source for Socio-Economic Wellbeing in Rural Areas, Malaysia

    NASA Astrophysics Data System (ADS)

    Alam, Rashidah Zainal; Siwar, Chamhuri; Ludin, Norasikin Ahmad

    Malaysia's energy sector is highly dependent on fossil fuels as a primary energy source. Economic growth and socio-economic wellbeing also rely on the utilization of energy in daily life routine. Nevertheless, the increasing cost for electricity and declining fossil fuels resources causes various negative impacts to the people and environment especially in rural areas. This prompted Malaysia to shift towards alternative energy sources such as solar energy to ensure social, economic and environmental benefits. The solar energy is one of the potential renewable energy sources in tropical countries particularly in Malaysia. The paper attempts to analyze the benefits and advantages related to energy efficiency of solar for sustainable energy use and socio economic wellbeing in rural areas, Malaysia. The paper uses secondary sources of data such as policies, regulations and research reports from relevant ministries and agencies to attain the objectives. As a signatory country to the UN Convention on Climate Change and the Kyoto Protocol, Malaysia has taken initiatives for decreasing energy dependence on oil to reduce greenhouse gas emissions (GHG) for sustainable development. The paper shows solar energy becomes one of the promising alternative energy sources to alleviate energy poverty in Malaysia for rural areas. Finally, solar energy has increased socio-economic wellbeing and develops green potential and toward achieving energy efficiency in energy sector of Malaysia by preserving environment as well as reducing carbon emission.

  19. Evaluating Performances of Solar-Energy Systems

    NASA Technical Reports Server (NTRS)

    Jaffe, L. D.

    1987-01-01

    CONC11 computer program calculates performances of dish-type solar thermal collectors and power systems. Solar thermal power system consists of one or more collectors, power-conversion subsystems, and powerprocessing subsystems. CONC11 intended to aid system designer in comparing performance of various design alternatives. Written in Athena FORTRAN and Assembler.

  20. A possible origin of EL6 chondrites from a high temperature-high pressure solar gas

    SciTech Connect

    Blander, M.; Unger, L.; Pelton, A.; Eriksson, G.

    1994-05-01

    Condensates from a gas of ``solar`` composition were calculated to investigate the origins of EL6 chondrites using a free energy minimization program with a data base for the thermodynamic properties of multicomponent molten silicates as well as for other liquids solids, solid solutions and gaseous species. Because of high volatility of silicon and silica, the high silicon content of metal (2.6 mole %) can only be produced at pressures 10{sup {minus}2} atm at temperatures above 1475 K. At 100--500 atm, a liquid silicate phase crystallizes at a temperature where the silicon content of the metal, ferrosilite content of the enstatite and albite concentration in the plagioclase are close to measured values. In pyrometallurgy, liquid silicates are catalysts for reactions in which Si-O-Si bridging bonds are broken or formed. Thus, one attractive mode for freezing in the compositions of these three phases is disappearance of fluxing liquid. If the plagioclase can continue to react with the nebula without a liquid phase, lower pressures of 10{sup {minus}1} to 1 atm might be possible. Even if the nebula is more reducing than a solar gas, the measured properties of EL6 chondrites might be reconciled with only slightly lower pressures (less than 3X lower). The temperatures would be about the same as indicated in our calculations since the product of the silicon content of the metal and the square of the ferrosilite content of the enstatite constitute a cosmothermometer for the mineral assemblage in EL6 chondrites.