Science.gov

Sample records for gas spills

  1. Infiltration and evaporation of small hydrocarbon spills at gas stations

    NASA Astrophysics Data System (ADS)

    Hilpert, Markus; Breysse, Patrick N.

    2014-12-01

    Small gasoline spills frequently occur at gasoline dispensing stations. We have developed a mathematical model to estimate both the amount of gasoline that infiltrates into the concrete underneath the dispensing stations and the amount of gasoline that evaporates into the typically turbulent atmosphere. Our model shows that the fraction of infiltrated gasoline can exceed the fraction that evaporates from the sessile droplets. Infiltrated gasoline then evaporates and is slowly released to the atmosphere via slow diffusive transport in pores. Tentative experiments show that our theoretical approach captures observed experimental trends. Predictions based on independently estimated model parameters roughly describe the experimental data, except for the very slow vapor release at the end of Stage II evaporation. Our study suggests that, over the lifespan of a gas station, concrete pads underneath gas dispensing stations accumulate significant amounts of gasoline, which could eventually break through into underlying soil and groundwater. Our model also shows that lifetimes of spilled gasoline droplets on concrete surfaces are on the order of minutes or longer. Therefore contamination can be carried away by foot traffic or precipitation runoff. Regulations and guidelines typically do not address subsurface and surface contaminations due to chronic small gasoline spills, even though these spills could result in non-negligible human exposure to toxic and carcinogenic gasoline compounds.

  2. Breach and safety analysis of spills over water from large liquefied natural gas carriers.

    SciTech Connect

    Hightower, Marion Michael; Luketa-Hanlin, Anay Josephine; Attaway, Stephen W.

    2008-05-01

    In 2004, at the request of the Department of Energy, Sandia National Laboratories (Sandia) prepared a report, ''Guidance on the Risk and Safety Analysis of Large Liquefied Natural Gas (LNG) Spills Over Water''. That report provided framework for assessing hazards and identifying approaches to minimize the consequences to people and property from an LNG spill over water. The report also presented the general scale of possible hazards from a spill from 125,000 m3 o 150,000 m3 class LNG carriers, at the time the most common LNG carrier capacity.

  3. Gas Chromatography/Atmospheric Pressure Chemical Ionization Tandem Mass Spectrometry for Fingerprinting the Macondo Oil Spill.

    PubMed

    Lobodin, Vladislav V; Maksimova, Ekaterina V; Rodgers, Ryan P

    2016-07-01

    We report the first application of a new mass spectrometry technique (gas chromatography combined to atmospheric pressure chemical ionization tandem mass spectrometry, GC/APCI-MS/MS) for fingerprinting a crude oil and environmental samples from the largest accidental marine oil spill in history (the Macondo oil spill, the Gulf of Mexico, 2010). The fingerprinting of the oil spill is based on a trace analysis of petroleum biomarkers (steranes, diasteranes, and pentacyclic triterpanes) naturally occurring in crude oil. GC/APCI enables soft ionization of petroleum compounds that form abundant molecular ions without (or little) fragmentation. The ability to operate the instrument simultaneously in several tandem mass spectrometry (MS/MS) modes (e.g., full scan, product ion scan, reaction monitoring) significantly improves structural information content and sensitivity of analysis. For fingerprinting the oil spill, we constructed diagrams and conducted correlation studies that measure the similarity between environmental samples and enable us to differentiate the Macondo oil spill from other sources. PMID:27281271

  4. A suggestion to assess spilled hydrocarbons as a greenhouse gas source

    SciTech Connect

    McAlexander, Benjamin L.

    2014-11-15

    Petroleum-contaminated site management typically counts destruction of hydrocarbons by either natural or engineered processes as a beneficial component of remediation. While such oxidation of spilled hydrocarbons is often necessary for achieving risk reduction for nearby human and ecological receptors, site assessments tend to neglect that this also means that the pollutants are converted to greenhouse gases and emitted to the atmosphere. This article presents a suggestion that the current and long term greenhouse gas emissions from spilled hydrocarbons be incorporated to petroleum site assessments. This would provide a more complete picture of pollutant effects that could then be incorporated to remedial objectives. At some sites, this additional information may affect remedy selection. Possible examples include a shift in emphasis to remedial technologies that reduce pollutant greenhouse gas effects (e.g., by conversion of methane to carbon dioxide in the subsurface), and a more holistic context for considering remedial technologies with low emission footprints.

  5. Guidance on risk analysis and safety implications of a large liquefied natural gas (LNG) spill over water.

    SciTech Connect

    Wellman, Gerald William; Melof, Brian Matthew; Luketa-Hanlin, Anay Josephine; Hightower, Marion Michael; Covan, John Morgan; Gritzo, Louis Alan; Irwin, Michael James; Kaneshige, Michael Jiro; Morrow, Charles W.

    2004-12-01

    While recognized standards exist for the systematic safety analysis of potential spills or releases from LNG (Liquefied Natural Gas) storage terminals and facilities on land, no equivalent set of standards or guidance exists for the evaluation of the safety or consequences from LNG spills over water. Heightened security awareness and energy surety issues have increased industry's and the public's attention to these activities. The report reviews several existing studies of LNG spills with respect to their assumptions, inputs, models, and experimental data. Based on this review and further analysis, the report provides guidance on the appropriateness of models, assumptions, and risk management to address public safety and property relative to a potential LNG spill over water.

  6. Portable, fast-response gas sensor for measuring methane and ethane and propane in liquefied natural gas spills

    NASA Astrophysics Data System (ADS)

    Bingham, G. E.; Kiefer, R. D.; Gillespie, C. H.; McRae, T. G.; Goldwire, H. C.; Koopman, R. P.

    1983-10-01

    We have developed a four-band, IR radiometer for measuring methane and ethane plus propane in the 1% to 100% gas per volume of air range in liquefied natural gas spills. The instrument is a small and lightweight open-cell, pyroelectric detector-based sensor designed for field use. It compensates for attenuation because of dense fog and is sufficiently hardened to allow continuous operation in the transient flame front of an ignited natural gas cloud. The sensor transmits five determinations of the gas concentration each second to a data-collection station on an interrupt-driven, serial data link. It has an operational power requirement of 15 W at 12 V dc.

  7. Oil Spills

    MedlinePlus

    Oil spills often happen because of accidents, when people make mistakes or equipment breaks down. Other causes include natural disasters or deliberate acts. Oil spills have major environmental and economic effects. Oil spills ...

  8. Utilisation of the GMES Sentinel satellites for off-shore platform oil spills and gas flaring monitoring

    NASA Astrophysics Data System (ADS)

    Di Erasmo, Daniele; Casadio, Stefano; Cardaci, Massimo; Del Frate, Fabio

    2013-04-01

    Oil spills and gas flaring are serious issues for ecosystem, economy and people working on the extraction sites. Oil spill is known. Gas Flaring is the disposal of poison waste gases generated in the oil extraction process. High volumes (every year gas flaring burns worldwide the equivalent of 25% of the overall gas burned in Europe), significantly contributing to the global carbon emission budget (0.5% of total, 2008). European and worldwide legislation pays an increasing attention to it. Our Sentinel1 and 3 SAR and SLSTR usage for this objective won the GMES Masters 2012 IDEAS Challenge. In this study, we use SAR and infrared/thermal (SLSTR) data to identify unexpected misbehaviours of oil platforms, like switch on of the flare and oil spill in the ocean. On one side, the detection and characterization of gas flaring is achieved by analysing the infrared/thermal radiances measured by the SLSTR instrument on-board SENTINEL-3. This technique has been developed and tested using the ENVISAT Along Track Scanning Radiometer (ATSR) dataset and proved to be adequate for long term monitoring of oil extraction for both off-shore and in-shore drilling stations. The spatial/temporal coverage provided by SENTINEL-3 will allow an unprecedented daily monitoring of the oil extraction platforms. On the other side, the detection of oil spills and ships can be performed using Synthetic Aperture Radar (SAR). Both for oil spills and ships, many techniques have been published in the dedicated literature and validated to make the process of detection from SAR automatic. The extension of these techniques to the future SENTINEL-1 data is feasible. The service is mainly addressed to governments (in charge of controlling respect of the rules), civil protection authorities (to promote prevention of pollution damages), oil companies (that want to prove their respect of rules and attention to the environment), and ONGs (involved in the monitoring of the environment). The methodology applied

  9. Oil Spill!

    ERIC Educational Resources Information Center

    Ansberry, Karen Rohrich; Morgan, Emily

    2005-01-01

    An oil spill occurs somewhere in the world almost every day of the year, and the consequences can be devastating. In this month's column, students explore the effects of oil spills on plants, animals, and the environment and investigate oil spill clean-up methods through a simulated oil spill. The activities described in this article give students…

  10. Correlations of whitecap coverage and gas transfer velocity with microwave brightness temperature for plunging and spilling breaking waves

    SciTech Connect

    Wang, Qin; Monahan, E.C.; Asher, W.E.

    1995-07-01

    Bubbles and bubble plumes generated by wind-induced breaking waves significantly enhance the gas exchange across the interface between the ocean and atmosphere under high-wind conditions. Whitcaps, or active spilling wave crests, are the sea-surface manifestation of the bubbles and bubble plumes in the subsurface mixed layer, and the fractional area of the sea surface covered by which has been proposed to correlate linearly with the air-sea gas transfer velocity. The presence of whitecaps substantially increases the microwave brightness temperature of the sea surface. It could be possible to estimate the whitecap coverage from the sea-surface microwave brightness temperature would also be very helpful in developing a remote-sensing model for predicting air-sea gas transfer velocities from microwave brightness temperatures. As a part of an air-water gas exchange experiment conducted in an outdoor surf pool, measurements were made that were designed to investigate the correlation between whitecap coverage and microwave brightness temperature. A mechanical wave maker was located at the deep end of the pool and the generated waves propagate and break towards the shallow end of the pool. Two wave patterns characteristic of plunging and spilling breaking waves at four wave heights from 0.3 m to 1.2 m were produced.

  11. Vapor spill monitoring method

    DOEpatents

    Bianchini, Gregory M.; McRae, Thomas G.

    1985-01-01

    Method for continuous sampling of liquified natural gas effluent from a spill pipe, vaporizing the cold liquified natural gas, and feeding the vaporized gas into an infrared detector to measure the gas composition. The apparatus utilizes a probe having an inner channel for receiving samples of liquified natural gas and a surrounding water jacket through which warm water is flowed to flash vaporize the liquified natural gas.

  12. Oil Spills

    MedlinePlus

    ... is to provide scientific support to the U.S. Coast Guard officers in charge of response operations. In addition ... NOAA Responds to Oil Spills While the U.S. Coast Guard oversees all responses to oil spills and chemical ...

  13. Spill Safety

    ERIC Educational Resources Information Center

    Roy, Ken

    2005-01-01

    This article describes OSHA procedures for handling Occupational Exposure to Hazardous Chemicals in Laboratories. The Laboratory Standard requires a Chemical Hygiene Plan to address all aspects of working with hazardous chemicals. This includes dealing with chemical spills. Chemical spill kits or "spill crash carts" need to be available in case…

  14. Oil Spills

    MedlinePlus

    ... deliberate acts. Oil spills have major environmental and economic effects. Oil spills can also affect human health. These effects can depend on what kind of oil was spilled and where (on land, in a river, or in the ocean). Other factors include what kind of exposure and how much ...

  15. Oil spill modeling in the southeastern Mediterranean Sea in support of accelerated offshore oil and gas exploration

    NASA Astrophysics Data System (ADS)

    Brenner, Steve

    2015-12-01

    Since the discovery of major reserves in the Israeli exclusive economic zone (EEZ) 6 years ago, exploration and drilling for natural gas and oil have proceeded at an accelerated pace. As part of the licensing procedure for drilling, an environmental impact assessment and an emergency response plan must be presented to the authorities, which include several prespecified oil spill simulations. In this study, the MEDSLIK oil spill model has been applied for this purpose. The model accounts for time-dependent advection, dispersion, and physiochemical weathering of the surface slick. It is driven by currents produced by high-resolution dynamic downscaling of ocean reanalysis data and winds extracted from global atmospheric analyses. Worst case scenarios based on 30-day well blowouts under four sets of environmental conditions were simulated for wells located at 140, 70, and 20 km off the coast of central Israel. For the well furthest from the coast, the amount of oil remaining in the surface slick always exceeds the amount deposited on the coast. For the mid-distance well, the cases were evenly split. For the well closest to the coast, coastal deposition always exceeds the oil remaining in the slick. Additional simulations with the wind switched off helped highlight the importance of the wind in evaporation of the oil and in transporting the slick toward the southeastern coast.

  16. Expansion of the analytical window for oil spill characterization by ultrahigh resolution mass spectrometry: beyond gas chromatography.

    PubMed

    McKenna, Amy M; Nelson, Robert K; Reddy, Christopher M; Savory, Joshua J; Kaiser, Nathan K; Fitzsimmons, Jade E; Marshall, Alan G; Rodgers, Ryan P

    2013-07-01

    Traditional tools for routine environmental analysis and forensic chemistry of petroleum have relied almost exclusively on gas chromatography-mass spectrometry (GC-MS), although many compounds in crude oil (and its transformation products) are not chromatographically separated or amenable to GC-MS due to volatility. To enhance current and future studies on the fate, transport, and fingerprinting of the Macondo well oil released from the 2010 Deepwater Horizon disaster, we created an extensive molecular library of the unadulterated petroleum to compare to a tar ball collected on the beach of Louisiana. We apply ultrahigh resolution Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry to identify compositional changes at the molecular level between native and weathered crude oil samples and reveal enrichment in polar compounds inaccessible by GC-based characterization. The outlined approach provides unprecedented detail with the potential to enhance insight into the environmental fate of spilled oil, improved toxicology, molecular modeling of biotic/abiotic weathering, and comprehensive molecular characterization for petroleum-derived releases. Here, we characterize more than 30,000 acidic, basic, and nonpolar unique neutral elemental compositions for the Macondo well crude oil, to provide an archive for future chemical analyses of the environmental consequences of the oil spill. PMID:23692145

  17. Composition and fate of gas and oil released to the water column during the Deepwater Horizon oil spill

    PubMed Central

    Reddy, Christopher M.; Arey, J. Samuel; Seewald, Jeffrey S.; Sylva, Sean P.; Lemkau, Karin L.; Nelson, Robert K.; Carmichael, Catherine A.; McIntyre, Cameron P.; Fenwick, Judith; Ventura, G. Todd; Van Mooy, Benjamin A. S.; Camilli, Richard

    2012-01-01

    Quantitative information regarding the endmember composition of the gas and oil that flowed from the Macondo well during the Deepwater Horizon oil spill is essential for determining the oil flow rate, total oil volume released, and trajectories and fates of hydrocarbon components in the marine environment. Using isobaric gas-tight samplers, we collected discrete samples directly above the Macondo well on June 21, 2010, and analyzed the gas and oil. We found that the fluids flowing from the Macondo well had a gas-to-oil ratio of 1,600 standard cubic feet per petroleum barrel. Based on the measured endmember gas-to-oil ratio and the Federally estimated net liquid oil release of 4.1 million barrels, the total amount of C1-C5 hydrocarbons released to the water column was 1.7 × 1011 g. The endmember gas and oil compositions then enabled us to study the fractionation of petroleum hydrocarbons in discrete water samples collected in June 2010 within a southwest trending hydrocarbon-enriched plume of neutrally buoyant water at a water depth of 1,100 m. The most abundant petroleum hydrocarbons larger than C1-C5 were benzene, toluene, ethylbenzene, and total xylenes at concentrations up to 78 μg L-1. Comparison of the endmember gas and oil composition with the composition of water column samples showed that the plume was preferentially enriched with water-soluble components, indicating that aqueous dissolution played a major role in plume formation, whereas the fates of relatively insoluble petroleum components were initially controlled by other processes. PMID:21768331

  18. Vadose zone attenuation of organic compounds at a crude oil spill site - Interactions between biogeochemical reactions and multicomponent gas transport

    USGS Publications Warehouse

    Molins, S.; Mayer, K.U.; Amos, R.T.; Bekins, B.A.

    2010-01-01

    Contaminant attenuation processes in the vadose zone of a crude oil spill site near Bemidji, MN have been simulated with a reactive transport model that includes multicomponent gas transport, solute transport, and the most relevant biogeochemical reactions. Dissolution and volatilization of oil components, their aerobic and anaerobic degradation coupled with sequential electron acceptor consumption, ingress of atmospheric O2, and the release of CH4 and CO2 from the smear zone generated by the floating oil were considered. The focus of the simulations was to assess the dynamics between biodegradation and gas transport processes in the vadose zone, to evaluate the rates and contributions of different electron accepting processes towards vadose zone natural attenuation, and to provide an estimate of the historical mass loss. Concentration distributions of reactive (O2, CH4, and CO2) and non-reactive (Ar and N2) gases served as key constraints for the model calibration. Simulation results confirm that as of 2007, the main degradation pathway can be attributed to methanogenic degradation of organic compounds in the smear zone and the vadose zone resulting in a contaminant plume dominated by high CH4 concentrations. In accordance with field observations, zones of volatilization and CH4 generation are correlated to slightly elevated total gas pressures and low partial pressures of N2 and Ar, while zones of aerobic CH4 oxidation are characterized by slightly reduced gas pressures and elevated concentrations of N2 and Ar. Diffusion is the most significant transport mechanism for gases in the vadose zone; however, the simulations also indicate that, despite very small pressure gradients, advection contributes up to 15% towards the net flux of CH4, and to a more limited extent to O2 ingress. Model calibration strongly suggests that transfer of biogenically generated gases from the smear zone provides a major control on vadose zone gas distributions and vadose zone carbon

  19. Seasonal Variations in CO2 Efflux, Vadose Zone Gas Concentrations, and Natural Attenuation Rates at a Crude Oil Spill Site

    NASA Astrophysics Data System (ADS)

    Trost, J.; Sihota, N.; Delin, G. N.; Warren, E.

    2014-12-01

    Accurate estimates of hydrocarbon source zone natural attenuation (SZNA) rates are important for managing contaminated sites but are difficult to measure. Moreover, SZNA rates may vary seasonally in response to climatic conditions. Previous research at a crude oil spill site near Bemidji, Minnesota, USA showed that SZNA rates in the summer can be estimated by subtracting background soil CO2 efflux from the total soil CO2 efflux above the contaminated source. In this study, seasonal variations in surficial CO2 efflux were evaluated with measurements of gas concentrations (including 14CO2), temperature, and volumetric water content in the vadose zone at the site during a 2-year period. Soil CO2 effluxes in the source zone were consistently greater than background CO2 effluxes, and the magnitude and areal extent of the increased efflux varied seasonally. In the source zone, the 14CO2 and the CO2 efflux data showed a larger proportion of soil CO2 was derived from SZNA in fall and winter (October - February) compared to the summer (June - August). Surficial CO2 effluxes and vadose zone CO2 and CH4 concentrations in the source (2 - 7 meters below land surface) were positively correlated with soil temperature, indicating seasonal variability in SZNA rates. However, peak surficial CO2 effluxes did not correspond with periods of highest CO2 or CH4 concentrations at the 2 - 7 meter depth, demonstrating the effects of physical attributes (such as soil depth, frost, and volumetric water content) on gas transport. Overall, results showed that SZNA rates, background soil respiration rates, and gas transport varied seasonally, and that biological and physical factors are important to consider for accurately estimating SZNA rates.

  20. Historical reconstruction of oil and gas spills during moderate and strong earthquakes and related geochemical surveys in Southern Apennines

    NASA Astrophysics Data System (ADS)

    Sciarra, Alessandra; Cantucci, Barbara; Ferrari, Graziano; Pizzino, Luca; Quattrocchi, Fedora

    2016-04-01

    geochemical point of view, gathered results individuated Tramutola (Potenza) as a particularly interesting site, characterized by the presence of small oil springs at surface as well as deep-derived gas and hydrocarbons. The importance to track, map and monitor spill of fluids and, in particular, hydrocarbons also in quiescent times could constitute an additional element to set the "natural background noise" of the territory (baseline) not influenced or triggered by human activity.

  1. Oil Spills and Spills of Hazardous Substances.

    ERIC Educational Resources Information Center

    Environmental Protection Agency, Washington, DC. Office of Water Programs.

    The stated purpose of this publication is to describe some of the more significant spill incidents and the mechanisms, both managerial and technological, to deal with them. This publication is targeted for school, general public, and other such audiences. Sections include effects of spills, prevention of spills, responding to spills, spill…

  2. Vapor spill pipe monitor

    NASA Astrophysics Data System (ADS)

    Bianchini, G. M.; McRae, T. G.

    1983-06-01

    The invention is a method and apparatus for continually monitoring the composition of liquefied natural gas flowing from a spill pipe during a spill test by continually removing a sample of the LNG by means of a probe, gasifying the LNG in the probe, and sending the vaporized LNG to a remote IR gas detector for analysis. The probe comprises three spaced concentric tubes surrounded by a water jacket which communicates with a flow channel defined between the inner and middle, and middle and outer tubes. The inner tube is connected to a pump for providing suction, and the probe is positioned in the LNG flow below the spill pipe with the tip oriented partly downward so that LNG is continuously drawn into the inner tube through a small orifice. The probe is made of a high thermal conductivity metal. Hot water is flowed through the water jacket and through the flow channel between the three tubes to provide the necessary heat transfer to flash vaporize the LNG passing through the inner channel of the probe. The gasified LNG is transported through a connected hose or tubing extending from the probe to a remote IR sensor which measures the gas composition.

  3. Vapor spill pipe monitor

    DOEpatents

    Bianchini, G.M.; McRae, T.G.

    1983-06-23

    The invention is a method and apparatus for continually monitoring the composition of liquefied natural gas flowing from a spill pipe during a spill test by continually removing a sample of the LNG by means of a probe, gasifying the LNG in the probe, and sending the vaporized LNG to a remote ir gas detector for analysis. The probe comprises three spaced concentric tubes surrounded by a water jacket which communicates with a flow channel defined between the inner and middle, and middle and outer tubes. The inner tube is connected to a pump for providing suction, and the probe is positioned in the LNG flow below the spill pipe with the tip oriented partly downward so that LNG is continuously drawn into the inner tube through a small orifice. The probe is made of a high thermal conductivity metal. Hot water is flowed through the water jacket and through the flow channel between the three tubes to provide the necessary heat transfer to flash vaporize the LNG passing through the inner channel of the probe. The gasified LNG is transported through a connected hose or tubing extending from the probe to a remote ir sensor which measures the gas composition.

  4. Understanding oil spills and oil spill response

    SciTech Connect

    Not Available

    1993-10-01

    The volume contains individual sections that outline what oil spills are, their potential effects on the environment, how they are cleaned up, and how various agencies prepare for spills before they happen.

  5. Assessing fuel spill risks in polar waters: Temporal dynamics and behaviour of hydrocarbons from Antarctic diesel, marine gas oil and residual fuel oil.

    PubMed

    Brown, Kathryn E; King, Catherine K; Kotzakoulakis, Konstantinos; George, Simon C; Harrison, Peter L

    2016-09-15

    As part of risk assessment of fuel oil spills in Antarctic and subantarctic waters, this study describes partitioning of hydrocarbons from three fuels (Special Antarctic Blend diesel, SAB; marine gas oil, MGO; and intermediate grade fuel oil, IFO 180) into seawater at 0 and 5°C and subsequent depletion over 7days. Initial total hydrocarbon content (THC) of water accommodated fraction (WAF) in seawater was highest for SAB. Rates of THC loss and proportions in equivalent carbon number fractions differed between fuels and over time. THC was most persistent in IFO 180 WAFs and most rapidly depleted in MGO WAF, with depletion for SAB WAF strongly affected by temperature. Concentration and composition remained proportionate in dilution series over time. This study significantly enhances our understanding of fuel behaviour in Antarctic and subantarctic waters, enabling improved predictions for estimates of sensitivities of marine organisms to toxic contaminants from fuels in the region. PMID:27389459

  6. Coyote series data report LLNL/NWC 1981 LNG spill tests dispersion, vapor burn, and rapid-phase-transition. Volume 1. [7 experiments with liquefied natural gas, 2 with liquid methane, and one with liquid nitrogen

    SciTech Connect

    Goldwire, H.C. Jr.; Rodean, H.C.; Cederwall, R.T.; Kansa, E.J.; Koopman, R.P.; McClure, J.W.; McRae, T.G.; Morris, L.K.; Kamppinen, L.; Kiefer, R.D.

    1983-10-01

    The Coyote series of liquefied natural gas (LNG) spill experiments was performed at the Naval Weapons Center (NWC), China Lake, California, during the summer and fall of 1981. These tests were a joint effort of the Lawrence Livermore National Laboratory (LLNL) and the NWC and were sponsored by the US Department of Energy (DOE) and the Gas Research Institute. There were ten Coyote experiments, five primarily for the study of vapor dispersion and burning vapor clouds, and five for investigating the occurrence of rapid-phase-transition (RPT) explosions. Each of the last four of the five RPT tests consisted of a series of three spills. Seven experiments were with LNG, two were with liquid methane (LCH/sub 4/), and one was with liquid nitrogen (LN/sub 2/). Three arrays of instrumentation were deployed. An array of RPT diagnostic instruments was concentrated at the spill pond and was operated during all of the tests, vapor burn as well as RPT. The wind-field array was operated during the last nine experiments to define the wind direction and speed in the area upwind and downwind of the spill pond. The gas-dispersion array was deployed mostly downwind of the spill pond to measure gas concentration, humidity, temperature, ground heat flux, infrared (IR) radiation, and flame-front passage during three of the vapor dispersion and burn experiments (Coyotes 3, 5, and 6). High-speed color motion pictures were taken during every test, and IR imagery (side and overhead) was obtained during some vapor-burn experiments. Data was obtained by radiometers during Coyotes 3, 6, and 7. This report presents a comprehensive selection of the data obtained. It does not include any data analysis except that required to determine the test conditions and the reliability of the data. Data analysis is to be reported in other publications. 19 references, 76 figures, 13 tables.

  7. Spilled Gallstone: Late Presentation.

    PubMed

    Ibrarullah, Mohammad; Modi, M S

    2015-12-01

    Spilled gallstone, in a female patient, presented with an abscess 2 years after laparoscopic cholecystectomy. Computerized tomography scan of the abscess cavity containing the spilled stone that clinched the diagnosis has been presented. PMID:26730104

  8. Oil Spill Cleanup

    ERIC Educational Resources Information Center

    Kauble, Christena Ann

    2011-01-01

    Several classroom activities using a model of a seashore and an oil spill demonstrate the basic properties of oil spills in oceans. Students brainstorm about how to best clean up the mess. They work in teams, and after agreeing on how they will proceed, their method is tested by measuring the amount of oil removed and by rating the cleanliness of…

  9. Exploring Oil Spills.

    ERIC Educational Resources Information Center

    Czerniak, Charlene M.; And Others

    1996-01-01

    Presents activities in which elementary and middle school students work together to gain environmental awareness about oil spills. Involves students experiencing a simulated oil spill and attempting to clean it up. Discusses the use of children's literature after the activity in evaluation of the activity. (JRH)

  10. Safety implications of a large LNG tanker spill over water.

    SciTech Connect

    Hightower, Marion Michael; Gritzo, Louis Alan; Luketa-Hanlin, Anay Josephine

    2005-04-01

    The increasing demand for natural gas in the United States could significantly increase the number and frequency of marine LNG (liquefied natural gas) imports. Although many studies have been conducted to assess the consequences and risks of potential LNG spills, the increasing importance of LNG imports suggests that consistent methods and approaches be identified and implemented to help ensure protection of public safety and property from a potential LNG spill. For that reason the U.S. Department of Energy (DOE), Office of Fossil Energy, requested that Sandia National Laboratories (Sandia) develop guidance on a risk-based analysis approach to assess and quantify potential threats to an LNG ship, the potential hazards and consequences of a large spill from an LNG ship, and review prevention and mitigation strategies that could be implemented to reduce both the potential and the risks of an LNG spill over water. Specifically, DOE requested: (1) An in-depth literature search of the experimental and technical studies associated with evaluating the safety and hazards of an LNG spill from an LNG ship; (2) A detailed review of four recent spill modeling studies related to the safety implications of a large-scale LNG spill over water; (3) Evaluation of the potential for breaching an LNG ship cargo tank, both accidentally and intentionally, identification of the potential for such breaches and the potential size of an LNG spill for each breach scenario, and an assessment of the potential range of hazards involved in an LNG spill; (4) Development of guidance on the use of modern, performance-based, risk management approaches to analyze and manage the threats, hazards, and consequences of an LNG spill over water to reduce the overall risks of an LNG spill to levels that are protective of public safety and property.

  11. Spills on Flat Inclined Pavements

    SciTech Connect

    Simmons, Carver S.; Keller, Jason M.; Hylden, Jeff L.

    2004-03-01

    This report describes the general spill phenomenology for liquid spills occurring on relatively impermeable surfaces such as concrete or asphalt pavement and the development and application of a model to describe the time evolution of such spills. The discussion assumes evaporation and degradation are negligible and a homogeneous surface. In such an instance, the inherent interfacial properties determine the spatial extent of liquid spreading with the initial flow being controlled by the release rate of the spill and by the liquids resistance to flow as characterized by its viscosity. A variety of spill scenarios were simulated and successful implementation of the model was achieved. A linear relationship between spill area and spill volume was confirmed. The simulations showed spill rate had little effect on the final spill area. Slope had an insignificant effect on the final spill area, but did modify spill shape considerably. However, a fluid sink on the edge of the simulation domain, representing a storm drain, resulted in a substantial decrease in spill area. A bona fide effort to determine the accuracy of the model and its calculations remain, but comparison against observations from a simple experiment showed the model to correctly determine the spill area and general shape under the conditions considered. Further model verification in the form of comparison against small scale spill experiments are needed to confirm the models validity.

  12. Brine Spills Associated with Unconventional Oil Development in North Dakota.

    PubMed

    Lauer, Nancy E; Harkness, Jennifer S; Vengosh, Avner

    2016-05-17

    The rapid rise of unconventional oil production during the past decade in the Bakken region of North Dakota raises concerns related to water contamination associated with the accidental release of oil and gas wastewater to the environment. Here, we characterize the major and trace element chemistry and isotopic ratios ((87)Sr/(86)Sr, δ(18)O, δ(2)H) of surface waters (n = 29) in areas impacted by oil and gas wastewater spills in the Bakken region of North Dakota. We establish geochemical and isotopic tracers that can identify Bakken brine spills in the environment. In addition to elevated concentrations of dissolved salts (Na, Cl, Br), spill waters also consisted of elevated concentrations of other contaminants (Se, V, Pb, NH4) compared to background waters, and soil and sediment in spill sites had elevated total radium activities ((228)Ra + (226)Ra) relative to background, indicating accumulation of Ra in impacted soil and sediment. We observed that inorganic contamination associated with brine spills in North Dakota is remarkably persistent, with elevated levels of contaminants observed in spills sites up to 4 years following the spill events. PMID:27119384

  13. How Are Oil Spills Treated?

    ERIC Educational Resources Information Center

    Whitmore, William

    2005-01-01

    No two oil spills are the same. Logistically, oil spills are a nightmare because they are unanticipated and uncontrolled events. Oil spills present a threat to wildlife and coastal resources, concerning everyone from local residents to state environmental agencies and the federal government. Thousands of people may be involved in a significant…

  14. Xenon spill distribution and room clearance.

    PubMed

    Kelsey, C A; Telepak, R J

    1999-11-01

    The purpose of these studies was to investigate actual xenon gas clearance times under different exhaust conditions, to compare them with the calculated clearance times, to observe the distribution of the xenon gas while it was being exhausted from the room, and to determine the cause of a stationary xenon cloud that appeared on some clinical images. Clearance times with and without a flexible exhaust hose placed next to a simulated 133Xe gas spill were compared with clearance times measured in a room with all exhaust closed off. Two gamma cameras were used to observe the transport and exhaust of xenon following a simulated spill. Clearance times with the flexible exhaust hose were less than one minute because the xenon gas was removed before it had a chance to disperse into the room. Conventional room clearance calculations based on uniform mixing and measured exhaust rates yielded a clearance time of 22 min. The source of an artifactual stationary cloud image was discovered to be a small amount of xenon trapped between the collimator and camera face. A negative pressure and dedicated exhaust can be even more effective in exhausting spilled xenon from a room than air transfer calculations predict. The authors believe the flexible hose should always be used. PMID:10524516

  15. OIL SPILL CLEANUP

    EPA Science Inventory

    Due to the consideration of bioremediation for oil spills, it is important to understand the ecological and human health implications of bioremediation efforts. uring biodegradation, the toxicity of the polluting material may actually increase upon the conversion of non-toxic con...

  16. FIELD AND LABORATORY METHODS FOR INVESTIGATING A MARINE GASOLINE SPILL

    EPA Science Inventory

    Samples of water and bivalve mollusks were collected during the 2-day period immediately following a spill of gasoline in Block Island Sound, RI, and were analyzed by gas chromatography and gas chromatography-mass spectrometry. These analyses showed gasoline compounds in the wate...

  17. Oil Spill Map for Indian Sea Region based on Bhuvan- Geographic Information System using Satellite Images

    NASA Astrophysics Data System (ADS)

    Vijaya kumar, L. J.; Kishore, J. K.; Kesava Rao, P.; Annadurai, M.; Dutt, C. B. S.; Hanumantha Rao, K.; Sasamal, S. K.; Arulraj, M.; Prasad, A. V. V.; Kumari, E. V. S. Sita; Satyanarayana, S. N.; Shenoy, H. P.

    2014-11-01

    Oil spills in the ocean are a serious marine disaster that needs regular monitoring for environmental risk assessment and mitigation. Recent use of Polarimetric SAR imagery in near real time oil spill detection systems is associated with attempts towards automatic and unambiguous oil spill detection based on decomposition methods. Such systems integrate remote sensing technology, geo information, communication system, hardware and software systems to provide key information for analysis and decision making. Geographic information systems (GIS) like BHUVAN can significantly contribute to oil spill management based on Synthetic Aperture Radar (SAR) images. India has long coast line from Gujarat to Bengal and hundreds of ports. The increase in shipping also increases the risk of oil spills in our maritime zone. The availability of RISAT-1 SAR images enhances the scope to monitor oil spills and develop GIS on Bhuvan which can be accessed by all the users, such as ships, coast guard, environmentalists etc., The GIS enables realization of oil spill maps based on integration of the geographical, remote sensing, oil & gas production/infrastructure data and slick signatures detected by SAR. SAR and GIS technologies can significantly improve the realization of oil spill footprint distribution maps. Preliminary assessment shows that the Bhuvan promises to be an ideal solution to understand spatial, temporal occurrence of oil spills in the marine atlas of India. The oil spill maps on Bhuvan based GIS facility will help the ONGC and Coast Guard organization.

  18. An application of a vulnerability index to oil spill modeling in the Gulf of Mexico

    USGS Publications Warehouse

    LaBelle, R.P.; Rainey, Gail; Lanfear, K.J.

    1982-01-01

    An analysis was made of the relative impact to the shoreline of the Gulf of Mexico from proposed Federal Outer Continental Shelf oil and gas leasing activity. An oil spill trajectory model was coupled with a land segment vulnerability characterization to predict the risks to the shoreline. Such a technique allows spatial and temporal variability in oil spill sensitivity to be represented and combined with the likelihood of oil spill contact to specific coastal segments in the study area. Predicted relative impact was greatest along the coastlines of Louisiana, Mississippi, and Alabama. Useful information is provided for environmental impact analysis, as well as oil spill response planning.

  19. A predictive ocean oil spill model

    SciTech Connect

    Sanderson, J.; Barnette, D.; Papodopoulos, P.; Schaudt, K.; Szabo, D.

    1996-07-01

    This is the final report of a two-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). Initially, the project focused on creating an ocean oil spill model and working with the major oil companies to compare their data with the Los Alamos global ocean model. As a result of this initial effort, Los Alamos worked closely with the Eddy Joint Industry Project (EJIP), a consortium oil and gas producing companies in the US. The central theme of the project was to use output produced from LANL`s global ocean model to look in detail at ocean currents in selected geographic areas of the world of interest to consortium members. Once ocean currents are well understood this information could be used to create oil spill models, improve offshore exploration and drilling equipment, and aid in the design of semi-permanent offshore production platforms.

  20. Final report of the accident phenomenology and consequence (APAC) methodology evaluation. Spills Working Group

    SciTech Connect

    Brereton, S.; Shinn, J.; Hesse, D; Kaninich, D.; Lazaro, M.; Mubayi, V.

    1997-08-01

    The Spills Working Group was one of six working groups established under the Accident Phenomenology and Consequence (APAC) methodology evaluation program. The objectives of APAC were to assess methodologies available in the accident phenomenology and consequence analysis area and to evaluate their adequacy for use in preparing DOE facility safety basis documentation, such as Basis for Interim Operation (BIO), Justification for Continued Operation (JCO), Hazard Analysis Documents, and Safety Analysis Reports (SARs). Additional objectives of APAC were to identify development needs and to define standard practices to be followed in the analyses supporting facility safety basis documentation. The Spills Working Group focused on methodologies for estimating four types of spill source terms: liquid chemical spills and evaporation, pressurized liquid/gas releases, solid spills and resuspension/sublimation, and resuspension of particulate matter from liquid spills.

  1. Oil spill environmental forensics: the Hebei Spirit oil spill case.

    PubMed

    Yim, Un Hyuk; Kim, Moonkoo; Ha, Sung Yong; Kim, Sunghwan; Shim, Won Joon

    2012-06-19

    After the Hebei Spirit oil spill (HSOS) in December 2007, mixtures of three types of Middle East crude oil (total 12,547 kL) were stranded along 375 km of coastline in Western Korea. Emergency responses together with 1.3 million volunteers' activity rapidly removed ca. 20% of spilled oil but the lingering oils have been found along the heavily impacted shorelines for more than 4 years. The HSOS was the worst oil spill case in Republic of Korea, and there were many issues and lessons to be shared. In this study, we summarized some of the oil spill environmental forensic issues that were raised after the HSOS. Rapid screening using on-site measurement, long-term monitoring of multimedia, fingerprinting challenges and evaluation of the extent of the submerged oil were introduced, which supported decision making process of oil spill cleanup, mitigation of debates among stakeholders and provided scientific backgrounds for reasonable compensation. PMID:22582823

  2. Oil spill clean up

    SciTech Connect

    Claxton, L.D.; Houk, V.S.; Williams, R.; Kremer, F.

    1991-01-01

    Due to the consideration of bioremediation for oil spills, it is important to understand the ecological and human health implications of bioremediation efforts. During biodegradation, the toxicity of the polluting material may actually increase upon the conversion of non-toxic constituents to toxic species. Also, toxic compounds refractory to biological degradation may compromise the effectiveness of the treatment technique. In the study, the Salmonella mutagenicity assay showed that both the Prudhoe Bay crude oil and its weathered counterpart collected from oil-impacted water were weakly mutagenic. Results also showed that the mutagenic components were depleted at a faster rate than the overall content of organic material.

  3. Oil Spill Cleanup

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Petroleum Remediation Product (PRP) is a new way of cleaning up oil spills. It consists of thousands of microcapsules, tiny balls of beeswax with hollow centers, containing live microorganisms and nutrients to sustain them. As oil flows through the microcapsule's shell, it is consumed and digested by the microorganisms. Pressure buildup causes the PRP to explode and the enzymes, carbon dioxide and water are released into the BioBoom used in conjunction with PRP, preventing contaminated water from spreading. The system incorporates technology originally developed at the Jet Propulsion Laboratory and Marshall Space Flight Center.

  4. Helping nature clean up oil spills

    SciTech Connect

    Paddock, A.

    1996-11-01

    Oil spills are nothing new. In fact, for millions of years crude oil has been seeping up to the Earth`s surface, and for all that time Mother Nature has been on the job with microbes, or bacteria, to harmlessly convert the oil to water and carbon dioxide gas. Not all bacteria are bad. True, some can make us sick, however, the good ones help us bake bread, brew beer, and even clean up oil spills by a process known as biodegradation. Oil and bacteria don`t easily get together because oil and water don`t mix and bacteria prefer to stay in water. After some oil tankers spills in the English Channel 25 years ago, major oil companies (Arco, BP, Exxon, and others) developed oil dispersant products-specialized chemicals that make oils and sea water mix. The simplest examples of similar wetting agents are soaps and detergents. Now, thanks to dispersants, the natural bacteria at sea can easily get to the oil and the normally slow biodegradation process goes rather quickly.

  5. Simulation of impact of oil spill in the ocean--a case study of Arabian Gulf.

    PubMed

    Verma, Parikshit; Wate, Satish R; Devotta, Sukumar

    2008-11-01

    To meet the growing energy demand worldwide, oil and gas exploration and production activities have increased rapidly both in onshore and offshore areas. The produced oil from the ocean bed is transported onshore either by ship or pipeline. This has increased the risk of oil spill in the coastal area. In order to prepare an emergency preparedness plan and to assess the magnitude of risk involved in transporting and offloading oil, oil spill simulation studies play an important role. This paper describes a simulation of oil spill in coastal bay of Arabian Gulf where new developments are taking place using MIKE 21 model. The developments include a diesel based thermal power plant near Sir Baniyas Island, which is an ecological fragile area. Based on the project activity, two probable scenarios, one for diesel leak (250 m3/h) for 1 h and the other for instantaneous spill (500 m3) are considered. The MIKE 21 model was calibrated for hydrodynamics using measured field data followed by diesel-spill simulation to track its movement in the Arabian Gulf. The results for both leak and instantaneous spill indicate that spilled diesel will not move towards the Sir Banyas Island and more than 45% of the diesel will be evaporated within 48 h of oil spill. Based on the results, a clean up and contingency plan is proposed to mitigate the adverse impacts arising due to diesel spill in the study area. PMID:18095178

  6. For oil spills, no slick solutions

    SciTech Connect

    Not Available

    1984-12-01

    Oil spills from tankers and offshore wells are getting bigger and more numerous. Oil spill cleanup technology is hard-pressed to keep up with the problem. The use of skimming devices, sorbents and chemical agents, and microorganisms to control oil spills is described. The environmental effects of oil spills are briefly discussed.

  7. Using Simple Field Instruments to Monitor for Biological Production of Methane at Gasoline Spill Sites

    EPA Science Inventory

    When gasoline containing ethanol is spilled to ground water, natural anaerobic biodegradation of the ethanol can produce copious quantities of methane gas, which bubbles out of the ground water and enters the unsaturated zone. Depending on local circumstances, the concentration...

  8. Spilled Gallstones Mimicking Peritoneal Metastases

    PubMed Central

    Loan, William; Carey, Declan P.

    2009-01-01

    Background: Spillage of bile and gallstones due to accidental perforation of the gallbladder wall is often encountered during laparoscopic cholecystectomy. Although spilled stones were once considered harmless, there is increasing evidence that they can result in septic or other potential complications. Case Report: We report a case of spilled gallstones mimicking peritoneal metastases on radiological investigations; diagnosis was confirmed by diagnostic laparoscopy. Conclusion: Every effort should be made to retrieve spilled gallstones during laparoscopic cholecystectomy. When all the stones cannot be retrieved, it should be documented in the patient's medical records to avoid delay in the diagnosis of late complications. Diagnostic laparoscopy is useful when the radiological investigations are inconclusive. PMID:19366546

  9. DOE's Portal to Deepwater Horizon Oil Spill Data

    DOE Data Explorer

    On April 20, 2010, the Deepwater Horizon platform in the Gulf of Mexico exploded. The explosion and fire killed and injured workers on the oil rig, and caused major releases of oil and gas into the Gulf for several months. The Department of Energy, in keeping with the Obama Administrations ongoing commitment to transparency, provided online access to data and information related to the response to the BP oil spill. Included are schematics, pressure tests, diagnostic results, video clips, and other data. There are also links to the Restore the Gulf website, to the trajectory forecasts from NOAA, and oil spill information from the Environmental Protection Agency.

  10. GOM Deepwater Horizon Oil Spill: A Time Series Analysis of Variations in Spilled Hydrocarbons

    NASA Astrophysics Data System (ADS)

    Palomo, C. M.; Yan, B.

    2013-12-01

    An estimated amount of 210 million gallons of crude oil was released into the Gulf of Mexico (GOM) from April 20th to July 15th 2010 during the Deepwater Horizon oil rig explosion. The spill caused a tremendous financial, ecological, environmental and health impact and continues to affect the GOM today. Variations in hydrocarbons including alkanes, hopanes and poly-cyclic aromatic hydrocarbons (PAHs) can be analyzed to better understand the oil spill and assist in oil source identification. Twenty-one sediment samples*, two tar ball samples and one surface water oil sample were obtained from distinct locations in the GOM and within varying time frames from May to December 2010. Each sample was extracted through the ASE 200 solvent extractor, concentrated down under nitrogen gas, purified through an alumina column, concentrated down again with nitrogen gas and analyzed via GC X GC-TOF MS. Forty-one different hydrocarbons were quantified in each sample. Various hydrocarbon 'fingerprints,' such as parental :alkylate PAH ratios, high molecular weight PAHs: low molecular weight alkane ratios, and carbon preference index were calculated. The initial objective of this project was to identify the relative hydrocarbon contributions of petrogenic sources and combustion sources. Based on the calculated ratios, it is evident that the sediment core taken in October of 2010 was greatly affected by combustion sources. Following the first month of the spill, oil in the gulf was burned in attempts to contain the spill. Combustion related sources have quicker sedimentation rates, and hydrocarbons from a combustion source essentially move into deeper depths quicker than those from a petrogenic source, as was observed in analyses of the October 2010 sediment. *Of the twenty-one sediment samples prepared, nine were quantified for this project.

  11. Oil spill contamination probability in the southeastern Levantine basin.

    PubMed

    Goldman, Ron; Biton, Eli; Brokovich, Eran; Kark, Salit; Levin, Noam

    2015-02-15

    Recent gas discoveries in the eastern Mediterranean Sea led to multiple operations with substantial economic interest, and with them there is a risk of oil spills and their potential environmental impacts. To examine the potential spatial distribution of this threat, we created seasonal maps of the probability of oil spill pollution reaching an area in the Israeli coastal and exclusive economic zones, given knowledge of its initial sources. We performed simulations of virtual oil spills using realistic atmospheric and oceanic conditions. The resulting maps show dominance of the alongshore northerly current, which causes the high probability areas to be stretched parallel to the coast, increasing contamination probability downstream of source points. The seasonal westerly wind forcing determines how wide the high probability areas are, and may also restrict these to a small coastal region near source points. Seasonal variability in probability distribution, oil state, and pollution time is also discussed. PMID:25534630

  12. Crude Oil Spills and Health

    MedlinePlus

    ... of Health Journal Articles on Oil Dispersants and Invertebrates, Seawater, Plants and Environment PubMed - Biomedical journal literature ... of Health Journal Articles on Oil Spills and Invertebrates, Seawater, Plants and Environment PubMed - Biomedical journal literature ...

  13. Some factors affecting the oil-spill risk to sea otters in California. Final report

    SciTech Connect

    Tinney, R.T.

    1984-10-01

    Sea otters in California, with their limited range and numbers, are exposed to the threat of oil spills from a number of sources including offshore oil and gas development, transportation of crude oil and refined products, and the bunker fuel of vessels transiting the otter range. This report explores some of the direct and indirect ways otters may be affected by oil spills, including hypothermia, pneumonia, toxic effects, and destruction of preferred prey. The report also examines the possibility of mitigating the effects of oil spills through spill containment and cleanup, otter capture, cleaning and rehabilitation, and otter relocation. The report concludes with a description of the amount of shoreline affected by some major spills in various parts of the world.

  14. National Spill Test Technology Database

    DOE Data Explorer

    Sheesley, David [Western Research Institute

    Western Research Institute established, and ACRC continues to maintain, the National Spill Technology database to provide support to the Liquified Gaseous Fuels Spill Test Facility (now called the National HAZMAT Spill Center) as directed by Congress in Section 118(n) of the Superfund Amendments and Reauthorization Act of 1986 (SARA). The Albany County Research Corporation (ACRC) was established to make publicly funded data developed from research projects available to benefit public safety. The founders since 1987 have been investigating the behavior of toxic chemicals that are deliberately or accidentally spilled, educating emergency response organizations, and maintaining funding to conduct the research at the DOEÆs HAZMAT Spill Center (HSC) located on the Nevada Test Site. ACRC also supports DOE in collaborative research and development efforts mandated by Congress in the Clean Air Act Amendments. The data files are results of spill tests conducted at various times by the Silicones Environmental Health and Safety Council (SEHSC) and DOE, ANSUL, Dow Chemical, the Center for Chemical Process Safety (CCPS) and DOE, Lawrence Livermore National Laboratory (LLNL), OSHA, and DOT; DuPont, and the Western Research Institute (WRI), Desert Research Institute (DRI), and EPA. Each test data page contains one executable file for each test in the test series as well as a file named DOC.EXE that contains information documenting the test series. These executable files are actually self-extracting zip files that, when executed, create one or more comma separated value (CSV) text files containing the actual test data or other test information.

  15. Oil spill responses R D

    SciTech Connect

    Engelhardt, F.R.; Nordvik, A.B.; Giammona, C.P.; Aurand, D.V.

    1994-01-01

    The Marine Spill Response Corp. (MSRC) was created as an industry response to the Exxon Valdez oil spill. The charter of MSRC includes as one of the primary functions the implementation of a spill response R D program to enhance future oil spill response decision-making. Funding for the program is provided largely by the Marine Preservation Association as part of an annual operating grant from that industry organization to MSRC. Research and development at MSRC is considered the key element in improving the future capability of MSRC and other oil spill responders. The major focus of the R D program is to advance knowledge and the technology needed to contain, clean up, and mitigate spills of persistent petroleum products in coastal and offshore waters while minimizing damage to marine and coastal resources and human health. The R D program is solidly in place today with more than 30 projects underway supporting more than $10 million targeted for research. By the end of 1994, more than 60 contracts will have been activated, and the results of many of these projects will be published.

  16. Oil-spill risk analysis: Central and western Gulf of Mexico Outer Continental Shelf, Lease Sales 139 and 141. Final report

    SciTech Connect

    Johnson, W.R.; Lear, E.M.

    1992-02-01

    The Federal Government has proposed to offer Outer Continental Shelf lands in the Gulf of Mexico for oil and gas leasing. Because oil spills may occur from activities associated with offshore oil production, the Minerals Management Service conducts a formal risk assessment. The effects of oil spills that could occur during oil and gas production must be considered. The report summarizes results of an oil spill risk analysis conducted for the proposed Gulf of Mexico Outer Continental Shelf Lease Sales 139 and 141.

  17. Oil-spill risk analysis: Gulf of Mexico (Proposed Lease Sales 131/135/137) Outer Continental Shelf. Final report

    SciTech Connect

    Hannon, L.J.; LaBelle, R.P.; Lear, E.M.

    1991-09-01

    The Federal Government has proposed to offer Outer Continental Shelf lands in the Gulf of Mexico for oil and gas leasing. Because oil spills may occur from activities associated with offshore oil production, the Minerals Management Service conducts a formal risk assessment. In evaluating the significance of accidental oil spills, it is important to remember that the occurrence of such spills is fundamentally probabilistic. The effects of oil spills that could occur during oil and gas production must be considered. The report summarizes results of an oil spill risk analysis conducted for the proposed Gulf of Mexico Outer Continental Shelf Lease Sales 131/135/137. The objective of this analysis was to estimate relative risks associated with oil and gas production for the proposed lease sales.

  18. Oil spills, 1971-75, Gulf of Mexico outer continental shelf

    USGS Publications Warehouse

    Danenberger, Elmer P.

    1976-01-01

    Oil spillage connected with federally supervised drilling and production activities has been a matter of wide public concern. In its supervision of mineral-resource development on the Outer Continental Shelf (OCS), the U.S. Geological Survey is responsible for the day-to-day inspection and monitoring of OCS oil and gas operations. During these activities, the U.S. Geological Survey records and investigates hydrocarbon discharges resulting from such operations. Beginning in 1971, all spills have been recorded, and a computer file has been maintained on all spills of 1 barrel or more. The total Gulf of Mexico OCS oil spillage recorded during January 1, 1971-December 31, 1975, amounted to 51,421 barrels. Production during that period amounted to 35,219 barrels per barrel spilled. In all, 5,857 spills were recorded, but 85.5 percent of the total spill volume was contributed by just 5 incidents. The environmental effect of these incidents apparently was minimal and of short duration. No spills of more than 50 barrels resulted from drilling operations during the period. The only spillage resulting from blowouts was caused by nondrilling incidents, including completion, production, and workover. The amount of oil discharged from spills of less than 50 barrels decreased by more than half between 1971 and 1975. The improvement reflects changes in the operating philosophy of the offshore industry, tightening of U.S. Geological Survey operating orders, and substantial increases in the inspection force. Most production-platform spills involve failures in the sump system, the separator system, or other hydrocarbon-handling equipment; improved sump-system designs and better high-low-level controls have reduced both the number and the volume of spills. Pipeline and pump spills also declined significantly, although the decline appears less attributable to revisions in OCS operating requirements. No operator consistently contributed a disproportionate amount of spillage. Most of

  19. Spills, drills, and accountability

    SciTech Connect

    1993-12-31

    NRDC seeks preventive approaches to oil pollution on U.S. coasts. The recent oil spills in Spain and Scotland have highlighted a fact too easy to forget in a society that uses petroleum every minute of every day: oil is profoundly toxic. One tiny drop on a bald eagle`s egg has been known to kill the embryo inside. Every activity involving oil-drilling for it, piping it, shipping it-poses risks that must be taken with utmost caution. Moreover, oil production is highly polluting. It emits substantial air pollution, such as nitrogen oxides that can form smog and acid rain. The wells bring up great quantities of toxic waste: solids, liquids and sludges often contaminated by oil, toxic metals, or even radioactivity. This article examines the following topics focusing on oil pollution control and prevention in coastal regions of the USA: alternate energy sources and accountability of pollutor; ban on offshore drilling as exemplified by the energy policy act; tanker free zones; accurate damage evaluations. Policy of the National Resource Defence Council is articulated.

  20. Oil-spill risk analysis: Cook inlet outer continental shelf lease sale 149. Volume 2: Conditional risk contour maps of seasonal conditional probabilities. Final report

    SciTech Connect

    Johnson, W.R.; Marshall, C.F.; Anderson, C.M.; Lear, E.M.

    1994-08-01

    The Federal Government has proposed to offer Outer Continental Shelf (OCS) lands in Cook Inlet for oil and gas leasing. Because oil spills may occur from activities associated with offshore oil production, the Minerals Management Service conducts a formal risk assessment. In evaluating the significance of accidental oil spills, it is important to remember that the occurrence of such spills is fundamentally probabilistic. The effects of oil spills that could occur during oil and gas production must be considered. This report summarizes results of an oil-spill risk analysis conducted for the proposed Cook Inlet OCS Lease Sale 149. The objective of this analysis was to estimate relative risks associated with oil and gas production for the proposed lease sale. To aid the analysis, conditional risk contour maps of seasonal conditional probabilities of spill contact were generated for each environmental resource or land segment in the study area. This aspect is discussed in this volume of the two volume report.

  1. Oil Spills - Multiple Languages: MedlinePlus

    MedlinePlus

    ... Are Here: Home → Multiple Languages → All Health Topics → Oil Spills URL of this page: https://www.nlm.nih. ... V W XYZ List of All Topics All Oil Spills - Multiple Languages To use the sharing features on ...

  2. Oil Spills - Multiple Languages: MedlinePlus

    MedlinePlus

    ... Are Here: Home → Multiple Languages → All Health Topics → Oil Spills URL of this page: https://medlineplus.gov/languages/ ... V W XYZ List of All Topics All Oil Spills - Multiple Languages To use the sharing features on ...

  3. In-Situ Burning of Spilled Oil.

    ERIC Educational Resources Information Center

    Allen, Alan A.

    1991-01-01

    Reviews in-situ burning with particular emphasis on how it can be applied in water-related oil spill situations. Presents and discusses the use of nomograms and development of techniques cited for safe and effective ignition and controlled burning of spilled oil. Includes representative oil spill scenarios and possible responses. (15 references)…

  4. Assessment of synfuel spill cleanup options

    SciTech Connect

    Petty, S.E.; Wakamiya, W.; English, C.J.; Strand, J.A.; Mahlum, D.D.

    1982-04-01

    Existing petroleum-spill cleanup technologies are reviewed and their limitations, should they be used to mitigate the effects of synfuels spills, are discussed. The six subsections of this report address the following program goals: synfuels production estimates to the year 2000; possible sources of synfuel spills and volumes of spilled fuel to the year 2000; hazards of synfuels spills; assessment of existing spill cleanup technologies for oil spills; assessment of cleanup technologies for synfuel spills; and disposal of residue from synfuel spill cleanup operations. The first goal of the program was to obtain the most current estimates on synfuel production. These estimates were then used to determine the amount of synfuels and synfuel products likely to be spilled, by location and by method of transportation. A review of existing toxicological studies and existing spill mitigation technologies was then completed to determine the potential impacts of synthetic fuel spills on the environment. Data are presented in the four appendixes on the following subjects: synfuel production estimates; acute toxicity of synfuel; acute toxicity of alcohols.

  5. Oil spill protector

    SciTech Connect

    Gwinn, C.M.

    1993-06-08

    An apparatus for limiting and containing liquid spills from leaking vessels that navigate the water ways is described, comprising: (a) a protective sheeting that is thin, flexible and waterproof which covers the vessel from side to side and underneath the vessel, and spans from the bow to the stern of the vessel, for keeping the leaking contents of the vessel from leaking into the surrounding waters; (b) a means for storing the protective sheeting when the protective sheeting is no longer needed, whereby the means for storing is attached to one side of the vessel and spans the full width of the protective sheeting from the bow to the stern of the vessel, and the means for storing is powered; (c) cables attached to the edge of the protective sheeting, at different points, for the purpose of enabling the protective sheeting to be deployed, and to assist in the support of the protective sheeting when the protective sheeting is deployed; (d) a means for pulling the protective sheeting from storage, for deployment from one side of the vessel to the other side of the vessel; (e) a stem sealing unit for sealing the protective sheeting to the stern of the vessel completely around the hull of the vessel for the prevention of the leakage of unwanted liquid into surrounding waters, whereby the stern sealing unit is attached to the hull of the vessel, near the stern and just before the propulsion screw of the vessel, and spanning down the hull and underneath the hull and up the other side of the hull of the vessel, whereby upon deployment of the protective sheeting one of the cables is used to guide the end of the protective sheeting, to be sealed, into the stern sealing unit; and (f) a bow scaling unit for sealing the protective sheeting which covers the bow of the vessel, whereby the bow sealing unit fits over the front edge of the protective sheeting from the top to the bottom, thereby preventing the leakage of unwanted liquid into the surrounding waters.

  6. Air quality implications of the Deepwater Horizon oil spill.

    PubMed

    Middlebrook, Ann M; Murphy, Daniel M; Ahmadov, Ravan; Atlas, Elliot L; Bahreini, Roya; Blake, Donald R; Brioude, Jerome; de Gouw, Joost A; Fehsenfeld, Fred C; Frost, Gregory J; Holloway, John S; Lack, Daniel A; Langridge, Justin M; Lueb, Rich A; McKeen, Stuart A; Meagher, James F; Meinardi, Simone; Neuman, J Andrew; Nowak, John B; Parrish, David D; Peischl, Jeff; Perring, Anne E; Pollack, Ilana B; Roberts, James M; Ryerson, Thomas B; Schwarz, Joshua P; Spackman, J Ryan; Warneke, Carsten; Ravishankara, A R

    2012-12-11

    During the Deepwater Horizon (DWH) oil spill, a wide range of gas and aerosol species were measured from an aircraft around, downwind, and away from the DWH site. Additional hydrocarbon measurements were made from ships in the vicinity. Aerosol particles of respirable sizes were on occasions a significant air quality issue for populated areas along the Gulf Coast. Yields of organic aerosol particles and emission factors for other atmospheric pollutants were derived for the sources from the spill, recovery, and cleanup efforts. Evaporation and subsequent secondary chemistry produced organic particulate matter with a mass yield of 8 ± 4% of the oil mixture reaching the water surface. Approximately 4% by mass of oil burned on the surface was emitted as soot particles. These yields can be used to estimate the effects on air quality for similar events as well as for this spill at other times without these data. Whereas emission of soot from burning surface oil was large during the episodic burns, the mass flux of secondary organic aerosol to the atmosphere was substantially larger overall. We use a regional air quality model to show that some observed enhancements in organic aerosol concentration along the Gulf Coast were likely due to the DWH spill. In the presence of evaporating hydrocarbons from the oil, NO(x) emissions from the recovery and cleanup operations produced ozone. PMID:22205764

  7. Air quality implications of the Deepwater Horizon oil spill

    PubMed Central

    Middlebrook, Ann M.; Murphy, Daniel M.; Ahmadov, Ravan; Atlas, Elliot L.; Bahreini, Roya; Blake, Donald R.; Brioude, Jerome; de Gouw, Joost A.; Fehsenfeld, Fred C.; Frost, Gregory J.; Holloway, John S.; Lack, Daniel A.; Langridge, Justin M.; Lueb, Rich A.; McKeen, Stuart A.; Meagher, James F.; Meinardi, Simone; Neuman, J. Andrew; Nowak, John B.; Parrish, David D.; Peischl, Jeff; Perring, Anne E.; Pollack, Ilana B.; Roberts, James M.; Ryerson, Thomas B.; Schwarz, Joshua P.; Spackman, J. Ryan; Warneke, Carsten; Ravishankara, A. R.

    2012-01-01

    During the Deepwater Horizon (DWH) oil spill, a wide range of gas and aerosol species were measured from an aircraft around, downwind, and away from the DWH site. Additional hydrocarbon measurements were made from ships in the vicinity. Aerosol particles of respirable sizes were on occasions a significant air quality issue for populated areas along the Gulf Coast. Yields of organic aerosol particles and emission factors for other atmospheric pollutants were derived for the sources from the spill, recovery, and cleanup efforts. Evaporation and subsequent secondary chemistry produced organic particulate matter with a mass yield of 8 ± 4% of the oil mixture reaching the water surface. Approximately 4% by mass of oil burned on the surface was emitted as soot particles. These yields can be used to estimate the effects on air quality for similar events as well as for this spill at other times without these data. Whereas emission of soot from burning surface oil was large during the episodic burns, the mass flux of secondary organic aerosol to the atmosphere was substantially larger overall. We use a regional air quality model to show that some observed enhancements in organic aerosol concentration along the Gulf Coast were likely due to the DWH spill. In the presence of evaporating hydrocarbons from the oil, NOx emissions from the recovery and cleanup operations produced ozone. PMID:22205764

  8. MODELING METHODOLOGIES FOR OIL SPILLS

    EPA Science Inventory

    Oil spilled into aquatic environments is subject to a number of fates, including natural dispersion, emulsification and weathering. An oil slick moves due to the inherent spreading of the oil, currents, winds and waves. All of these processes influence the impacts of the oil on...

  9. HYDROCARBON SPILL EXPOSURE ASSESSMENT MODELING

    EPA Science Inventory

    Hydrocarbon spills impact drinking water supplies at down gradient locations. onventional finite difference and finite element models of multiphase, multicomponent flow have extreme requirements for both computer time and site data. ite data and the intent of the modeling often d...

  10. Lecithins - promising oil spill cleaner

    SciTech Connect

    Not Available

    1993-04-01

    A new, non-polluting method of cleaning up oil spills at sea as well as on land has been developed by researchers at the Hebrew University of Jerusalem. Their technique is based on the use of lecithins, a byproduct of producing edible oils from plants. Lecithin molecules are hydrophyllic at one end and lipophilic at their tail ends. When they come into contact with water, they organize themselves into bilayers whose heads all face the water and whose tails are all directed towards each other. These bilayers form particles called liposomes that, when spread on water fouled by oil spills, change the properties of the oil thereby stopping the spreading and breaking it down into sticky droplets that continue to float on the surface and can be easily collected. The treatment is said to be effective in both fresh and salt water and is almost temperature and pH independent. Another beneficial effect is that the physical change generated by liposomes in the spilled oil improves the ability of oil-eating bacteria in the water to remove some of the spill by bioremediation.

  11. Sea otter oil-spill mitigation study

    SciTech Connect

    Davis, R.W.; Thomas, J.; Williams, T.M.; Kastelein, R.; Cornell, L.

    1986-05-01

    The objective of the study was to analyze the effectiveness of existing capture, transport, cleaning, and rehabilitation methods and develop new methods to reduce the impact of an accidental oil spill to California sea otters, resulting from the present conditions or from future Outer Continental Shelf (OCS) oil and gas development in State or Federal waters. In addition, the study investigated whether or not a systematic difference in thermal conductivity existed between the pelts of Alaska and California Sea otters. This was done to assure that conclusions drawn from the oiling experiments carried out at Hubbs Marine Research Institute, Tetra Tech, Inc. contributed to the overall study by preparing a literature review and report on the fate and effects of oil dispersants and chemically dispersed oil.

  12. Application of a step-by-step fingerprinting identification method on a spilled oil accident in the Bohai Sea area

    NASA Astrophysics Data System (ADS)

    Sun, Peiyan; Gao, Zhenhui; Cao, Lixin; Wang, Xinping; Zhou, Qing; Zhao, Yuhui; Li, Guangmei

    2011-03-01

    In recent years, oil spill accidents occur frequently in the marine area of China. Finding out the spilled oil source is a key step in the relevant investigation. In this paper, a step-by-step fingerprinting identification method was used in a spilled oil accident in the Bohai Sea in 2002. Advanced chemical fingerprinting and data interpretation techniques were used to characterize the chemical composition and determine the possible sources of two spilled oil samples. The original gas chromatography -flame ionization detection (GC-FID) chromatogram of saturated hydrocarbons was compared. The gas chromatography-mass spectrometry (GC/MS) chromatograms of aromatic hydrocarbons terpane and sterane, n-alkane and poly-aromatic hydrocarbons (PAHs) were analyzed. The correlation analysis on diagnostic ratios was performed with Student's t-test. It is found that the oil fingerprinting of the spilled oil (designated as sz1) from the polluted sand beach was identical with the suspected oil (designated as ky1) from a nearby crude oil refinery factory. They both showed the fingerprinting character of mixed oil. The oil fingerprinting of the spilled oil (designated as ms1) collected from the port was significantly different from oil ky1 and oil sz1 and was with a lubricating oil fingerprint character. The identification result not only gave support for the spilled oil investigation, but also served as an example for studying spilled oil accidents.

  13. Modeling underwater transport of oil spilled from deepwater area in the South China Sea

    NASA Astrophysics Data System (ADS)

    Chen, Haibo; An, Wei; You, Yunxiang; Lei, Fanghui; Zhao, Yupeng; Li, Jianwei

    2016-01-01

    Based on a Lagrangian integral technique and Lagrangian particle-tracking technique, a numerical model was developed to simulate the underwater transport of oil from a deepwater spill. This model comprises two submodels: a plume dynamics model and an advection-diffusion model. The former is used to simulate the stages dominated by the initial jet momentum and plume buoyancy of the spilled oil, while the latter is used to simulate the stage dominated by the ambient current and turbulence. The model validity was verified through comparisons of the model predictions with experimental data from several laboratory flume experiments and a field experiment. To demonstrate the capability of the model further, it was applied to the simulation of a hypothetical oil spill occurring at the seabed of a deepwater oil/gas field in the South China Sea. The results of the simulation would be useful for contingency planning with regard to the emergency response to an underwater oil spill.

  14. Vapor burn analysis for the Coyote series LNG spill experiments

    SciTech Connect

    Rodean, H.C.; Hogan, W.J.; Urtiew, P.A.; Goldwire, H.C. Jr.; McRae, T.G.; Morgan, D.L. Jr.

    1984-04-01

    A major purpose of the Coyote series of field experiments at China Lake, California, in 1981 was to study the burning of vapor clouds from spills of liquefied natural gas (LNG) on water. Extensive arrays of instrumentation were deployed to obtain micrometeorological, gas concentration, and fire-related data. The instrumentation included in situ sensors of various types, high-speed motion picture cameras, and infrared (IR) imagers. Five of the total of ten Coyote spill experiments investigated vapor burns. The first vapor-burn experiment, Coyote 2, was done with a small spill of LNG to assess instrument capability and survivability in vapor cloud fires. The emphasis in this report is on the other four vapor-burn experiments: Coyotes 3, 5, 6, and 7. The data are analyzed to determine fire spread, flame propagation, and heat flux - quantities that are related to the determination of the damage zone for vapor burns. The results of the analyses are given here. 20 references, 57 figures, 7 tables.

  15. Air Quality Impact of the Deepwater Horizon Oil Spill (Invited)

    NASA Astrophysics Data System (ADS)

    Middlebrook, A. M.; Ahmadov, R.; Atlas, E. L.; Bahreini, R.; Blake, D. R.; Brioude, J.; Brock, C. A.; de Gouw, J. A.; Fahey, D. W.; Fehsenfeld, F. C.; Gao, R.; Holloway, J. S.; Lueb, R.; McKeen, S. A.; Meagher, J. F.; Meinardi, S.; Murphy, D. M.; Parrish, D. D.; Peischl, J.; Perring, A.; Pollack, I. B.; Ravishankara, A. R.; Roberts, J. M.; Robinson, A. L.; Ryerson, T. B.; Schwarz, J. P.; Spackman, J. R.; Warneke, C.; Watts, L.

    2010-12-01

    On April 20, 2010, an explosion led to a rupture of the wellhead underneath the Deepwater Horizon (DWH) drilling platform. In addition to impacts on marine life and coasts, the resulting oil spill and cleanup operations also affected air quality. We measured a wide range of gas and aerosol species in the air close to and downwind of the DWH site. Among all of the measured species, the most important air quality concern for populations along the Gulf coast and inland was aerosols in respirable sizes. Since the measured gas-phase hydrocarbons were distributed in a fairly narrow plume evaporating from fresh surface oil and organic aerosol was measured in a much broader plume, the secondary organic aerosol (SOA) evidently formed from unmeasured, less volatile hydrocarbons that were emitted from a wider area around the site. Older surface oil near the coasts of Mississippi, Alabama, and Florida had little effect on SOA formation. The SOA mass increased with distance downwind of the DWH site. Preliminary results indicate that at least a few percent by mass of the spilled oil is converted into SOA. From the flaring, surface recovery, and cleanup operations, initial calculations of emission ratios also indicate that a few percent by mass of oil burned on the surface was emitted as black carbon aerosols. These organic and black carbon aerosols from the DWH oil spill influence local visibility and radiation and have potential health effects. Furthermore, they likely occasionally reached populated areas at concentrations that were a significant fraction of air quality standards.

  16. Approaches to sheltered-water oil spills

    SciTech Connect

    Jacobs, M.A.; Waldron, D.M.

    1996-10-01

    Technology has produced more effective and efficient oil removal equipment for on-water cleanup in the past five years. Much of the innovation has been to increase recovery capacity to meet the planning volumes required to government regulations. However, more than 95 percent of the spills are relatively small. Large equipment, often requiring large platforms, is not very useful and is difficult/expensive to operate on small spills. In addition, damage from spills results when oil impacts shorelines. The emphasis on spill response should address the ability of the equipment to remove oil in a nearshore environment. Clean Seas has been attempting to address this need since the Avila Pipeline spill in 1992, in which a 180 barrel spill resulted in about $18 million damage/cleanup cost.

  17. New techniques on oil spill modelling applied in the Eastern Mediterranean sea

    NASA Astrophysics Data System (ADS)

    Zodiatis, George; Kokinou, Eleni; Alves, Tiago; Lardner, Robin

    2016-04-01

    Small or large oil spills resulting from accidents on oil and gas platforms or due to the maritime traffic comprise a major environmental threat for all marine and coastal systems, and they are responsible for huge economic losses concerning the human infrastructures and the tourism. This work aims at presenting the integration of oil-spill model, bathymetric, meteorological, oceanographic, geomorphological and geological data to assess the impact of oil spills in maritime regions such as bays, as well as in the open sea, carried out in the Eastern Mediterranean Sea within the frame of NEREIDs, MEDESS-4MS and RAOP-Med EU projects. The MEDSLIK oil spill predictions are successfully combined with bathymetric analyses, the shoreline susceptibility and hazard mapping to predict the oil slick trajectories and the extend of the coastal areas affected. Based on MEDSLIK results, oil spill spreading and dispersion scenarios are produced both for non-mitigated and mitigated oil spills. MEDSLIK model considers three response combating methods of floating oil spills: a) mechanical recovery using skimmers or similar mechanisms; b) destruction by fire, c) use of dispersants or other bio-chemical means and deployment of booms. Shoreline susceptibility map can be compiled for the study areas based on the Environmental Susceptibility Index. The ESI classification considers a range of values between 1 and 9, with level 1 (ESI 1) representing areas of low susceptibility, impermeable to oil spilt during accidents, such as linear shorelines with rocky cliffs. In contrast, ESI 9 shores are highly vulnerable, and often coincide with natural reserves and special protected areas. Additionally, hazard maps of the maritime and coastal areas, possibly exposed to the danger on an oil spill, evaluate and categorize the hazard in levels from low to very high. This is important because a) Prior to an oil spill accident, hazard and shoreline susceptibility maps are made available to design

  18. Oil-spill risk analysis: Central and western Gulf of Mexico Outer Continental Shelf Lease Sales 142 and 143. Final report

    SciTech Connect

    Price, J.M.; Lear, E.M.

    1992-03-01

    The Federal Government has proposed to offer Outer Continental Shelf lands in the Gulf of Mexico for oil and gas leasing. Because oil spills may occur from activities associated with offshore oil production, the Minerals Management Service conducts a formal risk assessment. In evaluating the significance of accidental oil spills, it is important to remember that the occurrence of such spills is fundamentally probabilistic. The effects of oil spills that could occur during oil and gas production must be considered. The report summarizes results of an oil spill risk analysis conducted for the proposed Gulf of Mexico Outer Continental Shelf Lease Sales 142 and 143. The objective of the analysis was to estimate relative risks associated with oil and gas production for the proposed lease sales.

  19. Oil-spill risk analysis: Central and Western Gulf of Mexico (Proposed Lease Sales 123 and 125) Outer Continental Shelf. Final report

    SciTech Connect

    Hannon, L.J.; Lear, E.M.

    1990-06-01

    The Federal Government has proposed to offer Outer Continental Shelf lands in the Central and Western Gulf of Mexico for oil and gas leasing. Oil spills are a major concern associated with offshore oil production. In evaluating the significance of accidental oil spills, it is important to remember that the occurrence of such spills is fundamentally probabilistic. The effects of oil spills that could occur during oil and gas production must be considered. The report summarizes results of and oil spill risk analysis conducted for the proposed Gulf of Mexico Outer Continental Shelf Lease Sales 123 125. The objective of the analysis was to estimate relative risks associated with oil and gas production for the proposed lease sales.

  20. Spill response system configuration study. Final report

    SciTech Connect

    Desimone, R.V.; Agosta, J.M.

    1996-05-01

    This report describes the development of a prototype decision support system for oil spill response configuration planning that will help U.S. Coast Guard planners to determine the appropriate response equipment and personnel for major spills. The report discusses the application of advanced artificial intelligence planning techniques, as well as other software tools for spill trajectory modeling, plan evaluation and map display. The implementation of the prototype system is discussed in the context of two specific major spill scenarios in the San Francisco Bay.

  1. Major tanker spill off Spain under control

    SciTech Connect

    Not Available

    1992-12-14

    This paper reports that a 23 sq mile oil slick along Spain's northwest coast, spreading form the wreckage of the Greek oil tanker Aegean Sea, was for the most part under control as of Dec. 10, Spanish authorities reported. Various press reports put the total spill volume at 490,000 bbl, about double that leaked by the Exxon Valdez supertanker off Alaska in 1989. If initial reports of the spill volume are borne out, the Aegean Sea spill would rank at least as one of the 10 biggest tanker spills.

  2. MEDSLIK oil spill model recent developments

    NASA Astrophysics Data System (ADS)

    Lardner, Robin; Zodiatis, George

    2016-04-01

    MEDSLIK oil spill model recent developments Robin Lardner and George Zodiatis Oceanography Center, University of Cyprus, 1678 Nicosia, Cyprus MEDSLIK is a well established 3D oil spill model that predicts the transport, fate and weathering of oil spills and is used by several response agencies and institutions around the Mediterranean, the Black seas and worldwide. MEDSLIK has been used operationally for real oil spill accidents and for preparedness in contingency planning within the framework of pilot projects with REMPEC-Regional Marine Pollution Emergency Response Centre for the Mediterranean Sea and EMSA-European Maritime Safety Agency. MEDSLIK has been implemented in many EU funded projects regarding oil spill predictions using the operational ocean forecasts, as for example the ECOOP, NEREIDs, RAOP-Med, EMODNET MedSea Check Point. Within the frame of MEDESS4MS project, MEDSLIK is at the heart of the MEDESS4MS multi model oil spill prediction system. The MEDSLIK oil spill model contains among other, the following features: a built-in database with 240 different oil types characteristics, assimilation of oil slick observations from in-situ or aerial, to correct the predictions, virtual deployment of oil booms and/or oil skimmers/dispersants, continuous or instantaneous oil spills from moving or drifting ships whose slicks merge can be modelled together, multiple oil spill predictions from different locations, backward simulations for tracking the source of oil spill pollution, integration with AIS data upon the availability of AIS data, sub-surface oil spills at any given water depth, coupling with SAR satellite data. The MEDSLIK can be used for operational intervention for any user-selected region in the world if the appropriate coastline, bathymetry and meteo-ocean forecast files are provided. MEDSLIK oil spill model has been extensively validated in the Mediterranean Sea, both in real oil spill incidents (i.e. during the Lebanese oil pollution crisis in

  3. Floating Oil-Spill Containment Device

    NASA Technical Reports Server (NTRS)

    Jones, Jack A.

    2012-01-01

    Previous oil containment booms have an open top that allows natural gas to escape, and have significant oil leakage due to wave action. Also, a subsea pyramid oil trap exists, but cannot move relative to moving oil plumes from deepsea oil leaks. The solution is to have large, moveable oil traps. One version floats on the sea surface and has a flexible tarp cover and a lower weighted skirt to completely entrap the floating oil and natural gas. The device must have at least three sides with boats pulling at each apex, and sonar or other system to track the slowly moving oil plume, so that the boats can properly locate the booms. The oil trap device must also have a means for removal of the oil and the natural gas. A second design version has a flexible pyramid cover that is attached by lines to ballast on the ocean floor. This is similar to fixed, metal pyramid oil capture devices in the Santa Barbara Channel off the coast of California. The ballast lines for the improved design, however, would have winches that can move the pyramid to always be located above the oil and gas plume. A third design is a combination of the first two. It uses a submerged pyramid to trap oil, but has no anchor and uses boats to locate the trap. It has ballast weights located along the bottom of the tarp and/or at the corners of the trap. The improved floating oil-spill containment device has a large floating boom and weighted skirt surrounding the oil and gas entrapment area. The device is triangular (or more than three sides) and has a flexible tarp cover with a raised gas vent area. Boats pull on the apex of the triangles to maintain tension and to allow the device to move to optimum locations to trap oil and gas. The gas is retrieved from a higher buoyant part of the tarp, and oil is retrieved from the floating oil layer contained in the device. These devices can be operated in relatively severe weather, since waves will break over the devices without causing oil leaking. Also, natural

  4. Applicable Railroad Commission rules regarding notification, cleanup, and follow up reporting of inland crude spills

    SciTech Connect

    Grossman, G.M.

    1996-08-01

    There are a myriad of regulations, both federal, state, and local dealing with spill notification cleanup, and follow up reporting. This paper describes the applicable Railroad Commission (RRC) Oil and Gas Division Rules and Regulations requiring notification, cleanup, and follow up reporting of inland crude oil spills in the state of Texas. Statewide Rule (SWR) titled {open_quotes}water protection{close_quotes} requires that {open_quotes}no person conducting activities subject to the regulation of RRC may cause or allow pollution of the surface or subsurface water in the state{close_quotes}. SWR 20 titled {open_quotes}notification of fire, breaks, leaks, or blowouts{close_quotes}, requires immediate notice of a fire, leak, spill, or break from production facilities to the appropriate district office and follow up written reporting. SWR 71 titled {open_quotes}Pipeline Tariffs{close_quotes} requires pipeline companies to give immediate notice of spills and fires to the appropriate district office along with follow up reports. SWR 91 titled {open_quotes}Cleanup of soil contaminated by a crude oil spill{close_quotes} requires notification, cleanup, and follow up reporting requirements for crude oil spills.

  5. Development of a national spill test facility data base. Topical report, February 1994--February 1995

    SciTech Connect

    1995-02-01

    In the United States, the production of gas, liquid and solid fuels and the associated chemical use accounts for significant volumes of material with the potential of becoming hazardous. Accidental spills or releases of these hazardous materials do occur, and action must be taken to minimize damage to life, property, and the environment. Because of the hazards of testing with chemical spills, a national spill test facility (STF) and an associated testing program have been established to systematically develop new data on the effects and mitigation of hazardous chemical spills Western Research Institute (WRI), in conjunction with the DOE, is developing a comprehensive national spill test data base. I The data base will be easily accessible by industry and the public on the Spill Research Bulletin Board System and will allow users to download spill test data and test descriptions, as well as an extensive bibliography. The 1990 Clean Air Act and Amendments (CAAA) requires that at least two chemicals be field tested at the STF and at least 10 chemicals be studied each year. The chemicals to be studied are chosen with priority given to those that present the greatest risk to human health. The National Spill Test Facility Data Base will include a common chemical data base covering the overlap of federal chemical lists and significant information from other sources. Also, the (CAAA) directs the DOE and EPA to work together with the STF and industry to provide a scientific and engineering basis for writing regulations for implementation of the (CAAA). The data base will be a primary resource in this effort.

  6. The economy of oil spills: direct and indirect costs as a function of spill size.

    PubMed

    Liu, Xin; Wirtz, Kai W

    2009-11-15

    As a rational basis for addressing both ecological and economic consequences of oil spills, a combination of simulating and estimating methods is proposed in this paper. An integration of the state-of-the-art oil spill contingency simulation system OSCAR with economic assessment method leads to realistic oil spill scenarios including their biological and economic impacts and the effort taken for combat as well as to an estimate for the total oil spill costs. In order to derive a simple function of total costs depending on few spill characteristics such as size, a number of hypothetical scenarios are simulated and evaluated for the German North Sea area. Results reveal that response costs of per unit oil spilled as well as integrated costs of oil released are simply characterized as two particular power-law functions of spill size. Such relationships can be straightforward transferred into decision making for efficient prevention and combat strategy in the study area. PMID:19576685

  7. AN OVERVIEW OF CURRENT SPILL CLEANUP TECHNOLOGY

    EPA Science Inventory

    A review of the equipment and techniques for responding to spills of dangerous cargoes is presented in the report. Categorizing spilled products as floaters, sinkers, mixers, or vapors provides a convenient viewpoint for discussing response technology, which depends strongly on w...

  8. PUBLISHING SPILL IMPACT MAPS OVER THE WEB

    EPA Science Inventory

    This paper discusses the implementaiton of a web-based map publishing technology within a USEPA GIS laboratory. A sophisticated spill travel prediction model for the Ohio River has been installed within the GIS laboratory, and is used by personnel from the NRMRL. The spill simul...

  9. Remote oil spill sensing system (ROSSS)

    SciTech Connect

    Fornaca, S.; Agravante, H.H.; Eberhard, C.; Hauss, B.I.

    1996-10-01

    To provide tactical information during an oil spill, TRW developed Remote Oil Spill Sensing System (ROSSS). It is an integrated system of airborne sensors for rapid in-situ surveillance and a ground system that provides data analysis and display support at the spill cleanup command center. It provides knowledge of precise location of oil spill and produces timely updates, which are critical for effective spill containment and cleanup operations. It is capable of distinguishing where the bulk of spill exists, which is key to directing cleanup efforts for maximum efficiency. Using a passive microwave radiometric imager as the primary sensor, it provides data acquisition capabilities in both day and night and through haze, fog, and light ram. The high-speed air-to-ground telemetry link permits timely delivery of surveyed data from the spill site to the ground system to aid in the planning and assessment of cleanup strategies. ROSSS has been in service since November, 1992, ready to respond in any oil spill emergencies along the U.S. West Coast. 9 refs., 4 figs.

  10. HAZARDOUS MATERIAL SPILLS AND RESPONSES FOR MUNICIPALITIES

    EPA Science Inventory

    The report presents an assessment of the effect of spills of certain hazardous materials on the operation of biological wastewater treatment plants. The results of the report may be used by treatment plant operators to assess what the effects of potential hazardous material spill...

  11. Physical oceanography of oil spills

    SciTech Connect

    Murray, S.P. )

    1991-03-01

    The introduction of petroleum products and crude oil from ship accidents and damaged platforms into the ocean remains a significant problem. Weather systems of nearly all sizes and time scales may have strong effects on oil slick movement and dispersal. Thunderstorms, local weather systems, mid-latitude high- and low-pressure systems, tropical cyclones, and the trade winds and prevailing westerlies of the planetary wind system are all potentially important agents in the movement and dispersal of oil slicks. Currents driven by these wind systems are influenced by the rotation of the earth, which causes them to veer to the right of the wind in the northern hemisphere. Wind shifts or sudden decreases in wind stress induce circular or inertial oscillations whose period varies with latitude. Near the shore these effects are severely damped by the blocking action of the coast, causing the flow to run more or less parallel to the coastal boundary. All these effects will in turn exert significant control over the movement of entrained oil slicks. In the near-field region of an oil spill tidal currents can also be of considerable importance. Rotary currents, characteristic of open-shelf waters and effective dispersal agents of oil, arise from the influence of the rotation of the earth on the tidal current. Another such interaction between rotation of the earth and the tide produces Kelvin waves, which result in unusually high tidal ranges along the coast to the right of the tidal wave propagation. Both effects have been important in recent oil spills. All these oceanographic processes, reviewed in this talk, have played key roles in major spills over the last 15 years from the Torrey Canyon to the Mega-Borg.

  12. Microbial responses to the Deepwater Horizon oil spill: from coastal wetlands to the deep sea.

    PubMed

    King, G M; Kostka, J E; Hazen, T C; Sobecky, P A

    2015-01-01

    The Deepwater Horizon oil spill in the northern Gulf of Mexico represents the largest marine accidental oil spill in history. It is distinguished from past spills in that it occurred at the greatest depth (1,500 m), the amount of hydrocarbon gas (mostly methane) lost was equivalent to the mass of crude oil released, and dispersants were used for the first time in the deep sea in an attempt to remediate the spill. The spill is also unique in that it has been characterized with an unprecedented level of resolution using next-generation sequencing technologies, especially for the ubiquitous hydrocarbon-degrading microbial communities that appeared largely to consume the gases and to degrade a significant fraction of the petroleum. Results have shown an unexpectedly rapid response of deep-sea Gammaproteobacteria to oil and gas and documented a distinct succession correlated with the control of the oil flow and well shut-in. Similar successional events, also involving Gammaproteobacteria, have been observed in nearshore systems as well. PMID:25251273

  13. Microbial Responses to the Deepwater Horizon Oil Spill: From Coastal Wetlands to the Deep Sea

    NASA Astrophysics Data System (ADS)

    King, G. M.; Kostka, J. E.; Hazen, T. C.; Sobecky, P. A.

    2015-01-01

    The Deepwater Horizon oil spill in the northern Gulf of Mexico represents the largest marine accidental oil spill in history. It is distinguished from past spills in that it occurred at the greatest depth (1,500 m), the amount of hydrocarbon gas (mostly methane) lost was equivalent to the mass of crude oil released, and dispersants were used for the first time in the deep sea in an attempt to remediate the spill. The spill is also unique in that it has been characterized with an unprecedented level of resolution using next-generation sequencing technologies, especially for the ubiquitous hydrocarbon-degrading microbial communities that appeared largely to consume the gases and to degrade a significant fraction of the petroleum. Results have shown an unexpectedly rapid response of deep-sea Gammaproteobacteria to oil and gas and documented a distinct succession correlated with the control of the oil flow and well shut-in. Similar successional events, also involving Gammaproteobacteria, have been observed in nearshore systems as well.

  14. Oil spill fishery impact assessment model: Sensitivity to spill location and timing

    NASA Astrophysics Data System (ADS)

    Spaulding, Malcolm L.; Reed, Mark; Anderson, Eric; Isaji, Tatsusaburo; Swanson, J. Craig; Saila, Saul B.; Lorda, Ernesto; Walker, Henry

    1985-01-01

    An oil spill fishery impact assessment model system has been applied to the Georges Bank-Gulf of Maine region to assess the sensitivity of probable impact on several key fisheries to spill location and timing. Simulations of the impact on the fishery of tanker spills (20 million gallons released over 5 days), at two separate locations for each season of the year, and blowout spills (68 million gallons released over 30 days) at one location, with monthly releases and at six other locations with seasonal spills have been studied. Atlantic cod has been employed as the principal fish species throughout the simulations. Impacts on Atlantic herring and haddock have also been investigated for selected cases. All spill sites are located on Georges Bank with the majority in the general region of OCS leasing activity. The results of these simulations suggest a complex interaction among spill location and timing, the spatial and temporal distribution of spawning, the population dynamics of the species under study, and the hydrodynamics of the area. For the species studied, spills occurring during the winter and spring have the largest impact with cod being the most heavily impacted followed by haddock and herring. In all cases, the maximum cumulative loss to the fishery of a one time spill event never exceeded 25% of the annual catch with the exact value depending on the number of ichthyoplankton impacted by the spill and the compensatory dynamics of the population.

  15. Oil Spill Risk Analysis Model and Its Application to Deepwater Horizon Oil Spill (Invited)

    NASA Astrophysics Data System (ADS)

    Ji, Z.; Johnson, W. R.; Li, Z.

    2010-12-01

    The oil spill risk analysis (OSRA) model plays an essential role in analyzing oil spill risks in the U.S. continental shelf for the U.S. federal government. The OSRA model is driven by analyzed sea surface winds and model-generated ocean surface currents. Instead of focusing on individual oil spill events, the OSRA model examines oil spill risks over long periods of time, ranging from 5 years to decades. The OSRA model calculates thousands of hypothetical oil spill trajectories over U.S. continental shelf and tabulates the frequencies with which the simulated oil spills contact the geographic boundaries of designated natural resources within a specified number of days after the simulated spill events. As a result of a three-year effort, the model was completely updated and improved to meet the new challenges in the oil spill risk analyses. The updated OSRA model is more efficient in terms of computational time, is capable of producing results that are consistent with our previous analyses, and is more user-friendly by incorporating GIS tools. The combination of code parallelization, code optimization, and I/O optimization has greatly improved the computational efficiency. Applying the model to the Gulf of Mexico using 15 years of ocean currents and winds, we find that the newly improved OSRA model can provide important information on the behavior of oil spills more accurately and efficiently. The Deepwater Horizon oil spill is unique and unprecedented in the Gulf of Mexico. Approximated 4.9 million barrels of oil were spilled into the U.S. water. The statistical patterns and results from the OSRA model are being compared with the Deepwater Horizon oil spill. Findings from this study will help in assessing the oil spill risks in the Gulf of Mexico.

  16. 40 CFR 761.125 - Requirements for PCB spill cleanup.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Requirements for PCB spill cleanup..., AND USE PROHIBITIONS PCB Spill Cleanup Policy § 761.125 Requirements for PCB spill cleanup. (a... minimize reporting burdens on governments as well as the regulated community. (i) Where a spill...

  17. 40 CFR 761.125 - Requirements for PCB spill cleanup.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Requirements for PCB spill cleanup..., AND USE PROHIBITIONS PCB Spill Cleanup Policy § 761.125 Requirements for PCB spill cleanup. (a... minimize reporting burdens on governments as well as the regulated community. (i) Where a spill...

  18. 40 CFR 761.125 - Requirements for PCB spill cleanup.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Requirements for PCB spill cleanup..., AND USE PROHIBITIONS PCB Spill Cleanup Policy § 761.125 Requirements for PCB spill cleanup. (a... minimize reporting burdens on governments as well as the regulated community. (i) Where a spill...

  19. 40 CFR 761.125 - Requirements for PCB spill cleanup.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Requirements for PCB spill cleanup..., AND USE PROHIBITIONS PCB Spill Cleanup Policy § 761.125 Requirements for PCB spill cleanup. (a... minimize reporting burdens on governments as well as the regulated community. (i) Where a spill...

  20. 40 CFR 761.125 - Requirements for PCB spill cleanup.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Requirements for PCB spill cleanup..., AND USE PROHIBITIONS PCB Spill Cleanup Policy § 761.125 Requirements for PCB spill cleanup. (a... minimize reporting burdens on governments as well as the regulated community. (i) Where a spill...

  1. Ecological Impacts during the Deepwater Horizon Oil Spill

    EPA Science Inventory

    The Deepwater Horizon (DWH) oil spill was the largest spill and response effort in United States history. Nearly 800 million L of oil was spilled in the Gulf of Mexico, and nearly 7 million L of chemical dispersants were applied in at the ocean surface and subsea1. The DWH spill ...

  2. Calculations of protective action distance for toxic chemical spills using nomographs

    SciTech Connect

    Lee, L.G.; Vail, J.A.; Gibeault, G.L.

    1995-04-01

    This document was produced for emergency use following a spill of liquid gas or finely divided solid (<100 micron) toxic chemicals. The information on the next few pages was kept deliberately terse and is limited to data and graphic aids needed for calculation of plume distance (protective action distance). All supporting material is provided as Appendices.

  3. DEVELOPMENT AND APPLICATION OF PROTOCOLS FOR EVALUATION OF OIL SPILL BIOREMEDIATION (RESEARCH BRIEF)

    EPA Science Inventory

    Protocols were developed and evaluated to assess the efficacy and environmental safety of commercial oil spill bioremediation agents (CBAs). Test systems that simulate oil slicks on open water or oiled sandy beaches were used to test the effectiveness of CBAs. Gravimetric and gas...

  4. 30 CFR 550.219 - What oil and hazardous substance spills information must accompany the EP?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 2 2013-07-01 2013-07-01 false What oil and hazardous substance spills information must accompany the EP? 550.219 Section 550.219 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Plans and Information Contents...

  5. Oil-spill risk analysis: Cook inlet outer continental shelf lease sale 149. Volume 1. The analysis. Final report

    SciTech Connect

    Johnson, W.R.; Marshall, C.F.; Anderson, C.M.; Lear, E.M.

    1994-08-01

    This report summarizes results of an oil-spill risk analysis (OSRA) conducted for the proposed lower Cook Inlet Outer Continental Shelf (OCS) Lease Sale 149. The objective of this analysis was to estimate relative oil-spill risks associated with oil and gas production from the leasing alternatives proposed for the lease sale. The Minerals Management Service (MMS) will consider the analysis in the environmental impact statement (EIS) prepared for the lease sale. The analysis for proposed OCS Lease Sale 149 was conducted in three parts corresponding to different aspects of the overall problem. The first part dealt with the probability of oil-spill occurrence. The second dealt with trajectories of oil spills from potential spill sites to various environmental resources or land segments. The third part combined the results of the first two parts to give estimates of the overall oil-spill risk if there is oil production as a result of the lease sale. To aid the analysis, conditional risk contour maps of seasonal conditional probabilities of spill contact were generated for each environmental resource or land segment in the study area (see vol. 2).

  6. Oil spill response: Countdown to readiness

    SciTech Connect

    Costello, J.D.

    1993-04-01

    In the wake of the Exxon Valdez oil spill, a task force representing America's oil industry set about studying the existing resources across the nation for responding to catastrophic oil spills. In June 1989 the task force reported that the capability did not exist in either government or industry to respond to a spill the magnitude of the one in Alaska. As a result of task force recommendations, 20 companies began the process that led to the creation of both the Marine Preservation Association (MPA) and the Marine Spill Response Corp. (MS-RC). The latter is headquartered in Washington, D.C., with 5 regional response centers around the US. Under the direction of the US Coast Guard, each of MSRC's five regions will provide a best-effort response to cleaning up spill of persistent (crude) oils that are beyond the capabilities of local spill response organizations. MSRC will work closely with both cooperatives and independent, commercial responders to maximize spill response effectiveness. The MPA and its member companies have committed more than $400 million for the acquisition of capital equipment for MSRC, an unprecedented record in American business history. MSRC is also involved in research programs concerning remote sensing, in-situ burning, dispersants, handling of recovered material, and shoreline countermeasures.

  7. Oil recovery; Technology that tames large spills

    SciTech Connect

    Valenti, M.

    1991-05-01

    This paper reports that the threat of oil spills is growing with the increasing use of larger tankers, the expansion of offshore oil exploration, and-as was demonstrated recently in the Persian Gulf-the dangers of war and terrorism. Aware of the environmental havoc that massive spills can cause, engineers are working hard to devise effective methods of scooping oil from the water's surface and cleaning contaminated shorelines. Techniques are being developed, which combine mechanical, chemical, and biological processes to contain spills.

  8. Oil spill cleanup using graphene.

    PubMed

    Iqbal, Muhammad Z; Abdala, Ahmed A

    2013-05-01

    In this article, we study the use of thermally reduced graphene (TRG) for oil spill cleanup. TRG was synthesized by thermal exfoliation of graphite oxide and characterized by X-ray diffusion, Raman spectroscopy, SEM, TEM, elemental analysis, and Brunauer-Emmett-Teller (BET) surface area measurement. Various aspects of the sorption process have been studied including the sorption capacity, the recovery of the adsorbed oil, and the recyclability of TRG. Our results shows that TRG has a higher sorption capacity than any other carbon-based sorbents, with sorption capacity as high as 131 g of oil per gram TRG. With recovery of the sorbed oil via filtration and reuse of TRG for up to six cycles, 1 g of TRG collectively removes approximately 300 g of crude oil. Moreover, the effects of TRG bulk density, pore volume, and carbon/oxygen ratio and the oil viscosity on the sorption process are also discussed. PMID:23093418

  9. 46 CFR 153.1132 - Reporting spills and non-complying discharges: Category A, B, C, and D.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Reporting spills and non-complying discharges: Category A, B, C, and D. 153.1132 Section 153.1132 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Operations Approval...

  10. 46 CFR 153.1132 - Reporting spills and non-complying discharges: Category A, B, C, and D.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Reporting spills and non-complying discharges: Category A, B, C, and D. 153.1132 Section 153.1132 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Operations Approval...

  11. 46 CFR 153.1132 - Reporting spills and non-complying discharges: Category A, B, C, and D.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Reporting spills and non-complying discharges: Category A, B, C, and D. 153.1132 Section 153.1132 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Operations Approval...

  12. 46 CFR 153.1132 - Reporting spills and non-complying discharges: Category A, B, C, and D.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Reporting spills and non-complying discharges: Category A, B, C, and D. 153.1132 Section 153.1132 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Operations Approval...

  13. CFD Modeling of LNG Spill: Humidity Effect on Vapor Dispersion

    NASA Astrophysics Data System (ADS)

    Giannissi, S. G.; Venetsanos, A. G.; Markatos, N.

    2015-09-01

    The risks entailed by an accidental spill of Liquefied Natural Gas (LNG) should be indentified and evaluated, in order to design measures for prevention and mitigation in LNG terminals. For this purpose, simulations are considered a useful tool to study LNG spills and to understand the mechanisms that influence the vapor dispersion. In the present study, the ADREA-HF CFD code is employed to simulate the TEEX1 experiment. The experiment was carried out at the Brayton Fire Training Field, which is affiliated with the Texas A&M University system and involves LNG release and dispersion over water surface in open- obstructed environment. In the simulation the source was modeled as a two-phase jet enabling the prediction of both the vapor dispersion and the liquid pool spreading. The conservation equations for the mixture are solved along with the mass fraction for natural gas. Due to the low prevailing temperatures during the spill ambient humidity condenses and this might affect the vapor dispersion. This effect was examined in this work by solving an additional conservation equation for the water mass fraction. Two different models were tested: the hydrodynamic equilibrium model which assumes kinetic equilibrium between the phases and the non hydrodynamic equilibrium model, in order to assess the effect of slip velocity on the prediction. The slip velocity is defined as the difference between the liquid phase and the vapor phase and is calculated using the algebraic slip model. Constant droplet diameter of three different sizes and a lognormal distribution of the droplet diameter were applied and the results are discussed and compared with the measurements.

  14. Fingerprinting hydrocarbons in the biological resources of the Exxon Valdez spill area

    SciTech Connect

    Bence, A.E.; Burns, W.A.

    1995-12-31

    A procedure has been developed that discriminates Exxon Valdez crude from other sources of hydrocarbons found in Prince Williams Sound and the Gulf of Alaska. The procedure uses polycyclic aromatic hydrocarbon (PAH) distributions, measured by gas chromatography/mass spectrometry (GC/MS), to fingerprint sample extracts. The relative abundances of alkylated phenanthrenes, dibenzothiophenes, and chrysenes are used to differentiate Exxon Valdez crude and its weathering products from other hydrocarbons. Saturate fraction distributions are used to confirm the PAH identification whenever possible. The procedure has been applied to the more than 1,500 PAH analyses of tissues reported by the Oil Spill Health Task Force, formed after the spill to assess subsistence food safety, and nearly 4,700 PAH analyses of biological samples in PWSOIL, the government`s damage-assessment chemistry database. These two datasets constitute the largest collection of hydrocarbon analyses of biological samples form the spill-impact zone. 70 refs., 14 figs., 8 tabs.

  15. Gulf Oil Spill Commission Report Calls for Major Drilling Safety Reforms

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2011-01-01

    The BP Deepwater Horizon oil rig explosion and the resulting oil spill in the Gulf of Mexico last year were “foreseeable and preventable,” according to the report of a presidentially appointed commission, issued on 11 January, that recommended significant changes in U.S. government and industry practices to avoid future oil spill disasters. Among the recommendations of the National Commission on the BP Deepwater Horizon Oil Spill and Offshore Drilling are that Congress and the Obama administration create an independent safety agency within the Department of the Interior (DOI) to oversee all aspects of offshore drilling safety and that the oil and gas industry establish a “safety institute” to develop and enforce safety standards.

  16. Coral communities as indicators of ecosystem-level impacts of the Deepwater Horizon spill

    USGS Publications Warehouse

    Fisher, Charles R.; Demopoulos, Amanda W.J.; Cordes, Erik E.; Baums, Iliana B.; White, Helen K.; Bourque, Jill R.

    2014-01-01

    The Macondo oil spill released massive quantities of oil and gas from a depth of 1500 meters. Although a buoyant plume carried released hydrocarbons to the sea surface, as much as half stayed in the water column and much of that in the deep sea. After the hydrocarbons reached the surface, weathering processes, burning, and the use of a dispersant caused hydrocarbon-rich marine snow to sink into the deep sea. As a result, this spill had a greater potential to affect deep-sea communities than had any previous spill. Here, we review the literature on impacts on deep-sea communities from the Macondo blowout and provide additional data on sediment hydrocarbon loads and the impacts on sediment infauna in areas with coral communities around the Macondo well. We review the literature on the genetic connectivity of deep-sea species in the Gulf of Mexico and discuss the potential for wider effects on deep Gulf coral communities.

  17. The Great Oil Spill Cleanup Contest.

    ERIC Educational Resources Information Center

    Hampton, Elaine

    1993-01-01

    Presents an exciting way to acquaint students with current methods to clean up oil spills. Students also have the freedom to create new clean-up methods as they think through the problem and experiment to find effective solutions. (PR)

  18. NASA Satellites View Gulf Oil Spill

    NASA Video Gallery

    Two NASA satellites are capturing images of the oil spill in the Gulf of Mexico, which began April 20, 2010, with the explosion of the Deepwater Horizon oil rig. This series of images shows a space...

  19. Satellites View Growing Gulf Oil Spill (Update)

    NASA Video Gallery

    On April 30, 2010, the Deepwater Horizon oil rig exploded in the Gulf of Mexico, triggering the largest oil spill in U.S. history. The MODIS instrument, on board NASA's Terra and Aqua satellites, c...

  20. Spill prevention control and countermeasure plan

    SciTech Connect

    Not Available

    1981-01-01

    This report includes facility descriptions for both oil and hazardous chemicals storage. It gives oil spill history; regulatory guideline conformance; local emergency arrangements; evacuation procedures and the contingency plan for oil and hazardous substances. (PSB)

  1. Exxon Valdez oil spill restoration plan

    SciTech Connect

    1994-11-01

    In 1989, the Exxon Valdez oil spill contaminated about 1,500 miles of Alaska`s coastline. It killed birds, mammals, and fish, and disrupted the ecosystem in the path of the oil. The Exxon Valdez Restoration Plan provides long-term guidance for restoring the resources and services injured by the oil spill. It contains policies for making restoration decisions and describes how restoration activities will be implemented.

  2. Earth Observation Services (Oil Spill Mapping)

    NASA Technical Reports Server (NTRS)

    1992-01-01

    An EOCAP project led Research Planning, Inc. to the development of advanced techniques for "environmental sensitivity" oil spill mapping. The new method incorporates satellite remote sensing and GIS technologies and was utilized to assess the damage potential of the Gulf war oil spill. EOCAP provides government co-funding to encourage private investment in, and to broaden the, use of, NASA-developed technology for analyzing information about Earth and ocean resources.

  3. Minimizing risks from spilled oil to ecosystem services using influence diagrams: the Deepwater Horizon spill response.

    PubMed

    Carriger, John F; Barron, Mace G

    2011-09-15

    Decision science tools can be used in evaluating response options and making inferences on risks to ecosystem services (ES) from ecological disasters. Influence diagrams (IDs) are probabilistic networks that explicitly represent the decisions related to a problem and their influence on desired or undesired outcomes. To examine how IDs might be useful in probabilistic risk management for spill response efforts, an ID was constructed to display the potential interactions between exposure events and the trade-offs between costs and ES impacts from spilled oil and response decisions in the DWH spill event. Quantitative knowledge was not formally incorporated but an ID platform for doing this was examined. Probabilities were assigned for conditional relationships in the ID and scenarios examining the impact of different response actions on components of spilled oil were investigated in hypothetical scenarios. Given the structure of the ID, potential knowledge gaps included understanding of the movement of oil, the ecological risk of different spill-related stressors to key receptors (e.g., endangered species, fisheries), and the need for stakeholder valuation of the ES benefits that could be impacted by a spill. Framing the Deepwater Horizon problem domain in an ID conceptualized important variables and relationships that could be optimally accounted for in preparing and managing responses in future spills. These features of the developed IDs may assist in better investigating the uncertainty, costs, and the trade-offs if large-scale, deep ocean spills were to occur again. PMID:21875054

  4. Advances in Remote Sensing for Oil Spill Disaster Management: State-of-the-Art Sensors Technology for Oil Spill Surveillance

    PubMed Central

    Jha, Maya Nand; Levy, Jason; Gao, Yang

    2008-01-01

    Reducing the risk of oil spill disasters is essential for protecting the environment and reducing economic losses. Oil spill surveillance constitutes an important component of oil spill disaster management. Advances in remote sensing technologies can help to identify parties potentially responsible for pollution and to identify minor spills before they cause widespread damage. Due to the large number of sensors currently available for oil spill surveillance, there is a need for a comprehensive overview and comparison of existing sensors. Specifically, this paper examines the characteristics and applications of different sensors. A better understanding of the strengths and weaknesses of oil spill surveillance sensors will improve the operational use of these sensors for oil spill response and contingency planning. Laser fluorosensors were found to be the best available sensor for oil spill detection since they not only detect and classify oil on all surfaces but also operate in either the day or night. For example, the Scanning Laser Environmental Airborne Fluorosensor (SLEAF) sensor was identified to be a valuable tool for oil spill surveillance. However, no single sensor was able to provide all information required for oil spill contingency planning. Hence, combinations of sensors are currently used for oil spill surveillance. Specifically, satellite sensors are used for preliminary oil spill assessment while airborne sensors are used for detailed oil spill analysis. While satellite remote sensing is not suitable for tactical oil spill planning it can provide a synoptic coverage of the affected area.

  5. Keys to modeling LNG spills on water.

    PubMed

    Hissong, D W

    2007-02-20

    Although no LNG ship has experienced a loss of containment in over 40 years of shipping, it is important for risk management planning to understand the predicted consequences of a spill. A key parameter in assessing the impact of an LNG spill is the pool size. LNG spills onto water generally result in larger pools than land spills because they are unconfined. Modeling of LNG spills onto water is much more difficult than for land spills because the phenomena are more complex and the experimental basis is more limited. The most prevalent practice in predicting pool sizes is to treat the release as instantaneous or constant-rate, and to calculate the pool size using an empirical evaporation or burn rate. The evaporation or burn rate is particularly difficult to estimate for LNG spills on water, because the available data are so limited, scattered, and difficult to extrapolate to the large releases of interest. A more effective modeling of possible spills of LNG onto water calculates, rather than estimating, the evaporation or burn rate. The keys to this approach are to: * Use rigorous multicomponent physical properties. * Use a time-varying analysis of spill and evaporation. * Use a material and energy balance approach. * Estimate the heat transfer from water to LNG in a way that reflects the turbulence. These keys are explained and demonstrated by predictions of a model that incorporates these features. The major challenges are describing the effects of the LNG-water turbulence and the heat transfer from the pool fire to the underlying LNG pool. The model includes a fundamentally based framework for these terms, and the current formulation is based on some of the largest tests to-date. The heat transfer coefficient between the water and LNG is obtained by applying a "turbulence factor" to the value from correlations for quiescent film and transition boiling. The turbulence factor is based on two of the largest unignited tests on water to-date. The heat transfer from

  6. Offshore oil spill response practices and emerging challenges.

    PubMed

    Li, Pu; Cai, Qinhong; Lin, Weiyun; Chen, Bing; Zhang, Baiyu

    2016-09-15

    Offshore oil spills are of tremendous concern due to their potential impact on economic and ecological systems. A number of major oil spills triggered worldwide consciousness of oil spill preparedness and response. Challenges remain in diverse aspects such as oil spill monitoring, analysis, assessment, contingency planning, response, cleanup, and decision support. This article provides a comprehensive review of the current situations and impacts of offshore oil spills, as well as the policies and technologies in offshore oil spill response and countermeasures. Correspondingly, new strategies and a decision support framework are recommended for improving the capacities and effectiveness of oil spill response and countermeasures. In addition, the emerging challenges in cold and harsh environments are reviewed with recommendations due to increasing risk of oil spills in the northern regions from the expansion of the Arctic Passage. PMID:27393213

  7. Bioremediation of crude oil spills in marine and terrestrial environments

    SciTech Connect

    Prince, R.C.

    1995-12-31

    Bioremediation can be a safe and effective tool for dealing with crude oil spills, as demonstrated during the cleanup following the Exxon Valdez spill in Alaska. Crude oil has also been spilled on land, and bioremediation is a promising option for land spills too. Nevertheless, there are still areas where understanding of the phenomenon is rather incomplete. Research groups around the world are addressing these problems, and this symposium provides an excellent overview of some of this work.

  8. Oil spill impact modeling: development and validation.

    PubMed

    French-McCay, Deborah P

    2004-10-01

    A coupled oil fate and effects model has been developed for the estimation of impacts to habitats, wildlife, and aquatic organisms resulting from acute exposure to spilled oil. The physical fates model estimates the distribution of oil (as mass and concentrations) on the water surface, on shorelines, in the water column, and in the sediments, accounting for spreading, evaporation, transport, dispersion, emulsification, entrainment, dissolution, volatilization, partitioning, sedimentation, and degradation. The biological effects model estimates exposure of biota of various behavior types to floating oil and subsurface contamination, resulting percent mortality, and sublethal effects on production (somatic growth). Impacts are summarized as areas or volumes affected, percent of populations lost, and production foregone because of a spill's effects. This paper summarizes existing information and data used to develop the model, model algorithms and assumptions, validation studies, and research needs. Simulation of the Exxon Valdez oil spill is presented as a case study and validation of the model. PMID:15511105

  9. A sustainable approach to controlling oil spills.

    PubMed

    Al-Majed, Abdul Aziz; Adebayo, Abdulrauf Rasheed; Hossain, M Enamul

    2012-12-30

    As a result of the huge economic and environmental destruction from oil spills, studies have been directed at improving and deploying natural sorbents which are not only the least expensive but also the safest means of spill control. This research reviews the limitations and environmental impact of existing cleanup methods. It also justifies the need for concerted research effort on oil spill control using natural and sustainable technology concepts. The article proposes future guidelines for the development of a sustainable cleanup technology. Finally, guidelines for the development of a new technology for the Middle East are proposed, which is the use of an abundant resource--date palm fibers--for such techniques. PMID:23037316

  10. Walking with coffee: why does it spill?

    PubMed

    Mayer, H C; Krechetnikov, R

    2012-04-01

    In our busy lives, almost all of us have to walk with a cup of coffee. While often we spill the drink, this familiar phenomenon has never been explored systematically. Here we report on the results of an experimental study of the conditions under which coffee spills for various walking speeds and initial liquid levels in the cup. These observations are analyzed from the dynamical systems and fluid mechanics viewpoints as well as with the help of a model developed here. Particularities of the common cup sizes, the coffee properties, and the biomechanics of walking proved to be responsible for the spilling phenomenon. The studied problem represents an example of the interplay between the complex motion of a cup, due to the biomechanics of a walking individual, and the low-viscosity-liquid dynamics in it. PMID:22680548

  11. OIL SPILL AND OIL POLLUTION REPORTS AUGUST 1975 - OCTOBER 1975

    EPA Science Inventory

    The August 1975 - October 1975 Oil Spill and Oil Pollution Reports is the fifth quarterly compilation of oil spill events and oil pollution report summaries. Presented in the report are: (a) Summaries of oil spill events; (b) summaries and bibliographic literature citations; (c) ...

  12. OIL SPILL AND OIL POLLUTION REPORTS, FEBRUARY 1976 - APRIL 1976

    EPA Science Inventory

    The February 1976 - April 1976 Oil Spill and Oil Pollution Reports is the seventh quarterly compilation of oil spill events and oil pollution report summaries. Presented in the report are: (a) summaries of oil spill events; (b) summaries and bibliographic literature citations; (c...

  13. OIL SPILL AND OIL POLLUTION REPORTS, MAY 1975-JULY 1975

    EPA Science Inventory

    The May 1975 - July 1975 Oil Spill and Oil Pollution Reports is the fourth quarterly compilation of oil spill events and oil pollution report summaries. Presented in the report are: (a) summaries of oil spill events; (b) summaries and bibliographic literature citations; (c) summa...

  14. OIL SPILL AND OIL POLLUTION REPORTS, MAY 1976-JULY 1976

    EPA Science Inventory

    The May 1976 - July 1976 Oil Spill and Oil Pollution Report is the eighth quarterly compilation of oil spill events and oil pollution report summaries. Presented in the report are: (a) summaries of oil spill events; (b) summaries and bibliographic literature citations; (c) summar...

  15. OIL SPILL AND OIL POLLUTION REPORTS, AUGUST 1976-OCTOBER 1976

    EPA Science Inventory

    The August 1976 - October 1976 Oil Spill and Oil Pollution Reports is the ninth quarterly compilation of oil spill events and oil pollution report summaries. Presented in the report are: (a) summaries of oil spill events; (b) summaries and bibliographic literature citations; (c) ...

  16. Oil Spill! Student Guide and Teacher Guide. OEAGLS Investigation 17.

    ERIC Educational Resources Information Center

    Fortner, Rosanne W.; Ihle, Stephanie

    Presented in this unit are three activities concerning the causes and effects of oil spills and methods used to clean up these spills in the oceans and Great Lakes. Students construct and interpret a graph showing oil pollution sources. The students create and try to clean up a small-scale oil spill in a pan, and they compare the water quality of…

  17. HANDBOOK FOR USING FOAMS TO CONTROL VAPORS FROM HAZARDOUS SPILLS

    EPA Science Inventory

    The handbook describes basic types of foams that may be used to control vapor hazards from spilled volatile chemicals. It provides a table to be used by spill response personnel to choose an appropriate foam based on the type of chemical spill. Six general types of foams, surfact...

  18. 77 FR 60454 - Exxon Valdez Oil Spill Public Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-03

    ... Office of the Secretary Exxon Valdez Oil Spill Public Advisory Committee AGENCY: Office of the Secretary... renewal of the Exxon Valdez Oil Spill Public Advisory committee. SUPPLEMENTARY INFORMATION: The Court Order establishing the Exxon Valdez Oil Spill Trustee Council also requires a public advisory...

  19. 78 FR 54669 - Exxon Valdez Oil Spill Public Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-05

    ... Office of the Secretary Exxon Valdez Oil Spill Public Advisory Committee AGENCY: Office of the Secretary... announcing a public meeting of the Exxon Valdez Oil Spill Public Advisory Committee. DATES: October 3, 2013...-5011. SUPPLEMENTARY INFORMATION: The Exxon Valdez Oil Spill Public Advisory Committee was created...

  20. Oil-Spill Analysis: Gulf of Mexico Outer Continental Shelf (OCS) Lease Sales, Eastern Planning Area, 2003-2007 and Gulfwide OCS Program, 2003-2042

    NASA Astrophysics Data System (ADS)

    2002-09-01

    The Federal Government plans to offer U.S. Outer Continental Shelf (OCS) lands in the Eastern Planning Area of the Gulf of Mexico (GOM) for oil and gas leasing. This report summarizes results of that analysis, the objective of which was to estimate the risk of oil-spill contact to sensitive offshore and onshore environmental resources and socioeconomic features from oil spills accidentally occurring from the OCS activities.

  1. Oil spill cleanup method and apparatus

    SciTech Connect

    Mayes, F.M.

    1980-06-24

    A method for removing oil from the surface of water where an oil spill has occurred, particularly in obstructed or shallow areas, which comprises partially surrounding a hovercraft with a floating oil-collecting barrier, there being no barrier at the front of the hovercraft, moving the oil-barrier-surrounded-hovercraft into oil contaminated water, and collecting oil gathered within the barrier behind the hovercraft through a suction line which carries the oil to a storage tank aboard the hovercraft. The invention also embodies the hovercraft adapted to effect an oil spill cleanup.

  2. Tourism and its hypersensitivity to oil spills.

    PubMed

    Cirer-Costa, Joan Carles

    2015-02-15

    The sinking of the Don Pedro merchant ship in 2007 near the island of Ibiza is a good example of the extreme sensitivity of the tourism sector to oil spills. Despite the limited scale of the spill (only some 20 tonnes), its minimal ecological impact, and the rapid deployment of personnel and equipment to contain it, the accident nonetheless caused significant economic damage to the island's tourism sector. This particular case demonstrates the importance of the beach as a factor of production in the holiday tourism sector, and the capacity of even small amounts of oil to render it unusable and cause heavy losses to holiday firms. PMID:25561004

  3. Succession of hydrocarbon-degrading bacteria in the aftermath of the deepwater horizon oil spill in the gulf of Mexico.

    PubMed

    Dubinsky, Eric A; Conrad, Mark E; Chakraborty, Romy; Bill, Markus; Borglin, Sharon E; Hollibaugh, James T; Mason, Olivia U; M Piceno, Yvette; Reid, Francine C; Stringfellow, William T; Tom, Lauren M; Hazen, Terry C; Andersen, Gary L

    2013-10-01

    The Deepwater Horizon oil spill produced large subsurface plumes of dispersed oil and gas in the Gulf of Mexico that stimulated growth of psychrophilic, hydrocarbon degrading bacteria. We tracked succession of plume bacteria before, during and after the 83-day spill to determine the microbial response and biodegradation potential throughout the incident. Dominant bacteria shifted substantially over time and were dependent on relative quantities of different hydrocarbon fractions. Unmitigated flow from the wellhead early in the spill resulted in the highest proportions of n-alkanes and cycloalkanes at depth and corresponded with dominance by Oceanospirillaceae and Pseudomonas. Once partial capture of oil and gas began 43 days into the spill, petroleum hydrocarbons decreased, the fraction of aromatic hydrocarbons increased, and Colwellia, Cycloclasticus, and Pseudoalteromonas increased in dominance. Enrichment of Methylomonas coincided with positive shifts in the δ(13)C values of methane in the plume and indicated significant methane oxidation occurred earlier than previously reported. Anomalous oxygen depressions persisted at plume depths for over six weeks after well shut-in and were likely caused by common marine heterotrophs associated with degradation of high-molecular-weight organic matter, including Methylophaga. Multiple hydrocarbon-degrading bacteria operated simultaneously throughout the spill, but their relative importance was controlled by changes in hydrocarbon supply. PMID:23937111

  4. Lumber spill in central California waters: implications for oil spills and sea otters

    SciTech Connect

    VanBlaricom, G.R.; Jameson, R.J.

    1982-03-19

    A large quantity of lumber was spilled in the ocean off central California during the winter of 1978, and it spread through most of the range of the threatened California sea otter population within 4 weeks. The movement rates of lumber were similar to those of oil slicks observed elsewhere. These observations indicate that a major oil spill could expose significant numbers of California sea otters to oil contamination.

  5. Remote sensing for risk analysis of oil spills in the Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Johansson, Malin; Hassellöv, Ida-Maja; Eriksson, Leif; Lindgren, Fredrik; Berg, Anders; Carvajal, Gisela; Landquist, Hanna

    2014-05-01

    The observed decrease in sea-ice and change from multi-year ice to first-year ice in the Arctic Ocean opens up for increased maritime activities. These activities include transportation, extraction of oil and gas, fishing and tourism. The expected growth in marine shipping in the Arctic region also increases the potential threat of accidents. Within this project we aim to provide information about the potential geographical distribution of oil pollution along prospective future shipping lanes in the Arctic. Using a combination of remote sensing products and a risk analysis thought-process we develop a method that tracks a potential oil spill from release to clean-up. We use synthetic aperture radar (SAR) images to provide input data about the changes in the Arctic sea ice cover, including sea ice drift, sea-ice concentration and information on the wind patterns over open water at 10 meters height. Combining this data with information about ocean currents we make estimates on the redistribution and spread of oil pollution scenarios. Furthermore, the method includes the biogeochemical impact of the spill on the environment. Different size of oil spills and spills with different type of oil will be included and we will include ecotoxicological effects of low concentrations of oil for possible future economic assessment of the environmental impact.

  6. 30 CFR 550.250 - What oil and hazardous substance spills information must accompany the DPP or DOCD?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 2 2013-07-01 2013-07-01 false What oil and hazardous substance spills information must accompany the DPP or DOCD? 550.250 Section 550.250 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Plans and Information Contents...

  7. EVALUATION OF OIL SPILL DISPERSANT TESTING REQUIREMENTS

    EPA Science Inventory

    The research program evaluates the cost effectiveness of the procedures for testing oil spill dispersants as specified in Annex X of the National Oil and Hazardous Substances Pollution Contingency Plan. The testing procedure is described in detail in the Standard Dispersant Effec...

  8. EVALUATION OF THIRTEEN SPILL RESPONSE TECHNOLOGIES

    EPA Science Inventory

    Thirteen spill response devices, concepts, or prototypes, developed under previous contracts to the U.S. Environmental Protection Agency for detection, containment, and cleanup of chemicals, were evaluated by potential users and manufacturers. The main goal of the project was to ...

  9. DISPERSANT EFFECTIVENESS ON OIL SPILLS - EMPIRICAL CORRELATIONS

    EPA Science Inventory

    When a dispersant is applied to an oil slick, its effectiveness in dispersing the spilled oil depends on various factors such as oil properties, wave mixing energy, temperature of both oil and water, and salinity of the water. Estuaries represent water with varying salinities. In...

  10. Aquatic oil spill cleanup using natural sorbents.

    PubMed

    Paulauskienė, Tatjana; Jucikė, Indrė

    2015-10-01

    One of the most popular transportation methods of crude oil is water transport, leading to potential spills of these pollutants in the seas and oceans and water areas of ports, during their extraction, transportation, transhipment and use. The growth of the Lithuanian economy and the expansion of competitiveness were hardly imagined without the development of the Klaipeda seaport. However, the intensity of shipping and the increase in cargo loading volumes at specialised terminals are associated with a higher risk of environmental pollution. To achieve a sustainable development of the seaport, it is necessary not only to ensure the prevention of potential water pollution but also, if necessary, to use environmentally friendly technology for pollution management. The work analyses the possibilities related to the collection of oil products from the water surface using natural sorbents (peat, wool, moss and straw) and their composites.The research of absorbed amount of crude oil and diesel fuel spilled on the water surface, while using sorbents and their composites, determined that sorbents' composite straw-peat (composition percentage of straw-peat 25-75 %) absorbs the major amount of both crude oil (60 % of the spilled volume) and diesel fuel (69 % of the spilled volume) comparing to single sorbents and sorbents' composite straw-peat (composition percentage of straw-peat 50-50 %). PMID:25994272

  11. Sea otter oil spill avoidance study

    SciTech Connect

    Davis, R.W.; Williams, T.M.; Awbrey, F.

    1988-04-01

    To determine whether acoustic, visual, or olfactory stimuli could be used to move sea otters out of an area in the event of an oil spill, the authors recorded the responses of sea otters to a variety of stimuli during captive studies in Alaska. These findings are similar to those of previous attempts to control the movements of sea otters and other marine mammals and birds. An alternative to herding is to capture otters in the vicinity of the spill and temporarily hold them in captivity. This approach is only practical if the number of otters in jeopardy is small (less than 60) and there is enough time to capture them. Based on the results of the study and previous attempts by the California Department of Fish and Game to herd sea otters, the authors do not think acoustic, visual, and olfactory stimuli are effective deterrents. In the absence of effective methods to keep sea otters out of an oil spill, the emphasis must remain on spill prevention, containment, and cleanup.

  12. Coast Guard's Response to Spilled Oil

    ERIC Educational Resources Information Center

    Ard, R. W., Jr.

    1976-01-01

    The Coast Guard utilizes a number of monitoring detectors, sensors, and techniques to find, recover and identify oil spills. Discussed in this article are in-situ and airborne sensors, systems developed to provide clean-up capability such as air deployable anti-pollution transfer system (ADAPTS), and techniques which will determine the source of a…

  13. TECHNIQUES FOR MIXING DISPERSANTS WITH SPILLED OIL

    EPA Science Inventory

    The effective use of some oil spill dispersants requires the addition of mixing energy to the dispersant-treated slick. Various methods of energy application have included the use of fire hose streams directed to the water surface, outboard motors mounted on work boats, and the f...

  14. MODELING DISPERSANT INTERACTIONS WITH OIL SPILLS

    EPA Science Inventory

    EPA is developing a model called the EPA Research Object-Oriented Oil Spill Model (ERO3S) and associated databases to simulate the impacts of dispersants on oil slicks. Because there are features of oil slicks that align naturally with major concepts of object-oriented programmi...

  15. THE FEASIBILITY OF IDENTIFYING MYSTERY OIL SPILLS

    EPA Science Inventory

    Several off-the-shelf passive tagging techniques for identifying the origin of mystery oil spills were evaluated to determine the viability of enforcement provisions of Maine's Oil Conveyance Law. Duplicating the operating conditions experienced during every-day marine terminals ...

  16. Sulfuric acid spills in marine accidents

    SciTech Connect

    Tang, I N; Wong, W T; Munkelwitz, H R; Flessner, M F

    1980-07-01

    Concentrated sulfuric acid and oleum are among the most potentially hazardous chemicals routinely transported in bulk quantities on US and international waterways. Conceivably, during a marine mishap, tons of sulfuric acid could be abruptly released into the water, and the consequences of such a spill could be detrimental to man and the environment. Several acid spill scenarios are briefly described, and the results from laboratory experiments designed to simulate two different types of acid spill accidents are reported. It is shown that the convective mixing of concentrated sulfuric acid with water can adequately be described by a mathematical model which takes into account the variation of the buoyancy force arising from changes in acid concentration and released heat of dilution. A value of 0.21 is determined to be the entrainment parameter for the mixing of sulfuric acid with water. For oleum spills in which acid aerosol formation is a potential safety hazard, a conservative estimate of less than one-tenth of a percent is obtained for the amount of airborne acid under most accident conditions. The fraction of airborne acid, however, decreases very rapidly with increasing release depth below water surfaces. The acid aerosols exhibit a well-defined log-normal particle-size distribution with peak diameter varying from 0.1 to 0.6 ..mu..m (at 70% R.H.) depending upon release depth. This is well within the respirable particle size range.

  17. Allee effect from parasite spill-back.

    PubMed

    Krkošek, Martin; Ashander, Jaime; Frazer, L Neil; Lewis, Mark A

    2013-11-01

    The exchange of native pathogens between wild and domesticated animals can lead to novel disease threats to wildlife. However, the dynamics of wild host-parasite systems exposed to a reservoir of domesticated hosts are not well understood. A simple mathematical model reveals that the spill-back of native parasites from domestic to wild hosts may cause a demographic Allee effect in the wild host population. A second model is tailored to the particulars of pink salmon (Oncorhynchus gorbuscha) and salmon lice (Lepeophtheirus salmonis), for which parasite spill-back is a conservation and fishery concern. In both models, parasite spill-back weakens the coupling of parasite and wild host abundance-particularly at low host abundance-causing parasites per host to increase as a wild host population declines. These findings show that parasites shared across host populations have effects analogous to those of generalist predators and can similarly cause an unstable equilibrium in a focal host population that separates persistence and extirpation. Allee effects in wildlife arising from parasite spill-back are likely to be most pronounced in systems where the magnitude of transmission from domestic to wild host populations is high because of high parasite abundance in domestic hosts, prolonged sympatry of domestic and wild hosts, a high transmission coefficient for parasites, long-lived parasite larvae, and proximity of domesticated populations to wildlife migration corridors. PMID:24107371

  18. Planning for the Human Dimensions of Oil Spills and Spill Response

    NASA Astrophysics Data System (ADS)

    Webler, Thomas; Lord, Fabienne

    2010-04-01

    Oil spill contingency planners need an improved approach to understanding and planning for the human dimensions of oil spills. Drawing on existing literature in social impact assessment, natural hazards, human ecology, adaptive management, global change and sustainability, we develop an integrative approach to understanding and portraying the human dimensions impacts of stressors associated with oil spill events. Our approach is based on three fundamental conclusions that are drawn from this literature review. First, it is productive to acknowledge that, while stressors can produce human impacts directly, they mainly affect intermediary processes and changes to these processes produce human impacts. Second, causal chain modeling taken from hazard management literature provides a means to document how oil spill stressors change processes and produce human impacts. Third, concepts from the global change literature on vulnerability enrich causal models in ways that make more obvious how management interventions lessen hazards and mitigate associated harm. Using examples from recent spill events, we illustrate how these conclusions can be used to diagrammatically portray the human dimensions of oil spills.

  19. Remote sensing of marine oil spills and its applications

    NASA Astrophysics Data System (ADS)

    Li, Ying; Ma, Long; Yu, Shui-ming; Li, Chuan-long; Li, Qi-jun

    2008-11-01

    Remote sensing is an effective tool to monitor oil spills. The theory of oil spill remote sensing is based on the differences between oil slick and other environmental objects. For optical sensor, the ability of different bands to find oil film at sea is different. Oil spill object could be intensified by composing appropriate bands. In addition, image enhancements could also strengthen oil spill features. For SAR, image characteristics of oil spill are crucial to oil detection. Applications show that sensors loaded on satellite can find oil slick at sea. Optical sensor and SAR have their own advantages, and play different roles in oil spill remote sensing. It is necessary to integrate them to establish an all-weather, omnidirectional 3-D monitoring network for monitoring oil spills and illicit vessel discharges.

  20. Development of an oil spill forecast system for offshore China

    NASA Astrophysics Data System (ADS)

    Wang, Yonggang; Wei, Zexun; An, Wei

    2015-12-01

    An oil spill forecast system for offshore China was developed based on Visual C++. The oil spill forecast system includes an ocean environmental forecast model and an oil spill model. The ocean environmental forecast model was designed to include timesaving methods, and comprised a parametrical wind wave forecast model and a sea surface current forecast model. The oil spill model was based on the "particle method" and fulfills the prediction of oil particle behavior by considering the drifting, evaporation and emulsification processes. A specific database was embedded into the oil spill forecast system, which contained fundamental information, such as the properties of oil, reserve of emergency equipment and distribution of marine petroleum platform. The oil spill forecast system was successfully applied as part of an oil spill emergency exercise, and provides an operational service in the Research and Development Center for Offshore Oil Safety and Environmental Technology.

  1. Development of an oil spill forecast system for offshore China

    NASA Astrophysics Data System (ADS)

    Wang, Yonggang; Wei, Zexun; An, Wei

    2016-07-01

    An oil spill forecast system for offshore China was developed based on Visual C++. The oil spill forecast system includes an ocean environmental forecast model and an oil spill model. The ocean environmental forecast model was designed to include timesaving methods, and comprised a parametrical wind wave forecast model and a sea surface current forecast model. The oil spill model was based on the "particle method" and fulfills the prediction of oil particle behavior by considering the drifting, evaporation and emulsification processes. A specific database was embedded into the oil spill forecast system, which contained fundamental information, such as the properties of oil, reserve of emergency equipment and distribution of marine petroleum platform. The oil spill forecast system was successfully applied as part of an oil spill emergency exercise, and provides an operational service in the Research and Development Center for Offshore Oil Safety and Environmental Technology.

  2. Effects of Dissolved Gas Supersaturation on Fish Residing in the Snake and Columbia Rivers, 1996 Annual Report.

    SciTech Connect

    Schrank, Boyd P.

    1998-03-01

    Increased spill at dams has commonly brought dissolved gas supersaturation higher than levels established by state and federal water quality criteria in the Columbia and Snake Rivers. These increased spill volumes are intended to provide safe passage for migrating juvenile salmon. However, dissolved gas supersaturation resulting from spill in past decades has led to gas bubble disease (GBD) in fish. Therefore, during the period of high spill in 1996, the authors monitored the prevalence and severity of gas bubble disease by sampling resident fish in Priest Rapids Reservoir and downstream from Bonneville, Priest Rapids, and Ice Harbor Dams.

  3. Hazardous materials (HAZMAT) Spill Center strategic plan

    SciTech Connect

    1996-01-01

    This strategic Plan was developed in keeping with the Department of Energy`s mission for partnership with its customers to contribute to our Nation`s welfare by providing the technical information and the scientific and educational foundation for the technology, policy and institutional leadership necessary to achieve efficiency in energy use, diversity in energy sources, a more productive and competitive economy, improved environmental quality, and a secure national defense. The Plan provides the concepts for realigning the Departments`s Hazardous Materials Spill Center (HSC) in achieving its vision of becoming the global leader in meeting the diverse HAZMAT needs in the areas of testing, training, and technology. Each of these areas encompass many facets and a multitude of functional and operational requirements at the Federal, state, tribal, and local government levels, as well as those of foreign governments and the private sector. The evolution of the limited dimensional Liquefied Gaseous Fuels Spill Test Facility into a multifaceted HAZMAT Spill Center will require us to totally redefine our way of thinking as related to our business approach, both within and outside of the Department. We need to establish and maintain a viable and vibrant outreach program through all aspects of the public (via government agencies) and private sectors, to include foreign partnerships. The HAZMAT Spill Center goals and objectives provide the direction for meeting our vision. This direction takes into consideration the trends and happenings identified in the {open_quotes}Strategic Outlook{close_quotes}, which includes valuable input from our stakeholders and our present and future customers. It is our worldwide customers that provide the essence of the strategic outlook for the HAZMAT Spill Center.

  4. A tale of two recent spills--comparison of 2014 Galveston Bay and 2010 Deepwater Horizon oil spill residues.

    PubMed

    Yin, Fang; Hayworth, Joel S; Clement, T Prabhakar

    2015-01-01

    Managing oil spill residues washing onto sandy beaches is a common worldwide environmental problem. In this study, we have analyzed the first-arrival oil spill residues collected from two Gulf of Mexico (GOM) beach systems following two recent oil spills: the 2014 Galveston Bay (GB) oil spill, and the 2010 Deepwater Horizon (DWH) oil spill. This is the first study to provide field observations and chemical characterization data for the 2014 GB oil spill. Here we compare the physical and chemical characteristics of GB oil spill samples with DWH oil spill samples and present their similarities and differences. Our field observations indicate that both oil spills had similar shoreline deposition patterns; however, their physical and chemical characteristics differed considerably. We highlight these differences, discuss their implications, and interpret GB data in light of lessons learned from previously published DWH oil spill studies. These analyses are further used to assess the long-term fate of GB oil spill residues and their potential environmental impacts. PMID:25714100

  5. A review of polymer nanofibres by electrospinning and their application in oil-water separation for cleaning up marine oil spills.

    PubMed

    Sarbatly, Rosalam; Krishnaiah, Duduku; Kamin, Zykamilia

    2016-05-15

    The growths of oil and gas exploration and production activities have increased environmental problems, such as oil spillage and the resulting pollution. The study of the methods for cleaning up oil spills is a critical issue to protect the environment. Various techniques are available to contain oil spills, but they are typically time consuming, energy inefficient and create secondary pollution. The use of a sorbent, such as a nanofibre sorbent, is a technique for controlling oil spills because of its good physical and oil sorption properties. This review discusses about the application of nanofibre sorbent for oil removal from water and its current developments. With their unique physical and mechanical properties coupled with their very high surface area and small pore sizes, nanofibre sorbents are alternative materials for cleaning up oil spills. PMID:27016959

  6. Biological studies in the impact zone of the Liquefied Gaseous Fuels Spill Test Facility in Frenchman Flat, Nevada

    SciTech Connect

    Hunter, R.B.; Saethre, M.B.; Medica, P.A.; Greger, P.D.; Romney, E.M.

    1991-01-01

    Desert shrubs and rodents were monitored downwind of the Department of Energy Liquefied Gaseous Fuels Spill Test Facility (LGF), which is situated on a dry lake bed (playa). Plants were censused in 1981 and 1986 through 1990; rodent survival was measured from 1986 through 1990. During that time there were no apparent effects of the spill tests on animals or plants off the edge of the playa, which extends more than 2.5 kilometers from the facility. Plant populations increased in volume from 1981 through 1986, then declined precipitously during drought in 1989 and 1990. Rodent populations also declined during the drought. Some effects of spilled hydrogen fluoride gas were seen on plants growing on manmade mounds on the playa surface. Animal and bird species seen in the vicinity of the LGF are also reported. 11 refs., 10 figs., 16 tabs.

  7. Artic oil-spill response guide for the alaskan beaufort sea. Final report

    SciTech Connect

    Not Available

    1988-03-01

    Contents include--Federal Response Organization; Initial Response; Elements of Response; Detection and Surveillance, Oil-Spill Trajectory Models, Oil-Spill Containment, Oil-Spill Recovery, Transfer Equipment, Recovered Oil Storage Equipment, Oil-Spill Disposal, Personnel, Logistics, Well Control, Dispersants, Mechanics of Response, Oil Spill Response Scenarios; Appendices.

  8. Characterization of epibenthic and demersal megafauna at Mississippi Canyon 252 shortly after the Deepwater Horizon Oil Spill.

    PubMed

    Valentine, Marla M; Benfield, Mark C

    2013-12-15

    The Deepwater Horizon Oil Spill resulted in the release of a large quantity of oil and gas into the northern Gulf of Mexico from a bathypelagic source. Due to a lack of pre-spill quantitative data the baseline condition of the communities near the spill site is unknown. This makes it difficult to determine the impact of the spill on deepwater megafauna. Remotely operated vehicles were used to quantify megafauna at five study sites during August and September 2010:2000 m north, west, south, and east, and 500 m north of the Macondo well. Comparisons of animal abundances indicated that 2000 m-N and 2000 m-W had the greatest taxonomic richness and highest abundances while 2000 m-E had slightly lower values. In contrast 500 m-N and 2000 m-S had the lowest taxonomic richness and abundances. Our study also suggests that certain taxa were potentially more resistant or sensitive to the spill. PMID:24269011

  9. Asphaltene content and composition as a measure of Deepwater Horizon oil spill losses within the first 80 days

    USGS Publications Warehouse

    Lewan, M.D.; Warden, A.; Dias, R.F.; Lowry, Z.K.; Hannah, T.L.; Lillis, P.G.; Kokaly, R.F.; Hoefen, T.M.; Swayze, G.A.; Mills, C.T.; Harris, S.H.; Plumlee, G.S.

    2014-01-01

    The composition and content of asphaltenes in spilled and original wellhead oils from the Deepwater Horizon (DWH) incident provide information on the amount of original oil lost and the processes most responsible for the losses within the first 80 days of the active spill. Spilled oils were collected from open waters, coastal waters and coastal sediments during the incident. Asphaltenes are the most refractory component of crude oils but their alteration in the spilled oils during weathering prevents them from being used directly as a conservative component to calculate original oil losses. The alteration is reflected by their increase in oxygen content and depletion in 12C. Reconnaissance experiments involving evaporation, photo-oxidation, microbial degradation, dissolution, dispersion and burning indicate that the combined effects of photo-oxidation and evaporation are responsible for these compositional changes. Based on measured losses and altered asphaltenes from these experiments, a mean of 61 ± 3 vol% of the original oil was lost from the surface spilled oils during the incident. This mean percentage of original oil loss is considerably larger than previous estimates of evaporative losses based on only gas chromatography (GC) amenable hydrocarbons (32–50 vol%), and highlights the importance of using asphaltenes, as well as GC amenable parameters in evaluating original oil losses and the processes responsible for the losses.

  10. IT - OSRA: applying ensemble simulations to estimate the oil spill hazard associated to operational and accidental oil spills

    NASA Astrophysics Data System (ADS)

    Sepp Neves, Antonio Augusto; Pinardi, Nadia; martins, Flavio

    2016-04-01

    Every year, 270,000 tonnes of oil are estimated to be spilled in the ocean by vessel operations (e.g. tank washing, leakage of lubricants) and the so called operational spills are typically associated with small volumes and high occurrence rate. Vessel-related accidental spills (e.g. collisions, explosions) seldom occur and usually involve high volumes of oil, accounting for about 100,000 tonnes/year. The occurrence of accidental spills and their impacts have been well documented in the available literature. On the other hand, occurrence rates of operational spills and the effects they have on the marine and coastal environments remain very uncertain due to insufficient sampling effort and methodological limitations. Trying to foresee when and where an oil spill will occur in a certain area, its characteristics and impacts is, at present, impossible. Oil spill risk assessments (OSRAs) have been employed in several parts of the globe in order to deal with such uncertainties and protect the marine environment. In the present work, we computed the oil spill risk applying ensemble oil spill simulations following an ISO-31000 compliant OSRA methodology (Sepp Neves et al. , 2015). The ensemble experiment was carried out for the Algarve coast (southern Portugal) generating a unique data set of 51,200 numerical oil spill simulations covering the main sources of uncertainties (i.e. where and when the spill will happen and oil spill model configuration). From the generated data set, the risk due to accidental and operational spills was mapped for the Algarve municipalities based on the frequency and magnitude (i.e. concentrations) of beaching events and the main sources of risk were identified. The socioeconomic and environmental dimensions of the risk were treated separately. Seasonal changes in the risk index proposed due to the variability of meteo-oceanographic variables (i.e. currents and waves) were also quantified.

  11. Saudis map $450 million gulf spill cleanup

    SciTech Connect

    Not Available

    1991-11-18

    This paper reports on Saudi Arabia which has earmarked about $450 million to clean up Persian Gulf beaches polluted by history's worst oil spills, created during the Persian Gulf crisis. Details of the proposed cleanup measures were outlined by Saudi environmental officials at a seminar on the environment in Dubai, OPEC News Agency reported. The seminar was sponsored by the Gulf Area Oil Companies Mutual Aid Organization, an environmental cooperative agency set up by Persian Gulf governments. Meantime, a Saudi government report has outlined early efforts designed to contain the massive oil spills that hit the Saudi coast before oil could contaminate water intakes at the huge desalination plants serving Riyadh and cooling water facilities at Al Jubail.

  12. Survey to assess Persian Gulf spill effects

    SciTech Connect

    Not Available

    1992-02-10

    This paper reports that an international group is poised for an extensive survey of the Persian Gulf, including an assessment of the long term effects of last year's oil spill, a legacy of the Persian Gulf war. Saudi Arabia plans a $450 million cleanup program on beaches fouled by the massive spill. Plans for the survey were disclosed by the United National Educational, Scientific and Cultural Organization (Unesco). It is to be carried out under the auspices of the Regional Organization for the Protection of the Marine Environment (Ropme), Unesco's Intergovernmental Oceanographic Commission, and the U.S. National Oceanic and Atmospheric Administration. Ropme member countries are Bahrain, Iran, Iraq, Kuwait, Qatar, Saudi Arabia, and the United Arab Emirates.

  13. Operational approach for oil spill monitoring

    NASA Astrophysics Data System (ADS)

    Franca, Gutemberg B.; Landau, Luiz; Tores, Audalio R., Jr.; Drumond, Jose A. L.; Fragoso, Mauricio R.; De Almeida, Ricardo C.; Cunha, Gerson G.; Pedroso, Enrico C.; Beisl, Carlos H.

    2003-05-01

    This paper presents the methodological approach of the oil spill monitoring system that is being put into operation by the National Petroleum Agency (NPA) in Brazil. The methodology is based on integrated analysis of multi-sensor data which includes satellites products, such as, GOES and AVHRR Sea Surface Temperature (SST), SeaWiFs chlorophyll concentration, QuikScat near sea surface wind field, GOES and AVHRR convective rain areas, and Synthetic Aperture RADAR (SAR) data from RADARSAT-1 satellite. The methodology is implemented by means of a system composed by four subsystems called, data reception (SAR, GOES, NOAA and QuikScat), Integrator, hydrodynamic model and database. The methodology was applied to the accidental oil spill caused by PETROBRAS oil rig P-36. A RADARSAT-1 image was acquired during accident period at 21:07 (GMT) on 22nd of March 2001 and used. The results are presented and discussed.

  14. Western European oil pipeline spills on land decline in 1992

    SciTech Connect

    Not Available

    1994-02-07

    European crude oil and petroleum products pipelines in 1992 had fewer incidents of oil spills than in 1991, spilled less in total volume, and recovered a larger portion of what was spilled than in any single year in the 5-year period beginning in 1988. Only seven incidents of oil spills from pipelines or related facilities occurred in 1992, compared with 14 in 1991 and an average of 12.9/year since 1971. Five spills were from pipelines; two from pump stations. Net loss of oil into the environment was 430 cu m (2,709 bbl) or barely 0.7 ppm of the total volume transported. Gross amount of spills totaled 804 cu m (5,065 bbl), least in the period 1988--92.

  15. Oil spill response group aiming for full operation

    SciTech Connect

    Crow, P.

    1991-12-02

    In 15 months the first national oil spill cleanup organization plans to be in operation at sites around the U.S. coast. This paper reports that the Marine Spill Response Corp. (MSRC), financed by major oil companies, plans to begin full operation Feb. 18, 1993. It is considering starting limited operations in selected regions before then. Following the 1989 Exxon Valdez oil spill, an American Petroleum Institute task force proposed creation of a private offshore oil spill response agency. Individual oil companies then began a nonprofit firm that has evolved into MSRC. MSRC has a clearly defined role: It exists to sponsor oil spill research and to respond to catastrophic spills from offshore pipelines, platforms, rigs and tankers, carrying the oil of its sponsoring companies.

  16. Cyber Physical Intelligence for Oil Spills (CPI)

    NASA Astrophysics Data System (ADS)

    Lary, D. J.

    2015-12-01

    The National Academy of Sciences estimate 1.7 to 8.8 million tons of oil are released into global waters every year. The effects of these spills include dead wildlife, oil covered marshlands and contaminated water. Deepwater horizon cost approximately $50 billion and severely challenged response capabilities. In such large spills optimizing a coordinated response is a particular challenge. This challenge can be met in a revolutionary new way by using an objectively optimized Cyber Physical Decision Making System (CPS) for rapid response products and a framework for objectively optimized decision-making in an uncertain environment. The CPS utilizes machine learning for the processing of the massive real-time streams of Big Data from comprehensive hyperspectral remote sensing acquired by a team of low-cost robotic aerial vehicles, providing a real-time aerial view and stream of hyperspectral imagery from the near UV to the thermal infrared, and a characterization of oil thickness, oil type and oil weathering. The objective decision making paradigm is modeled on the human brain and provides the optimal course trajectory for response vessels to achieve the most expeditious cleanup of oil spills using the available resources. In addition, oil spill cleanups often involve surface oil burns that can lead to air quality issues. The aerial vehicles comprehensively characterize air quality in real-time, streaming location, temperature, pressure, humidity, the abundance of 6 criterion pollutants (O3, CO, NO, NO2, SO2, and H2S) and the full size distribution of airborne particulates. This CPS can be readily applied to other systems in agriculture, water conversation, monitoring of stream quality, air quality, diagnosing risk of wild fires, etc..

  17. Oil spill dispersants: boon or bane?

    PubMed

    Prince, Roger C

    2015-06-01

    Dispersants provide a reliable large-scale response to catastrophic oil spills that can be used when the preferable option of recapturing the oil cannot be achieved. By allowing even mild wave action to disperse floating oil into tiny droplets (<70 μm) in the water column, seabirds, reptiles, and mammals are protected from lethal oiling at the surface, and microbial biodegradation is dramatically increased. Recent work has clarified how dramatic this increase is likely to be: beached oil has an environmental residence of years, whereas dispersed oil has a half-life of weeks. Oil spill response operations endorse the concept of net environmental benefit, that any environmental costs imposed by a response technique must be outweighed by the likely benefits. This critical review discusses the potential environmental debits and credits from dispersant use and concludes that, in most cases, the potential environmental costs of adding these chemicals to a polluted area are likely outweighed by the much shorter residence time, and hence integrated environmental impact, of the spilled oil in the environment. PMID:25938731

  18. Proceedings of the Workshop on Government Oil Spill Modeling

    NASA Technical Reports Server (NTRS)

    Bishop, J. M. (Compiler)

    1980-01-01

    Oil spill model users and modelers were brought together for the purpose of fostering joint communication and increasing understanding of mutual problems. The workshop concentrated on defining user needs, presentations on ongoing modeling programs, and discussions of supporting research for these modeling efforts. Specific user recommendations include the development of an oil spill model user library which identifies and describes available models. The development of models for the long-term fate and effect of spilled oil was examined.

  19. 75 FR 21648 - MMS Information Collection Activity: 1010-0106, Oil Spill Financial Responsibility for Offshore...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-26

    ... Minerals Management Service MMS Information Collection Activity: 1010-0106, Oil Spill Financial... Part 253, Oil Spill Financial Responsibility for Offshore Facilities.'' DATES: Submit written comments... collection of information. SUPPLEMENTARY INFORMATION: Title: 30 CFR Part 253, Oil Spill...

  20. Chemical Spill Prevention, Control, and Countermeasures Plan: 100 Areas

    SciTech Connect

    Chien, Y.M.

    1989-06-01

    The purpose of this Chemical Spill Prevention, Control, and Countermeasures (SPCC) Plan is to identify the chemical spill control practices, procedures, and containment devices Westinghouse Hanford Company (Westinghouse Hanford) employs to prevent a reportable quantity (RQ) of a hazardous substance (as defined in 40 CFR Part 302) from being released to the environment. The chemical systems and chemical storage facilities in the 100 Areas are described. This document traces the ultimate fate of accidental chemical spills at the 100 Areas. Also included in the document destinations, spill containment devices, and systems surveillance frequencies. 2 tabs.

  1. Liquid Spills on Permeable Soil Surfaces: Experimental Confirmations

    SciTech Connect

    Simmons, Carver S.; Keller, Jason M.

    2005-09-29

    Predictive tools for assessing the quantity of a spill on a soil from the observed spreading area could contribute to improving remediation when it is necessary. On a permeable soil, the visible spill area only hints about the amount of liquid that might reside below the surface. An understanding of the physical phenomena involved with spill propagation on a soil surface is key to assessing the liquid amount possibly present beneath the surface. The objective of this study is an improved prediction capability for spill behavior.

  2. Gas Analyzer

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The M200 originated in the 1970's under an Ames Research Center/Stanford University contract to develop a small, lightweight gas analyzer for Viking Landers. Although the unit was not used on the spacecraft, it was further developed by The National Institute for Occupational Safety and Health (NIOSH). Three researchers from the project later formed Microsensor Technology, Inc. (MTI) to commercialize the analyzer. The original version (Micromonitor 500) was introduced in 1982, and the M200 in 1988. The M200, a more advanced version, features dual gas chromatograph which separate a gaseous mixture into components and measure concentrations of each gas. It is useful for monitoring gas leaks, chemical spills, etc. Many analyses are completed in less than 30 seconds, and a wide range of mixtures can be analyzed.

  3. Oil spills: Legal aspects. (Latest citations from the Selected Water Resources Abstracts database). Published Search

    SciTech Connect

    Not Available

    1993-07-01

    The bibliography contains citations concerning the legal aspects of oil spills. Topics include general perspectives on oil spills, EPA's response to oil spills, legal and corporate response to oil spills, public interest groups' attitudes on oil spills, and economic and political approaches to the problems caused by oil spills. Federal, state and local legislation dealing with these problems is emphasized. (Contains 250 citations and includes a subject term index and title list.)

  4. A GIS planning model for urban oil spill management.

    PubMed

    Li, J

    2001-01-01

    Oil spills in industrialized cities pose a significant threat to their urban water environment. The largest city in Canada, the city of Toronto, has an average 300-500 oil spills per year with an average total volume of about 160,000 L/year. About 45% of the spills was eventually cleaned up. Given the enormous amount of remaining oil entering into the fragile urban ecosystem, it is important to develop an effective pollution prevention and control plan for the city. A Geographic Information System (GIS) planning model has been developed to characterize oil spills and determine preventive and control measures available in the city. A database of oil spill records from 1988 to 1997 was compiled and geo-referenced. Attributes to each record such as spill volume, oil type, location, road type, sector, source, cleanup percentage, and environmental impacts were created. GIS layers of woodlots, wetlands, watercourses, Environmental Sensitive Areas, and Areas of Natural and Scientific Interest were obtained from the local Conservation Authority. By overlaying the spill characteristics with the GIS layers, evaluation of preventive and control solutions close to these environmental features was conducted. It was found that employee training and preventive maintenance should be improved as the principal cause of spills was attributed to human errors and equipment failure. Additionally, the cost of using oil separators at strategic spill locations was found to be $1.4 million. The GIS model provides an efficient planning tool for urban oil spill management. Additionally, the graphical capability of GIS allows users to integrate environmental features and spill characteristics in the management analysis. PMID:11379137

  5. OIL SPILL BIOREMEDIATION: EXPERIENCES, LESSONS AND RESULTS FROM THE EXXON VALDEZ OIL SPILL IN ALASKA

    EPA Science Inventory

    The use of bioremediation as a supplemental cleanup technology in the Exxon Valdez oil spill, in Prince William Sound, Alaska, has proven to be a good example of the problems and successes associated with the practical application of this technology. ield studies conducted by sci...

  6. Economic impacts of oil spills: Spill unit costs for tankers, pipelines, refineries, and offshore facilities. [Task 1, Final report

    SciTech Connect

    Not Available

    1993-10-15

    The impacts of oil spills -- ranging from the large, widely publicized Exxon Valdez tanker incident to smaller pipeline and refinery spills -- have been costly to both the oil industry and the public. For example, the estimated costs to Exxon of the Valdez tanker spill are on the order of $4 billion, including $2.8 billion (in 1993 dollars) for direct cleanup costs and $1.125 billion (in 1992 dollars) for settlement of damages claims caused by the spill. Application of contingent valuation costs and civil lawsuits pending in the State of Alaska could raise these costs appreciably. Even the costs of the much smaller 1991 oil spill at Texaco`s refinery near Anacortes, Washington led to costs of $8 to 9 million. As a result, inexpensive waming, response and remediation technologies could lower oil spin costs, helping both the oil industry, the associated marine industries, and the environment. One means for reducing the impact and costs of oil spills is to undertake research and development on key aspects of the oil spill prevention, warming, and response and remediation systems. To target these funds to their best use, it is important to have sound data on the nature and size of spills, their likely occurrence and their unit costs. This information could then allow scarce R&D dollars to be spent on areas and activities having the largest impact. This report is intended to provide the ``unit cost`` portion of this crucial information. The report examines the three key components of the US oil supply system, namely, tankers and barges; pipelines and refineries; and offshore production facilities. The specific purpose of the study was to establish the unit costs of oil spills. By manipulating this key information into a larger matrix that includes the size and frequency of occurrence of oil spills, it will be possible` to estimate the likely future impacts, costs, and sources of oil spills.

  7. 40 CFR 280.30 - Spill and overfill control.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 26 2010-07-01 2010-07-01 false Spill and overfill control. 280.30... STORAGE TANKS (UST) General Operating Requirements § 280.30 Spill and overfill control. (a) Owners and... ensure that the volume available in the tank is greater than the volume of product to be transferred...

  8. DESIGN OF A REMOTELY CONTROLLED HOVERCRAFT VEHICLE FOR SPILL RECONNAISSANCE

    EPA Science Inventory

    This program was undertaken to prepare a conceptual design for a practical prototype of a remotely-controlled reconnaissance vehicle for use in hazardous material spill environment. Data from past hazardous material spills were analyzed to determine the type of vehicle best suite...

  9. OIL SPILL RESEARCH AND DEVELOPMENT NEEDS FOR THE 1990'S

    EPA Science Inventory

    In the 1970s and the early 1980s the emphasis of Federally-sponsored oil spill research was on mechanical spill control devices and removal methods such as booms, skimmers, and sorbents, with later efforts also focused on dispersing agents. The preponderance of the work was direc...

  10. OIL SPILL RESPONSE SCENARIOS FOR REMOTE ARCTIC ENVIRONMENTS

    EPA Science Inventory

    Special problems occur during oil spill cleanup in remote inland areas in cold climates. In Alaska these problems result from the harsh climate, the unusual terrain features, and the special problems of spills along swift rivers. The analysis begins with a description of the envi...

  11. Ecological Impacts of the Deepwater Horizon Oil Spill (Bogota, Columbia)

    EPA Science Inventory

    The Deepwater Horizon oil spill (DWH) was the largest environmental disaster and response effort in US History, with nearly 800 million liters spilled. Vast areas of the Gulf of Mexico were contaminated with oil, including deep ocean communities, protected species, over 1600 km o...

  12. APPLICATION OF BUOYANT MASS TRANSFER MEDIA TO HAZARDOUS MATERIAL SPILLS

    EPA Science Inventory

    A prototype system was designed and developed to slurry buoyant activated carbon into a static body of water. The process was developed to remove spilled soluable hazardous compounds from a watercourse. In a simulated spill, up to 98% removal of Diazinon, an organophosphorus pest...

  13. DEVELOPMENT OF AN IDENTIFICATION KIT FOR SPILLED HAZARDOUS MATERIALS

    EPA Science Inventory

    The Chemical Systems Laboratory (CSL) has developed a field kit to identify spilled hazardous materials in inland waters and on the ground. The Hazardous Materials Spills Identification Kit is a two-component kit consisting of an inverter/shortwave UV lamp unit for photochemical ...

  14. RESIDUAL MUTAGENICITY OF THE ALASKAN OIL SPILL ORGANICS

    EPA Science Inventory

    RESIDUAL MUTAGENICITY OF THE ALASKAN OIL SPILL ORGANICS. L.D.

    The Exxon Valdez, on March 24, 1989, spilled approximately eleven million gallons of Prudhoe Bay crude oil into the waters of Prince William Sound. Approximately 300 miles of
    contaminated beach are potential...

  15. OIL SPILL DEBRIS - WHERE TO PUT THE WASTE

    EPA Science Inventory

    This report is a digest of a workshop on disposal of oil spill debris. Representatives of five New England states and New York agreed that oil spill cleanup and disposal of debris is a major regional problem which must be addressed by identifying disposal sites in advance of majo...

  16. THREE NEW TECHNIQUES FOR FLOATING POLLUTANT SPILL CONTROL AND RECOVERY

    EPA Science Inventory

    Hazardous material (HM) spills pose serious problems in terms of the very poor visibility often attending such situations. No operational capability exists at night or other periods of low visibility. However, time is very important in spill control and recovery work; in a few ho...

  17. Statistics of extremes in oil spill risk analysis.

    PubMed

    Ji, Zhen-Gang; Johnson, Walter R; Wikel, Geoffrey L

    2014-09-01

    The Deepwater Horizon oil spill (DWH) in 2010 in the Gulf of Mexico is the largest accidental marine oil spill in the history of the petroleum industry. After DWH, key questions were asked: What is the likelihood that a similar catastrophic oil spill (with a volume over 1 million barrels) will happen again? Is DWH an extreme event or will it happen frequently in the future? The extreme value theory (EVT) has been widely used in studying rare events, including damage from hurricanes, stock market crashes, insurance claims, flooding, and earthquakes. In this paper, the EVT is applied to analyze oil spills in the U.S. outer continental shelf (OCS). Incorporating the 49 years (1964-2012) of OCS oil spill data, the EVT is capable of describing the oil spills reasonably well. The return period of a catastrophic oil spill in OCS areas is estimated to be 165 years, with a 95% confidence interval between 41 years and more than 500 years. Sensitivity tests indicate that the EVT results are relatively stable. The results of this study are very useful for oil spill risk assessment, contingency planning, and environmental impact statements on oil exploration, development, and production. PMID:25109900

  18. 40 CFR 300.323 - Spills of national significance.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., EMERGENCY PLANNING, AND COMMUNITY RIGHT-TO-KNOW PROGRAMS NATIONAL OIL AND HAZARDOUS SUBSTANCES POLLUTION CONTINGENCY PLAN Operational Response Phases for Oil Removal § 300.323 Spills of national significance. (a) A discharge may be classified as a spill of national significance (SONS) by the Administrator of EPA...

  19. 40 CFR 300.323 - Spills of national significance.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., EMERGENCY PLANNING, AND COMMUNITY RIGHT-TO-KNOW PROGRAMS NATIONAL OIL AND HAZARDOUS SUBSTANCES POLLUTION CONTINGENCY PLAN Operational Response Phases for Oil Removal § 300.323 Spills of national significance. (a) A discharge may be classified as a spill of national significance (SONS) by the Administrator of EPA...

  20. 40 CFR 300.323 - Spills of national significance.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., EMERGENCY PLANNING, AND COMMUNITY RIGHT-TO-KNOW PROGRAMS NATIONAL OIL AND HAZARDOUS SUBSTANCES POLLUTION CONTINGENCY PLAN Operational Response Phases for Oil Removal § 300.323 Spills of national significance. (a) A discharge may be classified as a spill of national significance (SONS) by the Administrator of EPA...

  1. 40 CFR 300.323 - Spills of national significance.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., EMERGENCY PLANNING, AND COMMUNITY RIGHT-TO-KNOW PROGRAMS NATIONAL OIL AND HAZARDOUS SUBSTANCES POLLUTION CONTINGENCY PLAN Operational Response Phases for Oil Removal § 300.323 Spills of national significance. (a) A discharge may be classified as a spill of national significance (SONS) by the Administrator of EPA...

  2. Ecological impacts of the Deepwater Horizon oil spill

    EPA Science Inventory

    The Deepwater Horizon oil spill (DWH) was the largest environmental disaster and response effort in United States history, with nearly 800 million liters of crude oil spilled. Vast areas of the Gulf of Mexico were contaminated with oil, including deep ocean communities and over 1...

  3. RESTORING HAZARDOUS SPILL-DAMAGED AREAS: TECHNIQUE IDENTIFICATION/ASSESSMENT

    EPA Science Inventory

    The goal of this study was to identify and assess methods that could be used to accelerate the restoration of lands damaged by spills of hazardous materials. The literature was reviewed to determine what response methods had been used in the past to clean up spills on land and id...

  4. Movement of fuel spills in the Ross Ice Shelf

    SciTech Connect

    Tumeo, M.A.; Larson, M.K.

    1994-12-31

    Williams Field provides logistical support to McMurdo Station in Antarctica and managers large amounts of fuel for their cargo planes. Numerous spills have occurred at this site with little recovery or remediation of the spilled fuel. From 1980 to 1989, approximately 380,000 liters (L) leaked during documented fuel spills-197,600 L of that total came from one spill alone, in October of 1989, when fuel leaked onto the ice at Williams Field. An additional 20 spills of unknown quantities have also occurred at McMurdo Station and Williams Field. Although recent improvements in equipment and procedures in Antarctica have significantly reduced the accidental release of fuel and all but eliminated the risk of a large fuel spill, the potential for small releases still exists. To track the movement of fuel spills on the ice shelf more accurately and to established the basis for remediation methods NSF funded a 3-year study. This article discusses information obtained about the movement of fuel from a small oil spill from a flexible pipeline between McMurdo Station and Williams Field on the Ross Ice Shelf. 1 fig., 1 tab.

  5. Ecological Impacts During the Deepwater Horizon Oil Spill Response

    EPA Science Inventory

    The Deepwater Horizon (DWH) oil spill was the largest environmental disaster and response effort in U.S. history, with nearly 800 million liters of crude oil spilled. Vast areas of the Gulf of Mexico were contaminated with oil, including deep-ocean communities and over 1,600 kilo...

  6. Evaluating technologies of oil spill surveillance

    SciTech Connect

    Hover, G.L.

    1993-07-01

    Surveillance and monitoring of oil in the marine environment imposes a broad spectrum of remote sensing requirements. At the US Coast Guard Research Development Center, the environmental safety branch is sponsoring oil spill remote sensing research in four areas of technology: Synthetic aperture radar (SAR), Frequency-scanning microwave radiometry (FSR), Laser fluorosensing (LFS), and Forward-looking infrared (FLIR) imagers. SAR technology uses sophisticated signal processing to overcome prior limitations, providing images of higher and more uniform spatial acuity which may enable interpreters to more-readily distinguish petroleum slicks from others. The ability to determine the distribution of oil thickness within a slick is necessary when an estimate of oil volume is desired. Scientists at MIT have formulated a new approach to radiometric oil thickness measurement that takes advantage of recent advances in electronic component technology. The initial data collected with a prototype FSR instrument have validated the FSR concept and more work is ongoing. The Coast Guard is co-funding a program to demonstrate and evaluate the capabilities of an airborne laser fluorosensor to support oil spill response operations. During a controlled test, the instrument successfully demonstrated an ability to detect oil on water, ice, and various beach surfaces. Additional testing included different oil types and allowed for weathering. Data analysis is ongoing. Recent developments in infrared imager technology have produced a wide variety of off-the-shelf, portable cameras that could potentially provide a rapid-response spill assessment capability. The R D Center has been involved in the testing of many of these sensors.

  7. Bacteria Provide Cleanup of Oil Spills, Wastewater

    NASA Technical Reports Server (NTRS)

    2010-01-01

    Through Small Business Innovation Research (SBIR) contracts with Marshall Space Flight Center, Micro-Bac International Inc., of Round Rock, Texas, developed a phototrophic cell for water purification in space. Inside the cell: millions of photosynthetic bacteria. Micro-Bac proceeded to commercialize the bacterial formulation it developed for the SBIR project. The formulation is now used for the remediation of wastewater systems and waste from livestock farms and food manufacturers. Strains of the SBIR-derived bacteria also feature in microbial solutions that treat environmentally damaging oil spills, such as that resulting from the catastrophic 2010 Deepwater Horizon oil rig explosion in the Gulf of Mexico.

  8. Closure Report for Corrective Action Unit 398: Area 25 Spill Sites, Nevada Test Site, Nevada

    SciTech Connect

    K. B. Campbell

    2003-04-01

    This Closure Report (CR) documents the activities performed to close Corrective Action Unit (CAU) 398: Area 25 Spill Sites, in accordance with the Federal Facility Agreement and Consent Order (FFACO) of 1996, and the Nevada Division of Environmental Protection (NDEP)-approved Streamlined Approach for Environmental Restoration (SA4FER) Plan for CAU 398: Area 25 Spill Sites, Nevada Test Site, Nevada (U.S. Department of Energy, Nevada Operations Office [DOEN], 2001). CAU 398 consists of the following thirteen Corrective Action Sites (CASs) all located in Area 25 of the Nevada Test Site (NTS) (Figure 1): CAS 25-25-02, Oil Spills, CAS 25-25-03, Oil Spills, CAS 25-25-04, Oil Spills, CAS 25-25-05, Oil Spills, CAS 25-25-06, Oil Spills, CAS 25-25-07, Hydraulic Oil Spill(s), CAS 25-25-08, Hydraulic Oil Spill(s), CAS 25-25-16, Diesel Spill (from CAS 25-01-02), CAS 25-25-17, Subsurface Hydraulic Oil Spill, CAS 25-44-0 1, Fuel Spill, CAS 25-44-04, Acid Spill (from CAS 25-01-01), CAS 25-44-02, Spill, and CAS 25-44-03, Spill. Copies of the analytical results for the site verification samples are included in Appendix B. Copies of the CAU Use Restriction Information forms are included in Appendix C.

  9. Estimating Potential Effects of Hypothetical Oil Spills on Polar Bears

    USGS Publications Warehouse

    Amstrup, Steven C.; Durner, G.M.; McDonald, T.L.; Johnson, W.R.

    2006-01-01

    Much is known about the transport and fate of oil spilled into the sea and its toxicity to exposed wildlife. Previously, however, there has been no way to quantify the probability that wildlife dispersed over the seascape would be exposed to spilled oil. Polar bears, the apical predator of the arctic, are widely dispersed near the continental shelves of the Arctic Ocean, an area also undergoing considerable hydrocarbon exploration and development. We used 15,308 satellite locations from 194 radiocollared polar bears to estimate the probability that polar bears could be exposed to hypothetical oil spills. We used a true 2 dimensional Gausian kernel density estimator, to estimate the number of bears likely to occur in each 1.00 km2 cell of a grid superimposed over near shore areas surrounding 2 oil production facilities: the existing Northstar oil production facility, and the proposed offshore site for the Liberty production facility. We estimated the standard errors of bear numbers per cell with bootstrapping. Simulated oil spill footprints for September and October, the times during which we hypothesized effects of an oil-spill would be worst, were estimated using real wind and current data collected between 1980 and 1996. We used ARC/Info software to calculate overlap (numbers of bears oiled) between simulated oil-spill footprints and polar bear grid-cell values. Numbers of bears potentially oiled by a hypothetical 5912 barrel spill (the largest spill thought probable from a pipeline breach) ranged from 0 to 27 polar bears for September open water conditions, and from 0 to 74 polar bears in October mixed ice conditions. Median numbers oiled by the 5912 barrel hypothetical spill from the Liberty simulation in September and October were 1 and 3 bears, equivalent values for the Northstar simulation were 3 and 11 bears. In October, 75% of trajectories from the 5912 barrel simulated spill at Liberty oiled 9 or fewer bears while 75% of the trajectories affected 20 or

  10. Infiltration and Evaporation of Diesel and Gasoline Droplets Spilled onto Concrete Pavement

    NASA Astrophysics Data System (ADS)

    Hilpert, M.; Adria-Mora, B.

    2015-12-01

    Pollution at gas stations due to small spills that occur during refueling of customer vehicles has received little attention. We have performed laboratory experiments in order to assess the processes of evaporation and infiltration of fuel spilled onto concrete samples. Changes in mass of both spilled diesel and gasoline droplets as a function of time have been analyzed. The infiltrated mass is affected by variations in humidity, among other parameters, which influence the amount of water condensed onto the concrete. Therefore, we used a humidity data logger and statistical tools to predict the evolution of the real mass of infiltrated fuel. The infiltrated mass roughly decreases exponentially, but the difference in behavior between both fuel types is important. The percentage of evaporated mass is much larger for gasoline, while infiltration is more significant for diesel. Also, the percentage of infiltrated liquid depends on the initial droplet mass. We also developed a multiphysics model, which couples pore-scale infiltration to turbulent atmospheric transport, to explain the experimental data. In conclusion, a substantial amount of fuel could both seep into the ground to contaminate groundwater and be released to the atmosphere. More studies are needed to quantify the public health implications of the released pollutants.

  11. Formation and Growth of New Organic Aerosol Particles over the Deepwater Horizon Oil Spill

    NASA Astrophysics Data System (ADS)

    Brock, C. A.; Murphy, D. M.; Bahreini, R.; Middlebrook, A. M.; De Gouw, J. A.

    2011-12-01

    Aerosol size distributions were measured in June 2010 downwind of the surface oil slick produced by the Deepwater Horizon oil spill in the Gulf of Mexico. Rapid condensation of partially oxidized hydrocarbons was responsible for formation of a plume of secondary organic aerosol downwind of the spill region. New particles were nucleated upwind of the freshest surface oil but downwind of oil that surfaced less than 100 hours previously. These new particles grew by condensation at rates of ~20 nm hr-1; preexisting accumulation mode particles grew by ~10 nm hr-1. The gas-phase concentration of a condensing species necessary to support the observed growth rate assuming irreversible adsorption with unit accommodation coefficient is estimated to be ~0.04-0.09 μg m-3 (~3-8 pptv). The ratio of growth rates for newly formed particles to accumulation mode particles was consistent within error limits with irreversible condensation. Because new particle formation did not occur in areas away from the <100 hr-old oil slick, these results indicate that the oxidation products of VOC species, probably C14-C16 compounds, were directly involved in the growth of the new particles. While a unique and extreme environment, the oil spill plume provides insight into similar processes that may occur in urban and industrial areas where petrochemical products are produced and consumed.

  12. Level and degradation of Deepwater Horizon spilled oil in coastal marsh sediments and pore-water.

    PubMed

    Natter, Michael; Keevan, Jeff; Wang, Yang; Keimowitz, Alison R; Okeke, Benedict C; Son, Ahjeong; Lee, Ming-Kuo

    2012-06-01

    This research investigates the level and degradation of oil at ten selected Gulf saltmarsh sites months after the 2010 BP Macondo-1 well oil spill. Very high levels (10-28%) of organic carbon within the heavily oiled sediments are clearly distinguished from those in pristine sediments (<3%). Dissolved organic carbon in contaminated pore-waters, ranging up to hundreds of mg/kg, are 1 to 2 orders of magnitude higher than those at pristine sites. Heavily oiled sediments are characterized by very high sulfide concentrations (up to 80 mg/kg) and abundance of sulfate reducing bacteria. Geochemical biomarkers and stable carbon isotope analyses fingerprint the presence of oils in sediments. Ratios of selected parameters calculated from the gas chromatograph spectra are in a remarkable narrow range among spilled oils and initial BP crude. At oiled sites dominated by C(4) plants, δ(13)C values of sediments (-20.8 ± 2.0‰) have been shifted significantly lower compared to marsh plants (-14.8 ± 0.6‰) due to the inflow of isotopically lighter oil (-27 ± 0.2‰). Our results show that (1) lighter compounds of oil are quickly degraded by microbes while the heavier fractions of oil still remain and (2) higher inputs of organic matter from the oil spill enhance the key microbial processes associated with sulfate reducing bacteria. PMID:22571231

  13. Laser cleaning of oil spill on coastal rocks

    NASA Astrophysics Data System (ADS)

    Kittiboonanan, Phumipat; Rattanarojpan, Jidapa; Ratanavis, Amarin

    2015-07-01

    In recent years, oil spills have become a significant environmental problem in Thailand. This paper presents a laser treatment for controlled-clean up oil spill from coastal rocks. The cleaning of various types of coastal rocks polluted by the spill was investigated by using a quasi CW diode laser operating at 808 nm. The laser power was attempted from 1 W to 70 W. The result is shown to lead to the laser removal of oil spill, without damaging the underlying rocks. In addition, the cleaning efficiency is evaluated using an optical microscope. This study shows that the laser technology would provide an attractive alternative to current cleaning methods to remove oil spill from coastal rocks.

  14. Investigating a lotic microbial community following a severe detergent spill.

    PubMed

    Or, Amitai; Gophna, Uri

    2014-02-01

    A large non-ionic detergent spill affected the Yarqon stream, where water sampling was performed prior to the spill as a part of the stream's routine sampling and during and after the event. Following the spill, a large foam layer was observed for about 3-4 days accompanied by death of all fauna in the stream. Despite a large quantity of freshwater that was introduced to the stream as an emergency measure, a drastic decrease in dissolved oxygen was also observed. A rapid reduction in bacterial diversity and richness, as measured by automated ribosomal intergenic spacer analysis, was also evident, as microbial assemblages changes accompanied pollutant exposure. However, this analysis showed that the microbial assemblages of the stream were quick to recover and became similar to pre-spill communities as early as a week after the spill. These findings suggest that bacterial assemblages are much more robust to large anthropogenic disturbances than expected. PMID:24379053

  15. Impacts of a Swine Manure Spill on Fluvial Sediments: Evaluation of an alternative Manure Spill Remediation Method

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Within the last decade the frequency of confined animal feeding operations (CAFOs) manure spills and violations have increased, in conjunction with the increase in the number of animal on each farm and production efficiency. Currently, the conventional remediation method for manure spills focus exc...

  16. In-depth analysis of accidental oil spills from tankers in the context of global spill trends from all sources.

    PubMed

    Burgherr, Peter

    2007-02-01

    This study gives a global overview of accidental oil spills from all sources (> or =700t) for the period 1970-2004, followed by a detailed examination of trends in accidental tanker spills. The present analysis of the number and volume of tanker spills includes temporal and spatial spill trends, aspects of spill size distribution as well as trends of key factors (i.e., flag state, hull type, tanker age, accident cause and sensitivity of location). Results show that the total number and volume of tanker spills have significantly decreased since the 1970s, which is in contrast to increases in maritime transport of oil and to popular perceptions following recent catastrophic events. However, many spills still occur in ecologically sensitive locations because the major maritime transport routes often cross the boundaries of the Large Marine Ecosystems, but the substantially lower total spill volume is an important contribution to potentially reduce overall ecosystem impacts. In summary, the improvements achieved in the past decades have been the result of a set of initiatives and regulations implemented by governments, international organizations and the shipping industry. PMID:16942835

  17. In Situ Burning of Oil Spills

    PubMed Central

    Evans, David D.; Mulholland, George W.; Baum, Howard R.; Walton, William D.; McGrattan, Kevin B.

    2001-01-01

    For more than a decade NIST conducted research to understand, measure and predict the important features of burning oil on water. Results of that research have been included in nationally recognized guidelines for approval of intentional burning. NIST measurements and predictions have played a major role in establishing in situ burning as a primary oil spill response method. Data are given for pool fire burning rates, smoke yield, smoke particulate size distribution, smoke aging, and polycyclic aromatic hydrocarbon content of the smoke for crude and fuel oil fires with effective diameters up to 17.2 m. New user-friendly software, ALOFT, was developed to quantify the large-scale features and trajectory of wind blown smoke plumes in the atmosphere and estimate the ground level smoke particulate concentrations. Predictions using the model were tested successfully against data from large-scale tests. ALOFT software is being used by oil spill response teams to help assess the potential impact of intentional burning. PMID:27500022

  18. Combating oil spill problem using plastic waste

    SciTech Connect

    Saleem, Junaid; Ning, Chao; Barford, John; McKay, Gordon

    2015-10-15

    Highlights: • Up-cycling one type of pollution i.e. plastic waste and successfully using it to combat the other type of pollution i.e. oil spill. • Synthesized oil sorbent that has extremely high oil uptake of 90 g/g after prolonged dripping of 1 h. • Synthesized porous oil sorbent film which not only facilitates in oil sorption but also increases the affinity between sorbent and oil by means of adhesion. - Abstract: Thermoplastic polymers (such as polypropylene, polyethylene, polyethylene terephthalate (PET) and high density polyethylene (HDPE)) constitute 5–15% of municipal solid waste produced across the world. A huge quantity of plastic waste is disposed of each year and is mostly either discarded in landfills or incinerated. On the other hand, the usage of synthetic polymers as oil sorbents, in particular, polyolefins, including polypropylene (PP), and polyethylene (PE) are the most commonly used oil sorbent materials mainly due to their low cost. However, they possess relatively low oil absorption capacities. In this work, we provide an innovative way to produce a value-added product such as oil-sorbent film with high practical oil uptake values in terms of g/g from waste HDPE bottles for rapid oil spill remedy.

  19. Portable Gas Analyzer

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The Michromonitor M500 universal gas analyzer contains a series of miniature modules, each of which is a complete gas chromatograph, an instrument which separates a gaseous mixture into its components and measures the concentrations of each gas in the mixture. The system is manufactured by Microsensor Technology, and is used for environmental analysis, monitoring for gas leaks and chemical spills, compliance with pollution laws, etc. The technology is based on a Viking attempt to detect life on Mars. Ames/Stanford miniaturized the system and NIOSH funded further development. Three Stanford researchers commercialized the technology, which can be operated by unskilled personnel.

  20. Fuel conservation by the application of spill prevention and fail-safe engineering (a guideline manual)

    NASA Astrophysics Data System (ADS)

    Goodier, J. L.; Siclari, R. J.; Garrity, P. A.

    1981-06-01

    Spill prevention procedures are provided for maintaining a spill free plant during the transportation, transfer, storage and processing of petroleum products. The manual can be used to prevent spills of materials other than fuel oil. Special emphasis is given to failsafe engineering as an approach to preventing spills from the predominant cause-human failure.

  1. Manure Spills in Streams: Current Practices and Remediation Methods to Minimize Water Quality Degradation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Manure spills into streams are an all too common byproduct of animal production. With greater numbers of animals raised on fewer farms, manure spills become greater problems due to the volume of manure spilled into aquatic ecosystems. This book chapter reviews why manure spills occur, and the curren...

  2. 75 FR 60097 - National Commission on the BP Deepwater Horizon Oil Spill and Offshore Drilling

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-29

    ... oil spill and to develop options to guard against, and mitigate the impact of, any oil spills... mitigate the impact of, any oil spills associated with offshore drilling in the future. Tentative Agenda... National Commission on the BP Deepwater Horizon Oil Spill and Offshore Drilling AGENCY: Department...

  3. 75 FR 69652 - National Commission on the BP Deepwater Horizon Oil Spill and Offshore Drilling

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-15

    ... oil spill and to develop options to guard against, and mitigate the impact of, any oil spills... mitigate the impact of, any oil spills associated with offshore drilling in the future. Tentative Agenda... National Commission on the BP Deepwater Horizon Oil Spill and Offshore Drilling AGENCY: Department...

  4. 75 FR 37783 - National Commission on the BP Deepwater Horizon Oil Spill and Offshore Drilling

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-30

    ... spill and develop options to guard against, and mitigate the impact of, any oil spills associated with... National Commission on the BP Deepwater Horizon Oil Spill and Offshore Drilling AGENCY: Department of... meeting of the National Commission on the BP Deepwater Horizon Oil Spill and Offshore Drilling...

  5. 50 CFR 622.14 - Area closures related to the Deepwater Horizon oil spill.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Horizon oil spill. 622.14 Section 622.14 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT... spill. (a) Caribbean EEZ area closure related to Deepwater Horizon oil spill. Effective May 11, 2010... Web site: http://sero.nmfs.noaa.gov/deepwater_horizon_oil_spill.htm. (b) Gulf EEZ area closure...

  6. Decision support system for managing oil spill events.

    PubMed

    Keramitsoglou, Iphigenia; Cartalis, Constantinos; Kassomenos, Pavlos

    2003-08-01

    The Mediterranean environment is exposed to various hazards, including oil spills, forest fires, and floods, making the development of a decision support system (DSS) for emergency management an objective of utmost importance. The present work presents a complete DSS for managing marine pollution events caused by oil spills. The system provides all the necessary tools for early detection of oil-spills from satellite images, monitoring of their evolution, estimation of the accident consequences and provision of support to responsible Public Authorities during clean-up operations. The heart of the system is an image processing-geographic information system and other assistant individual software tools that perform oil spill evolution simulation and all other necessary numerical calculations as well as cartographic and reporting tasks related to a specific management of the oil spill event. The cartographic information is derived from the extant general maps representing detailed information concerning several regional environmental and land-cover characteristics as well as financial activities of the application area. Early notification of the authorities with up-to-date accurate information on the position and evolution of the oil spill, combined with the detailed coastal maps, is of paramount importance for emergency assessment and effective clean-up operations that would prevent environmental hazard. An application was developed for the Region of Crete, an area particularly vulnerable to oil spills due to its location, ecological characteristics, and local economic activities. PMID:14753653

  7. U. S. oil spill law to cause growing tanker problem

    SciTech Connect

    Price, R.B.

    1991-09-30

    This paper reports on tanker owners which face a growing dilemma on the issue of oil spill liability. The U.S. Oil Pollution Act, passed last year in the wake of the March 1989 Exxon Valdez oil spill, was intended to reduce risk of and damage from such accidents. However, in addition to phasing in double hulls on most tankers operating in U.S. waters, the law substantially increases shipowner's liability for spills. And the federal law does not preempt state liability laws, which in most cases amount to unlimited liability for spill cleanup. Rather than face potentially unlimited liability in the event of a spill, tanker owners worldwide are exercising a number of options to shield themselves. Some of those options could increase the potential for oil spills, industry officials warn. The act also threatens to shatter the international alliance among shippers. A report by Drewry Shipping Consultants Ltd., London, says the law could have a devastating effect on operating practices. Tanker owners and operators have voiced the most opposition to the new spill law and the shackles it places on them. Now the industry that insures tankers has spoken up about is increased liability, and it too may launch a boycott.

  8. Automatic oil spill detection on quad polarimetric UAVSAR imagery

    NASA Astrophysics Data System (ADS)

    Rahnemoonfar, Maryam; Dhakal, Shanti

    2016-05-01

    Oil spill on the water bodies has adverse effects on coastal and marine ecology. Oil spill contingency planning is of utmost importance in order to plan for mitigation and remediation of the oceanic oil spill. Remote sensing technologies are used for monitoring the oil spills on the ocean and coastal region. Airborne and satellite sensors such as optical, infrared, ultraviolet, radar and microwave sensors are available for remote surveillance of the ocean. Synthetic Aperture Radar (SAR) is used most extensively for oil-spill monitoring because of its capability to operate during day/night and cloud-cover condition. This study detects the possible oil spill regions on fully polarimetric Uninhabited Aerial Vehicle - Synthetic Aperture Radar (UAVSAR) images. The UAVSAR image is decomposed using Cloude-Pottier polarimetric decomposition technique to obtain entropy and alpha parameters. In addition, other polarimetric features such as co-polar correlation and degree of polarization are obtained for the UAVSAR images. These features are used to with fuzzy logic based classification to detect oil spill on the SAR images. The experimental results show the effectiveness of the proposed method.

  9. Advancing Partnerships Towards an Integrated Approach to Oil Spill Response

    NASA Astrophysics Data System (ADS)

    Green, D. S.; Stough, T.; Gallegos, S. C.; Leifer, I.; Murray, J. J.; Streett, D.

    2015-12-01

    Oil spills can cause enormous ecological and economic devastation, necessitating application of the best science and technology available, and remote sensing is playing a growing critical role in the detection and monitoring of oil spills, as well as facilitating validation of remote sensing oil spill products. The FOSTERRS (Federal Oil Science Team for Emergency Response Remote Sensing) interagency working group seeks to ensure that during an oil spill, remote sensing assets (satellite/aircraft/instruments) and analysis techniques are quickly, effectively, appropriately, and seamlessly available to oil spills responders. Yet significant challenges remain for addressing oils spanning a vast range of chemical properties that may be spilled from the Tropics to the Arctic, with algorithms and scientific understanding needing advances to keep up with technology. Thus, FOSTERRS promotes enabling scientific discovery to ensure robust utilization of available technology as well as identifying technologies moving up the TRL (Technology Readiness Level). A recent FOSTERRS facilitated support activity involved deployment of the AVIRIS NG (Airborne Visual Infrared Imaging Spectrometer- Next Generation) during the Santa Barbara Oil Spill to validate the potential of airborne hyperspectral imaging to real-time map beach tar coverage including surface validation data. Many developing airborne technologies have potential to transition to space-based platforms providing global readiness.

  10. Microbial Community Response to the Deepwater Horizon Oil Spill

    NASA Astrophysics Data System (ADS)

    Redmond, M. C.; Valentine, D. L.; Joye, S. B.

    2010-12-01

    The sinking of the Deepwater Horizon on April 22nd, 2010 led to one of the largest oil spills in history. The massive amounts of oil and natural gas leaking into the Gulf of Mexico led to development of distinct microbial communities dominated by hydrocarbon-degrading bacteria. To track this microbial response, we sampled hydrocarbon-laden surface water and deep plumes (1100-1200 m), as well as samples lacking hydrocarbon exposure. In samples collected in May /June 2010, deepwater plume 16S rRNA clone libraries were dominated by three groups of Gammaproteobacteria: unclassified members of the order Oceanospirillales, close relatives of the genus Colwellia, and relatives of the genus Cycloclasticus. These groups accounted for 90-100% of sequences in nine clone libraries and 50% of sequences in a tenth; this tenth sample was ~1 km from the wellhead and showed no detectable oxygen drawdown. In samples collected from above or below the plume, these three groups accounted for no more than 25% of clones. Surface samples were dominated by organisms most closely related to the genus Pseudoalteromonas. Ongoing cultivation and stable isotope probing experiments to identify and characterize the bacteria consuming specific hydrocarbon compounds will further our understanding of the microbial ecology of surface and deepwater hydrocarbon degrading microorganisms.

  11. The BP oil spill and the bounty of Plaquemines Parish.

    PubMed

    Fertel, Randy

    2011-01-01

    The source of 25 to 30 percent of America's seafood, the Mississippi River Delta's cornucopian world is now uncertain. And yet, even if shrimp, oysters, and finfish are unaffected by the BP Oil Spill - a big if - one can already reflect on the passing of the culture once built upon gathering them. For almost three centuries, levees made life possible along the riverbanks and in the wetlands beyond. Those same levees also ensured the wetlands would eventually melt away into the Gulf. Cutting off the silt left behind during annual river inundations subjected the fragile land to erosion. Sulfur, natural gas, and oil production companies dug twenty thousand miles of canals to gain more direct routes to their fields and to pump out their mineral wealth. This caused salt-water intrusion that killed off plant life and caused more erosion. The world that sustained my Plaquemines ancestors was less subject to collapse following disasters not only because the ecosystem before the wetlands' ongoing loss was then more vibrant, complex, and robust; but also because their lives, especially their culinary lives, were more vibrant, complex, and robust. Life was hard, but when it came to putting food on the table, life followed the seasons. PMID:21591308

  12. Fate of dispersants associated with the deepwater horizon oil spill.

    PubMed

    Kujawinski, Elizabeth B; Kido Soule, Melissa C; Valentine, David L; Boysen, Angela K; Longnecker, Krista; Redmond, Molly C

    2011-02-15

    Response actions to the Deepwater Horizon oil spill included the injection of ∼771,000 gallons (2,900,000 L) of chemical dispersant into the flow of oil near the seafloor. Prior to this incident, no deepwater applications of dispersant had been conducted, and thus no data exist on the environmental fate of dispersants in deepwater. We used ultrahigh resolution mass spectrometry and liquid chromatography with tandem mass spectrometry (LC/MS/MS) to identify and quantify one key ingredient of the dispersant, the anionic surfactant DOSS (dioctyl sodium sulfosuccinate), in the Gulf of Mexico deepwater during active flow and again after flow had ceased. Here we show that DOSS was sequestered in deepwater hydrocarbon plumes at 1000-1200 m water depth and did not intermingle with surface dispersant applications. Further, its concentration distribution was consistent with conservative transport and dilution at depth and it persisted up to 300 km from the well, 64 days after deepwater dispersant applications ceased. We conclude that DOSS was selectively associated with the oil and gas phases in the deepwater plume, yet underwent negligible, or slow, rates of biodegradation in the affected waters. These results provide important constraints on accurate modeling of the deepwater plume and critical geochemical contexts for future toxicological studies. PMID:21265576

  13. Formation and growth of organic aerosols downwind of the Deepwater Horizon oil spill

    NASA Astrophysics Data System (ADS)

    Brock, Charles A.; Murphy, Daniel M.; Bahreini, Roya; Middlebrook, Ann M.

    2011-09-01

    Aerosol size distributions were measured in June 2010 downwind of the surface oil slick produced by the Deepwater Horizon oil spill in the Gulf of Mexico. Previous work has shown that rapid condensation of partially oxidized hydrocarbons was responsible for formation of a plume of secondary organic aerosol downwind of the spill region. Here we examine new particle formation and growth kinetics. New particles were formed upwind of the freshest oil but downwind of oil that surfaced less than about 100 hours previously. Four nm particles formed at a rate of ˜3 cm-3 s-1 and subsequently grew by condensation at a rate of ˜20 nm hr-1 preexisting accumulation mode particles grew by ˜10 nm hr-1. The gas-phase concentration of a condensing species necessary to support irreversible growth with unit accommodation coefficient is estimated to be ˜0.04-0.09 μg m-3 (˜3-8 pptv). Gas-phase concentrations may have been higher if condensation were limited by volatility. The ratio of growth rates for newly formed particles to accumulation mode particles was consistent within error limits with irreversible condensation. The absence of new particle formation away from the <100 hr-old oil slick indicates that the oxidation products of gas-phase hydrocarbon species were directly involved in the formation and growth of new particles.

  14. Process of cleaning oil spills and the like

    SciTech Connect

    Breisford, J.A.

    1993-06-01

    A process of cleaning spills of toxic or hazardous materials such as oil, antifreeze, gasoline, and the like from bodies of water, garage floors, roadways and the like, comprising spraying unbonded shredded fiberglass blowing wool composition particles onto the spill, absorbing the spill into the shredded fiberglass blowing wool composition particles, and removing the soaked shredded fiberglass blowing wool composition particles and the spill absorbed therein. An absorbent composition for absorbing spills of toxic or hazardous materials such as oil, antifreeze, gasoline, and like, comprising shredded fiberglass blowing wool particles, and means for absorbing the spill and for stiffening the co-position so that the composition fights against being compressed so that less of the absorbed spill escapes from the composition when it is being removed from the spill, said means including cork particles dispersed in with the fiberglass blowing wool particles. An absorbent sock for absorbing or containing a spill of toxic or hazardous materials such as oil, antifreeze, gasoline, and the like, comprising a hollow tube, said tube being permeable to the toxic or hazardous materials and being made of nylon or polypropylene, and unbonded, shredded fiberglass blowing wool composition particles enclosed in the tube. Apparatus for controlling an oil slick on the surface of water, comprising a craft for traversing the slick, a supply of fiberglass blowing wool composition particles stored on the craft in position for being dispersed, shredding means on the craft for shredding the fiberglass blowing wool particles to form unbonded, shredded fiberglass blowing wool particles, and dispensing means on the craft for dispensing the unbonded, shredded fiberglass blowing wool particles onto the slick.

  15. Aerosols generated by spills of viscous solutions and slurries

    SciTech Connect

    Ballinger, M Y; Hodgson, W H

    1986-12-01

    Safety assessments and environmental impact statements for nuclear fuel cycle facilities require an estimate of potential airborne releases caused by accidents. Aerosols generated by accidents are being investigated by Pacific Northwest Laboratory to develop methods for estimating source terms from these accidents. Experiments were run by spilling viscous solutions and slurries to determine the mass and particle-size distribution of the material made airborne. In all cases, 1 L of solution was spilled from a height of 3 m. Aqueous solutions of sucrose (0 to 56%) gave a range of viscosities from 1.3 to 46 cp. The percent of spill mass made airborne from the spills of these solutions ranged from 0.001 to 0.0001. The mass of particles made airborne decreased as solution viscosity increased. Slurry loading ranged from 25 to 51% total solids. The maximum source airborne (0.0046 wt %) occurred with the slurry that had the lightest loading of soluble solids. The viscosity of the carrying solution also had an impact on the source term from spilling slurries. The effect of surface tension on the source term was examined in two experiments. Surface tension was halved in these spills by adding a surfactant. The maximum weight percent airborne from these spills was 0.0045, compared to 0.003 for spills with twice the surface tension. The aerodynamic mass medium diameters for the aerosols produced by spills of the viscous solutions, slurries, and low surface tension liquids ranged from 0.6 to 8.4 ..mu..m, and the geometric standard deviation ranged from 3.8 to 28.0.

  16. Locating spilled oil with airborne laser fluorosensors

    NASA Astrophysics Data System (ADS)

    Brown, Carl E.; Fingas, Mervin F.; Nelson, Robert D.; Mullin, Joseph V.

    1999-02-01

    Locating oil in marine and terrestrial environments is a daunting task. There are commercially available off the shelf (COTS) sensors with a wide field-of-view (FOV) which can be used to map the overall extent of the spill. These generic sensors, however, lack the specificity required to positively identify oil and related products. The problem is exacerbated along beach and shoreline environments where a variety of organic and inorganic substrates are present. One sensor that can detect and classify oil in these environments is the laser fluorosensor. Laser fluorosensors have been under development by several agencies around the world for the past two decades. Environment Canada has been involved with laser fluorosensor development since the early 1990s. The prototype system was known as the Laser Environmental Airborne Fluorosensor (LEAF). The LEAF has recently been modified to provide real-time oil spill detection and classification. Fluorescence spectra are collected and analyzed at the rate of 100 Hz. Geo-referenced maps showing the locations of oil contamination are produced in real-time onboard the aircraft. While the LEAF has proven to be an excellent prototype sensor and a good operational tool, it has some deficiencies when it comes to oil spill response operations. A consortium including Environment Canada and the Minerals Management Service has recently funded the development of a new fluorosensor, called the Scanning Laser Environmental Airborne Fluorosensor (SLEAF). The SLEAF was designed to detect and map oil in shoreline environments where other non-specific sensors experience difficulty. Oil tends to pile up in narrow bands along the high tide line on beaches. A nadir-looking, small footprint sensor such as the LEAF would have difficulty locating oil in this situation. The SLEAF employs a pair of conical scanning mirrors to direct the laser beam in a circular pattern below the aircraft. With a sampling rate of 400 Hz and real-time spectral analysis

  17. Implementing a standardized home chemotherapy spill kit: a nurse-led interprofessional approach to best practice.

    PubMed

    Dike, Stella N; Johnston, Patricia A; Ogunmakin, Tora D; Pokluda, Michael D; Shank, Linda A; Yates, Joy L; Payne, Lorene

    2014-12-01

    Chemotherapy administration in the home setting poses risks to patients, caregivers, and the environment, particularly in the event of spills. Although the response to chemotherapy spills in the hospital setting is vigorous and includes standard disposal practices for contaminated items, the management of spills in the home setting may vary. A standardized method for managing chemotherapy spills at home that includes education and distribution of spill cleanup materials is imperative to reduce these risks. PMID:25427699

  18. Method of cleaning oil slicks and chemical spills

    SciTech Connect

    Billings, L.

    1992-08-04

    This patent describes a method of cleaning a floating chemical spill on a body of water. It comprises: providing a quantity of popular bark-based pelleted or granular product, flotation means and a flexible net having openings generally smaller than the smallest whole pellet dimension of the pelleted product, spreading the net over a chemical spill on the body of water, connecting the floatation means to the net thereby supporting the net adjacent the surface of the body of water, placing the poplar bark-based product on the net, absorbing the floating chemical spill into the product, and removing the chemical soaked product from the body of water.

  19. Tanker spills Norwegian crude oil off Shetlands

    SciTech Connect

    Not Available

    1993-01-11

    This paper reports that crude oil was spilling last week from the U.S. owned Braer tanker after the 89,000 dwt vessel ran aground on the south end of Scotland's Shetland Islands. Workers were trying to assess the extent of damage to the tanker, shoreline, and wildlife after the January 5 accident. Braer's cargo amounted to 607,000 bbl of Norwegian oil bound for Canada. Braer loaded its cargo and sailed January 3 from Den norske stats oljeselskap AS's Mongstad, Norway, terminal with crude from Gullfaks field in the Norwegian North Sea. The $11 million shipment was destined for Ultramar Canada Inc.'s 125,000 b/d refinery at St. Romuald, Que.

  20. Panel recommendations on Oil Spill Risk Assessment

    NASA Astrophysics Data System (ADS)

    Mellor, George L.

    A technical panel was convened by the Minerals Management Services (MMS) of the Department of Interior to identify deficiencies and recommend improvements in their Oil Spill Risk Analysis (OSRA) model. Members of the panel were J. M. Bane, Jr. (University of North Carolina, Chapel Hill), G. S. Janowitz (North Carolina State University, Raleigh), T. H. Lee (University of Miami, Miami, Fla.), G. L. Mellor (Princeton University, Princeton, N.J.), M. L. Spaulding (University of Rhode Island, Kingston), and F. M. Vukovich (Research Triangle Institute, Raleigh-Durham, N.C.).The present OSRA model uses climatologically derived near-surface velocity fields on which are superposed oil trajectory velocities derived from the so-called “3.5% rule”: this uses a wind series derived from a “transition probability matrix” statistical approach.

  1. Removing Spilled Oil With Liquid Nitrogen

    NASA Technical Reports Server (NTRS)

    Snow, Daniel B.

    1991-01-01

    Technique proposed to reduce more quickly, contain, clean up, and remove petroleum products and such other pollutants as raw sewage and chemicals without damage to humans, animals, plants, or the environment. Unique and primary aspect of new technique is use of cryogenic fluid to solidify spill so it can be carried away in solid chunks. Liquid nitrogen (LN2), with boiling point at -320 degrees F (-196 degrees C), offers probably best tradeoff among extreme cold, cost, availability, and lack of impact on environment among various cryogenic fluids available. Other applications include extinguishing fires at such locations as oil derricks or platforms and at tank farms containing such petroleum products as gasoline, diesel fuel, and kerosene.

  2. Review of oil spill remote sensing.

    PubMed

    Fingas, Merv; Brown, Carl

    2014-06-15

    Remote-sensing for oil spills is reviewed. The use of visible techniques is ubiquitous, however it gives only the same results as visual monitoring. Oil has no particular spectral features that would allow for identification among the many possible background interferences. Cameras are only useful to provide documentation. In daytime oil absorbs light and remits this as thermal energy at temperatures 3-8K above ambient, this is detectable by infrared (IR) cameras. Laser fluorosensors are useful instruments because of their unique capability to identify oil on backgrounds that include water, soil, weeds, ice and snow. They are the only sensor that can positively discriminate oil on most backgrounds. Radar detects oil on water by the fact that oil will dampen water-surface capillary waves under low to moderate wave/wind conditions. Radar offers the only potential for large area searches, day/night and foul weather remote sensing. PMID:24759508

  3. Spreading of oil spilled under ice

    SciTech Connect

    Yapa, P.D.; Chowdhury, T. )

    1990-12-01

    A new set of equations is presented to describe the process of oil spreading under ice in clam waters. These equations consider the gravity (buoyancy)-inertia phase, the gravity (buoyancy)-viscous phase, and the termination of spreading during the buoyancy-surface-tension phase. The derivation considers both the constant discharge mode and the constant volume mode. Therefore, a complete description of the spreading phenomena from the time of initial spill to the termination of spreading is presented. Laboratory experiments were conducted using both real ice covers in a cold room and artificial ice covers. The experiments included different ice-cover roughnesses from smooth to rough, oils of different viscosities, and a variety of discharge conditions. The experimental data show close agreement with the theory. These equations can be used during cleanup or environmental impact assessment to estimate the area of an oil slick with respect to time.

  4. Combating oil spill problem using plastic waste.

    PubMed

    Saleem, Junaid; Ning, Chao; Barford, John; McKay, Gordon

    2015-10-01

    Thermoplastic polymers (such as polypropylene, polyethylene, polyethylene terephthalate (PET) and high density polyethylene (HDPE)) constitute 5-15% of municipal solid waste produced across the world. A huge quantity of plastic waste is disposed of each year and is mostly either discarded in landfills or incinerated. On the other hand, the usage of synthetic polymers as oil sorbents, in particular, polyolefins, including polypropylene (PP), and polyethylene (PE) are the most commonly used oil sorbent materials mainly due to their low cost. However, they possess relatively low oil absorption capacities. In this work, we provide an innovative way to produce a value-added product such as oil-sorbent film with high practical oil uptake values in terms of g/g from waste HDPE bottles for rapid oil spill remedy. PMID:26105077

  5. Field evaluations of marine oil spill bioremediation.

    PubMed Central

    Swannell, R P; Lee, K; McDonagh, M

    1996-01-01

    Bioremediation is defined as the act of adding or improving the availability of materials (e.g., nutrients, microorganisms, or oxygen) to contaminated environments to cause an acceleration of natural biodegradative processes. The results of field experiments and trials following actual spill incidents have been reviewed to evaluate the feasibility of this approach as a treatment for oil contamination in the marine environment. The ubiquity of oil-degrading microorganisms in the marine environment is well established, and research has demonstrated the capability of the indigenous microflora to degrade many components of petroleum shortly after exposure. Studies have identified numerous factors which affect the natural biodegradation rates of oil, such as the origin and concentration of oil, the availability of oil-degrading microorganisms, nutrient concentrations, oxygen levels, climatic conditions, and sediment characteristics. Bioremediation strategies based on the application of fertilizers have been shown to stimulate the biodegradation rates of oil in aerobic intertidal sediments such as sand and cobble. The ratio of oil loading to nitrogen concentration within the interstitial water has been identified to be the principal controlling factor influencing the success of this bioremediation strategy. However, the need for the seeding of natural environments with hydrocarbon-degrading bacteria has not been clearly demonstrated under natural environmental conditions. It is suggested that bioremediation should now take its place among the many techniques available for the treatment of oil spills, although there is still a clear need to set operational limits for its use. On the basis of the available evidence, we have proposed preliminary operational guidelines for bioremediation on shoreline environments. PMID:8801437

  6. Field evaluations of marine oil spill bioremediation.

    PubMed

    Swannell, R P; Lee, K; McDonagh, M

    1996-06-01

    Bioremediation is defined as the act of adding or improving the availability of materials (e.g., nutrients, microorganisms, or oxygen) to contaminated environments to cause an acceleration of natural biodegradative processes. The results of field experiments and trials following actual spill incidents have been reviewed to evaluate the feasibility of this approach as a treatment for oil contamination in the marine environment. The ubiquity of oil-degrading microorganisms in the marine environment is well established, and research has demonstrated the capability of the indigenous microflora to degrade many components of petroleum shortly after exposure. Studies have identified numerous factors which affect the natural biodegradation rates of oil, such as the origin and concentration of oil, the availability of oil-degrading microorganisms, nutrient concentrations, oxygen levels, climatic conditions, and sediment characteristics. Bioremediation strategies based on the application of fertilizers have been shown to stimulate the biodegradation rates of oil in aerobic intertidal sediments such as sand and cobble. The ratio of oil loading to nitrogen concentration within the interstitial water has been identified to be the principal controlling factor influencing the success of this bioremediation strategy. However, the need for the seeding of natural environments with hydrocarbon-degrading bacteria has not been clearly demonstrated under natural environmental conditions. It is suggested that bioremediation should now take its place among the many techniques available for the treatment of oil spills, although there is still a clear need to set operational limits for its use. On the basis of the available evidence, we have proposed preliminary operational guidelines for bioremediation on shoreline environments. PMID:8801437

  7. Exceptions to the rules of oil-spill behavior: Case studies of major oil spills of the past twenty years

    SciTech Connect

    Hayes, M.O.

    1994-11-01

    Studies of major oil spills over the past 20 yr have allowed an evolution of our understanding of how to respond to and remediate the environmental impacts from such spills. There have been a number of spills for which follow-up research has provided major turning points that allowed the development of certain rules of oil-spill behavior. For example, the spill of over 100,000 tons of crude oil by the tanker Urquiola on the coast of Spain in May 1976 demonstrated the importance of hydrodynamic energy level in natural cleanup processes. Research on the spill of over 200,000 tons of crude oil along the coast of France by the tanker Amoco Cadiz in March 1978 allowed a better understanding of the long-term effects of spilled oil on exposed tidal flats and salt marshes. The oil spilled by the tanker Exxon Valdez in Prince William Sound, Alaska, in March 1989 impacted many miles of gravel beaches, which were treated by a number of methods, including some innovative berm-relocation techniques. A thorough understanding of the coastal geomorphology and processes of the spill site was essential for the development of meaningful contingency and response plans. Research on the impacts of intertidal habitats of the coast of Saudi Arabia during the Gulf War spill of 1991 indicates that some previously held concepts on oil behavior and fate on shorelines must be revised. One of the best established rules of oil-spill behavior was that the depth of oil penetration on sand beaches and tidal flats increases with increasing sediment grain size. However, no such correlation was found on the Saudi Arabian coast, primarily due to the presence of secondary porosity (e.g., bubble sand, extensive burrows, and gypsum crystals). The oil penetrated to depths of tens of centimeters, even in fine sand, which has significantly slowed natural removal processes and weathering rates. These sediments remained heavily oiled with incipient asphalt pavements forming two years after the spill.

  8. Radiation Spill at Hanford: The Anatomy of an Accident

    ERIC Educational Resources Information Center

    Gillette, Robert

    1973-01-01

    Describes the circumstances leading to a recent spill of radioactive wastes at the Atomic Energy Commission's Hanford Reservation in Washington. Also briefly discusses previous accidental leaks and plans for safer storage of radioactive waste materials in the future. (JR)

  9. Satellite Observations: Oil Spills Impact on Phytoplankton in Bohai Sea

    NASA Astrophysics Data System (ADS)

    Zhou, Li; Tang, Danling; Wang, Sufen; Pan, Gang

    2014-11-01

    This study discussed ecological responses to the Penglai oil spills in the Bohai Sea, occurring on June 4, 2011, using MODIS Chlorophyll-a data. After time intervals of 20 days, 12 months and 14 months, phytoplankton blooms appeared at three locations in the surrounding and distant regions of the oil spills in the Bohai Sea. A bloom with high Chlorophyll-a (13.66 mg m-3) spread over an area of 800 km2 on June 18-25, 2011, about 56 km northeast from the location of the oil spills. A pronounced increase in the monthly Chlorophyll-a concentration (6.40 mg m-3) indicating phytoplankton bloom was observed in the Bohai Sea in June 2012. Phytoplankton blooms depend on the amount and composition of oil, toxicity of petroleum hydrocarbons, micro-organisms, and sea ice. The oil spills impact phytoplankton for a long duration, which impacts the marine ecosystem.

  10. 40 CFR 280.30 - Spill and overfill control.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) TECHNICAL STANDARDS AND CORRECTIVE ACTION REQUIREMENTS FOR OWNERS AND OPERATORS OF UNDERGROUND STORAGE TANKS (UST) General Operating Requirements § 280.30 Spill and overfill control. (a) Owners...