Science.gov

Sample records for gas storage operations

  1. Hydrate Control for Gas Storage Operations

    SciTech Connect

    Jeffrey Savidge

    2008-10-31

    The overall objective of this project was to identify low cost hydrate control options to help mitigate and solve hydrate problems that occur in moderate and high pressure natural gas storage field operations. The study includes data on a number of flow configurations, fluids and control options that are common in natural gas storage field flow lines. The final phase of this work brings together data and experience from the hydrate flow test facility and multiple field and operator sources. It includes a compilation of basic information on operating conditions as well as candidate field separation options. Lastly the work is integrated with the work with the initial work to provide a comprehensive view of gas storage field hydrate control for field operations and storage field personnel.

  2. Methodology for optimizing the development and operation of gas storage fields

    SciTech Connect

    Mercer, J.C.; Ammer, J.R.; Mroz, T.H.

    1995-04-01

    The Morgantown Energy Technology Center is pursuing the development of a methodology that uses geologic modeling and reservoir simulation for optimizing the development and operation of gas storage fields. Several Cooperative Research and Development Agreements (CRADAs) will serve as the vehicle to implement this product. CRADAs have been signed with National Fuel Gas and Equitrans, Inc. A geologic model is currently being developed for the Equitrans CRADA. Results from the CRADA with National Fuel Gas are discussed here. The first phase of the CRADA, based on original well data, was completed last year and reported at the 1993 Natural Gas RD&D Contractors Review Meeting. Phase 2 analysis was completed based on additional core and geophysical well log data obtained during a deepening/relogging program conducted by the storage operator. Good matches, within 10 percent, of wellhead pressure were obtained using a numerical simulator to history match 2 1/2 injection withdrawal cycles.

  3. Gas Storage Technology Consortium

    SciTech Connect

    Joel Morrison

    2005-09-14

    Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of April 1, 2005 through June 30, 2005. During this time period efforts were directed toward (1) GSTC administration changes, (2) participating in the American Gas Association Operations Conference and Biennial Exhibition, (3) issuing a Request for Proposals (RFP) for proposal solicitation for funding, and (4) organizing the proposal selection meeting.

  4. Gas Storage Technology Consortium

    SciTech Connect

    Joel L. Morrison; Sharon L. Elder

    2006-07-06

    Gas storage is a critical element in the natural gas industry. Producers, transmission & distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of April 1 to June 30, 2006. Key activities during this time period include: (1) Develop and process subcontract agreements for the eight projects selected for cofunding at the February 2006 GSTC Meeting; (2) Compiling and distributing the three 2004 project final reports to the GSTC Full members; (3) Develop template, compile listserv, and draft first GSTC Insider online newsletter; (4) Continue membership recruitment; (5) Identify projects and finalize agenda for the fall GSTC/AGA Underground Storage Committee Technology Transfer

  5. Gas Storage Technology Consortium

    SciTech Connect

    Joel L. Morrison; Sharon L. Elder

    2007-06-30

    Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is crucial in meeting the needs of these new markets. To address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance the operational flexibility and deliverability of the nation's gas storage system, and provide a cost-effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of April 1, 2007 through June 30, 2007. Key activities during this time period included: (1) Organizing and hosting the 2007 GSTC Spring Meeting; (2) Identifying the 2007 GSTC projects, issuing award or declination letters, and begin drafting subcontracts; (3) 2007 project mentoring teams identified; (4) New NETL Project Manager; (5) Preliminary planning for the 2007 GSTC Fall Meeting; (6) Collecting and compiling the 2005 GSTC project final reports; and (7) Outreach and communications.

  6. Gas Storage Technology Consortium

    SciTech Connect

    Joel L. Morrison; Sharon L. Elder

    2006-05-10

    Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of January 1, 2006 through March 31, 2006. Activities during this time period were: (1) Organize and host the 2006 Spring Meeting in San Diego, CA on February 21-22, 2006; (2) Award 8 projects for co-funding by GSTC for 2006; (3) New members recruitment; and (4) Improving communications.

  7. Gas Storage Technology Consortium

    SciTech Connect

    Joel L. Morrison; Sharon L. Elder

    2007-03-31

    Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is crucial in meeting the needs of these new markets. To address the gas storage needs of the natural gas industry, an industry-driven consortium was created - the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance the operational flexibility and deliverability of the nation's gas storage system, and provide a cost-effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of January1, 2007 through March 31, 2007. Key activities during this time period included: {lg_bullet} Drafting and distributing the 2007 RFP; {lg_bullet} Identifying and securing a meeting site for the GSTC 2007 Spring Proposal Meeting; {lg_bullet} Scheduling and participating in two (2) project mentoring conference calls; {lg_bullet} Conducting elections for four Executive Council seats; {lg_bullet} Collecting and compiling the 2005 GSTC Final Project Reports; and {lg_bullet} Outreach and communications.

  8. Modeling deformation processes of salt caverns for gas storage due to fluctuating operation pressures

    NASA Astrophysics Data System (ADS)

    Böttcher, N.; Nagel, T.; Goerke, U.; Khaledi, K.; Lins, Y.; König, D.; Schanz, T.; Köhn, D.; Attia, S.; Rabbel, W.; Bauer, S.; Kolditz, O.

    2013-12-01

    In the course of the Energy Transition in Germany, the focus of the country's energy sources is shifting from fossil to renewable and sustainable energy carriers. Since renewable energy sources, such as wind and solar power, are subjected to annual, seasonal, and diurnal fluctuations, the development and extension of energy storage capacities is a priority in German R&D programs. Common methods of energy storage are the utilization of subsurface caverns as a reservoir for natural or artificial fuel gases, such as hydrogen, methane, or the storage of compressed air. The construction of caverns in salt rock is inexpensive in comparison to solid rock formations due to the possibility of solution mining. Another advantage of evaporite as a host material is the self-healing capacity of salt rock. Gas caverns are capable of short-term energy storage (hours to days), so the operating pressures inside the caverns are fluctuating periodically with a high number of cycles. This work investigates the influence of fluctuating operation pressures on the stability of the host rock of gas storage caverns utilizing numerical models. Therefore, we developed a coupled Thermo-Hydro-Mechanical (THM) model based on the finite element method utilizing the open-source software platform OpenGeoSys. Our simulations include the thermodynamic behaviour of the gas during the loading/ unloading of the cavern. This provides information on the transient pressure and temperature distribution on the cavern boundary to calculate the deformation of its geometry. Non-linear material models are used for the mechanical analysis, which describe the creep and self-healing behavior of the salt rock under fluctuating loading pressures. In order to identify the necessary material parameters, we perform experimental studies on the mechanical behaviour of salt rock under varying pressure and temperature conditions. Based on the numerical results, we further derive concepts for monitoring THM quantities in the

  9. GAS STORAGE TECHNOLOGY CONSORTIUM

    SciTech Connect

    Robert W. Watson

    2004-04-17

    Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. To accomplish this objective, the project is divided into three phases that are managed and directed by the GSTC Coordinator. Base funding for the consortium is provided by the U.S. Department of Energy (DOE). In addition, funding is anticipated from the Gas Technology Institute (GTI). The first phase, Phase 1A, was initiated on September 30, 2003, and is scheduled for completion on March 31, 2004. Phase 1A of the project includes the creation of the GSTC structure, development of constitution (by-laws) for the consortium, and development and refinement of a technical approach (work plan) for

  10. GAS STORAGE TECHNOLGOY CONSORTIUM

    SciTech Connect

    Robert W. Watson

    2004-04-23

    Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. To accomplish this objective, the project is divided into three phases that are managed and directed by the GSTC Coordinator. Base funding for the consortium is provided by the U.S. Department of Energy (DOE). In addition, funding is anticipated from the Gas Technology Institute (GTI). The first phase, Phase 1A, was initiated on September 30, 2003, and is scheduled for completion on March 31, 2004. Phase 1A of the project includes the creation of the GSTC structure, development of constitution (by-laws) for the consortium, and development and refinement of a technical approach (work plan) for

  11. Gas Storage Technology Consortium

    SciTech Connect

    Joel L. Morrison; Sharon L. Elder

    2006-09-30

    Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created-the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of July 1, 2006 to September 30, 2006. Key activities during this time period include: {lg_bullet} Subaward contracts for all 2006 GSTC projects completed; {lg_bullet} Implement a formal project mentoring process by a mentor team; {lg_bullet} Upcoming Technology Transfer meetings: {sm_bullet} Finalize agenda for the American Gas Association Fall Underground Storage Committee/GSTC Technology Transfer Meeting in San Francisco, CA. on October 4, 2006; {sm_bullet} Identify projects and finalize agenda for the Fall GSTC Technology

  12. Waste gas storage

    NASA Technical Reports Server (NTRS)

    Vickers, Brian D. (Inventor)

    1994-01-01

    Method for storing a waste gas mixture comprised of nitrogen, oxygen, carbon dioxide, and inert gases, the gas mixture containing corrosive contaminants including inorganic acids and bases and organic solvents, and derived from space station operations. The gas mixture is stored under pressure in a vessel formed of a filament wound composite overwrap on a metal liner, the metal liner being pre-stressed in compression by the overwrap, thereby avoiding any tensile stress in the liner, and preventing stress corrosion cracking of the liner during gas mixture storage.

  13. GAS STORAGE TECHNOLOGY CONSORTIUM

    SciTech Connect

    Robert W. Watson

    2004-07-15

    Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. To accomplish this objective, the project is divided into three phases that are managed and directed by the GSTC Coordinator. Base funding for the consortium is provided by the U.S. Department of Energy (DOE). In addition, funding is anticipated from the Gas Technology Institute (GTI). The first phase, Phase 1A, was initiated on September 30, 2003, and was completed on March 31, 2004. Phase 1A of the project included the creation of the GSTC structure, development and refinement of a technical approach (work plan) for deliverability enhancement and reservoir management. This report deals with

  14. GAS STORAGE TECHNOLOGY CONSORTIUM

    SciTech Connect

    Robert W. Watson

    2004-10-18

    Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. To accomplish this objective, the project is divided into three phases that are managed and directed by the GSTC Coordinator. The first phase, Phase 1A, was initiated on September 30, 2003, and was completed on March 31, 2004. Phase 1A of the project included the creation of the GSTC structure, development and refinement of a technical approach (work plan) for deliverability enhancement and reservoir management. This report deals with Phase 1B and encompasses the period July 1, 2004, through September 30, 2004. During this time period there were three main activities. First was the ongoing

  15. Geo-mechanical Model Testing for Stability of Underground Gas Storage in Halite During the Operational Period

    NASA Astrophysics Data System (ADS)

    Chen, Xuguang; Zhang, Qiangyong; Li, Shucai; Liu, Dejun

    2016-07-01

    A 3D geo-mechanical model test is conducted to study the stability of underground gas storage in halite, modeled after the Jintan gas storage constructed in bedded salt rock in China. A testing apparatus is developed to generate long-term stable trapezoid geostresses onto the model cavity, corresponding to the actual gas storage cavern. The time-depending character of the material is simulated using a rheological material, which was tested using a self-developed apparatus. The model cavern is built using an ellipsoid wooden mold divided into small blocks which are assembled and placed into the designed position during the model construction. They are then pulled out one by one to form the cavern. The ellipsoid cavern wall is then lined within a latex balloon. Gas is injected into the cavity and extracted to simulate the operational process of gas injection and recovery. Optical sensors embedded into the model to measure the displacement around the cavity showed that the largest deformation occurs in the middle section of the cavity. The deformation rate increases with increasing gas pressure. At 11 MPa the cavity is in equilibrium with the geostress. The pressure is highest during the gas recovery stages, indicating that gas recovery can threaten the cavern's operational stability, while high gas injection causes rock mass compression and deformation outward from the cavern. The deformation is the combination of cavern convergence and gas-induced rebound which leads to tensile and compression during gas injection and recovery. Hence, the fatigue properties of salt rock should be studied further.

  16. Gas Storage Technology Consortium

    SciTech Connect

    Joel Morrison; Elizabeth Wood; Barbara Robuck

    2010-09-30

    The EMS Energy Institute at The Pennsylvania State University (Penn State) has managed the Gas Storage Technology Consortium (GSTC) since its inception in 2003. The GSTC infrastructure provided a means to accomplish industry-driven research and development designed to enhance the operational flexibility and deliverability of the nation's gas storage system, and provide a cost-effective, safe, and reliable supply of natural gas to meet domestic demand. The GSTC received base funding from the U.S. Department of Energy's (DOE) National Energy Technology Laboratory (NETL) Oil & Natural Gas Supply Program. The GSTC base funds were highly leveraged with industry funding for individual projects. Since its inception, the GSTC has engaged 67 members. The GSTC membership base was diverse, coming from 19 states, the District of Columbia, and Canada. The membership was comprised of natural gas storage field operators, service companies, industry consultants, industry trade organizations, and academia. The GSTC organized and hosted a total of 18 meetings since 2003. Of these, 8 meetings were held to review, discuss, and select proposals submitted for funding consideration. The GSTC reviewed a total of 75 proposals and committed co-funding to support 31 industry-driven projects. The GSTC committed co-funding to 41.3% of the proposals that it received and reviewed. The 31 projects had a total project value of $6,203,071 of which the GSTC committed $3,205,978 in co-funding. The committed GSTC project funding represented an average program cost share of 51.7%. Project applicants provided an average program cost share of 48.3%. In addition to the GSTC co-funding, the consortium provided the domestic natural gas storage industry with a technology transfer and outreach infrastructure. The technology transfer and outreach were conducted by having project mentoring teams and a GSTC website, and by working closely with the Pipeline Research Council International (PRCI) to jointly host

  17. Design and operation of an inert gas facility for thermoelectric generator storage

    SciTech Connect

    Goebel, C.J.

    1990-01-01

    While the flight hardware is protected by design from the harsh environments of space, its in-air storage often requires special protection from contaminants such as dust, moisture and other gases. One of these components, the radioisotope thermoelectric generator (RTG) which powers the missions, was deemed particularly vulnerable to pre-launch aging because the generators remain operational at core temperatures in excess of 1000 degrees centigrade throughout the storage period. Any oxygen permitted to enter the devices will react with thermally hot components, preferentially with molybdenum in the insulating foils, and with graphites to form CO/CO{sub 2} gases which are corrosive to the thermopile. It was important therefore to minimize the amount of oxygen which could enter, by either limiting the effective in-leakage areas on the generators themselves, or by reducing the relative amount of oxygen within the environment around the generators, or both. With the generators already assembled and procedures in place to assure minimal in-leakage in handling, the approach of choice was to provide a storage environment which contains significantly less oxygen than normal air. 2 refs.

  18. Gas Hydrate Storage of Natural Gas

    SciTech Connect

    Rudy Rogers; John Etheridge

    2006-03-31

    Environmental and economic benefits could accrue from a safe, above-ground, natural-gas storage process allowing electric power plants to utilize natural gas for peak load demands; numerous other applications of a gas storage process exist. A laboratory study conducted in 1999 to determine the feasibility of a gas-hydrates storage process looked promising. The subsequent scale-up of the process was designed to preserve important features of the laboratory apparatus: (1) symmetry of hydrate accumulation, (2) favorable surface area to volume ratio, (3) heat exchanger surfaces serving as hydrate adsorption surfaces, (4) refrigeration system to remove heat liberated from bulk hydrate formation, (5) rapid hydrate formation in a non-stirred system, (6) hydrate self-packing, and (7) heat-exchanger/adsorption plates serving dual purposes to add or extract energy for hydrate formation or decomposition. The hydrate formation/storage/decomposition Proof-of-Concept (POC) pressure vessel and supporting equipment were designed, constructed, and tested. This final report details the design of the scaled POC gas-hydrate storage process, some comments on its fabrication and installation, checkout of the equipment, procedures for conducting the experimental tests, and the test results. The design, construction, and installation of the equipment were on budget target, as was the tests that were subsequently conducted. The budget proposed was met. The primary goal of storing 5000-scf of natural gas in the gas hydrates was exceeded in the final test, as 5289-scf of gas storage was achieved in 54.33 hours. After this 54.33-hour period, as pressure in the formation vessel declined, additional gas went into the hydrates until equilibrium pressure/temperature was reached, so that ultimately more than the 5289-scf storage was achieved. The time required to store the 5000-scf (48.1 hours of operating time) was longer than designed. The lower gas hydrate formation rate is attributed to a

  19. Underground natural gas storage reservoir management

    SciTech Connect

    Ortiz, I.; Anthony, R.

    1995-06-01

    The objective of this study is to research technologies and methodologies that will reduce the costs associated with the operation and maintenance of underground natural gas storage. This effort will include a survey of public information to determine the amount of natural gas lost from underground storage fields, determine the causes of this lost gas, and develop strategies and remedial designs to reduce or stop the gas loss from selected fields. Phase I includes a detailed survey of US natural gas storage reservoirs to determine the actual amount of natural gas annually lost from underground storage fields. These reservoirs will be ranked, the resultant will include the amount of gas and revenue annually lost. The results will be analyzed in conjunction with the type (geologic) of storage reservoirs to determine the significance and impact of the gas loss. A report of the work accomplished will be prepared. The report will include: (1) a summary list by geologic type of US gas storage reservoirs and their annual underground gas storage losses in ft{sup 3}; (2) a rank by geologic classifications as to the amount of gas lost and the resultant lost revenue; and (3) show the level of significance and impact of the losses by geologic type. Concurrently, the amount of storage activity has increased in conjunction with the net increase of natural gas imports as shown on Figure No. 3. Storage is playing an ever increasing importance in supplying the domestic energy requirements.

  20. Spacecraft cryogenic gas storage systems

    NASA Technical Reports Server (NTRS)

    Rysavy, G.

    1971-01-01

    Cryogenic gas storage systems were developed for the liquid storage of oxygen, hydrogen, nitrogen, and helium. Cryogenic storage is attractive because of the high liquid density and low storage pressure of cryogens. This situation results in smaller container sizes, reduced container-strength levels, and lower tankage weights. The Gemini and Apollo spacecraft used cryogenic gas storage systems as standard spacecraft equipment. In addition to the Gemini and Apollo cryogenic gas storage systems, other systems were developed and tested in the course of advancing the state of the art. All of the cryogenic storage systems used, developed, and tested to date for manned-spacecraft applications are described.

  1. Gas hydrate cool storage system

    DOEpatents

    Ternes, M.P.; Kedl, R.J.

    1984-09-12

    The invention presented relates to the development of a process utilizing a gas hydrate as a cool storage medium for alleviating electric load demands during peak usage periods. Several objectives of the invention are mentioned concerning the formation of the gas hydrate as storage material in a thermal energy storage system within a heat pump cycle system. The gas hydrate was formed using a refrigerant in water and an example with R-12 refrigerant is included. (BCS)

  2. ADVANCED UNDERGROUND GAS STORAGE CONCEPTS REFRIGERATED-MINED CAVERN STORAGE

    SciTech Connect

    1998-09-01

    Limited demand and high cost has prevented the construction of hard rock caverns in this country for a number of years. The storage of natural gas in mined caverns may prove technically feasible if the geology of the targeted market area is suitable; and economically feasible if the cost and convenience of service is competitive with alternative available storage methods for peak supply requirements. It is believed that mined cavern storage can provide the advantages of high delivery rates and multiple fill-withdrawal cycles in areas where salt cavern storage is not possible. In this research project, PB-KBB merged advanced mining technologies and gas refrigeration techniques to develop conceptual designs and cost estimates to demonstrate the commercialization potential of the storage of refrigerated natural gas in hard rock caverns. Five regions of the U.S.A. were studied for underground storage development and PB-KBB reviewed the literature to determine if the geology of these regions was suitable for siting hard rock storage caverns. Area gas market conditions in these regions were also studied to determine the need for such storage. Based on an analysis of many factors, a possible site was determined to be in Howard and Montgomery Counties, Maryland. The area has compatible geology and a gas industry infrastructure for the nearby market populous of Baltimore and Washington D.C.. As Gas temperature is lowered, the compressibility of the gas reaches an optimum value. The compressibility of the gas, and the resultant gas density, is a function of temperature and pressure. This relationship can be used to commercial advantage by reducing the size of a storage cavern for a given working volume of natural gas. This study looks at this relationship and and the potential for commercialization of the process in a storage application. A conceptual process design, and cavern design were developed for various operating conditions. Potential site locations were considered

  3. Buffer Gas Acquisition and Storage

    NASA Technical Reports Server (NTRS)

    Parrish, Clyde F.; Lueck, Dale E.; Jennings, Paul A.; Callahan, Richard A.; Delgado, H. (Technical Monitor)

    2001-01-01

    The acquisition and storage of buffer gases (primarily argon and nitrogen) from the Mars atmosphere provides a valuable resource for blanketing and pressurizing fuel tanks and as a buffer gas for breathing air for manned missions. During the acquisition of carbon dioxide (CO2), whether by sorption bed or cryo-freezer, the accompanying buffer gases build up in the carbon dioxide acquisition system, reduce the flow of CO2 to the bed, and lower system efficiency. It is this build up of buffer gases that provide a convenient source, which must be removed, for efficient capture Of CO2 Removal of this buffer gas barrier greatly improves the charging rate of the CO2 acquisition bed and, thereby, maintains the fuel production rates required for a successful mission. Consequently, the acquisition, purification, and storage of these buffer gases are important goals of ISRU plans. Purity of the buffer gases is a concern e.g., if the CO, freezer operates at 140 K, the composition of the inert gas would be approximately 21 percent CO2, 50 percent nitrogen, and 29 percent argon. Although there are several approaches that could be used, this effort focused on a hollow-fiber membrane (HFM) separation method. This study measured the permeation rates of CO2, nitrogen (ND, and argon (Ar) through a multiple-membrane system and the individual membranes from room temperature to 193K and 10 kpa to 300 kPa. Concentrations were measured with a gas chromatograph that used a thermoconductivity (TCD) detector with helium (He) as the carrier gas. The general trend as the temperature was lowered was for the membranes to become more selective, In addition, the relative permeation rates between the three gases changed with temperature. The end result was to provide design parameters that could be used to separate CO2 from N2 and Ar.

  4. Horizontal drilling used in gas storage programs

    SciTech Connect

    Young, F.S.Jr.; McDonald, W.J. ); Shikari, Y.A. )

    1993-04-05

    Horizontal wells may restore deliverability in old reservoirs and help efficiently develop new, porous-media, natural gas storage reservoirs. In many types of gas storage reservoirs, horizontal wells can have 5-10 times the productivity of vertical wells yet cost only about twice as much. The advantages of using horizontal wells in gas storage include the ability to develop less-favorable parts of the reservoir, fewer surface sites, less pipe and surface equipment, improved late season deliverability at low pressure, and reduced base gas requirements. Since 1990, the Gas Research Institute (GRI) has sponsored a project to increase the deliverability of the nation's 14,00 gas storage wells. The primary objective of the study is to conduct a comprehensive review of deliverability enhancement techniques, well completion methods, and procedures used by operators of underground natural gas storage fields in North America. Another objective is to design and construct a computer data base and compile reports and analyses in aggregated format. The first task of the project involved an assessment of the state of technology. The paper describes results from the gas storage survey; horizontal drilling technology; special considerations; and test results.

  5. Natural gas storage in bedded salt formations

    SciTech Connect

    Macha, G.

    1996-09-01

    In 1990 Western Resources Inc. (WRI) identified the need for additional natural gas storage capacity for its intrastate natural gas system operated in the state of Kansas. Western Resources primary need was identified as peak day deliverability with annual storage balancing a secondary objective. Consequently, an underground bedded salt storage facility, Yaggy Storage Field, was developed and placed in operation in November 1993. The current working capacity of the new field is 2.1 BCF. Seventy individual caverns are in service on the 300 acre site. The caverns vary in size from 310,000 CF to 2,600,000 CF. Additional capacity can be added on the existing acreage by increasing the size of some of the smaller existing caverns by further solution mining and by development of an additional 30 potential well sites on the property.

  6. Compressed gas fuel storage system

    SciTech Connect

    Wozniak, John J.; Tiller, Dale B.; Wienhold, Paul D.; Hildebrand, Richard J.

    2001-01-01

    A compressed gas vehicle fuel storage system comprised of a plurality of compressed gas pressure cells supported by shock-absorbing foam positioned within a shape-conforming container. The container is dimensioned relative to the compressed gas pressure cells whereby a radial air gap surrounds each compressed gas pressure cell. The radial air gap allows pressure-induced expansion of the pressure cells without resulting in the application of pressure to adjacent pressure cells or physical pressure to the container. The pressure cells are interconnected by a gas control assembly including a thermally activated pressure relief device, a manual safety shut-off valve, and means for connecting the fuel storage system to a vehicle power source and a refueling adapter. The gas control assembly is enclosed by a protective cover attached to the container. The system is attached to the vehicle with straps to enable the chassis to deform as intended in a high-speed collision.

  7. Ethylene Gas in Storage

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ethylene is a small volatile organic molecule that is produced by plants and many microbes. Potato tubers sense ethylene at concentrations of less than 1 ppm and respond to ethylene in ways that may be beneficial or detrimental for potato tuber storage. High concentrations of ethylene suppress sprou...

  8. GAS SAMPLE STORAGE

    EPA Science Inventory

    The report gives results of a laboratory evaluation to compare the storage stability of selected gases covering a range of compound categories, in three types of containers: glass bulbs and two different polymeric sample bags. The studies indicate that glass bulbs are the best ov...

  9. Gas storage materials, including hydrogen storage materials

    SciTech Connect

    Mohtadi, Rana F; Wicks, George G; Heung, Leung K; Nakamura, Kenji

    2014-11-25

    A material for the storage and release of gases comprises a plurality of hollow elements, each hollow element comprising a porous wall enclosing an interior cavity, the interior cavity including structures of a solid-state storage material. In particular examples, the storage material is a hydrogen storage material, such as a solid state hydride. An improved method for forming such materials includes the solution diffusion of a storage material solution through a porous wall of a hollow element into an interior cavity.

  10. Gas storage materials, including hydrogen storage materials

    DOEpatents

    Mohtadi, Rana F; Wicks, George G; Heung, Leung K; Nakamura, Kenji

    2013-02-19

    A material for the storage and release of gases comprises a plurality of hollow elements, each hollow element comprising a porous wall enclosing an interior cavity, the interior cavity including structures of a solid-state storage material. In particular examples, the storage material is a hydrogen storage material such as a solid state hydride. An improved method for forming such materials includes the solution diffusion of a storage material solution through a porous wall of a hollow element into an interior cavity.

  11. 77 FR 10490 - Arcadia Gas Storage, LLC; Notice of Filing

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-22

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Arcadia Gas Storage, LLC; Notice of Filing Take notice that on February 13, 2012, Arcadia Gas Storage, LLC filed a revised Statement of Operating Conditions to further define...

  12. 77 FR 6107 - Arcadia Gas Storage, LLC; Notice of Filing

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-07

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Arcadia Gas Storage, LLC; Notice of Filing Take notice that on January 30, 2012, Arcadia Gas Storage, LLC filed a Statement of Operating Conditions to set forth the addition...

  13. 78 FR 16495 - Bay Gas Storage, LLC; Notice of Filing

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-15

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Bay Gas Storage, LLC; Notice of Filing Take notice that on February 28, 2013, Bay Gas Storage, LLC filed pursuant to Section 12.2.4 of its Statement of Operating Conditions...

  14. 77 FR 14514 - Bay Gas Storage, LLC: Notice of Filing

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-12

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Bay Gas Storage, LLC: Notice of Filing Take notice that on March 2, 2012, Bay Gas Storage, LLC filed pursuant to Section 12.2.4 of its Statement of Operating Conditions...

  15. Gas hydrate cool storage system

    DOEpatents

    Ternes, Mark P.; Kedl, Robert J.

    1985-01-01

    This invention is a process for formation of a gas hydrate to be used as a cool storage medium using a refrigerant in water. Mixing of the immiscible refrigerant and water is effected by addition of a surfactant and agitation. The difficult problem of subcooling during the process is overcome by using the surfactant and agitation and performance of the process significantly improves and approaches ideal.

  16. Adsorbed natural gas storage with activated carbon

    SciTech Connect

    Sun, Jian; Brady, T.A.; Rood, M.J.

    1996-12-31

    Despite technical advances to reduce air pollution emissions, motor vehicles still account for 30 to 70% emissions of all urban air pollutants. The Clean Air Act Amendments of 1990 require 100 cities in the United States to reduce the amount of their smog within 5 to 15 years. Hence, auto emissions, the major cause of smog, must be reduced 30 to 60% by 1998. Natural gas con be combusted with less pollutant emissions. Adsorbed natural gas (ANG) uses adsorbents and operates with a low storage pressure which results in lower capital costs and maintenance. This paper describes the production of an activated carbon adsorbent produced from an Illinois coal for ANG.

  17. Operational performance of the NIJI-III superconducting storage ring.

    PubMed

    Emura, K; Shinzato, T; Tsutsui, Y; Takada, H; Noda, N

    1998-05-01

    The operational performance of the NIJI-III superconducting storage ring has been studied with particular attention focused on the vacuum performance of the cold-bore chamber. Photon-stimulated gas desorption in the cold-bore chamber was examined after commissioning the storage ring. It was confirmed that the photon-stimulated gas desorption due to diffuse reflection of synchrotron radiation at the absorber was not dominant in the gas desorption when the electron beam was accumulated in the storage ring. PMID:15263507

  18. Gas storage using fullerene based adsorbents

    NASA Technical Reports Server (NTRS)

    Loutfy, Raouf O. (Inventor); Lu, Xiao-Chun (Inventor); Li, Weijiong (Inventor); Mikhael, Michael G. (Inventor)

    2000-01-01

    This invention is directed to the synthesis of high bulk density high gas absorption capacity adsorbents for gas storage applications. Specifically, this invention is concerned with novel gas absorbents with high gravimetric and volumetric gas adsorption capacities which are made from fullerene-based materials. By pressing fullerene powder into pellet form using a conventional press, then polymerizing it by subjecting the fullerene to high temperature and high inert gas pressure, the resulting fullerene-based materials have high bulk densities and high gas adsorption capacities. By pre-chemical modification or post-polymerization activation processes, the gas adsorption capacities of the fullerene-based adsorbents can be further enhanced. These materials are suitable for low pressure gas storage applications, such as oxygen storage for home oxygen therapy uses or on-board vehicle natural gas storage. They are also suitable for storing gases and vapors such as hydrogen, nitrogen, carbon dioxide, and water vapor.

  19. STORAGE OF CHILLED NATURAL GAS IN BEDDED SALT STORAGE CAVERNS

    SciTech Connect

    JOel D. Dieland; Kirby D. Mellegard

    2001-11-01

    This report provides the results of a two-phase study that examines the economic and technical feasibility of converting a conventional natural gas storage facility in bedded salt into a refrigerated natural gas storage facility for the purpose of increasing the working gas capacity of the facility. The conceptual design used to evaluate this conversion is based on the design that was developed for the planned Avoca facility in Steuben County, New York. By decreasing the cavern storage temperature from 43 C to -29 C (110 F to -20 F), the working gas capacity of the facility can be increased by about 70 percent (from 1.2 x 10{sup 8} Nm{sup 3} or 4.4 billion cubic feet (Bcf) to 2.0 x 10{sup 8} Nm{sup 3} or 7.5 Bcf) while maintaining the original design minimum and maximum cavern pressures. In Phase I of the study, laboratory tests were conducted to determine the thermal conductivity of salt at low temperatures. Finite element heat transfer calculations were then made to determine the refrigeration loads required to maintain the caverns at a temperature of -29 C (-20 F). This was followed by a preliminary equipment design and a cost analysis for the converted facility. The capital cost of additional equipment and its installation required for refrigerated storage is estimated to be about $13,310,000 or $160 per thousand Nm{sup 3} ($4.29 per thousand cubic feet (Mcf)) of additional working gas capacity. The additional operating costs include maintenance refrigeration costs to maintain the cavern at -29 C (-20 F) and processing costs to condition the gas during injection and withdrawal. The maintenance refrigeration cost, based on the current energy cost of about $13.65 per megawatt-hour (MW-hr) ($4 per million British thermal units (MMBtu)), is expected to be about $316,000 after the first year and to decrease as the rock surrounding the cavern is cooled. After 10 years, the cost of maintenance refrigeration based on the $13.65 per MW-hr ($4 per MMBtu) energy cost is

  20. 77 FR 2715 - D'Lo Gas Storage, LLC; Notice of Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-19

    ... Energy Regulatory Commission D'Lo Gas Storage, LLC; Notice of Application Take notice that on December 29, 2011, D'Lo Gas Storage, LLC (D'Lo), 1002 East St. Mary Blvd., Lafayette, Louisiana 70503, filed in... D'Lo to construct, operate, and maintain a new natural gas storage project to be located in...

  1. Technical Progress Report for the Gas Storage Technology Consortium

    SciTech Connect

    Joel L. Morrison

    2005-10-24

    Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of July 1, 2005 through September 30, 2005. During this time period efforts were directed toward (1) receiving proposals in response to the RFP, and (2) organizing and hosting the proposal selection meeting on August 30-31, 2005.

  2. Technical Progress Report for the Gas Storage Technology Consortium

    SciTech Connect

    Joel L. Morrison; Sharon L. Elder

    2006-02-27

    Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of October 1, 2005 through December 31, 2005. Activities during this time period were: (1) Nomination and election of Executive Council members for 2006-07 term, (2) Release the 2006 GSTC request-for-proposals (RFP), (3) Recruit and invoice membership for FY2006, (4) Improve communication efforts, and (5) Continue planning the GSTC spring meeting in San Diego, CA on February 21-22, 2006.

  3. Management of a complex cavern storage facility for natural gas

    SciTech Connect

    1998-04-01

    The Epe cavern storage facility operated by Ruhrgas AG has developed into one of the largest gas cavern storage facilities in the world. Currently, there are 32 caverns and 18 more are planned in the future. Working gas volume will increase from approximately 1.5 {times} 10{sup 9} to 2 {times} 10{sup 9} m{sup 3}. The stratified salt deposit containing the caverns has a surface area of approximately 7 km{sup 2} and is 250 m thick at the edge and 400 m thick in the center. Caverns are leached by a company that uses the recovered brine in the chlorine industry. Cavern dimensions are determined before leaching. The behavior of each cavern, as well as the thermodynamic properties of natural gas must be considered in cavern management. The full-length paper presents the components of a complex management system covering the design, construction, and operation of the Epe gas-storage caverns.

  4. Multilateral well enhances gas storage deliverability

    SciTech Connect

    Rowan, M.C.; Whims, M.J.

    1995-12-25

    Multiple lateral drilling from an existing well bore can limit environmental exposure and overall drilling risk while optimizing gas storage field performance. In 1994, an existing high-angle directional well was reentered, and five nearly horizontal fingers were created. The Excelsior 6 gas storage field in Michigan comprises two Niagaran pinnacle reefs which are pressure connected through an interreef facies of low permeability. Each reef, known as the Excelsior 6 gas field (EX6) and the East Kalkaska 1 gas field (EK1), independently produced native gas through pressure-depletion drive. In 1980, seven wells, six of which are in the EX6 field and one in the EK1, were drilled to convert both fields to gas storage service. Two additional wells were added to the EK1 in 1990. The article describes the geology of the fields, well design, drilling program, and results.

  5. The Canoe Ridge Natural Gas Storage Project

    SciTech Connect

    Reidel, Steve P.; Spane, Frank A.; Johnson, Vernon G.

    2003-06-18

    In 1999 the Pacific Gas and Electric Gas Transmission Northwest (GTN) drilled a borehole to investigate the feasibility of developing a natural gas-storage facility in a structural dome formed in Columbia River basalts in the Columbia Basin of south-central Washington State. The proposed aquifer storage facility will be an unconventional one where natural gas will be initially injected (and later retrieved) in one or multiple previous horizons (interflow zones) that are confined between deep (>700 meters) basalt flows of the Columbia River Basalt Group. This report summarizes the results of joint investigations on that feasibility study by GTN and the US Department of Energy.

  6. IMPROVED NATURAL GAS STORAGE WELL REMEDIATION

    SciTech Connect

    James C. Furness; Donald O. Johnson; Michael L. Wilkey; Lynn Furness; Keith Vanderlee; P. David Paulsen

    2001-12-01

    interrupted by sparkplug failure. The lifecycle for the plugs was less than 10 hours. An electrode feed system for delivering continuous power needs to be designed and developed. As a result, further work on the underwater plasma technology was terminated. It needs development of a new sparking system and a redesign of the pulsed power supply system to enable the unit to operate within a well diameter of less than three inches. Both of these needs were beyond the scope of the project. Meanwhile, the laboratory sonication unit was waterproofed and hardened, enabling the unit to be used as a field prototype, operating at temperatures to 350 F and depths of 15,000 feet. The field prototype was extensively tested at a field service company's test facility before taking it to the field site. The field test was run in August 2001 in a Nicor Gas storage field observation well at Pontiac, Illinois. Segmented bond logs, gamma ray neutron logs, water level measurements and water chemistry samples were obtained before and after the downhole demonstration. Fifteen tests were completed in the field. Results from the water chemistry analysis showed an increase in the range of calcium from 1755-1984 mg/l before testing to 3400-4028 mg/l after testing. For magnesium, the range increased from 285-296 mg/l to 461-480 mg/l. The change in pH from a range of 3.11-3.25 to 8.23-8.45 indicated a buffering of the acidic well water, probably due to the increased calcium available for buffering. The segmented bond logs showed no damage to the cement bond in the well and the gamma ray neutron log showed no increase in the amount of hydrocarbons present in the formation where the testing took place. Thus, the gas storage bubble in the aquifer was not compromised. A review of all the field test data collected documents the fact that the application of low-frequency sonication technology definitely removes scale from well pipe. Phase One of this project took sonication technology from the concept stage

  7. Regulatory, technical pressures prompt more U. S. salt-cavern gas storage

    SciTech Connect

    Barron, T.F. )

    1994-09-12

    Natural-gas storage in US salt caverns is meeting the need for flexible, high delivery and injection storage following implementation Nov. 1, 1993, of the Federal Energy Regulatory Commission's Order 636. This ruling has opened the US underground natural-gas storage market to more participants and created a demand for a variety of storage previously provided by pipelines as part of their bundled sales services. Many of these new services such as no-notice and supply balancing center on use of high-delivery natural gas storage from salt caverns. Unlike reservoir storage, nothing restricts flow in a cavern. The paper discusses the unique properties of salt that make it ideal for gas storage, choosing a location for the storage facility, cavern depth and shape, cavern size, spacing, pressures, construction, conversion or brine or LPG storage caverns to natural gas, and operation.

  8. Gas storage and recovery system

    NASA Technical Reports Server (NTRS)

    Cook, Joseph S., Jr. (Inventor)

    1994-01-01

    A system for recovering and recycling gases is disclosed. The system is comprised of inlet and outlet flow lines, controllers, an inflatable enclosure, and inflatable rib stiffeners which are inflatable by the gas to be stored. The system does not present gas at an undesirable back pressure to the gas source. A filtering relief valve is employed which prevents environmental airborne contamination from flowing back into the system when the relief valve is closing. The system is for storing and re-using helium.

  9. Gas storage and recovery system

    NASA Astrophysics Data System (ADS)

    Cook, Joseph S.

    1993-03-01

    A system for recovering and recycling gases is disclosed. The system is comprised of inlet and outlet flow lines, controllers, an inflatable enclosure, and inflatable rib stiffeners which are inflatable by the gas to be stored. The system does not present gas at an undesirable back pressure to the gas source. A filtering relief valve is employed which prevents environmental airborne contamination from flowing back into the system when the relief valve is closing. The system is for storing and re-using helium.

  10. Gas storage and recovery system

    NASA Astrophysics Data System (ADS)

    Cook, Joseph S., Jr.

    1994-11-01

    A system for recovering and recycling gases is disclosed. The system is comprised of inlet and outlet flow lines, controllers, an inflatable enclosure, and inflatable rib stiffeners which are inflatable by the gas to be stored. The system does not present gas at an undesirable back pressure to the gas source. A filtering relief valve is employed which prevents environmental airborne contamination from flowing back into the system when the relief valve is closing. The system is for storing and re-using helium.

  11. Automatic venting valve for gas storage tank

    SciTech Connect

    Johnson, H.

    1986-12-02

    A control valve is described for blocking atmospheric venting of gas fumes contained within a gasoline storage tank during tanker refill operations. The gasoline tank includes a venting tube coupled to open space within the top of the tank to provide air intake for pressure equalization as gasoline is gradually removed from the tank, the control valve comprising: a. a rigid, tubular valve casing having a top opening, a bottom opening and a flow channel therebetween; b. means for attaching the bottom end of the casing to an upper end of the venting tube such that the valve flow channel forms a continuation venting path for the venting tube; c. first and second valve seats and an intermediate seating member coupled to the casing and at least partially contained within the flow channel. The seating member is configured in shape and size to form restricted air space between the seating member and a surrounding wall of the flow channel to be reversibly displaceable in response to fume exhaust expelled during refill operations.

  12. Gas storage carbon with enhanced thermal conductivity

    DOEpatents

    Burchell, Timothy D.; Rogers, Michael Ray; Judkins, Roddie R.

    2000-01-01

    A carbon fiber carbon matrix hybrid adsorbent monolith with enhanced thermal conductivity for storing and releasing gas through adsorption and desorption is disclosed. The heat of adsorption of the gas species being adsorbed is sufficiently large to cause hybrid monolith heating during adsorption and hybrid monolith cooling during desorption which significantly reduces the storage capacity of the hybrid monolith, or efficiency and economics of a gas separation process. The extent of this phenomenon depends, to a large extent, on the thermal conductivity of the adsorbent hybrid monolith. This invention is a hybrid version of a carbon fiber monolith, which offers significant enhancements to thermal conductivity and potential for improved gas separation and storage systems.

  13. Gas storage carbon with enhanced thermal conductivity

    SciTech Connect

    Burchell, T.D.; Rogers, M.R.; Judkins, R.R.

    2000-07-18

    A carbon fiber carbon matrix hybrid adsorbent monolith with enhanced thermal conductivity for storing and releasing gas through adsorption and desorption is disclosed. The heat of adsorption of the gas species being adsorbed is sufficiently large to cause hybrid monolith heating during adsorption and hybrid monolith cooling during desorption which significantly reduces the storage capacity of the hybrid monolith, or efficiency and economics of a gas separation process. The extent of this phenomenon depends, to a large extent, on the thermal conductivity of the adsorbent hybrid monolith. This invention is a hybrid version of a carbon fiber monolith, which offers significant enhancements to thermal conductivity and potential for improved gas separation and storage systems.

  14. Storage peak gas-turbine power unit

    NASA Technical Reports Server (NTRS)

    Tsinkotski, B.

    1980-01-01

    A storage gas-turbine power plant using a two-cylinder compressor with intermediate cooling is studied. On the basis of measured characteristics of a .25 Mw compressor computer calculations of the parameters of the loading process of a constant capacity storage unit (05.3 million cu m) were carried out. The required compressor power as a function of time with and without final cooling was computed. Parameters of maximum loading and discharging of the storage unit were calculated, and it was found that for the complete loading of a fully unloaded storage unit, a capacity of 1 to 1.5 million cubic meters is required, depending on the final cooling.

  15. 30 CFR 75.1106-3 - Storage of liquefied and nonliquefied compressed gas cylinders; requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Storage of liquefied and nonliquefied... Fire Protection § 75.1106-3 Storage of liquefied and nonliquefied compressed gas cylinders... Transportation regulations. (2) Placed securely in storage areas designated by the operator for such purpose,...

  16. 30 CFR 75.1106-3 - Storage of liquefied and nonliquefied compressed gas cylinders; requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Storage of liquefied and nonliquefied... Fire Protection § 75.1106-3 Storage of liquefied and nonliquefied compressed gas cylinders... Transportation regulations. (2) Placed securely in storage areas designated by the operator for such purpose,...

  17. 30 CFR 75.1106-3 - Storage of liquefied and nonliquefied compressed gas cylinders; requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Storage of liquefied and nonliquefied... Fire Protection § 75.1106-3 Storage of liquefied and nonliquefied compressed gas cylinders... Transportation regulations. (2) Placed securely in storage areas designated by the operator for such purpose,...

  18. 30 CFR 75.1106-3 - Storage of liquefied and nonliquefied compressed gas cylinders; requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Storage of liquefied and nonliquefied... Fire Protection § 75.1106-3 Storage of liquefied and nonliquefied compressed gas cylinders... Transportation regulations. (2) Placed securely in storage areas designated by the operator for such purpose,...

  19. 30 CFR 75.1106-3 - Storage of liquefied and nonliquefied compressed gas cylinders; requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Storage of liquefied and nonliquefied... Fire Protection § 75.1106-3 Storage of liquefied and nonliquefied compressed gas cylinders... Transportation regulations. (2) Placed securely in storage areas designated by the operator for such purpose,...

  20. Hydrogen-air energy storage gas-turbine system

    NASA Astrophysics Data System (ADS)

    Schastlivtsev, A. I.; Nazarova, O. V.

    2016-02-01

    A hydrogen-air energy storage gas-turbine unit is considered that can be used in both nuclear and centralized power industries. However, it is the most promising when used for power-generating plants based on renewable energy sources (RES). The basic feature of the energy storage system in question is combination of storing the energy in compressed air and hydrogen and oxygen produced by the water electrolysis. Such a process makes the energy storage more flexible, in particular, when applied to RES-based power-generating plants whose generation of power may considerably vary during the course of a day, and also reduces the specific cost of the system by decreasing the required volume of the reservoir. This will allow construction of such systems in any areas independent of the local topography in contrast to the compressed-air energy storage gas-turbine plants, which require large-sized underground reservoirs. It should be noted that, during the energy recovery, the air that arrives from the reservoir is heated by combustion of hydrogen in oxygen, which results in the gas-turbine exhaust gases practically free of substances hazardous to the health and the environment. The results of analysis of a hydrogen-air energy storage gas-turbine system are presented. Its layout and the principle of its operation are described and the basic parameters are computed. The units of the system are analyzed and their costs are assessed; the recovery factor is estimated at more than 60%. According to the obtained results, almost all main components of the hydrogen-air energy storage gas-turbine system are well known at present; therefore, no considerable R&D costs are required. A new component of the system is the H2-O2 combustion chamber; a difficulty in manufacturing it is the necessity of ensuring the combustion of hydrogen in oxygen as complete as possible and preventing formation of nitric oxides.

  1. A thermal energy storage system for adsorbent low-pressure natural gas storage

    SciTech Connect

    Blazek, C.F.; Jasionowski, W.J.; Kountz, K.J.; Tiller, A.J.; Gauthier, S.W.; Takagishi, S.K.

    1992-12-31

    Carbon-based adsorbents were determined to be the best enhanced storage media that would store more natural gas at low pressures than achieved with compression only. Thermal energy storage (TES) was previously demonstrated to be a potentially promising technique to mitigate heat effects associated with low-pressure carbon adsorption systems for natural gas storage. Further investigations were conducted to develop information for the design of an optimized adsorption system that incorporates TES heat management. The selection of appropriate phase-change materials and nucleating agents, encapsulant materials, and corrosion inhibitors for a TES heat management system are discussed and the results of extended thermal cyclic behavior are presented. Engineering analyses and finite element analyses are employed to calculate adsorption rates, heat generation, temperatures, and heat transfer within the adsorbent bed. The size, volume, and arrangement of components for an operational TES system designed to accommodate fast-fill within a defined time limit is presented.

  2. A thermal energy storage system for adsorbent low-pressure natural gas storage

    SciTech Connect

    Blazek, C.F.; Jasionowski, W.J.; Kountz, K.J.; Tiller, A.J. ); Gauthier, S.W.; Takagishi, S.K. )

    1992-01-01

    Carbon-based adsorbents were determined to be the best enhanced storage media that would store more natural gas at low pressures than achieved with compression only. Thermal energy storage (TES) was previously demonstrated to be a potentially promising technique to mitigate heat effects associated with low-pressure carbon adsorption systems for natural gas storage. Further investigations were conducted to develop information for the design of an optimized adsorption system that incorporates TES heat management. The selection of appropriate phase-change materials and nucleating agents, encapsulant materials, and corrosion inhibitors for a TES heat management system are discussed and the results of extended thermal cyclic behavior are presented. Engineering analyses and finite element analyses are employed to calculate adsorption rates, heat generation, temperatures, and heat transfer within the adsorbent bed. The size, volume, and arrangement of components for an operational TES system designed to accommodate fast-fill within a defined time limit is presented.

  3. Sonar surveys used in gas-storage cavern analysis

    SciTech Connect

    Crossley, N.G.

    1998-05-04

    Natural-gas storage cavern internal configuration, inspection information, and cavern integrity data can be obtained during high-pressure operations with specialized gas-sonar survey logging techniques. TransGas Ltd., Regina, Sask., has successfully performed these operations on several of its deepest and highest pressurized caverns. The data can determine gas-in-place inventory and assess changes in spatial volumes. These changes can result from cavern creep, shrinkage, or closure or from various downhole abnormalities such as fluid infill or collapse of the sidewall or roof. The paper discusses conventional surveys with sonar, running surveys in pressurized caverns, accuracy of the sonar survey, initial development of Cavern 5, a roof fall, Cavern 4 development, and a damaged string.

  4. Underground natural gas storage reservoir management: Phase 2. Final report, June 1, 1995--March 30, 1996

    SciTech Connect

    Ortiz, I.; Anthony, R.V.

    1996-12-31

    Gas storage operators are facing increased and more complex responsibilities for managing storage operations under Order 636 which requires unbundling of storage from other pipeline services. Low cost methods that improve the accuracy of inventory verification are needed to optimally manage this stored natural gas. Migration of injected gas out of the storage reservoir has not been well documented by industry. The first portion of this study addressed the scope of unaccounted for gas which may have been due to migration. The volume range was estimated from available databases and reported on an aggregate basis. Information on working gas, base gas, operating capacity, injection and withdrawal volumes, current and non-current revenues, gas losses, storage field demographics and reservoir types is contained among the FERC Form 2, EIA Form 191, AGA and FERC Jurisdictional databases. The key elements of this study show that gas migration can result if reservoir limits have not been properly identified, gas migration can occur in formation with extremely low permeability (0.001 md), horizontal wellbores can reduce gas migration losses and over-pressuring (unintentionally) storage reservoirs by reinjecting working gas over a shorter time period may increase gas migration effects.

  5. French gas-storage project nearing completion

    SciTech Connect

    Laguerie, P. de ); Durup, J.G. )

    1994-12-12

    Geomethane, jointly formed by Gaz de France and Geostock, is currently converting 7 of 36 solution-mined salt cavities at Manosque in southeast France from liquid hydrocarbon storage to natural-gas storage. In view of the large diameter (13 3/8 in.) of the original production wells and safety requirements, a unique high-capacity well completion has been developed for this project. It will have two fail-safe valves and a flow crossover 30 m below ground to isolate the production well in the event of problems at the surface. The project lies in the wooded Luberon Nature Reserve and due consideration has been given to locating the surface plant and blending it with the surroundings. The production wellheads are extra-low designs, the main plant was located outside the sensitive area, and the pipeline routes were landscaped. The paper discusses the history of salt cavern storage of natural gas; site characteristics; Manosque salt geology; salt mining and early storage; siting; engineering and construction; completion and monitoring; nature reserve protection; and fire and earthquake hazard mitigation.

  6. Advanced Gas Storage Concepts: Technologies for the Future

    SciTech Connect

    Freeway, Katy; Rogers, R.E.; DeVries, Kerry L.; Nieland, Joel D.; Ratigan, Joe L.; Mellegard, Kirby D.

    2000-02-01

    This full text product includes: 1) A final technical report titled Advanced Underground Gas Storage Concepts, Refrigerated-Mined Cavern Storage and presentations from two technology transfer workshops held in 1998 in Houston, Texas, and Pittsburgh, Pennsylvania (both on the topic of Chilled Gas Storage in Mined Caverns); 2) A final technical report titled Natural Gas Hydrates Storage Project, Final Report 1 October 1997 - 31 May 1999; 3) A final technical report titled Natural Gas Hydrates Storage Project Phase II: Conceptual Design and Economic Study, Final Report 9 June - 10 October 1999; 4) A final technical report titled Commerical Potential of Natural Gas Storage in Lined Rock Caverns (LRC) and presentations from a DOE-sponsored workshop on Alternative Gas Storage Technologies, held Feb 17, 2000 in Pittsburgh, PA; and 5) Phase I and Phase II topical reports titled Feasibility Study for Lowering the Minimum Gas Pressure in Solution-Mined Caverns Based on Geomechanical Analyses of Creep-Induced Damage and Healing.

  7. Simulation of Mechanical Processes in Gas Storage Caverns for Short-Term Energy Storage

    NASA Astrophysics Data System (ADS)

    Böttcher, Norbert; Nagel, Thomas; Kolditz, Olaf

    2015-04-01

    In recent years, Germany's energy management has started to be transferred from fossil fuels to renewable and sustainable energy carriers. Renewable energy sources such as solar and wind power are subjected by fluctuations, thus the development and extension of energy storage capacities is a priority in German R&D programs. This work is a part of the ANGUS+ Project, funded by the federal ministry of education and research, which investigates the influence of subsurface energy storage on the underground. The utilization of subsurface salt caverns as a long-term storage reservoir for fossil fuels is a common method, since the construction of caverns in salt rock is inexpensive in comparison to solid rock formations due to solution mining. Another advantage of evaporate as host material is the self-healing behaviour of salt rock, thus the cavity can be assumed to be impermeable. In the framework of short-term energy storage (hours to days), caverns can be used as gas storage reservoirs for natural or artificial fuel gases, such as hydrogen, methane, or compressed air, where the operation pressures inside the caverns will fluctuate more frequently. This work investigates the influence of changing operation pressures at high frequencies on the stability of the host rock of gas storage caverns utilizing numerical models. Therefore, we developed a coupled Thermo-Hydro-Mechanical (THM) model based on the finite element method utilizing the open-source software platform OpenGeoSys. The salt behaviour is described by well-known constitutive material models which are capable of predicting creep, self-healing, and dilatancy processes. Our simulations include the thermodynamic behaviour of gas storage process, temperature development and distribution on the cavern boundary, the deformation of the cavern geometry, and the prediction of the dilatancy zone. Based on the numerical results, optimal operation modes can be found for individual caverns, so the risk of host rock damage

  8. [Inspection of gas cylinders in storage at TA-54, Area L]. Volume 2, Final report

    SciTech Connect

    1994-06-23

    ERC sampled, analyzed, and rcontainerized when necessary gas cylinders containing various chemicals in storage at LANL TA-54 Area L. This report summarizes the operation. This is Volume 2 of five volumes.

  9. 76 FR 13611 - Bay Gas Storage, LLC; Notice of Filing

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-14

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Bay Gas Storage, LLC; Notice of Filing Take notice that on February 28, 2011, Bay Gas Storage, LLC (Bay Gas) filed pursuant to Section 12.2.4 of its Statement of...

  10. Trunkline preserves indian artifacts while developing gas storage field

    SciTech Connect

    Clausing, R.G.

    1981-10-01

    Not only is Poverty Point, La, a potential underground gas storage field, but it also is the site of the earliest Indian society yet discovered in the Lower Mississippi Valley. The report, recounts Trunkline Gas Company's experience in studying and preserving archeological data in an area it proposed for an underground gas storage facility.

  11. 76 FR 22092 - Perryville Gas Storage LLC; Notice of Amendment

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-20

    ... Energy Regulatory Commission Perryville Gas Storage LLC; Notice of Amendment Take notice that on March 30, 2011, Perryville Gas Storage LLC (Perryville), Three Riverway, Suite 1350, Houston, Texas 77056, filed in the above referenced docket an application under section 7(c) of the Natural Gas Act (NGA)...

  12. 77 FR 31840 - Perryville Gas Storage LLC; Notice of Amendment

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-30

    ... Energy Regulatory Commission Perryville Gas Storage LLC; Notice of Amendment Take notice that on May 11, 2012, Perryville Gas Storage LLC (Perryville), Three Riverway, Suite 1350, Houston, Texas 77056, filed in the above referenced docket an application under section 7(c) of the Natural Gas Act (NGA)...

  13. 75 FR 21288 - Henry Gas Storage LLC; Notice of Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-23

    ... Energy Regulatory Commission Henry Gas Storage LLC; Notice of Application April 16, 2010. Take notice that on April 5, 2010, Henry Gas Storage LLC (HGS), 1010 Lamar, Suite 1720, Houston, Texas 77002, filed... section 7(c)(1)(B) of the Natural Gas Act (NGA), to perform specific temporary activity related to...

  14. 77 FR 74838 - Perryville Gas Storage LLC; Notice of Amendment

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-18

    ... Energy Regulatory Commission Perryville Gas Storage LLC; Notice of Amendment Take notice that on December 3, 2012, Perryville Gas Storage LLC (Perryville), Three Riverway, Suite 1350, Houston, Texas 77056, filed in the above referenced docket an application under section 7(c) of the Natural Gas Act (NGA)...

  15. Slim-hole horizontal well improves gas storage field deliverability

    SciTech Connect

    Gredell, M.E.; Benson, M.A.

    1995-12-11

    A slim-hole horizontal well in a gas storage field, drilled with a 2,000-ft lateral section under a city, initially produced about four times more than a nearby offset vertical well. The ability of the well to cycle gas efficiently from the area under the city will be determined by monitoring the future performance of the well and field. The objectives and conditions of this project were ideal for a slim-hole horizontal well, and the results suggest the potential for more horizontal slim-hole wells in other gas storage applications. The slim-hole well design helped lower total costs. Among the technical and operational issues addressed on this horizontal well project were prediction of well performance and benefits, environmental and safety concerns of drilling in an urban area, optimizing well design parameters, protecting the integrity of the storage zone, and geosteering in a thin reservoir. The paper describes the reservoir, field development, feasibility studies, well location, well plan, radius, the lateral section, well completion, and results.

  16. Reservoir model for Hillsboro gas storage field management

    USGS Publications Warehouse

    Udegbunam, Emmanuel O.; Kemppainen, Curt; Morgan, Jim

    1995-01-01

    A 3-dimensional reservoir model is used to understand the behavior of the Hillsboro Gas Storage Field and to investigate the field's performance under various future development. Twenty-two years of the gas storage reservoir history, comprising the initial gas bubble development and seasonal gas injection and production cycles, are examined with a full-field, gas water, reservoir simulation model. The results suggest that the gas-water front is already in the vicinity of the west observation well that increasing the field's total gas-in-place volume would cause gas to migrate beyond the east, north and west observation well. They also suggest that storage enlargement through gas injection into the lower layers may not prevent gas migration. Moreover, the results suggest that the addition of strategically-located new wells would boost the simulated gas deliverabilities.

  17. CAVERN ROOF STABILITY FOR NATURAL GAS STORAGE IN BEDDED SALT

    SciTech Connect

    DeVries, Kerry L; Mellegard, Kirby D; Callahan, Gary D; Goodman, William M

    2005-06-01

    This report documents research performed to develop a new stress-based criterion for predicting the onset of damage in salt formations surrounding natural gas storage caverns. Laboratory tests were conducted to investigate the effects of shear stress, mean stress, pore pressure, temperature, and Lode angle on the strength and creep characteristics of salt. The laboratory test data were used in the development of the new criterion. The laboratory results indicate that the strength of salt strongly depends on the mean stress and Lode angle. The strength of the salt does not appear to be sensitive to temperature. Pore pressure effects were not readily apparent until a significant level of damage was induced and the permeability was increased to allow penetration of the liquid permeant. Utilizing the new criterion, numerical simulations were used to estimate the minimum allowable gas pressure for hypothetical storage caverns located in a bedded salt formation. The simulations performed illustrate the influence that cavern roof span, depth, roof salt thickness, shale thickness, and shale stiffness have on the allowable operating pressure range. Interestingly, comparison of predictions using the new criterion with that of a commonly used criterion indicate that lower minimum gas pressures may be allowed for caverns at shallow depths. However, as cavern depth is increased, less conservative estimates for minimum gas pressure were determined by the new criterion.

  18. A storage gas tank is moved to a pallet in the O&C

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- Workers in the Operations and Checkout Building stand by while one of four gas tanks is moved toward the Spacelab Logistics Double Pallet. Part of the STS-104 payload, the storage tanks two gaseous oxygen and two gaseous nitrogen -- comprise the high pressure gas assembly that will be attached to the Joint Airlock Module during two spacewalks. The tanks will support future spacewalk operations from the Station and augment the Service Module gas resupply system.

  19. A storage gas tank is moved to a pallet in the O&C

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- In the Operations and Checkout Building, workers check out the placement of one of four gas tanks on the Spacelab Logistics Double Pallet. Part of the STS- 104 payload, the storage tanks two gaseous oxygen and two gaseous nitrogen -- comprise the high pressure gas assembly that will be attached to the Joint Airlock Module during two spacewalks. The tanks will support future spacewalk operations from the Station and augment the Service Module gas resupply system.

  20. A storage gas tank is moved to a pallet in the O&C

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- An overhead crane in the Operations and Checkout Building lowers one of four gas tanks onto the Spacelab Logistics Double Pallet while workers help guide it. Part of the STS-104 payload, the storage tanks two gaseous oxygen and two gaseous nitrogen -- comprise the high pressure gas assembly that will be attached to the Joint Airlock Module during two spacewalks. The tanks will support future spacewalk operations from the Station and augment the Service Module gas resupply system.

  1. Value of Underground Storage in Today's Natural Gas Industry, The

    EIA Publications

    1995-01-01

    This report explores the significant and changing role of storage in the industry by examining the value of natural gas storage; short-term relationships between prices, storage levels, and weather; and some longer term impacts of the Federal Energy Regulatory Commission's (FERC) Order 636.

  2. 77 FR 8248 - Bluewater Gas Storage, LLC; Notice of Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-14

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Bluewater Gas Storage, LLC; Notice of Application Take notice that on January 27, 2012, Bluewater Gas Storage, LLC (Bluewater), 333 Clay Street, Suite 1500, Houston,...

  3. 75 FR 47587 - Wabash Gas Storage LLC; Notice of Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-06

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Wabash Gas Storage LLC; Notice of Application July 30, 2010. Take notice that on July 29, 2010, Wabash Gas Storage LLC (Petitioner), 1044 North 115th Street, Suite 400,...

  4. 76 FR 48841 - Liberty Gas Storage, LLC; Notice of Filing

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-09

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Liberty Gas Storage, LLC; Notice of Filing Take notice that on July 25, 2011, Liberty Gas Storage, LLC (Liberty) submitted a request for confirmation that it is not required to...

  5. 75 FR 57011 - Tallulah Gas Storage LLC; Notice of Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-17

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Tallulah Gas Storage LLC; Notice of Application September 9, 2010. Take notice that on August 31, 2010, Tallulah Gas Storage LLC (Tallulah), 10370 Richmond Avenue, Suite...

  6. 75 FR 45610 - Liberty Gas Storage LLC; Notice of Amendment

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-03

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Liberty Gas Storage LLC; Notice of Amendment Take notice that on July 26, Liberty Gas Storage LLC (``Liberty''), 101 Ash Street, San Diego, CA 92101, filed in the above...

  7. 75 FR 70727 - Perryville Gas Storage LLC ; Notice of Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-18

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Perryville Gas Storage LLC ; Notice of Application November 10, 2010. Take notice that on November 5, 2010, Perryville Gas Storage LLC (Perryville), Three Riverway, Suite...

  8. The value of underground storage in today`s natural gas industry

    SciTech Connect

    1995-03-01

    The report consists of three chapters and four appendices. Chapter 1 provides basic information on the role of storage in today`s marketplace where natural gas is treated as a commodity. Chapter 2 provides statistical analyses of the relationship between storage and spot prices on both a monthly and daily basis. For the daily analysis, temperature data were used a proxy for storage withdrawals, providing a new means of examining the short-term relationship between storage and spot prices. Chapter 3 analyzes recent trends in storage management and use, as well as plans for additions to storage capacity. It also reviews the status of the new uses of storage resulting from Order 636, that is, market-based rates and capacity release. Appendix A serves as a stand-along primer on storage operations, and Appendix B provides further data on plans for the expansion of storage capacity. Appendix C explains recent revisions made to working gas and base gas capacity on the part of several storage operators in 1991 through 1993. The revisions were significant, and this appendix provides a consistent historical data series that reflects these changes. Finally, Appendix D presents more information on the regression analysis presented in Chapter 2. 19 refs., 21 figs., 5 tabs.

  9. The oil and gas joint operating agreement

    SciTech Connect

    Not Available

    1990-01-01

    This book covers the following topics: introduction to the AAPL model form operating agreement; property provisions of the operating agreement; Article 6---the drilling and development article; duties and obligations revisited---who bear what risk of loss; operator's liens; accounting procedure joint operations; insurance; taking gas in kind absent a balancing agreement; RMMLF Form 5 Gas Balancing Agreement; tax partnerships for nontax professionals; alternative agreement forms.

  10. 77 FR 17471 - PetroLogistics Natural Gas Storage Company, LLC; Notice of Availability of the Environmental...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-26

    ... Energy Regulatory Commission PetroLogistics Natural Gas Storage Company, LLC; Notice of Availability of... Choctaw Hub Expansion Project (Project) proposed by PetroLogistics Natural Gas Storage, LLC (PetroLogistics) in the above-referenced docket. PetroLogistics requests authorization to build and operate...

  11. Procedure for preparation for shipment of natural gas storage vessel

    NASA Technical Reports Server (NTRS)

    Amawd, A. M.

    1974-01-01

    A method for preparing a natural gas storage vessel for shipment is presented. The gas is stored at 3,000 pounds per square inch. The safety precautions to be observed are emphasized. The equipment and process for purging the tank and sampling the exit gas flow are described. A diagram of the pressure vessel and the equipment is provided.

  12. Commercial potential of natural gas storage in lined rock caverns (LRC)

    SciTech Connect

    1999-11-01

    The geologic conditions in many regions of the United States will not permit the development of economical high-deliverability gas storage in salt caverns. These regions include the entire Eastern Seaboard; several northern states, notably Minnesota and Wisconsin; many of the Rocky Mountain States; and most of the Pacific Northwest. In late 1997, the United States Department of Energy (USDOE) Federal Energy Technology Center engaged Sofregaz US to investigate the commercialization potential of natural gas storage in Lined Rock Caverns (LRC). Sofregaz US teamed with Gaz de France and Sydkraft, who had formed a consortium, called LRC, to perform the study for the USDOE. Underground storage of natural gas is generally achieved in depleted oil and gas fields, aquifers, and solution-mined salt caverns. These storage technologies require specific geologic conditions. Unlined rock caverns have been used for decades to store hydrocarbons - mostly liquids such as crude oil, butane, and propane. The maximum operating pressure in unlined rock caverns is limited, since the host rock is never entirely impervious. The LRC technology allows a significant increase in the maximum operating pressure over the unlined storage cavern concept, since the gas in storage is completely contained with an impervious liner. The LRC technology has been under development in Sweden by Sydkraft since 1987. The development process has included extensive technical studies, laboratory testing, field tests, and most recently includes a storage facility being constructed in southern Sweden (Skallen). The LRC development effort has shown that the concept is technically and economically viable. The Skallen storage facility will have a rock cover of 115 meters (375 feet), a storage volume of 40,000 cubic meters (250,000 petroleum barrels), and a maximum operating pressure of 20 MPa (2,900 psi). There is a potential for commercialization of the LRC technology in the United States. Two regions were studied

  13. Compressed air energy storage in depleted natural gas reservoirs: effects of porous media and gas mixing

    NASA Astrophysics Data System (ADS)

    Oldenburg, C. M.; Pan, L.

    2015-12-01

    Although large opportunities exist for compressed air energy storage (CAES) in aquifers and depleted natural gas reservoirs, only two grid-scale CAES facilities exist worldwide, both in salt caverns. As such, experience with CAES in porous media, what we call PM-CAES, is lacking and we have relied on modeling to elucidate PM-CAES processes. PM-CAES operates similarly to cavern CAES. Specifically, working gas (air) is injected through well(s) into the reservoir compressing the cushion gas (existing air in the reservoir). During energy recovery, high-pressure air from the reservoir flows first into a recuperator, then into an expander, and subsequently is mixed with fuel in a combustion turbine to produce electricity, thereby reducing compression costs. Energy storage in porous media is complicated by the solid matrix grains which provide resistance to flow (via permeability in Darcy's law); in the cap rock, low-permeability matrix provides the seal to the reservoir. The solid grains also provide storage capacity for heat that might arise from compression, viscous flow effects, or chemical reactions. The storage of energy in PM-CAES occurs variably across pressure gradients in the formation, while the solid grains of the matrix can release/store heat. Residual liquid (i.e., formation fluids) affects flow and can cause watering out at the production well(s). PG&E is researching a potential 300 MW (for ten hours) PM-CAES facility in a depleted gas reservoir near Lodi, California. Special considerations exist for depleted natural gas reservoirs because of mixing effects which can lead to undesirable residual methane (CH4) entrainment and reactions of oxygen and CH4. One strategy for avoiding extensive mixing of working gas (air) with reservoir CH4 is to inject an initial cushion gas with reduced oxygen concentration providing a buffer between the working gas (air) and the residual CH4 gas. This reduces the potential mixing of the working air with the residual CH4

  14. Spindletop salt-cavern points way for future natural-gas storage

    SciTech Connect

    Shotts, S.A.; Neal, J.R.; Solis, R.J. ); Oldham, C. )

    1994-09-12

    Spindletop underground natural-gas storage complex began operating in 1993, providing 1.7 bcf of working-gas capacity in its first cavern. The cavern and related facilities exemplify the importance and advantages of natural-gas storage in leached salt caverns. Development of a second cavern, along with continued leaching of the initial cavern, target 5 bcf of available working-gas capacity in both caverns by the end of this year. The facilities that currently make up the Spindletop complex include two salt dome gas-storage wells and a 24,000-hp compression and dehydration facility owned by Sabine Gas; two salt dome gas-storage wells and a 15,900-hp compression and dehydration facility owned by Centana; a 7,000-hp leaching plant; and three jointly owned brine-disposal wells. The paper discusses the development of the storage facility, design goals, leaching plant and wells, piping and compressors, dehydration and heaters, control systems, safety and monitoring, construction, first years operation, and customer base.

  15. Dynamic operating benefits of energy storage: Final report

    SciTech Connect

    Fancher, R.B.; Jabbour, S.J.; Spelman, J.R.

    1986-10-01

    The use of energy storage power plants to enhance power system operational flexibility (spinning reserve, load following, reduced minimum loading of power plants, etc.) yields substantive economic benefits due to reduced fuel use, lower operating and maintenance costs, and extended life of power plants. Inclusion of these benefits in generation expansion studies could increase the economic incentives of installing storage and fuel cell power plants. The objective of this project is to identify the benefits of energy storage due to the enhanced system operational flexibility, or simply called dynamic operating benefits (DOB). The results of an international symposium on DOB and three case studies in the US are reported. The results produce strong evidence of the reality and significance of dynamic operating benefits of energy storage and the importance of including that benefit in generation expansion studies.

  16. Hydrogen Energy Storage (HES) and Power-to-Gas Economic Analysis; NREL (National Renewable Energy Laboratory)

    SciTech Connect

    Eichman, Joshua

    2015-07-30

    This presentation summarizes opportunities for hydrogen energy storage and power-to-gas and presents the results of a market analysis performed by the National Renewable Energy Laboratory to quantify the value of energy storage. Hydrogen energy storage and power-to-gas systems have the ability to integrate multiple energy sectors including electricity, transportation, and industrial. On account of the flexibility of hydrogen systems, there are a variety of potential system configurations. Each configuration will provide different value to the owner, customers and grid system operator. This presentation provides an economic comparison of hydrogen storage, power-to-gas and conventional storage systems. The total cost is compared to the revenue with participation in a variety of markets to assess the economic competitiveness. It is found that the sale of hydrogen for transportation or industrial use greatly increases competitiveness. Electrolyzers operating as demand response devices (i.e., selling hydrogen and grid services) are economically competitive, while hydrogen storage that inputs electricity and outputs only electricity have an unfavorable business case. Additionally, tighter integration with the grid provides greater revenue (e.g., energy, ancillary service and capacity markets are explored). Lastly, additional hours of storage capacity is not necessarily more competitive in current energy and ancillary service markets and electricity markets will require new mechanisms to appropriately compensate long duration storage devices.

  17. 71. DETAIL OF NITROGEN GAS STORAGE TANKS AND TRANSFER TUBING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    71. DETAIL OF NITROGEN GAS STORAGE TANKS AND TRANSFER TUBING ON SLC-3W LIQUID OXYGEN APRON - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 West, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  18. Advanced Underground Gas Storage Concepts: Refrigerated-Mined Cavern Storage, Final Report

    SciTech Connect

    1998-09-30

    Over the past 40 years, cavern storage of LPG's, petrochemicals, such as ethylene and propylene, and other petroleum products has increased dramatically. In 1991, the Gas Processors Association (GPA) lists the total U.S. underground storage capacity for LPG's and related products of approximately 519 million barrels (82.5 million cubic meters) in 1,122 separate caverns. Of this total, 70 are hard rock caverns and the remaining 1,052 are caverns in salt deposits. However, along the eastern seaboard of the U.S. and the Pacific northwest, salt deposits are not available and therefore, storage in hard rocks is required. Limited demand and high cost has prevented the construction of hard rock caverns in this country for a number of years. The storage of natural gas in mined caverns may prove technically feasible if the geology of the targeted market area is suitable; and economically feasible if the cost and convenience of service is competitive with alternative available storage methods for peak supply requirements. Competing methods include LNG facilities and remote underground storage combined with pipeline transportation to the area. It is believed that mined cavern storage can provide the advantages of high delivery rates and multiple fill withdrawal cycles in areas where salt cavern storage is not possible. In this research project, PB-KBB merged advanced mining technologies and gas refrigeration techniques to develop conceptual designs and cost estimates to demonstrate the commercialization potential of the storage of refrigerated natural gas in hard rock caverns. DOE has identified five regions, that have not had favorable geological conditions for underground storage development: New England, Mid-Atlantic (NY/NJ), South Atlantic (DL/MD/VA), South Atlantic (NC/SC/GA), and the Pacific Northwest (WA/OR). PB-KBB reviewed published literature and in-house databases of the geology of these regions to determine suitability of hard rock formations for siting storage

  19. Task 4 - natural gas storage - end user interaction

    SciTech Connect

    1997-02-18

    New opportunities have been created for underground gas storage as a result of recent regulatory developments in the energy industry. The Federal Energy Regulatory Commission (FERC) Order 636 directly changed the economics of gas storage nationwide. Pipelines have been required to {open_quotes}unbundle{close_quotes} their various services so that pipeline users can select only what they need from among the transportation, storage, balancing and the other traditional pipeline services. At the same time, the shift from Modified Fixed Variable (MFV) rate design to Straight Fixed Variable (SFV) rate design has increased the costs of pipeline capacity relative to underground storage and other supply options. Finally, the ability of parties that have contracted for pipeline and storage services to resell their surplus capacities created by Order 636 gives potential gas users more flexibility in assembling combinations of gas delivery services to create reliable gas deliverability. In response to Order 636, the last two years have seen an explosion in proposals for gas storage projects.

  20. Thermodynamics and Kinetics of Gas Storage in Porous Liquids.

    PubMed

    Zhang, Fei; Yang, Fengchang; Huang, Jingsong; Sumpter, Bobby G; Qiao, Rui

    2016-07-28

    The recent synthesis of organic molecular liquids with permanent porosity opens up exciting new avenues for gas capture, storage, and separation. Using molecular simulations, we study the thermodynamics and kinetics for the storage of CH4, CO2, and N2 molecules in porous liquids consisting of crown-ether-substituted cage molecules in a 15-crown-5 solvent. It is found that the intrinsic gas storage capacity per cage molecule follows the order CH4 > CO2 > N2, which does not correlate simply with the size of gas molecules. Different gas molecules are stored inside the cage differently; e.g., CO2 molecules prefer the cage's core whereas CH4 molecules favor both the core and the branch regions. All gas molecules considered can enter the cage essentially without energy barriers and leave the cage on a nanosecond time scale by overcoming a modest energy penalty. The molecular mechanisms of these observations are clarified. PMID:27379463

  1. Advanced onboard storage concepts for natural gas-fueled automotive vehicles

    NASA Technical Reports Server (NTRS)

    Remick, R. J.; Elkins, R. H.; Camara, E. H.; Bulicz, T.

    1984-01-01

    The evaluation of several advanced concepts for storing natural gas at reduced pressure is presented. The advanced concepts include adsorption on high surface area carbon, adsorption in high porosity zeolite, storage in clathration compounds, and storage by dissolution in liquid solvents. High surface area carbons with high packing density are the best low pressure storage mediums. A simple mathematical model is used to compare adsorption storage on a state of the art carbon with compression storage. The model indicates that a vehicle using adsorption storage of natural gas at 3.6 MPa will have 36 percent of the range, on the EPA city cycle, of a vehicle operating on a compression storage system having the same physical size and a peak storage pressure of 21 MPa. Preliminary experiments and current literature suggest that the storage capacity of state of the art carbons could be improved by as much as 50 percent, and that adsorption systems having a capacity equal to compression storage at 14 MPa are possible without exceeding a maximum pressure of 3.6 MPa.

  2. Underground natural gas storage in the United States 1979 - 1980 heating year

    NASA Astrophysics Data System (ADS)

    1980-09-01

    Total gas in storage in the nation's active underground natural gas storage reservoirs as of March 31, 1980, the end of the 1979-1980 heating year, was reported at 5,129 billion cubic feet. Of this total, approximately 69.1 percent was base, or cushion, gas and 30.9 percent was working gas. Working gas totaled 1,586 billion cubic feet, approximately 28.2 percent above that available at the beginning of the heating year. The nation's 383 active storage reservoirs were operated by 77 companies. Total reservoir capacity was reported at 7,287 billion cubic feet, approximately 51.4 percent, or 3,744 billion cubic feet of which was working gas capacity. Approximately 67.9 percent of this working gas capacity was in 228 reservoirs operated by 30 interstate pipeline companies, 29.1 percent was in 142 reservoirs operated by 42 intrastate companies, and 3.1 percent was in 13 reservoirs operated by 5 independent producers.

  3. Advanced Liquid Natural Gas Onboard Storage System

    SciTech Connect

    Greg Harper; Charles Powars

    2003-10-31

    Cummins Westport Incorporated (CWI) has designed and developed a liquefied natural gas (LNG) vehicle fuel system that includes a reciprocating pump with the cold end submerged in LNG contained in a vacuum-jacketed tank. This system was tested and analyzed under the U.S. Department of Energy (DOE) Advanced LNG Onboard Storage System (ALOSS) program. The pumped LNG fuel system developed by CWI and tested under the ALOSS program is a high-pressure system designed for application on Class 8 trucks powered by CWI's ISX G engine, which employs high-pressure direct injection (HPDI) technology. A general ALOSS program objective was to demonstrate the feasibility and advantages of a pumped LNG fuel system relative to on-vehicle fuel systems that require the LNG to be ''conditioned'' to saturation pressures that exceeds the engine fuel pressure requirements. These advantages include the capability to store more fuel mass in given-size vehicle and station tanks, and simpler lower-cost LNG refueling stations that do not require conditioning equipment. Pumped LNG vehicle fuel systems are an alternative to conditioned LNG systems for spark-ignition natural gas and port-injection dual-fuel engines (which typically require about 100 psi), and they are required for HPDI engines (which require over 3,000 psi). The ALOSS program demonstrated the feasibility of a pumped LNG vehicle fuel system and the advantages of this design relative to systems that require conditioning the LNG to a saturation pressure exceeding the engine fuel pressure requirement. LNG tanks mounted on test carts and the CWI engineering truck were repeatedly filled with LNG saturated at 20 to 30 psig. More fuel mass was stored in the vehicle tanks as well as the station tank, and no conditioning equipment was required at the fueling station. The ALOSS program also demonstrated the general viability and specific performance of the CWI pumped LNG fuel system design. The system tested as part of this program is

  4. Common operation metrics for storage ring light sources

    NASA Astrophysics Data System (ADS)

    Lüdeke, A.; Bieler, M.; Farias, R. H. A.; Krecic, S.; Müller, R.; Pont, M.; Takao, M.

    2016-08-01

    Storage ring light sources aim for high operational reliability. Very often beam availability is used as an operation metric to measure the reliability. A survey of several light sources reveals that the calculation of availability varies significantly between facilities. This complicates useful comparisons of reliability. Furthermore the beam availability does not provide insight regarding reliability of beam characteristics such as orbit and beam size stability. The authors propose specific metrics to evaluate the reliability of storage ring light sources; these metrics allow a detailed and meaningful comparison across facilities. Such comparisons are useful to further optimize the reliability of storage ring light source facilities.

  5. Low pressure storage of natural gas on activated carbon

    NASA Astrophysics Data System (ADS)

    Wegrzyn, J.; Wiesmann, H.; Lee, T.

    The introduction of natural gas to the transportation energy sector offers the possibility of displacing imported oil with an indigenous fuel. The barrier to the acceptance of natural gas vehicles (NGV) is the limited driving range due to the technical difficulties of on-board storage of a gaseous fuel. In spite of this barrier, compressed natural gas (CNG) vehicles are today being successfully introduced into the market place. The purpose of this work is to demonstrate an adsorbent natural gas (ANG) storage system as a viable alternative to CNG storage. It can be argued that low pressure ANG has reached near parity with CNG, since the storage capacity of CNG (2400 psi) is rated at 190 V/V, while low pressure ANG (500 psi) has reached storage capacities of 180 V/V in the laboratory. A program, which extends laboratory results to a full-scale vehicle test, is necessary before ANG technology will receive widespread acceptance. The objective of this program is to field test a 150 V/V ANG vehicle in FY 1994. As a start towards this goal, carbon adsorbents have been screened by Brookhaven for their potential use in a natural gas storage system. This paper reports on one such carbon, trade name Maxsorb, manufactured by Kansai Coke under an Amoco license.

  6. Natural Gas Storage Research at Savannah River National Laboratory

    SciTech Connect

    Anton, Don; Sulic, Martin; Tamburello, David A.

    2015-05-04

    As an alternative to imported oil, scientists at the Department of Energy’s Savannah River National Laboratory are looking at abundant, domestically sourced natural gas, as an alternative transportation fuel. SRNL is investigating light, inexpensive, adsorbed natural gas storage systems that may fuel the next generation of automobiles.

  7. An evaluation of thermal energy storage options for precooling gas turbine inlet air

    SciTech Connect

    Antoniak, Z.I.; Brown, D.R.; Drost, M.K.

    1992-12-01

    Several approaches have been used to reduce the temperature of gas turbine inlet air. One of the most successful uses off-peak electric power to drive vapor-compression-cycle ice makers. The ice is stored until the next time high ambient temperature is encountered, when the ice is used in a heat exchanger to cool the gas turbine inlet air. An alternative concept would use seasonal thermal energy storage to store winter chill for inlet air cooling. The objective of this study was to compare the performance and economics of seasonal thermal energy storage in aquifers with diurnal ice thermal energy storage for gas turbine inlet air cooling. The investigation consisted of developing computer codes to model the performance of a gas turbine, energy storage system, heat exchangers, and ancillary equipment. The performance models were combined with cost models to calculate unit capital costs and levelized energy costs for each concept. The levelized energy cost was calculated for three technologies in two locations (Minneapolis, Minnesota and Birmingham, Alabama). Precooling gas turbine inlet air with cold water supplied by an aquifer thermal energy storage system provided lower cost electricity than simply increasing the size of the turbine for meteorological and geological conditions existing in the Minneapolis vicinity. A 15 to 20% cost reduction resulted for both 0.05 and 0.2 annual operating factors. In contrast, ice storage precooling was found to be between 5 and 20% more expensive than larger gas turbines for the Minneapolis location. In Birmingham, aquifer thermal energy storage precooling was preferred at the higher capacity factor and ice storage precooling was the best option at the lower capacity factor. In both cases, the levelized cost was reduced by approximately 5% when compared to larger gas turbines.

  8. Gas condensate reservoir characterisation for CO2 geological storage

    NASA Astrophysics Data System (ADS)

    Ivakhnenko, A. P.

    2012-04-01

    During oil and gas production hydrocarbon recovery efficiency is significantly increased by injecting miscible CO2 gas in order to displace hydrocarbons towards producing wells. This process of enhanced oil recovery (EOR) might be used for the total CO2 storage after complete hydrocarbon reservoir depletion. This kind of potential storage sites was selected for detailed studies, including generalised development study to investigate the applicability of CO2 for storages. The study is focused on compositional modelling to predict the miscibility pressures. We consider depleted gas condensate field in Kazakhstan as important target for CO2 storage and EOR. This reservoir being depleted below the dew point leads to retrograde condensate formed in the pore system. CO2 injection in the depleted gas condensate reservoirs may allow enhanced gas recovery by reservoir pressurisation and liquid re-vaporisation. In addition a number of geological and petrophysical parameters should satisfy storage requirements. Studied carbonate gas condensate and oil field has strong seal, good petrophysical parameters and already proven successful containment CO2 and sour gas in high pressure and high temperature (HPHT) conditions. The reservoir is isolated Lower Permian and Carboniferous carbonate platform covering an area of about 30 km. The reservoir contains a gas column about 1.5 km thick. Importantly, the strong massive sealing consists of the salt and shale seal. Sour gas that filled in the oil-saturated shale had an active role to form strong sealing. Two-stage hydrocarbon saturation of oil and later gas within the seal frame were accompanied by bitumen precipitation in shales forming a perfect additional seal. Field hydrocarbon production began three decades ago maintaining a strategy in full replacement of gas in order to maintain pressure of the reservoir above the dew point. This was partially due to the sour nature of the gas with CO2 content over 5%. Our models and

  9. Operational Benefits of Meeting California's Energy Storage Targets

    SciTech Connect

    Eichman, Josh; Denholm, Paul; Jorgenson, Jennie; Helman, Udi

    2015-12-18

    In October 2013, the California Public Utilities Commission (CPUC) finalized procurement targets and other requirements to its jurisdictional utilities for a minimum of 1,325 MW of 'viable and cost-effective' energy storage systems by 2020. The goal of this study is to explore several aspects of grid operations in California and the Western Interconnection resulting from meeting the CPUC storage targets. We perform this analysis using a set of databases and grid simulation tools developed and implemented by the CPUC, the California Independent System Operator (CAISO), and the California Energy Commission (CEC) for the CPUC's Long-term Procurement Plan (LTPP). The 2014 version of this database contains information about generators, storage, transmission, and electrical demand, for California in the year 2024 for both 33% and 40% renewable energy portfolios. We examine the value of various services provided by energy storage in these scenarios. Sensitivities were performed relating to the services energy storage can provide, the capacity and duration of storage devices, export limitations, and negative price floor variations. Results show that a storage portfolio, as outlined by the CPUC, can reduce curtailment and system-wide production costs for 33% and 40% renewable scenarios. A storage device that can participate in energy and ancillary service markets provides the grid with the greatest benefit; the mandated storage requirement of 1,325 MW was estimated to reduce the total cost of production by about 78 million per year in the 33% scenario and 144 million per year in the 40% scenario. Much of this value is derived from the avoided start and stop costs of thermal generators and provision of ancillary services. A device on the 2024 California grid and participating in only ancillary service markets can provide the system with over 90% of the value as the energy and ancillary service device. The analysis points to the challenge of new storage providing regulation

  10. Operating a fuel cell using landfill gas

    SciTech Connect

    Trippel, C.E.; Preston, J.L. Jr.; Trocciola, J.; Spiegel, R.

    1996-12-31

    An ONSI PC25{trademark}, 200 kW (nominal capacity) phosphoric acid fuel cell operating on landfill gas is installed at the Town of Groton Flanders Road landfill in Groton, Connecticut. This joint project by the Connecticut Light & Power Company (CL&P) which is an operating company of Northeast Utilities, the Town of Groton, International Fuel Cells (IFC), and the US EPA is intended to demonstrate the viability of installing, operating and maintaining a fuel cell operating on landfill gas at a landfill site. The goals of the project are to evaluate the fuel cell and gas pretreatment unit operation, test modifications to simplify the GPU design and demonstrate reliability of the entire system.

  11. 40 CFR 280.230 - Operating an underground storage tank or underground storage tank system.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... FOR OWNERS AND OPERATORS OF UNDERGROUND STORAGE TANKS (UST) Lender Liability § 280.230 Operating an... UST system for purposes of compliance with 40 CFR part 280 if there is an operator, other than the... who can be held responsible for compliance with applicable requirements of 40 CFR part 280...

  12. 40 CFR 280.230 - Operating an underground storage tank or underground storage tank system.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... FOR OWNERS AND OPERATORS OF UNDERGROUND STORAGE TANKS (UST) Lender Liability § 280.230 Operating an... UST system for purposes of compliance with 40 CFR part 280 if there is an operator, other than the... who can be held responsible for compliance with applicable requirements of 40 CFR part 280...

  13. 40 CFR 280.230 - Operating an underground storage tank or underground storage tank system.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... FOR OWNERS AND OPERATORS OF UNDERGROUND STORAGE TANKS (UST) Lender Liability § 280.230 Operating an... UST system for purposes of compliance with 40 CFR part 280 if there is an operator, other than the... who can be held responsible for compliance with applicable requirements of 40 CFR part 280...

  14. 40 CFR 280.230 - Operating an underground storage tank or underground storage tank system.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... FOR OWNERS AND OPERATORS OF UNDERGROUND STORAGE TANKS (UST) Lender Liability § 280.230 Operating an... UST system for purposes of compliance with 40 CFR part 280 if there is an operator, other than the... who can be held responsible for compliance with applicable requirements of 40 CFR part 280...

  15. Two-tank working gas storage system for heat engine

    DOEpatents

    Hindes, Clyde J.

    1987-01-01

    A two-tank working gas supply and pump-down system is coupled to a hot gas engine, such as a Stirling engine. The system has a power control valve for admitting the working gas to the engine when increased power is needed, and for releasing the working gas from the engine when engine power is to be decreased. A compressor pumps the working gas that is released from the engine. Two storage vessels or tanks are provided, one for storing the working gas at a modest pressure (i.e., half maximum pressure), and another for storing the working gas at a higher pressure (i.e., about full engine pressure). Solenoid valves are associated with the gas line to each of the storage vessels, and are selectively actuated to couple the vessels one at a time to the compressor during pumpdown to fill the high-pressure vessel with working gas at high pressure and then to fill the low-pressure vessel with the gas at low pressure. When more power is needed, the solenoid valves first supply the low-pressure gas from the low-pressure vessel to the engine and then supply the high-pressure gas from the high-pressure vessel. The solenoid valves each act as a check-valve when unactuated, and as an open valve when actuated.

  16. Underground storage of natural gas by interstate pipeline companies for 1978 and winter 1978-1979. Energy data report

    SciTech Connect

    Pappas, T.A.

    1980-01-22

    Underground storage of natural gas by pipeline companies subject to the jurisdiction of the Federal Regulatory Commission (FERC) are given for the most recent calendar year and of the most recent winter heating season. Annual data are based on FERC Form 2, annual reports of 32 companies, and winter data are from FERC Form 8, semi-monthly reports of 32 pipeline companies and 5 independent producers. Covered for the two most recent years are the underground gas storage, deliverability, and peak day use for pipeline companies; the estimated cost of storing gas underground; comparisons of fixed cost with operating and maintenance expenses for storing gas, and of the capacity used and the cost of storing gas; and gas injections and withdrawals. Data for the most recent winter heating season (November through March) include gas storage balance; the natural gas in underground storage (injections and withdrawals), in reservoirs, and in storage owned by reporting companies; comparisons of total gas withdrawn from storage, and of net withdrawals from storage. Data are shown by company and by geographic region (Eastern, Midwestern, Southern, and Western). Gas data are reported in thousand cubic feet, with some percentage comparisons. The preface and the narratives at the beginning of each of the four sub-sections explain methodologies and definitions, and highlight statistics. 10 figures, 12 tables.

  17. A universial gas absorber for sealed alkaline storage batteries

    SciTech Connect

    Tsenter, B.I.; Laurenov, V.M.

    1986-02-01

    The authors describe a universal gas absorber for all types of sealed alkaline storage batteries. The absorber is illustrated and consists of matrix-type nickel-gas cells which are connected in series, have a common gas compartment, and are electrolytically insulated from each other. The gas electrode of the nickel gas cell is bifunctional; it functions in oxygen ionization and in hydrogen ionization. The solid-phase nickel-oxide electrode is a powder-metallurgical design. Absorbers of the present type are universal, both in the sense that they will absorb oxygen, hydrogen, or a mixture of these gases, and in the sense that they can be used for sealed alkaline storage batteries of any type.

  18. Noble gas storage and delivery system for ion propulsion

    NASA Technical Reports Server (NTRS)

    Back, Dwight Douglas (Inventor); Ramos, Charlie (Inventor)

    2001-01-01

    A method and system for storing and delivering a noble gas for an ion propulsion system where an adsorbent bearing a noble gas is heated within a storage vessel to desorb the noble gas which is then flowed through a pressure reduction device to a thruster assembly. The pressure and flow is controlled using a flow restrictor and low wattage heater which heats an adsorbent bed containing the noble gas propellant at low pressures. Flow rates of 5-60 sccm can be controlled to within about 0.5% or less and the required input power is generally less than 50 W. This noble gas storage and delivery system and method can be used for earth orbit satellites, and lunar or planetary space missions.

  19. Overview of geologic storage of natural gas with an emphasis on assessing the feasibility of storing hydrogen.

    SciTech Connect

    Lord, Anna Snider

    2009-09-01

    In many regions across the nation geologic formations are currently being used to store natural gas underground. Storage options are dictated by the regional geology and the operational need. The U.S. Department of Energy (DOE) has an interest in understanding theses various geologic storage options, the advantages and disadvantages, in the hopes of developing an underground facility for the storage of hydrogen as a low cost storage option, as part of the hydrogen delivery infrastructure. Currently, depleted gas/oil reservoirs, aquifers, and salt caverns are the three main types of underground natural gas storage in use today. The other storage options available currently and in the near future, such as abandoned coal mines, lined hard rock caverns, and refrigerated mined caverns, will become more popular as the demand for natural gas storage grows, especially in regions were depleted reservoirs, aquifers, and salt deposits are not available. The storage of hydrogen within the same type of facilities, currently used for natural gas, may add new operational challenges to the existing cavern storage industry, such as the loss of hydrogen through chemical reactions and the occurrence of hydrogen embrittlement. Currently there are only three locations worldwide, two of which are in the United States, which store hydrogen. All three sites store hydrogen within salt caverns.

  20. Evaluating metal-organic frameworks for natural gas storage

    SciTech Connect

    Mason, JA; Veenstra, M; Long, JR

    2014-01-01

    Metal-organic frameworks have received significant attention as a new class of adsorbents for natural gas storage; however, inconsistencies in reporting high-pressure adsorption data and a lack of comparative studies have made it challenging to evaluate both new and existing materials. Here, we briefly discuss high-pressure adsorption measurements and review efforts to develop metal-organic frameworks with high methane storage capacities. To illustrate the most important properties for evaluating adsorbents for natural gas storage and for designing a next generation of improved materials, six metal-organic frameworks and an activated carbon, with a range of surface areas, pore structures, and surface chemistries representative of the most promising adsorbents for methane storage, are evaluated in detail. High-pressure methane adsorption isotherms are used to compare gravimetric and volumetric capacities, isosteric heats of adsorption, and usable storage capacities. Additionally, the relative importance of increasing volumetric capacity, rather than gravimetric capacity, for extending the driving range of natural gas vehicles is highlighted. Other important systems-level factors, such as thermal management, mechanical properties, and the effects of impurities, are also considered, and potential materials synthesis contributions to improving performance in a complete adsorbed natural gas system are discussed.

  1. Effects of headspace and oxygen level on off-gas emissions from wood pellets in storage.

    PubMed

    Kuang, Xingya; Shankar, Tumuluru Jaya; Sokhansanj, Shahab; Lim, C Jim; Bi, Xiaotao T; Melin, Staffan

    2009-11-01

    Few papers have been published in the open literature on the emissions from biomass fuels, including wood pellets, during the storage and transportation and their potential health impacts. The purpose of this study is to provide data on the concentrations, emission factors, and emission rate factors of CO(2), CO, and CH(4) from wood pellets stored with different headspace to container volume ratios with different initial oxygen levels, in order to develop methods to reduce the toxic off-gas emissions and accumulation in storage spaces. Metal containers (45 l, 305 mm diameter by 610 mm long) were used to study the effect of headspace and oxygen levels on the off-gas emissions from wood pellets. Concentrations of CO(2), CO, and CH(4) in the headspace were measured using a gas chromatograph as a function of storage time. The results showed that the ratio of the headspace ratios and initial oxygen levels in the storage space significantly affected the off-gas emissions from wood pellets stored in a sealed container. Higher peak emission factors and higher emission rates are associated with higher headspace ratios. Lower emissions of CO(2) and CO were generated at room temperature under lower oxygen levels, whereas CH(4) emission is insensitive to the oxygen level. Replacing oxygen with inert gases in the storage space is thus a potentially effective method to reduce the biomass degradation and toxic off-gas emissions. The proper ventilation of the storage space can also be used to maintain a high oxygen level and low concentrations of toxic off-gassing compounds in the storage space, which is especially useful during the loading and unloading operations to control the hazards associated with the storage and transportation of wood pellets. PMID:19805393

  2. Effects of Headspace and Oxygen Level on Off-gas Emissions from Wood Pellets in Storage

    SciTech Connect

    Sokhansanj, Shahabaddine; Kuang, Xingya; Shankar, T.S.; Lim, C. Jim; Bi, X.T.; Melin, Staffan

    2009-10-01

    Few papers have been published in the open literature on the emissions from biomass fuels, including wood pellets, during the storage and transportation and their potential health impacts. The purpose of this study is to provide data on the concentrations, emission factors, and emission rate factors of CO2, CO, and CH4 from wood pellets stored with different headspace to container volume ratios with different initial oxygen levels, in order to develop methods to reduce the toxic off-gas emissions and accumulation in storage spaces. Metal containers (45 l, 305 mm diameter by 610 mm long) were used to study the effect of headspace and oxygen levels on the off-gas emissions from wood pellets. Concentrations of CO2, CO, and CH4 in the headspace were measured using a gas chromatograph as a function of storage time. The results showed that the ratio of the headspace ratios and initial oxygen levels in the storage space significantly affected the off-gas emissions from wood pellets stored in a sealed container. Higher peak emission factors and higher emission rates are associated with higher headspace ratios. Lower emissions of CO2 and CO were generated at room temperature under lower oxygen levels, whereas CH4 emission is insensitive to the oxygen level. Replacing oxygen with inert gases in the storage space is thus a potentially effective method to reduce the biomass degradation and toxic off-gas emissions. The proper ventilation of the storage space can also be used to maintain a high oxygen level and low concentrations of toxic off-gassing compounds in the storage space, which is especially useful during the loading and unloading operations to control the hazards associated with the storage and transportation of wood pellets.

  3. NEW AND NOVEL FRACTURE STIMULATION TECHNOLOGIES FOR THE REVITALIZATION OF EXISTING GAS STORAGE WELLS

    SciTech Connect

    Unknown

    1999-12-01

    Gas storage wells are prone to continued deliverability loss at a reported average rate of 5% per annum (in the U.S.). This is a result of formation damage due to the introduction of foreign materials during gas injection, scale deposition and/or fines mobilization during gas withdrawal, and even the formation and growth of bacteria. As a means to bypass this damage and sustain/enhance well deliverability, several new and novel fracture stimulation technologies were tested in gas storage fields across the U.S. as part of a joint U.S. Department of Energy and Gas Research Institute R&D program. These new technologies include tip-screenout fracturing, hydraulic fracturing with liquid CO{sub 2} and proppant, extreme overbalance fracturing, and high-energy gas fracturing. Each of these technologies in some way address concerns with fracturing on the part of gas storage operators, such as fracture height growth, high permeability formations, and fluid sensitivity. Given the historical operator concerns over hydraulic fracturing in gas storage wells, plus the many other unique characteristics and resulting stimulation requirements of gas storage reservoirs (which are described later), the specific objective of this project was to identify new and novel fracture stimulation technologies that directly address these concerns and requirements, and to demonstrate/test their potential application in gas storage wells in various reservoir settings across the country. To compare these new methods to current industry deliverability enhancement norms in a consistent manner, their application was evaluated on a cost per unit of added deliverability basis, using typical non-fracturing well remediation methods as the benchmark and considering both short-term and long-term deliverability enhancement results. Based on the success (or lack thereof) of the various fracture stimulation technologies investigated, guidelines for their application, design and implementation have been

  4. Hydrogen gas storage in fluorinated ultramicroporous tunnel crystal

    NASA Astrophysics Data System (ADS)

    Kataoka, Keisuke; Katagiri, Toshimasa

    2012-07-01

    We report hydrogen storage at an ordinary pressure due to a bottle-neck effect of an ultramicroporous crystal. Stored hydrogen was kept at an ordinary pressure below -110 °C. The amounts of stored hydrogen gas linearly correlated with the initial pressures. These phenomena suggested the ultramicroporous tunnels worked as a molecular gas cylinder.We report hydrogen storage at an ordinary pressure due to a bottle-neck effect of an ultramicroporous crystal. Stored hydrogen was kept at an ordinary pressure below -110 °C. The amounts of stored hydrogen gas linearly correlated with the initial pressures. These phenomena suggested the ultramicroporous tunnels worked as a molecular gas cylinder. Electronic supplementary information (ESI) available. CCDC 246922. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c2nr30940h

  5. Optimizing nanoporous materials for gas storage.

    PubMed

    Simon, Cory M; Kim, Jihan; Lin, Li-Chiang; Martin, Richard L; Haranczyk, Maciej; Smit, Berend

    2014-03-28

    In this work, we address the question of which thermodynamic factors determine the deliverable capacity of methane in nanoporous materials. The deliverable capacity is one of the key factors that determines the performance of a material for methane storage in automotive fuel tanks. To obtain insights into how the molecular characteristics of a material are related to the deliverable capacity, we developed several statistical thermodynamic models. The predictions of these models are compared with the classical thermodynamics approach of Bhatia and Myers [Bhatia and Myers, Langmuir, 2005, 22, 1688] and with the results of molecular simulations in which we screen the International Zeolite Association (IZA) structure database and a hypothetical zeolite database of over 100,000 structures. Both the simulations and our models do not support the rule of thumb that, for methane storage, one should aim for an optimal heat of adsorption of 18.8 kJ mol(-1). Instead, our models show that one can identify an optimal heat of adsorption, but that this optimal heat of adsorption depends on the structure of the material and can range from 8 to 23 kJ mol(-1). The different models we have developed are aimed to determine how this optimal heat of adsorption is related to the molecular structure of the material. PMID:24394864

  6. Simulation of production and injection performance of gas storage caverns in salt formations

    SciTech Connect

    Hagoort, J. )

    1994-11-01

    This paper presents a simple yet comprehensive mathematical model for simulation of injection and production performance of gas storage caverns in salt formations. The model predicts the pressure and temperature of the gas in the cavern and at the wellhead for an arbitrary sequence of production and injection cycles. The model incorporates nonideal gas properties, thermodynamic heat effects associated with gas expansion and compression in the cavern and tubing, heat exchange with the surrounding salt formation, and non-uniform initial temperatures but does not include rock-mechanical effects. The model is based on a mass and energy balance for the gas-filled cavern and on the Bernoulli equation and energy balance for flow in the wellbore. Cavern equations are solved iteratively at successive timesteps, and wellbore equations are solved within an iteration cycle of the cavern equations. Gas properties are calculated internally with generally accepted correlations and basic thermodynamic relations. Example calculations show that the initial temperature distribution has a strong effect on production performance of a typical gas storage cavern. The primary application of the model is in the design, planning, and operation of gas storage projects.

  7. Gas chromatographic column for the storage of sample profiles

    NASA Technical Reports Server (NTRS)

    Dimandja, J. M.; Valentin, J. R.; Phillips, J. B.

    1994-01-01

    The concept of a sample retention column that preserves the true time profile of an analyte of interest is studied. This storage system allows for the detection to be done at convenient times, as opposed to the nearly continuous monitoring that is required by other systems to preserve a sample time profile. The sample storage column is essentially a gas chromatography column, although its use is not the separation of sample components. The functions of the storage column are the selective isolation of the component of interest from the rest of the components present in the sample and the storage of this component as a function of time. Using octane as a test substance, the sample storage system was optimized with respect to such parameters as storage and readout temperature, flow rate through the storage column, column efficiency and storage time. A 3-h sample profile was collected and stored at 30 degrees C for 20 h. The profile was then retrieved, essentially intact, in 5 min at 130 degrees C.

  8. Thermodynamics and kinetics of gas storage in porous liquids

    DOE PAGESBeta

    Zhang, Fei; Yang, Fengchang; Huang, Jingsong; Sumpter, Bobby G.; Qiao, Rui

    2016-07-05

    The recent synthesis of organic molecular liquids with permanent porosity (Giri et al., Nature, 2015, 527, 216) opens up exciting new avenues for gas capture, storage, and separation. Using molecular dynamics simulations, we study the thermodynamics and kinetics for the storage of CH4, CO2, and N2 molecules in porous liquids consisting of crown-ether substituted cage molecules in a 15-crown-5 solvent. It is found that the gas storage capacity per cage molecule follows the order of CH4 > CO2 > N2, which does not correlate simply with the size of gas molecules. Different gas molecules are stored inside the cage differently,more » e.g., CO2 molecules prefer the cage s core while CH4 molecules favor both the core and the branch regions. All gas molecules considered can enter the cage essentially without energy barriers, and their dynamics inside the cage are only slightly hindered by the nanoscale confinement. In addition, all gas molecules can leave the cage on nanosecond time scale by overcoming a modest energy penalty. The molecular mechanisms of these observations are clarified.« less

  9. 78 FR 58529 - Floridian Natural Gas Storage Company, LLC; Notice of Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-24

    ... Energy Regulatory Commission Floridian Natural Gas Storage Company, LLC; Notice of Application Take notice that on September 4, 2013, Floridian Natural Gas Storage Company, LLC (Floridian Gas Storage... application under section 7(c) of the Natural Gas Act (NGA) and Part 157 of the Commission's...

  10. High current operation of a storage-ring free-electron laser

    NASA Astrophysics Data System (ADS)

    Roux, R.; Couprie, M. E.; Bakker, R. J.; Garzella, D.; Nutarelli, D.; Nahon, L.; Billardon, M.

    1998-11-01

    The operation of storage-ring free-electron lasers (SRFEL) at high current still represents a challenge because of the growth of longitudinal beam instabilities. One of these, the quadrupolar coherent synchrotron oscillation, is very harmful for free-electron-laser (FEL) operation. On the Super-ACO storage ring, they either prevent the FEL start-up, or result in a very poor stability of the FEL source. A new feedback system to damp the quadrupolar coherent synchrotron oscillation has been installed on the ring and the stabilized beam parameters have been systematically measured. As a result, the FEL gain is higher and the FEL operates more easily and with a higher average power. Its stability, which is very critical for user applications, has been significantly improved as it has been observed via systematic measurements of FEL dynamics performed with a double sweep streak camera.

  11. Waste Encapsulation and Storage Facility interim operational safety requirements

    SciTech Connect

    COVEY, L.I.

    2000-11-28

    The Interim Operational Safety Requirements (IOSRs) for the Waste Encapsulation and Storage Facility (WESF) define acceptable conditions, safe boundaries, bases thereof, and management or administrative controls required to ensure safe operation during receipt and inspection of cesium and strontium capsules from private irradiators; decontamination of the capsules and equipment; surveillance of the stored capsules; and maintenance activities. Controls required for public safety, significant defense-in-depth, significant worker safety, and for maintaining radiological consequences below risk evaluation guidelines (EGs) are included.

  12. 77 FR 3766 - Southwestern Gas Storage Technical Conference

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-25

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Southwestern Gas Storage Technical Conference Notice of Public Conference On December 13, 2011, the Secretary issued formal notice that on February 16, 2012 at 9 a.m. MST, the Staff...

  13. Natural gas recovery, storage, and utilization SBIR program

    SciTech Connect

    Shoemaker, H.D.

    1993-12-31

    A Fossil Energy natural-gas topic has been a part of the DOE Small Business Innovation Research (SBIR) program since 1988. To date, 50 Phase SBIR natural-gas applications have been funded. Of these 50, 24 were successful in obtaining Phase II SBIR funding. The current Phase II natural-gas research projects awarded under the SBIR program and managed by METC are presented by award year. The presented information on these 2-year projects includes project title, awardee, and a project summary. The 1992 Phase II projects are: landfill gas recovery for vehicular natural gas and food grade carbon dioxide; brine disposal process for coalbed gas production; spontaneous natural as oxidative dimerization across mixed conducting ceramic membranes; low-cost offshore drilling system for natural gas hydrates; motorless directional drill for oil and gas wells; and development of a multiple fracture creation process for stimulation of horizontally drilled wells.The 1993 Phase II projects include: process for sweetening sour gas by direct thermolysis of hydrogen sulfide; remote leak survey capability for natural gas transport storage and distribution systems; reinterpretation of existing wellbore log data using neural-based patter recognition processes; and advanced liquid membrane system for natural gas purification.

  14. Study on propane-butane gas storage by hydrate technology

    NASA Astrophysics Data System (ADS)

    Hamidi, Nurkholis; Wijayanti, Widya; Widhiyanuriyawan, Denny

    2016-03-01

    Different technology has been applied to store and transport gas fuel. In this work the storage of gas mixture of propane-butane by hydrate technology was studied. The investigation was done on the effect of crystallizer rotation speed on the formation of propane-butane hydrate. The hydrates were formed using crystallizer with rotation speed of 100, 200, and 300 rpm. The formation of gas hydrates was done at initial pressure of 3 bar and temperature of 274K. The results indicated that the higher rotation speed was found to increase the formation rate of propane-butane hydrate and improve the hydrates stability.

  15. Strategies to diagnose and control microbial souring in natural gas storage reservoirs and produced water systems

    SciTech Connect

    Morris, E.A.; Derr, R.M.; Pope, D.H.

    1995-12-31

    Hydrogen sulfide production (souring) in natural gas storage reservoirs and produced water systems is a safety and environmental problem that can lead to operational shutdown when local hydrogen sulfide standards are exceeded. Systems affected by microbial souring have historically been treated using biocides that target the general microbial community. However, requirements for more environmentally friendly solutions have led to treatment strategies in which sulfide production can be controlled with minimal impact to the system and environment. Some of these strategies are based on microbial and/or nutritional augmentation of the sour environment. Through research sponsored by the Gas Research Institute (GRI) in Chicago, Illinois, methods have been developed for early detection of microbial souring in natural gas storage reservoirs, and a variety of mitigation strategies have been evaluated. The effectiveness of traditional biocide treatment in gas storage reservoirs was shown to depend heavily on the methods by which the chemical is applied. An innovative strategy using nitrate was tested and proved ideal for produced water and wastewater systems. Another strategy using elemental iodine was effective for sulfide control in evaporation ponds and is currently being tested in microbially sour natural gas storage wells.

  16. Beam dynamics of CANDLE storage ring low alpha operation

    NASA Astrophysics Data System (ADS)

    Sargsyan, A.; Amatuni, G.; Sahakyan, V.; Tsakanov, V.; Zanyan, G.

    2015-10-01

    The generation of the coherent THz radiation and short pulse synchrotron radiation in dedicated electron storage rings requires the study of non-standard magnetic lattices which provide low momentum compaction factor (alpha) of the ring. In the present paper two low alpha operation lattices based on modification of the original beam optics and implementation of inverse bend magnets are studied for CANDLE storage ring. For considered cases an analysis of transverse and longitudinal beam dynamics is given and the feasibility of lattices is discussed.

  17. Method and apparatus for operating an improved thermocline storage unit

    DOEpatents

    Copeland, Robert J.

    1985-01-01

    A method and apparatus for operating a thermocline storage unit in which an insulated barrier member is provided substantially at the interface region between the hot and cold liquids in the storage tank. The barrier member physically and thermally separates the hot and cold liquids substantially preventing any diffusing or mixing between them and substantially preventing any heat transfer therebetween. The barrier member follows the rise and fall of the interface region between the liquids as the tank is charged and discharged. Two methods of maintaining it in the interface region are disclosed. With the structure and operation of the present invention and in particular the significant reduction in diffusing or mixing between the hot and cold liquids as well as the significant reduction in the thermal heat transfer between them, the performance of the storage tank is improved. More specifically, the stability of the interface region or thermocline is enhanced and the thickness of the thermocline is reduced producing a corresponding increase in the steepness of the temperature gradient across the thermocline and a more efficiently operating thermocline storage unit.

  18. Method and apparatus for operating an improved thermocline storage unit

    DOEpatents

    Copeland, R.J.

    1982-09-30

    A method and apparatus for operating a thermocline storage unit in which an insulated barrier member is provided substantially at the interface region between the hot and cold liquids in the storage tank. The barrier member physically and thermally separates the hot and cold liquids substantially preventing any diffusing or mixing between them and substantially preventing any heat transfer there between. The barrier member follows the rise and fall of the interface region between the liquids as the tank is charged and discharged. Two methods of maintaining it in the interface region are disclosed. With the structure and operation of the present invention and in particular the significant reduction in diffusing or mixing between the hot and cold liquids as well as the significant reduction in the thermal heat transfer between them, the performance of the storage tank is improved. More specifically, the stability of the interface region or thermocline is enhanced and the thickness of the thermocline is reduced producing a corresponding increase in the steepness of the temperature gradient across the thermocline and a more efficiently operating thermocline storage unit.

  19. Pilot gasification and hot gas cleanup operations

    SciTech Connect

    Rockey, J.M.; Galloway, E.; Thomson, T.A.; Rutten, J.; Lui, A.

    1995-12-31

    The Morgantown Energy Technology Center (METC) has an integrated gasification hot gas cleanup facility to develop gasification, hot particulate and desulfurization process performance data for IGCC systems. The objective of our program is to develop fluidized-bed process performance data for hot gas desulfurization and to further test promising sorbents from lab-scale screening studies at highpressure (300 psia), and temperatures (1,200{degrees}F) using coal-derived fuel gases from a fluid-bed gasifier. The 10-inch inside diameter (ID), nominal 80 lb/hr, air blown gasifier is capable of providing about 300 lb/hr of low BTU gas at 1,000{degrees}F and 425 psig to downstream cleanup devices. The system includes several particle removal stages, which provide the capability to tailor the particle loading to the cleanup section. The gas pressure is reduced to approximately 300 psia and filtered by a candle filter vessel containing up to four filter cartridges. For batch-mode desulfurization test operations, the filtered coal gas is fed to a 6-inch ID, fluid-bed reactor that is preloaded with desulfurization sorbent. Over 400 hours of gasifier operation was logged in 1993 including 384 hours of integration with the cleanup rig. System baseline studies without desulfurization sorbent and repeatability checks with zinc ferrite sorbent were conducted before testing with the then most advanced zinc titanate sorbents, ZT-002 and ZR-005. In addition to the desulfurization testing, candle filters were tested for the duration of the 384 hours of integrated operation. One filter was taken out of service after 254 hours of filtering while another was left in service. At the conclusion of testing this year it is expected that 3 candles, one each with 254, 530, and 784 hours of filtering will be available for analysis for effects of the exposure to the coal gas environment.

  20. Optimal Operation of Energy Storage in Power Transmission and Distribution

    NASA Astrophysics Data System (ADS)

    Akhavan Hejazi, Seyed Hossein

    In this thesis, we investigate optimal operation of energy storage units in power transmission and distribution grids. At transmission level, we investigate the problem where an investor-owned independently-operated energy storage system seeks to offer energy and ancillary services in the day-ahead and real-time markets. We specifically consider the case where a significant portion of the power generated in the grid is from renewable energy resources and there exists significant uncertainty in system operation. In this regard, we formulate a stochastic programming framework to choose optimal energy and reserve bids for the storage units that takes into account the fluctuating nature of the market prices due to the randomness in the renewable power generation availability. At distribution level, we develop a comprehensive data set to model various stochastic factors on power distribution networks, with focus on networks that have high penetration of electric vehicle charging load and distributed renewable generation. Furthermore, we develop a data-driven stochastic model for energy storage operation at distribution level, where the distribution of nodal voltage and line power flow are modelled as stochastic functions of the energy storage unit's charge and discharge schedules. In particular, we develop new closed-form stochastic models for such key operational parameters in the system. Our approach is analytical and allows formulating tractable optimization problems. Yet, it does not involve any restricting assumption on the distribution of random parameters, hence, it results in accurate modeling of uncertainties. By considering the specific characteristics of random variables, such as their statistical dependencies and often irregularly-shaped probability distributions, we propose a non-parametric chance-constrained optimization approach to operate and plan energy storage units in power distribution girds. In the proposed stochastic optimization, we consider

  1. Moomba Lower Daralingie Beds (LDB) gas storage project: Reservoir management using a novel numerical simulation technique

    SciTech Connect

    Jamal, F.G.

    1994-12-31

    Engineers managing underground gas storage projects are often faced with challenges involving gas migration, inventory variance, gas quality and inventory-pressures. This paper discusses a unique underground gas storage project where sales gas and ethane are stored in two different but communicating regions of the same reservoir. A commercially available reservoir simulator was used to model the fluid flow behavior in this reservoir, hence, providing a tool for better management and use of the existing gas storage facilities.

  2. APS storage ring commissioning and early operational experience

    SciTech Connect

    Decker, G.

    1995-07-01

    The Advanced Photon Source (APS) at Argonne National Laboratory (ANL) uses a 100-mA, 7-GeV positron storage ring to produce high brilliance bending magnet and insertion device x-rays for up to 70 x-ray beamlines. It is 1104 meters in circumference and has a beam liftime designed to exceed 10 hours with 1 nTorr average ring vacuum at 100 mA. The high brilliance required by the synchrotron light users results from the storage ring`s natural emittance of 8.2 nm-rad, together with the requirement that the beam be stable to a level which is less than 5% of its rms size. Real-time closed orbit feedback is employed to achieve the required stability and is discussed elsewhere in these proceedings. Installation of storage ring components was completed early this year, and we report here on the first experiences of commissioning and operation with beam.

  3. Storage of fuel in hydrates for natural gas vehicles (NGVs)

    SciTech Connect

    Yevi, G.Y.; Rogers, R.E.

    1996-09-01

    The need for alternative fuels to replace liquid petroleum-based fuels has been accelerated in recent years by environmental concerns, concerns of shortage of imported liquid hydrocarbon, and congressional prompting. The fact is accepted that natural gas is the cheapest, most domestically abundant, and cleanest burning of fossil fuels. However, socio-economical and technical handicaps associated with the safety and efficiency of on-board fuel storage inhibit its practical use in vehicles as an alternative fuel. A concept is presented for safely storing fuel at low pressures in the form of hydrates in natural gas vehicles. Experimental results lead to gas storage capacities of 143 to 159 volumes/volume. Vehicle travel range could be up to 204 mi. Controlled decomposition rate of hydrates is possible for feeding an automotive vehicle. Upon sudden pressure decrease in the event of a vehicle accident, the rate of release of hydrocarbons from the hydrates at constant temperature is 2.63 to 12.50% per min, slow enough to prevent an explosion or a fireball. A model is given for predicting the rates of gas release from hydrates in a vehicle wreck. A storage tank design is proposed and a process is suggested for forming and decomposing hydrates on-board vehicles. A consistent fuel composition is obtained with hydrates.

  4. Relevance of underground natural gas storage to geologic sequestration of carbon dioxide

    SciTech Connect

    Lippmann, Marcelo J.; Benson, Sally M.

    2002-07-01

    The practice of underground natural gas storage (UNGS), which started in the USA in 1916, provides useful insight into the geologic sequestration of carbon dioxide--the dominant anthropogenic greenhouse gas released into the atmosphere. In many ways, UNGS is directly relevant to geologic CO{sub 2} storage because, like CO{sub 2}, natural gas (essentially methane) is less dense than water. Consequently, it will tend to rise to the top of any subsurface storage structure located below the groundwater table. By the end of 2001 in the USA, about 142 million metric tons of natural gas were stored underground in depleted oil and gas reservoirs and brine aquifers. Based on their performance, UNGS projects have shown that there is a safe and effective way of storing large volumes of gases in the subsurface. In the small number of cases where failures did occur (i.e., leakage of the stored gas into neighboring permeable layers), they were mainly related to improper well design, construction, maintenance, and/or incorrect project operation. In spite of differences in the chemical and physical properties of the gases, the risk-assessment, risk-management, and risk-mitigation issues relevant to UNGS projects are also pertinent to geologic CO{sub 2} sequestration.

  5. Technical and economic barriers to innovative gas storage. Final report, November 1991-July 1992

    SciTech Connect

    Copeland, R.J.; Feinberg, D.A.; Hastings, G.A.

    1993-03-01

    To evaluate the technical and economic barriers to innovative natural gas storage technologies, advantages and disadvantages of several end use applications were analyzed, including on-grid deliverability of natural gas, transporting natural gas to off-grid end users, and storage of natural gas at an off-grid end user's site. Three basic innovative approaches were investigated: (1) separation of the higher molecular weight components of the pipeline gas and storage of the separated ethane, propane, butane, etc., as a liquid; (2) separation of the components with storage in the separating media; and (3) storage of the pipeline gas without changing its composition.

  6. 75 FR 8051 - Petal Gas Storage, L.L.C.; Notice of Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-23

    ... Energy Regulatory Commission Petal Gas Storage, L.L.C.; Notice of Application February 12, 2010. Take notice that on January 29, 2010, Petal Gas Storage, L.L.C. (Petal), 1100 Louisiana Street, Houston, Texas..., Vice President and Regulatory Counsel, Petal Gas Storage, L.L.C., 1100 Louisiana Street, Houston,...

  7. Modelling the deployment of CO₂ storage in U.S. gas-bearing shales

    SciTech Connect

    Davidson, Casie L.; Dahowski, Robert T.; Dooley, James J.; McGrail, B. Peter

    2014-12-31

    The proliferation of commercial development in U.S. gas-bearing shales helped to drive a twelve-fold increase in domestic gas production between 2000 and 2010, and the nation's gas production rates continue to grow. While shales have long been regarded as a desirable caprock for CCS operations because of their low permeability and porosity, there is increasing interest in the feasibility of injecting CO₂ into shales to enhance methane recovery and augment CO₂ storage. Laboratory work published in recent years observes that shales with adsorbed methane appear to exhibit a stronger affinity for CO₂ adsorption, offering the potential to drive additional CH₄ recovery beyond primary production and perhaps the potential to store a larger volume of CO₂ than the volume of methane displaced. Recent research by the authors on the revenues associated with CO₂-enhanced gas recovery (CO₂-EGR) in gas-bearing shales estimates that, based on a range of EGR response rates, the average revenue per ton of CO₂ for projects managed over both EGR and subsequent storage-only phases could range from $0.50 to $18/tCO₂. While perhaps not as profitable as EOR, for regions where lower-cost storage options may be limited, shales could represent another “early opportunity” storage option if proven feasible for reliable EGR and CO₂ storage. Significant storage potential exists in gas shales, with theoretical CO₂ storage resources estimated at approximately 30-50 GtCO₂. However, an analysis of the comprehensive cost competitiveness of these various options is necessary to understand the degree to which they might meaningfully impact U.S. CCS deployment or costs. This preliminary analysis shows that the degree to which EGR-based CO₂ storage could play a role in commercial-scale deployment is heavily dependent upon the offsetting revenues associated with incremental recovery; modeling the low revenue case resulted in only five shale-based projects, while under the high

  8. Modelling the deployment of CO₂ storage in U.S. gas-bearing shales

    DOE PAGESBeta

    Davidson, Casie L.; Dahowski, Robert T.; Dooley, James J.; McGrail, B. Peter

    2014-12-31

    The proliferation of commercial development in U.S. gas-bearing shales helped to drive a twelve-fold increase in domestic gas production between 2000 and 2010, and the nation's gas production rates continue to grow. While shales have long been regarded as a desirable caprock for CCS operations because of their low permeability and porosity, there is increasing interest in the feasibility of injecting CO₂ into shales to enhance methane recovery and augment CO₂ storage. Laboratory work published in recent years observes that shales with adsorbed methane appear to exhibit a stronger affinity for CO₂ adsorption, offering the potential to drive additional CH₄more » recovery beyond primary production and perhaps the potential to store a larger volume of CO₂ than the volume of methane displaced. Recent research by the authors on the revenues associated with CO₂-enhanced gas recovery (CO₂-EGR) in gas-bearing shales estimates that, based on a range of EGR response rates, the average revenue per ton of CO₂ for projects managed over both EGR and subsequent storage-only phases could range from $0.50 to $18/tCO₂. While perhaps not as profitable as EOR, for regions where lower-cost storage options may be limited, shales could represent another “early opportunity” storage option if proven feasible for reliable EGR and CO₂ storage. Significant storage potential exists in gas shales, with theoretical CO₂ storage resources estimated at approximately 30-50 GtCO₂. However, an analysis of the comprehensive cost competitiveness of these various options is necessary to understand the degree to which they might meaningfully impact U.S. CCS deployment or costs. This preliminary analysis shows that the degree to which EGR-based CO₂ storage could play a role in commercial-scale deployment is heavily dependent upon the offsetting revenues associated with incremental recovery; modeling the low revenue case resulted in only five shale-based projects, while under

  9. Integrated Refrigeration and Storage for Advanced Liquid Hydrogen Operations

    NASA Technical Reports Server (NTRS)

    Swanger, A. M.; Notardonato, W. U.; Johnson, W. L.; Tomsik, T. M.

    2016-01-01

    NASA has used liquefied hydrogen (LH2) on a large scale since the beginning of the space program as fuel for the Centaur and Apollo upper stages, and more recently to feed the three space shuttle main engines. The LH2 systems currently in place at the Kennedy Space Center (KSC) launch pads are aging and inefficient compared to the state-of-the-art. Therefore, the need exists to explore advanced technologies and operations that can drive commodity costs down, and provide increased capabilities. The Ground Operations Demonstration Unit for Liquid Hydrogen (GODU-LH2) was developed at KSC to pursue these goals by demonstrating active thermal control of the propellant state by direct removal of heat using a cryocooler. The project has multiple objectives including zero loss storage and transfer, liquefaction of gaseous hydrogen, and densification of liquid hydrogen. The key technology challenge was efficiently integrating the cryogenic refrigerator into the LH2 storage tank. A Linde LR1620 Brayton cycle refrigerator is used to produce up to 900W cooling at 20K, circulating approximately 22 g/s gaseous helium through the hydrogen via approximately 300 m of heat exchanger tubing. The GODU-LH2 system is fully operational, and is currently under test. This paper will discuss the design features of the refrigerator and storage system, as well as the current test results.

  10. Converting LPG caverns to natural-gas storage permits fast response to market

    SciTech Connect

    Crossley, N.G.

    1996-02-19

    Deregulation of Canada`s natural-gas industry in the late 1980s led to a very competitive North American natural-gas storage market. TransGas Ltd., Regina, Sask., began looking for method for developing cost-effective storage while at the same time responding to new market-development opportunities and incentives. Conversion of existing LPG-storage salt caverns to natural-gas storage is one method of providing new storage. To supply SaskEnergy Inc., the province`s local distribution company, and Saskatchewan customers, TransGas previously had developed solution-mined salt storage caverns from start to finish. Two Regina North case histories illustrate TransGas` experiences with conversion of LPG salt caverns to gas storage. This paper provides the testing procedures for the various caverns, cross-sectional diagrams of each cavern, and outlines for cavern conversion. It also lists storage capacities of these caverns.

  11. Gas storage through impermeation of porous media by hydrate formation

    SciTech Connect

    Hatzikiriakos, S.G.; Englezos, P.

    1994-12-31

    A mathematical model was developed for the simulation of the methane hydrate formation in a homocline. The rate of hydrate growth was computed by calculating the movement of the hydrate-water interface. This movement was found to be very slow (less than 0.01 mm/hr) and strongly dependent on the value of the effective diffusivity of the gas in the hydrate zone. The temperature at the hydrate-water interface was found to remain practically constant. Finally, the simulations indicate that the development of a hydrate barrier in the permeable formation creates favorable gas storage conditions in the homocline.

  12. Raccoon Mountain pumped-storage plant: Ten years operating experience

    SciTech Connect

    Adkins, F.E.

    1987-09-01

    Operational experience at the 1 530 MW Raccoon Mountain underground pumped-storage plant can be relevant to other large hydro facilities. A number of unusual features were incorporated and individual unit size was only recently overtaken elsewhere. Direct water cooling of rotor and stator winding has been successfully applied to salient pole machines. A number of problems, including difficulties with oil-filled 161 kV current transformers, and some mechanical aspects, are reported. Designed for remote supervisory control, the plant has required closer attention. Operating statistics are included.

  13. Dynamic simulation of an underground gas storage injection-production network .

    PubMed

    Peng, Shanbi; Liu, Enbin; Xian, Weiwei; Wang, Di; Zhang, Hongbing

    2015-07-01

    Underground gas storage is a well-known strategic practice to seasonal peak shaving and emergency facility. The changing operation conditions of injection-production network directly affects the reliability of downstream gas supply of the city. In the present study, a model of injection-production network on the basis of field data analysis and research was established. By comparing the actual node pressure and simulation results, the reliability of model was verified. Based on the volume of underground gas storage and downstream gas consumption, the best seasonal peak-shaving schedule of the whole year was set. According to dynamic analysis of network, 20% increase in downstream demand could be fulfilled. Besides, the study also analyzed the well pressure and flow rate changes after shutdown of gas well, which is most likely to fail, and concludes that the best rescue time should be within 4 hr after gas supply interruption. The results would help in making decisions about the operation of injection-production network, which have important significance in the environmental protection. PMID:26387354

  14. Offshore desulfurization unit permits gas lift operations

    SciTech Connect

    Cabes, A.; Elgue, J.; Tournier-Lasserve, J. )

    1992-01-13

    This paper reports on the installation of a desulfurization unit for the Tchibouela oil field, offshore Congo, which allowed produced low-pressure associated gas containing CO{sub 2} to be kept for gas lift operations while, for safety reasons, the large volume of H{sub 2}S at low pressure was removed prior to compression. Since October 1989, the world's first offshore amine sweetening unit has worked satisfactorily and continues to prove that it is an attractive production alternative. For desulfurization, a selective methyldiethanolamine (MDEA) process, developed by Elf Aquitaine, was chosen because it was the only process that met the required specifications at a low pressure of 3.5 bar (51 psi).

  15. First operation of a Hoop Energy Storage System

    SciTech Connect

    Lee, K.C.; Han, S.H.; Kim, K.S.; Chung, K.H.; Moon, T.S.; Cho, C.H.

    1999-09-01

    Energy storage systems are needed in industrialized countries to achieve diurnal load leveling of the electric power utility. A study of the design, fabrication and operational characteristics of a Hoop Energy Storage System (HESS) has been done. For the magnetic levitation of Nd-Fe-B permanent magnet, the magnetic force calculation and dynamic analysis of the rotational stability were included in the design and operation of HESS. 2564 Nd-Fe-B magnets which has the dimension of 2in. x 2in. x lin. were assembled for the levitation of a 3.7 ton-carbon fiber composite hoop. A computer simulation of rotation under magnetic force and torque due to both the vertical stabilization magnetic set and the radial stabilization magnet set showed that the rotation of the hoop's spin axis induced by the torque of the levitated rotor magnets reduces the additional active control. The fabrication of a 6m-diameter carbon fiber composite hoop was completed and the ANSYS code was used to study its stress analysis. The study showed that the strength of the hoop material is high enough for the 600MJ-energy storage. A performance test of the HESS at a low speed rotation is reported.

  16. The potential strategic, operating and environmental benefits of TVA's compressed air energy storage (CAES) program

    SciTech Connect

    Bradshaw, D.T.; Brewer, J.E. )

    1992-01-01

    The Tennessee Valley Authority is currently looking at compressed air energy storage (CAES), a new but mature technology, as a new capacity option. The technology is mature because all pieces/components have been in existence and use for over 50 years. The compressors are standard components for the gas industry, and the turbo expander and motor generator are standard components in the utility business. The newness of the CAES technology is due to the integration of these components and the use of underground storage of air in porous media or possibly in abandoned mines. Although the integration of these components is new to the Untied States, they have been demonstrated in Germany for over 10 years in the 290 MWe CAES unit located in a salt cavern near Huntorf, Germany. The CAES unit has been very successful, operating with a 99% start-up reliability, and has been operated remotely.

  17. Gas storage in northern Michigan's gas-condensate reefs: an update

    SciTech Connect

    Whims, M.J.

    1981-01-01

    ANR's first underground-storage project, which received certification from the US Federal Energy Regulatory Commission in July 1979, involved converting two pinnacle-reef gas-condensate reservoirs in northern Michigan and designing and constructing the gathering systems, compressor stations, and transmission lines to provide the 38.3 billion CF working storage capacity. ANR's second project, a similar two-field development certified in August 1980, began service in April 1981 with an 11.9 billion CF capacity. This record clearly illustrates ANR's ability to speedily complete inexpensive storage facilities on short notice.

  18. Potential hazards of compressed air energy storage in depleted natural gas reservoirs.

    SciTech Connect

    Cooper, Paul W.; Grubelich, Mark Charles; Bauer, Stephen J.

    2011-09-01

    This report is a preliminary assessment of the ignition and explosion potential in a depleted hydrocarbon reservoir from air cycling associated with compressed air energy storage (CAES) in geologic media. The study identifies issues associated with this phenomenon as well as possible mitigating measures that should be considered. Compressed air energy storage (CAES) in geologic media has been proposed to help supplement renewable energy sources (e.g., wind and solar) by providing a means to store energy when excess energy is available, and to provide an energy source during non-productive or low productivity renewable energy time periods. Presently, salt caverns represent the only proven underground storage used for CAES. Depleted natural gas reservoirs represent another potential underground storage vessel for CAES because they have demonstrated their container function and may have the requisite porosity and permeability; however reservoirs have yet to be demonstrated as a functional/operational storage media for compressed air. Specifically, air introduced into a depleted natural gas reservoir presents a situation where an ignition and explosion potential may exist. This report presents the results of an initial study identifying issues associated with this phenomena as well as possible mitigating measures that should be considered.

  19. Raccoon Mountain pumped-storage facility operational fish monitoring report

    SciTech Connect

    Buchanan, J.P.; Pasch, R.W.; Smith, A.O.; Swor, C.T.; Tomljanovich, D.A.

    1983-09-01

    The impact of the Raccoon Mountain Pumped-Storage Facility operations on fisheries resources in the Nickajack Reservoir was investigated. Analyses of data collected from 1979 through 1981 on population status and distribution of adults, larvae and eggs are presented with comparisons of preoperational fisheries monitoring data collected by the TVA from 1977 through 1978. Although minor differences in composition of dominant species, and slight declines in standing stock of some species were noted, no major impacts were identified. Appendix B contains a short report entitled Nickajack Reservoir Ictiobine Study 1979 by Edwin Scott Jr. 7 references, 46 figures, 31 tables.

  20. Equipment design guidance document for flammable gas waste storage tank new equipment

    SciTech Connect

    Smet, D.B.

    1996-04-11

    This document is intended to be used as guidance for design engineers who are involved in design of new equipment slated for use in Flammable Gas Waste Storage Tanks. The purpose of this document is to provide design guidance for all new equipment intended for application into those Hanford storage tanks in which flammable gas controls are required to be addressed as part of the equipment design. These design criteria are to be used as guidance. The design of each specific piece of new equipment shall be required, as a minimum to be reviewed by qualified Unreviewed Safety Question evaluators as an integral part of the final design approval. Further Safety Assessment may be also needed. This guidance is intended to be used in conjunction with the Operating Specifications Documents (OSDs) established for defining work controls in the waste storage tanks. The criteria set forth should be reviewed for applicability if the equipment will be required to operate in locations containing unacceptable concentrations of flammable gas.

  1. Microbial Life in an Underground Gas Storage Reservoir

    NASA Astrophysics Data System (ADS)

    Bombach, Petra; van Almsick, Tobias; Richnow, Hans H.; Zenner, Matthias; Krüger, Martin

    2015-04-01

    While underground gas storage is technically well established for decades, the presence and activity of microorganisms in underground gas reservoirs have still hardly been explored today. Microbial life in underground gas reservoirs is controlled by moderate to high temperatures, elevated pressures, the availability of essential inorganic nutrients, and the availability of appropriate chemical energy sources. Microbial activity may affect the geochemical conditions and the gas composition in an underground reservoir by selective removal of anorganic and organic components from the stored gas and the formation water as well as by generation of metabolic products. From an economic point of view, microbial activities can lead to a loss of stored gas accompanied by a pressure decline in the reservoir, damage of technical equipment by biocorrosion, clogging processes through precipitates and biomass accumulation, and reservoir souring due to a deterioration of the gas quality. We present here results from molecular and cultivation-based methods to characterize microbial communities inhabiting a porous rock gas storage reservoir located in Southern Germany. Four reservoir water samples were obtained from three different geological horizons characterized by an ambient reservoir temperature of about 45 °C and an ambient reservoir pressure of about 92 bar at the time of sampling. A complementary water sample was taken at a water production well completed in a respective horizon but located outside the gas storage reservoir. Microbial community analysis by Illumina Sequencing of bacterial and archaeal 16S rRNA genes indicated the presence of phylogenetically diverse microbial communities of high compositional heterogeneity. In three out of four samples originating from the reservoir, the majority of bacterial sequences affiliated with members of the genera Eubacterium, Acetobacterium and Sporobacterium within Clostridiales, known for their fermenting capabilities. In

  2. Modeling of information flows in natural gas storage facility

    NASA Astrophysics Data System (ADS)

    Ranjbari, Leyla; Bahar, Arifah; Aziz, Zainal Abdul

    2013-09-01

    The paper considers the natural-gas storage valuation based on the information-based pricing framework of Brody-Hughston-Macrina (BHM). As opposed to many studies which the associated filtration is considered pre-specified, this work tries to construct the filtration in terms of the information provided to the market. The value of the storage is given by the sum of the discounted expectations of the cash flows under risk-neutral measure, conditional to the constructed filtration with the Brownian bridge noise term. In order to model the flow of information about the cash flows, we assume the existence of a fixed pricing kernel with liquid, homogenous and incomplete market without arbitrage.

  3. Monitoring underground gas storage for seismic risk assessment

    NASA Astrophysics Data System (ADS)

    Guido, Francesco Luigi; Picotti, Vincenzo; Antonellini, Marco

    2013-04-01

    Temporary gas storage facilities play a fundamental role in the design of energy supply. The evaluation and recognition of induced seismicity, geodetic displacements and wellbores damages are their main associated risks that should be minimized for a safe management of these facilities, especially in densely populated areas. Injection and withdrawal of gas into/from a porous reservoir generally lead reservoir rocks to deform. Rock deformation is due to variations of the state of stress of rocks, both in the reservoir and the surrounding: subsidence, wellbore damages and induced or activated seismicity are primary consequences of these variations. In this paper we present a case study on induced deformation by an exploited gas reservoir, converted to temporary natural gas storage since 1994, in North-Eastern Italy. The reservoir, composed by 2 independent carbonatic sandstone intervals, approximately 10 meters thick, and 1400 meters deep, has been exploited since 1983, recording a pressure drop of about 16 MPa. The inversion of gas pressure and volume data, together with a 26 year ground displacement dataset monitoring, allow us to define reservoir deformations, modelled by a semi-analytical method based on an equivalent Eshelby's inclusion problem, able to account for mechanical differences between reservoir and surrounding rocks. Stress field changes, and displacement fields around the reservoir and on the ground mainly represent the results of this modelling. A Coulomb Failure Stress analysis, performed by FEA, was applied to define and evaluate the influence of magnitude and shape of stress field changes on rock stability, highlighting rock volumes that mainly suffer stress changes eventually leading to induced/activated earthquakes. The microseismic monitoring provides then the control on failures and their location. The methodology here used provide a solid base for induced or activated seismicity risk assessment: it provides an easy tool to quantify magnitude

  4. Comparison of Natural Gas Storage Estimates from the EIA and AGA

    EIA Publications

    1997-01-01

    The Energy Information Administration (EIA) has been publishing monthly storage information for years. In order to address the need for more timely information, in 1994 the American Gas Association (AGA) began publishing weekly storage levels. Both the EIA and the AGA series provide estimates of the total working gas in storage, but use significantly different methodologies.

  5. A Feasibility Study on Operating Large Scale Compressed Air Energy Storage in Porous Formations

    NASA Astrophysics Data System (ADS)

    Wang, B.; Pfeiffer, W. T.; Li, D.; Bauer, S.

    2015-12-01

    Compressed air energy storage (CAES) in porous formations has been considered as one promising option of large scale energy storage for decades. This study, hereby, aims at analyzing the feasibility of operating large scale CAES in porous formations and evaluating the performance of underground porous gas reservoirs. To address these issues quantitatively, a hypothetic CAES scenario with a typical anticline structure in northern Germany was numerically simulated. Because of the rapid growth in photovoltaics, the period of extraction in a daily cycle was set to the early morning and the late afternoon in order to bypass the massive solar energy production around noon. The gas turbine scenario was defined referring to the specifications of the Huntorf CAES power plant. The numerical simulations involved two stages, i.e. initial fill and cyclic operation, and both were carried out using the Eclipse E300 simulator (Schlumberger). Pressure loss in the gas wells was post analyzed using an analytical solution. The exergy concept was applied to evaluate the potential energy amount stored in the specific porous formation. The simulation results show that porous formations prove to be a feasible solution of large scale CAES. The initial fill with shut-in periods determines the spatial distribution of the gas phase and helps to achieve higher gas saturation around the wells, and thus higher deliverability. The performance evaluation shows that the overall exergy flow of stored compressed air is also determined by the permeability, which directly affects the deliverability of the gas reservoir and thus the number of wells required.

  6. Storage sizing for embedding of local gas production in a micro gas grid

    NASA Astrophysics Data System (ADS)

    Alkano, D.; Nefkens, W. J.; Scherpen, J. M. A.; Volkerts, M.

    2014-12-01

    In this paper we study the optimal control of a micro grid of biogas producers. The paper considers the possibility to have a local storage device for each producer, who partly consumes his own production, i.e. prosumer. In addition, connected prosumers can sell stored gas to create revenue from it. An optimization model is employed to derive the size of storage device and to provide a pricing mechanism in an effort to value the stored gas. Taking into account physical grid constraints, the model is constructed in a centralized scheme of model predictive control. Case studies show that there is a relation between the demand and price profiles in terms of peaks and lows. The price profiles generally follow each other. The case studies are employed as well to to study the impacts of model parameters on deriving the storage size.

  7. Improving Gas Storage Development Planning Through Simulation-Optimization

    SciTech Connect

    Johnson, V.M.; Ammer, J.; Trick, M.D.

    2000-07-25

    This is the first of two papers describing the application of simulator-optimization methods to a natural gas storage field development planning problem. The results presented here illustrate the large gains in cost-effectiveness that can be made by employing the reservoir simulator as the foundation for a wide-ranging search for solutions to management problems. The current paper illustrates the application of these techniques given a deterministic view of the reservoir. A companion paper will illustrate adaptations needed to accommodate uncertainties regarding reservoir properties.

  8. Stress change and fault slip in produced gas reservoirs used for storage of natural gas and carbon-dioxide

    NASA Astrophysics Data System (ADS)

    Orlic, Bogdan; Wassing, Brecht

    2013-04-01

    Gas extraction and subsequent storage of natural gas or CO2 in produced gas reservoirs will change the state of stress in a reservoir-seal system due to poro-mechanical, thermal and possibly chemical effects. Depletion- and injection-induced stresses can mechanically damage top- and side-seals, re-activate pre-existing sealing faults and create new fractures, allowing fluid migration out of the storage reservoir and causing induced seismicity. The first case study describes a field scale three-dimensional geomechanical numerical modelling of a depleted gas field in the Netherlands, which will be used for underground gas storage (UGS). The field experienced induced seismicity associated with gas production in the past and concerns were raised regarding the risk of future injection-related seismicity. The numerical modelling study aimed at investigating the potential of major faults for reactivation during UGS operations. The geomechanical model was calibrated to match the location and timing of the fault slip on the main central fault, which has most likely caused past seismic events during gas production. Simulation results showed that the part of the central fault most sensitive to slip during reservoir depletion is located at partial juxtaposition of the two main reservoir blocks across the central fault, which is in agreement with the seismological localization of the recorded seismic events. UGS operations with annual cycles of gas injection and production will largely have stabilizing effects on fault stability. The potential for fault slip on the central fault will therefore be low throughout annual operational cycles of this storage facility. The second case study describes a field scale two-dimensional geomechanical modelling of an offshore depleted gas field in the Netherlands, which is being considered for CO2 storage. The geomechanical modelling study aimed at investigating the mechanical impact of induced stress changes, resulting from past gas

  9. Efficient gas lasers pumped by generators with inductive energy storage

    NASA Astrophysics Data System (ADS)

    Tarasenko, Victor F.; Panchenko, Alexei N.; Tel'minov, Alexei E.

    2008-05-01

    Laser and discharge parameters in mixtures of rare gases with halogens driven by a pre-pulse-sustainer circuit technique are studied. Inductive energy storage with semiconductor opening switch was used for the high-voltage pre-pulse formation. It was shown that the pre-pulse with a high amplitude and short rise-time along with sharp increase of discharge current and uniform UV- and x-ray preionization allow to form long-lived stable discharge in halogen containing gas mixtures. Improvement of both pulse duration and output energy was achieved for XeCl-, XeF-, KrCl- and KrF excimer lasers. Maximal laser output was as high as 1 J at efficiency up to 4%. Increase both of the radiation power and laser pulse duration were achieved in N2-NF3 (SF6) and He-F2 (NF3) gas mixtures, as well.

  10. CO2 geological storage into a lateral aquifer of an offshore gas field in the South China Sea: storage safety and project design

    NASA Astrophysics Data System (ADS)

    Zhang, Liang; Li, Dexiang; Ezekiel, Justin; Zhang, Weidong; Mi, Honggang; Ren, Shaoran

    2015-06-01

    The DF1-1 gas field, located in the western South China Sea, contains a high concentration of CO2, thus there is great concern about the need to reduce the CO2 emissions. Many options have been considered in recent years to dispose of the CO2 separated from the natural gas stream on the Hainan Island. In this study, the feasibility of CO2 storage in the lateral saline aquifer of the DF1-1 gas field is assessed, including aquifer selection and geological assessment, CO2 migration and storage safety, project design, and economic analysis. Six offshore aquifers have been investigated for CO2 geological storage. The lateral aquifer of the DF1-1 gas field has been selected as the best target for CO2 injection and storage because of its proven sealing ability, and the large storage capacity of the combined aquifer and hydrocarbon reservoir geological structure. The separated CO2 will be dehydrated on the Hainan Island and transported by a long-distance subsea pipeline in supercritical or liquid state to the central platform of the DF1-1 gas field for pressure adjustment. The CO2 will then be injected into the lateral aquifer via a subsea well-head through a horizontal well. Reservoir simulations suggest that the injected CO2 will migrate slowly upwards in the aquifer without disturbing the natural gas production. The scoping economic analysis shows that the unit storage cost of the project is approximately US26-31/ton CO2 with the subsea pipeline as the main contributor to capital expenditure (CAPEX), and the dehydration system as the main factor of operating expenditure (OPEX).

  11. 30 CFR 550.123 - Will BOEM allow gas storage on unleased lands?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 2 2014-07-01 2014-07-01 false Will BOEM allow gas storage on unleased lands? 550.123 Section 550.123 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, DEPARTMENT OF THE... Standards § 550.123 Will BOEM allow gas storage on unleased lands? You may not store gas on unleased...

  12. 30 CFR 550.123 - Will BOEM allow gas storage on unleased lands?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 2 2012-07-01 2012-07-01 false Will BOEM allow gas storage on unleased lands? 550.123 Section 550.123 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, DEPARTMENT OF THE... Standards § 550.123 Will BOEM allow gas storage on unleased lands? You may not store gas on unleased...

  13. 30 CFR 550.123 - Will BOEM allow gas storage on unleased lands?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 2 2013-07-01 2013-07-01 false Will BOEM allow gas storage on unleased lands? 550.123 Section 550.123 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, DEPARTMENT OF THE... Standards § 550.123 Will BOEM allow gas storage on unleased lands? You may not store gas on unleased...

  14. 77 FR 23241 - Floridian Natural Gas Storage Company, LLC; Notice of Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-18

    ... Energy Regulatory Commission Floridian Natural Gas Storage Company, LLC; Notice of Application Take notice that on March 30, 2012, Floridian Natural Gas Storage Company, LLC (FGS), 1000 Louisiana Street... section 7 of the Natural Gas Act (NGA) and Part 157 of the Commission's regulations to amend...

  15. 75 FR 8318 - Petrologistics Natural Gas Storage, LLC; Notice of Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-24

    ... Energy Regulatory Commission Petrologistics Natural Gas Storage, LLC; Notice of Application February 17, 2010. Take notice that on February 12, 2010, Petrologistics Natural Gas Storage, LLC (Petrologistics... to section 7(c) of the Natural Gas Act (NGA), to amend its Certificate of Public Convenience...

  16. Feasibility Study of Compact Gas-Filled Storage Ring for 6D Cooling of Muon Beams

    SciTech Connect

    A. Garren, J. Kolonlo

    2005-10-31

    The future of elementary particle physics in the USA depends in part on the development of new machines such as the International Linear Collider, Muon Collider and Neutrino Factories which can produce particle beams of higher energy, intensity, or particle type than now exists. These beams will enable the continued exploration of the world of elementary particles and interactions. In addition, the associated development of new technologies and machines such as a Muon Ring Cooler is essential. This project was to undertake a feasibility study of a compact gas-filled storage ring for 6D cooling of muon beams. The ultimate goal, in Phase III, was to build, test, and operate a demonstration storage ring. The preferred lattice for the storage ring was determined and dynamic simulations of particles through the lattice were performed. A conceptual design and drawing of the magnets were made and a study of the RF cavity and possible injection/ejection scheme made. Commercial applications for the device were investigated and the writing of the Phase II proposal completed. The research findings conclude that a compact gas-filled storage ring for 6D cooling of muon beams is possible with further research and development.

  17. Simulation of natural gas production from submarine gas hydrate deposits combined with carbon dioxide storage

    NASA Astrophysics Data System (ADS)

    Janicki, Georg; Schlüter, Stefan; Hennig, Torsten; Deerberg, Görge

    2013-04-01

    The recovery of methane from gas hydrate layers that have been detected in several submarine sediments and permafrost regions around the world so far is considered to be a promising measure to overcome future shortages in natural gas as fuel or raw material for chemical syntheses. Being aware that natural gas resources that can be exploited with conventional technologies are limited, research is going on to open up new sources and develop technologies to produce methane and other energy carriers. Thus various research programs have started since the early 1990s in Japan, USA, Canada, South Korea, India, China and Germany to investigate hydrate deposits and develop technologies to destabilize the hydrates and obtain the pure gas. In recent years, intensive research has focussed on the capture and storage of carbon dioxide from combustion processes to reduce climate change. While different natural or manmade reservoirs like deep aquifers, exhausted oil and gas deposits or other geological formations are considered to store gaseous or liquid carbon dioxide, the storage of carbon dioxide as hydrate in former methane hydrate fields is another promising alternative. Due to beneficial stability conditions, methane recovery may be well combined with CO2 storage in form of hydrates. This has been shown in several laboratory tests and simulations - technical field tests are still in preparation. Within the scope of the German research project »SUGAR«, different technological approaches are evaluated and compared by means of dynamic system simulations and analysis. Detailed mathematical models for the most relevant chemical and physical effects are developed. The basic mechanisms of gas hydrate formation/dissociation and heat and mass transport in porous media are considered and implemented into simulation programs like CMG STARS and COMSOL Multiphysics. New simulations based on field data have been carried out. The studies focus on the evaluation of the gas production

  18. 76 FR 15971 - Liberty Gas Storage, LLC and LA Storage, LLC; Notice of Joint Application for Abandonment and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-22

    ... Federal Energy Regulatory Commission Liberty Gas Storage, LLC and LA Storage, LLC; Notice of Joint... Regulatory Commission (Commission) a joint application under section 7 for (i) Authorization from the.... Questions regarding the joint application may be directed to William Rapp, Counsel for Liberty and...

  19. Application of new and novel fracture stimulation technologies to enhance the deliverability of gas storage wells

    SciTech Connect

    1995-04-01

    Based on the information presented in this report, our conclusions regarding the potential for new and novel fracture stimulation technologies to enhance the deliverability of gas storage wells are as follows: New and improved gas storage well revitalization methods have the potential to save industry on the order of $20-25 million per year by mitigating deliverability decline and reducing the need for costly infill wells Fracturing technologies have the potential to fill this role, however operators have historically been reluctant to utilize this approach due to concerns with reservoir seal integrity. With advanced treatment design tools and methods, however, this risk can be minimized. Of the three major fracturing classifications, namely hydraulic, pulse and explosive, two are believed to hold potential to gas storage applications (hydraulic and pulse). Five particular fracturing technologies, namely tip-screenout fracturing, fracturing with liquid carbon dioxide, and fracturing with gaseous nitrogen, which are each hydraulic methods, and propellant and nitrogen pulse fracturing, which are both pulse methods, are believed to hold potential for gas storage applications and will possibly be tested as part of this project. Field evidence suggests that, while traditional well remediation methods such as blowing/washing, mechanical cleaning, etc. do improve well deliverability, wells are still left damaged afterwards, suggesting that considerable room for further deliverability enhancement exists. Limited recent trials of hydraulic fracturing imply that this approach does in fact provide superior deliverability results, but further RD&D work is needed to fully evaluate and demonstrate the benefits and safe application of this as well as other fracture stimulation technologies.

  20. Monitoring induced seismicity from underground gas storage: first steps in Italy

    NASA Astrophysics Data System (ADS)

    Mucciarelli, Marco; Priolo, Enrico

    2013-04-01

    The supply of natural gas and its storage are focal points of the Italian politics of energy production and will have increasing importance in the coming years. About a dozen reservoirs are currently in use and fifteen are in development or awaiting approval. Some of these are found in the vicinity of geological structures that are seismically active. The assessment of seismic hazard (both for natural background and induced seismicity) for a geological gas storage facility has a number of unconventional aspects that must be recognized and traced in a clear, ordered way and using guidelines and rules that leave less room as possible for interpretation by the individual applicant / verification body. Similarly, for control and monitoring there are not clearly defined procedures or standard instrumentation, let alone tools for analysing and processing data. Finally, governmental organizations in charge of permission grants and operative control tend to have appropriate scientific knowledge only in certain areas and not in others (e.g. the seismic one), and the establishment of an independent multidisciplinary inspection body appears desirable. The project StoHaz (https://sites.google.com/site/s2stohaz/home) aims to initiate a series of actions to overcome these deficiencies and allow to define procedures and standards for the seismic hazard assessment and control of the activities of natural gas storage in underground reservoirs. OGS will take advantage of the experience gained with the design, installation and maintenance of the seismic network monitoring the Collalto reservoir, at the moment the only example in Italy of a public research institution monitoring independently the activities of a private gas storage company.

  1. A case study of electrostatic accidents in the process of oil-gas storage and transportation

    NASA Astrophysics Data System (ADS)

    Hu, Yuqin; Wang, Diansheng; Liu, Jinyu; Gao, Jianshen

    2013-03-01

    Ninety nine electrostatic accidents were reviewed, based on information collected from published literature. All the accidents over the last 30 years occurred during the process of oil-gas storage and transportation. Statistical analysis of these accidents was performed based on the type of complex conditions where accidents occurred, type of tanks and contents, and type of accidents. It is shown that about 85% of the accidents occurred in tank farms, gas stations or petroleum refineries, and 96% of the accidents included fire or explosion. The fishbone diagram was used to summarize the effects and the causes of the effects. The results show that three major reasons were responsible for accidents, including improper operation during loading and unloading oil, poor grounding and static electricity on human bodies, which accounted for 29%, 24% and 13% of the accidents, respectively. Safety actions are suggested to help operating engineers to handle similar situations in the future.

  2. CO2 Utilization and Storage in Shale Gas Reservoirs

    NASA Astrophysics Data System (ADS)

    Schaef, T.; Glezakou, V.; Owen, T.; Miller, Q.; Loring, J.; Davidson, C.; McGrail, P.

    2013-12-01

    Surging natural gas production from fractured shale reservoirs and the emerging concept of utilizing anthropogenic CO2 for secondary recovery and permanent storage is driving the need for understanding fundamental mechanisms controlling gas adsorption and desorption processes, mineral volume changes, and impacts to transmissivity properties. Early estimates indicate that between 10 and 30 gigatons of CO2 storage capacity may exist in the 24 shale gas plays included in current USGS assessments. However, the adsorption of gases (CO2, CH4, and SO2) is not well understood and appears unique for individual clay minerals. Using specialized experimental techniques developed at PNNL, pure clay minerals were examined at relevant pressures and temperatures during exposure to CH4, CO2, and mixtures of CO2-SO2. Adsorbed concentrations of methane displayed a linear behavior as a function of pressure as determined by a precision quartz crystal microbalance. Acid gases produced differently shaped adsorption isotherms, depending on temperature and pressure. In the instance of kaolinite, gaseous CO2 adsorbed linearly, but in the presence of supercritical CO2, surface condensation increased significantly to a peak value before desorbing with further increases in pressure. Similarly shaped CO2 adsorption isotherms derived from natural shale samples and coal samples have been reported in the literature. Adsorption steps, determined by density functional theory calculations, showed they were energetically favorable until the first CO2 layer formed, corresponding to a density of ~0.35 g/cm3. Interlayer cation content (Ca, Mg, or Na) of montmorillonites influenced adsorbed gas concentrations. Measurements by in situ x-ray diffraction demonstrate limited CO2 diffusion into the Na-montmorillonite interlayer spacing, with structural changes related to increased hydration. Volume changes were observed when Ca or Mg saturated montmorillonites in the 1W hydration state were exposed to

  3. TRC (Texas Railroad Commission) rejects gas storage project financing plans

    SciTech Connect

    Not Available

    1980-08-11

    TRC has rejected Valero Transmission Co.'s plan to finance a 5 billion cu ft underground storage facility already under construction in Wharton County, TX. The fee application, dismissed without prejudice to Valero's filing another application, would have added $0.015/1000 cu ft for the first nine years of operation before dropping to $0.014/1000 cu ft in the tenth year. The TRC commissioners decided that the costs underlying this proposed fee schedule were too speculative to be passed on to pipeline customers.

  4. New Natural Gas Storage and Transportation Capabilities Utilizing Rapid Methane Hydrate Formation Techniques

    SciTech Connect

    Brown, T.D.; Taylor, C.E.; Bernardo, M.

    2010-01-01

    Natural gas (methane as the major component) is a vital fossil fuel for the United States and around the world. One of the problems with some of this natural gas is that it is in remote areas where there is little or no local use for the gas. Nearly 50 percent worldwide natural gas reserves of ~6,254.4 trillion ft3 (tcf) is considered as stranded gas, with 36 percent or ~86 tcf of the U.S natural gas reserves totaling ~239 tcf, as stranded gas [1] [2]. The worldwide total does not include the new estimates by U.S. Geological Survey of 1,669 tcf of natural gas north of the Arctic Circle, [3] and the U.S. ~200,000 tcf of natural gas or methane hydrates, most of which are stranded gas reserves. Domestically and globally there is a need for newer and more economic storage, transportation and processing capabilities to deliver the natural gas to markets. In order to bring this resource to market, one of several expensive methods must be used: 1. Construction and operation of a natural gas pipeline 2. Construction of a storage and compression facility to compress the natural gas (CNG) at 3,000 to 3,600 psi, increasing its energy density to a point where it is more economical to ship, or 3. Construction of a cryogenic liquefaction facility to produce LNG, (requiring cryogenic temperatures at <-161 °C) and construction of a cryogenic receiving port. Each of these options for the transport requires large capital investment along with elaborate safety systems. The Department of Energy's Office of Research and Development Laboratories at the National Energy Technology Laboratory (NETL) is investigating new and novel approaches for rapid and continuous formation and production of synthetic NGHs. These synthetic hydrates can store up to 164 times their volume in gas while being maintained at 1 atmosphere and between -10 to -20°C for several weeks. Owing to these properties, new process for the economic storage and transportation of these synthetic hydrates could be envisioned

  5. Natural gas storage - end user interaction. Final report, September 1992--May 1996

    SciTech Connect

    1998-12-31

    The primary purpose of this project is to develop an understanding of the market for natural gas storage that will provide for rigorous evaluation of federal research and development opportunities in storage technologies. The project objectives are: (1) to identify market areas and end use sectors where new natural gas underground storage capacity can be economically employed; (2) to develop a storage evaluation system that will provide the analytical tool to evaluate storage requirements under alternate economic, technology, and market conditions; and (3) to analyze the economic and technical feasibility of alternatives to conventional gas storage. An analytical approach was designed to examine storage need and economics on a total U.S. gas system basis, focusing on technical and market issues. Major findings of each subtask are reported in detail. 79 figs.

  6. Improvement of operational safety of dual-purpose transport packaging set for naval SNF in storage

    SciTech Connect

    Guskov, Vladimir; Korotkov, Gennady; Barnes, Ella; Snipes, Randy

    2007-07-01

    Available in abstract form only. Full text of publication follows: In recent ten years a new technology of management of irradiated nuclear fuel (SNF) at the final stage of fuel cycle has been intensely developing on a basis of a new type of casks used for interim storage of SNF and subsequent transportation therein to the place of processing, further storage or final disposal. This technology stems from the concept of a protective cask which provides preservation of its content (SNF) and fulfillment of all other safety requirements for storage and transportation of SNF. Radiation protection against emissions and non-distribution of activity outside the cask is ensured by physical barriers, i.e. all-metal or composite body, shells, inner cavities for irradiated fuel assemblies (SFA), lids with sealing systems. Residual heat release of SFA is discharged to the environment by natural way: through emission and convection of surrounding air. By now more than 100 dual purpose packaging sets TUK-108/1 are in operation in the mode of interim storage and transportation of SNF from decommissioned nuclear powered submarines (NPS). In accordance with certificate, spent fuel is stored in TUK-108/1 on the premises of plants involved in NPS dismantlement for 2 years, whereupon it is transported for processing to PO Mayak. At one Far Eastern plant Zvezda involved in NPS dismantlement there arose a complicated situation due to necessity to extend period of storage of SNF in TUK- 108/1. To ensure safety over a longer period of storage of SNF in TUK-108/1 it is essential to modify conditions of storage by removing of residual water and filling the inner cavity of the cask with an inert gas. Within implementation of the international 1.1- 2 project Development of drying technology for the cask TUK-108/1 intended for naval SNF under the Program, there has been developed the technology of preparation of the cask for long-term storage of SNF in TUK-108/1, the design of a mobile TUK-108

  7. Modular Coating for Flexible Gas Turbine Operation

    NASA Astrophysics Data System (ADS)

    Zimmermann, J. R. A.; Schab, J. C.; Stankowski, A.; Grasso, P. D.; Olliges, S.; Leyens, C.

    2016-01-01

    In heavy duty gas turbines, the loading boundary conditions of MCrAlY systems are differently weighted for different operation regimes as well as for each turbine component or even in individual part locations. For an overall optimized component protection it is therefore of interest to produce coatings with flexible and individually tailored properties. In this context, ALSTOM developed an Advanced Modular Coating Technology (AMCOTEC™), which is based on several powder constituents, each providing specific properties to the final coating, in combination with a new application method, allowing in-situ compositional changes. With this approach, coating properties, such as oxidation, corrosion, and cyclic lifetime, etc., can be modularly adjusted for individual component types and areas. For demonstration purpose, a MCrAlY coating with modular ductility increase was produced using the AMCOTEC™ methodology. The method was proven to be cost effective and a highly flexible solution, enabling fast compositional screening. A calculation method for final coating composition was defined and validated. The modular addition of ductility agent enabled increasing the coating ductility with up to factor 3 with only slight decrease of oxidation resistance. An optimum composition with respect to ductility is reached with addition of 20 wt.% of ductility agent.

  8. CO2 Storage and Enhance Gas Recovery from Shales: Insights from In Situ Experiments

    NASA Astrophysics Data System (ADS)

    Schaef, T.; McGrail, P.; Miller, Q. R.; Glezakou, V.; Loring, J. S.

    2012-12-01

    Recent developments in hydraulic fracturing technologies have provided a basis for dramatic increases in natural gas production from shale and tight gas reservoirs. GIS data analysis shows that approximately 60% of U.S. stationary CO2 emission sources are within 50 miles of a currently operating or potential shale gas play. Those emission sources represent a potential supply of CO2 to support enhanced gas recovery operations to extend the economic production life of these shale gas fields. Conservative estimates of the CO2 storage capacity in these depleted shale gas reservoirs are around 10 GtCO2 potentially producing up to an additional 100 Tcf of gas. Hence, there is a critical need to better understand the fundamental factors controlling CO2 storage and secondary gas production in shales. Mineralogy of shale formations are complicated, often times containing varying amounts of different clay minerals (illite, kaolinite, chlorite, and montmorillonite) carbonates (calcite, siderite, and dolomite), feldspar, quartz, gypsum, and pyrite. Interactions of these minerals with wet scCO2 are mostly unknown and will ultimately control injectivity, methane production, and CO2 storage capacity through mineral volume changes. To investigate the interactions between important clay minerals and wet scCO2, we have conducted a series of experiments exposing selected clay minerals to scCO2 containing variable amounts of dissolved water. Observations by in situ XRD indicate the montmorillonite structure contracts when in contact with dry scCO2. Expansion is observed when the same mineral is exposed to wet scCO2. Degrees of expansion and contraction are related to total dissolved water content in the scCO2 and the amount of water in the interlayer and type of interlayer cation. Other clays such as kaolinite, chlorite, and illite appear stable and undergo no observable structural change during exposure to scCO2. Experiments are in progress with in situ optical spectroscopic probes

  9. X-ray computed tomography studies of gas storage and transport in Devonian shales

    SciTech Connect

    Lu, X.; Miao, P.; Watson, A.T. . Dept. of Chemical Engineering); Pepin, G.P.; Moss, R.M. ); Semmelbeck, M. )

    1994-07-01

    Devonian shales and other unconventional resources can be highly fractured and may have significant amounts of gas stored by adsorption. Conventional experiments are not well suited for characterizing the properties important for describing gas storage and transport in these media. Here, X-ray computed tomography scanning is used to determine gas storage in dynamic gas flow experiments on Devonian shale samples. Several important properties are obtained from these experiments, including fracture widths, adsorption isotherms, and matrix porosities and permeabilities.

  10. CO2 utilization and storage in shale gas reservoirs: Experimental results and economic impacts

    DOE PAGESBeta

    Schaef, Herbert T.; Davidson, Casie L.; Owen, Antionette Toni; Miller, Quin R. S.; Loring, John S.; Thompson, Christopher J.; Bacon, Diana H.; Glezakou, Vassiliki Alexandra; McGrail, B. Peter

    2014-12-31

    Natural gas is considered a cleaner and lower-emission fuel than coal, and its high abundance from advanced drilling techniques has positioned natural gas as a major alternative energy source for the U.S. However, each ton of CO2 emitted from any type of fossil fuel combustion will continue to increase global atmospheric concentrations. One unique approach to reducing anthropogenic CO2 emissions involves coupling CO2 based enhanced gas recovery (EGR) operations in depleted shale gas reservoirs with long-term CO2 storage operations. In this paper, we report unique findings about the interactions between important shale minerals and sorbing gases (CH4 and CO2) andmore » associated economic consequences. Where enhanced condensation of CO2 followed by desorption on clay surface is observed under supercritical conditions, a linear sorption profile emerges for CH4. Volumetric changes to montmorillonites occur during exposure to CO2. Theory-based simulations identify interactions with interlayer cations as energetically favorable for CO2 intercalation. Thus, experimental evidence suggests CH4 does not occupy the interlayer and has only the propensity for surface adsorption. Mixed CH4:CO2 gas systems, where CH4 concentrations prevail, indicate preferential CO2 sorption as determined by in situ infrared spectroscopy and X-ray diffraction techniques. Collectively, these laboratory studies combined with a cost-based economic analysis provide a basis for identifying favorable CO2-EOR opportunities in previously fractured shale gas reservoirs approaching final stages of primary gas production. Moreover, utilization of site-specific laboratory measurements in reservoir simulators provides insight into optimum injection strategies for maximizing CH4/CO2 exchange rates to obtain peak natural gas production.« less

  11. SUBTASK 2.19 – OPERATIONAL FLEXIBILITY OF CO2 TRANSPORT AND STORAGE

    SciTech Connect

    Jensen, Melanie; Schlasner, Steven; Sorensen, James; Hamling, John

    2014-12-31

    experts represented a range of disciplines and hailed from North America and Europe. Major findings of the study are that compression and transport of CO2 for enhanced oil recovery (EOR) purposes in the United States has shown that impurities are not likely to cause transport problems if CO2 stream composition standards are maintained and pressures are kept at 10.3 MPa or higher. Cyclic, or otherwise intermittent, CO2 supplies historically have not impacted in-field distribution pipeline networks, wellbore integrity, or reservoir conditions. The U.S. EOR industry has demonstrated that it is possible to adapt to variability and intermittency in CO2 supply through flexible operation of the pipeline and geologic storage facility. This CO2 transport and injection experience represents knowledge that can be applied in future CCS projects. A number of gaps in knowledge were identified that may benefit from future research and development, further enhancing the possibility for widespread application of CCS. This project was funded through the Energy & Environmental Research Center–U.S. Department of Energy Joint Program on Research and Development for Fossil Energy-Related Resources Cooperative Agreement No. DE-FC26-08NT43291. Nonfederal funding was provided by the IEA Greenhouse Gas R&D Programme.

  12. Spatial and intertemporal arbitrage in the California natural gas transportation and storage network

    NASA Astrophysics Data System (ADS)

    Uria Martinez, Rocio

    Intertemporal and spatial price differentials should provide the necessary signals to allocate a commodity efficiently inside a network. This dissertation investigates the extent to which decisions in the California natural gas transportation and storage system are taken with an eye on arbitrage opportunities. Daily data about flows into and out of storage facilities in California over 2002-2006 and daily spreads on the NYMEX futures market are used to investigate whether the injection profile is consistent with the "supply-of-storage" curve first observed by Working for wheat. Spatial price differentials between California and producing regions fluctuate throughout the year, even though spot prices at trading hubs across North America are highly correlated. In an analysis of "residual supply", gas volumes directed to California are examined for the influence of those fluctuations in locational differentials. Daily storage decisions in California do seem to be influenced by a daily price signal that combines the intertemporal spread and the locational basis between California and the Henry Hub, in addition to strong seasonal and weekly cycles. The timing and magnitude of the response differs across storage facilities depending on the regulatory requirements they face and the type of customers they serve. In contrast, deviations in spatial price differentials from the levels dictated by relative seasonality in California versus competing regions do not trigger significant reallocations of flows into California. Available data for estimation of both the supply-of-storage and residual-supply curves aggregate the behavior of many individuals whose motivations and attentiveness to prices vary. The resulting inventory and flow profiles differ from those that a social planner would choose to minimize operating costs throughout the network. Such optimal allocation is deduced from a quadratic programming model, calibrated to 2004-2005, that acknowledges relative seasonality

  13. 76 FR 81924 - East Cheyenne Gas Storage, LLC; Notice of Amendment

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-29

    ... Federal Energy Regulatory Commission East Cheyenne Gas Storage, LLC; Notice of Amendment Take notice that on December 16, 2011, East Cheyenne Gas Storage, LLC (East Cheyenne), 10901 W. Toller Drive, Suite... in Docket No. CP11-40-000. Specifically, East Cheyenne requests authorization to increase the...

  14. 78 FR 2982 - Steuben Gas Storage Company (Steuben); Notice of Filing

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-15

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Steuben Gas Storage Company (Steuben); Notice of Filing Take notice that on October 19, 2012, Steuben Gas Storage Company (Steuben) submitted a request for a waiver of the reporting requirement to file the FERC Form...

  15. 30 CFR 550.119 - Will BOEM approve subsurface gas storage?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 2 2013-07-01 2013-07-01 false Will BOEM approve subsurface gas storage? 550.119 Section 550.119 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, DEPARTMENT OF THE INTERIOR... § 550.119 Will BOEM approve subsurface gas storage? The Regional Supervisor may authorize...

  16. 30 CFR 250.119 - Will MMS approve subsurface gas storage?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 2 2011-07-01 2011-07-01 false Will MMS approve subsurface gas storage? 250.119 Section 250.119 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, REGULATION, AND ENFORCEMENT... Performance Standards § 250.119 Will MMS approve subsurface gas storage? The Regional Supervisor may...

  17. 76 FR 41235 - Tres Palacios Gas Storage LLC; Notice of Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-13

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Tres Palacios Gas Storage LLC; Notice of Application Take notice that on July 5, 2011, Tres Palacios Gas Storage LLC (TPGS), Two Brush Creek Blvd., Suite 200, Kansas...

  18. 30 CFR 550.119 - Will BOEM approve subsurface gas storage?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 2 2012-07-01 2012-07-01 false Will BOEM approve subsurface gas storage? 550.119 Section 550.119 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, DEPARTMENT OF THE INTERIOR... § 550.119 Will BOEM approve subsurface gas storage? The Regional Supervisor may authorize...

  19. 75 FR 18200 - Monroe Gas Storage Company, LLC; Notice of Compliance Filing

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-09

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Monroe Gas Storage Company, LLC; Notice of Compliance Filing April 1, 2010. Take notice that on March 23, 2010, Monroe Gas Storage Company, LLC (Monroe), submitted a...

  20. 75 FR 35007 - Wyckoff Gas Storage Company LLC; Notice of Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-21

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Wyckoff Gas Storage Company LLC; Notice of Application June 15, 2010. On June 10, 2010, Wyckoff Gas Storage Company, LLC, (``Wyckoff''), 6733 South Yale, Tulsa, OK...

  1. 30 CFR 250.123 - Will MMS allow gas storage on unleased lands?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 2 2011-07-01 2011-07-01 false Will MMS allow gas storage on unleased lands? 250.123 Section 250.123 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, REGULATION, AND... SHELF General Performance Standards § 250.123 Will MMS allow gas storage on unleased lands? You may...

  2. 78 FR 30918 - Perryville Gas Storage LLC; Notice of Request Under Blanket Authorization

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-23

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Perryville Gas Storage LLC; Notice of Request Under Blanket Authorization Take notice that on May 3, 2013, Perryville Gas Storage LLC (Perryville), Three Riverway, Suite...

  3. 76 FR 13612 - Freebird Gas Storage, LLC; Notice of Request Under Blanket Authorization

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-14

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Freebird Gas Storage, LLC; Notice of Request Under Blanket Authorization Take notice that on March 1, 2011, Freebird Gas Storage, LLC (Freebird) filed a Prior Notice...

  4. 30 CFR 550.119 - Will BOEM approve subsurface gas storage?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 2 2014-07-01 2014-07-01 false Will BOEM approve subsurface gas storage? 550.119 Section 550.119 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, DEPARTMENT OF THE INTERIOR... § 550.119 Will BOEM approve subsurface gas storage? The Regional Supervisor may authorize...

  5. 78 FR 77445 - Tres Palacios Gas Storage LLC; Notice of Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-23

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Tres Palacios Gas Storage LLC; Notice of Application Take notice that on December 6, 2013, Tres Palacios Gas Storage LLC (Tres Palacios) 700 Louisiana Street, Suite 2060,...

  6. 78 FR 63179 - Notice of Request Under Blanket Authorization; Petal Gas Storage, LLC.

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-23

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Notice of Request Under Blanket Authorization; Petal Gas Storage, LLC. Take notice that on October 9, 2013, Petal Gas Storage, L.L.C. (Petal), 9 Greenway Plaza, Suite 2800, Houston, Texas 77046, filed in Docket No....

  7. 75 FR 52937 - Turtle Bayou Gas Storage Company, LLC; Notice of Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-30

    ... Energy Regulatory Commission Turtle Bayou Gas Storage Company, LLC; Notice of Application August 20, 2010. Take notice that on August 6, 2010, Turtle Bayou Gas Storage Company, LLC (Turtle Bayou), One Office... caverns and related facilities to be located in Chambers and Liberty Counties, Texas. Turtle Bayou...

  8. 75 FR 26222 - Cadeville Gas Storage, LLC; Notice of Availability of the Environmental Assessment for the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-11

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Cadeville Gas Storage, LLC; Notice of Availability of the Environmental Assessment for the Proposed Cadeville Gas Storage Project April 30, 2010. The staff of the Federal Energy Regulatory Commission (FERC or...

  9. Gas storage cylinder formed from a composition containing thermally exfoliated graphite

    NASA Technical Reports Server (NTRS)

    Prud'Homme, Robert K. (Inventor); Aksay, Ilhan A. (Inventor)

    2012-01-01

    A gas storage cylinder or gas storage cylinder liner, formed from a polymer composite, containing at least one polymer and a modified graphite oxide material, which is a thermally exfoliated graphite oxide with a surface area of from about 300 m(exp 2)/g to 2600 m(exp 2)2/g.

  10. 77 FR 5788 - PetroLogistics Natural Gas Storage, LLC; Notice of Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-06

    ... Energy Regulatory Commission PetroLogistics Natural Gas Storage, LLC; Notice of Application Take notice that on January 27, 2012, PetroLogistics Natural Gas Storage, LLC (PetroLogistics), 4470 Bluebonnet... previously filed application in Docket No. CP11-50-000. Specifically, PetroLogistics request to amend...

  11. 76 FR 544 - PetroLogistics Natural Gas Storage, LLC; Notice of Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-05

    ... Energy Regulatory Commission PetroLogistics Natural Gas Storage, LLC; Notice of Application December 28, 2010. Take notice that on December 14, 2010, PetroLogistics Natural Gas Storage, LLC (PetroLogistics... parallel PetroLogistics' existing header; (3) constructing two new compressor units, totaling...

  12. 77 FR 20618 - PetroLogistics Natural Gas Storage, LLC; Notice of Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-05

    ... Energy Regulatory Commission PetroLogistics Natural Gas Storage, LLC; Notice of Application Take notice that on March 22, 2012, PetroLogistics Natural Gas Storage, LLC (PetroLogistics), 4470 Bluebonnet Blvd..., and CP07-429-000, as amended in Docket No. CP10-66-000. Specifically, PetroLogistics request to...

  13. 75 FR 49917 - PetroLogistics Natural Gas Storage, LLC; Notice of Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-16

    ... Energy Regulatory Commission PetroLogistics Natural Gas Storage, LLC; Notice of Application August 3, 2010. Take notice that on July 21, 2010, PetroLogistics Natural Gas Storage, LLC (PetroLogistics), 4470..., measuring, and appurtenant facilities in order to connect the cavern to PetroLogistics' existing...

  14. 77 FR 52713 - PetroLogistics Natural Gas Storage, LLC; Notice of Request Under Blanket Authorization

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-30

    ... Energy Regulatory Commission PetroLogistics Natural Gas Storage, LLC; Notice of Request Under Blanket Authorization Take notice that on August 17, 2012, PetroLogistics Natural Gas Storage, LLC (PetroLogistics... Iberville Parish, Louisiana, under PetroLogistics' blanket certificate issued in Docket No. CP07-427-000,...

  15. 77 FR 24190 - East Cheyenne Gas Storage, LLC; Notice of Amendment

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-23

    ... April 6, 2012, East Cheyenne Gas Storage, LLC (East Cheyenne), 10901 W. Toller Drive, Suite 200... (toll free). For TTY, call (202) 502-8659. Comment Date: May 4, 2012. Dated: April 13, 2012. Kimberly D... this application may be directed to William A. Lang, President, East Cheyenne Gas Storage, LLC,...

  16. 75 FR 63452 - ONEOK Gas Storage, L.L.C.; Notice of Baseline Filing

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-15

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission ONEOK Gas Storage, L.L.C.; Notice of Baseline Filing October 7, 2010. Take notice that on October 1, 2010, ONEOK Gas Storage, L.L.C. submitted a revised baseline filing of...

  17. Arterial gas occlusions in operating heat pipes

    NASA Technical Reports Server (NTRS)

    Saaski, E. W.

    1975-01-01

    The effect of noncondensable gases on high performance arterial heat pipes has been investigated both analytically and experimentally. Models have been generated which characterize the dissolution of gases in condensate and the diffusional loss of dissolved gases from condensate in arterial flow. These processes, and others, have been used to postulate stability criteria for arterial heat pipes. Experimental observations of gas occlusions were made using a stainless steel heat pipe equipped with viewing ports, and the working fluids methanol and ammonia with the gas additives helium, argon, and xenon. Observations were related to gas transport models.

  18. Role of Pumped Storage Hydro Resources in Electricity Markets and System Operation: Preprint

    SciTech Connect

    Ela, E.; Kirby, B.; Botterud, A.; Milostan, C.; Krad, I.; Koritarov, V.

    2013-05-01

    The most common form of utility- sized energy storage system is the pumped storage hydro system. Originally, these types of storage systems were economically viable simply because they displace more expensive generating units. However, over time, as those expensive units became more efficient and costs declined, pumped hydro storage units no longer have the operational edge. As a result, in the current electricity market environment, pumped storage hydro plants are struggling. To offset this phenomenon, certain market modifications should be addressed. This paper will introduce some of the challenges faced by pumped storage hydro plants in today's markets and purpose some solutions to those problems.

  19. HEADSPACE GAS EVALUATION OF WELDED PLUTONIUM STORAGE CONTAINERS

    SciTech Connect

    Hardy, B; Stephen Harris, S; Matthew Arnold, M; Steve Hensel, S

    2008-04-01

    The Can Puncture Device (CPD) serves as a containment vessel during the puncture of nested 3013 containers as part of surveillance operations in K-Area. The purpose of the CPD sampling process is to determine the original pressure and composition of gases within the inner 3013 container. The relation between the composition of the gas sample drawn from the CPD and that originally in the inner 3013 container depends on the degree of mixing that occurs over the interval of time from the puncture to drawing the sample. Gas mixing is bounded by the extremes of no mixing of gases in the inner container and that of complete mixing, in which case the entire CPD system is of uniform composition. Models relating the sample composition and pressure to the initial (pre-puncture) inner can composition and pressure for each of these extremes were developed. Predictions from both models were compared to data from characterization experiments. In the comparison, it was found that the model that assumed complete gas mixing after puncture, the Uniform Mixing Model, showed significantly better agreement with the data than the model that assumed no change in the composition of the inner container, referred to as the Non-Uniform Mixing Model. Both models were implemented as Microsoft{reg_sign} Excel spreadsheet calculations, which utilize macros, to include the effects of uncertainties and biases in the measurements of process parameters and in the models. Potential inleakage of gas from the glovebox is also addressed. The spreadsheet utilizing the Uniform Mixing Model, which was validated by data from the characterization tests, is used to evaluate the pre-puncture composition and pressure within the inner 3013 container. This spreadsheet model is called the Gas Evaluation Software Tool (GEST).

  20. CHARACTERIZATION OF CONDITIONS OF NATURAL GAS STORAGE RESERVOIRS AND DESIGN AND DEMONSTRATION OF REMEDIAL TECHNIQUES FOR DAMAGE MECHANISMS FOUND THEREIN

    SciTech Connect

    J.H. Frantz; K.E. Brown

    2003-02-01

    There are four primary goals of contract DE-FG26-99FT40703: (1) We seek to better understand how and why two damage mechanisms--(1) inorganic precipitants, and (2) hydrocarbons and organic residues, occur at the reservoir/wellbore interface in gas storage wells. (2) We plan on testing potential prevention and remediation strategies related to these two damage mechanisms in the laboratory. (3) We expect to demonstrate in the field, cost-effective prevention and remediation strategies that laboratory testing deems viable. (4) We will investigate new technology for the gas storage industry that will provide operators with a cost effective method to reduce non-darcy turbulent flow effects on flow rate. For the above damage mechanisms, our research efforts will demonstrate the diagnostic technique for determining the damage mechanisms associated with lost deliverability as well as demonstrate and evaluate the remedial techniques in the laboratory setting and in actual gas storage reservoirs. We plan on accomplishing the above goals by performing extensive lab analyses of rotary sidewall cores taken from at least two wells, testing potential remediation strategies in the lab, and demonstrating in the field the applicability of the proposed remediation treatments. The benefits from this work will be quantified from this study and extrapolated to the entire storage industry. The technology and project results will be transferred to the industry through DOE dissemination and through the industry service companies that work on gas storage wells. Achieving these goals will enable the underground gas storage industry to more cost-effectively mitigate declining deliverability in their storage fields. Work completed to date includes the following: (1) Solicited potential participants from the gas storage industry; (2) Selected one participant experiencing damage from inorganic precipitates; (3) Developed laboratory testing procedures; (4) Collected cores from National Fuel Gas

  1. Energy storage for low earth orbit operations at high power

    NASA Technical Reports Server (NTRS)

    Trout, J. B.

    1979-01-01

    Results are presented of an in-house study of relative sizes and technology needs of three energy storage systems for high power, low earth orbit power systems. The systems compared are nickel-cadmium batteries, nickel-hydrogen batteries, and regenerative fuel cell systems (RFCS). RFCS based on hydrogen-oxygen and hydrogen-chlorine reactants are examined. Those components of the total power system which are significantly impacted by energy storage system selection; e.g., solar array, reactant storage tanks and radiator sizes, are included incrementally in the weights of the systems compared.

  2. Assessment of Factors Influencing Effective CO{sub 2} Storage Capacity and Injectivity in Eastern Gas Shales

    SciTech Connect

    Godec, Michael

    2013-06-30

    Building upon advances in technology, production of natural gas from organic-rich shales is rapidly developing as a major hydrocarbon supply option in North America and around the world. The same technology advances that have facilitated this revolution - dense well spacing, horizontal drilling, and hydraulic fracturing - may help to facilitate enhanced gas recovery (EGR) and carbon dioxide (CO{sub 2}) storage in these formations. The potential storage of CO {sub 2} in shales is attracting increasing interest, especially in Appalachian Basin states that have extensive shale deposits, but limited CO{sub 2} storage capacity in conventional reservoirs. The goal of this cooperative research project was to build upon previous and on-going work to assess key factors that could influence effective EGR, CO{sub 2} storage capacity, and injectivity in selected Eastern gas shales, including the Devonian Marcellus Shale, the Devonian Ohio Shale, the Ordovician Utica and Point Pleasant shale and equivalent formations, and the late Devonian-age Antrim Shale. The project had the following objectives: (1) Analyze and synthesize geologic information and reservoir data through collaboration with selected State geological surveys, universities, and oil and gas operators; (2) improve reservoir models to perform reservoir simulations to better understand the shale characteristics that impact EGR, storage capacity and CO{sub 2} injectivity in the targeted shales; (3) Analyze results of a targeted, highly monitored, small-scale CO{sub 2} injection test and incorporate into ongoing characterization and simulation work; (4) Test and model a smart particle early warning concept that can potentially be used to inject water with uniquely labeled particles before the start of CO{sub 2} injection; (5) Identify and evaluate potential constraints to economic CO{sub 2} storage in gas shales, and propose development approaches that overcome these constraints; and (6) Complete new basin

  3. Natural gas storage with activated carbon from a bituminous coal

    USGS Publications Warehouse

    Sun, Jielun; Rood, M.J.; Rostam-Abadi, M.; Lizzio, A.A.

    1996-01-01

    Granular activated carbons ( -20 + 100 mesh; 0.149-0.84 mm) were produced by physical activation and chemical activation with KOH from an Illinois bituminous coal (IBC-106) for natural gas storage. The products were characterized by BET surface area, micropore volume, bulk density, and methane adsorption capacities. Volumetric methane adsorption capacities (Vm/Vs) of some of the granular carbons produced by physical activation are about 70 cm3/cm3 which is comparable to that of BPL, a commercial activated carbon. Vm/Vs values above 100 cm3/cm3 are obtainable by grinding the granular products to - 325 mesh (<0.044 mm). The increase in Vm/Vs is due to the increase in bulk density of the carbons. Volumetric methane adsorption capacity increases with increasing pore surface area and micropore volume when normalizing with respect to sample bulk volume. Compared with steam-activated carbons, granular carbons produced by KOH activation have higher micropore volume and higher methane adsorption capacities (g/g). Their volumetric methane adsorption capacities are lower due to their lower bulk densities. Copyright ?? 1996 Elsevier Science Ltd.

  4. Conformable pressure vessel for high pressure gas storage

    DOEpatents

    Simmons, Kevin L.; Johnson, Kenneth I.; Lavender, Curt A.; Newhouse, Norman L.; Yeggy, Brian C.

    2016-01-12

    A non-cylindrical pressure vessel storage tank is disclosed. The storage tank includes an internal structure. The internal structure is coupled to at least one wall of the storage tank. The internal structure shapes and internally supports the storage tank. The pressure vessel storage tank has a conformability of about 0.8 to about 1.0. The internal structure can be, but is not limited to, a Schwarz-P structure, an egg-crate shaped structure, or carbon fiber ligament structure.

  5. 40 CFR Table W - 5 of Subpart W-Default Methane Emission Factors for Liquefied Natural Gas (LNG) Storage

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Emission Factors for Liquefied Natural Gas (LNG) Storage W Table W Protection of Environment ENVIRONMENTAL... Natural Gas Systems Definitions. Pt. 98, Subpt. W, Table W-5 Table W-5 of Subpart W—Default Methane Emission Factors for Liquefied Natural Gas (LNG) Storage LNG storage Emission factor...

  6. 75 FR 78986 - East Cheyenne Gas Storage, LLC; Notice of Intent To Prepare an Environmental Assessment for the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-17

    ... Energy Regulatory Commission East Cheyenne Gas Storage, LLC; Notice of Intent To Prepare an Environmental Assessment for the East Cheyenne Gas Storage Project Well Plan Amendment and Request for Comments On... Well Plan Amendment proposed by East Cheyenne Gas Storage, LLC (East Cheyenne). The proposed...

  7. Thermal management of the adsorption-based vessel for hydrogeneous gas storage

    NASA Astrophysics Data System (ADS)

    Vasiliev, L. L.; Kanonchik, L. E.; Babenko, V. A.

    2012-09-01

    Thermal management is a design bottleneck in the creation of rational gas storage sorption systems. Inefficient heat transfer in a sorption bed is connected with a relatively low thermal conductivity (0.1-0.5 W/(mṡK)) and an appreciable sorption heat of activated gas storage materials. This work is devoted to the development of a thermally regulated onboard system of hydrogenous gas (methane and hydrogen) storage with the use of novel carbon sorbents. A hydrogenous gas storage system based on combined gas adsorption and compression at moderate pressures (3-6 MPa) and low temperatures (from the temperature of liquid nitrogen of about 77 K to a temperature of 273 K) is suggested.

  8. 77 FR 28870 - Floridian Natural Gas Storage Company, LLC; Notice of Intent To Prepare an Environmental...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-16

    ... Energy Regulatory Commission Floridian Natural Gas Storage Company, LLC; Notice of Intent To Prepare an Environmental Assessment for the Floridian Natural Gas Amendment Project and Request for Comments on... environmental assessment (EA) that will discuss the environmental impacts of the Floridan Natural Gas...

  9. Economics of internal and external energy storage in solar power plant operation

    NASA Technical Reports Server (NTRS)

    Manvi, R.; Fujita, T.

    1977-01-01

    A simple approach is formulated to investigate the effect of energy storage on the bus-bar electrical energy cost of solar thermal power plants. Economic analysis based on this approach does not require detailed definition of a specific storage system. A wide spectrum of storage system candidates ranging from hot water to superconducting magnets can be studied based on total investment and a rough knowledge of energy in and out efficiencies. Preliminary analysis indicates that internal energy storage (thermal) schemes offer better opportunities for energy cost reduction than external energy storage (nonthermal) schemes for solar applications. Based on data and assumptions used in JPL evaluation studies, differential energy costs due to storage are presented for a 100 MWe solar power plant by varying the energy capacity. The simple approach presented in this paper provides useful insight regarding the operation of energy storage in solar power plant applications, while also indicating a range of design parameters where storage can be cost effective.

  10. Hydrogen Energy Storage and Power-to-Gas: Establishing Criteria for Successful Business Cases

    SciTech Connect

    Eichman, Joshua; Melaina, Marc

    2015-10-27

    As the electric sector evolves and increasing amounts of variable generation are installed on the system, there are greater needs for system flexibility, sufficient capacity and greater concern for overgeneration. As a result there is growing interest in exploring the role of energy storage and demand response technologies to support grid needs. Hydrogen is a versatile feedstock that can be used in a variety of applications including chemical and industrial processes, as well as a transportation fuel and heating fuel. Traditionally, hydrogen technologies focus on providing services to a single sector; however, participating in multiple sectors has the potential to provide benefits to each sector and increase the revenue for hydrogen technologies. The goal of this work is to explore promising system configurations for hydrogen systems and the conditions that will make for successful business cases in a renewable, low-carbon future. Current electricity market data, electric and gas infrastructure data and credit and incentive information are used to perform a techno-economic analysis to identify promising criteria and locations for successful hydrogen energy storage and power-to-gas projects. Infrastructure data will be assessed using geographic information system applications. An operation optimization model is used to co-optimizes participation in energy and ancillary service markets as well as the sale of hydrogen. From previous work we recognize the great opportunity that energy storage and power-to-gas but there is a lack of information about the economic favorability of such systems. This work explores criteria for selecting locations and compares the system cost and potential revenue to establish competitiveness for a variety of equipment configurations. Hydrogen technologies offer unique system flexibility that can enable interactions between multiple energy sectors including electric, transport, heating fuel and industrial. Previous research established that

  11. Natural gas storage and end user interaction: A progress report, September 30, 1994--March 31, 1995

    SciTech Connect

    Crook, L.R. Jr.; Reich, S.; Godec, M.L.

    1995-07-01

    In late 1994, ICF Resources began a contract with the Morgantown Energy Technology Center (METC) to conduct a study of natural gas storage and end user interaction. This study is being conducted in three phases: the first phase is an assessment of the market requirements for natural gas storage and in particular to identify those end user requirements for storage that could benefit from METC-sponsored research and development (R&D) in storage technology; the second phase will address the particular technical and economic feasibility for expanding conventional storage; and the third phase will address alternative, unconventional technologies. ICF is approaching the conclusion of the first phase of the study and the second phase has begun. This paper summarizes the scope of the study and reports some of the preliminary findings of the first phase. We begin by providing an overview of the goals of the effort and of natural gas storage. We will address the evolving market requirements for storage and the regulatory and institutional changes that are having a major impact on the use of natural gas storage. We address the demand for storage and the alternatives for meeting this demand, with specific reference to regional and end use issues.

  12. Gas storage and separation by electric field swing adsorption

    DOEpatents

    Currier, Robert P; Obrey, Stephen J; Devlin, David J; Sansinena, Jose Maria

    2013-05-28

    Gases are stored, separated, and/or concentrated. An electric field is applied across a porous dielectric adsorbent material. A gas component from a gas mixture may be selectively separated inside the energized dielectric. Gas is stored in the energized dielectric for as long as the dielectric is energized. The energized dielectric selectively separates, or concentrates, a gas component of the gas mixture. When the potential is removed, gas from inside the dielectric is released.

  13. STP-ECRTS - THERMAL AND GAS ANALYSES FOR SLUDGE TRANSPORT AND STORAGE CONTAINER (STSC) STORAGE AT T PLANT

    SciTech Connect

    CROWE RD; APTHORPE R; LEE SJ; PLYS MG

    2010-04-29

    The Sludge Treatment Project (STP) is responsible for the disposition of sludge contained in the six engineered containers and Settler tank within the 105-K West (KW) Basin. The STP is retrieving and transferring sludge from the Settler tank into engineered container SCS-CON-230. Then, the STP will retrieve and transfer sludge from the six engineered containers in the KW Basin directly into a Sludge Transport and Storage Containers (STSC) contained in a Sludge Transport System (STS) cask. The STSC/STS cask will be transported to T Plant for interim storage of the STSC. The STS cask will be loaded with an empty STSC and returned to the KW Basin for loading of additional sludge for transportation and interim storage at T Plant. CH2MHILL Plateau Remediation Company (CHPRC) contracted with Fauske & Associates, LLC (FAI) to perform thermal and gas generation analyses for interim storage of STP sludge in the Sludge Transport and Storage Container (STSCs) at T Plant. The sludge types considered are settler sludge and sludge originating from the floor of the KW Basin and stored in containers 210 and 220, which are bounding compositions. The conditions specified by CHPRC for analysis are provided in Section 5. The FAI report (FAI/10-83, Thermal and Gas Analyses for a Sludge Transport and Storage Container (STSC) at T Plant) (refer to Attachment 1) documents the analyses. The process considered was passive, interim storage of sludge in various cells at T Plant. The FATE{trademark} code is used for the calculation. The results are shown in terms of the peak sludge temperature and hydrogen concentrations in the STSC and the T Plant cell. In particular, the concerns addressed were the thermal stability of the sludge and the potential for flammable gas mixtures. This work was performed with preliminary design information and a preliminary software configuration.

  14. Norg underground gas storage - an integrated 3-D geological and geophysical reservoir modeling study

    SciTech Connect

    Cohen, J.; Smith, S. ); Huis, R.; Copper, J.; Whyte, S. )

    1993-09-01

    The Netherlands have an extensive gas distribution infrastructure supplying 80 x 10[sup 9] m[sup 3] per annum to the domestic and European market. The capacity requirement exceeds 600 x 10[sup 6] sm[sup 3]/d, of which 430 x 10[sup 6] sm[sup 3]/d is provided by the giant Groningen gas field. The Groningen field will soon reach a pressure at which this capacity can no longer be met without considerable investments. It will also become difficult to maintain the market gas quality, because of the increasing supply from small fields with widely varying gas qualities. Underground Gas Storage (UGS) will satisfy both capacity and gas-quality requirements. This UGS must eventually store 4.5 x 10[sup 9] m[sup 3] with injection/production capacities of 36/80-100 x 10[sup 6] sm[sup 3]/d, making it one of the largest UGS projects in the world. These extremely high-capacity requirements demand both high-matrix permeability and good understanding of vertical and lateral reservoir continuity. Matrix permeability is predictable due to the close relationship with the lithofacies defined within the primary Rotliegende depositional model. Minor faults, identified on three-dimensional (3-D) seismic attribute maps, represent potential transmissibility impairment zones, compartmentalizing the reservoir. This was initially suggested by core fracture studies and confirmed by a subsequent field shut-in and pressure buildup test. Lithofacies and seismic structural data are integrated within a computerized reservoir geological modeling system known as [open quotes]Monarch[close quotes] to provide a highly detailed 3-D permeability model that is then tranformed into a model for dynamic reservoir simulation. The results confirm the required working volume for the UGS operation and provide a basis for the initial field development planning.

  15. Evaluation of power generation operations in response to changes in surface water reservoir storage

    NASA Astrophysics Data System (ADS)

    Stillwell, Ashlynn S.; Webber, Michael E.

    2013-06-01

    We used a customized, river basin-based model of surface water rights to evaluate the response of power plants to drought via simulated changes in reservoir storage. Our methodology models surface water rights in 11 river basins in Texas using five cases: (1) storage decrease of existing capacity of 10%, (2) storage decrease of 50%, (3) complete elimination of storage, (4) storage increase of 10% (all at existing locations), and (5) construction of new reservoirs (at new locations) with a total increase in baseline reservoir capacity for power plant cooling of 9%. Using the Brazos River basin as a sample, we evaluated power generation operations in terms of reliability, resiliency, and vulnerability. As simulated water storage decreases, reliability generally decreases and resiliency and vulnerability remain relatively constant. All three metrics remain relatively constant with increasing reservoir storage, with the exception of one power plant. As reservoir storage changes at power plants, other water users in the basin are also affected. In general, decreasing water storage is beneficial to other water users in the basin, and increasing storage is detrimental for many other users. Our analysis reveals basin-wide and individual power plant-level impacts of changing reservoir storage, demonstrating a methodology for evaluation of the sustainability and feasibility of constructing new reservoir storage as a water and energy management approach.

  16. 76 FR 54760 - Perryville Gas Storage, LLC; Notice of Availability of the Environmental Assessment for the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-02

    ... Energy Regulatory Commission Perryville Gas Storage, LLC; Notice of Availability of the Environmental... Regulatory Commission (FERC or Commission) has prepared an environmental assessment (EA) for the Crowville... above referenced docket. Perryville proposes to increase the working capacity of its two...

  17. Algebraic operator approach to gas kinetic models

    NASA Astrophysics Data System (ADS)

    Il'ichov, L. V.

    1997-02-01

    Some general properties of the linear Boltzmann kinetic equation are used to present it in the form ∂ tϕ = - †Âϕ with the operators Âand† possessing some nontrivial algebraic properties. When applied to the Keilson-Storer kinetic model, this method gives an example of quantum ( q-deformed) Lie algebra. This approach provides also a natural generalization of the “kangaroo model”.

  18. Lessons from Iowa : development of a 270 megawatt compressed air energy storage project in midwest Independent System Operator : a study for the DOE Energy Storage Systems Program.

    SciTech Connect

    Holst, Kent; Huff, Georgianne; Schulte, Robert H.; Critelli, Nicholas

    2012-01-01

    The Iowa Stored Energy Park was an innovative, 270 Megawatt, $400 million compressed air energy storage (CAES) project proposed for in-service near Des Moines, Iowa, in 2015. After eight years in development the project was terminated because of site geological limitations. However, much was learned in the development process regarding what it takes to do a utility-scale, bulk energy storage facility and coordinate it with regional renewable wind energy resources in an Independent System Operator (ISO) marketplace. Lessons include the costs and long-term economics of a CAES facility compared to conventional natural gas-fired generation alternatives; market, legislative, and contract issues related to enabling energy storage in an ISO market; the importance of due diligence in project management; and community relations and marketing for siting of large energy projects. Although many of the lessons relate to CAES applications in particular, most of the lessons learned are independent of site location or geology, or even the particular energy storage technology involved.

  19. 75 FR 74708 - Magnum Gas Storage, LLC; Magnum Solutions, LLC; Notice of Availability of the Environmental...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-01

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Magnum Gas Storage, LLC; Magnum Solutions, LLC; Notice of Availability of the Environmental Assessment for the Proposed Magnum Storage Project and Proposed Pony Express Resource Management Plan Amendment for the...

  20. 25 CFR 212.22 - Leases for subsurface storage of oil or gas.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 25 Indians 1 2012-04-01 2011-04-01 true Leases for subsurface storage of oil or gas. 212.22 Section 212.22 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR ENERGY AND MINERALS LEASING OF ALLOTTED LANDS FOR MINERAL DEVELOPMENT How To Acquire Leases § 212.22 Leases for subsurface storage of...

  1. 25 CFR 211.22 - Leases for subsurface storage of oil or gas.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 25 Indians 1 2014-04-01 2014-04-01 false Leases for subsurface storage of oil or gas. 211.22 Section 211.22 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR ENERGY AND MINERALS LEASING OF TRIBAL LANDS FOR MINERAL DEVELOPMENT How To Acquire Leases § 211.22 Leases for subsurface storage of...

  2. 25 CFR 212.22 - Leases for subsurface storage of oil or gas.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 25 Indians 1 2013-04-01 2013-04-01 false Leases for subsurface storage of oil or gas. 212.22 Section 212.22 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR ENERGY AND MINERALS LEASING OF ALLOTTED LANDS FOR MINERAL DEVELOPMENT How To Acquire Leases § 212.22 Leases for subsurface storage of...

  3. 25 CFR 211.22 - Leases for subsurface storage of oil or gas.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 25 Indians 1 2013-04-01 2013-04-01 false Leases for subsurface storage of oil or gas. 211.22 Section 211.22 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR ENERGY AND MINERALS LEASING OF TRIBAL LANDS FOR MINERAL DEVELOPMENT How To Acquire Leases § 211.22 Leases for subsurface storage of...

  4. 25 CFR 211.22 - Leases for subsurface storage of oil or gas.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false Leases for subsurface storage of oil or gas. 211.22 Section 211.22 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR ENERGY AND MINERALS LEASING OF TRIBAL LANDS FOR MINERAL DEVELOPMENT How To Acquire Leases § 211.22 Leases for subsurface storage of...

  5. 25 CFR 212.22 - Leases for subsurface storage of oil or gas.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 25 Indians 1 2014-04-01 2014-04-01 false Leases for subsurface storage of oil or gas. 212.22 Section 212.22 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR ENERGY AND MINERALS LEASING OF ALLOTTED LANDS FOR MINERAL DEVELOPMENT How To Acquire Leases § 212.22 Leases for subsurface storage of...

  6. 25 CFR 211.22 - Leases for subsurface storage of oil or gas.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 25 Indians 1 2012-04-01 2011-04-01 true Leases for subsurface storage of oil or gas. 211.22 Section 211.22 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR ENERGY AND MINERALS LEASING OF TRIBAL LANDS FOR MINERAL DEVELOPMENT How To Acquire Leases § 211.22 Leases for subsurface storage of...

  7. 25 CFR 212.22 - Leases for subsurface storage of oil or gas.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 25 Indians 1 2011-04-01 2011-04-01 false Leases for subsurface storage of oil or gas. 212.22 Section 212.22 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR ENERGY AND MINERALS LEASING OF ALLOTTED LANDS FOR MINERAL DEVELOPMENT How To Acquire Leases § 212.22 Leases for subsurface storage of...

  8. 25 CFR 212.22 - Leases for subsurface storage of oil or gas.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false Leases for subsurface storage of oil or gas. 212.22 Section 212.22 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR ENERGY AND MINERALS LEASING OF ALLOTTED LANDS FOR MINERAL DEVELOPMENT How To Acquire Leases § 212.22 Leases for subsurface storage of...

  9. 25 CFR 211.22 - Leases for subsurface storage of oil or gas.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 25 Indians 1 2011-04-01 2011-04-01 false Leases for subsurface storage of oil or gas. 211.22 Section 211.22 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR ENERGY AND MINERALS LEASING OF TRIBAL LANDS FOR MINERAL DEVELOPMENT How To Acquire Leases § 211.22 Leases for subsurface storage of...

  10. Effect of natural gas exsolution on specific storage in a confined aquifer undergoing water level decline

    USGS Publications Warehouse

    Yager, R.M.; Fountain, J.C.

    2001-01-01

    The specific storage of a porous medium, a function of the compressibility of the aquifer material and the fluid within it, is essentially constant under normal hydrologic conditions. Gases dissolved in ground water can increase the effective specific storage of a confined aquifer, however, during water level declines. This causes a reduction in pore pressure that lowers the gas solubility and results in exsolution. The exsolved gas then displaces water from storage, and the specific storage increases because gas compressibility is typically much greater than that of water or aquifer material. This work describes the effective specific storage of a confined aquifer exsolving dissolved gas as a function of hydraulic head and the dimensionless Henry's law constant for the gas. This relation is applied in a transient simulation of ground water discharge from a confined aquifer system to a collapsed salt mine in the Genesee Valley in western New York. Results indicate that exsolution of gas significantly increased the effective specific storage in the aquifer system, thereby decreasing the water level drawdown.