Science.gov

Sample records for gas thermal generation

  1. Analytical investigation of thermal barrier coatings on advanced power generation gas turbines

    NASA Technical Reports Server (NTRS)

    Amos, D. J.

    1977-01-01

    An analytical investigation of present and advanced gas turbine power generation cycles incorporating thermal barrier turbine component coatings was performed. Approximately 50 parametric points considering simple, recuperated, and combined cycles (including gasification) with gas turbine inlet temperatures from current levels through 1644K (2500 F) were evaluated. The results indicated that thermal barriers would be an attractive means to improve performance and reduce cost of electricity for these cycles. A recommended thermal barrier development program has been defined.

  2. Advances in Thermal Spray Coatings for Gas Turbines and Energy Generation: A Review

    NASA Astrophysics Data System (ADS)

    Hardwicke, Canan U.; Lau, Yuk-Chiu

    2013-06-01

    Functional coatings are widely used in energy generation equipment in industries such as renewables, oil and gas, propulsion engines, and gas turbines. Intelligent thermal spray processing is vital in many of these areas for efficient manufacturing. Advanced thermal spray coating applications include thermal management, wear, oxidation, corrosion resistance, sealing systems, vibration and sound absorbance, and component repair. This paper reviews the current status of materials, equipment, processing, and properties' aspects for key coatings in the energy industry, especially the developments in large-scale gas turbines. In addition to the most recent industrial advances in thermal spray technologies, future technical needs are also highlighted.

  3. Thermal analysis of a simple-cycle gas turbine in biogas power generation

    SciTech Connect

    Yomogida, D.E.; Thinh, Ngo Dinh

    1995-09-01

    This paper investigates the technical feasibility of utilizing small simple-cycle gas turbines (25 kW to 125 kW) for biogas power generation through thermal analysis. A computer code, GTPower, was developed to evaluate the performance of small simple-cycle gas turbines specifically for biogas combustion. The 125 KW Solar Gas Turbine (Tital series) has been selected as the base case gas turbine for biogas combustion. After its design parameters and typical operating conditions were entered into GTPower for analysis, GTPower outputted expected values for the thermal efficiency and specific work. For a sensitivity analysis, the GTPower Model outputted the thermal efficiency and specific work. For a sensitivity analysis, the GTPower Model outputted the thermal efficiency and specific work profiles for various operating conditions encountered in biogas combustion. These results will assist future research projects in determining the type of combustion device most suitable for biogas power generation.

  4. Construction of power-generating gas turbine units with the use of efficient thermal schemes

    NASA Astrophysics Data System (ADS)

    Ermolenko, D. I.; Gusev, A. A.; Zhuravlev, Yu. I.; Lesnichenko, A. Ya.; Tsai, S. S.

    2008-08-01

    The design features of GTE-30 and GTE-50 power-generating gas turbines, the basic thermal circuit of a PGU-90 (150) combined-cycle plant, and a layout solution for a cogeneration station built around a gas-turbine unit are considered.

  5. Development of the Next Generation Gas Trap for the Space Station Internal Thermal Control System

    NASA Technical Reports Server (NTRS)

    Leimkuehler, Thomas O.; Spelbring, Chris; Reeves, Daniel R.; Holt, James M.

    2003-01-01

    The current dual-membrane gas trap is designed to remove non-condensed gases (NCG) from the Internal Thermal Control System (ITCS) coolant on board the International Space Station (ISS). To date it has successfully served its purpose of preventing depriming, overspeed, and shutdown of the ITCS pump. However, contamination in the ITCS coolant has adversely affected the gas venting rate and lifetime of the gas trap, warranting a development effort for a next-generation gas trap. Design goals are to meet or exceed the current requirements to (1) include greater operating ranges and conditions, (2) eliminate reliance on the current hydrophilic tube fabrication process, and (3) increase operational life and tolerance to particulate and microbial growth fouling. In addition, the next generation gas trap will essentially be a 'dropin" design such that no modifications to the ITCS pump package assembly (PPA) will be required, and the implementation of the new design will not affect changes to the ITCS operational conditions, interfaces, or software. This paper will present the initial membrane module design and development work which has included (1) a trade study among several conceptual designs, (2) performance modeling of a hydrophobic-only design, and (3) small-scale development test data for the hydrophobic-only design. Testing has shown that the hydrophobic-only design is capable of performing even better than the current dual-membrane design for both steady-state gas removal and gas slug removal.

  6. Rapid hydrogen gas generation using reactive thermal decomposition of uranium hydride.

    SciTech Connect

    Kanouff, Michael P.; Van Blarigan, Peter; Robinson, David B.; Shugard, Andrew D.; Gharagozloo, Patricia E.; Buffleben, George M.; James, Scott Carlton; Mills, Bernice E.

    2011-09-01

    Oxygen gas injection has been studied as one method for rapidly generating hydrogen gas from a uranium hydride storage system. Small scale reactors, 2.9 g UH{sub 3}, were used to study the process experimentally. Complimentary numerical simulations were used to better characterize and understand the strongly coupled chemical and thermal transport processes controlling hydrogen gas liberation. The results indicate that UH{sub 3} and O{sub 2} are sufficiently reactive to enable a well designed system to release gram quantities of hydrogen in {approx} 2 seconds over a broad temperature range. The major system-design challenge appears to be heat management. In addition to the oxidation tests, H/D isotope exchange experiments were performed. The rate limiting step in the overall gas-to-particle exchange process was found to be hydrogen diffusion in the {approx}0.5 {mu}m hydride particles. The experiments generated a set of high quality experimental data; from which effective intra-particle diffusion coefficients can be inferred.

  7. Structure interaction due to thermal bowing of shrouds in steam generator of gas-cooled reactor

    SciTech Connect

    Woo, H.H.

    1981-01-01

    The design of the gas-cooled reactor steam generators includes a tube bundle support plate system which restrains and supports the helical tubes in the steam generator. The support system consists of an array of radially oriented, perforated plates through which the helical tube coils are wound. These support plates have tabs on their edges which fit into vertical slots in the inner and outer shrouds. When the helical tube bundle and support plates are installed in the steam generator, they most likely cannot fit evenly between the inner and outer shrouds. This imperfection leads to different gaps between two extreme sides of the tube bundle and the shrouds. With different gaps through the tube bundle height, the helium flow experiences different cooling effects from the tube bundle. Hence, the temperature distribution in the shrouds will be non-uniform circumferentially since their surrounding helium flow temperatures are varied. These non-uniform temperatures in the shrouds result in the phenomenon of thermal bowing of shrouds.

  8. Thermally cascaded thermoelectric generator

    NASA Technical Reports Server (NTRS)

    Flaherty, R.

    1970-01-01

    High efficiency thermoelectric generator utilizes a high-temperature thermoelectric material in thermal series with a low-temperature material. A thermally cascaded generator increases system efficiency.

  9. Effects of Surfactant Contamination on the Next Generation Gas Trap for the ISS Internal Thermal Control System

    NASA Technical Reports Server (NTRS)

    Leimkuehler, Thomas O.; Lukens, Clark; Reeves, Daniel R.; Holt, James M.

    2004-01-01

    The current dual-membrane gas trap is designed to remove non-condensed gas bubbles from the Internal Thermal Control System (ITCS) coolant on board the International Space Station (ISS). To date it has successfully served its purpose of preventing gas bubbles from causing depriming, overspeed, and shutdown of the ITCS pump. However, contamination in the ITCS coolant has adversely affected the gas venting rate and lifetime of the gas trap, warranting a development effort for a next-generation gas trap. Previous testing has shown that a hydrophobic-only design is capable of performing even better than the current dual-membrane design for both steady-state gas removal and gas slug removal in clean deionized water. This paper presents results of testing to evaluate the effects of surfactant contamination on the steady-state performance of the hydrophobic-only design.

  10. Thermal and Radiolytic Gas Generation in Hanford High-Level Waste

    SciTech Connect

    Bryan, Samuel A.; Pederson, Larry R.; King, C. M.

    2000-01-31

    The Hanford Site has 177 underground storage tanks containing radioactive wastes that are complex mixes of radioactive and chemical products. Some of these wastes are known to generate and retain large quantities of flammable gases consisting of hydrogen, nitrous oxide, nitrogen, and ammonia. Because these gases are flammable and have the potential for rapid release, the gas generation rate for each tank must be determined to establish the flammability hazard (Johnson et al. 1997). An understanding of gas generation is important to operation of the waste tanks for several reasons. First, knowledge of the overall rate of generation is needed to verify that any given tank has sufficient ventilation to ensure that flammable gases are maintained at a safe level within the dome space. Understanding the mechanisms for production of the various gases is important so that future waste operations do not create conditions that promote the production of hydrogen, ammonia, and nitrous oxide. Studying the generation of gases also provides important data for the composition of the gas mixture, which in turn is needed to assess the flammability characteristics. Finally, information about generation of gases, including the influence of various chemical constituents, temperature, and dose, would aid in assessing the future behavior of the waste during interim storage, implementation of controls, and final waste treatment. This paper summarizes the current knowledge of gas generation pathways and discusses models used in predicting gas generation rates from actual Hanford radioactive wastes. A comparison is made between measured gas generation rates and rates by the predictive models.

  11. Potential benefits of a ceramic thermal barrier coating on large power generation gas turbine

    NASA Technical Reports Server (NTRS)

    Clark, J. S.; Nainiger, J. J.

    1977-01-01

    Thermal barrier coating design option offers benefit in terms of reduced electricity costs when used in utility gas turbines. Options considered include: increased firing temperature, increased component life, reduced cooling air requirements, and increased corrosion resistance (resulting in increased tolerance for dirty fuels). Performance and cost data were obtained. Simple, recuperated and combined cycle applications were considered, and distillate and residual fuels were assumed. The results indicate that thermal barrier coatings could produce large electricity cost savings if these coatings permit turbine operation with residual fuels at distillate-rated firing temperatures. The results also show that increased turbine inlet temperature can result in substantial savings in fuel and capital costs.

  12. Burial History, Thermal Maturity, and Oil and Gas Generation History of Source Rocks in the Bighorn Basin, Wyoming and Montana

    USGS Publications Warehouse

    Roberts, Laura N.R.; Finn, Thomas M.; Lewan, Michael D.; Kirschbaum, Mark A.

    2008-01-01

    Burial history, thermal maturity, and timing of oil and gas generation were modeled for seven key source-rock units at eight well locations throughout the Bighorn Basin in Wyoming and Montana. Also modeled was the timing of cracking to gas of Phosphoria Formation-sourced oil in the Permian Park City Formation reservoirs at two well locations. Within the basin boundary, the Phosphoria is thin and only locally rich in organic carbon; it is thought that the Phosphoria oil produced from Park City and other reservoirs migrated from the Idaho-Wyoming thrust belt. Other petroleum source rocks include the Cretaceous Thermopolis Shale, Mowry Shale, Frontier Formation, Cody Shale, Mesaverde and Meeteetse Formations, and the Tertiary (Paleocene) Fort Union Formation. Locations (wells) selected for burial history reconstructions include three in the deepest parts of the Bighorn Basin (Emblem Bench, Red Point/Husky, and Sellers Draw), three at intermediate depths (Amoco BN 1, Santa Fe Tatman, and McCulloch Peak), and two at relatively shallow locations (Dobie Creek and Doctor Ditch). The thermal maturity of source rocks is greatest in the deep central part of the basin and decreases to the south, east, and north toward the basin margins. The Thermopolis and Mowry Shales are predominantly gas-prone source rocks, containing a mix of Type-III and Type-II kerogens. The Frontier, Cody, Mesaverde, Meeteetse, and Fort Union Formations are gas-prone source rocks containing Type-III kerogen. Modeling results indicate that in the deepest areas, (1) the onset of petroleum generation from Cretaceous rocks occurred from early Paleocene through early Eocene time, (2) peak petroleum generation from Cretaceous rocks occurred during Eocene time, and (3) onset of gas generation from the Fort Union Formation occurred during early Eocene time and peak generation occurred from late Eocene to early Miocene time. Only in the deepest part of the basin did the oil generated from the Thermopolis and

  13. Gas-generated thermal oxidation of a coordination cluster for an anion-doped mesoporous metal oxide

    PubMed Central

    Hirai, Kenji; Isobe, Shigehito; Sada, Kazuki

    2015-01-01

    Central in material design of metal oxides is the increase of surface area and control of intrinsic electronic and optical properties, because of potential applications for energy storage, photocatalysis and photovoltaics. Here, we disclose a facile method, inspired by geochemical process, which gives rise to mesoporous anion-doped metal oxides. As a model system, we demonstrate that simple calcination of a multinuclear coordination cluster results in synchronic chemical reactions: thermal oxidation of Ti8O10(4-aminobenzoate)12 and generation of gases including amino-group fragments. The gas generation during the thermal oxidation of Ti8O10(4-aminobenzoate)12 creates mesoporosity in TiO2. Concurrently, nitrogen atoms contained in the gases are doped into TiO2, thus leading to the formation of mesoporous N-doped TiO2. The mesoporous N-doped TiO2 can be easily synthesized by calcination of the multinuclear coordination cluster, but shows better photocatalytic activity than the one prepared by a conventional sol-gel method. Owing to an intrinsic designability of coordination compounds, this facile synthetic will be applicable to a wide range of metal oxides and anion dopants. PMID:26681104

  14. Gas-generated thermal oxidation of a coordination cluster for an anion-doped mesoporous metal oxide.

    PubMed

    Hirai, Kenji; Isobe, Shigehito; Sada, Kazuki

    2015-01-01

    Central in material design of metal oxides is the increase of surface area and control of intrinsic electronic and optical properties, because of potential applications for energy storage, photocatalysis and photovoltaics. Here, we disclose a facile method, inspired by geochemical process, which gives rise to mesoporous anion-doped metal oxides. As a model system, we demonstrate that simple calcination of a multinuclear coordination cluster results in synchronic chemical reactions: thermal oxidation of Ti8O10(4-aminobenzoate)12 and generation of gases including amino-group fragments. The gas generation during the thermal oxidation of Ti8O10(4-aminobenzoate)12 creates mesoporosity in TiO2. Concurrently, nitrogen atoms contained in the gases are doped into TiO2, thus leading to the formation of mesoporous N-doped TiO2. The mesoporous N-doped TiO2 can be easily synthesized by calcination of the multinuclear coordination cluster, but shows better photocatalytic activity than the one prepared by a conventional sol-gel method. Owing to an intrinsic designability of coordination compounds, this facile synthetic will be applicable to a wide range of metal oxides and anion dopants. PMID:26681104

  15. Gas-phase generation of noble metal-tipped NiO nanorods by rapid thermal oxidation

    NASA Astrophysics Data System (ADS)

    Koga, Kenji; Hirasawa, Makoto

    2014-12-01

    The thermal oxidation of alloy nanoparticles (NPs) composed of nickel and a noble metal was investigated by high-resolution electron microscopic observations of the NPs oxidized in a gas phase under different oxidation conditions. When Ni0.8Au0.2 NPs were heated with oxygen from room temperature, oxidation progressed to form Au-NiO core-shell structures, however, the Au core spilled out by breaking the NiO shell at high temperatures. In contrast, when the alloy NPs were subjected to rapid thermal oxidation, which was enabled by heating the NPs at high temperatures (≥500 °C) and then abruptly exposed to oxygen, oxidation advanced anisotropically such that a NiO island protruded and built up to form a NiO nanorod. This resulted in the formation of Au-tipped NiO nanorods in which a hemispherical Au tip bonded to a NiO nanorod via a Au {111}/NiO{100} interface. We found that the relative sizes of Au and NiO in Au-tipped NiO nanorods were easily and widely controlled by changing the Au mole fraction (0.05-0.8) of the alloy NPs. Similarly, rapid thermal oxidation of Ni-Pt NPs generated Pt-tipped NiO nanorods in which a spherical Pt tip was half-embedded in a NiO nanorod. The present gas-phase approach has great potential for fabricating functional asymmetric hybrid nanostructures in clean conditions.

  16. Liquid propellant gas generators

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The design of gas generators intended to provide hot gases for turbine drive is discussed. Emphasis is placed on the design and operation of bipropellant gas generators because of their wider use. Problems and limitations involved in turbine operation due to temperature effects are analyzed. Methods of temperature control of gas turbines and combustion products are examined. Drawings of critical sections of gas turbines to show their operation and areas of stress are included.

  17. Fastrac Gas Generator Testing

    NASA Technical Reports Server (NTRS)

    Nesman, Tomas E.; Dennis, Jay

    1999-01-01

    A rocket engine gas generator component development test was recently conducted at the Marshall Space Flight Center. This gas generator was intended to power a rocket engine turbopump by the combustion of Lox and RP-1. The testing demonstrated design requirements for start sequence, wall compatibility, performance, and stable combustion. During testing the gas generator injector was modified to improve distribution of outer wall coolant and the igniter boss was modified to investigate the use of a pyrotechnic igniter, Expected chamber pressure oscillations at longitudinal acoustic modes were measured for three different chamber lengths tested. High amplitude discrete oscillations occurred in the chamber-alone configurations when chamber acoustic modes coupled with feed-system acoustics modes. For the full gas generator configuration, which included the turbine inlet manifold simulator, high amplitude oscillations occurred only at off-design very low power levels. This testing led to a successful gas generator design for the Fastrac 60,000 lb thrust engine.

  18. Fastrac Gas Generator Testing

    NASA Technical Reports Server (NTRS)

    Nesman, Tomas E.; Dennis, Jay

    2001-01-01

    A rocket engine gas generator component development test was recently conducted at the Marshall Space Flight Center. This gas generator is intended to power a rocket engine turbopump by the combustion of Lox and RP-1. The testing demonstrated design requirements for start sequence, wall compatibility, performance, and stable combustion. During testing the gas generator injector was modified to improve distribution of outer wall coolant and the igniter boss was modified to investigate the use of a pyrotechnic igniter. Expected chamber pressure oscillations at longitudinal acoustic mode were measured for three different chamber lengths tested. High amplitude discrete oscillations resulted in the chamber-alone configurations when chamber acoustic modes coupled with feed-system acoustics modes. For the full gas generator configuration, which included a turbine inlet manifold, high amplitude oscillations occurred only at off-design very low power levels. This testing led to a successful gas generator design for the Fastrac 60,000 lb thrust engine.

  19. Generation of onions and nanotubes of GaS and GaSe through laser and thermally induced exfoliation.

    PubMed

    Gautam, Ujjal K; Vivekchand, S R C; Govindaraj, A; Kulkarni, G U; Selvi, N R; Rao, C N R

    2005-03-23

    Although theoretical calculations have predicted that layered GaS and GaSe should form nanotube and related structures, they have not been prepared experimentally to date. We have carried out laser irradiation as well as thermal treatment of GaS and GaSe to cause exfoliation, which yielded onionlike structures and nanotubes by the rolling of the exfoliated sheets. PMID:15771475

  20. Hydrazine Gas Generator Program. [space shuttles

    NASA Technical Reports Server (NTRS)

    Kusak, L.; Marcy, R. D.

    1975-01-01

    The design and fabrication of a flight gas generator for the space shuttle were investigated. Critical performance parameters and stability criteria were evaluated as well as a scaling laws that could be applied in designing the flight gas generator. A test program to provide the necessary design information was included. A structural design, including thermal and stress analysis, and two gas generators were fabricated based on the results. Conclusions are presented.

  1. Thermal modulation for gas chromatography

    NASA Technical Reports Server (NTRS)

    Hasselbrink, Ernest F. (Inventor); Libardoni, Mark (Inventor); Stewart, Kristine (Inventor); Waite, J. Hunter (Inventor); Block, Bruce P. (Inventor); Sacks, Richard D. (Inventor)

    2007-01-01

    A thermal modulator device for gas chromatography and associated methods. The thermal modulator device includes a recirculating fluid cooling member, an electrically conductive capillary in direct thermal contact with the cooling member, and a power supply electrically coupled to the capillary and operable for controlled resistive heating of the capillary. The capillary can include more than one separate thermally modulated sections.

  2. Solar thermal electricity generation

    NASA Astrophysics Data System (ADS)

    Gasemagha, Khairy Ramadan

    1993-01-01

    This report presents the results of modeling the thermal performance and economic feasibility of large (utility scale) and small solar thermal power plants for electricity generation. A number of solar concepts for power systems applications have been investigated. Each concept has been analyzed over a range of plant power ratings from 1 MW(sub e) to 300 MW(sub e) and over a range of capacity factors from a no-storage case (capacity factor of about 0.25 to 0.30) up to intermediate load capacity factors in the range of 0.46 to 0.60. The solar plant's economic viability is investigated by examining the effect of various parameters on the plant costs (both capital and O & M) and the levelized energy costs (LEC). The cost components are reported in six categories: collectors, energy transport, energy storage, energy conversion, balance of plant, and indirect/contingency costs. Concentrator and receiver costs are included in the collector category. Thermal and electric energy transport costs are included in the energy transport category. Costs for the thermal or electric storage are included in the energy storage category; energy conversion costs are included in the energy conversion category. The balance of plant cost category comprises the structures, land, service facilities, power conditioning, instrumentation and controls, and spare part costs. The indirect/contingency category consists of the indirect construction and the contingency costs. The concepts included in the study are (1) molten salt cavity central receiver with salt storage (PFCR/R-C-Salt); (2) molten salt external central receiver with salt storage (PFCR/R-E-Salt); (3) sodium external central receiver with sodium storage (PFCR/RE-Na); (4) sodium external central receiver with salt storage (PFCR/R-E-Na/Salt); (5) water/steam external central receiver with oil/rock storage (PFCR/R-E-W/S); (6) parabolic dish with stirling engine conversion and lead acid battery storage (PFDR/SLAB); (7) parabolic dish

  3. Non-mass-dependent (17) O anomalies generated by a superimposed thermal gradient on a rarefied O(2) gas in a closed system.

    PubMed

    Sun, Tao; Bao, Huiming

    2011-01-15

    Cryogenic or heating methods have been widely used in experiments involving gas purification or isolation and in studying phase changes among solids, liquids, or gases for more than a century. Thermal gradients are often present in these routine processes. While stable isotopes of an element are known to fractionate under a thermal gradient, the largely diffusion-driven fractionation is assumed to be entirely mass-dependent. We report here, however, that distinct non-mass-dependent oxygen isotope fractionation can be generated when subjecting rarefied O(2) gas in a closed system to a simple thermal gradient. The Δ(17) O value, a measure of the (17) O anomaly, can be up to -0.51‰ (standard deviation (s.d.) 1σ = 0.03) in one of the temperature compartments. The magnitude of the (17) O anomalies decreased with increasing initial gas pressures. The authenticity of this phenomenon is substantiated by a series of blank tests and isotope mass-balance calculations. The observed anomalies are not the result of H(2) O contamination in samples or in isotope ratio mass spectrometry. Our finding calls attention to the importance of thermal gradient-induced isotope fractionation and to its implications in laboratory procedures, stable isotope geochemistry, and the physical chemistry of rarefied gases. PMID:21154650

  4. Thermal modulation for gas chromatography

    NASA Technical Reports Server (NTRS)

    Hasselbrink, Ernest F. (Inventor); Libardoni, Mark (Inventor); Stewart, Kristine (Inventor); Waite, J. Hunter (Inventor); Block, Bruce P. (Inventor); Sacks, Richard D. (Inventor)

    2007-01-01

    A thermal modulator device for gas chromatography and associated methods. The thermal modulator device includes a cooling member, an electrically conductive capillary in direct thermal contact with the cooling member, and a power supply electrically coupled to the capillary and operable for controlled resistive heating of the capillary.

  5. The Chemistry of Flammable Gas Generation

    SciTech Connect

    ZACH, J.J.

    2000-10-30

    The document collects information from field instrumentation, laboratory tests, and analytical models to provide a single source of information on the chemistry of flammable gas generation at the Hanford Site. It considers the 3 mechanisms of formation: radiolysis, chemical reactions, and thermal generation. An assessment of the current models for gas generation is then performed. The results are that the various phenomena are reasonably understood and modeled compared to field data.

  6. Reducing gas generators and methods for generating a reducing gas

    SciTech Connect

    Scotto, Mark Vincent; Perna, Mark Anthony

    2015-11-03

    One embodiment of the present invention is a unique reducing gas generator. Another embodiment is a unique method for generating a reducing gas. Other embodiments include apparatuses, systems, devices, hardware, methods, and combinations for generating reducing gas. Further embodiments, forms, features, aspects, benefits, and advantages of the present application will become apparent from the description and figures provided herewith.

  7. Solar Thermal Electricity Generating System

    NASA Astrophysics Data System (ADS)

    Mishra, Sambeet; Tripathy, Pratyasha

    2012-08-01

    A Solar Thermal Electricity generating system also known as Solar Thermal Power plant is an emerging renewable energy technology, where we generate the thermal energy by concentrating and converting the direct solar radiationat medium/high temperature (300∫C ñ 800∫C). The resulting thermal energy is then used in a thermodynamic cycleto produce electricity, by running a heat engine, which turns a generator to make electricity. Solar thermal power is currently paving the way for the most cost-effective solar technology on a large scale and is heading to establish a cleaner, pollution free and secured future. Photovoltaic (PV) and solar thermal technologies are two main ways of generating energy from the sun, which is considered the inexhaustible source of energy. PV converts sunlight directly into electricity whereas in Solar thermal technology, heat from the sun's rays is concentrated to heat a fluid, whose steam powers a generator that produces electricity. It is similar to the way fossil fuel-burning power plants work except that the steam is produced by the collected heat rather than from the combustion of fossil fuels. In order to generate electricity, five major varieties of solar thermal technologies used are:* Parabolic Trough Solar Electric Generating System (SEGS).* Central Receiver Power Plant.* Solar Chimney Power Plant.* Dish Sterling System.* Solar Pond Power Plant.Most parts of India,Asia experiences a clear sunny weather for about 250 to 300 days a year, because of its location in the equatorial sun belt of the earth, receiving fairly large amount of radiation as compared to many parts of the world especially Japan, Europe and the US where development and deployment of solar technologies is maximum.Whether accompanied with this benefit or not, usually we have to concentrate the solar radiation in order to compensate for the attenuation of solar radiation in its way to earthís surface, which results in from 63,2 GW/m2 at the Sun to 1 kW/m2 at

  8. Hydrogen rich gas generator

    NASA Technical Reports Server (NTRS)

    Houseman, J. (Inventor)

    1976-01-01

    A process and apparatus is described for producing a hydrogen rich gas by introducing a liquid hydrocarbon fuel in the form of a spray into a partial oxidation region and mixing with a mixture of steam and air that is preheated by indirect heat exchange with the formed hydrogen rich gas, igniting the hydrocarbon fuel spray mixed with the preheated mixture of steam and air within the partial oxidation region to form a hydrogen rich gas.

  9. Thermal and combined thermal and radiolytic reactions involving nitrous oxide, hydrogen, and nitrogen in the gas phase; comparison of gas generation rates in supernate and solid fractions of Tank 241-SY-101 simulated waste

    SciTech Connect

    Bryan, S.A.; Pederson, L.R.

    1995-03-01

    This report summarizes progress made in evaluating me by which flammable gases are generated in Hanford double-shell tank wastes, based on the results of laboratory tests using simulated waste mixtures. Work described in this report. was conducted at Pacific Northwest Laboratory (PNL) for the Flammable Gas Safety Project, the purpose of which is to develop information needed to support Westinghouse Hanford Company (WHC) in their efforts to ensure the safe interim storage of wastes at the Hanford Site. This work is related to gas generation studies being performed at Georgia Institute of Technology (GIT), under subcontract to PNL, using simulated wastes, and to studies being performed at VMC using actual wastes.

  10. Flow field thermal gradient gas chromatography.

    PubMed

    Boeker, Peter; Leppert, Jan

    2015-09-01

    Negative temperature gradients along the gas chromatographic separation column can maximize the separation capabilities for gas chromatography by peak focusing and also lead to lower elution temperatures. Unfortunately, so far a smooth thermal gradient over a several meters long separation column could only be realized by costly and complicated manual setups. Here we describe a simple, yet flexible method for the generation of negative thermal gradients using standard and easily exchangeable separation columns. The measurements made with a first prototype reveal promising new properties of the optimized separation process. The negative thermal gradient and the superposition of temperature programming result in a quasi-parallel separation of components each moving simultaneously near their lowered specific equilibrium temperatures through the column. Therefore, this gradient separation process is better suited for thermally labile molecules such as explosives and natural or aroma components. High-temperature GC methods also benefit from reduced elution temperatures. Even for short columns very high peak capacities can be obtained. In addition, the gradient separation is particularly beneficial for very fast separations below 1 min overall retention time. Very fast measurements of explosives prove the benefits of using negative thermal gradients. The new concept can greatly reduce the cycle time of high-resolution gas chromatography and can be integrated into hyphenated or comprehensive gas chromatography setups. PMID:26235451

  11. Hydrogen rich gas generator

    NASA Technical Reports Server (NTRS)

    Houseman, J.; Rupe, J. H.; Kushida, R. O. (Inventor)

    1976-01-01

    A process and apparatus is described for producing a hydrogen rich gas by injecting air and hydrocarbon fuel at one end of a cylindrically shaped chamber to form a mixture and igniting the mixture to provide hot combustion gases by partial oxidation of the hydrocarbon fuel. The combustion gases move away from the ignition region to another region where water is injected to be turned into steam by the hot combustion gases. The steam which is formed mixes with the hot gases to yield a uniform hot gas whereby a steam reforming reaction with the hydrocarbon fuel takes place to produce a hydrogen rich gas.

  12. Fuel cell generator containing a gas sealing means

    DOEpatents

    Makiel, J.M.

    1987-02-03

    A high temperature solid electrolyte electrochemical generator is made, operating with flowing fuel gas and oxidant gas, the generator having a thermal insulation layer, and a sealing means contacting or contained within the insulation, where the sealing means is effective to control the contact of the various gases utilized in the generator. 5 figs.

  13. Fuel cell generator containing a gas sealing means

    DOEpatents

    Makiel, Joseph M.

    1987-01-01

    A high temperature solid electrolyte electrochemical generator is made, operating with flowing fuel gas and oxidant gas, the generator having a thermal insulation layer, and a sealing means contacting or contained within the insulation, where the sealing means is effective to control the contact of the various gases utilized in the generator.

  14. Thermal Maturation of Gas Shale Systems

    NASA Astrophysics Data System (ADS)

    Bernard, Sylvain; Horsfield, Brian

    2014-05-01

    Shale gas systems serve as sources, reservoirs, and seals for unconventional natural gas accumulations. These reservoirs bring numerous challenges to geologists and petroleum engineers in reservoir characterization, most notably because of their heterogeneous character due to depositional and diagenetic processes but also because of their constituent rocks' fine-grained nature and small pore size -- much smaller than in conventional sandstone and carbonate reservoirs. Significant advances have recently been achieved in unraveling the gaseous hydrocarbon generation and retention processes that occur within these complex systems. In addition, cutting-edge characterization technologies have allowed precise documentation of the spatial variability in chemistry and structure of thermally mature organic-rich shales at the submicrometer scale, revealing the presence of geochemical heterogeneities within overmature gas shale samples and, notably, the presence of nanoporous pyrobitumen. Such research advances will undoubtedly lead to improved performance, producibility, and modeling of such strategic resources at the reservoir scale.

  15. Fast onset medications through thermally generated aerosols.

    PubMed

    Rabinowitz, Joshua D; Wensley, Martin; Lloyd, Peter; Myers, Daniel; Shen, William; Lu, Amy; Hodges, Craig; Hale, Ron; Mufson, Daniel; Zaffaroni, Alejandro

    2004-05-01

    Smoking involves heating a drug to form a mixture of drug vapor and gaseous degradation products. These gases subsequently cool and condense into aerosol particles that are inhaled. Here, we demonstrate rapid and reliable systemic delivery of pure pharmaceutical compounds without degradation products through a related process that also involves inhalation of thermally generated aerosol. Drug is coated as a thin film on a metallic substrate and vaporized by heating the metal. The thin nature of the drug coating minimizes the length of time during which the drug is exposed to elevated temperatures, thereby preventing its thermal decomposition. The vaporized, gas-phase drug rapidly condenses and coagulates into micrometer-sized aerosol particles. For the commonly prescribed antimigraine drug rizatriptan, inhalation of these particles results in nearly instantaneous systemic drug action. PMID:14752061

  16. Thermal barrier coatings for gas turbine and diesel engines

    NASA Technical Reports Server (NTRS)

    Miller, Robert A.; Brindley, William J.; Bailey, M. Murray

    1989-01-01

    The present state of development of thin thermal barrier coatings for aircraft gas turbine engines and thick thermal barrier coatings for truck diesel engines is assessed. Although current thermal barrier coatings are flying in certain gas turbine engines, additional advances will be needed for future engines. Thick thermal barrier coatings for truck diesel engines have advanced to the point where they are being seriously considered for the next generation of engine. Since coatings for truck engines is a young field of inquiry, continued research and development efforts will be required to help bring this technology to commercialization.

  17. Solar energy thermally powered electrical generating system

    NASA Technical Reports Server (NTRS)

    Owens, William R. (Inventor)

    1989-01-01

    A thermally powered electrical generating system for use in a space vehicle is disclosed. The rate of storage in a thermal energy storage medium is controlled by varying the rate of generation and dissipation of electrical energy in a thermally powered electrical generating system which is powered from heat stored in the thermal energy storage medium without exceeding a maximum quantity of heat. A control system (10) varies the rate at which electrical energy is generated by the electrical generating system and the rate at which electrical energy is consumed by a variable parasitic electrical load to cause storage of an amount of thermal energy in the thermal energy storage system at the end of a period of insolation which is sufficient to satisfy the scheduled demand for electrical power to be generated during the next period of eclipse. The control system is based upon Kalman filter theory.

  18. WIPP Gas-Generation Experiments

    SciTech Connect

    Frank S. Felicione; Steven M. Frank; Dennis D. Keiser

    2007-05-01

    An experimental investigation was conducted for gas generation in contact-handled transuranic (CH TRU) wastes subjected for several years to conditions similar to those expected to occur at the Waste Isolation Pilot Plant (WIPP) should the repository eventually become inundated with brine. Various types of actual CH TRU wastes were placed into 12 corrosion-resistant vessels. The vessels were loosely filled with the wastes, which were submerged in synthetic brine having the same chemical composition as that in the WIPP vicinity. The vessels were also inoculated with microbes found in the Salado Formation at WIPP. The vessels were sealed, purged, and the approximately 750 ml headspace in each vessel was pressurized with nitrogen gas to approximately 146 atmospheres to create anoxic conditions at the lithostatic pressure estimated in the repository were it to be inundated. The temperature was maintained at the expected 30°C. The test program objective was to measure the quantities and species of gases generated by metal corrosion, radiolysis, and microbial activity. These data will assist in the specification of the rates at which gases are produced under inundated repository conditions for use in the WIPP Performance Assessment computer models. These experiments were very carefully designed, constructed, instrumented, and performed. Approximately 6 1/2 years of continuous, undisturbed testing were accumulated. Several of the vessels showed significantly elevated levels of generated gases, virtually all of which was hydrogen. Up to 4.2% hydrogen, by volume, was measured. Only small quantities of other gases, principally carbon dioxide, were detected. Gas generation was found to depend strongly on the waste composition. The maximum hydrogen generation occurred in vessels containing carbon steel. Visual examination of carbon-steel coupons confirmed the correspondence between the extent of observable corrosion and hydrogen generation. Average corrosion penetration rates

  19. Reversible Chemisorption Gas-Gap Thermal Switch

    NASA Technical Reports Server (NTRS)

    Jones, Jack A.; Bard, Steven; Blue, Gary

    1991-01-01

    Gas/sorbent combinations provide means to turn heat-conduction paths on and off. Single-stage gas-gap thermal switch based on reversible chemisorption of hydrogen gas by ZrNiH. Two-stage gas-gap thermal switch based on reversible desorption of O2 from MnO2 in first stage, followed by absorption in Cu on zeolite in second stage. Requires relatively low power. Used in sorption refrigeration systems designed to operate for long times without maintenance.

  20. Thermal stresses investigation of a gas turbine blade

    NASA Astrophysics Data System (ADS)

    Gowreesh, S.; Pravin, V. K.; Rajagopal, K.; Veena, P. H.

    2012-06-01

    The analysis of structural and thermal stress values that are produced while the turbine is operating are the key factors of study while designing the next generation gas turbines. The present study examines structural, thermal, modal analysis of the first stage rotor blade of a two stage gas turbine. The design features of the turbine segment of the gas turbine have been taken from the preliminary design of a power turbine for maximization of an existing turbojet engine with optimized dump gap of the combustion chamber, since the allowable temperature on the turbine blade dependents on the hot gas temperatures from the combustion chamber. In the present paper simplified 3-D Finite Element models are developed with governing boundary conditions and solved using the commercial FEA software ANSYS. As the temperature has a significant effect on the overall stress on the rotor blades, a detail study on mechanical and thermal stresses are estimated and evaluated with the experimental values.

  1. Kinetics of thermal donor generation in silicon

    NASA Technical Reports Server (NTRS)

    Mao, B.-Y.; Lagowski, J.; Gatos, H. C.

    1984-01-01

    The generation kinetics of thermal donors at 450 C in Czochralski-grown silicon was found to be altered by high-temperature preannealing (e.g., 1100 C for 30 min). Thus, when compared with as-grown Si, high-temperature preannealed material exhibits a smaller concentration of generated thermal donors and a faster thermal donor saturation. A unified mechanism of nucleation and oxygen diffusion-controlled growth (based on solid-state plate transformation theory) is proposed to account for generation kinetics of thermal donors at 450 C, in as-grown and high-temperature preannealed Czochralski silicon crystals. This mechanism is consistent with the main features of the models which have been proposed to explain the formation of oxygen thermal donors in silicon.

  2. Entropy generation method to quantify thermal comfort

    NASA Technical Reports Server (NTRS)

    Boregowda, S. C.; Tiwari, S. N.; Chaturvedi, S. K.

    2001-01-01

    The present paper presents a thermodynamic approach to assess the quality of human-thermal environment interaction and quantify thermal comfort. The approach involves development of entropy generation term by applying second law of thermodynamics to the combined human-environment system. The entropy generation term combines both human thermal physiological responses and thermal environmental variables to provide an objective measure of thermal comfort. The original concepts and definitions form the basis for establishing the mathematical relationship between thermal comfort and entropy generation term. As a result of logic and deterministic approach, an Objective Thermal Comfort Index (OTCI) is defined and established as a function of entropy generation. In order to verify the entropy-based thermal comfort model, human thermal physiological responses due to changes in ambient conditions are simulated using a well established and validated human thermal model developed at the Institute of Environmental Research of Kansas State University (KSU). The finite element based KSU human thermal computer model is being utilized as a "Computational Environmental Chamber" to conduct series of simulations to examine the human thermal responses to different environmental conditions. The output from the simulation, which include human thermal responses and input data consisting of environmental conditions are fed into the thermal comfort model. Continuous monitoring of thermal comfort in comfortable and extreme environmental conditions is demonstrated. The Objective Thermal Comfort values obtained from the entropy-based model are validated against regression based Predicted Mean Vote (PMV) values. Using the corresponding air temperatures and vapor pressures that were used in the computer simulation in the regression equation generates the PMV values. The preliminary results indicate that the OTCI and PMV values correlate well under ideal conditions. However, an experimental study

  3. D Surface Generation from Aerial Thermal Imagery

    NASA Astrophysics Data System (ADS)

    Khodaei, B.; Samadzadegan, F.; Dadras Javan, F.; Hasani, H.

    2015-12-01

    Aerial thermal imagery has been recently applied to quantitative analysis of several scenes. For the mapping purpose based on aerial thermal imagery, high accuracy photogrammetric process is necessary. However, due to low geometric resolution and low contrast of thermal imaging sensors, there are some challenges in precise 3D measurement of objects. In this paper the potential of thermal video in 3D surface generation is evaluated. In the pre-processing step, thermal camera is geometrically calibrated using a calibration grid based on emissivity differences between the background and the targets. Then, Digital Surface Model (DSM) generation from thermal video imagery is performed in four steps. Initially, frames are extracted from video, then tie points are generated by Scale-Invariant Feature Transform (SIFT) algorithm. Bundle adjustment is then applied and the camera position and orientation parameters are determined. Finally, multi-resolution dense image matching algorithm is used to create 3D point cloud of the scene. Potential of the proposed method is evaluated based on thermal imaging cover an industrial area. The thermal camera has 640×480 Uncooled Focal Plane Array (UFPA) sensor, equipped with a 25 mm lens which mounted in the Unmanned Aerial Vehicle (UAV). The obtained results show the comparable accuracy of 3D model generated based on thermal images with respect to DSM generated from visible images, however thermal based DSM is somehow smoother with lower level of texture. Comparing the generated DSM with the 9 measured GCPs in the area shows the Root Mean Square Error (RMSE) value is smaller than 5 decimetres in both X and Y directions and 1.6 meters for the Z direction.

  4. Apparatus and method for thermal power generation

    DOEpatents

    Cohen, Paul; Redding, Arnold H.

    1978-01-01

    An improved thermal power plant and method of power generation which minimizes thermal stress and chemical impurity buildup in the vaporizing component, particularly beneficial under loss of normal feed fluid and startup conditions. The invention is particularly applicable to a liquid metal fast breeder reactor plant.

  5. The Analysis of Exhaust Gas Thermal Energy Recovery Through a TEG Generator in City Traffic Conditions Reproduced on a Dynamic Engine Test Bed

    NASA Astrophysics Data System (ADS)

    Merkisz, Jerzy; Fuc, Pawel; Lijewski, Piotr; Ziolkowski, Andrzej; Wojciechowski, Krzysztof T.

    2015-06-01

    We present an analysis of thermal energy recovery through a proprietary thermoelectric generator (TEG) in an actual vehicle driving cycle reproduced on a dynamic engine test bed. The tests were performed on a 1.3-L 66-kW diesel engine. The TEG was fitted in the vehicle exhaust system. In order to assess the thermal energy losses in the exhaust system, advanced portable emission measurement system research tools were used, such as Semtech DS by Sensors. Aside from the exhaust emissions, the said analyzer measures the exhaust mass flow and exhaust temperature, vehicle driving parameters and reads and records the engine parameters. The difficulty related to the energy recovery measurements under actual traffic conditions, particularly when passenger vehicles and TEGs are used, spurred the authors to develop a proprietary method of transposing the actual driving cycle as a function V = f( t) onto the engine test bed, opn which the driving profile, previously recorded in the city traffic, was reproduced. The length of the cycle was 12.6 km. Along with the motion parameters, the authors reproduced the parameters of the vehicle and its transmission. The adopted methodology enabled high repeatability of the research trials while still ensuring engine dynamic states occurring in the city traffic.

  6. GAS eleven node thermal model (GEM)

    NASA Technical Reports Server (NTRS)

    Butler, Dan

    1988-01-01

    The Eleven Node Thermal Model (GEM) of the Get Away Special (GAS) container was originally developed based on the results of thermal tests of the GAS container. The model was then used in the thermal analysis and design of several NASA/GSFC GAS experiments, including the Flight Verification Payload, the Ultraviolet Experiment, and the Capillary Pumped Loop. The model description details the five cu ft container both with and without an insulated end cap. Mass specific heat values are also given so that transient analyses can be performed. A sample problem for each configuration is included as well so that GEM users can verify their computations. The model can be run on most personal computers with a thermal analyzer solution routine.

  7. Gas storage carbon with enhanced thermal conductivity

    DOEpatents

    Burchell, Timothy D.; Rogers, Michael Ray; Judkins, Roddie R.

    2000-01-01

    A carbon fiber carbon matrix hybrid adsorbent monolith with enhanced thermal conductivity for storing and releasing gas through adsorption and desorption is disclosed. The heat of adsorption of the gas species being adsorbed is sufficiently large to cause hybrid monolith heating during adsorption and hybrid monolith cooling during desorption which significantly reduces the storage capacity of the hybrid monolith, or efficiency and economics of a gas separation process. The extent of this phenomenon depends, to a large extent, on the thermal conductivity of the adsorbent hybrid monolith. This invention is a hybrid version of a carbon fiber monolith, which offers significant enhancements to thermal conductivity and potential for improved gas separation and storage systems.

  8. Gas storage carbon with enhanced thermal conductivity

    SciTech Connect

    Burchell, T.D.; Rogers, M.R.; Judkins, R.R.

    2000-07-18

    A carbon fiber carbon matrix hybrid adsorbent monolith with enhanced thermal conductivity for storing and releasing gas through adsorption and desorption is disclosed. The heat of adsorption of the gas species being adsorbed is sufficiently large to cause hybrid monolith heating during adsorption and hybrid monolith cooling during desorption which significantly reduces the storage capacity of the hybrid monolith, or efficiency and economics of a gas separation process. The extent of this phenomenon depends, to a large extent, on the thermal conductivity of the adsorbent hybrid monolith. This invention is a hybrid version of a carbon fiber monolith, which offers significant enhancements to thermal conductivity and potential for improved gas separation and storage systems.

  9. Preliminary Results of Solid Gas Generator Micropropulsion

    NASA Technical Reports Server (NTRS)

    deGroot, Wilhelmus A.; Reed, Brian D.; Brenizer, Marshall

    1999-01-01

    A decomposing solid thruster concept, which creates a more benign thermal and chemical environment than solid propellant combustion, while maintaining, performance similar to solid combustion, is described. A Micro-Electro-Mechanical (MEMS) thruster concept with diode laser and fiber-optic initiation is proposed, and thruster components fabricated with MEMS technology are presented. A high nitrogen content solid gas generator compound is evaluated and tested in a conventional axisymmetric thrust chamber with nozzle throat area ratio of 100. Results show incomplete decomposition of this compound in both low pressure (1 kPa) and high pressure (1 MPa) environments, with decomposition of up to 80% of the original mass. Chamber pressures of 1.1 MPa were obtained, with maximum calculated thrust of approximately 2.7 N. Resistively heated wires and resistively heated walls were used to initiate decomposition. Initiation tests using available lasers were unsuccessful, but infrared spectra of the compound show that the laser initiation tests used inappropriate wavelengths for optimal propellant absorption. Optimal wavelengths for laser ignition were identified. Data presented are from tests currently in progress. Alternative solid gas generator compounds are being evaluated for future tests.

  10. Thermal barrier and gas seal

    NASA Technical Reports Server (NTRS)

    Kane, J. O.; Surbat, M.

    1980-01-01

    Resilient baglike seal tolerates thousand-degree temperatures and accommodates small changes in gap size without losing gas-barrier properties; at same time, it maintains smooth aerodynamic surface across gap. Seal includes alumina filler backed by metal plate. Alumina-filled envelope is easily handled and installed, and can be used in high-temperature industrial processes like coal gasification and liquefaction.

  11. The photon gas formulation of thermal radiation

    NASA Technical Reports Server (NTRS)

    Ried, R. C., Jr.

    1975-01-01

    A statistical consideration of the energy, the linear momentum, and the angular momentum of the photons that make up a thermal radiation field was presented. A general nonequilibrium statistical thermodynamics approach toward a macroscopic description of thermal radiation transport was developed and then applied to the restricted equilibrium statistical thermostatics derivation of the energy, linear momentum, and intrinsic angular momentum equations for an isotropic photon gas. A brief treatment of a nonisotropic photon gas, as an example of the results produced by the nonequilibrium statistical thermodynamics approach, was given. The relativistic variation of temperature and the invariance of entropy were illustrated.

  12. Miniature Gas-Turbine Power Generator

    NASA Technical Reports Server (NTRS)

    Wiberg, Dean; Vargo, Stephen; White, Victor; Shcheglov, Kirill

    2003-01-01

    A proposed microelectromechanical system (MEMS) containing a closed- Brayton-cycle turbine would serve as a prototype of electric-power generators for special applications in which high energy densities are required and in which, heretofore, batteries have been used. The system would have a volume of about 6 cm3 and would operate with a thermal efficiency >30 percent, generating up to 50 W of electrical power. The energy density of the proposed system would be about 10 times that of the best battery-based systems now available, and, as such, would be comparable to that of a fuel cell. The working gas for the turbine would be Xe containing small quantities of CO2, O2, and H2O as gaseous lubricants. The gas would be contained in an enclosed circulation system, within which the pressure would typically range between 5 and 50 atm (between 0.5 and 5 MPa). The heat for the Brayton cycle could be supplied by any of a number of sources, including a solar concentrator or a combustor burning a hydrocarbon or other fuel. The system would include novel heat-transfer and heat-management components. The turbine would be connected to an electric power generator/starter motor. The system would include a main rotor shaft with gas bearings; the bearing surfaces would be made of a ceramic material coated with nanocrystalline diamond. The shaft could withstand speed of 400,000 rpm or perhaps more, with bearing-wear rates less than 10(exp -)4 those of silicon bearings and 0.05 to 0.1 those of SiC bearings, and with a coefficient of friction about 0.1 that of Si or SiC bearings. The components of the system would be fabricated by a combination of (1) three-dimensional xray lithography and (2) highly precise injection molding of diamond-compatible metals and ceramic materials. The materials and fabrication techniques would be suitable for mass production. The disadvantages of the proposed system are that unlike a battery-based system, it could generate a perceptible amount of sound, and

  13. Phase Change Material Thermal Power Generator

    NASA Technical Reports Server (NTRS)

    Jones, Jack A.

    2013-01-01

    An innovative modification has been made to a previously patented design for the Phase Change Material (PCM) Thermal Generator, which works in water where ocean temperature alternatively melts wax in canisters, or allows the wax to re-solidify, causing high-pressure oil to flow through a hydraulic generator, thus creating electricity to charge a battery that powers the vehicle. In this modification, a similar thermal PCM device has been created that is heated and cooled by the air and solar radiation instead of using ocean temperature differences to change the PCM from solid to liquid. This innovation allows the device to use thermal energy to generate electricity on land, instead of just in the ocean.

  14. Thermal analysis of thermoelectric power generator; Including thermal stresses

    NASA Astrophysics Data System (ADS)

    Al-Merbati, Abdulrahman Salman

    In recent years, the energy demand is increasing leads to use and utilization of clean energy becomes target of countries all over the world. Thermoelectric generator is one type of clean energy generators which is a solid-state device that converts heat energy into electrical energy through the Seebeck effect. With availability of, heat from different sources such as solar energy and waste energy from systems, thermoelectric research becomes important research topic and researchers investigates efficient means of generating electricity from thermoelectric generators. One of the important problems with a thermoelectric is development of high thermal stresses due to formation of temperature gradient across the thermoelectric generator. High thermal stress causes device failure through cracks or fractures and these short comings may reduce the efficiency or totally fail the device. In this thesis work, thermodynamic efficiency and thermal stresses developed in thermoelectric generator are analyzed numerically. The bismuth telluride (Bi2Te3) properties are used in simulation. Stress levels in thermoelectric device pins are computed for various pin geometric configurations. MASTER.

  15. Hard error generation by thermal neutrons

    SciTech Connect

    Browning, J.S.; Gover, J.E.; Wrobel, T.F.; Hass, K.J.; Nasby, R.D.; Simpson, R.L.; Posey, L.D.; Block, R.C.

    1987-01-01

    The generation of hard errors in MNOS dielectric structures has been observed at thermal neutron fluence levels of 3.6 x 10/sup 13/ n/cm/sup 2/. Fission fragments from neutron induced fission of /sup 235/U contamination in ceramic lids have been shown to be responsible.

  16. Method and apparatus for thermal power generation

    DOEpatents

    Mangus, James D.

    1979-01-01

    A method and apparatus for power generation from a recirculating superheat-reheat circuit with multiple expansion stages which alleviates complex control systems and minimizes thermal cycling of system components, particularly the reheater. The invention includes preheating cold reheat fluid from the first expansion stage prior to its entering the reheater with fluid from the evaporator or drum component.

  17. Thermal phases of interstellar and quasar gas

    NASA Technical Reports Server (NTRS)

    Lepp, S.; Mccray, R.; Shull, J. M.; Woods, D. T.; Kallman, T.

    1985-01-01

    Interstellar gas may be in a variety of thermal phases, depending on how it is heated and ionized; here a unified picture of the equation of state of interstellar and quasar gas is presented for a variety of such mechanisms over a broad range of temperatures, densities, and column densities of absorbing matter. It is found that for select ranges of gas pressure, photoionizing flux, and heating, three thermally stable phases are allowed: coronal gas (T above 100,000 K); warm gas (T about 10,000 K); and cold gas (T less than 100 K). With attenuation of ultraviolet and X-ray radiation, the cold phase may undergo a transition to molecules. In quasar broad-line clouds, this transition occurs at column density N(H) = about 10 to the 23rd/sq cm and could result in warm molecular cores and observable emission from H2 and OH. The underlying atomic physics behind each of these phase transitions and their relevance to interstellar matter and quasars are discussed.

  18. Synthesis gas generation complex and process

    SciTech Connect

    Doering, E.L.

    1989-01-17

    A synthesis gas generation complex is described including: (a) a coal gasification plant, including at least one gasifier for the gasification of coal to produce synthesis gas at a temperature of about 2000/sup 0/F to 3000/sup 0/F, the gasifier having heat exchange surfaces adapted for indirect heat exchange with steam and water; (b) a heat exchange section comprising at least one heat exchanger in gas flow communication with the gasifier, the heat exchanger comprising at least one segment adapted to generate superheated steam, and lower temperature heat exchange segments; (c) a gas cleanup section in flow communication with the heat exchanger, the cleanup section comprising means for removing particulates and H/sub 2/S from the synthesis gas; (d) a steam turbine adapted to receive and utilize superheated steam and to produce a low temperature vapor, the steam turbine driving an electrical generator.

  19. Microstructure actuation and gas sensing by the Knudsen thermal force

    SciTech Connect

    Strongrich, Andrew; Alexeenko, Alina

    2015-11-09

    The generation of forces and moments on structures immersed in rarefied non-isothermal gas flows has received limited practical implementation since first being discovered over a century ago. The formation of significant thermal stresses requires both large thermal gradients and characteristic dimensions which are comparable to the gas molecular mean free path. For macroscopic geometries, this necessitates impractically high temperatures and very low pressures. At the microscale, however, these conditions are easily achieved, allowing the effects to be exploited, namely, for gas-property sensing and microstructure actuation. In this letter, we introduce and experimentally evaluate performance of a microelectromechanical in-plane Knudsen radiometric actuator, a self-contained device having Knudsen thermal force generation, sensing, and tuning mechanisms integrated onto the same platform. Sensitivity to ambient pressure, temperature gradient, as well as gas composition is demonstrated. Results are presented in terms of a non-dimensional force coefficient, allowing measurements to be directly compared to the previous experimental and computational data on out-of-plane cantilevered configurations.

  20. Thermal conductivity of partially ionized gas mixtures

    NASA Astrophysics Data System (ADS)

    Armaly, B. F.; Sutton, K.

    1981-06-01

    A method is proposed for predicting the translational component of the thermal conductivity of partially ionized gas mixtures. It is approximate but simple in form and offers a significant improvement over commonly utilized approximations. It does not require large computer run times nor storage, thus it is suitable for use with complex flow fields and heat transfer calculations. Results for gas mixtures which are representative of the atmosphere of Jupiter, Earth, and Venus are presented and they compare favorably with results from detailed kinetic theory analyses.

  1. Automatic gas burner block for thermal units

    SciTech Connect

    Kryzhanovskii, K.S.; Senatov, V.I.

    1987-01-01

    The authors describe a new computerized control system and gas burner configuration for natural gas furnaces used for the heat treatment of ceramics and porcelain which is designed to control and monitor combustion and temperature regimes in the furnace and optimize fuel efficiency. The system permits simultaneous operation and thermal load control of up to 12 burners, automatic maintenance of the desired fuel-air ratio over the entire temperature range, and protection of the furnace against overload by the use of a fuel cutoff switch. Specifications on productivity and efficiency and results of performance evaluations are listed.

  2. Thermal barrier coatings for aircraft gas turbines

    NASA Technical Reports Server (NTRS)

    Miller, R. A.; Levine, S. R.; Stecura, S.

    1980-01-01

    Improvements in gas turbine performance are approaching the limits imposed by alloy properties and excessive cooling air requirements. Thin ceramic coatings can increase the difference between gas temperature and metal temperature by several hundred degrees. Thus, they are potentially a major step forward in surface protection. These coatings offer the potential to reduce fuel consumption by permitting reduced coolant flow or higher turbine inlet temperature or to improve durability by reducing metal temperatures and transient thermal stresses. At NASA Lewis, in-house and contractual programs are in place to bring this promising technology to engine readiness in the early 1980's. Progress towards this goal is summarized in this paper.

  3. Onset of thermally induced gas convection in mine wastes

    USGS Publications Warehouse

    Lu, N.; Zhang, Y.

    1997-01-01

    A mine waste dump in which active oxidation of pyritic materials occurs can generate a large amount of heat to form convection cells. We analyze the onset of thermal convection in a two-dimensional, infinite horizontal layer of waste rock filled with moist gas, with the top surface of the waste dump open to the atmosphere and the bedrock beneath the waste dump forming a horizontal and impermeable boundary. Our analysis shows that the thermal regime of a waste rock system depends heavily on the atmospheric temperature, the strength of the heat source and the vapor pressure. ?? 1997 Elsevier Science Ltd. All rights reserved.

  4. F-1 Engine Gas Generator Testing

    NASA Video Gallery

    The gas generator from an F-1 engine is test-fired at the Marshall Space Flight Center in Huntsville, Ala., on Jan. 24, 2013. Data from the 30 second test will be used in the development of advance...

  5. A semiconductor bridge ignited gas generator

    SciTech Connect

    Grubelich, M.C.; Bickes, R.W. Jr.

    1992-06-01

    Compact, lightweight, self-contained gas generator systems are required for a variety of inflation or deployment applications. We designed a generic gas generator employing a semiconductor bridge, SCB, igniter to evaluate the characteristics of the black powder propellant selected. Because of the low ignition energy requirements and rugged design of SCBs, they are ideally suited to the volume, mass and severe environments for the gas generator applications. In our design, an SCB ignited a pyrotechnic (TiH{sub 1.68}KClO{sub 4}) which was used to ignite an end-burning consolidated black powder grain. We evaluated the performance of the gas generator using a computer program developed to simulate the combustion of the end-burning propellant grain. This model is in good agreement with the data from our test firings. In addition, we examined direct SCB ignition of black powder as a function of loading pressure and firing-set current. 3 refs.

  6. A semiconductor bridge ignited gas generator

    SciTech Connect

    Grubelich, M.C.; Bickes, R.W. Jr.

    1992-01-01

    Compact, lightweight, self-contained gas generator systems are required for a variety of inflation or deployment applications. We designed a generic gas generator employing a semiconductor bridge, SCB, igniter to evaluate the characteristics of the black powder propellant selected. Because of the low ignition energy requirements and rugged design of SCBs, they are ideally suited to the volume, mass and severe environments for the gas generator applications. In our design, an SCB ignited a pyrotechnic (TiH{sub 1.68}KClO{sub 4}) which was used to ignite an end-burning consolidated black powder grain. We evaluated the performance of the gas generator using a computer program developed to simulate the combustion of the end-burning propellant grain. This model is in good agreement with the data from our test firings. In addition, we examined direct SCB ignition of black powder as a function of loading pressure and firing-set current. 3 refs.

  7. Generation and delivery device for ozone gas

    NASA Technical Reports Server (NTRS)

    Andrews, Craig C. (Inventor); Murphy, Oliver J. (Inventor)

    2002-01-01

    The present invention provides an ozone generation and delivery system that lends itself to small scale applications and requires very low maintenance. The system preferably includes an anode reservoir and a cathode phase separator each having a hydrophobic membrane to allow phase separation of produced gases from water. The hydrogen gas, ozone gas and water containing ozone may be delivered under pressure.

  8. Improved Thermal Modulator for Gas Chromatography

    NASA Technical Reports Server (NTRS)

    Hasselbrink, Ernest Frederick, Jr.; Hunt, Patrick J.; Sacks, Richard D.

    2008-01-01

    An improved thermal modulator has been invented for use in a variant of gas chromatography (GC). The variant in question denoted as two-dimensional gas chromatography (2DGC) or GC-GC involves the use of three series-connected chromatographic columns, in the form of capillary tubes coated interiorly with suitable stationary phases (compounds for which different analytes exhibit different degrees of affinity). The two end columns are relatively long and are used as standard GC columns. The thermal modulator includes the middle column, which is relatively short and is not used as a standard GC column: instead, its temperature is modulated to affect timed adsorption and desorption of analyte gases between the two end columns in accordance with a 2DGC protocol.

  9. Thermal tests of the SGT5-4000F gas-turbine plant of the PGU-420T power-generating unit at Combined Heat And Power Plant 16 of Mosenergo

    NASA Astrophysics Data System (ADS)

    Teplov, B. D.; Radin, Yu. A.; Filin, A. A.; Rudenko, D. V.

    2016-08-01

    In December 2014, the PGU-420T power-generating unit was put into operation at the Combined Heat and Power Plant 16, an affiliated company of PAO Mosenergo. In 2014-2015, thermal tests of the SGT5- 4000F gas-turbine plant (GTP) integrated into the power-generating unit were carried out. In the article, the test conditions are described and the test results are presented and analyzed. During the tests, 92 operating modes within a wide range of electrical loads and ambient air temperatures and operating conditions of the GTP when fired with fuel oil were investigated. In the tests, an authorized automated measuring system was applied. The experimental data were processed according to ISO 2314:2009 "Gas turbines—Acceptance tests" standard. The available capacity and the GTP efficiency vary from 266 MW and 38.8% to 302 MW and 39.8%, respectively, within the ambient air temperature range from +24 to-12°С, while the turbine inlet temperature decreases from 1200 to 1250°С. The switch to firing fuel oil results in a reduction in the turbine inlet temperature and the capacity of the GTP. With the full load and a reduction in the ambient temperature from +24 to-12°C, the compressor efficiency decreases from 89.6 to 86.4%. The turbine efficiency is approximately 89-91%. Within the investigated range of power output, the emissions of nitrogen oxides do not exceed 35 ppm for the gas-fired plant and 65 ppm for the fuel-oil-fired plant. Within the range of the GTP power output from 50 to 100% of the rated output, the combustion chamber operates without underburning and with hardly any CO being formed. At low loads close to the no-load operation mode, the CO emissions drastically increase.

  10. Thermally modulated nano-trampoline material as smart skin for gas molecular mass detection

    NASA Astrophysics Data System (ADS)

    Xia, Hua

    2012-06-01

    Conventional multi-component gas analysis is based either on laser spectroscopy, laser and photoacoustic absorption at specific wavelengths, or on gas chromatography by separating the components of a gas mixture primarily due to boiling point (or vapor pressure) differences. This paper will present a new gas molecular mass detection method based on thermally modulated nano-trampoline material as smart skin for gas molecular mass detection by fiber Bragg grating-based gas sensors. Such a nanomaterial and fiber Bragg grating integrated sensing device has been designed to be operated either at high-energy level (highly thermal strained status) or at low-energy level (low thermal strained status). Thermal energy absorption of gas molecular trigs the sensing device transition from high-thermal-energy status to low-thermal- energy status. Experiment has shown that thermal energy variation due to gas molecular thermal energy absorption is dependent upon the gas molecular mass, and can be detected by fiber Bragg resonant wavelength shift with a linear function from 17 kg/kmol to 32 kg/kmol and a sensitivity of 0.025 kg/kmol for a 5 micron-thick nano-trampoline structure and fiber Bragg grating integrated gas sensing device. The laboratory and field validation data have further demonstrated its fast response characteristics and reliability to be online gas analysis instrument for measuring effective gas molecular mass from single-component gas, binary-component gas mixture, and multi-gas mixture. The potential industrial applications include fouling and surge control for gas charge centrifugal compressor ethylene production, gas purity for hydrogen-cooled generator, gasification for syngas production, gasoline/diesel and natural gas fuel quality monitoring for consumer market.

  11. Noble gas geochemistry in thermal springs

    SciTech Connect

    Kennedy, B.M.; Reynolds, J.H. ); Smith, S.P. )

    1988-07-01

    The composition of noble gases in both gas and water samples collected from Horseshoe Spring, Yellowstone National Park, was found to be depth dependent. The deeper the sample collection within the spring, the greater the enrichment in Kr, Xe, radiogenic {sup 4}He, and {sup 40}Ar and the greater the depletion in Ne relative to {sup 36}Ar. The compositional variations are consistent with multi-component mixing. The dominant component consists of dissolved atmospheric gases acquired by the pool at the surface in contact with air. This component is mixed in varying degree with two other components, one each for gas and water entering the bottom of the pool. The two bottom components are not in equilibrium. In Horseshoe Spring, the bubbles entering at the bottom strip the atmospheric-derived pool gases from the surrounding water while en route to the surface. If the original bottom bubbles are noble gas, as in the case of Horseshoe, the acquired pool gases can then quickly obliterate the original bubble composition. These results are used to demonstrate that Yellowstone spring surface gas samples, and perhaps similarity sampled thermal springs from other hydrothermal systems, have gas abundances that depend more on spring morphology than processes occurring deeper in the hydrothermal system.

  12. Generation of sub-ppb level vapor phase mixtures of biogenic volatile organic compounds from liquid phase standards and stepwise characterization of their volatilization properties by thermal desorption-gas chromatography-mass spectrometry.

    PubMed

    Iqbal, Mohammad Asif; Kim, Ki-Hyun

    2014-12-19

    In the analysis of biogenic volatile organic compounds (BVOCs) in ambient air, preparation of a sub-ppb level standard is an important factor. This task is very challenging as most BVOCs (e.g., monoterpenes) are highly volatile and reactive in nature. As a means to produce sub-ppb gaseous standards for BVOCs, we investigated the dynamic headspace (HS) extraction technique through which their vapors are generated from a liquid standard (mixture of 10 BVOCs: (1) α-pinene, (2) β-pinene, (3) 3-carene, (4) myrcene, (5) α-phellandrene, (6) α-terpinene, (7) R-limonene, (8) γ-terpinene, (9) p-cymene, and (10) Camphene) spiked into a chamber-style impinger. The quantification of BVOCs was made by collection on multiple-bed sorbent tubes (STs) and subsequent analysis by thermal desorption-gas chromatography-mass spectrometry (TD-GC-MS). Using this approach, sub-ppb level mixtures of gaseous BVOCs were generated at different sweep cycles. The mean concentrations of 10 BVOCs generated from the most stable conditions (i.e., in the third sweep cycle) varied in the range of 0.37±0.05 to 7.27±0.86ppb depending on the initial concentration of liquid standard spiked into the system. The reproducibility of the gaseous BVOCs generated as mixture standards, if expressed in terms of relative standard error using the concentration datasets acquired under stable conditions, ranged from 1.64 (α-phellandrene) to 9.67% (R-limonene). PMID:25464998

  13. Analytical model for thermal boundary conductance and equilibrium thermal accommodation coefficient at solid/gas interfaces.

    PubMed

    Giri, Ashutosh; Hopkins, Patrick E

    2016-02-28

    We develop an analytical model for the thermal boundary conductance between a solid and a gas. By considering the thermal fluxes in the solid and the gas, we describe the transmission of energy across the solid/gas interface with diffuse mismatch theory. From the predicted thermal boundary conductances across solid/gas interfaces, the equilibrium thermal accommodation coefficient is determined and compared to predictions from molecular dynamics simulations on the model solid-gas systems. We show that our model is applicable for modeling the thermal accommodation of gases on solid surfaces at non-cryogenic temperatures and relatively strong solid-gas interactions (εsf ≳ kBT). PMID:26931716

  14. Burial history, thermal maturity, and oil and gas generation history of petroleum systems in the Wind River Basin Province, central Wyoming: Chapter 6 in Petroleum systems and geologic assessment of oil and gas resources in the Wind River Basin Province, Wyoming

    USGS Publications Warehouse

    Roberts, Laura N.R.; Finn, Thomas M.; Lewan, Michael D.; Kirschbaum, Mark A.

    2007-01-01

    Burial history, thermal maturity, and timing of oil and gas generation were modeled for eight key source rock units at nine well locations throughout the Wind River Basin Province. Petroleum source rocks include the Permian Phosphoria Formation, the Cretaceous Mowry Shale, Cody Shale, and Mesaverde, Meeteetse, and Lance Formations, and the Tertiary (Paleocene) Fort Union Formation, including the Waltman Shale Member. Within the province boundary, the Phosphoria is thin and only locally rich in organic carbon. Phosphoria oil produced from reservoirs in the province is thought to have migrated from the Wyoming and Idaho thrust belt. Locations (wells) selected for burial history reconstructions include three in the deepest parts of the province (Adams OAB-17, Bighorn 1-5, and Coastal Owl Creek); three at intermediate depths (Hells Half Acre, Shell 33X-10, and West Poison Spider); and three at relatively shallow locations (Young Ranch, Amoco Unit 100, and Conoco-Coal Bank). The thermal maturity of source rocks is greatest in the deep northern and central parts of the province and decreases to the south and east toward the basin margins. The results of the modeling indicate that, in the deepest areas, (1) peak petroleum generation from Cretaceous rocks occurred from Late Cretaceous through middle Eocene time, and (2) onset of oil generation from the Waltman Shale Member occurred from late Eocene to early Miocene time. Based on modeling results, gas generation from the cracking of Phosphoria oil reservoired in the Park City Formation reached a peak in the late Paleocene/early Eocene (58 to 55 Ma) only in the deepest parts of the province. The Mowry Shale and Cody Shale (in the eastern half of the basin) contain a mix of Type-II and Type-III kerogens. Oil generation from predominantly Type-II source rocks of these units in the deepest parts of the province reached peak rates during the latest Cretaceous to early Eocene (65 to 55 Ma). Only in these areas of the basin did

  15. NEXT GENERATION GAS TURBINE SYSTEMS STUDY

    SciTech Connect

    Benjamin C. Wiant; Ihor S. Diakunchak; Dennis A. Horazak; Harry T. Morehead

    2003-03-01

    Under sponsorship of the U.S. Department of Energy's National Energy Technology Laboratory, Siemens Westinghouse Power Corporation has conducted a study of Next Generation Gas Turbine Systems that embraces the goals of the DOE's High Efficiency Engines and Turbines and Vision 21 programs. The Siemens Westinghouse Next Generation Gas Turbine (NGGT) Systems program was a 24-month study looking at the feasibility of a NGGT for the emerging deregulated distributed generation market. Initial efforts focused on a modular gas turbine using an innovative blend of proven technologies from the Siemens Westinghouse W501 series of gas turbines and new enabling technologies to serve a wide variety of applications. The flexibility to serve both 50-Hz and 60-Hz applications, use a wide range of fuels and be configured for peaking, intermediate and base load duty cycles was the ultimate goal. As the study progressed the emphasis shifted from a flexible gas turbine system of a specific size to a broader gas turbine technology focus. This shift in direction allowed for greater placement of technology among both the existing fleet and new engine designs, regardless of size, and will ultimately provide for greater public benefit. This report describes the study efforts and provides the resultant conclusions and recommendations for future technology development in collaboration with the DOE.

  16. Detonation duct gas generator demonstration program

    NASA Technical Reports Server (NTRS)

    Wortman, A.; Othmer, P.; Rostafinski, W.

    1992-01-01

    An experimental demonstration is presented for the generation of detonation waves that move periodically across high speed channel flow; these waves can compress the outflow from a low pressure compressor, and thereby both reduce the compressor requirements associated with conventional gas turbines and enhance thermodynamic efficiency through isochoric energy addition. By generating transient transverse waves, rather than standing waves, shock-wave losses are reduced by an order of magnitude; the result is a Humphrey cycle augmenting the basic Brayton-cycle gas turbine. Attention is presently given to results from an experimental detonation duct.

  17. Durability Challenges for Next Generation of Gas Turbine Engine Materials

    NASA Technical Reports Server (NTRS)

    Misra, Ajay K.

    2012-01-01

    Aggressive fuel burn and carbon dioxide emission reduction goals for future gas turbine engines will require higher overall pressure ratio, and a significant increase in turbine inlet temperature. These goals can be achieved by increasing temperature capability of turbine engine hot section materials and decreasing weight of fan section of the engine. NASA is currently developing several advanced hot section materials for increasing temperature capability of future gas turbine engines. The materials of interest include ceramic matrix composites with 1482 - 1648 C temperature capability, advanced disk alloys with 815 C capability, and low conductivity thermal barrier coatings with erosion resistance. The presentation will provide an overview of durability challenges with emphasis on the environmental factors affecting durability for the next generation of gas turbine engine materials. The environmental factors include gaseous atmosphere in gas turbine engines, molten salt and glass deposits from airborne contaminants, impact from foreign object damage, and erosion from ingestion of small particles.

  18. Thermal chemical recuperation method and system for use with gas turbine systems

    DOEpatents

    Yang, Wen-Ching; Newby, Richard A.; Bannister, Ronald L.

    1999-01-01

    A system and method for efficiently generating power using a gas turbine, a steam generating system (20, 22, 78) and a reformer. The gas turbine receives a reformed fuel stream (74) and an air stream and produces shaft power and exhaust. Some of the thermal energy from the turbine exhaust is received by the reformer (18). The turbine exhaust is then directed to the steam generator system that recovers thermal energy from it and also produces a steam flow from a water stream. The steam flow and a fuel stream are directed to the reformer that reforms the fuel stream and produces the reformed fuel stream used in the gas turbine.

  19. Thermal chemical recuperation method and system for use with gas turbine systems

    DOEpatents

    Yang, W.C.; Newby, R.A.; Bannister, R.L.

    1999-04-27

    A system and method are disclosed for efficiently generating power using a gas turbine, a steam generating system and a reformer. The gas turbine receives a reformed fuel stream and an air stream and produces shaft power and exhaust. Some of the thermal energy from the turbine exhaust is received by the reformer. The turbine exhaust is then directed to the steam generator system that recovers thermal energy from it and also produces a steam flow from a water stream. The steam flow and a fuel stream are directed to the reformer that reforms the fuel stream and produces the reformed fuel stream used in the gas turbine. 2 figs.

  20. Equilibrium and kinetic studies of in situ generation of ammonia from urea in a batch reactor for flue gas conditioning of thermal power plants

    SciTech Connect

    Sahu, J.N.; Patwardhan, A.V.; Meikap, B.C.

    2009-03-15

    Ammonia has long been known to be useful in the treatment of flue/tail/stack gases from industrial furnaces, incinerators, and electric power generation industries. In this study, urea hydrolysis for production of ammonia, in different application areas that require safe use of ammonia at in situ condition, was investigated in a batch reactor. The equilibrium and kinetic study of urea hydrolysis was done in a batch reactor at reaction pressure to investigate the effect of reaction temperature, initial feed concentration, and time on ammonia production. This study reveals that conversion increases exponentially with an increase in temperature but with increases in initial feed concentration of urea the conversion decreases marginally. Further, the effect of time on conversion has also been studied; it was found that conversion increases with increase in time. Using collision theory, the temperature dependency of forward rate constant developed from which activation energy of the reaction and the frequency factor has been calculated. The activation energy and frequency factor of urea hydrolysis reaction at atmospheric pressure was found to be 73.6 kJ/mol and 2.89 x 10{sup 7} min{sup -1}, respectively.

  1. Thermal Decomposition of Furan Generates Propargyl Radicals

    SciTech Connect

    Vasiliou, A.; Nimlos, M. R.; Daily, J. W.; Ellison, G. B.

    2009-07-01

    The thermal decomposition of furan has been studied by a 1 mm x 2 cm tubular silicon carbide reactor, C{sub 4}H{sub 4}O + {Delta} {yields} products. Unlike previous studies, these experiments are able to identify the initial furan decomposition products. Furan is entrained in either He or Ar carrier gas and is passed through a heated (1600 K) SiC tubular reactor. Furan decomposes during transit through the tubular reactor (approximately 65 {micro}s) and exits to a vacuum chamber. Within one nozzle diameter of leaving the nozzle, the gases cool to less than 50 K, and all reactions cease. The resultant molecular beam is interrogated by photoionization mass spectroscopy as well as infrared spectroscopy. Earlier G2(MP2) electronic structure calculations predicted that furan will thermally decompose to acetylene, ketene, carbon monoxide, and propyne at lower temperatures. At higher temperatures, these calculations forecast that propargyl radical could result. We observe all of these species (see Scheme 1). As the pressure in the tubular reactor is raised, the photoionization mass spectra show clear evidence for the formation of aromatic hydrocarbons.

  2. Modeling of non-thermal plasma in flammable gas mixtures

    NASA Astrophysics Data System (ADS)

    Napartovich, A. P.; Kochetov, I. V.; Leonov, S. B.

    2008-07-01

    An idea of using plasma-assisted methods of fuel ignition is based on non-equilibrium generation of chemically active species that speed up the combustion process. It is believed that gain in energy consumed for combustion acceleration by plasmas is due to the non-equilibrium nature of discharge plasma, which allows radicals to be produced in an above-equilibrium amount. Evidently, the size of the effect is strongly dependent on the initial temperature, pressure, and composition of the mixture. Of particular interest is comparison between thermal ignition of a fuel-air mixture and non-thermal plasma initiation of the combustion. Mechanisms of thermal ignition in various fuel-air mixtures have been studied for years, and a number of different mechanisms are known providing an agreement with experiments at various conditions. The problem is -- how to conform thermal chemistry approach to essentially non-equilibrium plasma description. The electric discharge produces much above-equilibrium amounts of chemically active species: atoms, radicals and ions. The point is that despite excess concentrations of a number of species, total concentration of these species is far below concentrations of the initial gas mixture. Therefore, rate coefficients for reactions of these discharge produced species with other gas mixture components are well known quantities controlled by the translational temperature, which can be calculated from the energy balance equation taking into account numerous processes initiated by plasma. A numerical model was developed combining traditional approach of thermal combustion chemistry with advanced description of the plasma kinetics based on solution of electron Boltzmann equation. This approach allows us to describe self-consistently strongly non-equilibrium electric discharge in chemically unstable (ignited) gas. Equations of pseudo-one-dimensional gas dynamics were solved in parallel with a system of thermal chemistry equations, kinetic equations

  3. Phase-field Modeling of Gas Bubbles and Thermal Conductivity Evolution in Nuclear Fuels

    SciTech Connect

    Hu, Shenyang Y.; Henager, Charles H.; Heinisch, Howard L.; Stan, Marius; Baskes, Michael I.; Valone, Steven

    2009-07-15

    The major factors that influence the thermal conductivity of the ceramics and metals are temperature, stoichiometry, microstructure, porosity, and point defects. Nuclear fuels and structure materials are subject to a severe radiation environment and their properties, including thermal conductivity change significantly with time and irradiation level. In particular, the accumulation of fission products and the formation of He bubbles can decrease the heat transfer, leading to overheating of the fuel element. In this work, we use the phase-field method to study the effect of microstructural changes on thermal conductivity. We developed a phase-field model to simulate the He bubble formation and growth in a single/polycrystalline material with defects. The model takes into account the generation of gas atoms and defects, gas atom diffusivity inhomogeneity, gas atom segregation, and gas bubble nucleation. With the model, we simulated the gas bubble and temperature evolution, and calculated the effect of gas bubble volume fraction on effective thermal conductivity.

  4. Device for thermal transfer and power generation

    DOEpatents

    Weaver, Stanton Earl; Arik, Mehmet

    2011-04-19

    A system is provided. The system includes a device that includes top and bottom thermally conductive substrates positioned opposite to one another, wherein a top surface of the bottom thermally conductive substrate is substantially atomically flat and a thermal blocking layer disposed between the top and bottom thermally conductive substrates. The device also includes top and bottom electrodes separated from one another between the top and bottom thermally conductive substrates to define a tunneling path, wherein the top electrode is disposed on the thermal blocking layer and the bottom electrode is disposed on the bottom thermally conductive substrate.

  5. Axial thermal gradients in microchip gas chromatography.

    PubMed

    Wang, Anzi; Hynynen, Sampo; Hawkins, Aaron R; Tolley, Samuel E; Tolley, H Dennis; Lee, Milton L

    2014-12-29

    Fabrication technologies for microelectromechanical systems (MEMS) allow miniaturization of conventional benchtop gas chromatography (GC) to portable, palm-sized microfabricated GC (μGC) devices, which are suitable for on-site chemical analysis and remote sensing. The separation performance of μGC systems, however, has not been on par with conventional GC. Column efficiency, peak symmetry and resolution are often compromised by column defects and non-ideal injections. The relatively low performance of μGC devices has impeded their further commercialization and broader application. In this work, the separation performance of μGC columns was improved by incorporating thermal gradient gas chromatography (TGGC). The analysis time was ∼20% shorter for TGGC separations compared to conventional temperature-programmed GC (TPGC) when a wide sample band was introduced into the column. Up to 50% reduction in peak tailing was observed for polar analytes, which improved their resolution. The signal-to-noise ratios (S/N) of late-eluting peaks were increased by 3-4 fold. The unique focusing effect of TGGC overcomes many of the previous shortcomings inherent in μGC analyses. PMID:25476685

  6. 46 CFR 154.906 - Inert gas generators.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Inert gas generators. 154.906 Section 154.906 Shipping... Atmospheric Control in Cargo Containment Systems § 154.906 Inert gas generators. The inert gas generator must... sample the discharge of the generator for oxygen content; and (c) Have an audible and visual alarm in...

  7. 46 CFR 154.906 - Inert gas generators.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Inert gas generators. 154.906 Section 154.906 Shipping... Atmospheric Control in Cargo Containment Systems § 154.906 Inert gas generators. The inert gas generator must... sample the discharge of the generator for oxygen content; and (c) Have an audible and visual alarm in...

  8. 46 CFR 154.906 - Inert gas generators.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Inert gas generators. 154.906 Section 154.906 Shipping... Atmospheric Control in Cargo Containment Systems § 154.906 Inert gas generators. The inert gas generator must... sample the discharge of the generator for oxygen content; and (c) Have an audible and visual alarm in...

  9. 46 CFR 154.906 - Inert gas generators.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Inert gas generators. 154.906 Section 154.906 Shipping... Atmospheric Control in Cargo Containment Systems § 154.906 Inert gas generators. The inert gas generator must... sample the discharge of the generator for oxygen content; and (c) Have an audible and visual alarm in...

  10. 46 CFR 154.906 - Inert gas generators.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Inert gas generators. 154.906 Section 154.906 Shipping... Atmospheric Control in Cargo Containment Systems § 154.906 Inert gas generators. The inert gas generator must... sample the discharge of the generator for oxygen content; and (c) Have an audible and visual alarm in...

  11. Depressing thermal conductivity of fullerene by caging rare gas

    NASA Astrophysics Data System (ADS)

    Li, Jian; Zheng, Dong-Qin; Zhong, Wei-Rong

    2016-01-01

    We have investigated the thermal conductivity of C60 and its derivatives caged with rare gas by using the nonequilibrium molecular dynamics method. It is reported that embedding C60 with different rare gas atoms has a significant impact on its thermal conductivity. We analyze the phenomenon through the phonon spectra of rare gas atom and the C-C bonds length of C60. When the number of atoms inside the C60 increases, the phonon spectra band width of rare gas expands and the length of C-C bonds becomes longer, which contributes to the depression of the thermal conductivity of C60. The method is applied to control the thermal conductivity of C60 chains, which maybe a kind of potential materials in thermal circuits. Our results also provide a controllable method for the thermal management in nanoscale materials.

  12. Gas Generation from Actinide Oxide Materials

    SciTech Connect

    George Bailey; Elizabeth Bluhm; John Lyman; Richard Mason; Mark Paffett; Gary Polansky; G. D. Roberson; Martin Sherman; Kirk Veirs; Laura Worl

    2000-12-01

    This document captures relevant work performed in support of stabilization, packaging, and long term storage of plutonium metals and oxides. It concentrates on the issue of gas generation with specific emphasis on gas pressure and composition. Even more specifically, it summarizes the basis for asserting that materials loaded into a 3013 container according to the requirements of the 3013 Standard (DOE-STD-3013-2000) cannot exceed the container design pressure within the time frames or environmental conditions of either storage or transportation. Presently, materials stabilized and packaged according to the 3013 Standard are to be transported in certified packages (the certification process for the 9975 and the SAFKEG has yet to be completed) that do not rely on the containment capabilities of the 3013 container. Even though no reliance is placed on that container, this document shows that it is highly likely that the containment function will be maintained not only in storage but also during transportation, including hypothetical accident conditions. Further, this document, by summarizing materials-related data on gas generation, can point those involved in preparing Safety Analysis Reports for Packages (SARPs) to additional information needed to assess the ability of the primary containment vessel to contain the contents and any reaction products that might reasonably be produced by the contents.

  13. Non-thermal plasmas as gas-phase advanced oxidation processes

    SciTech Connect

    Rosocha, L.A.

    1997-08-01

    Non-thermal plasmas are useful for generating reactive species (free radicals) in a gas stream. Because radical attack reaction rate constants are very large for many chemical species, entrained pollutants are readily decomposed by radicals. Such plasmas can generate both oxidative and reductive radicals; therefore, they show promise for treating a wide variety of pollutants.

  14. Detonation duct gas generator demonstration program

    NASA Technical Reports Server (NTRS)

    Wortman, Andrew; Brinlee, Gayl A.; Othmer, Peter; Whelan, Michael A.

    1991-01-01

    The feasibility of the generation of detonation waves moving periodically across high speed channel flow is experimentally demonstrated. Such waves are essential to the concept of compressing requirements and increasing the engine pressure compressor with the objective of reducing conventional compressor requirements and increasing the engine thermodynamic efficiency through isochoric energy addition. By generating transient transverse waves, rather than standing waves, shock wave losses are reduced by an order of magnitude. The ultimate objective is to use such detonation ducts downstream of a low pressure gas turbine compressor to produce a high overall pressure ratio thermodynamic cycle. A 4 foot long, 1 inch x 12 inch cross-section, detonation duct was operated in a blow-down mode using compressed air reservoirs. Liquid or vapor propane was injected through injectors or solenoid valves located in the plenum or the duct itself. Detonation waves were generated when the mixture was ignited by a row of spark plugs in the duct wall. Problems with fuel injection and mixing limited the air speeds to about Mach 0.5, frequencies to below 10 Hz, and measured pressure ratios of about 5 to 6. The feasibility of the gas dynamic compression was demonstrated and the critical problem areas were identified.

  15. Thermal oxidation vitrification flue gas elimination system

    SciTech Connect

    Kephart, W.; Angelo, F.; Clemens, M.

    1995-06-01

    With minor modifications to a Best Demonstrated Available Technology hazardous waste incinerator, it is possible to obtain combustion without potentially toxic emissions by using technology currently employed in similar applications throughout industry. Further, these same modifications will reduce waste handling over an extended operating envelope while minimizing energy consumption. Three by-products are produced: industrial grade carbon dioxide, nitrogen, and a final waste form that will exceed Toxicity Characteristics Leaching Procedures requirements and satisfy nuclear waste product consistency tests. The proposed system utilizes oxygen rather than air as an oxidant to reduce the quantities of total emissions, improve the efficiency of the oxidation reactions, and minimize the generation of toxic NO{sub x} emissions. Not only will less potentially hazardous constituents be generated; all toxic substances can be contained and the primary emission, carbon dioxide -- the leading ``greenhouse gas`` contributing to global warming -- will be converted to an industrial by-product needed to enhance the extraction of energy feedstocks from maturing wells. Clearly, the proposed configuration conforms to the provisions for Most Achievable Control Technology as defined and mandated for the private sector by the Clear Air Act Amendments of 1990 to be implemented in 1997 and still lacking definition.

  16. Thermoelectric power generator for variable thermal power source

    SciTech Connect

    Bell, Lon E; Crane, Douglas Todd

    2015-04-14

    Traditional power generation systems using thermoelectric power generators are designed to operate most efficiently for a single operating condition. The present invention provides a power generation system in which the characteristics of the thermoelectrics, the flow of the thermal power, and the operational characteristics of the power generator are monitored and controlled such that higher operation efficiencies and/or higher output powers can be maintained with variably thermal power input. Such a system is particularly beneficial in variable thermal power source systems, such as recovering power from the waste heat generated in the exhaust of combustion engines.

  17. Modeling acid-gas generation from boiling chloride brines

    SciTech Connect

    Zhang, Guoxiang; Spycher, Nicolas; Sonnenthal, Eric; Steefel, Carl

    2009-11-16

    This study investigates the generation of HCl and other acid gases from boiling calcium chloride dominated waters at atmospheric pressure, primarily using numerical modeling. The main focus of this investigation relates to the long-term geologic disposal of nuclear waste at Yucca Mountain, Nevada, where pore waters around waste-emplacement tunnels are expected to undergo boiling and evaporative concentration as a result of the heat released by spent nuclear fuel. Processes that are modeled include boiling of highly concentrated solutions, gas transport, and gas condensation accompanied by the dissociation of acid gases, causing low-pH condensate. Simple calculations are first carried out to evaluate condensate pH as a function of HCl gas fugacity and condensed water fraction for a vapor equilibrated with saturated calcium chloride brine at 50-150 C and 1 bar. The distillation of a calcium-chloride-dominated brine is then simulated with a reactive transport model using a brine composition representative of partially evaporated calcium-rich pore waters at Yucca Mountain. Results show a significant increase in boiling temperature from evaporative concentration, as well as low pH in condensates, particularly for dynamic systems where partial condensation takes place, which result in enrichment of HCl in condensates. These results are in qualitative agreement with experimental data from other studies. The combination of reactive transport with multicomponent brine chemistry to study evaporation, boiling, and the potential for acid gas generation at the proposed Yucca Mountain repository is seen as an improvement relative to previously applied simpler batch evaporation models. This approach allows the evaluation of thermal, hydrological, and chemical (THC) processes in a coupled manner, and modeling of settings much more relevant to actual field conditions than the distillation experiment considered. The actual and modeled distillation experiments do not represent

  18. Modeling acid-gas generation from boiling chloride brines

    PubMed Central

    2009-01-01

    Background This study investigates the generation of HCl and other acid gases from boiling calcium chloride dominated waters at atmospheric pressure, primarily using numerical modeling. The main focus of this investigation relates to the long-term geologic disposal of nuclear waste at Yucca Mountain, Nevada, where pore waters around waste-emplacement tunnels are expected to undergo boiling and evaporative concentration as a result of the heat released by spent nuclear fuel. Processes that are modeled include boiling of highly concentrated solutions, gas transport, and gas condensation accompanied by the dissociation of acid gases, causing low-pH condensate. Results Simple calculations are first carried out to evaluate condensate pH as a function of HCl gas fugacity and condensed water fraction for a vapor equilibrated with saturated calcium chloride brine at 50-150°C and 1 bar. The distillation of a calcium-chloride-dominated brine is then simulated with a reactive transport model using a brine composition representative of partially evaporated calcium-rich pore waters at Yucca Mountain. Results show a significant increase in boiling temperature from evaporative concentration, as well as low pH in condensates, particularly for dynamic systems where partial condensation takes place, which result in enrichment of HCl in condensates. These results are in qualitative agreement with experimental data from other studies. Conclusion The combination of reactive transport with multicomponent brine chemistry to study evaporation, boiling, and the potential for acid gas generation at the proposed Yucca Mountain repository is seen as an improvement relative to previously applied simpler batch evaporation models. This approach allows the evaluation of thermal, hydrological, and chemical (THC) processes in a coupled manner, and modeling of settings much more relevant to actual field conditions than the distillation experiment considered. The actual and modeled distillation

  19. 46 CFR 154.908 - Inert gas generator: Location.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Inert gas generator: Location. 154.908 Section 154.908... Atmospheric Control in Cargo Containment Systems § 154.908 Inert gas generator: Location. (a) Except as allowed in paragraph (b) of this section, an inert gas generator must be located in the main...

  20. 46 CFR 154.908 - Inert gas generator: Location.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Inert gas generator: Location. 154.908 Section 154.908... Atmospheric Control in Cargo Containment Systems § 154.908 Inert gas generator: Location. (a) Except as allowed in paragraph (b) of this section, an inert gas generator must be located in the main...

  1. 46 CFR 154.908 - Inert gas generator: Location.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Inert gas generator: Location. 154.908 Section 154.908... Atmospheric Control in Cargo Containment Systems § 154.908 Inert gas generator: Location. (a) Except as allowed in paragraph (b) of this section, an inert gas generator must be located in the main...

  2. 46 CFR 154.908 - Inert gas generator: Location.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Inert gas generator: Location. 154.908 Section 154.908... Atmospheric Control in Cargo Containment Systems § 154.908 Inert gas generator: Location. (a) Except as allowed in paragraph (b) of this section, an inert gas generator must be located in the main...

  3. 46 CFR 154.908 - Inert gas generator: Location.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Inert gas generator: Location. 154.908 Section 154.908... Atmospheric Control in Cargo Containment Systems § 154.908 Inert gas generator: Location. (a) Except as allowed in paragraph (b) of this section, an inert gas generator must be located in the main...

  4. Hydrazine gas generator performance on Space Shuttle

    NASA Technical Reports Server (NTRS)

    Patterson, I. J.; Swink, D. G.

    1983-01-01

    The design, functions, performance, and applications of the hydrazine gas generators (GG) on the STS are detailed. The GGs provide gas horse power for the APUs that drive the hydraulic pumps on the SRBs, which have two cross-linked systems. The Orbiter has three-cross-linked APU systems, used for gimballing the main engine and booster nozzles, actuating the main engine fuel valves and the ET umbilical disconnect, actuation of the control surfaces, and powering the landing gear, brakes, and nose wheel steering. The major design components of the Orbiter GGs are an injector, a catalyst bed, a decomposition chamber, an exhaust nozzle, and an interface structure, with the main structural material being Hasteloy B. Hydrazine injected and dispersed into the catalyst bed decomposes into gas and exits for expansion in an APU turbine. Twenty-six GGs have flown on missions STS-1 through STS-6 with over three tons of hydrazine having been expended over 44 hr of operations, as no refurbishment to that point was necessary.

  5. Thermal emf generated by laser emission along thin metal films

    NASA Astrophysics Data System (ADS)

    Konov, V. I.; Nikitin, P. I.; Satiukov, D. G.; Uglov, S. A.

    1991-07-01

    Substantial pulse thermal emf values (about 1.5 V) have been detected along the substrate during the interaction of laser emission with thin metal films (Ni, Ti, and Bi) sprayed on corrugated substrates. Relationships are established between the irradiation conditions and parameters of the generated electrical signals. Possible mechanisms of thermal emf generation and promising applications are discussed.

  6. Dual entry radial turbine gas generator

    SciTech Connect

    Mowill, R.J.

    1987-02-10

    This patent describes a high efficiency, single spool gas turbine gas generator comprising: (a) compressor means for providing an overall pressure ratio of greater than about 15:1, the compressor means including: (i) a first stage, double-entry centrifugal air compressor having a pair of entrances and a common exit, (ii) a second stage, centrifugal air compressor positioned adjacent to the first stage compressor, the second compressor stage having an entrance that is flow-connected to the first stage common exit and also having a second stage exit, and (iii) a shaft assembly for mechanically interconnecting the first and the second stage for rotation at the same angular speed; (b) combustor means operatively connected to the second stage exit for receiving the compressed air and combusting fuel using the compressed air to generate combustion gases; and (c) a single stage radial inflow turbine having an inlet and an outlet, the turbine being operatively connected directly to the shaft assembly drive and also being flow connected to the combustor means for receiving at the turbine inlet, and partially expanding, the combustion gases.

  7. Gas generation phenomena in radioactive waste transportation packaging

    SciTech Connect

    Nigrey, P.J.

    1997-11-01

    The interaction of radiation from radioactive materials with the waste matrix can lead to the deterioration of the waste form resulting in the possible formation of gaseous species. Depending on the type and characteristics of the radiation source, the generation of hydrogen may predominate. Since the interaction of alpha particles with the waste form results in significant energy transfer, other gases such as carbon oxides, methane, nitrogen oxides, oxygen, water, and helium are possible. The type of gases produced from the waste forms is determined by the mechanisms involved in the waste degradation. For transuranic wastes, the identified degradation mechanisms are reported to be caused by radiolysis, thermal decomposition or dewatering, chemical corrosion, and bacterial action. While all these mechanisms may be responsible for the buildup of gases during the storage of wastes, radiolysis and thermal decomposition appear to be the main contributors during waste transport operations. In this paper, the authors provide a review of applicable gas generation data resulting from the degradation of various waste forms under conditions typical for transport. The effects of radiolytic and thermal degradation mechanisms will be discussed in the context of transportation safety.

  8. Method for generating a highly reactive plasma for exhaust gas aftertreatment and enhanced catalyst reactivity

    DOEpatents

    Whealton, John H.; Hanson, Gregory R.; Storey, John M.; Raridon, Richard J.; Armfield, Jeffrey S.; Bigelow, Timothy S.; Graves, Ronald L.

    2001-01-01

    A method for non-thermal plasma aftertreatment of exhaust gases the method comprising the steps of providing short risetime (about 40 ps), high frequency (about 5G hz), high power bursts of low-duty factor microwaves sufficient to generate a dielectric barrier discharge and passing a gas to treated through the discharge so as to cause dissociative reduction of the exhaust gases. The invention also includes a reactor for generating the non-thermal plasma.

  9. Thermal Conductivity of Gas Mixtures in Chemical Equilibrium

    NASA Technical Reports Server (NTRS)

    Brokaw, Richard S.

    1960-01-01

    The expression for the thermal conductivity of gas mixtures in chemical equilibrium is presented in a simpler and less restrictive form. This new form is shown to be equivalent to the previous equations.

  10. Method and composition for generating nitrogen gas

    SciTech Connect

    Pietz, J.F.

    1988-01-26

    A solid composition is described for generating nitrogen gas substantially free of noxious and toxic impurities for inflating an air cushion in a vehicle passenger restraint system and capable of substantially fully inflating such cushion in the elapsed time between the occurrence of a primary collision of the vehicle with another object and secondary collisions occurring as a result thereof; comprising a mixture of alkali metal azide and at least a stoichiometric amount of a metal oxide selected from the group consisting of iron, titanium and copper oxides and mixtures thereof. The metal oxide is capable of reacting exothermically with the alkaki metal azide and wherein the metal of the oxide is lower in the electromotive series than the alkali metal of the azide and is a metal other than (the) an alkali metal.

  11. Alternative biomass sources for thermal energy generation

    NASA Astrophysics Data System (ADS)

    Steensen, Torge; Müller, Sönke; Dresen, Boris; Büscher, Olaf

    2015-04-01

    of Bottrop-Kirchhellen in the state of North Rhine-Westphalia. This region consists of nature reserves, forests, farmland and a few villages. To present a qualitative comparison between simulated and true biomass volume, we conducted field work by mapping the spatial extent of the desired biomass occurrences in the area. First results indicate a qualitative match of about 75%. Our research highlights the small-scale biomass features that have not been incorporated in previous biomass estimates. With the regular trimming and the accompanied raw material that becomes available, a new sector of thermal energy generation can be outlined. An automated quantification using satellite and GIS data will allow a regular monitoring of the vegetation growth and an assessment of the transport routes and costs as well as the location of the prospective power plants. In the endeavour of creating a sustainable energy supply, these biomass units should not be neglected, especially since the usage of the traditional units is limited due to competing interests in food production and nature conservation.

  12. Autonomous quantum thermal machine for generating steady-state entanglement

    NASA Astrophysics Data System (ADS)

    Bohr Brask, Jonatan; Haack, Géraldine; Brunner, Nicolas; Huber, Marcus

    2015-11-01

    We discuss a simple quantum thermal machine for the generation of steady-state entanglement between two interacting qubits. The machine is autonomous in the sense that it uses only incoherent interactions with thermal baths, but no source of coherence or external control. By weakly coupling the qubits to thermal baths at different temperatures, inducing a heat current through the system, steady-state entanglement is generated far from thermal equilibrium. Finally, we discuss two possible implementations, using superconducting flux qubits or a semiconductor double quantum dot. Experimental prospects for steady-state entanglement are promising in both systems.

  13. The New Generation of Thermal Mapping

    ERIC Educational Resources Information Center

    Patterson, Valerie B.

    2012-01-01

    Thermal imaging was used 60+ years ago to enable the targeting of heat-seeking missiles and seeing opposing forces at night. Today thermograpy is employed for myriad uses, from turning on faucets, to tracking and attacking enemies from aerial spy drones, to identifying the scope of moisture infiltration in building envelopes. Thermography for…

  14. Status and integration of studies of gas generation in Hanford wastes

    SciTech Connect

    Pederson, L.R.; Bryan, S.A.

    1996-10-01

    The purpose of this report is to review recent progress in determining the mechanism, kinetics, and stoichiometry of gas generation in Hanford waste tanks. Information has been gathered from the results of (1) laboratory studies with simulated wastes; (2) laboratory studies with actual waste core samples (Tanks SY-101 and SY-103); (3) studies of thermal and radiolytic reactions in the gas phase; (4) gas solubility evaluations; and (5) in-tank gas composition data. The results of laboratory studies using simulated wastes, which were aimed at determining chemical mechanisms responsible for gas generation, are summarized in Section 2. Emphasized are findings from work performed at the Georgia Institute of Technology (GIT), which was conducted under subcontract to Pacific Northwest National Laboratory (PNNL) and completed in FY 1996. Thermally activated pathways for the decomposition of hydroxyethylethylene-diaminetriacetic acid (HEDTA, trisodium salt) in simulated wastes were established by this work, among other accomplishments.

  15. Thermal reactor. [liquid silicon production from silane gas

    NASA Technical Reports Server (NTRS)

    Levin, H.; Ford, L. B. (Inventor)

    1982-01-01

    A thermal reactor apparatus and method of pyrolyticaly decomposing silane gas into liquid silicon product and hydrogen by-product gas is disclosed. The thermal reactor has a reaction chamber which is heated well above the decomposition temperature of silane. An injector probe introduces the silane gas tangentially into the reaction chamber to form a first, outer, forwardly moving vortex containing the liquid silicon product and a second, inner, rewardly moving vortex containing the by-product hydrogen gas. The liquid silicon in the first outer vortex deposits onto the interior walls of the reaction chamber to form an equilibrium skull layer which flows to the forward or bottom end of the reaction chamber where it is removed. The by-product hydrogen gas in the second inner vortex is removed from the top or rear of the reaction chamber by a vortex finder. The injector probe which introduces the silane gas into the reaction chamber is continually cooled by a cooling jacket.

  16. Development of a Thermal Oxidizer for Distributed Microturbine Based Generation

    SciTech Connect

    Tom Barton

    2009-03-01

    This project concerns the replacement of the catalytic bed in a microturbine with a thermal oxidizer. The advantage of a thermal oxidizer over a traditional combustion chamber is that the length and temperature of the device allows the volatile species to oxidize relatively slowly and without a flame front. With no flame, the temperature increase throughout the unit is spread over a much larger volume so there is no hot spot for thermal NO{sub x} formation, and the gas Btu level does not have to be above the ignition concentration. Project specific objectives included assessment of the materials and performance requirements of the thermal oxidizer, design the thermal oxidizer system, fabrication of the thermal oxidizer, testing of the oxidizer's performance in concert with the microturbine and comparison of the performance of the oxidizer with catalytic beds and traditional combustion chambers. The thermal oxidizer was designed and fabricated with the assistance of High Country Fabrication of Casper, Wyoming. The design consists of a long set of tubes surrounded by a packed bed of loose ceramic material. The outer vessel containing the tubes and packing is a 3-foot diameter steel shell with multiple layers of thermal insulation. After the metal components were fabricated, the vessel was shipped to Denver where the insulation was poured. The unit was shipped to the cosponsor site for integration with the 100 kW microturbine device. Connection of the thermal oxidizer to the Elliot microturbine turned out to be problematic. The high flow rate of gas tended to push the hot zone out of the oxidizer as assembled. The research team identified several approaches to improve the oxidizer performance including a longer gas path, increased residence time, higher surface area packing material and improved combustion catalysts. The cosponsor is working with an engineering form with oxidizer experience to reconfigure the hardware before moving to a field trial on landfill gas.

  17. Electric field-free gas breakdown in explosively driven generators

    SciTech Connect

    Shkuratov, Sergey I.; Baird, Jason; Talantsev, Evgueni F.; Altgilbers, Larry L.

    2010-07-15

    All known types of gas discharges require an electric field to initiate them. We are reporting on a unique type of gas breakdown in explosively driven generators that does not require an electric field.

  18. Thermal Model Predictions of Advanced Stirling Radioisotope Generator Performance

    NASA Technical Reports Server (NTRS)

    Wang, Xiao-Yen J.; Fabanich, William Anthony; Schmitz, Paul C.

    2014-01-01

    This presentation describes the capabilities of three-dimensional thermal power model of advanced stirling radioisotope generator (ASRG). The performance of the ASRG is presented for different scenario, such as Venus flyby with or without the auxiliary cooling system.

  19. Gas detonation gun for thermal spraying

    SciTech Connect

    Kadyrov, E.; Kadyrov, V.

    1995-08-01

    High-velocity oxy-fuel and gas detonation are competing spray coating processes well known for providing premium quality coatings with low porosity and high adhesion. They are favored for applications in environments of extreme wear, heat, and aggressive corrosion. Nevertheless, they both have limitations. For the HVOF process, these include excessive gas consumption, high rate of heat transfer to the sprayed substrate, and the short life of the (supersonic) Laval nozzle. On the other hand, the traditional gas detonation gun also has drawbacks, and the purpose of this article is to outline some factors that led to the design of an improved gas detonation coating process called Demeton, produced by Demeton USA Inc., Garden City Park, N.Y.

  20. Sand effects on thermal barrier coatings for gas turbine engines

    NASA Astrophysics Data System (ADS)

    Walock, Michael; Barnett, Blake; Ghoshal, Anindya; Murugan, Muthuvel; Swab, Jeffrey; Pepi, Marc; Hopkins, David; Gazonas, George; Kerner, Kevin

    Accumulation and infiltration of molten/ semi-molten sand and subsequent formation of calcia-magnesia-alumina-silicate (CMAS) deposits in gas turbine engines continues to be a significant problem for aviation assets. This complex problem is compounded by the large variations in the composition, size, and topology of natural sands, gas generator turbine temperatures, thermal barrier coating properties, and the incoming particulate's momentum. In order to simplify the materials testing process, significant time and resources have been spent in the development of synthetic sand mixtures. However, there is debate whether these mixtures accurately mimic the damage observed in field-returned engines. With this study, we provide a direct comparison of CMAS deposits from both natural and synthetic sands. Using spray deposition techniques, 7% yttria-stabilized zirconia coatings are deposited onto bond-coated, Ni-superalloy discs. Each sample is coated with a sand slurry, either natural or synthetic, and exposed to a high temperature flame for 1 hour. Test samples are characterized before and after flame exposure. In addition, the test samples will be compared to field-returned equipment. This research was sponsored by the US Army Research Laboratory, and was accomplished under Cooperative Agreement # W911NF-12-2-0019.

  1. Thermal treatment of soils contaminated with gas oil: influence of soil composition and treatment temperature.

    PubMed

    Piña, Juliana; Merino, Jerónimo; Errazu, Alberto F; Bucalá, Verónica

    2002-10-14

    Samples of two soils containing different organic matter contents, neat or contaminated with gas oil (diesel fuel oil) at 2.5 wt.% were heated from room temperature to different final temperatures (200-900 degrees C). The experiments, performed in an anaerobic media, simulate conditions pertinent to ex situ thermal desorptive and thermal destructive treatments. The products generated during the heating were collected and light gases were analyzed by gas chromatography. The results indicate that the chemical composition of the soil is a key factor since it strongly influences the quantity and composition of the off-gases. According to the liquid and light gas yields, the gas oil does not affect appreciably the generation of pyrolysis products of the own soil constituents and the gas oil does not suffer significant chemical transformations even at high operating temperatures (e.g. 900 degrees C). With surface areas of 16000 cm(2)/g (Soil A) and 85000 cm(2)/g (Soil B) based on the monolayer adsorbed model, 4 and 20%, respectively, of the original gas oil can be adsorbed. These values are in good agreement with experimental data. Even for high temperatures, the employed thermal treatment is capable to practically remove the gas oil from the soil bed without changing appreciably the original chemical composition of the contaminant. PMID:12220829

  2. Thermal Hydraulics of the Very High Temperature Gas Cooled Reactor

    SciTech Connect

    Chang Oh; Eung Kim; Richard Schultz; Mike Patterson; Davie Petti

    2009-10-01

    The U.S Department of Energy (DOE) is conducting research on the Very High Temperature Reactor (VHTR) design concept for the Next Generation Nuclear Plant (NGNP) Project. The reactor design will be a graphite moderated, thermal neutron spectrum reactor that will produce electricity and hydrogen in a highly efficient manner. The NGNP reactor core will be either a prismatic graphite block type core or a pebble bed core. The NGNP will use very high-burnup, low-enriched uranium, TRISO-coated fuel, and have a projected plant design service life of 60 years. The VHTR concept is considered to be the nearest-term reactor design that has the capability to efficiently produce hydrogen. The plant size, reactor thermal power, and core configuration will ensure passive decay heat removal without fuel damage or radioactive material releases during reactor core-accidents. The objectives of the NGNP Project are to: Demonstrate a full-scale prototype VHTR that is commercially licensed by the U.S. Nuclear Regulatory Commission, and Demonstrate safe and economical nuclear-assisted production of hydrogen and electricity. The DOE laboratories, led by the INL, perform research and development (R&D) that will be critical to the success of the NGNP, primarily in the areas of: • High temperature gas reactor fuels behavior • High temperature materials qualification • Design methods development and validation • Hydrogen production technologies • Energy conversion. This paper presents current R&D work that addresses fundamental thermal hydraulics issues that are relevant to a variety of possible NGNP designs.

  3. Transition metal catalysis in the generation of petroleum and natural gas. Final report

    SciTech Connect

    Mango, F.D.

    1997-01-21

    This project originated on the premise that natural gas could be formed catalytically in the earth rather than thermally as commonly believed. The intention was to test this hypothetical view and to explore generally the role of sedimentary metals in the generation of light hydrocarbons (C1 - C9). We showed the metalliferous source rocks are indeed catalytic in the generation of natural gas. Various metal compounds in the pure state show the same levels of catalytic activity as sedimentary rocks and the products are identical. Nickel is particularly active among the early transition metals and is projected to remain catalytically robust at all stages of catagenesis. Nickel oxide promotes the formation of n-alkanes in addition to natural gas (NG), demonstrating the full scope of the hypothetical catalytic process: The composition of catalytic gas duplicates the entire range of natural gas, from so-called wet gas to dry gas (60 to 95+ wt % methane), while gas generated thermally is consistently depleted in methane (10 to 60 wt % methane). These results support the view that metal catalysis is a major pathway through which natural gas is formed in the earth.

  4. Laboratory and theoretical constraints on the generation and composition of natural gas

    NASA Astrophysics Data System (ADS)

    Seewald, Jeffrey S.; Benitez-Nelson, Bryan C.; Whelan, Jean K.

    1998-05-01

    Hydrous pyrolysis experiments were conducted at 125 to 375°C and 350 bars to constrain factors that regulate the generation and relative abundance of hydrocarbon and nonhydrocarbon gases during thermal maturation of Monterey, Eutaw, and Smackover shale. Thermogenic gas was generated at temperatures as low as 125°C and increased in abundance with increasing temperature. The relative abundance of individual hydrocarbons varied substantially in response to increasing time and temperature reflecting the chemical processes responsible for their formation. The hydrocarbon fraction of low maturity gas produced via primary cracking of kerogen was composed predominantly of methane. With increasing thermal maturity, the onset of bitumen generation produced longer-chain hydrocarbons causing a decrease in the relative abundance of methane. At high levels of thermal maturity, the absolute and relative abundance of methane increased due to decomposition of bitumen. In all experiments at all temperatures, carbon dioxide was the most abundant volatile organic alteration product. Carbon dioxide was produced directly from kerogen at low thermal maturity and via the decomposition of bitumen and/or kerogen at high thermal maturity. During early stage alteration, kerogen likely represents the dominant source of oxygen in carbon dioxide while at high thermal maturities water may represent an abundant and reactive oxygen source. Hydrogen released during the disproportionation of water is likely consumed during hydrocarbon generation. Theoretical reaction path modeling suggests that the precipitation of calcite may effectively remove carbon dioxide from natural gas if a source of Ca is available within the rock. Thus, carbon dioxide-rich natural gas may be relatively pristine while methane-rich natural gas may reflect the occurrence of secondary reactions involving inorganic sedimentary components. Kinetic analysis of the experimental data indicates a narrow range of activation energies

  5. Evaluation of the gas production economics of the gas hydrate cyclic thermal injection model. [Cyclic thermal injection

    SciTech Connect

    Kuuskraa, V.A.; Hammersheimb, E.; Sawyer, W.

    1985-05-01

    The objective of the work performed under this directive is to assess whether gas hydrates could potentially be technically and economically recoverable. The technical potential and economics of recovering gas from a representative hydrate reservoir will be established using the cyclic thermal injection model, HYDMOD, appropriately modified for this effort, integrated with economics model for gas production on the North Slope of Alaska, and in the deep offshore Atlantic. The results from this effort are presented in this document. In Section 1, the engineering cost and financial analysis model used in performing the economic analysis of gas production from hydrates -- the Hydrates Gas Economics Model (HGEM) -- is described. Section 2 contains a users guide for HGEM. In Section 3, a preliminary economic assessment of the gas production economics of the gas hydrate cyclic thermal injection model is presented. Section 4 contains a summary critique of existing hydrate gas recovery models. Finally, Section 5 summarizes the model modification made to HYDMOD, the cyclic thermal injection model for hydrate gas recovery, in order to perform this analysis.

  6. A thermal signal generator probe for the study of neural thermal transduction.

    PubMed

    Maluf, N I; McNutt, E L; Monroe, S; Tanelian, D L; Kovacs, G T

    1994-07-01

    The study of thermal transduction in neural tissues has been impeded by the lack of instrumentation able to generate complex, focal temperature variations. Specifically, we are interested in the study of neural thermal transduction within the cornea, with its homogeneous thermal conductivity and avascularity. We present a thermal signal generator probe that is capable of producing arbitrarily shaped bipolar (heating or cooling) thermal swings in a small volume of corneal tissue with which it is in contact. Heating and cooling of the probe tip are achieved by means of a Peltier effect thermoelectric device. The probe temperature, measured directly at the tip, is controlled using closed-loop control circuitry and waveform generation software on a host computer. Response characteristics of thermally sensitive C-fibers were investigated in an in vitro preparation of the rabbit cornea. PMID:7927385

  7. INDUCTION HEATING OF CARBON-FIBER COMPOSITES: THERMAL GENERATION MODEL

    EPA Science Inventory

    A theory of local and global mechanisms of heat generation and distribution in carbon-fiber-based composites subjected to an alternating magnetic field has been proposed. A model that predicts the strength and distribution of thermal generation through the thickness of carbon-fib...

  8. Alternative method for steam generation for thermal oxidation of silicon

    NASA Astrophysics Data System (ADS)

    Spiegelman, Jeffrey J.

    2010-02-01

    Thermal oxidation of silicon is an important process step in MEMS device fabrication. Thicker oxide layers are often used as structural components and can take days or weeks to grow, causing high gas costs, maintenance issues, and a process bottleneck. Pyrolytic steam, which is generated from hydrogen and oxygen combustion, was the default process, but has serious drawbacks: cost, safety, particles, permitting, reduced growth rate, rapid hydrogen consumption, component breakdown and limited steam flow rates. Results from data collected over a 24 month period by a MEMS manufacturer supports replacement of pyrolytic torches with RASIRC Steamer technology to reduce process cycle time and enable expansion previously limited by local hydrogen permitting. Data was gathered to determine whether Steamers can meet or exceed pyrolytic torch performance. The RASIRC Steamer uses de-ionized water as its steam source, eliminating dependence on hydrogen and oxygen. A non-porous hydrophilic membrane selectively allows water vapor to pass. All other molecules are greatly restricted, so contaminants in water such as dissolved gases, ions, total organic compounds (TOC), particles, and metals can be removed in the steam phase. The MEMS manufacturer improved growth rate by 7% over the growth range from 1μm to 3.5μm. Over a four month period, wafer uniformity, refractive index, wafer stress, and etch rate were tracked with no significant difference found. The elimination of hydrogen generated a four-month return on investment (ROI). Mean time between failure (MTBF) was increased from 3 weeks to 32 weeks based on three Steamers operating over eight months.

  9. Electrothermal gas generator: Development and qualification of the control electronics

    NASA Astrophysics Data System (ADS)

    Matthaeus, G.; Schmitz, H. D.

    1986-07-01

    The development and qualification of an electronic control circuitry for an electrothermal or catalytic hydrazine gas generator system is described. The circuitry, named manual override, controls the gas pressure in a tank using a pressure transducer and the gas generator to keep the pressure constant within narrow tolerances. The present pressure can be varied by ground command, enabling a variable thrust of the gas fed cold gas thrusters. The automatic loop can be switched off and the tank pressure be controlled by ground command. Two manual overrides SN01 and SN02 were qualified.

  10. Ceramic thermal barrier coatings for commercial gas turbine engines

    NASA Technical Reports Server (NTRS)

    Meier, Susan Manning; Gupta, Dinesh K.; Sheffler, Keith D.

    1991-01-01

    The paper provides an overview of the short history, current status, and future prospects of ceramic thermal barrier coatings for gas turbine engines. Particular attention is given to plasma-sprayed and electron beam-physical vapor deposited yttria-stabilized (7 wt pct Y2O3) zirconia systems. Recent advances include improvements in the spallation life of thermal barrier coatings, improved bond coat composition and spraying techniques, and improved component design. The discussion also covers field experience, life prediction modeling, and future directions in ceramic coatings in relation to gas turbine engine design.

  11. Gas Dynamics during Thermal Remediation: Visualization, Quantification and Enhancement

    NASA Astrophysics Data System (ADS)

    Mumford, K. G.; Hegele, P. R.

    2014-12-01

    In situ thermal treatment (ISTT) technologies, such as electrical resistance heating (ERH) and thermal conductive heating (TCH), rely on the in situ production of a gas phase composed of steam and vaporized volatile organic compounds (VOCs). This gas phase must be captured, extracted, and processed in an aboveground treatment system to meet remediation objectives. When used to treat volatile non-aqueous phase liquids (NAPLs), gases can be created at temperatures below the boiling points of both the groundwater and the NAPL, in a process commonly referred to as co-boiling, and vaporized VOCs can condense if gases are transported to colder regions or are not captured before thermal treatment has stopped. As such, an understanding of gas formation, connection, and flow is important for the design and operation of ISTT technologies. A recent series of laboratory experiments focused on the visualization and quantification of gas dynamics during water boiling and NAPL-water co-boiling, and the investigation of potential NAPL redistribution. Experiments were conducted in a sand-packed glass-walled chamber (40 cm tall × 20 cm wide × 1 cm thick) heated by electrical resistance. Temperatures and electric currents were measured, and digital images were captured throughout the experiments to quantify gas saturations using light transmission techniques. Additional experiments also investigated the exsolution of dissolved gas as a technique to enhance gas production at lower temperatures. Results showed the development of disconnected and connected gas flow regimes, with disconnected flow occurring at early times and during co-boiling. Results also showed the potential for NAPL redistribution due to displacement by gas formed within pools, and due to condensation in colder regions. These results highlight the need to carefully consider gases in the design of ISTT heating and gas extraction systems to ensure remediation performance.

  12. 21 CFR 866.2580 - Gas-generating device.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Gas-generating device. 866.2580 Section 866.2580 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Microbiology Devices § 866.2580 Gas-generating...

  13. 21 CFR 866.2580 - Gas-generating device.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Gas-generating device. 866.2580 Section 866.2580 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Microbiology Devices § 866.2580 Gas-generating...

  14. 21 CFR 866.2580 - Gas-generating device.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Gas-generating device. 866.2580 Section 866.2580 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Microbiology Devices § 866.2580 Gas-generating...

  15. 21 CFR 866.2580 - Gas-generating device.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Gas-generating device. 866.2580 Section 866.2580 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Microbiology Devices § 866.2580 Gas-generating...

  16. 21 CFR 866.2580 - Gas-generating device.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Gas-generating device. 866.2580 Section 866.2580 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Microbiology Devices § 866.2580 Gas-generating...

  17. The gas-phase thermal chemistry of tetralin and related model systems

    SciTech Connect

    Malandra, J.

    1993-05-01

    The thesis is divided into 5 papers: gas-phase thermal decomposition of tetralin; flash vacuum pyrolysis of 3-benzocycloheptenone and 1,3, 4,5-tetrahydro-2-benzothiepin-2,2-dioxide (model systems for gas-phase pyrolysis of tetralin); high-temperature gas-phase reactions of o-allylbenzyl radicals generated by flash vacuum pyrolysis of is(o-allylbenzyl) oxalate; flash vacuum pyrolysis of 1,4-diphenylbutane; and flash vacuum pyrolysis of o-allyltoluene, o-(3-butenyl)toluene and o-(pentenyl)toluene were also used.

  18. Note: thermal imaging enhancement algorithm for gas turbine aerothermal characterization.

    PubMed

    Beer, S K; Lawson, S A

    2013-08-01

    An algorithm was developed to convert radiation intensity images acquired using a black and white CCD camera to thermal images without requiring knowledge of incident background radiation. This unique infrared (IR) thermography method was developed to determine aerothermal characteristics of advanced cooling concepts for gas turbine cooling application. Compared to IR imaging systems traditionally used for gas turbine temperature monitoring, the system developed for the current study is relatively inexpensive and does not require calibration with surface mounted thermocouples. PMID:24007128

  19. Transition metal catalysis in the generation of natural gas

    SciTech Connect

    Mango, F.D.

    1995-12-31

    The view that natural gas is thermolytic, coming from decomposing organic debris, has remained almost unchallenged for nearly half a century. Disturbing contradictions exist, however: Oil is found at great depth, at temperatures where only gas should exist and oil and gas deposits show no evidence of the thermolytic debris indicative of oil decomposing to gas. Moreover, laboratory attempts to duplicate the composition of natural gas, which is typically between 60 and 95+ wt% methane in C{sub 1}-C{sub 4}, have produced insufficient amounts of methane (10 to 60%). It has been suggested that natural gas may be generated catalytically, promoted by the transition metals in carbonaceous sedimentary rocks. This talk will discuss experimental results that support this hypothesis. Various transition metals, as pure compounds and in source rocks, will be shown to generate a catalytic gas that is identical to natural gas. Kinetic results suggest robust catalytic activity under moderate catagenetic conditions.

  20. NEXT GENERATION GAS TURBINE (NGGT) SYSTEMS STUDY

    SciTech Connect

    Unknown

    2001-12-05

    , both in terms of incorporation of technology into current products, as well as to an NGGT product. In summary, potential program costs are shown for development of the candidate systems along with the importance of future DOE enabling participation. Three main conclusions have been established via this study: (1) Rapid recent changes within the power generation regulatory environment and the resulting ''bubble'' of gas turbine orders has altered the timing and relative significance associated with the conclusions of the ADL study upon which the original DOE NGGT solicitation was based. (2) Assuming that the relevant technologies were developed and available for an NGGT market opportunity circa 2010, the top candidate system that meets or exceeds the DOE PRDA requirements was determined to be a hybrid aero-derivative/heavy duty concept. (3) An investment by DOE of approximately $23MM/year to develop NGGT technologies near/mid term for validation and migration into a reasonable fraction of the installed base of GE F-class products could be leveraged into $1.2B Public Benefit, with greatest benefits resulting from RAM improvements. In addition to the monetary Public Benefit, there is also significant benefit in terms of reduced energy consumption, and reduced power plant land usage.

  1. Generation of Charged Nanoparticles During Thermal Evaporation of Silver at Atmospheric Pressure.

    PubMed

    Yang, S M; Kim, S R N; Youn, W K; Kim, C S; Kim, D S; Yi, K W; Hwang, N M

    2015-11-01

    The generation of charged silver nanoparticles in the gas phase during thermal evaporation of silver at atmospheric pressure was confirmed by the nano-differential mobility analyzer (DMA). Effects of the evaporation temperature, the nitrogen gas flow rate and the amount of silver to be evaporated on the size distribution of charged nanoparticles (CNPs) were examined. Both positively and negatively-charged nanoparticles were generated under all processing conditions adopted in this study. The deposition behavior of CNPs was affected by the gas flow, which is affected by the temperature gradient in the reactor and by the applied electric bias. The electric bias, which not only enhanced the film growth rate but also produced a much denser film surface, turned out to be an important process parameter under the condition where an appreciable amount of CNPs is generated. PMID:26726527

  2. Thermal and Evolved Gas Analyses at Reduced Pressures: A Mineral Database for the Thermal Evolved Gas Analyzer (TEGA)

    NASA Technical Reports Server (NTRS)

    Lauer, H. V., Jr.; Ming, Douglas W.; Golden, D. C.; Lin, I.-C.; Morris, R. V.; Boynton, W. V.

    2000-01-01

    Volatile-bearing minerals (e.g., Fe-oxyhydroxides, phyllosilicates, carbonates, and sulfates) may be important phases on the surface of Mars. The Thermal Evolved Gas Analyzer (TEGA), which was part of the Mars Polar Lander payload, was to detect and identify volatile-bearing phases in the Martian regolith. The TEGA instrument is composed of a differential scanning calorimetry (DSC) interfaced with an evolved gas analyzer (EGA). The EGA consists of a Herriott cell of a tunable-diode laser (TDL) spectrometer that determines CO, and H2O abundances. The sample chamber in TEGA operates at about 100 mbar (-76 torr) with a N2 carrier gas flow of 0.4 sccm. Essentially no information exists on the effects of reduced pressure on the thermal properties of volatile-bearing minerals. Here we present a database for the thermal behavior of volatile-bearing phases under reduced pressure conditions.

  3. Application of field-modulated generator systems to dispersed solar thermal electric generation

    NASA Technical Reports Server (NTRS)

    Ramakumar, R.

    1979-01-01

    The state-of-the-art of field modulated generation system (FMGS) is presented, and the application of FMGS to dispersed solar thermal electric generation is discussed. The control and monitoring requirements for solar generation system are defined. A comparison is presented between the FMGS approach and other options and the technological development needs are discussed.

  4. Investigation of a ceramic vane with a metal disk thermal and mechanical contact in a gas turbine impeller

    NASA Astrophysics Data System (ADS)

    Resnick, S. V.; Prosuntsov, P. V.; Sapronov, D. V.

    2015-01-01

    Promising directions of a new generation gas turbine engines development include using in gas turbines ceramic materials blades with high strength, thermal and chemical stability. One of the serious problems in developing such motors is insufficient knowledge of contact phenomena occurring in ceramic and metal details connection nodes. This work presents the numerical modeling results of thermal processes on ceramic and metal details rough boundaries. The investigation results are used in conducting experimental researches in conditions reproducing operating.

  5. Computer code for determination of thermally perfect gas properties

    NASA Technical Reports Server (NTRS)

    Witte, David W.; Tatum, Kenneth E.

    1994-01-01

    A set of one-dimensional compressible flow relations for a thermally perfect, calorically imperfect gas is derived for the specific heat c(sub p), expressed as a polynomial function of temperature, and developed into the thermally perfect gas (TPG) computer code. The code produces tables of compressible flow properties similar to those of NACA Rep. 1135. Unlike the tables of NACA Rep. 1135 which are valid only in the calorically perfect temperature regime, the TPG code results are also valid in the thermally perfect calorically imperfect temperature regime which considerably extends the range of temperature application. Accuracy of the TPG code in the calorically perfect temperature regime is verified by comparisons with the tables of NACA Rep. 1135. In the thermally perfect, calorically imperfect temperature regime, the TPG code is validated by comparisons with results obtained from the method of NACA Rep. 1135 for calculating the thermally perfect calorically imperfect compressible flow properties. The temperature limits for application of the TPG code are also examined. The advantage of the TPG code is its applicability to any type of gas (monatomic, diatomic, triatomic, or polyatomic) or any specified mixture thereof, whereas the method of NACA Rep. 1135 is restricted to only diatomic gases.

  6. Gas Generation Testing of Neptunium Oxide at Elevated Temperature

    SciTech Connect

    Duffey, JM

    2004-01-30

    Elevated temperature gas generation tests have been conducted using neptunium dioxide produced on a laboratory scale using the HB-Line Phase II flowsheet. These tests were performed to determine what effect elevated temperatures would have on the neptunium dioxide in comparison to neptunium dioxide tested at ambient temperature. The headspace gas compositions following storage at elevated temperatures associated with normal conditions of transport (NCT) have been measured. These test results show an increase in hydrogen generation rate at elevated temperature and significant removal of oxygen from the headspace gas. The elevated temperature gas generation tests described in this report involved heating small test vessels containing neptunium dioxide and measuring the headspace gas pressure and composition at the end of the test period. Four samples were used in these tests to evaluate the impact of process variables on the gas generation rate. Two samples were calcined to 600 degrees Celsius and two were calcined to 650 degrees Celsius. Each test vessel contained approximately 9.5 g of neptunium dioxide. Following exposure to 75 per cent relative humidity (RH) for five days, these samples were loaded in air and then heated to between 105 and 115 degrees Celsius for about one month. At the conclusion of the test period, the headspace gas of each container was analyzed using a micro-gas chromatograph installed in the glovebox where the experiments were conducted. The pressure, volume, and composition data for the headspace gas samples were used to calculate average H2 generation rates.

  7. Thermal Design of a Thermoelectric Micro-Generator

    NASA Astrophysics Data System (ADS)

    Hama, S.; Yabuki, T.; Tranchant, L.; Miyazaki, K.

    2015-12-01

    In this study, we fabricated micro thermoelectric power generator using freestanding film substrate, and we evaluated the performance of the generator from the standpoint of thermoelectric performance and thermal design. We fabricated a SiNx free-standing film substrate about 5 μm thick on Si wafer, using MEMS processes. Then, we prepared for both p and n type of bismuth telluride thermoelectric thin films by using a coaxial type vacuum arc evaporation method, and annealed for one hour at 573 K. As an electrode, Cu was deposited using a vacuum deposition method. We fabricated the thermoelectric power generator of 5 mm × 5 mm using a shadow mask for the patterning. The fabricated generator can create temperature difference of 22.3 K due to its high thermal resistance of the structure when the heat source temperature is 373 K. The exergy of the thermoelectric device is up to 7%. Therefore, the generator can convert about 0.4% of thermal energy into electric energy, even though the material performance is low with ZT = 0.28. The conversion efficiency is much higher than that of the conventional Π type thermoelectric module. It was possible to get higher performance by the thermal design, which is a more simple way than an improvement of ZT.

  8. Evaluation of the gas production economics of the gas hydrate cyclic thermal injection model

    SciTech Connect

    Kuuskraa, V.A.; Hammersheimb, E.; Sawyer, W.

    1985-05-01

    The objective of the work performed under this directive is to assess whether gas hydrates could potentially be technically and economically recoverable. The technical potential and economics of recovering gas from a representative hydrate reservoir will be established using the cyclic thermal injection model, HYDMOD, appropriately modified for this effort, integrated with economics model for gas production on the North Slope of Alaska, and in the deep offshore Atlantic. The results from this effort are presented in this document. In Section 1, the engineering cost and financial analysis model used in performing the economic analysis of gas production from hydrates -- the Hydrates Gas Economics Model (HGEM) -- is described. Section 2 contains a users guide for HGEM. In Section 3, a preliminary economic assessment of the gas production economics of the gas hydrate cyclic thermal injection model is presented. Section 4 contains a summary critique of existing hydrate gas recovery models. Finally, Section 5 summarizes the model modification made to HYDMOD, the cyclic thermal injection model for hydrate gas recovery, in order to perform this analysis.

  9. Thermal correction to the molar polarizability of a Boltzmann gas

    SciTech Connect

    Jentschura, U. D.; Puchalski, M.; Mohr, P. J.

    2011-12-15

    Metrology in atomic physics has been crucial for a number of advanced determinations of fundamental constants. In addition to very precise frequency measurements, the molar polarizability of an atomic gas has recently also been measured very accurately. Part of the motivation for the measurements is due to ongoing efforts to redefine the International System of Units (SI), for which an accurate value of the Boltzmann constant is needed. Here we calculate the dominant shift of the molar polarizability in an atomic gas due to thermal effects. It is given by the relativistic correction to the dipole interaction, which emerges when the probing electric field is Lorentz transformed into the rest frame of the atoms that undergo thermal motion. While this effect is small when compared to currently available experimental accuracy, the relativistic correction to the dipole interaction is much larger than the thermal shift of the polarizability induced by blackbody radiation.

  10. Thermal-barrier coatings for utility gas turbines

    NASA Technical Reports Server (NTRS)

    Levine, S. R.; Miller, R. A.

    1982-01-01

    The potential of thermal barrier coatings for use in utility gas turbines was assessed. Pressurized passage and ambient pressure doped fuel burner rig tests revealed that thermal barrier coatings are not resistant to dirty combustion environments. However, present thermal barrier coatings, such as duplex partially stabilized zirconia and duplex Ca2SiO4 have ample resistance to the thermo-mechanical stress and temperature levels anticipated for heavy duty gas turbines firing clean fuel as revealed by clean fuel pressurized passage and ambient pressure burner rig tests. Thus, it is appropriate to evaluate such coatings on blades, vanes and combustors in the field. However, such field tests should be backed up with adequate effort in the areas of coating application technology and design analysis so that the field tests yield unequivocal results.

  11. Thermal correction to the molar polarizability of a Boltzmann gas

    NASA Astrophysics Data System (ADS)

    Jentschura, U. D.; Puchalski, M.; Mohr, P. J.

    2011-12-01

    Metrology in atomic physics has been crucial for a number of advanced determinations of fundamental constants. In addition to very precise frequency measurements, the molar polarizability of an atomic gas has recently also been measured very accurately. Part of the motivation for the measurements is due to ongoing efforts to redefine the International System of Units (SI), for which an accurate value of the Boltzmann constant is needed. Here we calculate the dominant shift of the molar polarizability in an atomic gas due to thermal effects. It is given by the relativistic correction to the dipole interaction, which emerges when the probing electric field is Lorentz transformed into the rest frame of the atoms that undergo thermal motion. While this effect is small when compared to currently available experimental accuracy, the relativistic correction to the dipole interaction is much larger than the thermal shift of the polarizability induced by blackbody radiation.

  12. Thermally controlled comb generation and soliton modelocking in microresonators

    NASA Astrophysics Data System (ADS)

    Joshi, Chaitanya; Jang, Jae K.; Luke, Kevin; Ji, Xingchen; Miller, Steven A.; Klenner, Alexander; Okawachi, Yoshitomo; Lipson, Michal; Gaeta, Alexander L.

    2016-06-01

    We report the first demonstration of thermally controlled soliton modelocked frequency comb generation in microresonators. By controlling the electric current through heaters integrated with silicon nitride microresonators, we demonstrate a systematic and repeatable pathway to single- and multi-soliton modelocked states without adjusting the pump laser wavelength. Such an approach could greatly simplify the generation of modelocked frequency combs and facilitate applications such as chip-based dual-comb spectroscopy.

  13. The greenhouse impact of unconventional gas for electricity generation

    NASA Astrophysics Data System (ADS)

    Hultman, Nathan; Rebois, Dylan; Scholten, Michael; Ramig, Christopher

    2011-10-01

    New techniques to extract natural gas from unconventional resources have become economically competitive over the past several years, leading to a rapid and largely unanticipated expansion in natural gas production. The US Energy Information Administration projects that unconventional gas will supply nearly half of US gas production by 2035. In addition, by significantly expanding and diversifying the gas supply internationally, the exploitation of new unconventional gas resources has the potential to reshape energy policy at national and international levels—altering geopolitics and energy security, recasting the economics of energy technology investment decisions, and shifting trends in greenhouse gas (GHG) emissions. In anticipation of this expansion, one of the perceived core advantages of unconventional gas—its relatively moderate GHG impact compared to coal—has recently come under scrutiny. In this paper, we compare the GHG footprints of conventional natural gas, unconventional natural gas (i.e. shale gas that has been produced using the process of hydraulic fracturing, or 'fracking'), and coal in a transparent and consistent way, focusing primarily on the electricity generation sector. We show that for electricity generation the GHG impacts of shale gas are 11% higher than those of conventional gas, and only 56% that of coal for standard assumptions.

  14. Thermal Analysis of Step 2 GPHS for Next Generation Radioisotope Power Source Missions

    NASA Astrophysics Data System (ADS)

    Pantano, David R.; Hill, Dennis H.

    2005-02-01

    The Step 2 General Purpose Heat Source (GPHS) is a slightly larger and more robust version of the heritage GPHS modules flown on previous Radioisotope Thermoelectric Generator (RTG) missions like Galileo, Ulysses, and Cassini. The Step 2 GPHS is to be used in future small radioisotope power sources, such as the Stirling Radioisotope Generator (SRG110) and the Multi-Mission Radioisotope Thermoelectric Generator (MMRTG). New features include an additional central web of Fine Weave Pierced Fabric (FWPF) graphite in the aeroshell between the two Graphite Impact Shells (GIS) to improve accidental reentry and impact survivability and an additional 0.1-inch of thickness to the aeroshell broad faces to improve ablation protection. This paper details the creation of the thermal model using Thermal Desktop and AutoCAD interfaces and provides comparisons of the model to results of previous thermal analysis models of the heritage GPHS. The results of the analysis show an anticipated decrease in total thermal gradient from the aeroshell to the iridium clads compared to the heritage results. In addition, the Step 2 thermal model is investigated under typical SRG110 boundary conditions, with cover gas and gravity environments included where applicable, to provide preliminary guidance for design of the generator. Results show that the temperatures of the components inside the GPHS remain within accepted design limits during all envisioned mission phases.

  15. Thermal Loading of a Direct Drive Target Rarefied Gas

    SciTech Connect

    Christensen, B.R.; Raffray, A.R.; Tillack, M.S.

    2005-05-15

    In an inertial fusion energy (IFE) power plant, each fusion micro-explosion ({approx}10 Hz) causes thermal and structural loads on the IFE reactor wall and driver optics. The loading on the wall must remain sufficiently low to ensure that economic and safety constraints are met.One proposed method for decreasing the intensity of the wall loading is to fill the reaction chamber with a gas, such as Xe, at low density. The gas will absorb much of the radiation and ion energy from the fusion event, and then slowly release it to the chamber wall. Unfortunately the protective gas introduces major heat loads on the direct drive target. The thermal loading of a target, during injection, largely determines the viability of that target upon reaching chamber center. Thus, the density of the gas must be carefully selected to ensure that a target will survive injection.The objective of this work is to quantify and characterize the heat flux resulting from the interaction of the target and the protective gas. The loading of the target is modeled using DS2V, a commercial DSMC (Direct Simulation Monte Carlo) program. Using DS2V, this work explores the effect of the protective gas density, temperature, sticking (condensation) and accommodation coefficients on the heat flux to the target.

  16. Greenhouse Gas Abatement with Distributed Generation in California's Commercial Buildings

    SciTech Connect

    Stadler, Michael; Marnay, Chris; Cardoso, Goncalo; Megel, Olivier; Siddiqui, Afzal; Lai, Judy

    2009-08-15

    Lawrence Berkeley National Laboratory (LBL) is working with the California Energy Commission (CEC) to determine the role of distributed generation (DG) in greenhouse gas reductions. The impact of DG on large industrial sites is well known, and mostly, the potentials are already harvested. In contrast, little is known about the impact of DG on commercial buildings with peak electric loads ranging from 100 kW to 5 MW. We examine how DG with combined heat and power (CHP) may be implemented within the context of a cost minimizing microgrid that is able to adopt and operate various smart energy technologies, such as thermal and photovoltaic (PV) on-site generation, heat exchangers, solar thermal collectors, absorption chillers, and storage systems. We use a mixed-integer linear program (MILP) that has the minimization of a site's annual energy costs as objective. Using 138 representative commercial sites in California (CA) with existing tariff rates and technology data, we find the greenhouse gas reduction potential for California's commercial sector. This paper shows results from the ongoing research project and finished work from a two year U.S. Department of Energy research project. To show the impact of the different technologies on CO2 emissions, several sensitivity runs for different climate zones within CA with different technology performance expectations for 2020 were performed. The considered sites can contribute between 1 Mt/a and 1.8 Mt/a to the California Air Resources Board (CARB) goal of 6.7Mt/a CO2 abatement potential in 2020. Also, with lower PV and storage costs as well as consideration of a CO2 pricing scheme, our results indicate that PV and electric storage adoption can compete rather than supplement each other when the tariff structure and costs of electricity supply have been taken into consideration. To satisfy the site's objective of minimizing energy costs, the batteries will be charged also by CHP systems during off-peak and mid-peak hours and

  17. Accelerator Generation and Thermal Separation (AGATS) of Technetium-99m

    ScienceCinema

    None

    2013-05-28

    Accelerator Generation and Thermal Separation (AGATS) of Technetium-99m is a linear electron accelerator-based technology for producing medical imaging radioisotopes from a separation process that heats, vaporizes and condenses the desired radioisotope. You can learn more about INL's education programs at http://www.facebook.com/idahonationallaboratory.

  18. Accelerator Generation and Thermal Separation (AGATS) of Technetium-99m

    SciTech Connect

    2010-01-01

    Accelerator Generation and Thermal Separation (AGATS) of Technetium-99m is a linear electron accelerator-based technology for producing medical imaging radioisotopes from a separation process that heats, vaporizes and condenses the desired radioisotope. You can learn more about INL's education programs at http://www.facebook.com/idahonationallaboratory.

  19. Thermal barrier coating on high temperature industrial gas turbine engines

    NASA Technical Reports Server (NTRS)

    Carlson, N.; Stoner, B. L.

    1977-01-01

    The thermal barrier coating used was a yttria stabilized zirconia material with a NiCrAlY undercoat, and the base engine used to establish improvements was the P&WA FT50A-4 industrial gas turbine engine. The design benefits of thermal barrier coatings include simplified cooling schemes and the use of conventional alloys in the engine hot section. Cooling flow reductions and improved heating rates achieved with thermal barrier coating result in improved performance. Economic benefits include reduced power production costs and reduced fuel consumption. Over the 30,000 hour life of the thermal barrier coated parts, fuel savings equivalent to $5 million are projected and specific power (megawatts/mass of engine airflow) improvements on the order of 13% are estimated.

  20. Thermal Model Predictions of Advanced Stirling Radioisotope Generator Performance

    NASA Technical Reports Server (NTRS)

    Wang, Xiao-Yen J.; Fabanich, William Anthony; Schmitz, Paul C.

    2014-01-01

    This paper presents recent thermal model results of the Advanced Stirling Radioisotope Generator (ASRG). The three-dimensional (3D) ASRG thermal power model was built using the Thermal Desktop(trademark) thermal analyzer. The model was correlated with ASRG engineering unit test data and ASRG flight unit predictions from Lockheed Martin's (LM's) I-deas(trademark) TMG thermal model. The auxiliary cooling system (ACS) of the ASRG is also included in the ASRG thermal model. The ACS is designed to remove waste heat from the ASRG so that it can be used to heat spacecraft components. The performance of the ACS is reported under nominal conditions and during a Venus flyby scenario. The results for the nominal case are validated with data from Lockheed Martin. Transient thermal analysis results of ASRG for a Venus flyby with a representative trajectory are also presented. In addition, model results of an ASRG mounted on a Cassini-like spacecraft with a sunshade are presented to show a way to mitigate the high temperatures of a Venus flyby. It was predicted that the sunshade can lower the temperature of the ASRG alternator by 20 C for the representative Venus flyby trajectory. The 3D model also was modified to predict generator performance after a single Advanced Stirling Convertor failure. The geometry of the Microtherm HT insulation block on the outboard side was modified to match deformation and shrinkage observed during testing of a prototypic ASRG test fixture by LM. Test conditions and test data were used to correlate the model by adjusting the thermal conductivity of the deformed insulation to match the post-heat-dump steady state temperatures. Results for these conditions showed that the performance of the still-functioning inboard ACS was unaffected.

  1. Computational investigation of thermal gas separation for CO2 capture.

    SciTech Connect

    Gallis, Michail A.; Bryan, Charles R.; Brady, Patrick Vane; Torczynski, John Robert; Brooks, Carlton, F.

    2009-09-01

    This report summarizes the work completed under the Laboratory Directed Research and Development (LDRD) project 09-1351, 'Computational Investigation of Thermal Gas Separation for CO{sub 2} Capture'. Thermal gas separation for a binary mixture of carbon dioxide and nitrogen is investigated using the Direct Simulation Monte Carlo (DSMC) method of molecular gas dynamics. Molecular models for nitrogen and carbon dioxide are developed, implemented, compared to theoretical results, and compared to several experimental thermophysical properties. The molecular models include three translational modes, two fully excited rotational modes, and vibrational modes, whose degree of excitation depends on the temperature. Nitrogen has one vibrational mode, and carbon dioxide has four vibrational modes (two of which are degenerate). These models are used to perform a parameter study for mixtures of carbon dioxide and nitrogen confined between parallel walls over realistic ranges of gas temperatures and nominal concentrations of carbon dioxide. The degree of thermal separation predicted by DSMC is slightly higher than experimental values and is sensitive to the details of the molecular models.

  2. Gas flow driven by thermal creep in dusty plasma

    SciTech Connect

    Flanagan, T. M.; Goree, J.

    2009-10-15

    Thermal creep flow (TCF) is a flow of gas driven by a temperature gradient along a solid boundary. Here, TCF is demonstrated experimentally in a dusty plasma. Stripes on a glass box are heated by laser beam absorption, leading to both TCF and a thermophoretic force. The design of the experiment allows isolating the effect of TCF. A stirring motion of the dust particle suspension is observed. By eliminating all other explanations for this motion, we conclude that TCF at the boundary couples by drag to the bulk gas, causing the bulk gas to flow, thereby stirring the suspension of dust particles. This result provides an experimental verification, for the field of fluid mechanics, that TCF in the slip-flow regime causes steady-state gas flow in a confined volume.

  3. Gas Generation from K East Basin Sludges - Series II Testing

    SciTech Connect

    Bryan, Samuel A.; Delegard, Calvin H.; Schmidt, Andrew J.; Sell, Rachel L.; Silvers, Kurt L.; Gano, Susan R.; Thornton, Brenda M.

    2001-03-14

    This report describes work to examine the gas generation behavior of actual K East (KE) Basin floor, pit and canister sludge. Mixed and unmixed and fractionated KE canister sludge were tested, along with floor and pit sludges from areas in the KE Basin not previously sampled. The first report in this series focused on gas generation from KE floor and canister sludge collected using a consolidated sampling technique. The third report will present results of gas generation testing of irradiated uranium fuel fragments with and without sludge addition. The path forward for management of the K Basin Sludge is to retrieve, ship, and store the sludge at T Plant until final processing at some future date. Gas generation will impact the designs and costs of systems associated with retrieval, transportation and storage of sludge.

  4. RAETRAD MODEL OF RADON GAS GENERATION, TRANSPORT, AND INDOOR ENTRY

    EPA Science Inventory

    The report describes the theoretical basis, implementation, and validation of the Radon Emanation and Transport into Dwellings (RAETRAD) model, a conceptual and mathematical approach for simulating radon (222Rn) gas generation and transport from soils and building foundations to ...

  5. Martian hydrogeology sustained by thermally insulating gas and salt hydrates

    NASA Astrophysics Data System (ADS)

    Kargel, Jeffrey S.; Furfaro, Roberto; Prieto-Ballesteros, Olga; Rodriguez, J. Alexis P.; Montgomery, David R.; Gillespie, Alan R.; Marion, Giles M.; Wood, Stephen E.

    2007-11-01

    Numerical simulations and geologic studies suggest that high thermal anomalies beneath, within, and above thermally insulating layers of buried hydrated salts and gas hydrates could have triggered and sustained hydrologic processes on Mars, producing or modifying chaotic terrains, debris flows, gullies, and ice-creep features. These simulations and geologic examples suggest that thick hydrate deposits may sustain such geothermal anomalies, shallow ground-water tables, and hydrogeologic activity for eons. The proposed mechanism may operate and be self-reinforcing even in today's cold Martian climate without elevated heat flux.

  6. Ceramic thermal barrier coatings for electric utility gas turbine engines

    NASA Technical Reports Server (NTRS)

    Miller, R. A.

    1986-01-01

    Research and development into thermal barrier coatings for electric utility gas turbine engines is reviewed critically. The type of coating systems developed for aircraft applications are found to be preferred for clear fuel electric utility applications. These coating systems consists of a layer of plasma sprayed zirconia-yttria ceramic over a layer of MCrAly bond coat. They are not recommended for use when molten salts are presented. Efforts to understand coating degradation in dirty environments and to develop corrosion resistant thermal barrier coatings are discussed.

  7. Solar thermal organic rankine cycle for micro-generation

    NASA Astrophysics Data System (ADS)

    Alkahli, N. A.; Abdullah, H.; Darus, A. N.; Jalaludin, A. F.

    2012-06-01

    The conceptual design of an Organic Rankine Cycle (ORC) driven by solar thermal energy is developed for the decentralized production of electricity of up to 50 kW. Conventional Rankine Cycle uses water as the working fluid whereas ORC uses organic compound as the working fluid and it is particularly suitable for low temperature applications. The ORC and the solar collector will be sized according to the solar flux distribution in the Republic of Yemen for the required power output of 50 kW. This will be a micro power generation system that consists of two cycles, the solar thermal cycle that harness solar energy and the power cycle, which is the ORC that generates electricity. As for the solar thermal cycle, heat transfer fluid (HTF) circulates the cycle while absorbing thermal energy from the sun through a parabolic trough collector and then storing it in a thermal storage to increase system efficiency and maintains system operation during low radiation. The heat is then transferred to the organic fluid in the ORC via a heat exchanger. The organic fluids to be used and analyzed in the ORC are hydrocarbons R600a and R290.

  8. Lifecycle greenhouse gas emissions of coal, conventional and unconventional natural gas for electricity generation

    EPA Science Inventory

    An analysis of the lifecycle greenhouse gas (GHG) emissions associated with natural gas use recently published by Howarth et al. (2011) stated that use of natural gas produced from shale formations via hydraulic fracturing would generate greater lifecycle GHG emissions than petro...

  9. GREENHOUSE GAS REDUCTION POTENTIAL WITH COMBINED HEAT AND POWER WITH DISTRIBUTED GENERATION PRIME MOVERS - ASME 2012

    SciTech Connect

    Curran, Scott; Theiss, Timothy J; Bunce, Michael

    2012-01-01

    Pending or recently enacted greenhouse gas regulations and mandates are leading to the need for current and feasible GHG reduction solutions including combined heat and power (CHP). Distributed generation using advanced reciprocating engines, gas turbines, microturbines and fuel cells has been shown to reduce greenhouse gases (GHG) compared to the U.S. electrical generation mix due to the use of natural gas and high electrical generation efficiencies of these prime movers. Many of these prime movers are also well suited for use in CHP systems which recover heat generated during combustion or energy conversion. CHP increases the total efficiency of the prime mover by recovering waste heat for generating electricity, replacing process steam, hot water for buildings or even cooling via absorption chilling. The increased efficiency of CHP systems further reduces GHG emissions compared to systems which do not recover waste thermal energy. Current GHG mandates within the U.S Federal sector and looming GHG legislation for states puts an emphasis on understanding the GHG reduction potential of such systems. This study compares the GHG savings from various state-of-the- art prime movers. GHG reductions from commercially available prime movers in the 1-5 MW class including, various industrial fuel cells, large and small gas turbines, micro turbines and reciprocating gas engines with and without CHP are compared to centralized electricity generation including the U.S. mix and the best available technology with natural gas combined cycle power plants. The findings show significant GHG saving potential with the use of CHP. Also provided is an exploration of the accounting methodology for GHG reductions with CHP and the sensitivity of such analyses to electrical generation efficiency, emissions factors and most importantly recoverable heat and thermal recovery efficiency from the CHP system.

  10. Micro- and Nanoscale Energetic Materials as Effective Heat Energy Sources for Enhanced Gas Generators.

    PubMed

    Kim, Sang Beom; Kim, Kyung Ju; Cho, Myung Hoon; Kim, Ji Hoon; Kim, Kyung Tae; Kim, Soo Hyung

    2016-04-13

    In this study, we systematically investigated the effect of micro- and nanoscale energetic materials in formulations of aluminum microparticles (Al MPs; heat source)/aluminum nanoparticles (Al NPs; heat source)/copper oxide nanoparticles (CuO NPs; oxidizer) on the combustion and gas-generating properties of sodium azide microparticles (NaN3 MPs; gas-generating agent) for potential applications in gas generators. The burn rate of the NaN3 MP/CuO NP composite powder was only ∼0.3 m/s. However, the addition of Al MPs and Al NPs to the NaN3 MP/CuO NP matrix caused the rates to reach ∼1.5 and ∼5.3 m/s, respectively. In addition, the N2 gas volume flow rate generated by the ignition of the NaN3 MP/CuO NP composite powder was only ∼0.6 L/s, which was significantly increased to ∼1.4 and ∼3.9 L/s by adding Al MPs and Al NPs, respectively, to the NaN3 MP/CuO NP composite powder. This suggested that the highly reactive Al MPs and NPs, with the assistance of CuO NPs, were effective heat-generating sources enabling the complete thermal decomposition of NaN3 MPs upon ignition. Al NPs were more effective than Al MPs in the gas generators because of the increased reactivity induced by the reduced particle size. Finally, we successfully demonstrated that a homemade airbag with a specific volume of ∼140 mL could be rapidly and fully inflated by the thermal activation of nanoscale energetic material-added gas-generating agents (i.e., NaN3 MP/Al NP/CuO NP composites) within the standard time of ∼50 ms for airbag inflation. PMID:27007287

  11. Thermally reduced kaolin-graphene oxide nanocomposites for gas sensing

    NASA Astrophysics Data System (ADS)

    Zhang, Renyun; Alecrim, Viviane; Hummelgård, Magnus; Andres, Britta; Forsberg, Sven; Andersson, Mattias; Olin, Håkan

    2015-01-01

    Highly sensitive graphene-based gas sensors can be made using large-area single layer graphene, but the cost of large-area pure graphene is high, making the simpler reduced graphene oxide (rGO) an attractive alternative. To use rGO for gas sensing, however, require a high active surface area and slightly different approach is needed. Here, we report on a simple method to produce kaolin-graphene oxide (GO) nanocomposites and an application of this nanocomposite as a gas sensor. The nanocomposite was made by binding the GO flakes to kaolin with the help of 3-Aminopropyltriethoxysilane (APTES). The GO flakes in the nanocomposite were contacting neighboring GO flakes as observed by electron microscopy. After thermal annealing, the nanocomposite become conductive as showed by sheet resistance measurements. Based on the conductance changes of the nanocomposite films, electrical gas sensing devices were made for detecting NH3 and HNO3. These devices had a higher sensitivity than thermally annealed multilayer GO films. This kaolin-GO nanocomposite might be useful in applications that require a low-cost material with large conductive surface area including the demonstrated gas sensors.

  12. NEW APPROACH TO ADDRESSING GAS GENERATION IN RADIOACTIVE MATERIAL PACKAGING

    SciTech Connect

    Watkins, R; Leduc, D; Askew, N

    2009-06-25

    Safety Analysis Reports for Packaging (SARP) document why the transportation of radioactive material is safe in Type A(F) and Type B shipping containers. The content evaluation of certain actinide materials require that the gas generation characteristics be addressed. Most packages used to transport actinides impose extremely restrictive limits on moisture content and oxide stabilization to control or prevent flammable gas generation. These requirements prevent some users from using a shipping container even though the material to be shipped is fully compliant with the remaining content envelope including isotopic distribution. To avoid these restrictions, gas generation issues have to be addressed on a case by case basis rather than a one size fits all approach. In addition, SARP applicants and review groups may not have the knowledge and experience with actinide chemistry and other factors affecting gas generation, which facility experts in actinide material processing have obtained in the last sixty years. This paper will address a proposal to create a Gas Generation Evaluation Committee to evaluate gas generation issues associated with Safety Analysis Reports for Packaging material contents. The committee charter could include reviews of both SARP approved contents and new contents not previously evaluated in a SARP.

  13. Advanced Stirling Radioisotope Generator Thermal Power Model in Thermal Desktop SINDA/FLUINT Analyzer

    NASA Technical Reports Server (NTRS)

    Wang, Xiao-Yen; Fabanich, William A.; Schmitz, Paul C.

    2012-01-01

    This paper presents a three-dimensional Advanced Stirling Radioisotope Generator (ASRG) thermal power model that was built using the Thermal Desktop SINDA/FLUINT thermal analyzer. The model was correlated with ASRG engineering unit (EU) test data and ASRG flight unit predictions from Lockheed Martin's Ideas TMG thermal model. ASRG performance under (1) ASC hot-end temperatures, (2) ambient temperatures, and (3) years of mission for the general purpose heat source fuel decay was predicted using this model for the flight unit. The results were compared with those reported by Lockheed Martin and showed good agreement. In addition, the model was used to study the performance of the ASRG flight unit for operations on the ground and on the surface of Titan, and the concept of using gold film to reduce thermal loss through insulation was investigated.

  14. Positron transport and thermalization - the plasma-gas interface

    NASA Astrophysics Data System (ADS)

    Marler, Joan

    2008-11-01

    Low energy positrons are now used in many fields including atomic physics, material science and medicine [1]. Plasma physics is providing new tools for this research, including Penning-Malmberg buffer-gas traps to accumulate positrons and the use of rotating electric fields (the ``rotating wall'' technique) to compress positrons radially and create tailored beams [1]. These devices (now available commercially), which rely in key instances on positron-neutral interactions, are a convenient way to create plasmas and beams for a variety of applications. A deeper understanding of the relevant cooling and loss mechanisms is required to take full advantage of this technology. This talk focuses on a recent study of positrons in such a tenuous gaseous environment in the presence of an applied electric field [2]. Energy-resolved collision cross sections and a Monte Carlo code modified to include positrionium (Ps) formation are used to obtain transport coefficients and the thermalization and Ps-formation rates. A markedly different type of negative differential conductivity is observed (i.e., not seen in electron systems), due to the non-conservative nature of the Ps-formation process. It is particularly prominent in gases with large, highly energy dependent Ps-formation cross sections. The relevance of these calculations to other positron applications will also be discussed, including a currently planned study of positrons in gaseous water. It is hoped that these calculations will inspire a new generation of positron transport experiments.*Work done in collaboration with Z.Lj. Petrovi'c, A. Bankovi'c, M. Suvakov, G. Malovi'c, S. Dujko, S.J. Buckman. 1. C. M. Surko and R. G. Greaves, Phys. Plasmas 11, 2333-2348 (2004).2. A. Bankovi'c, J. P. Marler, M. Suvakov, G. Malovi'c, and Z. Lj. Petrovi'c, Nucl. Instrum. and Meth. in Phys. Res. B 266, 462-465 (2008).

  15. Thermal adaptation generates a diversity of thermal limits in a rainforest ant community.

    PubMed

    Kaspari, Michael; Clay, Natalie A; Lucas, Jane; Yanoviak, Stephen P; Kay, Adam

    2015-03-01

    The Thermal Adaptation Hypothesis posits that the warmer, aseasonal tropics generates populations with higher and narrower thermal limits. It has largely been tested among populations across latitudes. However, considerable thermal heterogeneity exists within ecosystems: across 31 trees in a Panama rainforest, surfaces exposed to sun were 8 °C warmer and varied more in temperature than surfaces in the litter below. Tiny ectotherms are confined to surfaces and are variously submerged in these superheated boundary layer environments. We quantified the surface CTmin and CTmax s (surface temperatures at which individuals grew torpid and lost motor control, respectively) of 88 ant species from this forest; they ranged in average mass from 0.01 to 57 mg. Larger ants had broader thermal tolerances. Then, for 26 of these species we again tested body CTmax s using a thermal dry bath to eliminate boundary layer effects: body size correlations observed previously disappeared. In both experiments, consistent with Thermal Adaptation, CTmax s of canopy ants averaged 3.5-5 °C higher than populations that nested in the shade of the understory. We impaled thermocouples in taxidermy mounts to further quantify the factors shaping operative temperatures for four ant species representing the top third (1-30 mg) of the size distribution. Extrapolations suggest the smallest 2/3rds of species reach thermal equilibrium in <10s. Moreover, the large ants that walk above the convective superheated surface air also showed more net heating by solar radiation, with operative temperatures up to 4 °C higher than surrounding air. The thermal environments of this Panama rainforest generate a range of CTmax subsuming 74% of those previously recorded for ant populations worldwide. The Thermal Adaptation Hypothesis can be a powerful tool in predicting diversity of thermal limits within communities. Boundary layer temperatures are likely key to predicting the future of Earth's tiny terrestrial

  16. Thermal Barrier Coatings for Gas-Turbine Engine Applications

    NASA Astrophysics Data System (ADS)

    Padture, Nitin P.; Gell, Maurice; Jordan, Eric H.

    2002-04-01

    Hundreds of different types of coatings are used to protect a variety of structural engineering materials from corrosion, wear, and erosion, and to provide lubrication and thermal insulation. Of all these, thermal barrier coatings (TBCs) have the most complex structure and must operate in the most demanding high-temperature environment of aircraft and industrial gas-turbine engines. TBCs, which comprise metal and ceramic multilayers, insulate turbine and combustor engine components from the hot gas stream, and improve the durability and energy efficiency of these engines. Improvements in TBCs will require a better understanding of the complex changes in their structure and properties that occur under operating conditions that lead to their failure. The structure, properties, and failure mechanisms of TBCs are herein reviewed, together with a discussion of current limitations and future opportunities.

  17. Gas-Generator Augmented Expander Cycle Rocket Engine

    NASA Technical Reports Server (NTRS)

    Greene, William D. (Inventor)

    2011-01-01

    An augmented expander cycle rocket engine includes first and second turbopumps for respectively pumping fuel and oxidizer. A gas-generator receives a first portion of fuel output from the first turbopump and a first portion of oxidizer output from the second turbopump to ignite and discharge heated gas. A heat exchanger close-coupled to the gas-generator receives in a first conduit the discharged heated gas, and transfers heat to an adjacent second conduit carrying fuel exiting the cooling passages of a primary combustion chamber. Heat is transferred to the fuel passing through the cooling passages. The heated fuel enters the second conduit of the heat exchanger to absorb more heat from the first conduit, and then flows to drive a turbine of one or both of the turbopumps. The arrangement prevents the turbopumps exposure to combusted gas that could freeze in the turbomachinery and cause catastrophic failure upon attempted engine restart.

  18. Thermal Barrier Coatings for Advanced Gas Turbine and Diesel Engines

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Miller, Robert A.

    1999-01-01

    Ceramic thermal barrier coatings (TBCS) have been developed for advanced gas turbine and diesel engine applications to improve engine reliability and fuel efficiency. However, durability issues of these thermal barrier coatings under high temperature cyclic conditions are still of major concern. The coating failure depends not only on the coating, but also on the ceramic sintering/creep and bond coat oxidation under the operating conditions. Novel test approaches have been established to obtain critical thermomechanical and thermophysical properties of the coating systems under near-realistic transient and steady state temperature and stress gradients encountered in advanced engine systems. This paper presents detailed experimental and modeling results describing processes occurring in the ZrO2-Y2O3 thermal barrier coating systems, thus providing a framework for developing strategies to manage ceramic coating architecture, microstructure and properties.

  19. Second generation thermal imaging system design trades modeling

    NASA Astrophysics Data System (ADS)

    Vroombout, Leo O.

    1990-10-01

    The Night Vision Laboratory static performance model is considered for thermal viewing systems. Since the model is not initially intended to be a design tool and is not usable for conducting system or component design trades, it has to be restructured. The approach to updating the first-generation static performance model and to configuring it as a design tool is presented. Second-generation imaging systems exploit infrared focal-plane arrays, high-reliability cryogenic coolers, precision scanning devices, and high-speed digital electronics. They also use optical materials and coatings and optomechanical and electronics packaging techniques.

  20. Thermally controlled comb generation and soliton modelocking in microresonators.

    PubMed

    Joshi, Chaitanya; Jang, Jae K; Luke, Kevin; Ji, Xingchen; Miller, Steven A; Klenner, Alexander; Okawachi, Yoshitomo; Lipson, Michal; Gaeta, Alexander L

    2016-06-01

    We report, to the best of our knowledge, the first demonstration of thermally controlled soliton mode-locked frequency comb generation in microresonators. By controlling the electric current through heaters integrated with silicon nitride microresonators, we demonstrate a systematic and repeatable pathway to single- and multi-soliton mode-locked states without adjusting the pump laser wavelength. Such an approach could greatly simplify the generation of mode-locked frequency combs and facilitate applications such as chip-based dual-comb spectroscopy. PMID:27244415

  1. Investigation of thermal storage and steam generator issues

    SciTech Connect

    Not Available

    1993-08-01

    A review and evaluation of steam generator and thermal storage tank designs for commercial nitrate salt technology showed that the potential exists to procure both on a competitive basis from a number of qualified vendors. The report outlines the criteria for review and the results of the review, which was intended only to assess the feasibility of each design, not to make a comparison or select the best concept.

  2. Magneto-Thermo-Triboelectric Generator (MTTG) for thermal energy harvesting

    NASA Astrophysics Data System (ADS)

    Jang, Kwang Yeop; Lee, James; Lee, Dong-Gun

    2016-04-01

    We present a novel thermal energy harvesting system using triboelectric effect. Recently, there has been intensive research efforts on energy harvesting using triboelectric effect, which can produce surprising amount of electric power (when compared to piezoelectric materials) by rubbing or touching (i.e, electric charge by contact and separation) two different materials together. Numerous studies have shown the possibility as an attractive alternative with good transparency, flexibility and low cost abilities for its use in wearable device and smart phone applications markets. However, its application has been limited to only vibration source, which can produce sustained oscillation with maintaining contact and separation states repeatedly for triboelectric effect. Thus, there has been no attempt toward thermal energy source. The proposed approach can convert thermal energy into electricity by pairing triboelectric effect and active ferromagnetic materials The objective of the research is to develop a new manufacturing process of design, fabrication, and testing of a Magneto-Thermo-Triboelectric Generator (MTTG). The results obtained from the approach show that MTTG devices have a feasible power energy conversion capability from thermal energy sources. The tunable design of the device is such that it has efficient thermal capture over a wide range of operation temperature in waste heat.

  3. Generation of Multitemporal Thermal Orthophotos from Uav Data

    NASA Astrophysics Data System (ADS)

    Pech, K.; Stelling, N.; Karrasch, P.; Maas, H.-G.

    2013-08-01

    The paper deals with using a TIR camera on an UAV for acquiring multitemporal thermal images of a building block against the background of detecting, monitoring and analysing urban heat islands. It is motivated by a research project called EO2HEAVEN (Earth Observation and Environmental Modelling for the Mitigation of Health Risks) which analyses the influence of environmental effects to human health. Therefore, the aim is the generation of thermal orthophotos from UAV data which can be used for further thematic analysis. The paper describes the data acquisition on the one hand and the processing of the obtained data on the other hand. The data acquisition comprises three image flights at different times of day from which only the first two missions could be processed until now. The low image contrasts, the radiometric differences between images as well as the poor initial positioning and orientation values limit the suitability of available software for automatic tie point measurement so that this step was outsourced and implemented in C++. The following aerial triangulation and orthophoto generation was realised in TerraPhoto (Terrasolid). However, two orthophotos could be generated with a geometric resolution of 15 cm. Furthermore, the radiation temperatures from the thermal images were compared to ground measurements to check the correctness of the camera measurements.

  4. Landfill gas generation after mechanical biological treatment of municipal solid waste. Estimation of gas generation rate constants.

    PubMed

    Gioannis, G De; Muntoni, A; Cappai, G; Milia, S

    2009-03-01

    Mechanical biological treatment (MBT) of residual municipal solid waste (RMSW) was investigated with respect to landfill gas generation. Mechanically treated RMSW was sampled at a full-scale plant and aerobically stabilized for 8 and 15 weeks. Anaerobic tests were performed on the aerobically treated waste (MBTW) in order to estimate the gas generation rate constants (k,y(-1)), the potential gas generation capacity (L(o), Nl/kg) and the amount of gasifiable organic carbon. Experimental results show how MBT allowed for a reduction of the non-methanogenic phase and of the landfill gas generation potential by, respectively, 67% and 83% (8 weeks treatment), 82% and 91% (15 weeks treatment), compared to the raw waste. The amount of gasified organic carbon after 8 weeks and 15 weeks of treatment was equal to 11.01+/-1.25kgC/t(MBTW) and 4.54+/-0.87kgC/t(MBTW), respectively, that is 81% and 93% less than the amount gasified from the raw waste. The values of gas generation rate constants obtained for MBTW anaerobic degradation (0.0347-0.0803y(-1)) resemble those usually reported for the slowly and moderately degradable fractions of raw MSW. Simulations performed using a prediction model support the hypothesis that due to the low production rate, gas production from MBTW landfills is well-suited to a passive management strategy. PMID:18954969

  5. Sand control in wells with gas generator and resin

    SciTech Connect

    Dees, J.M.

    1992-04-07

    This patent describes a method of treating a wellbore having formation perforations for controlling sand and other fine materials. It comprises positioning a quantity of fluid resin material in alignment with the formation perforations of the wellbore; positioning a gas generator in proximity with the fluid resin material; actuating the gas generator to increase wellbore pressure in a substantially instantaneous manner to a pressure substantially in excess of well pressure to force the fluid resin material from the wellbore into the formation perforations; and subsequently polymerizing the resin material to form a consolidated, porous, permeable matrix which retains the sand and other fine materials while permitting the flow of production fluid into the wellbore. This paper also describes a method of treating a wellbore having formation perforations for controlling sand and other fine materials. It comprises positioning a coiled tubing, having a valve and gas generator attached thereto, so that the valve is positioned in a predetermined location relative to the bottom formation perforation; injecting a predetermined amount of fluid resin material through the coiled tubing and valve into the wellbore; raising the gas generator to a position across the formation perforations and in proximity with the fluid resin material; actuating the gas generator to force the fluid resin material into the formation perforations; and thereafter polymerizing the previously fluid resin material to form a consolidated, porous, permeable matrix which retains the sand and other fine materials while permitting the flow of production fluid into the wellbore.

  6. Dispersed solar thermal generation employing parabolic dish-electric transport with field modulated generator systems

    NASA Technical Reports Server (NTRS)

    Ramakumar, R.; Bahrami, K.

    1981-01-01

    This paper discusses the application of field modulated generator systems (FMGS) to dispersed solar-thermal-electric generation from a parabolic dish field with electric transport. Each solar generation unit is rated at 15 kWe and the power generated by an array of such units is electrically collected for insertion into an existing utility grid. Such an approach appears to be most suitable when the heat engine rotational speeds are high (greater than 6000 r/min) and, in particular, if they are operated in the variable speed mode and if utility-grade a.c. is required for direct insertion into the grid without an intermediate electric energy storage and reconversion system. Predictions of overall efficiencies based on conservative efficiency figures for the FMGS are in the range of 25 per cent and should be encouraging to those involved in the development of cost-effective dispersed solar thermal power systems.

  7. Generation and expulsion of petroleum and gas from Almond Formation Coal, Greater Green River Basin, Wyoming

    SciTech Connect

    Garcia-Gonzalez, M.; Surdam, R.C.; Lee, M.L.

    1997-01-01

    Petrographic and geochemical studies of coal from the Almond Formation in the Greater Green River basin demonstrate that the coal contains important volumes of stored liquid petroleum, as well as methane. Modeling indicates that at the basin center, most of the oil generated in the coal has been thermally cracked to gas, whereas at the basin flank the oil-to-gas reaction has barely proceeded. Several new concepts are presented about the mechanism of petroleum generation in coal based on (1) natural maturation trends gleaned form examination of Almond coal samples from different burial depths and (2) similar maturation trends observed in hydrous pyrolysis experiments using immature Almond coal samples. These new concepts show that the oil in the coal was generated during the alteration of desmocollinite and liptinite macerals to exsudatinite (waxy oil) and inertinite solid residue; that the waxy oil was initially stored in porous structures and subsequently in vesicles as the coal matured under increasing temperature; that primary migration of the oil occurred as the generation of a sufficient volume of exsudatinite microfractured the vitrinite-semifusinite vesicles, interconnecting vesicles and pores; and that the thermal cracking of exsudatinite generated a sufficient volume of gas to fracture the vesiculated coal as pore pressure increased and allowed migration of hydrocarbons out of the coal.

  8. Assessing climate benefits of natural gas and coal electricity generation

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaochun; Myhrvold, Nathan; Caldeira, Ken

    2015-04-01

    A transition from a system of coal electricity generation to near-zero emission electricity generation will be central to any effort to mitigate climate change. Natural gas is increasingly seen as a 'bridge fuel' for transitions form coal to near-zero emission energy sources. However, various studies use different metrics to estimate the climate impact of natural gas utilization, and led to differing conclusions. Thus, there is a need to identify the key factors affecting the climate effects of natural gas and coal electricity production, and to present these climate effects in as clear and transparent a way as possible. Here, we identify power plant efficiency and methane leakage rate as the key factors that explain most of the variance in greenhouse gas emissions by natural gas and coal power plants. We then develop a power plant GHG emission model, apply available life-cycle parameters to calculate associated CO2 and CH4 emissions and assess climate effects. Simple underlying physical changes can be obscured by abstract evaluation metrics, thus we base our discussion on temperature changes over time. We find that, during the period of plant operation, if there is substantial natural gas leakage, natural gas plants can produce greater near-term warming than a coal plant with the same power output. If leakage rates can be made to be low and efficiency high, natural gas plants can produce some reduction in near-term warming. However, without carbon capture and storage natural gas power plants cannot achieve the deep reductions that would be required to avoid substantial contribution to additional global warming. Achieving climate benefits from the use of natural gas depends on building high-efficiency natural gas plants, controlling methane leakage, and on developing a policy environment that assures a transition to future lower-emission technologies. For more information please see http://iopscience.iop.org/1748-9326/9/11/114022/article .

  9. A thermal energy storage system for adsorbent low-pressure natural gas storage

    SciTech Connect

    Blazek, C.F.; Jasionowski, W.J.; Kountz, K.J.; Tiller, A.J.; Gauthier, S.W.; Takagishi, S.K.

    1992-12-31

    Carbon-based adsorbents were determined to be the best enhanced storage media that would store more natural gas at low pressures than achieved with compression only. Thermal energy storage (TES) was previously demonstrated to be a potentially promising technique to mitigate heat effects associated with low-pressure carbon adsorption systems for natural gas storage. Further investigations were conducted to develop information for the design of an optimized adsorption system that incorporates TES heat management. The selection of appropriate phase-change materials and nucleating agents, encapsulant materials, and corrosion inhibitors for a TES heat management system are discussed and the results of extended thermal cyclic behavior are presented. Engineering analyses and finite element analyses are employed to calculate adsorption rates, heat generation, temperatures, and heat transfer within the adsorbent bed. The size, volume, and arrangement of components for an operational TES system designed to accommodate fast-fill within a defined time limit is presented.

  10. A thermal energy storage system for adsorbent low-pressure natural gas storage

    SciTech Connect

    Blazek, C.F.; Jasionowski, W.J.; Kountz, K.J.; Tiller, A.J. ); Gauthier, S.W.; Takagishi, S.K. )

    1992-01-01

    Carbon-based adsorbents were determined to be the best enhanced storage media that would store more natural gas at low pressures than achieved with compression only. Thermal energy storage (TES) was previously demonstrated to be a potentially promising technique to mitigate heat effects associated with low-pressure carbon adsorption systems for natural gas storage. Further investigations were conducted to develop information for the design of an optimized adsorption system that incorporates TES heat management. The selection of appropriate phase-change materials and nucleating agents, encapsulant materials, and corrosion inhibitors for a TES heat management system are discussed and the results of extended thermal cyclic behavior are presented. Engineering analyses and finite element analyses are employed to calculate adsorption rates, heat generation, temperatures, and heat transfer within the adsorbent bed. The size, volume, and arrangement of components for an operational TES system designed to accommodate fast-fill within a defined time limit is presented.

  11. Quantity, Quality, and Availability of Waste Heat from United States Thermal Power Generation.

    PubMed

    Gingerich, Daniel B; Mauter, Meagan S

    2015-07-21

    Secondary application of unconverted heat produced during electric power generation has the potential to improve the life-cycle fuel efficiency of the electric power industry and the sectors it serves. This work quantifies the residual heat (also known as waste heat) generated by U.S. thermal power plants and assesses the intermittency and transport issues that must be considered when planning to utilize this heat. Combining Energy Information Administration plant-level data with literature-reported process efficiency data, we develop estimates of the unconverted heat flux from individual U.S. thermal power plants in 2012. Together these power plants discharged an estimated 18.9 billion GJ(th) of residual heat in 2012, 4% of which was discharged at temperatures greater than 90 °C. We also characterize the temperature, spatial distribution, and temporal availability of this residual heat at the plant level and model the implications for the technical and economic feasibility of its end use. Increased implementation of flue gas desulfurization technologies at coal-fired facilities and the higher quality heat generated in the exhaust of natural gas fuel cycles are expected to increase the availability of residual heat generated by 10.6% in 2040. PMID:26061407

  12. Spin current generated by thermally driven ultrafast demagnetization.

    PubMed

    Choi, Gyung-Min; Min, Byoung-Chul; Lee, Kyung-Jin; Cahill, David G

    2014-01-01

    Spin current is the key element for nanoscale spintronic devices. For ultrafast operation of such nano-devices, generation of spin current in picoseconds, a timescale that is difficult to achieve using electrical circuits, is highly desired. Here we show thermally driven ultrafast demagnetization of a perpendicular ferromagnet leads to spin accumulation in a normal metal and spin transfer torque in an in-plane ferromagnet. The data are well described by models of spin generation and transport based on differences and gradients of thermodynamic parameters. The temperature difference between electrons and magnons is the driving force for spin current generation by ultrafast demagnetization. On longer timescales, a few picoseconds following laser excitation, we also observe a small contribution to spin current by a temperature gradient and the spin-dependent Seebeck effect. PMID:25007978

  13. Thermal Performance Evaluation of Walls with Gas Filled Panel Insulation

    SciTech Connect

    Shrestha, Som S.; Desjarlais, Andre Omer; Atchley, Jerald Allen

    2014-11-01

    Gas filled insulation panels (GFP) are very light weight and compact (when uninflated) advanced insulation products. GFPs consist of multiple layers of thin, low emittance (low-e) metalized aluminum. When expanded, the internal, low-e aluminum layers form a honeycomb structure. These baffled polymer chambers are enveloped by a sealed barrier and filled with either air or a low-conductivity gas. The sealed exterior aluminum foil barrier films provide thermal resistance, flammability protection, and properties to contain air or a low conductivity inert gas. This product was initially developed with a grant from the U.S. Department of Energy. The unexpanded product is nearly flat for easy storage and transport. Therefore, transportation volume and weight of the GFP to fill unit volume of wall cavity is much smaller compared to that of other conventional insulation products. This feature makes this product appealing to use at Army Contingency Basing, when transportation cost is significant compared to the cost of materials. The objective of this study is to evaluate thermal performance of walls, similar to those used at typical Barracks Hut (B-Hut) hard shelters, when GFPs are used in the wall cavities. Oak Ridge National Laboratory (ORNL) tested performance of the wall in the rotatable guarded hotbox (RGHB) according to the ASTM C 1363 standard test method.

  14. Thermal effects of magmatic sills on coal seam metamorphism and gas occurrence

    NASA Astrophysics Data System (ADS)

    Wang, Liang; Cheng, Long-biao; Cheng, Yuan-ping; Yin, Guang-zhi; Cai, Chun-cheng; Xu, Chao; Jin, Kan

    2014-04-01

    Igneous intrusions in coal seams are found in 80 % of coal mines in the Huaibei coalfield, China, and coal and gas outburst accidents have occurred 11 times under a 120-m-thick sill in the Haizi mining field. The magma's heat had a significant controlling effect on coal seam gas occurrence. Based on theoretical analysis, experimental tests and site validation, we analyzed the temperature distribution following magma intrusion into coal measure strata and the variations in multiple physical parameters and adsorption/desorption characteristics between the underlying coal seams beneath the sill in the Haizi mining field and coal seams uninfluenced by magma intrusion in the adjacent Linhuan mining field. The research results show that the main factors controlling the temperature distribution of the magma and surrounding rocks in the cooling process include the cooling time and the thickness and initial temperature of the magmatic rock. As the distance from sill increases, the critical effective temperature and the duration of sustained high temperatures decrease. The sill in the Haizi mining field significantly promoted coal seam secondary hydrocarbon generation in the thermally affected area, which generated approximately 340 m3/t of hydrocarbon. In the magma-affected area, the metamorphic grade, micropore volume, amount of gas adsorption, initial speed of gas desorption, and amount of desorption all increase. Fluid entrapment by sills usually causes the gas pressure and gas content of the underlying coal seams to increase. As a result, the outburst risks from coal seams increases as well.

  15. Advanced Stirling Radioisotope Generator (ASRG) Thermal Power Model in MATLAB

    NASA Technical Reports Server (NTRS)

    Wang, Xiao-Yen, J.

    2012-01-01

    This paper presents a one-dimensional steady-state mathematical thermal power model of the ASRG. It aims to provide a guideline of understanding how the ASRG works and what can change its performance. The thermal dynamics and energy balance of the generator is explained using the thermal circuit of the ASRG. The Stirling convertor performance map is used to represent the convertor. How the convertor performance map is coupled in the thermal circuit is explained. The ASRG performance characteristics under i) different sink temperatures and ii) over the years of mission (YOM) are predicted using the one-dimensional model. Two Stirling converter control strategies, i) fixing the hot-end of temperature of the convertor by adjusting piston amplitude and ii) fixing the piston amplitude, were tested in the model. Numerical results show that the first control strategy can result in a higher system efficiency than the second control strategy when the ambient gets warmer or the general-purpose heat source (GPHS) fuel load decays over the YOM. The ASRG performance data presented in this paper doesn't pertain to the ASRG flight unit. Some data of the ASRG engineering unit (EU) and flight unit that are available in public domain are used in this paper for the purpose of numerical studies.

  16. Analytical thermal model validation for Cassini radioisotope thermoelectric generator

    SciTech Connect

    Lin, E.I.

    1997-12-31

    The Saturn-bound Cassini spacecraft is designed to rely, without precedent, on the waste heat from its three radioisotope thermoelectric generators (RTGs) to warm the propulsion module subsystem, and the RTG end dome temperature is a key determining factor of the amount of waste heat delivered. A previously validated SINDA thermal model of the RTG was the sole guide to understanding its complex thermal behavior, but displayed large discrepancies against some initial thermal development test data. A careful revalidation effort led to significant modifications and adjustments of the model, which result in a doubling of the radiative heat transfer from the heat source support assemblies to the end domes and bring up the end dome and flange temperature predictions to within 2 C of the pertinent test data. The increased inboard end dome temperature has a considerable impact on thermal control of the spacecraft central body. The validation process offers an example of physically-driven analytical model calibration with test data from not only an electrical simulator but also a nuclear-fueled flight unit, and has established the end dome temperatures of a flight RTG where no in-flight or ground-test data existed before.

  17. High order harmonic generation in dual gas multi-jets

    SciTech Connect

    Tosa, Valer E-mail: calin.hojbota@itim-cj.ro; Hojbota, Calin E-mail: calin.hojbota@itim-cj.ro

    2013-11-13

    High order harmonic generation (HHG) in gas media suffers from a low conversion efficiency that has its origins in the interaction of the atom/molecule with the laser field. Phase matching is the main way to enhance the harmonic flux and several solutions have been designed to achieve it. Here we present numerical results modeling HHG in a system of multi-jets in which two gases alternate: the first gas jet (for example Ne) generates harmonics and the second one which ionizes easier, recover the phase matching condition. We obtain configurations which are experimentally feasible with respect to pressures and dimensions of the jets.

  18. Hybrid propulsion based on fluid-controlled solid gas generators

    NASA Technical Reports Server (NTRS)

    Cohen, Norman S.; Strand, Leon D.

    1993-01-01

    The use of fuel-rich solid (gas generator-type) propellants for hybrid propulsion affords some design and utilization efficiency advantages. Both forward and aft liquid injection control concepts are evaluated from the operational standpoints of ballistics, throttling, stability and extinguishment. Steady-state and non-steady ballistics analyses are employed for this evaluation. Stability of solid motor operation is enhanced by fluid injection with adequate injector pressure drop. Efficient throttling and reliable extinguishment are attained through a combination of solid propellant combustion tailoring, grain design, control valves and sensors. Initial results from a laboratory-scale slab combustor, combining a gas generator propellant with gaseous oxygen injection, are also presented.

  19. Evaluation of Ash Toxicity Generated From the Thermal Plasma Pyrolysis of Used Automobile Tires

    NASA Astrophysics Data System (ADS)

    Chang, J. S.; Novog, D. R.; Jamal, S.

    1996-10-01

    The disposal of used tires represents a severe environmental problem. As the heat content of the rubber tires is even higher than that of coal it should be considered as a future source of alternate fuel for power generation. There have been attempts to burn old tires directly in cofired boilers for production of electricity. However, there are several environmental concerns since the combustion flue gas may contain a significant concentration heavy metals (Fe, Zn, Cd, As, etc.). One technique currently being developed is the pyrolyzation of rubber tires by a thermal plasma to produce combustible gases. In this work, ashes generated during the plasma pyrolysis of used automobile tires using a DC Argon thermal plasma were analyzed using Neutron Activation Analysis (NAA) and produced syngas composition was analyzed by FT-IR.. The gas analysis indicates a significant quantity of combustible gases (CH4, C2H2, C2H4, CO, H2 etc..) was produced from the thermal plasma pyrolysis of used tires. The results also indicate that a majority of the heavy metals present in used tires were concentrated in the ashes deposited in reaction chamber wall and in the two-stage filtering system. Furthermore the heavy metal concentration decreases significantly with increasing distance from the plasma torch. Toxic components such as Zn, As and Cl were also collected in the filtering process.

  20. Optical Property Evaluation of Next Generation Thermal Control Coatings

    NASA Technical Reports Server (NTRS)

    Jaworske, Donald A.; Deshpande, Mukund S.; Pierson, Edward A.

    2010-01-01

    Next generation white thermal control coatings were developed via the Small Business Innovative Research program utilizing lithium silicate chemistry as a binder. Doping of the binder with additives yielded a powder that was plasma spray capable and that could be applied to light weight polymers and carbon-carbon composite surfaces. The plasma sprayed coating had acceptable beginning-of-life and end-of-live optical properties, as indicated by a successful 1.5 year exposure to the space environment in low Earth orbit. Recent studies also showed the coating to be durable to simulated space environments consisting of 1 keV and 10 keV electrons, 4.5 MeV electrons, and thermal cycling. Large scale deposition was demonstrated on a polymer matrix composite radiator panel, leading to the selection of the coating for use on the Gravity Recovery And Interior Laboratory (GRAIL) mission.

  1. Biomass & Natural Gas Based Hydrogen Fuel For Gas Turbine (Power Generation)

    EPA Science Inventory

    Significant progress has been made by major power generation equipment manufacturers in the development of market applications for hydrogen fuel use in gas turbines in recent years. Development of a new application using gas turbines for significant reduction of power plant CO2 e...

  2. Thermal History Of PMRs Via Pyrolysis-Gas Chromatography

    NASA Technical Reports Server (NTRS)

    Gluyas, Richard E.; Alston, William B.; Snyder, William J.

    1994-01-01

    Pyrolysis-gas chromatography (PY-GC) useful as analytical technique to determine extents of cure or postcure of PMR-15 polyimides and to lesser extent, cumulative thermal histories of PMR-15 polyimides exposed to high temperatures. Also applicable for same purposes to other PMR polyimides and to composite materials containing PMR polyimides. Valuable in reducing costs and promoting safety in aircraft industry by helping to identify improperly cured or postcured PMR-15 composite engine and airframe components and helping to identify composite parts nearing ends of their useful lives.

  3. Thermal and Evolved Gas Analysis of "Nanophase" Carbonates: Implications for Thermal and Evolved Gas Analysis on Mars Missions

    NASA Technical Reports Server (NTRS)

    Lauer, Howard V., Jr.; Archer, P. D., Jr.; Sutter, B.; Niles, P. B.; Ming, Douglas W.

    2012-01-01

    Data collected by the Mars Phoenix Lander's Thermal and Evolved Gas Analyzer (TEGA) suggested the presence of calcium-rich carbonates as indicated by a high temperature CO2 release while a low temperature (approx.400-680 C) CO2 release suggested possible Mg- and/or Fe-carbonates [1,2]. Interpretations of the data collected by Mars remote instruments is done by comparing the mission data to a database on the thermal properties of well-characterized Martian analog materials collected under reduced and Earth ambient pressures [3,4]. We are proposing that "nano-phase" carbonates may also be contributing to the low temperature CO2 release. The objectives of this paper is to (1) characterize the thermal and evolved gas proper-ties of carbonates of varying particle size, (2) evaluate the CO2 releases from CO2 treated CaO samples and (3) examine the secondary CO2 release from reheated calcite of varying particle size.

  4. Harmonization of Initial Estimates of Shale Gas Life Cycle Greenhouse Gas Emissions for Electric Power Generation

    NASA Astrophysics Data System (ADS)

    Heath, G.; O'Donoughue, P.; Arent, D.; Bazilian, M.

    2014-12-01

    Recent technological advances in the recovery of unconventional natural gas, particularly shale gas, have served to dramatically increase domestic production and reserve estimates for the United States and internationally. This trend has led to lowered prices and increased scrutiny on production practices. Questions have been raised as to how greenhouse gas (GHG) emissions from the life cycle of shale gas production and use compares with that of conventionally produced natural gas or other fuel sources such as coal. Recent literature has come to different conclusions on this point, largely due to differing assumptions, comparison baselines, and system boundaries. Through a meta-analytical procedure we call harmonization, we develop robust, analytically consistent, and updated comparisons of estimates of life cycle GHG emissions for electricity produced from shale gas, conventionally produced natural gas, and coal. On a per unit electrical output basis, harmonization reveals that median estimates of GHG emissions from shale gas-generated electricity are similar to those for conventional natural gas, with both approximately half that of the central tendency of coal. Sensitivity analysis on the harmonized estimates indicates that assumptions regarding liquids unloading and estimated ultimate recovery (EUR) of wells have the greatest influence on life cycle GHG emissions, whereby shale gas life cycle GHG emissions could approach the range of best performing coal-fired generation under certain scenarios. Despite clarification of published estimates through harmonization, these initial assessments should be confirmed through methane emissions measurements at components and in the atmosphere and through better characterization of EUR and practices.

  5. Integrating planning and design optimization for thermal power generation in developing economies: Designs for Vietnam

    NASA Astrophysics Data System (ADS)

    Pham, John Dinh Chuong

    In the twenty first century, global warming and climate change have become environmental issues worldwide. There is a need to reduce greenhouse gas emissions from thermal power plants through improved efficiency. This need is shared by both developed and developing countries. It is particularly important in rapidly developing economies (for example, Vietnam, South Korea, and China) where there is very significant need to increase generation capacity. This thesis addresses improving thermal power plant efficiency through an improved planning process that emphasizes integrated design. With the integration of planning and design considerations of key components in thermal electrical generation, along with the selection of appropriate up-to-date technologies, greater efficiency and reduction of emissions could be achieved. The major barriers to the integration of overall power plant optimization are the practice of individual island tendering packages, and the lack of coordinating efforts between major original equipment manufacturers (OEM). This thesis assesses both operational and design aspects of thermal power plants to identify opportunities for energy saving and the associated reduction of CO2 emissions. To demonstrate the potential of the integrated planning design approach, three advanced thermal power plants, using anthracite coal, oil and gas as their respective fuel, were developed as a case study. The three plant formulations and simulations were performed with the cooperation of several leading companies in the power industry including Babcock & Wilcox, Siemens KWU, Siemens-Westinghouse Power Corporation, Hitachi, Alstom Air Preheater, TLT-Covent, and ABB Flakt. The first plant is a conventional W-Flame anthracite coal-fired unit for base load operation. The second is a supercritical oil-fired plant with advanced steam condition, for two shifting and cycling operations. The third plant is a gas-fired combined cycle unit employing a modern steam-cooled gas

  6. Use of GTE-65 gas turbine power units in the thermal configuration of steam-gas systems for the refitting of operating thermal electric power plants

    SciTech Connect

    Lebedev, A. S.; Kovalevskii, V. P.; Getmanov, E. A.; Ermaikina, N. A.

    2008-07-15

    Thermal configurations for condensation, district heating, and discharge steam-gas systems (PGU) based on the GTE-65 gas turbine power unit are described. A comparative multivariant analysis of their thermodynamic efficiency is made. Based on some representative examples, it is shown that steam-gas systems with the GTE-65 and boiler-utilizer units can be effectively used and installed in existing main buildings during technical refitting of operating thermal electric power plants.

  7. Gas Generation from K East Basin Sludges - Series II Testing

    SciTech Connect

    Bryan, Samuel A.; Delegard, Calvin H.; Schmidt, Andrew J.; Sell, Rachel L.; Silvers, Kurt L.; Gano, Susan R.; Thornton, Brenda M.

    2004-04-26

    This report describes work to examine the gas generation behavior of actual K East (KE) Basin floor, pit and canister sludge. Mixed and unmixed and fractionated KE canister sludge were tested, along with floor and pit sludges from areas in the KE Basin not previously sampled. The first report in this series focuses on gas generation from KE floor and canister sludge collected using a consolidated sampling technique. The third report presents results of gas generation testing of irradiated uranium fuel fragments with and without sludge addition. The path forward for management of the K Basin Sludge is to retrieve, ship, and store the sludge at T Plant until final processing at some future date. Gas generation will impact the designs and costs of systems associated with retrieval, transportation and storage of sludge. This report was originally published in March 2001. In January 2004, a transcription error was discovered in the value reported for the uranium metal content of KE North Loadout Pit sample FE-3. This revision of the report corrects the U metal content of FE-3 from 0.0013 wt% to 0.013 wt%.

  8. 33. Lower level, ballistic gas generator at left (opens launcher ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    33. Lower level, ballistic gas generator at left (opens launcher door during launch), LDB panel at right - Ellsworth Air Force Base, Delta Flight, Launch Facility, On County Road T512, south of Exit 116 off I-90, Interior, Jackson County, SD

  9. Transition metal catalysis in the generation of petroleum and natural gas. Final report, September 1, 1992--October 31, 1995

    SciTech Connect

    Mango, F.D.

    1997-01-21

    This project originated on the premise that natural gas could be formed catalytically in the earth rather than thermally as commonly believed. The intention was to test this hypothetical view and to explore generally the role of sedimentary metals in the generation of light hydrocarbons (C1 - C9). We showed the metalliferous source rocks are indeed catalytic in the generation of natural gas. Various metal compounds in the pure state show the same levels of catalytic activity as sedimentary rocks and the products are identical. Nickel is particularly active among the early transition metals and is projected to remain catalytically robust at all stages of catagenesis. Nickel oxide promotes the formation of n-alkanes in addition to natural gas (NG), demonstrating the full scope of the hypothetical catalytic process. The composition of catalytic gas duplicates the entire range of natural gas, from so-called wet gas to dry gas (60 to 95+ wt % methane), while gas generated thermally is consistently depleted in methane (10 to 60 wt % methane). These results support the view that metal catalysis is a major pathway through which natural gas is formed in the earth.

  10. Modeling of gas generation from the Alam El-Bueib formation in the Shoushan Basin, northern Western Desert of Egypt

    NASA Astrophysics Data System (ADS)

    Shalaby, Mohamed Ragab; Hakimi, Mohammed Hail; Abdullah, Wan Hasiah

    2013-01-01

    The Shoushan Basin is an important hydrocarbon province in the northern Western Desert, Egypt, but the burial/thermal histories for most of the source rocks in the basin have not been assigned yet. In this study, subsurface samples from selected wells were collected to characterize the source rocks of Alam El-Bueib Formation and to study thermal history in the Shoushan Basin. The Lower Cretaceous Alam El-Bueib Formation is widespread in the Shoushan Basin, which is composed mainly of shales and sandstones with minor carbonate rocks deposited in a marine environment. The gas generative potential of the Lower Cretaceous Alam El-Bueib Formation in the Shoushan Basin was evaluated by Rock-Eval pyrolysis. Most samples contain sufficient type III organic matter to be considered gas prone. Vitrinite reflectance was measured at eight stratigraphic levels (Jurassic-Cretaceous). Vitrinite reflectance profiles show a general increase of vitrinite reflectance with depth. Vitrinite reflectance values of Alam El-Bueib Formation range between 0.70 and 0.87 VRr %, indicating a thermal maturity level sufficient for hydrocarbon generation. Thermal maturity and burial histories models predict that the Alam El-Bueib source rock entered the mid-mature stage for hydrocarbon generation in the Tertiary. These models indicate that the onset of gas generation from the Alam El-Bueib source rock began in the Paleocene (60 Ma), and the maximum volume of gas generation occurred during the Pliocene (3-2 Ma).

  11. Generating Apparatus for Gas Heat Pump System using Sensorless-Controlled Permanent Magnet Synchronous Generator

    NASA Astrophysics Data System (ADS)

    Toba, Akio; Fujita, Kouetsu; Maeda, Toshihiro; Kato, Tomohiko

    A unique generating system for Gas heat pump system (GHP) is presented. The GHP is an air-conditioning system, in which the compressors are driven by a gas engine. The proposed system is applied to the outside unit of GHP to feed the electrical equipments inside. The system utilizes a permanent magnet synchronous generator, which is connected to the gas engine, to realize high-efficiency and small-size. The generator is controlled by a converter with sensorless control technology to eliminate the position sensor. Another major topic is the “free-run startup" technique to start the converter when the generator is rotating. The system configuration and principles of the techniques are set forth, followed by experimental results which show that the system works properly and successfully.

  12. Electro-thermal modeling of a microbridge gas sensor

    SciTech Connect

    Manginell, R.P.; Smith, J.H.; Ricco, A.J.; Hughes, R.C.; Moreno, D.J.; Huber, R.J.

    1997-08-01

    Fully CMOS-compatible, surface-micromachined polysilicon microbridges have been designed, fabricated, and tested for use in catalytic, calorimetric gas sensing. To improve sensor behavior, extensive electro-thermal modeling efforts were undertaken using SPICE. The validity of the SPICE model was verified comparing its simulated behavior with experiment. Temperature distribution of an electrically heated microbridges was measured using an infrared microscope. Comparisons among the measured distribution, the SPICE simulation, and distributions obtained by analytical methods show that heating at the ends of a microbridges has important implications for device response. Additional comparisons between measured and simulated current-voltage characteristics, as well as transient response, further support the accuracy of the model. A major benefit of electro- thermal modeling with SPICE is the ability to simultaneously simulate the behavior of a device and its control/sensing electronics. Results for the combination of a unique constant-resistance control circuit and microbridges gas sensor are given. Models of in situ techniques for monitoring catalyst deposition are shown to be in agreement with experiment. Finally, simulated chemical response of the detector is compared with the data, and methods of improving response through modifications in bridge geometry are predicted.

  13. Role of heat generation and thermal diffusion during frontal photopolymerization.

    PubMed

    Hennessy, Matthew G; Vitale, Alessandra; Cabral, João T; Matar, Omar K

    2015-08-01

    Frontal photopolymerization (FPP) is a rapid and versatile solidification process that can be used to fabricate complex three-dimensional structures by selectively exposing a photosensitive monomer-rich bath to light. A characteristic feature of FPP is the appearance of a sharp polymerization front that propagates into the bath as a planar traveling wave. In this paper, we introduce a theoretical model to determine how heat generation during photopolymerization influences the kinetics of wave propagation as well as the monomer-to-polymer conversion profile, both of which are relevant for FPP applications and experimentally measurable. When thermal diffusion is sufficiently fast relative to the rate of polymerization, the system evolves as if it were isothermal. However, when thermal diffusion is slow, a thermal wavefront develops and propagates at the same rate as the polymerization front. This leads to an accumulation of heat behind the polymerization front which can result in a significant sharpening of the conversion profile and acceleration of the growth of the solid. Our results also suggest that a novel way to tailor the dynamics of FPP is by imposing a temperature gradient along the growth direction. PMID:26382412

  14. Role of heat generation and thermal diffusion during frontal photopolymerization

    NASA Astrophysics Data System (ADS)

    Hennessy, Matthew G.; Vitale, Alessandra; Cabral, João T.; Matar, Omar K.

    2015-08-01

    Frontal photopolymerization (FPP) is a rapid and versatile solidification process that can be used to fabricate complex three-dimensional structures by selectively exposing a photosensitive monomer-rich bath to light. A characteristic feature of FPP is the appearance of a sharp polymerization front that propagates into the bath as a planar traveling wave. In this paper, we introduce a theoretical model to determine how heat generation during photopolymerization influences the kinetics of wave propagation as well as the monomer-to-polymer conversion profile, both of which are relevant for FPP applications and experimentally measurable. When thermal diffusion is sufficiently fast relative to the rate of polymerization, the system evolves as if it were isothermal. However, when thermal diffusion is slow, a thermal wavefront develops and propagates at the same rate as the polymerization front. This leads to an accumulation of heat behind the polymerization front which can result in a significant sharpening of the conversion profile and acceleration of the growth of the solid. Our results also suggest that a novel way to tailor the dynamics of FPP is by imposing a temperature gradient along the growth direction.

  15. Removal of Elemental Mercury from a Gas Stream Facilitated by a Non-Thermal Plasma Device

    SciTech Connect

    Charles Mones

    2006-12-01

    Mercury generated from anthropogenic sources presents a difficult environmental problem. In comparison to other toxic metals, mercury has a low vaporization temperature. Mercury and mercury compounds are highly toxic, and organic forms such as methyl mercury can be bio-accumulated. Exposure pathways include inhalation and transport to surface waters. Mercury poisoning can result in both acute and chronic effects. Most commonly, chronic exposure to mercury vapor affects the central nervous system and brain, resulting in neurological damage. The CRE technology employs a series of non-thermal, plasma-jet devices to provide a method for elemental mercury removal from a gas phase by targeting relevant chemical reactions. The technology couples the known chemistry of converting elemental mercury to ionic compounds by mercury-chlorine-oxygen reactions with the generation of highly reactive species in a non-thermal, atmospheric, plasma device. The generation of highly reactive metastable species in a non-thermal plasma device is well known. The introduction of plasma using a jet-injection device provides a means to contact highly reactive species with elemental mercury in a manner to overcome the kinetic and mass-transfer limitations encountered by previous researchers. To demonstrate this technology, WRI has constructed a plasma test facility that includes plasma reactors capable of using up to four plasma jets, flow control instrumentation, an integrated control panel to operate the facility, a mercury generation system that employs a temperature controlled oven and permeation tube, combustible and mercury gas analyzers, and a ductless fume hood designed to capture fugitive mercury emissions. Continental Research and Engineering (CR&E) and Western Research Institute (WRI) successfully demonstrated that non-thermal plasma containing oxygen and chlorine-oxygen reagents could completely convert elemental mercury to an ionic form. These results demonstrate potential the

  16. Nernst advection and the field-generating thermal instability revisited

    NASA Astrophysics Data System (ADS)

    Bissell, J. J.

    2015-01-01

    It is widely held that the Nernst effect can drive instability in un-magnetised laser-plasmas by laterally compressing seed B-fields arising from the field-generating thermal instability [Tidman & Shanny, Phys. Fluids, 12:1207 (1974)]. Indeed, for wavelike perturbations, differential compression by the Nernst mechanism is thought to be most pronounced in the limit of low wave-number k -> 0, and is considered particularly important given that it can ostensibly lead to instability when the more usual field-generating mechanism is stable. However, as part of a recent article [Bissell et al., New J. Phys., 15:025017 (2013)] we noted some irregularities to the Nernst mechanism which obscure its operation. For example, by taking characteristic density and temperature length-scales ln and lT respectively, we observed that consistent analytical treatment of the instability requires kln,T >> 1, preventing the peak-growth limit k -> 0. Furthermore, the Nernst term-which compresses magnetic field perturbations-does not couple to a corresponding term acting on thermal perturbations, and as such does not describe an unstable feedback mechanism. In this article we probe the origin of such ambiguities more formally, and in so doing argue (contrary to reports existing elsewhere in the literature) that the Nernst effect does not drive instability in un-magnetised conditions, at least not in the fashion typically cited.

  17. Gas Generation from K East Basin Sludges - Series I Testing

    SciTech Connect

    Delegard, Calvin H.; Bryan, Samuel A.; Schmidt, Andrew J.; Bredt, Paul R.; King, Christopher M.; Sell, Rachel L.; Burger, Leland L.; Silvers, Kurt L.

    2000-09-12

    This report describes work to examine the gas generation behavior of actual K East (KE) Basin floor and canister sludge. The path forward for management of the K Basin Sludge is to retrieve, ship, and store the sludge at T Plant until final processing at some future date. Gas generation will impact the designs and costs of systems associated with retrieval, transportation and storage of sludge. The overall goals for this testing were to collect detailed gas generation rate and composition data to ascertain the quantity and reactivity of the metallic uranium (and other reactive species) present in the K Basin sludge. The gas generation evaluation included four large-scale vessels (850 ml) and eight small-scale vessels (30 ml) in an all-metal, leak tight system. The tests were conducted for several thousand hours at ambient and elevated temperatures (32 C, 40 C, 60 C, 80 C, and 95 C) to accelerated the reactions and provide conclusive gas generation data within a reasonable testing period. The sludge used for these tests was collected from the KE Basin floor and canister barrels (containing damaged spent fuel elements) using a consolidated sampling technique (i.e., material from several locations was combined to form ''consolidated samples''). Portions of these samples were sieved to separate particles greater than 250 m (P250) from particle less than 250 m (M250). This separation was performed to mimic the separation operations that are planned during the retrieval of certain K Basin sludge types and to gain a better understanding of how uranium metal is distributed in the sludge. The corrosion rate of the uranium metal particles in the sludge was found to agree reasonably well with corrosion rates reported in the literature.

  18. Minimizing thermal degradation in gas chromatographic quantitation of pentaerythritol tetranitrate.

    PubMed

    Lubrano, Adam L; Field, Christopher R; Newsome, G Asher; Rogers, Duane A; Giordano, Braden C; Johnson, Kevin J

    2015-05-15

    An analytical method for establishing calibration curves for the quantitation of pentaerythriol tetranitrate (PETN) from sorbent-filled thermal desorption tubes by gas chromatography with electron capture detection (TDS-GC-ECD) was developed. As PETN has been demonstrated to thermally degrade under typical GC instrument conditions, peaks corresponding to both PETN degradants and molecular PETN are observed. The retention time corresponding to intact PETN was verified by high-resolution mass spectrometry with a flowing atmospheric pressure afterglow (FAPA) ionization source, which enabled soft ionization of intact PETN eluting the GC and subsequent accurate-mass identification. The GC separation parameters were transferred to a conventional GC-ECD instrument where analytical method-induced PETN degradation was further characterized and minimized. A method calibration curve was established by direct liquid deposition of PETN standard solutions onto the glass frit at the head of sorbent-filled thermal desorption tubes. Two local, linear relationships between detector response and PETN concentration were observed, with a total dynamic range of 0.25-25ng. PMID:25841610

  19. Organic richness and gas generation potential of Permian Barren Measures from Raniganj field, West Bengal, India

    NASA Astrophysics Data System (ADS)

    Boruah, Annapurna; Ganapathi, S.

    2015-07-01

    The organic geochemistry of shales in terms of its organic richness, hydrocarbon source potential, thermal maturity, depositional environment, etc., are essential stipulations for shale gas resources assessment. In this study, a total of 32 core samples of Permian Barren Measures from four boreholes in Raniganj field of Damodar Basin were analysed to evaluate their gas generation potential using Rock-Eval pyrolysis techniques. Petrographic analysis brings out the lithofacies of Barren Measures as carbonaceous silty shale, iron rich claystone and sand-shale intercalation. The total organic content (TOC) of the shale units of Barren Measures ranges from 3.75 to 20.9 wt%, whereas hydrogen index (HI) ranges from 58.45 to 125.34 mg HC/g TOC. Present study suggests early to late maturated (0.6-1%) organic matters in Barren Measures with gas prone type III kerogen. The study analysed the effect of burial history on the preservation and maturation of organic matters. The organic richness, kerogen type, thermal maturity and petrographic properties of Barren Measures signify fair to excellent gas generation potential.

  20. Thermal Independent Modulator for Comprehensive Two-Dimensional Gas Chromatography.

    PubMed

    Luong, Jim; Guan, Xiaosheng; Xu, Shifen; Gras, Ronda; Shellie, Robert A

    2016-09-01

    We introduce a modulation strategy for comprehensive two-dimensional gas chromatography (GC×GC) with complete thermal independence between the cooling and heating stages and without the need for GC oven heat for remobilization. Based on this approach, a compact thermal independent modulator (TiM) with thermoelectric cooling and micathermic heating has been successfully innovated for use in GC×GC. The device operates externally to a gas chromatograph, does not require liquid cryogen, and has minimal consumables requirements. The augmentation of an additional gas flow stream results in a number of critical chromatographic parameter improvements such as the decoupling of flows of first- and second-dimension columns to attain both efficiency and speed optimized flow in each dimension, the potential for independent retention time locking or scaling in either dimension, the improvement of modulator reinjection efficiency, as well as facilitating back-flushing for the first dimension to enhance system cleanliness and throughput. TiM was found to be useful for chromatographic applications over a volatility range equivalent to nC6 to nC24 under conditions used. Repeatability of retention time for model compounds such as benzene, toluene, ethyl benzene, and xylenes were found to be quite satisfactory with relative standard deviations of less than 0.009% in (1)D and less than 0.008% in (2)D (n = 10). Typical peak widths of 120 ms or less with a relative standard deviation of less than 4.7% were achieved for the aromatic model compounds. In this article, the performance of the modulator is demonstrated and a series of challenging chromatographic applications are presented to illustrate usefulness of the apparatus. PMID:27537206

  1. Generating Molecular Rovibrational Coherence by Two-Photon Femtosecond Photoassociation of Thermally Hot Atoms

    SciTech Connect

    Rybak, Leonid; Levin, Liat; Amitay, Zohar; Amaran, Saieswari; Kosloff, Ronnie; Tomza, Michal; Moszynski, Robert; Koch, Christiane P.

    2011-12-30

    The formation of diatomic molecules with rotational and vibrational coherence is demonstrated experimentally in free-to-bound two-photon femtosecond photoassociation of hot atoms. In a thermal gas at a temperature of 1000 K, pairs of magnesium atoms, colliding in their electronic ground state, are excited into coherent superpositions of bound rovibrational levels in an electronically excited state. The rovibrational coherence is probed by a time-delayed third photon, resulting in quantum beats in the UV fluorescence. A comprehensive theoretical model based on ab initio calculations rationalizes the generation of coherence by Franck-Condon filtering of collision energies and partial waves, quantifying it in terms of an increase in quantum purity of the thermal ensemble. Our results open the way to coherent control of a binary reaction.

  2. Revisions to the hydrogen gas generation computer model

    SciTech Connect

    Jerrell, J.W.

    1992-08-31

    Waste Management Technology has requested SRTC to maintain and extend a previously developed computer model, TRUGAS, which calculates hydrogen gas concentrations within the transuranic (TRU) waste drums. TRUGAS was written by Frank G. Smith using the BASIC language and is described in the report A Computer Model of gas Generation and Transport within TRU Waste Drums (DP- 1754). The computer model has been partially validated by yielding results similar to experimental data collected at SRL and LANL over a wide range of conditions. The model was created to provide the capability of predicting conditions that could potentially lead to the formation of flammable gas concentrations within drums, and to assess proposed drum venting methods. The model has served as a tool in determining how gas concentrations are affected by parameters such as filter vent sizes, waste composition, gas generation values, the number and types of enclosures, water instrusion into the drum, and curie loading. The success of the TRUGAS model has prompted an interest in the program`s maintenance and enhancement. Experimental data continues to be collected at various sites on such parameters as permeability values, packaging arrangements, filter designs, and waste contents. Information provided by this data is used to improve the accuracy of the model`s predictions. Also, several modifications to the model have been made to enlarge the scope of problems which can be analyzed. For instance, the model has been used to calculate hydrogen concentrations inside steel cabinets containing retired glove boxes (WSRC-RP-89-762). The revised TRUGAS computer model, H2GAS, is described in this report. This report summarizes all modifications made to the TRUGAS computer model and provides documentation useful for making future updates to H2GAS.

  3. Revisions to the hydrogen gas generation computer model

    SciTech Connect

    Jerrell, J.W.

    1992-08-31

    Waste Management Technology has requested SRTC to maintain and extend a previously developed computer model, TRUGAS, which calculates hydrogen gas concentrations within the transuranic (TRU) waste drums. TRUGAS was written by Frank G. Smith using the BASIC language and is described in the report A Computer Model of gas Generation and Transport within TRU Waste Drums (DP- 1754). The computer model has been partially validated by yielding results similar to experimental data collected at SRL and LANL over a wide range of conditions. The model was created to provide the capability of predicting conditions that could potentially lead to the formation of flammable gas concentrations within drums, and to assess proposed drum venting methods. The model has served as a tool in determining how gas concentrations are affected by parameters such as filter vent sizes, waste composition, gas generation values, the number and types of enclosures, water instrusion into the drum, and curie loading. The success of the TRUGAS model has prompted an interest in the program's maintenance and enhancement. Experimental data continues to be collected at various sites on such parameters as permeability values, packaging arrangements, filter designs, and waste contents. Information provided by this data is used to improve the accuracy of the model's predictions. Also, several modifications to the model have been made to enlarge the scope of problems which can be analyzed. For instance, the model has been used to calculate hydrogen concentrations inside steel cabinets containing retired glove boxes (WSRC-RP-89-762). The revised TRUGAS computer model, H2GAS, is described in this report. This report summarizes all modifications made to the TRUGAS computer model and provides documentation useful for making future updates to H2GAS.

  4. NASA Fastrac Engine Gas Generator Component Test Program and Results

    NASA Technical Reports Server (NTRS)

    Dennis, Henry J., Jr.; Sanders, Tim; Turner, James E. (Technical Monitor)

    2000-01-01

    This presentation consists of viewgraph which review the test program and the results of the tests for the Gas Generator (GG) component for the Fastrac Engine. Included are pictures of the Fastrac (MC-1) Engine and the GG, diagrams of the flight configuration, and schematics of the LOX, and the RP-1 systems and the injector assembly. The normal operating parameters are reviewed, as are the test instrumentation. Also shown are graphs of the hot gas temperature, and the test temperature profiles. The results are summarized.

  5. Thermal barrier coatings for thermal insulation and corrosion resistance in industrial gas turbine engines

    NASA Technical Reports Server (NTRS)

    Vogan, J. W.; Hsu, L.; Stetson, A. R.

    1981-01-01

    Four thermal barrier coatings were subjected to a 500-hour gas turbine engine test. The coatings were two yttria stabilized zirconias, calcium ortho silicate and calcium meta titanate. The calcium silicate coating exhibited significant spalling. Yttria stabilized zirconia and calcium titanate coatings showed little degradation except in blade leading edge areas. Post-test examination showed variations in the coating due to manual application techniques. Improved process control is required if engineering quality coatings are to be developed. The results indicate that some leading edge loss of the coating can be expected near the tip.

  6. Low thermal mass gas chromatography: principles and applications.

    PubMed

    Luong, Jim; Gras, Ronda; Mustacich, Robert; Cortes, Hernan

    2006-01-01

    In gas chromatography (GC), temperature programming is often considered to be the second most important parameter to control, the first being column selectivity. A radically new GC technology to achieve ultrafast temperature programming with an unprecedented cool down time and low power consumption has recently become available. This technology is referred to as low thermal mass GC (LTMGC). Though the technology has its roots in resistive heating, which forms the basis of principle and design concept, the approach taken to achieve ultrafast heating and cool down time by LTMGC represents a significant break-through in GC. Despite some rectifiable shortcomings, LTMGC has proven to be an ideal methodology to deliver near/real time GC data, high precision, and high throughput applications. It is a new approach for modern high-speed GC. This paper documents the fundamental design principles behind LTMGC, performance data, and examples of applications investigated. PMID:16774710

  7. Mechanical behavior of thermal barrier coatings for gas turbine blades

    NASA Technical Reports Server (NTRS)

    Berndt, C. C.; Phucharoen, W.; Chang, G. C.

    1984-01-01

    Plasma-sprayed thermal barrier coatings (TBCs) will enable turbine components to operate at higher temperatures and lower cooling gas flow rates; thereby improving their efficiency. Future developments are limited by precise knowledge of the material properties and failure mechanisms of the coating system. Details of this nature are needed for realistic modeling of the coating system which will, in turn, promote advancements in coating technology. Complementary experiments and analytical modeling which were undertaken in order to define and measure the important failure processes for plasma-sprayed coatings are presented. The experimental portion includes two different tests which were developed to measure coating properties. These are termed tensile adhesion and acoustic emission tests. The analytical modeling section details a finite element method which was used to calculate the stress distribution in the coating system. Some preliminary results are presented.

  8. Thermal barrier coating life modeling in aircraft gas turbine engines

    NASA Technical Reports Server (NTRS)

    Nissley, David M.

    1995-01-01

    Analytical models for predicting ceramic thermal barrier coating (TBC) spalling life in aircraft gas turbine engines are presented. Electron beam-physical vapor deposited (EB-PVD) and plasma sprayed TBC systems are discussed. An overview of the following TBC spalling mechanisms is presented: metal oxidation at the ceramic-metal interface, ceramic-metal interface stress singularities at edges and corners, ceramic-metal interface stresses caused by radius of curvature and interface roughness, material properties and mechanical behavior, temperature gradients, component design features and object impact damage. TBC spalling life analytical models are proposed based on observations of TBC spalling and plausible failure theories. TBC spalling was assumed to occur when the imposed stresses exceed the material strength (at or near the ceramic-metal interface). TBC failure knowledge gaps caused by lack of experimental evidence and analytical understanding are noted. The analytical models are considered initial engineering approaches that capture observed TBC failure trends.

  9. Chemical mechanisms for gas generation in Tank 241-SY-101

    SciTech Connect

    Strachan, D.M.; Pederson, L.R.; Bryan, S.A.; Ashby, E.C.; Liotta, C.; Barefield, E.K.; Meisel, D.; Jonah, C.D.; Sauer, M.C. Jr.

    1993-08-01

    The mixing of wastes at Hanford over the years has led to several safety concerns. These safety concerns fall into six categories: wastes that generate flammable gasses or gas mixtures; wastes that contain high concentrations of ferrocyanides or tanks suspected of containing large amounts of ferrocyanides; wastes that contain greater than 3 wt % total organic carbon; wastes from which toxic or noxious vapors are suspected of emanating; wastes that contain high radiolytic heat; and wastes that may contain sufficient fissile material to pose a criticality concern. This report addresses the chemistry associated with the generation of flammable gases.

  10. Harmonization of initial estimates of shale gas life cycle greenhouse gas emissions for electric power generation

    PubMed Central

    Heath, Garvin A.; O’Donoughue, Patrick; Arent, Douglas J.; Bazilian, Morgan

    2014-01-01

    Recent technological advances in the recovery of unconventional natural gas, particularly shale gas, have served to dramatically increase domestic production and reserve estimates for the United States and internationally. This trend has led to lowered prices and increased scrutiny on production practices. Questions have been raised as to how greenhouse gas (GHG) emissions from the life cycle of shale gas production and use compares with that of conventionally produced natural gas or other fuel sources such as coal. Recent literature has come to different conclusions on this point, largely due to differing assumptions, comparison baselines, and system boundaries. Through a meta-analytical procedure we call harmonization, we develop robust, analytically consistent, and updated comparisons of estimates of life cycle GHG emissions for electricity produced from shale gas, conventionally produced natural gas, and coal. On a per-unit electrical output basis, harmonization reveals that median estimates of GHG emissions from shale gas-generated electricity are similar to those for conventional natural gas, with both approximately half that of the central tendency of coal. Sensitivity analysis on the harmonized estimates indicates that assumptions regarding liquids unloading and estimated ultimate recovery (EUR) of wells have the greatest influence on life cycle GHG emissions, whereby shale gas life cycle GHG emissions could approach the range of best-performing coal-fired generation under certain scenarios. Despite clarification of published estimates through harmonization, these initial assessments should be confirmed through methane emissions measurements at components and in the atmosphere and through better characterization of EUR and practices. PMID:25049378

  11. Harmonization of initial estimates of shale gas life cycle greenhouse gas emissions for electric power generation.

    PubMed

    Heath, Garvin A; O'Donoughue, Patrick; Arent, Douglas J; Bazilian, Morgan

    2014-08-01

    Recent technological advances in the recovery of unconventional natural gas, particularly shale gas, have served to dramatically increase domestic production and reserve estimates for the United States and internationally. This trend has led to lowered prices and increased scrutiny on production practices. Questions have been raised as to how greenhouse gas (GHG) emissions from the life cycle of shale gas production and use compares with that of conventionally produced natural gas or other fuel sources such as coal. Recent literature has come to different conclusions on this point, largely due to differing assumptions, comparison baselines, and system boundaries. Through a meta-analytical procedure we call harmonization, we develop robust, analytically consistent, and updated comparisons of estimates of life cycle GHG emissions for electricity produced from shale gas, conventionally produced natural gas, and coal. On a per-unit electrical output basis, harmonization reveals that median estimates of GHG emissions from shale gas-generated electricity are similar to those for conventional natural gas, with both approximately half that of the central tendency of coal. Sensitivity analysis on the harmonized estimates indicates that assumptions regarding liquids unloading and estimated ultimate recovery (EUR) of wells have the greatest influence on life cycle GHG emissions, whereby shale gas life cycle GHG emissions could approach the range of best-performing coal-fired generation under certain scenarios. Despite clarification of published estimates through harmonization, these initial assessments should be confirmed through methane emissions measurements at components and in the atmosphere and through better characterization of EUR and practices. PMID:25049378

  12. Dissipation process of binary gas mixtures in thermally relativistic flow

    NASA Astrophysics Data System (ADS)

    Yano, Ryosuke

    2016-04-01

    In this paper, dissipation process of binary gas mixtures in thermally relativistic flows is discussed with focus on characteristics of diffusion flux. As an analytical object, we consider the relativistic rarefied-shock layer around a triangular prism. Numerical results for the diffusion flux are compared with the Navier–Stokes–Fourier (NSF) order approximation of the diffusion flux, which is calculated using the diffusion and thermal-diffusion coefficients by Kox et al (1976 Physica A 84 165–74). In the case of uniform flow with small Lorentz contraction, the diffusion flux, which is obtained by calculating the relativistic Boltzmann equation, is roughly approximated by the NSF order approximation inside the shock wave, whereas the diffusion flux in the vicinity of a wall is markedly different from the NSF order approximation. The magnitude of the diffusion flux, which is obtained by calculating the relativistic Boltzmann equation, is similar to that of the NSF order approximation inside the shock wave, unlike the pressure deviator, dynamic pressure and heat flux, even when the Lorentz contraction in the uniform flow becomes large, because the diffusion flux does not depend on the generic Knudsen number from its definition in Eckart’s frame. Finally, the author concludes that for accuracy diffusion flux must be calculated using the particle four-flow and averaged four velocity, which are formulated using the four velocity defined by each species of hard spherical particles.

  13. Phoenix Mars Mission--the thermal evolved gas analyzer.

    PubMed

    Hoffman, John H; Chaney, Roy C; Hammack, Hilton

    2008-10-01

    The Phoenix spacecraft that was launched to Mars in August 2007 landed safely on the Martian northern arctic region on May 25, 2008. It carried six experiments to study the history of water on the planet and search for organic molecules in the icy subsurface Martian soil. The spacecraft is a lander with an arm and scoop designed to dig a trench though the top soil to reach an expected ice layer near the surface. One of the instruments on board is the thermal evolved gas analyzer (TEGA), which consists of two components, a set of eight very small ovens that will heat samples of the ice soil mixtures from the trench to release imbedded gases and mineral decomposition products, and a mass spectrometer that serves as the analysis tool for the evolved gases, and also for measurements of the composition and isotopic ratios of the gases that comprise the atmosphere of Mars. The mass spectrometer is a miniature magnetic sector instrument controlled by microprocessor-driven power supplies. One feature is the gas enrichment cell that will increase the partial pressures of the noble gases in an atmosphere sample by removing all the active gases, carbon dioxide, and nitrogen, to improve the accuracy of their isotopic ratio measurements. PMID:18715800

  14. Thermal barrier coatings issues in advanced land-based gas turbines

    NASA Technical Reports Server (NTRS)

    Parks, W. P.; Lee, W. Y.; Wright, I. G.

    1995-01-01

    The Department of Energy's Advanced Turbine System (ATS) program is aimed at forecasting the development of a new generation of land-based gas turbine systems with overall efficiencies significantly beyond those of current state-of-the-art machines, as well as greatly increased times between inspection and refurbishment, improved environmental impact, and decreased cost. The proposed duty cycle of ATS turbines will require the use of different criteria in the design of the materials for the critical hot gas path components. In particular, thermal barrier coatings will be an essential feature of the hot gas path components in these machines. While such coatings are routinely used in high-performance aircraft engines and are becoming established in land-based turbines, the requirements of the ATS turbine application are sufficiently different that significant improvements in thermal barrier coating technology will be necessary. In particular, it appears that thermal barrier coatings will have to function on all airfoil sections of the first stage vanes and blades to provide the significant temperature reduction required. In contrast, such coatings applied to the blades and vances of advanced aircraft engines are intended primarily to reduce air cooling requirements and extend component lifetime; failure of those coatings can be tolerated without jeopardizing mechanical or corrosion performance. A major difference is that in ATS turbines these components will be totally reliant on thermal barrier coatings which will, therefore, need to be highly reliable even over the leading edges of first stage blades. Obviously, the ATS program provides a very challenging opportunity for TBC's, and involves some significant opportunities to extend this technology.

  15. Multiscale development of a fission gas thermal conductivity model: Coupling atomic, meso and continuum level simulations

    NASA Astrophysics Data System (ADS)

    Tonks, Michael R.; Millett, Paul C.; Nerikar, Pankaj; Du, Shiyu; Andersson, David; Stanek, Christopher R.; Gaston, Derek; Andrs, David; Williamson, Richard

    2013-09-01

    Fission gas production and evolution significantly impact the fuel performance, causing swelling, a reduction in the thermal conductivity and fission gas release. However, typical empirical models of fuel properties treat each of these effects separately and uncoupled. Here, we couple a fission gas release model to a model of the impact of fission gas on the fuel thermal conductivity. To quantify the specific impact of grain boundary (GB) bubbles on the thermal conductivity, we use atomistic and mesoscale simulations. Atomistic molecular dynamic simulations were employed to determine the GB thermal resistance. These values were then used in mesoscale heat conduction simulations to develop a mechanistic expression for the effective GB thermal resistance of a GB containing gas bubbles, as a function of the percentage of the GB covered by fission gas. The coupled fission gas release and thermal conductivity model was implemented in Idaho National Laboratory's BISON fuel performance code to model the behavior of a 10-pellet LWR fuel rodlet, showing how the fission gas impacts the UO2 thermal conductivity. Furthermore, additional BISON simulations were conducted to demonstrate the impact of average grain size on both the fuel thermal conductivity and the fission gas release.

  16. Thermal Flammable Gas Production from Bulk Vitrification Feed

    SciTech Connect

    Scheele, Randall D.; McNamara, Bruce K.; Bagaasen, Larry M.

    2008-05-21

    The baseline bulk-vitrification (BV) process (also known as in-container vitrification ICV™) includes a mixer/dryer to convert liquid low-activity waste (LAW) into a dried, blended feed for vitrification. Feed preparation includes blending LAW with glass-forming minerals (GFMs) and cellulose and drying the mixture to a suitable dryness, consistency, and particle size for transport to the ICVTM container. The cellulose is to be added to the BV feed at a rate sufficient to destroy 75% of the nitrogen present as nitrate or nitrite. Concern exists that flammable gases may be produced during drying operations at levels that could pose a risk. The drying process is conducted under vacuum in the temperature range of 60 to 80°C. These flammable gases could be produced either through thermal decomposition of cellulose or waste organics or as a by-product of the reaction of cellulose and/or waste organics with nitrate or the postulated small amount of nitrite present in the waste. To help address the concern about flammable gas production during drying, the Pacific Northwest National Laboratory (PNNL) performed studies to identify the gases produced at dryer temperatures and at possible process upset conditions. Studies used a thermogravimetric analyzer (TGA) up to 525°C and isothermal testing up to 120°C to determine flammable gas production resulting from the cellulose and organic constituents in bulk vitrification feed. This report provides the results of those studies to determine the effects of cellulose and waste organics on flammable gas evolution

  17. Low-cost distributed solar-thermal-electric power generation

    NASA Astrophysics Data System (ADS)

    Der Minassians, Artin; Aschenbach, Konrad H.; Sanders, Seth R.

    2004-01-01

    Due to their high relative cost, solar electric energy systems have yet to be exploited on a widespread basis. It is believed in the energy community that a technology similar to photovoltaic (PV), but offered at about $1/W would lead to widespread deployment at residential and commercial sites. This paper addresses the investigation and feasibility study of a low-cost solar thermal electricity generation technology, suitable for distributed deployment. Specifically, we discuss a system based on nonimaging solar concentrators, integrated with free-piston Stirling engine devices incorporating integrated electric generation. We target concentrator-collector operation at moderate temperatures, in the range of 125°C to 150°C. This temperature is consistent with use of optical concentrators with concentration ratios on the order of 1-2. These low ratio concentrators admit wide angles of radiation acceptance and are thus compatible with no diurnal tracking, and no or only a few seasonal adjustments. Thus, costs and reliability hazards associated with tracking hardware systems are avoided. Further, we note that in the intended application, there is no shortage of incident solar energy, but rather it is the capital cost of the solar-electric system that is most precious. Thus, we outline a strategy for exploiting solar resources in a cost constrained manner. The paper outlines design issues, and a specific design for an appropriately dimensioned free-piston Stirling engine. Only standard low-cost materials and manufacturing methods are required to realize such a machine.

  18. A thermoelectric generator using porous Si thermal isolation.

    PubMed

    Hourdakis, Emmanouel; Nassiopoulou, Androula G

    2013-01-01

    In this paper we report on a thermoelectric generator (TEG) using thermal isolation provided by a thick porous Si layer locally formed on the Si wafer and thermocouples composed of p-doped polycrystalline Si/Al. The "hot" contacts of the thermocouples lie on the porous Si layer, while the "cold" contacts lie on bulk crystalline Si. A housing was also designed and fabricated in order to transfer any external temperature change on the "hot" contacts of the thermocouples, the "cold" contacts being isolated from the "hot" contacts by a thick resist layer. The fabrication of the sensing element (Si die) is fully compatible with batch Si processing. The output power of the thermoelectric generator depends on the porous Si isolation layer thickness, porosity, structure and morphology. For a mesoporous Si layer of 60% porosity and a macroscopic temperature differential of 10 K, an output power of 0.39 μW/cm2 was measured for a 50 μm thick porous Si layer. PMID:24152923

  19. Gas generation and gas migration in deep geological repositories for radioactive waste

    SciTech Connect

    Haijtink, B.

    1996-12-31

    It is generally accepted that there will be some degree of gas generation in deep geological repositories for radioactive waste. This gas generation will depend on a number of factors such as the nature of the waste, the waste container, the buffer material and the near field host rock. In an ideal situation the gas generated would all dissolve in the groundwater and/or be transported away from the deep repository by the mechanisms of advection, diffusion and dispersion. However the sought-after characteristic of a repository host medium of very low permeability, e.g. bentonite buffer material and argillaceous geological media can be problematic when considering gas migration. High gas pressures might be build-up which could lead to potential fracturing of engineered barriers in the near field and enhancing groundwater flow and radionuclide migration. Various theoretical as well as experimental research activities have been undertaken to investigate the different phenomena. Within the framework of R&D programmes on Management and Storage of Radioactive Waste, conducted by the European Commission, some of the research activities are grouped together in a coordinated project named PEGASUS (Project on the Effects of GAS in an Underground Storage facility). In this project a total of about twenty research institutes and laboratories from seven different European countries are involved. This PEGASUS project will be followed up by a new project named PROGRESS (PROject of Research into Gas generation and migration in radioactive waste REpository SystemS). In this paper, an overview is given of the various research activities carried out and results obtained so far.

  20. Thermal barrier coatings issues in advanced land-based gas turbines

    NASA Astrophysics Data System (ADS)

    Parks, W. P.; Hoffman, E. E.; Lee, W. Y.; Wright, I. G.

    1997-06-01

    The Department of Energy’s Advanced Turbine Systems (ATS) program is aimed at fostering the devel-opment of a new generation of land-based gas turbine systems with overall efficiencies significantly be-yond those of current state-of-the-art machines, as well as greatly increased times between inspection and refurbishment, improved environmental impact, and decreased cost. The proposed duty cycle of ATS ma-chines will emphasize different criteria in the selection of materials for the critical components. In par-ticular, thermal barrier coatings (TBCs) will be an essential feature of the hot gas path components in these machines. The goals of the ATS will require significant improvements in TBC technology, since these turbines will be totally reliant on TBCs, which will be required to function on critical components such as the first-stage vanes and blades for times considerably longer than those experienced in current applications. Important issues include the mechanical and chemical stability of the ceramic layer and the metallic bond coat, the thermal expansion characteristics and compliance of the ceramic layer, and the thermal conductivity across the thickness of the ceramic layer.

  1. Onboard Inert Gas Generation System/Onboard Oxygen Gas Generation System (OBIGGS/OBOGS) Study. Part 1; Aircraft System Requirements

    NASA Technical Reports Server (NTRS)

    Reynolds, Thomas L.; Bailey, Delbert B.; Lewinski, Daniel F.; Roseburg, Conrad M.; Palaszewski, Bryan (Technical Monitor)

    2001-01-01

    The purpose of this technology assessment is to define a multiphase research study program investigating Onboard Inert Gas Generation Systems (OBIGGS) and Onboard Oxygen Generation Systems (OBOGS) that would identify current airplane systems design and certification requirements (Subtask 1); explore state-of-the-art technology (Subtask 2); develop systems specifications (Subtask 3); and develop an initial system design (Subtask 4). If feasible, consideration may be given to the development of a prototype laboratory test system that could potentially be used in commercial transport aircraft (Subtask 5). These systems should be capable of providing inert nitrogen gas for improved fire cargo compartment fire suppression and fuel tank inerting and emergency oxygen for crew and passenger use. Subtask I of this research study, presented herein, defines current production aircraft certification requirements and design objectives necessary to meet mandatory FAA certification requirements and Boeing design and performance specifications. These requirements will be utilized for baseline comparisons for subsequent OBIGGS/OBOGS application evaluations and assessments.

  2. The challenges of fuel options for the new generation of Indian thermal power plants

    SciTech Connect

    Roy, C.; Sanyal, A.

    1999-07-01

    The selection of fuel supply is probably the most important challenge a potential power project developer for a new Indian thermal power plant has to face when considering the overall project economics. The paper reviews the essential issues and the effect of fuel selection on project costs of the new generation of thermal power plants of India. Coal, lignite and natural gas are India's indigenous fossil fuel resources for power generation. The country has a modest reserve of petroleum crude. India is the world's third largest coal producer and has 205 billion metric tons of assessed and 73 billion tons of proven reserves. The indigenous supply of petroleum is unlikely to improve much in the near future. Liquid fuel based generation is therefore marginal in the country. Although coal will continue to be the mainstay fuel, there is a short term need to examine the possibility of using alternative fuels due to two basic reasons: (a) A 70 million tons of shortfall is forecast for the power sector during the 1997--2002 period. The deficit has to be met by either import of coal or other fuels. Development of new mines is a long gestation activity. (b) There is an uneven geographical location of Indian coal reserves. For the load centers, which are distant from the indigenous coal sources, use of alternative fuel could also prove to be economical in the long term. Moving coal will become harder in view of the high demands being placed on the railways by many other sectors.

  3. Method for generating a highly reactive plasma for exhaust gas aftertreatment and enhanced catalyst reactivity

    DOEpatents

    Whealton, John H.; Hanson, Gregory R.; Storey, John M.; Raridon, Richard J.; Armfield, Jeffrey S.; Bigelow, Timothy S.; Graves, Ronald L.

    2002-01-01

    A method for non-thermal plasma aftertreatment of exhaust gases the method comprising the steps of providing short risetime, high frequency, high power bursts of low-duty factor microwaves sufficient to generate a plasma discharge and passing a gas to be treated through the discharge so as to cause dissociative reduction of the exhaust gases and enhanced catalyst reactivity through application of the pulsed microwave fields directly to the catalyst material sufficient to cause a polarizability catastrophe and enhanced heating of the metal crystallite particles of the catalyst, and in the presence or absence of the plasma. The invention also includes a reactor for aftertreatment of exhaust gases.

  4. Effects of oxygen cover gas and NaOH dilution on gas generation in tank 241-SY-101 waste

    SciTech Connect

    Person, J.C.

    1996-05-30

    Laboratory studies are reported of gas generation in heated waste from tank 241-SY-101. The rates of gas generation and the compositions of product gas were measured. Three types of tests are compared. The tests use: undiluted waste, waste diluted by a 54% addition of 2.5 M NaOH, and undiluted waste with a reactive cover gas of 30% Oxygen in He. The gas generation rate is reduced by dilution, increased by higher temperatures (which determines activation energies), and increased by reactions of Oxygen (these primarily produce H{sub 2}). Gases are generated as reduction products oxidation of organic carbon species by nitrite and oxygen.

  5. Method of generating hydrogen gas from sodium borohydride

    DOEpatents

    Kravitz, Stanley H.; Hecht, Andrew M.; Sylwester, Alan P.; Bell, Nelson S.

    2007-12-11

    A compact solid source of hydrogen gas, where the gas is generated by contacting water with micro-disperse particles of sodium borohydride in the presence of a catalyst, such as cobalt or ruthenium. The micro-disperse particles can have a substantially uniform diameter of 1-10 microns, and preferably about 3-5 microns. Ruthenium or cobalt catalytic nanoparticles can be incorporated in the micro-disperse particles of sodium borohydride, which allows a rapid and complete reaction to occur without the problems associated with caking and scaling of the surface by the reactant product sodium metaborate. A closed loop water management system can be used to recycle wastewater from a PEM fuel cell to supply water for reacting with the micro-disperse particles of sodium borohydride in a compact hydrogen gas generator. Capillary forces can wick water from a water reservoir into a packed bed of micro-disperse fuel particles, eliminating the need for using an active pump.

  6. Leakage Currents and Gas Generation in Advanced Wet Tantalum Capacitors

    NASA Technical Reports Server (NTRS)

    Teverovsky, Alexander

    2015-01-01

    Currently, military grade, established reliability wet tantalum capacitors are among the most reliable parts used for space applications. This has been achieved over the years by extensive testing and improvements in design and materials. However, a rapid insertion of new types of advanced, high volumetric efficiency capacitors in space systems without proper testing and analysis of degradation mechanisms might increase risks of failures. The specifics of leakage currents in wet electrolytic capacitors is that the conduction process is associated with electrolysis of electrolyte and gas generation resulting in building up of internal gas pressure in the parts. The risk associated with excessive leakage currents and increased pressure is greater for high value advanced wet tantalum capacitors, but it has not been properly evaluated yet. In this work, in Part I, leakages currents in various types of tantalum capacitors have been analyzed in a wide range of voltages, temperatures, and time under bias. Gas generation and the level of internal pressure have been calculated in Part II for different case sizes and different hermeticity leak rates to assess maximal allowable leakage currents. Effects related to electrolyte penetration to the glass seal area have been studied and the possibility of failures analyzed in Part III. Recommendations for screening and qualification to reduce risks of failures have been suggested.

  7. Modeling of thermal effects when investigating the thermal fatigue life of the blades of a gas-turbine engine

    NASA Astrophysics Data System (ADS)

    Kravchuk, L. V.

    1982-10-01

    Problems associated with the modeling of the thermal state of gas turbine blades during testing on a gasdynamic test stand are discussed with emphasis on those cases where similarity of the boundary conditions of heat transfer cannot be achieved. A blading design method is proposed which makes it possible to obtain thermal and stressed states close to those observed under actual service conditions in the regions of thermal stress concentration. The required local heat flows are achieved by programmed control of the gas flow temperature.

  8. Gas flow and thermal mixing in a helically wound tube bundle

    SciTech Connect

    Chiger, H.D.

    1980-07-01

    The thermal dissipation of a hot gas streak flowing across a segment of a helically wound tube bundle and the bypass flow streaming between the tubes and the bundle wall were investigated experimentally in the range of 8000 < Re < 50,000. Two different modes of creating a hot streak were employed. A planar hot streak was (1) injected at the entrance to the tube bundle and (2) generated by electrically heating several tubes past the bundle inlet. In the first case the mixing occurs in a region of lower turbulence since it occurs near the bundle inlet. In the second case the mixing occurs in a region of higher turbulence since the flow has already passed over several tube rows before the hot streak is generated.

  9. Generation and characterization of gas bubbles in liquid metals

    SciTech Connect

    Eckert, S.; Gerbeth, G.; Witke, W.

    1996-06-01

    There is an ongoing research performed in the RCR on local transport phenomena in turbulent liquid metal (LM) duct flows exposed to external magnetic fields. In this context so-called MHD flow phenomena can be observed, which are unknown in usual hydraulic engineering. The field of interest covers also the influence of magnetic fields on the behaviour of liquid metal - gas mixtures. Profound knowledge on these LMMHD two-phase flow plays an important role in a variety of technological applications, in particular, in the design of Liquid-Metal MHD generators or for several metallurgical processes employing gas-stirred reactors. However, the highly empirical nature of two-phase flow analysis gives little hope for the prediction of MHD two-phase flows without extensive experimental data. A summary is given about the authors research activities focussing on two directions: (a) Momentum transfer between gas and liquid metal in a bubbly flow regime to investigate the influence of the external magnetic field on the velocity slip ration S (b) Peculiarities of the MHD turbulence to use small gas bubbles as local tracers in order to study the turbulent mass transfer.

  10. Department of Energy power generation programs for natural gas

    SciTech Connect

    Bajura, R.A.

    1995-04-01

    The U.S. Department of Energy (DOE) is sponsoring two major programs to develop high efficiency, natural gas fueled power generation technologies. These programs are the Advanced Turbine Systems (ATS) Program and the Fuel Cell Program. While natural gas is gaining acceptance in the electric power sector, the improved technology from these programs will make gas an even more attractive fuel, particularly in urban areas where environmental concerns are greatest. Under the auspices of DOE`s Office of Fossil Energy (DOE/FE) and Office of Energy Efficiency and Renewable Energy (DOE/EE), the 8-year ATS Program is developing and will demonstrate advanced gas turbine power systems for both large central power systems and smaller industrial-scale systems. The large-scale systems will have efficiencies significantly greater than 60 percent, while the industrial-scale systems will have efficiencies with at least an equivalent 15 percent increase over the best 1992-vintage technology. The goal is to have the system ready for commercial offering by the year 2000.

  11. Inhomogeneous feed gas processing in industrial ozone generation.

    PubMed

    Krogh, Fabio; Merz, Reto; Gisler, Rudolf; Müller, Marco; Paolini, Bernhard; Lopez, Jose L; Freilich, Alfred

    2008-01-01

    The synthesis of ozone by means of dielectric barrier discharge (DBD) is extensively used in industry. Ozone generators available on the market differ in ozone production capacities, electrode arrangements and working parameters, but operate with a uniformly distributed filamentary discharge plasma pattern.In the presented work the benefits of inhomogeneous feed gas processing are explored. Causality between power induction, production efficiency and working parameters are investigated. Different electrode arrangements, evenly distributed within a given space parameter, were designed, simulated, manufactured and tested on a representative scale. A finite element model was utilized to simulate an inhomogeneous power induction pattern along the ozone generator tube. The simulation yielded the local power density, the local gas temperature gradient and the relative DBD packing density.Results show that the degree of filamentation turns out to be decisive, indicating a new potential by means of plasma tailoring. An arrangement with a pronounced power induction at the inlet of the ozone generator revealed several advantages over homogeneous plasma processing arrangements, for which an increase in robustness and a reduction in electrical power consumption are achieved. PMID:19092182

  12. Combustion Stability Analyses for J-2X Gas Generator Development

    NASA Technical Reports Server (NTRS)

    Hulka, J. R.; Protz, C. S.; Casiano, M. J.; Kenny, R. J.

    2010-01-01

    The National Aeronautics and Space Administration (NASA) is developing a liquid oxygen/liquid hydrogen rocket engine for upper stage and trans-lunar applications of the Ares vehicles for the Constellation program. This engine, designated the J-2X, is a higher pressure, higher thrust variant of the Apollo-era J-2 engine. Development was contracted to Pratt & Whitney Rocketdyne in 2006. Over the past several years, development of the gas generator for the J-2X engine has progressed through a variety of workhorse injector, chamber, and feed system configurations. Several of these configurations have resulted in injection-coupled combustion instability of the gas generator assembly at the first longitudinal mode of the combustion chamber. In this paper, the longitudinal mode combustion instabilities observed on the workhorse test stand are discussed in detail. Aspects of this combustion instability have been modeled at the NASA Marshall Space Flight Center with several codes, including the Rocket Combustor Interaction Design and Analysis (ROCCID) code and a new lumped-parameter MatLab model. To accurately predict the instability characteristics of all the chamber and injector geometries and test conditions, several features of the submodels in the ROCCID suite of calculations required modification. Finite-element analyses were conducted of several complicated combustion chamber geometries to determine how to model and anchor the chamber response in ROCCID. A large suite of sensitivity calculations were conducted to determine how to model and anchor the injector response in ROCCID. These modifications and their ramification for future stability analyses of this type are discussed in detail. The lumped-parameter MatLab model of the gas generator assembly was created as an alternative calculation to the ROCCID methodology. This paper also describes this model and the stability calculations.

  13. Study of compressor systems for a gas-generator engine

    NASA Technical Reports Server (NTRS)

    Sather, Bernard I; Tauschek, Max J

    1950-01-01

    Various methods of providing compressor-capacity and pressure-ratio control in the gas-generator type of compound engine over a range of altitudes from sea level to 50,000 feet are presented. The analytical results indicate that the best method of control is that in which the first stage of compression is carried out in a variable-speed supercharger driven by a hydraulic slip coupling. The constant-speed second stage could be either a mixed-flow rotary compressor or a piston-type compressor. A variable-area turbine nozzle is shown to be unnecessary for cruising operation of the engine.

  14. Gas generation in pure and impure plutonium-bearing materials

    SciTech Connect

    Mason, R.; Allen, T.; Eller, P.G.; Hagan, R.; Horrell, D.; Rink, N.

    1999-07-01

    The Los Alamos National Laboratory's (LANL's) materials identification and surveillance (MIS) project identifies materials to be stored in DOE-STD-3013-96 containers, determines the chemical and physical character of stored materials, and evaluates processing to be used to stabilize materials to meet the standard. The project has completed processing and analysis of 9 Hanford items and 24 Rocky Flats items, representing a substantial portion of the oxides to be packaged for long-term storage. The resultant data provide insight into the physical and chemical characteristics of the materials at the sites. A component of the study was to investigate gas generation for representative materials. These studies included headspace gas measurements over the 9 Hanford items, measurement of gas generation in 10-g surveillance samples of MIS powders, and pressure monitoring. Before examining the Hanford cans, sampling and analysis methods were demonstrated on HRA-905191, an item from the LANL vault. This item was not typical of materials designated to be stored in 3013 cans, as it contained plastic vials, emery cloths, paper towels, and a large percentage of thorium. However, it was one of the items that contained significant hydrogen in the headspace. A mass spectrometer was used to determine the composition of headspace gases. Oxygen was substantially depleted in all cases, and the percent of nitrogen in many items was greater than that found in air. In both cans with a high hydrogen content, the corresponding oxygen content was near zero (HRA905191 and ARF-102-85-365). In some cases, carbon dioxide was generated in the cans. Carbon monoxide was found in item BLO-39-11-85-295. This item has a high americium content, thus higher temperature than other materials examined. The only notable impurities in item BLO-39-11-85-295 were carbon at {approximately}0.1 wt% and chlorides at 0.2 wt%. Seven long-term surveillance vessels each holding {approximately}10 g of MIS powders have

  15. Determination of thermal stability of oils by pyrolytic gas chromatography

    SciTech Connect

    Kudryavtseva, N.A.; Mikhailov, I.A.; Nikonorov, E.M.; Rakova, L.A.

    1984-03-01

    This article demonstrates how pyrolytic gas chromatography (PGC) offers a means for unambiguous differentiation of the decomposition products from the accompanying products of oil vaporization. The proposed method based on PGC uses a furnace-type pyrolyzer connected to an LKhM-7A chromatograph. The common peak of propane with propylene was selected as a characteristic peak to indicate the oil decomposition temperature. Propane and propylene, along with lighter hydrocarbons, are always present in the decomposition products. A volume graph method is used to determine the temperature of vaporization or decomposition of the substance, based on plotting a curve for the relationship between the heating temperature and the relative volume (or pressure) of the test sample. The decomposition temperatures determined by the PGC method agree with the values report by foreign manufacturers (deviation no greater than 2/sup 0/C). The accuracy of calculation of the thermal stability of the hydrocarbon oils by the PGC method was 5-10/sup 0/C as a result of deficiencies in the heating device in the pyrolytic unit. Includes a table.

  16. Thermal barrier coating life modeling in aircraft gas turbine engines

    NASA Astrophysics Data System (ADS)

    Nissley, D. M.

    1997-03-01

    Analytical models for predicting ceramic thermal barrier coating (TBC) spalling life in aircraft gas tur-bine engines are presented. Electron beam/physical vapor-deposited and plasma-sprayed TBC systems are discussed. An overview of the following TBC spalling mechanisms is presented: (1) metal oxidation at the ceramic/metal interface, (2) ceramic/metal interface stresses caused by radius of curvature and inter-face roughness, (3) material properties and mechanical behavior, (4) component design features, (5) tem-perature gradients, (6) ceramic/metal interface stress singularities at edges and corners, and (7) object impact damage. Analytical models for TBC spalling life are proposed based on observations of TBC spall-ing and plausible failure theories. Spalling was assumed to occur when the imposed stresses exceed the material strength (at or near the ceramic/metal interface). Knowledge gaps caused by lack of experimen-tal evidence and analytical understanding of TBC failure are noted. The analytical models are considered initial engineering approaches that capture observed TBC spalling failure trends.

  17. Thermal barrier coating life modeling in aircraft gas turbine engines

    NASA Technical Reports Server (NTRS)

    Nissley, D. M.

    1995-01-01

    Analytical models useful for predicting ceramic thermal barrier coating (TBC) spalling life in aircraft gas turbine engines are presented. Electron beam-physical vapor deposited (EB-PVD) and plasma sprayed TBC systems are discussed. TBC spalling was attributed to a combination of mechanisms such as metal oxidation at the ceramic-metal interface, ceramic-metal interface stress concentrations at free surfaces due to dissimilar materials, ceramic-metal interface stresses caused by local radius of curvature and interface roughness, material properties and mechanical behavior, transient temperature gradients across the ceramic layer and component design features. TBC spalling life analytical models were developed based on observations of TBC failure modes and plausible failure theories. TBC failure was assumed to occur when the imposed stresses exceeded the material strength (at or near the ceramic-metal interface). TBC failure knowledge gaps caused by lack of experimental evidence and analytical understanding are noted. The analytical models are considered initial engineering approaches that capture observed TBC failure trends.

  18. Effects of water-emulsified fuel on a diesel engine generator's thermal efficiency and exhaust.

    PubMed

    Syu, Jin-Yuan; Chang, Yuan-Yi; Tseng, Chao-Heng; Yan, Yeou-Lih; Chang, Yu-Min; Chen, Chih-Chieh; Lin, Wen-Yinn

    2014-08-01

    Water-emulsified diesel has proven itself as a technically sufficient improvement fuel to improve diesel engine fuel combustion emissions and engine performance. However, it has seldom been used in light-duty diesel engines. Therefore, this paper focuses on an investigation into the thermal efficiency and pollution emission analysis of a light-duty diesel engine generator fueled with different water content emulsified diesel fuels (WD, including WD-0, WD-5, WD-10, and WD-15). In this study, nitric oxide, carbon monoxide, hydrocarbons, and carbon dioxide were analyzed by a vehicle emission gas analyzer and the particle size and number concentration were measured by an electrical low-pressure impactor. In addition, engine loading and fuel consumption were also measured to calculate the thermal efficiency. Measurement results suggested that water-emulsified diesel was useful to improve the thermal efficiency and the exhaust emission of a diesel engine. Obviously, the thermal efficiency was increased about 1.2 to 19.9%. In addition, water-emulsified diesel leads to a significant reduction of nitric oxide emission (less by about 18.3 to 45.4%). However the particle number concentration emission might be increased if the loading of the generator becomes lower than or equal to 1800 W. In addition, exhaust particle size distributions were shifted toward larger particles at high loading. The consequence of this research proposed that the water-emulsified diesel was useful to improve the engine performance and some of exhaust emissions, especially the NO emission reduction. Implications: The accumulated test results provide a good basis to resolve the corresponding pollutants emitted from a light-duty diesel engine generator. By measuring and analyzing transforms of exhaust pollutant from this engine generator, the effects of water-emulsified diesel fuel and loading on emission characteristics might be more clear. Understanding reduction of pollutant emissions during the use

  19. Selection and Evaluation of Thermal Interface Materials for Reduction of the Thermal Contact Resistance of Thermoelectric Generators

    NASA Astrophysics Data System (ADS)

    Sakamoto, Tatsuya; Iida, Tsutomu; Sekiguchi, Takeshi; Taguchi, Yutaka; Hirayama, Naomi; Nishio, Keishi; Takanashi, Yoshifumi

    2014-10-01

    A variety of thermal interface materials (TIMs) were investigated to find a suitable TIM for improving the performance of thermoelectric power generators (TEGs) operating in the medium-temperature range (600-900 K). The thermal resistance at the thermal interface between which the TIM was inserted was evaluated. The TIMs were chosen on the basis of their thermal stability when used with TEGs operating at medium temperatures, their electrical insulating properties, their thermal conductivity, and their thickness. The results suggest that the boron nitride (BN)-based ceramic coating, Whity Paint, and the polyurethane-based sheet, TSU700-H, are suitable TIMs for the heat source and heat sink sides, respectively, of the TEG. Use of these effectively enhances TEG performance because they reduce the thermal contact resistance at the thermal interface.

  20. Attosecond pulses generated by the lighthouse effect in Ar gas

    NASA Astrophysics Data System (ADS)

    Tosa, Valer; Lee, Ji Su; Kim, Hyung Taek; Nam, Chang Hee

    2015-05-01

    We numerically investigate harmonic generation in Ar gas under high ionization conditions and demonstrate that a lighthouse effect is present. We examine the structure of the driving field during propagation in temporal, spectral, and spatial domains, and conclude that the complete depletion of neutral Ar on axis gives rise to additional wavelets at off-axis regions. We show that these wavelets propagate with increasing divergence as the radial distances from the axis increase, generating the rotation of the wave front, thus fulfilling a necessary condition for the lighthouse effect. We obtain attosecond bursts of light emitted with different divergences in successive optical half-cycles so that in the far field these bursts arrive at different distances from the beam axis.

  1. Design optimization of gas generator hybrid propulsion boosters

    NASA Technical Reports Server (NTRS)

    Weldon, Vincent; Phillips, Dwight U.; Fink, Lawrence E.

    1990-01-01

    A methodology used in support of a contract study for NASA/MSFC to optimize the design of gas generator hybrid propulsion booster for uprating the National Space Transportation System (NSTS) is presented. The objective was to compare alternative configurations for this booster approach, optimizing each candidate concept on different bases, in order to develop data for a trade table on which a final decision was based. The methodology is capable of processing a large number of independent and dependent variables, adjusting the overall subsystems characteristics to arrive at a best compromise integrated design to meet various specified optimization criteria subject to selected constraints. For each system considered, a detailed weight statement was generated along with preliminary cost and reliability estimates.

  2. Design Optimization of Gas Generator Hybrid Propulsion Boosters

    NASA Technical Reports Server (NTRS)

    Weldon, Vincent; Phillips, Dwight; Fink, Larry

    1990-01-01

    A methodology used in support of a study for NASA/MSFC to optimize the design of gas generator hybrid propulsion booster for uprating the National Space Transportation System (NSTS) is presented. The objective was to compare alternative configurations for this booster approach, optimizing each candidate concept on different bases, in order to develop data for a trade table on which a final decision was based. The methodology is capable of processing a large number of independent and dependent variables, adjusting the overall subsystems characteristics to arrive at a best compromise integrated design to meet various specific optimization criteria subject to selected constraints. For each system considered, a detailed weight statement was generated along with preliminary cost and reliability estimates.

  3. Advanced Combustion Systems for Next Generation Gas Turbines

    SciTech Connect

    Joel Haynes; Jonathan Janssen; Craig Russell; Marcus Huffman

    2006-01-01

    Next generation turbine power plants will require high efficiency gas turbines with higher pressure ratios and turbine inlet temperatures than currently available. These increases in gas turbine cycle conditions will tend to increase NOx emissions. As the desire for higher efficiency drives pressure ratios and turbine inlet temperatures ever higher, gas turbines equipped with both lean premixed combustors and selective catalytic reduction after treatment eventually will be unable to meet the new emission goals of sub-3 ppm NOx. New gas turbine combustors are needed with lower emissions than the current state-of-the-art lean premixed combustors. In this program an advanced combustion system for the next generation of gas turbines is being developed with the goal of reducing combustor NOx emissions by 50% below the state-of-the-art. Dry Low NOx (DLN) technology is the current leader in NOx emission technology, guaranteeing 9 ppm NOx emissions for heavy duty F class gas turbines. This development program is directed at exploring advanced concepts which hold promise for meeting the low emissions targets. The trapped vortex combustor is an advanced concept in combustor design. It has been studied widely for aircraft engine applications because it has demonstrated the ability to maintain a stable flame over a wide range of fuel flow rates. Additionally, it has shown significantly lower NOx emission than a typical aircraft engine combustor and with low CO at the same time. The rapid CO burnout and low NOx production of this combustor made it a strong candidate for investigation. Incremental improvements to the DLN technology have not brought the dramatic improvements that are targeted in this program. A revolutionary combustor design is being explored because it captures many of the critical features needed to significantly reduce emissions. Experimental measurements of the combustor performance at atmospheric conditions were completed in the first phase of the program

  4. DC non-thermal atmospheric-pressure plasma jet generated using a syringe needle electrode

    NASA Astrophysics Data System (ADS)

    Matra, Khanit

    2016-07-01

    Non-thermal plasma jet was generated by applying a dc source voltage between the syringe needle anode with flowing Argon gas and a planar or a hollow copper cathode in an atmospheric-pressure environment. The two operating discharge modes, which were self-pulsing and a continuous discharge mode, these were mainly controlled by the limitations of the current flowing in the discharge circuit. A ballast resistor was an important factor in affecting the limitations of the operating discharge mode. The gas breakdown was initially generated in the self-pulsing discharge mode at the source voltage of 1.2 kV. This was slightly higher than the breakdown voltage at the experimental condition of 1 lpm of Argon and a 1 mm electrode gap distance. The peak self-pulsing discharge currents were up to 15–20 A with a self-pulsing frequency in the range of 10–20 kHz. The continuous discharge mode could be observed at the higher source voltage with the continuous discharge current within the range of a few milliamperes.

  5. Radionuclide Gas Transport through Nuclear Explosion-Generated Fracture Networks

    PubMed Central

    Jordan, Amy B.; Stauffer, Philip H.; Knight, Earl E.; Rougier, Esteban; Anderson, Dale N.

    2015-01-01

    Underground nuclear weapon testing produces radionuclide gases which may seep to the surface. Barometric pumping of gas through explosion-fractured rock is investigated using a new sequentially-coupled hydrodynamic rock damage/gas transport model. Fracture networks are produced for two rock types (granite and tuff) and three depths of burial. The fracture networks are integrated into a flow and transport numerical model driven by surface pressure signals of differing amplitude and variability. There are major differences between predictions using a realistic fracture network and prior results that used a simplified geometry. Matrix porosity and maximum fracture aperture have the greatest impact on gas breakthrough time and window of opportunity for detection, with different effects between granite and tuff simulations highlighting the importance of accurately simulating the fracture network. In particular, maximum fracture aperture has an opposite effect on tuff and granite, due to different damage patterns and their effect on the barometric pumping process. From stochastic simulations using randomly generated hydrogeologic parameters, normalized detection curves are presented to show differences in optimal sampling time for granite and tuff simulations. Seasonal and location-based effects on breakthrough, which occur due to differences in barometric forcing, are stronger where the barometric signal is highly variable. PMID:26676058

  6. Radionuclide Gas Transport through Nuclear Explosion-Generated Fracture Networks.

    PubMed

    Jordan, Amy B; Stauffer, Philip H; Knight, Earl E; Rougier, Esteban; Anderson, Dale N

    2015-01-01

    Underground nuclear weapon testing produces radionuclide gases which may seep to the surface. Barometric pumping of gas through explosion-fractured rock is investigated using a new sequentially-coupled hydrodynamic rock damage/gas transport model. Fracture networks are produced for two rock types (granite and tuff) and three depths of burial. The fracture networks are integrated into a flow and transport numerical model driven by surface pressure signals of differing amplitude and variability. There are major differences between predictions using a realistic fracture network and prior results that used a simplified geometry. Matrix porosity and maximum fracture aperture have the greatest impact on gas breakthrough time and window of opportunity for detection, with different effects between granite and tuff simulations highlighting the importance of accurately simulating the fracture network. In particular, maximum fracture aperture has an opposite effect on tuff and granite, due to different damage patterns and their effect on the barometric pumping process. From stochastic simulations using randomly generated hydrogeologic parameters, normalized detection curves are presented to show differences in optimal sampling time for granite and tuff simulations. Seasonal and location-based effects on breakthrough, which occur due to differences in barometric forcing, are stronger where the barometric signal is highly variable. PMID:26676058

  7. Radionuclide gas transport through nuclear explosion-generated fracture networks

    SciTech Connect

    Jordan, Amy B.; Stauffer, Philip H.; Knight, Earl E.; Rougier, Esteban; Anderson, Dale N.

    2015-12-17

    Underground nuclear weapon testing produces radionuclide gases which may seep to the surface. Barometric pumping of gas through explosion-fractured rock is investigated using a new sequentially-coupled hydrodynamic rock damage/gas transport model. Fracture networks are produced for two rock types (granite and tuff) and three depths of burial. The fracture networks are integrated into a flow and transport numerical model driven by surface pressure signals of differing amplitude and variability. There are major differences between predictions using a realistic fracture network and prior results that used a simplified geometry. Matrix porosity and maximum fracture aperture have the greatest impact on gas breakthrough time and window of opportunity for detection, with different effects between granite and tuff simulations highlighting the importance of accurately simulating the fracture network. In particular, maximum fracture aperture has an opposite effect on tuff and granite, due to different damage patterns and their effect on the barometric pumping process. From stochastic simulations using randomly generated hydrogeologic parameters, normalized detection curves are presented to show differences in optimal sampling time for granite and tuff simulations. In conclusion, seasonal and location-based effects on breakthrough, which occur due to differences in barometric forcing, are stronger where the barometric signal is highly variable.

  8. Radionuclide Gas Transport through Nuclear Explosion-Generated Fracture Networks

    NASA Astrophysics Data System (ADS)

    Jordan, Amy B.; Stauffer, Philip H.; Knight, Earl E.; Rougier, Esteban; Anderson, Dale N.

    2015-12-01

    Underground nuclear weapon testing produces radionuclide gases which may seep to the surface. Barometric pumping of gas through explosion-fractured rock is investigated using a new sequentially-coupled hydrodynamic rock damage/gas transport model. Fracture networks are produced for two rock types (granite and tuff) and three depths of burial. The fracture networks are integrated into a flow and transport numerical model driven by surface pressure signals of differing amplitude and variability. There are major differences between predictions using a realistic fracture network and prior results that used a simplified geometry. Matrix porosity and maximum fracture aperture have the greatest impact on gas breakthrough time and window of opportunity for detection, with different effects between granite and tuff simulations highlighting the importance of accurately simulating the fracture network. In particular, maximum fracture aperture has an opposite effect on tuff and granite, due to different damage patterns and their effect on the barometric pumping process. From stochastic simulations using randomly generated hydrogeologic parameters, normalized detection curves are presented to show differences in optimal sampling time for granite and tuff simulations. Seasonal and location-based effects on breakthrough, which occur due to differences in barometric forcing, are stronger where the barometric signal is highly variable.

  9. Externally limited defect generation in multiwalled carbon nanotubes upon thermal annealing, and possible mechanism

    NASA Astrophysics Data System (ADS)

    Bhalerao, G. M.; Sinha, A. K.; Srivastava, A. K.; Sathe, V.; Amarendra, G.

    2016-09-01

    Structural defects in multiwalled carbon nanotubes (MWCNTs) are found to increase upon moderate thermal annealing below 1400 K in an argon atmosphere. The defects are estimated using the ID/IG ratio in Raman spectroscopy of MWCNTs and confirmed by a direct observation using high-resolution transmission electron microscopy (HRTEM). HRTEM shows that the structural defects are created due to large damage to the outer walls of the nanotubes, while inner walls do not sustain any damage. The generation of defects on MWCNTs is attibuted to mechanical abrasion between the MWCNTs in contact, augmented by the momentum transfer from the flow of hot gas. A possible mechanism is proposed and experimentally validated by means of modulating the chemical environment of annealing from argon to hydrogen.

  10. Externally limited defect generation in multiwalled carbon nanotubes upon thermal annealing, and possible mechanism.

    PubMed

    Bhalerao, G M; Sinha, A K; Srivastava, A K; Sathe, V; Amarendra, G

    2016-09-01

    Structural defects in multiwalled carbon nanotubes (MWCNTs) are found to increase upon moderate thermal annealing below 1400 K in an argon atmosphere. The defects are estimated using the ID/IG ratio in Raman spectroscopy of MWCNTs and confirmed by a direct observation using high-resolution transmission electron microscopy (HRTEM). HRTEM shows that the structural defects are created due to large damage to the outer walls of the nanotubes, while inner walls do not sustain any damage. The generation of defects on MWCNTs is attibuted to mechanical abrasion between the MWCNTs in contact, augmented by the momentum transfer from the flow of hot gas. A possible mechanism is proposed and experimentally validated by means of modulating the chemical environment of annealing from argon to hydrogen. PMID:27456152

  11. Dicarboxylic acids generated by thermal alteration of kerogen and humic acids.

    PubMed

    Kawamura, K; Kaplan, I R

    1987-01-01

    Significant amounts (up to 2% of organic geopolymers) of low molecular weight (LMW) dicarboxylic acids (C2-C10) have been detected during thermal alteration (270 degrees C, 2 h) of kerogens and humic acids isolated from young or ancient lithified sediments. Their distribution is characterized by predominance of oxalic acid followed by succinic, fumaric and methylsuccinic acids. These acids are probably released by the breakdown of macromolecular structures, which have incorporated biogenic organic compounds, including diacids, during early diagenesis in sediments. Because of their reactivity, LMW diacids may play the following geochemically important roles under natural conditions: (1) the diacids dissolve carbonates and clay minerals to increase porosity and permeability, which enhances migration of oils and gas generated from catagenesis of kerogen dispersed in shale, and (2) the diacids may form organo-metal complexes, which are important for mobilization, transport and accumulation of trace metals in sedimentary basins. PMID:11542084

  12. Testing and Functions of the J2X Gas Generator

    NASA Technical Reports Server (NTRS)

    Miller, Nicholas

    2009-01-01

    The Ares I, NASA s new solid rocket based crew launch vehicle, is a two stage in line rocket that has made its waytothe forefront of NASA s endeavors. The Ares I s Upper Stage (US) will be propelled by a J-2X engine which is fueled by liquid hydrogen and liquid oxygen. The J-2X is a variation based on two of its predecessor s, the J-2 and J-2S engines. ET50 is providing the design support for hardware required to run tests on the J-2X Gas Generator (GG) that increases the delivery pressure of the supplied combustion fuels that the engine burns. The test area will be running a series of tests using different lengths and curved segments of pipe and different sized nozzles to determine the configuration that best satisfies the thrust, heat, and stability requirements for the engine. I have had to research the configurations that are being tested and gain an understanding of the purpose of the tests. I then had to research the parts that would be used in the test configurations. I was taken to see parts similar to the ones used in the test configurations and was allowed to review drawings and dimensions used for those parts. My job over this summer has been to use the knowledge I have gained to design, model, and create drawings for the un-fabricated parts that are necessary for the J-2X Workhorse Gas Generator Phase IIcTest.

  13. NASA Fastrac Engine Gas Generator Component Test Program and Results

    NASA Technical Reports Server (NTRS)

    Dennis, Henry J., Jr.; Sanders, T.

    2000-01-01

    Low cost access to space has been a long-time goal of the National Aeronautics and Space Administration (NASA). The Fastrac engine program was begun at NASA's Marshall Space Flight Center to develop a 60,000-pound (60K) thrust, liquid oxygen/hydrocarbon (LOX/RP), gas generator-cycle booster engine for a fraction of the cost of similar engines in existence. To achieve this goal, off-the-shelf components and readily available materials and processes would have to be used. This paper will present the Fastrac gas generator (GG) design and the component level hot-fire test program and results. The Fastrac GG is a simple, 4-piece design that uses well-defined materials and processes for fabrication. Thirty-seven component level hot-fire tests were conducted at MSFC's component test stand #116 (TS116) during 1997 and 1998. The GG was operated at all expected operating ranges of the Fastrac engine. Some minor design changes were required to successfully complete the test program as development issues arose during the testing. The test program data results and conclusions determined that the Fastrac GG design was well on the way to meeting the requirements of NASA's X-34 Pathfinder Program that chose the Fastrac engine as its main propulsion system.

  14. Reactive Transport Modeling of Acid Gas Generation and Condensation

    SciTech Connect

    G. Zhahg; N. Spycher; E. Sonnenthal; C. Steefel

    2005-01-25

    Pulvirenti et al. (2004) recently conducted a laboratory evaporation/condensation experiment on a synthetic solution of primarily calcium chloride. This solution represents one potential type of evaporated pore water at Yucca Mountain, Nevada, a site proposed for geologic storage of high-level nuclear waste. These authors reported that boiling this solution to near dryness (a concentration factor >75,000 relative to actual pore waters) leads to the generation of acid condensate (pH 4.5) presumably due to volatilization of HCl (and minor HF and/or HNO{sub 3}). To investigate the various processes taking place, including boiling, gas transport, and condensation, their experiment was simulated by modifying an existing multicomponent and multiphase reactive transport code (TOUGHREACT). This code was extended with a Pitzer ion-interaction model to deal with high ionic strength. The model of the experiment was set-up to capture the observed increase in boiling temperature (143 C at {approx}1 bar) resulting from high concentrations of dissolved salts (up to 8 m CaCl{sub 2}). The computed HCI fugacity ({approx} 10{sup -4} bars) generated by boiling under these conditions is not sufficient to lower the pH of the condensate (cooled to 80 and 25 C) down to observed values unless the H{sub 2}O mass fraction in gas is reduced below {approx}10%. This is because the condensate becomes progressively diluted by H{sub 2}O gas condensation. However, when the system is modeled to remove water vapor, the computed pH of instantaneous condensates decreases to {approx}1.7, consistent with the experiment (Figure 1). The results also show that the HCl fugacity increases, and calcite, gypsum, sylvite, halite, MgCl{sub 2}4H{sub 2}O and CaCl{sub 2} precipitate sequentially with increasing concentration factors.

  15. Counter-Rotatable Fan Gas Turbine Engine with Axial Flow Positive Displacement Worm Gas Generator

    NASA Technical Reports Server (NTRS)

    Giffin, Rollin George (Inventor); Murrow, Kurt David (Inventor); Fakunle, Oladapo (Inventor)

    2014-01-01

    A counter-rotatable fan turbine engine includes a counter-rotatable fan section, a worm gas generator, and a low pressure turbine to power the counter-rotatable fan section. The low pressure turbine maybe counter-rotatable or have a single direction of rotation in which case it powers the counter-rotatable fan section through a gearbox. The gas generator has inner and outer bodies having offset inner and outer axes extending through first, second, and third sections of a core assembly. At least one of the bodies is rotatable about its axis. The inner and outer bodies have intermeshed inner and outer helical blades wound about the inner and outer axes and extending radially outwardly and inwardly respectively. The helical blades have first, second, and third twist slopes in the first, second, and third sections respectively. A combustor section extends through at least a portion of the second section.

  16. Deformation and the timing of gas generation and migration in the eastern Brooks Range foothills, Arctic National Wildlife Refuge, Alaska

    USGS Publications Warehouse

    Parris, T.M.; Burruss, R.C.; O'Sullivan, P. B.

    2003-01-01

    Along the southeast border of the 1002 Assessment Area in the Arctic National Wildlife Refuge, Alaska, an explicit link between gas generation and deformation in the Brooks Range fold and thrust belt is provided through petrographic, fluid inclusion, and stable isotope analyses of fracture cements integrated with zircon fission-track data. Predominantly quartz-cemented fractures, collected from thrusted Triassic and Jurassic rocks, contain crack-seal textures, healed microcracks, and curved crystals and fluid inclusion populations, which suggest that cement growth occurred before, during, and after deformation. Fluid inclusion homogenization temperatures (175-250??C) and temperature trends in fracture samples suggest that cements grew at 7-10 km depth during the transition from burial to uplift and during early uplift. CH4-rich (dry gas) inclusions in the Shublik Formation and Kingak Shale are consistent with inclusion entrapment at high thermal maturity for these source rocks. Pressure modeling of these CH4-rich inclusions suggests that pore fluids were overpressured during fracture cementation. Zircon fission-track data in the area record postdeposition denudation associated with early Brooks Range deformation at 64 ?? 3 Ma. With a closure temperature of 225-240??C, the zircon fission-track data overlap homogenization temperatures of coeval aqueous inclusions and inclusions containing dry gas in Kingak and Shublik fracture cements. This critical time-temperature relationship suggests that fracture cementation occurred during early Brooks Range deformation. Dry gas inclusions suggest that Shublik and Kingak source rocks had exceeded peak oil and gas generation temperatures at the time structural traps formed during early Brooks Range deformation. The timing of hydrocarbon generation with respect to deformation therefore represents an important exploration risk for gas exploration in this part of the Brooks Range fold and thrust belt. The persistence of gas high at

  17. Testing marine shales' ability to generate catalytic gas at low temperature

    NASA Astrophysics Data System (ADS)

    Wei, L.; Schimmelmann, A.; Drobniak, A.; Sauer, P. E.; Mastalerz, M.

    2013-12-01

    Hydrocarbon gases are generally thought to originatevia low-temperature microbial or high-temperature thermogenicpathways (Whiticar, 1996) that can be distinguished by compound-specific hydrogen and carbon stable isotope ratios. An alternative low-temperature catalytic pathway for hydrocarbon generation from sedimentary organic matter has been proposed to be active at temperatures as low as 50oC (e.g.,Mango and Jarvie,2009,2010; Mango et al., 2010; Bartholomew et al., 1999). This hypothesis, however, still requires rigoroustesting by independent laboratory experiments.The possibility of catalytic generation of hydrocarbons in some source rocks (most likely in relatively impermeable and organic-rich shales where reduced catalytic centers can be best preserved) would offer an explanation for the finding of gas of non-microbial origin in formations that lack the thermal maturity for generating thermogenic gas.It is unknown whether catalytically generated methane would be isotopically different from thermogenicmethane (δ13CCH4>-50‰, δ2HCH4from -275‰ to -100‰) ormicrobially generated methane (δ13CCH4from -40‰ to -110‰, δ2HCH4from -400‰to -150‰) (Whiticar, 1998). In order to test for catalytic gas generationin water-wet shales and coals, we are conductinglaboratory experiments at three temperatures (60°C, 100°C, 200°C)and three pressures (ambient pressure, 107 Pa, 3x107 Pa)over periods of six months to several years. So far, our longest running experiments have reached one year. We sealed different types of thermally immature, pre-evacuatedshales (Mowry, New Albany, and Mahoganyshales) and coals (SpringfieldCoal and Wilcoxlignite)with isotopically defined waters in gold cells in the absence of elemental oxygen.Preliminary results show that these samples, depending on conditions, can generate light hydrocarbon gases (methane, ethane and propane) and CO2. Methane, CO2, and traces of H2havebeen generated at 60°C, whereas experiments at 100°C and 200

  18. Recycling of blast furnace sludge by briquetting with starch binder: Waste gas from thermal treatment utilizable as a fuel.

    PubMed

    Drobíková, Klára; Plachá, Daniela; Motyka, Oldřich; Gabor, Roman; Kutláková, Kateřina Mamulová; Vallová, Silvie; Seidlerová, Jana

    2016-02-01

    Steel plants generate significant amounts of wastes such as sludge, slag, and dust. Blast furnace sludge is a fine-grained waste characterized as hazardous and affecting the environment negatively. Briquetting is one of the possible ways of recycling of this waste while the formed briquettes serve as a feed material to the blast furnace. Several binders, both organic and inorganic, had been assessed, however, only the solid product had been analysed. The aim of this study was to assess the possibilities of briquetting using commonly available laundry starch as a binder while evaluating the possible utilization of the waste gas originating from the thermal treatment of the briquettes. Briquettes (100g) were formed with the admixture of starch (UNIPRET) and their mechanical properties were analysed. Consequently, they were subjected to thermal treatment of 900, 1000 and 1100°C with retention period of 40min during which was the waste gas collected and its content analysed using gas chromatography. Dependency of the concentration of the compounds forming the waste gas on the temperature used was determined using Principal component analysis (PCA) and correlation matrix. Starch was found to be a very good binder and reduction agent, it was confirmed that metallic iron was formed during the thermal treatment. Approximately 20l of waste gas was obtained from the treatment of one briquette; main compounds were methane and hydrogen rendering the waste gas utilizable as a fuel while the greatest yield was during the lowest temperatures. Preparation of blast furnace sludge briquettes using starch as a binder and their thermal treatment represents a suitable method for recycling of this type of metallurgical waste. Moreover, the composition of the resulting gas is favourable for its use as a fuel. PMID:26684056

  19. Multivariate analysis of progressive thermal desorption coupled gas chromatography-mass spectrometry.

    SciTech Connect

    Van Benthem, Mark Hilary; Mowry, Curtis Dale; Kotula, Paul Gabriel; Borek, Theodore Thaddeus, III

    2010-09-01

    Thermal decomposition of poly dimethyl siloxane compounds, Sylgard{reg_sign} 184 and 186, were examined using thermal desorption coupled gas chromatography-mass spectrometry (TD/GC-MS) and multivariate analysis. This work describes a method of producing multiway data using a stepped thermal desorption. The technique involves sequentially heating a sample of the material of interest with subsequent analysis in a commercial GC/MS system. The decomposition chromatograms were analyzed using multivariate analysis tools including principal component analysis (PCA), factor rotation employing the varimax criterion, and multivariate curve resolution. The results of the analysis show seven components related to offgassing of various fractions of siloxanes that vary as a function of temperature. Thermal desorption coupled with gas chromatography-mass spectrometry (TD/GC-MS) is a powerful analytical technique for analyzing chemical mixtures. It has great potential in numerous analytic areas including materials analysis, sports medicine, in the detection of designer drugs; and biological research for metabolomics. Data analysis is complicated, far from automated and can result in high false positive or false negative rates. We have demonstrated a step-wise TD/GC-MS technique that removes more volatile compounds from a sample before extracting the less volatile compounds. This creates an additional dimension of separation before the GC column, while simultaneously generating three-way data. Sandia's proven multivariate analysis methods, when applied to these data, have several advantages over current commercial options. It also has demonstrated potential for success in finding and enabling identification of trace compounds. Several challenges remain, however, including understanding the sources of noise in the data, outlier detection, improving the data pretreatment and analysis methods, developing a software tool for ease of use by the chemist, and demonstrating our belief that

  20. Embedded Thermal Control for Subsystems for Next Generation Spacecraft Applications

    NASA Technical Reports Server (NTRS)

    Didion, Jeffrey R.

    2015-01-01

    Thermal Fluids and Analysis Workshop, Silver Spring MD NCTS 21070-15. NASA, the Defense Department and commercial interests are actively engaged in developing miniaturized spacecraft systems and scientific instruments to leverage smaller cheaper spacecraft form factors such as CubeSats. This paper outlines research and development efforts among Goddard Space Flight Center personnel and its several partners to develop innovative embedded thermal control subsystems. Embedded thermal control subsystems is a cross cutting enabling technology integrating advanced manufacturing techniques to develop multifunctional intelligent structures to reduce Size, Weight and Power (SWaP) consumption of both the thermal control subsystem and overall spacecraft. Embedded thermal control subsystems permit heat acquisition and rejection at higher temperatures than state of the art systems by employing both advanced heat transfer equipment (integrated heat exchangers) and high heat transfer phenomena. The Goddard Space Flight Center Thermal Engineering Branch has active investigations seeking to characterize advanced thermal control systems for near term spacecraft missions. The embedded thermal control subsystem development effort consists of fundamental research as well as development of breadboard and prototype hardware and spaceflight validation efforts. This paper will outline relevant fundamental investigations of micro-scale heat transfer and electrically driven liquid film boiling. The hardware development efforts focus upon silicon based high heat flux applications (electronic chips, power electronics etc.) and multifunctional structures. Flight validation efforts include variable gravity campaigns and a proposed CubeSat based flight demonstration of a breadboard embedded thermal control system. The CubeSat investigation is technology demonstration will characterize in long-term low earth orbit a breadboard embedded thermal subsystem and its individual components to develop

  1. Waste Package Neutron Absorber, Thermal Shunt, and Fill Gas Selection Report

    SciTech Connect

    V. Pasupathi

    2000-01-28

    Materials for neutron absorber, thermal shunt, and fill gas for use in the waste package were selected using a qualitative approach. For each component, selection criteria were identified; candidate materials were selected; and candidates were evaluated against these criteria. The neutron absorber materials evaluated were essentially boron-containing stainless steels. Two candidates were evaluated for the thermal shunt material. The fill gas candidates were common gases such as helium, argon, nitrogen, carbon dioxide, and dry air. Based on the performance of each candidate against the criteria, the following selections were made: Neutron absorber--Neutronit A978; Thermal shunt--Aluminum 6061 or 6063; and Fill gas--Helium.

  2. THR-TH: a high-temperature gas-cooled nuclear reactor core thermal hydraulics code

    SciTech Connect

    Vondy, D.R.

    1984-07-01

    The ORNL version of PEBBLE, the (RZ) pebble bed thermal hydraulics code, has been extended for application to a prismatic gas cooled reactor core. The supplemental treatment is of one-dimensional coolant flow in up to a three-dimensional core description. Power density data from a neutronics and exposure calculation are used as the basic information for the thermal hydraulics calculation of heat removal. Two-dimensional neutronics results may be expanded for a three-dimensional hydraulics calculation. The geometric description for the hydraulics problem is the same as used by the neutronics code. A two-dimensional thermal cell model is used to predict temperatures in the fuel channel. The capability is available in the local BOLD VENTURE computation system for reactor core analysis with capability to account for the effect of temperature feedback by nuclear cross section correlation. Some enhancements have also been added to the original code to add pebble bed modeling flexibility and to generate useful auxiliary results. For example, an estimate is made of the distribution of fuel temperatures based on average and extreme conditions regularly calculated at a number of locations.

  3. Numerical simulation of thermal-hydraulic generators running in a single regime

    NASA Astrophysics Data System (ADS)

    Chioreanu, Nicolae; Mitran, Tudor; Rus, Alexandru; Beles, Horia

    2014-06-01

    The paper presents the basis for the design of thermal-hydraulic generators running in a single regime. The thermal-hydraulic generators in a single regime running represent an absolute novelty worldwide (a pioneer invention). Based on the methodology concerning this subject, the design calculus for an experimental model was developed.

  4. Estimating methane gas generation from Devil's swamp landfill using greenhouse gas emission models

    NASA Astrophysics Data System (ADS)

    Adeyemi, Ayodeji Thompson

    Greenhouse gas (GHG) has been a key issue in the study, design, and management of landfills. Landfill gas (LFG) is considered either as a significant source of renewable energy (if extracted and processed accordingly) or significant source of pollution and risk (if not mitigated or processed). A municipal solid waste (MSW) landfill emits a significant amount of methane, a potent GHG. Thus, quantification and mitigation of GHG emissions is an important area of study in engineering and other sciences related to landfill technology and management. The present study will focus on estimating methane generation from Devils swamp landfill (DSLF), a closed landfill in Baton Rouge, LA. The landfill operated for 53 years (1940-1993) and contains both industrial and municipal waste products. Since the Clean Air Act of 1963, landfills are now classified as New Source Performance Standard (NSPS) waste (i.e., waste that will decompose to generate LFG). Currently, the DSLF is being used as source of renewable energy through the "Waste to Energy" program. For this study, to estimate the methane potential in the DSLF, it is important to determine the characteristics and classification of the landfill's wastes. The study uses and compares different GHG modeling tools---LandGEM, a multiphase model, and a simple first-order model---to estimate methane gas emission and compare results with the actual emissions from the DSLF. The sensitivity of the methane generation rate was analyzed by the methane generation models to assess the effects of variables such as initial conditions, specific growth rate, and reaction rate constants. The study concludes that methane (L0) and initial organic concentration in waste (k) are the most important parameters when estimating methane generation using the models.

  5. Transition metal catalysis in the generation of petroleum and natural gas

    NASA Astrophysics Data System (ADS)

    Mango, Frank D.

    1992-01-01

    Certain ratios of light hydrocarbons remain virtually invariant over the course of petroleum generation, indicating steady-state catalysis rather than thermal cracking as the central feature to the mechanism of petroleum generation. Although the evidence for catalytic intervention is now compelling, the nature of the catalytic agent, its mode of activation and action are not clear. I propose that the transition metals, activated in the lipophilic domains of kerogen, are the catalytic agents in the conversion of normal paraffins into light hydrocarbons and natural gas. The process proceeds through specific catalytic steps involving 3-, 5-, and 6-carbon ring-closures and the cleavage of carbon-carbon bonds in the key steps. This hypothesis is analyzed in the context of published literature on catalysis by Ni, V, Ti, Co, and related transition metals. Activated under anaerobic conditions, these metals express extraordinary catalytic activity in each of the postulated steps. Moreover, metal-catalysis provides a reasonable kinetic pathway through which hydrogen and normal paraffins may combine to form a methane-enriched natural gas. Given the anaerobic conditions of diagenesis and a kerogenous source of hydrogen, it is concluded that the transition metals, under catagenic conditions, are potentially active catalysts in the conversion of hydrogen and paraffins into light hydrocarbons and natural gas.

  6. Transition metal catalysis in the generation of petroleum and natural gas

    SciTech Connect

    Mango, F.D. )

    1992-01-01

    Certain ratios of light hydrocarbons remain virtually invariant over the course of petroleum generation, indicating steady-state catalysis rather than thermal cracking as the central feature to the mechanism of petroleum generation. Although the evidence for catalytic intervention is now compelling, the nature of the catalytic agent, its mode of activation and action are not clear. The author proposes that the transition metals, activated in the lipophilic domains of kerogen, are the catalytic agents in the conversion of normal paraffins into light hydrocarbons and natural gas. The process proceeds through specific catalytic steps involving 3-, 5-, and 6-carbon ring-closures and the cleavage of carbon-carbon bonds in the key steps. This hypothesis is analyzed in the context of published literature on catalysis by Ni, V, Ti, Co, and related transition metals. Activated under anaerobic conditions, these metals express extraordinary catalytic activity in each of the postulated steps. Moreover, metal-catalysis provides a reasonable kinetic pathway through which hydrogen and normal paraffins may combine to form a methane-enriched a natural gas. Given the anaerobic conditions of diagenesis and a kerogenous source of hydrogen, it is concluded that the transition metals, under catagenic conditions, are potentially active catalysts in the conversion of hydrogen and paraffins into light hydrocarbons and natural gas.

  7. Peristaltic Micro-pump Generated from Heating Trapped Gas in a Superhydrophobic Microchannel

    NASA Astrophysics Data System (ADS)

    Hann, Sungyun; Kim, Tae Jin; Hidrovo, Carlos

    2013-11-01

    Study of micro-pumps has been actively pursued as they may be integrated into portable fluidic systems. Since one major application of developing portable fluidic devices is in medical drug delivery systems, the study of valveless micro-peristaltic pumps has attracted many researchers, particularly due to its low contamination risk of the working fluid. However, conventional peristaltic micro-pumps involve complex fabrication steps, including alignment of multiple device layers. The purpose of this research is to design a low cost, single layer peristaltic pump which utilizes thermal expansion of gas bubbles trapped in the microchannel walls. The microchannel walls are corrugated with a high roughness factor to prevent water from protruding into the gaps, thus rendering the surface superhydrophobic. The gas pockets are heated from the side walls, where the microheaters are fabricated by flowing molten metal into satellite microchannels and then solidifying them. We expect that the expanding gas pockets will act as a series of valves and that the fluid flow can be generated by sequentially heating the gas pockets along the microchannel.

  8. Gas desorption from seawater in open-cycle ocean thermal energy conversion barometric upcomers

    SciTech Connect

    Ghiaasiaan, S.M.; Wassel, A.T. ); Pesaran, A.A. )

    1990-08-01

    Gas desorption from warm and cold seawater under open-cycle ocean thermal energy conversion (OC-OTEC) conditions is addressed in this paper. The desorption process of dissolved O{sub 2}, N{sub 2}, and CO{sub 2} in the barometric upcomers of an OTEC plant is simulated mathematically. The model considers the growth of bubbles originating in the ocean and bubbles formed in the upcomers. Bubble growth is induced by gas mass transfer and water evaporation at the bubble-liquid interface, as well as by the decreasing hydrostatic pressure. Heterogeneous nucleation at pipe wall crevices and on suspended particles in the water stream is also modeled. Bubble coalescence due to turbulent shear and differential buoyancy is simulated. The results generated show the deaeration efficiency as a function of flow and geometric parameters. The calculations show that gas desorption in the barometric upcomers can be appreciable. Such desorption is enhanced by increasing the concentration of the incoming and/or the heterogeneously formed bubbles. Results of existing experiments are discussed and predictions are shown for the selected test conditions.

  9. Recent Operational Experience with the Internal Thermal Control System Dual-Membrane Gas Trap

    NASA Technical Reports Server (NTRS)

    Leimkuehler, Thomas O.; Lukens, Clark; Reeves, Daniel R.; Holt, James M.

    2004-01-01

    A dual-membrane gas trap is currently used to remove gas bubbles from the Internal Thermal Control System (ITCS) coolant on board the International Space Station. The gas trap consists of concentric tube membrane pairs, comprised of outer hydrophilic tubes and inner hydrophobic fibers. Liquid coolant passes through the outer hydrophilic membrane, which traps the gas bubbles. The inner hydrophobic fiber allows the trapped gas bubbles to pass through and vent to the ambient atmosphere in the cabin. The gas removal performance and operational lifetime of the gas trap have been affected by contamination in the ITCS coolant. However, the gas trap has performed flawlessly with regard to its purpose of preventing gas bubbles from causing depriming, overspeed, and shutdown of the ITCS pump. This paper discusses on-orbit events over the course of the last year related to the performance and functioning of the gas trap.

  10. A second generation of low thermal noise cryogenic silicon resonators

    NASA Astrophysics Data System (ADS)

    Matei, D. G.; Legero, T.; Grebing, Ch; Häfner, S.; Lisdat, Ch; Weyrich, R.; Zhang, W.; Sonderhouse, L.; Robinson, J. M.; Riehle, F.; Ye, J.; Sterr, U.

    2016-06-01

    We have set up an improved vertically mounted silicon cavity operating at the zero-crossing temperature of the coefficient of thermal expansion (CTE) near 123 K with estimated thermal noise limited instability of 4 x 10-17 in the modified Allan deviation. Owing to the anisotropic elasticity of single-crystal silicon, the vertical acceleration sensitivity was minimized in situ by axially rotating the resonator with respect to the mounting frame. The control of the resonator temperature is greatly improved by using a combination of two thermal shields, monitoring with several temperature sensors, and employing low-thermal conductivity materials. The instability of the resonator stabilized laser was characterized by comparing with another low-noise system based on a 48 cm long room temperature cavity of PTB's strontium lattice clock, resulting in a modified Allan deviation of 7 x 10-17 at 100 s.

  11. Solar thermal power generation. A bibliography with abstracts

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Bibliographies and abstracts are cited under the following topics: (1) energy overviews; (2) solar overviews; (3) conservation; (4) economics, law; (5) thermal power; (6) thermionic, thermoelectric; (7) ocean; (8) wind power; (9) biomass and photochemical; and (10) large photovoltaics.

  12. Removal of Dioxin Contamination for Gas Turbine Generator Set Repair

    SciTech Connect

    Fay, W. S.; Borah, R.E.

    2003-02-25

    Decontamination projects are typically undertaken in the interest of reducing disposal costs. This goal can be achieved because decontamination concentrates the contaminant into a smaller volume or changes its form so that a lower cost disposal technology becomes available. Less frequently, decontamination adds value back to the fouled structure or contaminated piece of equipment. This removal of dioxins from a gas turbine generator set is one of the latter cases. A multi-million dollar piece of equipment could have been destined for the scrap pile. Instead, an innovative, non-destructive decontamination technology, developed under EPA and DOE demonstration programs has was employed so that the set could repaired and put back into service. The TechXtractchemical decontamination technology reduced surface dioxin / furan concentrations from as high as 24,000 ng / m2 to less than 25 ng / m2 and below detection limits.

  13. High-pressure LOX/hydrocarbon preburners and gas generators

    NASA Technical Reports Server (NTRS)

    Huebner, A. W.

    1981-01-01

    The objective of the program was to conduct a small scale hardware test program to establish the technology base required for LOX/hydrocarbon preburners and gas generators. The program consisted of six major tasks; Task I reviewed and assessed the performance prediction models and defined a subscale test program. Task II designed and fabricated this subscale hardware. Task III tested and analyzed the data from this hardware. Task IV analyzed the hot fire results and formulated a preliminary design for 40K preburner assemblies. Task V took the preliminary design and detailed and fabricated three 40K size preburner assemblies, one each fuel-rich LOX/CH, and LOX/RP-1 and one oxidizer rich LOX/CH4. Task VI delivered these preburner assemblies to MSFC for subsequent evaluation.

  14. THERMINATOR: THERMal heavy-IoN generATOR

    NASA Astrophysics Data System (ADS)

    Kisiel, Adam; Tałuć, Tomasz; Broniowski, Wojciech; Florkowski, Wojciech

    2006-04-01

    THERMINATOR is a Monte Carlo event generator designed for studying of particle production in relativistic heavy-ion collisions performed at such experimental facilities as the SPS, RHIC, or LHC. The program implements thermal models of particle production with single freeze-out. It performs the following tasks: (1) generation of stable particles and unstable resonances at the chosen freeze-out hypersurface with the local phase-space density of particles given by the statistical distribution factors, (2) subsequent space-time evolution and decays of hadronic resonances in cascades, (3) calculation of the transverse-momentum spectra and numerous other observables related to the space-time evolution. The geometry of the freeze-out hypersurface and the collective velocity of expansion may be chosen from two successful models, the Cracow single-freeze-out model and the Blast-Wave model. All particles from the Particle Data Tables are used. The code is written in the object-oriented c++ language and complies to the standards of the ROOT environment. Program summaryProgram title:THERMINATOR Catalogue identifier:ADXL_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADXL_v1_0 Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland RAM required to execute with typical data:50 Mbytes Number of processors used:1 Computer(s) for which the program has been designed: PC, Pentium III, IV, or Athlon, 512 MB RAM not hardware dependent (any computer with the c++ compiler and the ROOT environment [R. Brun, F. Rademakers, Nucl. Instrum. Methods A 389 (1997) 81, http://root.cern.ch] Operating system(s) for which the program has been designed:Linux: Mandrake 9.0, Debian 3.0, SuSE 9.0, Red Hat FEDORA 3, etc., Windows XP with Cygwin ver. 1.5.13-1 and gcc ver. 3.3.3 (cygwin special)—not system dependent External routines/libraries used: ROOT ver. 4.02.00 Programming language:c++ Size of the package: (324 KB directory 40 KB compressed distribution

  15. Evaluation of an Integrated Gas-Cooled Reactor Simulator and Brayton Turbine-Generator

    NASA Technical Reports Server (NTRS)

    Hissam, David Andy; Stewart, Eric T.

    2006-01-01

    A closed-loop brayton cycle, powered by a fission reactor, offers an attractive option for generating both planetary and in-space electric power. Non-nuclear testing of this type of system provides the opportunity to safely work out integration and system control challenges for a modest investment. Recognizing this potential, a team at Marshall Space Flight Center has evaluated the viability of integrating and testing an existing gas-cooled reactor simulator and a modified commercially available, off-the-shelf, brayton turbine-generator. Since these two systems were developed independently of one another, this evaluation had to determine if they could operate together at acceptable power levels, temperatures, and pressures. Thermal, fluid, and structural analyses show that this combined system can operate at acceptable power levels and temperatures. In addition, pressure drops across the reactor simulator, although higher than desired, are also viewed as acceptable. Three potential working fluids for the system were evaluated: N2, He/Ar, and He/Xe. Other potential issues, such as electrical breakdown in the generator and the operation of the brayton foil bearings using various gas mixtures, were also investigated.

  16. Radionuclide gas transport through nuclear explosion-generated fracture networks

    DOE PAGESBeta

    Jordan, Amy B.; Stauffer, Philip H.; Knight, Earl E.; Rougier, Esteban; Anderson, Dale N.

    2015-12-17

    Underground nuclear weapon testing produces radionuclide gases which may seep to the surface. Barometric pumping of gas through explosion-fractured rock is investigated using a new sequentially-coupled hydrodynamic rock damage/gas transport model. Fracture networks are produced for two rock types (granite and tuff) and three depths of burial. The fracture networks are integrated into a flow and transport numerical model driven by surface pressure signals of differing amplitude and variability. There are major differences between predictions using a realistic fracture network and prior results that used a simplified geometry. Matrix porosity and maximum fracture aperture have the greatest impact on gasmore » breakthrough time and window of opportunity for detection, with different effects between granite and tuff simulations highlighting the importance of accurately simulating the fracture network. In particular, maximum fracture aperture has an opposite effect on tuff and granite, due to different damage patterns and their effect on the barometric pumping process. From stochastic simulations using randomly generated hydrogeologic parameters, normalized detection curves are presented to show differences in optimal sampling time for granite and tuff simulations. In conclusion, seasonal and location-based effects on breakthrough, which occur due to differences in barometric forcing, are stronger where the barometric signal is highly variable.« less

  17. Thermal degradation events as health hazards: particle vs gas phase effects, mechanistic studies with particles.

    PubMed

    Oberdörster, G; Ferin, J; Finkelstein, J; Soderholm, S

    1992-01-01

    Exposure to thermal degradation products arising from fire or smoke could be a major concern for manned space missions. Severe acute lung damage has been reported in people after accidental exposure to fumes from plastic materials, and animal studies revealed the extremely high toxicity of freshly generated fumes whereas a decrease in toxicity of aged fumes has been found. This and the fact that toxicity of the freshly generated fumes can be prevented with filters raises the question whether the toxicity may be due to the particulate rather than the gas phase components of the thermodegradation products. Indeed, results from recent studies implicate ultrafine particles (particle diameter in the nm range) as potential severe pulmonary toxicants. We have conducted a number of in vivo (inhalation and instillation studies in rats) and in vitro studies to test the hypothesis that ultrafine particles possess an increased potential to injure the lung compared to larger-sized particles. We used as surrogate particles ultrafine TiO2 particles (12 and 20 nm diameter). Results in exposed rats showed that the ultrafine TiO2 particles not only induce a greater acute inflammatory reaction in the lung than larger-sized TiO2 particles, but can also lead to persistent chronic effects, as indicated by an adverse effect on alveolar macrophage mediated clearance function of particles. Release of mediators from alveolar macrophages during phagocytosis of the ultrafine particles and an increased access of the ultrafine particles to the pulmonary interstitium are likely factors contributing to their pulmonary toxicity. In vitro studies with lung cells (alveolar macrophages) showed, in addition, that ultrafine TiO2 particles have a greater potential to induce cytokines than larger-sized particles. We conclude from our present studies that ultrafine particles have a significant potential to injure the lung and that their occurrence in thermal degradation events can play a major role in the

  18. BIOMASS GASIFICATION AND POWER GENERATION USING ADVANCED GAS TURBINE SYSTEMS

    SciTech Connect

    David Liscinsky

    2002-10-20

    A multidisciplined team led by the United Technologies Research Center (UTRC) and consisting of Pratt & Whitney Power Systems (PWPS), the University of North Dakota Energy & Environmental Research Center (EERC), KraftWork Systems, Inc. (kWS), and the Connecticut Resource Recovery Authority (CRRA) has evaluated a variety of gasified biomass fuels, integrated into advanced gas turbine-based power systems. The team has concluded that a biomass integrated gasification combined-cycle (BIGCC) plant with an overall integrated system efficiency of 45% (HHV) at emission levels of less than half of New Source Performance Standards (NSPS) is technically and economically feasible. The higher process efficiency in itself reduces consumption of premium fuels currently used for power generation including those from foreign sources. In addition, the advanced gasification process can be used to generate fuels and chemicals, such as low-cost hydrogen and syngas for chemical synthesis, as well as baseload power. The conceptual design of the plant consists of an air-blown circulating fluidized-bed Advanced Transport Gasifier and a PWPS FT8 TwinPac{trademark} aeroderivative gas turbine operated in combined cycle to produce {approx}80 MWe. This system uses advanced technology commercial products in combination with components in advanced development or demonstration stages, thereby maximizing the opportunity for early implementation. The biofueled power system was found to have a levelized cost of electricity competitive with other new power system alternatives including larger scale natural gas combined cycles. The key elements are: (1) An Advanced Transport Gasifier (ATG) circulating fluid-bed gasifier having wide fuel flexibility and high gasification efficiency; (2) An FT8 TwinPac{trademark}-based combined cycle of approximately 80 MWe; (3) Sustainable biomass primary fuel source at low cost and potentially widespread availability-refuse-derived fuel (RDF); (4) An overall integrated

  19. Optimized working conditions for a thermoelectric generator as a topping cycle for gas turbines

    NASA Astrophysics Data System (ADS)

    Brady Knowles, C.; Lee, Hohyun

    2012-10-01

    This paper presents a model for a theoretical maximum efficiency of a thermoelectric generator integrated with a Brayton-cycle engine. The thermoelectric cycle is presented in two configurations as a topping cycle and a preheating topping cycle. For the topping cycle configuration, the thermoelectric generator receives heat from a high-temperature heat source and produces electrical work before rejecting heat to a Brayton cycle. For the preheating topping cycle, the rejected heat from the thermoelectric generator partially heats the compressed working fluid of the Brayton cycle before a secondary heater delivers heat to the working fluid directly from the heat source. The thermoelectric topping cycle efficiency increases as the temperature difference between the hot- and cold-side increases; however, this limits the heat transfer possible to the Brayton cycle, which in turn reduces power generation from the Brayton cycle. This model identifies the optimum operating parameters of the thermoelectric and Brayton cycles to obtain the maximum thermal efficiency of the combined cycle. In both configurations, efficiency gains are larger at low-temperature Brayton cycles. Although a thermoelectric generator (TEG) topping cycle enhances efficiency for a low temperature turbine, efficiency cannot exceed a high temperature gas turbine. Using a TEG topping cycle is limited to cases when space or price for a high temperature turbine cannot be justified. A design to achieve the preheating thermoelectric topping cycle is also presented.

  20. Maximized thermal efficiency crank driven hot gas engine

    SciTech Connect

    Pinto, A.P.

    1987-06-30

    A method is described for converting heat to mechanical shaft work in a reciprocating piston crank driven by a hot gas engine. The engine consists of a pair of hot and cold cylinders connected together with leak sealed flow paths. The flow paths have included valves and regenerator, the method comprising: (a) drawing the working gas into the cold cylinder; (b) compressing the gas in the cold cylinder with simultaneous removal of heat to keep the compression isothermal; (c) trapping the working gas in the cold cylinder during the isothermal compression, so that no working gas may enter or leave the cold cylinder during the isothermal compression; (d) setting the crank angular relationship between the hot and cold cylinder pistons such that the hot cylinder piston leads the cold cylinder piston by an angle determining the compression ratio of the engine; (e) transferring the gas from the cold cylinder to the hot cylinder, with addition of heat from the regenerator; (f) expanding the gas in the hot cylinder with the simultaneous addition of heat to keep the expansion isothermal; (g) trapping the working gas in the hot cylinder during the isothermal expansion, so that no working gas may enter or leave the hot cylinder during the isothermal expansion; (h) expelling gas from the hot cylinder to the working gas supply source with deposition of heat in the regenerator for addition to the compressed working gas of the next cycle; (i) selecting the hot and cold cylinder volumes to be approximately in the same ratio as the absolute temperatures of their respective isothermal processes such that the working gas transfers between them are isobaric.

  1. Stirling engines for low-temperature solar-thermal-electric power generation

    NASA Astrophysics Data System (ADS)

    der Minassians, Artin

    This dissertation discusses the design and development of a distributed solar-thermal-electric power generation system that combines solar-thermal technology with a moderate-temperature Stirling engine to generate electricity. The conceived system incorporates low-cost materials and utilizes simple manufacturing processes. This technology is expected to achieve manufacturing cost of less than $1/W. Since solar-thermal technology is mature, the analysis, design, and experimental assessment of moderate-temperature Stirling engines is the main focus of this thesis. The design, fabrication, and test of a single-phase free-piston Stirling engine prototype is discussed. This low-power prototype is designed and fabricated as a test rig to provide a clear understanding of the Stirling cycle operation, to identify the key components and the major causes of irreversibility, and to verify corresponding theoretical models. As a component, the design of a very low-loss resonant displacer piston subsystem is discussed. The displacer piston is part of a magnetic circuit that provides both a required stiffness and actuation forces. The stillness is provided by a magnetic spring, which incorporates an array of permanent magnets and has a very linear stiffness characteristic that facilitates the frequency tuning. In this prototype, the power piston is not mechanically linked to the displacer piston and forms a mass-spring resonating subsystem with the engine chamber gas spring and has resonant frequency matched to that of the displacer. The fabricated engine prototype is successfully tested and the experimental results are presented and discussed. Extensive experimentation on individual component subsystems confirms the theoretical models and design considerations, providing a sound basis for higher power Stirling engine designs for residential or commercial deployments. Multi-phase Stirling engine systems are also considered and analyzed. The modal analysis of these machines proves

  2. Thermal management of the adsorption-based vessel for hydrogeneous gas storage

    NASA Astrophysics Data System (ADS)

    Vasiliev, L. L.; Kanonchik, L. E.; Babenko, V. A.

    2012-09-01

    Thermal management is a design bottleneck in the creation of rational gas storage sorption systems. Inefficient heat transfer in a sorption bed is connected with a relatively low thermal conductivity (0.1-0.5 W/(mṡK)) and an appreciable sorption heat of activated gas storage materials. This work is devoted to the development of a thermally regulated onboard system of hydrogenous gas (methane and hydrogen) storage with the use of novel carbon sorbents. A hydrogenous gas storage system based on combined gas adsorption and compression at moderate pressures (3-6 MPa) and low temperatures (from the temperature of liquid nitrogen of about 77 K to a temperature of 273 K) is suggested.

  3. Navier-Stokes hydrodynamics of thermal collapse in a freely cooling granular gas.

    PubMed

    Kolvin, Itamar; Livne, Eli; Meerson, Baruch

    2010-08-01

    We show that, in dimension higher than one, heat diffusion and viscosity cannot arrest thermal collapse in a freely evolving dilute granular gas, even in the absence of gravity. Thermal collapse involves a finite-time blowup of the gas density. It was predicted earlier in ideal, Euler hydrodynamics of dilute granular gases in the absence of gravity, and in nonideal, Navier-Stokes granular hydrodynamics in the presence of gravity. We determine, analytically and numerically, the dynamic scaling laws that characterize the gas flow close to collapse. We also investigate bifurcations of a freely evolving dilute granular gas in circular and wedge-shaped containers. Our results imply that, in general, thermal collapse can only be arrested when the gas density becomes comparable with the close-packing density of grains. This provides a natural explanation to the formation of densely packed clusters of particles in a variety of initially dilute granular flows. PMID:20866801

  4. Radiolytic gas generation in salt cake technical task plan

    SciTech Connect

    Walker, D.D.; Crawford, C.L.; Bibler, N.E.

    1993-08-29

    High-level radioactive wastes are stored in large, steel tanks in the Savannah River Site Tank Farms. The liquid levels in these tanks are monitored to detect leakage of waste out of tanks or leakage of liquids into the tanks. Recent unexplained level fluctuations in high-level waste (HLW) tanks have caused High Level Waste Engineering (HLWE) to develop a program to better understand tank level behavior. Interim Waste Technology (IWT) has been requested by HLWE to obtain data which will lead to a better understanding of the radiolytic generations of gases in salt cake. The task described below will provide data from laboratory experiments with simulated wastes which can be used in tank level fluctuation modeling. The following experimental programs have been formulated to meet the task requirements of the customer: (A) determine whether radiolytically generated gas bubbles can be trapped in salt cake; (B) determine the composition of gases produced by radiolysis; (C) determine the yield of radiolysis gases as a function of radiation dose; (D) determine bubble distribution.

  5. Gas-geochemical condition and ecological functions of urban soils in areas with gas generating grounds

    NASA Astrophysics Data System (ADS)

    Mozharova, Nadezhda; Lebed-Sharlevich, Iana; Kulachkova, Svetlana

    2014-05-01

    Rapid urbanization and expansion of city borders lead to development of new areas, often following with relief changes, covering of gully-ravine systems and river beds with technogenic grounds containing construction and municipal waste. Decomposition of organic matter in these grounds is a source of methane and carbon dioxide. Intensive generation and accumulation of CO2 and CH4 into grounds may cause a fire and explosion risk for constructed objects. Gases emission to the atmosphere changes the global balance of GHGs and negatively influences on human health. The aim of this investigation is to study gas-geochemical condition and ecological functions of urban soils in areas with gas generating grounds. Studied areas are the gully-ravine systems or river beds, covered with technogenic grounds during land development. Stratigraphic columns of these grounds are 5-17 meters of man-made loamy material with inclusion of construction waste. Gas generating layer with increased content of organic matter, reductive conditions and high methanogenic activity (up to 1.0 ng*g-1*h-1) is situated at the certain depth. Maximum CH4 and CO2 concentrations in this layer reach dangerous values (2-10% and 11%, respectively) in the current standards. In case of disturbance of ground layer (e.g. well-drilling) methane is rapidly transferred by convective flux to atmosphere. The rate of CH4 emission reaches 100 mg*m-2*h-1 resulting in its atmospheric concentration growth by an order of magnitude compared with background. In normal occurrence of grounds methane gradually diffuses into the upper layers by pore space, consuming on different processes (e.g. formation of organic matter, nitrogen compounds or specific particles of magnetite), and emits to atmosphere. CH4 emission rate varies from 1 to 40 mg*m-2*h-1 increasing with depth of grounds. Carbon dioxide emission is about 100 mg*m-2*h-1. During soil formation on gas generating grounds bacterial oxidation of methane, one of the most

  6. Solar thermal bowl concepts and economic comparisons for electricity generation

    SciTech Connect

    Williams, T.A.; Dirks, J.A.; Brown, D.R.; Antoniak, Z.I.; Allemann, R.T.; Coomes, E.P.; Craig, S.N.; Drost, M.K.; Humphreys, K.K.; Nomura, K.K.

    1988-04-01

    This study is aimed at providing a relative comparison of the thermodynamic and economic performance in electric applications for fixed mirror distributed focus (FMDF) solar thermal concepts which have been studied and developed in the DOE solar thermal program. Following the completion of earlier systems comparison studies in the late 1970's there have been a number of years of progress in solar thermal technology. This progress includes developing new solar components, improving component and system design details, constructing working systems, and collecting operating data on the systems. This study povides an update of the expected performance and cost of the major components, and an overall system energy cost for the FMDDF concepts evaluated. The projections in this study are for the late 1990's and are based on the potential capabilities that might be achieved with further technology development.

  7. Novel Thermal Storage Technologies for Concentrating Solar Power Generation

    SciTech Connect

    Neti, Sudhakar; Oztekin, Alparslan; Chen, John; Tuzla, Kemal; Misiolek, Wojciech

    2013-06-20

    The technologies that are to be developed in this work will enable storage of thermal energy in 100 MWe solar energy plants for 6-24 hours at temperatures around 300oC and 850oC using encapsulated phase change materials (EPCM). Several encapsulated phase change materials have been identified, fabricated and proven with calorimetry. Two of these materials have been tested in an airflow experiment. A cost analysis for these thermal energy storage systems has also been conducted that met the targets established at the initiation of the project.

  8. Thermal imaging experiments on ANACONDA ion beam generator

    SciTech Connect

    Jiang, W.; Yatsui, K.; Olson, J.C.; Davis, H.A.

    1996-12-31

    The thermal imaging technique was used in two experimental measurements. First, the ion intensity distribution on the anode surface was observed from different angles by using a multi-pinhole camera. Second, the plume from a target intercepting the beam was visualized by observing the distribution of temperature increase on a thin plate hit by the plume.

  9. Thermal subsidence and generation of hydrocarbons in Michigan Basin

    SciTech Connect

    Nunn, J.A.; Moore, W.E.; Sleep, N.H.

    1984-03-01

    Temperature histories for selected stratigraphic horizons in the Michigan Basin are computed from threedimensional continually filled subsidence models. Mechanical evolution of the Michigan basin is modeled as flexure of the lithosphere caused by thermal contraction. Results are compatible with the subsidence record of the sediments and free-air gravity anomalies. Paleotemperature is determined from excess temperature due to the thermal anomaly plus burial temperature predicted from subsidence curves. For an equilibrium temperature gradient of 22/sup 0/C/km (1.2/sup 0/F/100 ft), surface temperature of 20/sup 0/C (68/sup 0/F), and an equilibrium surface heat flow of 1.1 HFU, excess temperature, paleotemperature, and surface heat flow do not exceed 15/sup 0/C (27/sup 0/F), 110/sup 0/C (230/sup 0/F), and 2.5 HFU, respectively. These estimates are consistent with upper limits set by paleomagnetic studies. The low value for excess temperature is caused by concentration of the thermal anomaly below 15 km (9 mi), in agreement with gravity results. The great depth of the thermal anomaly can explain the lack of evidence for an initial heating event prior to subsidence.

  10. Generation of reactive oxidative species from thermal treatment of sugar solutions.

    PubMed

    Wang, Qingyang; Durand, Erwann; Elias, Ryan J; Tikekar, Rohan V

    2016-04-01

    Sugars, prominently fructose, have been shown to accelerate the degradation of food components during thermal treatment. Yet, the mechanism by which this occurs is not well understood. Fructose and glucose have been reported to undergo autoxidation to generate reactive oxidative species (ROS) under physiological conditions; however, information on ROS generation during thermal treatment is limited. We observed that hydrogen peroxide was generated during thermal treatment (up to 70 °C) of aqueous solutions of fructose and glucose (up to 10% w/v), with significantly higher concentrations observed in fructose solutions. The rate of generation of hydrogen peroxide increased with temperature, pH, oxygen concentration and the presence of phosphate buffer. Singlet oxygen was also detected in fructose and glucose solutions prepared in phosphate buffer. Results of this study indicated that fructose and glucose undergo oxidation during thermal treatment resulting in generation of ROS that may have deleterious effects on food components. PMID:26593495

  11. Practical experience of using thermal-mass flowmeters at the registration associated (free) petroleum gas

    NASA Astrophysics Data System (ADS)

    Fazlyyyakhmatov, M. G.; Kashapov, N. F.; Khayritonov, Kh A.; Lazarev, D. K.; Lazarev, V. K.

    2014-12-01

    The results of field tests of thermal-mass flowmeter TurboFlow TFG-S in comparison with ultrasonic flowmeter Dymetic-1223K at existing oil and gas extraction object are given in the article. Measured medium - associated (free) petroleum gas.

  12. Gas storage cylinder formed from a composition containing thermally exfoliated graphite

    NASA Technical Reports Server (NTRS)

    Prud'Homme, Robert K. (Inventor); Aksay, Ilhan A. (Inventor)

    2012-01-01

    A gas storage cylinder or gas storage cylinder liner, formed from a polymer composite, containing at least one polymer and a modified graphite oxide material, which is a thermally exfoliated graphite oxide with a surface area of from about 300 m(exp 2)/g to 2600 m(exp 2)2/g.

  13. Gas exchange in seawater with special emphasis on open-cycle ocean thermal energy conversion

    SciTech Connect

    Zapka, M.J.

    1988-01-01

    This study examined gas-transfer characteristics of seawater. Special emphasis is on gas-transfer processes in connection with Open-Cycle Ocean Thermal Energy Conversion (OC-OTEC) applications. Experiments probed the mechanism regulating gas transfer in bubbles and in a packed column. In order to compare gas transfer in seawater with extensively documented transfer characteristics of fresh water, all tests were conducted using both seawater and fresh water in the same experimental setting. Ten main findings are listed and briefly discussed. With appropriate system conditions, an approximately 85% removal of dissolved gas from the OC-OTEC feed stream appears to be feasible.

  14. Next Generation * Natural Gas (NG)2 Information Requirements--Executive Summary

    EIA Publications

    2000-01-01

    The Energy Information Administration (EIA) has initiated the Next Generation * Natural Gas (NG)2 project to design and implement a new and comprehensive information program for natural gas to meet customer requirements in the post-2000 time frame.

  15. CONVERTING ENERGY FROM RECLAIMED HEAT: THERMAL ELECTRIC GENERATOR

    EPA Science Inventory

    The use of solar energy acquiring devices has been slow to gain acceptance due to their overall low power generation versus high cost of a solar system. The goal of this project is to construct a model which increases the overall power generation of a solar building system by...

  16. The Thermal Performance of a 1.5 MVA HTS Generator

    NASA Astrophysics Data System (ADS)

    Urbahn, J. A.; Ackermann, R. A.; Huang, X.; Laskaris, E. T.; Sivasubramaniam, K.; Steinbach, A.

    2004-06-01

    A 1.5-MVA high temperature superconducting ( HTS ) generator of novel design has been designed, built and successfully tested by the General Electric Company. The 1.5- MVA generator has served as the engineering prototype for a much larger 100-MVA beta unit now under design. The HTS coil in the 1.5 - MVA demonstrator is designed to operate in the range of 20-40 K and is cooled with a closed-cycle helium refrigeration system employing GM type cryocoolers. This paper will discuss the calculation of the thermal loads to the rotor from all anticipated sources. These sources include conduction losses through the coil suspension system, radiative heat loads to the cold-system components, residual gas conduction losses, helium-transfer coupling losses and lead losses. These predicted losses were compared to those measured during actual electrical testing of the rotor at 3600 RPM in order to validate the predictive calculations employed for the 100 MVA machine.

  17. Response of a thermal barrier system to acoustic excitation in a gas turbine nuclear reactor

    SciTech Connect

    Betts, W.S. Jr.; Blevins, R.D.

    1980-11-01

    A gas turbine located within a High-Temperature Gas-Cooled Reactor (HTGR) induces high acoustic sound pressure levels into the primary coolant (helium). This acoustic loading induces high cycle fatigue stresses which may control the design of the thermal barrier system. This study examines the dynamic response of a thermal barrier configuration consisting of a fibrous insulation compressed against the reactor vessel by a coverplate which is held in position by a central attachment fixture. The results of dynamic vibration analyses indicate the effect of the plate size and curvature and the attachment size on the response of the thermal barrier.

  18. Development and application of an analysis methodology for interpreting ambiguous historical pressure data in the WIPP gas-generation experiments.

    SciTech Connect

    Felicione, F. S.

    2006-01-23

    the headspace volume caused by thermal expansion and contraction within the brine and waste. A further effort was directed at recovering useful results from the voluminous archived pressure data. An analytic methodology to do this was developed. This methodology was applied to each archived pressure measurement to nullify temperature and other effects to yield an adjusted pressure, from which gas-generation rates could be calculated. A review of the adjusted-pressure data indicated that generated-gas concentrations among these containers after approximately 3.25 years of test operation ranged from zero to over 17,000 ppm by volume. Four test containers experienced significant gas generation. All test containers that showed evidence of significant gas generation contained carbon-steel in the waste, indicating that corrosion was the predominant source of gas generation.

  19. Self-Assembled Nano-energetic Gas Generators based on Bi2O3

    NASA Astrophysics Data System (ADS)

    Hobosyan, Mkhitar; Trevino, Tyler; Martirosyan, Karen

    2012-10-01

    Nanoenergetic Gas-Generators are formulations that rapidly release a large amount of gaseous products and generate a fast moving thermal wave. They are mainly based on thermite systems, which are pyrotechnic mixtures of metal powders (fuel- Al, Mg, etc.) and metal oxides (oxidizer, Bi2O3, Fe2O3, WO3, MoO3 etc.) that can generate an exothermic oxidation-reduction reaction referred to as a thermite reaction. A thermite reaction releases a large amount of energy and can generate rapidly extremely high temperatures. The intimate contact between the fuel and oxidizer can be enhanced by use of nano instead of micro particles. The contact area between oxidizer and metal particles depends from method of mixture preparation. In this work we utilize the self-assembly processes, which use the electrostatic forces to produce ordered and self-organized binary systems. In this process the intimate contact significantly enhances and gives the ability to build an energetic material in molecular level, which is crucial for thepressure discharge efficiency of nano-thermites. The DTA-TGA, Zeta-size analysis and FTIR technique were performed to characterize the Bi2O3 particles. The self-assembly of Aluminum and Bi2O3 was conducted in sonic bath with appropriate solvents and linkers. The resultant thermite pressure discharge values were tested in modified Parr reactor. In general, the self-assembled thermites give much higher-pressure discharge values than the thermites prepared with conventional roll-mixing technique.

  20. A novel compact design of calibration equipment for gas and thermal sensors

    SciTech Connect

    Feng, P. X.; Zhang, H. X.; Peng, X. Y.; Sajjad, M.; Chu, J.

    2011-04-15

    A novel design of calibration equipment has been developed for static and dynamic calibrations of gas and thermal sensors. This system is cheap, compact, and easily adjustable, which is also combined with a plasma surface modification source for tailoring the surface of sensors to ensure the sensitivity and selectivity. The main advantage of this equipment is that the operating temperature, bias voltage, types of plasma source (for surface modification), types of feeding gases, and gas flow rate (for calibrations), etc., can be independently controlled. This novel system provides a highly reliable, reproducible, and economical method of calibrations for various gas and thermal sensors.

  1. Comparative performance of solar thermal power generation concepts

    NASA Technical Reports Server (NTRS)

    Wen, L.; Wu, Y. C.

    1976-01-01

    A performance comparison is made between the central receiver system (power tower) and a distributed system using either dishes or troughs and lines to transport fluids to the power station. These systems were analyzed at a rated capacity of 30 MW of thermal energy delivered in the form of superheated steam at 538 C (1000 F) and 68 atm (1000 psia), using consistent weather data, collector surface waviness, pointing error, and electric conversion efficiency. The comparisons include technical considerations for component requirements, land utilization, and annual thermal energy collection rates. The relative merits of different representative systems are dependent upon the overall conversion as expressed in the form of performance factors in this paper. These factors are essentially indices of the relative performance effectiveness for different concepts based upon unit collector area. These performance factors enable further economic tradeoff studies of systems to be made by comparing them with projected production costs for these systems.

  2. Non-Equilibrium Dynamics of an Atomic Gas Coupled to a Synthetic Thermal Body

    NASA Astrophysics Data System (ADS)

    Price, Craig; Liu, Qi; Zhao, Jianshi; Gemelke, Nathan

    2016-05-01

    One takes for Granted that thermal equilibrium can be established between two bodies by bringing them into physical contact with one another - viewed externally however, any statistical reservoir must therefore interact in ways such that the exchange of conserved quantities satisfy basic constraints which define the equilibrium it and any attached bodies reach. We describe the experimental construction of a ``synthetic thermal body,'' engineered by controlling the spatio-temporal modulation of nominally conservative optical, radio-frequency, and microwave couplings of a 87 Rb neutral atomic gas carrying hyperfine-spin to a spin-dependent spatially and temporally disordered bath. We measure the out-of-equilibrium response through its resultant diffusive motion, extracting drift and diffusion parameters, and making comparison to the Einstein-Smoluchowski and generalized fluctuation-dissipation relations. We discuss new limits on temperature and density for direct cooling by suitably engineered baths, by simultaneously avoiding the constraints of photon-recoil and density-dependent losses from light-assisted collisional processes in traditional laser cooling, and discuss new avenues in quantum simulation by coupling atomic gasses to statistically-generated and open environments.

  3. Test results of a steam injected gas turbine to increase power and thermal efficiency

    SciTech Connect

    Messerlie, R.L.; Tischler, A.O.

    1983-08-01

    The desire to increase both power and thermal efficiency of the gas turbine (Brayton cycle) engine has been pursued for a number of years and has involved many approaches. The use of steam in the cycle to improve performance has been proposed by various investigators. This was most recently proposed by International Power Technology, Inc. (IPT) and has been tested by Detroit Diesel Allison (DDA), Division of General Motors. This approach, identified as the Cheng dual-fluid cycle (Cheng/DFC), includes the generation of steam using heat from the exhaust, and injecting this steam into the engine combustion chamber. Test results on an Allison 501-KB engine have demonstrated that use of this concept will increase the thermal efficiency of the engine by 30% and the output power by 60% with no increase in turbine inlet temperature. These results will be discussed, as will the impact of steam rate, location of steam injection, turbine temperature, and engine operational characteristics on the performance of the Cheng/DFC.

  4. A New Tritium Gas Generator for the Activity Standardization of Tritiated Water by Internal Gas Proportional Counting

    SciTech Connect

    Stanga, D.; Moreau, L.; Picolo, J.L.; Cassette, P

    2005-07-15

    Tritiated water can be standardized by internal gas proportional counting following its chemical reduction, by means of a tritium gas generator, to produce tritiated hydrogen. In this paper a new tritium gas generator is described in detail together with the method of measurement based on the internal gas counting. It has new and improved features and offers the advantage of being simpler and easier to operate than other tritium generators available. Thus, this tritium generator has the following new features: (i) it performs the water reduction at a lower temperature (450 deg. C) than the other generators which need 600 deg. C ; (ii) the reduction yield is always unitary. Also, it has a simple and compact construction by using the same components for water degassing and water reduction. Its simple disassembly and reassembly allow for easy maintenance.

  5. A reference protocol for comparing the biocidal properties of gas plasma generating devices

    NASA Astrophysics Data System (ADS)

    Shaw, A.; Seri, P.; Borghi, C. A.; Shama, G.; Iza, F.

    2015-12-01

    Growing interest in the use of non-thermal, atmospheric pressure gas plasmas for decontamination purposes has resulted in a multiplicity of plasma-generating devices. There is currently no universally approved method of comparing the biocidal performance of such devices and in the work described here spores of the Gram positive bacterium Bacillus subtilis (ATCC 6633) are proposed as a suitable reference biological agent. In order to achieve consistency in the form in which the biological agent in question is presented to the plasma, a polycarbonate membrane loaded with a monolayer of spores is proposed. The advantages of the proposed protocol are evaluated by comparing inactivation tests in which an alternative microorganism (methicillin resistant Staphylococcus aureus—MRSA) and the widely-used sample preparation technique of directly pipetting cell suspensions onto membranes are employed. In all cases, inactivation tests with either UV irradiation or plasma exposure were more reproducible when the proposed protocol was followed.

  6. Thermal conductivity contrast due to gas saturated pore space-application in basin simulation

    SciTech Connect

    Poelchau, H.S.; Zwach, C.; Welte, D.H. ); Hantschel, T. ); Welte, D.H. Integrated Exploration Systems , Juelich )

    1996-01-01

    Calibration of thermal histories in basin modeling usually relies on matching temperature and vitrinite reflectance distribution in wells. The four main temperature, maximum depth of burial (or eroded overburden), and thermal conductivity of the individual layers of rocks. The last parameter can be used to match the fine structure of the vertical temperature distribution, thermal gradient changes and heat anomalies. While most commercial simulation packages use thermal conductivity values calculated with water as the pore fluid, we have experimented with using decreased conductivity resulting from high gas saturation in the pore space of specific formations in our modeling. One such case study is the Alberta Deep Basin in western Canada, where a large part of the lower Cretaceous section is thought to be gas saturated, underneath a water-saturated seal. Another case study comes from northwestern Siberia, where the largest gas accumulations on earth have been discovered. Results show that the thermal effect of gas in pores, as opposed to water, are significant and cannot be neglected in basin modeling. Such gas saturations can explain frequently observed sudden increases in vitrinite reflectance gradients or so called [open quote]kinky[close quote] reflection profiles. The gas effect can also be used to model heat anomalies in past geologic periods where hypothetical increased heatflow evens cannot be justified.

  7. Thermal conductivity contrast due to gas saturated pore space-application in basin simulation

    SciTech Connect

    Poelchau, H.S.; Zwach, C.; Welte, D.H.; Hantschel, T.; Welte, D.H.

    1996-12-31

    Calibration of thermal histories in basin modeling usually relies on matching temperature and vitrinite reflectance distribution in wells. The four main temperature, maximum depth of burial (or eroded overburden), and thermal conductivity of the individual layers of rocks. The last parameter can be used to match the fine structure of the vertical temperature distribution, thermal gradient changes and heat anomalies. While most commercial simulation packages use thermal conductivity values calculated with water as the pore fluid, we have experimented with using decreased conductivity resulting from high gas saturation in the pore space of specific formations in our modeling. One such case study is the Alberta Deep Basin in western Canada, where a large part of the lower Cretaceous section is thought to be gas saturated, underneath a water-saturated seal. Another case study comes from northwestern Siberia, where the largest gas accumulations on earth have been discovered. Results show that the thermal effect of gas in pores, as opposed to water, are significant and cannot be neglected in basin modeling. Such gas saturations can explain frequently observed sudden increases in vitrinite reflectance gradients or so called {open_quote}kinky{close_quote} reflection profiles. The gas effect can also be used to model heat anomalies in past geologic periods where hypothetical increased heatflow evens cannot be justified.

  8. Temperature distribution in a layer of an active thermal insulation system heated by a gas burner

    SciTech Connect

    Maruyama, Shigenao . Inst. of Fluid Science); Shimizu, Naotaka . Dept. of Mechanical Engineering)

    1993-12-01

    The temperature distribution in a layer of an active thermal insulation system was measured. A semitransparent porous layer was heated by a gas burner, and air was injected from the back face of the layer. The temperature in the layer was measured by thermocouples. The temperature distributions were compared with numerical solutions. The thermal penetration depth of the active thermal insulation layer with gas injection can be reduced to 3 mm. When the surface temperature of a conventional insulation layer without gas injection reached 1,500 K, the temperature at the back surface of a 10-mm-thick layer reached 600 K. The transient temperature of the active thermal insulation reached a steady state very quickly compared with that of the conventional insulation. These characteristics agreed qualitatively with the numerical solutions.

  9. Characterization of moderate ash-and-gas explosions at Santiaguito volcano, Guatemala, from infrasound waveform inversion and thermal infrared measurements

    NASA Astrophysics Data System (ADS)

    Angelis, S. De; Lamb, O. D.; Lamur, A.; Hornby, A. J.; Aulock, F. W.; Chigna, G.; Lavallée, Y.; Rietbrock, A.

    2016-06-01

    The rapid discharge of gas and rock fragments during volcanic eruptions generates acoustic infrasound. Here we present results from the inversion of infrasound signals associated with small and moderate gas-and-ash explosions at Santiaguito volcano, Guatemala, to retrieve the time history of mass eruption rate at the vent. Acoustic waveform inversion is complemented by analyses of thermal infrared imagery to constrain the volume and rise dynamics of the eruption plume. Finally, we combine results from the two methods in order to assess the bulk density of the erupted mixture, constrain the timing of the transition from a momentum-driven jet to a buoyant plume, and to evaluate the relative volume fractions of ash and gas during the initial thrust phase. Our results demonstrate that eruptive plumes associated with small-to-moderate size explosions at Santiaguito only carry minor fractions of ash, suggesting that these events may not involve extensive magma fragmentation in the conduit.

  10. TRU waste transportation -- The flammable gas generation problem

    SciTech Connect

    Connolly, M.J.; Kosiewicz, S.T.

    1997-11-01

    The Nuclear Regulatory Commission (NRC) has imposed a flammable gas (i.e., hydrogen) concentration limit of 5% by volume on transuranic (TRU) waste containers to be shipped using the TRUPACT-II transporter. This concentration is the lower explosive limit (LEL) in air. This was done to minimize the potential for loss of containment during a hypothetical 60 day period. The amount of transuranic radionuclide that is permissible for shipment in TRU waste containers has been tabulated in the TRUPACT-II Safety Analysis Report for Packaging (SARP, 1) to conservatively prevent accumulation of hydrogen above this 5% limit. Based on the SARP limitations, approximately 35% of the TRU waste stored at the Idaho National Engineering and Environmental Lab (INEEL), Los Alamos National Lab (LANL), and Rocky Flats Environmental Technology Site (RFETS) cannot be shipped in the TRUPACT-II. An even larger percentage of the TRU waste drums at the Savannah River Site (SRS) cannot be shipped because of the much higher wattage loadings of TRU waste drums in that site`s inventory. This paper presents an overview of an integrated, experimental program that has been initiated to increase the shippable portion of the Department of Energy (DOE) TRU waste inventory. In addition, the authors will estimate the anticipated expansion of the shippable portion of the inventory and associated cost savings. Such projection should provide the TRU waste generating sites a basis for developing their TRU waste workoff strategies within their Ten Year Plan budget horizons.

  11. Can Thermal Instability Explain the Cold Gas in Galaxy Cluster Centers?

    NASA Astrophysics Data System (ADS)

    Cappiello, Christopher; Nulsen, Paul

    2015-01-01

    Massive galaxies in the cores of some galaxy clusters take part in a feedback cycle in which cooling gas powers their active galactic nuclei (AGN), while jets from the AGN heat the gas and reduce the rates of cooling and star formation. Thermal instabilities are believed to play a crucial role in feeding these AGN. The Field length is the distance scale above which thermal conduction is unable to smooth out inhomogeneities; if the radius of a cloud of gas is greater than the Field length, the cloud may become thermally unstable. Additionally, angular momentum can promote thermal instability by preventing a dense cloud from falling to its equilibrium position, where heating balances cooling. This requires a low viscosity, which can be tested by a similar criterion to the Field condition for thermal instability. For this reason, the Field parameter, given by the Field length squared over the radius squared, is calculated in order to determine whether a gas cloud at a given radius can become thermally unstable. In this study, we calculate the Field parameter as a function of the radius for a sample of five galaxy clusters known to produce Halpha emission, a marker of cold gas and star formation, and one cluster known not to contain cool gas. We find that all of the clusters with Halpha emission appear to be thermally unstable by the Field criterion, while the cluster without cool gas is not. This work was supported in part by the NSF REU and DOD ASSURE programs under NSF grant no. 1262851 and by the Smithsonian Institution. This research has made use of data obtained from the Chandra Data Archive and the Chandra Source Catalog, and software provided by the Chandra X-ray Center (CXC) in the application packages CIAO and ChIPS.

  12. Gas Generation Testing of Neptunium Oxide Generated Using the HB-Line Phase IIFlowsheet

    SciTech Connect

    Duffey, J

    2003-08-29

    The hydrogen (H{sub 2}) gas generation rate for neptunium dioxide (NpO{sub 2}) samples produced on a laboratory scale using the HB-Line Phase II flowsheet has been measured following exposure to 75% relative humidity (RH). As expected, the observed H{sub 2} generation rates for these samples increase with increasing moisture content. A maximum H{sub 2} generation rate of 1.8 x 10{sup -6} moles per day per kilogram (mol {center_dot} day{sup -1} kg{sup -1}) was observed for NpO{sub 2} samples with approximately one and one-half times (1 1/2 X) the expected specific surface area (SSA) for the HB-Line Phase II product. The SSA of NpO{sub 2} samples calcined at 650 C is similar to plutonium dioxide (PuO{sub 2}) calcined at 950 C according to the Department of Energy (DOE) standard for packaging and storage of PuO{sub 2}. This low SSA of the HB-Line Phase II product limits moisture uptake to less than 0.2 weight percent (wt %) even with extended exposure to 75% RH.

  13. Results of Laboratory and Industrial Tests of Periodic-Type Gas Generators

    NASA Astrophysics Data System (ADS)

    Karp, I. N.; P‧yanykh, K. E.; Antoshchuk, T. A.; Lysenko, A. A.

    2015-05-01

    Results of laboratory and industrial tests of periodic-type gas generators burning various solid biofuels have been presented. The tests were carried out with the aim of obtaining producer gas which could totally or partly replace natural gas in power equipment burning gaseous fuel. The energy and environmental characteristics of a boiler unit burning a mixture of producer gas and natural gas have been assessed.

  14. Proceedings: Workshop on Thermally Treated Alloy 690 Tubes for Nuclear Steam Generators

    SciTech Connect

    1986-07-01

    Data presented at this workshop confirmed the superior corrosion resistance of thermally treated alloy 690. Pending further testing and optimization procedures, this material appears to be the best choice for manufacture of nuclear steam generator tubes.

  15. Computer-Aided Robot Trajectory Auto-generation Strategy in Thermal Spraying

    NASA Astrophysics Data System (ADS)

    Cai, Zhenhua; Liang, Hong; Quan, Shuhai; Deng, Sihao; Zeng, Chunnian; Zhang, Feng

    2015-10-01

    This paper is concerned with a new methodology which is designed to auto-generate the robotic trajectory for thermal spraying process. Based on it, a software package named Thermal Spray Toolkit is developed and integrated in the main frame of off-line programming software RobotStudio™ (Product of ABB Company, Sweden). This toolkit implements the robotic trajectory planning in an interactive manner between RobotStudio™ and the finite element analysis software (FES). It allows rearranging the imported node index created on the surface of workpiece by FES and in turn generating the thermal spraying needed robot trajectories. Several parameters in thermal spraying, such as scanning step and torch-substrate relative velocity which have major influence on the coating deposition, are considered in the trajectory generation process. Experiment is carried out to check the reliability of the generated robot trajectory.

  16. A Method for Calculating Viscosity and Thermal Conductivity of a Helium-Xenon Gas Mixture

    NASA Technical Reports Server (NTRS)

    Johnson, Paul K.

    2006-01-01

    A method for calculating viscosity and thermal conductivity of a helium-xenon (He-Xe) gas mixture was employed, and results were compared to AiResearch (part of Honeywell) analytical data. The method of choice was that presented by Hirschfelder with Singh's third-order correction factor applied to thermal conductivity. Values for viscosity and thermal conductivity were calculated over a temperature range of 400 to 1200 K for He-Xe gas mixture molecular weights of 20.183, 39.94, and 83.8 kg/kmol. First-order values for both transport properties were in good agreement with AiResearch analytical data. Third-order-corrected thermal conductivity values were all greater than AiResearch data, but were considered to be a better approximation of thermal conductivity because higher-order effects of mass and temperature were taken into consideration. Viscosity, conductivity, and Prandtl number were then compared to experimental data presented by Taylor.

  17. Effects of Intergranular Gas Bubbles on Thermal Conductivity

    SciTech Connect

    K. Chockalingam; Paul C. Millett; M. R. Tonks

    2012-11-01

    Model microstructures obtained from phase-field simulations are used to study the effective heat transfer across bicrys- tals with stationary grain boundary bubble populations. We find that the grain boundary coverage, irrespective of the intergranular bubble radii, is the most relevant parameter to the thermal resistance, which we use to derive effec- tive Kapitza resistances that are dependent on the grain boundary coverage and Kaptiza resistance of the intact grain boundary. We propose a model to predict thermal conductivity as a function of porosity, grain-size, Kaptiza resistance of the intact grain boundary, and grain boundary bubble coverage.

  18. Investigation of gas generation in regenerative fuel cells by low-energy X-rays

    NASA Astrophysics Data System (ADS)

    Selamet, Omer Faruk; Deevanhxay, Phengxay; Tsushima, Shohji; Hirai, Shuichiro

    2015-11-01

    Gas generation and discharge behaviors in an operating regenerative fuel cell (RFC) are investigated using low-energy X-ray radiography. In situ visualization at high spatial and temporal resolution reveal dynamic and inhomogeneous behaviors of the gas generation in the membrane electrode assembly (MEA) in the RFC. Temporal and spatial variation of the gas thickness in the MEA is quantitatively discussed and shows an intermittent and periodic discharge processes of the gas generated by electrolysis, suggesting that the reaction sites in the catalyst layer and the discharging path of gas bubbles are well established in the MEA for the electrolysis. Larger gas accumulation and discharge in the gas diffusion layer (GDL) under the ribs are identified in comparison with those under the channels, which is attributed to the relatively longer path for accumulated gas under the ribs to be discharged into the flow channels.

  19. DESIGN, FABRICATION, AND TESTING OF AN ADVANCED, NON-POLLUTING TURBINE DRIVE GAS GENERATOR

    SciTech Connect

    Unknown

    2002-03-31

    The objectives of this report period were to complete the development of the Gas Generator design, which was done; fabricate and test of the non-polluting unique power turbine drive gas Gas Generator, which has been postponed. Focus during this report period has been to complete the brazing and bonding necessary to fabricate the Gas Generator hardware, continue making preparations for fabricating and testing the Gas Generator, and continuing the fabrication of the Gas Generator hardware and ancillary hardware in preparation for the test program. Fabrication is more than 95% complete and is expected to conclude in early May 2002. the test schedule was affected by relocation of the testing to another test supplier. The target test date for hot fire testing is now not earlier than June 15, 2002.

  20. VIPIR and VIPIR-S: next generation infantry thermal sights

    NASA Astrophysics Data System (ADS)

    Bigwood, Chris; Eccles, Lee; Jones, Arwyn; Jones, Berwyn; Meakin, David; Rickard, Steve; Robinson, Rob

    2005-05-01

    Thales Optics Ltd. have been involved in a joint funded technology demonstrator program between UK MOD and Thales called Thermal Imager for Dismounted Infantry, run in conjunction with QinetiQ. The aim of this program was to evaluate and demonstrate a cost effective route to equipping the infantry soldier with a small, lightweight, rugged, short range, weapon mounted thermal imaging sight, intended for mass deployment. To address the requirements of this program, Thales Optics Ltd. performed a detailed trade-off analysis considering the effect of using alternative sensors, displays and optical configurations on the sight cost, mass, volume, power and performance. This effort was supported with equipment trials and user assessments. Based on this work, six technical demonstrator sights have been manufactured and delivered to UK MOD for evaluation on several programmes including the UK's FIST soldier modernisation program. Thales Optics has since progressed the TIDI concept further into two product streams, a family of weapon sights called VIPIR and a surveillance sight called VIPIR-S. This paper will summarise the work undertaken on the TIDI program and how this has been applied to the VIPIR and VIPIR-S family of products.

  1. Cover and startup gas supply system for solid oxide fuel cell generator

    DOEpatents

    Singh, P.; George, R.A.

    1999-07-27

    A cover and startup gas supply system for a solid oxide fuel cell power generator is disclosed. Hydrocarbon fuel, such as natural gas or diesel fuel, and oxygen-containing gas are supplied to a burner. Combustion gas exiting the burner is cooled prior to delivery to the solid oxide fuel cell. The system mixes the combusted hydrocarbon fuel constituents with hydrogen which is preferably stored in solid form to obtain a non-explosive gas mixture. The system may be used to provide both non-explosive cover gas and hydrogen-rich startup gas to the fuel cell. 4 figs.

  2. Cover and startup gas supply system for solid oxide fuel cell generator

    DOEpatents

    Singh, Prabhakar; George, Raymond A.

    1999-01-01

    A cover and startup gas supply system for a solid oxide fuel cell power generator is disclosed. Hydrocarbon fuel, such as natural gas or diesel fuel, and oxygen-containing gas are supplied to a burner. Combustion gas exiting the burner is cooled prior to delivery to the solid oxide fuel cell. The system mixes the combusted hydrocarbon fuel constituents with hydrogen which is preferably stored in solid form to obtain a non-explosive gas mixture. The system may be used to provide both non-explosive cover gas and hydrogen-rich startup gas to the fuel cell.

  3. Modeling of a Thermoelectric Generator for Thermal Energy Regeneration in Automobiles

    NASA Astrophysics Data System (ADS)

    Tatarinov, Dimitri; Koppers, M.; Bastian, G.; Schramm, D.

    2013-07-01

    In the field of passenger transportation a reduction of the consumption of fossil fuels has to be achieved by any measures. Advanced designs of internal combustion engine have the potential to reduce CO2 emissions, but still suffer from low efficiencies in the range from 33% to 44%. Recuperation of waste heat can be achieved with thermoelectric generators (TEGs) that convert heat directly into electric energy, thus offering a less complicated setup as compared with thermodynamic cycle processes. During a specific driving cycle of a car, the heat currents and temperature levels of the exhaust gas are dynamic quantities. To optimize a thermoelectric recuperation system fully, various parameters have to be tested, for example, the electric and thermal conductivities of the TEG and consequently the heat absorbed and rejected from the system, the generated electrical power, and the system efficiency. A Simulink model consisting of a package for dynamic calculation of energy management in a vehicle, coupled with a model of the thermoelectric generator system placed on the exhaust system, determines the drive-cycle-dependent efficiency of the heat recovery system, thus calculating the efficiency gain of the vehicle. The simulation also shows the temperature drop at the heat exchanger along the direction of the exhaust flow and hence the variation of the voltage drop of consecutively arranged TEG modules. The connection between the temperature distribution and the optimal electrical circuitry of the TEG modules constituting the entire thermoelectric recuperation system can then be examined. The simulation results are compared with data obtained from laboratory experiments. We discuss error bars and the accuracy of the simulation results for practical thermoelectric systems embedded in cars.

  4. A NOVEL SOLAR THERMAL COMBINED CYCLE FOR DISTRIBUTED POWER GENERATION

    EPA Science Inventory

    Impacts of this work will be seen in the areas of energy, poverty alleviation, improvement of quality of health care provision and quality of life, business development, and education. We will be directly preventing installation of polluting diesel generators while improving ...

  5. Cooled blades of gas turbines /Thermal design and profiling/

    NASA Astrophysics Data System (ADS)

    Kopelev, S. Z.

    The efficiency of the air-cooling of gas turbine blades is analyzed, and various approaches to the design of air-cooled gas turbine blades are discussed. In particular, attention is given to the analysis of heat transfer in blades with an internal deflector, blades with radial air flow, and blades with convective-barrier cooling. Methods for calculating the temperature of blades with transverse flow of the cooling air are discussed, as are methods for calculating losses in an air-cooled turbine.

  6. Thermal Hydraulic Challenges of Gas Cooled Fast Reactors with Passive Safety Features

    SciTech Connect

    Michael Pope; Jeong-Ik Lee; Pavel Hejzlar; Michael J. Driscoll

    2009-05-01

    Transient response of a Gas cooled Fast Reactor (GFR) coupled to a recompression supercritical CO2 (S-CO2) power conversion system (PCS) in a direct cycle to Loss of Coolant and Loss of Generator Load Accidents is analyzed using RELAP5-3D. A number of thermal hydraulic challenges for GFR design are pointed out as the designers strive to accommodate cooling of the high power density core of a fast reactor by a gas with its inherently low heat transfer capability, in particular under post LOCA events when system pressure is lost and when reliance on passive decay heat removal is emphasized. Although it is possible to design a S-CO2 cooled GFR that can survive LOCA by cooling the core through natural circulating loops between the core and elevated emergency cooling heat exchangers, it is not an attractive approach because of various bypass paths that can, depending on break location, degrade core cooling. Moreover, natural circulation gas loops can operate in deteriorated heat transfer regimes with substantial reduction of heat transfer coefficient: as low as 30% of forced convection values, and data and correlations in these regimes carry large uncertainties. Therefore, reliable battery powered blowers for post-LOCA decay heat removal (DHR) that provide flow in well defined regimes with low uncertainty, and can be easily over-designed to accommodate bypass flows were selected. The results confirm that a GFR with such a DHR system and negative coolant void worth can withstand LOCA with and without scram as well as loss of electrical load without exceeding core temperature and turbomachinery overspeed limits.

  7. Power processing and control requirements of dispersed solar thermal electric generation systems

    NASA Technical Reports Server (NTRS)

    Das, R. L.

    1980-01-01

    Power Processing and Control requirements of Dispersed Receiver Solar Thermal Electric Generation Systems are presented. Kinematic Stirling Engines, Brayton Engines and Rankine Engines are considered as prime movers. Various types of generators are considered for ac and dc link generations. It is found that ac-ac Power Conversion is not suitable for implementation at this time. It is also found that ac-dc-ac Power Conversion with a large central inverter is more efficient than ac-dc-ac Power Conversion using small dispersed inverters. Ac-link solar thermal electric plants face potential stability and synchronization problems. Research and development efforts are needed in improving component performance characteristics and generation efficiency to make Solar Thermal Electric Generation economically attractive.

  8. Thermal Analysis of the Divertor Primary Heat Transfer System Piping During the Gas Baking Process

    SciTech Connect

    Yoder Jr, Graydon L; Harvey, Karen; Ferrada, Juan J

    2011-02-01

    A preliminary analysis has been performed examining the temperature distribution in the Divertor Primary Heat Transfer System (PHTS) piping and the divertor itself during the gas baking process. During gas baking, it is required that the divertor reach a temperature of 350 C. Thermal losses in the piping and from the divertor itself require that the gas supply temperature be maintained above that temperature in order to ensure that all of the divertor components reach the required temperature. The analysis described in this report was conducted in order to estimate the required supply temperature from the gas heater.

  9. Study over thermal state of gas turbine engine metal-ceramic rotor blades and nozzle guide vanes under thermal shock and thermal-cyclic loading conditions

    NASA Astrophysics Data System (ADS)

    Soudarev, A. V.; Souryaninov, A. A.; Podgorets, V. Ya.; Grishaev, V. V.; Tikhoplav, V. Yu; Molchanov, A. S.; Soudarev, B. V.

    2004-05-01

    To ensure a reliable operation of the 2.5 MW gas turbine engine (GTE- 2.5)[1] with the inlet gas temperature TIT=1623 K, studies were performed over the thermal state of the nozzle guide vanes and rotor blades with the temperatures, rates and flows of the working media and cooling air simulating all the potential turbine stage operating duties. The steady state and thermal-cyclic tests having been accomplished, there was no visible defect on the rotor blades and the nozzle vanes. Afterwards, they survived the endurance tests at the rated cooling. Therefore, the functionality of the shell thin-wall hybrid nozzle vanes and rotor blades under the variable operating duties of the gas turbine at the “shock” and “cyclic” loads of the working media temperature variations has been demonstrated.

  10. Analytical investigation of thermal barrier coatings for advanced power generation combustion turbines

    NASA Technical Reports Server (NTRS)

    Amos, D. J.

    1977-01-01

    An analytical evaluation was conducted to determine quantitatively the improvement potential in cycle efficiency and cost of electricity made possible by the introduction of thermal barrier coatings to power generation combustion turbine systems. The thermal barrier system, a metallic bond coat and yttria stabilized zirconia outer layer applied by plasma spray techniques, acts as a heat insulator to provide substantial metal temperature reductions below that of the exposed thermal barrier surface. The study results show the thermal barrier to be a potentially attractive means for improving performance and reducing cost of electricity for the simple, recuperated, and combined cycles evaluated.

  11. Gas-phase thermal dissociation of uranium hexafluoride: Investigation by the technique of laser-powered homogeneous pyrolysis

    SciTech Connect

    Bostick, W.D.; McCulla, W.H.; Trowbridge, L.D.

    1987-04-01

    In the gas-phase, uranium hexafluoride decomposes thermally in a quasi-unimolecular reaction to yield uranium pentafluoride and atomic fluorine. We have investigated this reaction using the relatively new technique of laser-powered homogeneous pyrolysis, in which a megawatt infrared laser is used to generate short pulses of high gas temperatures under strictly homogeneous conditions. In our investigation, SiF/sub 4/ is used as the sensitizer to absorb energy from a pulsed CO/sub 2/ laser and to transfer this energy by collisions with the reactant gas. Ethyl chloride is used as an external standard ''thermometer'' gas to permit estimation of the unimolecular reaction rate constants by a relative rate approach. When UF/sub 6/ is the reactant, CF/sub 3/Cl is used as reagent to trap atomic fluorine reaction product, forming CF/sub 4/ as a stable indicator which is easily detected by infrared spectroscopy. Using these techniques, we estimate the UF/sub 6/ unimolecular reaction rate constant near the high-pressure limit. In the Appendix, we describe a computer program, written for the IBM PC, which predicts unimolecular rate constants based on the Rice-Ramsperger-Kassel theory. Parameterization of the theoretical model is discussed, and recommendations are made for ''appropriate'' input parameters for use in predicting the gas-phase unimolecular reaction rate for UF/sub 6/ as a function of temperature and gas composition and total pressure. 85 refs., 17 figs., 14 tabs.

  12. Painting a Picture of Gas Hydrate Distribution with Thermal Images

    SciTech Connect

    Weinberger, Jill L.; Brown, Kevin M.; Long, Philip E.

    2005-02-25

    Large uncertainties about the energy resource potential and role in global climate change of gas hydrates result from uncertainty about how much hydrate is contained in marine sediments. During Leg 204 of the Ocean Drilling Program (ODP) to the accretionary complex of the Cascadia subduction zone, the entire gas hydrate stability zone was sampled in contrasting geological settings defined by a 3D seismic survey. By integrating results from different methods, including several new techniques developed for Leg 204, we overcome the problem of spatial under-sampling inherent in robust methods traditionally used for estimating the hydrate content of cores and obtain a high-resolution, quantitative estimate of the total amount and spatial variability of gas hydrate in this structural system. We conclude that high gas hydrate content (30-40% of pore space of 20-26% of total volume) is restricted to the upper tens of meters below the seafloor near the summit of the structure, where vigorous fluid venting occurs.

  13. Thermal analysis of solar biomass hybrid co-generation plants

    NASA Astrophysics Data System (ADS)

    Kaushika, N. D.; Mishra, Anuradha; Chakravarty, M. N.

    2005-12-01

    This article describes a co-generation plant based on the biogas being produced from the waste of distillery plant and highlights the possible configuration in which the plant can be hybridized with auxiliary solar energy source having the advantage of using financial incentives in several countries. In hybridization, the solar heat is used for heating the boiler feed water. The solar heat-generating unit consists of line focus parabolic trough collector, heat transportation system and heat delivery unit such as heat exchanger. The simulation model of heat and mass transfer processes in the solar field as well as the balance of the system is developed to investigate the technological feasibility of the concept in terms of plant yield and matching of subsystems.

  14. Zirconia and Pyrochlore Oxides for Thermal Barrier Coatings in Gas Turbine Engines

    DOE PAGESBeta

    Fergus, Jeffrey W.

    2014-04-12

    One of the important applications of yttria stabilized zirconia is as a thermal barrier coating for gas turbine engines. While yttria stabilized zirconia performs well in this function, the need for increased operating temperatures to achieve higher energy conversion efficiencies, requires the development of improved materials. To meet this challenge, some rare-earth zirconates that form the cubic fluorite derived pyrochlore structure are being developed for use in thermal barrier coatings due to their low thermal conductivity, excellent chemical stability and other suitable properties. In this paper, the thermal conductivities of current and prospective oxides for use in thermal barrier coatingsmore » are reviewed. The factors affecting the variations and differences in the thermal conductivities and the degradation behaviors of these materials are discussed.« less

  15. Zirconia and Pyrochlore Oxides for Thermal Barrier Coatings in Gas Turbine Engines

    SciTech Connect

    Fergus, Jeffrey W.

    2014-04-12

    One of the important applications of yttria stabilized zirconia is as a thermal barrier coating for gas turbine engines. While yttria stabilized zirconia performs well in this function, the need for increased operating temperatures to achieve higher energy conversion efficiencies, requires the development of improved materials. To meet this challenge, some rare-earth zirconates that form the cubic fluorite derived pyrochlore structure are being developed for use in thermal barrier coatings due to their low thermal conductivity, excellent chemical stability and other suitable properties. In this paper, the thermal conductivities of current and prospective oxides for use in thermal barrier coatings are reviewed. The factors affecting the variations and differences in the thermal conductivities and the degradation behaviors of these materials are discussed.

  16. Position paper on gas generation in the Waste Isolation Pilot Plant

    SciTech Connect

    Brush, L.H.

    1994-11-15

    Gas generation by transuranic (TRU) waste is a significant issue because gas will, if produced in significant quantities, affect the performance of the Waste Isolation Pilot Plant (WIPP) with respect to Environmental Protection Agency (EPA) regulations for the long-term isolation of radioactive and chemically hazardous waste. If significant gas production occurs, it will also affect, and will be affected by, other processes and parameters in WIPP disposal rooms. The processes that will produce gas in WIPP disposal rooms are corrosion, microbial activity and radiolysis. This position paper describes these processes and the models, assumptions and data used to predict gas generation in WIPP disposal rooms.

  17. FIRST ORDER KINETIC GAS GENERATION MODEL PARAMETERS FOR WET LANDFILLS

    EPA Science Inventory

    Landfill gas is produced as a result of a sequence of physical, chemical, and biological processes occurring within an anaerobic landfill. Landfill operators, energy recovery project owners, regulators, and energy users need to be able to project the volume of gas produced and re...

  18. A Numerical Study on Gas Phase Dynamics of High-Velocity Oxygen Fuel Thermal Spray

    NASA Astrophysics Data System (ADS)

    Baik, Jae-Sang; Park, Sun-Kyu; Kim, Youn-Jea

    2008-08-01

    The high-velocity oxygen fuel (HVOF) thermal spray is used for a particulate deposition process in which micro-sized particles are propelled and heated in a supersonic combusting gas stream. It is characterized by high gas velocity and high density and is being used in an increasing variety of coating applications, such as ceramic and composite coatings, to improve wear and abrasion resistance. The particle temperature and velocity are two of the most important parameters in HVOF thermal spraying, which affect the quality of the coatings. To understand the particle dynamics, it is necessary to study, first, the thermal flow characteristics in the HVOF system. In this study, a numerical analysis is performed to predict the gas dynamic behaviors, and the effect of the geometrical parameter is studied to optimize the nozzle design.

  19. A Relationship Between Skin Thermal Conductivity and Gas Polytropic Index in an Open Atmospheric Balloon.

    NASA Astrophysics Data System (ADS)

    de La Torre, A.; Alexander, P.; Cornejo, J.

    2003-02-01

    With the assumption of a polytropic evolution for the lifting gas, the response of an ascending open atmospheric balloon to a monochromatic gravity wave is specified among other parameters by the heat balance with the surrounding air. If one considers the bubble of gas inside the open balloon as a thermodynamic system in contact through the balloon skin with a uniform thermal source (isothermic atmosphere), a relationship between the skin thermal conductivity and the polytropic index for the lifting gas [hydrogen (H2) or helium (He)] may be found. The results for both gases are extended to the case of a typical tropospheric linearly decreasing temperature profile. Constant and variable balloon skin thicknesses are studied for both background temperature profiles. The polytropic index is found to be lower for the changing skin and shows a sensitive difference between the two temperature profiles. The relationship between the thermal conductivity and polytropic index becomes abrupt only when the latter approaches the isothermal or adiabatic values.

  20. Thermal tests of the 9FB gas turbine unit produced by general electric

    NASA Astrophysics Data System (ADS)

    Ol'khovskii, G. G.; Radin, Yu. A.; Mel'nikov, V. A.; Tuz, N. E.; Mironenko, A. V.

    2013-09-01

    In July 2011, a PGU-410 combined-cycle power plant was commissioned at the Srendeuralsk district power station owned by Enel OGK-5. The main equipment of this power plant includes an MS9001FB gas turbine unit (produced by GE Energy Power Plant Systems, the United States), a heat recovery boiler (produced by Nooter/Ericsen, the United States), and a >Skoda KT-140-13.3 two-cylinder condensing and cogeneration turbine with steam reheating. In 2011-2012, specialists of the All-Russia Thermal Engineering Institute carried out thermal tests of this power plant in a wide range of loads and under different external conditions. The results from thermal tests of the MS9001FB gas turbine unit are presented and analyzed. The actual indicators of the gas turbine unit and its elements are determined and their characteristics are constructed.

  1. Optimization of Gas Generation Testing of Contact-Handled Transuranic Solidified

    SciTech Connect

    Tamara Shokes; Kevin J. Liekhus; Vivian Bowman; Eric Schweinsberg

    2006-05-18

    The Contact-Handled Transuranic Waste Authorized methods for Payload Control (CH-TRAMPAC) requires that drums containing Waste Type IV (solidified organic waste) must be evaluated by gas generation testing (GGT) because a G-value, a measure of gas generation potential, has not been determined for Waste Type IV.

  2. Performance of a Small Gas Generator Using Liquid Hydrogen and Liquid Oxygen

    NASA Technical Reports Server (NTRS)

    Acker, Loren W.; Fenn, David B.; Dietrich, Marshall W.

    1961-01-01

    The performance and operating problems of a small hot-gas generator burning liquid hydrogen with liquid oxygen are presented. Two methods of ignition are discussed. Injector and combustion chamber design details based on rocket design criteria are also given. A carefully fabricated showerhead injector of simple design provided a gas generator that yielded combustion efficiencies of 93 and 96 percent.

  3. Analysis of Turkish High School Chemistry Textbooks and Teacher-Generated Questions about Gas Laws

    ERIC Educational Resources Information Center

    Nakiboglu, Canan; Yildirir, H.

    2011-01-01

    This study presents the results of an analysis of high school chemistry textbooks and teacher-generated questions about gas laws. The materials that were analyzed consisted of 456 questions about gas laws found in seven grade 10 chemistry textbooks and 264 teacher-generated examination questions prepared by seven chemistry teachers from three…

  4. Gas transport by thermal transpiration in micro-channels -- A numerical study

    SciTech Connect

    Wong, C.C.; Hudson, M.L.; Potter, D.L.; Bartel, T.J.

    1998-08-01

    A reliable micro gas pump is an essential element to the development of many micro-systems for chemical gas analyses. At Sandia, the authors are exploring a different pumping mechanism, gas transport by thermal transpiration. Thermal transpiration refers to the rarefied gas dynamics developed in a micro-channel with a longitudinal temperature gradient. To investigate the potential of thermal transpiration for gas pumping in micro-systems, the authors have performed simulations and model analysis to design micro-devices and to assess their design performance before the fabrication process. The effort is to apply ICARUS (a Direct Simulation Monte Carlo code developed at Sandia) to characterize the fluid transport and evaluate the design performance. The design being considered has two plenums at different temperatures (hot and cold) separated by a micro-channel of 0.1 micron wide and 1 micron long. The temperature difference between the two plenums is 30 kelvin. ICARUS results, a quasi-steady analysis, predicts a net flow through the micro-channel with a velocity magnitude of about 0.4 m/s due to temperature gradient at the wall (thermal creep flow) at the early time. Later as the pressure builds up in the hot plenum, flow is reversed. Eventually when the system reaches steady state equilibrium, the net flow becomes zero. The thermal creep effect is compensated by the thermo-molecular pressure effect. This result demonstrates that it is important to include the thermo-molecular pressure effect when designing a pumping mechanism based on thermal transpiration. The DSMC technique can model this complex thermal transpiration problem.

  5. Cost and greenhouse gas emission tradeoffs of alternative uses of lignin for second generation ethanol

    NASA Astrophysics Data System (ADS)

    Pourhashem, Ghasideh; Adler, Paul R.; McAloon, Andrew J.; Spatari, Sabrina

    2013-06-01

    Second generation ethanol bioconversion technologies are under demonstration-scale development for the production of lignocellulosic fuels to meet the US federal Renewable Fuel Standards (RFS2). Bioconversion technology utilizes the fermentable sugars generated from the cellulosic fraction of the feedstock, and most commonly assumes that the lignin fraction may be used as a source of thermal and electrical energy. We examine the life cycle greenhouse gas (GHG) emission and techno-economic cost tradeoffs for alternative uses of the lignin fraction of agricultural residues (corn stover, and wheat and barley straw) produced within a 2000 dry metric ton per day ethanol biorefinery in three locations in the United States. We compare three scenarios in which the lignin is (1) used as a land amendment to replace soil organic carbon (SOC); (2) separated, dried and sold as a coal substitute to produce electricity; and (3) used to produce electricity onsite at the biorefinery. Results from this analysis indicate that for life cycle GHG intensity, amending the lignin to land is lowest among the three ethanol production options (-25 to -2 g CO2e MJ-1), substituting coal with lignin is second lowest (4-32 g CO2e MJ-1), and onsite power generation is highest (36-41 g CO2e MJ-1). Moreover, the onsite power generation case may not meet RFS2 cellulosic fuel requirements given the uncertainty in electricity substitution. Options that use lignin for energy do so at the expense of SOC loss. The lignin-land amendment option has the lowest capital cost among the three options due to lower equipment costs for the biorefinery’s thermal energy needs and use of biogas generated onsite. The need to purchase electricity and uncertain market value of the lignin-land amendment could raise its cost compared to onsite power generation and electricity co-production. However, assuming a market value (50-100/dry Mg) for nutrient and soil carbon replacement in agricultural soils, and potentially

  6. Stack gas analyzer and thermal oxidation device therefor

    SciTech Connect

    Vincent, A.

    1980-07-08

    A stack gas analyzer is described for connection from a recovery stack, said stack gas analyzer comprising: first means including a first outlet for producing a flow of a dehydrated mixture of the gases flowing in said recovery stck, said dehydrated mixture including sulfur dioxide, total reduced sulfur (TRS), and oxygen remaining after combustion utilizing an oxygen rate a few percent in excess of the stoichiometric rate; a scrubber having an inlet and an outlet to receive said dehydrated mixture, said scrubber having a composition to remove sulfur dioxide from said dehydrated mixture without removing the said TRS, said scrubber outlet having a flow therethrough of a trs sample mixture the same as said dehydrated mixture except for the removal of sulfur dioxide therefrom and including at least some of said oxygen; a coulometric titrator having a cell including an inlet and an outlet, and having second means to produce an electrical output signal proportional to the concentration of sulfur dioxide in an oxidized gas mixture passing through said cell from said cell inlet to said cell outlet; a conduit connected from said scrubber outlet to said cell inlet, saidaconduit having a flow of said TRS sample therein; and third means to heat said TRS sample in said conduit to a pedetermined temperature such that said trs is oxidized to sulfur dioxide.

  7. Thermal/Pyrolysis Gas Flow Analysis of Carbon Phenolic Material

    NASA Technical Reports Server (NTRS)

    Clayton, J. Louie

    2001-01-01

    Provided in this study are predicted in-depth temperature and pyrolysis gas pressure distributions for carbon phenolic materials that are externally heated with a laser source. Governing equations, numerical techniques and comparisons to measured temperature data are also presented. Surface thermochemical conditions were determined using the Aerotherm Chemical Equilibrium (ACE) program. Surface heating simulation used facility calibrated radiative and convective flux levels. Temperatures and pyrolysis gas pressures are predicted using an upgraded form of the SINDA/CMA program that was developed by NASA during the Solid Propulsion Integrity Program (SPIP). Multispecie mass balance, tracking of condensable vapors, high heat rate kinetics, real gas compressibility and reduced mixture viscosity's have been added to the algorithm. In general, surface and in-depth temperature comparisons are very good. Specie partial pressures calculations show that a saturated water-vapor mixture is the main contributor to peak in-depth total pressure. Further, for most of the cases studied, the water-vapor mixture is driven near the critical point and is believed to significantly increase the local heat capacity of the composite material. This phenomenon if not accounted for in analysis models may lead to an over prediction in temperature response in charring regions of the material.

  8. An evaluation of thermal energy storage options for precooling gas turbine inlet air

    SciTech Connect

    Antoniak, Z.I.; Brown, D.R.; Drost, M.K.

    1992-12-01

    Several approaches have been used to reduce the temperature of gas turbine inlet air. One of the most successful uses off-peak electric power to drive vapor-compression-cycle ice makers. The ice is stored until the next time high ambient temperature is encountered, when the ice is used in a heat exchanger to cool the gas turbine inlet air. An alternative concept would use seasonal thermal energy storage to store winter chill for inlet air cooling. The objective of this study was to compare the performance and economics of seasonal thermal energy storage in aquifers with diurnal ice thermal energy storage for gas turbine inlet air cooling. The investigation consisted of developing computer codes to model the performance of a gas turbine, energy storage system, heat exchangers, and ancillary equipment. The performance models were combined with cost models to calculate unit capital costs and levelized energy costs for each concept. The levelized energy cost was calculated for three technologies in two locations (Minneapolis, Minnesota and Birmingham, Alabama). Precooling gas turbine inlet air with cold water supplied by an aquifer thermal energy storage system provided lower cost electricity than simply increasing the size of the turbine for meteorological and geological conditions existing in the Minneapolis vicinity. A 15 to 20% cost reduction resulted for both 0.05 and 0.2 annual operating factors. In contrast, ice storage precooling was found to be between 5 and 20% more expensive than larger gas turbines for the Minneapolis location. In Birmingham, aquifer thermal energy storage precooling was preferred at the higher capacity factor and ice storage precooling was the best option at the lower capacity factor. In both cases, the levelized cost was reduced by approximately 5% when compared to larger gas turbines.

  9. Thermal stress analysis of a graded zirconia/metal gas path seal system for aircraft gas turbine engines

    NASA Technical Reports Server (NTRS)

    Taylor, C. M.

    1977-01-01

    A ceramic/metallic aircraft gas turbine outer gas path seal designed to enable improved engine performance is studied. Flexible numerical analysis schemes suitable for the determination of transient temperature profiles and thermal stress distributions in the seal are outlined. An estimation of the stresses to which a test seal is subjected during simulated engine deceleration from sea level takeoff to idle conditions is made. Experimental evidence has indicated that the surface layer of the seal is probably subjected to excessive tensile stresses during cyclic temperature loading. This assertion is supported by the analytical results presented. Brief consideration is given to means of mitigating this adverse stressing.

  10. An overview of micromachined platforms for thermal sensing and gas detection

    SciTech Connect

    Manginell, R.P.; Smith, J.H.; Ricco, A.J.

    1997-03-01

    Micromachined hotplates, membranes, filaments, and cantilevers have all been used as platforms for thermal sensing and gas detection. Compared with conventional devices, micromachined sensors are characterized by low power consumption, high sensitivity, and fast response time. Much of these gains can be attributed to the size reductions achieved by micromachining. In addition, micromachining permits easy, yet precise tailoring of the heat transfer characteristics of these devices. By simple alterations in device geometry and materials used, the relative magnitudes of radiation, convection and conduction losses and Joule heat gains can be adjusted, and in this way device response can be optimized for specific applications. The free-standing design of micromachined platforms, for example, reduces heat conduction losses to the substrate, thereby making them attractive as low power, fast-response heaters suitable for a number of applications. However, while micromachining solves some of the heat transfer problems typical of conventionally produced devices, it introduces some of its own. These trade-offs will be discussed in the context of several micromachined thermal and gas sensors present in the literature. These include micromachined flow sensors, gas thermal conductivity sensors, pressure sensors, uncooled IR sensors, metal-oxide and catalytic/calorimetric gas sensors. Recent results obtained for a microbridge-based catalytic/calorimetric gas sensor will also be presented as a means of further illustrating the concepts of thermal design in micromachined sensors.

  11. Daily Thermal Predictions of the AGR-1 Experiment with Gas Gaps Varying with Time

    SciTech Connect

    Grant Hawkes; James Sterbentz; John Maki; Binh Pham

    2012-06-01

    A new daily as-run thermal analysis was performed at the Idaho National Laboratory on the Advanced Gas Reactor (AGR) test experiment number one at the Advanced Test Reactor (ATR). This thermal analysis incorporates gas gaps changing with time during the irradiation experiment. The purpose of this analysis was to calculate the daily average temperatures of each compact to compare with experimental results. Post irradiation examination (PIE) measurements of the graphite holder and fuel compacts showed the gas gaps varying from the beginning of life. The control temperature gas gap and the fuel compact – graphite holder gas gaps were linearly changed from the original fabrication dimensions, to the end of irradiation measurements. A steady-state thermal analysis was performed for each daily calculation. These new thermal predictions more closely match the experimental data taken during the experiment than previous analyses. Results are presented comparing normalized compact average temperatures to normalized log(R/B) Kr-85m. The R/B term is the measured release rate divided by the predicted birth rate for the isotope Kr-85m. Correlations between these two normalized values are presented.

  12. Daily thermal predictions of the AGR-1 experiment with gas gaps varying with time

    SciTech Connect

    Hawkes, G.; Sterbentz, J.; Maki, J.; Pham, B.

    2012-07-01

    A new daily as-run thermal analysis was performed at the Idaho National Laboratory on the Advanced Gas Reactor (AGR) test experiment number one at the Advanced Test Reactor (ATR). This thermal analysis incorporates gas gaps changing with time during the irradiation experiment. The purpose of this analysis was to calculate the daily average temperatures of each compact to compare with experimental results. Post irradiation examination (PIE) measurements of the graphite holder and fuel compacts showed the gas gaps changed from the beginning of life. The control temperature gas gap and the fuel compact - graphite holder gas gaps were modeled with a linear change from the original fabrication gap dimensions to the end of irradiation measurements. A steady-state thermal analysis was performed for each daily calculation with the commercial finite element heat transfer code ABAQUS. These new thermal predictions more closely match the experimental data taken during the experiment than previous analyses. Results are presented comparing normalized compact average temperatures to normalized log(R/B) Kr-85m. The R/B term is the measured release rate divided by the predicted birth rate for the isotope Kr-85m. Correlations between these two normalized values are presented. (authors)

  13. Analysis and clustering of natural gas consumption data for thermal energy use forecasting

    NASA Astrophysics Data System (ADS)

    Franco, Alessandro; Fantozzi, Fabio

    2015-11-01

    In this paper, after a brief analysis of the connections between the uses of natural gas and thermal energy use, the natural gas consumption data related to Italian market are analyzed and opportunely clustered in order to compute the typical consumption profile in different days of the week in different seasons and for the different class of users: residential, tertiary and industrial. The analysis of the data shows that natural gas consumption profile is mainly related to seasonality pattern and to the weather conditions (outside temperature, humidity and wind chiller). There is also an important daily pattern related to industrial and civil sector that, at a lower degree than the previous one, does affect the consumption profile and have to be taken into account for defining an effective short and mid term thermal energy forecasting method. A possible mathematical structure of the natural gas consumption profile is provided. Due to the strong link between thermal energy use and natural gas consumption, this analysis could be considered the first step for the development of a model for thermal energy forecasting.

  14. Integrated flue gas cleaning for the next regulatory generation

    SciTech Connect

    Vincent, H.; Jones, G.

    1995-12-31

    Before the end of this decade, utilities and other major power producers burning solid/liquid fuels can expect the promulgation of further regulations mandated by the 1990 Clean Air Act Amendments. In particular, Title III, ``Air Toxics`` provision could profoundly change the manner how power producers will need to evaluate compliance technology options. Integrated gas cleaning concepts will be necessary to achieve compliance, maximize existing gas cleaning assets, and for the avoidance of pollution transfer. The paper describes several integrated gas cleaning concepts for multi-pollutant control for high sulfur coal, low sulfur coal, and oil burning power plants.

  15. Thermal optimization of second harmonic generation at high pump powers.

    PubMed

    Sahm, Alexander; Uebernickel, Mirko; Paschke, Katrin; Erbert, Götz; Tränkle, Günther

    2011-11-01

    We measure the temperature distribution of a 3 cm long periodically poled LiNbO₃ crystal in a single-pass second harmonic generation (SHG) setup at 488 nm. By means of three resistance heaters and directly mounted Pt100 sensors the crystal is subdivided in three sections. 9.4 W infrared pump light and 1.3 W of SHG light cause a de-homogenized temperature distribution of 0.2 K between the middle and back section. A sectional offset heating is used to homogenize the temperature in those two sections and thus increasing the conversion efficiency. A 15% higher SHG output power matching the prediction of our theoretical model is achieved. PMID:22109182

  16. Fuel Flexibility: Landfill Gas Contaminant Mitigation for Power Generation

    SciTech Connect

    Storey, John Morse; Theiss, Timothy J; Kass, Michael D; FINNEY, Charles E A; Lewis, Samuel; Kaul, Brian C; Besmann, Theodore M; Thomas, John F; Rogers, Hiram; Sepaniak, Michael

    2014-04-01

    This research project focused on the mitigation of silica damage to engine-based renewable landfill gas energy systems. Characterization of the landfill gas siloxane contamination, combined with characterization of the silica deposits in engines, led to development of two new mitigation strategies. The first involved a novel method for removing the siloxanes and other heavy contaminants from the landfill gas prior to use by the engines. The second strategy sought to interrupt the formation of hard silica deposits in the engine itself, based on inspection of failed landfill gas engine parts. In addition to mitigation, the project had a third task to develop a robust sensor for siloxanes that could be used to control existing and/or future removal processes.

  17. Metal Hydride Thermal Storage: Reversible Metal Hydride Thermal Storage for High-Temperature Power Generation Systems

    SciTech Connect

    2011-12-05

    HEATS Project: PNNL is developing a thermal energy storage system based on a Reversible Metal Hydride Thermochemical (RMHT) system, which uses metal hydride as a heat storage material. Heat storage materials are critical to the energy storage process. In solar thermal storage systems, heat can be stored in these materials during the day and released at night—when the sun is not out—to drive a turbine and produce electricity. In nuclear storage systems, heat can be stored in these materials at night and released to produce electricity during daytime peak-demand hours. PNNL’s metal hydride material can reversibly store heat as hydrogen cycles in and out of the material. In a RHMT system, metal hydrides remain stable in high temperatures (600- 800°C). A high-temperature tank in PNNL’s storage system releases heat as hydrogen is absorbed, and a low-temperature tank stores the heat until it is needed. The low-cost material and simplicity of PNNL’s thermal energy storage system is expected to keep costs down. The system has the potential to significantly increase energy density.

  18. DESIGN, FABRICATION, AND TESTING OF AN ADVANCED, NON-POLLUTING TURBINE DRIVE GAS GENERATOR

    SciTech Connect

    Unknown

    2002-01-31

    The objective of this report period was to continue the development of the Gas Generator design, fabrication and test of the non-polluting unique power turbine drive Gas Generator. Focus during this past report period has been to continue completion the Gas Generator design, completing the brazing and bonding experiments to determine the best method and materials necessary to fabricate the Gas Generator hardware, continuing to making preparations for fabricating and testing this Gas Generator and commencing with the fabrication of the Gas Generator hardware and ancillary hardware. Designs have been completed sufficiently such that Long Lead Items [LLI] have been ordered and upon arrival will be readied for the fabrication process. The keys to this design are the platelet construction of the injectors that precisely measures/meters the flow of the propellants and water all throughout the steam generating process and the CES patented gas generating cycle. The Igniter Assembly injector platelets fabrication process has been completed and bonded to the Igniter Assembly and final machined. The Igniter Assembly is in final assembly and is being readied for testing in the October 2001 time frame. Test Plan dated August 2001, was revised and finalized, replacing Test Plan dated May 2001.

  19. Sounding rocket thermal analysis techniques applied to GAS payloads. [Get Away Special payloads (STS)

    NASA Technical Reports Server (NTRS)

    Wing, L. D.

    1979-01-01

    Simplified analytical techniques of sounding rocket programs are suggested as a means of bringing the cost of thermal analysis of the Get Away Special (GAS) payloads within acceptable bounds. Particular attention is given to two methods adapted from sounding rocket technology - a method in which the container and payload are assumed to be divided in half vertically by a thermal plane of symmetry, and a method which considers the container and its payload to be an analogous one-dimensional unit having the real or correct container top surface area for radiative heat transfer and a fictitious mass and geometry which model the average thermal effects.

  20. Detailed partial load investigation of a thermal energy storage concept for solar thermal power plants with direct steam generation

    NASA Astrophysics Data System (ADS)

    Seitz, M.; Hübner, S.; Johnson, M.

    2016-05-01

    Direct steam generation enables the implementation of a higher steam temperature for parabolic trough concentrated solar power plants. This leads to much better cycle efficiencies and lower electricity generating costs. For a flexible and more economic operation of such a power plant, it is necessary to develop thermal energy storage systems for the extension of the production time of the power plant. In the case of steam as the heat transfer fluid, it is important to use a storage material that uses latent heat for the storage process. This leads to a minimum of exergy losses during the storage process. In the case of a concentrating solar power plant, superheated steam is needed during the discharging process. This steam cannot be superheated by the latent heat storage system. Therefore, a sensible molten salt storage system is used for this task. In contrast to the state-of-the-art thermal energy storages within the concentrating solar power area of application, a storage system for a direct steam generation plant consists of a latent and a sensible storage part. Thus far, no partial load behaviors of sensible and latent heat storage systems have been analyzed in detail. In this work, an optimized fin structure was developed in order to minimize the costs of the latent heat storage. A complete system simulation of the power plant process, including the solar field, power block and sensible and latent heat energy storage calculates the interaction between the solar field, the power block and the thermal energy storage system.

  1. Thermal vacuum life test facility for radioisotope thermoelectric generators

    SciTech Connect

    Deaton, R.L.; Goebel, C.J.; Amos, W.R.

    1990-01-01

    In the late 1970's, the Department of Energy (DOE) assigned Monsanto Research Corporation, Mound Facility, now operated by EG G Mound Applied Technologies, the responsibility for assembling and testing General Purpose Heat Source (GPHS) radioisotope thermoelectric generators (RTGs). Assembled and tested were five RTGs, which included four flight units and one non-flight qualification unit. Figure 1 shows the RTG, which was designed by General Electric AstroSpace Division (GE/ASD) to produce 285 W of electrical power. A detailed description of the processes for RTG assembly and testing is presented by Amos and Goebel (1989). The RTG performance data are described by Bennett, et al. (1986). The flight units will provide electrical power for the National Aeronautics and Space Administration's (NASA) Galileo mission to Jupiter (two RTGs) and the joint NASA/European Space Agency (ESA) Ulysses mission to study the polar regions of the sun (one RTG). The remaining flight unit will serve as the spare for both missions, and a non-flight qualification unit was assembled and tested to ensure that performance criteria were adequately met. 4 refs., 3 figs.

  2. Thermal vacuum life test facility for radioisotope thermoelectric generators

    NASA Astrophysics Data System (ADS)

    Deaton, R. L.; Goebel, C. J.; Amos, W. R.

    In the late 1970's, the Department of Energy (DOE) assigned Monsanto Research Corporation, Mound Facility, now operated by EG and G Mound Applied Technologies, the responsibility for assembling and testing General Purpose Heat Source (GPHS) radioisotope thermoelectric generators (RTGs). Assembled and tested were five RTGs, which included four flight units and one non-flight qualification unit. Figure 1 shows the RTG, which was designed by General Electric AstroSpace Division (GE/ASD) to produce 285 W of electrical power. A detailed description of the processes for RTG assembly and testing is presented by Amos and Goebel (1989). The RTG performance data are described by Bennett, et al., (1986). The flight units will provide electrical power for the National Aeronautics and Space Administration's (NASA) Galileo mission to Jupiter (two RTGs) and the joint NASA/European Space Agency (ESA) Ulysses mission to study the polar regions of the sun (one RTG). The remaining flight unit will serve as the spare for both missions, and a non-flight qualification unit was assembled and tested to ensure that performance criteria were adequately met.

  3. Thermal generation of spin current in a multiferroic helimagnet

    NASA Astrophysics Data System (ADS)

    Takagi, R.; Tokunaga, Y.; Ideue, T.; Taguchi, Y.; Tokura, Y.; Seki, S.

    2016-03-01

    We report the experimental observation of longitudinal spin Seebeck effect in a multiferroic helimagnet Ba0.5Sr1.5Zn2Fe12O22. Temperature gradient applied normal to Ba0.5Sr1.5Zn2Fe12O22/Pt interface generates inverse spin Hall voltage of spin current origin in Pt, whose magnitude was found to be proportional to bulk magnetization of Ba0.5Sr1.5Zn2Fe12O22 even through the successive magnetic transitions among various helimagnetic and ferrimagnetic phases. This finding demonstrates that the helimagnetic spin wave can be an effective carrier of spin current. By controlling the population ratio of spin-helicity domains characterized by clockwise/counter-clockwise manner of spin rotation with use of poling electric field in the ferroelectric helimagnetic phase, we found that spin-helicity domain distribution does not affect the magnitude of spin current injected into Pt. The results suggest that the spin-wave spin current is rather robust against the spin-helicity domain wall, unlike the case with the conventional ferromagnetic domain wall.

  4. Viscosity and thermal conductivity of moderately dense gas mixtures.

    NASA Technical Reports Server (NTRS)

    Wakeham, W. A.; Kestin, J.; Mason, E. A.; Sandler, S. I.

    1972-01-01

    Derivation of a simple, semitheoretical expression for the initial density dependence of the viscosity and thermal conductivity of gaseous mixtures in terms of the appropriate properties of the pure components and of their interaction quantities. The derivation is based on Enskog's theory of dense gases and yields an equation in which the composition dependence of the linear factor in the density expansion is explicit. The interaction quantities are directly related to those of the mixture extrapolated to zero density and to a universal function valid for all gases. The reliability of the formulation is assessed with respect to the viscosity of several binary mixtures. It is found that the calculated viscosities of binary mixtures agree with the experimental data with a precision which is comparable to that of the most precise measurements.

  5. Effective thermal conductivity of binary mixed materials with and without heat generation - An empirical approach

    SciTech Connect

    Abu Saleem, R. A.; Rizwan-Uddin

    2012-07-01

    An empirical approach to determine the effective thermal conductivity of a binary mixed material with heat generation is developed and reported. The approach is developed for a steady state problem with spherical geometry. The approach is based on two main ideas: a structural approximation and an empirical formulation. As for the structural approximation, the binary mixed material was assumed to be equivalent to a binary layered system of adjacent fuel and moderator layers oriented perpendicular to the heat flux. An empirical approach was then used to conduct a general correlation for the effective thermal conductivity of a binary layered system with heat generation. This empirical approach was conducted systematically by considering the parametric and operational condition effects of the system on the overall effective thermal conductivity. Results are then compared to some experimental data as well as with thermal conductivity values predicted by an empirical correlation that is based on experimental data. (authors)

  6. Thermal conditions for cooled gas-turbine metal-ceramic blade

    NASA Astrophysics Data System (ADS)

    Soudarev, A. V.; Soudarev, B. V.; Molchanov, A. S.; Souryaninov, A. A.; Grishaev, V. V.

    2002-02-01

    Application of the alumo-boron-nitride heat-resistant structural ceramics allows distribution of the thermal and mechanical loads on the metal-ceramic blade elements reasonably rationally from the thermotechnical point of view. The ceramic shell, actually free of the mechanical effects, absorbs the heat from the high-temperature gas and serves as a shield for the strength core. The latter, being loaded mechanically, is cooled with air, the flow thereof is mainly the function of the heat supply from the peripheral platform and ceramic shell, additionally separated by a thin- wall metal screen from the core. Calculation of the pattern factors for the basic parts was performed at rating as applied to the nozzle vanes and rotor blades of the 2.5 MW GTE with the gas temperature at the inlet TIT=1623K. It was demonstrated that an admissible temperature level of the mechanically loaded parts could be achieved at the cooling air flows of 1.5%. Decreasing the power consumption on cooling allowed to get a high efficiency of the designed engine amounting to 42 43% (speed at rating is around 23,000 r/min). During rotation the length of the ceramic shell, installed loosely on the strength core, moves due to the action of the centrifugal forces and is pressed to the platform of the core. At the same time, a relatively lower compressive stresses of around 40 MPa are generated in the shell which ensures a feasibility of a long-term reliable operation of the turbine.

  7. Computer Modeling of Flow, Thermal Condition and Ash Deposition in a Hot-Gas Filtration Device

    SciTech Connect

    Ahmadi, G.; Mazaheri, A.; Liu, C.; Gamwo, I.K.

    2002-09-19

    The objective of the present study is to develop a computational model for simulating the gas flow, thermal condition and ash transport and deposition pattern in the hot-gas filtration systems. The computational model is to provide a virtual tool for design and operation modifications. Particular attention is given to the Particle Control Device (PCD) at the Power Systems Development Facility (PSDF) in Wilsonville, Alabama. For evaluation of gas velocity and temperature field in the vessel, the FLUENT commercial CFD computer code is used. Ash particle transport and deposition pattern was analyzed with the Lagrangian particle tracking approach.

  8. Monte Carlo analysis of lobular gas-surface scattering in tubes applied to thermal transpiration

    NASA Technical Reports Server (NTRS)

    Smith, J. D.; Raquet, C. A.

    1972-01-01

    A model of rarefied gas flow in tubes was developed which combines a lobular distribution with diffuse reflection at the wall. The model with Monte Carlo techniques was used to explain previously observed deviations in the free molecular thermal transpiration ratio which suggest molecules can have a greater tube transmission probability in a hot-to-cold direction than in a cold-to-hot direction. The model yields correct magnitudes of transmission probability ratios for helium in Pyrex tubing (1.09 to 1.14), and some effects of wall-temperature distribution, tube surface roughness, tube dimensions, gas temperature, and gas molecular mass.

  9. High electric field effects on the thermal generation in hydrogenated amorphous silicon

    SciTech Connect

    Ilie, A.; Equer, B.

    1997-07-01

    The authors have studied the electric field dependence of the electron-hole thermal generation process in hydrogenated amorphous silicon. A model was developed which takes into account the Poole-Frenkel effect and the thermally assisted tunneling. In order to explain the experimental results it was necessary to consider a strong electron-lattice interaction describing the carrier tunneling mechanism. Deep defects relaxation is also discussed.

  10. Thermal analysis of titanium drive-in target for D-D neutron generation.

    PubMed

    Jung, N S; Kim, I J; Kim, S J; Choi, H D

    2010-01-01

    Thermal analysis was performed for a titanium drive-in target of a D-D neutron generator. Computational fluid dynamics code CFX-5 was used in this study. To define the heat flux term for the thermal analysis, beam current profile was measured. Temperature of the target was calculated at some of the operating conditions. The cooling performance of the target was evaluated by means of the comparison of the calculated maximum target temperature and the critical temperature of titanium. PMID:19819152

  11. New generation enrichment monitoring technology for gas centrifuge enrichment plants

    SciTech Connect

    Ianakiev, Kiril D; Alexandrov, Boian S.; Boyer, Brian D.; Hill, Thomas R.; Macarthur, Duncan W.; Marks, Thomas; Moss, Calvin E.; Sheppard, Gregory A.; Swinhoe, Martyn T.

    2008-06-13

    The continuous enrichment monitor, developed and fielded in the 1990s by the International Atomic Energy Agency, provided a go-no-go capability to distinguish between UF{sub 6} containing low enriched (approximately 4% {sup 235}U) and highly enriched (above 20% {sup 235}U) uranium. This instrument used the 22-keV line from a {sup 109}Cd source as a transmission source to achieve a high sensitivity to the UF{sub 6} gas absorption. The 1.27-yr half-life required that the source be periodically replaced and the instrument recalibrated. The instrument's functionality and accuracy were limited by the fact that measured gas density and gas pressure were treated as confidential facility information. The modern safeguarding of a gas centrifuge enrichment plant producing low-enriched UF{sub 6} product aims toward a more quantitative flow and enrichment monitoring concept that sets new standards for accuracy stability, and confidence. An instrument must be accurate enough to detect the diversion of a significant quantity of material, have virtually zero false alarms, and protect the operator's proprietary process information. We discuss a new concept for advanced gas enrichment assay measurement technology. This design concept eliminates the need for the periodic replacement of a radioactive source as well as the need for maintenance by experts. Some initial experimental results will be presented.

  12. Thermal Optimization of the Heat Exchanger in an Automotive Exhaust-Based Thermoelectric Generator

    NASA Astrophysics Data System (ADS)

    Deng, Y. D.; Liu, X.; Chen, S.; Tong, N. Q.

    2013-07-01

    Recent advances in thermoelectric technologies have made exhaust-based thermoelectric generators (TEGs) promising to recover waste heat. The thermal performance of the heat exchanger in exhaust-based TEGs is studied in this work. In terms of interface temperature and thermal uniformity, the thermal characteristics of heat exchangers with different internal structures, lengths, and materials are discussed. Following computational fluid dynamics simulations, infrared experiments are carried out on a high-performance production engine with a dynamometer. Simulation and experimental results show that a plate-shaped heat exchanger made of brass with fishbone-shaped internal structure and length of 600 mm achieves a relatively ideal thermal performance, which is practically helpful to enhance the thermal performance of the TEG.

  13. Thermal and petroleum-generation history of the Mississippian Eleana Formation and Tertiary source rocks, Yucca Mountain Area, Southern Nye County, Nevada

    SciTech Connect

    Barker, C.E.

    1995-06-01

    A geochemical and geologic assessment of petroleum potential in the Yucca Mountain area indicates little remaining potential for significant oil and gas generation in the Mississippian Eleana Formation or related Paleozoic rocks, and good but a really restricted potential in Tertiary rocks in Area 8 of the Nevada Test Site. Mesozoic source rocks are not present in the Yucca Mountain area. The Tertiary source rocks in Area 8 of the Nevada Test Site are typically carbon-rich, and where hydrogen-rich, they are good oil-prone source rocks that are immature to marginally mature with respect to oil and gas generation. A geologically similar occurrence of hydrothermally altered Tertiary source rocks at north Bare Mountain retains little hydrocarbon generation capacity. The implication is that hydrocarbons were generated during hydrothermal alteration and have since migrated out of the source rocks or alive been lost during exhumation. A reconstructed thermal history of the Yucca Mountain area, based on the Eleana Formation, indicates petroleum was generated in the Late Paleozoic and possibly Early Mesozoic and that the oil was lost or metamorphosed to pyrobitumen during later heating, probably related to igneous activity. The Tertiary rocks are still capable of generating oil and gas, but little potential exists for a major hydrocarbon discovery due to the restricted occurrence of good source rocks and their marginal thermal maturity when situated away from intrusions.

  14. Development of Micromachine Gas Turbine for Portable Power Generation

    NASA Astrophysics Data System (ADS)

    Isomura, Kousuke; Tanaka, Shuji; Togo, Shinichi; Kanebako, Hideki; Murayama, Motohide; Saji, Nobuyoshi; Sato, Fumihiro; Esashi, Masayoshi

    Micromachine gas turbine with centrifugal impellers of 10mm diameter fabricated by 5-axis micro-milling is under development at Tohoku University, in conjunction with Ishikawajima-Harima Heavy Industries Co., Ltd. (IHI), Tohoku-Gakuin University, and Sankyo Seiki Mfg. Co., Ltd. The development is currently at the stage of proving the feasibility of the gas turbine cycle by component tests. Micro-combustors have been developed for both hydrogen and methane fuel. Over 99.9% of the combustion efficiency has been realized in both combustors and the baseline configuration of the combustor for the gas turbine is set. A compressor of 10mm diameter has been developed as a micromachined turbocharger. The performance test of the micromachined turbocharger has been started, and ran up to 566000rpm, which is approximately 65% of the design speed. Compressor performance has been successfully measured along a constant speed line at 55% of the design speed.

  15. Evaluation of steam generator feedwater nozzles for the effects of thermal stratification

    SciTech Connect

    Qashu, R.; El-Akily, N.M.; Kuo, A.

    1995-12-01

    The potential for thermal stratification in the main feedwater (FW) line of a Pressurized Water Reactor (PWR) plant exists whenever the auxiliary feedwater is initiated. The thermal stratification phenomenon is attributed to the difference in density between the hotter normal feedwater, initially in the pipe, and the colder auxiliary feedwater introduced into the piping. The effect of thermal stratification on the fatigue life is two fold: the global bending due to the bowing effect caused by thermal stratification, and the local effect due to the fluctuation in the level of the hot-cold interface. This paper deals with the global and local effects of thermal stratification in the main feedwater line on the fatigue life of the steam generator feedwater nozzle. This nozzle, which is attached to the main feedwater line, is subjected to the effects of thermal stratification in the main feedwater line and in the nozzle itself due to the difference in the water density between the auxiliary feedwater and the steam generator. It should be noted that steam generator feedwater nozzle cracking has been a concern in the nuclear power industry since the late 1970`s.

  16. Generation of Nitrogen Acceptors in ZnO using Pulse Thermal Processing

    SciTech Connect

    Xu, Jun; Ott, Ronald D; Sabau, Adrian S; Pan, Zhengwei; Xiu, Faxian; Liu, Jilin; Erie, Jean-Marie; Norton, David P

    2008-01-01

    Bipolar doping in wide bandgap semiconductors is difficult to achieve under equilibrium conditions because of the spontaneous formation of compensating defects and unfavorable energetics for dopant substitution. In this work, we explored the use of rapid pulse thermal processing for activating nitrogen dopants into acceptor states in ZnO. Low-temperature photoluminescence spectra revealed both acceptor-bound exciton (A{sup 0}X) and donor-acceptor pair emissions, which present direct evidence for acceptors generated after pulse thermal processing of nitrogen-doped ZnO. This work suggests that pulse thermal processing is potentially an effective method for p-type doping of ZnO.

  17. Progress toward life modeling of thermal barrier coatings for aircraft gas turbine engines

    NASA Technical Reports Server (NTRS)

    Miller, R. A.

    1987-01-01

    Progress toward developing life models for simulating the behavior of thermal barrier coatings in aircraffft gas turbine engines is discussed. A preliminary laboratory model is described as are current efforts to develop engine-capable models. Current understanding of failure mechanisms is also summarized.

  18. ECO LOGIC INTERNATIONAL GAS-PHASE CHEMICAL REDUCTION PROCESS - THE THERMAL DESORPTION UNIT - APPLICATIONS ANALYSIS REPORT

    EPA Science Inventory

    ELI ECO Logic International, Inc.'s Thermal Desorption Unit (TDU) is specifically designed for use with Eco Logic's Gas Phase Chemical Reduction Process. The technology uses an externally heated bath of molten tin in a hydrogen atmosphere to desorb hazardous organic compounds fro...

  19. Analysis of gas flow evolution and shock wave decay in detonation thermal spraying systems

    NASA Astrophysics Data System (ADS)

    Ramadan, K.; Butler, P. Barry

    2004-06-01

    The reactive Euler equations with variable gas properties are solved in both axisymmetric and plane two-dimensional flows to analyze the gas flow evolution, shock wave decay, and shock reflections in pulsed detonation thermal spraying (PDTS) systems. The gas phase governing equations are numerically solved using a high-resolution shock capturing numerical method. Expansion-compression waves are formed upon external gas expansion and persist for a long time (on the time scale of a PDTS cycle) with wide fluctuations in the gas velocity and temperature. The results show that the reflected shock wave from the substrate dies out extremely fast that micron-sized particles used in PDTS do not encounter these transients. The external shock wave decay is also analyzed for different reactive mixtures and flow geometries and is related to the truncation of the computational domain and the implementation of numerical boundary conditions at the open end boundaries.

  20. Gas Phase Pressure Effects on the Apparent Thermal Conductivity of JSC-1A Lunar Regolith Simulant

    NASA Technical Reports Server (NTRS)

    Yuan, Zeng-Guang; Kleinhenz, Julie E.

    2011-01-01

    Gas phase pressure effects on the apparent thermal conductivity of a JSC-1A/air mixture have been experimentally investigated under steady state thermal conditions from 10 kPa to 100 kPa. The result showed that apparent thermal conductivity of the JSC-1A/air mixture decreased when pressure was lowered to 80 kPa. At 10 kPa, the conductivity decreased to 0.145 W/m/degree C, which is significantly lower than 0.196 W/m/degree C at 100 kPa. This finding is consistent with the results of previous researchers. The reduction of the apparent thermal conductivity at low pressures is ascribed to the Knudsen effect. Since the characteristic length of the void space in bulk JSC-1A varies over a wide range, both the Knudsen regime and continuum regime can coexist in the pore space. The volume ratio of the two regimes varies with pressure. Thus, as gas pressure decreases, the gas volume controlled by Knudsen regime increases. Under Knudsen regime the resistance to the heat flow is higher than that in the continuum regime, resulting in the observed pressure dependency of the apparent thermal conductivity.

  1. Thermal Damage on LX-04 Mock Material and Gas Permeability Assessment

    SciTech Connect

    Hsu, P C; Dehaven, M; McClelland, M; Maienschein, J

    2004-11-15

    RM-04-BR, a mock material for the plastic-bonded HMX-based explosive LX-04, is characterized after being thermally damaged at 140 C and 190 C. We measured the following material properties before and after the thermal experiments: sample volume, density, sound speed, and gas permeability in the material. Thermal treatment of the mock material leads to de-coloring and insignificant weight loss. Sample expanded, resulting in density reductions of 1.0% to 2.5% at 140 C and 190 C, respectively. Permeability in the mock samples was found to increase from 10{sup -15} to 10{sup -16} m{sup 2}, as the porosity increased. The permeability measurements are well represented by the Blake-Kozeny equation for laminar flow through porous media. The results are similar to the gas permeability in PBX-9501 obtained by other researchers.

  2. A Novel Repair Technique for the Internal Thermal Control System Dual-Membrane Gas Trap

    NASA Technical Reports Server (NTRS)

    Leimkuehler, Thomas O.; Patel, Vipul; Reeves, Daniel R.; Holt, James M.

    2005-01-01

    A dual-membrane gas trap is currently used to remove gas bubbles from the Internal Thermal Control System (ITCS) coolant on board the International Space Station (ISS). The gas trap consists of concentric tube membrane pairs, comprised of outer hydrophilic tubes and inner hydrophobic fibers. Liquid coolant passes through the outer hydrophilic membrane, which traps the gas bubbles. The inner hydrophobic fiber allows the trapped gas bubbles to pass through and vent to the ambient atmosphere in the cabin. The gas trap was designed to last for the entire lifetime of the ISS, and therefore was not designed to be repaired. However, repair of these gas traps is now a necessity due to contamination from the on-orbit ITCS fluid and other sources on the ground as well as a limited supply of flight gas traps. This paper describes a novel repair technique that has been developed that will allow the refurbishment of contaminated gas traps and their return to flight use.

  3. Operational Experience with the Internal Thermal Control System Dual-Membrane Gas Trap

    NASA Technical Reports Server (NTRS)

    Leimkuehler, Thomas O.; Lukens, Clark; Reeves, Daniel R.; Holt, James M.

    2003-01-01

    A dual-membrane gas trap is currently used to remove non-condensed gases (NCG) from the Internal Thermal Control System (ITCS) coolant on board the International Space Station. The gas trap consists of concentric tube membrane pairs, comprised of outer hydrophilic tubes and inner hydrophobic fibers. Liquid coolant passes through the outer hydrophilic membrane, which traps the NCG. The inner hydrophobic fiber allows the trapped NCG to pass through and vent to the ambient atmosphere in the cabin. The purpose of the gas trap is to prevent gas bubbles from causing depriming, overspeed, and shutdown of the ITCS pump, and the current gas trap has performed flawlessly in this regard. However, because of actual operational conditions on-orbit, its gas removal performance and operational lifetime have been affected. This paper discusses experiences with several of these dual- membrane gas traps, including on-orbit gas venting rate, effects due to the presence of nickel in the ITCS coolant, and subsequent refurbishing to remove the nickel from the gas trap.

  4. Triple sorbent thermal desorption/gas chromatography/mass spectrometry determination of vapor phase organic contaminants

    SciTech Connect

    Ma, C.Y.; Skeen, J.T.; Dindal, A.B.; Higgins, C.E.; Jenkins, R.A.

    1994-05-01

    A thermal desorption/ps chromatography/mass spectrometry (TD/GC/MS) has been evaluated for the determination of volatile organic compounds (VOCS) in vapor phase samples using Carbosieve S-III/Carbotrap/Carotrap C triple sorbent traps (TST) similar to those available from a commercial source. The analysis was carried out with a Hewlett-Packard 5985A or 5995 GC/MS system with a modified injector to adapt an inhouse manufactured short-path desorber for transferring desorbate directly onto a cryofocusing loop for subsequent GC/MS analysis. Vapor phase standards generated from twenty six compounds were used for method validation, including alkanes, alkyl alcohols, alkyl ketones, and alkyl nitrites, a group of representative compounds that have previously been identified in a target airborne matrix. The method was validated based on the satisfactory results in terms of reproducibility, recovery rate, stability, and linearity. A relative, standard deviation of 0.55 to 24.3 % was obtained for the entire TD process (generation of gas phase standards, spiking the standards on and desorbing from TST) over a concentration range of 20 to 500 ng/trap. Linear correlation coefficients for the calibration curves as determined ranged from 0.81 to 0.99 and limits of detection ranged from 3 to 76 ng. For a majority of standards, recoveries of greater than 90% were observed. For three selected standards spiked on TSTS, minimal loss (10 to 22%) was observed after storing the spiked in, a 4{degree}C refrigerator for 29 days. The only chromatographable artifact observed was a 5% conversion of isopropanol to acetone. The validated method been successfully applied, to the determination of VOCs collected from various emission sources in a diversified concentration range.

  5. Potential role of gas hydrate decomposition in generating submarine slope failures: Chapter 12

    USGS Publications Warehouse

    Pauli, Charles K.; mUssler, William III; Dillon, William P.

    2003-01-01

    Gas hydrate decomposition is hypothesized to be a factor in generating weakness in continental margin sediments that may help explain some of the observed patterns of continental margin sediment instability. The processes associated with formation and decomposition of gas hydrate can cause the strengthening of sediments in which gas hydrate grow and the weakening of sediments in which gas hydrate decomposes. The weakened sediments may form horizons along which the potential for sediment failure is increased. While a causal relationship between slope failures and gas hydrate decomposition has not been proven, a number of empirical observations support their potential connection.

  6. Development of New Generation of Thermally-Enhanced Fiber Glass Insulation

    SciTech Connect

    Kosny, Jan; Yarbrough, David W; Childs, Phillip W; Miller, William A; Atchley, Jerald Allen; Shrestha, Som S

    2010-03-01

    This report presents experimental and numerical results from thermal performance studies. The purpose of this Cooperative Research and Development Agreement (CRADA) between UT-Battelle, LLC and John s Manville was to design a basic concept of a new generation of thermally-enhanced fiber glass insulation. Different types of Phase Change Materials (PCMs) have been tested as dynamic components in buildings during the last 4 decades. Most historical studies have found that PCMs enhance building energy performance. Some PCM-enhanced building materials, like PCM-gypsum boards or PCM-impregnated concretes have already found their limited applications in different countries. Today, continued improvements in building envelope technologies suggest that throughout Southern and Central U.S. climates, residences may soon be routinely constructed with PCM in order to maximize insulation effectiveness and maintain low heating and cooling loads. The proposed thermally-enhanced fiber glass insulation will maximize this integration by utilizing a highly-efficient building envelope with high-R thermal insulation, active thermal mass and superior air-tightness. Improved thermal resistance will come from modifications in infrared internal characteristics of the fiber glass insulation. Thermal mass effect can be provided by proprietary thermally-active microencapsulated phase change material (PCM). Work carried out at the Oak Ridge National Laboratory (ORNL) on the CRADA is described in this report.

  7. Monitoring Local Strain in a Thermal Barrier Coating System Under Thermal Mechanical Gas Turbine Operating Conditions

    NASA Astrophysics Data System (ADS)

    Manero, Albert; Sofronsky, Stephen; Knipe, Kevin; Meid, Carla; Wischek, Janine; Okasinski, John; Almer, Jonathan; Karlsson, Anette M.; Raghavan, Seetha; Bartsch, Marion

    2015-07-01

    Advances in aircraft and land-based turbine engines have been increasing the extreme loading conditions on traditional engine components and have incited the need for improved performance with the use of protective coatings. These protective coatings shield the load-bearing super alloy blades from the high-temperature combustion gases by creating a thermal gradient over their thickness. This addition extends the life and performance of blades. A more complete understanding of the behavior, failure mechanics, and life expectancy for turbine blades and their coatings is needed to enhance and validate simulation models. As new thermal-barrier-coated materials and deposition methods are developed, strides to effectively test, evaluate, and prepare the technology for industry deployment are of paramount interest. Coupling the experience and expertise of researchers at the University of Central Florida, The German Aerospace Center, and Cleveland State University with the world-class synchrotron x-ray beam at the Advanced Photon Source in Argonne National Laboratory, the synergistic collaboration has yielded previously unseen measurements to look inside the coating layer system for in situ strain measurements during representative service loading. These findings quantify the in situ strain response on multilayer thermal barrier coatings and shed light on the elastic and nonelastic properties of the layers and the role of mechanical load and internal cooling variations on the response. The article discusses the experimental configuration and development of equipment to perform in situ strain measurements on multilayer thin coatings and provides an overview of the achievements thus far.

  8. Evaluation of Gas-Cooled Pressurized Phosphoric Acid Fuel Cells for Electric Utility Power Generation

    NASA Technical Reports Server (NTRS)

    Faroque, M.

    1983-01-01

    Gas cooling is a more reliable, less expensive and a more simple alternative to conventional liquid cooling for heat removal from the phosphoric acid fuel cell (PAFC). The feasibility of gas-cooling was already demonstrated in atmospheric pressure stacks. Theoretical and experimental investigations of gas-cooling for pressurized PAFC are presented. Two approaches to gas cooling, Distributed Gas-Cooling (DIGAS) and Separated Gas-Cooling (SGC) were considered, and a theoretical comparison on the basis of cell performance indicated SGC to be superior to DIGAS. The feasibility of SGC was experimentally demonstrated by operating a 45-cell stack for 700 hours at pressure, and determining thermal response and the effect of other related parameters.

  9. Thermal and chemical tests of the steam generator of unit 3 at the Kalinin nuclear power station

    NASA Astrophysics Data System (ADS)

    Davidenko, N. N.; Trunov, N. B.; Saakov, E. S.; Berezanin, A. A.; Bogomolov, I. N.; Derii, V. P.; Nemytov, D. S.; Usanov, D. A.; Shestakov, N. B.; Shchelik, S. V.

    2007-12-01

    The results obtained from combined thermal and chemical tests of the steam generator of Unit 3 at the Kalinin nuclear power station are summarized. The obtained data are compared with the results of thermal and chemical tests carried out on steam generators at other nuclear power stations equipped with VVER-1000 reactors, and recommendations on selecting the steam-generator blowdown schedule are given.

  10. Life Cycle Greenhouse Gas Emissions of Coal-Fired Electricity Generation: Systematic Review and Harmonization

    SciTech Connect

    Whitaker, M.; Heath, G. A.; O'Donoughue, P.; Vorum, M.

    2012-04-01

    This systematic review and harmonization of life cycle assessments (LCAs) of utility-scale coal-fired electricity generation systems focuses on reducing variability and clarifying central tendencies in estimates of life cycle greenhouse gas (GHG) emissions. Screening 270 references for quality LCA methods, transparency, and completeness yielded 53 that reported 164 estimates of life cycle GHG emissions. These estimates for subcritical pulverized, integrated gasification combined cycle, fluidized bed, and supercritical pulverized coal combustion technologies vary from 675 to 1,689 grams CO{sub 2}-equivalent per kilowatt-hour (g CO{sub 2}-eq/kWh) (interquartile range [IQR]= 890-1,130 g CO{sub 2}-eq/kWh; median = 1,001) leading to confusion over reasonable estimates of life cycle GHG emissions from coal-fired electricity generation. By adjusting published estimates to common gross system boundaries and consistent values for key operational input parameters (most importantly, combustion carbon dioxide emission factor [CEF]), the meta-analytical process called harmonization clarifies the existing literature in ways useful for decision makers and analysts by significantly reducing the variability of estimates ({approx}53% in IQR magnitude) while maintaining a nearly constant central tendency ({approx}2.2% in median). Life cycle GHG emissions of a specific power plant depend on many factors and can differ from the generic estimates generated by the harmonization approach, but the tightness of distribution of harmonized estimates across several key coal combustion technologies implies, for some purposes, first-order estimates of life cycle GHG emissions could be based on knowledge of the technology type, coal mine emissions, thermal efficiency, and CEF alone without requiring full LCAs. Areas where new research is necessary to ensure accuracy are also discussed.

  11. A search for thermal isomerization of olefins to carbenes: Thermal generations of the silicon-nitrogen double bond

    SciTech Connect

    Zhang, Xianping.

    1990-09-21

    The first part of this thesis will search for the thermal isomerization of olefins to carbenes which is predicted to be a high energy process by calculations and has only been observed in a few strained olefins. The possibility of thermal isomerization of simple olefins to carbenes will be explored. Substitution of a silyl group on the double bond of an olefin allows a potential intermediate which has a {beta}-radical to the silyl group during the cis-trans isomerization. The effects of a trimethylsilyl group on this isomerization are the subject of this study. The second part of this thesis will include the generation and chemistry of intermediates containing a silicon-nitrogen double bond. The isomerization of parent silanimine to the aminosilylene was calculated to be a high energy process. New approaches to the silicon-nitrogen double bond will also be presented. 92 refs., 12 figs., 11 tabs.

  12. Efficient gas lasers pumped by generators with inductive energy storage

    NASA Astrophysics Data System (ADS)

    Tarasenko, Victor F.; Panchenko, Alexei N.; Tel'minov, Alexei E.

    2008-05-01

    Laser and discharge parameters in mixtures of rare gases with halogens driven by a pre-pulse-sustainer circuit technique are studied. Inductive energy storage with semiconductor opening switch was used for the high-voltage pre-pulse formation. It was shown that the pre-pulse with a high amplitude and short rise-time along with sharp increase of discharge current and uniform UV- and x-ray preionization allow to form long-lived stable discharge in halogen containing gas mixtures. Improvement of both pulse duration and output energy was achieved for XeCl-, XeF-, KrCl- and KrF excimer lasers. Maximal laser output was as high as 1 J at efficiency up to 4%. Increase both of the radiation power and laser pulse duration were achieved in N2-NF3 (SF6) and He-F2 (NF3) gas mixtures, as well.

  13. Gas core nuclear thermal rocket engine research and development in the former USSR

    SciTech Connect

    Koehlinger, M.W.; Bennett, R.G.; Motloch, C.G.; Gurfink, M.M.

    1992-09-01

    Beginning in 1957 and continuing into the mid 1970s, the USSR conducted an extensive investigation into the use of both solid and gas core nuclear thermal rocket engines for space missions. During this time the scientific and engineering. problems associated with the development of a solid core engine were resolved. At the same time research was undertaken on a gas core engine, and some of the basic engineering problems associated with the concept were investigated. At the conclusion of the program, the basic principles of the solid core concept were established. However, a prototype solid core engine was not built because no established mission required such an engine. For the gas core concept, some of the basic physical processes involved were studied both theoretically and experimentally. However, no simple method of conducting proof-of-principle tests in a neutron flux was devised. This report focuses primarily on the development of the. gas core concept in the former USSR. A variety of gas core engine system parameters and designs are presented, along with a summary discussion of the basic physical principles and limitations involved in their design. The parallel development of the solid core concept is briefly described to provide an overall perspective of the magnitude of the nuclear thermal propulsion program and a technical comparison with the gas core concept.

  14. Turbulence generated by a gas of electron acoustic solitons

    SciTech Connect

    Dubouloz, N.; Pottelette, R.; Malingre, M.; Treumann, R.A.

    1993-10-01

    The authors consider a gas of electron acoustic solitons propagating in a magnetized plasma, such as the auroral region. They show that such modes can exist, and propagate, and that the velocities and amplitudes of such waves, consistent with measured plasma density and temperature, are capable of explaining the high frequency part of the broadband electrostatic noise observed by the Viking satellite, which is in a spectral region forbidden to linear electrostatic waves.

  15. Gas Foil Bearings for Space Propulsion Nuclear Electric Power Generation

    NASA Technical Reports Server (NTRS)

    Howard, Samuel A.; DellaCorte, Christopher

    2006-01-01

    The choice of power conversion technology is critical in directing the design of a space vehicle for the future NASA mission to Mars. One candidate design consists of a foil bearing supported turbo alternator driven by a helium-xenon gas mixture heated by a nuclear reactor. The system is a closed-loop, meaning there is a constant volume of process fluid that is sealed from the environment. Therefore, foil bearings are proposed due to their ability to use the process gas as a lubricant. As such, the rotor dynamics of a foil bearing supported rotor is an important factor in the eventual design. The current work describes a rotor dynamic analysis to assess the viability of such a system. A brief technology background, assumptions, analyses, and conclusions are discussed in this report. The results indicate that a foil bearing supported turbo alternator is possible, although more work will be needed to gain knowledge about foil bearing behavior in helium-xenon gas.

  16. Effects of Globally Waste Disturbing Activities on Gas Generation, Retention, and Release in Hanford Waste Tanks

    SciTech Connect

    Stewart, Charles W.; Fountain, Matthew S.; Huckaby, James L.; Mahoney, Lenna A.; Meyer, Perry A.; Wells, Beric E.

    2005-08-02

    Various operations are authorized in Hanford single- and double-shell tanks that disturb all or a large fraction of the waste. These globally waste-disturbing activities have the potential to release a large fraction of the retained flammable gas and to affect future gas generation, retention, and release behavior. This report presents analyses of the expected flammable gas release mechanisms and the potential release rates and volumes resulting from these activities. The background of the flammable gas safety issue at Hanford is summarized, as is the current understanding of gas generation, retention, and release phenomena. Considerations for gas monitoring and assessment of the potential for changes in tank classification and steady-state flammability are given.

  17. A micro gas chromatography column with a micro thermal conductivity detector for volatile organic compound analysis.

    PubMed

    Sun, J H; Cui, D F; Chen, X; Zhang, L L; Cai, H Y; Li, H

    2013-02-01

    In this paper, a micro gas chromatography (μGC) system contained a μGC column and a micro thermal conductivity detector (μTCD) was proposed. In order to reduce the volume of the system, some micro heaters were integrated on the surface and backside of the GC column, which could provide a robust temperature programming capability and rapidly increase the temperature of the μGC column. In addition, a silicon-glass μTCD with four-thermistor thermal conductivity cells that can offer significant advantages over previously reported designs including low dead volume, good thermal isolation, and elimination of the thermal noise was proposed in this paper. Experimental results have indicated that the μGC system with a detection limit of several ppm concentration levels separated and detected the benzene, toluene, and styrene in less than 3 min, and the μGC system also exhibited a good linear response in the test range. PMID:23464240

  18. A micro gas chromatography column with a micro thermal conductivity detector for volatile organic compound analysis

    NASA Astrophysics Data System (ADS)

    Sun, J. H.; Cui, D. F.; Chen, X.; Zhang, L. L.; Cai, H. Y.; Li, H.

    2013-02-01

    In this paper, a micro gas chromatography (μGC) system contained a μGC column and a micro thermal conductivity detector (μTCD) was proposed. In order to reduce the volume of the system, some micro heaters were integrated on the surface and backside of the GC column, which could provide a robust temperature programming capability and rapidly increase the temperature of the μGC column. In addition, a silicon-glass μTCD with four-thermistor thermal conductivity cells that can offer significant advantages over previously reported designs including low dead volume, good thermal isolation, and elimination of the thermal noise was proposed in this paper. Experimental results have indicated that the μGC system with a detection limit of several ppm concentration levels separated and detected the benzene, toluene, and styrene in less than 3 min, and the μGC system also exhibited a good linear response in the test range.

  19. High-performance flat-panel solar thermoelectric generators with high thermal concentration.

    PubMed

    Kraemer, Daniel; Poudel, Bed; Feng, Hsien-Ping; Caylor, J Christopher; Yu, Bo; Yan, Xiao; Ma, Yi; Wang, Xiaowei; Wang, Dezhi; Muto, Andrew; McEnaney, Kenneth; Chiesa, Matteo; Ren, Zhifeng; Chen, Gang

    2011-07-01

    The conversion of sunlight into electricity has been dominated by photovoltaic and solar thermal power generation. Photovoltaic cells are deployed widely, mostly as flat panels, whereas solar thermal electricity generation relying on optical concentrators and mechanical heat engines is only seen in large-scale power plants. Here we demonstrate a promising flat-panel solar thermal to electric power conversion technology based on the Seebeck effect and high thermal concentration, thus enabling wider applications. The developed solar thermoelectric generators (STEGs) achieved a peak efficiency of 4.6% under AM1.5G (1 kW m(-2)) conditions. The efficiency is 7-8 times higher than the previously reported best value for a flat-panel STEG, and is enabled by the use of high-performance nanostructured thermoelectric materials and spectrally-selective solar absorbers in an innovative design that exploits high thermal concentration in an evacuated environment. Our work opens up a promising new approach which has the potential to achieve cost-effective conversion of solar energy into electricity. PMID:21532584

  20. Theoretical study of thermal conductivities of various gas mixtures through the generalized Lennard-Jones interaction potential for application in gas-discharge lasers

    NASA Astrophysics Data System (ADS)

    Temelkov, K. A.; Slaveeva, S. I.; Fedchenko, Yu I.

    2016-03-01

    Thermal conductivities of helium, neon, bromine, and hydrogen are calculated on the basis of the (12-6) Lennard-Jones interaction approximation. Where necessary for a more precise approximation, a generalized (n-m) Lennard-Jones interaction potential is used. Thermal conductivities of binary gas systems are calculated and compared through two different empirical methods for the case of gas discharges in He, Ne, and Ne-He mixtures with small admixtures of bromine and hydrogen. A new simple method is proposed for the thermal conductivity determination for the 3- and 4-component gas mixtures of our interest.

  1. Gas Generation and Hold-Up in Hanford Waste Treatment Plant Process Streams Containing Anti-Foam Agent (AFA)

    SciTech Connect

    Arm, Stuart T.; Poloski, Adam P.; Stewart, Charles W.; Meyer, Perry A.; Kurath, Dean E.

    2007-06-29

    The Waste Treatment and Immobilization Plant (WTP) is being designed and built to pretreat and vitrify defense wastes stored at the DOE Hanford Site near Richland, Washington. Some of the WTP process streams are slurries that exhibit non-Newtonian rheological behavior. Such streams can accumulate hazardous quantities of thermally and radiolytically generated flammable gases. Experiments were performed in a bubble column to measure gas hold-up under various conditions to better understand flammable gas behavior in WTP processes. The two non-Newtonian slurries tested were kaolin-bentonite clay and a chemical surrogate of pretreated high-level waste (HLW) from Hanford Tank AZ-101. The addition of solutes, whether a salt or anti-foaming agent (AFA) decrease the bubble coalescence rate leading to smaller bubbles, lower bubble rise velocity and higher gas holdup. Gas holdup decreased with increasing yield stress and consistency. The impact of AFA on gas holdup in kaolin-bentonite clay was less than in simulated HLW, presumably because the AFA adsorbed onto the clay particles, rendering it unavailable to retard coalescence.

  2. Gas generation mechanism due to electrolyte decomposition in commercial lithium-ion cell

    NASA Astrophysics Data System (ADS)

    Kumai, Kazuma; Miyashiro, Hajime; Kobayashi, Yo; Takei, Katsuhito; Ishikawa, Rikio

    To elucidate the gas generation mechanism due to electrolyte decomposition in commercial lithium-ion cells after long cycling, we developed a device which can accurately determine the volume of generated gas in the cell. Experiments on Li xC 6/Li 1- xCoO 2 cells using electrolytes such as 1 M LiPF 6 in propylene carbonate (PC), dimethyl carbonate (DMC), ethyl methyl carbonate (EMC), and diethyl carbonate (DEC) are presented and discussed. In the nominal voltage range (4.2-2.5 V), compositional change due mainly to ester exchange reaction occurs, and gaseous products in the cell are little. Generated gas volume and compositional change in the electrolyte are detected largely in overcharged cells, and we discussed that gas generation due to electrolyte decomposition involves different decomposition reactions in overcharged and overdischarged cells.

  3. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT: BIOQUELL, INC. CLARIS C HYDROGEN PEROXIDE GAS GENERATOR

    EPA Science Inventory

    The Environmental Technology Verification report discusses the technology and performance of the Clarus C Hydrogen Peroxide Gas Generator, a biological decontamination device manufactured by BIOQUELL, Inc. The unit was tested by evaluating its ability to decontaminate seven types...

  4. Performance evaluation of non-thermal plasma injection for elemental mercury oxidation in a simulated flue gas.

    PubMed

    An, Jiutao; Shang, Kefeng; Lu, Na; Jiang, Yuze; Wang, Tiecheng; Li, Jie; Wu, Yan

    2014-03-15

    The use of non-thermal plasma (NTP) injection approach to oxidize elemental mercury (Hg(0)) in simulated flue gas at 110°C was studied, where a surface discharge plasma reactor (SDPR) inserted in the simulated flue duct was used to generate and inject active species into the flue gas. Approximately 81% of the Hg(0) was oxidized and 20.5μgkJ(-1) of energy yield was obtained at a rate of 3.9JL(-1). A maximal Hg(0) oxidation efficiency was found with a change in the NTP injection air flow rate. A high Hg(0) oxidation efficiency was observed in the mixed flue gas that included O2, H2O, SO2, NO and HCl. Chemical and physical processes (e.g., ozone, N2 metastable states and UV-light) were found to contribute to Hg(0) oxidation, with ozone playing a dominant role. The deposited mercury species on the internal surface of the flue duct was analyzed using X-ray photoelectron spectroscopy (XPS) and electronic probe microanalysis (EPMA), and the deposit was identified as HgO. The mercury species is thought to primarily exist in the form of HgO(s) by adhering to the suspended aerosols in the gas-phase. PMID:24513449

  5. Microfabricated thermal modulator for comprehensive two-dimensional micro gas chromatography: design, thermal modeling, and preliminary testing.

    PubMed

    Kim, Sung-Jin; Reidy, Shaelah M; Block, Bruce P; Wise, Kensall D; Zellers, Edward T; Kurabayashi, Katsuo

    2010-07-01

    In comprehensive two-dimensional gas chromatography (GC x GC), a modulator is placed at the juncture between two separation columns to focus and re-inject eluting mixture components, thereby enhancing the resolution and the selectivity of analytes. As part of an effort to develop a microGC x microGC prototype, in this report we present the design, fabrication, thermal operation, and initial testing of a two-stage microscale thermal modulator (microTM). The microTM contains two sequential serpentine Pyrex-on-Si microchannels (stages) that cryogenically trap analytes eluting from the first-dimension column and thermally inject them into the second-dimension column in a rapid, programmable manner. For each modulation cycle (typically 5 s for cooling with refrigeration work of 200 J and 100 ms for heating at 10 W), the microTM is kept approximately at -50 degrees C by a solid-state thermoelectric cooling unit placed within a few tens of micrometres of the device, and heated to 250 degrees C at 2800 degrees C s(-1) by integrated resistive microheaters and then cooled back to -50 degrees C at 250 degrees C s(-1). Thermal crosstalk between the two stages is less than 9%. A lumped heat transfer model is used to analyze the device design with respect to the rates of heating and cooling, power dissipation, and inter-stage thermal crosstalk as a function of Pyrex-membrane thickness, air-gap depth, and stage separation distance. Experimental results are in agreement with trends predicted by the model. Preliminary tests using a conventional capillary column interfaced to the microTM demonstrate the capability for enhanced sensitivity and resolution as well as the modulation of a mixture of alkanes. PMID:20556268

  6. Generation and delivery device for ozone gas and ozone dissolved in water

    NASA Technical Reports Server (NTRS)

    Andrews, Craig C. (Inventor); Murphy, Oliver J. (Inventor)

    2004-01-01

    The present invention provides an ozone generation and delivery system that lends itself to small scale applications and requires very low maintenance. The system preferably includes an anode reservoir and a cathode phase separator each having a hydrophobic membrane to allow phase separation of produced gases from water. The hydrogen gas, ozone gas and water containing ozone may be delivered under pressure.

  7. Use of Photothermally Generated Seebeck Voltage for Thermal Characterization of Thermoelectric Materials

    NASA Astrophysics Data System (ADS)

    Kuriakose, Maju; Depriester, Michael; King, Roch Chan Yu; Roussel, Frédérick; Sahraoui, Abdelhak Hadj

    2014-06-01

    A simple and accurate experimental procedure to measure simultaneously the thermal properties (conductivity, diffusivity, and effusivity) of thermoelectric (TE) materials using their Seebeck voltage is proposed. The technique is based on analysis of a periodically oscillating thermoelectric signal generated from a TE material when it is thermally excited using an intensity-modulated laser source. A self-normalization procedure is implemented in the presented method using TE signals generated by changing the laser heating from one side to another of the TE material. Experiments are done on a polyaniline carbon nanohybrid (6.6 wt.% carbon nanotubes), yielding a thermal conductivity of 1.106 ± 0.001 W/m-K. The results are compared with the results from photothermal infrared radiometry experiments.

  8. STP-ECRTS - THERMAL AND GAS ANALYSES FOR SLUDGE TRANSPORT AND STORAGE CONTAINER (STSC) STORAGE AT T PLANT

    SciTech Connect

    CROWE RD; APTHORPE R; LEE SJ; PLYS MG

    2010-04-29

    The Sludge Treatment Project (STP) is responsible for the disposition of sludge contained in the six engineered containers and Settler tank within the 105-K West (KW) Basin. The STP is retrieving and transferring sludge from the Settler tank into engineered container SCS-CON-230. Then, the STP will retrieve and transfer sludge from the six engineered containers in the KW Basin directly into a Sludge Transport and Storage Containers (STSC) contained in a Sludge Transport System (STS) cask. The STSC/STS cask will be transported to T Plant for interim storage of the STSC. The STS cask will be loaded with an empty STSC and returned to the KW Basin for loading of additional sludge for transportation and interim storage at T Plant. CH2MHILL Plateau Remediation Company (CHPRC) contracted with Fauske & Associates, LLC (FAI) to perform thermal and gas generation analyses for interim storage of STP sludge in the Sludge Transport and Storage Container (STSCs) at T Plant. The sludge types considered are settler sludge and sludge originating from the floor of the KW Basin and stored in containers 210 and 220, which are bounding compositions. The conditions specified by CHPRC for analysis are provided in Section 5. The FAI report (FAI/10-83, Thermal and Gas Analyses for a Sludge Transport and Storage Container (STSC) at T Plant) (refer to Attachment 1) documents the analyses. The process considered was passive, interim storage of sludge in various cells at T Plant. The FATE{trademark} code is used for the calculation. The results are shown in terms of the peak sludge temperature and hydrogen concentrations in the STSC and the T Plant cell. In particular, the concerns addressed were the thermal stability of the sludge and the potential for flammable gas mixtures. This work was performed with preliminary design information and a preliminary software configuration.

  9. Sonic Booms and Diffusion Wakes Generated by a Heavy Quark in Thermal Gauge-String Duality

    SciTech Connect

    Gubser, Steven S.; Pufu, Silviu S.; Yarom, Amos

    2008-01-11

    We evaluate the Poynting vector generated by a heavy quark moving through a thermal state of N=4 gauge theory using the gauge-string duality. A significant diffusion wake is observed as well as a Mach cone. We discuss the ratio of the energy going into sound modes to the energy coming in from the wake.

  10. Sonic booms and diffusion wakes generated by a heavy quark in thermal gauge-string duality.

    PubMed

    Gubser, Steven S; Pufu, Silviu S; Yarom, Amos

    2008-01-11

    We evaluate the Poynting vector generated by a heavy quark moving through a thermal state of N=4 gauge theory using the gauge-string duality. A significant diffusion wake is observed as well as a Mach cone. We discuss the ratio of the energy going into sound modes to the energy coming in from the wake. PMID:18232753

  11. Industry sector analysis, Ecuador: Thermal power generating equipment. Export trade information

    SciTech Connect

    Not Available

    1993-04-01

    The article is derived from a report titled: The Thermal Power Generation Equipment Market in Ecuador, dated April 1993, prepared by P. Zaldumbide, A. Moreno, and N. Ordonez, American Embassy - Quito. The article consists of 10 pages and contains the following subtopics: Overview; Statistical Data; Market Assessment; Best Sales Prospects; Competitive Situation; Market Access; and Trade Promotion Opportunities.

  12. Application of the ATHOS3 code for steam generator thermal hydraulics and fouling analysis

    SciTech Connect

    Srikantiah, G.S.; Chappidi, P.R.

    1996-09-01

    The steam generator is a most important component in the coolant loop of Pressurized Water Reactors. Although designed for a 30--40 year operating life, severe material degradation problems have occurred within the first ten years of operation. Performance and reliability evaluations are required on a continuing basis to develop solutions and design modifications to ensure reliable operation of these systems. Thermal hydraulic analysis provides basic information such as velocity and void fraction distributions within the secondary side of the steam generator needed for the evaluation of sludge deposition, bundle fouling, tube vibration, fretting, wear and fatigue. This paper presents detailed thermal hydraulic analysis of several steam generator designs, and analyzes the correlation between thermal hydraulic distributions, sludge deposition and bundle fouling using a recent model for sludge transport and deposition. The correlation between thermal hydraulic distributions and other degradation mechanisms such as circumferential cracking of tubes is also presented. The results show that there is a strong correlation between flow velocity, void fraction and sludge deposition. The calculated sludge deposit potential maps are in very good agreement with the observed results within operating steam generators.

  13. Development of high flux thermal neutron generator for neutron activation analysis

    NASA Astrophysics Data System (ADS)

    Vainionpaa, Jaakko H.; Chen, Allan X.; Piestrup, Melvin A.; Gary, Charles K.; Jones, Glenn; Pantell, Richard H.

    2015-05-01

    The new model DD110MB neutron generator from Adelphi Technology produces thermal (<0.5 eV) neutron flux that is normally achieved in a nuclear reactor or larger accelerator based systems. Thermal neutron fluxes of 3-5 · 107 n/cm2/s are measured. This flux is achieved using four ion beams arranged concentrically around a target chamber containing a compact moderator with a central sample cylinder. Fast neutron yield of ∼2 · 1010 n/s is created at the titanium surface of the target chamber. The thickness and material of the moderator is selected to maximize the thermal neutron flux at the center. The 2.5 MeV neutrons are quickly thermalized to energies below 0.5 eV and concentrated at the sample cylinder. The maximum flux of thermal neutrons at the target is achieved when approximately half of the neutrons at the sample area are thermalized. In this paper we present simulation results used to characterize performance of the neutron generator. The neutron flux can be used for neutron activation analysis (NAA) prompt gamma neutron activation analysis (PGNAA) for determining the concentrations of elements in many materials. Another envisioned use of the generator is production of radioactive isotopes. DD110MB is small enough for modest-sized laboratories and universities. Compared to nuclear reactors the DD110MB produces comparable thermal flux but provides reduced administrative and safety requirements and it can be run in pulsed mode, which is beneficial in many neutron activation techniques.

  14. Gas and isotope chemistry of thermal features in Yellowstone National Park, Wyoming

    USGS Publications Warehouse

    Bergfeld, D.; Lowenstern, Jacob B.; Hunt, Andrew G.; Shanks, W.C. Pat, III; Evans, William

    2011-01-01

    This report presents 130 gas analyses and 31 related water analyses on samples collected from thermal features at Yellowstone between 2003 and 2009. An overview of previous studies of gas emissions at Yellowstone is also given. The analytical results from the present study include bulk chemistry of gases and waters and isotope values for water and steam (delta18O, dealtaD), carbon dioxide (delta13C only), methane (delta13C only), helium, neon, and argon. We include appendixes containing photos of sample sites, geographic information system (GIS) files including shape and kml formats, and analytical results in spreadsheets. In addition, we provide a lengthy discussion of previous work on gas chemistry at Yellowstone and a general discussion of the implications of our results. We demonstrate that gases collected from different thermal areas often have distinct chemical signatures, and that differences across the thermal areas are not a simple function of surface temperatures or the type of feature. Instead, gas chemistry and isotopic composition are linked to subsurface lithologies and varying contributions from magmatic, crustal, and meteoric sources.

  15. Atmospheric noble gas signatures in deep Michigan Basin brines as indicators of a past thermal event

    NASA Astrophysics Data System (ADS)

    Ma, Lin; Castro, Maria Clara; Hall, Chris M.

    2009-01-01

    Atmospheric noble gases (e.g., 22Ne, 36Ar, 84Kr, 130Xe) in crustal fluids are only sensitive to subsurface physical processes. In particular, depletion of atmospheric noble gases in groundwater due to boiling and steam separation is indicative of the occurrence of a thermal event and can thus be used to trace the thermal history of stable tectonic regions. We present noble gas concentrations of 38 deep brines (~ 0.5-3.6 km) from the Michigan Basin. The atmospheric noble gas component shows a strong depletion pattern with respect to air saturated water. Depletion of lighter gases ( 22Ne and 36Ar) is stronger compared to the heavier ones ( 84Kr and 130Xe). To understand the mechanisms responsible for this overall atmospheric noble gas depletion, phase interaction models were tested. We show that this atmospheric noble gas depletion pattern is best explained by a model involving subsurface boiling and steam separation, and thus, consistent with the occurrence of a past thermal event of mantle origin as previously indicated by both high 4He/heat flux ratios and the presence of primordial mantle He and Ne signatures in the basin. Such a conceptual model is also consistent with the presence of past elevated temperatures in the Michigan Basin (e.g., ~ 80-260 °C) at shallow depths as suggested by previous thermal studies in the basin. We suggest that recent reactivation of the ancient mid-continent rift system underneath the Michigan Basin is likely responsible for the release of both heat and mantle noble gases into the basin via deep-seated faults and fracture zones. Relative enrichment of atmospheric Kr and Xe with respect to Ar is also observed, and is interpreted as reflecting the addition of sedimentary Kr and Xe from associated hydrocarbons, following the hydrothermal event. This study pioneers the use of atmospheric noble gases in subsurface fluids to trace the thermal history of stable tectonic regions.

  16. Estimation of temperature elevation generated by ultrasonic irradiation in biological tissues using the thermal wave method

    NASA Astrophysics Data System (ADS)

    Liu, Xiao-Zhou; Zhu, Yi; Zhang, Fei; Gong, Xiu-Fen

    2013-02-01

    In most previous models, simulation of the temperature generation in tissue is based on the Pennes bio-heat transfer equation, which implies an instantaneous thermal energy deposition in the medium. Due to the long thermal relaxation time τ (20 s-30 s) in biological tissues, the actual temperature elevation during clinical treatments could be different from the value predicted by the Pennes bioheat equation. The thermal wave model of bio-heat transfer (TWMBT) defines a thermal relaxation time to describe the tissue heating from ultrasound exposure. In this paper, COMSOL Multiphysics 3.5a, a finite element method software package, is used to simulate the temperature response in tissues based on Pennes and TWMBT equations. We further discuss different factors in the bio-heat transfer model on the influence of the temperature rising and it is found that the temperature response in tissue under ultrasound exposure is a rising process with a declining rate. The thermal relaxation time inhibits the temperature elevation at the beginning of ultrasonic heating. Besides, thermal relaxation in TWMBT leads to lower temperature estimation than that based on Pennes equation during the same period of time. The blood flow carrying heat dominates most to the decline of temperature rising rate and the influence increases with temperature rising. On the contrary, heat diffusion, which can be described by thermal conductivity, has little effect on the temperature rising.

  17. Measurements of gas sorption from seawater and the influence of gas release on open-cycle ocean thermal energy conversion (OC-OTEC) system performance

    SciTech Connect

    Penney, T R; Althof, J A

    1985-06-01

    The technical community has questioned the validity and cost-effectiveness of open-cycle ocean thermal energy conversion (OC-OTEC) systems because of the unknown effect of noncondensable gas on heat exchanger performance and the power needed to run vacuum equipment to remove this gas. To date, studies of seawater gas desorption have not been prototypical for system level analysis. This study gives preliminary gas desorption data on a vertical spout, direct contact evaporator and multiple condenser geometries. Results indicate that dissolved gas can be substantially removed before the seawater enters the heat exchange process, reducing the uncertainty and effect of inert gas on heat exchanger performance.

  18. New portable instrument for the measurement of thermal conductivity in gas process conditions

    NASA Astrophysics Data System (ADS)

    Queirós, C. S. G. P.; Lourenço, M. J. V.; Vieira, S. I.; Serra, J. M.; Nieto de Castro, C. A.

    2016-06-01

    The development of high temperature gas sensors for the monitoring and determination of thermophysical properties of complex process mixtures at high temperatures faces several problems, related with the materials compatibility, active sensing parts sensitivity, and lifetime. Ceramic/thin metal films based sensors, previously developed for the determination of thermal conductivity of molten materials up to 1200 °C, were redesigned, constructed, and applied for thermal conductivity measuring sensors. Platinum resistance thermometers were also developed using the same technology, to be used in the temperature measurement, which were also constructed and tested. A new data acquisition system for the thermal conductivity sensors, based on a linearization of the transient hot-strip model, including a portable electronic bridge for the measurement of the thermal conductivity in gas process conditions was also developed. The equipment is capable of measuring the thermal conductivity of gaseous phases with an accuracy of 2%-5% up to 840 °C (95% confidence level). The development of sensors up to 1200 °C, present at the core of the combustion chambers, will be done in a near future.

  19. New portable instrument for the measurement of thermal conductivity in gas process conditions.

    PubMed

    Queirós, C S G P; Lourenço, M J V; Vieira, S I; Serra, J M; Nieto de Castro, C A

    2016-06-01

    The development of high temperature gas sensors for the monitoring and determination of thermophysical properties of complex process mixtures at high temperatures faces several problems, related with the materials compatibility, active sensing parts sensitivity, and lifetime. Ceramic/thin metal films based sensors, previously developed for the determination of thermal conductivity of molten materials up to 1200 °C, were redesigned, constructed, and applied for thermal conductivity measuring sensors. Platinum resistance thermometers were also developed using the same technology, to be used in the temperature measurement, which were also constructed and tested. A new data acquisition system for the thermal conductivity sensors, based on a linearization of the transient hot-strip model, including a portable electronic bridge for the measurement of the thermal conductivity in gas process conditions was also developed. The equipment is capable of measuring the thermal conductivity of gaseous phases with an accuracy of 2%-5% up to 840 °C (95% confidence level). The development of sensors up to 1200 °C, present at the core of the combustion chambers, will be done in a near future. PMID:27370495

  20. Gas composition and hydrochemistry of non-volcanic thermal springs in Peninsular Malaysia

    NASA Astrophysics Data System (ADS)

    Wuh Terng, Lim; Tsanyao F, Yang; Hsuan-Wen, Chen; Yusoff, Ismail Bin

    2015-04-01

    Peninsular Malaysia is located on Sunda Plate which situated between two major boundaries of tectonic plates, Australian Plate and Eurasian Plate. Over sixty thermal springs have been reported in Peninsular Malaysia, a non-volcanic country, but their water and gas geochemistry characteristic have not been reported yet. The aim of this study is to identify the geochemical characteristics of water and gas samples from selected sixteen thermal springs. This is the first time to study the thermal springs in Peninsular Malaysia in terms of dissolved gas. Due to the chemical inertness, the concentration and isotopic composition of dissolved gas can always become a good indicators of mantle degassing, geothermal circulation and the condition of water-rock interaction. Other parameters such as pH, temperature, electric conductivity, and water radon values will be also recorded. The surface temperature of studied thermal springs range from 40.1° C to 88.7° C, the pH values range from 6.6 to 9.1, and the conductivity varies between 200 μs/cm and 3700 μs/cm. Meanwhile, the water radon analysis which been carried out in the field by using RAD7 Radon Detector. The water radon values of selected thermal springs in Peninsular Malaysia vary from 111,866 Bq/cm3 to 200 Bq/cm3, indicating various radon sources which mainly controlled by the permeability and lithology of host rocks in studied areas. Analysed results show that the constituent of dissolved gas in thermal springs is major in nitrogen and minor in other compositions such as argon, carbon dioxides and oxygen. Isotopic composition of hydrogen (D/H) and oxygen (18O/16O) mostly fall along the MWL, indicating the meteoric water is the major fluid source for those hot springs. However, the helium isotopic ratios of most samples show consistently low value, less than 0.1 Ra (Ra is the 3He/4He ratio of the air). It implies that crust component is the major helium gas source for those hot springs.

  1. Life Cycle Greenhouse Gas Emissions from Electricity Generation (Fact Sheet)

    SciTech Connect

    Not Available

    2013-01-01

    Analysts at NREL have developed and applied a systematic approach to review the LCA literature, identify primary sources of variability and, where possible, reduce variability in GHG emissions estimates through a procedure called 'harmonization.' Harmonization of the literature provides increased precision and helps clarify the impacts of specific electricity generation choices, producing more robust results.

  2. Accounting for fuel price risk: Using forward natural gas prices instead of gas price forecasts to compare renewable to natural gas-fired generation

    SciTech Connect

    Bolinger, Mark; Wiser, Ryan; Golove, William

    2003-08-13

    Against the backdrop of increasingly volatile natural gas prices, renewable energy resources, which by their nature are immune to natural gas fuel price risk, provide a real economic benefit. Unlike many contracts for natural gas-fired generation, renewable generation is typically sold under fixed-price contracts. Assuming that electricity consumers value long-term price stability, a utility or other retail electricity supplier that is looking to expand its resource portfolio (or a policymaker interested in evaluating different resource options) should therefore compare the cost of fixed-price renewable generation to the hedged or guaranteed cost of new natural gas-fired generation, rather than to projected costs based on uncertain gas price forecasts. To do otherwise would be to compare apples to oranges: by their nature, renewable resources carry no natural gas fuel price risk, and if the market values that attribute, then the most appropriate comparison is to the hedged cost of natural gas-fired generation. Nonetheless, utilities and others often compare the costs of renewable to gas-fired generation using as their fuel price input long-term gas price forecasts that are inherently uncertain, rather than long-term natural gas forward prices that can actually be locked in. This practice raises the critical question of how these two price streams compare. If they are similar, then one might conclude that forecast-based modeling and planning exercises are in fact approximating an apples-to-apples comparison, and no further consideration is necessary. If, however, natural gas forward prices systematically differ from price forecasts, then the use of such forecasts in planning and modeling exercises will yield results that are biased in favor of either renewable (if forwards < forecasts) or natural gas-fired generation (if forwards > forecasts). In this report we compare the cost of hedging natural gas price risk through traditional gas-based hedging instruments (e

  3. Cold gas in cluster cores: global stability analysis and non-linear simulations of thermal instability

    NASA Astrophysics Data System (ADS)

    Choudhury, Prakriti Pal; Sharma, Prateek

    2016-04-01

    We perform global linear stability analysis and idealized numerical simulations in global thermal balance to understand the condensation of cold gas from hot/virial atmospheres (coronae), in particular the intracluster medium (ICM). We pay particular attention to geometry (e.g. spherical versus plane-parallel) and the nature of the gravitational potential. Global linear analysis gives a similar value for the fastest growing thermal instability modes in spherical and Cartesian geometries. Simulations and observations suggest that cooling in haloes critically depends on the ratio of the cooling time to the free-fall time (tcool/tff). Extended cold gas condenses out of the ICM only if this ratio is smaller than a threshold value close to 10. Previous works highlighted the difference between the nature of cold gas condensation in spherical and plane-parallel atmospheres; namely, cold gas condensation appeared easier in spherical atmospheres. This apparent difference due to geometry arises because the previous plane-parallel simulations focused on in situ condensation of multiphase gas but spherical simulations studied condensation anywhere in the box. Unlike previous claims, our non-linear simulations show that there are only minor differences in cold gas condensation, either in situ or anywhere, for different geometries. The amount of cold gas depends on the shape of tcool/tff; gas has more time to condense if gravitational acceleration decreases towards the centre. In our idealized plane-parallel simulations with heating balancing cooling in each layer, there can be significant mass/energy/momentum transfer across layers that can trigger condensation and drive tcool/tff far beyond the critical value close to 10.

  4. Differential Scanning Calorimetry and Evolved Gas Analysis at Mars Ambient Conditions Using the Thermal Evolved Gas Analyser (TEGA)

    NASA Technical Reports Server (NTRS)

    Musselwhite, D. S.; Boynton, W. V.; Ming, D. W.; Quadlander, G.; Kerry, K. E.; Bode, R. C.; Bailey, S. H.; Ward, M. G.; Pathare, A. V.; Lorenz, R. D.

    2000-01-01

    Differential Scanning Calorimetry (DSC) combined with evolved gas analysis (EGA) is a well developed technique for the analysis of a wide variety of sample types with broad application in material and soil sciences. However, the use of the technique for samples under conditions of pressure and temperature as found on other planets is one of current development and cutting edge research. The Thermal Evolved Gas Analyzer (TEGA), which was designed, built and tested at the University of Arizona's Lunar and Planetary Lab (LPL), utilizes DSC/EGA. TEGA, which was sent to Mars on the ill-fated Mars Polar Lander, was to be the first application of DSC/EGA on the surface of Mars as well as the first direct measurement of the volatile-bearing mineralogy in martian soil. Additional information is available in the original extended abstract.

  5. Differential Scanning Calorimetry and Evolved Gas Analysis at Mars Ambient Conditions Using the Thermal Evolved Gas Analyzer (TEGA)

    NASA Technical Reports Server (NTRS)

    Musselwhite, D. S.; Boynton, W. V.; Ming, Douglas W.; Quadlander, G.; Kerry, K. E.; Bode, R. C.; Bailey, S. H.; Ward, M. G.; Pathare, A. V.; Lorenz, R. D.

    2000-01-01

    Differential Scanning Calorimetry (DSC) combined with evolved gas analysis (EGA) is a well developed technique for the analysis of a wide variety of sample types with broad application in material and soil sciences. However, the use of the technique for samples under conditions of pressure and temperature as found on other planets is one of current C development and cutting edge research. The Thermal Evolved Gas Analyzer (MGA), which was designed, built and tested at the University of Arizona's Lunar and Planetary Lab (LPL), utilizes DSC/EGA. TEGA, which was sent to Mars on the ill-fated Mars Polar Lander, was to be the first application of DSC/EGA on the surface of Mars as well as the first direct measurement of the volatile-bearing mineralogy in martian soil.

  6. Modeling strategic competition in hydro-thermal electricity generation markets with cascaded reservoir-hydroelectric generation plants

    NASA Astrophysics Data System (ADS)

    Uluca, Basak

    This dissertation aims to achieve two goals. The first is to model the strategic interactions of firms that own cascaded reservoir-hydro plants in oligopolistic and mixed oligopolistic hydrothermal electricity generation markets. Although competition in thermal generation has been extensively modeled since the beginning of deregulation, the literature on competition in hydro generation is still limited; in particular, equilibrium models of oligopoly that study the competitive behavior of firms that own reservoir-hydro plants along the same river in hydrothermal electricity generation markets are still under development. In competitive markets, when the reservoirs are located along the same river, the water released from an upstream reservoir for electricity generation becomes input to the immediate downstream reservoir, which may be owned by a competitor, for current or future use. To capture the strategic interactions among firms with cascaded reservoir-hydro plants, the Upstream-Conjecture approach is proposed. Under the Upstream-Conjecture approach, a firm with an upstream reservoir-hydro plant assumes that firms with downstream reservoir-hydro plants will respond to changes in the upstream firm's water release by adjusting their water release by the same amount. The results of the Upstream Conjecture experiments indicate that firms that own upstream reservoirs in a cascade may have incentive to withhold or limit hydro generation, forcing a reduction in the utilization of the downstream hydro generation plants that are owned by competitors. Introducing competition to hydroelectricity generation markets is challenging and ownership allocation of the previously state-owned cascaded reservoir-hydro plants through privatization can have significant impact on the competitiveness of the generation market. The second goal of the dissertation is to extract empirical guidance about best policy choices for the ownership of the state-owned generation plants, including the

  7. Dual-Stage Consumable-Free Thermal Modulator for the Hyphenation of Thermal Analysis, Gas Chromatography, and Mass Spectrometry.

    PubMed

    Wohlfahrt, Sebastian; Fischer, Michael; Varga, Janos; Saraji-Bozorgzad, Mohammad-Reza; Matuschek, Georg; Denner, Thomas; Zimmermann, Ralf

    2016-01-01

    The design of the so-called "Peltier modulator" is presented. It is a new dual-stage consumable-free thermal modulator for thermal analysis-gas chromatography-mass spectrometry (TA-GC-MS). It requires only electrical power for operation as it facilitates thermo-electric coolers instead of cryogenics for trapping and resistive on-column heating for reinjection. Trapping and desorption temperatures as well as modulation cycles are freely adjustable. The stationary phase for the trapping region can be selected to suit the specific application, since common fused silica capillary is used. The Peltier modulator's performance is demonstrated with a broad range of different standard substances and with heavy crude oil as a complex real life sample. Successful modulation from n-pentane to pyrene (boiling points = 36/394 °C) is presented. The produced peaks show the narrowest bandwidths ever reported for a consumable-free thermal modulator, i.e., 12.8 ± 1.2 ms for n-pentadecane. The Peltier modulator is rugged, cost-effective, requires low maintenance, and decreases security issues significantly, compared to commercial available solutions using liquid N2/CO2. PMID:26606252

  8. Gases generated from simulated thermal degradation of autotrophic and heterotrophic chlorella

    SciTech Connect

    Qingyu Wu )

    1992-01-01

    The content of crude lipid in the cells of heterotrophic Chlorella protothecoides is 4.4 times as high as in the autotrophic algal cells. The gases thermally degraded from autotrophic cells at 200-300[degrees]C contain mainly CO[sub 2], while the heterotrophic algal cells produce hydrocarbon gas at a much higher rate than autotraophic algal cells. With the rise in temperature, both kinds of cells display a rapid drop in the acid/alkane ratio of the gas components and the ratio of ethane to ethylene increases regularly. Their ratio of normal and isomeric alkanes are all above 1. The study reveals that the actual potential of microplanktonic algae in producing oil and natural gas should be much greater than what people have recognized before.

  9. History of Thermal Barrier Coatings for Gas Turbine Engines: Emphasizing NASA's Role from 1942 to 1990

    NASA Technical Reports Server (NTRS)

    Miller, Robert A.

    2009-01-01

    NASA has played a central role in the development of thermal barrier coatings (TBCs) for gas turbine applications. This report discusses the history of TBCs emphasizing the role NASA has played beginning with (1) frit coatings in the 1940s and 1950s; (2) thermally sprayed coatings for rocket application in the 1960s and early 1970s; (3) the beginnings of the modern era of turbine section coatings in the mid 1970s; and (4) failure mechanism and life prediction studies in the 1980s and 1990s. More recent efforts are also briefly discussed.

  10. Tests of NASA ceramic thermal barrier coating for gas-turbine engines

    NASA Technical Reports Server (NTRS)

    Liebert, C. H.

    1979-01-01

    A two-layer thermal barrier coating system with a bond coating of nickel-chromium-aluminum-yttrium and a ceramic coating of yttria-stabilized zirconia was tested for corrosion protection, thermal protection and durability. Full-scale gas-turbine engine tests demonstrated that this coating eliminated burning, melting, and warping of uncoated parts. During cyclic corrosion resistance tests made in marine diesel fuel products of combustion in a burner rig, the ceramic cracked on some specimens. Metallographic examination showed no base metal deterioration.

  11. FABRICATE AND TEST AN ADVANCED NON-POLLUTING TURBINE DRIVE GAS GENERATOR

    SciTech Connect

    Eugene Baxter; Roger E. Anderson; Stephen E. Doyle

    2003-06-01

    In September 2000 the Department of Energy's National Energy Technology Laboratory (DOE/NETL) contracted with Clean Energy Systems, Inc. (CES) of Sacramento, California to design, fabricate, and test a 20 MW{sub t} (10 MW{sub e}) gas generator. Program goals were to demonstrate a non-polluting gas generator at temperatures up to 3000 F at 1500 psi, and to demonstrate resulting drive gas composition, comprising steam and carbon dioxide substantially free of pollutants. Following hardware design and fabrication, testing, originally planned to begin in the summer of 2001, was delayed by unavailability of the contracted test facility. CES designed, fabricated, and tested the proposed gas generator as originally agreed. The CES process for producing near-zero-emissions power from fossil fuels is based on the near-stoichiometric combustion of a clean gaseous fuel with oxygen in the presence of recycled water, to produce a high-temperature, high-pressure turbine drive fluid comprising steam and carbon dioxide. Tests demonstrated igniter operation over the prescribed ranges of pressure and mixture ratios. Ignition was repeatable and reliable through more than 100 ignitions. Injector design ''A'' was operated successfully at both low power ({approx}20% of rated power) and at rated power ({approx}20 MW{sub t}) in more than 95 tests. The uncooled gas generator configuration (no diluent injectors or cooldown chambers installed) produced drive gases at temperatures approaching 3000 F and at pressures greater than 1550 psia. The fully cooled gas generator configuration, with cooldown chambers and injector ''A'', operated consistently at pressures from 1100 to 1540 psia and produced high pressure, steam-rich turbine drive gases at temperatures ranging from {approx}3000 to as low as 600 F. This report includes description of the intended next steps in the gas generator technology demonstration and traces the anticipated pathway to commercialization for the gas generator technology

  12. In situ Gas Conditioning in Fuel Reforming for Hydrogen Generation

    SciTech Connect

    Bandi, A.; Specht, M.; Sichler, P.; Nicoloso, N.

    2002-09-20

    The production of hydrogen for fuel cell applications requires cost and energy efficient technologies. The Absorption Enhanced Reforming (AER), developed at ZSW with industrial partners, is aimed to simplify the process by using a high temperature in situ CO2 absorption. The in situ CO2 removal results in shifting the steam reforming reaction equilibrium towards increased hydrogen concentration (up to 95 vol%). The key part of the process is the high temperature CO2 absorbent. In this contribution results of Thermal Gravimetric Analysis (TGA) investigations on natural minerals, dolomites, silicates and synthetic absorbent materials in regard of their CO2 absorption capacity and absorption/desorption cyclic stability are presented and discussed. It has been found that the inert parts of the absorbent materials have a structure stabilizing effect, leading to an improved cyclic stability of the materials.

  13. Numerical analysis of gas separator with thermal transpiration in micro channels II

    NASA Astrophysics Data System (ADS)

    Nakaye, Shoeji; Sugimoto, Hiroshi

    2014-12-01

    A membrane gas separator which operates with only a small temperature difference across a membrane is designed, and its capability is numerically proved. The separator system consists of three Knudsen pumps - a motionless pump that utilizes the thermal transpiration of the rarefied gas. Each pump is composed of a porous membrane and one channel along each of the two surfaces of the membrane. Two of the pumps induce a variation of mole fraction using a combination of the thermal transpiration and pressure driven flow through the membrane, and the other one provides the former two pumps with a required pressure difference. This paper reports the first numerical calculations that demonstrate a neon-argon binary gas mixture can be separated into pure neon gas and argon gas with the proposed design. The temperature difference is no more than 90 K, and the total length of the membrane is ˜ 15 cm at standard ambient temperature and pressure. The production rate of the separator is proportional to the width of the membrane. For example, when the width is 10 cm, the flow rates of the product gases are 0.8 sccm for argon and 1.9 sccm for neon.

  14. Thermal management of next-generation contact-cooled synchrotron x-ray mirrors

    SciTech Connect

    Khounsary, A.

    1999-10-29

    In the past decade, several third-generation synchrotrons x-ray sources have been constructed and commissioned around the world. Many of the major problems in the development and design of the optical components capable of handling the extremely high heat loads of the generated x-ray beams have been resolved. It is expected, however, that in the next few years even more powerful x-ray beams will be produced at these facilities, for example, by increasing the particle beam current. In this paper, the design of a next generation of synchrotron x-ray mirrors is discussed. The author shows that the design of contact-cooled mirrors capable of handing x-ray beam heat fluxes in excess of 500 W/mm{sup 2} - or more than three times the present level - is well within reach, and the limiting factor is the thermal stress rather then thermally induced slope error.

  15. Comparison of liquid-phase and gas-phase pure thermal cracking on n-hexadecane

    SciTech Connect

    Wu, G.; Katsumura, Yosuke; Matsuura, Chihiro; Ishigure, Kenkichi; Kubo, Junichi

    1996-12-01

    Thermal cracking of n-hexadecane in the mild temperature (330--375 C) range has been investigated in liquid and gas phases. The kinetic data of liquid-phase cracking are shown to be very similar to those of gas-phase cracking. However, the pattern and distribution of the products are greatly phase dependent. In liquid-phase cracking, there is an equimolar distribution of n-alkane and 1-alkene products in the C{sub 3}--C{sub 13} range at low conversion; when the conversion is increased, more alkanes than alkenes are produced. To the contrary, more alkenes than alkanes are always determined in products from gas-phase cracking. Liquid-phase cracking gives a low selectivity of gas products and a high selectivity of addition compounds (C{sub 18}--C{sub 30}), whereas gas-phase cracking produces a large amount of gas products and no addition compounds. The phase dependence of products can be interpreted in terms of a low concentration of hexadecane, under which {beta}-scission occurs more preferentially than in liquid phase. Reaction mechanisms are suggested based on the product analysis to account for cracking behaviors of liquid-phase and gas-phase cracking.

  16. New-generation gas turbine helping brewery lighten energy costs

    SciTech Connect

    Brezonick, M.

    1994-10-01

    In nearly any manufacturing industry, the loss of electrical power can have a severe impact on the manufacturing process. The case of Labatt's Ontario Breweries in particular, the loss of electrical service puts a crimp in the brewmaster's art by forcing the company to dump large quantities of it's Labatt's Blue. To solve the problem, the company has installed a gas-turbine-drive cogeneration system to guard against brownout. The new 501-KB7 was developed from the well-established 501-KB5 turbine. It has improved power output over the 501-KB7 design, up from 4025 to 5225 kw, a higher 13.5:1 pressure ratio, and a 32% increased in airflow (20.4 kg/s). The Labatt's installation which became operational in 1993 reduced the Breweries energy cost because of 501-KB7 turbine's higher energy output. 3 figs.

  17. IR scene image generation from visual image based on thermal database

    NASA Astrophysics Data System (ADS)

    Liao, Binbin; Wang, Zhangye; Ke, Xiaodi; Xia, Yibin; Peng, Qunsheng

    2007-11-01

    In this paper, we propose a new method to generate complex IR scene image directly from the corresponding visual scene image based on material thermal database. For the input visual scene image, we realize an interactive tool based on the combined method of global magic wand and intelligent scissors to segment the object areas in the scene. And the thermal attributes are assigned to each object area from the thermal database of materials. By adopting the scene infrared signature model based on infrared Physics and Heat Transfer, the surface temperature distribution of the scene are calculated and the corresponding grayscale of each area in IR image is determined by our transformation rule. We also propose a pixel-based RGB spacial similarity model to determine the mixture grayscales of residual area in the scene image. To realistically simulate the IR scene, we develop an IR imager blur model considering the effect of different resolving power of visual and thermal imagers, IR atmospheric noise and the modulation transfer function of thermal imager. Finally, IR scene images at different intervals under different weather conditions are generated. Compared with real IR scene images, our simulated results are quite satisfactory and effective.

  18. Magnetic Field Generation and Zonal Flows in the Gas Giants

    NASA Astrophysics Data System (ADS)

    Duarte, L.; Wicht, J.; Gastine, T.

    2013-12-01

    The surface dynamics of Jupiter and Saturn is dominated by a banded system of fierce zonal winds. The depth of these winds remains unclear but they are thought to be confined to the very outer envelopes where hydrogen remains molecular and the electrical conductivity is negligible. The dynamo responsible for the dipole dominated magnetic fields of both Gas Giants, on the other hand, likely operates in the deeper interior where hydrogen assumes a metallic state. We present numerical simulations that attempt to model both the zonal winds and the interior dynamo action in an integrated approach. Using the anelastic version of the MHD code MagIC, we explore the effects of density stratification and radial electrical conductivity variations. The electrical conductivity is assumed to remain constant in the thicker inner metallic region and decays exponentially towards the outer boundary throughout the molecular envelope. Our results show that the combination of stronger density stratification (Δρ≈55) and a weaker conducting outer layer is essential for reconciling dipole dominated dynamo action and a fierce equatorial zonal jet. Previous simulations with homogeneous electrical conductivity show that both are mutually exclusive, with solutions either having strong zonal winds and multipolar magnetic fields or weak zonal winds and dipole dominated magnetic fields. The particular setup explored here allows the equatorial jet to remain confined to the weaker conducting region where is does not interfere with the deeper seated dynamo action. The equatorial jet can afford to remain geostrophic and reaches throughout the whole shell. This is not an option for the additional mid to higher latitude jets, however. In dipole dominated dynamo solutions, appropriate for the Gas Giants, zonal flows remain very faint in the deeper dynamo region but increase in amplitude in the weakly conducting outer layer in some of our simulations. This suggests that the mid to high latitude jets

  19. HIGH-SPEED, CLINICAL-SCALE MICROFLUIDIC GENERATION OF STABLE PHASE-CHANGE DROPLETS FOR GAS EMBOLOTHERAPY

    PubMed Central

    Bardin, David; Martz, Thomas D.; Sheeran, Paul S.; Shih, Roger; Dayton, Paul A.; Lee, Abraham P.

    2013-01-01

    In this study we report on a microfluidic device and droplet formation regime capable of generating clinical-scale quantities of droplet emulsions suitable in size and functionality for in vivo therapeutics. By increasing the capillary number – based on the flow rate of the continuous outer phase – in our flow-focusing device, we examine three modes of droplet breakup: geometry-controlled, dripping, and jetting. Operation of our device in the dripping regime results in the generation of highly monodisperse liquid perfluoropentane droplets in the appropriate 3–6 µm range at rates exceeding 105 droplets per second. Based on experimental results relating droplet diameter and the ratio of the continuous and dispersed phase flow rates, we derive a power series equation, valid in the dripping regime, to predict droplet size by Dd ≅ 27(QC/QD)−5/12. The volatile droplets in this study are stable for weeks at room temperature yet undergo rapid liquid-to-gas phase transition, and volume expansion, above a uniform thermal activation threshold. The opportunity exists to potentiate locoregional cancer therapies such as thermal ablation and percutaneous ethanol injection using thermal or acoustic vaporization of these monodisperse phase-change droplets to intentionally occlude the vessels of a cancer. PMID:22011845

  20. Experimental studies on producer gas generation from wood waste in a downdraft biomass gasifier.

    PubMed

    Sheth, Pratik N; Babu, B V

    2009-06-01

    A process of conversion of solid carbonaceous fuel into combustible gas by partial combustion is known as gasification. The resulting gas, known as producer gas, is more versatile in its use than the original solid biomass. In the present study, a downdraft biomass gasifier is used to carry out the gasification experiments with the waste generated while making furniture in the carpentry section of the institute's workshop. Dalbergia sisoo, generally known as sesame wood or rose wood is mainly used in the furniture and wastage of the same is used as a biomass material in the present gasification studies. The effects of air flow rate and moisture content on biomass consumption rate and quality of the producer gas generated are studied by performing experiments. The performance of the biomass gasifier system is evaluated in terms of equivalence ratio, producer gas composition, calorific value of the producer gas, gas production rate, zone temperatures and cold gas efficiency. Material balance is carried out to examine the reliability of the results generated. The experimental results are compared with those reported in the literature. PMID:19231163

  1. Numerical study of the generation of runaway electrons in a gas diode with a hot channel

    SciTech Connect

    Lisenkov, V. V.; Shklyaev, V. A.

    2015-11-15

    A new method for increasing the efficiency of runaway electron beam generation in atmospheric pressure gas media has been suggested and theoretically proved. The method consists of creating a hot region (e.g., a spark channel or a laser plume) with a decreased numerical density of gas molecules (N) near the cathode. In this method, the ratio E/N (E—electric field strength) is increased by decreasing N instead of increasing E, as has been done in the past. The numerical model that is used allows the simultaneous calculation of the formation of a subnanosecond gas discharge and the generation of runaway electrons in gas media. The calculations have demonstrated the possibility of obtaining current pulses of runaway electrons with amplitudes of hundred of amperes and durations of more than 100 ps. The influence of the hot channel geometry on the parameters of the generated beam has been investigated.

  2. Molecular nitrogen in natural gas accumulations: Generation from sedimentary organic matter at high temperatures

    SciTech Connect

    Littke, R.; Krooss, B.; Frielingsdorf, J.; Idiz, E.

    1995-03-01

    The occurrence of natural gas accumulations with high percentages (up to 100%) of molecular nitrogen in various hydrocarbon provinces represents a largely unresolved problem and a serious exploration risk. In this context, a geochemical and basin modeling study was performed to evaluate the potential of sedimentary organic matter to generate molecular nitrogen. The masses of nitrogen present in coals - if converted into molecular nitrogen - are sufficient to fill commercial gas reservoirs. A calculation for gas accumulations in northern Germany, where percentages of molecular nitrogen range from less than 5 to greater than 90%, reveals that the molecular nitrogen generated in underlying coal-bearing strata is sufficient to account for the nitrogen gas even in the largest fields. In addition, much of the total nitrogen in clay-rich rock types, such as shales and mudstones, is fixed in sedimentary organic matter and may add to the nitrogen generation capacity of the coals.

  3. Thermal dispersion in vertical gas-liquid flows with foaming and non-foaming liquids

    SciTech Connect

    Pino, L.R.Z.; Saez, A.E.

    1995-05-01

    Heat transfer experiments have been performed in gas-liquid upwards flow in a vertical column with non-foaming (water) and foaming (kerosene) liquids. The main purpose of the experiments has been to characterized the degree of thermal mixing in the system. For the range of conditions employed, the nonfoaming liquid exhibits complete mixing a low liquid superficial velocities. An increased in liquid velocity leads to incomplete mixing. In the latter case, the thermal dispersion coefficient at low gas superficial velocities is larger than what correlations in the literature predict. For the foaming liquid, when foaming and bubbling regions coexist in the bubble column, each region behaves as a completely-mixed subsystem.

  4. Thermal barrier coatings for gas-turbine engine applications.

    PubMed

    Padture, Nitin P; Gell, Maurice; Jordan, Eric H

    2002-04-12

    Hundreds of different types of coatings are used to protect a variety of structural engineering materials from corrosion, wear, and erosion, and to provide lubrication and thermal insulation. Of all these, thermal barrier coatings (TBCs) have the most complex structure and must operate in the most demanding high-temperature environment of aircraft and industrial gas-turbine engines. TBCs, which comprise metal and ceramic multilayers, insulate turbine and combustor engine components from the hot gas stream, and improve the durability and energy efficiency of these engines. Improvements in TBCs will require a better understanding of the complex changes in their structure and properties that occur under operating conditions that lead to their failure. The structure, properties, and failure mechanisms of TBCs are herein reviewed, together with a discussion of current limitations and future opportunities. PMID:11951028

  5. A research on the thermal strength of dyad gas oven briquette

    SciTech Connect

    Xu Dongyao; Huang Zhongcheng; Wang Peilan

    1998-12-31

    Thermal strength characteristic curve of the dyad gas oven briquette during carbonization is introduced in this paper. The cohesiveness of the raw coal exercises a strong influence on the briquette thermal compressive strength during carbonization. The briquette is to be made from coking coal, and if the briquette is produced through the usual technique, will drop down and is not suitable for dyad gasoven. Also if a briquette rends to pieces during carbonization or removal from the coke oven, the briquette is not suitable for dyad gas oven. Some techniques to eliminate the cohesiveness of the raw coal and to preserve the briquette from rending to pieces is described in this paper. The methods decreasing the cohesiveness of briquette increase the porosity of the briquette and add powdery coke through a special briquetting technique.

  6. Thermal stability of fission gas bubble superlattice in irradiated U–10Mo fuel

    SciTech Connect

    Gan, J.; Keiser, D. D.; Miller, B. D.; Robinson, A. B.; Wachs, D. M.; Meyer, M. K.

    2015-09-01

    To investigate the thermal stability of the fission gas bubble superlattice, a key microstructural feature in both irradiated U-7Mo dispersion and U-10Mo monolithic fuel plates, a FIB-TEM sample of the irradiated U-10Mo fuel with a local fission density of 3.5×1021 fissions/cm3 was used for an in-situ heating TEM experiment. The temperature of the heating holder was raised at a ramp rate of approximately 10 ºC/min up to ~700 ºC, kept at that temperature for about 34 min, continued to 850 ºC with a reduced rate of 5 ºC/min. The result shows a high thermal stability of the fission gas bubble superlattice. The implication of this observation on the fuel microstructural evolution and performance under irradiation is discussed.

  7. Transport simulations of the pre-thermal-quench phase in ASDEX Upgrade massive gas injection experiments

    NASA Astrophysics Data System (ADS)

    Fable, E.; Pautasso, G.; Lehnen, M.; Dux, R.; Bernert, M.; Mlynek, A.; the ASDEX Upgrade Team

    2016-02-01

    The pre-thermal-quench (PTQ) phase of the massive gas injection (MGI) scenario to terminate the tokamak plasma discharge is studied by means of one-dimensional (1D) transport simulations. This phase is characterized by the cold-front penetration in the hot plasma after the gas has been released from the valves, and before the actual thermal quench takes place, with consequent plasma disruption at lower stored energy. The comparison between the simulations and the ASDEX Upgrade (AUG) experiments allows to gain insight in the observed dependencies and time scales. Despite the genuine three-dimensional structure of the problem, it is shown that the 1D simulations are already giving experimentally relevant answers, the reason for which will be discussed in detail. Influence of unknown parameters and simplifying assumptions are also discussed.

  8. Effect of a falling gas-liquid absorption film temperature on entropy generation

    NASA Astrophysics Data System (ADS)

    Chermiti, Imen; Hidouri, Nejib; Brahim, Ammar Ben

    2013-08-01

    In this paper, an analytical study about the effect of a falling gas-liquid absorption film temperature on entropy generation is carried out. Entropy generation formulations due to viscous effects and mass transfer are derived. Results in terms of viscous, mass transfer and total irreversibilities are graphically presented and discussed.

  9. Exploiting metastability and thermal noise to build a reconfigurable hardware random number generator

    NASA Astrophysics Data System (ADS)

    Lim, Daihyun; Ranasinghe, Damith C.; Devadas, Srinivas; Jamali, Behnam; Abbott, Derek; Cole, Peter H.

    2005-05-01

    While pseudo random number generators based on computational complexity are widely used for most of cryptographic applications and probabilistic simulations, the generation of true random numbers based on physical randomness is required to guarantee the advanced security of cryptographic systems. In this paper we present a method to exploit manufacturing variations, metastablity, and thermal noise in integrated circuits to generate random numbers. This metastability based physical random number generator provides a compact and low-power solution which can be fabricated using standard IC manufacturing processes. Test-chips were fabricated in TSMC 0.18um process and experimental results show that the generated random bits pass standard randomness tests successfully. The operation of the proposed scheme is robust against environmental changes since it can be re-calibrated to new environmental conditions such as temperature and power supply voltage.

  10. Effects of Thermal Cycling on Control and Irradiated EPC 2nd Generation GaN FETs

    NASA Technical Reports Server (NTRS)

    Patterson, Richard L.; Scheick, Leif; Lauenstein, Jean-Marie; Casey, Megan; Hammoud, Ahmad

    2013-01-01

    The power systems for use in NASA space missions must work reliably under harsh conditions including radiation, thermal cycling, and exposure to extreme temperatures. Gallium nitride semiconductors show great promise, but information pertaining to their performance is scarce. Gallium nitride N-channel enhancement-mode field effect transistors made by EPC Corporation in a 2nd generation of manufacturing were exposed to radiation followed by long-term thermal cycling in order to address their reliability for use in space missions. Results of the experimental work are presented and discussed.

  11. Thermal Photon and Residual Gas Scattering of the Electrons in the ILC RTML

    SciTech Connect

    Seletskiy, S.M.; /SLAC

    2006-08-16

    The scattering of the primary beam electrons off of thermal photons and residual gas molecules in the projected International Linear Collider (ILC) is a potential source of beam haloes which must be collimated downstream of the linac. In this report we give the analytic estimations of the individual input that each of the main scattering processes makes in the production of off-energy and large amplitude particles in the Damping Ring to Main Linac region (RTML).

  12. MESO-SCALE MODELING OF THE INFLUENCE OF INTERGRANULAR GAS BUBBLES ON EFFECTIVE THERMAL CONDUCTIVITY

    SciTech Connect

    Paul C. Millett; Michael Tonks

    2011-06-01

    Using a mesoscale modeling approach, we have investigated how intergranular fission gas bubbles, as observed in high-burnup nuclear fuel, modify the effective thermal conductivity in a polycrystalline material. The calculations reveal that intergranular porosity has a significantly higher resistance to heat transfer compared to randomly-distributed porosity. A model is developed to describe this conductivity reduction that considers an effective grain boundary Kapitza resistance as a function of the fractional coverage of grain boundaries by bubbles.

  13. Design and construction of a thermophotovoltaic generator using turbine combustion gas

    SciTech Connect

    Erickson, T.A.; Lindler, K.W.; Harper, M.J.

    1997-07-01

    This US Naval Academy project involves the development of a prototype thermophotovoltaic (TPV) generator that uses a General Electric T-58 helicopter gas turbine as the heat source. The goals of this project were to demonstrate the viability of using TPV and external combustion gases to generate electricity, and develop a system which could also be used for materials testing. The generator was modularly designed so that different materials could be tested at a later date. The combustion gas was tapped from the T-58`s combustor through one of the two igniter ports and extracted through a silicon carbide matrix ceramic composite tube into a similarly constructed ceramic composite radiant emitter. The ceramic radiant emitters is heated by the combustion gas via convection, and then serves the TPV generator by radiating the heat outwards where it can be absorbed by thermophotovoltaic cells and converted directly into electricity. The gas turbine and generator module are monitored by a data acquisition system that performs both data collection and control functions. This paper details the design of the TPV generator. It also gives results of initial tests with the gas turbine.

  14. Densified biomass can cost-effectively mitigate greenhouse gas emissions and address energy security in thermal applications.

    PubMed

    Wilson, Thomas O; McNeal, Frederick M; Spatari, Sabrina; G Abler, David; Adler, Paul R

    2012-01-17

    Regional supplies of biomass are currently being evaluated as feedstocks in energy applications to meet renewable portfolio (RPS) and low carbon fuel standards. We investigate the life cycle greenhouse gas (GHG) emissions and associated abatement costs resulting from using densified switchgrass for thermal and electrical energy. In contrast to the large and positive abatement costs for using biomass in electricity generation ($149/Mg CO(2)e) due to the low cost of coal and high feedstock and power plant operation costs, abatement costs for replacing fuel oil with biomass in thermal applications are large and negative (-$52 to -$92/Mg CO(2)e), resulting in cost savings. Replacing fuel oil with biomass in thermal applications results in least cost reductions compared to replacing coal in electricity generation, an alternative that has gained attention due to RPS legislation and the centralized production model most often considered in U.S. policy. Our estimates indicate a more than doubling of liquid fuel displacement when switchgrass is substituted for fuel oil as opposed to gasoline, suggesting that, in certain U.S. locations, such as the northeast, densified biomass would help to significantly decarbonize energy supply with regionally sourced feedstock, while also reducing imported oil. On the basis of supply projections from the recently released Billion Ton Report, there will be enough sustainably harvested biomass available in the northeast by 2022 to offset the entirety of heating oil demand in the same region. This will save NE consumers between $2.3 and $3.9 billion annually. Diverting the same resource to electricity generation would cost the region $7.7 billion per year. While there is great need for finding low carbon substitutes for coal power and liquid transportation fuels in the U.S., we argue that in certain regions it makes cost- (and GHG mitigation-) effective sense to phase out liquid heating fuels with locally produced biomass first. PMID

  15. Drought Resilience of Water Supplies for Shale Gas Extraction and Related Power Generation in Texas

    NASA Astrophysics Data System (ADS)

    Reedy, R. C.; Scanlon, B. R.; Nicot, J. P.; Uhlman, K.

    2014-12-01

    There is considerable concern about water availability to support energy production in Texas, particularly considering that many of the shale plays are in semiarid areas of Texas and the state experienced the most extreme drought on record in 2011. The Eagle Ford shale play provides an excellent case study. Hydraulic fracturing water use for shale gas extraction in the play totaled ~ 12 billion gallons (bgal) in 2012, representing ~7 - 10% of total water use in the 16 county play area. The dominant source of water is groundwater which is not highly vulnerable to drought from a recharge perspective because water is primarily stored in the confined portion of aquifers that were recharged thousands of years ago. Water supply drought vulnerability results primarily from increased water use for irrigation. Irrigation water use in the Eagle Ford play was 30 billion gallons higher in the 2011 drought year relative to 2010. Recent trends toward increased use of brackish groundwater for shale gas extraction in the Eagle Ford also reduce pressure on fresh water resources. Evaluating the impacts of natural gas development on water resources should consider the use of natural gas in power generation, which now represents 50% of power generation in Texas. Water consumed in extracting the natural gas required for power generation is equivalent to ~7% of the water consumed in cooling these power plants in the state. However, natural gas production from shale plays can be overall beneficial in terms of water resources in the state because natural gas combined cycle power generation decreases water consumption by ~60% relative to traditional coal, nuclear, and natural gas plants that use steam turbine generation. This reduced water consumption enhances drought resilience of power generation in the state. In addition, natural gas combined cycle plants provide peaking capacity that complements increasing renewable wind generation which has no cooling water requirement. However, water

  16. Thermal stability of SF6 associated with metallic conductors incorporated in gas insulated switchgear power substations

    NASA Astrophysics Data System (ADS)

    Dervos, C. T.; Vassiliou, P.; Mergos, J. A.

    2007-11-01

    SF6 is generally treated as thermally stable and inert for applications below 500 °C. This work investigates the thermal stability of pure SF6 gas under 1.2 atm pressure between 200 and 450 °C in the presence of construction metals (Cu, Al), without any applied electric field. The obtained experimental results indicate that SF6 may react with metallic surfaces forming solid and gaseous by-products, either in the gas matrix or diffused in the metallic surfaces. The phenomenon is enhanced in the presence of adsorbed moisture. For copper surfaces, sulfide layers are formed. By-products are not formed for pure Al surfaces. However, when Al is covered by a few micrometres thick Al2O3 film, hot SF6 molecules have a structure change effect, i.e. reduce porosity in the oxide and in the substrate, provide smooth transition layers Al/Al2O3 and increase the Al2O3 layer width. In the presence of moisture this phenomenon is significantly intensified and a diffused overlayer of AlF3 also forms. The by-products in the gas matrix are mainly sulfur oxides for hot spot temperatures below 300 °C, while at higher temperatures oxyfluorides SO2Fx and HF are mainly formed. These by-products are either toxic or corrosive. Thus, the thermal stability issue of SF6 may have to be reconsidered.

  17. Observations of ionospheric ELF and VLF wave generation by excitation of the thermal cubic nonlinearity.

    PubMed

    Moore, R C; Fujimaru, S; Kotovsky, D A; Gołkowski, M

    2013-12-01

    Extremely-low-frequency (ELF, 3-3000 Hz) and very-low-frequency (VLF, 3-30 kHz) waves generated by the excitation of the thermal cubic nonlinearity are observed for the first time at the High-Frequency Active Auroral Research Program high-frequency transmitter in Gakona, Alaska. The observed ELF and VLF field amplitudes are the strongest generated by any high frequency (HF, 3-30 MHz) heating facility using this mechanism to date. This manner of ELF and VLF generation is independent of naturally forming currents, such as the auroral electrojet current system. Time-of-arrival analysis applied to experimental observations shows that the thermal cubic ELF and VLF source region is located within the collisional D-region ionosphere. Observations are compared with the predictions of a theoretical HF heating model using perturbation theory. For the experiments performed, two X-mode HF waves were transmitted at frequencies ω1 and ω2, with |ω2-2ω1| being in the ELF and VLF frequency range. In contrast with previous work, we determine that the ELF and VLF source is dominantly produced by the interaction between collision frequency oscillations at frequency ω2-ω1 and the polarization current density associated with the lower frequency HF wave at frequency ω1. This specific interaction has been neglected in past cubic thermal nonlinearity work, and it plays a major role in the generation of ELF and VLF waves. PMID:24476285

  18. Electrical Generation Using Non-Salable Low BTU Natural Gas

    SciTech Connect

    Scott Corsair

    2005-12-01

    High operating costs are a significant problem for independent operators throughout the U.S. Often, decisions to temporarily idle or abandon a well or lease are dictated by these cost considerations, which are often seen as unavoidable. Options for continuing operations on a marginal basis are limited, but must include non-conventional approaches to problem solving, such as the use of alternative sources of lease power, and scrupulous reduction of non-productive operating techniques and costs. The loss of access to marginal oil and gas productive reservoirs is of major concern to the DOE. The twin difficulties of high operating costs and low or marginal hydrocarbon production often force independent operators to temporarily or permanently abandon existing lease facilities, including producing wells. Producing well preservation, through continued economical operation of marginal wells, must be maintained. Reduced well and lease operating costs are expected to improve oil recovery of the Schaben field, in Ness County, Kansas, by several hundred thousands of barrels of oil. Appropriate technology demonstrated by American Warrior, allows the extension of producing well life and has application for many operators throughout the area.

  19. Functionally gradient materials for thermal barrier coatings in advanced gas turbine systems

    SciTech Connect

    Banovic, S.W.; Barmak, K.; Chan, H.M.

    1995-10-01

    New designs for advanced gas turbine engines for power production are required to have higher operating temperatures in order to increase efficiency. However, elevated temperatures will increase the magnitude and severity of environmental degradation of critical turbine components (e.g. combustor parts, turbine blades, etc{hor_ellipsis}). To offset this problem, the usage of thermal barrier coatings (TBCs) has become popular by allowing an increase in maximum inlet temperatures for an operating engine. Although thermal barrier technology is over thirty years old, the principle failure mechanism is the spallation of the ceramic coating at or near the ceramic/bond coat interface. Therefore, it is desirable to develop a coating that combines the thermal barrier qualities of the ceramic layer and the corrosion protection by the metallic bond coat without the detrimental effects associated with the localization of the ceramic/metal interface to a single plane.

  20. Industry tests of NASA ceramic thermal barrier coating. [for gas turbine engine applications

    NASA Technical Reports Server (NTRS)

    Liebert, C. H.; Stepka, F. S.

    1979-01-01

    Ceramic thermal barrier coating (TBC) system was tested by industrial and governmental organizations for a variety of aeronautical, marine, and ground-based gas turbine engine applications. This TBC is a two-layer system with a bond coating of nickel-chromium-aluminum-yttrium (Ni-16Cr-6Al-0.6Y, in wt. percent) and a ceramic coating of yttria-stabilized zirconia (ZrO2-12Y2O3, in wt. percent). Seven tests evaluated the system's thermal protection and durability. Five other tests determined thermal conductivity, vibratory fatigue characteristics, and corrosion resistance of the system. The information presented includes test results and photographs of the coated parts. Recommendations are made for improving the coating procedures.

  1. Solid waste generation from oil and gas industries in United Arab Emirates.

    PubMed

    Elshorbagy, Walid; Alkamali, Abdulqader

    2005-04-11

    Solid wastes generated from oil and gas industrial activities are very diverse in their characteristics, large in their amounts and many of which are hazardous in nature. Thus, quantifying and characterizing the generated amounts in association with their types, classes, sources, industrial activities, and their chemical and biological characteristics is an obvious mandate when evaluating the possible management practices. This paper discusses the types, amounts, generation units, and the factors related to solid waste generation from a major oil and gas field in the United Arab Emirates (Asab Field). The generated amounts are calculated based on a 1-year data collection survey and using a database software specially developed and customized for the current study. The average annual amount of total solid waste generated in the studied field is estimated at 4061 t. Such amount is found equivalent to 650 kg/capita, 0.37 kg/barrel oil, and 1.6 kg/m3 of extracted gas. The average annual amount of hazardous solid waste is estimated at 55 t and most of which (73%) is found to be generated from gas extraction-related activities. The majority of other industrial non-hazardous solid waste is generated from oil production-related activities (41%), The present analysis does also provide the estimated generation amounts per waste type and class, amounts of combustible, recyclable, and compostable wastes, and the amounts dumped in uncontrolled way as well as disposed into special hazardous landfill facilities. The results should help the decision makers in evaluating the best alternatives available to manage the solid wastes generated from the oil and gas industries. PMID:15811669

  2. Development of a multiscale thermal conductivity model for fission gas in UO2

    NASA Astrophysics Data System (ADS)

    Tonks, Michael R.; Liu, Xiang-Yang; Andersson, David; Perez, Danielle; Chernatynskiy, Aleksandr; Pastore, Giovanni; Stanek, Christopher R.; Williamson, Richard

    2016-02-01

    Accurately predicting changes in the thermal conductivity of light water reactor UO2 fuel throughout its lifetime in reactor is an essential part of fuel performance modeling. However, typical thermal conductivity models from the literature are empirical. In this work, we begin to develop a mechanistic thermal conductivity model by focusing on the impact of gaseous fission products, which is coupled to swelling and fission gas release. The impact of additional defects and fission products will be added in future work. The model is developed using a combination of atomistic and mesoscale simulation, as well as analytical models. The impact of dispersed fission gas atoms is quantified using molecular dynamics simulations corrected to account for phonon-spin scattering. The impact of intragranular bubbles is accounted for using an analytical model that considers phonon scattering. The impact of grain boundary bubbles is determined using a simple model with five thermal resistors that are parameterized by comparing to 3D mesoscale heat conduction results. When used in the BISON fuel performance code to model four reactor experiments, it produces reasonable predictions without having been fit to fuel thermocouple data.

  3. Safety aspect concerning radiolytic gas generation in reactors.

    PubMed

    Ramshesh, V

    2001-01-01

    In water cooled and water moderated reactors (H2O in boiling water reactors/pressurised water reactors, D2O in pressurised heavy water reactors) during normal operation, radiolysis is a source of production of hydrogen/deuterium and oxygen. During the progress of a nuclear accident, while there are other important sources of hydrogen/deuterium, the oxygen availability can occur only through radiolysis or direct contact with air. In air saturated with water vapour at room temperature and pressure when H2/D2 concentration exceeds 4 vol % (a conservative estimate), a combustible mixture with oxygen can be formed. It is proposed to examine the basic principles of water radiolysis as far as they pertain to generation of H2/D2 and O2 and try to apply these concepts to reactors both under operating conditions and in accident situations. It is concluded that the possibility of an accident taking place through radiolysis is highly unlikely. PMID:11382138

  4. Experimental studies of gas trapping in amorphous ice and thermal modelling of comets: Implications for Rosetta

    NASA Technical Reports Server (NTRS)

    Bar-Nun, Akiva

    1989-01-01

    The trapping of mixtures of CO, CH4, N2 and Ar in amorphous water ice was studied experimentally. It is shown that the ice particles could not have been formed at a higher temperature and, subsequently, cool down. Experiments where ice was deposited at elevated temperatures, then cooled down and gas was flowed into the ice, showed that the amount of trapped gas depends only on the highest temperature at which the ice was formed, or resided, prior to cooling and gas flow into it. Consequently, the cometary ice had to be formed at approx. 48 K and the ice is therefore amorphous. The thermal profile of a comet in Halley's orbit was calculated, including the build-up of an insulating dust layer. It was found that an insulating dust layer a few cm thick is enough to choke most of the water emission from the surface. A similar thermal model was calculated for comet P/Temple-1, a candidate for both CRAF and Rosetta (CNSR) missions. The temperature at a depth of 10 m is approx. 160 K for all models considered and, hence, the ice at this depth is crystalline. A crystalline ice layer 40 to 240 m thick was found to overly the gas-laden amorphous ice. Consequently, it should be difficult for the probes of the two comet missions to sample pristine amorphous ice, unless they are aimed at the bottom of an active crater.

  5. Ocean thermal gradient as a generator of electricity. OTEC power plant

    NASA Astrophysics Data System (ADS)

    Enrique, Luna-Gomez Victor; Angel, Alatorre-Mendieta Miguel

    2016-04-01

    The OTEC (Ocean Thermal Energy Conversion) is a power plant that uses the thermal gradient of the sea water between the surface and a depth of about 700 meters. It works by supplying the heat to a steam machine, for evaporation, with sea water from the surface and cold, to condense the steam, with deep sea water. The energy generated by the power plant OTEC can be transferred to the electric power grid, another use is to desalinate seawater. During the twentieth century in some countries experimental power plants to produce electricity or obtaining drinking water they were installed. On the Mexico's coast itself this thermal gradient, as it is located in tropical seas it occurs, so it has possibilities of installing OTEC power plant type. In this paper one type OTEC power plant operation is represented in most of its components.

  6. Skid-mounted rotating thermal separator efficiently recovers NGL from associated gas

    SciTech Connect

    Marchal, P.; Malek, S.; Viltard, J.C.

    1984-12-03

    A significant portion of the LPG fraction of the associated gas from a small field can be economically recovered even in remote locations. An example is the Breme field, for which Elf Gabon is the operator. Situated 50 miles from Port Gentil, the field is located on a narrow strip of land between the sea and a lagoon, with access only by plane or boat. A prefabricated, skid-mounted, turnkey plant is now efficiently recovering gas condensate from the field flare. At the full rated 14 MMscfd gas flow (55 psia), the recovered LPG can add as much as 650 b/d to the 12,000 b/d crude oil production rate, 6 vol %. The plant includes a compact plate heat exchanger and a rotating thermal separator (RTS) that requires little maintenance, minimal control, and no outside energy.

  7. Status and integration of the gas generation studies performed for the Hydrogen Safety Program. FY 1993, Annual report

    SciTech Connect

    Strachan, D.M.

    1994-04-01

    This document represents the second in a series of documents in which information is summarized and integrated on the chemical mechanisms for gas generation from simulated wastes that mimic the nuclear waste in Tank 241-SY. Over the past year the reliability of the instrumentation that has been installed on Tank 101-SY has been increased dramatically. Gases composed of H{sub 2}, N{sub 2}O, N{sub 2}, and NH{sub 3} are continuously released at low levels and also periodically released from the waste stored in this tank such that the lower flammability limit of 4% H{sub 2} is sometimes exceeded. To better understand the reasons for this phenomenon and with the goal of mitigating the potential safety problem associated with the flammability, instrumentation has been installed on the tank and studies have been carried out to understand the mechanism by which these gases are generated. It is worthwhile to annually summarize this information in a single document, to integrate the information, and to highlight the remaining open questions surrounding the mechanism of gas generation. This is the goal of this document. Information on simulated wastes under thermal and radiation conditions has been collected from work performed at Argonne National Laboratory, Georgia Institute of Technology, and Pacific Northwest Laboratory; this report attempts to correlate the simulated data with that of actual tank waste. This document is lengthier than the former report because so much more information was available this year.

  8. Evaluating the Climate Effects of Natural Gas Versus Coal Electricity Generation

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Myhrvold, N. P.; Caldeira, K.

    2014-12-01

    Assessing potential climate effects of fossil-fuel electricity generations, especially natural gas versus coal electricity generation is complicated by the large number of factors reported in life cycle assessment studies, compounded by the large number of proposed climate metrics. Thus, there is a need to identify the key factors affecting the climate effects of fossil-fuel electricity generations (especially natural gas and coal based electricity production), and to present these climate effects in as clear and transparent a way as possible. Here, we identify power plant efficiencies and methane emission rates as the factors that explain most of the variance in greenhouse gas emissions by natural gas and coal power plants. Thus, we focus on the roles of these factors in determining the relative merit of natural gas and coal power plants. We develop a simple model with estimating CH4 and CO2 emissions from natural gas and coal power plants and resulting climate effects. Simple underlying physical changes can be obscured by abstract evaluation metrics, thus we base our discussion on temperature changes over time. We find that, during the period of plant operation, if there is substantial natural gas leakage, natural gas plants can produce greater near-term warming than a coal plant with the same power output. However, if leakage rates can be made to be low and efficiency high, natural gas plants can produce some reduction in near-term warming. After several centuries of continuous use, natural gas power plants produce substantial warming, but in most cases substantially less warming than would occur with coal plants.

  9. Investigation of a catalytic gas generator for the Space Shuttle APU. [hydrazine Auxiliary Propulsion Unit

    NASA Technical Reports Server (NTRS)

    Emmons, D. L.; Huxtable, D. D.; Blevins, D. R.

    1974-01-01

    An investigation was conducted to establish the capability of a monopropellant hydrazine catalytic gas generator to meet the requirements specified for the Space Shuttle APU. Detailed analytical and experimental studies were conducted on potential problem areas including long-term nitriding effects on materials, design variables affecting catalyst life, vehicle vibration effects, and catalyst oxidation/contamination. A full-scale gas generator, designed to operate at a chamber pressure of 750 psia and a flow rate of 0.36 lbm/sec, was fabricated and subjected to three separate life test series. The objective of the first test series was to demonstrate the capability of the gas generator to successfully complete 20 simulated Space Shuttle missions in steady-state operation. The gas generator was then refurbished and subjected to a second series of tests to demonstrate the pulse-mode capability of the gas generator during 20 simulated missions. The third series of tests was conducted with a refurbished reactor to further demonstrate pulse-mode capability with a modified catalyst bed.

  10. Thermal effect on the generated quantum correlation between two superconducting qubits

    NASA Astrophysics Data System (ADS)

    Mohamed, A.-B. A.

    2016-08-01

    Quantum correlations in two superconducting (SC) qubits, placed in an SC-cavity and driven by noise fields, are investigated by using quantum discord (QD) and measurement-induced nonlocality with quantum entanglement (QE). It was found that the initial values of QD and measurement-induced non-locality (MIN) grow from zero-values to non-zero values. This growth of quantum correlations is due to the unitary qubits–field interaction. It is found that by increasing the coupling to the thermal environment, the generated correlations (of QD, MIN and QE) return to their zero-values and the phenomena of the sudden death and sudden birth only occur for QE. It is interesting to note that the state of two superconducting qubits has the quantum discord and quantum nonlocality without entanglement. The ability of the thermal field parameter for the disappearance of the generated correlations depend on the spontaneous emission parameter and vice versa.

  11. Thermal Transitions of Fibrillar Collagen Unveiled by Second-Harmonic Generation Microscopy of Corneal Stroma

    PubMed Central

    Matteini, Paolo; Cicchi, Riccardo; Ratto, Fulvio; Kapsokalyvas, Dimitrios; Rossi, Francesca; de Angelis, Marella; Pavone, Francesco S.; Pini, Roberto

    2012-01-01

    The thermal transitions of fibrillar collagen are investigated with second-harmonic generation polarization anisotropy microscopy. Second-harmonic generation images and polarization anisotropy profiles of corneal stroma heated in the 35–80°C range are analyzed by means of a theoretical model that is suitable to probe principal intramolecular and interfibrillar parameters of immediate physiological interest. Our results depict the tissue modification with temperature as the interplay of three destructuration stages at different hierarchical levels of collagen assembly including its tertiary structure and interfibrillar alignment, thus supporting and extending previous findings. This method holds the promise of a quantitative inspection of fundamental biophysical and biochemical processes and may find future applications in real-time and postsurgical functional imaging of collagen-rich tissues subjected to thermal treatments. PMID:22995490

  12. Thermal behavior of a high power generator exciter bridge measured by optical fiber sensors

    NASA Astrophysics Data System (ADS)

    Probst, Werner K.; Bortolotti, Fernando; de Morais Sousa, Kleiton; Kalinowski, Hypolito José; Martelli, Cicero; Cardozo da Silva, Jean Carlos

    2013-05-01

    This paper presents temperature measurements taken at a 3-phase thyristor rectifier bridge in a synchronous generator using fiber Bragg grating (FBG) sensors applied directly on the thyristors upper surface. The results show the thermal behavior of the thyristors during the generator's start-up-phase and the period of time after the synchronization, with regulating operations as reaction to different load conditions. The temperature analysis is supported by current, voltage and power values of the hydroelectric power plant monitoring system. The trend of curves describes the typical behavior of thyristors which is proven with a four term transient thermal model. The different heat effect a thyristor experiences inside the switching-cabinet are also discussed.

  13. Thermal neutron analysis (TNA) explosive detection based on electronic neutron generators

    NASA Astrophysics Data System (ADS)

    Lee, W. C.; Mahood, D. B.; Ryge, P.; Shea, P.; Gozani, T.

    1995-05-01

    Thermal neutron analysis explosive detection systems have been developed and demonstrated for inspection of checked airline baggage and for detection of buried land mines. Thermal neutrons from a moderated neutron source impinge on the inspected object, and the resulting capture gamma ray signatures provide detection information. Isotopic neutron sources, e.g. 252Cf, are compact, economical and reliable, but they are subject to the licensing requirements, safety concerns and public perception problems associated with radioactive material. These are mitigated by use of an electronic neutron generator — an ion accelerator with a target producing neutrons by a nuclear reaction such as D(d, n) 3He or 9Be(d, n) 10B. With suitable moderator designs based on neutron transport codes, operational explosive detection systems can be built and would provide effective alternatives to radioactive neutron sources. Calculations as well as laboratory and field experience with three generator types will be presented.

  14. Trajectory Generation and Coupled Numerical Simulation for Thermal Spraying Applications on Complex Geometries

    NASA Astrophysics Data System (ADS)

    Candel, A.; Gadow, R.

    2009-12-01

    For high process reproducibility and optimized coating quality in thermal spray applications on complex geometries, atmospheric plasma spraying and high-velocity oxygen fuel torches are guided by advanced robot systems. The trajectory of the torch, the spray angle, and the relative speed between torch and component are crucial factors which affect the coating microstructure, properties, and, especially, the residual stress distribution. Thus, the requirement of high-performance thermally sprayed coatings with narrow dimensional tolerances leads to challenges in the field of robot-assisted handling, and software tools for efficient trajectory generation and robot programming are demanded. By appropriate data exchange, the automatically generated torch trajectory and speed profile can be integrated in finite element method models to analyze their influence on the heat and mass transfer during deposition. Coating experiments assisted by online diagnostics were performed to validate the developed software tools.

  15. A global fouling factor methodology for analyzing steam generator thermal performance degradation

    SciTech Connect

    Kreider, M.A.; White, G.A.; Varrin, R.D. Jr.

    1998-06-01

    Over the past few years, steam generator (SG) thermal performance degradation has led to decreased plant efficiency and power output at numerous PWR nuclear power plants with recirculating-type SGs. The authors have developed and implemented methodologies for quantitatively evaluating the various sources of SG performance degradation, both internal and external to the SG pressure boundary. These methodologies include computation of the global fouling factor history, evaluation of secondary deposit thermal resistance using deposit characterization data, and consideration of pressure loss causes unrelated to the tube bundle, such as hot-leg temperature streaming and SG moisture separator fouling. In order to evaluate the utility of the global fouling factor methodology, the authors performed case studies for a number of PWR SG designs. Key results from two of these studies are presented here. In tandem with the fouling-factor analyses, a study evaluated for each plant the potential causes of pressure loss. The combined results of the global fouling factor calculations and the pressure-loss evaluations demonstrated two key points: (1) that the available thermal margin against fouling, which can vary substantially from plant to plant, has an important bearing on whether a given plant exhibits losses in electrical generating capacity, and (2) that a wide variety of causes can result in SG thermal performance degradation.

  16. Three-dimensional surface grid generation for calculation of thermal radiation shape factors

    NASA Technical Reports Server (NTRS)

    Aly, Hany M.

    1992-01-01

    A technique is described to generate three dimensional surface grids suitable for calculating shape factors for thermal radiative heat transfer. The surface under consideration is approximated by finite triangular elements generated in a special manner. The grid is generated by dividing the surface into a two dimensional array of nodes. Each node is defined by its coordinates. Each set of four adjacent nodes is used to construct two triangular elements. Each triangular element is characterized by the vector representation of its vertices. Vector algebra is used to calculate all desired geometric properties of grid elements. The properties are used to determine the shape factor between the element and an area element in space. The grid generation can be graphically displayed using any software with three dimensional features. DISSPLA was used to view the grids.

  17. Roadmapping the Resolution of Gas Generation Issues in Packages Containing Radioactive Waste/Materials

    SciTech Connect

    Luke, Dale Elden; Rogers, Adam Zachary; Hamp, S.

    2001-03-01

    Gas generation issues, particularly hydrogen, have been an area of concern for the transport and storage of radioactive materials and waste in the Department of Energy (DOE) complex. Potentially combustible gases can be generated through a variety of reactions, including chemical reactions and radiolytic decomposition of hydrogen-containing materials. Transportation regulations prohibit shipment of explosives and radioactive materials together. This paper discusses the major gas generation issues within the DOE Complex and the research that has been and is being conducted by the transuranic (TRU) waste, nuclear materials (NM), and spent nuclear fuels (SNF) programs within DOE’s Environmental Management (EM) organization to address gas generation concerns. This paper presents a "program level" roadmap that links technology development to program needs and identifies the probability of success in an effort to understand the programmatic risk associated with the issue of gas generation. This "program level" roadmapping involves linking technology development (and deployment) efforts to the programs’ needs and requirements for dispositioning the material/waste that generates combustible gas through radiolysis and chemical decomposition. The roadmapping effort focused on needed technical & programmatic support to the baselines (and to alternatives to the baselines) where the probability of success is low (i.e., high uncertainty) and the consequences of failure are relatively high (i.e., high programmatic risk). A second purpose for roadmapping was to provide the basis for coordinating sharing of "lessons learned" from research and development (R&D) efforts across DOE programs to increase efficiency and effectiveness in addressing gas generation issues.

  18. Temperature and flow rate effects on mass median diameters of thermally generated malathion and naled fogs.

    PubMed

    Brown, J R; Chew, V; Melson, R O

    1993-06-01

    The effects of temperature and flow rate on mass median diameters (mmds) of thermally generated aerosol clouds were studied. Number 2 fuel oil alone, undiluted and diluted malathion 91, and undiluted naled were examined. There was a significant flow rate x temperature interaction on the mmds of diluted malathion fogs: i.e., differences among flow rates depended on temperature and vice versa. PMID:8350082

  19. Thermally Simulated Testing of a Direct-Drive Gas-Cooled Nuclear Reactor

    NASA Technical Reports Server (NTRS)

    Godfroy, Thomas; Bragg-Sitton, Shannon; VanDyke, Melissa

    2003-01-01

    This paper describes the concept and preliminary component testing of a gas-cooled, UN-fueled, pin-type reactor which uses He/Xe gas that goes directly into a recuperated Brayton system to produce electricity for nuclear electric propulsion. This Direct-Drive Gas-Cooled Reactor (DDG) is designed to be subcritical under water or wet-sand immersion in case of a launch accident. Because the gas-cooled reactor can directly drive the Brayton turbomachinery, it is possible to configure the system such that there are no external surfaces or pressure boundaries that are refractory metal, even though the gas delivered to the turbine is 1144 K. The He/Xe gas mixture is a good heat transport medium when flowing, and a good insulator when stagnant. Judicious use of stagnant cavities as insulating regions allows transport of the 1144-K gas while keeping all external surfaces below 900 K. At this temperature super-alloys (Hastelloy or Inconel) can be used instead of refractory metals. Super-alloys reduce the technology risk because they are easier to fabricate than refractory metals, we have a much more extensive knowledge base on their characteristics, and, because they have a greater resistance to oxidation, system testing is eased. The system is also relatively simple in its design: no additional coolant pumps, heat exchanger, or freeze-thaw systems are required. Key to success of this concept is a good knowledge of the heat transfer between the fuel pins and the gas, as well as the pressure drop through the system. This paper describes preliminary testing to obtain this key information, as well as experience in demonstrating electrical thermal simulation of reactor components and concepts.

  20. Modelling of segmented high-performance thermoelectric generators with effects of thermal radiation, electrical and thermal contact resistances

    NASA Astrophysics Data System (ADS)

    Ouyang, Zhongliang; Li, Dawen

    2016-04-01

    In this study, segmented thermoelectric generators (TEGs) have been simulated with various state-of-the-art TE materials spanning a wide temperature range, from 300 K up to 1000 K. The results reveal that by combining the current best p-type TE materials, BiSbTe, MgAgSb, K-doped PbTeS and SnSe with the strongest n-type TE materials, Cu-Doped BiTeSe, AgPbSbTe and SiGe to build segmented legs, TE modules could achieve efficiencies of up to 17.0% and 20.9% at ΔT = 500 K and ΔT = 700 K, respectively, and a high output power densities of over 2.1 Watt cm‑2 at the temperature difference of 700 K. Moreover, we demonstrate that successful segmentation requires a smooth change of compatibility factor s from one end of the TEG leg to the other, even if s values of two ends differ by more than a factor of 2. The influence of the thermal radiation, electrical and thermal contact effects have also been studied. Although considered potentially detrimental to the TEG performance, these effects, if well-regulated, do not prevent segmentation of the current best TE materials from being a prospective way to construct high performance TEGs with greatly enhanced efficiency and output power density.