Science.gov

Sample records for gas tracer studies

  1. Sulfur hexafluoride gas tracer studies in streams

    SciTech Connect

    Hibbs, D.E.; Gulliver, J.S.; Parkhill, K.L.

    1998-08-01

    Gas tracers are useful investigative tools in the study of reaeration and the fate of volatile organic contaminants in many natural streams. They enable the direct measurement of a variety of stream parameters, including the gas exchange rates between the stream and the atmosphere, as well as the spreading rate for dissolved pollutants downstream of a discharge point or spill site. The air-water mass transfer coefficients, dispersion coefficients, and mean residence times in two experimental streams and one natural stream are measured using a variation of the standard volatile tracer-dye technique. Sulfur hexafluoride (SF{sub 6}) is used as the volatile tracer and rhodamine WT is used as the conservative tracer. The low limit of quantification of SF{sub 6} makes it possible to inject SF{sub 6}-rich water into many streams and avoid complications with dosing a stream with a gaseous tracer. The experimental methods are described in detail. The SF{sub 6} measurements were extremely precise, producing smooth concentration time curves. The SF{sub 6} measurements collected in side-by-side experimental channels yielded similar values of the gas transfer coefficient.

  2. Perfluorocarbon Gas Tracer Studies to Support Risk Assessment Modeling of Critical Infrastructure Subjected to Terrorist Attacks

    SciTech Connect

    Sullivan, Terry M.; Heiser, John H.; Watson, Tom; Allwine, K Jerry; Flaherty, Julia E.

    2006-05-06

    Development of real-time predictive modeling to identify the dispersion and/or source(s) of airborne weapons of mass destruction including chemical, biological, radiological, and nuclear material in urban environments is needed to improve response to potential releases of these materials via either terrorist or accidental means. These models will also prove useful in defining airborne pollution dispersion in urban environments for pollution management/abatement programs. Predicting gas flow in an urban setting on a scale of less than a few kilometers is a complicated and challenging task due to the irregular flow paths that occur along streets and alleys and around buildings of different sizes and shapes, i.e., “urban canyons”. In addition, air exchange between the outside and buildings and subway areas further complicate the situation. Transport models that are used to predict dispersion of WMD/CBRN materials or to back track the source of the release require high-density data and need defensible parameterizations of urban processes. Errors in the data or any of the parameter inputs or assumptions will lead to misidentification of the airborne spread or source release location(s). The need for these models to provide output in a real-time fashion if they are to be useful for emergency response provides another challenge. To improve the ability of New York City’s (NYC's) emergency management teams and first response personnel to protect the public during releases of hazardous materials, the New York City Urban Dispersion Program (UDP) has been initiated. This is a four year research program being conducted from 2004 through 2007. This paper will discuss ground level and subway Perfluorocarbon tracer (PFT) release studies conducted in New York City. The studies released multiple tracers to study ground level and vertical transport of contaminants. This paper will discuss the results from these tests and how these results can be used for improving transport

  3. PERFLUOROCARBON GAS TRACER STUDIES TO SUPPORT RISK ASSESSMENT MODELING OF CRITICAL INFRASTRUCTURE SUBJECTED TO TERRORIST ATTACKS.

    SciTech Connect

    SULLIVAN, T.M.; HEISER, J.; WATSON, T.; ALLWINE, K.J.; FLAHERTY, J.E.

    2006-05-06

    Development of real-time predictive modeling to identify the dispersion and/or source(s) of airborne weapons of mass destruction including chemical, biological, radiological, and nuclear material in urban environments is needed to improve response to potential releases of these materials via either terrorist or accidental means. These models will also prove useful in defining airborne pollution dispersion in urban environments for pollution management/abatement programs. Predicting gas flow in an urban setting on a scale of less than a few kilometers is a complicated and challenging task due to the irregular flow paths that occur along streets and alleys and around buildings of different sizes and shapes, i.e., ''urban canyons''. In addition, air exchange between the outside and buildings and subway areas further complicate the situation. Transport models that are used to predict dispersion of WMD/CBRN materials or to back track the source of the release require high-density data and need defensible parameterizations of urban processes. Errors in the data or any of the parameter inputs or assumptions will lead to misidentification of the airborne spread or source release location(s). The need for these models to provide output in a real-time fashion if they are to be useful for emergency response provides another challenge. To improve the ability of New York City's (NYC's) emergency management teams and first response personnel to protect the public during releases of hazardous materials, the New York City Urban Dispersion Program (UDP) has been initiated. This is a four year research program being conducted from 2004 through 2007. This paper will discuss ground level and subway Perfluorocarbon tracer (PFT) release studies conducted in New York City. The studies released multiple tracers to study ground level and vertical transport of contaminants. This paper will discuss the results from these tests and how these results can be used for improving transport models

  4. Multiple-tracer gas analyzer

    SciTech Connect

    Uhl, J.E.

    1982-01-01

    A multi-gas tracer system has been designed, built, and used on an explosively fractured oil shale rubble bed. This paper deals exclusively with the hardware, software, and overall operation of the tracer system. This system is a field portable, self-contained unit, which utilizes a mass spectrometer for gas analysis. The unit has a 20 channel sample port capability and is controlled by a desk top computer. The system is configured to provide a dynamic sensitivity range of up to six orders of magnitude. A roots blower is manifolded to the unit to provide continuous flow in all sample lines. The continuous flow process allows representative samples as well as decreasing the time between each measurement. Typical multiplex cycle time to evaluate four unique gases is approximately 12 seconds.

  5. Evaluation of leakage from a metal machining center using tracer gas methods: a case study.

    PubMed

    Heitbrink, W A; Earnest, G S; Mickelsen, R L; Mead, K R; D'Arcy, J B

    1999-01-01

    To evaluate the efficacy of engineering controls in reducing worker exposure to metalworking fluids, an evaluation of an enclosure for a machining center during face milling was performed. The enclosure was built around a vertical metal machining center with an attached ventilation system consisting of a 25-cm diameter duct, a fan, and an air-cleaning filter. The evaluation method included using sulfur hexafluoride (SF6) tracer gas to determine the ventilation system's flow rate and capture efficiency, a respirable aerosol monitor (RAM) to identify aerosol leak locations around the enclosure, and smoke tubes and a velometer to evaluate air movement around the outside of the enclosure. Results of the tracer gas evaluation indicated that the control system was approximately 98% efficient at capturing tracer gas released near the spindle of the machining center. This result was not significantly different from 100% efficiency (p = 0.2). The measured SF6 concentration when released directly into the duct had a relative standard deviation of 2.2%; whereas, when releasing SF6 at the spindle, the concentration had a significantly higher relative standard deviation of 7.8% (p = 0.016). This increased variability could be due to a cyclic leakage at a small gap between the upper and lower portion of the enclosure or due to cyclic stagnation. Leakage also was observed with smoke tubes, a velometer, and an aerosol photometer. The tool and fluid motion combined to induce a periodic airflow in and out of the enclosure. These results suggest that tracer gas methods could be used to evaluate enclosure efficiency. However, smoke tubes and aerosol instrumentation such as optical particle counters or aerosol photometers also need to be used to locate leakage from enclosures. PMID:10635544

  6. A pilot study of the behavior of gas- and particle-phase ETS tracers in residences

    SciTech Connect

    Apte, Michael; Gundel, Lara; Dod, Raymond; Chang, Gee-Min; Sextro, Richard

    2002-02-01

    Our previous study of environmental tobacco smoke (ETS) in a three-room environmental chamber showed that smoking history significantly influenced inter-room ETS transport, particularly of gas-phase nicotine. We conducted a three-home pilot study where smoking was limited to one room. Single-smoker residences were monitored during five one-week periods while the smoker participated in a smoking cessation program. Nicotine traced ETS particles were detected reliably in the smoking rooms (SRs) and unreliably in the non-smoking rooms (NSRs). On average, the ventilation- and volume-normalized smoking rate, 0.1 Cigarette-h{sup -1} m{sup -3}, added about 17 and 4 {micro}g m{sup -3} of ETS particles into the SR and NSR, while average nicotine concentration increases were 2 and 0.06 {micro}g m{sup -3}, respectively. Thus, nicotine tracers may underestimate ETS particle exposure in a NSR (e.g., a child's bedroom) by a factor of 2 to 8. In other words, ETS exposure predicted from nicotine concentrations could be almost an order of magnitude lower than actual exposure.

  7. EVALUATION OF LEAKAGE FROM FUME HOODS USING TRACER GAS, TRACER NANOPARTICLES AND NANOPOWDER HANDLING TEST METHODOLOGIES

    PubMed Central

    Dunn, Kevin H.; Tsai, Candace Su-Jung; Woskie, Susan R.; Bennett, James S.; Garcia, Alberto; Ellenbecker, Michael J.

    2015-01-01

    The most commonly reported control used to minimize workplace exposures to nanomaterials is the chemical fume hood. Studies have shown, however, that significant releases of nanoparticles can occur when materials are handled inside fume hoods. This study evaluated the performance of a new commercially available nano fume hood using three different test protocols. Tracer gas, tracer nanoparticle, and nanopowder handling protocols were used to evaluate the hood. A static test procedure using tracer gas (sulfur hexafluoride) and nanoparticles as well as an active test using an operator handling nanoalumina were conducted. A commercially available particle generator was used to produce sodium chloride tracer nanoparticles. Containment effectiveness was evaluated by sampling both in the breathing zone (BZ) of a mannequin and operator as well as across the hood opening. These containment tests were conducted across a range of hood face velocities (60, 80, and 100 feet/minute) and with the room ventilation system turned off and on. For the tracer gas and tracer nanoparticle tests, leakage was much more prominent on the left side of the hood (closest to the room supply air diffuser) although some leakage was noted on the right side and in the BZ sample locations. During the tracer gas and tracer nanoparticle tests, leakage was primarily noted when the room air conditioner was on for both the low and medium hood exhaust air flows. When the room air conditioner was turned off, the static tracer gas tests showed good containment across most test conditions. The tracer gas and nanoparticle test results were well correlated showing hood leakage under the same conditions and at the same sample locations. The impact of a room air conditioner was demonstrated with containment being adversely impacted during the use of room air ventilation. The tracer nanoparticle approach is a simple method requiring minimal setup and instrumentation. However, the method requires the reduction in

  8. ANALYSIS OF ESTUARINE TRACER-GAS TRANSPORT AND DESORPTION.

    USGS Publications Warehouse

    Bales, Jerad D.; Holley, Edward R.

    1987-01-01

    The riverine tracer-gas technique provides a direct, reach-averaged measure of gas exchange, is fairly simple to implement, and is widely accepted for determining reaeration-rate coefficients in rivers. The method, however, is not directly applicable to flows having vertical density gradients. Consequently, studies were undertaken to develop and evaluate methods for obtaining surface-exchange coefficients from estuarine tracer-gas data. Reasonable estimates of the desorption coefficient (within 50 percent of the correct value) were obtained when an analytical solution of the transport equation was compared with data from a numerically simulated continuous release of tracer gas.

  9. Novel tracer method to measure isotopic labeled gas-phase nitrous acid (HO15NO) in biogeochemical studies.

    PubMed

    Wu, Dianming; Kampf, Christopher J; Pöschl, Ulrich; Oswald, Robert; Cui, Junfang; Ermel, Michael; Hu, Chunsheng; Trebs, Ivonne; Sörgel, Matthias

    2014-07-15

    Gaseous nitrous acid (HONO), the protonated form of nitrite, contributes up to ∼60% to the primary formation of hydroxyl radical (OH), which is a key oxidant in the degradation of most air pollutants. Field measurements and modeling studies indicate a large unknown source of HONO during daytime. Here, we developed a new tracer method based on gas-phase stripping-derivatization coupled to liquid chromatography-mass spectrometry (LC-MS) to measure the 15N relative exceedance, ψ(15N), of HONO in the gas-phase. Gaseous HONO is quantitatively collected and transferred to an azo dye, purified by solid phase extraction (SPE), and analyzed using high performance liquid chromatography coupled to mass spectrometry (HPLC-MS). In the optimal working range of ψ(15N)=0.2-0.5, the relative standard deviation of ψ(15N) is <4%. The optimum pH and solvents for extraction by SPE and potential interferences are discussed. The method was applied to measure HO15NO emissions from soil in a dynamic chamber with and without spiking 15) labeled urea. The identification of HO15NO from soil with 15N urea addition confirmed biogenic emissions of HONO from soil. The method enables a new approach of studying the formation pathways of HONO and its role for atmospheric chemistry (e.g., ozone formation) and environmental tracer studies on the formation and conversion of gaseous HONO or aqueous NO2- as part of the biogeochemical nitrogen cycle, e.g., in the investigation of fertilization effects on soil HONO emissions and microbiological conversion of NO2- in the hydrosphere. PMID:24954648

  10. Quantifying capture efficiency of gas collection wells with gas tracers.

    PubMed

    Yazdani, Ramin; Imhoff, Paul; Han, Byunghyun; Mei, Changen; Augenstein, Don

    2015-09-01

    A new in situ method for directly measuring the gas collection efficiency in the region around a gas extraction well was developed. Thirteen tests were conducted by injecting a small volume of gas tracer sequentially at different locations in the landfill cell, and the gas tracer mass collected from each test was used to assess the collection efficiency at each injection point. For 11 tests the gas collection was excellent, always exceeding 70% with seven tests showing a collection efficiency exceeding 90%. For one test the gas collection efficiency was 8±6%. Here, the poor efficiency was associated with a water-laden refuse or remnant daily cover soil located between the point of tracer injection and the extraction well. The utility of in situ gas tracer tests for quantifying landfill gas capture at particular locations within a landfill cell was demonstrated. While there are certainly limitations to this technology, this method may be a valuable tool to help answer questions related to landfill gas collection efficiency and gas flow within landfills. Quantitative data from tracer tests may help assess the utility and cost-effectiveness of alternative cover systems, well designs and landfill gas collection management practices. PMID:26148643

  11. Contaminated vadose zone characterization using partitioning gas tracers

    SciTech Connect

    Whitley, G.A. Jr.; McKinney, D.C.; Pope, G.A.; Rouse, B.A.; Deeds, N.E.

    1999-06-01

    This paper describes laboratory research conducted to investigate the performance of partitioning tracers for the detection of nonaqueous-phase liquids (NAPLs) in vadose zones. Once evaluated, the tracers may be used for volume estimation of NAPLs and remediation performance assessment of vadose zones. These laboratory studies used glass chromatography columns packed with: (1) Ottawa sand; and then (2) in a separate experiment, soil extracted from the Chemical Waste Landfill at Sandia National Laboratories. The columns were prepared in a manner that resulted in a three-phase system of air, water, and NAPL in the columns. Conservative and partitioning gas tracers were injected into the columns, and their elution concentrations were analyzed. The method of moments was used to estimate partition coefficients between the air and NAPL phases for each of the tracers. The partition coefficients and retardation factors, also estimated during the study, are used to select appropriate tracers for NAPL detection. This research identified several suitable perfluorocarbon tracers and demonstrated the feasibility of using partitioning tracers as a tool for NAPL detection in the vadose zone.

  12. A Case Study of the Weather Research and Forecasting Model Applied to the Joint Urban 2003 Tracer Field Experiment. Part 2: Gas Tracer Dispersion

    NASA Astrophysics Data System (ADS)

    Nelson, Matthew A.; Brown, Michael J.; Halverson, Scot A.; Bieringer, Paul E.; Annunzio, Andrew; Bieberbach, George; Meech, Scott

    2016-07-01

    The Quick Urban & Industrial Complex (QUIC) atmospheric transport, and dispersion modelling, system was evaluated against the Joint Urban 2003 tracer-gas measurements. This was done using the wind and turbulence fields computed by the Weather Research and Forecasting (WRF) model. We compare the simulated and observed plume transport when using WRF-model-simulated wind fields, and local on-site wind measurements. Degradation of the WRF-model-based plume simulations was cased by errors in the simulated wind direction, and limitations in reproducing the small-scale wind-field variability. We explore two methods for importing turbulence from the WRF model simulations into the QUIC system. The first method uses parametrized turbulence profiles computed from WRF-model-computed boundary-layer similarity parameters; and the second method directly imports turbulent kinetic energy from the WRF model. Using the WRF model's Mellor-Yamada-Janjic boundary-layer scheme, the parametrized turbulence profiles and the direct import of turbulent kinetic energy were found to overpredict and underpredict the observed turbulence quantities, respectively. Near-source building effects were found to propagate several km downwind. These building effects and the temporal/spatial variations in the observed wind field were often found to have a stronger influence over the lateral and vertical plume spread than the intensity of turbulence. Correcting the WRF model wind directions using a single observational location improved the performance of the WRF-model-based simulations, but using the spatially-varying flow fields generated from multiple observation profiles generally provided the best performance.

  13. Effect of room air recirculation delay on the decay rate of tracer gas concentration

    SciTech Connect

    Kristoffersen, A.R.; Gadgil, A.J.; Lorenzetti, D.M.

    2004-05-01

    Tracer gas measurements are commonly used to estimate the fresh air exchange rate in a room or building. Published tracer decay methods account for fresh air supply, infiltration, and leaks in ductwork. However, the time delay associated with a ventilation system recirculating tracer back to the room also affects the decay rate. We present an analytical study of tracer gas decay in a well-mixed, mechanically-ventilated room with recirculation. The analysis shows that failing to account for delays can lead to under- or over-estimates of the fresh air supply, depending on whether the decay rate calculation includes the duct volume.

  14. Comparison of modelled and measured tracer gas concentrations during the Across North America Tracer Experiment (ANATEX)

    SciTech Connect

    Clark, T.L.; Cohn, R.D.; Seilkop, S.K.; Draxler, R.R.; Heffter, J.L.

    1989-01-01

    The 24-hour surface concentrations of several perfluorocarbon tracer gases measured during the 1987 Across North America Tracer Experiment (ANATEX) provided a unique continental-scale data set with which to evaluate long-range transport and diffusion models. One such model, a multilayer Lagrangian model, was evaluated in the ANATEX Model Evaluation Study (AMES) by comparing distributions and time series of calculated and measured tracer concentrations at bands of sampling sites nearly equidistant from one of the two tracer release sites and by computing spatial differences in the concentration-weighted centroids of 20, 24-hour tracer footprints or composite plumes. The results for this model indicated that it overemphasized the effects of the stronger upper-level winds. In spite of the bias in transport speed, the distributions of the calculated and measured concentrations were quite similar.

  15. Dissolved gas and isotopic tracers of denitrification

    SciTech Connect

    Singleton, M J; Moran, J E; Esser, B K; McNab, W W; Carle, S F; Cey, B D

    2008-02-28

    We present results from field studies in California (USA) where tritium-helium age dating is used in conjunction with major gases (N{sub 2}, O{sub 2}, CH{sub 4}, CO{sub 2}), noble gases (He, Ne, Ar, Kr, Xe), and stable isotopes ({sup 15}N/{sup 14}N, {sup 18}O/{sup 16}O) in order to document nitrate loading and denitrification associated with confined animal agricultural operations and septic systems. Preliminary results show that in-field extraction of the full suite of dissolved gases will be possible using a new Gas Extraction System under development to augment the current Noble Gas Mass Spectrometry and Membrane Inlet Mass Spectrometry techniques. Ascribing observed groundwater nitrate levels to specific current and past land use practices is often complicated by uncertainty in groundwater age and the degree and locus of dentrification. Groundwater age dating at dairy field sites using the {sup 3}H-{sup 3}He method indicates that the highest nitrate concentrations (150-260 mg/L-NO3) occur in waters with apparent ages of <5 yrs, whereas older waters contain excess N{sub 2} from saturated zone denitrification [1]. At a residential septic system site in Livermore, CA, waters with young apparent ages (<1 yr) proximal to leach line drainage have lower nitrate concentrations and elevated nitrate {delta}{sup 15}N and {delta}{sup 18}O values consistent with denitrification, but little evidence for excess N{sub 2}, indicating that denitrification is occurring in the unsaturated zone. Degassing of groundwater can complicate efforts to calculate travel times [2] and to quantify denitrification. Degassed groundwater underlying dairy operations is formed by two distinct mechanisms: (1) recharge of manure lagoon water affected by biogenic gas ebullition [3] and (2) saturated zone denitrification producing N{sub 2} gas above solubility in groundwater. Gas loss due to both mechanisms is evident in the concentrations of noble gases and major gases in dairy groundwater samples.

  16. Field measurements of tracer gas transport by barometric pumping

    SciTech Connect

    Lagus, P.L.; McKinnis, W.B.; Hearst, J.R.; Burkhard, N.R.; Smith, C.F.

    1994-07-28

    Vertical gas motions induced by barometric pressure variations can carry radioactive gases out of the rubblized region produced by an underground nuclear explosion, through overburden rock, into the atmosphere. To better quantify transit time and amount of transport, field experiments were conducted at two sites on Pahute Mesa, Kapelli and Tierra, where radioactive gases had been earlier detected in surface cracks. At each site, two tracer gases were injected into the rubblized chimney 300-400 m beneath the surface and their arrival was monitored by concentration measurements in gas samples extracted from shallow collection holes. The first ``active`` tracer was driven by a large quantity of injected air; the second ``passive`` tracer was introduced with minimal gas drive to observe the natural transport by barometric pumping. Kapelli was injected in the fall of 1990, followed by Tierra in the fall of 1991. Data was collected at both sites through the summer of 1993. At both sites, no surface arrival of tracer was observed during the active phase of the experiment despite the injection of several million cubic feet of air, suggesting that cavity pressurization is likely to induce horizontal transport along high permeability layers rather than vertical transport to the surface. In contrast, the vertical pressure gradients associated with barometric pumping brought both tracers to the surface in comparable concentrations within three months at Kapelli, whereas 15 months elapsed before surface arrival at Tierra. At Kapelli, a quasisteady pumping regime was established, with tracer concentrations in effluent gases 1000 times smaller than concentrations thought to exist in the chimney. Tracer concentrations observed at Tierra were typically an order of magnitude smaller. Comparisons with theoretical calculations suggest that the gases are traveling through {approximately}1 millimeter vertical fractures spaced 2 to 4 meters apart. 6 refs., 18 figs., 3 tabs.

  17. Radon, CO2 and CH4 as environmental tracers in groundwater/surface water interaction studies - comparative theoretical evaluation of the gas specific water/air phase transfer kinetics

    NASA Astrophysics Data System (ADS)

    Schubert, M.; Paschke, A.

    2015-05-01

    The applicability of radon as environmental tracer in groundwater/surface water interaction studies has been documented in a considerable number of publications. In some of these reports it has also been suggested to validate the radon based results by using CO2 and CH4 as supplementary tracers. The on-site measurement of the three gaseous parameters relies on their extraction from the water followed by the measurement of their concentration by means of mobile gas-in-air detectors. Since most related practical applications require the recording of time series, a continuous extraction of the gases from (e.g.) a permanently pumped water stream is necessary. A precondition for the sound combined interpretation of the resulting time series is that the individual temporal responses of the extracted gas-in-air concentrations to instantaneously changing gas-in-water concentrations are either identical or in reproducible relation to each other. The aim of our theoretical study was the comparison of the extraction behavior of the three gaseous solutes with focus on the individual temporal responses to changing gas-in-water concentrations considering in particular the gas specific water/air phase transfer kinetics. We could show that the overall mass transfer coefficients of radon, CO2 and CH4 result in a virtually similar temporal response to aqueous concentration changes, thus confirming the straightforward combined measurement/utilization of the dissolved gases as environmental tracers in groundwater/surface water interaction studies.

  18. Unit vent airflow measurements using a tracer gas technique

    SciTech Connect

    Adams, D.G.; Lagus, P.L.; Fleming, K.M.

    1997-08-01

    An alternative method for assessing flowrates that does not depend on point measurements of air flow velocity is the constant tracer injection technique. In this method one injects a tracer gas at a constant rate into a duct and measures the resulting concentration downstream of the injection point. A simple equation derived from the conservation of mass allows calculation of the flowrate at the point of injection. Flowrate data obtained using both a pitot tube and a flow measuring station were compared with tracer gas flowrate measurements in the unit vent duct at the Callaway Nuclear Station during late 1995 and early 1996. These data are presented and discussed with an eye toward obtaining precise flowrate data for release rate calculations. The advantages and disadvantages of the technique are also described. In those test situations for which many flowrate combinations are required, or in large area ducts, a tracer flowrate determination requires fewer man-hours than does a conventional traverse-based technique and does not require knowledge of the duct area. 6 refs., 10 figs., 6 tabs.

  19. Tracer diffusion coefficients in a sheared inelastic Maxwell gas

    NASA Astrophysics Data System (ADS)

    Garzó, Vicente; Trizac, Emmanuel

    2016-07-01

    We study the transport properties of an impurity in a sheared granular gas, in the framework of the Boltzmann equation for inelastic Maxwell models. We investigate here the impact of a nonequilibrium phase transition found in such systems, where the tracer species carries a finite fraction of the total kinetic energy (ordered phase). To this end, the diffusion coefficients are first obtained for a granular binary mixture in spatially inhomogeneous states close to the simple shear flow. In this situation, the set of coupled Boltzmann equations are solved by means of a Chapman–Enskog-like expansion around the (local) shear flow distributions for each species, thereby retaining all the hydrodynamic orders in the shear rate a. Due to the anisotropy induced by the shear flow, three tensorial quantities D ij , D p,ij , and D T,ij are required to describe the mass transport process instead of the conventional scalar coefficients. These tensors are given in terms of the solutions of a set of coupled algebraic equations, which can be exactly solved as functions of the shear rate a, the coefficients of restitution {αsr} and the parameters of the mixture (masses and composition). Once the forms of D ij , D p,ij , and D T,ij are obtained for arbitrary mole fraction {{x}1}={{n}1}/≤ft({{n}1}+{{n}2}\\right) (where n r is the number density of species r), the tracer limit ({{x}1}\\to 0 ) is carefully considered for the above three diffusion tensors. Explicit forms for these coefficients are derived showing that their shear rate dependence is significantly affected by the order-disorder transition.

  20. Estimation of uncertainty in tracer gas measurement of air change rates.

    PubMed

    Iizuka, Atsushi; Okuizumi, Yumiko; Yanagisawa, Yukio

    2010-12-01

    Simple and economical measurement of air change rates can be achieved with a passive-type tracer gas doser and sampler. However, this is made more complex by the fact many buildings are not a single fully mixed zone. This means many measurements are required to obtain information on ventilation conditions. In this study, we evaluated the uncertainty of tracer gas measurement of air change rate in n completely mixed zones. A single measurement with one tracer gas could be used to simply estimate the air change rate when n = 2. Accurate air change rates could not be obtained for n ≥ 2 due to a lack of information. However, the proposed method can be used to estimate an air change rate with an accuracy of <33%. Using this method, overestimation of air change rate can be avoided. The proposed estimation method will be useful in practical ventilation measurements. PMID:21318005

  1. Evaluating Gas-Phase Transport And Detection Of Noble Gas Signals From Underground Nuclear Explosions Using Chemical Tracers

    NASA Astrophysics Data System (ADS)

    Carrigan, C. R.; Hunter, S. L.; Sun, Y.; Wagoner, J. L.; Ruddle, D.; Anderson, G.; Felske, D.; Myers, K.; Zucca, J. J.; Emer, D. F.; Townsend, M.; Drellack, S.; Chipman, V.; Snelson, C. M.

    2013-12-01

    The 1993 Non-Proliferation Experiment (NPE) involved detonating 1 kiloton of chemical explosive in a subsurface cavity which also contained bottles of tracer gases (ref 1). That experiment provided an improved understanding of transport processes relevant to the detection of noble gas signals at the surface emanating from a clandestine underground nuclear explosion (UNE). As an alternative to performing large chemical detonations to simulate gas transport from UNEs, we have developed a test bed for subsurface gas transport, sampling and detection studies using a former UNE cavity. The test bed site allows for the opportunity to evaluate pathways to the surface created by the UNE as well as possible transport mechanisms including barometric pumping and cavity pressurization (ref 2). With the test bed we have monitored long-term chemical tracers as well as newly injected tracers. In order to perform high temporal resolution tracer gas monitoring, we have also developed a Subsurface Gas Smart Sampler (SGSS) which has application during an actual On Site Inspection (OSI) and is available for deployment in OSI field exercises planned for 2014. Deployment of five SGSS at the remote test bed has provided unparalleled detail concerning relationships involving tracer gas transport to the surface, barometric fluctuations and temporal variations in the natural radon concentration. We anticipate that the results of our tracer experiments will continue to support the development of improved noble gas detection technology for both OSI and International Monitoring System applications. 1. C.R. Carrigan et al., 1996, Nature, 382, p. 528. 2. Y. Sun and C.R. Carrigan, 2012, Pure Appl. Geophys., DOI 10.1007/s00024-012-0514-4.

  2. [Tracer gas evaluations of local exhaust hood performance].

    PubMed

    Ojima, Jun

    2007-09-01

    A local exhaust hood is one of the most commonly used controls for harmful contaminants in the working environment. In Japan, the performance of a hood is evaluated by hood velocity measurements, and administrative performance requirements for hoods are provided as control velocities by the Japanese Industrial Safety and Health Law. However, it is doubtful whether the control velocity would be the most suitable velocity for any industrial hood since the control velocity is not substantiated by actual measurements of the containment ability of each hood. In order to examine the suitability of the control velocity as a performance requirement, a hood performance test by the tracer gas method, using carbon dioxide (CO(2)), was conducted with an exterior type hood in a laboratory. In this study, as an index of the hood performance, capture efficiency defined as the ratio of contaminant quantity captured by the hood to the total generated contaminant quantity, was determined by measuring the CO(2) concentrations. When the assumptive capture point of the contaminant was located at a point 30 cm from the hood opening, a capture efficiency of >90% could be achieved with a suction velocity of less than the current control velocity. Without cross draft, a capture efficiency of >90% could be achieved with a suction velocity of 0.2 m/s (corresponding to 40% of the control velocity) at the capture point. Reduction of the suction velocity to 0.2 m/s caused an 80% decrease in exhaust flow rate. The effect of cross draft, set at 0.3 m/s, on the capture efficiency differed according to its direction. When the direction of the cross draft was normal to the hood centerline, the effect was not recognized and a capture efficiency of >90% could be achieved with a suction velocity of 0.2 m/s. A cross draft from a worker's back (at an angle of 45 degrees to the hood centerline) did not affect the capture efficiency, either. When the cross draft blew at an angle of 135 degrees to the hood

  3. Multimodel analysis of anisotropic diffusive tracer-gas transport in a deep arid unsaturated zone

    NASA Astrophysics Data System (ADS)

    Green, Christopher T.; Walvoord, Michelle A.; Andraski, Brian J.; Striegl, Robert G.; Stonestrom, David A.

    2015-08-01

    Gas transport in the unsaturated zone affects contaminant flux and remediation, interpretation of groundwater travel times from atmospheric tracers, and mass budgets of environmentally important gases. Although unsaturated zone transport of gases is commonly treated as dominated by diffusion, the characteristics of transport in deep layered sediments remain uncertain. In this study, we use a multimodel approach to analyze results of a gas-tracer (SF6) test to clarify characteristics of gas transport in deep unsaturated alluvium. Thirty-five separate models with distinct diffusivity structures were calibrated to the tracer-test data and were compared on the basis of Akaike Information Criteria estimates of posterior model probability. Models included analytical and numerical solutions. Analytical models provided estimates of bulk-scale apparent diffusivities at the scale of tens of meters. Numerical models provided information on local-scale diffusivities and feasible lithological features producing the observed tracer breakthrough curves. The combined approaches indicate significant anisotropy of bulk-scale diffusivity, likely associated with high-diffusivity layers. Both approaches indicated that diffusivities in some intervals were greater than expected from standard models relating porosity to diffusivity. High apparent diffusivities and anisotropic diffusivity structures were consistent with previous observations at the study site of rapid lateral transport and limited vertical spreading of gas-phase contaminants. Additional processes such as advective oscillations may be involved. These results indicate that gases in deep, layered unsaturated zone sediments can spread laterally more quickly, and produce higher peak concentrations, than predicted by homogeneous, isotropic diffusion models.

  4. Multimodel analysis of anisotropic diffusive tracer-gas transport in a deep arid unsaturated zone

    USGS Publications Warehouse

    Green, Christopher T.; Walvoord, Michelle Ann; Andraski, Brian J.; Striegl, Rob; Stonestrom, David A.

    2015-01-01

    Gas transport in the unsaturated zone affects contaminant flux and remediation, interpretation of groundwater travel times from atmospheric tracers, and mass budgets of environmentally important gases. Although unsaturated zone transport of gases is commonly treated as dominated by diffusion, the characteristics of transport in deep layered sediments remain uncertain. In this study, we use a multimodel approach to analyze results of a gas-tracer (SF6) test to clarify characteristics of gas transport in deep unsaturated alluvium. Thirty-five separate models with distinct diffusivity structures were calibrated to the tracer-test data and were compared on the basis of Akaike Information Criteria estimates of posterior model probability. Models included analytical and numerical solutions. Analytical models provided estimates of bulk-scale apparent diffusivities at the scale of tens of meters. Numerical models provided information on local-scale diffusivities and feasible lithological features producing the observed tracer breakthrough curves. The combined approaches indicate significant anisotropy of bulk-scale diffusivity, likely associated with high-diffusivity layers. Both approaches indicated that diffusivities in some intervals were greater than expected from standard models relating porosity to diffusivity. High apparent diffusivities and anisotropic diffusivity structures were consistent with previous observations at the study site of rapid lateral transport and limited vertical spreading of gas-phase contaminants. Additional processes such as advective oscillations may be involved. These results indicate that gases in deep, layered unsaturated zone sediments can spread laterally more quickly, and produce higher peak concentrations, than predicted by homogeneous, isotropic diffusion models.

  5. Isotopologues of dense gas tracers in NGC 1068

    SciTech Connect

    Wang, Junzhi; Qiu, Jianjie; Zhang, Zhi-Yu; Shi, Yong; Zhang, Jiangshui; Fang, Min

    2014-11-20

    We present observations of isotopic lines of dense gas tracers toward the nuclear region of nearby Seyfert 2 galaxy NGC 1068 with the IRAM 30 m telescope and the Atacama Pathfinder Experiment (APEX) 12 m telescope. We detected four isotopic lines (H{sup 13}CN 1-0, H{sup 13}CO{sup +} 1-0, HN{sup 13}C 1-0, and HC{sup 18}O{sup +} 1-0) at the 3 mm band with the IRAM 30 m telescope and obtained upper limits of other lines. We calculated optical depths of dense gas tracers with the detected isotopic lines of HCN 1-0, HCO{sup +} 1-0, and HNC 1-0. We find that the {sup 14}N/{sup 15}N abundance ratio is greater than 420 if we adopt the upper limit of HC{sup 15}N(1-0) emission. Combining this with fluxes of 1-0 lines from IRAM 30 m observations and the upper limit of 3-2 lines from APEX 12 m observations, we also estimated the excitation condition of molecular gas in the nuclear region of NGC 1068, which is less dense than that in the extreme starburst regions of galaxies.

  6. Analysis of volatile phase transport in soils using natural radon gas as a tracer

    SciTech Connect

    Chen, C.; Thomas, D.M.

    1992-01-01

    We have conducted a field study of soil gas transport processes using radon gas as a naturally occurring tracer. The .experiment monitored soil gas radon activity, soil moisture, and soil temperature at three depths in the shallow soil column; barometric pressure, rainfall and wind speed were monitored at the soil surface. Linear and multiple regression analysis of the data sets has shown that the gas phase radon activities under natural environmental conditions are influenced by soil moisture content, barometric pressure variations, soil temperature and soil structure. The effect of wind speed on subsurface radon activities under our field conditions has not been demonstrated.

  7. Analysis of volatile phase transport in soils using natural radon gas as a tracer

    SciTech Connect

    Chen, C.; Thomas, D.M.

    1992-12-31

    We have conducted a field study of soil gas transport processes using radon gas as a naturally occurring tracer. The .experiment monitored soil gas radon activity, soil moisture, and soil temperature at three depths in the shallow soil column; barometric pressure, rainfall and wind speed were monitored at the soil surface. Linear and multiple regression analysis of the data sets has shown that the gas phase radon activities under natural environmental conditions are influenced by soil moisture content, barometric pressure variations, soil temperature and soil structure. The effect of wind speed on subsurface radon activities under our field conditions has not been demonstrated.

  8. Analysis of volatile-phase transport in soils using natural radon gas as a tracer

    SciTech Connect

    Chen, C.; Thomas, D.M.

    1994-01-01

    We have conducted a field study of soil gas transport processes using radon gas as a naturally occurring tracer. The experiment monitored soil gas radon activity, soil moisture, and soil temperature at depth; barometric pressure, rainfall, and wind speed were monitored at the soil surface. Linear and multiple regression analysis under natural environmental conditions are influenced by soil moisture content, barometric pressure variations, soil temperature, and soil structure. The effect of wind speed on subsurface radon activities under our field conditions has not been observed. 25 refs., 12 figs., 1 tab.

  9. New Tracers of Gas Migration in the Continental Crust

    SciTech Connect

    Kurz, Mark D.

    2015-11-01

    Noble gases are exceptional tracers in continental settings due to the remarkable isotopic variability between the mantle, crust, and atmosphere, and because they are inert. Due to systematic variability in physical properties, such as diffusion, solubility, and production rates, the combination of helium, neon, and argon provides unique but under-utilized indices of gas migration. Existing noble gas data sets are dominated by measurements of gas and fluid phases from gas wells, ground waters and hot springs. There are very few noble gas measurements from the solid continental crust itself, which means that this important reservoir is poorly characterized. The central goal of this project was to enhance understanding of gas distribution and migration in the continental crust using new measurements of noble gases in whole rocks and minerals from existing continental drill cores, with an emphasis on helium, neon, argon. We carried out whole-rock and mineral-separate noble gas measurements on Precambrian basement samples from the Texas Panhandle. The Texas Panhandle gas field is the southern limb of the giant Hugoton-Panhandle oil and gas field; it has high helium contents (up to ~ 2 %) and 3He/4He of 0.21 (± 0.03) Ra. Because the total amount of helium in the Panhandle gas field is relatively well known, crustal isotopic data and mass balance calculations can be used to constrain the ultimate source rocks, and hence the helium migration paths. The new 3He/4He data range from 0.03 to 0.11 Ra (total), all of which are lower than the gas field values. There is internal isotopic heterogeneity in helium, neon, and argon, within all the samples; crushing extractions yield less radiogenic values than melting, demonstrating that fluid inclusions preserve less radiogenic gases. The new data suggest that the Precambrian basement has lost significant amounts of helium, and shows the importance of measuring helium with neon and argon. The 4He/40Ar values are particularly useful

  10. COMPARISON OF MODELLED AND MEASURED TRACER GAS CONCENTRATIONS DURING THE ACROSS NORTH AMERICA TRACER EXPERIMENT (ANATEX)

    EPA Science Inventory

    The 24-hour surface concentrations of several perfluorocarbon tracer gases measured during the 1987 Across North America Tracer Experiment (ANATEX) provided a unique continental-scale data set with which to evaluate long-range transport and diffusion models. One such model, a mul...

  11. Gastric activity studies using a magnetic tracer.

    PubMed

    Cordova-Fraga, T; Bernal-Alvarado, J J; Gutierrez-Juarez, G; Sosa, M; Vargas-Luna, M

    2004-10-01

    A magnetic pulse generator has been set up in order to study gastric activity. Two coils 1.05 m in diameter, arranged in a Helmholtz configuration, were used. The system generated magnetic field pulses higher than 15 mT, of duration 17.3+/-1.2 ms. Measurements were performed in 11 male volunteers, with average age 29.3+/-6.4 years and body mass index 26.0+/-4.8 kg m(-2). Magnetite (Fe3O4) particles with diameters from 75 to 125 microm were used as magnetic tracers, which were mixed in 250 ml of yogurt in concentrations from 2 to 5 g. Signals were registered by using a high speed 3 axis fluxgate digital magnetometer and processed to determine the relaxation of the magnetic tracers by fitting a first-order exponential function to the data, a mean relaxation constant K = 116+/-40 s(-1) was obtained. Also, an average gastric peristaltic frequency was measured; a value of 3.2+/-0.3 cpm was determined. PMID:15535190

  12. Dissolved gas dynamics in wetland soils: Root-mediated gas transfer kinetics determined via push-pull tracer tests

    NASA Astrophysics Data System (ADS)

    Reid, Matthew C.; Pal, David S.; Jaffé, Peter R.

    2015-09-01

    Gas transfer processes are fundamental to the biogeochemical and water quality functions of wetlands, yet there is limited knowledge of the rates and pathways of soil-atmosphere exchange for gases other than oxygen and methane (CH4). In this study, we use a novel push-pull technique with sulfur hexafluoride (SF6) and helium (He) as dissolved gas tracers to quantify the kinetics of root-mediated gas transfer, which is a critical efflux pathway for gases from wetland soils. This tracer approach disentangles the effects of physical transport from simultaneous reaction in saturated, vegetated wetland soils. We measured significant seasonal variation in first-order gas exchange rate constants, with smaller spatial variations between different soil depths and vegetation zones in a New Jersey tidal marsh. Gas transfer rates for most biogeochemical trace gases are expected to be bracketed by the rate constants for SF6 and He, which ranged from ˜10-2 to 2 × 10-1 h-1 at our site. A modified Damköhler number analysis is used to evaluate the balance between biochemical reaction and root-driven gas exchange in governing the fate of environmental trace gases in rooted, anaerobic soils. This approach confirmed the importance of plant gas transport for CH4, and showed that root-driven transport may affect nitrous oxide (N2O) balances in settings where N2O reduction rates are slow.

  13. Photoacoustic infrared spectroscopy for conducting gas tracer tests and measuring water saturations in landfills

    SciTech Connect

    Jung, Yoojin; Han, Byunghyun; Mostafid, M. Erfan; Chiu, Pei; Yazdani, Ramin; Imhoff, Paul T.

    2012-02-15

    Highlights: Black-Right-Pointing-Pointer Photoacoustic infrared spectroscopy tested for measuring tracer gas in landfills. Black-Right-Pointing-Pointer Measurement errors for tracer gases were 1-3% in landfill gas. Black-Right-Pointing-Pointer Background signals from landfill gas result in elevated limits of detection. Black-Right-Pointing-Pointer Technique is much less expensive and easier to use than GC. - Abstract: Gas tracer tests can be used to determine gas flow patterns within landfills, quantify volatile contaminant residence time, and measure water within refuse. While gas chromatography (GC) has been traditionally used to analyze gas tracers in refuse, photoacoustic spectroscopy (PAS) might allow real-time measurements with reduced personnel costs and greater mobility and ease of use. Laboratory and field experiments were conducted to evaluate the efficacy of PAS for conducting gas tracer tests in landfills. Two tracer gases, difluoromethane (DFM) and sulfur hexafluoride (SF{sub 6}), were measured with a commercial PAS instrument. Relative measurement errors were invariant with tracer concentration but influenced by background gas: errors were 1-3% in landfill gas but 4-5% in air. Two partitioning gas tracer tests were conducted in an aerobic landfill, and limits of detection (LODs) were 3-4 times larger for DFM with PAS versus GC due to temporal changes in background signals. While higher LODs can be compensated by injecting larger tracer mass, changes in background signals increased the uncertainty in measured water saturations by up to 25% over comparable GC methods. PAS has distinct advantages over GC with respect to personnel costs and ease of use, although for field applications GC analyses of select samples are recommended to quantify instrument interferences.

  14. Photoacoustic infrared spectroscopy for conducting gas tracer tests and measuring water saturations in landfills.

    PubMed

    Jung, Yoojin; Han, Byunghyun; Mostafid, M Erfan; Chiu, Pei; Yazdani, Ramin; Imhoff, Paul T

    2012-02-01

    Gas tracer tests can be used to determine gas flow patterns within landfills, quantify volatile contaminant residence time, and measure water within refuse. While gas chromatography (GC) has been traditionally used to analyze gas tracers in refuse, photoacoustic spectroscopy (PAS) might allow real-time measurements with reduced personnel costs and greater mobility and ease of use. Laboratory and field experiments were conducted to evaluate the efficacy of PAS for conducting gas tracer tests in landfills. Two tracer gases, difluoromethane (DFM) and sulfur hexafluoride (SF(6)), were measured with a commercial PAS instrument. Relative measurement errors were invariant with tracer concentration but influenced by background gas: errors were 1-3% in landfill gas but 4-5% in air. Two partitioning gas tracer tests were conducted in an aerobic landfill, and limits of detection (LODs) were 3-4 times larger for DFM with PAS versus GC due to temporal changes in background signals. While higher LODs can be compensated by injecting larger tracer mass, changes in background signals increased the uncertainty in measured water saturations by up to 25% over comparable GC methods. PAS has distinct advantages over GC with respect to personnel costs and ease of use, although for field applications GC analyses of select samples are recommended to quantify instrument interferences. PMID:21996285

  15. Generation of ethylene tracer by noncatalytic pyrolysis of natural gas at elevated pressure

    USGS Publications Warehouse

    Lu, Y.; Chen, S.; Rostam-Abadi, M.; Ruch, R.; Coleman, D.; Benson, L.J.

    2005-01-01

    There is a critical need within the pipeline gas industry for an inexpensive and reliable technology to generate an identification tag or tracer that can be added to pipeline gas to identify gas that may escape and improve the deliverability and management of gas in underground storage fields. Ethylene is an ideal tracer, because it does not exist naturally in the pipeline gas, and because its physical properties are similar to the pipeline gas components. A pyrolysis process, known as the Tragen process, has been developed to continuously convert the ???2%-4% ethane component present in pipeline gas into ethylene at common pipeline pressures of 800 psi. In our studies of the Tragen process, pyrolysis without steam addition achieved a maximum ethylene yield of 28%-35% at a temperature range of 700-775 ??C, corresponding to an ethylene concentration of 4600-5800 ppm in the product gas. Coke deposition was determined to occur at a significant rate in the pyrolysis reactor without steam addition. The ?? 13C isotopic analysis of gas components showed a ?? 13C value of ethylene similar to ethane in the pipeline gas, indicating that most of the ethylene was generated from decomposition of the ethane in the raw gas. However, ?? 13C isotopic analysis of the deposited coke showed that coke was primarily produced from methane, rather than from ethane or other heavier hydrocarbons. No coke deposition was observed with the addition of steam at concentrations of > 20% by volume. The dilution with steam also improved the ethylene yield. ?? 2005 American Chemical Society.

  16. Application of the gas tracer method for measuring oxygen transfer rates in subsurface flow constructed wetlands.

    PubMed

    Tyroller, Lina; Rousseau, Diederik P L; Santa, Santa; García, Joan

    2010-07-01

    The oxygen transfer rate (OTR) has a significant impact on the design, optimal operation and modelling of constructed wetlands treating wastewater. Oxygen consumption is very fast in wetlands and the OTR cannot be determined using an oxygen mass balance. This problem is circumvented in this study by applying the gas tracer method. Experiments were conducted in an unplanted gravel bed (dimensions L x W x d 125 x 50 x 35 cm filled with a 30-cm layer of 10-11-mm gravel) and a planted horizontal subsurface flow constructed wetland (HSSFCW) (L x W x d 110 x 70 x 38 cm filled with a 30-cm layer of 3.5-mm gravel with Phragmites australis). Tap water saturated with propane as gas tracer (pure or commercial cooking gas, depending on the test) was used. The mass transfer ratio between oxygen and commercial propane gas was quite constant and averaged R = 1.03, which is slightly lower than the value of R = 1.39 that is usually reported for pure propane. The OTR ranged from 0.31 to 5.04 g O(2) m(-2) d(-1) in the unplanted gravel bed and from 0.3 to 3.2 g O(2) m(-2) d(-1) in the HSSFCW, depending on the hydraulic retention time (HRT). The results of this study suggest that the OTR in HSSFCW is very low for the oxygen demand of standard wastewater and the OTR calculations based on mass balances and theoretical stoichiometric considerations overestimate OTR values by a factor that ranges from 10 to 100. The gas tracer method is a promising tool for determining OTR in constructed wetlands, with commercial gas proving to be a viable low-cost alternative for determining OTR. PMID:20542312

  17. Verification of subsurface barrier integrity using perfluorocarbon gas tracers

    SciTech Connect

    SULLIVAN,T.M.; GIBBS,B.; SENUM,G.; SCHWARTZ,M.; HOPKINGS,T.; HEISER,J.

    1998-03-01

    Use of perfluorocarbon (PFT) gaseous tracers shows promise as an excellent means of demonstrating subsurface barrier integrity. The PFT technology has been applied at Brookhaven National Laboratory to evaluate the colloidal silica (CS) barrier installed during the summer of 1997. This program involved two separate experimental phases. In the first phase, PFTs were injected into the native soil for a period of one day in the region adjacent to the proposed location of the CS barrier. The information was used to confirm that diffusion is the rate controlling transport mechanism and measure in-situ diffusion coefficients for the tracers in the native soil. This information is useful in interpreting data from the second phase of this study. In addition, the monitoring data was used to estimate the leak (injection) location. In the second phase, PFTs were injected into the region contained by the CS barrier and data have been collected to evaluate the performance of the barrier. In the experiment three unique PFTs were injected with the aim of increasing the resolution of leak detection. Two regions which provided essentially no added resistance to flow as compared to the native soil were detected in the bulk of the CS barrier.

  18. A continuous fast-response dual-tracer analyzer for halogenated atmospheric tracer studies

    SciTech Connect

    Rydock, J.P.; Lamb, B.K.

    1994-10-01

    An apparatus for the simultaneous measurement of two tracers, sulfur hexafluoride (SF6) and a perfluorocarbon compound, is introduced. The new instrument is a modification of a commercially available fast-response, continuous analyzer for single halogenated atmospheric tracer studies. A two-channel flow system was implemented consisting of an alumina cartridge in one channel and a glass beads cartridge of equal flow resistance in the second channel. The alumina passes only sulfur hexafluoride, while the glass beads pass both SF6 and the perfluoroarbon tracer. The SF6 is quantified directly from the electron capture detector (ECD) signal in the alumina channel, and the perfluorocarbon concentration is obtained from the difference of the ECD responses in the two channels. The dual-tracer analyzer is field portable for mobile operations or fixed-location monitoring, has a response time of 1.2 s, and has limits of detection of about 15 pptv for SF6 and 10 pptv for perfluoro-methylcyclohexane, which was the principal perfluorocarbon tracer used in this study. The present instrument configuration, which requires periodic purging of the adsorbent trap, can obtain continuous measurements for a 10-15-min segment in every half hour of operation. Dual-tracer data from a field demonstration test are presented.

  19. ANALYSIS OF A GAS-PHASE PARTITIONING TRACER TEST CONDUCTED THROUGH FRACTURED MEDIA

    EPA Science Inventory

    The gas-phase partitioning tracer method was used to estimate non-aqueous phase liquid (NAPL), water, and air saturations in the vadose zone at a chlorinated-solvent contaminated field site in Tucson, AZ. The tracer test was conducted in a fractured clay system that is the confin...

  20. 10 CFR 39.45 - Subsurface tracer studies.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Subsurface tracer studies. 39.45 Section 39.45 Energy NUCLEAR REGULATORY COMMISSION LICENSES AND RADIATION SAFETY REQUIREMENTS FOR WELL LOGGING Equipment § 39.45 Subsurface tracer studies. (a) The licensee shall require all personnel handling...

  1. 10 CFR 39.45 - Subsurface tracer studies.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 1 2013-01-01 2013-01-01 false Subsurface tracer studies. 39.45 Section 39.45 Energy NUCLEAR REGULATORY COMMISSION LICENSES AND RADIATION SAFETY REQUIREMENTS FOR WELL LOGGING Equipment § 39.45 Subsurface tracer studies. (a) The licensee shall require all personnel handling...

  2. 10 CFR 39.45 - Subsurface tracer studies.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 1 2014-01-01 2014-01-01 false Subsurface tracer studies. 39.45 Section 39.45 Energy NUCLEAR REGULATORY COMMISSION LICENSES AND RADIATION SAFETY REQUIREMENTS FOR WELL LOGGING Equipment § 39.45 Subsurface tracer studies. (a) The licensee shall require all personnel handling...

  3. 10 CFR 39.45 - Subsurface tracer studies.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 1 2012-01-01 2012-01-01 false Subsurface tracer studies. 39.45 Section 39.45 Energy NUCLEAR REGULATORY COMMISSION LICENSES AND RADIATION SAFETY REQUIREMENTS FOR WELL LOGGING Equipment § 39.45 Subsurface tracer studies. (a) The licensee shall require all personnel handling...

  4. 10 CFR 39.45 - Subsurface tracer studies.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Subsurface tracer studies. 39.45 Section 39.45 Energy NUCLEAR REGULATORY COMMISSION LICENSES AND RADIATION SAFETY REQUIREMENTS FOR WELL LOGGING Equipment § 39.45 Subsurface tracer studies. (a) The licensee shall require all personnel handling...

  5. Determination of Water Saturation in Relatively Dry Porous Media Using Gas-phase Tracer Tests

    SciTech Connect

    Oostrom, Martinus; Tartakovsky, Guzel D.; Wietsma, Thomas W.; Truex, Michael J.; Dane, Jacob H.

    2011-04-15

    Soil desiccation (drying), involving water evaporation induced by dry air injection and extraction, is a potentially robust remediation process to slow migration of inorganic or radionuclide contaminants through the vadose zone. The application of gas-phase partitioning tracer tests has been proposed as a means to estimate initial water volumes and to monitor the progress of the desiccation process at pilot-test and field sites. In this paper, tracer tests have been conducted in porous medium columns with various water saturations using sulfur hexafluoride as the conservative tracer and tricholorofluoromethane and difluoromethane as the water-partitioning tracers. For porous media with minimal silt and/or organic matter fractions, tracer tests provided reasonable saturation estimates for saturations close to zero. However, for sediments with significant silt and/or organic matter fractions, tracer tests only provided satisfactory results when the water saturation was at least 0.1 - 0.2. For dryer conditions, the apparent tracer retardation increases due to air – soil sorption, which is not included in traditional retardation coefficients derived from advection-dispersion equations accounting only for air – water partitioning and water – soil sorption. Based on these results, gas-phase partitioning tracer tests may be used to determine initial water volumes in sediments, provided the initial water saturations are sufficiently large. However, tracer tests are not suitable for quantifying moisture content in desiccated sediments.

  6. Nitrous oxide as a tracer gas in the ASHRAE 110-1995 Standard.

    PubMed

    Burke, Martin; Wong, Larry; Gonzales, Ben A; Knutson, Gerhard

    2014-01-01

    ANSI/ASHRAE Standard 110 provides a quantitative method for testing the performance of laboratory fume hoods. Through release of a known quantity (4.0 Lpm) of a tracer gas, and subsequent monitoring of the tracer gas concentration in the "breathing zone" of a mannequin positioned in front of the hood, this method allows for evaluation of laboratory hood performance. Standard 110 specifies sulfur hexafluoride (SF6) as the tracer gas; however, suitable alternatives are allowed. Through three series of performance tests, this analysis serves to investigate the use of nitrous oxide (N2O) as an alternate tracer gas for hood performance testing. Single gas tests were performed according to ASHRAE Standard 110-1995 with each tracer gas individually. These tests showed identical results using an acceptance criterion of AU 0.1 with the sash half open, nominal 18 inches (0.46m) high, and the face velocity at a nominal 60 fpm (0.3 m/s). Most data collected in these single gas tests, for both tracer gases, were below the minimum detection limit, thus two dual gas tests were developed for simultaneous sampling of both tracer gases. Dual gas dual ejector tests were performed with both tracer gases released simultaneously through two ejectors, and the concentration measured with two detectors using a common sampling probe. Dual gas single ejector tests were performed with both tracer gases released though a single ejector, and the concentration measured in the same manner as the dual gas dual ejector tests. The dual gas dual ejector tests showed excellent correlation, with R typically greater than 0.9. Variance was observed in the resulting regression line for each hood, likely due to non-symmetry between the two challenges caused by variables beyond the control of the investigators. Dual gas single ejector tests resulted in exceptional correlation, with R>0.99 typically for the consolidated data, with a slope of 1.0. These data indicate equivalent results for ASHRAE 110

  7. Tracer study of San Vicente reservoir

    SciTech Connect

    Williams, R.T.

    1996-11-01

    The City of San Diego remains on the cutting edge of water conservation. With an unwavering commitment to maintain an adequate water supply for the future, water repurification is now being considered. The City of San Diego and San Diego Water Authority (CWA) have proposed to recycle repurified water through San Vicente Reservoir. A key component of assessing the feasibility of such a project is to calculate the retention time of repurified water in the reservoir. Working with engineering consultant team (Montgomery-Watson Engineers and Flow Science, Incorporated) two tracer studies were conducted to model the circulation and mixing of repurified water introduced into the reservoir. The goal was to determine whether repurified water recycled through San Vicente will meet the retention time criteria established by the Department of Health Services. This presentation however, will not attempt to interpret the results of the study, that aspect will be evaluated by the Flow Scientist. The objective here is to explain how the project was carried out and to focus mostly on the analytical work performed on the samples by the chemist in the City of San Diego Water Quality Laboratory.

  8. National Biomedical Tracer Facility: Project definition study

    SciTech Connect

    Heaton, R.; Peterson, E.; Smith, P.

    1995-05-31

    The Los Alamos National Laboratory is an ideal institution and New Mexico is an ideal location for siting the National Biomedical Tracer Facility (NBTF). The essence of the Los Alamos proposal is the development of two complementary irradiation facilities that combined with our existing radiochemical processing hot cell facilities and waste handling and disposal facilities provide a low cost alternative to other proposals that seek to satisfy the objectives of the NBTF. We propose the construction of a 30 MeV cyclotron facility at the site of the radiochemical facilities, and the construction of a 100 MeV target station at LAMPF to satisfy the requirements and objectives of the NBTF. We do not require any modifications to our existing radiochemical processing hot cell facilities or our waste treatment and disposal facilities to accomplish the objectives of the NBTF. The total capital cost for the facility defined by the project definition study is $15.2 M. This cost estimate includes $9.9 M for the cyclotron and associated facility, $2.0 M for the 100 MeV target station at LAMPF, and $3.3 M for design.

  9. RE-ENTRAINMENT AND DISPERSION OF EXHAUSTS FROM INDOOR RADON REDUCTION SYSTEMS: ANALYSIS OF TRACER GAS DATA

    EPA Science Inventory

    Tracer gas studies were conducted around four model houses in a wind tunnel, and around one house in the field, to quantify re-entrainment and dispersion of exhaust gases released from residential indoor radon reduction systems. Re-entrainment tests in the field suggest that acti...

  10. Field-scale sulfur hexafluoride tracer experiment to understand long distance gas transport in the deep unsaturated zone

    USGS Publications Warehouse

    Walvoord, Michelle Ann; Andraski, Brian; Green, Christopher T.; Stonestrom, David A.; Striegl, Rob

    2014-01-01

    A natural gradient SF6 tracer experiment provided an unprecedented evaluation of long distance gas transport in the deep unsaturated zone (UZ) under controlled (known) conditions. The field-scale gas tracer test in the 110-m-thick UZ was conducted at the U.S. Geological Survey’s Amargosa Desert Research Site (ADRS) in southwestern Nevada. A history of anomalous (theoretically unexpected) contaminant gas transport observed at the ADRS, next to the first commercial low-level radioactive waste disposal facility in the United States, provided motivation for the SF6 tracer study. Tracer was injected into a deep UZ borehole at depths of 15 and 48 m, and plume migration was observed in a monitoring borehole 9 m away at various depths (0.5–109 m) over the course of 1 yr. Tracer results yielded useful information about gas transport as applicable to the spatial scales of interest for off-site contaminant transport in arid unsaturated zones. Modeling gas diffusion with standard empirical expressions reasonably explained SF6 plume migration, but tended to underpredict peak concentrations for the field-scale experiment given previously determined porosity information. Despite some discrepancies between observations and model results, rapid SF6 gas transport commensurate with previous contaminant migration was not observed. The results provide ancillary support for the concept that apparent anomalies in historic transport behavior at the ADRS are the result of factors other than nonreactive gas transport properties or processes currently in effect in the undisturbed UZ.

  11. Gas-partitioning tracer test to quantify trapped gas during recharge

    USGS Publications Warehouse

    Heilweil, V.M.; Solomon, D.K.; Perkins, K.S.; Ellett, K.M.

    2004-01-01

    Dissolved helium and bromide tracers were used to evaluate trapped gas during an infiltration pond experiment. Dissolved helium preferentially partitioned into trapped gas bubbles, or other pore air, because of its low solubility in water. This produced observed helium retardation factors of as much as 12 relative to bromide. Numerical simulations of helium breakthrough with both equilibrium and kinetically limited advection/dispersion/retardation did not match observed helium concentrations. However, better fits were obtained by including a decay term representing the diffusive loss of helium through interconnected, gas-filled pores. Calculations indicate that 7% to more than 26% of the porosity beneath the pond was filled with gas. Measurements of laboratory hydraulic properties indicate that a 10% decrease in saturation would reduce the hydraulic conductivity by at least one order of magnitude in the well-sorted sandstone, but less in the overlying soils. This is consistent with in situ measurements during the experiment, which show steeper hydraulic gradients in sandstone than in soil. Intrinsic permeability of the soil doubled during the first six months of the experiment, likely caused by a combination of dissolution and thermal contraction of trapped gas. Managers of artificial recharge basins may consider minimizing the amount of trapped gas by using wet, rather than dry, tilling to optimize infiltration rates, particularly in well-sorted porous media in which reintroduced trapped gas may cause substantial reductions in permeability. Trapped gas may also inhibit the amount of focused infiltration that occurs naturally during ephemeral flood events along washes and playas.

  12. Estimation of road traffic emission factors from a long term tracer study

    NASA Astrophysics Data System (ADS)

    Belalcazar, Luis Carlos; Fuhrer, Oliver; Ho, Minh Dung; Zarate, Erika; Clappier, Alain

    2009-12-01

    Road traffic emissions, one of the largest source categories in megacity inventories, are highly uncertain. It is essential to develop methodologies to reduce these uncertainties to manage air quality more effectively. In this paper, we propose a methodology to estimate road traffic emission factors (EFs) from a tracer experiment and from roadside pollutants measurements. We emitted continuously during about 300 non-consecutive hours a passive tracer from a finite line source placed on one site of an urban street. At the same time, we measured continuously the resulting tracer concentrations at the other side of the street with a portable on-line gas chromatograph. We used n-propane contained in commercial liquid petroleum gas (LPG) as a passive tracer. Propane offers several advantages to traditional tracers (SF6, N2O, CFCs): low price, easily available, non-reactive, negligible global warming potential, and easy to detect with commercial on-line gas chromatographs. The tracer experiment was carried out from January to March 2007 in a busy street of Ho Chi Minh City (Vietnam). Traffic volume, weather information and pollutant concentrations were also measured at the measurement site. We used the results of the tracer experiment to calculate the dilution factors and afterwards we used these dilution factors, the traffic counts and the pollutant concentrations to estimate the EFs. The proposed method assumes that the finite emission line represents the emission produced by traffic in the full area of the street and therefore there is an error associated to this assumption. We use the Computational Fluids Dynamics (CFD) model MISKAM to calculate this error and to correct the HCMC EFs. EFs for 15 volatile organic compounds (VOCs) and NO are reported here. A comparison with available studies reveals that most of the EFs estimated here are within the range of EFs reported in other studies.

  13. Leak testing of bubble-tight dampers using tracer gas techniques

    SciTech Connect

    Lagus, P.L.; DuBois, L.J.; Fleming, K.M.

    1995-02-01

    Recently tracer gas techniques have been applied to the problem of measuring the leakage across an installed bubble-tight damper. A significant advantage of using a tracer gas technique is that quantitative leakage data are obtained under actual operating differential pressure conditions. Another advantage is that leakage data can be obtained using relatively simple test setups that utilize inexpensive materials without the need to tear ducts apart, fabricate expensive blank-off plates, and install test connections. Also, a tracer gas technique can be used to provide an accurate field evaluation of the performance of installed bubble-tight dampers on a periodic basis. Actual leakage flowrates were obtained at Zion Generating Station on four installed bubble-tight dampers using a tracer gas technique. Measured leakage rates ranged from 0.01 CFM to 21 CFM. After adjustment and subsequent retesting, the 21 CFM damper leakage was reduced to a leakage of 3.8 CFM. In light of the current regulatory climate and the interest in Control Room Habitability issues, imprecise estimates of critical air boundary leakage rates--such as through bubble-tight dampers--are not acceptable. These imprecise estimates can skew radioactive dose assessments as well as chemical contaminant exposure calculations. Using a tracer gas technique, the actual leakage rate can be determined. This knowledge eliminates a significant source of uncertainty in both radioactive dose and/or chemical exposure assessments.

  14. Use of tracer gas technique for industrial exhaust hood efficiency evaluation--where to sample?

    PubMed

    Hampl, V; Niemelä, R; Shulman, S; Bartley, D L

    1986-05-01

    A tracer gas technique using sulfur hexafluoride (SF6) was developed for the evaluation of industrial exhaust hood efficiency. In addition to other parameters, accuracy of this method depends on proper location of the sampling probe. The sampling probe should be located in the duct at a minimum distance from the investigated hood where the SF6 is dispersed uniformly across the duct cross section. To determine the minimum sampling distance, the SF6 dispersion in the duct in fully developed turbulent flow was studied at four duct configurations frequently found in industry: straight duct, straight duct-side branch, straight duct-one elbow, and straight duct-two elbows combinations. Based on the established SF6 dispersion factor, the minimum sampling distances were determined as follows: for straight duct, at least 50 duct diameters; for straight duct-side branch combination, at least 25 duct diameters; for straight duct-one elbow combination, 7 duct diameters; and for straight duct-two elbow combination, 4 duct diameters. Sampling at (or beyond) these distances minimizes the error caused by the non-homogeneous dispersion of SF6 in the duct and contributes to the accuracy of the tracer gas technique. PMID:3717012

  15. Rapid sample throughput for biomedical stable isotope tracer studies.

    PubMed

    Preston, T; McMillan, D C

    1988-10-01

    Typical 13C or 15N tracer studies generate large numbers of samples. Instrumentation capable of rapid automated analysis is therefore of importance as a practical alternative to conventional isotope methodology. Although biomedical sample nature is diverse, experimenters often require analysis of substrates and products of particular biochemical pathways. Clearly, reaction products can contain considerably less isotope tracer than precursors. Analytical techniques thus need to accommodate samples of widely varying nature, size and isotope enrichment. In the clinical field, where stable isotopes are increasingly used to study protein, carbohydrate and fat metabolism, analysis of the isotope ratio of a substrate infused into the plasma and a product of its metabolism is often required. Conventional analytical approaches demand access to two mass spectrometers: isotope ratio mass spectrometry (IRMS) for isotope analysis of the relatively large concentrations of low-enrichment metabolic product, and gas chromatography/mass spectrometry (GC/MS) for analysis of the infused substrate often present at high enrichment but low concentration offers a practical alternative to the conventional approaches that is rapid and automatic. In addition to providing a considerably less complex and costly alternative to conventional instrumentation, a single CF-IRMS instrument can also analyse small quantities of low-enrichment metabolites with superior performance than either of the alternative approaches. CF-IRMS is illustrated using results from constant-infusion studies in human protein and fat metabolism which require measurement of the isotope enrichment in submicromolar quantities of plasma substrates together with analysis of larger quantities of their oxidation products, urinary nitrogen and breath CO2. PMID:3149535

  16. Gas-partitioning tracer test to quantify trapped gas during recharge.

    PubMed

    Heilweil, Victor M; Solomon, D Kip; Perkins, Kim S; Ellett, Kevin M

    2004-01-01

    Dissolved helium and bromide tracers were used to evaluate trapped gas during an infiltration pond experiment. Dissolved helium preferentially partitioned into trapped gas bubbles, or other pore air, because of its low solubility in water. This produced observed helium retardation factors of as much as 12 relative to bromide. Numerical simulations of helium breakthrough with both equilibrium and kinetically limited advection/dispersion/retardation did not match observed helium concentrations. However, better fits were obtained by including a decay term representing the diffusive loss of helium through interconnected, gas-filled pores. Calculations indicate that 7% to more than 26% of the porosity beneath the pond was filled with gas. Measurements of laboratory hydraulic properties indicate that a 10% decrease in saturation would reduce the hydraulic conductivity by at least one order of magnitude in the well-sorted sandstone, but less in the overlying soils. This is consistent with in situ measurements during the experiment, which show steeper hydraulic gradients in sandstone than in soil. Intrinsic permeability of the soil doubled during the first six months of the experiment, likely caused by a combination of dissolution and thermal contraction of trapped gas. Managers of artificial recharge basins may consider minimizing the amount of trapped gas by using wet, rather than dry, tilling to optimize infiltration rates, particularly in well-sorted porous media in which reintroduced trapped gas may cause substantial reductions in permeability. Trapped gas may also inhibit the amount of focused infiltration that occurs naturally during ephemeral flood events along washes and playas. PMID:15318781

  17. Estimating the gas and dye quantities for modified tracer technique measurements of stream reaeration coefficients

    USGS Publications Warehouse

    Rathbun, R.E.

    1979-01-01

    Measuring the reaeration coefficient of a stream with a modified tracer technique has been accomplished by injecting either ethylene or ethylene and propane together and a rhodamine-WT dye solution into the stream. The movement of the tracers through the stream reach after injection is described by a one-dimensional diffusion equation. The peak concentrations of the tracers at the downstream end of the reach depend on the concentrations of the tracers in the stream at the injection site, the longitudinal dispersion coefficient, the mean water velocity, the length of the reach, and the duration of the injection period. The downstream gas concentrations also depend on the gas desorption coefficients of the reach. The concentrations of the tracer gases in the stream at the injection site depend on the flow rates of the gases through the injection diffusers, the efficiency of the gas absorption process, and the stream discharge. The concentration of dye in the stream at the injection site depends on the flow rate of the dye solution, the concentration of the dye solution, and the stream discharge. Equations for estimating the gas flow rates, the quantities of the gases, the dye concentration, and the quantity of dye together with procedures for determining the variables in these equations are presented. (Woodard-USGS)

  18. National Biomedical Tracer Facility. Project definition study

    SciTech Connect

    Schafer, R.

    1995-02-14

    We request a $25 million government-guaranteed, interest-free loan to be repaid over a 30-year period for construction and initial operations of a cyclotron-based National Biomedical Tracer Facility (NBTF) in North Central Texas. The NBTF will be co-located with a linear accelerator-based commercial radioisotope production facility, funded by the private sector at approximately $28 million. In addition, research radioisotope production by the NBTF will be coordinated through an association with an existing U.S. nuclear reactor center that will produce research and commercial radioisotopes through neutron reactions. The combined facilities will provide the full range of technology for radioisotope production and research: fast neutrons, thermal neutrons, and particle beams (H{sup -}, H{sup +}, and D{sup +}). The proposed NBTF facility includes an 80 MeV, 1 mA H{sup -} cyclotron that will produce proton-induced (neutron deficient) research isotopes.

  19. Olive Oil Tracer Particle Size Analysis for Optical Flow Investigations in a Gas Medium

    NASA Astrophysics Data System (ADS)

    Harris, Shaun; Smith, Barton

    2014-11-01

    Seed tracer particles must be large enough to scatter sufficient light while being sufficiently small to follow the flow. These requirements motivate a desire for control over the particle size. For gas measurements, it is common to use atomized oil droplets as tracer particles. A Laskin nozzle is a device for generating oil droplets in air by directing high-pressure air through small holes under an oil surface. The droplet diameter frequency distribution can be varied by altering the hole diameter, the number of holes, or the inlet pressure. We will present a systematic study of the effect of these three parameters on the resultant particle distribution as it leaves the Laskin nozzle. The study was repeated for cases where the particles moved through a typical jet facility before their size was measured. While the jet facility resulted in an elimination of larger particles, the average particle diameter could be varied by a factor of two at both the seeder exit and downstream of the jet facility.

  20. Dense molecular gas tracers in high mass star formation regions

    NASA Astrophysics Data System (ADS)

    Ma, Hong-Jun; Gao, Yu; Wu, Jing-Wen

    2016-02-01

    We report the FCRAO observations that mapped HCN (1-0), CS (2-1), HNC (1-0) and HCO+ (1-0) in ten high-mass star forming cores associated with water masers. We present velocity integrated intensity maps of the four lines for these dense cores, compare their line profiles, and derive physical properties of these cores. We find that these four tracers identify areas with similar properties in these massive dense cores, and in most cases, the emissions of HCN and HCO+ are stronger than those of HNC and CS. We also use the line ratios of HCO+/HCN, HNC/HCN and HNC/HCO+ as the diagnostics to explore the environment of these high-mass star forming regions, and find that most of the cores agree with the model that photodominated regions dominate the radiation field, except for W44, for which the radiation field is similar to an X-ray dominated region.

  1. Estimation of Fracture Porosity in an Unsaturated Fractured Welded Tuff Using Gas Tracer Testing

    SciTech Connect

    B.M. Freifeild

    2001-10-18

    Kinematic fracture porosity is an important hydrologic transport parameter for predicting the potential of rapid contaminant migration through fractured rock. The transport velocity of a solute moving within a fracture network is inversely related to the fracture porosity. Since fracture porosity is often one or two orders of magnitude smaller than matrix porosity, and fracture permeability is often orders of magnitude greater than matrix permeability, solutes may travel significantly faster in the fracture network than in the surrounding matrix. This dissertation introduces a new methodology for conducting gas tracer tests using a field portable mass spectrometer along with analytical tools for estimating fracture porosity using the measured tracer concentration breakthrough curves. Field experiments were conducted at Yucca Mountain, Nevada, consisting of air-permeability transient testing and gas-tracer-transport tests. The experiments were conducted from boreholes drilled within an underground tunnel as part of an investigation of rock mass hydrological behavior. Air-permeability pressure transients, recorded during constant mass flux injections, have been analyzed using a numerical inversion procedure to identify fracture permeability and porosity. Dipole gas tracer tests have also been conducted from the same boreholes used for air-permeability testing. Mass breakthrough data has been analyzed using a random walk particle-tracking model, with a dispersivity that is a function of the advective velocity. The estimated fracture porosity using the tracer test and air-injection test data ranges from .001 to .015. These values are an order of magnitude greater than the values estimated by others using hydraulically estimated fracture apertures. The estimates of porosity made using air-permeability test data are shown to be highly sensitive to formation heterogeneity. Uncertainty analyses performed on the gas tracer test results show high confidence in the parameter

  2. Mid Infrared H2 lines- a new direct tracer for total molecular gas content in galaxies

    NASA Astrophysics Data System (ADS)

    Togi, Aditya; Smith, John-David T.

    2016-01-01

    Robust knowledge of the molecular hydrogen (H2) gas distribution is necessary to understand star formation in galaxies. Since H2 is not readily observable in the cold interstellar medium (ISM), the molecular gas content has traditionally been inferred using indirect tracers like carbon-monoxide (CO), dust emission, gamma ray interactions, and star formation efficiency. Physical processes resulting in enhancement and reduction of these indirect tracers can result in misleading estimates of molecular gas masses. My dissertation work is based on devising a new temperature power law distribution model for warm H2, a direct tracer, to calculate the total molecular gas mass in galaxies. The model parameters are estimated using mid infrared (MIR) H2 rotational line fluxes, obtained from IRS- Spitzer (InfraRed Spectrograph- Spitzer) instrument, and the model can be extrapolated to a suitable lower temperature to recover the total molecular gas mass. The power law model is able to recover the dark molecular gas, undetected by CO, in low metallicity galaxies. Using the power law model in the coming era of James Webb Space Telescope (JWST) with the high sensitivity MIR Instrument (MIRI) spectrograph we will be able to understand the properties of molecular gas at low and high redshifts.

  3. Partitioning gas tracer tests for measurement of water in municipal solid waste.

    PubMed

    Imhoff, Paul T; Jakubowitch, Andrew; Briening, Michele L; Chiu, Pei C

    2003-11-01

    A key component in the operation of almost all bioreactor landfills is the addition of water to maintain optimal moisture conditions. To determine how much water is needed and where to add it, in situ methods are required to measure water within solid waste. Existing technologies often result in measurements of unknown accuracy, because of the variability of solid waste materials and time-dependent changes in packing density, both of which influence most measurement methods. To overcome these problems, a new technology recently developed by hydrologists for measuring water in the vadose zone--the partitioning gas tracer test--was tested. In this technology, the transport behavior of two gas tracers within solid waste is used to measure the fraction of the void space filled with water. One tracer is conservative and does not react with solids or liquids, while a second tracer partitions into the water and is separated from the conservative tracer during transport. This technology was tested in four different solid waste packings and was capable of determining the volumetric water content to within 48% of actual values, with most measurement errors less than 15%. This technology and the factors that affect its applicability to landfills are discussed in this paper. PMID:14649759

  4. Tracer Studies In A Laboratory Beach Subjected To Waves

    EPA Science Inventory

    This work investigated the washout of dissolved nutrients from beaches due to waves by conducting tracer studies in a laboratory beach facility. The effects of waves were studied in the case where the beach was subjected to the tide, and that in which no tidal action was present...

  5. Radon as a natural tracer for gas transport within uranium waste rock piles.

    PubMed

    Silva, N C; Chagas, E G L; Abreu, C B; Dias, D C S; Lopez, D; Guerreiro, E T Z; Alberti, H L C; Braz, M L; Branco, O; Fleming, P

    2014-07-01

    Acid mine drainage (AMD) has been identified as the main cause for outflow of acid water and radioactive/non-radioactive contaminants. AMD encompasses pyrites oxidation when water and oxygen are available. AMD was identified in uranium waste rock piles (WRPs) of Indústrias Nucleares do Brasil-Caldas facility (Brazilian uranium mine), resulting in high costs for water treatment. AMD reduction is the main challenge, and scientific investigation has been conducted to understand oxygen and water transportation within WRPs, where 222Rn is used as natural tracer for oxygen transportation. The study consists of soil radon gas mapping in the top layer of WRP4 using active soil gas pumping, radon adsorption in active charcoal and 222Rn determination using high-resolution gamma-ray spectrometry. A sampling network of 71 points was built where samples were collected at a depth of 40 cm. Soil radon gas concentration ranged from 33.7 to 1484.2 kBq m(-3) with mean concentration of 320.7±263.3 kBq m(-3). PMID:24729565

  6. Uncertainties in gas exchange parameterization during the SAGE dual-tracer experiment

    NASA Astrophysics Data System (ADS)

    Smith, Murray J.; Ho, David T.; Law, Cliff S.; McGregor, John; Popinet, Stéphane; Schlosser, Peter

    2011-03-01

    A dual tracer experiment was carried out during the SAGE experiment using the inert tracers SF 6 and 3He, in order to determine the gas transfer velocity, k, at high wind speeds in the Southern Ocean. Wind speed/gas exchange parameterization is characterised by significant variability and we examine the major measurement uncertainties that contribute to that scatter. Correction for the airflow distortion over the research vessel, as determined by computational fluid dynamics (CFD) modelling, had the effect of increasing the calculated value of k by 30%. On the short time scales of such experiments, the spatial variability of the wind field resulted in differences between ship and satellite QuikSCAT winds, which produced significant differences in transfer velocity. With such variability between wind estimates, the comparison between gas exchange parameterizations from diverse experiments should clearly be made on the basis of the same wind product. Uncertainty in mixed layer depth of ˜10% arose from mixed layer deepening at high wind speed and limited resolution of vertical sampling. However the assumption of equal mixing of the two tracers is borne out by the experiment. Two dual tracer releases were carried out during SAGE, and showed no significant difference in transfer velocities using QuikSCAT winds, despite the differences in wind history. In the SAGE experiment, duration limitation on the development of waves was shown to be an important factor for Southern Ocean waves, despite the presence of long fetches.

  7. Studies of thunderstorm transport processes with aircraft using tracer techniques

    SciTech Connect

    Detwiler, A.G.; Smith, P.L.; Stith, J.L.

    1996-10-01

    Instrumented aircraft can provide in situ measurements of winds and turbulence useful for studying transport and dispersion in clouds. Using inert artificial gases as tracers, and fast response analyzers on aircraft, time-resolved observations of transport and dispersion have been obtained. Examples are shown of these types of observations in and around cumulus and cumulonimbus clouds. 23 refs., 6 figs.

  8. A Tracer Study of Lebanese Upper Secondary School Students

    ERIC Educational Resources Information Center

    Vlaardingerbroek, Barend; Dallal, Kamel; Rizkallah, George; Rabah, Jihan

    2007-01-01

    This paper presents data arising from a tracer study of 90 terminating Beirut upper secondary school students. Nearly all the students intended to transit to university, about half of them to science and technology programmes, and subsequently did so. Median anticipated earnings upon graduation were realistic, but a lack of information or guidance…

  9. The NPE gas tracer test and the development of on-site inspection techniques

    SciTech Connect

    Carrigan, Charles; Heinle, Ray; Zucca, J. J.

    1995-04-13

    Tracer gases emplaced in or near the detonation cavity of the 1-kiloton NonProliferation Event required 1.5 and 13.5 months for sulfur hexaflouride and helium-3, respectively, to reach the surface of Rainier Mesa from an emplacement depth of 400 meters. The sites that first produced tracer gases are those located in known faults and fractures. Numerical modeling suggests that transport to the surface is accomplished within this time frame through atmospheric pumping along high permeability pathways such as fractures. The difference in travel time between the two tracers is due to differences in gas diffusivity and can also be explained by our numerical modeling. 2 refs, 3 figs

  10. Appraisal of transport and deformation in shale reservoirs using natural noble gas tracers

    SciTech Connect

    Heath, Jason E.; Kuhlman, Kristopher L.; Robinson, David G.; Bauer, Stephen J.; Gardner, William Payton

    2015-09-01

    This report presents efforts to develop the use of in situ naturally-occurring noble gas tracers to evaluate transport mechanisms and deformation in shale hydrocarbon reservoirs. Noble gases are promising as shale reservoir diagnostic tools due to their sensitivity of transport to: shale pore structure; phase partitioning between groundwater, liquid, and gaseous hydrocarbons; and deformation from hydraulic fracturing. Approximately 1.5-year time-series of wellhead fluid samples were collected from two hydraulically-fractured wells. The noble gas compositions and isotopes suggest a strong signature of atmospheric contribution to the noble gases that mix with deep, old reservoir fluids. Complex mixing and transport of fracturing fluid and reservoir fluids occurs during production. Real-time laboratory measurements were performed on triaxially-deforming shale samples to link deformation behavior, transport, and gas tracer signatures. Finally, we present improved methods for production forecasts that borrow statistical strength from production data of nearby wells to reduce uncertainty in the forecasts.

  11. Evaluation of Partitioning Gas Tracer Tests for Measuring Water in Landfills

    NASA Astrophysics Data System (ADS)

    Imhoff, P. T.; Han, B.; Jafarpour, Y.; Gallagher, V. N.; Chiu, P. C.; Fluman, D. A.; Vasuki, N. C.; Yazdani, R.; Augenstein, D.; Cohen, K. K.

    2003-12-01

    Methane is an important greenhouse gas, and landfills are the largest anthropogenic source in many developed countries. Bioreactor landfills have been proposed as one means of abating greenhouse gas emissions from landfills. Here, the decomposition of organic wastes is enhanced by the controlled addition of water or leachate to maintain optimal conditions for waste decomposition. Greenhouse gas abatement is accomplished by sequestration of photosynthetically derived carbon in wastes, CO2 offsets from energy use of waste derived gas, and mitigation of methane emission from the wastes. An important issue in the operation of bioreactor landfills is knowing how much water to add and where to add it. Accurate methods for measuring the amount of water in landfills would be valuable aids for implementing leachate recirculation systems. Current methods for measuring water are inadequate, though, since they provide point measurements and are frequently affected by heterogeneity of the solid waste composition and solid waste compaction. The value of point measurements is significantly reduced in systems where water flows preferentially, such as in landfills. Here, spatially integrated measurements might be of greater value. We are evaluating a promising technology, the partitioning gas tracer test, to measure the water saturation within landfills, the amount of free water in solid waste divided by the volume of the voids. The partitioning gas tracer test was recently developed by researchers working in the vadose zone. We report the results from laboratory and field tests designed to evaluate the partitioning gas tracer test within an anaerobic landfill operated by the Delaware Solid Waste Authority. Vertical wells were installed within the landfill to inject and extract tracer gases. Gas flow and tracer gas movement in the solid waste were controlled by the landfill's existing gas collection system, which included vertical wells installed throughout the landfill through

  12. Sediment tracers in water erosion studies: Current approaches and challenges

    NASA Astrophysics Data System (ADS)

    Guzmán, Gema; Quinton, John N.; Nearing, Mark A.; Mabit, Lionel; Giráldez, Juan V.; Gómez, José A.

    2013-04-01

    The quest for alternative methods of soil losses assessment, due to water erosion to complement and enhance existing methods has directed attention to the use of tracing approaches because of the additional information they provide, such as sediment source identification, tracking of sediment movement across the landscape at various temporal and spatial scales and soil erosion rates. For these reasons, the utility and robustness of sediment tracing approaches using a wide range of substances and soil properties have been evaluated in numerous studies. A comprehensive literature review on tracing approaches used in water erosion studies was carried out in June 2011 using the Web of Science database and as search terms in the title or as keywords: "erosion AND tracer" OR "sediment AND tracer" OR "sediment AND tracking". The search excluded reviews and tillage and/or wind erosion studies. Only studies that used tracers to make a determination of water erosion or sedimentation rates, or in some cases relative erosion contribution, were considered in this study, and were further refined by manually checking that the articles corresponded to experiments involving sediment studies using tracers, as defined within the context of this review. Five distinct groups of tracing approaches were identified: fallout radionuclides, rare earth elements, soil magnetism and magnetic substances, other tracers, and sediment fingerprinting techniques. This abstract presents a synthesis of the current approaches of each of the tracing techniques identified in assessing soil erosion and sediment redistribution and a summary with the commonalities and differences between the approaches and identifying research gaps and future trends.

  13. Results of a tracer study for the validation study: The Terrain-Responsive Atmospheric Code (TRAC): Volume 2

    SciTech Connect

    Not Available

    1988-09-01

    This report describes a tracer study conducted by North American Weather Consultants (NAWC) at the Rocky Flats Plant in Colorado. The purpose of the study was to provide data for the evaluation of a dispersion model. This tracer study was timed to sample the upslope, downslope and transition conditions prevalent in the Rocky Flats area during the summer period. The field studies were conducted from 17 July, 1987 through 8 August, 1987. A total of twelve days of plume tracking were conducted, four during upslope conditions, six during stable downslope conditions, and two during transition conditions. The tracer gas, sulfur hexafluoride (SF/sub 6/) was released on the Rocky Flats plant site and the plume was tracked using an aircraft with a continuous SF/sub 6/ analyzer on-board. Grab samples were also obtained from various sites on the ground during the aerial tracking period. Volume 2 contains data sheets only.

  14. Assessment of steady-state propane-gas tracer method for determining reaeration coefficients, Chenango River, New York

    USGS Publications Warehouse

    Yotsukura, Nobuhiro; Steadfast, D.A.; Jirka, G.H.

    1984-01-01

    A test was conducted in a meandering 9.6-km reach of the Chenango River, New York, to assess the feasibility of a two-dimensional steady-state propane-gas tracer method as a means of estimating in situ reaeration coefficients. It is concluded that the method, which combines an instantaneous release of dye tracer with a long duration release of propane gas tracer, is very feasible for determining gas-desorption coefficients and wind effects in a wide river. However, the method does not appear to be ready for immediate operational applications. (USGS)

  15. Gas as a Tracer of the Galactic Potential

    NASA Astrophysics Data System (ADS)

    Kalberla, Peter M. W.

    2004-02-01

    We consider a disk-like dark matter model for the Milky Way andcompare a few predictions with observations. The observed gaseousflaring for HI and molecular gas fits the model predictions indetail. The global HI distribution in the Milky Way needs to beexplained by a multiphase medium. The dark matter distribution in theGalactic halo is traced by a low density component of halogas. High-velocity clouds with distances up to ˜ 50 kpc may beexplained as condensations which originate from instabilities withinthe gaseous halo. Our model explains also ‘beards’ and ‘forbiddenvelocities’ as observed in the rotation curves of externalgalaxies. A disk-like dark matter model is self-consistent and inexcellent agreement with observations.

  16. ANALYSIS OF A GAS-PHASE PARTITIONING TRACER TEST CONDUCTED IN AN UNSATURATED FRACTURED-CLAY FORMATION

    EPA Science Inventory

    The gas-phase partitioning tracer method was used to estimate non-aqueous phase liquid (NAPL), water, and air saturations in the vadose zone at a chlorinated-solvent contaminated field site in Tucson, AZ. The tracer test was conducted in a fractured-clay system that is the confin...

  17. Study of the Motion of a Tracer.

    NASA Astrophysics Data System (ADS)

    Lim, Sungwoo

    1988-12-01

    A discussion of some aspects of particle diffusion through lattices is presented in this thesis. In chapter 1, considered is the particle diffusion in the one-dimensional lattice with randomly distributed particle-absorbing impurities. Here, the main physical quantity of interest is the long time behavior of the survival probability of particles, confined to one dimensional lattices, that hop subject to a stochastic rate equation and, in the process, encounter a randomly distributed set of perfectly absorbing traps. Exact solution for the position and time dependent survival probability for the linear lattice of finite length is obtained through the use of standard Green's function approach. Then this solution is averaged over the lattice size to get the solution for infinite linear lattice. In the discussion given in chapter 1, the environmental dependence of the hopping rate is parameterized through the introduction of different hopping rates for the two cases when hopping occurs in the interior and when it occurs into the trap. This ignores interparticle interactions in the interior but takes them into account for hopping into the traps. In chapter 2, we studied the behavior of labeled particle transport in the long time, diffusive regime when the background consists of particles of different varieties, each of which interacts through the minimal, hard core repulsion. Here, the presence of impurities is ignored. Accordingly, the main subject is the time dependence of the distance of travel of a diffusing particle, that is, the diffusion correlation factor. We adopt the renormalized Tahir-Kheli -Elliott (TKE) theory to study the case of multicomponent background and execute a set of detailed Monte Carlo simulations to test the accuracy of the TKE theory. Finally, in chapter 3, we apply the above TKE theory to study the particle diffusion in quasi-low dimensional system with arbitrarily mixed background. The predictions of the TKE theory agree to the results of

  18. Subcutaneous infusion and capillary "finger stick" sampling of stable isotope tracer in metabolic studies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Metabolic studies utilizing stable isotope tracer in humans have typically used intravenous tracer infusions and venous blood sampling. These studies explore subcutaneous infusion of isotope and "finger stick" capillary blood sampling to measure glucose turnover. Five subjects received simultaneous ...

  19. Hanford facilities tracer study report (315 Water Treatment Facility)

    SciTech Connect

    Ambalam, T.

    1995-04-14

    This report presents the results and findings of a tracer study to determine contact time for the disinfection process of 315 Water Treatment Facility that supplies sanitary water for the 300 Area. The study utilized fluoride as the tracer and contact times were determined for two flow rates. Interpolation of data and short circuiting effects are also discussed. The 315 Water Treatment Facility supplies sanitary water for the 300 Area to various process and domestic users. The Surface Water Treatment Rule (SWTR), outlined in the 1986 Safe Drinking Water Act Amendments enacted by the EPA in 1989 and regulated by the Washington State Department of Health (DOH) in Section 246-290-600 of the Washington Administrative Code (WAC), stipulates filtration and disinfection requirements for public water systems under the direct influence of surface water. The SWTR disinfection guidelines require that each treatment system achieves predetermined inactivation ratios. The inactivation by disinfection is approximated with a measure called CxT, where C is the disinfectant residual concentration and T is the effective contact time of the water with the disinfectant. The CxT calculations for the Hanford water treatment plants were derived from the total volume of the contact basin(s). In the absence of empirical data to support CxT calculations, the DOH determined that the CxT values used in the monthly reports for the water treatment plants on the Hanford site were invalid and required the performance of a tracer study at each plant. In response to that determination, a tracer study will be performed to determine the actual contact times of the facilities for the CxT calculations.

  20. The Tracer Gas Method of Determining the Charging Efficiency of Two-stroke-cycle Diesel Engines

    NASA Technical Reports Server (NTRS)

    Schweitzer, P H; Deluca, Frank, Jr

    1942-01-01

    A convenient method has been developed for determining the scavenging efficiency or the charging efficiency of two-stroke-cycle engines. The method consists of introducing a suitable tracer gas into the inlet air of the running engine and measuring chemically its concentration both in the inlet and exhaust gas. Monomethylamine CH(sub 3)NH(sub 2) was found suitable for the purpose as it burns almost completely during combustion, whereas the "short-circuited" portion does not burn at all and can be determined quantitatively in the exhaust. The method was tested both on four-stroke and on two-stroke engines and is considered accurate within 1 percent.

  1. Radioisotope tracer study in a sludge hygienization research irradiator (SHRI).

    PubMed

    Pant, H J; Thýn, J; Zitný, R; Bhatt, B C

    2001-01-01

    A radioisotope tracer study has been carried out in a batch type sludge hygienization research irradiator with flow from top to bottom, the objective being to measure flow rate, circulation and mixing times and to investigate the hydrodynamic behaviour of the irradiator for identifying the cause(s) of malfunction. A stimulus-response technique with NH4(82)Br as a tracer was used to measure the above parameters. Experiments were carried out at three different flow rates, i.e 1.0, 0.64 and 0.33 m3/min. Three combined models based on a set of differential equations are proposed and used to simulate the measured tracer concentration curves. The obtained parameters were used to estimate dead volume and analyse hydrodynamic behaviour of the irradiator. The nonlinear regression problem of model parameter estimation was solved using the Marquardt-Levenberg method. The measured flow rate was found to be in good agreement with the values shown by the flow meter. The circulation times were found to be half of the mixing times. A simple approach for estimation of dose based on a known vertical dose-rate profile inside the irradiator is presented. About one-fourth of the volume of the irradiator was found to be dead at lower flow rates and this decreased with increase in flow rate. At higher flow rates, a semi stagnant volume was found with slow exchange of flow between the active and dead volumes. PMID:11144238

  2. Identification and characterization of conservative organic tracers for use as hydrologic tracers for the Yucca Mountain Site Characterization Study; Progress report, July 1, 1991--December 31, 1991

    SciTech Connect

    Dombrowski, T.; Stetzenbach, K.

    1991-12-31

    Studies continued on organic tracers for use as hydrologic tracers as part of the Yucca Mountain Site Characterization project. Tracers studied include benzoic acids, cinnamic acids, and salicylic acids. The main focus of the work performed during the time period from 07/01/91 to 12/31/91 has been the continuation of (1) LC-MS optimization for tracer identification, (2) batch sorption and degradation studies, (3) neoprene tubing evaluation studies, and (4) soil column evaluation of tracer compounds. All of these areas of research (except perhaps the neoprene tubing evaluation) are ongoing and will continue throughout the coming year.

  3. Molecular Gas in Starburts ARP 220 & NGC 6240: Understanding Mergers using High Density Gas Tracers

    NASA Astrophysics Data System (ADS)

    Manohar, Swarnima; Scoville, Nicholas; Sheth, Kartik

    2015-01-01

    NGC 6240 and Arp 220 can be considered the founding members of a very active class of objects called Ultraluminous Infrared Galaxies or ULIRGs. They are in different stages of mergers and hence are excellent case studies to enhance our knowledge about the merging process. We have imaged the dense star-forming regions of these galaxies at sub-arcsec resolution with ALMA and CARMA. Multi-band imaging allows multilevel excitation analysis of HCN, HCO+ and CS transitions which will constrain the properties of the gas as a function of position and velocity (across line profiles). We are doing an extensive multilevel excitation analysis of the merger as a function of radius which enables in depth understanding of the gas dynamics and gas properties such as temperature and density. This in turn probes the homogeneity of the gas in the merging system and hence the regions that facilitate high star formation rates. This tandem use of CARMA with ALMA to map these systems at different merger stages will assemble a more integrated picture of the merger process. We are probing the distribution and dynamics of star forming gas and star formation activity in the dense disk structures to enable new theoretical understanding of the physics, dynamics, star formation activity and associated feedback in the most active and rapidly evolving galactic nuclei. Here we present our observations of Arp 220 and NGC 6240 from ALMA and CARMA.

  4. Molecular Gas in Local Mergers: Understanding Mergers using High Density Gas Tracers

    NASA Astrophysics Data System (ADS)

    Manohar, Swarnima; Scoville, N.; Sheth, K.

    2013-01-01

    NGC 6240 and Arp 220 can be considered the founding members of a very active class of objects called Ultraluminous Infrared Galaxies or ULIRGs. They are in different stages of mergers and hence are excellent case studies to enhance our knowledge about the merging process. We have imaged the dense star-forming regions of these galaxies at sub-arcsec resolution with ALMA and CARMA. Multi-band imaging will allow multilevel excitation analysis of HCN, HCO+ and CS transitions which will be used to constrain the properties of the gas as a function of position and velocity (across line profiles). We aim to do an extensive multilevel excitation analysis of the merger as a function of radius which will enable in depth understanding of the gas dynamics and gas properties such as temperature and density. This will in turn probe the homogeneity of the gas in the merging system and hence the regions that facilitate high star formation rates. This tandem use of CARMA with ALMA to map these systems at different merger stages will help assemble a more integrated picture of the merger process. We will probe the distribution and dynamics of star forming gas and star formation activity in the dense disk structures to enable new theoretical understanding of the physics, dynamics, star formation activity and associated feedback in the most active and rapidly evolving galactic nuclei. Here we present preliminary observations of Arp 220 and NGC 6240 from ALMA and CARMA.

  5. Molecular Gas in Starburts: Understanding Mergers using High Density Gas Tracers

    NASA Astrophysics Data System (ADS)

    Manohar, Swarnima; Scoville, N.; Walter, F.; Sheth, K.

    2014-01-01

    NGC 6240 and Arp 220 can be considered the founding members of a very active class of objects called Ultraluminous Infrared Galaxies or ULIRGs. They are in different stages of mergers and hence are excellent case studies to enhance our knowledge about the merging process. We have imaged the dense star-forming regions of these galaxies at sub-arcsec resolution with ALMA and CARMA. Multi-band imaging allows multilevel excitation analysis of HCN, HCO+ and CS transitions which will constrain the properties of the gas as a function of position and velocity (across line profiles). We are doing an extensive multilevel excitation analysis of the merger as a function of radius which enables in depth understanding of the gas dynamics and gas properties such as temperature and density. This in turn probes the homogeneity of the gas in the merging system and hence the regions that facilitate high star formation rates. This tandem use of CARMA with ALMA to map these systems at different merger stages will assemble a more integrated picture of the merger process. We are probing the distribution and dynamics of star forming gas and star formation activity in the dense disk structures to enable new theoretical understanding of the physics, dynamics, star formation activity and associated feedback in the most active and rapidly evolving galactic nuclei. Here we present preliminary observations of Arp 220 and NGC 6240 from ALMA and CARMA.

  6. Trifluoromethyl Sulfur Pentafloride (SF5CF3), a Gas With Potential for Tracer Release Experiments

    NASA Astrophysics Data System (ADS)

    Smethie, W. M.; Ledwell, J. R.; Ho, D. T.

    2004-12-01

    SF5CF3 is chemically similar to SF6, a gas which has been used extensively in tracer release experiments, with a CF3 group substituted for a F atom in the molecular structure. It is a gas at atmospheric pressure and is present in the atmosphere with a mixing ratio of 0.12 ppt in 1999 [Sturges et al., Science, 289, 2000]. Sturges et al. (2000) measured a vertical profile of SF5CF3 and SF6 in Antarctic firn ice, showing that it has existed in the atmosphere for the last 3 decades and has increased over time with a trend that nearly parallels the increase of SF6. This suggests that its source could be related to the production and use of SF6, but there are also industrial processes for which it is a by-product. However, the exact source is not understood at this time. SF5CF3 is chemically stable with an estimated atmospheric lifetime of about 800 years [Takahashi et al., Geophys. Res. Lett., 29, 2002]. Because of its very low mixing ratio in the atmosphere and its chemical stability, it has very high potential for use in tracer release experiments. We have carried out some preliminary experiments to evaluate this potential. SF5CF3 can be measured in water samples by the same purge and trap - gas chromatographic procedure used for CFCs, has an ECD sensitivity slightly greater than SF6, and has a linear ECD response up to at least 80 fmoles. A preliminary determination of its solubility in fresh water revealed an Ostwald coefficient of 0.031 at 25 deg C, which is about half that of SF6. Its Ostwald coefficient in 1-octonol was measured to be about 3, roughly 7 times greater than for SF6. This suggests that SF5CF3 will have a greater affinity for organic matter than SF6. In open ocean tracer release experiments, SF6 is slowly transported downward in addition to its vertical spreading by diapycnal mixing. This could be caused by adsorption and release from sinking particles with organic phases, but the solubility of SF6 and SF5CF3 in 1-octanol indicate this effect is too

  7. DISSOCIATION OF SULFUR HEXAFLUORIDE TRACER GAS IN THE PRESENCE OF AN INDOOR COMBUSTION SOURCE

    EPA Science Inventory

    As an odorless, non-toxic, and inert compound, sulfur hexafluoride (SF6) is one of the most widely used tracer gases in indoor air quality studies in both controlled and uncontrolled environments. This compound may be subject to hydrolysis under elevated temperature to form acidi...

  8. Atmospheric noble gases as tracers of biogenic gas dynamics in a shallow unconfined aquifer

    NASA Astrophysics Data System (ADS)

    Jones, Katherine L.; Lindsay, Matthew B. J.; Kipfer, Rolf; Mayer, K. Ulrich

    2014-03-01

    Atmospheric noble gases (NGs) were used to investigate biogenic gas dynamics in a shallow unconfined aquifer impacted by a crude oil spill, near Bemidji, MN. Concentrations of 3,4He, 20,22Ne, 36,40Ar, Kr, and Xe were determined for gas- and aqueous-phase samples collected from the vadose and saturated zones, respectively. Systematic elemental fractionation of Ne, Ar, Kr, and Xe with respect to air was observed in both of these hydrogeologic zones. Within the vadose zone, relative ratios of Ne and Ar to Kr and Xe revealed distinct process-related trends when compared to corresponding ratios for air. The degree of NG deviation from atmospheric concentrations generally increased with greater atomic mass (i.e., ΔXe > ΔKr > ΔAr > ΔNe), indicating that Kr and Xe are the most sensitive NG tracers in the vadose zone. Reactive transport modeling of the gas data confirms that elemental fractionation can be explained by mass-dependent variations in diffusive fluxes of NGs opposite to a total pressure gradient established between different biogeochemical process zones. Depletion of atmospheric NGs was also observed within a methanogenic zone of petroleum hydrocarbon degradation located below the water table. Solubility normalized NG abundances followed the order Xe > Kr > Ar > Ne, which is indicative of dissolved NG partitioning into the gas phase in response to bubble formation and possibly ebullition. Observed elemental NG ratios of Ne/Kr, Ne/Xe, Ar/Xe, and Kr/Xe and a modeling analysis provide strong evidence that CH4 generation below the water table caused gas exsolution and possibly ebullition and carbon transfer from groundwater to the vadose zone. These results suggest that noble gases provide sensitive tracers in biologically active unconfined aquifers and can assist in identifying carbon cycling and transfer within the vadose zone, the capillary fringe, and below the water table.

  9. Study of stomach motility using the relaxation of magnetic tracers.

    PubMed

    Carneiro, A A; Baffa, O; Oliveira, R B

    1999-07-01

    Magnetic tracers can be observed in the interior of the human body to give information about their quantity, position and state of order. With the aim of detecting and studying the degree of disorder of these tracers after they have been previously magnetized inside the stomach, a system composed of magnetization coils and magnetic detectors was developed. Helmholtz coils of diameter 84 cm were used to magnetize the sample and the remanent magnetization (RM) was detected with two first-order gradiometric fluxgate arrays each with a 15 cm base line, sensitivity of 0.5 nT and common mode rejection (CMR) of at least 10. The system allows simultaneous measurement in the anterior and posterior projections of the stomach. Measurements of the time evolution of the RM were performed in vitro and in normal subjects after the ingestion of a test meal labelled with magnetic particles. The data were fitted with an exponential curve and the relaxation time tau was obtained. Initial studies were performed to ascertain the action of a drug that is known to affect the gastric motility, showing that the decay of the remanent magnetization was indeed due to stomach contractions. PMID:10442706

  10. Recent progress of 10Be tracer studies in Chinese loess

    NASA Astrophysics Data System (ADS)

    Zhou, Weijian; Xie, Xingjun; Beck, Warren; Kong, Xianghui; Xian, Feng; Du, Yajuan; Wu, Zhenkun

    2015-10-01

    Studies of cosmogenic 10Be in Chinese loess began about twenty-five years ago and since then a number of research groups worldwide have contributed to a firm understanding of the production, transport, deposition and storage of 10Be in loess. The essential characteristics that make 10Be a useful isotopic tracer in loess, include: (1) dominant atmospheric production directly linked to the intensity of the Earth's magnetic field; (2) climate-dependent deposition; and (3) subsequent immobility, so that as 10Be accumulates in a loess profile its stratigraphic integrity is preserved. This fact, combined with very high deposition rates in loess on the Chinese Loess Plateau, makes 10Be an especially valuable continental archive of paleoclimate and paleomagnetism, complementing marine and ice-core records. Here we provide in particular the most recent progress of 10Be tracer studies in Chinese loess, including the determination of the correct age of the Brunhes-Matuyama polarity reversal at 780 ± 3 ka B.P., in accord with marine and ice records, and quantitative reconstruction of 130-ka paleoprecipitation using 10Be from Chinese loess profiles.

  11. The role of soil air composition for noble gas tracer applications in tropical groundwater

    NASA Astrophysics Data System (ADS)

    Mayer, Simon; Jenner, Florian; Aeschbach, Werner; Weissbach, Therese; Peregovich, Bernhard; Machado, Carlos

    2016-04-01

    Dissolved noble gases (NGs) in groundwater provide a well-established tool for paleo temperature reconstruction. However, reliable noble gas temperature (NGT) determination needs appropriate assumptions or rather an exact knowledge of soil air composition. Deviations of soil air NG partial pressures from atmospheric values have already been found in mid latitudes during summer time as a consequence of subsurface oxygen depletion. This effect depends on ambient temperature and humidity and is thus expected to be especially strong in humid tropical soils, which was not investigated so far. We therefore studied NGs in soil air and shallow groundwater near Santarém (Pará, Brazil) at the end of the rainy and dry seasons, respectively. Soil air data confirms a correlation between NG partial pressures, the sum value of O2+CO2 and soil moisture contents. During the rainy season, we find significant NG enhancements in soil air by up to 7% with respect to the atmosphere. This is twice as much as observed during the dry season. Groundwater samples show neon excess values between 15% and 120%. Nearly all wells show no seasonal variations of excess air, even though the local river level seasonally fluctuates by about 8 m. Assuming atmospheric NG contents in soil air, fitted NGTs underestimate the measured groundwater temperature by about 1-2° C. However, including enhanced soil air NG contents as observed during the rainy season, resulting NGTs are in good agreement with local groundwater temperatures. Our presented data allows for a better understanding of subsurface NG variations. This is essential with regard to NG tracer applications in humid tropical areas, for which reliable paleoclimate data is of major importance for modern climate research.

  12. Vertical Tracer Concentration Profiles Measured During the Joint Urban 2003 Dispersion Study

    SciTech Connect

    Flaherty, Julia E.; Lamb, Brian K.; Allwine, K Jerry; Allwine, Eugene J.

    2007-12-01

    An atmospheric tracer dispersion study known as Joint Urban 2003 was conducted in Oklahoma City, Oklahoma during the summer of 2003. As part of this field program, vertical concentration profiles were measured at approximately 1 km from downtown tracer gas release locations. These profiles indicated that the urban landscape was very effective in mixing the plume vertically. The height of the plume centerline (as determined by the maximum concentration over the depth of the measurements) for any specific 30 min period varied over the 65 m measurement range. Most of the variations in tracer concentration observed in the profile time series were related to changes in wind direction as opposed to changes in turbulence. As a simple analysis tool for emergency response, maximum normalized concentration curves were developed with 5-minute averaged measurements. These curves give the maximum concentration (normalized by the release rate) that would be observed as a function of downwind distance in an urban area. The 5-min data resulted in greater concentrations than predicted with a simple Gaussian plume model. However, the curve compared well with results from a computational fluid dynamics simulation. This dispersion dataset is a valuable asset not only for refining air quality models, but also for developing new tools for emergency response personnel in the event of a toxic release.

  13. Hourly Measurement of the Concentration and Gas-Particle Partitioning of Oxygenated Organic Tracers in Ambient Aerosol: First Results from Berkeley, CA and Rural Alabama

    NASA Astrophysics Data System (ADS)

    Isaacman, G. A.; Kreisberg, N. M.; Yee, L.; Chan, A.; Worton, D. R.; Hering, S. V.; Goldstein, A. H.

    2013-12-01

    Hourly and bi-hourly time-resolved measurements of organic tracer compounds in ambient aerosols have been successfully used to elucidate sources and formation pathways of atmospheric particulate matter. Here we extend the Semi-Volatile Thermal desorption Aerosol Gas chromatograph (SVTAG), a custom in-situ instrument that collects, desorbs, and analyzes ambient aerosol and semi-volatile compounds with hourly time resolution, to include on-line derivatization and a second, parallel collection cell that provides simultaneous collection of both particle-phase and particle-plus-gas-phase organic compounds. By introducing a silylating agent upon desorption, SVTAG can measure highly oxygenated compounds that are not easily detected using traditional gas chromatography including most of the previously reported oxygenated tracers for biogenic and anthropogenic secondary organic aerosol. The use of a pair of matched collection cells with parallel sampling and serial analysis provides direct gas-particle partitioning information. One cell collects the total organic fraction of compounds with volatilities lower than a C13 hydrocarbon, while the other cell samples through an activated carbon denuder to selectively remove the gas-phase components. Taken together these provide a direct measurement of gas-particle partitioning to yield a check on classical absorption based partitioning theory while deviations from this theory provide constraints on other driving factors in aerosol formation chemistry, such as oligomerization, salt formation, and acidity. We present here the capabilities and utility of the dual cell SVTAG with derivatization, with chemical insights gained from initial tests on ambient Berkeley air and the first results from a rural site in Alabama obtained during the Southern Oxidant and Aerosol Study (SOAS). Tracers for varying isoprene oxidation pathways are used to explore the influence of anthropogenic emissions; concentrations of 2-methyltetrols and 2-methyl

  14. Near-road multipollutant profiles: associations between volatile organic compounds and a tracer gas surrogate near a busy highway.

    PubMed

    Barzyk, Timothy M; Ciesielski, Anna; Shores, Richard C; Thoma, Eben D; Seila, Robert L; Isakov, Vlad; Baldauf, Richard W

    2012-05-01

    This research characterizes associations between multiple pollutants in the near-road environment attributed to a roadway line source. It also examines the use of a tracer gas as a surrogate of mobile source pollutants. Air samples were collected in summa canisters along a 300 m transect normal to a highway in Raleigh, North Carolina for five sampling periods spanning four days. Samples were subsequently measured for volatile organic compounds (VOCs) using an electron capture gas chromatograph. Sulfur hexafluoride (SF6) was released from a finite line source adjacent to the roadway for two of the sampling periods, collected in the canisters and measured with the VOCs. Associations between each VOC, and between VOCs and the tracer, were quantified with Pearson correlation coefficients to assess the consistency of the multi-pollutant dispersion profiles, and assess the tracer as a potential surrogate for mobile source pollutants. As expected, benzene, toluene, ethylbenzene, and m,p- and o-xylenes (collectively, BTEX) show strong correlations between each other; further BTEX shows a strong correlation to SF6. Between 26 VOCs, correlation coefficients were greater than 0.8, and 14 VOCs had coefficients greater than 0.6 with the tracer gas. Even under non-downwind conditions, chemical concentrations had significant correlations with distance. Results indicate that certain VOCs are representative of a larger multi-pollutant mixture, and many VOCs are well-correlated with the tracer gas. PMID:22696809

  15. Reintegration of child soldiers in Burundi: a tracer study

    PubMed Central

    2012-01-01

    Background Substantial attention and resources are aimed at the reintegration of child soldiers, yet rigorous evaluations are rare. Methods This tracer study was conducted among former child soldiers (N=452) and never-recruited peers (N=191) who participated in an economic support program in Burundi. Socio-economic outcome indicators were measured retrospectively for the period before receiving support (T1; 2005–06); immediately afterwards (T2; 2006–07); and at present (T3; 2010). Participants also rated present functional impairment and mental health indicators. Results Participants reported improvement on all indicators, especially economic opportunity and social integration. At present no difference existed between both groups on any of the outcome indicators. Socio-economic functioning was negatively related with depression- and, health complaints and positively with intervention satisfaction. Conclusion The present study demonstrates promising reintegration trajectories of former child soldiers after participating in a support program. PMID:23095403

  16. GEOMETRIC OFFSETS ACROSS SPIRAL ARMS IN M51: NATURE OF GAS AND STAR FORMATION TRACERS

    SciTech Connect

    Louie, Melissa; Koda, Jin; Egusa, Fumi

    2013-02-15

    We report measurements of geometric offsets between gas spiral arms and associated star-forming regions in the grand-design spiral galaxy M51. These offsets are a suggested measure of the star formation timescale after the compression of gas at spiral arm entry. A surprising discrepancy, by an order of magnitude, has been reported in recent offset measurements in nearby spiral galaxies. Measurements using CO and H{alpha} emission find large and ordered offsets in M51. On the contrary, small or non-ordered offsets have been found using the H I 21 cm and 24 {mu}m emissions, possible evidence against gas flow through spiral arms, and thus against the conventional density-wave theory with a stationary spiral pattern. The goal of this paper is to understand the cause of this discrepancy. We investigate potential causes by repeating those previous measurements using equivalent data, methods, and parameters. We find offsets consistent with the previous measurements and conclude that the difference of gas tracers, i.e., H I versus CO, is the primary cause. The H I emission is contaminated significantly by the gas photodissociated by recently formed stars and does not necessarily trace the compressed gas, the precursor of star formation. The H I gas and star-forming regions coincide spatially and tend to show small offsets. We find mostly positive offsets with substantial scatter between CO and H{alpha}, suggesting that gas flow through spiral arms (i.e., density wave) though the spiral pattern may not necessarily be stationary.

  17. Groundwater surface water interaction study using natural isotopes tracer

    NASA Astrophysics Data System (ADS)

    Yoon, Yoon Yeol; Kim, Yong Chul; Cho, Soo Young; Lee, Kil Yong

    2015-04-01

    Tritium and stable isotopes are a component of the water molecule, they are the most conservative tracer for groundwater study. And also, radon is natural radioactive nuclide and well dissolved in groundwater. Therefore, these isotopes are used natural tracer for the study of surface water and groundwater interaction of water curtain greenhouse area. The study area used groundwater as a water curtain for warming tool of greenhouse during the winter, and is associated with issues of groundwater shortage while being subject to groundwater-river water interaction. During the winter time, these interactions were studied by using Rn-222, stable isotopes and H-3. These interaction was monitored in multi depth well and linear direction well of groundwater flow. And dam effect was also compared. Samples were collected monthly from October 2013 to April 2014. Radon and tritium were analyzed using Quantulus low background liquid scintillation counter and stable isotopes were analyzed using an IRIS (Isotope Ratio Infrared Spectroscopy ; L2120-i, Picarro). During the winter time, radon concentration was varied from 0.07 Bq/L to 8.9 Bq/L and different interaction was showed between dam. Surface water intrusion was severe at February and restored April when greenhouse warming was ended. The stable isotope results showed different trend with depth and ranged from -9.16 ‰ to -7.24 ‰ for δ 18O value, while the δD value was ranged from -57.86 ‰ to -50.98 ‰. The groundwater age as dated by H-3 was ranged 0.23 Bq/L - 0.59 Bq/L with an average value of 0.37 Bq/L.

  18. Noble gas and hydrocarbon tracers in multiphase unconventional hydrocarbon systems: Toward integrated advanced reservoir simulators

    NASA Astrophysics Data System (ADS)

    Darrah, T.; Moortgat, J.; Poreda, R. J.; Muehlenbachs, K.; Whyte, C. J.

    2015-12-01

    Although hydrocarbon production from unconventional energy resources has increased dramatically in the last decade, total unconventional oil and gas recovery from black shales is still less than 25% and 9% of the totals in place, respectively. Further, the majority of increased hydrocarbon production results from increasing the lengths of laterals, the number of hydraulic fracturing stages, and the volume of consumptive water usage. These strategies all reduce the economic efficiency of hydrocarbon extraction. The poor recovery statistics result from an insufficient understanding of some of the key physical processes in complex, organic-rich, low porosity formations (e.g., phase behavior, fluid-rock interactions, and flow mechanisms at nano-scale confinement and the role of natural fractures and faults as conduits for flow). Noble gases and other hydrocarbon tracers are capably of recording subsurface fluid-rock interactions on a variety of geological scales (micro-, meso-, to macro-scale) and provide analogs for the movement of hydrocarbons in the subsurface. As such geochemical data enrich the input for the numerical modeling of multi-phase (e.g., oil, gas, and brine) fluid flow in highly heterogeneous, low permeability formations Herein we will present a combination of noble gas (He, Ne, Ar, Kr, and Xe abundances and isotope ratios) and molecular and isotopic hydrocarbon data from a geographically and geologically diverse set of unconventional hydrocarbon reservoirs in North America. Specifically, we will include data from the Marcellus, Utica, Barnett, Eagle Ford, formations and the Illinois basin. Our presentation will include geochemical and geological interpretation and our perspective on the first steps toward building an advanced reservoir simulator for tracer transport in multicomponent multiphase compositional flow (presented separately, in Moortgat et al., 2015).

  19. IMPURITY AND TRACER DIFFUSION STUDIES IN MAGNESIUM AND ITS ALLOYS

    SciTech Connect

    Brennan, Sarah; Sohn, Yong Ho; Warren, Andrew; Coffey, Kevin; Klimov, Mikhail; Kulkarni, Nagraj S; Todd, Peter J

    2010-01-01

    An Integrated Computational Materials Engineering (ICME) approach for optimizing processing routes for Mg-alloys requires reliable thermodynamic and diffusion databases. We are developing an impurity and tracer diffusion database using both stable and unstable isotopes for Mg and its alloys. In this study, Al impurity diffusion in pure polycrystalline Mg (99.9%) was examined using the thin film method. Approximately 500 nm thick Al films were deposited on in-situ RF plasma-cleaned polycrystalline Mg by DC magnetron sputtering from pure Al (99.9%) targets. Specimens were then diffusion annealed at 300, 350 and 400 C in quartz capsules that were evacuated to 10-8 Torr and backfilled with Ar-H2 mixtures. Concentration profile of Al diffusion profiles into single phase Mg was determined by depth-profiling technique using secondary ion mass spectroscopy. The Al impurity diffusion coefficients were determined as a function of temperature

  20. Tracer method to measure landfill gas emissions from leachate collection systems.

    PubMed

    Fredenslund, Anders M; Scheutz, Charlotte; Kjeldsen, Peter

    2010-11-01

    This paper describes a method developed for quantification of gas emissions from the leachate collection system at landfills and present emission data measured at two Danish landfills with no landfill gas collection systems in place: Fakse landfill and AV Miljø. Landfill top covers are often designed to prevent infiltration of water and thus are made from low permeable materials. At such sites a large part of the gas will often emit through other pathways such as the leachate collection system. These point releases of gaseous constituents from these locations cannot be measured using traditional flux chambers, which are often used to measure gas emissions from landfills. Comparing tracer measurements of methane (CH(4)) emissions from leachate systems at Fakse landfill and AV Miljø to measurements of total CH(4) emissions, it was found that approximately 47% (351 kg CH(4) d(-1)) and 27% (211 kg CH(4) d(-1)), respectively, of the CH(4) emitting from the sites occurred from the leachate collection systems. Emission rates observed from individual leachate collection wells at the two landfills ranged from 0.1 to 76 kg CH(4) d(-1). A strong influence on emission rates caused by rise and fall in atmospheric pressure was observed when continuously measuring emission from a leachate well over a week. Emission of CH(4) was one to two orders of magnitude higher during periods of decreasing pressure compared to periods of increasing pressure. PMID:20378325

  1. A novel 83mKr tracer method for characterizing xenon gas and cryogenic distillation systems

    NASA Astrophysics Data System (ADS)

    Rosendahl, S.; Bokeloh, K.; Brown, E.; Cristescu, I.; Fieguth, A.; Huhmann, C.; Lebeda, O.; Levy, C.; Murra, M.; Schneider, S.; V'enos, D.; Weinheimer, C.

    2014-10-01

    The radioactive isomer 83mKr, has many properties that make it very useful for various applications. Its low energy decay products, like conversion, shake-off and Auger electrons as well as X- and γ-rays are used for calibration purposes in neutrino mass experiments and direct dark matter detection experiments. Thanks to the short half-life of 1.83 h and the decay to the ground state 83Kr, one does not risk contamination of any low-background experiment with long-lived radionuclides. In this paper, we present a new approach, using 83mKr as a radioactive tracer in noble gases. A method of doping 83mKr, into xenon gas and its detection, using special custom-made detectors, based on a photomultiplier tube, is described. Two applications of this method are presented: firstly, it can be used to characterize the particle flow inside of gas routing systems and determine the circulation speed of gas particles inside of a gas purification system for xenon. Secondly, it is used for rapid estimating of the separation performance of a distillation system.

  2. Retention of Tracer Gas from Instantaneous Releases of SF6 in an Urban Environment

    SciTech Connect

    Doran, J. C.; Allwine, K Jerry; Clawson, Kirk L.; Carter, Roger G.

    2006-01-01

    Data from a series of instantaneous releases of SF6 tracer during the Joint Urban 2003 study in Oklahoma City have been analyzed to determine characteristic retention times for puffs in an urban environment. Results from nine real-time tracer detectors with a time response of 0.5 seconds were used in the analysis. Distances from the source ranged from less than 200 m to over 1 km. For each individual intensive operating period (IOP), the detector locations were adjusted so that, given the expected wind directions during the releases, the detectors would lie generally downwind of the release point. As a result, building characteristics upwind of the detectors varied from one IOP to the next. Animations of the tracer concentrations show clear evidence of channeling along street canyons approximately parallel to the prevailing wind directions, trapping in street canyons perpendicular to the flow, and other complex circulation patterns. Retention times for individual puffs ranged from a few minutes to over 20 minutes, with a strong mode in the distribution around 11 minutes. There was surprisingly little correlation with wind speed or direction. Comparisons with simple puff models are presented.

  3. Identification and characterization of conservative organic tracers for use as hydrologic tracers for the Yucca Mountain Site Characterization Study; Progress report, June 1--December 31, 1990

    SciTech Connect

    Stetzenbach, K.J.

    1990-12-31

    Ground water tracers are solutes dissolved in or carried by ground water to delineate flow pathways. Tracers provide information on direction and speed of water movement and that of contaminants that might be conveyed by the water. Tracers can also be used to measure effective porosity, hydraulic conductivity, dispersivity and solute distribution coefficients. For most applications tracers should be conservative, that is, move at the same rate as the water and not sorb to aquifer materials. Tracers must have a number of properties to be functional. Regardless of the desired properties, the chemical and physical behavior of a tracer in ground water and the porous medium under study must be understood. Good estimates of tracer behavior can be obtained from laboratory studies. Studies in this proposal will address tracer properties with analytical method development, static sorption and degradation studies and column transport studies, Mutagenicity tests will be performed on promising candidates. The tracers that will be used for these experiments are fluorinated organic acids and other organic compounds that have the chemical and biological stability necessary to be effective in the Yucca Mountain environment. Special emphasis will be placed on compounds that fluoresce or have very large ultraviolet absorption coefficients for very high analytical sensitivity.

  4. Aligning Higher Education to Workforce Needs in Liberia: A Tracer Study of University Graduates in Liberia

    ERIC Educational Resources Information Center

    Flomo, John S., Jr.

    2013-01-01

    This study investigated the congruence between higher education and the labor market from the perspectives of college graduates in Liberia. It specifically examined the alignment of the skills college students acquire in college to Liberia's labor market. The study employed a Tracer Study quantitative research methodology. Tracer study as a…

  5. FORMALDEHYDE AND TRACER GAS TRANSFER BETWEEN AIRSTREAMS IN ENTHALPY-TYPE AIR-TO-AIR HEAT EXCHANGERS

    SciTech Connect

    Fisk, W. J.; Pedersen, B. S.; Hekmat, D.; Chant, R. E.; Kaboli, H.

    1984-07-01

    Enthalpy exchangers are frequently employed to transfer heat and water between the supply and exhaust airstreams of mechanical ventilation systems. Concern has been expressed that some indoor-generated air pollutants, especially formaldehyde, may be transferred between airstreams by this type of heat exchanger and, thus, returned to the indoor space. This paper describes an experimental study in which the formaldehyde, tracer gas, and water vapor transfer rates in two enthalpy exchangers were measured. The first exchanger uses a crossflow core fabricated from a treated paper. The core of the second heat exchanger is a rotating heat wheel coated with lithium chloride. To reduce the transfer of gases by air leakage each core was installed in a specially fabricated case. Only 5% to 8% of the two tracer gases and 7% to 15% of the formaldehyde injected into the exhaust airstream was transferred to the supply airstream. Therefore, formaldehyde transfer between airstreams by processes other than air leakage does not seriously compromise the performance of these enthalpy exchangers. Theoretical calculations indicate, however, that the transfer of water vapor between airstreams in enthalpy exchangers can significantly diminish their ability to lower indoor formaldehyde concentrations because of the positive coupling between indoor humidity and the emission rates of formaldehyde from building materials.

  6. Determination of the solubility of low volatility liquid organic compounds in water using volatile-tracer assisted headspace gas chromatography.

    PubMed

    Zhang, Shu-Xin; Chai, Xin-Sheng; Barnes, Donald G

    2016-02-26

    This study reports a new headspace gas chromatographic method (HS-GC) for the determination of water solubility of low volatility liquid organic compounds (LVLOs). The HS-GC analysis was performed on a set of aqueous solutions containing a range of concentrations of toluene-spiked (as a tracer) LVLOs, from under-saturation to over-saturation. A plot of the toluene tracer GC signal vs. the concentration of the LVLO results in two lines of different slopes that intersect at the concentration corresponding to the compound's solubility in water. The results showed that the HS-GC method has good precision (RSD <6.3%) and good accuracy, in which the relative deference between the data measured by the HS-GC method and the reference method were within 6.0%. The HS-GC method is simple and particularly suitable for measuring the solubility of LVLOs at elevated temperatures. This approach should be of special interest to those concerned about the impact of the presence of low-volatility organic liquids in waters of environmental and biological systems. PMID:26850316

  7. An Assessment of steady-state propane-gas tracer method for reaeration coefficients, Cowaselon Creek, New York

    USGS Publications Warehouse

    Yotsukura, N.; Stedfast, D.A.; Draper, R.E.; Brutsaert, W.H.

    1983-01-01

    Three tests were conducted in a straight 5.2-km reach of the Cowaselon Creek, Canastota, New York, in order to assess feasibility of the steady-state propane-gas tracer method as a means of estimating in situ reaeration coefficients. It is concluded that the steady-state method, which combines as instantaneous injection of dye tracer with a long-duration injection of propane tracer, is an operationally feasible field technique and provides a very reliable means of determining the propane desorption coefficient in steady-channel flow. The effect of wind shear on propane desorption coefficients was not detected in any tests, apparently due to the sheltering effect of high banks. The reaeration coefficient is estimated by applying a conversion factor determined from laboratory experiments to the gas desorption coefficient. (USGS)

  8. Noble gas tracers of ventilation during deep-water formation in the Weddell Sea

    NASA Astrophysics Data System (ADS)

    Nicholson, D. P.; Khatiwala, S.; Heimbach, P.

    2016-05-01

    To explore the dynamics and implications of incomplete air-sea equilibration during the formation of abyssal water masses, we simulated noble gases in the Estimating the Circulation & Climate of the Ocean (ECCO) global ocean state estimate. A novel computation approach utilizing a matrix-free Newton-Krylov (MFNK) scheme was applied to quickly compute the periodic seasonal solutions for noble gas tracers. MFNK allows for quick computation of a cyclo-stationary solution for tracers (i.e., a spun-up, repeating seasonal cycle), which would otherwise be computationally infeasible due to the long time scale of dynamic adjustment of the abyssal ocean (1000’s of years). A suite of experiments isolates individual processes, including atmospheric pressure effects, the solubility pump and air-sea bubble fluxes. In addition to these modeled processes, a volumetric contribution of 0.28 ± 0.07% of glacial melt water is required to reconcile deep-water observations in the Weddell Sea. Another primary finding of our work is that the saturation anomaly of heavy noble gases in model simulations is in excess of two-fold more negative than is suggested from Weddell Sea observations. This result suggests that model water masses are insufficiently ventilated prior to subduction and thus there is insufficient communication between atmosphere and ocean at high latitudes. The discrepancy between noble gas observations and ECCO simulations highlights that important inadequacies remain in how we model high-latitude ventilation with large implications for the oceanic uptake and storage of carbon.

  9. Analysis of the dust emissions from a naturally ventilated turkey house using tracer gas method.

    PubMed

    Mostafa, Ehab; Diekmann, Bernd; Buescher, Wolfgang; Schneider, Till

    2016-06-01

    Particulate matter (PM) emissions are becoming increasingly important in licensing procedures for the construction of new livestock houses or for the modernization of existing ones. Emission predictions require reliable data about emission rates. On this account, it is necessary to obtain information about the emission development and the relevant influencing factors in naturally ventilated turkey houses. The primary objective of the present research was to describe different aspects of PM emissions from a naturally ventilated turkey house. This includes the quantification of PM emissions and descriptions of the relevant influencing factors. Moreover, the tracer gas decay (TGD) method for ventilation rate estimation had to be used. To determine the emission mass flow from livestock buildings, it was necessary to measure the concentration of the target substance in the exhaust air and the airflow volume. The PM concentration measurements were carried out with a light scattering aerosol spectrometer in the exhaust air. The airflow volume was determined using the TGD method. To this purpose, tracer gas was injected into the supply air before the concentration decay was measured in the exhaust air of the building. The main influences on the PM concentration and the PM size distribution were shown to be animal activity and air volume flow. For the turkey barn, the PM emission factor averaged 0.027 g h(-1) animal(-1) over the entire year. If service times were to be included in the calculation, the emission factor 0.021 g h(-1) animal(-1), again averaged over the entire year, is well below the regulatory limit. PMID:27234512

  10. The project MOHAVE tracer study: study design, data quality, and overview of results

    NASA Astrophysics Data System (ADS)

    Green, Mark C.

    In the winter and summer of 1992, atmospheric tracer studies were conducted in support of project MOHAVE, a visibility study in the southwestern United States. The primary goal of project MOHAVE is to determine the effects of the Mohave power plant and other sources upon visibility at Grand Canyon National Park. Perfluorocarbon tracers (PFTs) were released from the Mohave power plant and other locations and monitored at about 30 sites. The tracer data are being used for source attribution analysis and for evaluation of transport and dispersion models and receptor models. Collocated measurements showed the tracer data to be of high quality and suitable for source attribution analysis and model evaluation. The results showed strong influences of channeling by the Colorado River canyon during both winter and summer. Flow from the Mohave power plant was usually to the south, away from the Grand Canyon in winter and to the northeast, toward the Grand Canyon in summer. Tracer released at Lake Powell in winter was found to often travel downstream through the entire length of the Grand Canyon. Data from summer tracer releases in southern California demonstrated the existence of a convergence zone in the western Mohave Desert.

  11. Near-Road Mulltipollutant Profiles: Association between Volatile Organic Compounds and a Tracer Gas Surrogate Near a Busy Highway

    EPA Science Inventory

    This research characterizes associations between multiple pollutants in the near-road environment attributed to a roadway line source. It also examines the use of a tracer gas as a surrogate of mobile source pollutants. Air samples were collected in summa canisters along a 300 m ...

  12. Application of a tracer gas challenge with a human subject to investigate factors affecting the performance of laboratory fume hoods.

    PubMed

    Altemose, B A; Flynn, M R; Sprankle, J

    1998-05-01

    The results of a "user" tracer gas test were applied to investigate the effects of various parameters on hood containment ability and to evaluate accepted methods to classify hood performance. This user tracer gas test was performed with a human subject standing in front of the hood. Based on the data collected, face velocity, its variability, and cross drafts are important in determining hood leakage. Results indicate that the temporal variability of face velocity may deserve as much consideration as its spatial variability, a parameter more traditionally recognized as being important. The data collected indicate that hoods with horizontally sliding sash doors perform better with the doors positioned to provide a center opening rather than when all of the doors are pushed to one side. The observed smoke patterns suggest that this trend is caused by the location and instability of vortices formed along the perimeter edge when all doors are pushed to one side. The results of manikin tracer gas tests and the user tracer gas test are inconsistent, suggesting that more research is needed to determine how best to evaluate whether a hood protects its users. PMID:9858975

  13. Hanford facilities tracer study report (315 Water Treatment Facility). Revision 1

    SciTech Connect

    Ambalam, T.

    1995-05-01

    Reported are the results and findings of a tracer study to determine contact time for the disinfection process of 315 Water Treatment Facility at 300 Area. The study utilized fluoride as the tracer and contact times were determined for two flow rates. Interpolation of data and short circuiting effects are also discussed.

  14. Assessing the containment efficiency of a microbiological safety cabinet during the simultaneous generation of a nanoaerosol and a tracer gas.

    PubMed

    Cesard, V; Belut, E; Prevost, C; Taniere, A; Rimbert, N

    2013-04-01

    The intention of this article is to compare the containment performance of a Type II microbiological safety cabinet (MSC) confronted with the simultaneous generation of a saline nanoparticle aerosol and a tracer gas (SF(6)). The back dissemination coefficient, defined as the ratio of the pollutant concentration measured outside the enclosure to the pollutant flow rate emitted inside the enclosure, is calculated in order to quantify the level of protection of each airborne contaminant tested for three enclosure operating configurations: an initial configuration (without perturbations), a configuration exposing a dummy in front of the enclosure (simulation of an operator), and a configuration employing the movement of a plate in front of the enclosure (simulation of human movement). Based on the results of this study, we observed that nanoparticulate and gaseous behaviours are strongly correlated, thus showing the predominance of air-driven transport over particle-specific behaviour. The average level of protection afforded by the MSC was found systematically slightly higher for the nanoaerosol than for the gas in the studied configurations (emission properties of the source, operating conditions, and measurement protocols). This improved protection efficiency, however, cannot be considered as a warrant of protection for operators since operating condition and ventilation parameters are still more influential on the containment than the pollutant nature (i.e. nanoaerosol or gas). PMID:23123312

  15. Simultaneous analyses and applications of multiple fluorobenzoate and halide tracers in hydrologic studies

    NASA Astrophysics Data System (ADS)

    Hu, Qinhong; Moran, Jean E.

    2005-09-01

    An analytical method that employs ion chromatography has been developed to exploit the use of fluorobenzoic acids (FBAs) and halides more fully as hydrologic tracers. In a single run, this reliable, sensitive, and robust method can simultaneously separate and quantify halides (fluoride, chloride, bromide, and iodide) and up to seven FBAs from other common groundwater constituents (e.g. nitrate and sulphate). The usefulness of this analytical method is demonstrated in both field and laboratory tracer experiments. The field study examines the hydrologic response of fractures and the matrix to different flow rates and the contribution of matrix diffusion in chemical transport. Laboratory tracer experiments with eight geologic media from across the USA - mostly from Department of Energy facilities where groundwater contamination is prevalent and where subsurface characterization employing tracers has been ongoing or is in need - reveal several insights about tracer transport behaviour: (1) bromide and FBAs are not always transported conservatively; (2) the delayed transport of these anionic tracers is likely related to geologic media characteristics, such as organic matter, pH, iron oxide content, and clay mineralogy; (3) use of iodine as a hydrologic tracer should take into account the different sorption behaviours of iodide and iodate and the possible conversion of iodine's initial chemical form; (4) the transport behaviour of potential FBA and halide tracers under relevant geochemical conditions should be evaluated before beginning ambitious, large-scale field tracer experiments.

  16. Simultaneous Analyses and Applications of Multiple Fluorobenzoate and Halide Tracers in Hydrologic Studies

    SciTech Connect

    Hu, Q; Moran, J E

    2004-01-22

    An analytical method that employs ion chromatography has been developed to more fully exploit the use of fluorobenzoic acids (FBAs) and halides as hydrologic tracers. In a single run, this reliable, sensitive, and robust method can simultaneously separate and quantify halides (fluoride, chloride, bromide, and iodide) and up to seven FBAs from other common groundwater constituents (e.g., nitrate and sulfate). The usefulness of this ion chromatographic (IC) analytical method is demonstrated in both field and laboratory tracer experiments. Field experiments in unsaturated tuff featuring fractures or a fault show that this efficient and cost-effective method helps achieve the objectives of tracer studies that use multiple FBAs and/or diffusivity tracers (simultaneous use of one or more FBA and halide). The field study examines the hydrologic response of fractures and the matrix to different flow rates and the contribution of matrix diffusion in chemical transport. Laboratory tracer experiments with eight geologic media from across the United States--mostly from Department of Energy facilities where groundwater contamination is prevalent and where subsurface characterization employing tracers has been ongoing or is in need--reveal several insights about tracer transport behavior: (1) Bromide and FBAs are not always transported conservatively. (2) The delayed transport of these anionic tracers is likely related to geologic media characteristics, such as organic matter, pH, iron oxide content, and clay mineralogy. (3) Any use of iodine as a hydrologic tracer should take into account the different sorption behaviors of iodide and iodate and the possible conversion of iodine's initial chemical form. (4) The transport behavior of potential FBA and halide tracers under relevant geochemical conditions should be evaluated before beginning ambitious, large-scale field tracer experiments.

  17. Project definition study for the National Biomedical Tracer Facility

    SciTech Connect

    Roozen, K.

    1995-02-15

    The University of Alabama at Birmingham (UAB) has conducted a study of the proposed National Biomedical Tracer Facility (NBTF). In collaboration with General Atomics, RUST International, Coleman Research Corporation (CRC), IsoMed, Ernst and Young and the advisory committees, they have examined the issues relevant to the NBTF in terms of facility design, operating philosophy, and a business plan. They have utilized resources within UAB, CRC and Chem-Nuclear to develop recommendations on environmental, safety and health issues. The Institute of Medicine Panel`s Report on Isotopes for Medicine and the Life Sciences took the results of prior workshops further in developing recommendations for the mission of the NBTF. The IOM panel recommends that the NBTF accelerator have the capacity to accelerate protons to 80 MeV and a minimum of 750 microamperes of current. The panel declined to recommend a cyclotron or a linac. They emphasized a clear focus on research and development for isotope production including target design, separation chemistry and generator development. The facility needs to emphasize education and training in its mission. The facility must focus on radionuclide production for the research and clinical communities. The formation of a public-private partnership resembling the TRIUMF-Nordion model was encouraged. An advisory panel should assist with the NBTF operations and prioritization.

  18. Studying Star Clusters as Tracers of the LMC's Chemical Enrichment

    NASA Astrophysics Data System (ADS)

    Palma, T.; Clariá, J. J.; Geisler, D.; Ahumada, A. V.

    2015-05-01

    Based on photometric observations made with the Cerro Tololo Inter-American (CTIO) “Victor Blanco” 4-m telescope, we present the results of a study of the chemical evolution of the Large Magellanic Cloud (LMC) for the last 2.2 Gyr. As tracers of the LMC chemical enrichment, we used 39 star clusters projected on the bar, 27 on the inner disc, and 15 on the outer disc. Our sample includes 44 previously unstudied clusters. In all cases we determined the size, reddening, deprojected distance, age and metallicity. We show that the more metal-rich clusters are mainly located in the inner disc, while more metal-poor clusters are distributed throughout the entire disc. Intermediate-age clusters tend to be located at greater deprojected galactocentric distances while the youngest ones are mainly found in the inner disc. These trends are maintained when the sample is complemented with clusters observed by other authors with the same technique. These results reinforce the idea of the absence of a radial metallicity gradient in the LMC for clusters with subsolar metallicities. The resulting age-metallicity relationship appears to be independent of which LMC region is considered.

  19. Using a Gas-Phase Tracer Test to Characterize the Impact of Landfill Gas Generation on Advective-Dispersive Transport of VOCs in the Vadose Zone

    PubMed Central

    Monger, Gregg R.; Duncan, Candice Morrison; Brusseau, Mark L.

    2015-01-01

    A gas-phase tracer test (GTT) was conducted at a landfill in Tucson, AZ, to help elucidate the impact of landfill gas generation on the transport and fate of chlorinated aliphatic volatile organic contaminants (VOCs). Sulfur hexafluoride (SF6) was used as the non-reactive gas tracer. Gas samples were collected from a multiport monitoring well located 15.2 m from the injection well, and analyzed for SF6, CH4, CO2, and VOCs. The travel times determined for SF6 from the tracer test are approximately two to ten times smaller than estimated travel times that incorporate transport by only gas-phase diffusion. In addition, significant concentrations of CH4 and CO2 were measured, indicating production of landfill gas. Based on these results, it is hypothesized that the enhanced rates of transport observed for SF6 are caused by advective transport associated with landfill gas generation. The rates of transport varied vertically, which is attributed to multiple factors including spatial variability of water content, refuse mass, refuse permeability, and gas generation. PMID:26380532

  20. Enhancing the activation of silicon carbide tracer particles for PEPT applications using gas-phase deposition of alumina at room temperature and atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Valdesueiro, D.; Garcia-Triñanes, P.; Meesters, G. M. H.; Kreutzer, M. T.; Gargiuli, J.; Leadbeater, T. W.; Parker, D. J.; Seville, J. P. K.; van Ommen, J. R.

    2016-01-01

    We have enhanced the radio-activation efficiency of SiC (silicon carbide) particles, which by nature have a poor affinity towards 18F ions, to be employed as tracers in studies using PEPT (Positron Emission Particle Tracking). The resulting SiC-Al2O3 core-shell structure shows a good labelling efficiency, comparable to γ-Al2O3 tracer particles, which are commonly used in PEPT. The coating of the SiC particles was carried at 27±3 °C and 1 bar in a fluidized bed reactor, using trimethylaluminium and water as precursors, by a gas phase technique similar to atomic layer deposition. The thickness of the alumina films, which ranged from 5 to 500 nm, was measured by elemental analysis and confirmed with FIB-TEM (focused ion beam - transmission electron microscope), obtaining consistent results from both techniques. By depositing such a thin film of alumina, properties that influence the hydrodynamic behaviour of the SiC particles, such as size, shape and density, are hardly altered, ensuring that the tracer particle shows the same flow behaviour as the other particles. The paper describes a general method to improve the activation efficiency of materials, which can be applied for the production of tracer particles for many other applications too.

  1. Analysis techniques for tracer studies of oxidation. M. S. Thesis Final Report

    NASA Technical Reports Server (NTRS)

    Basu, S. N.

    1984-01-01

    Analysis techniques to obtain quantitative diffusion data from tracer concentration profiles were developed. Mass balance ideas were applied to determine the mechanism of oxide growth and to separate the fraction of inward and outward growth of oxide scales. The process of inward oxygen diffusion with exchange was theoretically modelled and the effect of lattice diffusivity, grain boundary diffusivity and grain size on the tracer concentration profile was studied. The development of the tracer concentration profile in a growing oxide scale was simulated. The double oxidation technique was applied to a FeCrAl-Zr alloy using 0-18 as a tracer. SIMS was used to obtain the tracer concentration profile. The formation of lacey oxide on the alloy was discussed. Careful consideration was given to the quality of data required to obtain quantitative information.

  2. Application of multitracer technology to petroleum reservoir studies. [Perfluorocarbon tracer technology

    SciTech Connect

    Senum, G.I.

    1992-09-01

    The objectives of this research program are to: Improve the assessment of the character of petroleum reservoirs using tracer technology for the monitoring and improvement of EOR techniques, specifically, (a) to apply the presently available multitracer perfluorocarbon tracer (PFI) technology to the study of petroleum reservoirs in characterizing reservoir bulk subsurface flow transport and dispersion rates; and (b) to demonstrate that PFTs with differing physical properties will interact with differing rates of adsorption and dispersion within such reservoirs, from which may be inferred difference in the character and/or extent of petroleum in those reservoirs. Develop additional tracers, and tracer injection, sampling and analyses methodologies for use in petroleum reservoir characterization experiments. Develop a data base of petroleum transport and dispersion properties from tracer experiments for use by modellers for developing, validating and extending petroleum reservoirs models used for characterizing petroleum reservoirs. Technical progress is discussed according to the three ongoing field experiments at the Naval Petroleum Reserve in California (NPRC).

  3. TRACER DISPERSION STUDIES FOR HYDRAULIC CHARACTERIZATION OF PIPES

    EPA Science Inventory

    A series of experiments were conducted at the U. S. Environmental Protection Agency (EPA) Test & Evaluation (T&E) Facility in Cincinnati, Ohio, to quantify longitudinal dispersion of a sodium fluoride tracer in polyvinyl chloride (PVC) pipe and ductile iron pipe under laminar, tr...

  4. Study of North Atlantic ventilation using transient tracers. Doctoral Thesis

    SciTech Connect

    Doney, S.C.

    1991-08-01

    Tritium, (3)He, and chlorofluorocarbon distributions in the North Atlantic provide constraints on the ventilation time-scales for the thermocline and abyssal water. A new model function based on a factor analysis of the WMO/IAEA precipitation data set is developed for predicting the spatial and temporal patterns of bomb-tritium in precipitation. Model atmospheric and advective tritium inputs to the North Atlantic are compared with the observed bomb-tritium inventories calculated from the 1972 GEOSECS and 1981-1983 TTO data sets. The observed growth of bomb-tritium levels in the deep North Atlantic are used, along with the tracer gradients ((3)H and (3)He) in the Deep Western Boundary Current, to estimate abyssal ventilation rates and boundary current recirculation. The surface boundary conditions for different transient tracers are found to profoundly effect thermocline ventilation rates estimates. Tracers that equilibrate rapidly with the atmosphere, such as (3)He and the CFCs, have faster apparent ventilation rates and are more appropriate for estimating oxygen utilization rates than tracers that are reset slowly in the surface ocean (e.g. (3)H and (14)C). The chlorofluorocarbon data for a new section in the eastern North Atlantic are presented and used to illustrate the ventilation time-scales for the major water masses in the region. (Copyright (c) Scott C. Doney, 1991.)

  5. Sediment tracers in water erosion studies: Current approaches and challenges

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The interest in the use of sediment tracers as a complementary tool to traditional water soil erosion or deposition measurements or assessment has increased due to the additional information they may provide such as sediment source identification and tracking of sediment movement over the landscape ...

  6. ACROSS NORTH AMERICA TRACER EXPERIMENT (ANATEX) MODEL EVALUATION STUDY

    EPA Science Inventory

    Three perfluorocarbon tracer gases were released at 2.5-day or 5.0-day intervals from two sites in central North America and sampled for 24-h periods at 77 surface sites. he source-receptor distances ranged from less than 30 km to 3,000 km. he data were used to evaluate the long-...

  7. Artificial ultra-fine aerosol tracers for highway transect studies

    NASA Astrophysics Data System (ADS)

    Cahill, Thomas A.; Barnes, David E.; Wuest, Leann; Gribble, David; Buscho, David; Miller, Roger S.; De la Croix, Camille

    2016-07-01

    The persistent evidence of health impacts of roadway aerosols requires extensive information for urban planning to avoid putting populations at risk, especially in-fill projects. The required information must cover both highway aerosol sources as well as transport into residential areas under a variety of roadway configurations, traffic conditions, downwind vegetation, and meteorology. Such studies are difficult and expensive to do, but were easier in the past when there was a robust fine aerosol tracer uniquely tied to traffic - lead. In this report we propose and test a modern alternative, highway safety flare aerosols. Roadway safety flares on vehicles in traffic can provide very fine and ultra-fine aerosols of unique composition that can be detected quantitatively far downwind of roadways due to a lack of upwind interferences. The collection method uses inexpensive portable aerosol collection hardware and x-ray analysis protocols. The time required for each transect is typically 1 h. Side by side tests showed precision at ± 4%. We have evaluated this technique both by aerosol removal in vegetation in a wind tunnel and by tracking aerosols downwind of freeways as a function of season, highway configuration and vegetation coverage. The results show that sound walls for at-grade freeways cause freeway pollution to extend much farther downwind than standard models predict. The elevated or fill section freeway on a berm projected essentially undiluted roadway aerosols at distances well beyond 325 m, deep into residential neighborhoods. Canopy vegetation with roughly 70% cover reduced very fine and ultra-fine aerosols by up to a factor of 2 at distances up to 200 m downwind.

  8. Using noble gas tracers to constrain a groundwater flow model with recharge elevations: A novel approach for mountainous terrain

    USGS Publications Warehouse

    Doyle, Jessica M.; Gleeson, Tom; Manning, Andrew H.; Mayer, K. Ulrich

    2015-01-01

    Environmental tracers provide information on groundwater age, recharge conditions, and flow processes which can be helpful for evaluating groundwater sustainability and vulnerability. Dissolved noble gas data have proven particularly useful in mountainous terrain because they can be used to determine recharge elevation. However, tracer-derived recharge elevations have not been utilized as calibration targets for numerical groundwater flow models. Herein, we constrain and calibrate a regional groundwater flow model with noble-gas-derived recharge elevations for the first time. Tritium and noble gas tracer results improved the site conceptual model by identifying a previously uncertain contribution of mountain block recharge from the Coast Mountains to an alluvial coastal aquifer in humid southwestern British Columbia. The revised conceptual model was integrated into a three-dimensional numerical groundwater flow model and calibrated to hydraulic head data in addition to recharge elevations estimated from noble gas recharge temperatures. Recharge elevations proved to be imperative for constraining hydraulic conductivity, recharge location, and bedrock geometry, and thus minimizing model nonuniqueness. Results indicate that 45% of recharge to the aquifer is mountain block recharge. A similar match between measured and modeled heads was achieved in a second numerical model that excludes the mountain block (no mountain block recharge), demonstrating that hydraulic head data alone are incapable of quantifying mountain block recharge. This result has significant implications for understanding and managing source water protection in recharge areas, potential effects of climate change, the overall water budget, and ultimately ensuring groundwater sustainability.

  9. Optimization of Sampling Positions for Measuring Ventilation Rates in Naturally Ventilated Buildings Using Tracer Gas

    PubMed Central

    Shen, Xiong; Zong, Chao; Zhang, Guoqiang

    2012-01-01

    Finding out the optimal sampling positions for measurement of ventilation rates in a naturally ventilated building using tracer gas is a challenge. Affected by the wind and the opening status, the representative positions inside the building may change dynamically at any time. An optimization procedure using the Response Surface Methodology (RSM) was conducted. In this method, the concentration field inside the building was estimated by a three-order RSM polynomial model. The experimental sampling positions to develop the model were chosen from the cross-section area of a pitched-roof building. The Optimal Design method which can decrease the bias of the model was adopted to select these sampling positions. Experiments with a scale model building were conducted in a wind tunnel to achieve observed values of those positions. Finally, the models in different cases of opening states and wind conditions were established and the optimum sampling position was obtained with a desirability level up to 92% inside the model building. The optimization was further confirmed by another round of experiments.

  10. Characterization of solid-phase microextraction and gas chromatography for the analysis of gasoline tracers in different microenvironments.

    PubMed

    Ceballos, Diana; Zielinska, Barbara; Fujita, Eric; Sagebiel, John

    2007-03-01

    Gasoline tracers were collected on solid-phase microextraction (SPME) fibers and analyzed by capillary gas chromatography with photoionization detector (GC/PID). This was part of a larger study to quantify personal exposure to motor vehicle gasoline evaporative and combustive emissions in high-end exposure microenvironments (MEs). The SPME fiber selected for this application was a 75-microm carboxen/polydimethylsiloxane. Sequential 10-min samples were collected for measurement of benzene, toluene, ethylbenzene, and ortho-, meta-, and para-xylene in different MEs in Atlanta, GA, in summer 2002 and Reno, NV, in spring 2003. Field calibrations were performed with certified gas standards in 1-L Tedlar bags for varying concentrations and exposure times. SPME detection limits were approximately 0.2 ppbv with a precision of 3-17% and accuracy of 30%. A dynamic system was designed for temperature and relative humidity calibrations, with corrections for the effects of these variables performed when necessary. SPME data compared satisfactorily with integrated canister samples, continuous PID, and field portable mass spectrometer data. PMID:17385603

  11. Green River air quality model development: meteorological and tracer data, July/August 1982 field study in Brush Valley, Colorado

    SciTech Connect

    Whiteman, C.D.; Lee, R.N.; Orgill, M.M.; Zak, B.D.

    1984-06-01

    Meteorological and atmospheric tracer studies were conducted during a 3-week period in July and August of 1982 in the Brush Creek Valley of northwestern Colorado. The objective of the field experiments was to obtain data to evaluate a model, called VALMET, developed at PNL to predict dispersion of air pollutants released from an elevated stack located within a deep mountain valley in the post-sunrise temperature inversion breakup period. Three tracer experiments were conducted in the valley during the 2-week period. In these experiments, sulfur hexafluoride (SF/sub 6/) was released from a height of approximately 100 m, beginning before sunrise and continuing until the nocturnal down-valley winds reversed several hours after sunrise. Dispersion of the sulfur hexafluoride after release was evaluated by measuring SF/sub 6/ concentrations in ambient air samples taken from sampling devices operated within the valley up to about 8 km down valley from the source. An instrumented research aircraft was also used to measure concentrations in and above the valley. Tracer samples were collected using a network of radio-controlled bag sampling stations, two manually operated gas chromatographs, a continuous SF/sub 6/ monitor, and a vertical SF/sub 6/ profiler. In addition, basic meteorological data were collected during the tracer experiments. Frequent profiles of vertical wind and temperature structure were obtained with tethered balloons operated at the release site and at a site 7.7 km down the valley from the release site. 10 references, 63 figures, 50 tables.

  12. THE NEW YORK CITY URBAN DISPERSION PROGRAM MARCH 2005 FIELD STUDY: TRACER METHODS AND RESULTS.

    SciTech Connect

    WATSON, T.B.; HEISER, J.; KALB, P.; DIETZ, R.N.; WILKE, R.; WIESER, R.; VIGNATO, G.

    2005-10-01

    The Urban Dispersion Program March 2005 Field Study tracer releases, sampling, and analytical methods are described in detail. There were two days where tracer releases and sampling were conducted. A total of 16.0 g of six tracers were released during the first test day or Intensive Observation Period (IOP) 1 and 15.7 g during IOP 2. Three types of sampling instruments were used in this study. Sequential air samplers, or SAS, collected six-minute samples, while Brookhaven atmospheric tracer samplers (BATS) and personal air samplers (PAS) collected thirty-minute samples. There were a total of 1300 samples resulting from the two IOPs. Confidence limits in the sampling and analysis method were 20% as determined from 100 duplicate samples. The sample recovery rate was 84%. The integrally averaged 6-minute samples were compared to the 30-minute samples. The agreement was found to be good in most cases. The validity of using a background tracer to calculate sample volumes was examined and also found to have a confidence level of 20%. Methods for improving sampling and analysis are discussed. The data described in this report are available as Excel files. An additional Excel file of quality assured tracer data for use in model validation efforts is also available. The file consists of extensively quality assured BATS tracer data with background concentrations subtracted.

  13. Identification and characterization of conservative organic tracers for use as hydrologic tracers for the Yucca Mountain Site characterization study. Progress report, January 1, 1995--March 31, 1995

    SciTech Connect

    Stetzenbach, K.; Farnham, I.

    1995-05-01

    Fluorinated organic acids were utilized in a test study as hydrologic tracers for the Yucca Mountain Project. Fluorinated acids included cinnamic acid; benzoic acid, and toluic acid. Results are discussed pertaining to retention time, elution time, and stability.

  14. Preliminary Results from Downhole Osmotic Samplers in a Gas Tracer Injection Experiment in the Upper Oceanic Crust on the Eastern Flank of the Juan de Fuca Ridge.

    NASA Astrophysics Data System (ADS)

    de Jong, M. T.; Clark, J. F.; Neira, N. M.; Fisher, A. T.; Wheat, C. G.

    2015-12-01

    We present results from a gas tracer injection experiment in the ocean crust on the eastern flank of the Juan de Fuca Ridge, in an area of hydrothermal circulation. Sulfur hexafluoride (SF6) tracer was injected in Hole 1362B in 2010, during IODP Expedition 327. Fluid samples were subsequently collected from a borehole observatory (CORK) installed in this hole and similar CORKs in three additional holes (1026B, 1362A, and 1301A), located 300 to 500 m away. This array of holes is located on 3.5 My old seafloor, as an array oriented subparallel to the Endeavor Segment of Juan de Fuca Ridge. Borehole fluid samples were collected in copper coils using osmotic pumps. In addition to pumps at seafloor wellheads, downhole sampling pumps were installed in the perforated casing in the upper ocean crust. These downhole samplers were intended to produce a high-resolution continuous record of tracer concentrations, including records from the first year after tracer injection in Holes 1362A and 1362B. In contrast, wellhead samplers were not installed on these CORKs holes until 2011, and wellhead records from all CORKs have a record gap of up to one year, because of a delayed expedition in 2012. The downhole samples were recovered with the submersible Alvin in August 2014. SF6 concentrations in downhole samples recovered in 2014 are generally consistent with data obtained from wellhead samples. Of particular interest are the results from Hole 1362B, where a seafloor valve was opened and closed during various recovery expeditions. High resolution tracer curves produced from the 1362B downhole samples confirm that these operations produced an SF6 breakthrough curve corresponding to a classic push-pull test used to evaluate contaminant field locations in terrestrial setting. Complete analyses of downhole samples from these CORKs are expected to produce high-resolution breakthrough curves that will allow more precise analysis and modeling of hydrothermal flow in the study area.

  15. Gas transport below artificial recharge ponds: insights from dissolved noble gases and a dual gas (SF6 and 3He) tracer experiment.

    PubMed

    Clark, Jordan F; Hudson, G Bryant; Avisar, Dror

    2005-06-01

    A dual gas tracer experiment using sulfur hexafluoride (SF6) and an isotope of helium (3He) and measurements of dissolved noble gases was performed at the El Rio spreading grounds to examine gas transport and trapped air below an artificial recharge pond with a very high recharge rate (approximately 4 m day(-1)). Noble gas concentrations in the groundwater were greater than in surface water due to excess air formation showing that trapped air exists below the pond. Breakthrough curves of SF6 and 3He at two nearby production wells were very similar and suggest that nonequilibrium gas transfer was occurring between the percolating water and the trapped air. At one well screened between 50 and 90 m below ground, both tracers were detected after 5 days and reached a maximum at approximately 24 days. Despite the potential dilution caused by mixing within the production well, the maximum concentration was approximately 25% of the mean pond concentration. More than 50% of the SF6 recharged was recovered by the production wells during the 18 month long experiment. Our results demonstrate that at artificial recharge sites with high infiltration rates and moderately deep water tables, transport times between recharge locations and wells determined with gas tracer experiments are reliable. PMID:15984768

  16. Environmental assessment of the use of radionuclides as tracers in the enhanced recovery of oil and gas. Final report

    SciTech Connect

    Ng, Y.C.; Cederwall, R.T.; Anspaugh, L.R.

    1983-06-30

    An environmental assessment of the use of radioisotopes as interwell tracers in field flooding for the enhanced recovery of oil and natural gas was performed. A typical operation using radioisotopes for interwell tracing was analyzed from the standpoint of three stages of operation: aboveground, subsurface, and recovery and disposal. Doses to workers who handle radioactive tracers and to members of the public were estimated for normal and accidental exposure scenarios. On the basis of estimates of the total quantity of tracer radionuclides injected in a year, the annual number of projects, the average number of injections per project, and assumed values of accident frequency, the collective dose equivalent is estimated to be 1.1 man-rem/y to workers and 15 man-rem/y to members of the public. The national radiological impact of the use of radioisotopes as interwell tracers in EOR projects is estimated to be a total collective dose equivalent of <16 man-rem/y. Accidential exposures are estimated to contribute relatively little to the total. 47 references, 8 figures, 43 tables.

  17. Ammonium transport and reaction in contaminated groundwater: Application of isotope tracers and isotope fractionation studies

    USGS Publications Warehouse

    Böhlke, J.K.; Smith, R.L.; Miller, D.N.

    2006-01-01

    Ammonium (NH4+) is a major constituent of many contaminated groundwaters, but its movement through aquifers is complex and poorly documented. In this study, processes affecting NH4+ movement in a treated wastewater plume were studied by a combination of techniques including large-scale monitoring of NH4+ distribution; isotopic analyses of coexisting aqueous NH4+, NO3-, N2, and sorbed NH 4+; and in situ natural gradient 15NH 4+ tracer tests with numerical simulations of 15NH4+, 15NO3-, and 15N2 breakthrough data. Combined results indicate that the main mass of NH4+ was moving downgradient at a rate about 0.25 times the groundwater velocity. Retardation factors and groundwater ages indicate that much of the NH4+ in the plume was recharged early in the history of the wastewater disposal. NO3- and excess N2 gas, which were related to each other by denitrification near the plume source, were moving downgradient more rapidly and were largely unrelated to coexisting NH 4+. The ??15N data indicate areas of the plume affected by nitrification (substantial isotope fractionation) and sorption (no isotope fractionation). There was no conclusive evidence for NH 4+-consuming reactions (nitrification or anammox) in the anoxic core of the plume. Nitrification occurred along the upper boundary of the plume but was limited by a low rate of transverse dispersive mixing of wastewater NH4+ and O2 from overlying uncontaminated groundwater. Without induced vertical mixing or displacement of plume water with oxic groundwater from upgradient sources, the main mass of NH4+ could reach a discharge area without substantial reaction long after the more mobile wastewater constituents are gone. Multiple approaches including in situ isotopic tracers and fractionation studies provided critical information about processes affecting NH4+ movement and N speciation.

  18. Urban Dispersion Program MSG05 Field Study: Summary of Tracer and Meteorological Measurements

    SciTech Connect

    Allwine, K Jerry; Flaherty, Julia E.

    2006-08-09

    The Urban Dispersion Program is a multi-year project, funded by the U.S. Department of Homeland Security, to better understand the flow and dispersion of airborne contaminants through and around the deep street canyons of New York City. The first tracer and meteorological field study was a limited study conducted during March 2005 near the Madison Square Garden in midtown Manhattan. Six safe, inert, gaseous perfluorocarbon tracers were released simultaneously at five street-level locations during two experimental days. In addition to collecting tracer data, meteorological data were also collected. Brookhaven National Laboratory conducted the bulk of the tracer and meteorological field efforts with Pacific Northwest National Laboratory and Stevens Institute of Technology assisting by measuring the vertical profile of winds. The Environmental Protection Agency worked with Brookhaven National Laboratory in accomplishing the personal exposure component of the study. This report presents some results from this analysis. In general, different release locations showed vastly different plume footprints for tracer materials, and the situation was made very complex with upwind and/or crosswind transport of tracer near street-level for the different release locations. Overall wind speeds and directions upwind and over the city were generally constant throughout each of the two experimental periods.

  19. Adaptation of the perfluorocarbon tracer technology for aqueous-phase studies in subsurface applications

    SciTech Connect

    Senum, G.I.; Goodrich, R.W.; Wilson, R.; Dietz, R.N.

    1990-01-01

    The perfluorocarbon tracer (PFT) technology as developed by the Tracer Technology Center at Brookhaven National Laboratory can be easily adapted for use as in aqueous-phase tracer studies in subsurface hydrological applications. The advantages of the PFT technology in this application is that it is a multi-tracer technology, up to 5 or 6 PFTs may be used in an experiment, the PFTs are completely non-toxic and inert, the PFTs can be detected to 4 orders greater sensitivity than fluorescent dyes. The disadvantages are that the PFTs are only sparingly soluble in water and are also volatile. They are minimized by the PFT deployment and sampling methodologies which are given in this report. 15 refs., 3 tabs.

  20. Using biofuel tracers to study alternative combustion regimes

    NASA Astrophysics Data System (ADS)

    Mack, J. H.; Flowers, D. L.; Buchholz, B. A.; Dibble, R. W.

    2007-06-01

    Interest in the use of alternative fuels and engines is increasing as the price of petroleum climbs. The inherently higher efficiency of Diesel engines has led to increased adoption of Diesels in Europe, capturing approximately 40% of the new passenger car market. Unfortunately, lower CO2 emissions are countered with higher nitrogen oxides (NOx) and particulate matter (PM) emissions and higher noise. Adding oxygenated compounds to the fuel helps reduce PM emissions. However, relying on fuel alone to reduce PM is unrealistic due to economic constraints and difficult due to the emerging PM standards. Keeping peak combustion temperature below 1700 K inhibits NOx formation. Altering the combustion regime to burn at temperatures below the NOx threshold and accept a wide variety of fuels seems like a promising alternative for future engines. Homogeneous charge compression ignition (HCCI) is a possible solution. Fuel and air are well mixed prior to intake into a cylinder (homogeneous charge) and ignition occurs by compression of the fuel-air mixture by the piston. HCCI is rapid and relatively cool, producing little NOx and PM. Unfortunately, it is hard to control since HCCI is initiated by temperature and pressure instead of a spark or direct fuel injection. We investigate biofuel HCCI combustion, and use intrinsically labeled biofuels as tracers of HCCI combustion. Data from tracer experiments are used to improve our combustion modeling.

  1. Using Biofuel Tracers to Study Alternative Combustion Regimes

    SciTech Connect

    Mack, J H; Flowers, D L; Buchholz, B A; Dibble, R W

    2006-02-14

    Interest in the use of alternative fuels and combustion regimes is increasing as the price of petroleum climbs. The inherently higher efficiency of Diesel engines has led to increased adoption of Diesels in Europe, capturing approximately 40% of the new passenger car market. Unfortunately, lower CO{sub 2} emissions are countered with higher nitrogen oxides (NOx) and particulate matter (PM) emissions, and higher noise. Noise and PM have traditionally been the obstacles toward consumer acceptance of Diesel passenger cars in North America, while NOx (a key component in photochemical smog) has been more of an engineering challenge. Diesels are lean burning (combustion with excess oxygen) and reducing NOx to N2 in an oxygen rich environment is difficult. Adding oxygenated compounds to the fuel helps reduce PM emissions, but relying on fuel alone to reduce PM is unrealistic. Keeping peak combustion temperature below 1700 K prevents NOx formation. Altering the combustion regime to burn at temperatures below the NOx threshold and accept a wide variety of fuels seems like a promising alternative for future engines. Homogeneous Charge Compression Ignition (HCCI) is a possible solution. Fuel and air are well mixed prior to intake into a cylinder (homogeneous charge) and ignition occurs by compression of the fuel-air mixture by the piston. HCCI is rapid and relatively cool, producing little NOx and PM. Unfortunately, it is hard to control since HCCI is initiated by temperature and pressure instead of a spark or direct fuel injection. We investigate biofuel HCCI combustion, and use intrinsically labeled biofuels as tracers of HCCI combustion. Data from tracer experiments are used to validate combustion modeling.

  2. DUST CONTINUUM EMISSION AS A TRACER OF GAS MASS IN GALAXIES

    SciTech Connect

    Groves, Brent A.; Schinnerer, Eva; Walter, Fabian; Leroy, Adam; Galametz, Maud; Bolatto, Alberto; Hunt, Leslie; Dale, Daniel; Calzetti, Daniela; Croxall, Kevin; Kennicutt, Robert Jr.

    2015-01-20

    We use a sample of 36 galaxies from the KINGFISH (Herschel IR), HERACLES (IRAM CO), and THINGS (Very Large Array H I) surveys to study empirical relations between Herschel infrared (IR) luminosities and the total mass of the interstellar gas (H{sub 2} + H I). Such a comparison provides a simple empirical relationship without introducing the uncertainty of dust model fitting. We find tight correlations, and provide fits to these relations, between Herschel luminosities and the total gas mass integrated over entire galaxies, with the tightest, almost linear, correlation found for the longest wavelength data (SPIRE 500). However, we find that accounting for the gas-phase metallicity (affecting the dust to gas ratio) is crucial when applying these relations to low-mass, and presumably high-redshift, galaxies. The molecular (H{sub 2}) gas mass is found to be better correlated with the peak of the IR emission (e.g., PACS160), driven mostly by the correlation of stellar mass and mean dust temperature. When examining these relations as a function of galactocentric radius, we find the same correlations, albeit with a larger scatter, up to a radius of r ∼ 0.7 r {sub 25} (containing most of a galaxy's baryonic mass). However, beyond that radius, the same correlations no longer hold, with increasing gas (predominantly H I) mass relative to the infrared emission. The tight relations found for the bulk of the galaxy's baryonic content suggest that total gas masses of disk-like (non-merging/ULIRG) galaxies can be inferred from far-infrared continuum measurements in situations where only the latter are available, e.g., in ALMA continuum observations of high-redshift galaxies.

  3. Tracer Technique

    NASA Astrophysics Data System (ADS)

    Haba, H.; Motomura, S.; Kamino, S.; Enomoto, S.

    In radioactive tracer technique, radioactive nuclides are used to follow the behavior of elements or chemical species in chemical and other processes. This is realized by means of radioactivity measurement. In 1913, Hevesy and Paneth succeeded in determining the extremely low solubility of lead salts by using naturally occurring 210Pb as a radioactive tracer. As various radioactive nuclides became artificially available, this technique has been widely employed in studies of chemical equilibrium and reactions as well as in chemical analysis. It is also an essential technique in biochemical, biological, medical, geological, and environmental studies. Medical diagnosis and industrial process control are the fields of its most important practical application. In this chapter, fundamental ideas concerning radioactive tracers will be described followed by their application with typical examples. Detailed description on their application to life sciences and medicine is given in Vol. 4.

  4. Isotopic tracer studies of Fischer-Tropsch Synthesis over Ru/TiO sub 2 catalysts

    SciTech Connect

    Krishna, K.R.

    1992-01-01

    Fischer-Tropsch synthesis is a process in which CO and H{sub 2} react to give predominantly liquid hydrocarbons. The reaction can be considered a special type of polymerization in which the monomer is produced in situ, and chain growth occurs by a sequence of independently repeated additions of the monomer to the growing chain. A investigation has been conducted to study the CO hydrogenation reaction in order to better understand catalyst deactivation and the elementary surface processes involved in chain growth. Isotopic tracers are used in conjunction with transient-response techniques in this study of Fischer-Tropsch synthesis over Ru/TiO{sub 2} catalysts. Experiments are conducted at a total pressure of 1 atmosphere, reaction temperatures of 453--498 K and D{sub 2}/CO (or H{sub 2}/CO) ratios of 2--5. Synthesis products are analyzed by gas chromatography or isotope-ratio gas chromatography-mass spectrometry. Rate constants for chain initiation, propagation and termination are evaluated under steady-state reaction conditions by using transients in isotopic composition. The activation energy for chain termination is much higher than that for propagation, accounting for the observed decrease in the chain growth parameter are also estimated. Coverages by reaction intermediates are also estimated. When small amounts of {sup 12}C-labelled ethylene are added to {sup 13}CO/H{sub 2} synthesis gas, ethylene acts as the sole chain initiator. Ethylene-derived carbon also accounts for 45% of the C{sub 1} monomer pool. 102 refs., 29 figs., 11 tabs.

  5. Isotopic tracer studies of Fischer-Tropsch Synthesis over Ru/TiO{sub 2} catalysts

    SciTech Connect

    Krishna, K.R.

    1992-01-01

    Fischer-Tropsch synthesis is a process in which CO and H{sub 2} react to give predominantly liquid hydrocarbons. The reaction can be considered a special type of polymerization in which the monomer is produced in situ, and chain growth occurs by a sequence of independently repeated additions of the monomer to the growing chain. A investigation has been conducted to study the CO hydrogenation reaction in order to better understand catalyst deactivation and the elementary surface processes involved in chain growth. Isotopic tracers are used in conjunction with transient-response techniques in this study of Fischer-Tropsch synthesis over Ru/TiO{sub 2} catalysts. Experiments are conducted at a total pressure of 1 atmosphere, reaction temperatures of 453--498 K and D{sub 2}/CO (or H{sub 2}/CO) ratios of 2--5. Synthesis products are analyzed by gas chromatography or isotope-ratio gas chromatography-mass spectrometry. Rate constants for chain initiation, propagation and termination are evaluated under steady-state reaction conditions by using transients in isotopic composition. The activation energy for chain termination is much higher than that for propagation, accounting for the observed decrease in the chain growth parameter are also estimated. Coverages by reaction intermediates are also estimated. When small amounts of {sup 12}C-labelled ethylene are added to {sup 13}CO/H{sub 2} synthesis gas, ethylene acts as the sole chain initiator. Ethylene-derived carbon also accounts for 45% of the C{sub 1} monomer pool. 102 refs., 29 figs., 11 tabs.

  6. Engineering task plan for determining breathing rates in singleshell tanks using tracer gas

    SciTech Connect

    Andersen, J.A.

    1997-04-02

    The testing of single shell tanks to determine breathing rates. Inert tracer gases helium, and sulfur hexafluoride will be injected into the tanks AX-103, BY-105, C-107 and U-103. Periodic samples will be taken over a three month interval to determine actual headspace breathing rates.

  7. Simultaneous measurement of ventilation using tracer gas techniques and VOC concentrations in homes, garages and vehicles.

    PubMed

    Batterman, Stuart; Jia, Chunrong; Hatzivasilis, Gina; Godwin, Chris

    2006-02-01

    Air exchange rates and interzonal flows are critical ventilation parameters that affect thermal comfort, air migration, and contaminant exposure in buildings and other environments. This paper presents the development of an updated approach to measure these parameters using perfluorocarbon tracer (PFT) gases, the constant injection rate method, and adsorbent-based sampling of PFT concentrations. The design of miniature PFT sources using hexafluorotoluene and octafluorobenzene tracers, and the development and validation of an analytical GC/MS method for these tracers are described. We show that simultaneous deployment of sources and passive samplers, which is logistically advantageous, will not cause significant errors over multiday measurement periods in building, or over shorter periods in rapidly ventilated spaces like vehicle cabins. Measurement of the tracers over periods of hours to a week may be accomplished using active or passive samplers, and low method detection limits (<0.025 microg m(-3)) and high precisions (<10%) are easily achieved. The method obtains the effective air exchange rate (AER), which is relevant to characterizing long-term exposures, especially when ventilation rates are time-varying. In addition to measuring the PFT tracers, concentrations of other volatile organic compounds (VOCs) are simultaneously determined. Pilot tests in three environments (residence, garage, and vehicle cabin) demonstrate the utility of the method. The 4 day effective AER in the house was 0.20 h(-1), the 4 day AER in the attached garage was 0.80 h(-1), and 16% of the ventilation in the house migrated from the garage. The 5 h AER in a vehicle traveling at 100 km h(-1) under a low-to-medium vent condition was 92 h(-1), and this represents the highest speed test found in the literature. The method is attractive in that it simultaneously determines AERs, interzonal flows, and VOC concentrations over long and representative test periods. These measurements are

  8. Results of Chemical Analyses for Alcove 8/Niche 3 Tracer Studies

    SciTech Connect

    Daniels, Jeanette

    2006-02-23

    This is the final report detailing the analyses performed under ORD-FY04-011 "Chemical Analyses for Alcove 8/Niche 3 Tracer Studies." The work was performed under the University and Community College System of Nevada (UCCSN) and the Department of Energy (DOE) Cooperative Agreement Number DE-FC28-04RW12232. This task provided method development and analytical support for the Alcove 8/Niche 3 Tracer Studies in the Exploratory Studies Facility (ESF). Concentrations of tracers, as well as major anions and cations, were reported for samples provided by Lawrence Berkeley National Laboratory (LBNL) and the US Geological Survey (USGS). Samples were analyzed using High Performance Liquid Chromatography (HPLC) and Ion Chromatography (IC). Samples were analyzed and controlled according to Implementing Procedures (IP's) written and approved in accordance with the Office of Civilian Radioactive Waste Management (OCRWM) approved Nevada System of Higher Education (NSHE) Quality Assurance Program.

  9. Study of stability zone influences and tracer patterns from the 1987 ANATEX (Across North America Tracer Experiment) experiment

    SciTech Connect

    Porch, W.M.; Gifford, F.A.; Hoard, D.E.

    1988-01-01

    In this paper, we will show preliminary results which appear to connect much of the hit and miss behavior of the surface tracer samples to large scale stability zones 100 to 1000 km wide. With these wintertime stability effects in mind, we have done the best we can to characterize the observed overall tracer patterns as well as individual tracer releases. This type of survey information is important to numerical model development. Diagnostic models often have difficulty reproducing surface plume concentrations where transport over stable layers have occurred. Prognostic models can, in theory, model effects of strong stable layers. However, these models would have great difficulty predicting large scale stable regions such as those observed during ANATEX. Also, though these models have ways of budging in synoptic wind fields, temperature observations are presently ignored. This is because if both wind and temperature observations are forced too strongly into the model, conflicting results may be produced. 12 refs., 5 figs.

  10. An evaluation of the estimation of road traffic emission factors from tracer studies

    NASA Astrophysics Data System (ADS)

    Belalcazar, Luis Carlos; Clappier, Alain; Blond, Nadège; Flassak, Thomas; Eichhorn, Joachim

    2010-10-01

    Road traffic emission factors (EFs) are one of the main sources of uncertainties in emission inventories; it is necessary to develop methods to reduce these uncertainties to manage air quality more efficiently. Recently an alternative method has been proposed to estimate the EFs. In that work the emission factors were estimated from a long term tracer study developed in Ho Chi Minh City (HCMC) Vietnam. A passive tracer was continuously emitted from a finite line source placed in one side of an urban street canyon. Simultaneously, the resulting tracer concentrations were monitored at the other side of the street. The results of this experiment were used to calculate the dispersion factors and afterwards, these dispersion factors were used to estimate the EFs. In this paper we use the Computational Fluids Dynamics (CFD) model WinMISKAM to critically evaluate the proposed methodology. In a first step, we use the results of the tracer study to validate the CFD model. Results show that the model is able to simulate quite well the tracer dispersion in most of the cases. The model is then used to evaluate the effect of varying the source configuration and to correct the EFs. A comparison with available studies shows that the corrected EFs are within the range of the EFs reported in other studies. Finally, the CFD model is used to find a source configuration that better represents the vehicle emissions and that may be used in future studies to estimate the EFs more accurately. Results show that a 200 m line placed in the center of the street would represent very well the vehicle emissions. This work shows that it is possible to accurately estimate the EFs from tracer studies.

  11. Identification and characterization of conservative organic tracers for use as hydrologic tracers for the Yucca Mountain Site Characterization Study. Progress report, July 1, 1994--September 30, 1994

    SciTech Connect

    Stetzenbach, K.

    1994-12-01

    The work performed during this quarter consists of the continuation of the batch studies for the fluorinated benzoic acids and the evaluation of LC/MS for the analysis of these potential tracers. Column studies for these compounds have also been initiated.

  12. Detection of hydrogen fluoride absorption in diffuse molecular clouds with Herschel/HIFI: an ubiquitous tracer of molecular gas

    NASA Astrophysics Data System (ADS)

    Sonnentrucker, P.; Neufeld, D. A.; Phillips, T. G.; Gerin, M.; Lis, D. C.; de Luca, M.; Goicoechea, J. R.; Black, J. H.; Bell, T. A.; Boulanger, F.; Cernicharo, J.; Coutens, A.; Dartois, E.; Kaźmierczak, M.; Encrenaz, P.; Falgarone, E.; Geballe, T. R.; Giesen, T.; Godard, B.; Goldsmith, P. F.; Gry, C.; Gupta, H.; Hennebelle, P.; Herbst, E.; Hily-Blant, P.; Joblin, C.; Kołos, R.; Krełowski, J.; Martín-Pintado, J.; Menten, K. M.; Monje, R.; Mookerjea, B.; Pearson, J.; Perault, M.; Persson, C. M.; Plume, R.; Salez, M.; Schlemmer, S.; Schmidt, M.; Stutzki, J.; Teyssier, D.; Vastel, C.; Yu, S.; Caux, E.; Güsten, R.; Hatch, W. A.; Klein, T.; Mehdi, I.; Morris, P.; Ward, J. S.

    2010-10-01

    We discuss the detection of absorption by interstellar hydrogen fluoride (HF) along the sight line to the submillimeter continuum sources W49N and W51. We have used Herschel's HIFI instrument in dual beam switch mode to observe the 1232.4762 GHz J = 1-0 HF transition in the upper sideband of the band 5a receiver. We detected foreground absorption by HF toward both sources over a wide range of velocities. Optically thin absorption components were detected on both sight lines, allowing us to measure - as opposed to obtain a lower limit on - the column density of HF for the first time. As in previous observations of HF toward the source G10.6-0.4, the derived HF column density is typically comparable to that of water vapor, even though the elemental abundance of oxygen is greater than that of fluorine by four orders of magnitude. We used the rather uncertain N(CH)-N(H2) relationship derived previously toward diffuse molecular clouds to infer the molecular hydrogen column density in the clouds exhibiting HF absorption. Within the uncertainties, we find that the abundance of HF with respect to H2 is consistent with the theoretical prediction that HF is the main reservoir of gas-phase fluorine for these clouds. Thus, hydrogen fluoride has the potential to become an excellent tracer of molecular hydrogen, and provides a sensitive probe of clouds of small H2 column density. Indeed, the observations of hydrogen fluoride reported here reveal the presence of a low column density diffuse molecular cloud along the W51 sight line, at an LSR velocity of ~24 km s-1, that had not been identified in molecular absorption line studies prior to the launch of Herschel. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.

  13. Using noble gas tracers to estimate residual CO2 saturation in the field: results from the CO2CRC Otway residual saturation and dissolution test

    NASA Astrophysics Data System (ADS)

    LaForce, T.; Ennis-King, J.; Paterson, L.

    2013-12-01

    Residual CO2 saturation is a critically important parameter in CO2 storage as it can have a large impact on the available secure storage volume and post-injection CO2 migration. A suite of single-well tests to measure residual trapping was conducted at the Otway test site in Victoria, Australia during 2011. One or more of these tests could be conducted at a prospective CO2 storage site before large-scale injection. The test involved injection of 150 tonnes of pure carbon dioxide followed by 454 tonnes of CO2-saturated formation water to drive the carbon dioxide to residual saturation. This work presents a brief overview of the full test sequence, followed by the analysis and interpretation of the tests using noble gas tracers. Prior to CO2 injection krypton (Kr) and xenon (Xe) tracers were injected and back-produced to characterise the aquifer under single-phase conditions. After CO2 had been driven to residual the two tracers were injected and produced again. The noble gases act as non-partitioning aqueous-phase tracers in the undisturbed aquifer and as partitioning tracers in the presence of residual CO2. To estimate residual saturation from the tracer test data a one-dimensional radial model of the near-well region is used. In the model there are only two independent parameters: the apparent dispersivity of each tracer and the residual CO2 saturation. Independent analysis of the Kr and Xe tracer production curves gives the same estimate of residual saturation to within the accuracy of the method. Furthermore the residual from the noble gas tracer tests is consistent with other measurements in the sequence of tests.

  14. Is atomic carbon a good tracer of molecular gas in metal-poor galaxies?

    NASA Astrophysics Data System (ADS)

    Glover, Simon C. O.; Clark, Paul C.

    2016-03-01

    Carbon monoxide (CO) is widely used as a tracer of molecular hydrogen (H2) in metal-rich galaxies, but is known to become ineffective in low-metallicity dwarf galaxies. Atomic carbon has been suggested as a superior tracer of H2 in these metal-poor systems, but its suitability remains unproven. To help us to assess how well atomic carbon traces H2 at low metallicity, we have performed a series of numerical simulations of turbulent molecular clouds that cover a wide range of different metallicities. Our simulations demonstrate that in star-forming clouds, the conversion factor between [C I] emission and H2 mass, XCI, scales approximately as XCI ∝ Z-1. We recover a similar scaling for the CO-to-H2 conversion factor, XCO, but find that at this point in the evolution of the clouds, XCO is consistently smaller than XCI, by a factor of a few or more. We have also examined how XCI and XCO evolve with time. We find that XCI does not vary strongly with time, demonstrating that atomic carbon remains a good tracer of H2 in metal-poor systems even at times significantly before the onset of star formation. On the other hand, XCO varies very strongly with time in metal-poor clouds, showing that CO does not trace H2 well in starless clouds at low metallicity.

  15. Uncertainties in Air Exchange using Continuous-Injection, Long-Term Sampling Tracer-Gas Methods

    SciTech Connect

    Sherman, Max H.; Walker, Iain S.; Lunden, Melissa M.

    2013-12-01

    The PerFluorocarbon Tracer (PFT) method is a low-cost approach commonly used for measuring air exchange in buildings using tracer gases. It is a specific application of the more general Continuous-Injection, Long-Term Sampling (CILTS) method. The technique is widely used but there has been little work on understanding the uncertainties (both precision and bias) associated with its use, particularly given that it is typically deployed by untrained or lightly trained people to minimize experimental costs. In this article we will conduct a first-principles error analysis to estimate the uncertainties and then compare that analysis to CILTS measurements that were over-sampled, through the use of multiple tracers and emitter and sampler distribution patterns, in three houses. We find that the CILTS method can have an overall uncertainty of 10-15percent in ideal circumstances, but that even in highly controlled field experiments done by trained experimenters expected uncertainties are about 20percent. In addition, there are many field conditions (such as open windows) where CILTS is not likely to provide any quantitative data. Even avoiding the worst situations of assumption violations CILTS should be considered as having a something like a ?factor of two? uncertainty for the broad field trials that it is typically used in. We provide guidance on how to deploy CILTS and design the experiment to minimize uncertainties.

  16. Perturbative path-integral study of active- and passive-tracer diffusion in fluctuating fields

    NASA Astrophysics Data System (ADS)

    Démery, Vincent; Dean, David S.

    2011-07-01

    We study the effective diffusion constant of a Brownian particle linearly coupled to a thermally fluctuating scalar field. We use a path-integral method to compute the effective diffusion coefficient perturbatively to lowest order in the coupling constant. This method can be applied to cases where the field is affected by the particle (an active tracer) and cases where the tracer is passive. Our results are applicable to a wide range of physical problems, from a protein diffusing in a membrane to the dispersion of a passive tracer in a random potential. In the case of passive diffusion in a scalar field, we show that the coupling to the field can, in some cases, speed up the diffusion corresponding to a form of stochastic resonance. Our results on passive diffusion are also confirmed via a perturbative calculation of the probability density function of the particle in a Fokker-Planck formulation of the problem. Numerical simulations on simplified systems corroborate our results.

  17. The use of Na-22 as a tracer for long-term bone mineral turnover studies.

    NASA Technical Reports Server (NTRS)

    Palmer, H. E.; Rieksts, G. A.; Palmer, R. F.; Gillis, M. F.

    1979-01-01

    Sodium-22 has been studied as a tracer for bone mineral metabolism in rats and dogs. When incorporated into bone during growth from birth to adulthood, the bone becomes uniformly tagged with Na-22, which is released through the metabolic turnover of the bone. The Na-22 not incorporated in the bone matrix is rapidly excreted within a few days when animals are fed high, but nontoxic levels of NaCl. The Na-22 tracer can be used to measure bone mineral loss in animals during space flight and in research on bone disease.

  18. Identification and characterization of conservative organic tracers for use as hydrologic tracers for the Yucca Mountain site characterization study. Progress report, October 1, 1994--December 31, 1994

    SciTech Connect

    Stetzenbach, K.; Farnham, I.

    1994-12-31

    The bromide anion has been used extensively as a tracer for mapping the flow of groundwater. It has proven to be both a safe and reliable groundwater tracer. The goal in this study is to find several tracing compounds with characteristics similar to the bromide anion to be used in multiple well tracing tests. Four groups of fluorinated organic acids were selected as candidates for groundwater tracers. These groups include fluorinated benzoic acids (FBA), fluorinated salicylic acids (FSA), fluorinated toluic acids (FTA), and fluorinated cinnamic acids (FCA). These compounds have been shown to move readily with the flow of water and do not adsorb to soil. They are also non-toxic. In this study, the retention of the fluorinated organic acids on to a soil column is compared to that of the bromide ion. The time required for the elution of each analyte from the soil column is measured using a UV-Vis detector. The soils consist of the light, medium, and dark tuffs used in the batch study. The work performed during this quarter consists of the continuation of the batch studies for the fluorinated benzoic acids and column studies for several potential tracer compounds.

  19. Effects of submesoscale turbulence on ocean tracers

    NASA Astrophysics Data System (ADS)

    Smith, Katherine M.; Hamlington, Peter E.; Fox-Kemper, Baylor

    2016-01-01

    Ocean tracers such as carbon dioxide, nutrients, plankton, and oil advect, diffuse, and react primarily in the oceanic mixed layer where air-sea gas exchange occurs and light is plentiful for photosynthesis. There can be substantial heterogeneity in the spatial distributions of these tracers due to turbulent stirring, particularly in the submesoscale range where partly geostrophic fronts and eddies and small-scale three-dimensional turbulence are simultaneously active. In this study, a large eddy simulation spanning horizontal scales from 20 km down to 5 m is used to examine the effects of multiscale turbulent mixing on nonreactive passive ocean tracers from interior and sea-surface sources. The simulation includes the effects of both wave-driven Langmuir turbulence and submesoscale eddies, and tracers with different initial and boundary conditions are examined in order to understand the respective impacts of small-scale and submesoscale motions on tracer transport. Tracer properties are characterized using spatial fields and statistics, multiscale fluxes, and spectra, and the results detail how tracer mixing depends on air-sea tracer flux rate, tracer release depth, and flow regime. Although vertical fluxes of buoyancy by submesoscale eddies compete with mixing by Langmuir turbulence, vertical fluxes of tracers are often dominated by Langmuir turbulence, particularly for tracers that are released near the mixed-layer base or that dissolve rapidly through the surface, even in regions with pronounced submesoscale activity. Early in the evolution of some tracers, negative eddy diffusivities occur co-located with regions of negative potential vorticity, suggesting that symmetric instabilities or other submesoscale phenomenon may act to oppose turbulent mixing.

  20. Insights into secondary organic aerosol formation mechanisms from measured gas/particle partitioning of specific organic tracer compounds.

    PubMed

    Zhao, Yunliang; Kreisberg, Nathan M; Worton, David R; Isaacman, Gabriel; Weber, Robin J; Liu, Shang; Day, Douglas A; Russell, Lynn M; Markovic, Milos Z; VandenBoer, Trevor C; Murphy, Jennifer G; Hering, Susanne V; Goldstein, Allen H

    2013-04-16

    In situ measurements of organic compounds in both gas and particle phases were made with a thermal desorption aerosol gas chromatography (TAG) instrument. The gas/particle partitioning of phthalic acid, pinonaldehyde, and 6,10,14-trimethyl-2-pentadecanone is discussed in detail to explore secondary organic aerosol (SOA) formation mechanisms. Measured fractions in the particle phase (f(part)) of 6,10,14-trimethyl-2-pentadecanone were similar to those expected from the absorptive gas/particle partitioning theory, suggesting that its partitioning is dominated by absorption processes. However, f(part) of phthalic acid and pinonaldehyde were substantially higher than predicted. The formation of low-volatility products from reactions of phthalic acid with ammonia is proposed as one possible mechanism to explain the high f(part) of phthalic acid. The observations of particle-phase pinonaldehyde when inorganic acids were fully neutralized indicate that inorganic acids are not required for the occurrence of reactive uptake of pinonaldehyde on particles. The observed relationship between f(part) of pinonaldehyde and relative humidity suggests that the aerosol water plays a significant role in the formation of particle-phase pinonaldehyde. Our results clearly show it is necessary to include multiple gas/particle partitioning pathways in models to predict SOA and multiple SOA tracers in source apportionment models to reconstruct SOA. PMID:23448102

  1. In vitro study of PET tumor tracers at normal and elevated media glucose levels

    SciTech Connect

    Torizuka, T.; Clavo, A.C.; Wahl, R.L.

    1996-05-01

    FDG uptake in tumors is decreased by hyperglycemia. Little is known about the effect of hyperglycemia on non-FDG PET tracer uptake in tumors. This study was designed to determine if PET tumor tracers are affected by chronic exposure of tumor cells to high media glucose levels. Human ovarian adenocarcinoma (HTB77IP3) cells normally grown at 100 mg/dl of glucose were grown in media with 100 or 300 mg/dl of glucose. At 20, 26 and 38 days after initial culture (6-7 days after subculture), uptakes of 3H-labeled FDG, Thymidine (Thy), Methionine (Met) and Leucine (Leu) into the cells (n=4) were determined at the same glucose level as growth media. Tracer uptake per 1 million cells was measured after a 60 min uptake period. Presented are percentage of tracer uptake of cells grown at 300 mg/dl of glucose relative to uptake of cells grown at 100 mg/dl of glucose (mean {plus_minus} SD of 20, 26, and 38 days culture). Paired t-tests were used to compare tracer uptake of cells grown and assayed at both glucose levels. P values <0.05 were considered significant. FDG uptake of cells grown and assayed at 300 mg/dl of glucose was significantly decreased, compared with uptake of cells grown and assayed at 100 mg/dl of glucose. By contrast, uptake of Thy, Met and Leu were not different between cells grown and assayed at 100 or 300 mg/dl of glucose. These results indicate that tumor uptake of Thy, Met and Leu do not depend on media glucose level and suggest that these tracers labeled with C-11 are suitable for hyperglycemic patients, in whom tumor FDG uptake is expected to be impaired.

  2. Evaluation of short-term tracer fluctuations in groundwater and soil air in a two year study

    NASA Astrophysics Data System (ADS)

    Jenner, Florian; Mayer, Simon; Aeschbach, Werner; Weissbach, Therese

    2016-04-01

    The application of gas tracers like noble gases (NGs), SF6 or CFCs in groundwater studies such as paleo temperature determination requires a detailed understanding of the dynamics of reactive and inert gases in the soil air with which the infiltrating water equilibrates. Due to microbial gas consumption and production, NG partial pressures in soil air can deviate from atmospheric air, an effect that could bias noble gas temperatures estimates if not taken into account. So far, such an impact on NG contents in groundwater has not been directly demonstrated. We provide the first long-term study of the above mentioned gas tracers and physical parameters in both the saturated and unsaturated soil zone, sampled continuously for more than two years near Mannheim (Germany). NG partial pressures in soil air correlate with soil moisture and the sum value of O2+CO2, with a maximal significant enhancement of 3-6% with respect to atmospheric air during summer time. Observed seasonal fluctuations result in a mass dependent fractionation of NGs in soil air. Concentrations of SF6 and CFCs in soil air are determined by corresponding fluctuations in local atmospheric air, caused by industrial emissions. Arising concentration peaks are damped with increasing soil depth. Shallow groundwater shows short-term NG fluctuations which are smoothed within a few meters below the water table. A correlation between NG contents of soil air and of groundwater is observable during strong recharge events. However, there is no evidence for a permanent influence of seasonal variations of soil air composition on shallow groundwater. Fluctuating NG contents in shallow groundwater are rather determined by variations of soil temperature and water table level. Our data gives evidence for a further temperature driven equilibration of groundwater with entrapped air bubbles within the topmost saturated zone, which permanently occurs even some years after recharge. Local subsurface temperature fluctuations

  3. Effect of tidal phase on solute flushing from a strait: SF6 tracer study in the East River, New York

    NASA Astrophysics Data System (ADS)

    Caplow, T.; Schlosser, P.; Ho, D. T.

    2003-12-01

    Flow in the East River, a 25 km tidal strait connecting Long Island Sound with New York Harbor, is driven by a tidal phase lag between the two ends of the strait. The direction and rate of solutes transported in the strait, including natural materials as well as anthropogenic contaminants, has important implications for the environmental management of Long Island Sound and other fragile local ecosystems. Sulfur hexafluoride (SF6) is a successful deliberate tracer for rivers, estuaries, and coastal areas. It is non-reactive, inexpensive, and offers an extremely low detection limit. High-resolution transport studies of complex coastal and estuarine areas up to 100 km2, and lasting up to two weeks, have recently been achieved using a boat-mounted SF6 measurement system with a sampling interval of 1 min and a detection limit of 1 x 10-14 mol L-1. In June 2003, two injections of 6.2 mol sulfur hexafluoride (SF6) were made 8 days apart in the East River to study residual circulation and rates of solute dissipation at different states of the tide. Both injections were made at the same location, but the first injection occurred at the slack before flood (northward flow), and the second injection occurred at the slack before ebb (southward flow). Tidally synchronized surveys of the SF6 tracer patch were made by boat for 7 days following the flood injection and for 5 days following the ebb injection. For the flood and ebb injections, respectively, mean displacement of the center of tracer mass within the East River, a proxy for residual circulation, was northward at 0.31 +/- 0.35 and 1.5 +/- 1.0 km day-1, mean fractional tracer loss due to tidal flushing was 0.32 +/- 0.06 day-1 and 0.52 +/- 0.10 day-1, and mean residence time was 2.6 +/- 0.4 days and 1.3 +/- 0.6 days. These tracer loss rates include a small correction for air-water gas exchange, which was estimated by a combination of previously established relationships between gas transfer velocity and wind speeds, river

  4. Discovery of Phosphodiesterase 10A (PDE10A) PET Tracer AMG 580 to Support Clinical Studies.

    PubMed

    Hu, Essa; Chen, Ning; Kunz, Roxanne K; Hwang, Dah-Ren; Michelsen, Klaus; Davis, Carl; Ma, Ji; Shi, Jianxia; Lester-Zeiner, Dianna; Hungate, Randall; Treanor, James; Chen, Hang; Allen, Jennifer R

    2016-07-14

    We report the discovery of PDE10A PET tracer AMG 580 developed to support proof of concept studies with PDE10A inhibitors in the clinic. To find a tracer with higher binding potential (BPND) in NHP than our previously reported tracer 1, we implemented a surface plasmon resonance assay to measure the binding off-rate to identify candidates with slower washout rate in vivo. Five candidates (2-6) from two structurally distinct scaffolds were identified that possessed both the in vitro characteristics that would favor central penetration and the structural features necessary for PET isotope radiolabeling. Two cinnolines (2, 3) and one keto-benzimidazole (5) exhibited PDE10A target specificity and brain uptake comparable to or better than 1 in the in vivo LC-MS/MS kinetics distribution study in SD rats. In NHP PET imaging study, [(18)F]-5 produced a significantly improved BPND of 3.1 and was nominated as PDE10A PET tracer clinical candidate for further studies. PMID:27437084

  5. USING CONTINUOUS MONITORS FOR CONDUCTING TRACER STUDIES IN WATER DISTRIBUTION SYSTEMS

    EPA Science Inventory

    The use of online monitors for conducting a distribution system tracer study is proving to be an essential tool to accurately understand the flow dynamics in a distribution system. In a series of field testing sponsored by U. S. Environmental Protection Agency (EPA) and Greater ...

  6. Integrating retrieved cloud information with model simulation to extend usability of tracer gas retrievals.

    NASA Astrophysics Data System (ADS)

    Tan, Q.; Prinn, R.

    2007-12-01

    We have explored the possibility of using retrieved cloud information to extend the usability of trace gas concentration retrievals from satellites, since choosing only cloud-free retrievals might lead to a bias in their source-sink estimates using inverse modeling, i.e. the geographic locations of cloud-free or cloudy regions and trace gas source or sink regions might be correlated. We used methane retrievals (IMAP) and cloud retrievals (FRESCO) from SCIAMACHY as an example for this study, and assumed agreement between 3D model simulations (MATCH) and cloud-free satellite retrievals as a proxy for defining usability of satellite data. We found that when the pixel is very cloudy (f>0.7), the model simulation, which is integrated with retrieved cloud top height and cloud fraction data, yields similar agreement with observations as obtained with cloud-free pixels (f=0). The addition of cloudy pixel data significantly extends the spatial and temporal coverage of methane retrievals that can be used in source and sink studies. We also tried to overlay the MODIS aerosol retrievals with SCIAMACHY methane data to test the impact of aerosols on trace gas retrievals. Since these two retrievals are somewhat orthogonal, i.e. stronger MODIS aerosol signals over the ocean, and stronger SCIAMACHY methane signals over the land, we have not found a significant correlation between these two retrievals. Other possible reasons for this result could be the different passing times of the two satellites and the wave length differences of the two retrievals.

  7. Numerical Simulations and Tracer Studies as a Tool to Support Water Circulation Modeling in Breeding Reservoirs

    NASA Astrophysics Data System (ADS)

    Zima, Piotr

    2014-12-01

    The article presents a proposal of a method for computer-aided design and analysis of breeding reservoirs in zoos and aquariums. The method applied involves the use of computer simulations of water circulation in breeding pools. A mathematical model of a pool was developed, and a tracer study was carried out. A simplified model of two-dimensional flow in the form of a biharmonic equation for the stream function (converted into components of the velocity vector) was adopted to describe the flow field. This equation, supplemented by appropriate boundary conditions, was solved numerically by the finite difference method. Next, a tracer migration equation was solved, which was a two-dimensional advection-dispersion equation describing the unsteady transport of a non-active, permanent solute. In order to obtain a proper solution, a tracer study (with rhodamine WT as a tracer) was conducted in situ. The results of these measurements were compared with numerical solutions obtained. The results of numerical simulations made it possible to reconstruct water circulation in the breading pool and to identify still water zones, where water circulation was impeded.

  8. Isotope pattern deconvolution as rising tool for isotope tracer studies in environmental research

    NASA Astrophysics Data System (ADS)

    Irrgeher, Johanna; Zitek, Andreas; Prohaska, Thomas

    2014-05-01

    During the last decade stable isotope tracers have emerged as versatile tool in ecological research. Besides 'intrinsic' isotope tracers caused by the natural variation of isotopes, the intentional introduction of 'extrinsic' enriched stable isotope tracers into biological systems has gained significant interest. Hereby the induced change in the natural isotopic composition of an element allows amongst others for studying the fate and fluxes of metals, trace elements and species in organisms or provides an intrinsic marker or tag of particular biological samples. Due to the shoreless potential of this methodology, the number of publications dealing with applications of isotope (double) spikes as tracers to address research questions in 'real world systems' is constantly increasing. However, some isotope systems like the natural Sr isotopic system, although potentially very powerful for this type of application, are still rarely used, mainly because their adequate measurement/determination poses major analytical challenges; as e.g. Sr is available in significant amounts in natural samples. In addition, biological systems underlie complex processes such as metabolism, adsorption/desorption or oxidation/reduction. As a consequence, classic evaluation approaches such as the isotope dilution mass spectrometry equation are often not applicable because of the unknown amount of tracer finally present in the sample. Isotope pattern deconvolution (IPD), based on multiple linear regression, serves as simplified alternative data processing strategy to double spike isotope dilution calculations. The outstanding advantage of this mathematical tool lies in the possibility of deconvolving the isotope pattern in a spiked sample without knowing the quantities of enriched isotope tracer being incorporated into the natural sample matrix as well as the degree of impurities and species-interconversion (e.g. from sample preparation). Here, the potential of IPD for environmental tracer

  9. Comparison of the perfluorocarbon and tracer gas decay methods for assessing infiltration rates in residents

    SciTech Connect

    Schaap, L.; Leaderer, B.P.; Renes, S.; Verstraelen, H.; Tosun, T.; Dietz, R.N.

    1985-01-01

    The passive perfluorocarbon tracer (PFT) technique for determining air infiltration rates into homes and buildings was evaluated in an environmental chamber. The impact of sampler orientation at a constant ventilation rate and a constant temperature, of variable ventilation rate at a constant temperature, and of variable temperature at a constant ventilation rate were evaluated. The average relative standard deviation of 16 paired samplers deployed in experiment 1 was +- 1.9% +- 1.0% indicating good reproducibility of the passive sampling rate and sample analysis. No impact of sampler orientation with respect to low air velocities (<0.2 m/s) present in houses is expected. The passive samplers accurately measured the average tracer concentration as compared with calculations based on the known source strength (CO/sub 2/ decays) and the measured ventilation rate under conditions of a 3-fold variation in ventilation rates (experiment 2). Temperature cycling differences of 8/sup 0/C (experiment 3) did not produce a bias in the PFT determined ventilation rate. The PFT technique is applicable to the expected range of condition in homes and buildings. 3 refs., 1 fig., 1 tab.

  10. Tracer-based quantification of individual frac discharge in single-well multiple-frac backflow: sensitivity study

    NASA Astrophysics Data System (ADS)

    Ghergut, Julia; Behrens, Horst; Sauter, Martin

    2014-05-01

    Within the deep-geothermal research project at GroßSchönebeck in the NE German Basin, targeting volcanic rocks (Lower Rotliegend) and siliciclastics (Upper Rotliegend) in the Lower Permian by means of a well doublet with several screening intervals between 3815 and 4247 m b.s.l., several artificial fractures with different geometric and hydraulic characteristics were created at each well, aiming to increase reservoir performance [1], [2]. It could not be told a priori which of the various fracturing treatments was to prove as most promising in terms of future reservoir productivity. At the intended-production well (GS-4), one large-area waterfrac was created in the low-permeability volcanic rocks, and two gel-proppant fractures in selected sandstone layers. Each fracturing treatment was accompanied by the injection of a water-dissolved tracer slug, followed by a defined volume of tracer-free ('chaser') fluid [3]. Each frac received a different species of a sulfonated aromatic acid salt, as a conservative water tracer. During subsequent backflow tests (either gas-based lifting, or production by means of a downhole submersible pump), each frac can contribute a certain (more or less constant) amount to the measured total discharge (also depending on whether and when each frac 'starts' contributing, and which effective aperture and area it actually 'manifests' during the process). Since these individual-frac discharge amounts cannot be measured directly, it was endeavoured to indirectly determine ('resolve') them from tracer signals as detectable in the overall backflow discharge. Therefore, we need to examine how these tracer signals depend on local discharge values and on local hydrogeologic parameters (matrix porosity, permeability distribution; frac transmissivity, thickness, effective area and aperture), and to what extent hydrogeological uncertainty will impede the inversion of local discharge values. To this end, a parameter sensitivity study was conducted on

  11. Radio-tracer techniques for the study of flow in saturated porous materials

    USGS Publications Warehouse

    Skibitzke, H.E.; Chapman, H.T.; Robinson, G.M.; McCullough, Richard A.

    1961-01-01

    An experiment was conducted by the U.S. Geological Survey to determine the feasibility of using a radioactive substance as a tracer in the study of microscopic flow in a saturated porous solid. A radioactive tracer was chosen in preference to dye or other chemical in order to eliminate effects of the tracer itself on the flow system such as those relating to density, viscosity and surface tension. The porous solid was artificial "sandstone" composed of uniform fine grains of sand bonded together with an epoxy adhesive. The sides of the block thus made were sealed with an epoxy coating compound to insure water-tightness. Because of the chemical inertness of the block it was possible to use radioactive phosphorus (P32). Ion-exchange equilibrium was created between the block and nonradioactive phosphoric acid. Then a tracer tagged with P32 was injected into the block in the desired geometric configuration, in this case, a line source. After equilibrium in isotopic exchange was reached between the block and the line source, the block was rinsed, drained and sawn into slices. It was found that a quantitative analysis of the flow system may be made by assaying the dissected block. ?? 1961.

  12. Quantification of metal loading in French Gulch, Summit County, Colorado, using a tracer-injection study, July 1996. Final report

    SciTech Connect

    Kimball, B.A.; Runkel, R.L.; Gerner, L.J.

    1999-10-01

    The objective of this report is to present a description of the complex hydrology of the French Gulch site using the tracer-injection study and the synoptic sampling. In particular, the tracer injection allows for evaluation of the effect of the hydrology on the fate and transport of the metals in French Gulch.

  13. Use of capillary gas chromatography with negative ion-chemical ionization mass spectrometry for the determination of perfluorocarbon tracers in the atmosphere.

    PubMed

    Cooke, K M; Simmonds TPG; Nickless, G; Makepeace, A P

    2001-09-01

    A sensitive and selective technique for the quantitative measurement of atmospheric perfluorocarbon trace species at the sub part per quadrillion (10(-15)) levels is presented. The method utilizes advances in adsorbent enrichment techniques coupled with benchtop capillary gas chromatography and negative ion-chemical ionization mass spectrometry. The development and enhancement of sampling technology for tracer experiments is described, and the results from background measurements and a preliminary field experiment are presented. The overall precision of the analytical method with respect to the preferred tracer for these atmospheric transport studies, perfluoromethylcyclohexane, was +/-1.7%. The background concentrations of perfluorodimethylcyclobutane, perfluoromethylcyclopentane, and perfluoromethylcyclohexane at a remote coastal location (Mace Head, Ireland, 53 degrees N, 10 degrees W) were found to be 2.5 (+/-0.4), 6.8 (+/-1.0), and 5.2 fL L(-1) (+/-1.3), respectively. Background concentrations within an urban conurbation (Bristol, U.K.) were slightly greater at 3.0 (+/-1.5), 8.1 (+/-1.8), and 6.3 fL L(-1) (+/-1.1), respectively. PMID:11569822

  14. Radon as a tracer of biogenic gas equilibration and transport from methane-saturated sediments

    NASA Technical Reports Server (NTRS)

    Martens, Christopher S.; Chanton, Jeffrey P.

    1989-01-01

    Data on Rn-222 activity in methane-rich gas bubbles from anoxic coastal sediments of Cape Lookout Bight, North Carolina, were used to determine gas equilibration with pore waters and the rates of ebullitive stripping and transport of gases to overlying waters and the atmosphere. Results showed that, during summer months, the bubble ebullition process strips and transports 1.9-4.8 percent/day of the standing crop of radon (and, by inference, other gases equilibrated with gas bubbles) in surface sediments of Cape Lookout Bight to the troposphere. Thus, the ebullitive mode of gas transport represents an effective mechanism for delivering reduced biogenic gases directly to the atmosphere.

  15. Inductively coupled plasma mass spectrometry for stable isotope metabolic tracer studies of living systems

    SciTech Connect

    Luong, E.

    1999-05-10

    This dissertation focuses on the development of methods for stable isotope metabolic tracer studies in living systems using inductively coupled plasma single and dual quadrupole mass spectrometers. Sub-nanogram per gram levels of molybdenum (Mo) from human blood plasma are isolated by the use of anion exchange alumina microcolumns. Million-fold more concentrated spectral and matrix interferences such as sodium, chloride, sulfate, phosphate, etc. in the blood constituents are removed from the analyte. The recovery of Mo from the alumina column is 82 {+-} 5% (n = 5). Isotope dilution inductively coupled plasma mass spectrometry (ID-ICP-MS) is utilized for the quantitative ultra-trace concentration determination of Mo in bovine and human blood samples. The average Mo concentration in reference bovine serum determined by this method is 10.2 {+-} 0.4 ng/g, while the certified value is 11.5 {+-} 1.1 ng/g (95% confidence interval). The Mo concentration of one pool of human blood plasma from two healthy male donors is 0.5 {+-} 0.1 ng/g. The inductively coupled plasma twin quadrupole mass spectrometer (ICP-TQMS) is used to measure the carbon isotope ratio from non-volatile organic compounds and bio-organic molecules to assess the ability as an alternative analytical method to gas chromatography combustion isotope ratio mass spectrometry (GC-combustion-IRMS). Trytophan, myoglobin, and {beta}-cyclodextrin are chosen for the study, initial observation of spectral interference of {sup 13}C{sup +} with {sup 12}C{sup 1}H{sup +} comes from the incomplete dissociation of myoglobin and/or {beta}-cyclodextrin.

  16. Sample site selection for tracer studies applying a unidirectional circulatory approach

    SciTech Connect

    Layman, D.K.; Wolfe, R.R.

    1987-08-01

    The optimal arterial or venous sites for infusion and sampling during isotopic tracer studies have not been established. This study determined the relationship of plasma and tissue enrichment (E) when isotopes were infused in an artery and sampled from a vein (av mode) or infused in a vein and sampled from an artery (va mode). Adult dogs were given primed constant infusions of (3-/sup 13/C)lactate, (1-/sup 13/C)leucine, and /sup 14/C-labeled bicarbonate. Simultaneous samples were drawn from the vena cava, aortic arch, and breath. Tissue samples were removed from skeletal muscle, liver, kidney, and gut. Breath samples were analyzed for /sup 14/CO/sub 2/ by liquid scintillation counting and plasma isotopic enrichments of (/sup 13/C)lactate, (/sup 13/C)leucine, and alpha-(/sup 13/C)ketoisocaproate (KIC) were determined by gas chromatography-mass spectrometry. By using the va mode, the plasma E for lactate and leucine were 30-40% above tissue E. The av mode provided an accurate reflection of tissue E for lactate, which equilibrates rapidly with tissues, and a reasonable estimate for leucine, which exchanges more slowly. The isotopic enrichment of plasma KIC more directly reflected tissue leucine E than did plasma leucine E, and KIC enrichment was insensitive to sampling site. We also evaluated theoretically a circulatory model that predicts venous isotopic enrichments when the va mode is used. We conclude that the av mode is optimal but that the problems arising from use of the va mode can be overcome by use of a metabolic product (i.e., KIC) or by calculation of venous specific activity with our circulatory mode.

  17. Noble gas as tracers for CO2 deep input in petroleum reservoirs

    NASA Astrophysics Data System (ADS)

    Pujol, Magali; Stuart, Finlay; Gilfillan, Stuart; Montel, François; Masini, Emmanuel

    2016-04-01

    The sub-salt hydrocarbon reservoirs in the deep offshore part of the Atlantic Ocean passive margins are a new key target for frontier oil and gas exploration. Type I source rocks locally rich in TOC (Total Organic Carbon) combined with an important secondary connected porosity of carbonate reservoirs overlain by an impermeable salt layer gives rise to reservoirs with high petroleum potential. However, some target structures have been found to be mainly filled with CO2 rich fluids. δ13C of the CO2 is generally between -9 and -4 permil, compatible with a deep source (metamorphic or mantle). Understanding the origin of the CO2 and the relative timing of its input into reservoir layers in regard to the geodynamic context appears to be a key issue for CO2 risk evaluation. The inertness and ubiquity of noble gases in crustal fluids make them powerful tools to trace the origin and migration of mixed fluids (Ballentine and Burnard 2002). The isotopic signature of He, Ne and Ar and the elemental pattern (He to Xe) of reservoir fluid from pressurized bottom hole samples provide an insight into fluid source influences at each reservoir depth. Three main end-members can be mixed into reservoir fluids (e.g. Gilfillan et al., 2008): atmospheric signature due to aquifer recharge, radiogenic component from organic fluid ± metamorphic influence, and mantle input. Their relative fractionation provides insights into the nature of fluid transport (Burnard et al., 2012)and its relative migration timing. In the studied offshore passive margin reservoirs, from both sides of South Atlantic margin, a strong MORB-like magmatic CO2 influence is clear. Hence, CO2 charge must have occurred during or after lithospheric break-up. CO2 charge(s) history appears to be complex, and in some cases requires several inputs to generate the observed noble gas pattern. Combining the knowledge obtained from noble gas (origin, relative timing, number of charges) with organic geochemical and thermodynamic

  18. Using Tracer Experiments To Study Phosphorus Transfer From Soil To Overland Flow

    NASA Astrophysics Data System (ADS)

    Vollmer, T.; Stamm, C.; Schaerer, M.; Sinaj, S.; Frossard, E.; Fluehler, H.

    Diffuse phosphorus (P) losses from agricultural land contribute to the eutrophication of surface water bodies in Switzerland. Grassland soils in areas of high animal stock densities are often prone to high P losses due to over-fertilization and a strong accumu- lation of P in the topsoil. In order to understand the effects of management practices and remediation measures on P transfer into runoff water at a small scale it is impor- tant to localize the sources of this phosphorus within the soil profile and to describe the water flows within the topsoil­overland flow system. We are studying the effects of remediation measures on P availability in the soil and on P concentrations in overland flow in a field experiment. We are using tracer exper- iments to examine the mixing behavior of water applied with a sprinkling device onto the soil surface with pre-event soil water and to trace the contribution of those two water sources to overland flow. Two plots were pre-irrigated with a solution of KBr in order to label the soil solu- tion. After a few days of equilibration, two fluorescent dyes were applied to different areas of the plots at a constant rate of 40 mm h-1. Surface runoff was analyzed for tracer concentrations. Small soil monoliths (0.35 * 0.25 *0.20 m3) were excavated and the tracer distribution within the blocks was mapped using a digital camera, optical filters, and tracer specific excitation light source. This tracing technique allowed for independent mapping of the distribution of two simultaneously applied tracers. The experiments demonstrated heterogenous infiltration of the dyes, negligible lat- eral translocation of the dyes within the soil, minimal transfer of the pre-applied Br- into overland flow, early breakthrough of the dye tracers in overland flow which was independent of the tracers sorption properties and a recovery of the dyes that corre- sponded to the runoff ratio. In all, the experiments indicate a very restricted interac- tion between

  19. Nocturnal Glucose Metabolism in Type 1 Diabetes: A Study Comparing Single Versus Dual Tracer Approaches

    PubMed Central

    Mallad, Ashwini; Hinshaw, Ling; Dalla Man, Chiara; Cobelli, Claudio; Basu, Rita; Lingineni, Ravi; Carter, Rickey E.; Kudva, Yogish C.

    2015-01-01

    Abstract Background: Understanding the effect size, variability, and underlying physiology of the dawn phenomenon is important for next-generation closed-loop control algorithms for type 1 diabetes (T1D). Subjects and Methods: We used an iterative protocol design to study 16 subjects with T1D on individualized insulin pump therapy for two successive nights. Endogenous glucose production (EGP) rates at 3 a.m. and 7 a.m. were measured with [6,6-2H2]glucose as a single tracer, infused from midnight to 7 a.m. in all subjects. To explore possibility of tracer recycling due to prolonged [6,6-2H2]glucose infusion, which was highly probable after preplanned interim data analyses, we infused a second tracer, [6-3H]glucose, from 4 a.m. to 7 a.m. in the last seven subjects to measure EGP at 7 a.m. Results: Cortisol concentrations increased during both nights, but changes in glucagon and insulin concentration were inconsistent. Although the plasma glucose concentrations rose from midnight to 7 a.m. during both nights, EGP measured with [6,6-2H2]glucose between 3 a.m. and 7 a.m. did not differ during Night 1 but fell in Night 2. However, EGP measured with [6-3H]glucose at 7 a.m. was higher than that measured with [6,6-2H2]glucose during both nights, thereby suggesting tracer recycling probably underestimating EGP calculated at 7 a.m. with [6,6-2H2]glucose. Likewise, EGP was higher at 7 a.m. with [6-3H]glucose than at 3 a.m. with [6,6-2H2]glucose during both nights. Conclusions: The data demonstrate a consistent overnight rise in glucose concentrations through increased EGP, mediated likely by rising cortisol concentrations. The observations with the dual tracer approach imply significant tracer recycling leading to underestimation of EGP measured by longer-duration tracer infusion. PMID:26121060

  20. Experimental design for estimating parameters of rate-limited mass transfer: Analysis of stream tracer studies

    USGS Publications Warehouse

    Wagner, B.J.; Harvey, J.W.

    1997-01-01

    Tracer experiments are valuable tools for analyzing the transport characteristics of streams and their interactions with shallow groundwater. The focus of this work is the design of tracer studies in high-gradient stream systems subject to advection, dispersion, groundwater inflow, and exchange between the active channel and zones in surface or subsurface water where flow is stagnant or slow moving. We present a methodology for (1) evaluating and comparing alternative stream tracer experiment designs and (2) identifying those combinations of stream transport properties that pose limitations to parameter estimation and therefore a challenge to tracer test design. The methodology uses the concept of global parameter uncertainty analysis, which couples solute transport simulation with parameter uncertainty analysis in a Monte Carlo framework. Two general conclusions resulted from this work. First, the solute injection and sampling strategy has an important effect on the reliability of transport parameter estimates. We found that constant injection with sampling through concentration rise, plateau, and fall provided considerably more reliable parameter estimates than a pulse injection across the spectrum of transport scenarios likely encountered in high-gradient streams. Second, for a given tracer test design, the uncertainties in mass transfer and storage-zone parameter estimates are strongly dependent on the experimental Damkohler number, DaI, which is a dimensionless combination of the rates of exchange between the stream and storage zones, the stream-water velocity, and the stream reach length of the experiment. Parameter uncertainties are lowest at DaI values on the order of 1.0. When DaI values are much less than 1.0 (owing to high velocity, long exchange timescale, and/or short reach length), parameter uncertainties are high because only a small amount of tracer interacts with storage zones in the reach. For the opposite conditions (DaI >> 1.0), solute exchange

  1. A new double-tracer gas single-breath washout to assess early cystic fibrosis lung disease.

    PubMed

    Singer, Florian; Stern, Georgette; Thamrin, Cindy; Abbas, Chiara; Casaulta, Carmen; Frey, Urs; Latzin, Philipp

    2013-02-01

    In cystic fibrosis (CF), tests for ventilation inhomogeneity are sensitive but not established for clinical routine. We assessed feasibility of a new double-tracer gas single-breath washout (SBW) in school-aged children with CF and control subjects, and compared SBW between groups and with multiple-breath nitrogen washout (MBNW). Three SBW and MBNW were performed in 118 children (66 with CF) using a side-stream ultrasonic flowmeter setup. The double-tracer gas containing 5% sulfur hexafluoride and 26.3% helium was applied during one tidal breath. Outcomes were SBW phase III slope (SIII(DTG)), MBNW-derived lung clearance index (LCI), and indices of acinar (S(acin)) and conductive (S(cond)) ventilation inhomogeneity. SBW took significantly less time to perform than MBNW. SBW and MBNW were feasible in 109 (92.4%) and 98 (83.0%) children, respectively. SIII(DTG) differed between children with CF and controls, mean±sd was -456.7±492.8 and -88.4±129.1 mg·mol·L(-1), respectively. Abnormal SIII(DTG) was present in 36 (59%) children with CF. SIII(DTG) was associated with LCI (r= -0.58) and S(acin) (r= -0.58), but not with S(cond). In CF, steeply sloping SIII(DTG) potentially reflects ventilation inhomogeneity near the acinus entrance. This tidal SBW is a promising test to assess ventilation inhomogeneity in an easy and fast way. PMID:22599360

  2. A Study Plan for Determining Recharge Rates at the Hanford Site Using Environmental Tracers

    SciTech Connect

    Murphy, E. M.; Szecsody, J. E.; Phillips, S. J.

    1991-02-01

    This report presents a study plan tor estimating recharge at the Hanford Site using environmental tracers. Past operations at the Hanford Site have led to both soil and groundwater contamination, and recharge is one of the primary mechanisms for transporting contaminants through the vadose zone and into the groundwater. The prediction of contaminant movement or transport is one aspect of performance assessment and an important step in the remedial investigation/feasibility study (RI/FS) process. In the past, recharge has been characterized by collecting lysimeter data. Although lysimeters can generate important and reliable data, their limitations include 1) fixed location, 2) fixed sediment contents, 3) edge effects, 4) low rates, and 5) relatively short duration of measurement. These limitations impact the ability to characterize the spatial distribution of recharge at the Hanford Site, and thus the ability to predict contaminant movement in the vadose zone. An alternative to using fixed lysimeters for determining recharge rates in the vadose zone is to use environmental tracers. Tracers that have been used to study water movement in the vadose zone include total chloride, {sup 36}CI, {sup 3}H, and {sup 2}H/{sup 18}O. Atmospheric levels of {sup 36}CI and {sup 3}H increased during nuclear bomb testing in the Pacific, and the resulting "bomb pulse" or peak concentration can be measured in the soil profile. Locally, past operations at the Hanford Site have resu~ed in the atmospheric release of numerous chemical and isotopic tracers, including nitrate, {sup 129}I, and {sup 99}Tc. The radionuclides, in particular, reached a well-defined atmospheric peak in 1945. Atmospheric releases of {sup 129}I and {sup 99}Tc were greatly reduced by mid-1946, but nitrogen oxides continued to be released from the uranium separations facilities. As a result, the nitrate concentrations probably peaked in the mid-1950s, when the greatest number of separations facilities were operating

  3. TRACER STUDIES OF TRANSPORT AND TRANSFORMATION IN CUMULI

    EPA Science Inventory

    The results from a study of the transport and transformation of pollutants are reported. irborne measurements near Champaign, llinois and Milwaukee, Wisconsin were made during the summers of 1990 and 1992. easurements of the aerosol size distribution, wind, turbulence, cloud micr...

  4. TRACER STUDY OF VERTICAL EXCHANGE BY CUMULUS CLOUDS

    EPA Science Inventory

    The exchange of material by convective cloud processes between the mixed layer and the overlying free troposphere is examined. The paper describes results of a field experiment that was conducted in Lexington, Kentucky during the period from July 20 to August 24, 1983 to study th...

  5. Estimation of bias with the single-zone assumption in measurement of residential air exchange using the perfluorocarbon tracer gas method

    PubMed Central

    Van Ryswyk, K; Wallace, L; Fugler, D; MacNeill, M; Héroux, M È; Gibson, M D; Guernsey, J R; Kindzierski, W; Wheeler, A J

    2015-01-01

    Residential air exchange rates (AERs) are vital in understanding the temporal and spatial drivers of indoor air quality (IAQ). Several methods to quantify AERs have been used in IAQ research, often with the assumption that the home is a single, well-mixed air zone. Since 2005, Health Canada has conducted IAQ studies across Canada in which AERs were measured using the perfluorocarbon tracer (PFT) gas method. Emitters and detectors of a single PFT gas were placed on the main floor to estimate a single-zone AER (AER1z). In three of these studies, a second set of emitters and detectors were deployed in the basement or second floor in approximately 10% of homes for a two-zone AER estimate (AER2z). In total, 287 daily pairs of AER2z and AER1z estimates were made from 35 homes across three cities. In 87% of the cases, AER2z was higher than AER1z. Overall, the AER1z estimates underestimated AER2z by approximately 16% (IQR: 5–32%). This underestimate occurred in all cities and seasons and varied in magnitude seasonally, between homes, and daily, indicating that when measuring residential air exchange using a single PFT gas, the assumption of a single well-mixed air zone very likely results in an under prediction of the AER. PMID:25399878

  6. National Biomedical Tracer Facility (NBTF). Project definition study: Phase I

    SciTech Connect

    Lagunas-Solar, M.C.

    1995-02-15

    This report describes a five-year plan for the construction and commissioning of a reliable and versatile NBTF facility for the production of high-quality, high-yield radioisotopes for research, biomedical, and industrial applications. The report is organized in nine sections providing, in consecutive order, responses to the nine questions posed by the U.S. Department of Energy in its solicitation for the NBTF Project Definition Study. In order to preserve direct correspondence (e.g., Sec. 3 = 3rd item), this Introduction is numbered {open_quotes}0.{close_quotes} Accelerator and facility designs are covered in Section 1 (Accelerator Design) and Section 2 (Facility Design). Preliminary estimates of capital costs are detailed in Section 3 (Design and Construction Costs). Full licensing requirements, including federal, state, and local ordinances, are discussed in Section 4 (Permits). A plan for the management of hazardous materials to be generated by NBTF is presented in Section 5 (Waste Management). An evaluation of NBTF`s economic viability and its potential market impact is detailed in Section 6(Business Plan), and is complemented by the plans in Section 7 (Operating Plan) and Section 8 (Radioisotope Plan). Finally, a plan for NBTF`s research, education, and outreach programs is presented in Section 9 (Research and Education Programs).

  7. A Mathematical Modeling Study of Tracer Mixing in a Continuous Casting Tundish

    NASA Astrophysics Data System (ADS)

    Chen, Chao; Jonsson, Lage Tord Ingemar; Tilliander, Anders; Cheng, Guoguang; Jönsson, Pär Göran

    2015-02-01

    A mathematical model based on a water model was developed to study the tracer mixing in a single strand tundish. The mixing behavior of black ink and KCl solution was simulated by a mixed composition fluid model, and the data were validated by water modeling results. In addition, a model that solves the scalar transport equation (STE) without any physical properties of the tracer was studied and the results were compared to predictions using the density-coupled model. Furthermore, the mixing behaviors of different amounts of KCl tracers were investigated. Before the model was established, KCl tracer properties such as the KCl molecule diffusion (KMD), the water molecule self-diffusion (WSD) in KCl solution, and the KCl solution viscosity (KV) were evaluated. The RTD curve of 250 mL KCl for the KMD case was closer to the water modeling results than that of the case implemented with only density. Moreover, the ensemble average deviation of the RTD curves of the cases implemented with KMD + WSD, KMD + KV, and KMD + WSD + KV to the KMD case is less than 0.7 pct. Thus, the water self-diffusion and KV were neglected, while the KCl density and KMD were implemented in the current study. The flow pattern of black ink was similar to the STE result i.e., the fluid flowed upwards toward the top surface and formed a large circulating flow at the outlet nozzle. The flow behavior of the 100, 150, and 250 mL KCl cases exhibited a strong tendency to sink to the tundish bottom, and subsequently flow through the holes in the dam. Thereafter, it propagated toward the outlet nozzle. Regarding the KCl tracer amount, the tracer concentration propagated to the outlet nozzle much faster for the larger amount case than for the smaller amount cases. However, the flow pattern for the 50 mL KCl case was somewhat different. The fluid propagated to the top surface which acted like black ink during the initial injection, and subsequently the fluid flowed throughout the holes at a much slower pace

  8. A Mathematical Modeling Study of Tracer Mixing in a Continuous Casting Tundish

    NASA Astrophysics Data System (ADS)

    Chen, Chao; Jonsson, Lage Tord Ingemar; Tilliander, Anders; Cheng, Guoguang; Jönsson, Pär Göran

    2014-09-01

    A mathematical model based on a water model was developed to study the tracer mixing in a single strand tundish. The mixing behavior of black ink and KCl solution was simulated by a mixed composition fluid model, and the data were validated by water modeling results. In addition, a model that solves the scalar transport equation (STE) without any physical properties of the tracer was studied and the results were compared to predictions using the density-coupled model. Furthermore, the mixing behaviors of different amounts of KCl tracers were investigated. Before the model was established, KCl tracer properties such as the KCl molecule diffusion (KMD), the water molecule self-diffusion (WSD) in KCl solution, and the KCl solution viscosity (KV) were evaluated. The RTD curve of 250 mL KCl for the KMD case was closer to the water modeling results than that of the case implemented with only density. Moreover, the ensemble average deviation of the RTD curves of the cases implemented with KMD + WSD, KMD + KV, and KMD + WSD + KV to the KMD case is less than 0.7 pct. Thus, the water self-diffusion and KV were neglected, while the KCl density and KMD were implemented in the current study. The flow pattern of black ink was similar to the STE result i.e., the fluid flowed upwards toward the top surface and formed a large circulating flow at the outlet nozzle. The flow behavior of the 100, 150, and 250 mL KCl cases exhibited a strong tendency to sink to the tundish bottom, and subsequently flow through the holes in the dam. Thereafter, it propagated toward the outlet nozzle. Regarding the KCl tracer amount, the tracer concentration propagated to the outlet nozzle much faster for the larger amount case than for the smaller amount cases. However, the flow pattern for the 50 mL KCl case was somewhat different. The fluid propagated to the top surface which acted like black ink during the initial injection, and subsequently the fluid flowed throughout the holes at a much slower pace

  9. Analysis of the 1987 Southern California Air Quality Study (SCAQS) sulfur hexafluoride atmospheric tracer data. Final report

    SciTech Connect

    Shair, F.H.

    1991-10-01

    Eight sets of atmospheric tracer experiment data obtained during the 1987 Southern California Air Quality Study (SCAQS) are analyzed by mass balance and qualitative agreement with surface winds gathered during the same period. The sulfur hexafluoride tracer releases done near downtown Los Angeles reveal aspects of the complexity of the atmospheric emission transport from the location. The total material release of sulfur hexafluoride can be accounted for by mass balancing. The mass balances are used to examine the residence time of the tracer in the basin. The residence time for the sulfur hexafluoride tracer released from Vernon CA is 10 hours in the summer, and exceeds 24 hours for the fall. The primary exit route of the sulfur hexafluoride tracer during the summer releases was the San Fernando Valley to the northwest of downtown. The surface-level diagnostic wind model (DWM) was made operational on a PC.

  10. Field studies of streamflow generation using natural and injected tracers on Bickford and Walker Branch Watersheds

    SciTech Connect

    Genereux, D.; Hemond, H.; Mulholland, P.

    1992-05-01

    Field studies of streamflow generation were undertaken on two forested watersheds, the West Road subcatchment of Bickford Watershed in central Massachusetts and the West Fork of Walker Branch Watershed in eastern Tennessee. A major component of the research was development of a two-stage methodology for the use of naturally-occurring {sup 222}Rn as a tracer. The first of the two stages was solving a mass-balance equation for {sup 222}Rn around a stream reach of interest in order to calculate Rn{sub q}, the {sup 222}Rn content of the lateral inflow to the reach; a conservative tracer (chloride) and a volatile tracer (propane) were injected into the study stream to account for lateral inflow to, and volatilization from, the study reach. The second stage involved quantitative comparison of Rn{sub q} to the measured {sup 222}Rn concentrations of different subsurface waters in order to assess how important these waters were in contributing lateral inflow to the stream reach.

  11. Comparison of two tracer gas dilution methods for the determination of clothing ventilation and of vapour resistance.

    PubMed

    Havenith, George; Zhang, Ping; Hatcher, Kent; Daanen, Hein

    2010-04-01

    Clothing microclimate ventilation is an important parameter in climatic stress and in contaminated environments. The two main methods for its determination (Crockford et al. (CR) 1972 and Lotens and Havenith (LH) 1988) were, after further development, compared in terms of reproducibility, validity and usability. Both methods were shown to have a good sensitivity and reproducibility (with average coefficients of variation 1.5-2.3% for the method alone and up to 7% for method and clothing/movement effects combined). They produced values very close to calibration values in forced ventilation tests (r = 0.988). Weak points for the CR method were the limits in the time constant of the measurement apparatus, causing an upper limit to the ventilation that can be reliably measured (around 800 l/min) and the method of measuring clothing microclimate volume. The original 'vacuum oversuit' (CR) method was cumbersome and prone to large errors. Alternative methods of measuring clothing microclimate volume (whole body scanner or manual circumference measurements) were shown to produce good results. For the LH method, the distribution of the tracer gas over the whole skin surface became a problem factor at very high ventilations (above 1000 l/min). As all methods use tracer gases (O(2), Ar, CO(2), SF(6)) with diffusivities smaller than that of water vapour, this potentially creates a problem in the calculation of vapour resistance from the ventilation values in the region where the emphasis of vapour transfer moves from diffusion to convection. In most real-life situations, where body and air movement are present, a correction is not however required because the error remains below 10%. STATEMENT OF RELEVANCE: Clothing ventilation indicates heat loss potential as well as risk of pollutants entering the clothing. Two main methods for its determination are compared and validated, identifying a number of issues. An in-depth analysis is given of the advantages and disadvantages of

  12. Flow optimization study of a batch microfluidics PET tracer synthesizing device

    PubMed Central

    Elizarov, Arkadij M.; Meinhart, Carl; van Dam, R. Michael; Huang, Jiang; Daridon, Antoine; Heath, James R.; Kolb, Hartmuth C.

    2010-01-01

    We present numerical modeling and experimental studies of flow optimization inside a batch microfluidic micro-reactor used for synthesis of human-scale doses of Positron Emission Tomography (PET) tracers. Novel techniques are used for mixing within, and eluting liquid out of, the coin-shaped reaction chamber. Numerical solutions of the general incompressible Navier Stokes equations along with time-dependent elution scalar field equation for the three dimensional coin-shaped geometry were obtained and validated using fluorescence imaging analysis techniques. Utilizing the approach presented in this work, we were able to identify optimized geometrical and operational conditions for the micro-reactor in the absence of radioactive material commonly used in PET related tracer production platforms as well as evaluate the designed and fabricated micro-reactor using numerical and experimental validations. PMID:21072595

  13. STRATEGIES FOR QUANTIFYING PET IMAGING DATA FROM TRACER STUDIES OF BRAIN RECEPTORS AND ENZYMES.

    SciTech Connect

    Logan, J.

    2001-04-02

    A description of some of the methods used in neuroreceptor imaging to distinguish changes in receptor availability has been presented in this chapter. It is necessary to look beyond regional uptake of the tracer since uptake generally is affected by factors other than the number of receptors for which the tracer has affinity. An exception is the infusion method producing an equilibrium state. The techniques vary in complexity some requiring arterial blood measurements of unmetabolized tracer and multiple time uptake data. Others require only a few plasma and uptake measurements and those based on a reference region require no plasma measurements. We have outlined some of the limitations of the different methods. Laruelle (1999) has pointed out that test/retest studies to which various methods can be applied are crucial in determining the optimal method for a particular study. The choice of method will also depend upon the application. In a clinical setting, methods not involving arterial blood sampling are generally preferred. In the future techniques for externally measuring arterial plasma radioactivity with only a few blood samples for metabolite correction will extend the modeling options of clinical PET. Also since parametric images can provide information beyond that of ROI analysis, improved techniques for generating such images will be important, particularly for ligands requiring more than a one-compartment model. Techniques such as the wavelet transform proposed by Turkheimer et al. (2000) may prove to be important in reducing noise and improving quantitation.

  14. Perturbative path-integral study of active- and passive-tracer diffusion in fluctuating fields.

    PubMed

    Démery, Vincent; Dean, David S

    2011-07-01

    We study the effective diffusion constant of a Brownian particle linearly coupled to a thermally fluctuating scalar field. We use a path-integral method to compute the effective diffusion coefficient perturbatively to lowest order in the coupling constant. This method can be applied to cases where the field is affected by the particle (an active tracer) and cases where the tracer is passive. Our results are applicable to a wide range of physical problems, from a protein diffusing in a membrane to the dispersion of a passive tracer in a random potential. In the case of passive diffusion in a scalar field, we show that the coupling to the field can, in some cases, speed up the diffusion corresponding to a form of stochastic resonance. Our results on passive diffusion are also confirmed via a perturbative calculation of the probability density function of the particle in a Fokker-Planck formulation of the problem. Numerical simulations on simplified systems corroborate our results. PMID:21867153

  15. New tracers identify hydraulic fracturing fluids and accidental releases from oil and gas operations.

    PubMed

    Warner, N R; Darrah, T H; Jackson, R B; Millot, R; Kloppmann, W; Vengosh, A

    2014-11-01

    Identifying the geochemical fingerprints of fluids that return to the surface after high volume hydraulic fracturing of unconventional oil and gas reservoirs has important applications for assessing hydrocarbon resource recovery, environmental impacts, and wastewater treatment and disposal. Here, we report for the first time, novel diagnostic elemental and isotopic signatures (B/Cl, Li/Cl, δ11B, and δ7Li) useful for characterizing hydraulic fracturing flowback fluids (HFFF) and distinguishing sources of HFFF in the environment. Data from 39 HFFFs and produced water samples show that B/Cl (>0.001), Li/Cl (>0.002), δ11B (25-31‰) and δ7Li (6-10‰) compositions of HFFF from the Marcellus and Fayetteville black shale formations were distinct in most cases from produced waters sampled from conventional oil and gas wells. We posit that boron isotope geochemistry can be used to quantify small fractions (∼0.1%) of HFFF in contaminated fresh water and likely be applied universally to trace HFFF in other basins. The novel environmental application of this diagnostic isotopic tool is validated by examining the composition of effluent discharge from an oil and gas brine treatment facility in Pennsylvania and an accidental spill site in West Virginia. We hypothesize that the boron and lithium are mobilized from exchangeable sites on clay minerals in the shale formations during the hydraulic fracturing process, resulting in the relative enrichment of boron and lithium in HFFF. PMID:25327769

  16. Overview of SIMS-Based Experimental Studies of Tracer Diffusion in Solids and Application to Mg Self-Diffusion

    DOE PAGESBeta

    Kulkarni, Nagraj S.; Bruce Warmack, Robert J.; Radhakrishnan, Bala; Hunter, Jerry L.; Sohn, Yongho; Coffey, Kevin R.; Murch, Graeme E.; Belova, Irina V.

    2014-09-23

    Tracer diffusivities provide the most fundamental information on diffusion in materials and are the foundation of robust diffusion databases. Compared to traditional radiotracer techniques that utilize radioactive isotopes, the secondary ion mass spectrometry (SIMS) based thin-film technique for tracer diffusion is based on the use of enriched stable isotopes that can be accurately profiled using SIMS. Experimental procedures & techniques that are utilized for the measurement of tracer diffusion coefficients are presented for pure magnesium, which presents some unique challenges due to the ease of oxidation. The development of a modified Shewmon-Rhines diffusion capsule for annealing Mg and an ultra-highmore » vacuum (UHV) system for sputter deposition of Mg isotopes are discussed. Optimized conditions for accurate SIMS depth profiling in polycrystalline Mg are provided. An automated procedure for the correction of heat-up and cool-down times during tracer diffusion annealing is discussed. The non-linear fitting of a SIMS depth profile data using the thin film Gaussian solution to obtain the tracer diffusivity along with the background tracer concentration and tracer film thickness is discussed. An Arrhenius fit of the Mg self-diffusion data obtained using the low-temperature SIMS measurements from this study and the high-temperature radiotracer measurements of Shewmon and Rhines (1954) was found to be a good representation of both types of diffusion data that cover a broad range of temperatures between 250 - 627° C (523 900 K).« less

  17. Overview of SIMS-Based Experimental Studies of Tracer Diffusion in Solids and Application to Mg Self-Diffusion

    SciTech Connect

    Kulkarni, Nagraj S.; Bruce Warmack, Robert J.; Radhakrishnan, Bala; Hunter, Jerry L.; Sohn, Yongho; Coffey, Kevin R.; Murch, Graeme E.; Belova, Irina V.

    2014-09-23

    Tracer diffusivities provide the most fundamental information on diffusion in materials and are the foundation of robust diffusion databases. Compared to traditional radiotracer techniques that utilize radioactive isotopes, the secondary ion mass spectrometry (SIMS) based thin-film technique for tracer diffusion is based on the use of enriched stable isotopes that can be accurately profiled using SIMS. Experimental procedures & techniques that are utilized for the measurement of tracer diffusion coefficients are presented for pure magnesium, which presents some unique challenges due to the ease of oxidation. The development of a modified Shewmon-Rhines diffusion capsule for annealing Mg and an ultra-high vacuum (UHV) system for sputter deposition of Mg isotopes are discussed. Optimized conditions for accurate SIMS depth profiling in polycrystalline Mg are provided. An automated procedure for the correction of heat-up and cool-down times during tracer diffusion annealing is discussed. The non-linear fitting of a SIMS depth profile data using the thin film Gaussian solution to obtain the tracer diffusivity along with the background tracer concentration and tracer film thickness is discussed. An Arrhenius fit of the Mg self-diffusion data obtained using the low-temperature SIMS measurements from this study and the high-temperature radiotracer measurements of Shewmon and Rhines (1954) was found to be a good representation of both types of diffusion data that cover a broad range of temperatures between 250 - 627° C (523 900 K).

  18. Microwave Continuum Emission and Dense Gas Tracers in NGC 3627: Combining Jansky VLA and ALMA Observations

    NASA Astrophysics Data System (ADS)

    Murphy, Eric J.; Dong, Dillon; Leroy, Adam K.; Momjian, Emmanuel; Condon, James J.; Helou, George; Meier, David S.; Ott, Jürgen; Schinnerer, Eva; Turner, Jean L.

    2015-11-01

    We present Karl G. Jansky Very Large Array Ka band (33 GHz) and Atacama Large Millimeter Array (ALMA) Band 3 (94.5 GHz) continuum images covering the nucleus and two extranuclear star-forming regions within the nearby galaxy NGC 3627 (M 66), observed as part of the Star Formation in Radio Survey. Both images achieve an angular resolution of ≲2″, allowing us to map radio spectral indices and estimate thermal radio fractions at a linear resolution of ≲90 pc. The thermal fraction at 33 GHz reaches unity at and around the peaks of each H ii region; the spectral index between 33 and 94.5 GHz additionally becomes both increasingly negative and positive away from the H ii region peaks, indicating an increase of non-thermal emission from diffusing cosmic-ray electrons and the possible presence of cold dust, respectively. While the ALMA observations were optimized for collecting continuum data, they also detected line emission from the J=1\\to 0 transitions of HCN and HCO+. The peaks of dense molecular gas traced by these two spectral lines are spatially offset from the peaks of the continuum emission for both extranuclear star-forming regions, indicating that our data reach an angular resolution at which one can spatially distinguish sites of recent star formation from the sites of future star formation. Finally, we find trends of decreasing dense gas fraction and velocity dispersion with increasing star formation efficiency among the regions observed, indicating that the dynamical state of the dense gas, rather than its abundance, plays a more significant role in the star formation process.

  19. Neonatal Respiratory Diseases in the Newborn Infant: Novel Insights from Stable Isotope Tracer Studies.

    PubMed

    Carnielli, Virgilio P; Giorgetti, Chiara; Simonato, Manuela; Vedovelli, Luca; Cogo, Paola

    2016-01-01

    Respiratory distress syndrome is a common problem in preterm infants and the etiology is multifactorial. Lung underdevelopment, lung hypoplasia, abnormal lung water metabolism, inflammation, and pulmonary surfactant deficiency or disfunction play a variable role in the pathogenesis of respiratory distress syndrome. High-quality exogenous surfactant replacement studies and studies on surfactant metabolism are available; however, the contribution of surfactant deficiency, alteration or dysfunction in selected neonatal lung conditions is not fully understood. In this article, we describe a series of studies made by applying stable isotope tracers to the study of surfactant metabolism and lung water. In a first set of studies, which we call 'endogenous studies', using stable isotope-labelled intravenous surfactant precursors, we showed the feasibility of measuring surfactant synthesis and kinetics in infants using several metabolic precursors including plasma glucose, plasma fatty acids and body water. In a second set of studies, named 'exogenous studies', using stable isotope-labelled phosphatidylcholine tracer given endotracheally, we could estimate surfactant disaturated phosphatidylcholine pool size and half-life. Very recent studies are focusing on lung water and on the endogenous biosynthesis of the surfactant-specific proteins. Information obtained from these studies in infants will help to better tailor exogenous surfactant treatment in neonatal lung diseases. PMID:27251153

  20. Simultaneous imaging of fuel vapor mass fraction and gas-phase temperature inside gasoline sprays using two-line excitation tracer planar laser-induced fluorescence.

    PubMed

    Zigan, Lars; Trost, Johannes; Leipertz, Alfred

    2016-02-20

    This paper reports for the first time, to the best of our knowledge, on the simultaneous imaging of the gas-phase temperature and fuel vapor mass fraction distribution in a direct-injection spark-ignition (DISI) spray under engine-relevant conditions using tracer planar laser-induced fluorescence (TPLIF). For measurements in the spray, the fluorescence tracer 3-pentanone is added to the nonfluorescent surrogate fuel iso-octane, which is excited quasi-simultaneously by two different excimer lasers for two-line excitation LIF. The gas-phase temperature of the mixture of fuel vapor and surrounding gas and the fuel vapor mass fraction can be calculated from the two LIF signals. The measurements are conducted in a high-temperature, high-pressure injection chamber. The fluorescence calibration of the tracer was executed in a flow cell and extended significantly compared to the existing database. A detailed error analysis for both calibration and measurement is provided. Simultaneous single-shot gas-phase temperature and fuel vapor mass fraction fields are processed for the assessment of cyclic spray fluctuations. PMID:26906600

  1. Impact of non-idealities in gas-tracer tests on the estimation of reaeration, respiration, and photosynthesis rates in streams.

    PubMed

    Knapp, Julia L A; Osenbrück, Karsten; Cirpka, Olaf A

    2015-10-15

    Estimating respiration and photosynthesis rates in streams usually requires good knowledge of reaeration at the given locations. For this purpose, gas-tracer tests can be conducted, and reaeration rate coefficients are determined from the decrease in gas concentration along the river stretch. The typical procedure for analysis of such tests is based on simplifying assumptions, as it neglects dispersion altogether and does not consider possible fluctuations and trends in the input signal. We mathematically derive the influence of these non-idealities on estimated reaeration rates and how they are propagated onto the evaluation of aerobic respiration and photosynthesis rates from oxygen monitoring. We apply the approach to field data obtained from a gas-tracer test using propane in a second-order stream in Southwest Germany. We calculate the reaeration rate coefficients accounting for dispersion as well as trends and uncertainty in the input signals and compare them to the standard approach. We show that neglecting dispersion significantly underestimates reaeration, and results between sections cannot be compared if trends in the input signal of the gas tracer are disregarded. Using time series of dissolved oxygen and the various estimates of reaeration, we infer respiration and photosynthesis rates for the same stream section, demonstrating that the bias and uncertainty of reaeration using the different approaches significantly affects the calculation of metabolic rates. PMID:26150069

  2. Detection of high molecular weight organic tracers in vegetation smoke samples by high-temperature gas chromatography-mass spectrometry

    SciTech Connect

    Elias, V.O.; Simoneit, B.R.T. ); Pereira, A.S.; Cardoso, J.N. ); Cabral, J.A. )

    1999-07-15

    High-temperature high-resolution gas chromatography (HTGC) is an established technique for the separation of complex mixtures of high molecular weight (HMW) compounds which do not elute when analyzed on conventional GC columns. The combination of this technique with mass spectrometry is not so common and application to aerosols is novel. The HTGC and HTGC-MS analyses of smoke samples taken by particle filtration from combustion of different species of plants provided the characterization of various classes of HMW compounds reported to occur for the first time in emissions from biomass burning. Among these components are a series of wax esters with up to 58 carbon numbers, aliphatic hydrocarbons, triglycerides, long chain methyl ketones, alkanols and a series of triterpenyl fatty acid esters which have been characterized as novel natural products. Long chain fatty acids with more than 32 carbon numbers are not present in the smoke samples analyzed. The HMW compounds in smoke samples from the burning of plants from Amazonia indicate the input of directly volatilized natural products in the original plants during their combustion. However, the major organic compounds extracted from smoke consist of a series of lower molecular weight polar components, which are not natural products but the result of the thermal breakdown of cellulose and lignin. In contrast, the HMW natural products may be suitable tracers for specific sources of vegetation combustion because they are emitted as particles without thermal alternation in the smoke and can thus be related directly to the original plant material.

  3. Tracer Gas Transport under Mixed Convection Conditions in anExperimental Atrium: Comparison Between Experiments and CFDPredictions

    SciTech Connect

    Jayaraman, Buvaneswari; Finlayson, Elizabeth U.; Sohn, MichaelD.; Thatcher, Tracy L.; Price, Phillip N.; Wood, Emily E.; Sextro,Richard G.; Gadgil, Ashok J.

    2006-01-01

    We compare computational fluid dynamics (CFD) predictions using a steady-state Reynolds Averaged Navier-Stokes (RANS) model with experimental data on airflow and pollutant dispersion under mixed-convection conditions in a 7 x 9 x 11m high experimental facility. The Rayleigh number, based on height, was O(10{sup 11}) and the atrium was mechanically ventilated. We released tracer gas in the atrium and measured the spatial distribution of concentrations; we then modeled the experiment using four different levels of modeling detail. The four computational models differ in the choice of temperature boundary conditions and the choice of turbulence model. Predictions from a low-Reynolds-number k-{var_epsilon} model with detailed boundary conditions agreed well with the data using three different model-measurement comparison metrics. Results from the same model with a single temperature prescribed for each wall also agreed well with the data. Predictions of a standard k-{var_epsilon} model were about the same as those of an isothermal model; neither performed well. Implications of the results for practical applications are discussed.

  4. A rapid method for the measurement of sulfur hexafluoride (SF6), trifluoromethyl sulfur pentafluoride (SF5CF3), and Halon 1211 (CF2ClBr) in hydrologic tracer studies

    NASA Astrophysics Data System (ADS)

    Busenberg, Eurybiades; Plummer, L. Niel

    2010-11-01

    A rapid headspace method for the simultaneous laboratory determination of intentionally introduced hydrologic tracers, sulfur hexafluoride (SF6), trifluoromethyl sulfur pentafluoride (SF5CF3), Halon 1211 (CF2ClBr), and other halocarbons in water and gases is described. The high sensitivity of the procedure allows for introduction of minimal tracer mass (a few grams) into hydrologic systems with a large dynamic range of analytical detection (dilutions to 1:108). Analysis times by gas chromatography with electron capture detector are less than 1 min for SF6; about 2 min for SF6 and SF5CF3; and 4 min for SF6, SF5CF3, and Halon 1211. Many samples can be rapidly collected, preserved in stoppered septum bottles, and analyzed at a later time in the laboratory. Examples are provided showing the effectiveness of the gas tracer test studies in varied hydrogeological settings.

  5. A rapid method for the measurement of sulfur hexafluoride (SF6), trifluoromethyl sulfur pentafluoride (SF5CF3), and Halon 1211 (CF2ClBr) in hydrologic tracer studies

    USGS Publications Warehouse

    Busenberg, Eurybiades; Plummer, L. Niel

    2010-01-01

    A rapid headspace method for the simultaneous laboratory determination of intentionally introduced hydrologic tracers, sulfur hexafluoride (SF6), trifluoromethyl sulfur pentafluoride (SF5CF3), Halon 1211 (CF2ClBr), and other halocarbons in water and gases is described. The high sensitivity of the procedure allows for introduction of minimal tracer mass (a few grams) into hydrologic systems with a large dynamic range of analytical detection (dilutions to 1:108). Analysis times by gas chromatography with electron capture detector are less than 1 min for SF6; about 2 min for SF6 and SF5CF3; and 4 min for SF6, SF5CF3, and Halon 1211. Many samples can be rapidly collected, preserved in stoppered septum bottles, and analyzed at a later time in the laboratory. Examples are provided showing the effectiveness of the gas tracer test studies in varied hydrogeological settings.

  6. Tracer study of oxygen and hydrogen uptake by Mg alloys in air with water vapor

    DOE PAGESBeta

    Brady, M. P.; Fayek, M.; Meyer, H. M.; Leonard, D. N.; Elsentriecy, H. H.; Unocic, K. A.; Anovitz, L. M.; Cakmak, E.; Keiser, J. R.; Song, G. L.; et al

    2015-05-15

    We studied the pure oxidation of Mg, Mg–3Al–1Zn (AZ31B), and Mg–1Zn–0.25Zr–<0.5Nd (ZE10A) at 85 °C in humid air using sequential exposures with H218O and D216O for water vapor. Incorporation of 18O in the hydroxide/oxide films indicated that oxygen from water vapor participated in the reaction. Moreover, penetration of hydrogen into the underlying metal was observed, particularly for the Zr- and Nd-containing ZE10A. Isotopic tracer profiles suggested a complex mixed inward/outward film growth mechanism.

  7. Alma observations of nearby luminous infrared galaxies with various agn energetic contributions using dense gas tracers

    SciTech Connect

    Imanishi, Masatoshi; Nakanishi, Kouichiro

    2014-07-01

    We present the results of our ALMA Cycle 0 observations, using HCN/HCO{sup +}/HNC J = 4-3 lines, of six nearby luminous infrared galaxies with various energetic contributions from active galactic nuclei (AGNs) estimated from previous infrared spectroscopy. These lines are very effective for probing the physical properties of high-density molecular gas around the hidden energy sources in the nuclear regions of these galaxies. We find that HCN to HCO{sup +} J = 4-3 flux ratios tend to be higher in AGN-important galaxies than in starburst-dominated regions, as was seen at the J = 1-0 transition, while there is no clear difference in the HCN-to-HNC J = 4-3 flux ratios among observed sources. A galaxy with a starburst-type infrared spectral shape and very large molecular line widths shows a high HCN-to-HCO{sup +} J = 4-3 flux ratio, which could be due to turbulence-induced heating. We propose that enhanced HCN J = 4-3 emission relative to HCO{sup +} J = 4-3 could be used to detect more energetic activity than normal starbursts, including deeply buried AGNs, in dusty galaxy populations.

  8. Field Studies of Streamflow Generation Using Natural and Injected Tracers on Bickford and Walker Branch Watersheds

    SciTech Connect

    Genereux, D.

    1992-01-01

    Field studies of streamflow generation were undertaken on two forested watersheds, the West Road subcatchment of Bickford Watershed in central Massachusetts and the West Fork of Walker Branch Watershed in eastern Tennessee. A major component of the research was development of a two-stage methodology for the use of naturally-occurring {sup 222}Rn as a tracer. The first of the two stages was solving a mass-balance equation for {sup 222}Rn around a stream reach of interest in order to calculate [Rn]{sub q}, the {sup 222}Rn content of the lateral inflow to the reach; a conservative tracer (chloride) and a volatile tracer (propane) were injected into the study stream to account for lateral inflow to, and {sup 222}Rn volatilization from, the study reach. The second stage involved quantitative comparison of [Rn]{sub q} to the measured {sup 222}Rn concentrations of different subsurface waters in order to assess how important these waters were in contributing lateral inflow to the stream reach. The method was first applied to a 34 m stream reach at Bickford during baseflow; results suggested that {ge} 70% of the lateral inflow could be considered vadose zone water (water which had been in a saturated zone for less than a few days), and the remainder ''soil groundwater'' or ''saturated zone water'' (which had a longer residence time in a soil saturated zone). The method was then applied to two stream reaches on the West Fork of Walker Branch over a wide range of flow conditions; four springs were also investigated. It was found that springwater and inflow to the stream could be viewed as a mixture of water from three end members: the two defined at Bickford (vadose zone water and soil groundwater) and a third (bedrock groundwater) to account for the movement of water through fractured dolomite bedrock. Calcium was used as a second naturally-occurring tracer to distinguish bedrock groundwater from the other two end members. The behavior indicated by the three

  9. Gas-phase naphthalene concentration data recovery in ambient air and its relevance as a tracer of sources of volatile organic compounds

    NASA Astrophysics Data System (ADS)

    Uria-Tellaetxe, Iratxe; Navazo, Marino; de Blas, Maite; Durana, Nieves; Alonso, Lucio; Iza, Jon

    2016-04-01

    Despite the toxicity of naphthalene and the fact that it is a precursor of atmospheric photooxidants and secondary aerosol, studies on ambient gas-phase naphthalene are generally scarce. Moreover, as far as we are concerned, this is the first published one using long-term hourly ambient gas-phase naphthalene concentrations. In this work, it has been also demonstrated the usefulness of ambient gas-phase naphthalene to identify major sources of volatile organic compounds (VOC) in complex scenarios. Initially, in order to identify main benzene emission sources, hourly ambient measurements of 60 VOC were taken during a complete year together with meteorological data in an urban/industrial area. Later, due to the observed co-linearity of some of the emissions, a procedure was developed to recover naphthalene concentration data from recorded chromatograms to use it as a tracer of the combustion and distillation of petroleum products. The characteristic retention time of this compound was determined comparing previous GC-MS and GC-FID simultaneous analysis by means of relative retention times, and its concentration was calculated by using relative response factors. The obtained naphthalene concentrations correlated fairly well with ethene (r = 0.86) and benzene (r = 0.92). Besides, the analysis of daily time series showed that these compounds followed a similar pattern, very different from that of other VOC, with minimum concentrations at day-time. This, together with the results from the assessment of the meteorological dependence pointed out a coke oven as the major naphthalene and benzene emitting sources in the study area.

  10. Evaluation of a Eulerian and Lagrangian air quality model using perfluorocarbon tracers released in Texas for the BRAVO haze study

    NASA Astrophysics Data System (ADS)

    Schichtel, Bret A.; Barna, Michael G.; Gebhart, Kristi A.; Malm, William C.

    The Big Bend Regional Aerosol and Visibility Observational (BRAVO) study was designed to determine the sources of haze at Big Bend National Park, Texas, using a combination of source and receptor models. BRAVO included an intensive monitoring campaign from July to October 1999 that included the release of perfluorocarbon tracers from four locations at distances 230-750 km from Big Bend and measured at 24 sites. The tracer measurements near Big Bend were used to evaluate the dispersion mechanisms in the REMSAD Eulerian model and the CAPITA Monte Carlo (CMC) Lagrangian model used in BRAVO. Both models used 36 km MM5 wind fields as input. The CMC model also used a combination of routinely available 80 and 190 km wind fields from the National Weather Service's National Centers for Environmental Prediction (NCEP) as input. A model's performance is limited by inherent uncertainties due to errors in the tracer concentrations and a model's inability to simulate sub-resolution variability. A range in the inherent uncertainty was estimated by comparing tracer data at nearby monitoring sites. It was found that the REMSAD and CMC models, using the MM5 wind field, produced performance statistics generally within this inherent uncertainty. The CMC simulation using the NCEP wind fields could reproduce the timing of tracer impacts at Big Bend, but not the concentration values, due to a systematic underestimation. It appears that the underestimation was partly due to excessive vertical dilution from high mixing depths. The model simulations were more sensitive to the input wind fields than the models' different dispersion mechanisms. Comparisons of REMSAD to CMC tracer simulations using the MM5 wind fields had correlations between 0.75 and 0.82, depending on the tracer, but the tracer simulations using the two wind fields in the CMC model had correlations between 0.37 and 0.5.

  11. SF6 Tracer Release Study: A Contaminant Fate Study in Newtown Creek

    NASA Astrophysics Data System (ADS)

    Schmieder, P. J.; Ho, D. T.; Peter, S.; Simpson, H. J.; Flores, S.; Dugan, W. A.

    2004-12-01

    Newtown Creek is a 5.5km creek that discharges into the East River, a 25km strait connecting Long Island Sound to the north and the New York Harbor to the south. Surface runoff dominates the freshwater input into the creek, for natural tributaries no longer exist. The areas directly adjacent to the creek are highly industrialized, and New York City's largest Water Pollution Control Plant (WPCP) discharges directly into creek. In August 2004, we injected sulfur hexafluoride (SF6) into Newtown creek to study the fate of oil seeping into the creek from an underground oil spill and the fate of nutrient rich effluent from the WPCP. We monitored SF6 in Newtown Creek, the East River, and the Upper Bay of New York Harbor for 7 consecutive days following the injection in order to investigate the spreading patterns and transport mechanics of waters exiting the creek, and to determine the ultimate fate of the contaminants/solutes originating in Newtown Creek. Dissolved oxygen (DO) measurements were collected simultaneously with SF6 measurements. A strong DO gradient exists in the creek, where waters in the upper reaches are anoxic. We use SF6 data to calculate mean residence times for Newtown Creek waters. SF6 was detected above background concentrations approximately 15km to the south of the creek at the Verrazano Bridge only 1 day after the tracer injection. By combining the movements of the SF6 distribution, the position of the oxygen gradient, and the residence time of Newtown Creek water, we can determine a lower boundary for oxygen consumption rates.

  12. Geophysical Methods, Tracer Leakage, and Flow Modeling Studies at the West Pearl Queen Carbon Sequestration/EOR Pilot Site

    NASA Astrophysics Data System (ADS)

    Bromhal, G. S.; Wilson, T. H.; Wells, A.; Diehl, R.; Smith, D. H.

    2003-12-01

    Recently, a few thousand tons of CO2 were injected into the West Pearl Queen field, a depleted oil reservoir in southeastern New Mexico, for a pilot carbon sequestration project. Small amounts of 3 different perfluorocarbon tracers were injected with the CO2. Approximately 50 capillary absorption tube samplers (CATS) were located across the field within 2m of the grounds surface to detect the tracers in extremely small (~10-13L) quantities. After only several days, the CATS detected quantities of tracers at distances of up to 350m from the injection well. Greater amounts of tracers were detected in the different directions. The underground transport mechanism(s) are uncertain; however, appearance of tracer in the CATS after only a 6 day period suggests that CO2 movement may have occurred through near-surface processes. Subsequent tracer measurements made over 10 and 54 day time periods revealed continued tracer leakage. To try to understand the tracer information, we conducted lineament interpretations of the area using a black and white aerial photo taken in 1949, digital orthophotos, and Landsat TM imagery. Lineament interpretations revealed distinct northeast and northwest trending lineament sets. These directions coincided roughly with the direction of tracer-leakage into areas northwest and southwest of the injection well. The near-surface geology consists of a few-feet thick veneer of late Pleistocene and Holocene sand dunes covering the middle Pleistocene Mescalero caliche. A survey of the caliche was made using ground penetrating radar (GPR) to attempt to identify any preferential migration pathways. Modeling studies also were performed to identify the potential leakage pathways at the site. Because of the relatively fast appearance of tracers at large distances from the injection well, simple diffusion through the surface layers was ruled out. Wind patterns in the area have also made transport through the atmosphere and back into the ground highly unlikely

  13. Dual tracer autoradiographic study with thallium-201 and radioiodinated fatty acid in cardiomyopathic hamsters

    SciTech Connect

    Kurata, C.; Kobayashi, A.; Yamazaki, N.

    1989-01-01

    To investigate the usefulness of myocardial scintigraphy with radioiodinated 15-(p-iodophenyl)-3-R,S-methylpentadecanoic acid (BMIPP) in cardiomyopathy, quantitative dual tracer autoradiographic study with /sup 201/Tl and (/sup 125/I)BMIPP was performed in 27 cardiomyopathic Bio 14.6 Syrian hamsters and eight normal hamsters. Furthermore, 16 Bio 14.6 Syrian hamsters aged 21 days were divided into verapamil-treated (during 70 days) and control groups (respectively, n = 8), and autoradiography with /sup 201/Tl and (/sup 125/I)BMIPP was performed. Quantitative autoradiography demonstrated an uncoupling of /sup 201/Tl and (/sup 125/I)BMIPP distributions and a regional heterogeneity of (/sup 125/I)BMIPP distribution in cardiomyopathic hamsters aged more than 2 mo, while normal hamsters showed only mild heterogeneity of (/sup 125/I)BMIPP distribution without an uncoupling of tracers. Age-matched comparison between normal and cardiomyopathic hamsters (5-8 mo old) demonstrated that a difference between their (/sup 125/I)BMIPP distributions are more marked than that between their /sup 201/Tl distributions. Furthermore, (/sup 125/I)BMIPP visualized effects of verapamil on cardiomyopathy more distinctly than did /sup 201/Tl. In conclusion, myocardial imaging with (/sup 123/I)BMIPP could be useful for investigating cardiomyopathy and evaluating the efficacy of therapeutic intervention in patients with cardiomyopathy.

  14. Using WRF with Water Vapor Tracers to Study the Moisture Sources for the North American Monsoon

    NASA Astrophysics Data System (ADS)

    Dominguez, F.; Miguez-Macho, G.; Hu, H.

    2014-12-01

    The North American Monsoon (NAM) accounts for approximately 70% of the total annual precipitation in northwest Mexico, and 40-50% of annual precipitation in the Southwestern US. Until recently, the broad consensus about the sources for NAM precipitation was that the Gulf of California and eastern tropical Pacific contributed to moisture at lower levels (below 850mb) and the Gulf of Mexico and Caribbean Sea at upper levels. However, using an analytical 2D Lagrangian model (the DRM) we have recently shown that approximately 40% of the moisture that contributes to NAM precipitation is of terrestrial origin. However, the DRM cannot provide information about the vertical structure of moisture as it assumes a well-mixed atmosphere. To alleviate this problem, in this work we use the weather research forecast (WRF) model with the recently added capability of water vapor tracers, to study the moisture sources of NAM precipitation and their vertical structure. We find that the Gulf of California contributes to low-level moisture and the Gulf of Mexico contributes to upper-level moisture, as previously hypothesized. However, we also show the important role of regional moisture recycling from the NAM region at lower levels and upper level moisture from eastern Mexico that has crossed the Sierra Madre Occidental mountain chain. The tracers provide a very detailed picture of the complex moisture transport processes in the NAM region.

  15. Effects of solute breakthrough curve tail truncation on residence time estimates: A synthesis of solute tracer injection studies

    NASA Astrophysics Data System (ADS)

    Drummond, J. D.; Covino, T. P.; Aubeneau, A. F.; Leong, D.; Patil, S.; Schumer, R.; Packman, A. I.

    2012-09-01

    Hydrologic transport and retention strongly affect biogeochemical processes that are critical to stream ecosystems. Tracer injection studies are often used to characterize solute transport and retention in stream reaches, but the range of processes accurately resolved with this approach is not clear. Solute residence time distributions depend on both in-stream mixing and exchange with the hyporheic zone and the larger groundwater system. Observed in-stream breakthrough curves have most commonly been modeled with in-stream advection-dispersion plus an exponential residence time distribution, but process-based models suggest that hyporheic exchange is a fractal process, and that hyporheic residence time distributions are more appropriately characterized by power law tailing. We synthesized results from a variety of tracer-injection studies to investigate the information content of tracer breakthrough curves. We found that breakthrough curve tails are often not well characterized in stream tracer experiments. The two main reasons for this are: 1) experimental truncation of breakthrough curves, which occurs when sampling ends before all tracer mass reaches the sampling location, and 2) sensitivity truncation of breakthrough curves, when tracer concentrations in the tail are too low to be detected reliably above background levels. Tail truncation reduces observed mass recovery and obscures assessment of breakthrough curve tailing and solute residence time. Failure to consider tail truncation leads to underestimation of hyporheic exchange and solute retention and to corresponding overestimation of hyporheic biogeochemical transformation rates. Based on these findings, we propose criteria for improved design of in-stream tracer injection experiments to improve assessment of solute tailing behavior.

  16. Investigation of Contaminant Transport and Dispersion in New York Harbor by a High Resolution SF6 Tracer Study

    NASA Astrophysics Data System (ADS)

    Caplow, T.; Schlosser, P.; Ho, D. T.

    2002-12-01

    Sulfur hexafluoride (SF6) has been used successfully as a deliberate tracer for rivers, estuaries, and coastal areas, due to its inert nature, non-toxicity, and extremely low detection limit. An automated, high-resolution SF6 measurement system mounted on a boat was recently developed for several projects on the Hudson River. The system has a sampling interval of two minutes and a detection limit of 1 x 10-14 mol L-1. Real-time data visualization enables revisions of sampling strategy during the experiment. A single injection has allowed observation of advection rates, dispersion processes, and air-water gas exchange for up to two weeks, and longer experiments are possible. This equipment, with minor modifications, was applied to New York Harbor in July 2002. New York Harbor is one of the busiest seaports in the United States, processing nearly \\100 billion in cargo each year. Most of the shipping facilities are located in Newark Bay (approximately 15 km^{2}) or in two adjacent channels: the Kill van Kull (6 km long) and the Arthur Kill (20 km long). Newark Bay, which is mostly saline, is fed by the Hackensack and Passaic Rivers, both of which flow through heavily industrialized areas. Ultimately, these waters drain through the Kills to Raritan Bay and the Atlantic Ocean. Due to a combination of point sources, runoff, wastewater treatment plants, and emissions from the shipping industry, Newark Bay and the Kills receive a large volume and variety of contaminants, including petroleum, heavy metals, PCBs, and dioxins. In addition, much of the area is subject to ongoing and extensive navigational dredging, causing widespread re-suspension of previously deposited contaminants. A small quantity (ca. 2 mols) of SF_{6}$ was injected into northern Newark Bay to investigate the spreading of water throughout the Bay, the Kills, and the tidal portions of the Passaic and Hackensack Rivers. The tracer was successfully monitored across most of this area for 12 consecutive days

  17. Dye tracer study at the Saginaw Bay, Michigan, confined disposal facility. Final report

    SciTech Connect

    Schroeder, P.R.; McEnroe, B.M.

    1988-12-01

    A dye tracer study was performed in August 1987 at the Saginaw Bay, Michigan, dredged material confined disposal facility (CDF). The purpose of the study was to locate the points or areas of outflow or seepage through prepared limestone dikes of the CDF under a variety of wind conditions. The study was conducted to determine whether significant quantities of contaminants were escaping from the site in the seepage through the dikes. The fluorescent dye Rhodamine WT was added to the water in the CDF and allowed to disperse by wind currents. Water samples were collected every 50 ft (15 m) inside and out- side the dikes, and the dye concentrations were measured. Using a mass balance technique, the relative outflow for each 50-ft reach of dike was estimated. Higher seepage rates were determined to exist along the shoreward dike in the deep east side of the south cell of the CDF under all wind conditions.

  18. Accounting for Dispersion and time-dependent Input Signals during Gas Tracer Tests and their Effect on the Estimation of Reaeration, Respiration and Photosynthesis in Streams

    NASA Astrophysics Data System (ADS)

    Knapp, Julia; Osenbrück, Karsten; Olaf, Cirpka

    2015-04-01

    The variation of dissolved oxygen (DO) in streams, are caused by a number of processes, of which respiration and primary production are considered to be the most important ones (Odum, 1956; Staehr et al., 2012). Measuring respiration and photosynthesis rates in streams based on recorded time series of DO requires good knowledge on the reaeration fluxes at the given locations. For this, gas tracer tests can be conducted, and reaeration coefficients determined from the observed decrease in gas concentration along the stretch (Genereux and Hemond, 1990): ( ) --1- -cup- k2 = t2 - t1 ln Rcdown (1) with the gas concentrations measured at an upstream location, cup[ML-3], and a downstream location, cdown. t1[T] andt2 [T] denote the measurement times at the two locations and R [-] represents the recovery rate which can also be obtained from conservative tracer data. The typical procedure for analysis, however, contains a number of assumptions, as it neglects dispersion and does not take into account possible fluctuations of the input signal. We derive the influence of these aspects mathematically and illustrate them on the basis of field data obtained from a propane gas tracer test. For this, we compare the reaeration coefficients obtained from approaches with dispersion and/or a time-dependent input signals to the standard approach. Travel times and travel time distributions between the different measurement stations are obtained from a simultaneously performed conservative tracer test with fluorescein. In order to show the carry-over effect to metabolic rates, we furthermore estimate respiration and photosynthesis rates from the calculated reaeration coefficients and measured oxygen data. This way, we are able to show that neglecting dispersion significantly underestimates reaeration, and the impact of the time-dependent input concentration cannot be disregarded either. When estimated reaeration rates are used to calculate respiration and photosynthesis from measured

  19. Long-range (CAPTEX (Cross-APpalachian Tracer EXperiment)) and complex terrain (ASCOT (Atmospheric Studies of COmplex Terrain)) perfluorocarbon tracer studies

    SciTech Connect

    Jeffter, J.L.; Yamada, T.; Dietz, R.N.

    1986-01-01

    Perfluorocarbon tracer (PFT) technology, consisting of tracers, samplers, and analytical equipment, has been deployed in numerous meteorological experiments for the verification of long-range and complex terrain transport and dispersion models. The CAPTEX (Cross-APpalachain Tracer EXperiment) ''83 was conducted from mid-September through October 1983, in which seven 3-h tracer releases (5 from Dayton, Ohio, and 2 from Sudbury, Ontario) were made of a single PFT. Ground sampling occurred at 80 sites in the northeastern US and southeastern Canada at distances of 300 to 1100 km from the release sites, with a total of 3000 samples collected. Seven aircraft gathered 1600 crosswind and vertical spiral samples at distance of 200 to 900 km from the release sites. Peak ground concentrations of over 30 times background and peak aircraft values of over 150 times background were measured at the most distant sites; some typical results are shown. The branching atmospheric trajectory (BAT) long-range transport was described. The model-calculated maximum ground level PFT concentrations were compared with the measured concentration isopleths as well as through the use of scatter diagrams of concentrations, spatial errors, and frequency of space- and time-averaged concentrations. The average spatial error found for each of the 7 releases ranged from 1.3/sup 0/ to 1.7/sup 0/ lat. The crosswind standard deviations of aircraft traverses at 600 to 800 km downwind varied from 12 to 20 km which corresponded to 1.0/sup 0/ to 1.6/sup 0/ lat., indicating that the model was accurate to within one standard deviation of the real-time tracer profiles. On average, for the 7 runs, 50% of the model-calculated concentrations were within a factor of 20 of the observations, indicating that, in general, 1/sup 0/ lat. shifts can easily cause order-of-magnitude changes in observed concentrations.

  20. Identification and characterization of conservative organic tracers for use as hydrologic tracers for the Yucca Mountain Site characterization study. Progress report, July 1, 1995--September 30, 1995

    SciTech Connect

    Stetzenbach, K.; Farnham, I.

    1995-12-01

    Laboratory work on tracers to be used for C-Well tracer tests is complete. Solubilities for fluorinated benzoic acids in J13 water were determined and the stability of these compounds to both degradation and sorption on ground tuff measured in batch and column tests.

  1. A tracer study of ventilation in the Japan/East Sea

    NASA Astrophysics Data System (ADS)

    Postlethwaite, C. F.; Rohling, E. J.; Jenkins, W. J.; Walker, C. F.

    2005-06-01

    During the Circulation Research in East Asian Marginal Seas (CREAMS) summer cruises in 1999, a suite of samples was collected for tracer analysis. Oxygen isotopes combined with tritium-helium ventilation timescales and noble gas measurements give unique insights into the ventilation of water masses in the Japan/East Sea (JES). In particular, noble gases and oxygen isotopes are indicators of brine rejection, which may assist in explaining the recent changes observed in the ventilation of the JES. Oxygen isotope data presented here indicate that both thermally driven convection and brine rejection have played significant roles in deep-water formation but that brine rejection is unlikely to be a significant contributor at the moment. A 6-box ventilation model of the JES, calibrated with tritium and helium-3 measurements, performed better when a significant decrease of dense-water formation rates in the mid-1960s was incorporated. However, the model calculations suggest that Japan Sea Intermediate Water formation is still occurring. Subduction of sea-ice melt water may be a significant ventilation mechanism for this water mass, based on an argon saturation minimum at the recently ventilated salinity minimum in the northwestern sector of the JES. The salinity and oxygen isotope budgets imply a potential bottom-water formation rate of 3.97±0.89×10 12 m 3 yr -1 due to brine rejection, which could account for a time averaged fraction of between 25% and 35% of the ventilation of subsurface water formation in the JES.

  2. Tracer Testing for Estimating Heat Transfer Area in Fractured Reservoirs

    SciTech Connect

    Pruess, Karsten; van Heel, Ton; Shan, Chao

    2004-05-12

    A key parameter governing the performance and life-time of a Hot Fractured Rock (HFR) reservoir is the effective heat transfer area between the fracture network and the matrix rock. We report on numerical modeling studies into the feasibility of using tracer tests for estimating heat transfer area. More specifically, we discuss simulation results of a new HFR characterization method which uses surface-sorbing tracers for which the adsorbed tracer mass is proportional to the fracture surface area per unit volume. Sorption in the rock matrix is treated with the conventional formulation in which tracer adsorption is volume-based. A slug of solute tracer migrating along a fracture is subject to diffusion across the fracture walls into the adjacent rock matrix. Such diffusion removes some of the tracer from the fluid in the fractures, reducing and retarding the peak in the breakthrough curve (BTC) of the tracer. After the slug has passed the concentration gradient reverses, causing back-diffusion from the rock matrix into the fracture, and giving rise to a long tail in the BTC of the solute. These effects become stronger for larger fracture-matrix interface area, potentially providing a means for estimating this area. Previous field tests and modeling studies have demonstrated characteristic tailing in BTCs for volatile tracers in vapor-dominated reservoirs. Simulated BTCs for solute tracers in single-phase liquid systems show much weaker tails, as would be expected because diffusivities are much smaller in the aqueous than in the gas phase, by a factor of order 1000. A much stronger signal of fracture-matrix interaction can be obtained when sorbing tracers are used. We have performed simulation studies of surface-sorbing tracers by implementing a model in which the adsorbed tracer mass is assumed proportional to the fracture-matrix surface area per unit volume. The results show that sorbing tracers generate stronger tails in BTCs, corresponding to an effective

  3. Rocky Flats 1990--91 winter validation tracer study: Volume 1

    SciTech Connect

    Brown, K.J.

    1991-10-01

    During the winter of 1990--91, North American Weather Consultants (NAWC) and its subcontractor, ABB Environmental Services (ABBES), conducted a Winter Validation Study (WVS) for EG&G Rocky Flats involving 12 separate tracer experiments conducted between February 3 and February 19, 1991. Six experiments were conducted during nighttime hours and four experiments were conducted during daytime hours. In addition, there was one day/night and one night/day transitional experiment conducted. The primary purpose of the WVS was to gather data to further the approval process for the Terrain Responsive Atmospheric Code (TRAC). TRAC is an atmospheric dispersion model developed and operated at the Department of Energy`s (DOE`s) Rocky Flats Plant (RFP) north of Denver, Colorado. A secondary objective was to gather data that will serve to validate the TRAC model physics.

  4. Tracer study of oxygen and hydrogen uptake by Mg alloys in air with water vapor

    SciTech Connect

    Brady, M. P.; Fayek, M.; Meyer, H. M.; Leonard, D. N.; Elsentriecy, H. H.; Unocic, K. A.; Anovitz, L. M.; Cakmak, E.; Keiser, J. R.; Song, G. L.; Davis, B.

    2015-05-15

    We studied the pure oxidation of Mg, Mg–3Al–1Zn (AZ31B), and Mg–1Zn–0.25Zr–<0.5Nd (ZE10A) at 85 °C in humid air using sequential exposures with H218O and D216O for water vapor. Incorporation of 18O in the hydroxide/oxide films indicated that oxygen from water vapor participated in the reaction. Moreover, penetration of hydrogen into the underlying metal was observed, particularly for the Zr- and Nd-containing ZE10A. Isotopic tracer profiles suggested a complex mixed inward/outward film growth mechanism.

  5. Hydrological Tracer Studies at a DOE IFRC Site in Rifle, Colorado

    NASA Astrophysics Data System (ADS)

    Gupta, M.; Williams, K. H.; Berman, E. S.; Conrad, M. E.

    2010-12-01

    Research activities at the Department of Energy Integrated Field Research Challenge (IFRC) site in Rifle, Colorado, have demonstrated that uranium can successfully be removed from groundwater through stimulation of indigenous metal-reducing bacteria, such as members of the Geobacteraceae. While such removal strategies may be effective over short timescales, the large inventory of uranium sorbed to aquifer sediments contributes to a diffuse and widespread contaminant plume at the Rifle site, leading to persistent uranium contamination of groundwater. Complicating the long-term plume behavior are seasonal changes in aquifer properties (e.g. fluctuating water levels, variations in dissolved oxygen and organic carbon, etc.) that accompany snowmelt and elevated river stage in the Colorado River. As the impact of such changes on contaminant behavior at Rifle is poorly understood, development of novel methods, such as isotopic techniques, is warranted to better constrain aquifer flow properties and resolve surface water-groundwater interactions that may influence long-term uranium mobility. In addition to floodplain scale (ca. 10 hectare) studies of uranium mobility, ongoing research at Rifle is investigating coupled approaches to desorb and reductively immobilize pools of sorbed and aqueous uranium. Performed as part of the “Super 8” field experiment (2010), a variety of conservative and non-conservative chemical compounds were injected into the Rifle aquifer to assess transport properties and quantify rates of reductive immobilization of uranium under different alkalinity conditions. Conservative tracers included sodium bromide (20mM), deuterium (500‰), and O-18 (25‰), whereas reactive amendments included sodium bicarbonate (50mM) and sodium acetate (6mM); the latter two were designed to enhance desorption of uranium from sediments and stimulate the activity of uranium-reducing microorganisms, respectively. The need to introduce the reactive amendments at

  6. Conducting Graduate Tracer Studies for Quality Assurance in East African Universities: A Focus on Graduate Students Voices on Quality Culture

    ERIC Educational Resources Information Center

    Badiru, Egesah Omar; Wahome, Mary

    2016-01-01

    The purpose of this paper is to propose a guide for graduate trace studies (GTS) to be adopted by universities and other higher education institutions (HEIs) in East Africa. Their essential role notwithstanding, graduate tracer studies present viable opportunities through which quality assurance (QA) can be institutionalized and mainstreamed in…

  7. Quantifying the Contribution of Grape Hexoses to Wine Volatiles by High-Precision [U13C]-Glucose Tracer Studies

    PubMed Central

    Nisbet, Mark A.; Tobias, Herbert J.; Brenna, J. Thomas; Sacks, Gavin L.; Mansfield, Anna Katharine

    2016-01-01

    Many fermentation volatiles important to wine aroma potentially arise from yeast metabolism of hexose sugars, but assessing the relative importance of these pathways is challenging due to high endogenous hexose substrate concentrations. To overcome this problem, gas chromatography combustion isotope ratio mass spectrometry (GC-C-IRMS) was used to measure high-precision 13C/12C isotope ratios of volatiles in wines produced from juices spiked with tracer levels (0.01–1 APE) of uniformly labeled [U-13C]-glucose. The contribution of hexose to individual volatiles was determined from the degree of 13C enrichment. As expected, straight-chain fatty acids and their corresponding ethyl esters were derived almost exclusively from hexoses. Most fusel alcohols and their acetate esters were also majority hexose-derived, indicating the importance of anabolic pathways for their formation. Only two compounds were not derived primarily from hexoses (hexanol and isobutyric acid). This approach can be extended to other food systems or substrates for studying precursor–product relationships. PMID:24960193

  8. Studying coupled hydrological and micro-biological processes by means of tracer injections and mathematical models

    NASA Astrophysics Data System (ADS)

    Worman, A.; Kjellin, J. P.; Lindahl, A.; Johansson, H.

    2005-05-01

    To throw light on coupled hydrological, chemical and microbiological processes in treatment wetlands, this study uses both radioactive water and reactive tracers. A tracer mixture consisting of tritiated water, P-32 in the form of PO4- and N-15 in the form of N2O was injected to the 2.6 hectare large Ekeby wetland, Sweden. From the breakthrough curves of tritium, the mean residence time of water in pond 1 can be estimated to be about 3 to 3.5 days. The total injected activity of phosphorus was 17.98 GBq and about 13.73 GBq was recovered at the outlet during the investigation period ending 10 days and 16 hours after the start of the injection. This implies that 24% of the phosphate solution was removed in the November - December period in which the experiment was performed. The total injected amount of N-15 was 42.1 grams and 29.6 grams was retained at the effluent. This means that 30% of the nitrogen was either retained in the wetland or removed due to denitrification. An analysis of regular monitoring data shows that the annual removal rate in the entire wetland (each flow line passes two ponds in series) is about 50% for total phosphorus and 25% for total nitrogen. Probably, the most important mechanism for this removal is adsorption onto particulate matter and deposition. Analyses of vegetation material indicate that a certain (minor) fraction was adsorbed to submersed and emerging macrophytes, like Elodera Canadensis, Thypa sp. (Cattail) and Glyceria sp. (Manna grass). A 2D mathematical model for both water flow and solute transport could explain the N-transport through the wetland. The model accounts for the rate-limited exchange with bed sediments and denitrification in the water and bed sediment. Independent batch tests indicate a particularly high microbiological activity in the bed sediments. The rate-limited exchange with the bed limits also the denitrification capacity of the wetland.

  9. Predictive value of tracer studies for /sup 131/I treatment in hyperthyroid cats

    SciTech Connect

    Broome, M.R.; Turrel, J.M.; Hays, M.T.

    1988-02-01

    In 76 cats with hyperthyroidism, peak thyroidal radioiodine (/sup 131/I) uptakes and effective half-lives were determined after administration of tracer and therapeutic activities of /sup 131/I. In 6 additional hyperthyroid cats, only peak thyroidal uptakes after administration of tracer and therapeutic activities of /sup 131/I were determined. Good correlation was found between peak thyroidal uptakes of tracer and therapeutic /sup 131/I; however, only fair correlation was observed between effective half-lives. In 79% of the cats, the effective half-life for therapeutic /sup 131/I was longer than that for tracer /sup 131/I. After administration of therapeutic activity of /sup 131/I, monoexponential and biphasic decay curves were observed in 51 and 16 cats, respectively. Using therapeutic kinetic data, radiation doses to the thyroid gland were calculated retrospectively on the basis of 2 methods for determining the activity of /sup 131/I administered: (1) actual administration of tracer-compensated activity and (2) hypothetic administration of uniform activity (3 mCi). Because of the good predictive ability of tracer kinetic data for the therapeutic kinetic data, the tracer-compensated radiation doses came significantly (P = 0.008) closer to the therapeutic goal than did the uniform-activity doses. In addition, the use of tracer kinetic information reduced the extent of the tendency for consistently high uniform-activity doses. A manual method for acquiring tracer kinetic data was developed and was an acceptable alternative to computerized techniques. Adoption of this method gives individuals and institutions with limited finances the opportunity to characterize the iodine kinetics in cats before proceeding with administration of therapeutic activities of /sup 131/I.

  10. Gas chromatography coupled to mass spectrometry for analyses of organic compounds and biomarkers as tracers for geological, environmental, and forensic research.

    PubMed

    Medeiros, Patricia M; Simoneit, Bernd R T

    2007-07-01

    Gas chromatography, especially when coupled with mass spectrometry, is the analytical method of choice for elucidation of biomarker compounds present in organic mixtures extracted from geological, environmental, and biological samples. This review describes the biomarker concept, i. e., the precursor natural products to the geological/environmental derivatives, and their application as multi-tracers in the geosphere and ambient environment. The mass spectrometric methods currently utilized for such analyses are reviewed with a general key to the literature, and typical examples of applications using GC-MS are also described. PMID:17623433

  11. Hydrocarbon precombusting catalyst survey and optimization for perfluorocarbon tracer analysis in subsurface tracer applications

    SciTech Connect

    Senum, G.I.; Cote, E.A.; D'Ottavio, T.W.; Dietz, R.N.

    1989-05-01

    The extension of the perfluorocarbon tracer (PFT) technology, as developed for atmospheric dispersion and transport studies to petroleum reservoir characterization studies, required the development of a more robust catalyst to remove analysis interferents caused by the adsorption of 5 liter hydrocarbon reservoir gas samples containing PFT onto carbonaceous adsorbent samplers. Two approaches were studied: (1) replacement of the present internal laboratory PFT analysis system catalyst with a more effective catalyst and, if this was not viable, (2) development of an external preprocessing catalyst train, to significantly reduce the hydrocarbon levels in the sample, without affecting the perfluorocarbon tracers. 13 figs., 13 tabs.

  12. The Fischa-Dagnitz spring, Southern Vienna Basin: a multi tracer time series study re-assessing earlier conceptual assumptions.

    NASA Astrophysics Data System (ADS)

    Suckow, Axel; Gerber, Christoph; Kralik, Martin; Sültenfuss, Jürgen; Purtschert, Roland

    2013-04-01

    The gravel aquifer of the Southern Vienna Basin is a very important backup drinking water resource for the city of Vienna. A discharge location, the Fischa-Dagnitz spring in the Southern Vienna Basin, Austria, was re-investigated in 2011, five years after the gas exchange tracer test published in (Stolp et al., 2010), and sampled for stable isotopes 18O/2H, tritium, 3He, SF6 and 85Kr (Gerber et al., 2012). Additionally, new tritium time series data (Davis et al., 1967), previously not considered in Stolp et al. (2010), were included. These show a higher and earlier tritium peak of >300 TU in 1965 in the discharge of the Fischa-Dagnitz spring as compared to 221 TU in 1972 considered in Stolp et al. (2010). The new 3He, SF6 and 85Kr gas tracer data from 2011 confirm the earlier finding for 3He of Stolp et al. (2010) and indicate a more recent equilibration with the atmosphere than the water bound tracers 18O, 2H and tritium. A new modelling attempt using the Lumpy code (Suckow, 2012) confirmed the discrepancy between the tritium data and the gaseous tracers 3He, SF6 and 85Kr. No steady-state combination of local recharge (represented by an exponential model) and Schwarza river infiltration flowing through the gravel aquifer (represented by a parallel dispersion model) can equally well explain both the tritium time series and the gas tracer results. A revised conceptual model proposes that a pinching of the aquifer at unconformities in the gravel body or a fault zone known in the gravel body forces groundwater along the flow path closer to the surface and exposes it to the atmosphere. This would tend to reset the "dating" clock for the gaseous tracers 3He, SF6 and 85Kr, which can equilibrate quickly with the atmosphere, but not for tritium, which marks the transport behaviour of the water itself. These findings are of importance also for other multi-tracer assessments of groundwater movement in phreatic aquifer systems. References: Davis, G.H., Payne, B.R., Dincer, T

  13. The Experience of Receiving and Then Losing a Scholarship: A Tracer Study of Secondary School Scholarship Recipients in Uganda

    ERIC Educational Resources Information Center

    Watson, Cathy; Chapman, David W.; Okurut, Charles Opolot

    2014-01-01

    This study reports findings of a tracer that investigated differences in the profile and subsequent experiences of scholarship recipients in Uganda who were able to complete the lower secondary school cycle (O level) without interruption (N = 174) and those that dropped out before completing their O-level cycle (N = 51), thereby losing their…

  14. Performance of Higher National Diploma of Building Technology Graduates in the Construction Industry: A Tracer Study in Kumasi Metropolis, Ghana

    ERIC Educational Resources Information Center

    Awere, E.; Edu-Buandoh, K. B. M.; Dadzie, D. K.; Aboagye, J. A.

    2016-01-01

    Building Technology graduates from Ghanaian Polytechnics seek employment in the construction industry, yet little information is known as to whether their tertiary education is really related to and meeting the actual needs of their prospective employers in the construction industry. The tracer study was conducted to ascertain the performance of…

  15. The Voices of Their Childhood: Families and Early Years' Practitioners Developing Emancipatory Methodologies through a Tracer Study

    ERIC Educational Resources Information Center

    Whalley, Margy; Arnold, Cath; Lawrence, Penny; Peerless, Sally

    2012-01-01

    The Pen Green Tracer Study questions the difference we may or may not have made to children's lives. An initial cohort of young people, now aged between 11-20, revisited their nursery in 2010. Their stories prompted discussion on parental involvement and advocacy within the education system, key worker attachment, and children's sense of self. Our…

  16. Experimental and numerical study of heavy gas dispersion in a ventilated room.

    PubMed

    Ricciardi, Laurent; Prévost, Corinne; Bouilloux, Laurent; Sestier-Carlin, Roger

    2008-04-01

    In order to better evaluate the consequences of an accidental release of heavy gas, such as uranium hexafluoride (UF(6)), in some installations in the nuclear fuel cycle, an experimental and numerical study was conducted by IRSN on heavy gas dispersion in a ventilated room. This study was based on about 20 injection configurations of a large quantity of a heavy tracer gas, sulphur hexafluoride (SF(6)), inside two ventilated rooms of different sizes. Stratification of the tracer gas was detected in all the configurations studied, even at low concentrations. Numerical simulations performed with the multidimensional CFX code enabled the stratification and the concentration levels reached in the rooms to be predicted overall, and the higher the air flow rate, the more satisfactory the comparison between simulation and experiment. PMID:17804157

  17. OTEC gas desorption studies

    NASA Astrophysics Data System (ADS)

    Chen, F. C.; Golshani, A.

    1982-02-01

    Experiments on deaeration in packed columns and barometric intake systems, and with hydraulic air compression for open-cycle OTEC systems are reported. A gas desorption test loop consisting of water storage tanks, a vacuum system, a liquid recirculating system, an air supply, a column test section, and two barometric leg test sections was used to perform the tests. The aerated water was directed through columns filled with either ceramic Raschig rings or plastic pall rings, and the system vacuum pressure, which drives the deaeration process, was found to be dependent on water velocity and intake pipe height. The addition of a barometric intake pipe increased the deaeration effect 10%, and further tests were run with lengths of PVC pipe as potential means for noncondensibles disposal through hydraulic air compression. Using the kinetic energy from the effluent flow to condense steam in the noncondensible stream improved the system efficiency.

  18. Validation studies of tracer tests in a fracture zone at the Finnsjön research area

    NASA Astrophysics Data System (ADS)

    Kimura, Hideo; Munakata, Masahiro

    Tracer experiments were performed in a fracture zone, extending several hundred metres, in crystalline rock in Sweden. This paper describes modellings of tracer experiments (radially converging and dipole test) and their numerical results. We have applied a variable aperture channeling model to both tracer tests and evaluated steady-state channel flows in the fracture zone. Solute transport in the channel flows was simulated by a particle-tracking technique considering matrix diffusion. Calculated breakthrough curves and pressures were compared with experimental ones. The calculated breakthrough curve obtained by an equivalen porous medium model was also compared with data from the dipole experiment. Our models seem to explain the experimental results well, but some important assumptions are necessary for calibration of the breakthrough curves. Further experimental data related to the assumptions and geostatistics would be needed for the full validation of the flow and transport model. Study shows that the mean apertures of fractures calibrated with the tracer tests increase with increasing flow rates.

  19. Diatoms as a tracer of hydrological connectivity: the Oak Creek case study (Oregon, USA)

    NASA Astrophysics Data System (ADS)

    Antonelli, Marta; Martínez-Carreras, Nuria; Frentress, Jay; Pfister, Laurent

    2015-04-01

    The vast heterogeneity and complexity of rainfall-runoff transformation processes expresses itself in a multitude of water sources and flowpaths - ultimately resulting in the well-known intricacy of hydrological connectivity. Pioneering work of Pfister et al. (2009) conducted in the Weierbach catchment (0.45 km2, NW Luxembourg, semi-oceanic climate) demonstrated the potential for diatoms (unicellular, eukaryotic algae) to be used as a tracer of hydrological connectivity. Diatoms originating from terrestrial habitats had been shown to be systematically flushed from the riparian areas into the stream during storm events. Here, we present a study conducted in the Oak Creek(0.17 km2, Oregon, Mediterranean climate), characterised by a large riparian area. Our first working hypothesis (H1) stipulates that diatoms are an ubiquitous tracer of fast hydrological flowpaths. The second hypothesis (H2) states that the riparian area is the major reservoir of terrestrial diatoms that contributes to the flushing process during rainfall events. A winter rainfall-runoff event was monitored in March 2012. Diatom samples were collected from soil, moss, epipelon and streamwater in order to characterise the communities along the hillslope-riparian-stream (HRS) continuum. Diatoms in each sample were also assigned to different wetness categories (according to Van Dam et al., 1994). The catchment was instrumented with an ISCO automatic streamwater sampler and the samples were analysed for conductivity, 18O, 2H, chemical elements and presence/abundance of diatoms belonging to different wetness categories. Our results show that the percentage of diatom species originating from habitats located outside of the stream evolves along the rising and falling limbs of the hydrograph. This observation confirms the event-related flushing of diatoms from terrestrial habitats to the stream and, consequently, the potential for diatoms to be used for the detection of hydrological connectivity in the

  20. A simulation study on superparamagnetic nanoparticle based multi-tracer tracking

    NASA Astrophysics Data System (ADS)

    Wu, Kai; Batra, Akash; Jain, Shray; Ye, Clark; Liu, Jinming; Wang, Jian-Ping

    2015-10-01

    Superparamagnetic nanoparticles (MNPs) have been utilized in biomedical sensing, detection, therapeutics, and diagnostics due to their unique magnetic response under different driving fields. In this letter, we report a multi-tracer tracking method that uses different kinds of MNPs as magnetic tracers along with two alternating magnetic fields that can be potentially used to build magnetic-based flow cytometry. By applying two driving fields at frequency f H and f L to MNPs, the response signal is measured at the combinatorial frequencies such as f H ± 2 f L (3rd harmonics), f H ± 4 f L (5th harmonics), f H ± 6 f L (7th harmonics), and so on. Each MNP has its own signature of phase and amplitude, and it is possible to differentiate individual MNPs in a mixture. We theoretically demonstrated colorizing up to 4-MNP tracers in one mixture with an error rate lower than 10%. The performance of multi-tracer imaging can be optimized by increasing the driving field frequency, choosing MNPs with higher saturation magnetization, and using MNP tracers with more centralized size distribution.

  1. Dual-tracer scintigraphy and subtraction studies in the diagnosis of hepatocellular carcinoma

    SciTech Connect

    Sostre, S.; Villagra, D.; Morales, N.E.; Rivera, J.V.

    1988-02-15

    Dual tracer scintigraphy (DTS) (technetium 99m (/sup 99m/Tc) sulfur colloid and gallium 67 citrate (67-gallium citrate)) of the liver and computer subtraction studies (SS) were performed in 26 patients subsequently proven to have hepatocellular carcinoma (HCC) and 32 patients with cirrhosis and focal defects on the colloid scan, with no evidence for HCC after a complete evaluation and a 2-year follow-up period. Both DTS and SS had a sensitivity of 96% and a specificity of 90.6% for HCC. There were three false positive cases (9.4%), two of which were occult abscesses. The predictive value of a positive test was 89% and that of a negative test was 97%. The smallest tumor detected measured 2 cm in diameter and was only visualized with the SS. In the clinical setting, when HCC is suspected (a situation in which tumors are usually larger than 2 cm and the pretest probability of disease is between 20% and 60%) the DTS and SS is an excellent test for the diagnosis or exclusion of HCC. It does not appear to have a role in screening programs.

  2. The Santa Monica Basin Tracer Experiment - A study of diapycnal and isopycnal mixing

    NASA Technical Reports Server (NTRS)

    Ledwell, James R.; Watson, Andrew J.

    1991-01-01

    Cross isopycnal (diapycnal) and lateral mixing and stirring below the sill of Santa Monica Basin were studied by releasing two tracers, sulfur hexafluoride and perfluorodecalin, as close as possible to an isopycnal surface and measuring their subsequent dispersion. The target for the release was a potential temperature surface at about 790 m depth, roughly 100 m above the bottom and 50 m below the sill. Three surveys, performed immediately after, about 7 weeks after, and about 6 months after the release, showed that the time scales for lateral stirring and mixing in the basin were between 2 and 5 months. The diapycnal diffusivity for the whole period was found to be 0.29 + or - 0.06 sq cm/s near the injection surface, where the buoyancy frequency was about 1.1 cph. This estimate may include some mixing in the turbulent boundary layer near the walls of the basin. The best estimate for the diapycnal diffusivity in the basin interior is 0.25 + or - 0.08 sq cm/s.

  3. A study of positrons from Soviet nuclear powered satellites as tracers for magnetospheric research

    SciTech Connect

    Hones, E.W. Jr. )

    1990-01-01

    Two Soviet satellites carrying nuclear reactors operated in circular 790 km orbits (65{degree} inclination) in 1987 and 1988. Positrons generated in the satellites' surfaces by the intense reactor gamma radiation escaped and were trapped for periods of minutes to hours in the geomagnetic field. These positrons have been observed on many occasions by gamma ray sensors on the SMM satellite (in 500 km orbit) which identify the positrons by the 511 keV gamma rays created when they annihilate in the satellite surface. The SMM detector provides a time resolution of 64 milliseconds. It has recorded positron rise-times of less than 0.5 second (corresponding to about 1 positron gyroradius) on many occasions as it encounters the low-L edge of positrons injected by the Soviet satellites as far as half-way around the earth. We are studying the potential of these sharply defined positron shells as magnetospheric tracers and as a means for examining particle diffusion and loss processes. 3 refs., 5 figs.

  4. Sinks for nitrogen inputs in terrestrial ecosystems: a meta-analysis of 15N tracer field studies

    USGS Publications Warehouse

    Templer, P.H.; Mack, M.C.; Chapin, F. S., III; Christenson, L.M.; Compton, J.E.; Crook, H.D.; Currie, W.S.; Curtis, C.J.; Dail, D.B.; D'Antonio, C. M.; Emmett, B.A.; Epstein, H.E.; Goodale, C.L.; Gundersen, P.; Hobbie, S.E.; Holland, K.; Hooper, D.U.; Hungate, B.A.; Lamontagne, S.; Nadelhoffer, K.J.; Osenberg, C.W.; Perakis, S.S.; Schleppi, P.; Schimel, J.; Schmidt, I.K.; Sommerkorn, M.; Spoelstra, J.; Tietema, A.; Wessel, W.W.; Zak, D.R.

    2012-01-01

    Effects of anthropogenic nitrogen (N) deposition and the ability of terrestrial ecosystems to store carbon (C) depend in part on the amount of N retained in the system and its partitioning among plant and soil pools. We conducted a meta-analysis of studies at 48 sites across four continents that used enriched 15N isotope tracers in order to synthesize information about total ecosystem N retention (i.e., total ecosystem 15N recovery in plant and soil pools) across natural systems and N partitioning among ecosystem pools. The greatest recoveries of ecosystem 15N tracer occurred in shrublands (mean, 89.5%) and wetlands (84.8%) followed by forests (74.9%) and grasslands (51.8%). In the short term (15N tracer application), total ecosystem 15N recovery was negatively correlated with fine-root and soil 15N natural abundance, and organic soil C and N concentration but was positively correlated with mean annual temperature and mineral soil C:N. In the longer term (3–18 months after 15N tracer application), total ecosystem 15N retention was negatively correlated with foliar natural-abundance 15N but was positively correlated with mineral soil C and N concentration and C: N, showing that plant and soil natural-abundance 15N and soil C:N are good indicators of total ecosystem N retention. Foliar N concentration was not significantly related to ecosystem 15N tracer recovery, suggesting that plant N status is not a good predictor of total ecosystem N retention. Because the largest ecosystem sinks for 15N tracer were below ground in forests, shrublands, and grasslands, we conclude that growth enhancement and potential for increased C storage in aboveground biomass from atmospheric N deposition is likely to be modest in these ecosystems. Total ecosystem 15N recovery decreased with N fertilization, with an apparent threshold fertilization rate of 46 kg N·ha-1·yr-1 above which most ecosystems showed net losses of applied 15N tracer in response to N fertilizer addition.

  5. Innovative techniques for the description of reservoir heterogeneity using tracers. Second technical annual progress report, October 1991--September 1992

    SciTech Connect

    Pope, G.A.; Sepehrnoori, K.

    1992-12-31

    This second annual report on innovative uses of tracers for reservoir characterization contains four sections each describing a novel use of oilfield tracers. The first section describes and illustrates the use of a new single-well tracer test to estimate wettability. This test consists of the injection of brine containing tracers followed by oil containing tracers, a shut-in period to allow some of the tracers to react, and then production of the tracers. The inclusion of the oil injection slug with tracers is unique to this test, and this is what makes the test work. We adapted our chemical simulator, UTCHEM, to enable us to study this tracer method and made an extensive simulation study to evaluate the effects of wettability based upon characteristic curves for relative permeability and capillary pressure for differing wetting states typical of oil reservoirs. The second section of this report describes a new method for analyzing interwell tracer data based upon a type-curve approach. Theoretical frequency response functions were used to build type curves of ``transfer function`` and ``phase spectrum`` that have dimensionless heterogeneity index as a parameter to characterize a stochastic permeability field. We illustrate this method by analyzing field tracer data. The third section of this report describes a new theory for interpreting interwell tracer data in terms of channeling and dispersive behavior for reservoirs. Once again, a stochastic approach to reservoir description is taken. The fourth section of this report describes our simulation of perfluorocarbon gas tracers. This new tracer technology developed at Brookhaven National Laboratory is being tested at the Elk Hills Naval Petroleum Reserve No. 1 in California. We report preliminary simulations made of these tracers in one of the oil reservoirs under evaluation with these tracers in this field. Our compostional simulator (UTCOMP) was used for this simulation study.

  6. Identification and characterization of conservative organic tracers for use as hydrologic tracers for the Yucca Mountain Site characterization study; Progress report, April 1, 1993--June 30, 1993

    SciTech Connect

    Dombrowski, T.; Stetzenbach, K.

    1993-08-01

    This report is in two parts one for the fluorinated benzoic acids and one for the fluorinated aliphatic acids. The assumptions made in the report regarding the amount of tracer that will be used, dilution of the tracer during the test and the length of exposure (if any) to individuals drinking the water were made by the authors. These assumptions must really come from the USGS hydrologists in charge of the c-well tracer testing program. Accurate estimates of dilution of the tracer during the test are also important because of solubility limitations of some of the tracers. Three of the difluorobenzoic acids have relatively low solubilities and may not be usable if the dilution estimates are large. The toxicologist that reviewed the document agreed with our conclusion that the fluorinated benzoic and toluic acids do not represent a health hazard if used under the conditions as outlined in the report. We are currently testing 15 of these compounds, and if even if three difluorobenzoic acids cannot be used because of solubility limitations we will still have 12 tracers. The toxicologist felt that the aliphatic fluorinated acids potentially present more of a health risk than the aromatic. This assessment was based on the fact of a known allergic response to halothane anesthetic. This risk, although minimal, is known and he felt that was enough reason to recommend against their use. The authors feel that the toxicologists interpretation of this risk was overly conservative, however, we will not go against his recommendation at this time for the following reasons. First, without the aliphatic compounds we still have 12 to 15 fluorinated aromatic acids which, should be enough for the c-well tests. Second, to get a permit to use aliphatic compounds would undoubtedly require a hearing which could be quite lengthy.

  7. Identification and characterization of conservative organic tracers for use as hydrologic tracers for the Yucca Mountain site characterization study. Final report

    SciTech Connect

    Stetzenbach, K.; Farnham, I.

    1996-06-01

    Extensive tracer testing is expected to take place at the C-well complex in the Nevada Test Site as part of the Yucca Mountain Site Characterization Project. The C-well complex consists of one pumping well, C3, and two injection wells, C1 and C2 into which tracer will be introduced. The goal of this research was to provide USGS with numerous tracers to completed these tests. Several classes of fluorinated organic acids have been evaluated. These include numerous isomers of fluorinated benzoic acids, cinnamic acids, and salicylic acids. Also several derivatives of 2-hydroxy nicotinic acid (pyridone) have been tested. The stability of these compounds was determined using batch and column tests. Ames testing (mutagenicity/carcinogenicity) was conducted on the fluorinated benzoic acids and a literature review of toxicity of the fluorobenzoates and three perfluoro aliphatic acids was prepared. Solubilities were measured and method development work was performed to optimize the detection of these compounds. A Quality Assurance (QA) Program was developed under existing DOE and USGS guidelines. The program includes QA procedures and technical standard operating procedures. A tracer test, using sodium iodide, was performed at the C-well complex. HRC chemists performed analyses on site, to provide real time data for the USGS hydrologists and in the laboratories at UNLV. Over 2,500 analyses were performed. This report provides the results of the laboratory experiments and literature reviews used to evaluate the potential tracers and reports on the results of the iodide C-well tracer test.

  8. The use of air as a natural tracer infractured hydrothermal systems, Los Azufres, Mexico, case study

    SciTech Connect

    Mario Cesar Sudrez Arriaga; Hector Gutierrez Puente, Josefina Moreno Ochoa

    1991-01-01

    Injection of atmospheric air mixed with cold water has been occurring since 1982 at the Los Azufres geothermal field. Several chemical and thermodynamical evidences show that air injection into this fractured hydrothermal system could be considered as a long term natural tracer test. Nitrogen and Argon separated from the air mixture migrate, under the action of the induced injection-extraction gradient, from reinjection sectors to production zones following preferential paths closely related to high permeability conduits. A coarse numerical estimation of the average permeability tensor existing at Tejamaniles, the southern sector, explains the unsuccessful recovery of the artificial tracer tests performed in past years: the anisotropic nature of the fractured volcanic rock would demand considerably quantities of tracer in order to be detected at the producing wells, especially when fluid extraction was low. At the same time concentrations of calcium, cesium, chloride, potassium, rubidium and sodium, are increasing in the liquid produced by the oldest wells of this field's sector.

  9. Subsurface barrier integrity verification using perfluorocarbon tracers

    SciTech Connect

    Sullivan, T.M.; Heiser, J.; Milian, L.; Senum, G.

    1996-12-01

    Subsurface barriers are an extremely promising remediation option to many waste management problems. Gas phase tracers include perfluorocarbon tracers (PFT`s) and chlorofluorocarbon tracers (CFC`s). Both have been applied for leak detection in subsurface systems. The focus of this report is to describe the barrier verification tests conducted using PFT`s and analysis of the data from the tests. PFT verification tests have been performed on a simulated waste pit at the Hanford Geotechnical facility and on an actual waste pit at Brookhaven National Laboratory (BNL). The objective of these tests were to demonstrate the proof-of-concept that PFT technology can be used to determine if small breaches form in the barrier and for estimating the effectiveness of the barrier in preventing migration of the gas tracer to the monitoring wells. The subsurface barrier systems created at Hanford and BNL are described. The experimental results and the analysis of the data follow. Based on the findings of this study, conclusions are offered and suggestions for future work are presented.

  10. Tracer airflow measurement system (TRAMS)

    DOEpatents

    Wang, Duo

    2007-04-24

    A method and apparatus for measuring fluid flow in a duct is disclosed. The invention uses a novel high velocity tracer injector system, an optional insertable folding mixing fan for homogenizing the tracer within the duct bulk fluid flow, and a perforated hose sampling system. A preferred embodiment uses CO.sub.2 as a tracer gas for measuring air flow in commercial and/or residential ducts. In extant commercial buildings, ducts not readily accessible by hanging ceilings may be drilled with readily plugged small diameter holes to allow for injection, optional mixing where desired using a novel insertable foldable mixing fan, and sampling hose.