Science.gov

Sample records for gas-carrier ultrasound contrast

  1. Section 6—Mechanical Bioeffects in the Presence of Gas-Carrier Ultrasound Contrast Agents

    PubMed Central

    2007-01-01

    This review addresses the issue of mechanical ultrasound-induced bioeffects in the presence of gas carrier contrast agents (GCAs). Here, the term “contrast agent” refers to those agents that provide ultrasound contrast by being composed of microbubbles, encapsulated or not, containing one or more gases. Provided in this section are summaries on how contrast agents work, some of their current uses, and the potential for bio-effects associated with their presence in an ultrasonic field. PMID:10680618

  2. Ultrasound Despeckling for Contrast Enhancement

    PubMed Central

    Tay, Peter C.; Garson, Christopher D.; Acton, Scott T.; Hossack, John A.

    2010-01-01

    Images produced by ultrasound systems are adversely hampered by a stochastic process known as speckle. A despeckling method based upon removing outlier is proposed. The method is developed to contrast enhance B-mode ultrasound images. The contrast enhancement is with respect to decreasing pixel variations in homogeneous regions while maintaining or improving differences in mean values of distinct regions. A comparison of the proposed despeckling filter is compared with the other well known despeckling filters. The evaluations of despeckling performance are based upon improvements to contrast enhancement, structural similarity, and segmentation results on a Field II simulated image and actual B-mode cardiac ultrasound images captured in vivo. PMID:20227984

  3. Ultrasound despeckling for contrast enhancement.

    PubMed

    Tay, Peter C; Garson, Christopher D; Acton, Scott T; Hossack, John A

    2010-07-01

    Images produced by ultrasound systems are adversely hampered by a stochastic process known as speckle. A despeckling method based upon removing outlier is proposed. The method is developed to contrast enhance B-mode ultrasound images. The contrast enhancement is with respect to decreasing pixel variations in homogeneous regions while maintaining or improving differences in mean values of distinct regions. A comparison of the proposed despeckling filter is compared with the other well known despeckling filters. The evaluations of despeckling performance are based upon improvements to contrast enhancement, structural similarity, and segmentation results on a Field II simulated image and actual B-mode cardiac ultrasound images captured in vivo. PMID:20227984

  4. Contrast-Enhanced Endoscopic Ultrasound

    PubMed Central

    Dietrich, Christoph F.; Sharma, M.; Hocke, M.

    2012-01-01

    The European Federation of Societies for Ultrasound in Medicine and Biology (EFSUMB) introduced guidelines on the use of contrast-enhanced ultrasound (CEUS) in 2004. This EFSUMB-document focused mainly on liver applications. However, new applications extending beyond the liver were developed thereafter. Increased interest in recent years in CEUS technique and in the application of CEUS in novel fields like endoscopic ultrasound (EUS) has revolutionized indications and applications. As a result, the EFSUMB initiated a new update of the guidelines in 2011 to include this additional knowledge. Some of the contrast-enhanced EUS (CE-EUS) indications are established, whereas others are preliminary; these latter indications are categorized as emergent CEUS applications since the available evidence is insufficient for general recommendation. This article focuses on the use of CE-EUS in various clinical settings. The reader will get an overview of current indications and possible applications of CE-EUS. This involves the introduction of different contrast studies including color Doppler techniques (known as contrast-enhanced high mechanical index endosonography or CEHMI-EUS) as well as more modern high-resolution contrast-enhanced techniques (known as contrast-enhanced low mechanical index endosonography or CELMI EUS). PMID:24949350

  5. Ultrasound microbubble contrast and current clinical applications.

    PubMed

    Dindyal, Shiva; Kyriakides, Constantinos

    2011-01-01

    Ultrasound imaging is widely used worldwide principally because it is cheap, easily available and contains no exposure to ionizing radiation. The advent of microbubble ultrasound contrast has further increased the diagnostic sensitivity and specificity of this technique thus widening its clinical applications. The third generation of ultrasound contrast agents consist of sulphur hexafluoride microbubbles encased in a phospholipid shell. This review will elaborate on the pharmacology, safety profile and method of action of these agents. We also aim to discuss the ever expanding uses for contrast enhanced ultrasound in a number of clinical specialities which include the liver, kidney, prostate, sentinel node detection, vascular tree and endovascular stent surveillance. We will also discuss some of the recent patents regarding the future uses of ultrasound microbubble contrast and recent technological advances in clinical applications. PMID:21222650

  6. Contrast enhanced ultrasound of breast cancer

    PubMed Central

    Cassano, E; Rizzo, S; Bozzini, A; Menna, S; Bellomi, M

    2006-01-01

    The importance of ultrasound examination in the diagnosis of breast cancer has been widely demonstrated. During the last few years, the introduction of ultrasound contrast media has been considered a promising tool for studying the vascular pattern of focal lesions within the breast. Our purpose was to assess whether contrast-enhanced (CE) ultrasound examination, performed using specific contrast imaging modes, can be helpful for detection and characterization of breast lesions, and for prediction of the response of breast cancer to therapy. PMID:16478698

  7. Contrast enhanced ultrasound of breast cancer.

    PubMed

    Cassano, E; Rizzo, S; Bozzini, A; Menna, S; Bellomi, M

    2006-01-01

    The importance of ultrasound examination in the diagnosis of breast cancer has been widely demonstrated. During the last few years, the introduction of ultrasound contrast media has been considered a promising tool for studying the vascular pattern of focal lesions within the breast. Our purpose was to assess whether contrast-enhanced (CE) ultrasound examination, performed using specific contrast imaging modes, can be helpful for detection and characterization of breast lesions, and for prediction of the response of breast cancer to therapy. PMID:16478698

  8. Contrast enhanced ultrasound of sentinel lymph nodes

    PubMed Central

    Cui, XinWu; Ignee, Andre; Nielsen, Michael Bachmann; Schreiber-Dietrich, Dagmar; De Molo, Chiara; Pirri, Clara; Jedrzejczyk, Maciej

    2013-01-01

    Sentinel lymph nodes are the first lymph nodes in the region that receive lymphatic drainage from a primary tumor. The detection or exclusion of sentinel lymph node micrometastases is critical in the staging of cancer, especially breast cancer and melanoma because it directly affects patient's prognosis and surgical management. Currently, intraoperative sentinel lymph node biopsies using blue dye and radioisotopes are the method of choice for the detection of sentinel lymph node with high identification rate. In contrast, conventional ultrasound is not capable of detecting sentinel lymph nodes in most cases. Contrast enhanced ultrasound with contrast specific imaging modes has been used for the evaluation and diagnostic work-up of peripherally located suspected lymphadenopathy. The method allows for real-time analysis of all vascular phases and the visualization of intranodal focal “avascular” areas that represent necrosis or deposits of neoplastic cells. In recent years, a number of animal and human studies showed that contrast enhanced ultrasound can be also used for the detection of sentinel lymph node, and may become a potential application in clinical routine. Several contrast agents have been used in those studies, including albumin solution, hydroxyethylated starch, SonoVue®, Sonazoid® and Definity®. This review summarizes the current knowledge about the use of ultrasound techniques in detection and evaluation of sentinel lymph node. PMID:26675994

  9. Contrast-enhanced and targeted ultrasound

    PubMed Central

    Postema, Michiel; Gilja, Odd Helge

    2011-01-01

    Ultrasonic imaging is becoming the most popular medical imaging modality, owing to the low price per examination and its safety. However, blood is a poor scatterer of ultrasound waves at clinical diagnostic transmit frequencies. For perfusion imaging, markers have been designed to enhance the contrast in B-mode imaging. These so-called ultrasound contrast agents consist of microscopically small gas bubbles encapsulated in biodegradable shells. In this review, the physical principles of ultrasound contrast agent microbubble behavior and their adjustment for drug delivery including sonoporation are described. Furthermore, an outline of clinical imaging applications of contrast-enhanced ultrasound is given. It is a challenging task to quantify and predict which bubble phenomenon occurs under which acoustic condition, and how these phenomena may be utilized in ultrasonic imaging. Aided by high-speed photography, our improved understanding of encapsulated microbubble behavior will lead to more sophisticated detection and delivery techniques. More sophisticated methods use quantitative approaches to measure the amount and the time course of bolus or reperfusion curves, and have shown great promise in revealing effective tumor responses to anti-angiogenic drugs in humans before tumor shrinkage occurs. These are beginning to be accepted into clinical practice. In the long term, targeted microbubbles for molecular imaging and eventually for directed anti-tumor therapy are expected to be tested. PMID:21218081

  10. Contrast-enhanced and targeted ultrasound.

    PubMed

    Postema, Michiel; Gilja, Odd Helge

    2011-01-01

    Ultrasonic imaging is becoming the most popular medical imaging modality, owing to the low price per examination and its safety. However, blood is a poor scatterer of ultrasound waves at clinical diagnostic transmit frequencies. For perfusion imaging, markers have been designed to enhance the contrast in B-mode imaging. These so-called ultrasound contrast agents consist of microscopically small gas bubbles encapsulated in biodegradable shells. In this review, the physical principles of ultrasound contrast agent microbubble behavior and their adjustment for drug delivery including sonoporation are described. Furthermore, an outline of clinical imaging applications of contrast-enhanced ultrasound is given. It is a challenging task to quantify and predict which bubble phenomenon occurs under which acoustic condition, and how these phenomena may be utilized in ultrasonic imaging. Aided by high-speed photography, our improved understanding of encapsulated microbubble behavior will lead to more sophisticated detection and delivery techniques. More sophisticated methods use quantitative approaches to measure the amount and the time course of bolus or reperfusion curves, and have shown great promise in revealing effective tumor responses to anti-angiogenic drugs in humans before tumor shrinkage occurs. These are beginning to be accepted into clinical practice. In the long term, targeted microbubbles for molecular imaging and eventually for directed anti-tumor therapy are expected to be tested. PMID:21218081

  11. Effects of ultrasound and ultrasound contrast agent on vascular tissue

    PubMed Central

    2012-01-01

    Background Ultrasound (US) imaging can be enhanced using gas-filled microbubble contrast agents. Strong echo signals are induced at the tissue-gas interface following microbubble collapse. Applications include assessment of ventricular function and virtual histology. Aim While ultrasound and US contrast agents are widely used, their impact on the physiological response of vascular tissue to vasoactive agents has not been investigated in detail. Methods and results In the present study, rat dorsal aortas were treated with US via a clinical imaging transducer in the presence or absence of the US contrast agent, Optison. Aortas treated with both US and Optison were unable to contract in response to phenylephrine or to relax in the presence of acetylcholine. Histology of the arteries was unremarkable. When the treated aortas were stained for endothelial markers, a distinct loss of endothelium was observed. Importantly, terminal deoxynucleotidyl transferase mediated dUTP nick-end-labeling (TUNEL) staining of treated aortas demonstrated incipient apoptosis in the endothelium. Conclusions Taken together, these ex vivo results suggest that the combination of US and Optison may alter arterial integrity and promote vascular injury; however, the in vivo interaction of Optison and ultrasound remains an open question. PMID:22805356

  12. Contrast-enhanced ultrasound: The evolving applications

    PubMed Central

    Xu, Hui-Xiong

    2009-01-01

    Contrast-enhanced ultrasound (CEUS) is a major breakthrough for ultrasound imaging in recent years. By using a microbubble contrast agent and contrast-specific imaging software, CEUS is able to depict the micro- and macro-circulation of the targeted organ, which in turn leads to improved performance in diagnosis. Due to the special dual blood supply system in the liver, CEUS is particularly suitable for liver imaging. It is evident that CEUS facilitates improvement for characterization of focal liver lesions (FLLs), detection of liver malignancy, guidance for interventional procedures, and evaluation of treatment response after local therapies. CEUS has been demonstrated to be equal to contrast-enhanced computed tomography or magnetic resonance imaging for the characterization of FLLs. In addition, the applicability of CEUS has expanded to non-liver structures such as gallbladder, bile duct, pancreas, kidney, spleen, breast, thyroid, and prostate. The usefulness of CEUS in these applications is confirmed by extensive literature production. Novel applications include detecting bleeding sites and hematomas in patients with abdominal trauma, guiding percutaneous injection therapy and therefore achieving the goal of using interventional ultrasonography in managing splenic trauma, assessing the activity of Crohn’s disease, and detecting suspected endoleaks after endovascular abdominal aneurysm repair. Contrast-enhanced intraoperative ultrasound (US) and intracavitary use of CEUS have been developed and clinically studied. The potential use of CEUS involves sentinel lymph node detection, drug or gene delivery, and molecular imaging. In conclusion, the advent of CEUS has greatly enhanced the usefulness of US and even changed the status of US in clinical practice. The application of CEUS in the clinic is continuously evolving and it is expected that its use will be expanded further in the future. PMID:21160717

  13. Contrast enhanced ultrasound of renal masses

    PubMed Central

    Ignee, Andre; Straub, Bernd; Schuessler, Gudrun; Dietrich, Christoph Frank

    2010-01-01

    Contrast enhanced ultrasound (CEUS) has gained clinical importance over the last years for the characterization of hepatic masses. Its role in extrahepatic indications has been investigated repeatedly but has been less comprehensively studied. Currently more than 50% of renal masses are incidentally diagnosed, mostly by B-mode ultrasound. The method of choice for characterization of renal lesions is contrast enhanced computed tomography (CECT). In the case of cystic lesions CECT refers to the Bosniak classification for cystic lesions to assess the risk of malignant behavior. The majority of masses are renal cell carcinoma, but the exact proportion is controversial. Disadvantages of CECT are a significant risk for patients with impaired renal function, allergic reactions and hyperthyroidism due to iodinated contrast agents. Several studies concerning CEUS for the characterization of both solid and cystic renal lesions have been published, but prospective multicenter studies are missing, the presented data being mainly descriptive. The aim of the this manuscript is to review the current literature for CEUS in renal masses, to summarize the available data and focus on possible concepts for studies in the future. PMID:21160736

  14. Photoacoustic cell for ultrasound contrast agent characterization.

    PubMed

    Alippi, A; Bettucci, A; Biagioni, A; D'Orazio, A; Germano, M; Passeri, D

    2010-10-01

    Photoacoustics has emerged as a tool for the study of liquid gel suspension behavior and has been recently employed in a number of new biomedical applications. In this paper, a photoacoustic sensor is presented which was designed and realized for analyzing photothermal signals from solutions filled with microbubbles, commonly used as ultrasound contrast agents in echographic imaging techniques. It is a closed cell device, where photothermal volume variation of an aqueous solution produces the periodic deflection of a thin membrane closing the cell at the end of a short pipe. The cell then acts as a Helmholtz resonator, where the displacement of the membrane is measured through a laser probe interferometer, whereas photoacoustic signal is generated by a laser chopped light beam impinging onto the solution through a glass window. Particularly, the microbubble shell has been modeled through an effective surface tension parameter, which has been then evaluated from experimental data through the shift of the resonance frequencies of the photoacoustic sensor. This shift of the resonance frequencies of the photoacoustic sensor caused by microbubble solutions is high enough for making such a cell a reliable tool for testing ultrasound contrast agent, particularly for bubble shell characterization. PMID:21034110

  15. Photoacoustic cell for ultrasound contrast agent characterization

    NASA Astrophysics Data System (ADS)

    Alippi, A.; Bettucci, A.; Biagioni, A.; D'Orazio, A.; Germano, M.; Passeri, D.

    2010-10-01

    Photoacoustics has emerged as a tool for the study of liquid gel suspension behavior and has been recently employed in a number of new biomedical applications. In this paper, a photoacoustic sensor is presented which was designed and realized for analyzing photothermal signals from solutions filled with microbubbles, commonly used as ultrasound contrast agents in echographic imaging techniques. It is a closed cell device, where photothermal volume variation of an aqueous solution produces the periodic deflection of a thin membrane closing the cell at the end of a short pipe. The cell then acts as a Helmholtz resonator, where the displacement of the membrane is measured through a laser probe interferometer, whereas photoacoustic signal is generated by a laser chopped light beam impinging onto the solution through a glass window. Particularly, the microbubble shell has been modeled through an effective surface tension parameter, which has been then evaluated from experimental data through the shift of the resonance frequencies of the photoacoustic sensor. This shift of the resonance frequencies of the photoacoustic sensor caused by microbubble solutions is high enough for making such a cell a reliable tool for testing ultrasound contrast agent, particularly for bubble shell characterization.

  16. Covert contrast in velar fronting: An acoustic and ultrasound study.

    PubMed

    McAllister Byun, Tara; Buchwald, Adam; Mizoguchi, Ai

    2016-01-01

    There is growing evidence that speech sound acquisition is a gradual process, with instrumental measures frequently revealing covert contrast in errors perceived to involve phonemic substitution. Ultrasound imaging has the potential to expand our understanding of covert contrast by showing whether a child uses different tongue shapes while producing sounds that are perceived as neutralised. This study used an ultrasound measure (Dorsum Excursion Index) and acoustic measures (VOT and spectral moments of the burst) to investigate overt and covert contrast between velar and alveolar stops in child speech. Participants were two children who produced a perceptually overt velar-alveolar contrast and two children who neutralised the contrast via velar fronting. Both acoustic and ultrasound measures revealed significant differences between perceptually distinct velar and alveolar targets. One child with velar fronting demonstrated covert contrast in one acoustic and one ultrasound measure; the other showed no evidence of contrast. Clinical implications are discussed in this article. PMID:26325303

  17. Covert contrast in velar fronting: An acoustic and ultrasound study

    PubMed Central

    Byun, Tara McAllister; Buchwald, Adam; Mizoguchi, Ai

    2016-01-01

    There is growing evidence that speech sound acquisition is a gradual process, with instrumental measures frequently revealing covert contrast in errors perceived to involve phonemic substitution. Ultrasound imaging has the potential to expand our understanding of covert contrast by showing whether a child uses different tongue shapes while producing sounds that are perceived as neutralized. This study used an ultrasound measure (Dorsum Excursion Index) and acoustic measures (VOT and spectral moments of the burst) to investigate overt and covert contrast between velar and alveolar stops in child speech. Participants were two children who produced a perceptually overt velar-alveolar contrast and two children who neutralized the contrast via velar fronting. Both acoustic and ultrasound measures revealed significant differences between perceptually distinct velar and alveolar targets. One child with velar fronting demonstrated covert contrast in one acoustic and one ultrasound measure; the other showed no evidence of contrast. Clinical implications are discussed. PMID:26325303

  18. Recent Experiences and Advances in Contrast-Enhanced Subharmonic Ultrasound

    PubMed Central

    Eisenbrey, John R.; Liu, Ji-Bin; Forsberg, Flemming

    2015-01-01

    Nonlinear contrast-enhanced ultrasound imaging schemes strive to suppress tissue signals in order to better visualize nonlinear signals from blood-pooling ultrasound contrast agents. Because tissue does not generate a subharmonic response (i.e., signal at half the transmit frequency), subharmonic imaging has been proposed as a method for isolating ultrasound microbubble signals while suppressing surrounding tissue signals. In this paper, we summarize recent advances in the use of subharmonic imaging in vivo. These advances include the implementation of subharmonic imaging on linear and curvilinear arrays, intravascular probes, and three-dimensional probes for breast, renal, liver, plaque, and tumor imaging. PMID:26090430

  19. Perfusion imaging with non-contrast ultrasound

    NASA Astrophysics Data System (ADS)

    Tierney, Jaime E.; Dumont, Douglas M.; Byram, Brett C.

    2016-04-01

    A Doppler ultrasound clutter filter that enables estimation of low velocity blood flow could considerably improve ultrasound as a tool for clinical diagnosis and monitoring, including for the evaluation of vascular diseases and tumor perfusion. Conventional Doppler ultrasound is currently used for visualizing and estimating blood flow. However, conventional Doppler is limited by frame rate and tissue clutter caused by involuntary movement of the patient or sonographer. Spectral broadening of the clutter due to tissue motion limits ultrasound's ability to detect blood flow less than about 5mm/s at an 8MHz center frequency. We propose a clutter filtering technique that may increase the sensitivity of Doppler measurements to at least as low as 0.41mm/s. The proposed filter uses an adaptive demodulation scheme that decreases the bandwidth of the clutter. To test the performance of the adaptive demodulation method at removing sonographer hand motion, six volunteer subjects acquired data from a basic quality assurance phantom. Additionally, to test initial in vivo feasibility, an arterial occlusion reactive hyperemia study was performed to assess the efficiency of the proposed filter at preserving signals from blood velocities 2mm/s or greater. The hand motion study resulted in initial average bandwidths of 577Hz (28.5mm/s), which were decreased to 7.28Hz (0.36mm/s) at -60 dB at 3cm using our approach. The in vivo power Doppler study resulted in 15.2dB and 0.15dB dynamic ranges between the lowest and highest blood flow time points for the proposed filter and conventional 50Hz high pass filter, respectively.

  20. Cardiac arrhythmias produced by ultrasound and contrast agents

    NASA Astrophysics Data System (ADS)

    Rota, Claudio

    Ultrasound is used widely in medicine for both diagnostic and therapeutic applications. Ultrasound contrast agents are suspensions of gas-filled microbubbles used to enhance diagnostic imaging. Microbubble contrast agents can increase the likelihood of bioeffects of ultrasound associated with acoustic cavitation. Under certain exposure conditions, the interaction of ultrasound with cardiac tissues can produce cardiac arrhythmias. The general objective of this thesis was to develop a greater understanding of ultrasound-induced premature cardiac beats. The hypothesis guiding this work was that acoustic cavitation is the physical mechanism for the production of arrhythmias with ultrasound. This hypothesis was tested through a series of experiments with mice in vivo and theoretical investigations. Results of this research supported the acoustic cavitation hypothesis. The acoustic pressure threshold for premature beats was significantly lower with microbubble contrast agents present in the blood than without. With microbubbles, the threshold for premature beats was below the current output limits of diagnostic devices. The threshold was not significantly dependent upon contrast agent type and was not influenced by contrast agent dose over three orders of magnitude. Furthermore, the dependence of the threshold on acoustic frequency was consistent with the frequency dependence of acoustic cavitation. Experimentally determined thresholds for premature beats in vivo were in excellent agreement with theoretically estimated thresholds for inertial cavitation. A passive cavitation detector (PCD) was used to measure the acoustic emissions produced by cavitating microbubbles in vivo. A direct correlation between the amplitude of the PCD and the percentage of ultrasound pulses producing a premature beat was consistent with cavitation as a mechanism for this bioeffect. Although this thesis focused on the mechanistic understanding of ultrasound-induced arrhythmias, more persistent

  1. Sonophoresis Using Ultrasound Contrast Agents: Dependence on Concentration

    PubMed Central

    Park, Donghee; Song, Gillsoo; Jo, Yongjun; Won, Jongho; Son, Taeyoon; Cha, Ohrum; Kim, Jinho; Jung, Byungjo; Park, Hyunjin; Kim, Chul-Woo; Seo, Jongbum

    2016-01-01

    Sonophoresis can increase skin permeability to various drugs in transdermal drug delivery. Cavitation is recognized as the predominant mechanism of sonophoresis. Recently, a new logical approach to enhance the efficiency of transdermal drug delivery was tried. It is to utilize the engineered microbubble and its resonant frequency for increase of cavitation activity. Actively-induced cavitation with low-intensity ultrasound (less than ~1 MPa) causes disordering of the lipid bilayers and the formation of aqueous channels by stable cavitation which indicates a continuous oscillation of bubbles. Furthermore, the mutual interactions of microbubble determined by concentration of added bubble are also thought to be an important factor for activity of stable cavitation, even in different characteristics of drug. In the present study, we addressed the dependence of ultrasound contrast agent concentration using two types of drug on the efficiency of transdermal drug delivery. Two types of experiment were designed to quantitatively evaluate the efficiency of transdermal drug delivery according to ultrasound contrast agent concentration. First, an experiment of optical clearing using a tissue optical clearing agent was designed to assess the efficiency of sonophoresis with ultrasound contrast agents. Second, a Franz diffusion cell with ferulic acid was used to quantitatively determine the amount of drug delivered to the skin sample by sonophoresis with ultrasound contrast agents. The maximum enhancement ratio of sonophoresis with a concentration of 1:1,000 was approximately 3.1 times greater than that in the ultrasound group without ultrasound contrast agent and approximately 7.5 times greater than that in the control group. These results support our hypothesis that sonophoresis becomes more effective in transdermal drug delivery due to the presence of engineered bubbles, and that the efficiency of transdermal drug delivery using sonophoresis with microbubbles depends on the

  2. Sonophoresis Using Ultrasound Contrast Agents: Dependence on Concentration.

    PubMed

    Park, Donghee; Song, Gillsoo; Jo, Yongjun; Won, Jongho; Son, Taeyoon; Cha, Ohrum; Kim, Jinho; Jung, Byungjo; Park, Hyunjin; Kim, Chul-Woo; Seo, Jongbum

    2016-01-01

    Sonophoresis can increase skin permeability to various drugs in transdermal drug delivery. Cavitation is recognized as the predominant mechanism of sonophoresis. Recently, a new logical approach to enhance the efficiency of transdermal drug delivery was tried. It is to utilize the engineered microbubble and its resonant frequency for increase of cavitation activity. Actively-induced cavitation with low-intensity ultrasound (less than ~1 MPa) causes disordering of the lipid bilayers and the formation of aqueous channels by stable cavitation which indicates a continuous oscillation of bubbles. Furthermore, the mutual interactions of microbubble determined by concentration of added bubble are also thought to be an important factor for activity of stable cavitation, even in different characteristics of drug. In the present study, we addressed the dependence of ultrasound contrast agent concentration using two types of drug on the efficiency of transdermal drug delivery. Two types of experiment were designed to quantitatively evaluate the efficiency of transdermal drug delivery according to ultrasound contrast agent concentration. First, an experiment of optical clearing using a tissue optical clearing agent was designed to assess the efficiency of sonophoresis with ultrasound contrast agents. Second, a Franz diffusion cell with ferulic acid was used to quantitatively determine the amount of drug delivered to the skin sample by sonophoresis with ultrasound contrast agents. The maximum enhancement ratio of sonophoresis with a concentration of 1:1,000 was approximately 3.1 times greater than that in the ultrasound group without ultrasound contrast agent and approximately 7.5 times greater than that in the control group. These results support our hypothesis that sonophoresis becomes more effective in transdermal drug delivery due to the presence of engineered bubbles, and that the efficiency of transdermal drug delivery using sonophoresis with microbubbles depends on the

  3. Ultrasound Imaging Beyond the Vasculature with New Generation Contrast Agents

    PubMed Central

    Perera, Reshani H.; Hernandez, Christopher; Zhou, Haoyan; Kota, Pavan; Burke, Alan

    2015-01-01

    Current commercially available ultrasound contrast agents are gas-filled, lipid- or protein-stabilized microbubbles larger than 1 μm in diameter. Because the signal generated by these agents is highly dependent on their size, small yet highly echogenic particles have been historically difficult to produce. This has limited the molecular imaging applications of ultrasound to the blood pool. In the area of cancer imaging, microbubble applications have been constrained to imaging molecular signatures of tumor vasculature and drug delivery enabled by ultrasound-modulated bubble destruction. Recently, with the rise of sophisticated advancements in nanomedicine, ultrasound contrast agents, which are an order of magnitude smaller (100-500 nm) than their currently utilized counterparts, have been undergoing rapid development. These agents are poised to greatly expand the capabilities of ultrasound in the field of targeted cancer detection and therapy by taking advantage of the enhanced permeability and retention phenomenon of many tumors and can extravasate beyond the leaky tumor vasculature. Agent extravasation facilitates highly sensitive detection of cell surface or microenvironment biomarkers, which could advance early cancer detection. Likewise, when combined with appropriate therapeutic agents and ultrasound-mediated deployment on demand, directly at the tumor site, these nanoparticles have been shown to contribute to improved therapeutic outcomes. Ultrasound's safety profile, broad accessibility and relatively low cost make it an ideal modality for the changing face of healthcare today. Aided by the multifaceted nano-sized contrast agents and targeted theranostic moieties described herein, ultrasound can considerably broaden its reach in future applications focused on the diagnosis and staging of cancer. PMID:25580914

  4. Feasibility of percutaneous contrast ultrasound-guided cholecystography in dogs.

    PubMed

    Ji, Seoyeoun; Jung, Sunyoung; Kim, Boeun; Jung, Joohyun; Yoon, Junghee; Choi, Mincheol

    2015-01-01

    Differentiating hepatocellular disease versus biliary obstruction can be challenging in dogs presented for icterus. The purpose of this prospective study was to determine the feasibility of percutaneous contrast ultrasound-guided cholecystography in dogs. Ten normal dogs weighing 7.6-13.0 kg (median 9.8 kg) were recruited. All dogs were considered normal based on complete blood count, serum chemistry profile, ultrasound examination, and percutaneous radiographic cholecystography. Percutaneous contrast ultrasound-guided cholecystography was performed using 0.5 ml of commercially available contrast agent and two conventional ultrasound machines for simultaneous scanning at two different locations. Two observers independently evaluated the time to initial detection of contrast in the proximal duodenum and duration of contrast enhancement via visual monitoring. Dynamic contrast enhancement was calculated using time-intensity curves. Mean (± SD) and median (range) of time to initial detection were 8.60 s (± 3.35) and 8.0 s (2.0-11.0), respectively, and mean and median duration were 50.45 s (± 23.24) and 53.0 s (20.0 - 70.0), respectively. Mean, median, and range of peak intensity were 114.1 mean pixel value (MPV) (SD ± 30.7), 109.2 MPV, and 79.7-166.7, respectively, and mean, median, and range of time to peak intensity were 26.1 s (SD ± 7.1 s), 24.0 s, and 19.0-41.0 s, respectively. Findings indicated that percutaneous contrast ultrasound-guided cholecystography is a feasible technique for detecting and quantifying patency of the bile duct in normal dogs. Future studies are needed to assess the diagnostic utility of this technique for dogs with biliary obstruction. PMID:25403172

  5. Tunable Diacetylene Polymerized Shell Microbubbles as Ultrasound Contrast Agents

    PubMed Central

    Park, Yoonjee; Luce, Adam C.; Whitaker, Ragnhild D.; Amin, Bhumica; Cabodi, Mario; Nap, Rikkert J.; Szleifer, Igal; Cleveland, Robin O.; Nagy, Jon O.; Wong, Joyce Y.

    2012-01-01

    Monodisperse gas microbubbles, encapsulated with a shell of photopolymerizable diacetylene lipids and phospholipids, were produced by microfluidic flow focusing, for use as ultrasound contrast agents. The stability of the polymerized shell microbubbles against both aggregation and gas dissolution under physiological conditions was studied. Polyethylene glycol (PEG) 5000, which was attached to the diacetylene lipids, was predicted by molecular theory to provide more steric hindrance against aggregation than PEG 2000 and this was confirmed experimentally. The polymerized shell microbubbles were found to have higher shell-resistance than nonpolymerizable shell microbubbles and commercially available microbubbles (Vevo MicroMarker). The acoustic stability under 7.5 MHz ultrasound insonation was significantly greater than for the two comparison microbubbles. The acoustic stability was tunable by varying the amount of diacetylene lipid. Thus, our polymerized shell microbubbles are a promising platform for ultrasound contrast agents. PMID:22260537

  6. Filtering and detection of low contrast structures on ultrasound images

    NASA Astrophysics Data System (ADS)

    Vargas-Quintero, Lorena; Escalante-Ramírez, Boris; Arámbula, Fernando

    2012-06-01

    In this paper, we propose a detection method of low contrast structures in medical ultrasound images. Since noise speckle makes difficult the analysis of ultrasound images, two approaches based on the wavelet and Hermite-transforms for enhancement and noise reduction are compared. These techniques assume that speckle pattern is a random signal characterized by a Rayleigh distribution and affects the image as a multiplicative noise. For the wavelet-based approach, a Bayesian estimator at subband level for pixel classification is used. All the estimation parameters are calculated using an adjustment method derived from the first and second order statistical moments. The Hermite method computes a mask to find those pixels that are corrupted by speckle. In this work, we consider a statistical detection model that depends on the variable size and contrast of the image speckle. The algorithms have been evaluated using several real and synthetic ultrasound images. Combinations of the implemented methods can be helpful for automatic detection applications of tumors in mammographic ultrasound images. The employed filtering techniques are quantitatively and qualitatively compared with other previously published methods applied on ultrasound medical images.

  7. Using ultrasound to steer ultrasound contrast agents: Implications for targeted drug delivery

    NASA Astrophysics Data System (ADS)

    Clark, Alicia; Aliseda, Alberto

    2013-11-01

    Ultrasound can be used to manipulate ultrasound contrast agents (UCAs), micron-sized bubbles used in ultrasound imaging to increase image contrast. The Bjerknes force, resulting from the lagged response of the microbubbles to the oscillatory ultrasound pressure field, can be utilized to steer the microbubbles to a targeted area in the vasculature, with the microbubbles serving as drug delivery vectors and injectors. The response of microbubbles to ultrasound in a sheared flow has shown a complex coupling of ultrasound-induced volume oscillations with hydrodynamic forces: Saffman lift and the Bjerknes force. In this work, the relative influence of these two forces acting in the across-streamlines direction is determined as a function of the Reynolds and Womersley and the excitation to bubble natural frequency ratio. We use in-vitro experiments to study the behavior of microbubbles in physiologically-realistic pulsatile flows. Quantitative information about microbubble trajectories in physiological conditions is necessary to develop models in order to control ultrasound steering of bubble-based drug delivery vectors in the human vasculature.

  8. Contrast-enhanced ultrasound in oncology

    PubMed Central

    Rasmussen, F.

    2011-01-01

    Abstract In patients with known malignant disease, 51% of liver lesions less than 1.5 cm turn out to be benign. Whether the probability of malignancy is high or low, further investigations are often necessary to definitely exclude malignancy. Contrast-enhanced ultrasonography has a prominent role in lesion characterization with a diagnostic accuracy comparable with computed tomography and magnetic resonance imaging. Anti-angiogenic treatment is common in most oncological institutions and the response evaluation is a new challenge with a research focus on the change in tumour vasculature and perfusion. In planning biopsies, CEUS can identify necrotic and viable areas of tumours and improve the diagnostic accuracy. PMID:22186152

  9. Cumulative phase delay imaging - A new contrast enhanced ultrasound modality

    SciTech Connect

    Demi, Libertario Sloun, Ruud J. G. van; Mischi, Massimo; Wijkstra, Hessel

    2015-10-28

    Recently, a new acoustic marker for ultrasound contrast agents (UCAs) has been introduced. A cumulative phase delay (CPD) between the second harmonic and fundamental pressure wave field components is in fact observable for ultrasound propagating through UCAs. This phenomenon is absent in the case of tissue nonlinearity and is dependent on insonating pressure and frequency, UCA concentration, and propagation path length through UCAs. In this paper, ultrasound images based on this marker are presented. The ULA-OP research platform, in combination with a LA332 linear array probe (Esaote, Firenze Italy), were used to image a gelatin phantom containing a PVC plate (used as a reflector) and a cylindrical cavity measuring 7 mm in diameter (placed in between the observation point and the PVC plate). The cavity contained a 240 µL/L SonoVueO{sup ®} UCA concentration. Two insonating frequencies (3 MHz and 2.5 MHz) were used to scan the gelatine phantom. A mechanical index MI = 0.07, measured in water at the cavity location with a HGL-0400 hydrophone (Onda, Sunnyvale, CA), was utilized. Processing the ultrasound signals backscattered from the plate, ultrasound images were generated in a tomographic fashion using the filtered back-projection method. As already observed in previous studies, significantly higher CPD values are measured when imaging at a frequency of 2.5 MHz, as compared to imaging at 3 MHz. In conclusion, these results confirm the applicability of the discussed CPD as a marker for contrast imaging. Comparison with standard contrast-enhanced ultrasound imaging modalities will be the focus of future work.

  10. Cumulative phase delay imaging - A new contrast enhanced ultrasound modality

    NASA Astrophysics Data System (ADS)

    Demi, Libertario; van Sloun, Ruud J. G.; Wijkstra, Hessel; Mischi, Massimo

    2015-10-01

    Recently, a new acoustic marker for ultrasound contrast agents (UCAs) has been introduced. A cumulative phase delay (CPD) between the second harmonic and fundamental pressure wave field components is in fact observable for ultrasound propagating through UCAs. This phenomenon is absent in the case of tissue nonlinearity and is dependent on insonating pressure and frequency, UCA concentration, and propagation path length through UCAs. In this paper, ultrasound images based on this marker are presented. The ULA-OP research platform, in combination with a LA332 linear array probe (Esaote, Firenze Italy), were used to image a gelatin phantom containing a PVC plate (used as a reflector) and a cylindrical cavity measuring 7 mm in diameter (placed in between the observation point and the PVC plate). The cavity contained a 240 µL/L SonoVueO® UCA concentration. Two insonating frequencies (3 MHz and 2.5 MHz) were used to scan the gelatine phantom. A mechanical index MI = 0.07, measured in water at the cavity location with a HGL-0400 hydrophone (Onda, Sunnyvale, CA), was utilized. Processing the ultrasound signals backscattered from the plate, ultrasound images were generated in a tomographic fashion using the filtered back-projection method. As already observed in previous studies, significantly higher CPD values are measured when imaging at a frequency of 2.5 MHz, as compared to imaging at 3 MHz. In conclusion, these results confirm the applicability of the discussed CPD as a marker for contrast imaging. Comparison with standard contrast-enhanced ultrasound imaging modalities will be the focus of future work.

  11. Cumulative phase delay imaging for contrast-enhanced ultrasound tomography.

    PubMed

    Demi, Libertario; van Sloun, Ruud J G; Wijkstra, Hessel; Mischi, Massimo

    2015-11-01

    Standard dynamic-contrast enhanced ultrasound (DCE-US) imaging detects and estimates ultrasound-contrast-agent (UCA) concentration based on the amplitude of the nonlinear (harmonic) components generated during ultrasound (US) propagation through UCAs. However, harmonic components generation is not specific to UCAs, as it also occurs for US propagating through tissue. Moreover, nonlinear artifacts affect standard DCE-US imaging, causing contrast to tissue ratio reduction, and resulting in possible misclassification of tissue and misinterpretation of UCA concentration. Furthermore, no contrast-specific modality exists for DCE-US tomography; in particular speed-of-sound changes due to UCAs are well within those caused by different tissue types. Recently, a new marker for UCAs has been introduced. A cumulative phase delay (CPD) between the second harmonic and fundamental component is in fact observable for US propagating through UCAs, and is absent in tissue. In this paper, tomographic US images based on CPD are for the first time presented and compared to speed-of-sound US tomography. Results show the applicability of this marker for contrast specific US imaging, with cumulative phase delay imaging (CPDI) showing superior capabilities in detecting and localizing UCA, as compared to speed-of-sound US tomography. Cavities (filled with UCA) which were down to 1 mm in diameter were clearly detectable. Moreover, CPDI is free of the above mentioned nonlinear artifacts. These results open important possibilities to DCE-US tomography, with potential applications to breast imaging for cancer localization. PMID:26459771

  12. Cumulative phase delay imaging for contrast-enhanced ultrasound tomography

    NASA Astrophysics Data System (ADS)

    Demi, Libertario; van Sloun, Ruud J. G.; Wijkstra, Hessel; Mischi, Massimo

    2015-11-01

    Standard dynamic-contrast enhanced ultrasound (DCE-US) imaging detects and estimates ultrasound-contrast-agent (UCA) concentration based on the amplitude of the nonlinear (harmonic) components generated during ultrasound (US) propagation through UCAs. However, harmonic components generation is not specific to UCAs, as it also occurs for US propagating through tissue. Moreover, nonlinear artifacts affect standard DCE-US imaging, causing contrast to tissue ratio reduction, and resulting in possible misclassification of tissue and misinterpretation of UCA concentration. Furthermore, no contrast-specific modality exists for DCE-US tomography; in particular speed-of-sound changes due to UCAs are well within those caused by different tissue types. Recently, a new marker for UCAs has been introduced. A cumulative phase delay (CPD) between the second harmonic and fundamental component is in fact observable for US propagating through UCAs, and is absent in tissue. In this paper, tomographic US images based on CPD are for the first time presented and compared to speed-of-sound US tomography. Results show the applicability of this marker for contrast specific US imaging, with cumulative phase delay imaging (CPDI) showing superior capabilities in detecting and localizing UCA, as compared to speed-of-sound US tomography. Cavities (filled with UCA) which were down to 1 mm in diameter were clearly detectable. Moreover, CPDI is free of the above mentioned nonlinear artifacts. These results open important possibilities to DCE-US tomography, with potential applications to breast imaging for cancer localization.

  13. Dual-frequency piezoelectric transducers for contrast enhanced ultrasound imaging.

    PubMed

    Martin, K Heath; Lindsey, Brooks D; Ma, Jianguo; Lee, Mike; Li, Sibo; Foster, F Stuart; Jiang, Xiaoning; Dayton, Paul A

    2014-01-01

    For many years, ultrasound has provided clinicians with an affordable and effective imaging tool for applications ranging from cardiology to obstetrics. Development of microbubble contrast agents over the past several decades has enabled ultrasound to distinguish between blood flow and surrounding tissue. Current clinical practices using microbubble contrast agents rely heavily on user training to evaluate degree of localized perfusion. Advances in separating the signals produced from contrast agents versus surrounding tissue backscatter provide unique opportunities for specialized sensors designed to image microbubbles with higher signal to noise and resolution than previously possible. In this review article, we describe the background principles and recent developments of ultrasound transducer technology for receiving signals produced by contrast agents while rejecting signals arising from soft tissue. This approach relies on transmitting at a low-frequency and receiving microbubble harmonic signals at frequencies many times higher than the transmitted frequency. Design and fabrication of dual-frequency transducers and the extension of recent developments in transducer technology for dual-frequency harmonic imaging are discussed. PMID:25375755

  14. Dual-Frequency Piezoelectric Transducers for Contrast Enhanced Ultrasound Imaging

    PubMed Central

    Martin, K. Heath; Lindsey, Brooks D.; Ma, Jianguo; Lee, Mike; Li, Sibo; Foster, F. Stuart; Jiang, Xiaoning; Dayton, Paul A.

    2014-01-01

    For many years, ultrasound has provided clinicians with an affordable and effective imaging tool for applications ranging from cardiology to obstetrics. Development of microbubble contrast agents over the past several decades has enabled ultrasound to distinguish between blood flow and surrounding tissue. Current clinical practices using microbubble contrast agents rely heavily on user training to evaluate degree of localized perfusion. Advances in separating the signals produced from contrast agents versus surrounding tissue backscatter provide unique opportunities for specialized sensors designed to image microbubbles with higher signal to noise and resolution than previously possible. In this review article, we describe the background principles and recent developments of ultrasound transducer technology for receiving signals produced by contrast agents while rejecting signals arising from soft tissue. This approach relies on transmitting at a low-frequency and receiving microbubble harmonic signals at frequencies many times higher than the transmitted frequency. Design and fabrication of dual-frequency transducers and the extension of recent developments in transducer technology for dual-frequency harmonic imaging are discussed. PMID:25375755

  15. Contrast-enhanced ultrasound (CEUS) in blunt abdominal trauma.

    PubMed

    Miele, Vittorio; Piccolo, Claudia Lucia; Galluzzo, Michele; Ianniello, Stefania; Sessa, Barbara; Trinci, Margherita

    2016-01-01

    Baseline ultrasound is essential in the early assessment of patients with a huge haemoperitoneum undergoing an immediate abdominal surgery; nevertheless, even with a highly experienced operator, it is not sufficient to exclude parenchymal injuries. More recently, a new ultrasound technique using second generation contrast agents, named contrast-enhanced ultrasound (CEUS) has been developed. This technique allows all the vascular phase to be performed in real time, increasing ultrasound capability to detect parenchymal injuries, enhancing some qualitative findings, such as lesion extension, margins and its relationship with capsule and vessels. CEUS has been demonstrated to be almost as sensitive as contrast-enhanced CT in the detection of traumatic injuries in patients with low-energy isolated abdominal trauma, with levels of sensitivity and specificity up to 95%. Several studies demonstrated its ability to detect lesions occurring in the liver, spleen, pancreas and kidneys and also to recognize active bleeding as hyperechoic bands appearing as round or oval spots of variable size. Its role seems to be really relevant in paediatric patients, thus avoiding a routine exposure to ionizing radiation. Nevertheless, CEUS is strongly operator dependent, and it has some limitations, such as the cost of contrast media, lack of panoramicity, the difficulty to explore some deep regions and the poor ability to detect injuries to the urinary tract. On the other hand, it is timesaving, and it has several advantages, such as its portability, the safety of contrast agent, the lack to ionizing radiation exposure and therefore its repeatability, which allows follow-up of those traumas managed conservatively, especially in cases of fertile females and paediatric patients. PMID:26607647

  16. Superparamagnetic nanoparticle-inclusion microbubbles for ultrasound contrast agents

    NASA Astrophysics Data System (ADS)

    Yang, Fang; Li, Ling; Li, Yixin; Chen, Zhongping; Wu, Junru; Gu, Ning

    2008-11-01

    We have developed a new type of ultrasound (US) contrast agent, consisting of a gas core, a layer of superparamagnetic iron oxide Fe3O4 nanoparticles (SPIO) and an oil in water outermost layer. The newly developed US contrast agent microbubbles have a mean diameter of 760 nm with a polydisperity index (PI) of 0.699. Our in vitro and in vivo experiments have shown that they have the following advantages compared to gas-encapsulated microbbubbles without SPIO inclusion: (1) they provide better contrast for US images; (2) the SPIO-inclusion microbubbles generate a higher backscattering signal; the mean grey scale is 97.9, which is 38.6 higher than that of microbubbles without SPIO; and (3) since SPIO can also serve as a contrast agent of magnetic resonance images (MRI) in vitro, they can be potentially used as contrast agents for double-modality (MRI and US) clinical studies.

  17. Role of contrast enhanced ultrasound in hepatic imaging.

    PubMed

    Dhamija, Ekta; Paul, Shashi B

    2014-01-01

    Grey scale ultrasound (US) is the first line imaging modality used for the evaluation of liver by the radiologists and clinicians worldwide. It is a simple, inexpensive, safe and an easily available technique. US has the ability to delineate the hepatic parenchyma and differentiate the cystic from solid hepatic lesions. However, it has limited accuracy in the detection and characterization of focal liver lesions (FLL). CEUS is a major breakthrough in ultrasound imaging which evolved with the aim of overcoming these limitations of US. With the use of ultrasound contrast agents (UCAs), CEUS has the ability to detect the intranodular hemodynamics and thereby provide information of the enhancement pattern of the lesion resulting in reliable characterization of the FLL. This capability brings it at par with the cross sectional contrast enhanced imaging techniques of computed tomography and magnetic resonance imaging. UCAs are safe, non-nephrotoxic and thus can be used to evaluate patients with renal failure as well. The technique of CEUS is simple, requires few minutes to perform, portable, lacks ionising radiation and above all is a cost-effective modality. These advantages have made CEUS an established modality for hepatic imaging. Besides detection and characterization of FLL, it also plays a vital role in the management and repeated follow up of treated patients of FLL. Newer clinical applications of CEUS with promising results are also being unravelled . This review highlights the multifaceted role of CEUS in hepatic imaging and its upcoming clinical applications. PMID:26012317

  18. Contrast enhanced ultrasound in pediatric patients: a real challenge.

    PubMed

    Schreiber-Dietrich, D G; Cui, X W; Piscaglia, F; Gilja, O H; Dietrich, C F

    2014-10-01

    Ultrasound (US) imaging in the paediatric population has been a routine technique for decades, in part because of the advantages it offers over other imaging modalities. Off-label use (and its funding) is of the utmost importance in paediatrics because many drugs have not been evaluated in randomised trials in children. As a consequence such drugs are not specifically approved for use in children. This is also true for the contrast agents used in CEUS. The off-label use of CEUS in paediatric patients illustrates the need to deal with unresolved legal issues while at the same time balancing this with the need for high diagnostic performance in daily clinical routine. In addition to approved indications with a focus on the liver and Doppler enhancement, CEUS is safe and effective for the examination of many organs, as recently highlighted by the European Federation of Societies for Ultrasound in Medicine and Biology (EFSUMB). This article provides a summary of the available literature describing the utility of CEUS in paediatric patients. Furthermore, we suggest the establishment of a registry to collect data on safety and applications of ultrasound contrast agents in children. A paediatric registry has recently been introduced by EFSUMB (www.efsumb.org). PMID:25313631

  19. Ultrasound contrast agent fabricated from microbubbles containing instant adhesives, and its ultrasound imaging ability

    NASA Astrophysics Data System (ADS)

    Makuta, T.; Tamakawa, Y.

    2012-04-01

    Non-invasive surgery techniques and drug delivery system with acoustic characteristics of ultrasound contrast agent have been studied intensively in recent years. Ultrasound contrast agent collapses easily under the blood circulating and the ultrasound irradiating because it is just a stabilized bubble without solid-shell by surface adsorption of surfactant or lipid. For improving the imaging stability, we proposed the fabrication method of the hollow microcapsule with polymer shell, which can be fabricated just blowing vapor of commonly-used instant adhesive (Cyanoacrylate monomer) into water as microbubbles. Therefore, the cyanoacrylate vapor contained inside microbubble initiates polymerization on the gasliquid interface soon after microbubbles are generated in water. Consequently, hollow microspheres coated by cyanoacrylate thin film are generated. In this report, we revealed that diameter distributions of microbubbles and microcapsules were approximately same and most of them were less than 10 μm, that is, smaller than blood capillary. In addition, we also revealed that hollow microcapsules enhanced the acoustic signal especially in the harmonic contrast imaging and were broken or agglomerated under the ultrasound field. As for the yield of hollow microcapsules, we revealed that sodium dodecyl sulfate addition to water phase instead of deoxycolic acid made the fabrication yield increased.

  20. Nanobubble-Affibody: Novel ultrasound contrast agents for targeted molecular ultrasound imaging of tumor.

    PubMed

    Yang, Hengli; Cai, Wenbin; Xu, Lei; Lv, Xiuhua; Qiao, Youbei; Li, Pan; Wu, Hong; Yang, Yilin; Zhang, Li; Duan, Yunyou

    2015-01-01

    Nanobubbles (NBs), as novel ultrasound contrast agents (UCAs), have attracted increasing attention in the field of molecular ultrasound imaging for tumors. However, the preparation of uniform-sized NBs is considered to be controversial, and poor tumor selectivity in in vivo imaging has been reported. In this study, we fabricated uniform nano-sized NBs (478.2 ± 29.7 nm with polydispersity index of 0.164 ± 0.044, n = 3) using a thin-film hydration method by controlling the thickness of phospholipid films; we then conjugated the NBs with Affibody molecules to produce nano-sized UCAs referred to as NB-Affibody with specific affinity to human epidermal growth factor receptor type 2 (HER2)-overexpressing tumors. NB-Affibody presented good ultrasound enhancement, demonstrating a peak intensity of 104.5 ± 2.1 dB under ultrasound contrast scanning. Ex vivo experiments further confirmed that the NB-Affibody conjugates were capable of targeting HER2-expressing tumor cells in vivo with high affinity. The newly prepared nano-sized NB-Affibody conjugates were observed to be novel targeted UCAs for efficient and safe specific molecular imaging and may have potential applications in early cancer quantitative diagnosis and targeted therapy in the future. PMID:25453958

  1. Second harmonic inversion for ultrasound contrast harmonic imaging

    NASA Astrophysics Data System (ADS)

    Pasovic, Mirza; Danilouchkine, Mike; Faez, Telli; van Neer, Paul L. M. J.; Cachard, Christian; van der Steen, Antonius F. W.; Basset, Olivier; de Jong, Nico

    2011-06-01

    Ultrasound contrast agents (UCAs) are small micro-bubbles that behave nonlinearly when exposed to an ultrasound wave. This nonlinear behavior can be observed through the generated higher harmonics in a back-scattered echo. In past years several techniques have been proposed to detect or image harmonics produced by UCAs. In these proposed works, the harmonics generated in the medium during the propagation of the ultrasound wave played an important role, since these harmonics compete with the harmonics generated by the micro-bubbles. We present a method for the reduction of the second harmonic generated during nonlinear-propagation-dubbed second harmonic inversion (SHI). A general expression for the suppression signals is also derived. The SHI technique uses two pulses, p' and p'', of the same frequency f0 and the same amplitude P0 to cancel out the second harmonic generated by nonlinearities of the medium. Simulations show that the second harmonic is reduced by 40 dB on a large axial range. Experimental SHI B-mode images, from a tissue-mimicking phantom and UCAs, show an improvement in the agent-to-tissue ratio (ATR) of 20 dB compared to standard second harmonic imaging and 13 dB of improvement in harmonic power Doppler.

  2. Ultrasound Induced Fluorescence of Nanoscale Liposome Contrast Agents

    PubMed Central

    Zhang, Qimei; Morgan, Stephen P.; O’Shea, Paul; Mather, Melissa L.

    2016-01-01

    A new imaging contrast agent is reported that provides an increased fluorescent signal upon application of ultrasound (US). Liposomes containing lipids labelled with pyrene were optically excited and the excimer fluorescence emission intensity was detected in the absence and presence of an ultrasound field using an acousto-fluorescence setup. The acousto-fluorescence dynamics of liposomes containing lipids with pyrene labelled on the fatty acid tail group (PyPC) and the head group (PyPE) were compared. An increase in excimer emission intensity following exposure to US was observed for both cases studied. The increased intensity and time constants were found to be different for the PyPC and PyPE systems, and dependent on the applied US pressure and exposure time. The greatest change in fluorescence intensity (130%) and smallest rise time constant (0.33 s) are achieved through the use of PyPC labelled liposomes. The mechanism underlying the observed increase of the excimer emission intensity in PyPC labelled liposomes is proposed to arise from the “wagging” of acyl chains which involves fast response and requires lower US pressure. This is accompanied by increased lipid lateral diffusivity at higher ultrasound pressures, a mechanism that is also active in the PyPE labelled liposomes. PMID:27467748

  3. Mechanically Tunable Hollow Silica Ultrathin Nanoshells for Ultrasound Contrast Agents

    PubMed Central

    Liberman, A.; Wang, J.; Lu, N.; Viveros, R.D.; Allen, C. A.; Mattrey, R.F.; Blair, S.L.; Trogler, W.C.; Kim, M. J.; Kummel, A.C.

    2015-01-01

    Perfluoropentane (PFP) gas filled biodegradable iron-doped silica nanoshells have been demonstrated as long-lived ultrasound contrast agents. Nanoshells are synthesized by a sol-gel process with tetramethyl orthosilicate (TMOS) and iron ethoxide. Substituting a fraction of the TMOS with R-substituted trialkoxysilanes produces ultrathin nanoshells with varying shell thicknesses and morphologies composed of fused nanoflakes. The ultrathin nanoshells had continuous ultrasound Doppler imaging lifetimes exceeding 3 hours, were twice as bright using contrast specific imaging, and had decreased pressure thresholds compared to control nanoshells synthesized with just TMOS. Transmission electron microscopy (TEM) showed that the R-group substituted trialkoxysilanes could reduce the mechanically critical nanoshell layer to 1.4 nm. These ultrathin nanoshells have the mechanical behavior of weakly linked nanoflakes but the chemical stability of silica. The synthesis can be adapted for general fabrication of three-dimensional nanostructures composed of nanoflakes, which have thicknesses from 1.4–3.8 nm and diameters from 2–23 nm. PMID:26955300

  4. Adaptive windowing in contrast-enhanced intravascular ultrasound imaging.

    PubMed

    Lindsey, Brooks D; Martin, K Heath; Jiang, Xiaoning; Dayton, Paul A

    2016-08-01

    Intravascular ultrasound (IVUS) is one of the most commonly-used interventional imaging techniques and has seen recent innovations which attempt to characterize the risk posed by atherosclerotic plaques. One such development is the use of microbubble contrast agents to image vasa vasorum, fine vessels which supply oxygen and nutrients to the walls of coronary arteries and typically have diameters less than 200μm. The degree of vasa vasorum neovascularization within plaques is positively correlated with plaque vulnerability. Having recently presented a prototype dual-frequency transducer for contrast agent-specific intravascular imaging, here we describe signal processing approaches based on minimum variance (MV) beamforming and the phase coherence factor (PCF) for improving the spatial resolution and contrast-to-tissue ratio (CTR) in IVUS imaging. These approaches are examined through simulations, phantom studies, ex vivo studies in porcine arteries, and in vivo studies in chicken embryos. In phantom studies, PCF processing improved CTR by a mean of 4.2dB, while combined MV and PCF processing improved spatial resolution by 41.7%. Improvements of 2.2dB in CTR and 37.2% in resolution were observed in vivo. Applying these processing strategies can enhance image quality in conventional B-mode IVUS or in contrast-enhanced IVUS, where signal-to-noise ratio is relatively low and resolution is at a premium. PMID:27161022

  5. Ultrasound contrast agents and their use in monitoring therapy

    NASA Astrophysics Data System (ADS)

    Ferrara, Katherine; Dayton, Paul; Shortencarrier, Michaelann; Kruse, Dustin

    2003-10-01

    The shell of ultrasound contrast agents can be modified to include a molecular targeting ligand, and the properties of the agent with and without molecular targeting can be used to monitor changes produced by a therapy. We have investigated the use of ligands targeted to an integrin expressed in cancer, whose expression correlates with tumor grade. Acoustic studies illustrate a 3- to 20-fold increase in echo amplitude from integrin-expressing cells exposed to the targeted contrast agent, as compared to controls, and depending on cell type, stimulation, and targeting ligand. Changes in integrin expression with therapy may be important in future studies. We have also developed a system to quantify small changes in vascular parameters due to effects of new anti-angiogenic drugs using the intrinsic properties of contrast agents. Regions containing intravascular contrast agents are identified using a strategy that combines subharmonic and phase inversion imaging. As predicted by a Rayleigh-Plesset analysis, this strategy can successfully detect flow over a range of transmission frequencies from 4-6 MHz. We demonstrate that regions of viable tumor as small as 1 mm, as verified by histology, can be detected and show similar morphology to images acquired with computed tomography (CT).

  6. Intraoperative Contrast Enhanced Ultrasound Evaluates the Grade of Glioma

    PubMed Central

    Cheng, Ling-Gang; He, Wen; Zhang, Hong-Xia; Song, Qian; Ning, Bin; Li, Hui-Zhan; He, Yan; Lin, Song

    2016-01-01

    Objective. The aim of our study was to investigate the value of intraoperative contrast enhanced ultrasound (CEUS) for evaluating the grade of glioma and the correlation between microvessel density (MVD) and vascular endothelial growth factor (VEGF). Methods. We performed intraoperative conventional ultrasound (CUS) and CEUS on 88 patients with gliomas. All of the patients have undergone surgery and obtained the results of pathology. All patients have undergone intraoperative CUS and CEUS to compare the characteristics of different grade gliomas and the results of CUS and CEUS were compared with pathological results. Results. The time to start (TTS) and time to peak (TTP) of low grade glioma (LGG) were similar to those of edema and normal brain surrounding glioma. The enhanced extent of LGG was higher than that of the normal brain and edema. The TTS and TTP of high grade glioma were earlier than those of the edema and normal brain surrounding glioma. The enhancement of HGG was higher than that of LGG. The absolute peak intensity (API) was correlated with MVD and VEGF. Conclusion. Intraoperative CEUS could help in determining boundary of peritumoral brain edema of glioma. Intraoperative CEUS parameters in cerebral gliomas could indirectly reflect the information of MVD and VEGF. PMID:27069921

  7. Contrast enhanced ultrasound (CEUS) in blunt abdominal trauma

    PubMed Central

    2013-01-01

    In the assessment of polytrauma patient, an accurate diagnostic study protocol with high sensitivity and specificity is necessary. Computed Tomography (CT) is the standard reference in the emergency for evaluating the patients with abdominal trauma. Ultrasonography (US) has a high sensitivity in detecting free fluid in the peritoneum, but it does not show as much sensitivity for traumatic parenchymal lesions. The use of Contrast-Enhanced Ultrasound (CEUS) improves the accuracy of the method in the diagnosis and assessment of the extent of parenchymal lesions. Although the CEUS is not feasible as a method of first level in the diagnosis and management of the polytrauma patient, it can be used in the follow-up of traumatic injuries of abdominal parenchymal organs (liver, spleen and kidneys), especially in young people or children. PMID:23902930

  8. Contrast imaging ultrasound detects abnormalities in the marmoset ovary.

    PubMed

    Hastings, J M; Morris, K D; Allan, D; Wilson, H; Millar, R P; Fraser, H M; Moran, C M

    2012-12-01

    The development of a functional vascular tree within the primate ovary is critical for reproductive health. To determine the efficacy of contrast agents to image the microvascular environment within the primate ovary, contrast ultrasonography was performed in six reproductive-aged female common marmosets (Callithrix jacchus) during the late luteal phase of the cycle, following injection of Sonovue™. Regions of interest (ROIs), representing the corpus luteum (CL) and noncorpus luteum ovarian tissue (NCLOT), were selected during gray-scale B-mode ultrasound imaging. The magnitude of backscatter intensity of CL and NCLOT ROIs were calculated in XnView, post hoc: subsequent gamma-variate modeling was implemented in Matlab to determine perfusion parameters. Histological analysis of these ovaries revealed a total of 11 CL, nine of which were identified during contrast ultrasonography. The median enhancement ratio was significantly increased in the CL (5.54AU; 95% CI -2.21-68.71) compared to the NCLOT (2.82AU; 95% CI 2.73-15.06; P < 0.05). There was no difference in time parameters between the CL and NCLOT. An additional avascular ROI was identified in the ovary of Animal 5, both histologically and by ultrasonography. This cystic ROI displayed a markedly lower enhancement ratio (0.79AU) and higher time parameters than mean CL and NCLOT, including time to peak and time to wash out. These data demonstrate, for the first time, the ability of commercially available contrast agents, to differentiate structures within the nonhuman primate ovary. Contrast-enhanced ultrasonography has a promising future in reproductive medicine. PMID:22890799

  9. Benign liver lesions: grey-scale and contrast-enhanced ultrasound appearances

    PubMed Central

    Obaro, A E

    2015-01-01

    Ultrasound is often the first point of detection of liver lesions, with up to 75% of liver lesions detected at ultrasound having benign histology. In 2012, NICE issued recommendations that ultrasound contrast be used for the evaluation of incidentally discovered liver lesions. This has been demonstrated to provide a rapid and cost-effective evaluation for incidental liver lesions, in many cases precluding the need for further CT or MRI scans. The aim of this review is to demonstrate the ultrasound features of benign liver lesions, and to demonstrate their further characterisation with contrast ultrasound.

  10. Role of contrast-enhanced ultrasound (CEUS) in the diagnosis of endometrial pathology

    PubMed Central

    POP, CIPRIAN MIHAITA; MIHU, DAN; BADEA, RADU

    2015-01-01

    Ultrasound is the reference imaging procedure used for the exploration of endometrial pathology. As medical procedures improve and the requirements of modern medicine become more demanding, gray-scale ultrasound is insufficient in establishing gynecological diagnosis. Thus, more complex examination techniques are required: Doppler ultrasound, contrast-enhanced ultrasound (CEUS), 3D ultrasound, etc. Contrast-enhanced ultrasound is a special examination technique that gains more and more ground. This allows a detailed real-time evaluation of microcirculation in a certain territory, which is impossible to perform by Doppler ultrasound. The aim of this review is to synthesize current knowledge regarding CEUS applications in endometrial pathology, to detail the technical aspects of endometrial CEUS and the physical properties of the equipment and contrast agents used, as well as to identify the limitations of the method. PMID:26733740

  11. Contrast-enhanced ultrasound of histologically proven hepatic epithelioid hemangioendothelioma

    PubMed Central

    Dong, Yi; Wang, Wen-Ping; Cantisani, Vito; D’Onofrio, Mirko; Ignee, Andre; Mulazzani, Lorenzo; Saftoiu, Adrian; Sparchez, Zeno; Sporea, Ioan; Dietrich, Christoph F

    2016-01-01

    AIM: To analyze contrast-enhanced ultrasound (CEUS) features of histologically proven hepatic epithelioid hemangioendothelioma (HEHE) in comparison to other multilocular benign focal liver lesions (FLL). METHODS: Twenty-five patients with histologically proven HEHE and 45 patients with histologically proven multilocular benign FLL were retrospectively reviewed. Four radiologists assessed the CEUS enhancement pattern in consensus. RESULTS: HEHE manifested as a single (n = 3) or multinodular (n = 22) FLL. On CEUS, HEHE showed rim-like (18/25, 72%) or heterogeneous hyperenhancement (7/25, 28%) in the arterial phase and hypoenhancement (25/25, 100%) in the portal venous and late phases (PVLP), a sign of malignancy. Eighteen patients showed central unenhanced areas (18/25, 72%); in seven patients (7/25, 28%), more lesions were detected in the PVLP. In contrast, all patients with hemangioma and focal nodular hyperplasia showed hyperenhancement as the most distinctive feature (P < 0.01). CONCLUSION: CEUS allows for characterization of unequivocal FLL. By analyzing the hypoenhancement in the PVLP, CEUS can determine the malignant nature of HEHE. PMID:27217705

  12. Ultrasound Contrast Materials in Cardiovascular Medicine: from Perfusion Assessment to Molecular Imaging

    PubMed Central

    Klibanov, Alexander L

    2013-01-01

    Ultrasound imaging is widely used in cardiovascular diagnostics. Contrast agents expand the range of tasks that ultrasound can perform. In the clinic in US, endocardial border delineation and left ventricle opacification have been an approved indication for more than a decade. However, myocardial perfusion contrast ultrasound studies are still at the clinical trials stage. Blood pool contrast and perfusion in other tissues might be an easier indication to achieve: general blood pool ultrasound contrast is in wider use in Europe, Canada, Japan, and China. Targeted (molecular) contrast microbubbles will be the next generation of ultrasound imaging probes, capable of specific delineation of the areas of disease by adherence to molecular targets. The shell of targeted microbubbles (currently in the preclinical research and early stage clinical trials) is decorated with the ligands (antibodies, peptides or mimetics, hormones, carbohydrates) that ensure firm binding to the molecular markers of disease. PMID:23913363

  13. Indocyanine green-loaded photoacoustic nanodroplets: dual contrast nanoconstructs for enhanced photoacoustic and ultrasound imaging.

    PubMed

    Hannah, Alexander; Luke, Geoffrey; Wilson, Katheryne; Homan, Kimberly; Emelianov, Stanislav

    2014-01-28

    Recently, perfluorocarbon (PFC) nanodroplets were introduced as contrast agents for imaging and image-guided therapy. For example, in sonography, high-intensity ultrasound pulses were used to phase-transition liquid perfluorocarbon to produce gas microbubbles. More recently, perfluorocarbon nanodroplets with encapsulated gold nanorods were used as dual ultrasound/photoacoustic contrast agents. To expedite clinical translation, we synthesized and characterized ICG-loaded perfluorocarbon nanodroplets, i.e., constructs comprising biocompatible, nontoxic and biologically safe materials. We then demonstrated enhanced photoacoustic contrast through optically triggered phase transition of PFC nanodroplets and ultrasound contrast from the resulting PFC bubbles. We assessed the quality enhancement of photoacoustic and ultrasound images through analysis of contrast and contrast-to-noise ratio. We further investigated the changes in image contrast due to increased ambient temperature. Our studies suggest that ICG-loaded perfluorocarbon nanodroplets may become a valuable tool for various imaging modalities, and have promising therapeutic applications. PMID:24303934

  14. BROADBAND ATTENUATION MEASUREMENTS OF PHOSPHOLIPID-SHELLED ULTRASOUND CONTRAST AGENTS

    PubMed Central

    Raymond, Jason L.; Haworth, Kevin J.; Bader, Kenneth B.; Radhakrishnan, Kirthi; Griffin, Joseph K.; Huang, Shao-Ling; McPherson, David D.; Holland, Christy K.

    2014-01-01

    The aim of this study was to characterize the frequency-dependent acoustic attenuation of three phospholipid-shelled ultrasound contrast agents (UCAs): Definity, MicroMarker and echogenic liposomes. A broadband through-transmission technique allowed for measurement over 2 to 25 MHz with a single pair of transducers. Viscoelastic shell parameters of the UCAs were estimated using a linearized model developed by N. de Jong, L. Hoff, T. Skotland and N. Bom (Ultrasonics 1992; 30:95–103). The effect of diluent on the attenuation of these UCA suspensions was evaluated by performing attenuation measurements in 0.5% (w/v) bovine serum albumin and whole blood. Changes in attenuation and shell parameters of the UCAs were investigated at room temperature (25°C) and physiologic temperature (37°C). The attenuation of the UCAs diluted in 0.5% (w/v) bovine serum albumin was found to be identical to the attenuation of UCAs in whole blood. For each UCA, attenuation was higher at 37°C than at 25°C, underscoring the importance of conducting characterization studies at physiologic temperature. Echogenic liposomes exhibited a larger increase in attenuation at 37°C versus 25°C than either Definity or MicroMarker. PMID:24262056

  15. A preliminary evaluation of self-made nanobubble in contrast-enhanced ultrasound imaging

    NASA Astrophysics Data System (ADS)

    Li, Chunfang; Wu, Kaizhi; Li, Jing; Liu, Haijuan; Zhou, Qibing; Ding, Mingyue

    2014-03-01

    Nanoscale bubbles (nanobubbles) have been reported to improve contrast in tumor-targeted ultrasound imaging due to the enhanced permeation and retention effects at tumor vascular leaks. In this work, a self-made nanobubble ultrasound contrast agent was preliminarily characterized and evaluated in-vitro and in-vivo. Fundamental properties such as morphology appearance, size distribution, zeta potential, bubble concentration (bubble numbers per milliliter contrast agent suspension) and the stability of nanobubbles were assessed by light microscope and particle sizing analysis. Then the concentration intensity curve and time intensity curves (TICs) were acquired by ultrasound imaging experiment in-vitro. Finally, the contrast-enhanced ultrasonography was performed on rat to investigate the procedure of liver perfusion. The results showed that the nanobubbles had good shape and uniform distribution with the average diameter of 507.9 nm, polydispersity index (PDI) of 0.527, and zeta potential of -19.17 mV. Significant contrast enhancement was observed in in-vitro ultrasound imaging, demonstrating that the self-made nanobubbles can enhance the contrast effect of ultrasound imaging efficiently in-vitro. Slightly contrast enhancement was observed in in-vivo ultrasound imaging, indicating that the nanobubbles are not stable enough in-vivo. Future work will be focused on improving the ultrasonic imaging performance, stability, and antibody binding of the nanoscale ultrasound contrast agent.

  16. Using light scattering to measure the response of individual ultrasound contrast microbubbles subjected to pulsed ultrasound in vitro.

    PubMed

    Guan, Jingfeng; Matula, Thomas J

    2004-11-01

    Light scattering was used to measure the radial pulsations of individual ultrasound contrast microbubbles subjected to pulsed ultrasound. Highly diluted Optison or Sonazoid microbubbles were injected into either a water bath or an aqueous solution containing small quantities of xanthan gum. Individual microbubbles were insonified by ultrasound pulses from either a commercial diagnostic ultrasound machine or a single element transducer. The instantaneous response curves of the microbubbles were measured. Linear and nonlinear microbubble oscillations were observed. Good agreement was obtained by fitting a bubble dynamics model to the data. The pulse-to-pulse evolution of individual microbubbles was investigated, the results of which suggest that the shell can be semipermeable, and possibly weaken with subsequent pulses. There is a high potential that light scattering can be used to optimize diagnostic ultrasound techniques, understand microbubble evolution, and obtain specific information about shell parameters. PMID:15603131

  17. Experimental characterization, comparison and image quality assessment of two ultrasound contrast agents: Optison and Definity

    NASA Astrophysics Data System (ADS)

    Hughes, Amy C.; Day, Steven W.; Linte, Cristian A.; Schwarz, Karl Q.

    2016-04-01

    Microbubble-based contrast agents are commonly used in ultrasound imaging to help differentiate the blood pool from the endocardial wall. It is essential to use an agent which produces high image intensity relative to the surrounding tissue, commonly referred to contrast effect. When exposed to ultrasound waves, microbubbles produce an intense backscatter signal in addition to the contrast produced by the fluctuating size of the microbubbles. However, over time, the microbubble concentration depletes, leading to reduced visual enhancement. The retention time associated with contrast effect varies according to the frequency and power level of the ultrasound wave, as well as the contrast agent used. The primary objective of this study was to investigate and identify the most appropriate image acquisition parameters that render optimal contrast effect for two intravenous contrast agents, Optison™ and Definity™. Several controlled in vitro experiments were conducted using an experimental apparatus that featured a perfused tissue-emulating phantom. A continuous flow of contrast agent was imaged using ultrasound at different frequencies and power levels, while a pulse wave Doppler device was used to monitor the concentration of the contrast agent solution. The contrast effect was determined based on the image intensity inside the flow pipe mimicking the blood-pool relative to the intensity of the surrounding phantom material mimicking cardiac tissue. To identify the combination of parameters that yielded optimal visualization for each contrast agent tested, the contrast effect was assessed at different microbubble concentrations and different ultrasound imaging frequencies and transmission power levels.

  18. Contrast-Enhanced Ultrasound Imaging for the Detection of Focused Ultrasound-Induced Blood-Brain Barrier Opening

    PubMed Central

    Fan, Ching-Hsiang; Lin, Wun-Hao; Ting, Chien-Yu; Chai, Wen-Yen; Yen, Tzu-Chen; Liu, Hao-Li; Yeh, Chih-Kuang

    2014-01-01

    The blood-brain barrier (BBB) can be transiently and locally opened by focused ultrasound (FUS) in the presence of microbubbles (MBs). Various imaging modalities and contrast agents have been used to monitor this process. Unfortunately, direct ultrasound imaging of BBB opening with MBs as contrast agent is not feasible, due to the inability of MBs to penetrate brain parenchyma. However, FUS-induced BBB opening is accompanied by changes in blood flow and perfusion, suggesting the possibility of perfusion-based ultrasound imaging. Here we evaluated the use of MB destruction-replenishment, which was originally developed for analysis of ultrasound perfusion kinetics, for verifying and quantifying FUS-induced BBB opening. MBs were intravenously injected and the BBB was disrupted by 2 MHz FUS with burst-tone exposure at 0.5-0.7 MPa. A perfusion kinetic map was estimated by MB destruction-replenishment time-intensity curve analysis. Our results showed that the scale and distribution of FUS-induced BBB opening could be determined at high resolution by ultrasound perfusion kinetic analysis. The accuracy and sensitivity of this approach was validated by dynamic contrast-enhanced MRI. Our successful demonstration of ultrasound imaging to monitor FUS-induced BBB opening provides a new approach to assess FUS-dependent brain drug delivery, with the benefit of high temporal resolution and convenient integration with the FUS device. PMID:25161701

  19. Conventional ultrasound and contrast-enhanced ultrasound in evaluating the severity of Crohn’s disease

    PubMed Central

    Liu, Chang; Xu, Xiao-Rong; Xu, Hui-Xiong; Liu, Zhan-Ju; Zhang, Yi-Feng; Sun, Li-Ping; Xu, Jun-Mei; Liu, Lin-Na; Guo, Le-Hang; Bo, Xiao-Wan

    2015-01-01

    Objective: To evaluate the value of conventional ultrasound and contrast-enhanced ultrasound (CEUS) in determining the severity of active Crohn’s disease. Methods: Thirty-seven patients who were considered to be in active period of Crohn’s disease were included. Conventional ultrasound was employed to measure the thicknesses of interior, exterior and the whole bowel walls. Qualitative and quantitative CEUS analysis of the interior, exterior and the whole intestinal walls were also performed. Correlations between these methods and the severity of Crohn’s disease were assessed. Results: Endoscopy grading system identified 19 patients with mild disease and 18 with severe disease. In discriminating severe Crohn’s disease from mild disease, the cut-off value for the thickness of the entire bowel wall was 6.8 mm by receiver operating characteristic (ROC) analysis, with area under ROC (AUROC) of 0.84, sensitivity of 94.4%, specificity of 68.4%, positive predictive value (PPV) of 61.1%, negative predictive value (NPV) of 69.2%, and Youden’s index of 0.628. The cut-off value for thickness of the interior intestinal wall was 4.8 mm (AUROC, 0.81; sensitivity, 88.9%; specificity, 63.2%; PPV, 85.7%; NPV, 69.6%; Youden’s index, 0.521). The sensitivity, specificity, PPV, NPV, accuracy, and Youden’s index of CEUS qualitative analysis were 100% (18/18), 57.9% (11/19), 64.3% (18/26), 100% (11/11), 78.4% (29/37), and 0.579, respectively. Quantitative comparison revealed that patients with mild disease and those with severe disease differed only in Imax of inner bowel wall enhancement (2746.9 ± 911 vs. 12814.5 ± 9802.4; P = 0.02) and Imax of entire wall enhancement (2106 ± 660 vs. 9864 ± 6994; P = 0.03). The cut-off value for the Imax of the entire bowel wall was 3067, with the AUROC of 0.96, sensitivity of 100%, specificity of 67.7%, PPV of 100%, NPV of 88.9%, and Youden’s index of 0.677; and the cut-off value for the Imax of the interior intestinal layer was 3356

  20. Evolution of contrast agents for ultrasound imaging and ultrasound-mediated drug delivery

    PubMed Central

    Paefgen, Vera; Doleschel, Dennis; Kiessling, Fabian

    2015-01-01

    Ultrasound (US) is one of the most frequently used diagnostic methods. It is a non-invasive, comparably inexpensive imaging method with a broad spectrum of applications, which can be increased even more by using bubbles as contrast agents (CAs). There are various different types of bubbles: filled with different gases, composed of soft- or hard-shell materials, and ranging in size from nano- to micrometers. These intravascular CAs enable functional analyses, e.g., to acquire organ perfusion in real-time. Molecular analyses are achieved by coupling specific ligands to the bubbles’ shell, which bind to marker molecules in the area of interest. Bubbles can also be loaded with or attached to drugs, peptides or genes and can be destroyed by US pulses to locally release the entrapped agent. Recent studies show that US CAs are also valuable tools in hyperthermia-induced ablation therapy of tumors, or can increase cellular uptake of locally released drugs by enhancing membrane permeability. This review summarizes important steps in the development of US CAs and introduces the current clinical applications of contrast-enhanced US. Additionally, an overview of the recent developments in US probe design for functional and molecular diagnosis as well as for drug delivery is given. PMID:26441654

  1. Evolution of contrast agents for ultrasound imaging and ultrasound-mediated drug delivery.

    PubMed

    Paefgen, Vera; Doleschel, Dennis; Kiessling, Fabian

    2015-01-01

    Ultrasound (US) is one of the most frequently used diagnostic methods. It is a non-invasive, comparably inexpensive imaging method with a broad spectrum of applications, which can be increased even more by using bubbles as contrast agents (CAs). There are various different types of bubbles: filled with different gases, composed of soft- or hard-shell materials, and ranging in size from nano- to micrometers. These intravascular CAs enable functional analyses, e.g., to acquire organ perfusion in real-time. Molecular analyses are achieved by coupling specific ligands to the bubbles' shell, which bind to marker molecules in the area of interest. Bubbles can also be loaded with or attached to drugs, peptides or genes and can be destroyed by US pulses to locally release the entrapped agent. Recent studies show that US CAs are also valuable tools in hyperthermia-induced ablation therapy of tumors, or can increase cellular uptake of locally released drugs by enhancing membrane permeability. This review summarizes important steps in the development of US CAs and introduces the current clinical applications of contrast-enhanced US. Additionally, an overview of the recent developments in US probe design for functional and molecular diagnosis as well as for drug delivery is given. PMID:26441654

  2. Contrast-Enhanced Ultrasound: Practical Review for the Assessment of Hepatic and Renal Lesions.

    PubMed

    Denham, Stephanie LeeAnn Wilson; Alexander, Lauren F; Robbin, Michelle L

    2016-06-01

    The use of microbubble contrast greatly enhances the ability of ultrasound to delineate structures and therefore aid in diagnosis. Ultrasound microbubble contrast agents are composed of low-solubility gas encapsulated in a biomaterial shell. These agents use the physics of ultrasound imaging to effectively identify and characterize focal hepatic and renal lesions. Not only can contrast agents be used to evaluate multiple phases of lesion contrast enhancement, but ultrasound also allows for real-time study of enhancement patterns. The short half-life and intravascular location of the microbubbles allows for multiple, sequential administrations of contrast to observe enhancement of lesions in different sites. Furthermore, the ability to perform imaging without ionizing radiation and the lack of nephrotoxicity make contrast-enhanced ultrasound an ideal evaluation method for patients who need serial surveillance or in whom imaging options are severely limited because of renal insufficiency. These techniques are widely used in many countries for diagnostic radiological purposes; however, the lack of both Food and Drug Administration approval and reimbursement for noncardiac hospital-based imaging has delayed widespread use in the United States. Despite these limitations, continued research and innovations in ultrasound contrast make it essential to have a working knowledge of the typical enhancement patterns of frequently seen hepatic and renal lesions as these techniques offer an alternative option for contrast imaging. PMID:27233070

  3. DNA-Coated Microbubbles with Biochemically-Tunable Ultrasound Contrast Activity

    PubMed Central

    Nakatsuka, Matthew A.; Hsu, Mark J.

    2013-01-01

    Changing the mechanical properties of the microbubble shell in response to a biochemical stimulus leads to vast changes in both ultrasound-induced bubble dynamics and contrast-enhanced ultrasound imaging. Here, DNA-coated microbubbles are shown to be a simple and highly versatile platform that can silence and re-activate contrast activity in response to the introduction and removal of biochemical stimuli. PMID:21956383

  4. Quantitative measurement of ultrasound pressure field by optical phase contrast method and acoustic holography

    NASA Astrophysics Data System (ADS)

    Oyama, Seiji; Yasuda, Jun; Hanayama, Hiroki; Yoshizawa, Shin; Umemura, Shin-ichiro

    2016-07-01

    A fast and accurate measurement of an ultrasound field with various exposure sequences is necessary to ensure the efficacy and safety of various ultrasound applications in medicine. The most common method used to measure an ultrasound pressure field, that is, hydrophone scanning, requires a long scanning time and potentially disturbs the field. This may limit the efficiency of developing applications of ultrasound. In this study, an optical phase contrast method enabling fast and noninterfering measurements is proposed. In this method, the modulated phase of light caused by the focused ultrasound pressure field is measured. Then, a computed tomography (CT) algorithm used to quantitatively reconstruct a three-dimensional (3D) pressure field is applied. For a high-intensity focused ultrasound field, a new approach that combines the optical phase contrast method and acoustic holography was attempted. First, the optical measurement of focused ultrasound was rapidly performed over the field near a transducer. Second, the nonlinear propagation of the measured ultrasound was simulated. The result of the new approach agreed well with that of the measurement using a hydrophone and was improved from that of the phase contrast method alone with phase unwrapping.

  5. Highly Uniform Perfluoropropane-Loaded Cerasomal Microbubbles As a Novel Ultrasound Contrast Agent.

    PubMed

    Zhang, Chunyang; Wang, Zhu; Wang, Chunan; Li, Xiongjun; Liu, Jie; Xu, Ming; Xu, Shuyu; Xie, Xiaoyan; Jiang, Qing; Wang, Wei; Cao, Zhong

    2016-06-22

    Microbubbles are widely used as ultrasound contrast agents owing to their excellent echoing characteristics under ultrasound radiation. However, their short sonographic duration and wide size distribution still hinder their application. Herein, we present a hard-template approach to produce perfluoropropane-loaded cerasomal microbubbles (PLCMs) with uniform size and long sonographic duration. The preparation of PLCMs includes deposition of Si-lipids onto functionalized CaCO3 microspheres, removal of their CaCO3 cores and mild infusion of perfluoropropane. In vitro and in vivo experiments showed that PLCMs had excellent echoing characteristics under different ultrasound conditions. More importantly, PLCMs could be imaged for much longer than SonoVue (commercially used microbubbles) under the same ultrasound parameters and concentrations. Our results demonstrated that PLCMs have great potential for use as a novel contrast agent in ultrasound imaging. PMID:26114237

  6. Microbubble embedded with upconversion nanoparticles as a bimodal contrast agent for fluorescence and ultrasound imaging

    NASA Astrophysics Data System (ADS)

    Jin, Birui; Lin, Min; You, Minli; Zong, Yujin; Wan, Mingxi; Xu, Feng; Duan, Zhenfeng; Lu, Tianjian

    2015-08-01

    Bimodal imaging offers additional imaging signal thus finds wide spread application in clinical diagnostic imaging. Fluorescence/ultrasound bimodal imaging contrast agent using fluorescent dyes or quantum dots for fluorescence signal has emerged as a promising method, which however requires visible light or UV irradiation resulting in photobleaching, photoblinking, auto-fluorescence and limited tissue penetration depth. To surmount these problems, we developed a novel bimodal contrast agent using layer-by-layer assembly of upconversion nanoparticles onto the surface of microbubbles. The resulting microbubbles with average size of 2 μm provide enhanced ultrasound echo for ultrasound imaging and upconversion emission upon near infrared irradiation for fluorescence imaging. The developed bimodal contrast agent holds great potential to be applied in ultrasound target technique for targeted diseases diagnostics and therapy.

  7. Evaluation of a targeted nanobubble ultrasound contrast agent for potential tumor imaging

    NASA Astrophysics Data System (ADS)

    Li, Chunfang; Shen, Chunxu; Liu, Haijuan; Wu, Kaizhi; Zhou, Qibing; Ding, Mingyue

    2015-03-01

    Targeted nanobubbles have been reported to improve the contrast effect of ultrasound imaging due to the enhanced permeation and retention effects at tumor vascular leaks. In this work, the contrast enhancement abilities and the tumor targeting potential of a self-made VEGFR2-targeted nanobubble ultrasound contrast agent was evaluated in-vitro and in-vivo. Size distribution and zeta potential were assessed. Then the contrast-enhanced ultrasound imaging of the VEGFR2 targeted nanobubbles were evaluated with a custom-made experimental apparatus and in normal Wistar rats. Finally, the in-vivo tumor-targeting ability was evaluated on nude mice with subcutaneous tumor. The results showed that the target nanobubbles had uniform distribution with the average diameter of 208.1 nm, polydispersity index (PDI) of 0.411, and zeta potential of -13.21 mV. Significant contrast enhancement was observed in both in-vitro and in-vivo ultrasound imaging, demonstrating that the self-made target nanobubbles can enhance the contrast effect of ultrasound imaging efficiently. Targeted tumor imaging showed less promising result, due to the fact that the targeted nanobubbles arriving and permeating through tumor vessels were not many enough to produce significant enhancement. Future work will focus on exploring new imaging algorithm which is sensitive to targeted nanobubbles, so as to correctly detect the contrast agent, particularly at a low bubble concentration.

  8. Efficacy of contrast enhanced grey scale ultrasound in characterisation of hepatic focal lesions: A pilot study

    PubMed Central

    Joshi, P.; George, R.A.; Tyagi, A.K.; Sinha, Anamika

    2014-01-01

    Background Contrast enhanced ultrasound (CEUS) has recently gained widespread acceptance as an adjunct to conventional grey scale ultrasound. The present pilot study was undertaken to evaluate the efficacy of this technique in characterisation of hepatic focal lesions. Methods Adult patients who had at least one focal liver lesion underwent ultrasound evaluation in regular and contrast mode before and after intravenous administration of sulphur hexafluoride. The diagnoses were confirmed by comparison with a reference standard (multidetector CT), response to treatment or pathological correlation. Results The rate of correct diagnosis for unenhanced ultrasound was 54%, CEUS was 72% and multidetector CT (MDCT) was 92%. A comparison of unenhanced ultrasound versus CEUS using the McNemar test yielded a p value of 0.0704 (>0.05). However, comparison of CEUS versus MDCT using the McNemar test yielded a p value of 0.0265 (<0.05). Additionally, comparison of unenhanced ultrasound versus MDCT using the McNemar test yielded a p value of <0.0001. Conclusion CEUS increases diagnostic efficacy over unenhanced ultrasound but does not have any significant advantages over MDCT. Currently it may be used as a problem solving tool in atypical haemangiomas, echogenic focal liver lesions, contrast sensitivity and to avoid multiple studies utilising ionising radiation. PMID:25378775

  9. Contrast-enhanced molecular ultrasound differentiates endoglin genotypes in mouse embryos.

    PubMed

    Denbeigh, J M; Nixon, B A; Lee, J J Y; Jerkic, M; Marsden, P A; Letarte, M; Puri, M C; Foster, F S

    2015-01-01

    Targeted ultrasound contrast imaging has the potential to become a reliable molecular imaging tool. A better understanding of the quantitative aspects of molecular ultrasound technology could facilitate the translation of this technique to the clinic for the purposes of assessing vascular pathology and detecting individual response to treatment. The objective of this study was to evaluate whether targeted ultrasound contrast-enhanced imaging can provide a quantitative measure of endogenous biomarkers. Endoglin, an endothelial biomarker involved in the processes of development, vascular homeostasis, and altered in diseases, including hereditary hemorrhagic telangiectasia type 1 and tumor angiogenesis, was the selected target. We used a parallel plate perfusion chamber in which endoglin-targeted (MBE), rat isotype IgG2 control and untargeted microbubbles were perfused across endoglin wild-type (Eng+/+), heterozygous (Eng+/-) and null (Eng-/-) embryonic mouse endothelial cells and their adhesion quantified. Microbubble binding was also assessed in late-gestation, isolated living transgenic Eng+/- and Eng+/+ embryos. Nonlinear contrast-specific ultrasound imaging performed at 21 MHz was used to collect contrast mean power ratios for all bubble types. Statistically significant differences in microbubble binding were found across genotypes for both in vitro (p<0.05) and embryonic studies (p<0.001); MBE binding was approximately twofold higher in Eng+/+ cells and embryos compared with their Eng+/- counterparts. These results suggest that molecular ultrasound is capable of reliably differentiating between molecular genotypes and relating receptor densities to quantifiable molecular ultrasound levels. PMID:25298070

  10. Application of contrast-enhanced ultrasound after liver transplantation: Current status and perspectives

    PubMed Central

    Ren, Jie; Wu, Tao; Zheng, Bo-Wen; Tan, Ying-Yi; Zheng, Rong-Qin; Chen, Gui-Hua

    2016-01-01

    Liver transplantation is an effective treatment for patients with end-stage liver disease. Accurate imaging evaluation of the transplanted patient is critical for ensuring that the limited donor liver is functioning appropriately. Ultrasound contrast agents (UCAs), in combination with contrast-specific imaging techniques, are increasingly accepted in clinical use for the assessment of the hepatic vasculature, bile ducts and liver parenchyma in pre-, intra- and post-transplant patients. We describe UCAs, their technical requirements, the recommended clinical indications, image interpretation and the limitations for contrast-enhanced ultrasound applications in liver transplantation. PMID:26819526

  11. Encapsulated microbubbles and echogenic liposomes for contrast ultrasound imaging and targeted drug delivery

    NASA Astrophysics Data System (ADS)

    Paul, Shirshendu; Nahire, Rahul; Mallik, Sanku; Sarkar, Kausik

    2014-03-01

    Micron- to nanometer-sized ultrasound agents, like encapsulated microbubbles and echogenic liposomes, are being developed for diagnostic imaging and ultrasound mediated drug/gene delivery. This review provides an overview of the current state of the art of the mathematical models of the acoustic behavior of ultrasound contrast microbubbles. We also present a review of the in vitro experimental characterization of the acoustic properties of microbubble based contrast agents undertaken in our laboratory. The hierarchical two-pronged approach of modeling contrast agents we developed is demonstrated for a lipid coated (Sonazoid and a polymer shelled (poly D-L-lactic acid) contrast microbubbles. The acoustic and drug release properties of the newly developed echogenic liposomes are discussed for their use as simultaneous imaging and drug/gene delivery agents. Although echogenicity is conclusively demonstrated in experiments, its physical mechanisms remain uncertain. Addressing questions raised here will accelerate further development and eventual clinical approval of these novel technologies.

  12. Encapsulated microbubbles and echogenic liposomes for contrast ultrasound imaging and targeted drug delivery

    PubMed Central

    Paul, Shirshendu; Nahire, Rahul; Mallik, Sanku; Sarkar, Kausik

    2014-01-01

    Micron- to nanometer-sized ultrasound agents, like encapsulated microbubbles and echogenic liposomes, are being developed for diagnostic imaging and ultrasound mediated drug/gene delivery. This review provides an overview of the current state of the art of the mathematical models of the acoustic behavior of ultrasound contrast microbubbles. We also present a review of the in vitro experimental characterization of the acoustic properties of microbubble based contrast agents undertaken in our laboratory. The hierarchical two-pronged approach of modeling contrast agents we developed is demonstrated for a lipid coated (Sonazoid™) and a polymer shelled (poly D-L-lactic acid) contrast microbubbles. The acoustic and drug release properties of the newly developed echogenic liposomes are discussed for their use as simultaneous imaging and drug/gene delivery agents. Although echogenicity is conclusively demonstrated in experiments, its physical mechanisms remain uncertain. Addressing questions raised here will accelerate further development and eventual clinical approval of these novel technologies. PMID:26097272

  13. Intraoperative high-resolution ultrasound and contrast-enhanced ultrasound of peripheral nerve tumors and tumorlike lesions.

    PubMed

    Pedro, Maria Teresa; Antoniadis, Gregor; Scheuerle, Angelika; Pham, Mirko; Wirtz, Christian Rainer; Koenig, Ralph W

    2015-09-01

    The diagnostic workup and surgical therapy for peripheral nerve tumors and tumorlike lesions are challenging. Magnetic resonance imaging is the standard diagnostic tool in the preoperative workup. However, even with advanced pulse sequences such as diffusion tensor imaging for MR neurography, the ability to differentiate tumor entities based on histological features remains limited. In particular, rare tumor entities different from schwannomas and neurofibromas are difficult to anticipate before surgical exploration and histological confirmation. High-resolution ultrasound (HRU) has become another important tool in the preoperative evaluation of peripheral nerves. Ongoing software and technical developments with transducers of up to 17-18 MHz enable high spatial resolution with tissue-differentiating properties. Unfortunately, high-frequency ultrasound provides low tissue penetration. The authors developed a setting in which intraoperative HRU was used and in which the direct sterile contact between the ultrasound transducer and the surgically exposed nerve pathology was enabled to increase structural resolution and contrast. In a case-guided fashion, the authors report the sonographic characteristics of rare tumor entities shown by intraoperative HRU and contrast-enhanced ultrasound. PMID:26323823

  14. Counter-propagating wave interaction for contrast-enhanced ultrasound imaging

    NASA Astrophysics Data System (ADS)

    Renaud, G.; Bosch, J. G.; ten Kate, G. L.; Shamdasani, V.; Entrekin, R.; de Jong, N.; van der Steen, A. F. W.

    2012-11-01

    Most techniques for contrast-enhanced ultrasound imaging require linear propagation to detect nonlinear scattering of contrast agent microbubbles. Waveform distortion due to nonlinear propagation impairs their ability to distinguish microbubbles from tissue. As a result, tissue can be misclassified as microbubbles, and contrast agent concentration can be overestimated; therefore, these artifacts can significantly impair the quality of medical diagnoses. Contrary to biological tissue, lipid-coated gas microbubbles used as a contrast agent allow the interaction of two acoustic waves propagating in opposite directions (counter-propagation). Based on that principle, we describe a strategy to detect microbubbles that is free from nonlinear propagation artifacts. In vitro images were acquired with an ultrasound scanner in a phantom of tissue-mimicking material with a cavity containing a contrast agent. Unlike the default mode of the scanner using amplitude modulation to detect microbubbles, the pulse sequence exploiting counter-propagating wave interaction creates no pseudoenhancement behind the cavity in the contrast image.

  15. Diagnostic and therapeutic research on ultrasound microbubble/nanobubble contrast agents (Review).

    PubMed

    Ma, Jing; Xu, Chang Song; Gao, Feng; Chen, Ming; Li, Fan; Du, Lian Fang

    2015-09-01

    The contrast enhanced imaging function of ultrasound contrast agents (UCAs) has been extensively investigated using physical acoustic signatures. It has a number of novel applications, including tissue‑specific molecular imaging and multi‑modal imaging. In addition there are numerous other therapeutic applications of UCAs, for example as vehicles for drug or gene delivery. These uses are discussed, as well as the acoustically‑induced biological effects, including ultrasound targeted microbubble destruction (UTMD). This review also explores the considerations for the safe use of UCA from an acoustic standpoint. The scope of the application of UCA has markedly expanded in recent years, and it is a rapidly growing field of medical research. The current article reviews recent advances in the diagnostic and therapeutic applications of ultrasound microbubble/nanobubble contrast agents. PMID:26081968

  16. Vascular Structure Identification in Intraoperative 3D Contrast-Enhanced Ultrasound Data

    PubMed Central

    Ilunga-Mbuyamba, Elisee; Avina-Cervantes, Juan Gabriel; Lindner, Dirk; Cruz-Aceves, Ivan; Arlt, Felix; Chalopin, Claire

    2016-01-01

    In this paper, a method of vascular structure identification in intraoperative 3D Contrast-Enhanced Ultrasound (CEUS) data is presented. Ultrasound imaging is commonly used in brain tumor surgery to investigate in real time the current status of cerebral structures. The use of an ultrasound contrast agent enables to highlight tumor tissue, but also surrounding blood vessels. However, these structures can be used as landmarks to estimate and correct the brain shift. This work proposes an alternative method for extracting small vascular segments close to the tumor as landmark. The patient image dataset involved in brain tumor operations includes preoperative contrast T1MR (cT1MR) data and 3D intraoperative contrast enhanced ultrasound data acquired before (3D-iCEUSstart) and after (3D-iCEUSend) tumor resection. Based on rigid registration techniques, a preselected vascular segment in cT1MR is searched in 3D-iCEUSstart and 3D-iCEUSend data. The method was validated by using three similarity measures (Normalized Gradient Field, Normalized Mutual Information and Normalized Cross Correlation). Tests were performed on data obtained from ten patients overcoming a brain tumor operation and it succeeded in nine cases. Despite the small size of the vascular structures, the artifacts in the ultrasound images and the brain tissue deformations, blood vessels were successfully identified. PMID:27070610

  17. Development and evaluation of a novel VEGFR2-targeted nanoscale ultrasound contrast agents

    NASA Astrophysics Data System (ADS)

    Yu, Houqiang; Li, Chunfang; He, Xiaoling; Zhou, Qibing; Ding, Mingyue

    2016-04-01

    Recent literatures have reported that the targeted nanoscale ultrasound contrast agents are becoming more and more important in medical application, like ultrasound imaging, detection of perfusion, drug delivery and molecular imaging and so on. In this study, we fabricated an uniform nanoscale bubbles (257 nm with the polydispersity index of 0.458) by incorporation of antibody targeted to vascular endothelial growth factor receptor 2 (VEGFR2) into the nanobubbles membrane by using avidin-biotin interaction. Some fundamental characterizations such as nanobubble suspension, surface morphology, particle size distribution and zeta potential were investigated. The concentration and time-intensity curves (TICs) were obtained with a self-made ultrasound experimental setup in vitro evaluation. In addition, in order to evaluate the contrast enhancement ability and the potential tumor-targeted ability in vivo, normal Wistar rats and nude female BALB/c mice were intravascular administration of the nanobubbles via tail vein injection, respectively. Significant contrast enhancement of ultrasound imaging within liver and tumor were visualized. These experiments demonstrated that the targeted nanobubbles is efficient in ultrasound molecular imaging by enhancement of the contrast effect and have potential capacity for targeted tumor diagnosis and therapy in the future.

  18. Vascular Structure Identification in Intraoperative 3D Contrast-Enhanced Ultrasound Data.

    PubMed

    Ilunga-Mbuyamba, Elisee; Avina-Cervantes, Juan Gabriel; Lindner, Dirk; Cruz-Aceves, Ivan; Arlt, Felix; Chalopin, Claire

    2016-01-01

    In this paper, a method of vascular structure identification in intraoperative 3D Contrast-Enhanced Ultrasound (CEUS) data is presented. Ultrasound imaging is commonly used in brain tumor surgery to investigate in real time the current status of cerebral structures. The use of an ultrasound contrast agent enables to highlight tumor tissue, but also surrounding blood vessels. However, these structures can be used as landmarks to estimate and correct the brain shift. This work proposes an alternative method for extracting small vascular segments close to the tumor as landmark. The patient image dataset involved in brain tumor operations includes preoperative contrast T1MR (cT1MR) data and 3D intraoperative contrast enhanced ultrasound data acquired before (3D-iCEUS s t a r t ) and after (3D-iCEUS e n d ) tumor resection. Based on rigid registration techniques, a preselected vascular segment in cT1MR is searched in 3D-iCEUS s t a r t and 3D-iCEUS e n d data. The method was validated by using three similarity measures (Normalized Gradient Field, Normalized Mutual Information and Normalized Cross Correlation). Tests were performed on data obtained from ten patients overcoming a brain tumor operation and it succeeded in nine cases. Despite the small size of the vascular structures, the artifacts in the ultrasound images and the brain tissue deformations, blood vessels were successfully identified. PMID:27070610

  19. Safety of intravenous application of second-generation ultrasound contrast agent in children: prospective analysis.

    PubMed

    Piskunowicz, Maciej; Kosiak, Wojciech; Batko, Tomasz; Piankowski, Arkadiusz; Połczyńska, Katarzyna; Adamkiewicz-Drożyńska, Elżbieta

    2015-04-01

    The goal of the work described here was to assess the safety profile of intravenous second-generation ultrasound contrast agents (UCAs) containing sulfur hexafluoride in pediatric contrast-enhanced ultrasound. Between 2010 and 2013, a total of 167 examinations were performed in 137 children referred by the Oncology Department. Approval by an Independent Ethical Review Board on Scientific Research for the intravenous use of an UCA containing sulfur hexafluoride in children with oncologic diseases was obtained. Consent for UCA administration was acquired from the parents or legal guardians. Severe anaphylactic reaction was observed in 0.6% (n = 1). No other adverse events during or after intravenous administration of contrast were observed in the examined group (no changes in heart rate and rhythm, blood pressure, oxygen saturation or respiratory rate). There were no reports of subjective flushing, nausea, transient headaches or altered taste. Although second-generation ultrasound contrast agents are considered potentially safe, all investigators should be prepared for the development of adverse reactions and have provisions in place for all pediatric intravenous contrast-enhanced ultrasound examinations. More multicenter studies are essential to determination of an accurate UCA safety profile. PMID:25701526

  20. Effect of gas-containing microspheres and echo contrast agents on free radical formation by ultrasound.

    PubMed

    Kondo, T; Misík, V; Riesz, P

    1998-09-01

    Stabilized microbubbles (microspheres) are widely used to enhance the contrast of ultrasound imaging. Our data provide direct evidence that the contrast agents, Levovist, PVC-AN (polyvinylidene chloride-acrylonitryl copolymer), and Albunex (compared to 5% human albumin), at concentrations comparable to those used for ultrasound imaging, enhance H2O2 production (through the superoxide-dependent pathway) in air-saturated aqueous solutions exposed to 47 kHz ultrasound above the cavitation threshold. These agents also act as scavengers of .H atoms and .OH radicals, thus lowering H2O2 formation (by recombination of .OH radicals) in argon-saturated solutions. EPR spin trapping also reveals that secondary radicals derived from the contrast agents are produced by reactions with .H and .OH which are formed by pyrolysis of water inside cavitation bubbles. In addition, the contrast agents themselves undergo pyrolysis reactions in the cavitation bubbles as demonstrated by formation of methyl radicals. Possible deleterious consequences of the formation of sonochemical intermediates may have to be assessed, particularly since some of the echo contrast agents have been shown to lower the cavitation threshold of diagnostic ultrasound. Unlike the microspheres formed from organic molecules, inorganic microspheres, Eccospheres, because of their stability and inert nature with respect to participation in free radical processes, appear to be suitable tools for enhancing the yields of aqueous sonochemical reactions. PMID:9741598

  1. Real-Time 3D Contrast-Enhanced Transcranial Ultrasound and Aberration Correction

    PubMed Central

    Ivancevich, Nikolas M.; Pinton, Gianmarco F.; Nicoletto, Heather A.; Bennett, Ellen; Laskowitz, Daniel T.; Smith, Stephen W.

    2008-01-01

    Contrast-enhanced (CE) transcranial ultrasound (US) and reconstructed 3D transcranial ultrasound have shown advantages over traditional methods in a variety of cerebrovascular diseases. We present the results from a novel ultrasound technique, namely real-time 3D contrast-enhanced transcranial ultrasound. Using real-time 3D (RT3D) ultrasound and micro-bubble contrast agent, we scanned 17 healthy volunteers via a single temporal window and 9 via the sub-occipital window and report our detection rates for the major cerebral vessels. In 71% of subjects, both of our observers identified the ipsilateral circle of Willis from the temporal window, and in 59% we imaged the entire circle of Willis. From the sub-occipital window, both observers detected the entire vertebrobasilar circulation in 22% of subjects, and in 44% the basilar artery. After performing phase aberration correction on one subject, we were able to increase the diagnostic value of the scan, detecting a vessel not present in the uncorrected scan. These preliminary results suggest that RT3D CE transcranial US and RT3D CE transcranial US with phase aberration correction have the potential to greatly impact the field of neurosonology. PMID:18395321

  2. Feasibility and Usefulness of Intra-Cavitary Contrast-Enhanced Ultrasound in Percutaneous Nephrostomy.

    PubMed

    Cui, Xin-Wu; Ignee, Andre; Maros, Tiberius; Straub, Bernd; Wen, Jian-Guo; Dietrich, Christoph F

    2016-09-01

    The aim of this study was to evaluate the feasibility and utility of intra-cavitary contrast enhanced ultrasound (ICCEUS) in guiding percutaneous nephrostomy (PCN) and assessing complications. Forty-five ultrasound-guided PCNs were performed in 35 patients with hydronephrosis resulting from urinary tract obstruction. Ultrasound contrast agent (0.1 mL diluted in 20-30 mL saline) was injected through the puncture needle and the drainage tube to precisely locate the device and obstruction, with the fluoroscopy results considered the gold standard. ICCEUS was performed again the next day to assess complications. All 45 PCNs were successfully performed under the guidance of ultrasound. With ICCEUS, we could confirm the correct insertion of needle and catheter and locate the obstruction in all 35 patients, with fluoroscopic results as the gold standard. Catheter dislodgement was diagnosed by administration of ultrasound contrast agent in 5 patients. Hematoma (1 patient) and urine leakage (1 patient) were also observed. With the advantages of lack of exposure to radiation, performance in real time and bedside availability, ICCEUS has the potential to become a new modality to guide PCN and assess catheter-related complications. PMID:27262520

  3. Selective imaging of adherent targeted ultrasound contrast agents

    PubMed Central

    Zhao, S; Kruse, D E; Ferrara, K W; Dayton, P A

    2007-01-01

    The goal of ultrasonic molecular imaging is the detection of targeted contrast agents bound to receptors on endothelial cells. We propose imaging methods that can distinguish adherent microbubbles from tissue and from freely circulating microbubbles, each of which would otherwise obscure signal from molecularly targeted adherent agents. The methods are based on a harmonic signal model of the returned echoes over a train of pulses. The first method utilizes an ‘image–push–image’ pulse sequence where adhesion of contrast agents is rapidly promoted by acoustic radiation force and the presence of adherent agents is detected by the signal change due to targeted microbubble adhesion. The second method rejects tissue echoes using a spectral high-pass filter. Free agent signal is suppressed by a pulse-to-pulse low-pass filter in both methods. An overlay of the adherent and/or flowing contrast agents on B-mode images can be readily created for anatomical reference. Contrast-to-tissue ratios from adherent microbubbles exceeding 30 dB and 20 dB were achieved for the two methods proposed, respectively. The performance of these algorithms is compared, emphasizing the significance and potential applications in ultrasonic molecular imaging. PMID:17404455

  4. Feasibility and usefulness of using swallow contrast-enhanced ultrasound to diagnose Zenker's diverticulum: preliminary results.

    PubMed

    Cui, Xin-Wu; Ignee, Andre; Baum, Ulrich; Dietrich, Christoph F

    2015-04-01

    Zenker's diverticulum (ZD) may be misdiagnosed on conventional ultrasound as a thyroid nodule or other lesion. A barium esophagram is usually used to confirm the diagnosis; however, this procedure exposes the patient to radiation. The aim of this study was to evaluate the feasibility of using swallow contrast-enhanced ultrasound (swallow-CEUS) to diagnose ZD. Ten consecutive patients with ZD (7 men and 3 women, aged 67 ± 11 y) were included in the study. In 4 patients, ZD was incidentally found on head and neck ultrasound, and in 6 patients, ZD was suspected because of dysphagia. All lesions could be detected on conventional ultrasound before swallow-CEUS. Ten healthy volunteers (8 men and 2 women, aged 60 ± 12 y) were chosen as a control group. Written informed consent was obtained. With the patient in the sitting or upright position, conventional ultrasound was performed first to image the lesion, then the patient was asked to swallow ultrasound contrast agent (UCA) (2-4 drops of SonoVue diluted with about 200 mL of tap water). Transity of the contrast agent in the esophagus was imaged with CEUS. Retention of the UCA in the diverticulum was monitored for at least 3 min. All patients underwent a barium esophagram as the gold standard. Swallow-CEUS revealed that in all patients (100%), the UCA was transported from the pharynx to the esophagus while the patient swallowed. ZD appeared as a pouch-shaped structure at the posterior pharyngo-esophageal junction that retained UCA longer than 3 min. The barium esophagram confirmed the diagnosis of ZD in all patients. For the 10 volunteers, no abnormal structure (retaining UCA) was detected during or after swallowing of UCA. With the advantages of no radiation and bedside availability, swallow-CEUS may become a method of choice in confirmation of the diagnosis of ZD, especially when ZD is suspected on conventional ultrasound. PMID:25701519

  5. Counterbalancing the use of ultrasound contrast agents by a cavitation-regulated system.

    PubMed

    Desjouy, C; Fouqueray, M; Lo, C W; Muleki Seya, P; Lee, J L; Bera, J C; Chen, W S; Inserra, C

    2015-09-01

    The stochastic behavior of cavitation can lead to major problems of initiation and maintenance of cavitation during sonication, responsible of poor reproducibility of US-induced bioeffects in the context of sonoporation for instance. To overcome these disadvantages, the injection of ultrasound contrast agents as cavitation nuclei ensures fast initiation and lower acoustic intensities required for cavitation activity. More recently, regulated-cavitation devices based on the real-time modulation of the applied acoustic intensity have shown their potential to maintain a stable cavitation state during an ultrasonic shot, in continuous or pulsed wave conditions. In this paper is investigated the interest, in terms of cavitation activity, of using such regulated-cavitation device or injecting ultrasound contrast agents in the sonicated medium. When using fixed applied acoustic intensity, results showed that introducing ultrasound contrast agents increases reproducibility of cavitation activity (coefficient of variation 62% and 22% without and with UCA, respectively). Moreover, the use of the regulated-cavitation device ensures a given cavitation activity (coefficient of variation less 0.4% in presence of UCAs or not). This highlights the interest of controlling cavitation over time to free cavitation-based application from the use of UCAs. Interestingly, during a one minute sonication, while ultrasound contrast agents progressively disappear, the regulated-cavitation device counterbalance their destruction to sustain a stable inertial cavitation activity. PMID:25682465

  6. Contrast-enhanced ultrasound for evaluation of high-intensity focused ultrasound treatment of benign uterine diseases: retrospective analysis of contrast safety.

    PubMed

    Cheng, Chong-Qing; Zhang, Rui-Tao; Xiong, Yu; Chen, Li; Wang, Jian; Huang, Guo-Hua; Li, Ke-Quan; Zhang, Lian; Bai, Jin

    2015-04-01

    As a noninvasive treatment technique, ultrasound-guided high-intensity focused ultrasound (HIFU) has been considered as a routine treatment for uterine fibroids and adenomyosis in China. Contrast-enhanced ultrasound (CEUS) has been proposed as another option to assess the treatment efficacy during HIFU treatment. The aim of this investigation is to evaluate the adverse effects of HIFU ablation for benign uterine diseases in a group of patients studied with ultrasound contrast agent (UCA), in comparison with a group of patients not exposed to UCA. From November 2010 to December 2013, 2604 patients with benign uterine diseases were treated with HIFU. Among them, 1300 patients were exposed to an UCA, whereas 1304 patients were not.During HIFU procedure, the incidences of leg pain, sacral/buttock pain, groin pain, treatment area pain, and the discomfort "hot" sensation on skin were higher in the patients who were exposed to SonoVue (Bracco, Milan, Italy) than those who were not (20.5% vs 11.7%, 52.5% vs 42.3%, 6.5% vs 4.5%, 68.9% vs 55.4%, and 48.1% vs 42.9%, respectively). Among the postoperative adverse effects, the incidence of lower abdominal pain was significantly higher in patients who were exposed to an UCA than those who were not (51.2% vs 39.9%, P < 0.05). Two patients who were exposed to an UCA had acute renal function failure.In conclusion, UCA may increase the incidences of some common HIFU-related adverse effects during HIFU treatment for benign uterine diseases, but most of which were acceptable and self-limited. After HIFU treatment, renal function should be monitored in patients with a history of hypertension or taking nonsteroidal anti-inflammatory drugs. PMID:25906100

  7. The Value of Contrast-Enhanced Ultrasound in the Diagnosis of Cesarean Scar Pregnancy

    PubMed Central

    Xiong, Xi; Yan, Ping; Gao, Chunyan; Sun, Qiulei; Xu, Fenglian

    2016-01-01

    Objective. To evaluate the value of contrast-enhanced ultrasound (CEUS) in the cesarean scar pregnancy (CSP). Methods. Clinical data from 92 patients with lower uterine segment pregnancy, who underwent conventional ultrasound and CEUS examination in the Department of Obstetrics and Gynecology, were collected by Xinqiao Hospital Third Military Medical University from March 2014 to March 2015. The parameters of ultrasound contrast time-intensity curve (TIC), including arrival time, time to peak, time from peak to one half, basic intensity, peak intensity, and wash-in slope, were analyzed. Results. Of the 92 cases of patients with pregnancy in the lower uterine segment, 52 cases were CSP, and 40 cases were intrauterine pregnancy. CEUS was significantly better than conventional ultrasound in terms of sensitivity, negative predictive value, Youden index, and diagnostic accuracy (P < 0.05). There was no significant difference in specificity and positive predictive value (P > 0.05). Conclusion. CEUS has a higher accuracy than conventional ultrasound in diagnosis of CSP. PMID:27340659

  8. Nanobubble Ultrasound Contrast Agents for Enhanced Delivery of Thermal Sensitizer to Tumors Undergoing Radiofrequency Ablation

    PubMed Central

    Perera, Reshani H.; Solorio, Luis; Wu, Hanping; Gangolli, Mihika; Silverman, Eric; Hernandez, Christopher; Peiris, Pubudu M.; Broome, Ann-Marie

    2013-01-01

    Purpose Pluronic has been shown to sensitize various tumor cell lines to chemotherapy and hyperthermia by altering the membrane fluidity, depleting ATP, and modulating the heat shock protein 70 expression. In our prior work, Pluronic was also used to formulate nanosized ultrasound contrast agents. In the current study we evaluate the use of these contrast agents as vehicles for image-guided delivery of Pluronic to improve outcomes of tumor radiofrequency (RF) ablation. Methods Lipid-shelled Pluronic nanobubbles were prepared and examined for size distribution, zeta potential, stability, biodistribution, accumulation of nanobubbles in the tumor, and treatment efficacy. LS174-T xenograft tumor-bearing mice were used to evaluate tumor growth suppression and measure treatment efficacy after RF ablation. Results The average diameter of Pluronic bubbles was 230 nm, and initial bubble echogenicity was 16 dB. In vitro, cells exposed to Pluronic nanobubbles exhibited low cytotoxicity in the absence of ultrasound, even if heat (43°C) was applied. When the cells were exposed to Pluronic nanobubbles, heat, and ultrasound; viability was significantly reduced. In vivo, tumors treated with ultrasound-modulated nanobubbles prior to RF ablation showed a significant reduction in growth compared to the RF alone (P<0.05). Conclusion Lipid and Pluronic-shelled, echogenic nanobubbles combined with ultrasound modulation can serve as an effective theranostic method for sensitization of tumors to RF ablation. PMID:23943542

  9. Effect of focused ultrasound applied with an ultrasound contrast agent on the tight junctional integrity of the brain microvascular endothelium

    PubMed Central

    Sheikov, Nickolai; McDannold, Nathan; Sharma, Shipra; Hynynen, Kullervo

    2008-01-01

    Previous studies have investigated a potential method for targeted drug delivery in the central nervous system that uses focused ultrasound bursts combined with an ultrasound contrast agent to temporarily disrupt the blood-brain barrier (BBB). The purpose of this work was to investigate the integrity of the tight junctions (TJs) in rat brain microvessels after this BBB disruption. 1.5-MHz ultrasound bursts in combination with a gas contrast agent (Optison) was applied at two locations in the brain in 25 rats to induce BBB disruption. Using immunoelectron microscopy, the distributions of the TJ-specific transmembrane proteins occludin, claudin-1, claudin-5, and of submembranous ZO-1 were examined at 1, 2, 4, 6 and 24 h after sonication. A quantitative evaluation of the protein expression was made by counting the number of immunosignals per micrometer in the junctional clefts. BBB disruption at the sonicated locations was confirmed by the leakage of intravenously administered horseradish peroxidase (HRP, m.w. 40,000 Da) and lanthanum chloride (La3+, m.w. ~ 139 Da). Leakage of these agents was observed at 1 and 2 h and in a few vessels at 4 h after ultrasound application. These changes were paralleled by the apparent disintegration of the TJ complexes, as evidenced by the redistribution and loss of the immunosignals for occludin, claudin-5 and ZO-1. Claudin-1 seemed less involved. At 6 and 24 h after sonication, no HRP or lanthanum leakage was observed, and the barrier function of the TJs, as indicated by the localization and density of immunosignals, appeared to be completely restored. This study provides the first direct evidence that ultrasound bursts combined with a gas contrast agent cause disassembling of the TJ molecular structure, leading to loss of the junctional barrier functions in brain microvessels. The BBB disruption appears to last up to 4 h after sonication and permits the paracellular passage of agents with molecular weights up to at least 40 k

  10. Acoustic characterization of ultrasound contrast microbubbles and echogenic liposomes: Applications to imaging and drug-delivery

    NASA Astrophysics Data System (ADS)

    Paul, Shirshendu

    Micron- to nanometer - sized ultrasound agents, like encapsulated microbubbles and echogenic liposomes (ELIPs), are being actively developed for possible clinical implementations in diagnostic imaging and ultrasound mediated drug/gene delivery. The primary objective of this thesis is to characterize the acoustic behavior of and the ultrasound-mediated contents release from these contrast agents for developing multi-functional ultrasound contrast agents. Subharmonic imaging using contrast microbubbles can improve image quality by providing a higher signal to noise ratio. However, the design and development of contrast microbubbles with favorable subharmonic behavior requires accurate mathematical models capable of predicting their nonlinear dynamics. To this goal, 'strain-softening' viscoelastic interfacial models of the encapsulation were developed and subsequently utilized to simulate the dynamics of encapsulated microbubbles. A hierarchical two-pronged approach of modeling --- a model is applied to one set of experimental data to obtain the model parameters (material characterization), and then the model is validated against a second independent experiment --- is demonstrated in this thesis for two lipid coated (SonazoidRTM and DefinityRTM) and a few polymer (polylactide) encapsulated microbubbles. The proposed models were successful in predicting several experimentally observed behaviors e.g., low subharmonic thresholds and "compression-only" radial oscillations. Results indicate that neglecting the polydisperse size distribution of contrast agent suspensions, a common practice in the literature, can lead to inaccurate results. In vitro experimental investigation of the dependence of subharmonic response from these microbubbles on the ambient pressure is also in conformity with the recent numerical investigations, showing both increase or decrease under appropriate excitation conditions. Experimental characterization of the ELIPs and polymersomes was performed

  11. Clinical Value of Contrast-Enhanced Ultrasound in Diagnosis of Hyperechoic Liver Lesions

    PubMed Central

    Liu, Junjie; Wang, Dan; Li, Hongxue; Li, Hang; Zhou, Ting; Zhao, Shengfa; Ding, Zhanling

    2015-01-01

    Background The purpose of this study was to investigate the values of contrast-enhanced ultrasound (CEUS) in the diagnosis and differential diagnosis of hyperechoic liver lesions. Material/Methods The CEUS findings of 102 patients with hyperechoic liver lesions identified by 2-dimensional ultrasound in the Affiliated Tumor Hospital of Guangxi Medical University were reviewed and analyzed. Results A total of 135 lesions were analyzed, of which malignant lesions were found in 72 patients and benign lesions in 63, with a CEUS accuracy rate of 91.11%, which was significantly higher than that of conventional ultrasound (74.81%; P<0.05). Conclusions CEUS can improve the accuracy rate of ultrasonography in the diagnosis and differential diagnosis of hyperechoic liver lesions. PMID:26394170

  12. Mesoporous silica nanoparticles as a breast cancer targeting contrast agent for ultrasound imaging

    NASA Astrophysics Data System (ADS)

    Milgroom, Andrew Carson

    Current clinical use of ultrasound for breast cancer diagnostics is strictly limited to a role as a supplementary detection method to other modalities, such as mammography or MRI. A major reason for ultrasound’s role as a secondary method is its inability to discern between cancerous and non-cancerous bodies of similar density, like dense calcifications or benign fibroadenomas. Its detection capabilities are further diminished by the variable density of the surrounding breast tissue with the progression of age. Preliminary studies suggest that mesoporous silica nanoparticles (MSNs) are a good candidate as an in situ contrast agent for ultrasound. By tagging the silica particle surface with the cancer-targeting antibody trastuzumab (Herceptin), suspect regions of interest can be better identified in real time with standard ultrasound equipment. Once the silica-antibody conjugate is injected into the bloodstream and enters the cancerous growth’s vasculature, the antibody arm will bind to HER2, a cell surface receptor known to be dysfunctional or overexpressed in certain types of breast cancer. As more particles aggregate at the cell surface, backscatter of the ultrasonic waves increases as a result of the higher porous silica concentration. This translates to an increased contrast around the lesion boundary. Tumor detection through ultrasound contrast enhancement provides a tremendous advantage over current cancer diagnostics because is it significantly cheaper and can be monitored in real time. Characterization of MCM-41 type MSNs suggests that these particles have sufficient stability and particle size distribution to penetrate through fenestrated tumor vasculature and accumulate in HER2+ breast cancer cells through the enhanced permeation and retention (EPR) effect. A study of acoustic properties showed that particle concentration is linearly correlated to image contrast in clinical frequency-range ultrasound, although less pronounced than typical microbubble

  13. Contrast-enhanced harmonic endoscopic ultrasound imaging: Basic principles, present situation and future perspectives

    PubMed Central

    Alvarez-Sánchez, María-Victoria; Napoléon, Bertrand

    2014-01-01

    Over the last decade, the development of stabilised microbubble contrast agents and improvements in available ultrasonic equipment, such as harmonic imaging, have enabled us to display microbubble enhancements on a greyscale with optimal contrast and spatial resolution. Recent technological advances made contrast harmonic technology available for endoscopic ultrasound (EUS) for the first time in 2008. Thus, the evaluation of microcirculation is now feasible with EUS, prompting the evolution of contrast-enhanced EUS from vascular imaging to images of the perfused tissue. Although the relevant experience is still preliminary, several reports have highlighted contrast-enhanced harmonic EUS (CH-EUS) as a promising noninvasive method to visualise and characterise lesions and to differentiate benign from malignant focal lesions. Even if histology remains the gold standard, the combination of CH-EUS and EUS fine needle aspiration (EUS-FNA) can not only render EUS more accurate but may also assist physicians in making decisions when EUS-FNA is inconclusive, increasing the yield of EUS-FNA by guiding the puncture with simultaneous imaging of the vascularity. The development of CH-EUS has also opened up exciting possibilities in other research areas, including monitoring responses to anticancer chemotherapy or to ethanol-induced pancreatic tissue ablation, anticancer therapies based on ultrasound-triggered drug and gene delivery, and therapeutic adjuvants by contrast ultrasound-induced apoptosis. Contrast harmonic imaging is gaining popularity because of its efficacy, simplicity and non-invasive nature, and many expectations are currently resting on this technique. If its potential is confirmed in the near future, contrast harmonic imaging will become a standard practice in EUS. PMID:25400439

  14. Streaming flow from ultrasound contrast agents by acoustic waves in a blood vessel model.

    PubMed

    Cho, Eunjin; Chung, Sang Kug; Rhee, Kyehan

    2015-09-01

    To elucidate the effects of streaming flow on ultrasound contrast agent (UCA)-assisted drug delivery, streaming velocity fields from sonicated UCA microbubbles were measured using particle image velocimetry (PIV) in a blood vessel model. At the beginning of ultrasound sonication, the UCA bubbles formed clusters and translated in the direction of the ultrasound field. Bubble cluster formation and translation were faster with 2.25MHz sonication, a frequency close to the resonance frequency of the UCA. Translation of bubble clusters induced streaming jet flow that impinged on the vessel wall, forming symmetric vortices. The maximum streaming velocity was about 60mm/s at 2.25MHz and decreased to 15mm/s at 1.0MHz for the same acoustic pressure amplitude. The effect of the ultrasound frequency on wall shear stress was more noticeable. Maximum wall shear stress decreased from 0.84 to 0.1Pa as the ultrasound frequency decreased from 2.25 to 1.0MHz. The maximum spatial gradient of the wall shear stress also decreased from 1.0 to 0.1Pa/mm. This study showed that streaming flow was induced by bubble cluster formation and translation and was stronger upon sonication by an acoustic wave with a frequency near the UCA resonance frequency. Therefore, the secondary radiant force, which is much stronger at the resonance frequency, should play an important role in UCA-assisted drug delivery. PMID:26025507

  15. Dynamic Vascular Pattern (DVP), a quantification tool for contrast enhanced ultrasound.

    PubMed

    Cui, X W; Ignee, A; Jedrzejczyk, M; Dietrich, C F

    2013-05-01

    Contrast-enhanced ultrasound (CEUS) is widely applied in tumour diagnosis, especially for focal liver lesions (FLL), due to its high sensitivity and specificity. According to the European Federation of Societies for Ultrasound in Medicine and Biology (EFSUMB) CEUS guidelines (2012) and non-liver guidelines (2011), the majority of tumours, regardless of location, show specific CEUS enhancement patterns that can distinguish benign from malignant lesions. However, even experienced clinicians evaluating FLL may find occasional irregularities in these patterns, due to particular FLL pathologies, that make a definitive diagnosis difficult. Hence, there is a need to train physicians to utilize contrast enhancement kinetics to aid in the correct interpretation of data from CEUS examinations in patients with divergent liver tumour pathologies. Here we report on a CEUS quantitation software, SonoLiver®, to verify and improve diagnostic accuracy in the characterization of suspicious liver lesions through the analysis of dynamic vascular patterns (DVP). PMID:23681894

  16. Dynamic contrast-enhanced ultrasound of slaughterhouse porcine livers in machine perfusion.

    PubMed

    Izamis, Maria-Louisa; Efstathiades, Andreas; Keravnou, Christina; Leen, Edward L; Averkiou, Michalakis A

    2014-09-01

    The aim of this study was to enable investigations into novel imaging and surgical techniques by developing a readily accessible, versatile liver machine perfusion system. Slaughterhouse pig livers were used, and dynamic contrast-enhanced ultrasound was introduced to optimize the procurement process and provide real-time perfusion monitoring. The system comprised a single pump, oxygenator, bubble trap and two flowmeters for pressure-controlled perfusion of the vessels using an off-the-shelf perfusate at room temperature. Successful livers exhibited homogeneous perfusion in both the portal vein and hepatic artery with dynamic contrast-enhanced ultrasound, which correlated with stable oxygen uptake, bile production and hepatic resistance and normal histology at the end of 3 h of perfusion. Dynamic contrast-enhanced ultrasound revealed perfusion abnormalities invisible to the naked eye, thereby providing context to the otherwise systemic biochemical/hemodynamic measurements and focal biopsy findings. The model developed here is a simple, cost-effective approach for stable ex vivo whole-organ machine perfusion. PMID:25023101

  17. Copper oxide nanoparticles as contrast agents for MRI and ultrasound dual-modality imaging

    NASA Astrophysics Data System (ADS)

    Perlman, Or; Weitz, Iris S.; Azhari, Haim

    2015-08-01

    Multimodal medical imaging is gaining increased popularity in the clinic. This stems from the fact that data acquired from different physical phenomena may provide complementary information resulting in a more comprehensive picture of the pathological state. In this context, nano-sized contrast agents may augment the potential sensitivity of each imaging modality and allow targeted visualization of physiological points of interest (e.g. tumours). In this study, 7 nm copper oxide nanoparticles (CuO NPs) were synthesized and characterized. Then, in vitro and phantom specimens containing CuO NPs ranging from 2.4 to 320 μg · mL-1 were scanned, using both 9.4 T MRI and through-transmission ultrasonic imaging. The results show that the CuO NPs induce shortening of the magnetic T1 relaxation time on the one hand, and increase the speed of sound and ultrasonic attenuation coefficient on the other. Moreover, these visible changes are NP concentration-dependent. The change in the physical properties resulted in a substantial increase in the contrast-to-noise ratio (3.4-6.8 in ultrasound and 1.2-19.3 in MRI). In conclusion, CuO NPs are excellent candidates for MRI-ultrasound dual imaging contrast agents. They offer radiation-free high spatial resolution scans by MRI, and cost-effective high temporal resolution scans by ultrasound.

  18. Quantitative evaluation of microvascular blood flow by contrast-enhanced ultrasound (CEUS).

    PubMed

    Greis, Christian

    2011-01-01

    Ultrasound contrast agents consist of tiny gas-filled microbubbles the size of red blood cells. Due to their size distribution, they are purely intravascular tracers which do not extravasate into the interstitial fluid, and thus they are perfect agents for imaging blood distribution and flow. Using ultrasound scanners with contrast-specific software, the specific microbubble-derived echo signals can be separated from tissue signals in realtime, allowing selective imaging of the contrast agent. The signal intensity obtained lies in a linear relationship to the amount of microbubbles in the target organ, which allows easy and reliable assessment of relative blood volume. Imaging of the contrast wash-in and wash-out after bolus injection, or more precisely using the flash-replenishment technique, allows assessment of regional blood flow velocity. Commercially available quantification software packages can calculate time-related intensity values from the contrast wash-in and wash-out phase for each image pixel from stored video clips. After fitting of a mathematical model curve according to the respective kinetic model (bolus or flash-replenishment kinetics), time/intensity curves (TIC) can be calculated from single pixels or user-defined regions of interest (ROI). Characteristic parameters of these TICs (e.g. peak intensity, area under the curve, wash-in rate, etc.) can be displayed as color-coded parametric maps on top of the anatomical image, to identify cold and hot spots with abnormal perfusion. PMID:22214685

  19. Liver metastases: Contrast-enhanced ultrasound compared with computed tomography and magnetic resonance.

    PubMed

    Cantisani, Vito; Grazhdani, Hektor; Fioravanti, Cristina; Rosignuolo, Maria; Calliada, Fabrizio; Messineo, Daniela; Bernieri, Maria Giulia; Redler, Adriano; Catalano, Carlo; D'Ambrosio, Ferdinando

    2014-08-01

    The development of ultrasound contrast agents with excellent tolerance and safety profiles has notably improved liver evaluation with ultrasound (US) for several applications, especially for the detection of metastases. In particular, contrast enhanced ultrasonography (CEUS) allows the display of the parenchymal microvasculature, enabling the study and visualization of the enhancement patterns of liver lesions in real time and in a continuous manner in all vascular phases, which is similar to contrast-enhanced computed tomography (CT) and contrast-enhanced magnetic resonance imaging. Clinical studies have reported that the use of a contrast agent enables the visualization of more metastases with significantly improved sensitivity and specificity compared to baseline-US. Furthermore, studies have shown that CEUS yields sensitivities comparable to CT. In this review, we describe the state of the art of CEUS for detecting colorectal liver metastases, the imaging features, the literature reports of metastases in CEUS as well as its technique, its clinical role and its potential applications. Additionally, the updated international consensus panel guidelines are reported in this review with the inherent limitations of this technique and best practice experiences. PMID:25110428

  20. Stable Encapsulation of Air in Mesoporous Silica Nanoparticles: Fluorocarbon-Free Nanoscale Ultrasound Contrast Agents.

    PubMed

    Yildirim, Adem; Chattaraj, Rajarshi; Blum, Nicholas T; Goldscheitter, Galen M; Goodwin, Andrew P

    2016-06-01

    While gas-filled micrometer-sized ultrasound contrast agents vastly improve signal-to-noise ratios, microbubbles have short circulation lifetimes and poor extravasation from the blood. Previously reported fluorocarbon-based nanoscale contrast agents are more stable but their contrast is generally lower owing to their size and dispersity. The contrast agents reported here are composed of silica nanoparticles of ≈100 nm diameter that are filled with ≈3 nm columnar mesopores. Functionalization of the silica surface with octyl groups and resuspension with Pluronic F127 create particles with pores that remain filled with air but are stable in buffer and serum. Administration of high intensity focused ultrasound (HIFU) allows sensitive imaging of the silica nanoparticles down to 10(10) particles mL(-1) , with continuous imaging for at least 20 min. Control experiments with different silica particles supported the hypothesis that entrapped air could be pulled into bubble nuclei, which can then in turn act as acoustic scatterers. This process results in very little hemolysis in whole blood, indicating potential for nontoxic blood pool imaging. Finally, the particles are lyophilized and reconstituted or stored in PBS (phosphate-buffered saline, at least for four months) with no loss in contrast, indicating stability to storage and reformulation. PMID:26990167

  1. [Radiographic, MR or ultrasound contrast media in pregnant or breast-feeding women: what are the key issues?].

    PubMed

    Fröhlich, J M; Kubik-Huch, R A

    2013-01-01

    The use and the safety of radiographic, MR- or ultrasound contrast media in the diagnostic work-up of pregnant or lactating patients is a frequently discussed question. As only sparse clinical data is available, a careful benefit-risk assessment must contain physico-chemical properties, preclinical data including teratogeneity and embryotoxicity, as well as maternal and foetal exposure. With consideration to the individual risks, iodinated contrast media, macrocyclic MR contrast media with increased stability or sulphur hexafluoride ultrasound contrast media may, if clinically justified, be administered in the smallest possible doses throughout pregnancy. After parental administration of an iodinated contrast medium after the 12th week of pregnancy, the neonate's thyroidal function should be checked during the first week after birth. After parental administration of iodinated, stable macrocyclic, gadolinium or ultrasound contrast media, lactation can be continued normally. In any case, contrast media should be used with caution and only if the benefits outweigh the risk. PMID:23108903

  2. Combined ultrasound and photoacoustic imaging of pancreatic cancer using nanocage contrast agents

    NASA Astrophysics Data System (ADS)

    Homan, Kimberly; Shah, Jignesh; Gomez, Sobeyda; Gensler, Heidi; Karpiouk, Andrei; Brannon-Peppas, L.; Emelianov, Stanislav

    2009-02-01

    A new metallodielectric nanoparticle consisting of a silica core and silver outer cage was developed for the purpose of enhancing photoacoustic imaging contrast in pancreatic tissue. These nanocages were injected into an ex vivo porcine pancreas and imaged using a combined photoacoustic and ultrasound (PAUS) assembly. This custom-designed PAUS assembly delivered 800 nm light through a fiber optical light delivery system integrated with 128 element linear array transducer operating at 7.5 MHz center frequency. Imaging results prove that the nanocage contrast agents have the ability to enhance photoacoustic imaging contrast. Furthermore, the value of the combined PAUS imaging modality was demonstrated as the location of nanocages against background native tissue was evident. Future applications of these nanocage contrast agents could include targeting them to pancreatic cancer for enhancement of photoacoustic imaging for diagnosis and therapy.

  3. On-chip preparation of nanoscale contrast agents towards high-resolution ultrasound imaging.

    PubMed

    Peyman, Sally A; McLaughlan, James R; Abou-Saleh, Radwa H; Marston, Gemma; Johnson, Benjamin R G; Freear, Steven; Coletta, P Louise; Markham, Alexander F; Evans, Stephen D

    2016-02-21

    Micron-sized lipid-stabilised bubbles of heavy gas have been utilised as contrast agents for diagnostic ultrasound (US) imaging for many years. Typically bubbles between 1 and 8 μm in diameter are produced to enhance imaging in US by scattering sound waves more efficiently than surrounding tissue. A potential area of interest for Contrast Enhanced Ultrasound (CEUS) are bubbles with diameters <1 μm or 'nanobubbles.' As bubble diameter decreases, ultrasonic resonant frequency increases, which could lead to an improvement in resolution for high-frequency imaging applications when using nanobubbles. In addition, current US contrast agents are limited by their size to the vasculature in vivo. However, molecular-targeted nanobubbles could penetrate into the extra-vascular space of cancerous tissue providing contrast in regions inaccessible to traditional microbubbles. This paper reports a new microfluidic method for the generation of sub-micron sized lipid stabilised particles containing perfluorocarbon (PFC). The nanoparticles are produced in a unique atomisation-like flow regime at high production rates, in excess of 10(6) particles per s and at high concentration, typically >10(11) particles per mL. The average particle diameter appears to be around 100-200 nm. These particles, suspected of being a mix of liquid and gaseous C4F10 due to Laplace pressure, then phase convert into nanometer sized bubbles on the application of US. In vitro ultrasound characterisation from these nanoparticle populations showed strong backscattering compared to aqueous filled liposomes of a similar size. The nanoparticles were stable upon injection and gave excellent contrast enhancement when used for in vivo imaging, compared to microbubbles with an equivalent shell composition. PMID:26689151

  4. Mechanical stability of hollow spherical nano-aggregates as ultrasound contrast agent.

    PubMed

    Hadinoto, Kunn

    2009-06-01

    Gas-filled hollow nanoparticulate aggregates designed for use as an ultrasound contrast agent and as an ultrasound-mediated nanoparticulate drug delivery vehicle are manufactured by spray drying of nanoparticulate suspension at a fast convective drying rate. The gas outward diffusion from the hollow particles during insonication reduces the shell mechanical stability hence shortening the lifespan of the ultrasound contrast agent. The present work aims to develop a formulation method to produce micron-size hollow nanoparticulate aggregates with high shell mechanical stability by controlling the shell thickness-to-particle radius (S/R) ratio. The impacts of changing (1) the spray drying parameters, (2) nanoparticulate suspension concentration, and (3) surfactant inclusion (i.e. phospholipids) on the particle morphology and the S/R ratio are investigated. Biocompatible PMMA-MeOPEGMA nanoparticles of varying sizes (i.e. 50+/-20, 110+/-40, and 230+/-80 nm) are used as the model nanoparticles. The results indicate that the S/R ratio increases with decreasing particle size and the shell mechanical stability is linearly dependent on the S/R ratio. The effects of the spray drying parameters and nanoparticle concentration are found to be minimal in the absence of the phospholipids. The S/R ratio can be significantly increased by using larger size nanoparticles with the phospholipids inclusion. PMID:19446772

  5. The performance of PEGylated nanocapsules of perfluorooctyl bromide as an ultrasound contrast agent.

    PubMed

    Díaz-López, Raquel; Tsapis, Nicolas; Santin, Mathieu; Bridal, Sharon Lori; Nicolas, Valérie; Jaillard, Danielle; Libong, Danielle; Chaminade, Pierre; Marsaud, Véronique; Vauthier, Christine; Fattal, Elias

    2010-03-01

    The surface of polymeric nanocapsules used as ultrasound contrast agents (UCAs) was modified with PEGylated phospholipids in order to escape recognition and clearance by the mononuclear phagocyte system and achieve passive tumor targeting. Nanocapsules consisted of a shell of poly(lactide-co-glycolide) (PLGA) encapsulating a liquid core of perfluorooctyl bromide (PFOB). They were decorated with poly(ethylene glycol-2000)-grafted distearoylphosphatidylethanolamine (DSPE-PEG) incorporated in the organic phase before the solvent emulsification-evaporation process. The influence of DSPE-PEG concentration on nanocapsule size, surface charge, morphology, hydrophobicity and complement activation was evaluated. Zeta potential measurements, Hydrophobic interaction chromatography and complement activation provide evidence of DSPE-PEG presence at nanocapsule surface. Electronic microscopy reveals that the core/shell structure is preserved up to 2.64 mg of DSPE-PEG for 100 mg PLGA. In vivo ultrasound imaging was performed in mice bearing xenograft tumor with MIA PaCa-2 cells, either after an intra-tumoral or intravenous injection of nanocapsules. Tumor was observed only after the intra-tumoral injection. Despite the absence of echogenic signal in the tumor after intravenous injection of nanocapsules, histological analysis reveals their accumulation within the tumor tissue demonstrating that tissue distribution is not the unique property required for ultrasound contrast agents to be efficient. PMID:19948357

  6. Transdermal Drug Delivery Aided by an Ultrasound Contrast Agent: An In Vitro Experimental Study

    PubMed Central

    Park, Donghee; Yoon, Jinhee; Park, Jingam; Jung, Byungjo; Park, Hyunjin; Seo, Jongbum

    2010-01-01

    Sonophoresis temporarily increases skin permeability such that medicine can be delivered transdermally. Cavitation is believed to be the predominant mechanism in sonophoresis. In this study, an ultrasound contrast agent (UCA) strategy was adopted instead of low frequency ultrasound to assure that cavitation occurred, and the efficacy of sonophoresis with UCA was quantitatively analyzed by optical measurements. The target drug used in this study was 0.1 % Definity® in 70% glycerol, which was delivered into porcine skin samples. Glycerol was used because it is an optical clearing agent, and the efficiency of glycerol delivery could be analyzed with optical measurements. The applied acoustic pressure was approximately 600 kPa at 1 MHz ultrasound with a 10% duty cycle for 60 minutes. Experimental results indicated that the measured relative contrast (RC) after sonophoresis with UCA was approximately 80% higher than RC after sonophoresis without UCA. In addition, the variance of RC was also reduced by more than 50% with the addition of a UCA. The use of a UCA appeared to increase cavitation, demonstrating that the use of a UCA can be effective in transdermal drug delivery (TDD). PMID:20448793

  7. The Degree of Contrast Washout on Contrast-Enhanced Ultrasound in Distinguishing Intrahepatic Cholangiocarcinoma from Hepatocellular Carcinoma.

    PubMed

    Han, Jing; Liu, Yubo; Han, Feng; Li, Qing; Yan, Cuiju; Zheng, Wei; Wang, Jianwei; Guo, Zhixing; Wang, Jun; Li, Anhua; Zhou, Jianhua

    2015-12-01

    We aim to assess the role and degree of contrast washout in the differential diagnosis of intrahepatic cholangiocarcinoma (ICC) from hepatocellular carcinoma (HCC) on contrast-enhanced ultrasound (CEUS). Fifty-six histopathology-confirmed ICC nodules and 184 HCC nodules were included in this study. The nodules' washout degree on CEUS at 1, 2 and 3 min was semi-quantitatively and qualitatively assessed using gray-scale video signal intensity. Semi-quantitative assessment showed that the washout degree of ICCs at 1, 2 and 3 min were significantly lower than those of HCCs (p < 0.001) and similar results were found in the same size range subgroups. There were no significant differences in the washout degree of ICCs between patients with chronic hepatitis and those without. The areas under receiver operating characteristic curves, using the nodules' washout degree at 1, 2 and 3 min to differentiate ICC from HCC, were 0.957, 0.979 and 0.982, respectively. The qualitative assessment showed the washout of ICCs was more rapid and obvious than that of HCCs. At 3 min, moderate and marked washout were observed in all ICCs, but in only 12.5% HCCs (p < 0.001). In conclusion, ICCs displayed much higher degree of contrast washout than HCCs on CEUS, which allowed for differentiation from HCCs. PMID:26386477

  8. Numerical Modeling of 3-D Dynamics of Ultrasound Contrast Agent Microbubbles Using the Boundary Integral Method

    NASA Astrophysics Data System (ADS)

    Calvisi, Michael; Manmi, Kawa; Wang, Qianxi

    2014-11-01

    Ultrasound contrast agents (UCAs) are microbubbles stabilized with a shell typically of lipid, polymer, or protein and are emerging as a unique tool for noninvasive therapies ranging from gene delivery to tumor ablation. The nonspherical dynamics of contrast agents are thought to play an important role in both diagnostic and therapeutic applications, for example, causing the emission of subharmonic frequency components and enhancing the uptake of therapeutic agents across cell membranes and tissue interfaces. A three-dimensional model for nonspherical contrast agent dynamics based on the boundary integral method is presented. The effects of the encapsulating shell are approximated by adapting Hoff's model for thin-shell, spherical contrast agents to the nonspherical case. A high-quality mesh of the bubble surface is maintained by implementing a hybrid approach of the Lagrangian method and elastic mesh technique. Numerical analyses for the dynamics of UCAs in an infinite liquid and near a rigid wall are performed in parameter regimes of clinical relevance. The results show that the presence of a coating significantly reduces the oscillation amplitude and period, increases the ultrasound pressure amplitude required to incite jetting, and reduces the jet width and velocity.

  9. Preliminary Analysis of Clinical Situations Involved in Quantification of Contrast-Enhanced Ultrasound in Crohn's Disease.

    PubMed

    Cheng, Wenjie; Gao, Xiang; Wang, Weili; Zhi, Min; Tang, Jian; Wen, Yan-Ling; Yu, Junli; Chen, Yao; Liu, Xiaoyin; Yang, Chuan; Hu, Pinjin; Liu, Guangjian

    2016-08-01

    To assess influencing factors for quantitative analysis of contrast-enhanced ultrasound (CEUS) in Crohn's disease (CD), dynamic CEUS examinations from 77 consecutive CD patients were recorded. Peak intensity (PI) values were calculated using the pre-installed quantification software of the ultrasound scanner. The influence of depth, pressure from the ultrasound probe and intraluminal gas was analyzed. The PI value of the anterior wall was lower than that of the posterior wall when the depth was ≤3.4 cm (17.9 dB vs. 21.3 dB; p < 0.05) or evident pressure was exerted (19.1 dB vs. 22.5 dB; p < 0.01). In the presence of intraluminal gas, the PI of the anterior wall was higher than that of the posterior wall (20.7 dB vs. 18.8 dB; p < 0.05). Nevertheless, no significant difference was found between the PI value of anterior and posterior walls when the depth was >3.4 cm (19.8 dB vs. 20.3 dB), moderate pressure was exerted (20.5 dB vs. 21.1 dB) or luminal gas was excluded between the two bowel walls (18.9 dB vs. 21.2 dB; p ≥ 0.05). The factors of depth, pressure from the ultrasound probe and intraluminal gas can affect the quantification results of CEUS. It is preferable to place the region of interest in the posterior wall when luminal gas is absent and in the anterior wall when luminal gas is present. In the latter case, more attention should be paid to reducing pressure by the ultrasound probe. PMID:27087694

  10. Calibration of an Ultrasound Tomography System for Medical Imaging with 2D Contrast-Source Inversion

    NASA Astrophysics Data System (ADS)

    Faucher, Gabriel Paul

    This dissertation describes two possible methods for the calibration of an ultrasound tomography system developed at University of Manitoba's Electromagnetic Imaging Laboratory for imaging with the contrast-source inversion algorithm. The calibration techniques are adapted from existing procedures employed for microwave tomography. A theoretical model of these calibration principles is developed in order to provide a rationale for the effectiveness of the proposed procedures. The applicability of such an imaging algorithm and calibration methods in the context of ultrasound are discussed. Also presented are 2D and 3D finite-difference time-domain update equations for the simulation of acoustic wave propagation in inhomogeneous media. Details regarding the application of an absorbing boundary-condition, point-source modelling and the treatment of penetrable objects are included in this document.

  11. In vivo pulsed magneto-motive ultrasound imaging using high-performance magnetoactive contrast nanoagents

    NASA Astrophysics Data System (ADS)

    Mehrmohammadi, Mohammad; Shin, Tae-Hyun; Qu, Min; Kruizinga, Pieter; Truby, Ryan L.; Lee, Jae-Hyun; Cheon, Jinwoo; Emelianov, Stanislav Y.

    2013-10-01

    Previously, pulsed magneto-motive ultrasound (pMMUS) imaging has been introduced as a contrast-agent-assisted ultrasound-based imaging modality capable of visualizing biological events at the cellular and molecular level. In pMMUS imaging, a high intensity pulsed magnetic field is used to excite cells or tissue labeled with magnetic nanoparticles. Then, ultrasound (US) imaging is used to monitor the mechanical response of the tissue to an externally applied magnetic field (i.e., tissue displacement). Signal to noise ratio (SNR) in pMMUS imaging can be improved by using superparamagnetic nanoparticles with larger saturation magnetization. Metal-doped magnetic nanoparticles with enhanced tunable nanomagnetism are suitable candidates to improve the SNR and, therefore, sensitivity of pMMUS imaging, which is essential for in vivo pMMUS imaging. In this study, we demonstrate the capability of pMMUS imaging to identify the presence and distribution of zinc-doped iron oxide nanoparticles in live nude mice bearing A431 (human epithelial carcinoma) xenograft tumors.Previously, pulsed magneto-motive ultrasound (pMMUS) imaging has been introduced as a contrast-agent-assisted ultrasound-based imaging modality capable of visualizing biological events at the cellular and molecular level. In pMMUS imaging, a high intensity pulsed magnetic field is used to excite cells or tissue labeled with magnetic nanoparticles. Then, ultrasound (US) imaging is used to monitor the mechanical response of the tissue to an externally applied magnetic field (i.e., tissue displacement). Signal to noise ratio (SNR) in pMMUS imaging can be improved by using superparamagnetic nanoparticles with larger saturation magnetization. Metal-doped magnetic nanoparticles with enhanced tunable nanomagnetism are suitable candidates to improve the SNR and, therefore, sensitivity of pMMUS imaging, which is essential for in vivo pMMUS imaging. In this study, we demonstrate the capability of pMMUS imaging to identify

  12. Current consensus and guidelines of contrast enhanced ultrasound for the characterization of focal liver lesions

    PubMed Central

    Jang, Jae Young; Kim, Moon Young; Jeong, Soung Won; Kim, Tae Yeob; Kim, Seung Up; Lee, Sae Hwan; Suk, Ki Tae; Park, Soo Young; Woo, Hyun Young; Kim, Sang Gyune; Heo, Jeong; Baik, Soon Koo; Kim, Hong Soo

    2013-01-01

    The application of ultrasound contrast agents (UCAs) is considered essential when evaluating focal liver lesions (FLLs) using ultrasonography (US). Microbubble UCAs are easy to use and robust; their use poses no risk of nephrotoxicity and requires no ionizing radiation. The unique features of contrast enhanced US (CEUS) are not only noninvasiveness but also real-time assessing of liver perfusion throughout the vascular phases. The later feature has led to dramatic improvement in the diagnostic accuracy of US for detection and characterization of FLLs as well as the guidance to therapeutic procedures and evaluation of response to treatment. This article describes the current consensus and guidelines for the use of UCAs for the FLLs that are commonly encountered in US. After a brief description of the bases of different CEUS techniques, contrast-enhancement patterns of different types of benign and malignant FLLs and other clinical applications are described and discussed on the basis of our experience and the literature data. PMID:23593604

  13. Development of a platform for co-registered ultrasound and MR contrast imaging in vivo

    NASA Astrophysics Data System (ADS)

    Chandrana, Chaitanya; Bevan, Peter; Hudson, John; Pang, Ian; Burns, Peter; Plewes, Donald; Chopra, Rajiv

    2011-02-01

    Imaging of the microvasculature is often performed using contrast agents in combination with either ultrasound (US) or magnetic resonance (MR) imaging. Contrast agents are used to enhance medical imaging by highlighting microvascular properties and function. Dynamic signal changes arising from the passage of contrast agents through the microvasculature can be used to characterize different pathologies; however, comparisons across modalities are difficult due to differences in the interactions of contrast agents with the microvasculature. Better knowledge of the relationship of contrast enhancement patterns with both modalities could enable better characterization of tissue microvasculature. We developed a co-registration platform for multi-modal US and MR imaging using clinical imaging systems in order to study the relationship between US and MR contrast enhancement. A preliminary validation study was performed in phantoms to determine the registration accuracy of the platform. In phantoms, the in-plane registration accuracy was measured to be 0.2 ± 0.2 and 0.3 ± 0.2 mm, in the lateral and axial directions, respectively. The out-of-plane registration accuracy was estimated to be 0.5 mm ±0.1. Co-registered US and MR imaging was performed in a rabbit model to evaluate contrast kinetics in different tissue types after bolus injections of US and MR contrast agents. The arrival time of the contrast agent in the plane of imaging was relatively similar for both modalities. We studied three different tissue types: muscle, large vessels and fat. In US, the temporal kinetics of signal enhancement were not strongly dependent on tissue type. In MR, however, due to the different amounts of agent extravasation in each tissue type, tissue-specific contrast kinetics were observed. This study demonstrates the feasibility of performing in vivo co-registered contrast US and MR imaging to study the relationships of the enhancement patterns with each modality.

  14. Consistency analysis of contrast-enhanced ultrasound and contrast-enhanced CT in diagnosis of small hepatocellular carcinoma

    PubMed Central

    Liu, Jun-Jie; Li, Hong-Xue; Chen, Zhao-Bei; Yang, Wei-Ping; Zhao, Sheng-Fa; Chen, Jie; Bai, Tao; Li, Hang; Li, Le-Qun

    2015-01-01

    To compare the consistency of contrast-enhanced ultrasound (CEUS) and contrast-enhance CT (CECT) in diagnosis of 1~2 cm and 2.1~3 cm small hepatocellular carcinoma (HCC) and evaluate the value of CEUS in diagnosis of HCC. Methods: A total of 74 patients (89 lesions) with small HCC and cirrhosis background were retrospectively analyzed. All of the eighty-nine lesions were confirmed by histopathological examination of surgical samples or needle biopsy. All the cases were divided into 1~2 cm group and 2.1~3 cm group. The CEUS and CECT enhanced pattern and diagnosis results of the two groups were compared and the consistency between the two imaging methods were statistically analyzed. Results: In the diagnosis of 1.0-2.0 cm HCC, CEUS and CECT had a moderate consistency in arterial phase, CEUS showed a tolerable consistency with CECT in portal venous and delayphase. The two imaging methods have a better consistency for the diagnosis in 2.1-3.0 cm HCC. Conclusion: CEUS can be used as a supplement to provide important diagnostic information in clinical practice when positive results or definite diagnoses cannot obtain. PMID:26885093

  15. Nanosized Ultrasound Enhanced-Contrast Agent for in Vivo Tumor Imaging via Intravenous Injection.

    PubMed

    Kim, Manse; Lee, Jong Hyun; Kim, Se Eun; Kang, Seong Soo; Tae, Giyoong

    2016-04-01

    To enhance the detection limit of ultrasound (US) imaging, ultrasound enhanced-contrast agents (UECAs) that can go preferentially to the target tissue such as a tumor and amplify the US signal have been developed. However, nanosized UECAs among various UECAs developed are very limited to clearly demonstrate proper ability for selective tumor detection by US imaging upon their intravenous injection. In this study, we prepared CaCO3 nanoparticles that were formed inside a flexible and biocompatible pluronic-based nanocarrier. This nanosized UECA was stable in serum-containing media and generated CO2, more preferentially at low pH; thus, it could be detected by US imaging. After intravenous injection into tumor-bearing mice, this nanosized UECA showed a significant US contrast enhancement at the tumor site in 1 h, in contrast to no change in the liver, followed by a rapid clearance from the body in 24 h. Therefore, the present nanosized UECA could be applied as an effective diagnostic modality for in vivo tumor imaging by ultrasonography. PMID:27010717

  16. Enzyme-Degradable Hybrid Polymer/Silica Microbubbles as Ultrasound Contrast Agents.

    PubMed

    Tsao, Nadia H; Hall, Elizabeth A H

    2016-06-28

    The fabrication of an enzyme-degradable polymer/silica hybrid microbubble is reported that produces an ultrasound contrast image. The polymer, a triethoxysilane end-capped polycaprolactone (SiPCL), is used to incorporate enzyme-degradable components into a silica microbubble synthesis, and to impart increased elasticity for enhanced acoustic responsiveness. Formulations of 75, 85, and 95 wt % SiPCL in the polymer feed produced quite similar ratios of SiPCL and silica in the final bubble but different surface properties. The data suggest that different regions of the microbubbles were SiPCL-rich: the inner layer next to the polystyrene template core and the outer surface layer, thereby creating a sandwiched silica-rich layer of the bubble shell. Overall, the thickness of the microbubble shell was dependent on the starting TEOS concentration and the reaction time. Despite the layered structure, the microbubble could be efficiently degraded by lipase enzyme, but was stable without enzyme. The ultrasound contrast showed a general trend of increase in image intensity with SiPCL feed ratio, although the 95 wt % SiPCL bubbles did not produce a contrast image, probably due to bubble collapse. At higher normalized peak negative acoustic pressure (mechanical index, MI), a nonlinear frequency response also emerges, characterized by the third harmonic at around 3f0, and increases with MI. The threshold MI transition from linear to nonlinear response increased with decrease in SiPCL. PMID:27245495

  17. RENAL RETENTION OF LIPID MICROBUBBLES: A POTENTIAL MECHANISM FOR FLANK DISCOMFORT DURING ULTRASOUND CONTRAST ADMINISTRATION

    PubMed Central

    Liu, Ya Ni; Khangura, Jaspreet; Xie, Aris; Belcik, J. Todd; Qi, Yue; Davidson, Brian P.; Zhao, Yan; Kim, Sajeevani; Inaba, Yoichi; Lindner, Jonathan R.

    2013-01-01

    Background The etiology for flank pain sometimes experienced during administration of ultrasound contrast agents is unknown. We investigated whether microbubble ultrasound contrast agents are retained within the renal microcirculation which could lead to either flow disturbance or local release of vasoactive and pain mediators downstream from complement activation. Methods Retention of lipid-shelled microbubbles in the renal microcirculation of mice was assessed by confocal fluorescent microscopy and contrast-enhanced ultrasound (CEU) imaging with dose-escalating intravenous injection. Studies were performed with size-segregated microbubbles to investigate physical entrapment, after glycocalyx degradation, and in wild-type and C3-deficient mice to investigate complement-mediated retention. Urinary bradykinin was measured before and after microbubbles. Renal CEU in human subjects (n=13) was performed 7–10 min after completion of lipid microbubble administration. Results In both mice and humans, microbubble retention was detected in the renal cortex by persistent CEU signal enhancement. Microbubble retention in mice was linearly related to dose and occurred almost exclusively in cortical glomerular microvessels. Microbubble retention did not affect microsphere-derived renal blood flow. Microbubble retention was not influenced by glycocalyx degradation nor by microbubble size, thereby excluding lodging, but was reduced by 90% (p<0.01) in C3-deficient mice. Urinary bradykinin increased by 65% five minutes after microbubble injection. Conclusion Lipid-shelled microbubbles are retained in the renal cortex due to complement-mediated interactions with glomerular microvascular endothelium. Microbubble retention does not adversely affect renal perfusion but does generate complement-related intermediates that are known to mediate nociception and could be responsible for flank pain. PMID:24035699

  18. Stimulus-responsive ultrasound contrast agents for clinical imaging: motivations, demonstrations, and future directions.

    PubMed

    Goodwin, Andrew P; Nakatsuka, Matthew A; Mattrey, Robert F

    2015-01-01

    Microbubble ultrasound contrast agents allow imaging of the vasculature with excellent resolution and signal-to-noise ratios. Contrast in microbubbles derives from their interaction with an ultrasound wave to generate signal at harmonic frequencies of the stimulating pulse; subtracting the elastic echo caused by the surrounding tissue can enhance the specificity of these harmonic signals significantly. The nonlinear acoustic emission is caused by pressure-driven microbubble size fluctuations, which in both theoretical descriptions and empirical measurements was found to depend on the mechanical properties of the shell that encapsulates the microbubble as well as stabilizes it against the surrounding aqueous environment. Thus biochemically induced switching between a rigid 'off' state and a flexible 'on' state provides a mechanism for sensing chemical markers for disease. In our research, we coupled DNA oligonucleotides to a stabilizing lipid monolayer to modulate stiffness of the shell and thereby induce stimulus-responsive behavior. In initial proof-of-principle studies, it was found that signal modulation came primarily from DNA crosslinks preventing the microbubble size oscillations rather than merely damping the signal. Next, these microbubbles were redesigned to include an aptamer sequence in the crosslinking strand, which not only allowed the sensing of the clotting enzyme thrombin but also provided a general strategy for sensing other soluble biomarkers in the bloodstream. Finally, the thrombin-sensitive microbubbles were validated in a rabbit model, presenting the first example of an ultrasound contrast agent that could differentiate between active and inactive clots for the diagnosis of deep venous thrombosis. PMID:25195785

  19. RGD-Targeted Ultrasound Contrast Agent for Longitudinal Assessment of Hep-2 Tumor Angiogenesis In Vivo

    PubMed Central

    Hu, Qiao; Wang, Xiao-Yan; Kang, Li-Ke; Wei, Hai-Ming; Xu, Chun-Mei; Wang, Tao; Wen, Zong-Hua

    2016-01-01

    Objective To prepare arginine-glycine-aspartate (RGD)-targeted ultrasound contrast microbubbles (MBs) and explore the feasibility of their use in assessing dynamic changes in αvβ3 integrin expression in a murine model of tumor angiogenesis. Methods RGD peptides were conjugated to the surfaces of microbubbles via biotin-avidin linkage. Microbubbles bearing RADfK peptides were prepared as controls. The RGD-MBs were characterized using an Accusizer 780 and optical microscopy. The binding specificity of the RGD-MBs for ανβ3-expressing endothelial cells (bEnd.3) was demonstrated in vitro by a competitive inhibition experiment. In an in vivo study, mice bearing tumors of three different stages were intravenously injected with RGD-MBs and subjected to targeted, contrast-enhanced, high-frequency ultrasound. Subsequently, tumors were harvested and sectioned for immunofluorescence analysis of ανβ3 expression. Results The mean size of the RGD-MBs was 2.36 ± 1.7 μm. The RGD-MBs showed significantly higher adhesion levels to bEnd.3 cells compared to control MBs (P < 0.01). There was rarely binding of RGD-MBs to αvβ3-negative MCF-7 cells. Adhesion of the RGD-MBs to the bEnd.3 cells was significantly inhibited following treatment with anti-alpha(v) antibodies. The quantitative acoustic video intensity for high-frequency, contrast-enhanced ultrasound imaging of subcutaneous human laryngeal carcinoma (Hep-2) tumor xenografts was significantly higher in small tumors (19.89 ± 2.49) than in medium tumors (11.25 ± 2.23) and large tumors (3.38 ± 0.67) (P < 0.01). Conclusions RGD-MBs enable noninvasive in vivo visualization of changes in tumor angiogenesis during tumor growth in subcutaneous cancer xenografts. PMID:26862757

  20. Self-demodulation effect on subharmonic response of ultrasound contrast agent

    NASA Astrophysics Data System (ADS)

    Daeichin, V.; Faez, T.; Needles, A.; Renaud, G.; Bosch, J. G.; van der Steen, A. F. W.; de Jong, N.

    2012-03-01

    In this work the use of the self-demodulation (S-D) signal as a mean of microbubble excitation at the subharmonic (SH) frequency to enhance the SH emission of ultrasound contrast agent (UCA) is studied. SH emission from the UCA is of interest since it is produced only by the UCA and is free of the artifacts produced in harmonic imaging modes. The S-D wave is a low-frequency signal produced by nonlinear propagation of an ultrasound wave in the medium. Single element transducer experiments and numerical simulations were conducted at 10 MHz to study the effect of the S-D signal on the SH response of the UCA by modifying the envelope of the excitation bursts. For 6 and 20 transmitted cycles, the SH response is increased up to 25 dB and 22 dB because of the S-D stimulation for a burst with a rectangular envelope compared with a Gaussian envelope burst. Such optimized excitations were used in an array-based micro-ultrasound system (Vevo 2100, VisualSonics Inc., Toronto, ON, Canada) at 18 MHz for in vitro validation of SH imaging. This study suggests that a suitable design of the envelope of the transmit excitation to generate a S-D signal at the SH frequency can enhance the SH emission of UCA and real-time SH imaging is feasible with shorter transmit burst (6- cycle) and low acoustic pressure (~150 KPa) at high frequencies (>15 MHz).

  1. Ultrasound

    MedlinePlus

    Ultrasound is a type of imaging. It uses high-frequency sound waves to look at organs and ... liver, and other organs. During pregnancy, doctors use ultrasound to view the fetus. Unlike x-rays, ultrasound ...

  2. Ultrasound

    MedlinePlus Videos and Cool Tools

    Ultrasound is a useful procedure for monitoring the baby's development in the uterus. Ultrasound uses inaudible sound waves to ... no known risks for ultrasound at present, it is highly recommended that pregnant women consult their physician ...

  3. Review of dynamic contrast-enhanced ultrasound guidance in ablation therapy for hepatocellular carcinoma

    PubMed Central

    Minami, Yasunori; Kudo, Masatoshi

    2011-01-01

    Local ablative techniques-percutaneous ethanol injection, microwave coagulation therapy and radiofrequency ablation (RFA)-have been developed to treat unresectable hepatocellular carcinoma (HCC). The success rate of percutaneous ablation therapy for HCC depends on correct targeting of the tumor via an imaging technique. However, probe insertion often is not completely accurate for small HCC nodules, which are poorly defined on conventional B-mode ultrasound (US) alone. Thus, multiple sessions of ablation therapy are frequently required in difficult cases. By means of two breakthroughs in US technology, harmonic imaging and the development of second-generation contrast agents, dynamic contrast-enhanced harmonic US imaging with an intravenous contrast agent can depict tumor vascularity sensitively and accurately, and is able to evaluate small hypervascular HCCs even when B-mode US cannot adequately characterize the tumors. Therefore, dynamic contrast-enhanced US can facilitate RFA electrode placement in hypervascular HCC, which is poorly depicted by B-mode US. The use of dynamic contrast-enhanced US guidance in ablation therapy for liver cancer is an efficient approach. Here, we present an overview of the current status of dynamic contrast-enhanced US-guided ablation therapy, and summarize the current indications and outcomes of reported clinical use in comparison with that of other modalities. PMID:22174544

  4. Ultrasound modulated fluorescence emission from Pyrene-labelled liposome contrast agents

    NASA Astrophysics Data System (ADS)

    Zhang, Qimei; Moles, Matthew D.; Mather, Melissa L.; Morgan, Stephen P.

    2014-09-01

    Ultrasound modulated fluorescence tomography (USMFT) has the potential to be a useful technique to obtain fluorescence images with optical contrast and ultrasound (US) resolution in deep tissue. However, due to the intrinsic incoherent properties of fluorescence and the low modulation depth, the signal-to-noise ratio (SNR) and image contrast are poor. In this paper, the feasibility of using pyrene-labelled nanosize liposomes as contrast agents to improve the modulation depth in USMFT is investigated by using a light-scattering technique. Compared with microbubbles (MBs), which have been applied to USMFT to improve the modulation depth, liposomes are more stable and they can be manufactured with good repeatability. Also liposomes have a lower US scattering coefficient due to their liquid core as compared to the gas core of MBs, which can be advantageous when switching on fluorescence in a region of interest is required. Pyrene can form excimer fluorescence when in close proximity to other pyrene molecules. The exposure of these liposomes to US can change the collision rate of the pyrene molecules and hence modulate the optical emission. In the current work, 100 nm sized liposomes composed of varying concentrations of pyrene-labelled phospholipids were investigated to identify a suitable liposome-based US contrast agent candidate. The fluorescence emission of the pyrene-labelled liposomes insonified by continuous US were studied. It has been observed that the excimer emission from 0.5 mol% pyrene-labelled liposome is US sensitive at pressures between 1.4 MPa and 2.7 MPa. Possible fluorescence modulation mechanisms and application of pyrene-labelled liposomes for high-resolution, high-contrast fluorescence imaging are also discussed.

  5. Contrast-enhanced ultrasound in differentiating malignant from benign portal vein thrombosis in hepatocellular carcinoma

    PubMed Central

    Tarantino, Luciano; Ambrosino, Pasquale; Di Minno, Matteo Nicola Dario

    2015-01-01

    Portal vein thrombosis (PVT) may occur in liver cirrhosis patients. Malignant PVT is a common complication in cirrhotic patients with concomitant hepatocellular carcinoma (HCC) and, in some cases, it may be even the initial sign of an undetected HCC. Detection of malignant PVT in a patient with liver cirrhosis heavily affects the therapeutic strategy. Gray-scale ultrasound (US) is widely unreliable for differentiating benign and malignant thrombi. Although effective for this differential diagnosis, fine-needle biopsy remains an invasive technique. Sensitivity of color-doppler US in detection of malignant thrombi is highly dependent on the size of the thrombus. Contrast-enhanced computed tomography (CT) and contrast-enhanced magnetic resonance (MRI) can be useful to assess the nature of portal thrombus, while limited data are currently available about the role of positron emission tomography (PET) and PET-CT. In contrast with CT, MRI, PET, and PET-CT, contrast-enhanced ultrasound (CEUS) is a fast, effective, well tolerated and cheap technique, that can be performed even in the same session in which the thrombus has been detected. CEUS can be performed bedside and can be available also in transplanted patients. Moreover, CT and MRI only yield a snapshot analysis during contrast diffusion, while CEUS allows for a continuous real-time imaging of the microcirculation that lasts several minutes, so that the whole arterial phase and the late parenchymal phase of the contrast diffusion can be analyzed continuously by real-time US scanning. Continuous real-time monitoring of contrast diffusion entails an easy detection of thrombus maximum enhancement. Moreover, continuous quantitative analyses of enhancement (wash in - wash out studies) by CEUS during contrast diffusion is nowadays available in most CEUS machines, thus giving a more sophisticated and accurate evaluation of the contrast distribution and an increased confidence in diagnosis in difficult cases. In conclusion

  6. Update on the safety and efficacy of commercial ultrasound contrast agents in cardiac applications

    PubMed Central

    Tracy, Melissa J; Feinstein, Steven B

    2015-01-01

    Ultrasound contrast agents (UCAs) are currently used throughout the world in both clinical and research settings. The concept of contrast-enhanced ultrasound imaging originated in the late 1960s, and the first commercially available agents were initially developed in the 1980s. Today's microbubbles are designed for greater utility and are used for both approved and off-label indications. In October 2007, the US Food and Drug Administration (FDA) imposed additional product label warnings that included serious cardiopulmonary reactions, several new disease-state contraindications, and a mandated 30 min post-procedure monitoring period for the agents Optison and Definity. These additional warnings were prompted by reports of cardiopulmonary reactions that were temporally related but were not clearly attributable to these UCAs. Subsequent published reports over the following months established not only the safety but also the improved efficacy of clinical ultrasound applications with UCAs. The FDA consequently updated the product labeling in June 2008 and reduced contraindications, although it continued to monitor select patients. In addition, a post-marketing program was proposed to the sponsors for a series of safety studies to further assess the risk of UCAs. Then in October 2011, the FDA leadership further downgraded the warnings after hearing the results of the post-marketing data, which revealed continued safety and improved efficacy. The present review focuses on the use of UCAs in today's clinical practice, including the approved indications, a variety of off-label uses, and the most recent data, which affirms the safety and efficacy of UCAs. PMID:26693339

  7. Contrast-enhanced ultrasound after endovascular aortic repair—current status and future perspectives

    PubMed Central

    Partovi, Sasan; Kaspar, Mathias; Aschwanden, Markus; Lopresti, Charles; Madan, Shivanshu; Uthoff, Heiko; Imfeld, Stephan

    2015-01-01

    An increasing number of patients with abdominal aortic aneurysms (AAAs) are undergoing endovascular aortic repair (EVAR) instead of open surgery. These patients require lifelong surveillance, and the follow-up imaging modality of choice has been traditionally computed tomography angiography (CTA). Repetitive CTA imaging is associated with cumulative radiation exposure and requires the administration of multiple doses of nephrotoxic contrast agents. Contrast-enhanced ultrasound (CEUS) has emerged as an alternative strategy in the follow-up of patients with EVAR and demonstrates high sensitivity and specificity for detection of endoleaks. In fact, a series of studies have shown that CEUS is at least performing equal to computed tomography for the detection and classification of endoleaks. This article summarizes current evidence of CEUS after EVAR and demonstrates its usefulness via various patient cases. PMID:26673398

  8. Destruction of contrast microbubbles used for ultrasound imaging and drug delivery

    NASA Astrophysics Data System (ADS)

    Jain, Pankaj; Sarkar, Kausik; Chatterjee, Dhiman

    2005-09-01

    Microbubble contrast agent destruction by ultrasound pulse is useful in real-time blood-flow velocity measurement, stimulating arteriogenesis, or targeted drug delivery. We investigated in vitro destruction of contrast agent Definity (Bristol Meyer-Squibb Imaging, North Billerica, MA) by measuring attenuation of ultrasound through it. The measurement is performed with single-cycle bursts for varying pressure amplitudes at 50-, 100-, and 200-Hz pulse repetition frequencies (PRF). At low excitation levels, the attenuation increases with time, indicating an increase in bubble size due to ingress of dissolved air from the surrounding liquid. With increased excitation levels, the attenuation level decreases with time, indicating destruction of microbubbles. A critical pressure amplitude (1.2 MPa) was found for all three PRFs, below which there is no significant bubble destruction. Above the critical excitation level, the rate of destruction depends on excitation levels. But, at high pressure amplitudes destruction becomes independent of excitation pressure amplitude. The results are interpreted to identify two different mechanisms of bubble destruction by its signature in attenuation, namely, slow dissolution by diffusion at intermediate pressure amplitudes and catastrophic shell rupture at high amplitudes.

  9. Ultrasound contrast microbubbles in imaging and therapy: physical principles and engineering

    PubMed Central

    Qin, Shengping; Caskey, Charles F; Ferrara, Katherine W

    2010-01-01

    Microbubble contrast agents and the associated imaging systems have developed over the past twenty-five years, originating with manually-agitated fluids introduced for intra-coronary injection. Over this period, stabilizing shells and low diffusivity gas materials have been incorporated in microbubbles, extending stability in vitro and in vivo. Simultaneously, the interaction of these small gas bubbles with ultrasonic waves has been extensively studied, resulting in models for oscillation and increasingly sophisticated imaging strategies. Early studies recognized that echoes from microbubbles contained frequencies that are multiples of the microbubble resonance frequency. Although individual microbubble contrast agents cannot be resolved—given that their diameter is on the order of microns—nonlinear echoes from these agents are used to map regions of perfused tissue and to estimate the local microvascular flow rate. Such strategies overcome a fundamental limitation of previous ultrasound blood flow strategies; the previous Doppler-based strategies are insensitive to capillary flow. Further, the insonation of resonant bubbles results in interesting physical phenomena that have been widely studied for use in drug and gene delivery. Ultrasound pressure can enhance gas diffusion, rapidly fragment the agent into a set of smaller bubbles or displace the microbubble to a blood vessel wall. Insonation of a microbubble can also produce liquid jets and local shear stress that alter biological membranes and facilitate transport. In this review, we focus on the physical aspects of these agents, exploring microbubble imaging modes, models for microbubble oscillation and the interaction of the microbubble with the endothelium. PMID:19229096

  10. Robust contrast source inversion method with automatic choice rule of regularization parameters for ultrasound waveform tomography

    NASA Astrophysics Data System (ADS)

    Lin, Hongxiang; Azuma, Takashi; Qu, Xiaolei; Takagi, Shu

    2016-07-01

    We consider ultrasound waveform tomography using an ultrasound prototype equipped with the ring-array transducers. For this purpose, we use robust contrast source inversion (robust CSI), viz extended contrast source inversion, to reconstruct the sound-speed image from the wave-field data. The robust CSI method is implemented by the alternating minimization method. An automatic choice rule is employed into the alternating minimization method in order to heuristically determine a suitable regularization parameter while iterating. We prove the convergence of this algorithm. The numerical examples show that the robust CSI method with the automatic choice rule improves the spatial resolution of medical images and enhances the robustness, even when the wave-field data of a wavelength of 6.16 mm contaminated by 5% noise are used. The numerical results also show that the images reconstructed by the proposed method yield a spatial resolution of approximately half the wavelength that may be adequate for imaging a breast tumor at Stage I.

  11. TOPICAL REVIEW: Ultrasound contrast microbubbles in imaging and therapy: physical principles and engineering

    NASA Astrophysics Data System (ADS)

    Qin, Shengping; Caskey, Charles F.; Ferrara, Katherine W.

    2009-03-01

    Microbubble contrast agents and the associated imaging systems have developed over the past 25 years, originating with manually-agitated fluids introduced for intra-coronary injection. Over this period, stabilizing shells and low diffusivity gas materials have been incorporated in microbubbles, extending stability in vitro and in vivo. Simultaneously, the interaction of these small gas bubbles with ultrasonic waves has been extensively studied, resulting in models for oscillation and increasingly sophisticated imaging strategies. Early studies recognized that echoes from microbubbles contained frequencies that are multiples of the microbubble resonance frequency. Although individual microbubble contrast agents cannot be resolved—given that their diameter is on the order of microns—nonlinear echoes from these agents are used to map regions of perfused tissue and to estimate the local microvascular flow rate. Such strategies overcome a fundamental limitation of previous ultrasound blood flow strategies; the previous Doppler-based strategies are insensitive to capillary flow. Further, the insonation of resonant bubbles results in interesting physical phenomena that have been widely studied for use in drug and gene delivery. Ultrasound pressure can enhance gas diffusion, rapidly fragment the agent into a set of smaller bubbles or displace the microbubble to a blood vessel wall. Insonation of a microbubble can also produce liquid jets and local shear stress that alter biological membranes and facilitate transport. In this review, we focus on the physical aspects of these agents, exploring microbubble imaging modes, models for microbubble oscillation and the interaction of the microbubble with the endothelium.

  12. Ultrasound phase contrast thermal imaging with reflex transmission imaging methods in tissue phantoms

    PubMed Central

    Farny, Caleb H.; Clement, Gregory T.

    2009-01-01

    Thermal imaging measurements using ultrasound phase contrast have been performed in tissue phantoms heated with a focused ultrasound source. Back projection and reflex transmission imaging principles were employed to detect sound speed-induced changes in the phase caused by an increase in the temperature. The temperature was determined from an empirical relationship for the temperature dependence on sound speed. The phase contrast was determined from changes in the sound field measured with a hydrophone scan conducted before and during applied heating. The lengthy scanning routine used to mimic a large two-dimensional array required a steady-state temperature distribution within the phantom. The temperature distribution in the phantom was validated with magnetic resonance (MR) thermal imaging measurements. The peak temperature was found to agree within 1°C with MR and good agreement was found between the temperature profiles. The spatial resolution was 0.3 × 0.3 × 0.3 mm, comparing favorably with the 0.625 × 0.625 × 1.5 mm MR spatial resolution. PMID:19683380

  13. Correlation of rupture dynamics to the nonlinear backscatter response from polymer-shelled ultrasound contrast agents.

    PubMed

    Koppolu, Sujeethraj; Chitnis, Parag V; Mamou, Jonathan; Allen, John S; Ketterling, Jeffrey A

    2015-03-01

    Polymer-shelled ultrasound contrast agents (UCAs) may expel their encapsulated gas subject to ultrasound-induced shell buckling or rupture. Nonlinear oscillations of this gas bubble can produce a subharmonic component in the ultrasound backscatter. This study investigated the relationship between this gas-release mechanism and shell-thickness-to-radius ratios (STRRs) of polymer-shelled UCAs. Three types of polylactide-shelled UCAs with STRRs of 7.5, 40, and 100 nm/μm were studied. Each UCA population had a nominal mean diameter of 2 μm. UCAs were subjected to increasing static overpressure ranging from 2 to 330 kPa over a duration of 2 h in a custom-designed test chamber while being imaged using a 200× magnification video microscope at a frame rate of 5 frames/s. Digitized video images were binarized and processed to obtain the cross-sectional area of individual UCAs. Integration of the normalized cross-sectional area over normalized time, defined as buckling factor (Bf), provided a dimensionless parameter for quantifying and comparing the degree of pre-rupture buckling exhibited by the UCAs of different STRRs in response to overpressure. The UCAs with an STRR of 7.5 nm/μm exhibited a distinct shell-buckling phase before shell rupture (Bf < 1), whereas the UCAs with higher STRRs (40 and 100 nm/μm) did not undergo significant prerupture buckling (Bf ≈ 1). The difference in the overpressure response was correlated with the subharmonic response produced by these UCAs. When excited using 20-MHz ultrasound, individual UCAs (N = 3000) in populations that did not exhibit a buckling phase produced a subharmonic response that was an order of magnitude greater than the UCA population with a prominent pre-rupture buckling phase. These results indicate the mechanism of gas expulsion from these UCAs might be a relevant factor in determining the level of subharmonic response in response to high-frequency ultrasound. PMID:25935932

  14. Correlation of Rupture Dynamics to the Nonlinear Backscatter Response From Polymer-Shelled Ultrasound Contrast Agents

    PubMed Central

    Koppolu, Sujeethraj; Chitnis, Parag V.; Mamou, Jonathan; Allen, John S.; Ketterling, Jeffrey A.

    2016-01-01

    Polymer-shelled ultrasound contrast agents (UCAs) may expel their encapsulated gas subject to ultrasound-induced shell buckling or rupture. Nonlinear oscillations of this gas bubble can produce a subharmonic component in the ultrasound backscatter. This study investigated the relationship between this gas-release mechanism and shell-thickness–to–radius ratios (STRRs) of polymer-shelled UCAs. Three types of polylactide-shelled UCAs with STRRs of 7.5, 40, and 100 nm/µm were studied. Each UCA population had a nominal mean diameter of 2 µm. UCAs were subjected to increasing static overpressure ranging from 2 to 330 kPa over a duration of 2 h in a custom-designed test chamber while being imaged using a 200× magnification video microscope at a frame rate of 5 frames/s. Digitized video images were binarized and processed to obtain the cross-sectional area of individual UCAs. Integration of the normalized cross-sectional area over normalized time, defined as buckling factor (Bf), provided a dimensionless parameter for quantifying and comparing the degree of pre-rupture buckling exhibited by the UCAs of different STRRs in response to overpressure. The UCAs with an STRR of 7.5 nm/µm exhibited a distinct shell-buckling phase before shell rupture (Bf < 1), whereas the UCAs with higher STRRs (40 and 100 nm/µm) did not undergo significant pre-rupture buckling (Bf ≈ 1). The difference in the overpressure response was correlated with the subharmonic response produced by these UCAs. When excited using 20-MHz ultrasound, individual UCAs (N = 3000) in populations that did not exhibit a buckling phase produced a subharmonic response that was an order of magnitude greater than the UCA population with a prominent pre-rupture buckling phase. These results indicate the mechanism of gas expulsion from these UCAs might be a relevant factor in determining the level of subharmonic response in response to high-frequency ultrasound. PMID:25935932

  15. Validation of Dynamic Contrast-Enhanced Ultrasound in Predicting Outcomes of Antiangiogenic Therapy for Solid Tumors

    PubMed Central

    Lassau, Nathalie; Bonastre, Julia; Kind, Michèle; Vilgrain, Valérie; Lacroix, Joëlle; Cuinet, Marie; Taieb, Sophie; Aziza, Richard; Sarran, Antony; Labbe-Devilliers, Catherine; Gallix, Benoit; Lucidarme, Olivier; Ptak, Yvette; Rocher, Laurence; Caquot, Louis-Michel; Chagnon, Sophie; Marion, Denis; Luciani, Alain; Feutray, Sylvaine; Uzan-Augui, Joëlle; Coiffier, Benedicte; Benastou, Baya; Koscielny, Serge

    2014-01-01

    Objectives Dynamic contrast-enhanced ultrasound (DCE-US) has been used in single-center studies to evaluate tumor response to antiangiogenic treatments: the change of area under the perfusion curve (AUC), a criterion linked to blood volume, was consistently correlated with the Response Evaluation Criteria in Solid Tumors response. The main objective here was to do a multicentric validation of the use of DCE-US to evaluate tumor response in different solid tumor types treated by several antiangiogenic agents. A secondary objective was to evaluate the costs of the procedure. Materials and Methods This prospective study included patients from 2007 to 2010 in 19 centers (8 teaching hospitals and 11 comprehensive cancer centers). All patients treated with antiangiogenic therapy were eligible. Dynamic contrast-enhanced ultrasound examinations were performed at baseline as well as on days 7, 15, 30, and 60. For each examination, a perfusion curve was recorded during 3 minutes after injection of a contrast agent. Change from baseline at each time point was estimated for each of 7 fitted criteria. The main end point was freedom from progression (FFP). Criterion/time-point combinations with the strongest correlation with FFP were analyzed further to estimate an optimal cutoff point. Results A total of 1968 DCE-US examinations in 539 patients were analyzed. The median follow-up was 1.65 years. Variations from baseline were significant at day 30 for several criteria, with AUC having the most significant association with FFP (P = 0.00002). Patients with a greater than 40% decrease in AUC at day 30 had better FFP (P = 0.005) and overall survival (P = 0.05). The mean cost of each DCE-US was 180€, which corresponds to $250 using the current exchange rate. Conclusions Dynamic contrast-enhanced ultrasound is a new functional imaging technique that provides a validated criterion, namely, the change of AUC from baseline to day 30, which is predictive of tumor progression in a large

  16. Ultrasound Molecular Imaging of Tumor Angiogenesis with an Integrin Targeted Microbubble Contrast Agent

    PubMed Central

    Anderson, Christopher R.; Hu, Xiaowen; Tlaxca, Jose; Decleves, Anne-Emilie; Houghtaling, Robert; Sharma, Kumar; Lawrence, Michael; Ferrara, Katherine; Rychak, Joshua J.

    2010-01-01

    Rationale and Objectives Ultrasound molecular imaging is an emerging technique for sensitive detection of intravascular targets. Molecular imaging of angiogenesis has strong potential for both clinical use and as a research tool in tumor biology and the development of anti-angiogenic therapies. Our objective is to develop a robust microbubble (MB) ultrasound contrast agent platform to which targeting ligands can be conjugated by biocompatible, covalent conjugation chemistry, and to develop a pure low mechanical index imaging processing method and corresponding quantifying method. The microbubbles and the imaging methods were evaluated in a mouse model of breast cancer in vivo. Materials and Methods We utilized a cyclic RGD (cRGD) pentapeptide containing a terminal cysteine group conjugated to the surface of MB bearing pyridyldithio-propionate (PDP) for targeting αvβ3 integrins. As negative controls, MB without a ligand or MB bearing a scrambled sequence (cRAD) were prepared. To enable characterization of peptides bound to MB surfaces, the cRGD peptide was labeled with FITC and detected by plate fluorometry, flow cytometry, and fluorescence microscopy. Targeted adhesion of cRGD-MB was demonstrated in an in vitro flow adhesion assay against recombinant murine αvβ3 integrin protein and αvβ3 integrin-expressing endothelial cells (bEnd.3). The specificity of cRGD-MB for αvβ3 integrin was demonstrated by treating bEnd.3 EC with a blocking antibody. A murine model of mammary carcinoma was used to assess targeted adhesion and ultrasound molecular imaging in vivo. The targeted microbubbles were visualized using a low mechanical index contrast imaging pulse sequence, and quantified by intensity normalization and two-dimensional Fourier transform analysis, Results The cRGD ligand concentration on the MB surface was ~8.2 × 106 molecules/MB. At a wall shear stress of 1.0 dynes/cm2, cRGD-MB exhibited 5-fold higher adhesion to immobilized recombinant αvβ3 integrin

  17. Cavitation thresholds of contrast agents in an in vitro human clot model exposed to 120-kHz ultrasound

    PubMed Central

    Gruber, Matthew J.; Bader, Kenneth B.; Holland, Christy K.

    2014-01-01

    Ultrasound contrast agents (UCAs) can be employed to nucleate cavitation to achieve desired bioeffects, such as thrombolysis, in therapeutic ultrasound applications. Effective methods of enhancing thrombolysis with ultrasound have been examined at low frequencies (<1 MHz) and low amplitudes (<0.5 MPa). The objective of this study was to determine cavitation thresholds for two UCAs exposed to 120-kHz ultrasound. A commercial ultrasound contrast agent (Definity®) and echogenic liposomes were investigated to determine the acoustic pressure threshold for ultraharmonic (UH) and broadband (BB) generation using an in vitro flow model perfused with human plasma. Cavitation emissions were detected using two passive receivers over a narrow frequency bandwidth (540–900 kHz) and a broad frequency bandwidth (0.54–1.74 MHz). UH and BB cavitation thresholds occurred at the same acoustic pressure (0.3 ± 0.1 MPa, peak to peak) and were found to depend on the sensitivity of the cavitation detector but not on the nucleating contrast agent or ultrasound duty cycle. PMID:25234874

  18. Successful stent implantation guided by intravascular ultrasound and a Doppler guidewire without contrast injection in a patient with allergy to iodinated contrast media.

    PubMed

    Okura, Hiroyuki; Nezuo, Shintaro; Yoshida, Kiyoshi

    2011-07-01

    Presence of allergy to iodinated contrast may prevent percutaneous coronary intervention (PCI) to be performed. We present a 76-year-old male with a history of allergic reaction to iodinated contrast who successfully underwent intravascular ultrasound (IVUS) and a Doppler guidewire-guided PCI. Stent size was determined based on IVUS. After PCI, stent expansion and a lack of edge dissection or incomplete apposition were confirmed by IVUS and a good antegrade coronary flow was confirmed by a Doppler guidewire. Thus, PCI without contrast injection under IVUS and a Doppler guidewire-guidance may be feasible in selected patients with allergy to iodinated contrast. PMID:21725127

  19. Optimization of contrast resolution by genetic algorithm in ultrasound tissue harmonic imaging.

    PubMed

    Ménigot, Sébastien; Girault, Jean-Marc

    2016-09-01

    The development of ultrasound imaging techniques such as pulse inversion has improved tissue harmonic imaging. Nevertheless, no recommendation has been made to date for the design of the waveform transmitted through the medium being explored. Our aim was therefore to find automatically the optimal "imaging" wave which maximized the contrast resolution without a priori information. To overcome assumption regarding the waveform, a genetic algorithm investigated the medium thanks to the transmission of stochastic "explorer" waves. Moreover, these stochastic signals could be constrained by the type of generator available (bipolar or arbitrary). To implement it, we changed the current pulse inversion imaging system by including feedback. Thus the method optimized the contrast resolution by adaptively selecting the samples of the excitation. In simulation, we benchmarked the contrast effectiveness of the best found transmitted stochastic commands and the usual fixed-frequency command. The optimization method converged quickly after around 300 iterations in the same optimal area. These results were confirmed experimentally. In the experimental case, the contrast resolution measured on a radiofrequency line could be improved by 6% with a bipolar generator and it could still increase by 15% with an arbitrary waveform generator. PMID:27403642

  20. Use of Contrast-Enhanced Ultrasound in the Differential Diagnosis of Adrenal Tumors in Dogs.

    PubMed

    Bargellini, Paolo; Orlandi, Riccardo; Dentini, Alfredo; Paloni, Chiara; Rubini, Giuseppe; Fonti, Paolo; Diana, Alessia; Peterson, Mark E; Boiti, Cristiano

    2016-01-01

    We evaluated the diagnostic accuracy of the contrast-enhanced ultrasonography (CEUS), using a second-generation microbubble contrast agent, in differentiating the different types of adrenal mass lesions in 24 dogs. At B-mode ultrasound, 9 lesions involved the right adrenal gland, 14 the left, and 1 was bilateral. Each dog received a bolus of the contrast agent into the cephalic vein, immediately followed by a 5-mL saline flush. The first contrast enhancement of each adrenal lesion was evaluated qualitatively to assess the degree of enhancement and its distribution during the wash-in and wash-out phases, as well as the presence of non-vascularized areas and specific vascular patterns. Pathological diagnoses were determined in all dogs by histopathology or by cytology. Combining enhancement degree and vascularity resulted in the best predictive model, allowing CEUS to differentiate adrenocortical adenoma (n=10), adenocarcinoma (n=7), and pheochromocytoma (n=7) with an accuracy of 91.7% (P < 0.001). Combining enhancement degree and vascularity, CEUS can discriminate malignant versus benign adrenal lesions with a sensitivity of 100.0%, a specificity of 80.0%, and an accuracy of 91.7% (P < 0.001). In conclusion, results of this study confirm that CEUS is useful for differentiating between the different types of adrenal tumors in dogs. PMID:27008325

  1. Thermal dependence of ultrasound contrast agents scattering efficiency for echographic imaging techniques

    NASA Astrophysics Data System (ADS)

    Biagioni, Angelo; Bettucci, Andrea; Passeri, Daniele; Alippi, Adriano

    2015-06-01

    Ultrasound contrast agents are used in echographic imaging techniques to enhance image contrast. In addition, they may represent an interesting solution to the problem of non-invasive temperature monitoring inside the human body, based on some thermal variations of their physical properties. Contrast agents, indeed, are inserted into blood circulation and they reach the most important organs inside the human body; consequently, any thermometric property that they may possess, could be exploited for realizing a non-invasive thermometer. They essentially are a suspension of microbubbles containing a gas enclosed in a phospholipid membrane; temperature variations induce structural modifications of the microbubble phospholipid shell, thus causing thermal dependence of contrast agent's elastic characteristics. In this paper, the acoustic scattering efficiency of a bulk suspension of of SonoVue® (Bracco SpA Milan, Italy) has been studied using a pulse-echo technique in the frequency range 1-17 MHz, as it depends upon temperatures between 25 and 65°C. Experimental data confirm that the ultrasonic attenuation coefficient of SonoVue® depends on temperature between 25 and 60°C. Chemical composition of the bubble shell seem to support the hypothesis that a phase transition in the microstructure of lipid-coated microbubbles could play a key role in explaining such effect.

  2. Contrast-enhanced ultrasound in the diagnosis of nodules in liver cirrhosis.

    PubMed

    Kim, Tae Kyoung; Jang, Hyun-Jung

    2014-04-01

    Contrast-enhanced ultrasound (CEUS) using microbubble contrast agents are useful for the diagnosis of the nodules in liver cirrhosis. CEUS can be used as a problem-solving method for indeterminate nodules on computed tomography (CT) or magnetic resonance imaging (MRI) or as an initial diagnostic test for small newly detected liver nodules. CEUS has unique advantages over CT and MRI including no renal excretion of contrast, real-time imaging capability, and purely intravascular contrast. Hepatocellular carcinoma (HCC) is characterized by arterial-phase hypervascularity and later washout (negative enhancement). Benign nodules such as regenerative nodules or dysplastic nodules are usually isoechoic or slightly hypoechoic in the arterial phase and isoechoic in the late phase. However, there are occasional HCC lesions with atypical enhancement including hypovascular HCC and hypervascular HCC without washout. Cholangiocarcinomas are infrequently detected during HCC surveillance and mostly show rim-like or diffuse hypervascularity followed by rapid washout. Hemangiomas are often found at HCC surveillance and are easily diagnosed by CEUS. CEUS can be effectively used in the diagnostic work-up of small nodules detected at HCC surveillance. CEUS is also useful to differentiate malignant and benign venous thrombosis and to guide and monitor the local ablation therapy for HCC. PMID:24707142

  3. Contrast-enhanced ultrasound in the diagnosis of nodules in liver cirrhosis

    PubMed Central

    Kim, Tae Kyoung; Jang, Hyun-Jung

    2014-01-01

    Contrast-enhanced ultrasound (CEUS) using microbubble contrast agents are useful for the diagnosis of the nodules in liver cirrhosis. CEUS can be used as a problem-solving method for indeterminate nodules on computed tomography (CT) or magnetic resonance imaging (MRI) or as an initial diagnostic test for small newly detected liver nodules. CEUS has unique advantages over CT and MRI including no renal excretion of contrast, real-time imaging capability, and purely intravascular contrast. Hepatocellular carcinoma (HCC) is characterized by arterial-phase hypervascularity and later washout (negative enhancement). Benign nodules such as regenerative nodules or dysplastic nodules are usually isoechoic or slightly hypoechoic in the arterial phase and isoechoic in the late phase. However, there are occasional HCC lesions with atypical enhancement including hypovascular HCC and hypervascular HCC without washout. Cholangiocarcinomas are infrequently detected during HCC surveillance and mostly show rim-like or diffuse hypervascularity followed by rapid washout. Hemangiomas are often found at HCC surveillance and are easily diagnosed by CEUS. CEUS can be effectively used in the diagnostic work-up of small nodules detected at HCC surveillance. CEUS is also useful to differentiate malignant and benign venous thrombosis and to guide and monitor the local ablation therapy for HCC. PMID:24707142

  4. Utility of contrast-enhanced ultrasound with SonoVue in biopsy of small subpleural nodules

    PubMed Central

    Wang, Jinlin; Zhou, Dazhi; Xie, Xiaohong; Shen, Panxiao; Zeng, Yunxiang

    2015-01-01

    Objectives: This study aimed to evaluate the diagnostic accuracy and complication rates of contrast-enhanced ultrasound (CEUS)-guided biopsy of small subpleural nodules with SonoVue. Methods: CEUS-guided biopsies with SonoVue and conventional ultrasound were performed to determine nodule size, texture and biopsy route. After baseline ultrasonography, all patients received an intravenous injection of 4 mL of SonoVue, followed by 5 mL of saline flush. CEUS was obtained using a convex probe and contrast-specific imaging software. The lesion was observed using a contrast agent. Biopsies were performed during real-time visualisation of the target lesion. Results: A total of 51 patients (34 males and 17 females; average age, 54.8 ± 5.8 years) with subpleural nodules were enrolled. The median nodule size was 1.92 ± 0.75 cm (0.9-2.5 cm). Forty-eight of 51 procedures (94.1%) provided adequate material for histological analysis. Thirty patients (62.5%) were malignant and 18 patients (37.5%) were benign at the definitive diagnosis. The true positive and true negative result were 28 (58.3%) and 18 (37.5%), no false positive result was seen and two (4.2%) provided a false negative result. The sensitivity, specificity, positive and negative predictive values for the malignant diagnosis were 93.3, 100, 100 and 90%, respectively. The diagnostic accuracy was 95.8% (46/48), the standard error and the 95% CI were 2.8% and 86%-99%. An asymptomatic pneumothorax was present in one patient with no chest tube placement required. A small amount of hemoptysis was observed in another patient, which stopped spontaneously without treatment. Conclusions: CEUS-guided biopsy with SonoVue exhibits high diagnostic accuracy and low complication rates. It is especially advantageous for biopsies of small subpleural nodules. PMID:26629103

  5. Contrast-enhanced ultrasound improves accurate identification of appendiceal mucinous adenocarcinoma in an old patient

    PubMed Central

    Shang, Jing; Ruan, Li-tao; Dang, Ying; Wang, Yun-yue; Song, Yan; Lian, Jie

    2016-01-01

    Abstract Background: Adenocarcinoma of appendiceal origin is far rarer than other colorectal carcinomas and its preoperative diagnosis is challenging. To our knowledge, utility of contrast-enhanced ultrasound (CEUS) to diagnose it is much less. Method: A 61-year-old man presented with abdominal pain in the right lower quadrant for 20 days. In order to fulfill an accurately preoperative diagnosis, he received laboratory and imaging tests such as carcinoembryonic antigen (CEA), computer tomography (CT), CEUS and endoscope. Diagnosis and Intervention: He was initially suspected of suffering appendicitis, while his white blood cell count was normal and carcinoembryonic antigen (CEA) in serum was remarkably increased. Both routine ultrasound and computer tomography (CT) examinations supported suppurative appendicitis. The overall data, however, failed to excluded neoplastic pathology thoroughly. Therefore, CEUS was carried out and showed an inhomogeneous enhancement intra the lesion located in the body of the appendix, which made our consideration of neoplasm. The result of the follow-up biopsy guided by endoscope was consistent with appendiceal tumor. The patient received laparoscopic right hemicolectomy. Histopathology confirmed as well differentiated mucinous adenocarcinoma of appendix origin. His postoperative course was uneventful, and he had a regular diet again without any complaint. Result: Serum CEA was remarkably increased (12.00 ng/mL). Both routine ultrasound and CT examinations supported suppurative appendicitis. However, CEUS examination showed an inhomogeneous enhancement intra the lesion located in the body of the appendix, which made our consideration of neoplasm. The follow-up biopsy guided by endoscope and surgical specimens confirmed as well differentiated mucinous adenocarcinoma of appendix origin. Conclusion: Most mucinous adenocarcinoma mimicking appendicitis results in difficult diagnosis preoperatively. Clinician and radiologist should be

  6. Atherosclerotic carotid lumen segmentation in combined B-mode and contrast enhanced ultrasound images

    NASA Astrophysics Data System (ADS)

    Akkus, Zeynettin; Carvalho, Diego D. B.; Klein, Stefan; van den Oord, Stijn C. H.; Schinkel, Arend F. L.; de Jong, Nico; van der Steen, Antonius F. W.; Bosch, Johan G.

    2014-03-01

    Patients with carotid atherosclerotic plaques carry an increased risk of cardiovascular events such as stroke. Ultrasound has been employed as a standard for diagnosis of carotid atherosclerosis. To assess atherosclerosis, the intima contour of the carotid artery lumen should be accurately outlined. For this purpose, we use simultaneously acquired side-by-side longitudinal contrast enhanced ultrasound (CEUS) and B-mode ultrasound (BMUS) images and exploit the information in the two imaging modalities for accurate lumen segmentation. First, nonrigid motion compensation is performed on both BMUS and CEUS image sequences, followed by averaging over the 150 time frames to produce an image with improved signal-to-noise ratio (SNR). After that, we segment the lumen from these images using a novel method based on dynamic programming which uses the joint histogram of the CEUS and BMUS pair of images to distinguish between background, lumen, tissue and artifacts. Finally, the obtained lumen contour in the improved-SNR mean image is transformed back to each time frame of the original image sequence. Validation was done by comparing manual lumen segmentations of two independent observers with automated lumen segmentations in the improved-SNR images of 9 carotid arteries from 7 patients. The root mean square error between the two observers was 0.17+/-0.10mm and between automated and average of manual segmentation of two observers was 0.19+/-0.06mm. In conclusion, we present a robust and accurate carotid lumen segmentation method which overcomes the complexity of anatomical structures, noise in the lumen, artifacts and echolucent plaques by exploiting the information in this combined imaging modality.

  7. Development and characterization of hollow polymeric microcapsules for use as contrast agents for diagnostic ultrasound

    NASA Astrophysics Data System (ADS)

    Narayan, Padma Jyothi

    1999-09-01

    This thesis concerns the development and characterization of a new type of rigid-shelled ultrasound contrast agent. A novel method was devised for producing hollow, gas- filled, polymer microcapsules, sized to less than 10 μm in diameter for contrast imaging. This method involved the encapsulation of a solid, volatile core material, and its subsequent evacuation by sublimation. The biodegradable polymer, 50/50 poly(D,L-lactide-co- glycolide), was the main focus of this study. Polymer- based contrast agents have many advantages, such as their applicability for concomitant imaging and drug delivery. Three encapsulation techniques were evaluated: solvent evaporation, coacervation, and spray drying. The polymer molecular weight and polydispersity in the solvent evaporation and coacervation techniques strongly affected microcapsule size and morphology. Efficient mechanical agitation and shear were crucial for obtaining high yields in the desired size range (less than 6 μm). In spray drying, a factorial design approach was used to optimize conditions to produce microcapsules. The main factors affecting spray drying were found to be the temperature driving force for drying and initial polymer concentration. The smallest microcapsule mean diameters were produced by spray drying (3-4 μm) and solvent evaporation (5-6 μm). Zeta potential (ζ) studies for all microcapsule types indicated that the encapsulation technique affected their surface properties due to the orientation of the polymer chains within nascent polymer droplets. Microcapsules with the most hydrophilic tendency were produced with solvent evaporation (ζ ~ -50 mV). In vitro acoustic testing revealed that the 20-41 μm size fractions of coacervate microcapsules were the most echogenic. In vivo ultrasound studies with both solvent evaporation and coacervate microcapsules showed visible enhancement of the color Doppler image in the rabbit kidney for the samples less than 10 μm in diameter. A mathematical

  8. Acoustic characterization and pharmacokinetic analyses of new nanobubble ultrasound contrast agents.

    PubMed

    Wu, Hanping; Rognin, Nicolas G; Krupka, Tianyi M; Solorio, Luis; Yoshiara, Hiroki; Guenette, Gilles; Sanders, Christopher; Kamiyama, Naohisa; Exner, Agata A

    2013-11-01

    In contrast to the clinically used microbubble ultrasound contrast agents, nanoscale bubbles (or nanobubbles) may potentially extravasate into tumors that exhibit more permeable vasculature, facilitating targeted molecular imaging and drug delivery. Our group recently presented a simple strategy using the non-ionic surfactant Pluronic as a size control excipient to produce nanobubbles with a mean diameter of 200 nm that exhibited stability and echogenicity on par with microbubbles. The objective of this study was to carry out an in-depth characterization of nanobubble properties as compared with Definity microbubbles, both in vitro and in vivo. Through use of a tissue-mimicking phantom, in vitro experiments measured the echogenicity of the contrast agent solutions and the contrast agent dissolution rate over time. Nanobubbles were found to be more echogenic than Definity microbubbles at three different harmonic frequencies (8, 6.2 and 3.5 MHz). Definity microbubbles also dissolved 1.67 times faster than nanobubbles. Pharmacokinetic studies were then performed in vivo in a subcutaneous human colorectal adenocarcinoma (LS174T) in mice. The peak enhancement and decay rates of contrast agents after bolus injection in the liver, kidney and tumor were analyzed. No significant differences were observed in peak enhancement between the nanobubble and Definity groups in the three tested regions (tumor, liver and kidney). However, the decay rates of nanobubbles in tumor and kidney were significantly slower than those of Definity in the first 200-s fast initial phase. There were no significant differences in the decay rates in the liver in the initial phase or in three regions of interest in the terminal phase. Our results suggest that the stability and acoustic properties of the new nanobubble contrast agents are superior to those of the clinically used Definity microbubbles. The slower washout of nanobubbles in tumors suggests potential entrapment of the bubbles within

  9. ACOUSTIC CHARACTERIZATION AND PHARAMACOKINETIC ANALYSES OF NEW NANOBUBBLE ULTRASOUND CONTRAST AGENTS

    PubMed Central

    Wu, Hanping; Rognin, Nicolas G.; Krupka, Tianyi M.; Solorio, Luis; Yoshiara, Hiroki; Guenette, Gilles; Sanders, Christoher; Kamiyama, Naohisa; Exner, Agata A.

    2013-01-01

    In contrast to the clinically used microbubble ultrasound contrast agents, nanoscale bubbles (or nanobubbles) may potentially extravasate into tumors that exhibit more permeable vasculature, facilitating targeted molecular imaging and drug delivery. Our group recently presented a simple strategy using the non-ionic surfactant Pluronic as a size control excipient to produce nanobubbles with a mean diameter of 200 nm that exhibited stability and echogenicity on par with microbubbles. The objective of this study was to carry out an in-depth characterization of nanobubble properties as compared with Definity microbubbles, both in vitro and in vivo. Through use of a tissue-mimicking phantom, in vitro experiments measured the echogenicity of the contrast agent solutions and the contrast agent dissolution rate over time. Nanobubbles were found to be more echogenic than Definity microbubbles at three different harmonic frequencies (8, 6.2 and 3.5 MHz). Definity microbubbles also dissolved 1.67 times faster than nanobubbles. Pharmacokinetic studies were then performed in vivo in a subcutaneous human colorectal adenocarcinoma (LS174T) in mice. The peak enhancement and decay rates of contrast agents after bolus injection in the liver, kidney and tumor were analyzed. No significant differences were observed in peak enhancement between the nanobubble and Definity groups in the three tested regions (tumor, liver and kidney). However, the decay rates of nanobubbles in tumor and kidney were significantly slower than those of Definity in the first 200-s fast initial phase. There were no significant differences in the decay rate in the liver in the initial phase or in three regions of interest in the terminal phase. Our results suggest that the stability and acoustic properties of the new nanobubble contrast agents are superior to those of the clinically used Definity microbubbles. The slower washout of nanobubbles in tumors suggests potential entrapment of the bubbles within the

  10. Ultrasound contrast agent loaded with nitric oxide as a theranostic microdevice

    PubMed Central

    Grishenkov, Dmitry; Gonon, Adrian; Weitzberg, Eddie; Lundberg, Jon O; Harmark, Johan; Cerroni, Barbara; Paradossi, Gaio; Janerot-Sjoberg, Birgitta

    2015-01-01

    The current study describes novel multifunctional polymer-shelled microbubbles (MBs) loaded with nitric oxide (NO) for integrated therapeutic and diagnostic applications (ie, theranostics) of myocardial ischemia. We used gas-filled MBs with an average diameter of 4 μm stabilized by a biocompatible shell of polyvinyl alcohol. In vitro acoustic tests showed sufficient enhancement of the backscattered power (20 dB) acquired from the MBs’ suspension. The values of attenuation coefficient (0.8 dB/cm MHz) and phase velocities (1,517 m/s) were comparable with those reported for the soft tissue. Moreover, polymer MBs demonstrate increased stability compared with clinically approved contrast agents with a fracture threshold of about 900 kPa. In vitro chemiluminescence measurements demonstrated that dry powder of NO-loaded MBs releases its gas content in about 2 hours following an exponential decay profile with an exponential time constant equal to 36 minutes. The application of high-power ultrasound pulse (mechanical index =1.2) on the MBs resuspended in saline decreases the exponential time constant from 55 to 4 minutes in air-saturated solution and from 17 to 10 minutes in degassed solution. Thus, ultrasound-triggered release of NO is achieved. Cytotoxicity tests indicate that phagocytosis of the MBs by macrophages starts within 6–8 hours. This is a suitable time for initial diagnostics, treatment, and monitoring of the therapeutic effect using a single injection of the proposed multifunctional MBs. PMID:25995614

  11. Sonophoresis using ultrasound contrast agents for transdermal drug delivery: an in vivo experimental study.

    PubMed

    Park, Donghee; Ryu, Heungil; Kim, Han Sung; Kim, Young-Sun; Choi, Kyu-Sil; Park, Hyunjin; Seo, Jongbum

    2012-04-01

    Sonophoresis temporally increases skin permeability such that various medications can be delivered noninvasively. Previous sonophoresis studies have suggested that cavitation plays an important role in enhancing transdermal drug delivery (TDD). In this study, the feasibility of controlled cavitation using ultrasound contrast agents (UCAs) at high frequency was explored through in vivo experiments in a rat model. Two commercially available UCAs, SonoVue® and Definity®, were used at 2.47 MHz and 1.12 MHz, respectively. Fluorescein isothiocyanate (FITC)-dextran with 0.1% UCA was used as the drug to be delivered through the skin. Ultrasound with a 10 ms pulse and a 1% duty cycle at 1 MPa acoustic pressure for 30 min was applied in all sonication sessions. The efficacy of sonophoresis with UCAs was quantitatively analyzed using an optical imaging system that was used to count photons emitted from fluorescein. The results showed that the proposed sonophoresis method significantly improved drug penetration compared with the traditional sonophoresis method with 4 kD, 20 kD and 150 kD FITC-dextrans at 1.12 MHz, and with 4 kD and 20 kD FITC-dextrans at 2.47 MHz. Sonophoresis for TDD was performed more effectively with the aid of UCAs. Sonophoresis with UCAs has excellent potential for broad applications in drug delivery for diseases requiring the chronic administration of medications such as diabetes. PMID:22341597

  12. History force effects on contrast agent microbubbles in an ultrasound field

    NASA Astrophysics Data System (ADS)

    Garbin, Valeria; Dollet, Benjamin; van Wijngaarden, Leen; de Jong, Nico; Lohse, Detlef; Versluis, Michel

    2008-11-01

    We study experimentally the radial and translational dynamics of an ultrasound contrast agent microbubble pair pulsating in an ultrasound field. The two bubbles attract each other through the so-called secondary Bjerknes force; quantifying these bubble-bubble interactions is therefore crucial for optimized medical imaging protocols. Using optical tweezers, we trap and control the distance between two microbubbles (BR-14, Bracco Research S.A., Geneva). We position the bubble pair away from the sample chamber wall, to prevent wall effects and quantify purely the acoustic bubble-bubble interaction and the dissipation due to viscosity in the fluid. The ultra-high speed Brandaris camera recorded the bubble dynamics at 15 million frames per second; from the optical measurements we track the instantaneous bubble radii and positions. We write a force balance for each bubble, assuming a no-slip boundary condition since the bubble interface is coated with a lipid monolayer to prevent dissolution. By comparison with the experimental results, we find that history effects are crucial to correctly account for the viscous forces.

  13. Automated benign & malignant thyroid lesion characterization and classification in 3D contrast-enhanced ultrasound.

    PubMed

    Acharya, U Rajendra; S, Vinitha Sree; Molinari, Filippo; Garberoglio, Roberto; Witkowska, Agnieszka; Suri, Jasjit S

    2012-01-01

    In this work, we present a Computer Aided Diagnosis (CAD) based technique for automatic classification of benign and malignant thyroid lesions in 3D contrast-enhanced ultrasound images. The images were obtained from 20 patients. Fine needle aspiration biopsy and histology confirmed malignancy. Discrete Wavelet Transform (DWT) and texture based features were extracted from the thyroid images. The resulting feature vectors were used to train and test three different classifiers: K-Nearest Neighbor (K-NN), Probabilistic Neural Network (PNN), and Decision Tree (DeTr) using ten-fold cross validation technique. Our results show that combination of DWT and texture features in the K-NN classifier resulted in a classification accuracy of 98.9%, a sensitivity of 98%, and a specificity of 99.8%. Thus, the preliminary results of the proposed technique show that it could be adapted as an adjunct tool that can give valuable second opinions to the doctors regarding the nature of the thyroid nodule. The technique is cost-effective, non-invasive, fast, completely automated and gives more objective and reproducible results compared to manual analysis of the ultrasound images. We however intend to establish the clinical applicability of this technique by evaluating it with more data in the future. PMID:23365926

  14. International guidelines for contrast-enhanced ultrasonography: ultrasound imaging in the new millennium

    PubMed Central

    Lorentzen, Torben

    2016-01-01

    The intent of this review is to discuss and comment on common clinical scenarios in which contrast-enhanced ultrasonography (CEUS) may play a decisive role and to illustrate important points with typical cases. With the advent of CEUS, the scope of indications for ultrasonography has been dramatically extended, and now includes functional imaging and tissue characterization, which in many cases enable tumor diagnosis without a biopsy. It is virtually impossible to imagine the practice of modern medicine as we know it in high-income countries without the use of imaging, and yet, an estimated two thirds of the global population may receive no such care. Ultrasound imaging with CEUS has the potential to correct this inequity. PMID:26867761

  15. Hepatosplenic sarcoidosis: contrast-enhanced ultrasound findings and implications for clinical practice.

    PubMed

    Tana, Claudio; Dietrich, Christoph F; Schiavone, Cosima

    2014-01-01

    Sarcoidosis is a complex granulomatous disease that affects virtually every organ and tissue, with a prevalence that varies significantly among the sites involved. The role of conventional imaging, such as computed tomography and magnetic resonance imaging, in the assessment of hepatosplenic sarcoidosis is well established by revealing organ enlargement, multiple discrete nodules, and lymphadenopathy. In this review, we aim to describe contrast-enhanced ultrasound (CEUS) findings in liver and spleen involvement by sarcoidosis, reporting evidence from the literature and cases from our experience, after a brief update on safety profile, cost-effectiveness, and clinical indications of this novel technique. Furthermore, we highlight potential advantages of CEUS in assessing hepatosplenic sarcoidosis that may be useful in the clinical practice. PMID:25215299

  16. Visual detectability of elastic contrast in real-time ultrasound images

    NASA Astrophysics Data System (ADS)

    Miller, Naomi R.; Bamber, Jeffery C.; Doyley, Marvin M.; Leach, Martin O.

    1997-04-01

    Elasticity imaging (EI) has recently been proposed as a technique for imaging the mechanical properties of soft tissue. However, dynamic features, known as compressibility and mobility, are already employed to distinguish between different tissue types in ultrasound breast examination. This method, which involves the subjective interpretation of tissue motion seen in real-time B-mode images during palpation, is hereafter referred to as differential motion imaging (DMI). The purpose of this study was to develop the methodology required to perform a series of perception experiments to measure elastic lesion detectability by means of DMI and to obtain preliminary results for elastic contrast thresholds for different lesion sizes. Simulated sequences of real-time B-scans of tissue moving in response to an applied force were generated. A two-alternative forced choice (2-AFC) experiment was conducted and the measured contrast thresholds were compared with published results for lesions detected by EI. Although the trained observer was found to be quite skilled at the task of differential motion perception, it would appear that lesion detectability is improved when motion information is detected by computer processing and converted to gray scale before presentation to the observer. In particular, for lesions containing fewer than eight speckle cells, a signal detection rate of 100% could not be achieved even when the elastic contrast was very high.

  17. Development of Ultrasound-switchable Fluorescence Imaging Contrast Agents based on Thermosensitive Polymers and Nanoparticles

    PubMed Central

    Cheng, Bingbing; Wei, Ming-Yuan; Liu, Yuan; Pitta, Harish; Xie, Zhiwei; Hong, Yi; Nguyen, Kytai T.; Yuan, Baohong

    2015-01-01

    In this work we first introduced a recently developed high-resolution, deep-tissue imaging technique, ultrasound-switchable fluorescence (USF). The imaging principles based on two types of USF contrast agents were reviewed. To improve USF imaging techniques further, excellent USF contrast agents were developed based on high-performance thermoresponsive polymers and environment-sensitive fluorophores. Herein, such contrast agents were synthesized and characterized with five key parameters: (1) peak excitation and emission wavelengths (λex and λem), (2) the fluorescence intensity ratio between on and off states (IOn/IOff), (3) the fluorescence lifetime ratio between on and off states (τOn/τOff), (4) the temperature threshold to switch on fluorophores (Tth), and (5) the temperature transition bandwidth (TBW). We mainly investigated fluorescence intensity and lifetime changes of four environment-sensitive dyes [7-(2-Aminoethylamino)-N,N-dimethyl-4-benzofurazansulfonamide (DBD-ED), St633, Sq660, and St700] as a function of temperature, while the dye was attached to poly(N-isopropylacrylamide) linear polymers or encapsulated in nanoparticles. Six fluorescence resonance energy transfer systems were invented in which both the donor (DBD-ED or ST425) and the acceptor (Sq660) were adopted. Our results indicate that three Förster resonance energy transfer systems, where both IOn/IOff and τOn/τOff are larger than 2.5, are promising for application in future surface tissue bioimaging by USF technique. PMID:26052192

  18. Contrast-enhanced ultrasound in diagnosis and characterization of focal hepatic lesions

    PubMed Central

    Molins, Inés Gómez; Font, Juan Manuel Fernández; Álvaro, Juan Carrero; Navarro, Jose Luís Lledó; Gil, Marta Fernández; Rodríguez, Conrado M Fernández

    2010-01-01

    The extensive use of imaging techniques in differential diagnosis of abdominal conditions and screening of hepatocellular carcinoma in patients with chronic hepatic diseases, has led to an important increase in identification of focal liver lesions. The development of contrast-enhanced ultrasound (CEUS) opens a new window in the diagnosis and follow-up of these lesions. This technique offers obvious advantages over the computed tomography and magnetic resonance, without a decrease in its sensitivity and specificity. The new second generation contrast agents, due to their intravascular distribution, allow a continuous evaluation of the enhancement pattern, which is crucial in characterization of liver lesions. The dual blood supply in the liver shows three different phases, namely arterial, portal and late phases. The enhancement during portal and late phases can give important information about the lesion’s behavior. Each liver lesion has a different enhancement pattern that makes possible an accurate approach to their diagnosis. The role of emerging techniques as a contrast-enhanced three-dimensional US is also discussed. In this article, the advantages, indications and technique employed during CEUS and the different enhancement patterns of most benign and malignant focal liver lesions are discussed. PMID:21225000

  19. Continuous Dynamic Registration of Microvascularization of Liver Tumors with Contrast-Enhanced Ultrasound

    PubMed Central

    Wiesinger, Isabel; Stroszczynski, Christian; Wiggermann, Philipp; Jung, Ernst-Michael

    2014-01-01

    Aim. To evaluate the diagnostic value of quantification of liver tumor microvascularization using contrast-enhanced ultrasound (CEUS) measured continuously from the arterial phase to the late phase (3 minutes). Material and Methods. We present a retrospective analysis of 20 patients with malignant (n = 13) or benign (n = 7) liver tumors. The tumors had histopathologically been proven or clearly identified using contrast-enhanced reference imaging with either 1.5 T MRI (liver specific contrast medium) or triphase CT and follow-up. CEUS was performed using a multifrequency transducer (1–5 MHz) and a bolus injection of 2.4 mL sulphur hexafluoride microbubbles. A retrospective perfusion analysis was performed to determine TTP (time-to-peak), RBV (regional blood volume), RBF (regional blood flow), and Peak. Results. Statistics revealed a significant difference (P < 0.05) between benign and malignant tumors in the RBV, RBF, and Peak but not in TTP (P = 0.07). Receiver operating curves (ROC) were generated for RBV, RBF, Peak, and TTP with estimated ROC areas of 0.97, 0.96, 0.98, and 0.76, respectively. Conclusion. RBV, RBF, and Peak continuously measured over a determined time period of 3 minutes could be of valuable support in differentiating malignant from benign liver tumors. PMID:24991432

  20. Self-assembled microbubbles as contrast agents for ultrasound/magnetic resonance dual-modality imaging.

    PubMed

    Song, Sheng; Guo, Heze; Jiang, Zequan; Jin, Yuqing; Wu, Ying; An, Xiao; Zhang, Zhaofeng; Sun, Kang; Dou, Hongjing

    2015-09-01

    In this work, superparamagnetic self-assembled microbubbles (SAMBs) consisting of "Poly(acrylic acid)-Iron oxide nanoparticles-Polyamine" sandwich-like shells and tetradecafluorohexane cores were fabricated by a template-free self-assembly approach. The SAMBs exhibit not only magnetic resonance (MR) T2 imaging functionality, but also ultrasound (US) image contrast, showing great potential as US/MR dual contrast agents. The diameters of the SAMBs can be tuned easily from 450nm to 1300nm by changing the precursor ratio, and this size variation directly affects their in vitro MRI and US signals. The SAMBs also exhibit in vivo contrast enhancement capabilities in rat liver with injection through portal vein, for both MR and US imaging. Additionally, the biodistribution of SAMBs over time suggests normal systemic metabolic activity through the spleen. The results show that the Fe content in rat liver reduces to a level of which Fe cannot be detected in 45days. The SAMBs exhibit no obvious damage to the primary organs of rat during the metabolic process, indicating their good biocompatibility in vivo. PMID:26112374

  1. A New Method for Discriminating between Bronchial and Pulmonary Arterial Phases using Contrast-Enhanced Ultrasound.

    PubMed

    Hong-Xia, Zhang; Wen, He; Ling-Gang, Cheng; Wen-Jia, Cai; Shuo, Li; Li-Juan, Du; Hai-Man, Song; Yang, Zhao

    2016-07-01

    This study aimed to explore the value of a real-time comparative observation method using contrast-enhanced ultrasound (CEUS) for discriminating between bronchial and pulmonary arterial phases in diagnosing lung diseases. Forty-nine patients with 50 pulmonary lesions (45 peripheral lesions and five central lesions with obstructive atelectasis, including 36 malignant tumors, five tuberculomas, four inflammatory pseudotumors and five pneumonia lesions) detected via computed tomography and visible on ultrasonography were enrolled in this study. The arterial phases were determined by comparing contrast agent arrival time (AT) in the peripheral lung lesion with that in adjacent lung tissue, referred to as a real-time comparative observation method. Detection rates of this observation method were 100% (50/50) for pulmonary arterial phase and 88% (44/50) for bronchial arterial phase. Using the instrument's built-in graphing and analysis software, a time-intensity curve was constructed based on a chosen region of interest within the lesion where enhancement was the most obvious. Commonly used perfusion indicators in CEUS, such as AT, time-to-peak and peak intensity, were obtained from the time-intensity curve. Percutaneous puncture biopsies were performed under ultrasound guidance, and specimens of all 50 lesions were examined pathologically. AT was significantly shorter in patients with pneumonia than in those with malignant tumors or chronic inflammation (p < 0.05), whereas no difference was seen between those with malignant tumors and those with chronic inflammation. No significant differences in time-to-peak or peak intensity were seen among those with various lung diseases (p > 0.05). This is the first description of a real-time comparative observation method using CEUS for determining the arterial phases in the lungs. This method is accurate, simple to perform and provides a direct display. It is expected to become a practical and feasible tool for diagnosing

  2. Immunological evaluation of the new stable ultrasound contrast agent LK565: a phase one clinical trial

    PubMed Central

    Funke, B; Maerz, HK; Okorokow, S; Polata, S; Lehmann, I; Sack, U; Wild, P; Geisler, T; Zotz, RJ

    2004-01-01

    Background Ultrasound contrast agents (UCAs) allow the enhancement of vascular definition, thereby providing more diagnostic information. LK565 is a new second-generation UCA based on synthetic polymers of aspartic acid which is eliminated from the blood stream via phagocytosis. LK565 forms very stable air-filled microspheres and is capable of repeated passage through the pulmonary capillary bed after peripheral intravenous injection. This characteristic allows examination of the cardiac function or extracardiac vessel abnormalities up to 15 minutes. Methods A phase one clinical study was conducted on 15 healthy volunteers to identify the development of an undesirable immune response. Phagocytosis capacity, TNF-α secretion, and MHC class II upregulation of monocytes was monitored, as well as microsphere specific antibody development (IgM, IgG). Furthermore, the kinetics of the activation surface markers CD69, CD25, CD71, and CD11b on leukocytes were analyzed. Results Due to LK565-metabolism the administration of the UCA led to saturation of phagocytes which was reversible after 24 hrs. Compared to positive controls neither significant TNF-α elevation, neither MHC class II and activation surface markers upregulation, nor specific antibody development was detectable. Conclusion The administration of LK565 provides a comfortable duration of signal enhancement, esp. in echocardiography, without causing a major activation cascade or triggering an adaptive immune response. To minimize the risk of undesirable adverse events such as anaphylactoid reactions, immunological studies should be included in clinical trials for new UCAs. The use of LK565 as another new ultrasound contrast agent should be encouraged as a safe means to provide additional diagnostic information. PMID:15357870

  3. FEASIBILITY AND SAFETY OF CONTRAST-ENHANCED ULTRASOUND IN THE DISTAL LIMB OF SIX HORSES.

    PubMed

    Seiler, Gabriela S; Campbell, Nigel; Nixon, Britton; Tsuruta, James K; Dayton, Paul A; Jennings, Samuel; Redding, W Rich; Lustgarten, Meghann

    2016-05-01

    Vascular alterations play important roles in many orthopedic diseases such as osteoarthritis, tendonitis, and synovitis in both human and equine athletes. Understanding these alterations could enhance diagnosis, prognosis, and treatment. Contrast-enhanced ultrasound (CEUS) could be a valuable method for evaluation of blood flow and perfusion of these processes in the equine distal limb, however no reports were found describing feasibility or safety of the technique. The goal of this prospective, experimental study was to describe the feasibility and safety of distal limb CEUS in a sample of six horses. For each horse, CEUS of the distal limb was performed after intravenous injections of 5 and 10 ml, as well as intra-arterial injections of 0.5 and 1 ml contrast medium. Vital parameters were monitored and CEUS images were assessed qualitatively and quantitatively for degree of contrast enhancement. None of the horses had clinically significant changes in their vital parameters after contrast medium injection. One horse had a transient increase in respiratory rate, and several horses had mild increases of systolic blood pressure of short duration after intravenous, but not after intra-arterial injections. Intra-arterial injection was possible in all horses and resulted in significantly improved contrast enhancement both quantitatively (P = 0.027) and qualitatively (P = 0.019). Findings from this study indicated that CEUS is a feasible and safe diagnostic test for evaluation of the equine distal limb. Future studies are needed to assess the clinical utility of this test for horses with musculoskeletal diseases. PMID:26765518

  4. Contrast-Enhanced Ultrasound for the Characterization of Hepatocellular Carcinoma and Intrahepatic Cholangiocarcinoma

    PubMed Central

    Liu, Guang-Jian; Wang, Wei; Lu, Ming-De; Xie, Xiao-Yan; Xu, Hui-Xiong; Xu, Zuo-Feng; Chen, Li-Da; Wang, Zhu; Liang, Jin-Yu; Huang, Yang; Li, Wei; Liu, Jin-Ya

    2015-01-01

    Purpose and methods The ability of contrast-enhanced ultrasound (CEUS) to differentiate between hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (ICC) is still controversial. We reviewed the CEUS imaging of 819 patients (HCC=546, ICC=273) with an established pathological diagnosis. The enhancement patterns of lesions and the diagnostic performance of CEUS were analyzed. Results Arterial hyperenhancement followed by washout was observed in 92.3% (504/546) of the HCC lesions and 85.7% (234/273) of the ICC lesions on CEUS (p<0.05). Additionally, the ICCs presented contrast washout much earlier than the HCCs, with an average time of 27.5 seconds after injecting the contrast agent compared with 70.1 seconds for the HCCs (p<0.05). Peripheral rim-like enhancement was observed in 68.5% (187/273) of the ICCs, which was significantly more common than that in the HCCs (2.0%, 11/546) (p<0.05). When using arterial hyperenhancement with a washout phase later than 43 seconds after injecting the contrast agent and with no peripheral rim-like enhancement as the diagnostic criteria for HCC ≤5 cm in diameter, the area under the curve was 0.808, with 64.1% sensitivity, 97.4% specificity and 73.6% accuracy. Conclusions Although ICC may show the typical enhancement pattern of HCC on CEUS, peripheral rim-like enhancement and quick contrast washout show high efficiency in the differentiation of HCC from ICC. PMID:26779444

  5. Ultrasound

    MedlinePlus

    Ultrasound uses high-frequency sound waves to make images of organs and structures inside the body. ... An ultrasound machine makes images so that organs inside the body can be examined. The machine sends out high- ...

  6. The role of contrast-enhanced ultrasound imaging in the follow-up of patients post-endovascular aneurysm repair.

    PubMed

    Jawad, Nadia; Parker, Pamela; Lakshminarayan, Raghuram

    2016-02-01

    Endovascular aneurysm repair is a minimally invasive technique for the treatment of abdominal aortic aneurysms. Patients who undergo endovascular aneurysm repair are potentially at risk of developing problems related to the graft such as the development of endoleaks. Endoleaks can cause expansion of the aneurysmal sac, which can potentially lead to rupture. It is for this reason that lifelong surveillance of patients is required to assess the graft and the aneurysmal sac. This article discusses the role of contrast-enhanced ultrasound in the follow-up of patients post-endovascular aneurysm repair. Contrast-enhanced ultrasound is rapidly becoming a powerful, accurate and cost-effective tool to complement computed tomography in the follow-up of endovascular aneurysm repair patients. Real-time imaging of contrast filling into the arterial system means that contrast-enhanced ultrasound is an excellent problem-solving tool, particularly when assessing for the type and anatomy of endoleaks. In some instances, contrast-enhanced ultrasound can detect endoleaks when other modalities are equivocal. PMID:27433275

  7. Contrast-enhanced ultrasound for diagnosing, staging and assessment of operability of pancreatic cancer.

    PubMed

    Grossjohann, Hanne Sønder

    2012-12-01

    We have evaluated the usefulness of contrast-enhanced ultrasound (CEUS) for diagnosing, staging and assessment of operability of pancreatic head tumors. For some years CEUS has been used with great success for diagnosis of focal liver lesions but when we started our trial, it was still relatively untested in the pancreas. This PhD thesis is based on a methodological study, two clinical studies and an intra-/interobserver study. The methodological study consists of material collected from investigations made on 14 experimental pigs. First, we examined the pig pancreas with CEUS. Hereafter we repeated the CEUS examination after venous injection of the gastrointestinal hormones secretin and cholecystokinin. We investigated if the contrast-enhancement would intensify after hormone stimulation. The clinical studies consist of material collected from examinations of 49 patients referred to our hospital with the diagnosis, suspicion of pancreatic cancer. All patients had a conventional ultrasound examination and a CEUS examination. In addition, some of the patients also had a CEUS examination after stimulation with secretin and cholecystokinin. All patients had a 64-slice-CT examination and a biopsy was taken for histopathological verification. We studied whether CEUS was useful for assessment of tumor classification, tumor staging and tumor resectability. We also tested if hormone stimulation of the pancreas during CEUS could intensify contrast-enhancement of healthy pancreatic tissue and thus contribute to a better demarcation of a tumor. Finally, we tested the intra-/interobserver agreement of our visual interpretation of the contrast-enhanced ultrasound images and the concordance between the visual interpretation and histopathological test results. From the results of the methodological study it seemed possible to intensify contrast-enhancement using the gastrointestinal hormones by 3%. During the clinical studies it emerged that hormone stimulation did not improve

  8. Ultrasound contrast agent imaging: Real-time imaging of the superharmonics

    SciTech Connect

    Peruzzini, D.; Viti, J.; Tortoli, P.; Verweij, M. D.; Jong, N. de; Vos, H. J.

    2015-10-28

    Currently, in medical ultrasound contrast agent (UCA) imaging the second harmonic scattering of the microbubbles is regularly used. This scattering is in competition with the signal that is caused by nonlinear wave propagation in tissue. It was reported that UCA imaging based on the third or higher harmonics, i.e. “superharmonic” imaging, shows better contrast. However, the superharmonic scattering has a lower signal level compared to e.g. second harmonic signals. This study investigates the contrast-to-tissue ratio (CTR) and signal to noise ratio (SNR) of superharmonic UCA scattering in a tissue/vessel mimicking phantom using a real-time clinical scanner. Numerical simulations were performed to estimate the level of harmonics generated by the microbubbles. Data were acquired with a custom built dual-frequency cardiac phased array probe. Fundamental real-time images were produced while beam formed radiofrequency (RF) data was stored for further offline processing. The phantom consisted of a cavity filled with UCA surrounded by tissue mimicking material. The acoustic pressure in the cavity of the phantom was 110 kPa (MI = 0.11) ensuring non-destructivity of UCA. After processing of the acquired data from the phantom, the UCA-filled cavity could be clearly observed in the images, while tissue signals were suppressed at or below the noise floor. The measured CTR values were 36 dB, >38 dB, and >32 dB, for the second, third, and fourth harmonic respectively, which were in agreement with those reported earlier for preliminary contrast superharmonic imaging. The single frame SNR values (in which ‘signal’ denotes the signal level from the UCA area) were 23 dB, 18 dB, and 11 dB, respectively. This indicates that noise, and not the tissue signal, is the limiting factor for the UCA detection when using the superharmonics in nondestructive mode.

  9. A novel coded excitation scheme to improve spatial and contrast resolution of quantitative ultrasound imaging.

    PubMed

    Sanchez, Jose R; Pocci, Darren; Oelze, Michael L

    2009-10-01

    Quantitative ultrasound (QUS) imaging techniques based on ultrasonic backscatter have been used successfully to diagnose and monitor disease. A method for improving the contrast and axial resolution of QUS parametric images by using the resolution enhancement compression (REC) technique is proposed. Resolution enhancement compression is a coded excitation and pulse compression technique that enhances the -6-dB bandwidth of an ultrasonic imaging system. The objective of this study was to combine REC with QUS (REC-QUS) and evaluate and compare improvements in scatterer diameter estimates obtained using the REC technique to conventional pulsing methods. Simulations and experimental measurements were conducted with a single-element transducer (f/4) having a center frequency of 10 MHz and a -6-dB bandwidth of 80%. Using REC, the -6-dB bandwidth was enhanced to 155%. Images for both simulation and experimental measurements contained a signal-to-noise ratio of 28 dB. In simulations, to monitor the improvements in contrast a software phantom with a cylindrical lesion was evaluated. In experimental measurements, tissue-mimicking phantoms that contained glass spheres with different scatterer diameters were evaluated. Estimates of average scatterer diameter in the simulations and experiments were obtained by comparing the normalized backscattered power spectra to theory over the -6-dB bandwidth for both conventional pulsing and REC. Improvements in REC-QUS over conventional QUS were quantified through estimate bias and standard deviation, contrast-to-noise ratio, and histogram analysis of QUS parametric images. Overall, a 51% increase in contrast and a 60% decrease in the standard deviation of average scatterer diameter estimates were obtained during simulations, while a reduction of 34% to 71% was obtained in the standard deviation of average scatterer diameter for the experimental results. PMID:19942499

  10. Ultrasound contrast agent imaging: Real-time imaging of the superharmonics

    NASA Astrophysics Data System (ADS)

    Peruzzini, D.; Viti, J.; Tortoli, P.; Verweij, M. D.; de Jong, N.; Vos, H. J.

    2015-10-01

    Currently, in medical ultrasound contrast agent (UCA) imaging the second harmonic scattering of the microbubbles is regularly used. This scattering is in competition with the signal that is caused by nonlinear wave propagation in tissue. It was reported that UCA imaging based on the third or higher harmonics, i.e. "superharmonic" imaging, shows better contrast. However, the superharmonic scattering has a lower signal level compared to e.g. second harmonic signals. This study investigates the contrast-to-tissue ratio (CTR) and signal to noise ratio (SNR) of superharmonic UCA scattering in a tissue/vessel mimicking phantom using a real-time clinical scanner. Numerical simulations were performed to estimate the level of harmonics generated by the microbubbles. Data were acquired with a custom built dual-frequency cardiac phased array probe. Fundamental real-time images were produced while beam formed radiofrequency (RF) data was stored for further offline processing. The phantom consisted of a cavity filled with UCA surrounded by tissue mimicking material. The acoustic pressure in the cavity of the phantom was 110 kPa (MI = 0.11) ensuring non-destructivity of UCA. After processing of the acquired data from the phantom, the UCA-filled cavity could be clearly observed in the images, while tissue signals were suppressed at or below the noise floor. The measured CTR values were 36 dB, >38 dB, and >32 dB, for the second, third, and fourth harmonic respectively, which were in agreement with those reported earlier for preliminary contrast superharmonic imaging. The single frame SNR values (in which `signal' denotes the signal level from the UCA area) were 23 dB, 18 dB, and 11 dB, respectively. This indicates that noise, and not the tissue signal, is the limiting factor for the UCA detection when using the superharmonics in nondestructive mode.

  11. Common ultrasound and contrast-enhanced ultrasonography in the diagnosis of hepatic artery pseudoaneurysm after liver transplantation

    PubMed Central

    Ren, Xiuyun; Luo, Yukun; Gao, Nong; Niu, Hong; Tang, Jie

    2016-01-01

    The diagnostic value of common ultrasound and contrast-enhanced ultrasonography (CEUS) in hepatic artery pseudoaneurysm (HAP) after liver transplantation was investigated. From January 2005 to November 2015, information was collected on 2,085 cases of orthotopic liver transplantation. The cases included 1,617 men and 468 women. Common ultrasound and CEUS were used to monitor arterial blood flow following surgery, and the complications were assessed. Instruments used included Acuson Sequoia 512 and Mylab Twice, and the contrast agent was SonoVue. The standard of common ultrasound in the diagnosis of HAP was follicular structure, which had arterial blood flow signal present beside the hepatic artery. The diagnostic criteria of HAP using CEUS were abnormal and round contrast enhancement zone and perfusion of the contrast agent in the zone near the hepatic artery. The diagnostic standard of HAP was computed tomographic angiography (CTA) and emergency operation. Eight cases of HAP were diagnosed in 2,085 patients after liver transplantation (0.38%). Three cases of HAP were diagnosed successfully by common ultrasound while 5 cases were missed. Sensitivity, specificity and diagnostic accuracy for common ultrasound was 37.5, 100 and 99.76%, respectively. Six cases of HAP were diagnosed by CEUS and 2 cases were missed. Sensitivity, specificity and diagnostic accuracy for CEUS was 75, 100 and 99.9%, respectively. Collectively, CEUS is a convenient and effective diagnostic method for HAP following liver transplantation, the diagnostic sensitivity was obviously higher than that of the common ultrasound, and it was more convenient than CTA. Nevertheless, the diagnosis of pseudoaneurysm with deep location, and unsatisfactory grayscale images were easily missed. PMID:27446316

  12. Is Contrast Enhanced Ultrasound (CEUS) ready for use in daily practice for evaluation of focal liver lesions?

    PubMed

    Sporea, Ioan; Şirli, Roxana

    2014-03-01

    Abdominal ultrasound is one of the most popular imaging methods due to its feasibility, low cost and accessibility. Contrast Enhanced Ultrasound (CEUS) with second generation contrast agents became in the last years a useful tool for the characterization of focal liver lesions (FLL) so that EFSUMB issued guidelines for its use in clinical practice. Several large studies proved that CEUS has similar performance to more expensive imaging methods such as contrast enhanced CT and contrast enhanced MRI for the characterization of FLL. Also, several studies proved that CEUS is cost-effective as a first-line imaging method. Considering all these data, we think that CEUS is ready to be used in daily practice for the evaluation of FLL. PMID:24567923

  13. Intravenous ultrasound contrast agents versus other imaging methods in pediatric patients with neoplastic diseases – a comparison

    PubMed Central

    Kosiak, Wojciech; Batko, Tomasz; Adamkiewicz-Drożyńska, Elżbieta; Szarmach, Arkadiusz

    2013-01-01

    The lack of registration of ultrasound contrast agents for use in patients below the age of 18 is a significant limitation of their usage. Despite this, examinations with the use of contrast agents are conducted in numerous centers, mainly as part of the diagnostic process of vesicoureteral reflux. Examinations after an intravenous administration of contrast agents are conducted rarely. The reason for this is not only the lack of registration, but also the lack of studies on their safety profile in paediatric patients or no guidelines concerning the dosage. It seems that imaging with the use of such agents could help solve certain clinical problems when other diagnostic methods fail. The paper presents selected cases of pediatric patients treated in oncological departments, in whom the examination with the use of ultrasound contrast agents had a considerable influence on the diagnostic and therapeutic process. PMID:26675552

  14. Noninvasive Ambient Pressure Estimation using Ultrasound Contrast Agents -- Invoking Subharmonics for Cardiac and Hepatic Applications

    NASA Astrophysics Data System (ADS)

    Dave, Jaydev K.

    Ultrasound contrast agents (UCAs) are encapsulated microbubbles that provide a source for acoustic impedance mismatch with the blood, due to difference in compressibility between the gas contained within these microbubbles and the blood. When insonified by an ultrasound beam, these UCAs act as nonlinear scatterers and enhance the echoes of the incident pulse, resulting in scattering of the incident ultrasound beam and emission of fundamental (f0), subharmonic (f0/2), harmonic (n*f0; n ∈ N) and ultraharmonic (((2n-1)/2)*f0; n ∈ N & n > 1) components in the echo response. A promising approach to monitor in vivo pressures revolves around the fact that the ultrasound transmit and receive parameters can be selected to induce an ambient pressure amplitude dependent subharmonic signal. This subharmonic signal may be used to estimate ambient pressure amplitude; such technique of estimating ambient pressure amplitude is referred to as subharmonic aided pressure estimation or SHAPE. This project develops and evaluates the feasibility of SHAPE to noninvasively monitor cardiac and hepatic pressures (using commercially available ultrasound scanners and UCAs) because invasive catheter based pressure measurements are used currently for these applications. Invasive catheter based pressure measurements pose risk of introducing infection while the catheter is guided towards the region of interest in the body through a percutaneous incision, pose risk of death due to structural or mechanical failure of the catheter (which has also triggered product recalls by the USA Food and Drug Administration) and may potentially modulate the pressures that are being measured. Also, catheterization procedures require fluoroscopic guidance to advance the catheter to the site of pressure measurements and such catheterization procedures are not performed in all clinical centers. Thus, a noninvasive technique to obtain ambient pressure values without the catheterization process is clinically

  15. Contrast-enhanced imaging of SPIO-labeled platelets using magnetomotive ultrasound

    NASA Astrophysics Data System (ADS)

    Pope, Ava G.; Wu, Gongting; McWhorter, Frances Y.; Merricks, Elizabeth P.; Nichols, Timothy C.; Czernuszewicz, Tomasz J.; Gallippi, Caterina M.; Oldenburg, Amy L.

    2013-10-01

    The ability to image platelets in vivo can provide insight into blood clotting processes and coagulopathies, and aid in identifying sites of vascular endothelial damage related to trauma or cardiovascular disease. Toward this end, we have developed a magnetomotive ultrasound (MMUS) system that provides contrast-enhanced imaging of superparamagnetic iron oxide (SPIO) labeled platelets via magnetically-induced vibration. Platelets are a promising platform for functional imaging contrast because they readily take up SPIOs and are easily harvested from blood. Here we report a novel MMUS system that accommodates an arbitrarily thick sample while maintaining portability. We employed a frequency- and phase-locked motion detection algorithm based on bandpass filtering of the differential RF phase, which allows for the detection of sub-resolution vibration amplitudes on the order of several nanometers. We then demonstrated MMUS in homogenous tissue phantoms at SPIO concentrations as low as 0.09 mg ml-1 Fe (p < 0.0001, n = 6, t-test). Finally, we showed that our system is capable of three-dimensional imaging of a 185 µL simulated clot containing SPIO-platelets. This highlights the potential utility for non-invasive imaging of platelet-rich clots, which would constitute a fundamental advance in technology for the study of hemostasis and detection of clinically relevant thrombi.

  16. Management of hepatocellular carcinoma: The role of contrast-enhanced ultrasound

    PubMed Central

    Zheng, Shu-Guang; Xu, Hui-Xiong; Liu, Lin-Na

    2014-01-01

    Hepatocellular carcinoma (HCC) is the sixth most common neoplasm and the third cause of cancer death worldwide. Contrast enhanced ultrasound (CEUS) has been applied for more than ten years and plays increasingly important roles in the management of HCC. On the basis of the Guideline and Good Clinical Practice Recommendations for CEUS in the liver-update 2012 and related literature about the management of HCC, we summarize the main roles and applications of CEUS in the management of HCC, including HCC surveillance, diagnosis, CEUS-guided treatment, treatment response evaluation and follow-up. The diagnostic algorithm for HCC is also suggested. Meanwhile, the comparisons between CEUS and contrast enhanced computed tomography/magnetic resonance imaging (CECT/CEMRI) in these areas are made. Although CEUS is subject to the same limitation as ordinary US and is inferior to CECT/CEMRI in some aspects, CEUS has proved to be of great value in the management of HCC with inherent advantages, such as sufficient high safety profile making it suitable for patients with renal failure or allergic to iodine, absence of radiation, easy reproducibility and high temporal resolution. The tremendous application of CEUS to the diagnosis and treatment of HCC provides more opportunities for patients with HCC diagnosed at different stages. PMID:24578787

  17. Case Report of Contrast-Enhanced Ultrasound Features of Primary Hepatic Neuroendocrine Tumor

    PubMed Central

    Li, Wei; Zhuang, Bo-wen; Wang, Zhu; Liao, Bing; Hong, Ling-yao; Xu, Ming; Lin, Xiao-na; Xie, Xiao-yan; Lu, Ming-de; Chen, Li-da; Wang, Wei

    2016-01-01

    Abstract Primary hepatic neuroendocrine tumors (PHNETs) are very rare and their clinical features and treatment outcomes are not well understood. It is difficult to reach a proper diagnosis before biopsy or resection. The aim of this study was to analyze the imaging features of PHNETs on contrast-enhanced ultrasound (CEUS). The clinical characteristics, CEUS findings, pathological features, treatment and prognosis of 6 patients with PHNET treated in our hospital were retrospectively analyzed. Most PHNETs occurred in middle-aged patients, and the most common clinical manifestation was right upper quadrant palpable mass and abdominal pain. Multiple small anechoic intralesional cavities occurred frequently in PHNET. Multilocular cystic with internal septation or monolocular with wall nodule could also be detected. On contrast-enhanced ultrasonography (CEUS), heterogeneous hyperenhancement in the arterial phase and wash-out hypoenhancement were observed in most patients, while computed tomography scanning yielded similar results. Diagnosis of PHNET was confirmed by immunohistochemical result and follow-up with the absence of extrahepatic primary sites. Five patients received surgical resection and 2 cases exhibited recurrence. Transcatheter arterial chemoembolization was performed in 1 patient with recurrence. Only 1 patient received conservative care. The median overall survival in 5 patients who underwent surgical treatment was 27 months (18–36 months). PHNET is a rare tumor, and its diagnosis is difficult. The CEUS features reported in this series may enrich the knowledge base for characterization of PHNET. PMID:27227910

  18. Contrast-enhanced imaging of SPIO-labeled platelets using magnetomotive ultrasound

    PubMed Central

    Pope, Ava G.; Wu, Gongting; McWhorter, Frances Y.; Merricks, Elizabeth C.; Nichols, Timothy C.; Czernuszewicz, Tomasz J.; Gallippi, Caterina M.; Oldenburg, Amy L.

    2013-01-01

    The ability to image platelets in vivo can provide insight into blood clotting processes and coagulopathies, and aid in identifying sites of vascular endothelial damage related to trauma or cardiovascular disease. Toward this end, we have developed a magnetomotive ultrasound (MMUS) system that provides contrast-enhanced imaging of superparamagnetic iron oxide (SPIO) labeled platelets via magnetically-induced vibration. Platelets are a promising platform for functional imaging contrast because they readily take up SPIOs and are easily harvested from blood. Here we report a novel MMUS system that accommodates an arbitrarily thick sample while maintaining portability. We employed a frequency- and phase-locked motion detection algorithm based on bandpass filtering of the differential RF phase, which allows for the detection of sub-resolution vibration amplitudes on the order of several nanometers. We then demonstrated MMUS in homogenous tissue phantoms at SPIO concentrations as low as 0.09 mg/ml Fe (p < 0.0001, n = 6, t-test). Finally, we showed that our system is capable of 3-dimensional imaging of a 185 μL simulated clot containing SPIO-platelets. This highlights the potential utility for non-invasive imaging of platelet-rich clots, which would constitute a fundamental advance in technology for the study of hemostasis and detection of clinically relevant thrombi. PMID:24077004

  19. Contrast-enhanced ultrasound in the biliary system: Potential uses and indications.

    PubMed

    Xu, Hui-Xiong

    2009-12-31

    Conventional ultrasound (US) is the first-line imaging investigation for biliary diseases. However, it is lack of the ability to depict the microcirculation of some lesions which may lead to failure in diagnosis for some biliary diseases. The use of contrast-enhanced US (CEUS) has reached the field of bile duct disease in recent years and promising results have been achieved. In this review, the methodology, image interpretation, enhancement pattern, clinical usefulness, and indications for CEUS in the biliary system are summarized. CEUS may be indicated in the biliary system under the following circumstances: (1) Where there is a need to make a characterization of intrahepatic cholangiocarcinoma (ICC); (2) For differentiation diagnosis between ICC and other tumors (i.e. hepatocellular carcinoma or liver metastasis) or infectious diseases; (3) For differentiation diagnosis between biliary cystadenoma and biliary cystadenocarcinoma; (4) To detect malignant change in Caroli's disease; (5) To depict the extent of Klatskin's tumor with greater clarity; (6) To make a distinction between gallbladder cholesterol polyp, adenoma and polypoid cancer; (7) To make a distinction between chronic cholecystitis with thickened wall and gallbladder cancer; (8) For differentiation diagnosis between motionless sludge and gallbladder cancer; (9) For differentiation diagnosis between common bile duct cancer and sludge or stone without acoustic shadowing; and (10) In patients who are suspected of having a drop of their percutaneous transhepatic cholangiodrainage tube, US contrast agent can be administered to through the tube detect the site of the tube. PMID:21160719

  20. The Feasibility of Contrast-Enhanced Ultrasound During Uterine Artery Embolization: A Pilot Study

    SciTech Connect

    Dorenberg, Eric J. Jakobsen, Jarl A.; Brabrand, Knut; Hafsahl, Geir; Smith, Hans-Jorgen

    2007-09-15

    Purpose. To evaluate the feasibility of using contrast-enhanced ultrasound (CEUS) during uterine artery embolization (UAE) in order to define the correct end-point of embolization with complete devascularization of all fibroids. Methods. In this prospective study of 10 consecutive women undergoing UAE, CEUS was performed in the angiographic suite during embolization. When the angiographic end-point, defined as the 'pruned-tree' appearance of the uterine arteries was reached, CEUS was performed while the angiographic catheters to both uterine arteries were kept in place. The decision whether or not to continue the embolization was based on the findings at CEUS. The results of CEUS were compared with those of contrast-enhanced magnetic resonance imaging (MRI) 1 day as well as 3 months following UAE. Results. CEUS was successfully performed in all women. In 4 cases injection of particles was continued based on the findings at CEUS despite angiographically complete embolization. CEUS imaging at completion of UAE correlated well with the findings at MRI. Conclusion. The use of CEUS during UAE is feasible and may increase the quality of UAE.

  1. Plasma sterilization of poly lactic acid ultrasound contrast agents: surface modification and implications for drug delivery.

    PubMed

    Eisenbrey, John R; Hsu, Jennifer; Wheatley, Margaret A

    2009-11-01

    Poly lactic acid (PLA) ultrasound contrast agents (CA) have been developed previously in our laboratory for ultrasound (US) imaging, as well as surface coated with doxorubicin to create a potential targeted platform of chemotherapeutic delivery using focused US. However, we have previously found it impossible to sterilize these agents while at the same time maintaining their acoustic properties, a task that would probably require fabrication within a clean facility. The purpose of this paper is to investigate the feasibility of using plasma to sterilize these CA while maintaining maximum echogenicity, a step that would greatly facilitate in vivo investigations. Effects of plasma exposure time (1, 3 and 6 min) and intensity (low-10 mA, 6.8 W; medium-15 mA, 10.5 W; and high-25 mA, 18 W) on the CAs' acoustic properties, surface morphology, zeta potential, capacity to carry chemotherapeutics and overall sterility are described. Both increases in plasma intensity and exposure time increased CA zeta potential and also significantly increased drug payload. High-intensity plasma exposure for 3 min was found to be an optimal sterilization protocol for maximal (100%) preservation of CA echogenicity. Plasma exposure resulted in sterile samples and maintained original CA enhancement of 20 dB and acoustic half-life over 75 min, while increasing CA zeta potential by 11 mV and doxorubicin loading efficiency by 10%. This study not only shows how a highly temperature- and pressure-sensitive agent can be sterilized using plasma, but also that surface modification can be used to increase surface binding of the drug. PMID:19766380

  2. Investigation on the inertial cavitation threshold and shell properties of commercialized ultrasound contrast agent microbubbles.

    PubMed

    Guo, Xiasheng; Li, Qian; Zhang, Zhe; Zhang, Dong; Tu, Juan

    2013-08-01

    The inertial cavitation (IC) activity of ultrasound contrast agents (UCAs) plays an important role in the development and improvement of ultrasound diagnostic and therapeutic applications. However, various diagnostic and therapeutic applications have different requirements for IC characteristics. Here through IC dose quantifications based on passive cavitation detection, IC thresholds were measured for two commercialized UCAs, albumin-shelled KangRun(®) and lipid-shelled SonoVue(®) microbubbles, at varied UCA volume concentrations (viz., 0.125 and 0.25 vol. %) and acoustic pulse lengths (viz., 5, 10, 20, 50, and 100 cycles). Shell elastic and viscous coefficients of UCAs were estimated by fitting measured acoustic attenuation spectra with Sarkar's model. The influences of sonication condition (viz., acoustic pulse length) and UCA shell properties on IC threshold were discussed based on numerical simulations. Both experimental measurements and numerical simulations indicate that IC thresholds of UCAs decrease with increasing UCA volume concentration and acoustic pulse length. The shell interfacial tension and dilatational viscosity estimated for SonoVue (0.7 ± 0.11 N/m, 6.5 ± 1.01 × 10(-8) kg/s) are smaller than those of KangRun (1.05 ± 0.18 N/m, 1.66 ± 0.38 × 10(-7) kg/s); this might result in lower IC threshold for SonoVue. The current results will be helpful for selecting and utilizing commercialized UCAs for specific clinical applications, while minimizing undesired IC-induced bioeffects. PMID:23927202

  3. Diagnostic value of contrast-enhanced ultrasound in solid thyroid nodules with and without enhancement.

    PubMed

    Wu, Qiong; Wang, Yan; Li, Yi; Hu, Bing; He, Zhi-Yan

    2016-08-01

    We aimed to investigate different enhancement patterns of solid thyroid nodules on contrast-enhanced ultrasound (CEUS) and then to evaluate the corresponding diagnostic performance in the differentiation of benign and malignant nodules with and without enhancement. 229 solid thyroid nodules in 196 patients who had undergone both conventional ultrasound and CEUS examinations were classified into enhancement and non-enhancement groups. Besides, different enhancement patterns in the enhancement group were characterised with five indicators including arrival time, mode of entrance, echo intensity, homogeneity, and washout time. Then aforementioned indicators were compared between benign and malignant nodules of different sizes (<10 mm and >10 mm), and diagnostic performance of significant enhancement indicators was calculated. As for the enhancement group, there were statistically significant differences of <10 mm subgroup among three CEUS indicators including arrival time, mode of entrance, and washout time between malignant and benign thyroid nodules (p < 0.05), while all CEUS indicators showed statistically significant differences in the total group and ≥10 mm subgroup (p < 0.05). All the five CEUS indicators displayed better diagnostic performance with specificity (92.86, 92.14, 95.71, 90.71, and 90.71 %, respectively) and diagnostic accuracy (80.79, 79.48, 74.67, 75.11, and 81.66 %, respectively), while the sensitivity and negative predictive value of non-enhancement were 95.51 and 95.83 %, respectively, with an accuracy of 77.29 %. CEUS is a very promising diagnostic technique that could improve the diagnostic accuracy of identifying benign thyroid lesions to spare a large number of patients an unnecessary invasive procedure. PMID:26732040

  4. Contrast Ultrasound Imaging Does Not Affect Heat Shock Protein 70 Expression in Cholesterol-Fed Rabbit Aorta

    PubMed Central

    Smith, Brendon W.; Simpson, Douglas G.; Miller, Rita J.; Erdman, John W.; O’Brien, William D.

    2015-01-01

    Objectives Diagnostic ultrasound imaging is enhanced by the use of circulating microbubble contrast agents (UCAs), but the interactions between ultrasound, UCAs, and vascular tissue are not fully understood. We hypothesized that ultrasound with a UCA would stress the vascular tissue and increase levels of heat shock protein 70 (Hsp70), a cellular stress protein. Methods Male New Zealand White rabbits (n = 32) were fed a standard chow diet (n = 4) or a 1% cholesterol, 10% fat, and 0.11% magnesium diet (n = 28). At 21 days, 24 rabbits on the cholesterol diet were either exposed to ultrasound (3.2-MHz f/3 transducer; 2.1 MPa; mechanical index, 1.17; 10 Hz pulse repetition frequency; 1.6 micro -seconds pulse duration; 2 minutes exposure duration at 4 sites along the aorta) with the UCA Definity (1× concentration, 1 mL/min; Lantheus Medical Imaging, North Billerica, MA) or sham exposed with a saline vehicle injection (n = 12 per group). Four rabbits on the cholesterol diet and 4 on the chow diet served as cage controls and were not exposed to ultrasound or restrained for blood sample collection. Animals were euthanized 24 hours after exposure, and aortas were quickly isolated and frozen in liquid nitrogen. Aorta lysates from the area of ultrasound exposure were analyzed for Hsp70 level by Western blot. Blood plasma was analyzed for cholesterol, Hsp70, and von Willebrand factor, a marker of endothelial function. Results Plasma total cholesterol levels increased to an average of 705 mg/dL. Ultrasound did not affect plasma von Willebrand factor, plasma Hsp70, or aorta Hsp70. Restraint increased Hsp70 (P < .001, analysis of variance). Conclusions Restraint, but not ultrasound with the UCA or cholesterol feeding, significantly increased Hsp70. PMID:26112623

  5. Contrast ultrasound in hepatocellular carcinoma at a tertiary liver center: First Indian experience

    PubMed Central

    Laroia, Shalini Thapar; Bawa, Simranjeet Singh; Jain, Deepak; Mukund, Amar; Sarin, Shiv

    2013-01-01

    AIM: To assess the role of contrast enhanced ultrasonography in evaluation of hepatocellular carcinoma (HCC) at the first Indian tertiary liver center. METHODS: Retrospective analysis of contrast enhanced ultrasound (CEUS) examinations over 24 mo for diagnosis, surveillance, characterization and follow up of 50 patients in the context of HCC was performed. The source and indication of referrals, change in referral rate, accuracy and usefulness of CEUS in a tertiary liver center equipped with a 64 slice dual energy computer tomography (CT) and 3 tesla magnetic resonance imaging (MRI) were studied. Sonovue (BR1, Bracco, Italy, a second generation contrast agent) was used for contrast US studies. Contrast enhanced CT/MRI or both were performed in all patients. The findings were taken as a baseline reference and correlation was done with respect to contrast US. Contrast enhanced MRI was performed using hepatocyte specific gadobenate dimeglumine (Gd-BOPTA). Iomeron (400 mg; w/v) was used for dynamic CT examinations. RESULTS: About 20 (40%) of the examinations were referred from clinicians for characterization of a mass from previous imaging. About 15 (30%) were performed for surveillance in chronic liver disease; 5 (10%) examinations were performed for monitoring lesions after radiofrequency ablation (RFA); 3 (6%) were post trans-arterial chemo-embolization (TACE) assessments and 3 (6%) were patients with h/o iodinated contrast allergy. About 2 (4%) were performed on hemodynamically unstable patients in the intensive care with raised alpha fetoprotein and 2 (4%) patients were claustrophobic. The number of patients referred from clinicians steadily increased from 12 in the first 12 mo of the study to 38 in the last 12 mo. CEUS was able to diagnose 88% of positive cases of HCC as per reference standards. In the surveillance group, specificity was 53.3% vs 100% by CT/MRI. Post RFA and TACE specificity of lesion characterization by CEUS was 100% in single/large mass

  6. Contrast-enhanced ultrasound assessment of complex cystic lesions in renal transplant recipients with acquired cystic kidney disease: preliminary experience.

    PubMed

    Paudice, N; Zanazzi, M; Agostini, S; Bertelli, E; Caroti, L; Carta, P; Moscarelli, L; Tsalouchos, A; Salvadori, M; Bertoni, E

    2012-09-01

    We prospectively studied the potential value of contrast-enhanced ultrasound (CEUS) to characterize complex acquired cystic kidney disease (ACKD) or suspected solid renal masses, avoiding the risk of inducing acute kidney injury in 138 renal transplant recipients by contrast-enhanced computed tomography (CT). Forty-three cases (31%) had ACKD; 15 ACKD patients (35%) showed suspicious or nondiagnostic ultrasound. The latter subgroup underwent CEUS and, if the suspicion was confirmed, a contrast-enhanced CT. Thirty five lesions were identified in the 15 patients studied by CEUS. According to the Bosniak classification, 27 cysts were type I (BI), four type II (BII), two type III (BIII) with enhancement at the level of thickened septa; we also identified two solid enhancing lesions (BIV). We followed the BI and BII lesions with serial CEUS, while the remaining four cases underwent contrast-enhanced CT showing two solid lesions and two complex cysts with contrast enhancement in the septea. The four patients underwent surgical resection yielding three renal cell carcinomas one papillary carcinoma as the pathological findings. This preliminary study characterized solid nodules and BIII lesions for further evaluation by CT. CEUS seems to correctly characterize BI and BII cysts that are not clearly defined by standard ultrasound. PMID:22974874

  7. Diagnostic value of contrast-enhanced ultrasound in papillary thyroid microcarcinoma

    PubMed Central

    CHEN, HONG YAN; LIU, WEI YAN; ZHU, HUI; JIANG, DAO WEN; WANG, DONG HUA; CHEN, YONGQI; LI, WEIHUA; PAN, GAOFENG

    2016-01-01

    The aim of the present study was to explore the value and characteristics of contrast-enhanced ultrasound (CEUS) in the diagnosis of papillary thyroid microcarcinoma (PTMC). By analyzing CEUS information of 130 nodules obtained from 106 patients with PTMC, who had been diagnosed by surgery and pathological analysis, CEUS characteristics of PTMC nodules were concluded. Based on the results, the PTMC nodules were divided into three groups as follows: 32 nodules (24.62%) were found to be enhanced earlier than the surrounding normal thyroid tissue, 95 nodules (73.08%) were enhanced at the same time as the normal thyroid tissue and 3 nodules (2.30%) were enhanced later than the normal thyroid tissue. The results also demonstrated that the peak enhancement intensity of the 130 nodules was lower compared with the irregular intensity of the normal parenchyma in corresponding thyroids, and that PTMC enhancement washed out faster than in normal thyroid parenchyma. In conclusion, the PTMC characteristics that CEUS can detect may improve the diagnostic accuracy and provide valuable information for the treatment of the disease. PMID:27168773

  8. Preservation of imaging capability in sensitive ultrasound contrast agents after indirect plasma sterilization.

    PubMed

    Albala, Lorenzo; Ercan, Utku K; Joshi, Suresh G; Eisenbrey, John R; Teraphongphom, Nutte; Wheatley, Margaret A

    2015-10-15

    Many injectables are not amenable to standard sterilization methods, which destroy sensitive materials. This is particularly true for ultrasound contrast agents (UCA) consisting of gas bubbles stabilized by a surfactant or polymer shell. We investigated a new method to achieve safe and effective sterilization in production by introducing dielectric-barrier discharge non-thermal plasma. A dielectric-barrier discharge was generated to first produce plasma-treated phosphate-buffered saline (PTPBS), which was used as a sterilant solution for our UCA SE61, avoiding direct heat, pressure, chemicals, or radiation. Treated samples were tested for acoustic properties in vitro and in a flow phantom, and for sterility by standard methods. Three minutes plasma treatment of phosphate-buffered saline (PBS) proved effective. The samples showed significant inactivation of inoculated bacteria upon PTPBS treatment as compared to un-treated-PBS (p=0.0022). The treated and untreated samples showed no statistical significance (p>0.05) in acoustic response or bubble diameter (mean±SEM: 2.52±0.31 μm). Nile Red was used to model intercalation of drug in the hydrophobic shell, intercalated successfully into SE61, and was unaffected by plasma treatment. The PTPBS completely sterilized suspensions of UCA, and it did not compromise the acoustic properties of the agent or its ability to retain a hydrophobic compound. PMID:26241754

  9. Phospholipid decoration of microcapsules containing perfluorooctyl bromide used as ultrasound contrast agents.

    PubMed

    Díaz-López, Raquel; Tsapis, Nicolas; Libong, Danielle; Chaminade, Pierre; Connan, Carole; Chehimi, Mohamed M; Berti, Romain; Taulier, Nicolas; Urbach, Wladimir; Nicolas, Valérie; Fattal, Elias

    2009-03-01

    We present here an easy method to modify the surface chemistry of polymeric microcapsules of perfluorooctyl bromide used as ultrasound contrast agents (UCAs). Capsules were obtained by a solvent emulsification-evaporation process with phospholipids incorporated in the organic phase before emulsification. Several phospholipids were reviewed: fluorescent, pegylated and biotinylated phospholipids. The influence of phospholipid concentration on microcapsule size and morphology was evaluated. Only a fraction of the phospholipids is associated to microcapsules, the rest being dissolved with the surfactant in the aqueous phase. Microscopy shows that phospholipids are present within the shell and that the core/shell structure is preserved up to 0.5 mg fluorescent phospholipids, up to about 0.25 mg pegylated phospholipids or biotinylated phospholipids (for 100 mg of polymer, poly(lactide-co-glycolide) (PLGA)). HPLC allows quantifying phospholipids associated to capsules: they correspond to 10% of pegylated phospholipids introduced in the organic phase. The presence of pegylated lipids at the surface of capsules was confirmed by X-ray photon electron spectroscopy (XPS). The pegylation did not modify the echographic signal arising from capsules. Finally biotinylated microcapsules incubated with neutravidin tend to aggregate, which confirms the presence of biotin at the surface. These results are encouraging and future work will consist of nanocapsule surface modification for molecular imaging. PMID:19097640

  10. Use of Contrast-Enhanced Ultrasound in Carotid Atherosclerotic Disease: Limits and Perspectives

    PubMed Central

    Varetto, Gianfranco; Gibello, Lorenzo; Castagno, Claudio; Quaglino, Simone; Ripepi, Matteo; Benintende, Emilio; Gattuso, Andrea; Garneri, Paolo; Zan, Stefano; Capaldi, Giacomo; Bertoldo, Ugo; Rispoli, Pietro

    2015-01-01

    Contrast-enhanced ultrasound (CEUS) has recently become one of the most versatile and powerful diagnostic tools in vascular surgery. One of the most interesting fields of application of this technique is the study of the carotid atherosclerotic plaque vascularization and its correlation with neurological symptoms (transient ischemic attack, minor stroke, and major stroke) and with the characteristics of the “vulnerable plaque” (surface ulceration, hypoechoic plaques, intraplaque hemorrhage, thinner fibrous cap, and carotid plaque neovascularization at histopathological analysis of the sample after surgical removal). The purpose of this review is to collect all the original studies available in literature (24 studies with 1356 patients enrolled) and to discuss the state of the art, limits, and future perspectives of CEUS analysis. The results of this work confirm the reliability of this imaging study for the detection of plaques with high risk of embolization; however, a shared, user-friendly protocol of imaging analysis is not available yet. The definition of this operative protocol becomes mandatory in order to compare results from different centers and to validate a cerebrovascular risk stratification of the carotid atherosclerotic lesions evaluated with CEUS. PMID:26180793

  11. The Mechanical Effects of Ultrasound Contrast Agents on Micro-vessels

    NASA Astrophysics Data System (ADS)

    Hosseinkhah, N.; Hynynen, K.

    2011-09-01

    Ultrasound activated contrast agents inside microvessels induce mechanical effects on the vessel wall. It is important to use the bubbles safely and avoid rupturing the vessels. The objective of this work was to develop a three dimensional model of a bubble, blood and micro-vessels in order to investigate the mechanical effects (mainly the fluid shear stress and the circumferential stress) by a non-inertial microbubble on the vessel wall. A finite element method was used to solve for this model numerically. The blood vessel was simulated as having a viscoelastic, elastic or a rigid wall. Acoustic pressure and frequency were varied and the values for fluid shear stress and circumferential stress on the vessel wall were calculated. The circumferential stress could exceed the vascular strength in rigid microvessels if the applied acoustic pressure is above 260 kPa. Also the values for fluid shear stress are large enough to induce hemolysis or damage the cell membrane close to the oscillating bubble. Next, the streamlines and stagnation points are obtained for a rigid and a flexible vessel.

  12. Erythrocytes and microbubble contrast agents, improve the therapeutic efficiency of high intensity focused ultrasound

    NASA Astrophysics Data System (ADS)

    Takegami, Kenji; Kaneko, Yukio; Watanabe, Toshiaki; Maruyama, Toshiyuki; Matsumoto, Yoichiro; Nagawa, Hirokazu

    2005-03-01

    Erythrocytes, an well as Levovist microbubble contrast agent, enhance the heating effect of high intensity focused ultrasound (HIFU) and increase the coagulation volume produced by HIFU irradiation. In vitro experiments used human plasma with various concentrations of human erythrocytes in combination with or without Levovist. In vivo experiments used eight Japan white rabbits with three levels of anaemia. Using a 2.17 MHz transducer, HIFU was applied for 60 seconds, and the temperature rise and the volume of coagulation necrosis was evaluated. There was a significant correlation between the HIFU-induced temperature rise and hematocrit, with a correlation coefficient of 0.998 (p=0.0001). Although the temperature rise was smaller at low hematocrit, it was significantly increased by adding Levovist to the suspension (p<0.01). The mean volume of coagulation necrosis was significantly higher in the rabbits with higher hematocrit (p<0.01), and that in the moderate anaemia group was significantly increased by using Levovist (p<0.01).

  13. Balancing stealth and echogenic properties in an ultrasound contrast agent with drug delivery potential.

    PubMed

    Jablonowski, Lauren J; Alfego, David; Andorko, James I; Eisenbrey, John R; Teraphongphom, Nutte; Wheatley, Margaret A

    2016-10-01

    Contrast agents are currently being modified to combine diagnostic and therapeutic capabilities. For ultrasound (US) imaging with polymeric contrast agents, it is necessary to modify the shell to create "stealth" microbubbles but without these modifications sacrificing the agent's ability to interact with the focused US beam. We hypothesize that addition of the classic immune shielding molecule polyethylene glycol (PEG) to a polylactide (PLA) microbubble shell will affect the acoustic and physical properties of the resulting agents. In an effort to determine the best formulation to achieve a balance between stealth and acoustic activity, we compared two PEGylation techniques; addition of increasing amounts of PEG-PLA copolymer and employing incorporation of a PEG lipid (LipidPEG) into the shell. Loss of acoustic enhancement occurred in a dose-dependent manner for both types of PEGylated agents (loss of signal occurred at >5 wt% PEG-PLA and >1 wt% LipidPEG), while immune activation was also reduced in a dose-dependent manner for the PEG-PLA agents. This study shows that the balance between acoustic behavior and improved immune avoidance was scalable and successful to different degrees with both PEGylation methods, and was best achieved using for PEG-PLA at 5 wt% and for LipidPEG at 1 wt%. Studies are ongoing to evaluate the best method for the targeting and drug delivery capabilities of these agents for applications in cancer treatment. This study represents the basis for understanding the consequences of making modifications to the native polymeric shell. PMID:27388945

  14. Dynamic contrast-enhanced ultrasound for differential diagnosis of submandibular gland disease.

    PubMed

    Strieth, Sebastian; Siedek, Vanessa; Rytvina, Margarita; Gürkov, Robert; Berghaus, Alexander; Clevert, Dirk-André

    2014-01-01

    Intensity-time gradients (ITGs) of contrast-enhanced ultrasound (CEUS) can be used for non-invasive monitoring of gland-preserving treatment effects in sialolithiasis-related chronic sialadenitis as well as for imaging vascularization in tumors. The aim of this clinical trial was to evaluate feasibility to distinguish different entities of submandibular gland disease including inflammatory alterations of the submandibular gland as well as benign and malignant tumors. In this prospective clinical study, ITGs in 30 patients with sialolithiasis-related chronic sialadenitis or an unilateral submandibular mass and 18 disease-free submandibular gland controls were quantitatively analyzed by CEUS using the contrast agent SonoVue. In addition, clinical complaints according to visual analog scales (VAS) were documented. VAS data documented significantly less complaints only in benign tumors compared with the other pathologies of the submandibular gland. In parallel, CEUS-derived ITGs revealed significantly reduced ITGs only in benign tumors (n = 5) compared to the controls (n = 18). Despite of comparably reduced wash-in velocities in malignant lesions (n = 3) statistical significance was not reached. Chronic sialadenitis (n = 18) and its sclerosing variant (Küttner tumor, n = 4) revealed comparable ITGs as controls. Tumors of the submandibular gland present with reduced functional microcirculatory networks comparing with healthy gland controls and chronically inflamed submandibular glands. Thus, dynamic CEUS-derived ITGs in combination with conventional clinical measures--for example VAS--appear as a safe and promising strategy for non-invasive diagnostic workup of submandibular lesions and warrant further validation in a larger set of patients. PMID:23625388

  15. Comparison of Superb Micro-Vascular Ultrasound Imaging (SMI) and Contrast-Enhanced Ultrasound (CEUS) for Detection of Endoleaks After Endovascular Aneurysm Repair (EVAR)

    PubMed Central

    Gabriel, Marcin; Tomczak, Jolanta; Snoch-Ziółkiewicz, Magdalena; Dzieciuchowicz, Łukasz; Strauss, Ewa; Oszkinis, Grzegorz

    2016-01-01

    Patient: Male, 68 Final Diagnosis: Unusual clinical course Symptoms: None Medication: — Clinical Procedure: Angio CT Specialty: Surgery Objective: Challenging differential diagnosis Background: High-resolution contrast-enhanced ultrasound is one of methods used in the detection and characterization of endoleaks, which is a frequent complication after EVAR. A new technology provided by Toshiba’s AplioTM 500 ultrasound system, called Superb Micro-Vascular Imaging (SMI), is dedicated specifically to imaging very low flow states and appears to be a promising new method for detection of endoleaks. Case Report: After endovascular treatment, a 68-year-old patient who had stent-graft implantation underwent clinical examinations, including contrast-enhanced ultrasound (CEUS), superb micro-vascular imaging (SMI), and computed tomographic angiography (CTA), revealing additional information about abnormal blood flow localized in the periphery of the sack of the left common iliac artery aneurysm. By using CEUS and SMI, the endoleak was clearly visible. Conclusions: This case report illustrates the potential clinical value of this advanced Doppler technology (SMI) and how it could influence clinical management. PMID:26806053

  16. Specific contrast ultrasound using sterically stabilized microbubbles for early diagnosis of thromboembolic disease in a rabbit model

    PubMed Central

    Vlašín, Michal; Lukáč, Robert; Kauerová, Zuzana; Kohout, Pavel; Mašek, Josef; Bartheldyová, Eliška; Koudelka, Štěpán; Korvasová, Zina; Plocková, Jana; Hronová, Nikola; Turánek, Jaroslav

    2014-01-01

    Specific contrast ultrasound is widely applied in diagnostic procedures on humans but remains underused in veterinary medicine. The objective of this study was to evaluate the use of microbubble-based contrast for rapid ultrasonographic diagnosis of thrombosis in small animals, using male New Zealand white rabbits (average weight about 3.5 kg) as a model. It was hypothesized that the use of microbubble-based contrast agents will result in a faster and more precise diagnosis in our model of thrombosis. A pro-coagulant environment had been previously established by combining endothelial denudation and external vessel wall damage. Visualization of thrombi was achieved by application of contrast microbubbles [sterically stabilized, phospholipid-based microbubbles filled with sulfur hexafluoride (SF6) gas] and ultrasonography. As a result, rapid and clear diagnosis of thrombi in aorta abdominalis was achieved within 10 to 30 s (mean: 17.3 s) by applying microbubbles as an ultrasound contrast medium. In the control group, diagnosis was not possible or took 90 to 180 s. Therefore, sterically stabilized microbubbles were found to be a suitable contrast agent for the rapid diagnosis of thrombi in an experimental model in rabbits. This contrast agent could be of practical importance in small animal practice for rapid diagnosis of thrombosis. PMID:24688175

  17. Using a Commercial Ultrasound Contrast Agent for Viral-Mediated Gene Transfer In Vitro and In Vivo

    NASA Astrophysics Data System (ADS)

    Howard, Candace M.; Forsberg, Flemming; Liu, Ji-Bin; Merton, Daniel A.; Minimo, Corrado; Claudio, Pier P.

    2007-05-01

    This study evaluated the feasibility of site-specific gene delivery mediated by diagnostic ultrasound using genes encapsulated in commercially available ultrasound contrast agents in vitro and in vivo. Five different commercially available contrast agents were tested in vitro for their ability to enclose an adenoviral vector carrying GFP. Prostate cancer cells (DU 145) or non small cell lung cancer cells (H23) were plated in 80 culture wells and insonified at 207 or 535 kPa peak negative pressure for 1 min after administration of 0.1 ml of bubbles reconstituted with the viral vector. Experiments were repeated with the delivery vehicle incubated with complement to inactivate unenclosed Adeno-GFP and with controls. After 24 hours transduction efficiency was demonstrated by fluorescent microscopy. In vivo 15 nude mice with 21 melanoma tumors (DB-1) implanted received 0.1 ml injections of contrast. Mice were split into 3 control and 4 active groups and ultrasound was performed for 4 min at 4 MHz using an Aplio scanner (Toshiba America Medical Systems, Tustin, CA). Tumors, heart, lungs and liver were harvested 48 hours later. Specimens underwent regular and fluorescent microscopy and were stained using an antibody against GFP. In vitro all contrast agents produced more fluorescence at 207 kPa than at 535 kPa. However, only Imagent (IMCOR Pharmaceuticals, San Diego, CA) was able to induce marked gene transduction with the inactivating agent. In vivo systemic delivery of Adeno-GFP carrying microbubbles following pre-treatment with the inactivating agent resulted in specific transduction of the tumor cells only with no uptake in heart, lungs or liver (unlike the controls). In conclusion, specific viral gene transduction has been obtained in vitro and in vivo through the use of ultrasound and Imagent microbubbles as delivery vehicles.

  18. Microflow imaging of contrast-enhanced ultrasound for evaluation of neovascularization in peripheral lung cancer

    PubMed Central

    Wang, Song; Yang, Wei; Fu, Jing-Jing; Sun, Yu; Zhang, Hui; Bai, Jing; Chen, Min-Hua; Yan, Kun

    2016-01-01

    Abstract The aim of this study was to investigate the role of microflow imaging (MFI) of contrast-enhanced ultrasound (CEUS) for evaluating microvascular architecture of different types of peripheral lung cancer (PLC) and to explore the correlated pathological basis. Ninety-five patients with PLC were enrolled in this study. Two radiologists independently evaluated the microvascular architecture of PLC with MFI. The interobserver agreement was measured with Kappa test. The diagnosis value of MFI was calculated. With pathological analysis, the correlation between MFI and microvascular density (MVD)/microvascular diameter (MD) was evaluated. Of the 95 PLCs, MFI were mainly classified “dead wood” (27.4%, 25.3%), “vascular” (47.4%, 49.5%), and “cotton” (20.0%, 20.0%) patterns by the 2 readers. Kappa test showed a good agreement between the 2 readers (Kappa = 0.758). The “dead wood” can be regarded as a specific diagnostic factor for squamous carcinoma; the sensitivity, specificity, and accuracy was 62.9%, 93.3%, and 82.1%, respectively. The “vascular” and “cotton” patterns correlated well with adenocarcinoma and SCLC (small cell lung cancer); diagnostic sensitivity, specificity, and accuracy were 86.7%, 65.7%, and 78.9%, respectively. MVD of “dead wood” was lower than “vascular” and “cotton,” while MD was bigger than the other 2 patterns (P < 0.05). There was a good correlation between MFI and histopathological types of PLC as well as between MFI and MVD/MD (P < 0.05). MFI has the advantage to display the microvascular architecture of PLCs and might become a promising diagnostic method of histopathological types of PLC. MFI features also correlated well with its pathological basis, including MVD and MD. PMID:27512847

  19. Non-invasive estimation of blood pressure using ultrasound contrast agents

    NASA Astrophysics Data System (ADS)

    Andersen, Klaus Scheldrup; Jensen, Jørgen Arendt

    2010-01-01

    Local blood pressure measurements provide important information on the state of health of organs in the body and can be used to diagnose diseases in the heart, lungs, and kidneys. This paper presents an experimental setup for investigating the ambient pressure sensitivity of a contrast agent using diagnostic ultrasound. The setup resembles a realistic clinical setup utilizing a single array transducer for transmit and receive. The ambient pressure sensitivity of SonoVue (Bracco, Milano, Italy) was measured twice using two different acoustic driving pressures, which were selected based on a preliminary experiment. To compensate for variations in bubble response and to make the estimates more robust, the relation between the energy of the subharmonic and the fundamental component was chosen as a measure over the subharmonic peak amplitude. The preliminary study revealed the growth stage of the subharmonic component to occur at acoustic driving pressures between 300 and 500 kPa. Based on this, the pressure sensitivity was investigated using a driving pressure of 485 and 500 kPa. At 485 kPa, a linear pressure sensitivity of 0.42 dB/kPa was found having a linear correlation coefficient of 0.94. The second measurement series at 485 kPa showed a sensitivity of 0.41 dB/kPa with a correlation coefficient of 0.89. Based on the measurements at 500 kPa, this acoustic driving pressure was concluded to be too high causing the bubbles to be destroyed. The pressure sensitivity for these two measurement series were 0.42 and 0.25 dB/kPa with linear correlation coefficients of 0.98 and 0.93, respectively.

  20. Microflow imaging of contrast-enhanced ultrasound for evaluation of neovascularization in peripheral lung cancer.

    PubMed

    Wang, Song; Yang, Wei; Fu, Jing-Jing; Sun, Yu; Zhang, Hui; Bai, Jing; Chen, Min-Hua; Yan, Kun

    2016-08-01

    The aim of this study was to investigate the role of microflow imaging (MFI) of contrast-enhanced ultrasound (CEUS) for evaluating microvascular architecture of different types of peripheral lung cancer (PLC) and to explore the correlated pathological basis.Ninety-five patients with PLC were enrolled in this study. Two radiologists independently evaluated the microvascular architecture of PLC with MFI. The interobserver agreement was measured with Kappa test. The diagnosis value of MFI was calculated. With pathological analysis, the correlation between MFI and microvascular density (MVD)/microvascular diameter (MD) was evaluated.Of the 95 PLCs, MFI were mainly classified "dead wood" (27.4%, 25.3%), "vascular" (47.4%, 49.5%), and "cotton" (20.0%, 20.0%) patterns by the 2 readers. Kappa test showed a good agreement between the 2 readers (Kappa = 0.758). The "dead wood" can be regarded as a specific diagnostic factor for squamous carcinoma; the sensitivity, specificity, and accuracy was 62.9%, 93.3%, and 82.1%, respectively. The "vascular" and "cotton" patterns correlated well with adenocarcinoma and SCLC (small cell lung cancer); diagnostic sensitivity, specificity, and accuracy were 86.7%, 65.7%, and 78.9%, respectively. MVD of "dead wood" was lower than "vascular" and "cotton," while MD was bigger than the other 2 patterns (P < 0.05). There was a good correlation between MFI and histopathological types of PLC as well as between MFI and MVD/MD (P < 0.05).MFI has the advantage to display the microvascular architecture of PLCs and might become a promising diagnostic method of histopathological types of PLC. MFI features also correlated well with its pathological basis, including MVD and MD. PMID:27512847

  1. Automatic motion estimation using flow parameters for dynamic contrast-enhanced ultrasound

    NASA Astrophysics Data System (ADS)

    Barrois, Guillaume; Coron, Alain; Lucidarme, Olivier; Bridal, S. Lori

    2015-03-01

    Dynamic contrast-enhanced ultrasound (DCE-US) sequences are subject to motion which can disturb functional flow quantification. This can make estimated parameters more variable or unreliable. Methods that compensate for motion are therefore desirable. The most commonly used motion correction techniques in DCE-US register the images in the sequence with respect to a user-selected reference image. However, this image may not include all features that are representative of the whole sequence. Moreover, image-based registration neglects pertinent, functional-flow information contained in the DCE-US sequence. An operator-free method is proposed that combines the motion estimation and flow-parameter quantification (M/Q method) in a single mathematical framework. This method is based on a realistic multiplicative model of the DCE-US noise. By computing likelihood in this model, motion and flow parameters are both estimated iteratively. First, the maximization is accomplished by estimating functional and motion parameters. Then, a final registration based on a non-parametric temporal smoothing of the sequence is performed. This method is compared to a conventional (mutual information) registration method where all the images of the sequence are registered with respect to a reference image chosen by an expert. The two methods are evaluated on simulated sequences and DCE-US sequences acquired in patients (N = 15). The M/Q method demonstrates significantly (p < 0.05) lower Dice coefficients and Hausdorff distance than the conventional method on the simulated data sets. On the in vivo sequences analysed, the M/Q methods outperformed the conventional method in terms of mean Dice and Hausdorff distance on 80% of the sequences, and in terms of standard deviation of Dice and Hausdorff distance on 87% of the sequences.

  2. Ultrasound

    MedlinePlus

    ... please enable JavaScript. Ultrasound uses high-frequency sound waves to make images of organs and structures inside ... examined. The machine sends out high-frequency sound waves, which reflect off body structures. A computer receives ...

  3. Quantitative Assessment of Cancer Vascular Architecture by Skeletonization of High-resolution 3-D Contrast-enhanced Ultrasound Images

    PubMed Central

    Molinari, F.; Meiburger, K. M.; Giustetto, P.; Rizzitelli, S.; Boffa, C.; Castano, M.; Terreno, E.

    2014-01-01

    The accurate characterization and description of the vascular network of a cancer lesion is of paramount importance in clinical practice and cancer research in order to improve diagnostic accuracy or to assess the effectiveness of a treatment. The aim of this study was to show the effectiveness of liposomes as an ultrasound contrast agent to describe the 3-D vascular architecture of a tumor. Eight C57BL/6 mice grafted with syngeneic B16-F10 murine melanoma cells were injected with a bolus of 1,2-Distearoyl-sn-glycero-3-phosphocoline (DSPC)-based non-targeted liposomes and with a bolus of microbubbles. 3-D contrast-enhanced images of the tumor lesions were acquired in three conditions: pre-contrast, after the injection of microbubbles, and after the injection of liposomes. By using a previously developed reconstruction and characterization image processing technique, we obtained the 3-D representation of the vascular architecture in these three conditions. Six descriptive parameters of these networks were also computed: the number of vascular trees (NT), the vascular density (VD), the number of branches, the 2-D curvature measure, the number of vascular flexes of the vessels, and the 3-D curvature. Results showed that all the vascular descriptors obtained by liposome-based images were statistically equal to those obtained by using microbubbles, except the VD which was found to be lower for liposome images. All the six descriptors computed in pre-contrast conditions had values that were statistically lower than those computed in presence of contrast, both for liposomes and microbubbles. Liposomes have already been used in cancer therapy for the selective ultrasound-mediated delivery of drugs. This work demonstrated their effectiveness also as vascular diagnostic contrast agents, therefore proving that liposomes can be used as efficient “theranostic” (i.e. therapeutic + diagnostic) ultrasound probes. PMID:24206210

  4. Stability of echogenic liposomes as a blood pool ultrasound contrast agent in a physiologic flow phantom

    PubMed Central

    Radhakrishnan, Kirthi; Haworth, Kevin J.; Huang, Shao-Ling; Klegerman, Melvin E.; McPherson, David D.; Holland, Christy K.

    2016-01-01

    Echogenic liposomes (ELIP) are multifunctional ultrasound contrast agents (UCAs) with a lipid shell encapsulating both air and an aqueous core. ELIP are being developed for molecular imaging and image-guided therapeutic delivery. Stability of the echogenicity of ELIP in physiologic conditions is crucial to their successful translation to clinical use. In this study we determined the effects of the surrounding media’s dissolved air concentration, temperature transition and hydrodynamic pressure on the echogenicity of a chemically modified formulation of ELIP to promote stability and echogenicity. ELIP samples were diluted in porcine plasma or whole blood and pumped through a pulsatile flow system with adjustable hydrodynamic pressures and temperature. B-mode images were acquired using a clinical diagnostic scanner every 5 s for a total duration of 75 s. Echogenicity in porcine plasma was assessed as a function of total dissolved gas saturation. ELIP were added to plasma at room temperature (22 °C) or body temperature (37 °C) and pumped through a system maintained at 22 °C or 37 °C to study the effect of temperature transitions on ELIP echogenicity. Echogenicity at normotensive (120/80 mmHg) and hypertensive pressures (145/90 mmHg) was measured. ELIP were echogenic in plasma and whole blood at body temperature under normotensive to hypertensive pressures. Warming of samples from room temperature to body temperature did not alter echogenicity. However, in plasma cooled rapidly from body temperature to room temperature or in degassed plasma, ELIP lost echogenicity within 20 s at 120/80 mmHg. The stability of echogenicity of a modified ELIP formulation was determined in vitro at body temperature, physiologic gas concentration and throughout the physiologic pressure range. However, proper care should be taken to ensure that ELIP are not cooled rapidly from body temperature to room temperature as they will lose their acoustic properties. Further in vivo

  5. Role of contrast-enhanced ultrasound in follow-up assessment after ablation for hepatocellular carcinoma

    PubMed Central

    Zheng, Shu-Guang; Xu, Hui-Xiong; Lu, Ming-De; Xie, Xiao-Yan; Xu, Zuo-Feng; Liu, Guang-Jian; Liu, Lin-Na

    2013-01-01

    AIM: To assess the usefulness of contrast-enhanced ultrasound (CEUS) during follow-up after percutaneous ablation therapy for hepatocellular carcinoma (HCC). METHODS: A total of 141 patients with HCCs who received percutaneous ablation therapy were assessed by paired follow-up CEUS and contrast-enhanced computed tomography (CECT). The follow-up scheme was designed prospectively and the intervals between CEUS and CECT examinations were less than 14 d. Both images of follow-up CEUS and CECT were reviewed by radiologists. The ablated lesions were evaluated and classified as local tumor progression (LTP) and LTP-free. LTP was defined as regrowth of tumor inside or adjacent to the successfully treated nodule. The detected new intrahepatic recurrences were also evaluated and defined as presence of intrahepatic new foci. On CEUS and CECT, LTP and new intrahepatic recurrence both were displayed as typical enhancement pattern of HCC (i.e., hyper-enhancing during the arterial phase and washout in the late phase). With CECT as the reference standard, the ability of CEUS in detecting LTP or new intrahepatic recurrence during follow-up was evaluated. RESULTS: During a follow-up period of 1-31 mo (median, 4 mo), 169 paired CEUS and CECT examinations were carried out for the 141 patients. For a total of 221 ablated lesions, 266 comparisons between CEUS and CECT findings were performed. Thirty-three LTPs were detected on CEUS whereas 40 LTPs were detected on CECT, there was significant difference (P < 0.001). In comparison with CECT, the numbers of false positive and false negative LTPs detected on CEUS were 6 and 13, respectively; the sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV) and overall accuracy of CEUS in detecting LTPs were 67.5%, 97.4%, 81.8%, 94.4% and 92.3%, respectively. Meanwhile, 131 new intrahepatic recurrent foci were detected on CEUS whereas 183 were detected on CECT, there was also significant difference (P < 0.05). In

  6. Pulmonary transit time measurement by contrast-enhanced ultrasound in left ventricular dyssynchrony

    PubMed Central

    Saporito, Salvatore; Mischi, Massimo; van Assen, Hans C; Bouwman, R Arthur; de Lepper, Anouk G W; van den Bosch, Harrie C M; Korsten, Hendrikus H M; Houthuizen, Patrick

    2016-01-01

    Background Pulmonary transit time (PTT) is an indirect measure of preload and left ventricular function, which can be estimated using the indicator dilution theory by contrast-enhanced ultrasound (CEUS). In this study, we first assessed the accuracy of PTT-CEUS by comparing it with dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). Secondly, we tested the hypothesis that PTT-CEUS correlates with the severity of heart failure, assessed by MRI and N-terminal pro-B-type natriuretic peptide (NT-proBNP). Methods and results Twenty patients referred to our hospital for cardiac resynchronization therapy (CRT) were enrolled. DCE-MRI, CEUS, and NT-proBNP measurements were performed within an hour. Mean transit time (MTT) was obtained by estimating the time evolution of indicator concentration within regions of interest drawn in the right and left ventricles in video loops of DCE-MRI and CEUS. PTT was estimated as the difference of the left and right ventricular MTT. Normalized PTT (nPTT) was obtained by multiplication of PTT with the heart rate. Mean PTT-CEUS was 10.5±2.4s and PTT-DCE-MRI was 10.4±2.0s (P=0.88). The correlations of PTT and nPTT by CEUS and DCE-MRI were strong; r=0.75 (P=0.0001) and r=0.76 (P=0.0001), respectively. Bland–Altman analysis revealed a bias of 0.1s for PTT. nPTT-CEUS correlated moderately with left ventricle volumes. The correlations for PTT-CEUS and nPTT-CEUS were moderate to strong with NT-proBNP; r=0.54 (P=0.022) and r=0.68 (P=0.002), respectively. Conclusions (n)PTT-CEUS showed strong agreement with that by DCE-MRI. Given the good correlation with NT-proBNP level, (n)PTT-CEUS may provide a novel, clinically feasible measure to quantify the severity of heart failure. Clinical Trial Registry: NCT01735838 PMID:27249553

  7. Ultrasound-Triggered Phase Transition Sensitive Magnetic Fluorescent Nanodroplets as a Multimodal Imaging Contrast Agent in Rat and Mouse Model

    PubMed Central

    Chen, Yunchao; Luo, Binhua; Liu, Xuhan; Liu, Wei; Xu, Haibo; Yang, Xiangliang

    2013-01-01

    Ultrasound-triggered phase transition sensitive nanodroplets with multimodal imaging functionality were prepared via premix Shirasu porous glass (SPG) membrane emulsification method. The nanodroplets with fluorescence dye DiR and SPIO nanoparticles (DiR-SPIO-NDs) had a polymer shell and a liquid perfluoropentane (PFP) core. The as-formed DiR-SPIO-NDs have a uniform size of 385±5.0 nm with PDI of 0.169±0.011. The TEM and microscopy imaging showed that the DiR-SPIO-NDs existed as core-shell spheres, and DiR and SPIO nanoparticles dispersed in the shell or core. The MTT and hemolysis studies demonstrated that the nanodroplets were biocompatible and safe. Moreover, the proposed nanodroplets exhibited significant ultrasound-triggered phase transition property under clinical diagnostic ultrasound irradiation due to the vaporization of PFP inside. Meanwhile, the high stability and R2 relaxivity of the DiR-SPIO-NDs suggested its applicability in MRI. The in vivo T2-weighted images of MRI and fluorescence images both showed that the image contrast in liver and spleen of rats and mice model were enhanced after the intravenous injection of DiR-SPIO-NDs. Furthermore, the ultrasound imaging (US) in mice tumor as well as MRI and fluorescence imaging in liver of rats and mice showed that the DiR-SPIO-NDs had long-lasting contrast ability in vivo. These in vitro and in vivo findings suggested that DiR-SPIO-NDs could potentially be a great MRI/US/fluorescence multimodal imaging contrast agent in the diagnosis of liver tissue diseases. PMID:24391983

  8. Quantitative Analysis of Vascular Heterogeneity in Breast Lesions Using Contrast-Enhanced 3-D Harmonic and Subharmonic Ultrasound Imaging

    PubMed Central

    Sridharan, Anush; Eisenbrey, John R.; Machado, Priscilla; Ojeda-Fournier, Haydee; Wilkes, Annina; Sevrukov, Alexander; Mattrey, Robert F.; Wallace, Kirk; Chalek, Carl L.; Thomenius, Kai E.; Forsberg, Flemming

    2015-01-01

    Ability to visualize breast lesion vascularity and quantify the vascular heterogeneity using contrast-enhanced 3-D harmonic (HI) and subharmonic (SHI) ultrasound imaging was investigated in a clinical population. Patients (n = 134) identified with breast lesions on mammography were scanned using power Doppler imaging, contrast-enhanced 3-D HI, and 3-D SHI on a modified Logiq 9 scanner (GE Healthcare). A region of interest corresponding to ultrasound contrast agent flow was identified in 4D View (GE Medical Systems) and mapped to raw slice data to generate a map of time-intensity curves for the lesion volume. Time points corresponding to baseline, peak intensity, and washout of ultrasound contrast agent were identified and used to generate and compare vascular heterogeneity plots for malignant and benign lesions. Vascularity was observed with power Doppler imaging in 84 lesions (63 benign and 21 malignant). The 3-D HI showed flow in 8 lesions (5 benign and 3 malignant), whereas 3-D SHI visualized flow in 68 lesions (49 benign and 19 malignant). Analysis of vascular heterogeneity in the 3-D SHI volumes found benign lesions having a significant difference in vascularity between central and peripheral sections (1.71 ± 0.96 vs. 1.13 ± 0.79 dB, p < 0.001, respectively), whereas malignant lesions showed no difference (1.66 ± 1.39 vs. 1.24 ± 1.14 dB, p = 0.24), indicative of more vascular coverage. These preliminary results suggest quantitative evaluation of vascular heterogeneity in breast lesions using contrast-enhanced 3-D SHI is feasible and able to detect variations in vascularity between central and peripheral sections for benign and malignant lesions. PMID:25935933

  9. When is contrast-enhanced sonography preferable over conventional ultrasound combined with Doppler imaging in renal transplantation?

    PubMed Central

    Zeisbrich, Markus; Kihm, Lars P.; Drüschler, Felix; Zeier, Martin; Schwenger, Vedat

    2015-01-01

    Conventional ultrasound in combination with colour Doppler imaging is still the standard diagnostic procedure for patients after renal transplantation. However, while conventional ultrasound in combination with Doppler imaging can diagnose renal artery stenosis and vein thrombosis, it is not possible to display subtle microvascular tissue perfusion, which is crucial for the evaluation of acute and chronic allograft dysfunctions. In contrast, real-time contrast-enhanced sonography (CES) uses gas-filled microbubbles not only to visualize but also to quantify renal blood flow and perfusion even in the small renal arterioles and capillaries. It is an easy to perform and non-invasive imaging technique that augments diagnostic capabilities in patients after renal transplantation. Specifically in the postoperative setting, CES has been shown to be superior to conventional ultrasound in combination with Doppler imaging in uncovering even subtle microvascular disturbances in the allograft perfusion. In addition, quantitative perfusion parameters derived from CES show predictive capability regarding long-term kidney function. PMID:26413289

  10. Contrast enhancement and elastography in endoscopic ultrasound: an update of clinical applications in pancreatic diseases.

    PubMed

    Serrani, Marta; Lisotti, Andrea; Caletti, Giancarlo; Fusaroli, Pietro

    2016-08-01

    It is well established that endoscopic ultrasound (EUS) is fundamental in the characterization of many diseases concerning different organs, i.e. pancreaticobiliary diseases, gastrointestinal pathologic conditions, and lymph nodes of unknown origin. It is also well known that many factors can hamper the accuracy of EUS, i.e. biliary stents, chronic pancreatitis, poor operator's expertise. These factors can also lead to suboptimal accuracy when cytological confirmation through EUS-fine needle aspiration (EUS-FNA) is indicated. In recent years, new technological tools have rapidly increased their clinical impact improving the diagnostic power of EUS and EUS-FNA. Among these new tools, the most investigated and useful ones are represented by contrast harmonic-EUS (CH-EUS) and EUS-elastography (EUS-E). The purpose of this paper is to provide, through a review of the literature, an update of the applications of CH-EUS and EUS-E in the routine clinical practice in pancreatic diseases. We discussed the first reports and applications of these techniques in our previous review published in Minerva Medica. The applications of CH-EUS and EUS-E to the study of pancreatic diseases appear feasible and safe. The use of both techniques is very simple and does not require any relevant additional workload for the endoscopic personnel. CH-EUS is now considered an important and accurate tool in the diagnosis of solid pancreatic masses and in the differential diagnosis of pancreatic cystic lesions. CH-EUS targeted FNA is an active field of research. However the available studies show that CH-EUS increases FNA accuracy by a little extent, without statistical significance; moreover, CH-EUS FNA showed a trend toward being more efficient vs. simple EUS FNA (less needle passes and more abundance in cytological material) but this trend did not reach statistical significance. On the other hand, the clinical impact of EUS-E in terms of differential diagnosis of pancreatic masses is still under

  11. Effectiveness of contrast-enhanced harmonic endoscopic ultrasound for the evaluation of solid pancreatic masses

    PubMed Central

    Park, Jin-Seok; Kim, Hyung Kil; Bang, Byoung Wook; Kim, Sang Gu; Jeong, Seok; Lee, Don Haeng

    2014-01-01

    AIM: To evaluate the usefulness of contrast-enhanced harmonic endoscopic ultrasound (CH-EUS) in differentiating between pancreatic adenocarcinomas and other pancreatic disease. METHODS: This retrospective cohort study evaluated 90 patients who were seen between November 2010 and May 2013. All these patients had solid pancreatic masses that had a hypoechoic appearance on EUS. All patients underwent CH-EUS to evaluate this diagnostic method’s usefulness. The mass lesions observed on CH-EUS were classified into three categories based on their echo intensity: hypoenhanced, isoenhanced, and hyperenhanced lesions. We adjusted the sensitivity and the specificity of each category for detecting malignancies. We also estimated the accuracy of CH-EUS by comparing it to a pathological diagnosis. RESULTS: Of the 90 patients, 62 had a pancreatic adenocarcinoma. Fifty-seven out of 62 pancreatic adenocarcinomas showed a hypoenhanced pattern on CH-EUS. The sensitivity was 92%, the specificity 68% and the accuracy approximately 82%. The area under the curve of the receiver operating characteristic analysis for CH-EUS was 0.799. There is a significant association between the hypoenhanced pattern on CH-EUS and pancreatic duct adenocarcinoma (χ2 = 35.264, P < 0.001). In pathological examinations, the number of specimens for EUS-fine needle aspiration (EUS-FNA) was considered insufficient for diagnosis in three patients, and in two patients, the results were reported to be negative for malignancy. Pancreatic masses in all five patients revealed a hypoenhanced pattern with CH-EUS. Three patients were diagnosed with pancreatic adenocarcinoma based on the pathology results of a biopsy, and the remaining two patients were clinically diagnosed with malignancy. CONCLUSION: CH-EUS is useful for distinguishing between pancreatic adenocarcinoma and other pancreatic disease. When a pancreatic mass shows a hypoenhanced pattern on CH-EUS but involves either insufficient samples or negative

  12. Neural progenitor cells labeling with microbubble contrast agent for ultrasound imaging in vivo

    PubMed Central

    Cui, Wenjin; Tavri, Sidhartha; Benchimol, Michael J.; Itani, Malak; Olson, Emilia S.; Zhang, Hong; Decyk, Marika; Ramirez, Rosemarie G.; Barback, Christopher V.; Kono, Yuko; Mattrey, Robert F.

    2013-01-01

    Tracking neuroprogenitor cells (NPCs) that are used to target tumors, infarction or inflammation, is paramount for cell-based therapy. We employed ultrasound imaging that can detect a single microbubble because it can distinguish its unique signal from those of surrounding tissues. NPCs efficiently internalized positively charged microbubbles allowing a clinical ultrasound system to detect a single cell at 7 MHz. When injected intravenously, labeled NPCs traversed the lungs to be imaged in the left ventricle and the liver where they accumulated. Internalized microbubbles were not only less sensitive to destruction by ultrasound, but remained visible in vivo for days as compared to minutes when given free. The extended longevity provides ample time to allow cells to reach their intended target. We were also able to transfect NPCs in vitro when microbubbles were preloaded with GFP plasmid only when cells were insonated. Transfection efficiency and cell viability were both greater than 90%. PMID:23578557

  13. Percutaneous Ultrasound-Guided Laser Ablation with Contrast-Enhanced Ultrasonography for Hyperfunctioning Parathyroid Adenoma: A Preliminary Case Series

    PubMed Central

    Jiang, Tianan; Chen, Fen; Zhou, Xiang; Hu, Ying; Zhao, Qiyu

    2015-01-01

    The study was to evaluate the safety and effectiveness of ultrasound-guided percutaneous laser ablation (pLA) as a nonsurgical treatment for primary parathyroid adenoma. Surgery was contraindicated in, or refused by, the included patients. No lesion enhancement on contrast-enhanced ultrasound immediately after pLA was considered “complete ablation.” Nodule size, serum calcium, and parathyroid hormone level were compared before and after pLA. Complete ablation was achieved in all 21 patients with 1 (n = 20) or 2 (n = 1) sessions. Nodule volume decreased from 0.93 ± 0.58 mL at baseline to 0.53 ± 0.38 and 0.48 ± 0.34 mL at 6 and 12 months after pLA (P < 0.05). At 1 day, 6 months, and 12 months after pLA, serum PTH decreased from 15.23 ± 3.00 pmol/L at baseline to 7.41 ± 2.79, 6.95 ± 1.78, and 6.90 ± 1.46 pmol/L, serum calcium decreased from 3.77 ± 0.77 mmol/L at baseline to 2.50 ± 0.72, 2.41 ± 0.37, and 2.28 ± 0.26 mmol/L, respectively (P < 0.05). At 12 months, treatment success (normalization of PTH and serum calcium) was achieved in 81%. No serious complications were observed. Ultrasound-guided pLA with contrast-enhanced ultrasound is a viable alternative to surgery for primary parathyroid adenoma. PMID:26788059

  14. Percutaneous Ultrasound-Guided Laser Ablation with Contrast-Enhanced Ultrasonography for Hyperfunctioning Parathyroid Adenoma: A Preliminary Case Series.

    PubMed

    Jiang, Tianan; Chen, Fen; Zhou, Xiang; Hu, Ying; Zhao, Qiyu

    2015-01-01

    The study was to evaluate the safety and effectiveness of ultrasound-guided percutaneous laser ablation (pLA) as a nonsurgical treatment for primary parathyroid adenoma. Surgery was contraindicated in, or refused by, the included patients. No lesion enhancement on contrast-enhanced ultrasound immediately after pLA was considered "complete ablation." Nodule size, serum calcium, and parathyroid hormone level were compared before and after pLA. Complete ablation was achieved in all 21 patients with 1 (n = 20) or 2 (n = 1) sessions. Nodule volume decreased from 0.93 ± 0.58 mL at baseline to 0.53 ± 0.38 and 0.48 ± 0.34 mL at 6 and 12 months after pLA (P < 0.05). At 1 day, 6 months, and 12 months after pLA, serum PTH decreased from 15.23 ± 3.00 pmol/L at baseline to 7.41 ± 2.79, 6.95 ± 1.78, and 6.90 ± 1.46 pmol/L, serum calcium decreased from 3.77 ± 0.77 mmol/L at baseline to 2.50 ± 0.72, 2.41 ± 0.37, and 2.28 ± 0.26 mmol/L, respectively (P < 0.05). At 12 months, treatment success (normalization of PTH and serum calcium) was achieved in 81%. No serious complications were observed. Ultrasound-guided pLA with contrast-enhanced ultrasound is a viable alternative to surgery for primary parathyroid adenoma. PMID:26788059

  15. Ultrasonograpy of VX-2 Liver Tumor in Rabbit Treated by High Intensity Focused Ultrasound Combined with Microbubble Contrast Agent

    NASA Astrophysics Data System (ADS)

    Xiaojuan, Ji; Jinqing, Li; Zhibiao, Wang; Jianzhong, Zou; Wenzhi, Chen; Jin, Bai

    2007-05-01

    Objective: To assess the value of sonographic appearance and to investigate the sonographic character of VX-2 liver tumor in rabbit treated by high intensity focused ultrasound (HIFU) combined with microbubble contrast agent. Methods: Forty-five rabbits bearing VX-2 tumors were randomly averagely assigned into three groups. In group A irradiation was sustained until the target region became hyperechoic. In group B therapy was stopped as soon as hyperecho occurred, and in group C irradiation time was prolonged to ensure the occurrence of coagulation necrosis. Results: Exposure duration for tumors treated purely with HIFU was the longest, whilst the use of microbubble contrast agent combined with HIFU shortened the exposure duration significantly. The gross examination and ultrasonogram coagulation necrosis area measurements correlated strongly (r=0.986,P<0.05) in the microbubble-enhanced HIFU group. Conclusion: It was feasible to enhance HIFU therapy with microbubble contrast agent. The characteristic change in the ultrasound images made it possible to assess the enhanced HIFU therapeutic efficacy in order to adjust the treatment program.

  16. Evaluation of Liver Ischemia-Reperfusion Injury in Rabbits Using a Nanoscale Ultrasound Contrast Agent Targeting ICAM-1

    PubMed Central

    Xie, Fang; Li, Zhi-Ping; Wang, Hong-Wei; Fei, Xiang; Jiao, Zi-Yu; Tang, Wen-Bo; Tang, Jie; Luo, Yu-Kun

    2016-01-01

    Objective To assess the feasibility of ultrasound molecular imaging in the early diagnosis of liver ischemia-reperfusion injury (IRI) using a nanoscale contrast agent targeting anti-intracellular adhesion molecule-1 (anti-ICAM-1). Methods The targeted nanobubbles containing anti-ICAM-1 antibody were prepared using the avidin-biotin binding method. Human hepatic sinusoidal endothelial cells (HHSECs) were cultured at the circumstances of hypoxia/reoxygenation (H/R) and low temperature. The rabbit liver IRI model (I/R group) was established using the Pringle’s maneuver. The time-intensity curve of the liver contrast ultrasonographic images was plotted and the peak intensity, time to peak, and time of duration were calculated. Results The size of the targeted nanobubbles were 148.15 ± 39.75 nm and the concentration was 3.6–7.4 × 109/ml, and bound well with the H/R HHSECs. Animal contrast enhanced ultrasound images showed that the peak intensity and time of duration of the targeted nanobubbles were significantly higher than that of common nanobubbles in the I/R group, and the peak intensity and time of duration of the targeted nanobubbles in the I/R group were also significantly higher than that in the SO group. Conclusion The targeted nanobubbles have small particle size, stable characteristic, and good targeting ability, which can assess hepatic ischemia-reperfusion injury specifically, noninvasively, and quantitatively at the molecular level. PMID:27120181

  17. Intense acoustic burst ultrasound modulated optical tomography for elasticity mapping of soft biological tissue mimicking phantom: a laser speckle contrast analysis study

    NASA Astrophysics Data System (ADS)

    Singh, M. Suheshkumar; Rajan, K.; Vasu, R. M.

    2014-03-01

    This report addresses the assessment of variation in elastic property of soft biological tissues non-invasively using laser speckle contrast measurement. The experimental as well as the numerical (Monte-Carlo simulation) studies are carried out. In this an intense acoustic burst of ultrasound (an acoustic pulse with high power within standard safety limits), instead of continuous wave, is employed to induce large modulation of the tissue materials in the ultrasound insonified region of interest (ROI) and it results to enhance the strength of the ultrasound modulated optical signal in ultrasound modulated optical tomography (UMOT) system. The intensity fluctuation of speckle patterns formed by interference of light scattered (while traversing through tissue medium) is characterized by the motion of scattering sites. The displacement of scattering particles is inversely related to the elastic property of the tissue. We study the feasibility of laser speckle contrast analysis (LSCA) technique to reconstruct a map of the elastic property of a soft tissue-mimicking phantom. We employ source synchronized parallel speckle detection scheme to (experimentally) measure the speckle contrast from the light traversing through ultrasound (US) insonified tissue-mimicking phantom. The measured relative image contrast (the ratio of the difference of the maximum and the minimum values to the maximum value) for intense acoustic burst is 86.44 % in comparison to 67.28 % for continuous wave excitation of ultrasound. We also present 1-D and 2-D image of speckle contrast which is the representative of elastic property distribution.

  18. Development and Optimization of a Doxorubicin Loaded Poly Lactic Acid Contrast Agent for Ultrasound Directed Drug Delivery

    PubMed Central

    Eisenbrey, J.R.; Burstein, O. Mualem; Kambhampati, R.; Forsberg, F.; Liu, J-B.; Wheatley, M.A.

    2010-01-01

    An echogenic, intravenous drug delivery platform is proposed in which an encapsulated chemotherapeutic can travel to a desired location and drug delivery can be triggered using external, focused ultrasound at the area of interest. Three methods of loading poly lactic acid (PLA) shelled ultrasound contrast agents (UCA) with doxorubicin are presented. Effects on encapsulation efficiency, in vitro enhancement, stability, particle size, morphology and release during UCA rupture are compared by loading method and drug concentration. An agent containing doxorubicin within the shell was selected as an ideal candidate for future hepatocellular carcinoma studies. The agent achieved a maximal drug load of 6.2 mg Dox/g PLA with an encapsulation efficiency of 20.5%, showed a smooth surface morphology and tight size distribution (poly dispersity index = 0.309) with a peak size of 1865 nm. Acoustically, the agent provided 19 dB of enhancement in vitro at a dosage of 10 µg/ml, with a half life of over 15 mins. In vivo, the agent provided ultrasound enhancement of 13.4 ± 1.6 dB within the ascending aorta of New Zealand rabbits at a dose of 0.15 ml/kg. While the drug-incorporated agent is thought to be well suited for future drug delivery experiments, this study has shown that agent properties can be tailored for specific applications based on choice of drug loading method. PMID:20060024

  19. HematoPorphyrin Monomethyl Ether polymer contrast agent for ultrasound/photoacoustic dual-modality imaging-guided synergistic high intensity focused ultrasound (HIFU) therapy

    PubMed Central

    Yan, Sijing; LU, Min; Ding, Xiaoya; Chen, Fei; He, Xuemei; Xu, Chunyan; Zhou, Hang; Wang, Qi; Hao, Lan; Zou, Jianzhong

    2016-01-01

    This study is to prepare a hematoporphyrin monomethyl ether (HMME)-loaded poly(lactic-co-glycolic acid) (PLGA) microcapsules (HMME/PLGA), which could not only function as efficient contrast agent for ultrasound (US)/photoacoustic (PA) imaging, but also as a synergistic agent for high intensity focused ultrasound (HIFU) ablation. Sonosensitizer HMME nanoparticles were integrated into PLGA microcapsules with the double emulsion evaporation method. After characterization, the cell-killing and cell proliferation-inhibiting effects of HMME/PLGA microcapsules on ovarian cancer SKOV3 cells were assessed. The US/PA imaging-enhancing effects and synergistic effects on HIFU were evaluated both in vitro and in vivo. HMME/PLGA microcapsules were highly dispersed with well-defined spherical morphology (357 ± 0.72 nm in diameter, PDI = 0.932). Encapsulation efficiency and drug-loading efficiency were 58.33 ± 0.95% and 4.73 ± 0.15%, respectively. The HMME/PLGA microcapsules remarkably killed the SKOV3 cells and inhibited the cell proliferation, significantly enhanced the US/PA imaging results and greatly enhanced the HIFU ablation effects on ovarian cancer in nude mice by the HMME-mediated sono-dynamic chemistry therapy (SDT). HMME/PLGA microcapsules represent a potential multifunctional contrast agent for HIFU diagnosis and treatment, which might provide a novel strategy for the highly efficient imaging-guided non-invasive HIFU synergistic therapy for cancers by SDT in clinic. PMID:27535093

  20. HematoPorphyrin Monomethyl Ether polymer contrast agent for ultrasound/photoacoustic dual-modality imaging-guided synergistic high intensity focused ultrasound (HIFU) therapy.

    PubMed

    Yan, Sijing; Lu, Min; Ding, Xiaoya; Chen, Fei; He, Xuemei; Xu, Chunyan; Zhou, Hang; Wang, Qi; Hao, Lan; Zou, Jianzhong

    2016-01-01

    This study is to prepare a hematoporphyrin monomethyl ether (HMME)-loaded poly(lactic-co-glycolic acid) (PLGA) microcapsules (HMME/PLGA), which could not only function as efficient contrast agent for ultrasound (US)/photoacoustic (PA) imaging, but also as a synergistic agent for high intensity focused ultrasound (HIFU) ablation. Sonosensitizer HMME nanoparticles were integrated into PLGA microcapsules with the double emulsion evaporation method. After characterization, the cell-killing and cell proliferation-inhibiting effects of HMME/PLGA microcapsules on ovarian cancer SKOV3 cells were assessed. The US/PA imaging-enhancing effects and synergistic effects on HIFU were evaluated both in vitro and in vivo. HMME/PLGA microcapsules were highly dispersed with well-defined spherical morphology (357 ± 0.72 nm in diameter, PDI = 0.932). Encapsulation efficiency and drug-loading efficiency were 58.33 ± 0.95% and 4.73 ± 0.15%, respectively. The HMME/PLGA microcapsules remarkably killed the SKOV3 cells and inhibited the cell proliferation, significantly enhanced the US/PA imaging results and greatly enhanced the HIFU ablation effects on ovarian cancer in nude mice by the HMME-mediated sono-dynamic chemistry therapy (SDT). HMME/PLGA microcapsules represent a potential multifunctional contrast agent for HIFU diagnosis and treatment, which might provide a novel strategy for the highly efficient imaging-guided non-invasive HIFU synergistic therapy for cancers by SDT in clinic. PMID:27535093

  1. Ultrasound (US) transducer of higher operating frequency detects photoacoustic (PA) signals due to the contrast in elastic property

    NASA Astrophysics Data System (ADS)

    Singh, Mayanglambam Suheshkumar; Jiang, Huabei

    2016-02-01

    We report our study that shows selection in operating frequency of US-transducer used for boundary detection of PA-signals, which result due to the contrast in elastic property distribution ( E ( r → ) ) in sample material other than that of optical absorption coefficient (μa). Studies were carried out, experimentally, in tissue-mimicking Agar phantoms employing acoustic resolution photoacoustic microscopy (AR-PAM) system as an imaging unit. In the experiments, various transducers having different operating frequencies, ranging from 1MHz to 50MHz, were employed for studying frequency response of the photoacoustic signals. The study shows that, for detecting photoacoustic signals due to the contrast in elastic property, ultrasound transducer with higher operating frequency (˜50MHz) is demanded.

  2. Skeletonization approach for characterization of benign vs. malignant single thyroid nodules using 3D contrast enhanced ultrasound

    NASA Astrophysics Data System (ADS)

    Molinari, Filippo; Mantovani, Alice; Deandrea, Maurilio; Limone, Paolo; Garberoglio, Roberto; Suri, Jasjit S.

    2011-03-01

    High-resolution ultrasonography (HRUS) has potentialities in differential diagnosis between malignant and benign thyroid lesions, but interpretative pitfalls remain and accuracy is still poor. We developed an image processing technique for characterizing the intra-nodular vascularization of thyroid lesions. Twenty nodules (ten malignant) were analyzed by 3-D contrast-enhanced ultrasound imaging. The 3-D volumes were preprocessed and skeletonized. Seven vascular parameters were computed on the skeletons: number of vascular trees (NT); vascular density (VD); number of branching nodes (or branching points) (NB); mean vessel radius (MR); 2-D (DM) and 3-D (SOAM) tortuosity; and inflection count metric (ICM). Results showed that the malignant nodules had higher values of NT (83.1 vs. 18.1), VD (00.4 vs. 0.01), NB (1453 vs. 552), DM (51 vs. 18), ICM (19.9 vs. 8.7), and SOAM (26 vs. 11). Quantification of nodular vascularization based on 3-D contrast-enhanced ultrasound and skeletonization could help differential diagnosis of thyroid lesions.

  3. Preoperative Gross Classification of Gastric Adenocarcinoma: Comparison of Double Contrast-Enhanced Ultrasound and Multi-Detector Row CT.

    PubMed

    Yan, Caoxin; Bao, Xiaofeng; Shentu, Weihui; Chen, Jian; Liu, Chunmei; Ye, Qin; Wang, Liuhong; Tan, Yangbin; Huang, Pintong

    2016-07-01

    The aim of this study was to compare the accuracy of multi-detector computed tomography (MDCT) with double contrast-enhanced ultrasound (DCEUS), in which intravenous microbubbles are used alongside oral contrast-enhanced ultrasound, in determining the gross classification of patients with gastric carcinoma (GC). Altogether, 239 patients with GC proved by histology after endoscopic biopsy were included in this study. DCEUS and MDCT were performed pre-operatively. The diagnostic accuracies of DCEUS and MDCT in determining the gross classification were calculated and compared. The overall accuracy of DCEUS in determining the gross appearance of GC was higher than that of MDCT (84.9% vs. 79.9%, p < 0.001). There was no significant difference in accuracy between DCEUS and MDCT for Borrmann I and IV classifications of advanced gastric cancer (χ(2), p = 0.323 for Borrmann type I, p = 0.141 for Borrmann type IV). The accuracy of DCEUS for early GC and Borrmann II and III classifications of GC was higher than that of MDCT (χ(2), p = 0.000 for all). DCEUS may be regarded as a valuable complementary tool to MDCT in determining the gross appearance of gastric adenocarcinoma pre-operatively. PMID:27072076

  4. Functional Flow Patterns and Static Blood Pooling in Tumors Revealed by Combined Contrast-Enhanced Ultrasound and Photoacoustic Imaging.

    PubMed

    Bar-Zion, Avinoam; Yin, Melissa; Adam, Dan; Foster, F Stuart

    2016-08-01

    Alterations in tumor perfusion and microenvironment have been shown to be associated with aggressive cancer phenotypes, raising the need for noninvasive methods of tracking these changes. Dynamic contrast-enhanced ultrasound (DCEUS) and photoacoustic (PA) imaging serve as promising candidates-one has the ability to measure tissue perfusion, whereas the other can be used to monitor tissue oxygenation and hemoglobin concentration. In this study, we investigated the relationship between the different functional parameters measured with DCEUS and PA imaging, using two morphologically different hind-limb tumor models and drug-induced alterations in an orthotopic breast tumor model. Imaging results showed some correlation between perfusion and oxygen saturation maps and the ability to sensitively monitor antivascular treatment. In addition, DCEUS measurements revealed different vascular densities in the core of specific tumors compared with their rims. Noncorrelated perfusion and hemoglobin concentration measurements facilitated discrimination between blood lakes and necrotic areas. Taken together, our results illustrate the utility of a combined contrast-enhanced ultrasound method with photoacoustic imaging to visualize blood flow patterns in tumors. Cancer Res; 76(15); 4320-31. ©2016 AACR. PMID:27325651

  5. A novel dual-targeted ultrasound contrast agent provides improvement of gene delivery efficiency in vitro.

    PubMed

    Xu, Jinfeng; Zeng, Xinxin; Liu, Yingying; Luo, Hui; Wei, Zhanghong; Liu, Huiyu; Zhou, Yuli; Zheng, Hairong; Zhou, Jie; Tan, Guanghong; Yan, Fei

    2016-07-01

    Ultrasound-targeted microbubble destruction (UTMD) has become a novel gene/drug delivery method in cancer therapeutic application. However, the gene transfection efficiency mediated by UTMD is still unsatisfactory. Here, we introduced iRGD/CCR2 dual-targeted cationic microbubbles (MBiRGD/CCR2) which was modified with PEI-600 and coated with iRGD peptides and anti-CCR-2 antibodies. It showed that MBiRGD/CCR2 had a 25.83 ± 1.57 mV surface zeta potential and good stability. The experiments in vitro showed MBiRGD/CCR2 had higher binding efficiency with both bEnd.3 cells and MCF-7 cells than that of iRGD or CCR2 single-targeted cationic microbubbles (MBiRGD or MBCCR2) (P < 0.05 for both). Agarose gel electrophoresis assay showed that MBiRGD/CCR2 can effectively load pGPU6/GFP/Neo-shAKT2 plasmid DNA. Compared with the plain MBs (MBcontrol) or single-targeted cationic MBs including MBiRGD and MBCCR2 (P < 0.05 for all), the dual-targeted cationic MBiRGD/CCR2 groups had higher gene transfection efficiency under US exposure. It showed that the dual-targeted cationic MBiRGD/CCR2 has a potential value to be used as an ultrasound imaging probe for ultrasound image-guided tumor gene therapy. PMID:26733178

  6. Conditionally Increased Acoustic Pressures in Nonfetal Diagnostic Ultrasound Examinations Without Contrast Agents: A Preliminary Assessment

    PubMed Central

    Nightingale, Kathryn R.; Church, Charles C.; Harris, Gerald; Wear, Keith A.; Bailey, Michael R.; Carson, Paul L.; Jiang, Hui; Sandstrom, Kurt L.; Szabo, Thomas L.; Ziskin, Marvin C.

    2016-01-01

    The mechanical index (MI) has been used by the US Food and Drug Administration (FDA) since 1992 for regulatory decisions regarding the acoustic output of diagnostic ultrasound equipment. Its formula is based on predictions of acoustic cavitation under specific conditions. Since its implementation over 2 decades ago, new imaging modes have been developed that employ unique beam sequences exploiting higher-order acoustic phenomena, and, concurrently, studies of the bioeffects of ultrasound under a range of imaging scenarios have been conducted. In 2012, the American Institute of Ultrasound in Medicine Technical Standards Committee convened a working group of its Output Standards Subcommittee to examine and report on the potential risks and benefits of the use of conditionally increased acoustic pressures (CIP) under specific diagnostic imaging scenarios. The term “conditionally” is included to indicate that CIP would be considered on a per-patient basis for the duration required to obtain the necessary diagnostic information. This document is a result of that effort. In summary, a fundamental assumption in the MI calculation is the presence of a preexisting gas body. For tissues not known to contain preexisting gas bodies, based on theoretical predications and experimentally reported cavitation thresholds, we find this assumption to be invalid. We thus conclude that exceeding the recommended maximum MI level given in the FDA guidance could be warranted without concern for increased risk of cavitation in these tissues. However, there is limited literature assessing the potential clinical benefit of exceeding the MI guidelines in these tissues. The report proposes a 3-tiered approach for CIP that follows the model for employing elevated output in magnetic resonance imaging and concludes with summary recommendations to facilitate Institutional Review Board (IRB)-monitored clinical studies investigating CIP in specific tissues. PMID:26112617

  7. Doppler photoacoustic and Doppler ultrasound in blood with optical contrast agent

    NASA Astrophysics Data System (ADS)

    Sheinfeld, Adi; Eyal, Avishay

    2013-03-01

    Photoacoustic Doppler flowmetry as well as Doppler ultrasound were performed in acoustic resolution regime on tubes filled with flowing blood with indocyanine green (ICG) at different concentrations. The photoacoustic excitation utilized a pair of directly-modulated fiber-coupled 830nm laser-diodes, modulated with either CW or tone-bursts for depthresolved measurements. The amplitude of the Doppler peak in photoacoustic Doppler measurements was found to be proportional to the ICG concentration. Photoacoustic Doppler was measured in ICG at human safe concentrations, but not in whole blood. Comparing the results between the two modalities implied that using a wavelength with higher optical absorption may improve the photoacoustic signal in blood.

  8. Role of contrast-enhanced ultrasound in evaluating the efficiency of ultrasound guided percutaneous microwave ablation in patients with renal cell carcinoma

    PubMed Central

    Li, Xin; Liang, Ping; Yu, Jie; Yu, Xiao-Ling; Liu, Fang-Yi; Cheng, Zhi-Gang; Han, Zhi-Yu

    2013-01-01

    Background The aim of the study was to evaluate the efficiency and feasibility of contrast-enhanced ultrasound (CEUS) with Sonovue in assessing of renal cell carcinomas (RCCs) following ultrasound (US)-guided percutaneous microwave ablation (MWA). Patinets and methods Seventy-nine patients (60 males and 19 females) with 83 lesions (mean size 3.2±1.6 cm) were treated by US-guided percutaneous MWA. The CEUS results of the third day after the ablation were compared with the synchronous contrast-enhanced computed tomography (CT)/magnetic resonance imaging (MRI) results and biopsy pathological results. The follow-up was performed by CEUS and CT/MRI after 1, 3, 6 months and every 6 months subsequently. The combination of clinical follow-up results and CT/MRI imaging findings was the reference standard of CEUS results for evaluating the therapeutic effect. The identification of residual or recurrence tumour was assessed by two blinded radiologists. Results On the third day after MWA, CEUS showed 68 of 83 lesions (68/83, 81.9%) successfully ablated and 15 of 83 (18.1%) with residual tumours. Among residual tumours, 13 (86.7%) were confirmed by contrast-enhanced CT/MRI findings and biopsy results. The sensitivity, specificity, accuracy, positive and negative predictive value of CEUS evaluating the short-term MWA effectiveness were 100%, 97.1%, 97.6%, 86.7% and 100%, respectively. During the six years follow-up (median 26 months), the CEUS showed recurrence in 7 patients, and six of them achieved consistent results on CEUS and CT/MRI imaging. The sensitivity, specificity, accuracy, positive and negative predictive value for CEUS evaluating long-term MWA effectiveness were 85.7%, 98.7%, 97.6%, 85.7% and 98.7%, respectively. Conclusions The post-procedural CEUS demonstrated as an effective and feasible method in evaluating a therapeutic effect of RCCs following MWA. PMID:24294186

  9. Ultrasound Molecular Imaging of the Breast Cancer Neovasculature using Engineered Fibronectin Scaffold Ligands: A Novel Class of Targeted Contrast Ultrasound Agent

    PubMed Central

    Abou-Elkacem, Lotfi; Wilson, Katheryne E.; Johnson, Sadie M.; Chowdhury, Sayan M.; Bachawal, Sunitha; Hackel, Benjamin J.; Tian, Lu; Willmann, Jürgen K.

    2016-01-01

    Molecularly-targeted microbubbles (MBs) are increasingly being recognized as promising contrast agents for oncological molecular imaging with ultrasound. With the detection and validation of new molecular imaging targets, novel binding ligands are needed that bind to molecular imaging targets with high affinity and specificity. In this study we assessed a novel class of potentially clinically translatable MBs using an engineered 10th type III domain of human-fibronectin (MB-FN3VEGFR2) scaffold-ligand to image VEGFR2 on the neovasculature of cancer. The in vitro binding of MB-FN3VEGFR2 to a soluble VEGFR2 was assessed by flow-cytometry (FACS) and binding to VEGFR2-expressing cells was assessed by flow-chamber cell attachment studies under flow shear stress conditions. In vivo binding of MB-FN3VEGFR2 was tested in a transgenic mouse model (FVB/N Tg(MMTV/PyMT634Mul) of breast cancer and control litter mates with normal mammary glands. In vitro FACS and flow-chamber cell attachment studies showed significantly (P<0.01) higher binding to VEGFR2 using MB-FN3VEGFR2 than control agents. In vivo ultrasound molecular imaging (USMI) studies using MB-FN3VEGFR2 demonstrated specific binding to VEGFR2 and was significantly higher (P<0.01) in breast cancer compared to normal breast tissue. Ex vivo immunofluorescence-analysis showed significantly (P<0.01) increased VEGFR2-expression in breast cancer compared to normal mammary tissue. Our results suggest that MBs coupled to FN3-scaffolds can be designed and used for USMI of breast cancer neoangiogenesis. Due to their small size, stability, solubility, the lack of glycosylation and disulfide bonds, FN3-scaffolds can be recombinantly produced with the advantage of generating small, high affinity ligands in a cost efficient way for USMI. PMID:27570547

  10. Ultrasound Molecular Imaging of the Breast Cancer Neovasculature using Engineered Fibronectin Scaffold Ligands: A Novel Class of Targeted Contrast Ultrasound Agent.

    PubMed

    Abou-Elkacem, Lotfi; Wilson, Katheryne E; Johnson, Sadie M; Chowdhury, Sayan M; Bachawal, Sunitha; Hackel, Benjamin J; Tian, Lu; Willmann, Jürgen K

    2016-01-01

    Molecularly-targeted microbubbles (MBs) are increasingly being recognized as promising contrast agents for oncological molecular imaging with ultrasound. With the detection and validation of new molecular imaging targets, novel binding ligands are needed that bind to molecular imaging targets with high affinity and specificity. In this study we assessed a novel class of potentially clinically translatable MBs using an engineered 10(th) type III domain of human-fibronectin (MB-FN3VEGFR2) scaffold-ligand to image VEGFR2 on the neovasculature of cancer. The in vitro binding of MB-FN3VEGFR2 to a soluble VEGFR2 was assessed by flow-cytometry (FACS) and binding to VEGFR2-expressing cells was assessed by flow-chamber cell attachment studies under flow shear stress conditions. In vivo binding of MB-FN3VEGFR2 was tested in a transgenic mouse model (FVB/N Tg(MMTV/PyMT634Mul) of breast cancer and control litter mates with normal mammary glands. In vitro FACS and flow-chamber cell attachment studies showed significantly (P<0.01) higher binding to VEGFR2 using MB-FN3VEGFR2 than control agents. In vivo ultrasound molecular imaging (USMI) studies using MB-FN3VEGFR2 demonstrated specific binding to VEGFR2 and was significantly higher (P<0.01) in breast cancer compared to normal breast tissue. Ex vivo immunofluorescence-analysis showed significantly (P<0.01) increased VEGFR2-expression in breast cancer compared to normal mammary tissue. Our results suggest that MBs coupled to FN3-scaffolds can be designed and used for USMI of breast cancer neoangiogenesis. Due to their small size, stability, solubility, the lack of glycosylation and disulfide bonds, FN3-scaffolds can be recombinantly produced with the advantage of generating small, high affinity ligands in a cost efficient way for USMI. PMID:27570547

  11. Usefulness of contrast-enhanced ultrasound for detection of carotid plaque ulceration in patients with symptomatic carotid atherosclerosis.

    PubMed

    ten Kate, Gerrit L; van Dijk, Anouk C; van den Oord, Stijn C H; Hussain, Burhan; Verhagen, Hence J M; Sijbrands, Eric J G; van der Steen, Antonius F W; van der Lugt, Aad; Schinkel, Arend F L

    2013-07-15

    Previous data have indicated that carotid plaque ulceration is a strong predictor of cerebrovascular events. Standard ultrasound and color Doppler ultrasound (CDUS) scans have poor diagnostic accuracy for the detection of carotid plaque ulceration. The aim of the present prospective study was to assess the value of contrast-enhanced ultrasound (CEUS) scans for the detection of carotid plaque ulceration. The Institutional Ethics Committee approved the study protocol, and all patients provided informed consent. The patients had symptomatic stenosis of the internal carotid artery and underwent carotid computed tomographic angiography as part of their clinical evaluation. All patients underwent a CDUS examination in conjunction with CEUS. Carotid plaque ulceration was defined as the presence of ≥1 disruptions in the plaque-lumen border ≥1 × 1 mm. Carotid computed tomographic angiography was used as reference technique. The study population consisted of 20 patients (mean age 64 ± 9 years, 80% men), and 39 carotid arteries were included in the present analysis. Computed tomographic angiography demonstrated that the plaque surface was smooth in 15 (38%), irregular in 7 (18%) and ulcerated in 17 (44%) carotid arteries. The sensitivity, specificity, accuracy, positive predictive value, and negative predictive value of CDUS for the detection of ulceration was 29%, 73%, 54%, 46%, and 57%, respectively. The sensitivity, specificity, accuracy, positive predictive value, and negative predictive value of CEUS for the detection of ulceration was 88%, 59%, 72%, 63%, and 87%, respectively. CEUS had superior sensitivity and diagnostic accuracy for the assessment of carotid plaque ulceration compared with CDUS. CEUS improved the intrareader and inter-reader variability for the assessment of carotid plaque ulceration compared with CDUS. In conclusion, CEUS could be an additional method for the detection of carotid plaque ulceration. The role of CDUS for the assessment of

  12. Contrast-enhanced ultrasound findings of post-transplant lymphoproliferative disorder in a transplanted kidney: A case report and literature review

    PubMed Central

    Lampe, Alyssa; Duddalwar, Vinay A; Djaladat, Hooman; Aron, Manju; Gulati, Mittul

    2015-01-01

    Post-transplant lymphoproliferative disorder occurs in approximately one percent of kidney transplant recipients. We evaluated a seventy-seven year-old man with a solid mass in his transplant kidney. On contrast enhanced ultrasound, the mass enhanced but remained persistently hypovascular throughout exam. The enhancement pattern of the mass differed from that typical of clear cell renal cell carcinoma, the main differential diagnosis. Final pathology after partial nephrectomy confirmed post-transplant lymphoproliferative disorder. This is the first report of contrast enhanced ultrasound findings in a renal mass diagnosed as post-transplant lymphoproliferative disorder. Contrast enhanced ultrasound has a promising role in imaging of renal masses, particularly relevant in transplant patients due to the lack of nephrotoxicity. PMID:26629291

  13. Ultrasound Contrast Plane Wave Imaging Based on Bubble Wavelet Transform: In Vitro and In Vivo Validations.

    PubMed

    Wang, Diya; Zong, Yujin; Yang, Xuan; Hu, Hong; Wan, Jinjin; Zhang, Lei; Bouakaz, Ayache; Wan, Mingxi

    2016-07-01

    The aim of the study described here was to develop an ultrasound contrast plane wave imaging (PWI) method based on pulse-inversion bubble wavelet transform imaging (PIWI) to improve the contrast-to-tissue ratio of contrast images. A pair of inverted "bubble wavelets" with plane waves was constructed according to the modified Herring equation. The original echoes were replaced by the maximum wavelet correlation coefficients obtained from bubble wavelet correlation analysis. The echoes were then summed to distinguish microbubbles from tissues. In in vivo experiments on rabbit kidney, PIWI improved the contrast-to-tissue ratio of contrast images up to 4.5 ± 1.5 dB, compared with that obtained in B-mode (p < 0.05), through use of a pair of inverted plane waves. The disruption rate and infusion time of microbubbles in PIWI-based PWI were then quantified using two perfusion parameters, area under the curve and half transmit time estimated from time-intensity curves, respectively. After time-intensity curves were denoised by detrended fluctuation analysis, the average area under the curve and half transit time of PIWI-based PWI were 55.94% (p < 0.05) and 20.51% (p < 0.05) higher than those of conventional focused imaging, respectively. Because of its high contrast-to-tissue ratio and low disruption of microbubbles, PIWI-based PWI has a long infusion time and is therefore beneficial for transient monitoring and perfusion assessment of microbubbles circulating in vessels. PMID:27067280

  14. Intravascular ultrasound-guided central vein angioplasty and stenting without the use of radiographic contrast agents.

    PubMed

    Matthews, Ray; Thomas, Joseph

    2008-05-01

    Patients with contraindications to iodinated radiographic contrast agents present a significant challenge during endovascular intervention. A 46-year-old man with end-stage renal disease and a normally functioning left upper extremity arteriovenous fistula presented with severe left arm edema. The patient's history included repeated severe anaphylactoid reactions with severe respiratory distress upon exposure to iodinated contrast. In an attempt to avoid the use of iodinated contrast, angioplasty and stent placement of a severe central venous stenosis were performed using only fluoroscopy and intravascular sonography. In patients unable to receive iodinated contrast secondary to anaphylactoid reactions, intravascular sonography can be used to guide angioplasty and stenting of central venous stenosis. PMID:18286503

  15. Numerical modeling of the 3D dynamics of ultrasound contrast agent microbubbles using the boundary integral method

    NASA Astrophysics Data System (ADS)

    Wang, Qianxi; Manmi, Kawa; Calvisi, Michael L.

    2015-02-01

    Ultrasound contrast agents (UCAs) are microbubbles stabilized with a shell typically of lipid, polymer, or protein and are emerging as a unique tool for noninvasive therapies ranging from gene delivery to tumor ablation. While various models have been developed to describe the spherical oscillations of contrast agents, the treatment of nonspherical behavior has received less attention. However, the nonspherical dynamics of contrast agents are thought to play an important role in therapeutic applications, for example, enhancing the uptake of therapeutic agents across cell membranes and tissue interfaces, and causing tissue ablation. In this paper, a model for nonspherical contrast agent dynamics based on the boundary integral method is described. The effects of the encapsulating shell are approximated by adapting Hoff's model for thin-shell, spherical contrast agents. A high-quality mesh of the bubble surface is maintained by implementing a hybrid approach of the Lagrangian method and elastic mesh technique. The numerical model agrees well with a modified Rayleigh-Plesset equation for encapsulated spherical bubbles. Numerical analyses of the dynamics of UCAs in an infinite liquid and near a rigid wall are performed in parameter regimes of clinical relevance. The oscillation amplitude and period decrease significantly due to the coating. A bubble jet forms when the amplitude of ultrasound is sufficiently large, as occurs for bubbles without a coating; however, the threshold amplitude required to incite jetting increases due to the coating. When a UCA is near a rigid boundary subject to acoustic forcing, the jet is directed towards the wall if the acoustic wave propagates perpendicular to the boundary. When the acoustic wave propagates parallel to the rigid boundary, the jet direction has components both along the wave direction and towards the boundary that depend mainly on the dimensionless standoff distance of the bubble from the boundary. In all cases, the jet

  16. Contrast-enhanced ultrasound for imaging blunt abdominal trauma - indications, description of the technique and imaging review.

    PubMed

    Cokkinos, D; Antypa, E; Stefanidis, K; Tserotas, P; Kostaras, V; Parlamenti, A; Tavernaraki, K; Piperopoulos, P N

    2012-02-01

    Patients with blunt abdominal trauma are initially imaged with ultrasound (US) for the evaluation of free abdominal fluid. However, lacerations of solid organs can be overlooked. Although computed tomography (CT) is the gold standard technique for abdominal trauma imaging, overutilization, ionizing radiation, need to transport the patient and potential artifacts are well known disadvantages. Contrast-enhanced US (CEUS) can be used as an imaging tool between the two methods. It can easily and reliably reveal solid abdominal organ injuries in patients with low-energy localized trauma and decrease the number of CT scans performed. It can be rapidly performed at the patient's bedside with no need for transportation. There are only very few contraindications and anaphylactoid reactions are extremely rare. Altogether, CEUS has proved to be very helpful for the initial imaging of traumatic lesions of the liver, kidney and spleen, as well as for patient follow-up. PMID:22274907

  17. Correction of Non-Linear Propagation Artifact in Contrast-Enhanced Ultrasound Imaging of Carotid Arteries: Methods and in Vitro Evaluation.

    PubMed

    Yildiz, Yesna O; Eckersley, Robert J; Senior, Roxy; Lim, Adrian K P; Cosgrove, David; Tang, Meng-Xing

    2015-07-01

    Non-linear propagation of ultrasound creates artifacts in contrast-enhanced ultrasound images that significantly affect both qualitative and quantitative assessments of tissue perfusion. This article describes the development and evaluation of a new algorithm to correct for this artifact. The correction is a post-processing method that estimates and removes non-linear artifact in the contrast-specific image using the simultaneously acquired B-mode image data. The method is evaluated on carotid artery flow phantoms with large and small vessels containing microbubbles of various concentrations at different acoustic pressures. The algorithm significantly reduces non-linear artifacts while maintaining the contrast signal from bubbles to increase the contrast-to-tissue ratio by up to 11 dB. Contrast signal from a small vessel 600 μm in diameter buried in tissue artifacts before correction was recovered after the correction. PMID:25935597

  18. A comparative study of contrast enhanced ultrasound and contrast enhanced magnetic resonance imaging for the detection and characterization of hepatic hemangiomas.

    PubMed

    Fang, Liang; Zhu, Zheng; Huang, Beijian; Ding, Hong; Mao, Feng; Li, Chaolun; Zeng, Mengsu; Zhou, Jianjun; Wang, Ling; Wang, Wenping; Chen, Yue

    2015-04-01

    This study aims to compare contrast enhanced ultrasound (CEUS) and contrast enhanced magnetic resonance imaging (CEMRI) for the detection and characterization of hepatic hemangiomas. Included in this retrospective study were 83 histopathologically confirmed lesions of hemangioma in 66 hospitalized patients who underwent both CEUS and CEMRI and received surgery. The enhancement patterns on CEUS and CEMRI in each lesion were compared and analyzed. In addition, data obtained by the two modalities were then compared with the pathological findings to determine their value in differential diagnosis of hepatic hemangiomas. CEUS diagnosed 78 lesions of hemangioma against 80 by CEMRI. There were no statistical significant differences in the diagnostic value between CEUS and CEMRI in terms of sensitivity (88.0% vs. 92.8%), specificity (99.0% vs. 99.4%), accuracy (97.3% vs. 98.4%), positive predictive value (93.6% vs. 96.3%), and negative predictive value (98.0% vs. 98.8%) (p > 0.05, all). In the arterial phase, the main enhancement pattern on both CEUS and CEMRI was peripheral nodular enhancement (73 vs. 76), but lesions with diffuse enhancement on CEUS outnumbered those on CEMRI (3 vs. 1) and lesions with circular enhancement on CEMRI outnumbered those on CEUS (3 vs. 2). In the portal venous phase and delayed phase, the main enhancement pattern was hyperechoic change on CEUS and hyperintense on CEMRI (66 vs. 65), some lesions presented isoechoic change (12 vs. 15). These results suggested CEUS, an equivalent to CEMRI, may have an added diagnostic value in hemangiomas. PMID:25971695

  19. Versatile utilization of real-time intraoperative contrast-enhanced ultrasound in cranial neurosurgery: technical note and retrospective case series.

    PubMed

    Lekht, Ilya; Brauner, Noah; Bakhsheshian, Joshua; Chang, Ki-Eun; Gulati, Mittul; Shiroishi, Mark S; Grant, Edward G; Christian, Eisha; Zada, Gabriel

    2016-03-01

    OBJECTIVE Intraoperative contrast-enhanced ultrasound (iCEUS) offers dynamic imaging and provides functional data in real time. However, no standardized protocols or validated quantitative data exist to guide its routine use in neurosurgery. The authors aimed to provide further clinical data on the versatile application of iCEUS through a technical note and illustrative case series. METHODS Five patients undergoing craniotomies for suspected tumors were included. iCEUS was performed using a contrast agent composed of lipid shell microspheres enclosing perflutren (octafluoropropane) gas. Perfusion data were acquired through a time-intensity curve analysis protocol obtained using iCEUS prior to biopsy and/or resection of all lesions. RESULTS Three primary tumors (gemistocytic astrocytoma, glioblastoma multiforme, and meningioma), 1 metastatic lesion (melanoma), and 1 tumefactive demyelinating lesion (multiple sclerosis) were assessed using real-time iCEUS. No intraoperative complications occurred following multiple administrations of contrast agent in all cases. In all neoplastic cases, iCEUS replicated enhancement patterns observed on preoperative Gd-enhanced MRI, facilitated safe tumor debulking by differentiating neoplastic tissue from normal brain parenchyma, and helped identify arterial feeders and draining veins in and around the surgical cavity. Intraoperative CEUS was also useful in guiding a successful intraoperative needle biopsy of a cerebellar tumefactive demyelinating lesion obtained during real-time perfusion analysis. CONCLUSIONS Intraoperative CEUS has potential for safe, real-time, dynamic contrast-based imaging for routine use in neurooncological surgery and image-guided biopsy. Intraoperative CEUS eliminates the effect of anatomical distortions associated with standard neuronavigation and provides quantitative perfusion data in real time, which may hold major implications for intraoperative diagnosis, tissue differentiation, and quantification of

  20. The fabrication of novel nanobubble ultrasound contrast agent for potential tumor imaging

    NASA Astrophysics Data System (ADS)

    Xing, Zhanwen; Wang, Jinrui; Ke, Hengte; Zhao, Bo; Yue, Xiuli; Dai, Zhifei; Liu, Jibin

    2010-04-01

    Novel biocompatible nanobubbles were fabricated by ultrasonication of a mixture of Span 60 and polyoxyethylene 40 stearate (PEG40S) followed by differential centrifugation to isolate the relevant subpopulation from the parent suspensions. Particle sizing analysis and optical microscopy inspection indicated that the freshly generated micro/nanobubble suspension was polydisperse and the size distribution was bimodal with large amounts of nanobubbles. To develop a nano-sized contrast agent that is small enough to leak through tumor pores, a fractionation to extract smaller bubbles by variation in the time of centrifugation at 20g (relative centrifuge field, RCF) was suggested. The results showed that the population of nanobubbles with a precisely controlled mean diameter could be sorted from the initial polydisperse suspensions to meet the specified requirements. The isolated bubbles were stable over two weeks under the protection of perfluoropropane gas. The acoustic behavior of the nano-sized contrast agent was evaluated using power Doppler imaging in a normal rabbit model. An excellent power Doppler enhancement was found in vivo renal imaging after intravenous injection of the obtained nanobubbles. Given the broad spectrum of potential clinical applications, the nano-sized contrast agent may provide a versatile adjunct for ultrasonic imaging enhancement and/or treatment of tumors.

  1. The fabrication of novel nanobubble ultrasound contrast agent for potential tumor imaging.

    PubMed

    Xing, Zhanwen; Wang, Jinrui; Ke, Hengte; Zhao, Bo; Yue, Xiuli; Dai, Zhifei; Liu, Jibin

    2010-04-01

    Novel biocompatible nanobubbles were fabricated by ultrasonication of a mixture of Span 60 and polyoxyethylene 40 stearate (PEG40S) followed by differential centrifugation to isolate the relevant subpopulation from the parent suspensions. Particle sizing analysis and optical microscopy inspection indicated that the freshly generated micro/nanobubble suspension was polydisperse and the size distribution was bimodal with large amounts of nanobubbles. To develop a nano-sized contrast agent that is small enough to leak through tumor pores, a fractionation to extract smaller bubbles by variation in the time of centrifugation at 20g (relative centrifuge field, RCF) was suggested. The results showed that the population of nanobubbles with a precisely controlled mean diameter could be sorted from the initial polydisperse suspensions to meet the specified requirements. The isolated bubbles were stable over two weeks under the protection of perfluoropropane gas. The acoustic behavior of the nano-sized contrast agent was evaluated using power Doppler imaging in a normal rabbit model. An excellent power Doppler enhancement was found in vivo renal imaging after intravenous injection of the obtained nanobubbles. Given the broad spectrum of potential clinical applications, the nano-sized contrast agent may provide a versatile adjunct for ultrasonic imaging enhancement and/or treatment of tumors. PMID:20220227

  2. Contrast-Enhanced Ultrasound in the Diagnosis of Hepatocellular Carcinoma and Intrahepatic Cholangiocarcinoma: Controversy over the ASSLD Guideline

    PubMed Central

    2015-01-01

    Hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (ICC) are both regarded as primary liver cancers, having different biological behaviors and prognoses. Correct differentiation between them is essential for surgical planning and prognosis assessment. In 2005, the American Association for the Study of Liver Diseases (AASLD) recommended that noninvasive diagnosis of HCC is achievable by a single dynamic technique (including contrast-enhanced ultrasound (CEUS)) showing intense arterial uptake followed by washout of contrast in the venous-delayed phases. However, CEUS has been dropped from the diagnostic techniques in the latest AASLD guideline according to the opinion of some authors from Europe that CEUS may offer false positive HCC diagnosis in patients with ICC. Since the update of AASLD guideline has been released, increased attention has been paid to this interesting topic. Remarkable controversy over this issue is present and this removal was not well received in Europe and Asia. This commentary summarized the opinions for the role of CUES in differentiation between HCC and ICC in recent years. It is concluded that prospective studies with strict design and large case series are mandatory to solve the controversies and stratification of ICC in terms of tumor size and liver background is also essential. PMID:26090401

  3. Contrast enhanced ultrasound with quantitative perfusion analysis for objective characterization of pancreatic ductal adenocarcinoma: A feasibility study.

    PubMed

    D'Onofrio, Mirko; Canestrini, Stefano; Crosara, Stefano; De Robertis, Riccardo; Pozzi Mucelli, Roberto

    2014-03-28

    The aim of this study was to determine whether contrast enhanced ultrasound (CEUS) quantitative perfusion analysis allows an objective characterization of ductal adenocarcinoma (ADK) of the pancreas. Patients with pancreatic ADK underwent CEUS. All examinations were performed on an Acuson S2000 system (Siemens, Erlangen, Germany) after the iv administration of 2.4 mL contrast agent (SonoVue(®), Bracco, Milan, Italy). All lesions were pathologically proved. An operator manually drew different regions of interest within the tumor and the adjacent parenchyma to allow the quantitative perfusion analysis. The mean values of peak of enhancement, time to peak and ascending curve were calculated and compared using the Student's t test. The quantitative perfusion analysis was possible in all lesions. The mean values of the peak of enhancement, time to peak and ascending curve were 17.19%, 7.97 s and 159.52% s within the tumor and 33.57%, 8.89 s and 355.29% s within the adjacent parenchyma. The peak of enhancement and the ascending curve values were significantly different within the tumor and the adjacent parenchyma. Thus, CEUS allows the quantitative perfusion analysis of pancreatic ductal adenocarcinoma. PMID:24765238

  4. An In Vitro Study of the Correlation Between Bubble Distribution, Acoustic Emission, and Cell Damage by Contrast Ultrasound

    PubMed Central

    Fowlkes, J. Brian; Miller, Douglas L.

    2009-01-01

    The objective of this study was to investigate the influences of total exposure duration and pulse-to-pulse bubble distribution on contrast-mediated cell damage. Murine macrophage cells were grown as monolayers on thin polyester sheets. Contrast agent microbubbles were attached to these cells by incubation. Focused ultrasound exposures (Pr = 2 MPa) were implemented at a frequency of 2.25 MHz with 46 cycle pulses and pulse repetition frequencies (PRF) of 1 kHz, 500 Hz, 100 Hz, and 10 Hz in a degassed water bath at 10 or 100 pulses. A 1 MHz receive transducer measured the scattered signal. The frequency spectrum was normalized to a control spectrum from linear scatterers. Photomicrographs were captured before, during, and after exposure at a frame rate of 2000 fps and a pixel resolution of 960 × 720. Results clearly show that cell death is increased, up to 60%, by increasing total exposure duration from 0 ms to 100 ms. There was an increasing difference in cell damage between a 10-pulse exposure and a 100-pulse exposure with increasing PRF. The greatest change in damage occurred at 1000 Hz PRF with a 53% increase between 10-pulse and 100-pulse exposures. For each pulse from 0 to 10, an overlay of the 2 μm bubble count with corresponding emission shows consistent behavior in its pulse-to-pulse changes, indicating a correlation between acoustic emission, bubble distribution, and cell damage. PMID:19411217

  5. Reliability of contrast-enhanced ultrasound for the assessment of muscle perfusion in health and peripheral arterial disease.

    PubMed

    Thomas, Kate N; Cotter, James D; Lucas, Samuel J E; Hill, Brigid G; van Rij, André M

    2015-01-01

    We investigated the reliability of contrast-enhanced ultrasound (CEUS) in assessing calf muscle microvascular perfusion in health and disease. Response to a post-occlusive reactive hyperaemia test was repeated on two occasions >48 h apart in healthy young (28 ± 7 y) and elderly controls (70 ± 5 y), and in peripheral arterial disease patients (PAD, 69 ± 7 y; n = 10, 9 and 8 respectively). Overall, within-individual reliability was poor (coefficient of variation [CV] range: 15-87%); the most reliable parameter was time to peak (TTP, 15-48% CV). Nevertheless, TTP was twice as long in elderly controls and PAD compared to young (19.3 ± 10.4 and 22.0 ± 8.6 vs. 8.9 ± 6.2 s respectively; p < 0.01), and area under the curve for contrast intensity post-occlusion (a reflection of blood volume) was ∼50% lower in elderly controls (p < 0.01 versus PAD and young). Thus, CEUS assessment of muscle perfusion during reactive hyperaemia demonstrated poor reliability, yet still distinguished differences between PAD patients, elderly and young controls. PMID:25308937

  6. Contrast enhanced ultrasound with quantitative perfusion analysis for objective characterization of pancreatic ductal adenocarcinoma: A feasibility study

    PubMed Central

    D’Onofrio, Mirko; Canestrini, Stefano; Crosara, Stefano; Robertis, Riccardo De; Mucelli, Roberto Pozzi

    2014-01-01

    The aim of this study was to determine whether contrast enhanced ultrasound (CEUS) quantitative perfusion analysis allows an objective characterization of ductal adenocarcinoma (ADK) of the pancreas. Patients with pancreatic ADK underwent CEUS. All examinations were performed on an Acuson S2000 system (Siemens, Erlangen, Germany) after the iv administration of 2.4 mL contrast agent (SonoVue®, Bracco, Milan, Italy). All lesions were pathologically proved. An operator manually drew different regions of interest within the tumor and the adjacent parenchyma to allow the quantitative perfusion analysis. The mean values of peak of enhancement, time to peak and ascending curve were calculated and compared using the Student’s t test. The quantitative perfusion analysis was possible in all lesions. The mean values of the peak of enhancement, time to peak and ascending curve were 17.19%, 7.97 s and 159.52% s within the tumor and 33.57%, 8.89 s and 355.29% s within the adjacent parenchyma. The peak of enhancement and the ascending curve values were significantly different within the tumor and the adjacent parenchyma. Thus, CEUS allows the quantitative perfusion analysis of pancreatic ductal adenocarcinoma. PMID:24765238

  7. Contrast Enhanced Abdominal Ultrasound in the Assessment of Ileal Inflammation in Crohn’s Disease: A Comparison with MR Enterography

    PubMed Central

    Horjus Talabur Horje, C. S.; Roovers, L.; Groenen, M. J. M.; Wahab, P. J.

    2015-01-01

    Background and Aims To prospectively examine the feasibility and accuracy of Contrast Enhanced Ultrasound (CEUS) in the assessment of Crohn’s disease (CD) activity in the terminal ileum in comparison to Magnetic Resonance Enterography (MRE), using endoscopy as a reference standard. Methods 105 consecutive patients with alleged clinically active CD were assessed by MRE and CEUS. CEUS of the terminal ileum was performed using an intravenous microbubble contrast enhancer. Accuracy values of CEUS and MRE for the presence of active terminal ileitis were evaluated using the Receiver Operating Characteristic method, using endoscopic findings as a reference standard. Sensitivity and specificity values of MRE and CEUS were compared by the McNemar test. Results CEUS was feasible in 98% of patients, MRE in all. Optimal diagnostic accuracy in CEUS was obtained at a peak intensity value of 10%, showing 100% sensitivity, 92% specificity and an accuracy of 99% in demonstrating ileal mucosal inflammation. For MRE, overall sensitivity, specificity and accuracy were, 87%, 100%, and 88%, respectively. CEUS and MRE were highly correlated in assessing length and wall thickness of the terminal ileum. CEUS identified 11 of 16 MRE-detected strictures, but no fistulae. Conclusion The accuracy of CEUS is comparable to that of MRE in the assessment of active, uncomplicated terminal ileal CD and therefore a valuable bedside alternative to MRE in the follow-up of these patients. PMID:26322970

  8. [Color-coded duplex sonography and ultrasound contrast medium in the study of peripheral arteries--initial clinical experiences].

    PubMed

    Fobbe, F; Ohnesorge, I; Reichel, M; Dollinger, P; Schürmann, R; Wolf, K J

    1992-08-01

    Ultrasound contrast agents (US-CA) amplify reflected sound waves. Most substances used as contrast agents are destroyed when passing the lungs. SH U 508 is a new US-CA that can pass the lungs without impairment after peripheral intravenous application. In a clinical trial of this US-CA, we investigated its effect on the visualization of blood movement in peripheral arteries by color-coded Duplex sonography (CCDS). The leg arteries of 20 patients with severe chronic arterial occlusion were examined by CCDS (QAD I and Platinum) after i.v. application of the US-CA. After passage of the pulmonary capillaries, the US-CA amplified blood flow signals in the arterial system in a dose-dependent manner with both systems used. Undesired side-effects were not observed. The amplification produced by appropriate concentrations of the US-CA markedly improved the visualization of blood movement. Further studies are required to determine the optimal dosage and application technique as well as the indication for using this US-CA. PMID:1411473

  9. Interaction of an ultrasound-activated contrast microbubble with a wall at arbitrary separation distances

    NASA Astrophysics Data System (ADS)

    Doinikov, Alexander A.; Bouakaz, Ayache

    2015-10-01

    Both in vitro and in vivo, contrast agent microbubbles move near bounding surfaces, such as the wall of an experimental container or the wall of a blood vessel. This problem inspires interest in theoretical models that predict the effect of a wall on the dynamics of a contrast microbubble. There are models for a bubble at a large distance from a wall and for a bubble adherent to a wall. The aim of the present study is to develop a generalized model that describes the dynamics of a contrast microbubble at arbitrary distances from a wall and thereby make it possible to simulate the acoustic response of the bubble starting from large separation distances up to contact between the bubble and the wall. The wall is assumed to be a plane. Therefore, the developed model applies for in vitro investigations of contrast agents in experimental containers. It can also be used as a first approximation to the case of a contrast microbubble within a large blood vessel. The derivation of the model is based on the multipole expansion of the bubble velocity potential, the image source method, and the Lagrangian formalism. The model consists of two coupled equations, one of which describes the bubble radial oscillation and the second describes the translation of the bubble center. Numerical simulations are performed to determine how the acoustic response of a contrast microbubble depends on the separation distance near walls of different types: rigid, plastic, arterial, etc. The dynamics of the bubble encapsulation is described by the Marmottant shell model. The properties of the plastic wall correspond to OptiCell chambers commonly used in experiments. The results of the simulations show that the bubble resonance frequency near a wall depends on both the separation distance and the wall material properties. In particular, the rigid wall makes the resonance frequency decrease with decreasing separation distance, whereas in the vicinity of the OptiCell wall and the arterial wall, the

  10. Interaction of an ultrasound-activated contrast microbubble with a wall at arbitrary separation distances.

    PubMed

    Doinikov, Alexander A; Bouakaz, Ayache

    2015-10-21

    Both in vitro and in vivo, contrast agent microbubbles move near bounding surfaces, such as the wall of an experimental container or the wall of a blood vessel. This problem inspires interest in theoretical models that predict the effect of a wall on the dynamics of a contrast microbubble. There are models for a bubble at a large distance from a wall and for a bubble adherent to a wall. The aim of the present study is to develop a generalized model that describes the dynamics of a contrast microbubble at arbitrary distances from a wall and thereby make it possible to simulate the acoustic response of the bubble starting from large separation distances up to contact between the bubble and the wall. The wall is assumed to be a plane. Therefore, the developed model applies for in vitro investigations of contrast agents in experimental containers. It can also be used as a first approximation to the case of a contrast microbubble within a large blood vessel. The derivation of the model is based on the multipole expansion of the bubble velocity potential, the image source method, and the Lagrangian formalism. The model consists of two coupled equations, one of which describes the bubble radial oscillation and the second describes the translation of the bubble center. Numerical simulations are performed to determine how the acoustic response of a contrast microbubble depends on the separation distance near walls of different types: rigid, plastic, arterial, etc. The dynamics of the bubble encapsulation is described by the Marmottant shell model. The properties of the plastic wall correspond to OptiCell chambers commonly used in experiments. The results of the simulations show that the bubble resonance frequency near a wall depends on both the separation distance and the wall material properties. In particular, the rigid wall makes the resonance frequency decrease with decreasing separation distance, whereas in the vicinity of the OptiCell wall and the arterial wall, the

  11. Increasing specificity of contrast-enhanced ultrasound imaging using the interaction of quasi counter-propagating wavefronts: a proof of concept.

    PubMed

    Renaud, Guillaume; Bosch, Johan G; van der Steen, Antonius F W; de Jong, Nico

    2015-10-01

    Detection methods implemented in present clinical ultrasound scanners for contrast-enhanced ultrasound imaging show high sensitivity but a rather poor specificity due to pseudo-enhancement (false detection of contrast agent) produced by nonlinear wave propagation. They all require linear ultrasound propagation to detect nonlinear scattering of contrast agent microbubbles. Even at low transmit pressure, nonlinear wave propagation occurs in regions perfused with contrast agent because contrast agent microbubbles can dramatically enhance the nonlinear elastic behavior of the medium. This image artifact hinders further development of contrast-enhanced ultrasound imaging toward reliable quantitative measurement of local concentration of contrast agent and blood perfusion kinetics. We propose in this manuscript a new detection method, with specific beamforming and pulsing scheme, that produces contrast images with highly reduced pseudo-enhancement. It is based on the interaction of two diverging wavefronts broadcasted by two single elements of a conventional probe array. The contrast image is formed line by line; one single image line is the line segment bisector defined by the centers of the two transmitting elements. Each image line is formed by a three-step pulse sequence: (1) transmission with one element, (2) transmission with the other element, and (3) transmission with both elements. The proof of principle is shown with numerical simulations and in vitro experiments. The method is implemented in a programmable ultrasound system and tested in a tissue-mimicking phantom containing a vessel filled with diluted contrast agent. At a given depth, increasing the distance between the two transmitting elements increases the angle describing the propagation directions of the two wavefronts. As a result, the nonlinear interaction between the two broadcasted waves is reduced. We show experimentally that increasing the distance between the transmitting elements from 0.6 to 24

  12. Contrast-enhanced ultrasound improved performance of breast imaging reporting and data system evaluation of critical breast lesions

    PubMed Central

    Luo, Jun; Chen, Ji-Dong; Chen, Qing; Yue, Lin-Xian; Zhou, Guo; Lan, Cheng; Li, Yi; Wu, Chi-Hua; Lu, Jing-Qiao

    2016-01-01

    AIM: To determine whether contrast-enhanced ultrasound (CEUS) can improve the precision of breast imaging reporting and data system (BI-RADS) categorization. METHODS: A total of 230 patients with 235 solid breast lesions classified as BI-RADS 4 on conventional ultrasound were evaluated. CEUS was performed within one week before core needle biopsy or surgical resection and a revised BI-RADS classification was assigned based on 10 CEUS imaging characteristics. Receiver operating characteristic curve analysis was then conducted to evaluate the diagnostic performance of CEUS-based BI-RADS assignment with pathological examination as reference criteria. RESULTS: The CEUS-based BI-RADS evaluation classified 116/235 (49.36%) lesions into category 3, 20 (8.51%), 13 (5.53%) and 12 (5.11%) lesions into categories 4A, 4B and 4C, respectively, and 74 (31.49%) into category 5. Selecting CEUS-based BI-RADS category 4A as an appropriate cut-off gave sensitivity and specificity values of 85.4% and 87.8%, respectively, for the diagnosis of malignant disease. The cancer-to-biopsy yield was 73.11% with CEUS-based BI-RADS 4A selected as the biopsy threshold compared with 40.85% otherwise, while the biopsy rate was only 42.13% compared with 100% otherwise. Overall, only 4.68% of invasive cancers were misdiagnosed. CONCLUSION: This pilot study suggests that evaluation of BI-RADS 4 breast lesions with CEUS results in reduced biopsy rates and increased cancer-to-biopsy yields. PMID:27358689

  13. Nonrigid motion compensation in B-mode and contrast enhanced ultrasound image sequences of the carotid artery

    NASA Astrophysics Data System (ADS)

    Carvalho, Diego D. B.; Akkus, Zeynettin; Bosch, Johan G.; van den Oord, Stijn C. H.; Niessen, Wiro J.; Klein, Stefan

    2014-03-01

    In this work, we investigate nonrigid motion compensation in simultaneously acquired (side-by-side) B-mode ultrasound (BMUS) and contrast enhanced ultrasound (CEUS) image sequences of the carotid artery. These images are acquired to study the presence of intraplaque neovascularization (IPN), which is a marker of plaque vulnerability. IPN quantification is visualized by performing the maximum intensity projection (MIP) on the CEUS image sequence over time. As carotid images contain considerable motion, accurate global nonrigid motion compensation (GNMC) is required prior to the MIP. Moreover, we demonstrate that an improved lumen and plaque differentiation can be obtained by averaging the motion compensated BMUS images over time. We propose to use a previously published 2D+t nonrigid registration method, which is based on minimization of pixel intensity variance over time, using a spatially and temporally smooth B-spline deformation model. The validation compares displacements of plaque points with manual trackings by 3 experts in 11 carotids. The average (+/- standard deviation) root mean square error (RMSE) was 99+/-74μm for longitudinal and 47+/-18μm for radial displacements. These results were comparable with the interobserver variability, and with results of a local rigid registration technique based on speckle tracking, which estimates motion in a single point, whereas our approach applies motion compensation to the entire image. In conclusion, we evaluated that the GNMC technique produces reliable results. Since this technique tracks global deformations, it can aid in the quantification of IPN and the delineation of lumen and plaque contours.

  14. Detailed Analysis of Temporal Features on Contrast Enhanced Ultrasound May Help Differentiate Intrahepatic Cholangiocarcinoma from Hepatocellular Carcinoma in Cirrhosis

    PubMed Central

    Li, Rui; Yuan, Meng-Xia; Ma, Kuan-sheng; Li, Xiao-Wu; Tang, Chun-Lin; Zhang, Xiao-Hang; Guo, De-Yu; Yan, Xiao-Chu

    2014-01-01

    Aim To verify if detailed analysis of temporal enhancement patterns on contrast enhanced ultrasound (CEUS) may help differentiate intrahepatic cholangiocarcinoma (ICC) from hepatocellular carcinoma (HCC) in cirrhosis. Methods Thirty three ICC and fifty HCC in cirrhosis were enrolled in this study. The contrast kinetics of ICC and HCC was analyzed and compared. Results Statistical analysis did not reveal significant difference between ICC and HCC in the time of contrast first appearance and arterial peak maximum time. ICC displayed much earlier washout than that of HCC (47.93±26.45 seconds vs 90.86±31.26 seconds) in the portal phase, and most ICC (87.9%) showed washout before 60 seconds than HCC (16.0%). Much more ICC (78.8%) revealed marked washout than HCC (12.0%) while most HCC (88.0%) showed mild washout or no washout in late part of the portal phase (90–120 seconds). Twenty six out of thirty three ICC (78.8%) demonstrated both early washout(<60seconds) and marked washout in late part of the portal phase, whereas, only six of fifty HCC (12.0%)showed these temporal enhancement features (p = 0.000).When both early washout and marked washout in the portal phase are taken as diagnostic criterion for ICC, the diagnostic sensitivity, specificity, positive predictive value, negative predictive value and accuracy were 78.8%,88.0%,81.3%,86.3%,and 84.3% respectively by CEUS. Conclusions Analysis of detailed temporal enhancement features on CEUS is helpful differentiate ICC from HCC in cirrhosis.If a nodule in cirrhotic liver displays hyper-enhancement in the arterial phase followed by early and marked washout in the portal phase, the nodule is highly suspicious of ICC rather than HCC. PMID:24874413

  15. Bipolar radiofrequency ablation for liver tumors: comparison of contrast-enhanced ultrasound with contrast-enhanced MRI/CT in the posttreatment imaging evaluation

    PubMed Central

    Bo, Xiao-Wan; Xu, Hui-Xiong; Sun, Li-Ping; Zheng, Shu-Guang; Guo, Le-Hang; Lu, Feng; Wu, Jian; Xu, Xiao-Hong

    2014-01-01

    Objective: The aim of the study was to assess the role of contrast-enhanced ultrasound (CEUS) in treatment response evaluation after percutaneous bipolar radiofrequency ablation (BRFA) for liver tumors. Methods: From May 2012 to May 2014, 39 patients with 73 tumors were treated by BRFA. One month after the treatment, CEUS and CEMRI/CECT were conducted to evaluate the treatment response. The results of CEUS were compared with CEMRI/CECT. Results: Of the 73 tumors ablated, eight (11.0%) were found to have residual viable tumor tissue and 65 (89.0%) were successfully ablated based on CEMRI/CECT within 1-month after ablation. CEUS detected seven of the eight residual tumors and 63 of 65 completely ablated tumors. The sensitivity, specificity, positive predictive value, negative predictive value and accuracy of CEUS were 87.5% (7/8), 96.9% (63/65), 77.8% (7/9), 98.4% (63/64) and 95.9% (70/73), respectively. The complete ablation (CR) rates for the tumors ≤3.0 cm, 3.1-5.0 cm, and >5.0 cm were 96.6% (58/60), 63.6% (7/11), and 0% (0/2), respectively (P<0.001). CR rates were 94.7% (36/38) for primary liver tumors and 82.9% (29/35) for metastatic liver tumors (P=0.212), and were 97.4% (38/39) for the tumors with curative treatment intention and 79.4% (27/34) for those with palliative treatment intention (P=0.037). Major complication was not encountered in this series. Conclusions: BRFA is an effective technique of percutaneous ablation for liver tumors and CEUS can be used to assess its therapeutic effect accurately. PMID:25337258

  16. Assessment of carotid plaque neovascularization by contrast-enhanced ultrasound and high sensitivity C-reactive protein test in patients with acute cerebral infarction: a comparative study.

    PubMed

    Xu, Rong; Yin, Xiaohua; Xu, Weixin; Jin, Lin; Lu, Min; Wang, Yingchun

    2016-07-01

    Vulnerable carotid plaque easily ruptures and causes cerebral infarction. Plaque inflammation and neovascularization have both been shown as important characteristics in vulnerable plaque. We assessed neovascularization within carotid plaque using contrast-enhanced ultrasound, and also assessed inflammation, using high sensitivity C-reactive protein (hs-CRP) testing, in acute cerebral infarction patients. A total of 106 patients with acute cerebral infarction and 40 controls were enrolled in the study. All subjects had been previously found to have carotid atherosclerotic plaques, and the plaques were classified as soft plaque, hard plaque, mixed plaque, and calcified plaque, using carotid artery ultrasound. Contrast-enhanced ultrasound was performed on the plaques for quantitative analysis and hs-CRP levels were measured. The results showed that plaque enhancement was present in 81.1 % of cerebral infarction patients and 40.0 % of controls. The contrast parameters for cerebral infarction patients were significantly different from controls. For cerebral infarction patients, soft plaque showed the highest enhanced percentage, 95.1 %, with contrast parameters significantly different to other types of plaque. The hs-CRP levels of enhanced cerebral infarction patients were higher than in non-enhanced patients. Correlation analysis in cerebral infarction patients showed that hs-CRP levels were closely related to the contrast parameters. Acute cerebral infarction patients showed intense contrast enhancement and inflammation in carotid plaque, and different types of plaque had various degrees of enhancement, suggesting that contrast-enhanced ultrasound and hs-CRP might be used for plaque risk stratification. PMID:27021564

  17. Single-Antenna Microwave Ablation Under Contrast-Enhanced Ultrasound Guidance for Treatment of Small Renal Cell Carcinoma: Preliminary Experience

    SciTech Connect

    Carrafiello, Gianpaolo Mangini, Monica Fontana, Federico Recaldini, Chiara Piacentino, Filippo Pellegrino, Carlo Lagana, Domenico; Cuffari, Salvatore; Marconi, Alberto; Fugazzola, Carlo

    2010-04-15

    The purpose of this study was to determine the safety, effectiveness, and feasibility of microwave ablation (MWA) of small renal cell carcinomas (RCCs) in selected patients. Institutional review board and informed consent were obtained. From December 2007 to January 2009, 12 patients (8 male, 4 female) were enrolled in a treatment group, in which percutaneous MWA of small RCCs was performed under contrast-enhanced ultrasound guidance. The tumors were 1.7-2.9 cm in diameter (mean diameter, 2.0 cm).Therapeutic effects were assessed at follow-up with computed tomography. All patients were followed up for 3-14 months (mean, 6 months) to observe the therapeutic effects and complications (according to SIR classification). Assessment was carried out with CT imaging. No severe complications or unexpected side effects were observed after the MWA procedures. In all cases technical success was achieved. Clinical effectiveness was 100%; none of the patients showed recurrence on imaging. In conclusion, our preliminary results support the use of MWA for the treatment of small renal tumors. This technology can be applied in select patients who are not candidates for surgery, as an alternative to other ablative techniques.

  18. Multi-planar dynamic contrast-enhanced ultrasound assessment of blood flow in a rabbit model of testicular torsion.

    PubMed

    Paltiel, Harriet J; Estrada, Carlos R; Alomari, Ahmad I; Stamoulis, Catherine; Passerotti, Carlo C; Meral, F Can; Lee, Richard S; Clement, Gregory T

    2014-02-01

    To assess correlation between multi-planar, dynamic contrast-enhanced ultrasound (US) blood flow measurements and radiolabeled microsphere blood flow measurements, five groups of six rabbits underwent unilateral testicular torsion of 0°, 180°, 360°, 540° or 720°. Five US measurements per testis (three transverse/two longitudinal) were obtained pre-operatively and immediately and 4 and 8 h post-operatively using linear transducers (7-4 MHz/center frequency 4.5 MHz/10 rabbits; 9-3 MHz/center frequency 5.5 MHz/20 rabbits). Björck's linear least-squares method fit the rise phase of mean pixel intensity over a 7-s period for each time curve. Slope of fit and intervention/control US pixel intensity ratios were calculated. Means of transverse, longitudinal and combined transverse/longitudinal US ratios as a function of torsion degree were compared with radiolabeled microsphere ratios using Pearson's correlation coefficient, ρ. There was high correlation between the two sets of ratios (ρ ≥ 0.88, p ≤ 0.05), except for the transverse US ratio in the immediate post-operative period (ρ = 0.79, p = 0.11). These results hold promise for future clinical applications. PMID:24188690

  19. Vascular perfusion kinetics by contrast-enhanced ultrasound are related to synovial microvascularity in the joints of psoriatic arthritis.

    PubMed

    Fiocco, Ugo; Stramare, Roberto; Coran, Alessandro; Grisan, Enrico; Scagliori, Elena; Caso, Francesco; Costa, Luisa; Lunardi, Francesca; Oliviero, Francesca; Bianchi, Fulvia Chieco; Scanu, Anna; Martini, Veronica; Boso, Daniele; Beltrame, Valeria; Vezzù, Maristella; Cozzi, Luisella; Scarpa, Raffaele; Sacerdoti, David; Punzi, Leonardo; Doria, Andrea; Calabrese, Fiorella; Rubaltelli, Leopoldo

    2015-11-01

    The purpose of the study was to assess the relationship of the continuous mode contrast-enhanced harmonic ultrasound (CEUS) imaging with the histopathological and immunohistochemical (IHC) quantitative estimation of microvascular proliferation on synovial samples of patients affected by sustained psoriatic arthritis (PsA). A dedicated linear transducer was used in conjunction with a specific continuous mode contrast enhanced harmonic imaging technology with a second-generation sulfur hexafluoride-filled microbubbles C-agent. The examination was carried out within 1 week before arthroscopic biopsies in 32 active joints. Perfusional parameters were analyzed including regional blood flow (RBF); peak (PEAK) of the C-signal intensity, proportional to the regional blood volume (RBV); beta (β) perfusion frequency; slope (S), representing the inclination of the tangent in the origin; and the refilling time (RT), the reverse of beta. Arthroscopic synovial biopsies were targeted in the hypervascularity areas, as in the same knee recesses assessed by CEUS; the synovial cell infiltrate and vascularity (vessel density) was evaluated by IHC staining of CD45 (mononuclear cell) and CD31, CD105 (endothelial cell) markers, measured by computer-assisted morphometric analysis. In the CEUS area examined, the corresponding time-intensity curves demonstrated a slow rise time. Synovial histology showed slight increased layer lining thickness, perivascular lymphomonocyte cell infiltration, and microvascular remodeling, with marked vessel wall thickening with reduction of the vascular lumen. A significant correlation was found between RT and CD31+ as PEAK and CD105+ vessel density; RT was inversely correlated to RBF, PEAK, S, and β. The study demonstrated the association of the CEUS perfusion kinetics with the histopathological quantitative and morphologic estimation of synovial microvascular proliferation, suggesting that a CEUS imaging represents a reliable tool for the estimate of the

  20. An Ultrasound Contrast Agent targeted to P-selectin detects Activated Platelets at Supra-arterial Shear Flow Conditions

    PubMed Central

    Guenther, Felix; von zur Muhlen, Constantin; Ferrante, Elisa A.; Grundmann, Sebastian; Bode, Christoph; Klibanov, Alexander L.

    2012-01-01

    Objectives To evaluate targeting of a microbubble contrast agent to platelets under high shear flow using the natural selectin ligand sialyl Lewisa. Materials and Methods Biotinylated polyacrylamide Sialyl Lewisa or biotinylated carbohydrate-free polymer (used as a control) were attached to biotinylated microbubbles via a streptavidin linker. Activated human platelets were isolated and attached to fibrinogen-coated culture dishes. Fibrinogen-coated dishes without platelets or platelet dishes blocked by an anti-P-selectin antibody served as negative control substrates. Dishes coated by recombinant P-selectin served as a positive control substrate. Microbubble adhesion was assessed by microscopy in an inverted parallel plate flow chamber, with wall shear stress values of 40, 30, 20, 10 and 5 dynes/cm2. The ratio of binding and passing microbubbles was defined as capture efficiency. Results There was no significant difference between the groups regarding the number of microbubbles in the fluid flow at each shear rate. Sialyl Lewisa-targeted microbubbles were binding and slowly rolling on the surface of activated platelets and P-selectin-coated dishes at all the flow conditions including 40 dynes/cm2. Capture efficiency of targeted microbubbles to activated platelets and recombinant P-selectin decreased with increasing shear flow: at 5 dynes/cm2, capture efficiency was 16.11% on activated platelets vs. 21.83 % on P-selectin, and, at 40 dynes/cm2, adhesion efficiency was still 3.4 % in both groups. There was neither significant adhesion of Sialyl Lewisa-targeted microbubbles to control substrates, nor adhesion of control microbubbles to activated platelets or to recombinant P-selectin. Conclusions Microbubble targeting using sialyl Lewisa, a fast-binding ligand to P-selectin, is a promising strategy for the design of ultrasound contrast binding to activated platelets under high shear stress conditions. PMID:20808239

  1. High-Resolution, High-Contrast Ultrasound Imaging Using a Prototype Dual-Frequency Transducer: In Vitro and In Vivo Studies

    PubMed Central

    Gessner, Ryan; Lukacs, Marc; Lee, Mike; Cherin, Emmanuel; Foster, F. Stuart; Dayton, Paul A.

    2010-01-01

    With recent advances in animal models of disease, there has been great interest in capabilities for high-resolution contrast-enhanced ultrasound imaging. Microbubble contrast agents are unique in that they scatter broadband ultrasound energy because of their nonlinear behavior. For optimal response, it is desirable to excite the microbubbles near their resonant frequency. To date, this has been challenging with high-frequency imaging systems because most contrast agents are resonant at frequencies in the order of several megahertz. Our team has developed a unique dual-frequency confocal transducer which enables low-frequency excitation of bubbles near their resonance with one element, and detection of their emitted high-frequency content with the second element. Using this imaging approach, we have attained an average 12.3 dB improvement in contrast-to-tissue ratios over fundamental mode imaging, with spatial resolution near that of the high-frequency element. Because this detection method does not rely on signal decorrelation, it is not susceptible to corruption by tissue motion. This probe demonstrates contrast imaging capability with significant tissue suppression, enabling high-resolution contrast-enhanced images of microvascular blood flow. Additionally, this probe can readily produce radiation force on flowing contrast agents, which may be beneficial for targeted imaging or therapy. PMID:20679006

  2. A three dimensional model of an ultrasound contrast agent gas bubble and its mechanical effects on microvessels

    PubMed Central

    Hosseinkhah, N.; Hynynen, K.

    2012-01-01

    Ultrasound contrast agents inside a microvessel, when driven by ultrasound, oscillate and induce mechanical stresses on the vessel wall. These mechanical stresses can produce beneficial therapeutic effects but also induce vessel rupture if the stresses are too high. Therefore, it is important to use sufficiently low pressure amplitudes to avoid rupturing the vessels while still inducing the desired therapeutic effects. In this work, we developed a comprehensive three dimensional model of a confined microbubble inside a vessel while considering the bubble shell properties, blood viscosity, vessel wall curvature and the mechanical properties of the vessel wall. Two bubble models with the assumption of a spherical symmetric bubble and a simple asymmetrical bubble were simulated. This work was validated with previous experimental results and enabled us to evaluate the microbubbles’ behaviour and the resulting mechanical stresses induced on the vessel walls. In this study the fluid shear and circumferential stresses were evaluated as indicators of the mechanical stresses. The effects of acoustical parameters, vessel viscoelasticity and rigidity, vessel/bubble size and off-center bubbles on bubble behaviour and stresses on the vessel were investigated. The fluid shear and circumferential stresses acting on the vessel varied with time and location. As the frequency changed, the microbubble oscillated with the highest amplitude at its resonance frequency which was different from the resonance frequency of an unbound bubble. The bubble resonance frequency increased as the rigidity of a flexible vessel increased. The fluid shear and circumferential stresses peaked at frequencies above the bubble’s resonance frequency. The more rigid the vessels were, the more damped the bubble oscillations. The synergistic effect of acoustic frequency and vessel elasticity had also been investigated, since the circumferential stress showed either an increasing trend or a decreasing one

  3. 2-tier in-plane motion correction and out-of-plane motion filtering for contrast-enhanced ultrasound

    PubMed Central

    Ta, Casey N.; Eghtedari, Mohammad; Mattrey, Robert F.; Kono, Yuko; Kummel, Andrew C.

    2014-01-01

    Objectives Contrast-enhanced ultrasound (CEUS) cines of focal liver lesions (FLL) can be quantitatively analyzed to measure tumor perfusion on a pixel-by-pixel basis for diagnostic indication. However, CEUS cines acquired freehand and during free breathing cause non-uniform in-plane and out-of-plane motion from frame to frame. These motions create fluctuations in the time-intensity curves (TIC), reducing accuracy of quantitative measurements. Out-of-plane motion cannot be corrected by image registration in 2D CEUS and degrades the quality of in-plane motion correction (IPMC). A 2-tier IPMC strategy and adaptive out-of-plane motion filter (OPMF) are proposed to provide a stable correction of non-uniform motion to reduce the impact of motion on quantitative analyses. Materials and Methods 22 cines of FLLs were imaged with dual B-mode and contrast specific imaging to acquire a 3-minute TIC. B-mode images were analyzed for motion, and the motion correction was applied to both B-mode and contrast images. For IPMC, the main reference frame was automatically selected for each cine, and subreference frames were selected in each respiratory cycle and sequentially registered toward the main reference frame. All other frames were sequentially registered toward the local subreference frame. Four OPMFs were developed and tested: subsample Normalized Correlation (NC), subsample Sum of Absolute Differences (SAD), mean frame NC, and histogram. The frames that were most dissimilar to the OPMF reference frame using one of the four above criteria in each respiratory cycle were adaptively removed by thresholding against the low-pass filter of the similarity curve. OPMF was quantitatively evaluated by an out-of-plane motion metric (OPMM) that measured normalized variance in the high-pass filtered time-intensity curve within the tumor region-of-interest with low OPMM being the goal. IPMC and OPMF results were qualitatively evaluated by two blinded observers who ranked the motion in the

  4. Motion compensation method using dynamic programming for quantification of neovascularization in carotid atherosclerotic plaques with contrast enhanced ultrasound (CEUS)

    NASA Astrophysics Data System (ADS)

    Akkus, Zeynettin; Hoogi, Assaf; Renaud, Guillaume; ten Kate, Gerrit L.; van den Oord, Stijn C. H.; Schinkel, Arend F. L.; de Jong, Nico; van der Steen, Antonius F. W.; Bosch, Johan G.

    2012-03-01

    Intraplaque neovascularization (IPN) has been linked with progressive atherosclerotic disease and plaque instability in several studies. Quantification of IPN may allow early detection of vulnerable plaques. A dedicated motion compensation method with normalized-cross-correlation (NCC) block matching combined with multidimensional (2D+time) dynamic programming (MDP) was developed for quantification of IPN in small plaques (<30% diameter stenosis). The method was compared to NCC block matching without MDP (forward tracking (FT)) and showed to improve motion tracking. Side-by-side CEUS and B-mode ultrasound images of carotid arteries were acquired by a Philips iU22 system with a L9-3 linear array probe. The motion pattern for the plaque region was obtained from the Bmode images with MDP. MDP results were evaluated in-vitro by a phantom and in-vivo by comparing to manual tracking of three experts for multibeat-image-sequences (MIS) of 11 plaques. In the in-vivo images, the absolute error was 72+/-55μm (mean+/-SD) for X (longitudinal) and 34+/-23μm for Y (radial). The method's success rate was visually assessed on 67 MIS. The tracking was considered failed if it deviated >2 pixels (~200μm) from true motion in any frame. Tracking was scored as fully successful in 63 MIS (94%) for MDP vs. 52(78%) for FT. The range of displacement over these 63 was 1045+/-471μm (X) and 395+/-216μm (Y). The tracking sporadically failed in 4 MIS (6%) due to poor image quality, jugular vein proximity and out-of-plane motion. Motion compensation showed improved lumen-plaque contrast separation. In conclusion, the proposed method is sufficiently accurate and successful for in vivo application.

  5. Breast Ultrasound: Indications and Findings.

    PubMed

    Gundry, Kathleen R

    2016-06-01

    Breast ultrasound is a widely used adjuvant to mammography for the detection of breast cancer. This chapter will review some of the basic ultrasound technical factors and techniques, describe findings on ultrasound with an emphasis on the Breast Imaging Reporting and Data System terminology, and present the indications for breast ultrasound. New innovations in breast ultrasound, such as elastography, ultrasound contrast, 3-dimensional, and automated whole-breast ultrasound, will be reviewed. Ultrasound-guided breast procedures are also presented. PMID:26974219

  6. Preparation and in vitro evaluation of poly(D,L-lactide-co-glycolide) air-filled nanocapsules as a contrast agent for ultrasound imaging.

    PubMed

    Néstor, Mendoza-Muñoz; Kei, Noriega-Peláez Eddy; Guadalupe, Nava-Arzaluz María; Elisa, Mendoza-Elvira Susana; Adriana, Ganem-Quintanar; David, Quintanar-Guerrero

    2011-10-01

    The aim of this study was to prepare air-filled nanocapsules intended ultrasound contrast agents (UCAs) with a biodegradable polymeric shell composed of poly(d,l-lactide-co-glycolide) (PLGA). Because of their size, current commercial UCAs are not capable of penetrating the irregular vasculature that feeds growing tumors. The new generation of UCAs should be designed on the nanoscale to enhance tumor detection, in addition, the polymeric shell in contrast with monomolecular stabilized UCAs improves the mechanical properties against ultrasound pressure and lack of stability. The preparation method of air-filled nanocapsules was based on a modification of the double-emulsion solvent evaporation technique. Air-filled nanocapsules with a mean diameter of 370±96nm were obtained. Electronic microscopies revealed spherical-shaped particles with smooth surfaces and a capsular morphology, with a shell thickness of ∼50nm. Air-filled nanocapsules showed echogenic power in vitro, providing an enhancement of up to 15dB at a concentration of 0.045mg/mL at a frequency of 10MHz. Loss of signal for air-filled nanocapsules was 2dB after 30min, suggesting high stability. The prepared contrast agent in this work has the potential to be used in ultrasound imaging. PMID:21570702

  7. Quantitative assessment of cancer vascular architecture by skeletonization of high-resolution 3-D contrast-enhanced ultrasound images: role of liposomes and microbubbles.

    PubMed

    Molinari, F; Meiburger, K M; Giustetto, P; Rizzitelli, S; Boffa, C; Castano, M; Terreno, E

    2014-12-01

    The accurate characterization and description of the vascular network of a cancer lesion is of paramount importance in clinical practice and cancer research in order to improve diagnostic accuracy or to assess the effectiveness of a treatment. The aim of this study was to show the effectiveness of liposomes as an ultrasound contrast agent to describe the 3-D vascular architecture of a tumor. Eight C57BL/6 mice grafted with syngeneic B16-F10 murine melanoma cells were injected with a bolus of 1,2-Distearoyl-sn-glycero-3-phosphocoline (DSPC)-based non-targeted liposomes and with a bolus of microbubbles. 3-D contrast-enhanced images of the tumor lesions were acquired in three conditions: pre-contrast, after the injection of microbubbles, and after the injection of liposomes. By using a previously developed reconstruction and characterization image processing technique, we obtained the 3-D representation of the vascular architecture in these three conditions. Six descriptive parameters of these networks were also computed: the number of vascular trees (NT), the vascular density (VD), the number of branches, the 2-D curvature measure, the number of vascular flexes of the vessels, and the 3-D curvature. Results showed that all the vascular descriptors obtained by liposome-based images were statistically equal to those obtained by using microbubbles, except the VD which was found to be lower for liposome images. All the six descriptors computed in pre-contrast conditions had values that were statistically lower than those computed in presence of contrast, both for liposomes and microbubbles. Liposomes have already been used in cancer therapy for the selective ultrasound-mediated delivery of drugs. This work demonstrated their effectiveness also as vascular diagnostic contrast agents, therefore proving that liposomes can be used as efficient "theranostic" (i.e. therapeutic 1 diagnostic) ultrasound probes. PMID:24206210

  8. Comparison of dynamic contrast-enhanced MR, ultrasound and optical imaging modalities to evaluate the antiangiogenic effect of PF-03084014 and sunitinib

    PubMed Central

    Zhang, Cathy C; Yan, Zhengming; Giddabasappa, Anand; Lappin, Patrick B; Painter, Cory L; Zhang, Qin; Li, Gang; Goodman, James; Simmons, Brett; Pascual, Bernadette; Lee, Joseph; Levkoff, Ted; Nichols, Tim; Xie, Zhiyong

    2014-01-01

    Noninvasive imaging has been widely applied for monitoring antiangiogenesis therapy in cancer drug discovery. In this report, we used different imaging modalities including high-frequency ultrasound (HFUS), dynamic contrast enhanced-MR (DCE-MR), and fluorescence molecular tomography (FMT) imaging systems to monitor the changes in the tumor vascular properties after treatment with γ-secretase inhibitor PF-03084014. Sunitinib was tested in parallel for comparison. In the MDA-MB-231Luc model, we demonstrated that antiangiogenesis was one of the contributing mechanisms for the therapeutic effect of PF-03084014. By immunohistochemistry and FITC-lectin perfusion assays, we showed that the vascular defects upon treatment with PF-03084014 were associated with Notch pathway modulation, evidenced by a decrease in the HES1 protein and by the changes in VEGFR2 and HIF1α levels, which indicates down-stream effects. Using a 3D power Doppler scanning method, ultrasound imaging showed that the% vascularity in the MDA-MB-231Luc tumor decreased significantly at 4 and 7 days after the treatment with PF-03084014. A decrease in the tumor vessel function was also observed through contrast-enhanced ultrasound imaging with microbubble injection. These findings were consistent with the PF-03084014-induced functional vessel changes measured by suppressing the Ktrans values using DCE-MRI. In contrast, the FMT imaging with the AngioSence 680EX failed to detect any treatment-associated tumor vascular changes. Sunitinib demonstrated an outcome similar to PF-03084014 in the tested imaging modalities. In summary, ultrasound and DCE-MR imaging successfully provided longitudinal measurement of the phenotypic and functional changes in tumor vasculature after treatment with PF-03084014 and sunitinib. PMID:24573979

  9. Combined contrast-enhanced ultrasound and rt-PA treatment is safe and improves impaired microcirculation after reperfusion of middle cerebral artery occlusion.

    PubMed

    Nedelmann, Max; Ritschel, Nouha; Doenges, Simone; Langheinrich, Alexander C; Acker, Till; Reuter, Peter; Yeniguen, Mesut; Pukropski, Jan; Kaps, Manfred; Mueller, Clemens; Bachmann, Georg; Gerriets, Tibo

    2010-10-01

    In monitoring of recanalization and in sonothrombolysis, contrast-enhanced ultrasound (CEUS) is applied in extended time protocols. As extended use may increase the probability of unwanted effects, careful safety evaluation is required. We investigated the safety profile and beneficial effects of CEUS in a reperfusion model. Wistar rats were subjected to filament occlusion of the right middle cerebral artery (MCA). Reperfusion was established after 90 minutes, followed by recombinant tissue-type plasminogen activator (rt-PA) treatment and randomization to additional CEUS (contrast agent: SonoVue; 60 minutes). Blinded outcome evaluation consisted of magnetic resonance imaging (MRI), neurologic assessment, and histology and, in separate experiments, quantitative 3D nano-computed tomography (CT) angiography (900 nm(3) voxel size). Nano-CT revealed severely compromised microcirculation in untreated animals after MCA reperfusion. The rt-PA partially improved hemispheric perfusion. Impairment was completely reversed in animals receiving rt-PA and CEUS. This combination was more effective than treatment with either CEUS without rt-PA or rt-PA and ultrasound or ultrasound alone. In MRI experiments, CEUS and rt-PA treatment resulted in a significantly reduced ischemic lesion volume and edema formation. No unwanted effects were detected on MRI, histology, and intracranial temperature assessment. This study shows that CEUS and rt-PA is safe in the situation of reperfusion and displays beneficial effects on the level of the microvasculature. PMID:20531462

  10. Combined contrast-enhanced ultrasound and rt-PA treatment is safe and improves impaired microcirculation after reperfusion of middle cerebral artery occlusion

    PubMed Central

    Nedelmann, Max; Ritschel, Nouha; Doenges, Simone; Langheinrich, Alexander C; Acker, Till; Reuter, Peter; Yeniguen, Mesut; Pukropski, Jan; Kaps, Manfred; Mueller, Clemens; Bachmann, Georg; Gerriets, Tibo

    2010-01-01

    In monitoring of recanalization and in sonothrombolysis, contrast-enhanced ultrasound (CEUS) is applied in extended time protocols. As extended use may increase the probability of unwanted effects, careful safety evaluation is required. We investigated the safety profile and beneficial effects of CEUS in a reperfusion model. Wistar rats were subjected to filament occlusion of the right middle cerebral artery (MCA). Reperfusion was established after 90 minutes, followed by recombinant tissue-type plasminogen activator (rt-PA) treatment and randomization to additional CEUS (contrast agent: SonoVue; 60 minutes). Blinded outcome evaluation consisted of magnetic resonance imaging (MRI), neurologic assessment, and histology and, in separate experiments, quantitative 3D nano-computed tomography (CT) angiography (900 nm3 voxel size). Nano-CT revealed severely compromised microcirculation in untreated animals after MCA reperfusion. The rt-PA partially improved hemispheric perfusion. Impairment was completely reversed in animals receiving rt-PA and CEUS. This combination was more effective than treatment with either CEUS without rt-PA or rt-PA and ultrasound or ultrasound alone. In MRI experiments, CEUS and rt-PA treatment resulted in a significantly reduced ischemic lesion volume and edema formation. No unwanted effects were detected on MRI, histology, and intracranial temperature assessment. This study shows that CEUS and rt-PA is safe in the situation of reperfusion and displays beneficial effects on the level of the microvasculature. PMID:20531462

  11. Rectal melanoma presenting as a solitary complex cystic liver lesion: role of contrast-specific low-MI real-time ultrasound imaging.

    PubMed

    Corvino, Antonio; Catalano, Orlando; Corvino, Fabio; Petrillo, Antonella

    2016-01-01

    Cystic hepatic metastases arising from malignant melanoma are extremely rare, with the few such cases reported in the literature to date describing indeterminate imaging findings, being focused more on computed tomography. To the best of our knowledge, there is no prior report describing contrast-enhanced ultrasound findings of a solitary cystic liver metastasis from a primary rectal melanoma. We herein describe a case of a 41-year-old patient with a rectal melanoma, in whom the first manifestation of disease was a solitary complex cystic liver metastasis incidentally detected by ultrasound. On admission, our patient was free of specific symptoms and his laboratory test was normal. In this setting, contrast-enhanced ultrasound showed some distinctive features that helped us to make the correct diagnosis, confirmed subsequently by FNAC examination, thus allowing to provide the correct management for our patient. Although cystic metastases are rare, knowledge of CEUS imaging findings will be invaluable for radiologists and other medical subspecialties that may face such cases in the future in helping to provide adequate management for affected patients. PMID:27298643

  12. Contrast-enhanced ultrasound and real-time elastography in the differential diagnosis of malignant and benign thyroid nodules

    PubMed Central

    Sui, Xin; Liu, Huai-Jun; Jia, Hong-Li; Fang, Qin-Mao

    2016-01-01

    The diagnostic value of contrast-enhanced ultrasound (CEUS) or real-time elastography (RTE) alone, as well as a combination of CEUS and RTE, in distinguishing benign from malignant thyroid nodules was investigated. Between August 2012 and June 2014, a total of 97 consecutive patients (50 male and 47 female patients; mean age, 48.6±12.4; age range, 27–70 years) with thyroid nodules referred for surgical treatment were examined by CEUS and RTE. The final diagnosis was obtained based on histological findings. Image analysis of the CEUS and RTE scans was performed. Considering the postoperative pathological results as the golden standard, a receiver operating characteristic (ROC) curve was constructed. Subsequently, the sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV) and accuracy of CEUS alone, RTE alone and CEUS + RTE combination were calculated. Pathological examination showed 66 papillary carcinomas and 43 benign lesions, including 21 adenomas and 22 nodular goiters. The sensitivity, specificity, PPV, NPV and accuracy of CEUS were 81.82, 90.70, 93.10, 90.70 and 85.32%, respectively. In the case of RTE, the sensitivity, specificity, PPV, NPV and accuracy were 80.30, 88.37, 91.38, 88.37 and 83.49%, respectively. Furthermore, the combination of CEUS + RTE had a sensitivity of 95.45%, specificity of 95.35%, PPV of 96.92%, NPV of 95.35% and accuracy of 95.41%. Therefore, the CEUS + RTE combination showed a significantly higher sensitivity and specificity compared with CEUS or RTE alone (all P<0.05). Based on ROC analysis, the area under the curve (AUC) for CEUS, RTE and CEUS + RTE combination was 0.883, 0.863 and 0.959, respectively. The AUC of RTE alone was significantly lower compared with that of the CEUS + RTE combination. In conclusion, our results demonstrate that CEUS + RTE combination significantly increases the diagnostic performance for differential diagnosis of malignant and benign thyroid nodules compared with

  13. CONTRAST-ENHANCED ULTRASOUND ASSESSMENT OF IMPAIRED ADIPOSE TISSUE AND MUSCLE PERFUSION IN INSULIN-RESISTANT MICE

    PubMed Central

    Belcik, J. Todd; Davidson, Brian P.; Foster, Ted; Qi, Yue; Zhao, Yan; Peters, Dawn; Lindner, Jonathan R.

    2015-01-01

    Background In diabetes mellitus reduced perfusion and capillary surface area in skeletal muscle, which is a major glucose storage site, contributes to abnormal glucose homeostasis. Using contrast-enhanced ultrasound (CEU) we investigated whether abdominal adipose tissue perfusion is abnormal in insulin resistance (IR) and correlates with glycemic control. Methods and Results Abdominal adipose tissue and skeletal muscle CEU perfusion imaging was performed in obese IR (db/db) mice at 11-12 or 14-16 weeks of age, and in control lean mice. Time-intensity data were analyzed to quantify microvascular blood flow (MBF) and capillary blood volume (CBV). Blood glucose response over one hour was measured after insulin challenge (1 u/Kg, I.P.). Compared to control mice, db/db mice at 11-12 and 14-16 weeks had a higher glucose concentration area-under-the-curve after insulin (11.8±2.8, 20.6±4.3, and 28.4±5.9 mg·min/dL [×1000], respectively, p=0.0002), and also had lower adipose MBF (0.094±0.038, 0.035±0.010, and 0.023±0.01 mL/min/g, p=0.0002) and CBV (1.6±0.6, 1.0±0.3, and 0.5±0.1 mL/100 g, p=0.0017). The glucose area-under-the-curve correlated in a non-linear fashion with both adipose and skeletal muscle MBF and CBV. There were significant linear correlations between adipose and muscle MBF (r=0.81) and CBV (r=0.66). Adipocyte cell volume on histology was 25-fold higher in 14-16 week db/db versus control mice. Conclusions Abnormal adipose MBF and CBV in IR can be detected by CEU and correlates with the degree of impairment in glucose storage. Abnormalities in adipose tissue and muscle appear to be coupled. Impaired adipose tissue perfusion is in part explained by an increase in adipocyte size without proportional vascular response. PMID:25855669

  14. Duplex ultrasound

    MedlinePlus

    Vascular ultrasound; Peripheral vascular ultrasound ... A duplex ultrasound combines traditional ultrasound with Doppler ultrasound . Traditional ultrasound uses sound waves that bounce off blood vessels to create ...

  15. A Two-Criterion Model for Microvascular Bio-Effects Induced In Vivo by Contrast Microbubbles Exposed to Medical Ultrasound.

    PubMed

    Church, Charles C; Miller, Douglas L

    2016-06-01

    The mechanical index (MI) is a theoretical exposure parameter for cavitational bio-effects of diagnostic ultrasound. The theory for the MI assumed that bubbles of all relevant sizes exist in tissue, a condition that is approximated for tissues that include a microbubble contrast agent. Therefore, the MI should allow science-based safety guidance for contrast-enhanced diagnostic ultrasound. However, theoretical predictions of bio-effects thresholds based on the MI typically do not concur with the frequency dependence of experimentally measured thresholds for bio-effects. For example, experimental thresholds for glomerular capillary hemorrhage in rats infused with contrast microbubbles increased approximately linearly with frequency, whereas the MI predicted a square root dependence. Here, cavitation thresholds were computed for linear versions of the acoustic pulses used in that study assuming bubbles containing either air, C3F8, or a 1:1 mixture of the two and surrounded by either blood or kidney tissue. Although no single threshold criterion was successful, combining results for one criterion that maximized circumferential stress in the capillary wall with another that ensured an inertial collapse produced thresholds that were consistent with experimental data. This suggests that a contrast-specific safety metric may be achieved following validation of this two-criterion model. PMID:27033330

  16. Influence of nesting shell size on brightness longevity and resistance to ultrasound-induced dissolution during enhanced B-mode contrast imaging.

    PubMed

    Wallace, N; Dicker, S; Lewin, P; Wrenn, S P

    2014-12-01

    This study aims to bridge the gap between transport mechanisms of an improved ultrasound contrast agent (UCA) and its resulting behavior in a clinical imaging study. Phospholipid-shelled microbubbles nested within the aqueous core of a polymer microcapsule are examined for their use and feasibility as an improved UCA. The nested formulation provides contrast comparable to traditional formulations, specifically an SF6 microbubble coated by a DSPC PEG-3000 monolayer, with the advantage that contrast persists at least nine times longer in a mock clinical, in vitro setting. The effectiveness of the sample was measured using a contrast ratio in units of decibels (dB) which compares the brightness of the nested microbubbles to a reference value of a phantom tissue mimic. During a 40min imaging study, six nesting formulations with average outer capsule diameters of 1.95, 2.53, 5.55, 9.95, 14.95, and 20.51μm reached final contrast ratio values of 0.25, 2.35, 3.68, 4.51, 5.93, and 8.00dB, respectively. The starting contrast ratio in each case was approximately 8dB and accounts for the brightness attributed to the nesting shell. As compared with empty microcapsules (no microbubbles nested within), enhancement of the initial contrast ratio increased systematically with decreasing microcapsule size. The time required to reach a steady state in the temporal contrast ratio profile also varied with microcapsule diameter and was found to be 420s for each of the four smallest shell diameters and 210s and 150s, respectively, for the largest two shell diameters. All nested formulations were longer-lived and gave higher final contrast ratios than a control sample comprising un-nested, but otherwise equivalent, microbubbles. Specifically, the contrast ratio of the un-nested microbubbles decreased to a negative value after 4min of continuous ultrasound exposure with complete disappearance of the microbubbles after 15min whereas all nested formulations maintained positive contrast ratio

  17. Cyanine 5.5 conjugated nanobubbles as a tumor selective contrast agent for dual ultrasound-fluorescence imaging in a mouse model.

    PubMed

    Mai, Liyi; Yao, Anna; Li, Jing; Wei, Qiong; Yuchi, Ming; He, Xiaoling; Ding, Mingyue; Zhou, Qibing

    2013-01-01

    Nanobubbles and microbubbles are non-invasive ultrasound imaging contrast agents that may potentially enhance diagnosis of tumors. However, to date, both nanobubbles and microbubbles display poor in vivo tumor-selectivity over non-targeted organs such as liver. We report here cyanine 5.5 conjugated nanobubbles (cy5.5-nanobubbles) of a biocompatible chitosan-vitamin C lipid system as a dual ultrasound-fluorescence contrast agent that achieved tumor-selective imaging in a mouse tumor model. Cy5.5-nanobubble suspension contained single bubble spheres and clusters of bubble spheres with the size ranging between 400-800 nm. In the in vivo mouse study, enhancement of ultrasound signals at tumor site was found to persist over 2 h while tumor-selective fluorescence emission was persistently observed over 24 h with intravenous injection of cy5.5-nanobubbles. In vitro cell study indicated that cy5.5-flurescence dye was able to accumulate in cancer cells due to the unique conjugated nanobubble structure. Further in vivo fluorescence study suggested that cy5.5-nanobubbles were mainly located at tumor site and in the bladder of mice. Subsequent analysis confirmed that accumulation of high fluorescence was present at the intact subcutaneous tumor site and in isolated tumor tissue but not in liver tissue post intravenous injection of cy5.5-nanobubbles. All these results led to the conclusion that cy5.5-nanobubbles with unique crosslinked chitosan-vitamin C lipid system have achieved tumor-selective imaging in vivo. PMID:23637799

  18. Cyanine 5.5 Conjugated Nanobubbles as a Tumor Selective Contrast Agent for Dual Ultrasound-Fluorescence Imaging in a Mouse Model

    PubMed Central

    Li, Jing; Wei, Qiong; Yuchi, Ming; He, Xiaoling; Ding, Mingyue; Zhou, Qibing

    2013-01-01

    Nanobubbles and microbubbles are non-invasive ultrasound imaging contrast agents that may potentially enhance diagnosis of tumors. However, to date, both nanobubbles and microbubbles display poor in vivo tumor-selectivity over non-targeted organs such as liver. We report here cyanine 5.5 conjugated nanobubbles (cy5.5-nanobubbles) of a biocompatible chitosan–vitamin C lipid system as a dual ultrasound-fluorescence contrast agent that achieved tumor-selective imaging in a mouse tumor model. Cy5.5-nanobubble suspension contained single bubble spheres and clusters of bubble spheres with the size ranging between 400–800 nm. In the in vivo mouse study, enhancement of ultrasound signals at tumor site was found to persist over 2 h while tumor-selective fluorescence emission was persistently observed over 24 h with intravenous injection of cy5.5-nanobubbles. In vitro cell study indicated that cy5.5-flurescence dye was able to accumulate in cancer cells due to the unique conjugated nanobubble structure. Further in vivo fluorescence study suggested that cy5.5-nanobubbles were mainly located at tumor site and in the bladder of mice. Subsequent analysis confirmed that accumulation of high fluorescence was present at the intact subcutaneous tumor site and in isolated tumor tissue but not in liver tissue post intravenous injection of cy5.5-nanobubbles. All these results led to the conclusion that cy5.5-nanobubbles with unique crosslinked chitosan–vitamin C lipid system have achieved tumor-selective imaging in vivo. PMID:23637799

  19. A modified commercial ultrasound scanner used for in vivo photoacoustic imaging of nude mice injected with non-targeted contrast agents

    NASA Astrophysics Data System (ADS)

    Jankovic, Ladislav; Shahzad, Khalid; Wang, Yao; Burcher, Michael; Scholle, Frank-Detlef; Hauff, Peter; Mofina, Sabine; Skobe, Mihaela

    2008-02-01

    Photoacoustic (PA) experiments were performed using a modified commercial ultrasound scanner equipped with an array transducer and a Nd:YAG pumped OPO laser. The contrast agent SIDAG (Bayer Schering Pharma AG, Germany), used to enhance the optical absorption, demonstrated an expected pharmacokinetic behavior of the dye in the tumor and in the bladder of the nude mice. A typical behavior in the tumor consisted of an initial linear increase in PA signal followed by an exponential decay. PA signal approached the pre-injection level after about one hour following the dye injection, which was consistent with the behavior for such contrast agents when used in other imaging modalities, such as fluorescence imaging. The in-vivo spectral PA data from the mouse bladder, conducted 1.5 hours after the dye injection, clearly demonstrated presence of the dye. The multi-spectral PA data was obtained at 760nm, 784nm and 850nm laser excitations. The PA intensities obtained at these three wavelengths accurately matched the dye absorption spectrum. In addition, in the kidney, a clearance organ for this contrast agent, both in-vivo and ex-vivo results demonstrated a significant increase (~ 40%) in the ratio of PA signal at 760nm (the peak of the dye absorption) relative to the signal at 850nm (<1% absorption), indicating significant amounts of the dye in this organ. Our initial results confirm the desired photoacoustic properties of the contrast agent, indicating its great potential to be used for imaging with a commercial array-based ultrasound scanner.

  20. Radiofrequency ablation for hepatocellular carcinoma: utility of conventional ultrasound and contrast-enhanced ultrasound in guiding and assessing early therapeutic response and short-term follow-up results.

    PubMed

    Du, Jing; Li, Hong-Li; Zhai, Bo; Chang, Samuel; Li, Feng-Hua

    2015-09-01

    The purpose of this study was to assess the efficacy of conventional ultrasound (US) and contrast-enhanced ultrasound (CEUS) in guiding and assessing early therapeutic response to radiofrequency (RF) ablation for hepatocellular carcinomas (HCCs; up to 3 lesions, each ≤3 cm in diameter) and to report the short-term follow-up results. Between September 2011 and January 2013, 63 patients with 78 HCCs (≤3 cm) underwent conventional US- and CEUS-guided percutaneous RF ablation. CEUS was repeated after 20-30 min to assess therapeutic response, and local efficacy was further confirmed by contrast-enhanced magnetic resonance imaging (MRI) 1 mo after tumor ablation. Patients were followed periodically to look for local tumor or disease progression. Survival probability was estimated with the Kaplan-Meier method. Complete ablation was achieved for 76 (97.4%) of 78 HCCs in one (n = 73) or two (n = 3) sessions. No major complications were observed in any patient. The overall concordance in assessment of therapeutic efficacy of RF ablation between CEUS and MRI was 97.4% (76/78 tumors). The concordance test gave a value of κ = 0.74 (p < 0.001), indicating that CEUS had a high diagnostic agreement with MRI. During a mean follow-up of 20 mo, the local tumor progression rate was 5.3% (4/76 tumors). The 1-, 1.5- and 2-y cumulative survival rates were 98.4%, 96.1% and 92.6%, respectively. Although CEUS has some intrinsic limitations, the combined use of conventional US and CEUS provides a safe and efficient tool to guide RF ablation for HCCs 3 cm or smaller, with encouraging results in terms of survival rate and minimal complications. Moreover, the immediate post-procedural CEUS can be a reliable alternative to contrast-enhanced MRI for assessing the early therapeutic response to RF ablation. PMID:26055968

  1. Influence of temperature, needle gauge and injection rate on the size distribution, concentration and acoustic responses of ultrasound contrast agents at high frequency.

    PubMed

    Sun, Chao; Panagakou, Ioanna; Sboros, Vassilis; Butler, Mairead B; Kenwright, David; Thomson, Adrian J W; Moran, Carmel M

    2016-08-01

    This paper investigated the influence of needle gauge (19G and 27G), injection rate (0.85ml·min(-1), 3ml·min(-1)) and temperature (room temperature (RT) and body temperature (BT)) on the mean diameter, concentration, acoustic attenuation, contrast to tissue ratio (CTR) and normalised subharmonic intensity (NSI) of three ultrasound contrast agents (UCAs): Definity, SonoVue and MicroMarker (untargeted). A broadband substitution technique was used to acquire the acoustic properties over the frequency range 17-31MHz with a preclinical ultrasound scanner Vevo770 (Visualsonics, Canada). Significant differences (P<0.001-P<0.05) between typical in vitro setting (19G needle, 3ml·min(-1) at RT) and typical in vivo setting (27G needle, 0.85ml·min(-1) at BT) were found for SonoVue and MicroMarker. Moreover we found that the mean volume-based diameter and concentration of both SonoVue and Definity reduced significantly when changing from typical in vitro to in vivo experimental set-ups, while those for MicroMarker did not significantly change. From our limited measurements of Definity, we found no significant change in attenuation, CTR and NSI with needle gauge. For SonoVue, all the measured acoustic properties (attenuation, CTR and NSI) reduced significantly when changing from typical in vitro to in vivo experimental conditions, while for MicroMarker, only the NSI reduced, with attenuation and CTR increasing significantly. These differences suggest that changes in physical compression and temperature are likely to alter the shell structure of the UCAs resulting in measureable and significant changes in the physical and high frequency acoustical properties of the contrast agents under typical in vitro and preclinical in vivo experimental conditions. PMID:27140502

  2. Three-dimensional transcranial ultrasound imaging with bilateral phase aberration correction of multiple isoplanatic patches: A pilot human study with microbubble contrast enhancement

    PubMed Central

    Lindsey, Brooks D.; Nicoletto, Heather A.; Bennett, Ellen R.; Laskowitz, Daniel T.; Smith, Stephen W.

    2013-01-01

    With stroke currently the second-leading cause of death globally, and 87% of all strokes classified as ischemic, the development of a fast, accessible, cost-effective approach for imaging occlusive stroke could have a significant impact on healthcare outcomes and costs. While clinical examination and standard CT alone do not provide adequate information for understanding the complex temporal events that occur during an ischemic stroke, ultrasound imaging is well-suited to the task of examining blood flow dynamics in real-time and may allow for localization of a clot. A prototype bilateral 3D ultrasound imaging system utilizing two matrix array probes on either side of the head allows for correction of skull-induced aberration throughout two entire phased array imaging volumes. We investigated the feasibility of applying this custom correction technique in 5 healthy volunteers with Definity® microbubble contrast enhancement. Subjects were scanned simultaneously via both temporal acoustic windows in 3D color flow mode. The number of color flow voxels above a common threshold increased due to aberration correction in 5/5 subjects, with a mean increase of 33.9%. The percentage of large arteries visualized in 3D color Doppler imaging increased from 46% without aberration correction to 60% with aberration correction. PMID:24239360

  3. 33 CFR 165.110 - Safety and Security Zone; Liquefied Natural Gas Carrier Transits and Anchorage Operations, Boston...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...; Liquefied Natural Gas Carrier Transits and Anchorage Operations, Boston, Massachusetts. 165.110 Section 165... Limited Access Areas First Coast Guard District § 165.110 Safety and Security Zone; Liquefied Natural Gas.... Deepwater port means any facility or structure meeting the definition of deepwater port in 33 CFR...

  4. 33 CFR 165.110 - Safety and Security Zone; Liquefied Natural Gas Carrier Transits and Anchorage Operations, Boston...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...; Liquefied Natural Gas Carrier Transits and Anchorage Operations, Boston, Massachusetts. 165.110 Section 165... Limited Access Areas First Coast Guard District § 165.110 Safety and Security Zone; Liquefied Natural Gas.... Deepwater port means any facility or structure meeting the definition of deepwater port in 33 CFR...

  5. 33 CFR 165.110 - Safety and Security Zone; Liquefied Natural Gas Carrier Transits and Anchorage Operations, Boston...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...; Liquefied Natural Gas Carrier Transits and Anchorage Operations, Boston, Massachusetts. 165.110 Section 165... Limited Access Areas First Coast Guard District § 165.110 Safety and Security Zone; Liquefied Natural Gas.... Deepwater port means any facility or structure meeting the definition of deepwater port in 33 CFR...

  6. 33 CFR 165.110 - Safety and Security Zone; Liquefied Natural Gas Carrier Transits and Anchorage Operations, Boston...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...; Liquefied Natural Gas Carrier Transits and Anchorage Operations, Boston, Massachusetts. 165.110 Section 165... Limited Access Areas First Coast Guard District § 165.110 Safety and Security Zone; Liquefied Natural Gas.... Deepwater port means any facility or structure meeting the definition of deepwater port in 33 CFR...

  7. 33 CFR 165.110 - Safety and Security Zone; Liquefied Natural Gas Carrier Transits and Anchorage Operations, Boston...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...; Liquefied Natural Gas Carrier Transits and Anchorage Operations, Boston, Massachusetts. 165.110 Section 165... Limited Access Areas First Coast Guard District § 165.110 Safety and Security Zone; Liquefied Natural Gas.... Deepwater port means any facility or structure meeting the definition of deepwater port in 33 CFR...

  8. Potentiating intra-arterial sonothrombolysis for acute ischemic stroke by the addition of the ultrasound contrast agents (Optison™ & SonoVue®)

    PubMed Central

    Singhal, Ruchi; Obtera, Melissa; Roy, Ronald A.; Clark, Wayne M.; Hansmann, Douglas R.

    2010-01-01

    Transcranial ultrasound in combination with intravenously administered ultrasound contrast agents (UCA) in the presence or absence of recombinant tissue plasminogen activator (rt-PA) has been widely evaluated as a new modality for treatment of ischemic stroke. Despite the successful demonstration of accelerated clot lysis there are inherent limitations associated with this modality such as inconsistency in temporal window thickness and/or potential serious cardiopulmonary reactions to intravenous administration of UCA that prevent broad application to ischemic stroke populations. As a complementary modality, we evaluated potential lysis enhancement by intraarterial ultrasound with concurrent intra-clot delivery of UCA and rt-PA. To this end, clots were formed with average pore diameter similar to clinically retracted clots by adjusting the thrombin concentration. Physical characteristic and retention of UCA after delivery through the catheter as a function of clinically relevant flow rates of 6, 12, 18 ml/h were determined using a microscopic method. The ability of the UCA employed in this study, Optison and SonoVue, to penetrate into the clot was verified using ultrasound B-mode imaging. Clot lysis as a function of rt-PA concentration, 0.009 through 0.5 mg/ml, in the presence and absence of UCA diluted to 1:10, 1:100, and 1:200 v/v at two Peak rarefaction acoustic pressures of 1.3 and 2.1 MPa were evaluated using a weighing method. The study results suggest the addition of only 0.02 ml of 1:100 diluted UCA to rt-PA of 0.009, 0.05, 0.3, and 0.5 mg/ml can enhance the lysis rate by 3.9, 2.6, 1.9 and 1.8 fold in the presence of peak rarefaction acoustic pressure of 1.3 MPa and by 5.1, 3.4, 2.6, 3.1 in the presence of peak rarefaction acoustic pressure of 2.1 MPa, respectively. In addition, Optison and SonoVue demonstrated comparable effectiveness in enhancing the clot lysis rate. Addition of UCA to intra-arterial sonothrombolysis could be considered as a viable

  9. American Institute of Ultrasound in Medicine

    MedlinePlus

    ... In | My Account | Renew | Join About Us Leadership History Awards Committees Mission & Constitution Join/Renew Communities Basic Science and Instrumentation Cardiovascular Ultrasound Contrast-Enhanced Ultrasound Dermatology ...

  10. Contrast-enhanced, real-time volumetric ultrasound imaging of tissue perfusion: preliminary results in a rabbit model of testicular torsion

    NASA Astrophysics Data System (ADS)

    Paltiel, H. J.; Padua, H. M.; Gargollo, P. C.; Cannon, G. M., Jr.; Alomari, A. I.; Yu, R.; Clement, G. T.

    2011-04-01

    Contrast-enhanced ultrasound (US) imaging is potentially applicable to the clinical investigation of a wide variety of perfusion disorders. Quantitative analysis of perfusion is not widely performed, and is limited by the fact that data are acquired from a single tissue plane, a situation that is unlikely to accurately reflect global perfusion. Real-time perfusion information from a tissue volume in an experimental rabbit model of testicular torsion was obtained with a two-dimensional matrix phased array US transducer. Contrast-enhanced imaging was performed in 20 rabbits during intravenous infusion of the microbubble contrast agent Definity® before and after unilateral testicular torsion and contralateral orchiopexy. The degree of torsion was 0° in 4 (sham surgery), 180° in 4, 360° in 4, 540° in 4, and 720° in 4. An automated technique was developed to analyze the time history of US image intensity in experimental and control testes. Comparison of mean US intensity rate of change and of ratios between mean US intensity rate of change in experimental and control testes demonstrated good correlation with testicular perfusion and mean perfusion ratios obtained with radiolabeled microspheres, an accepted 'gold standard'. This method is of potential utility in the clinical evaluation of testicular and other organ perfusion.

  11. Study of Tissue Phantoms, Tissues, and Contrast Agent with the Biophotoacoustic Radar and Comparison to Ultrasound Imaging for Deep Subsurface Imaging

    NASA Astrophysics Data System (ADS)

    Alwi, R.; Telenkov, S.; Mandelis, A.; Gu, F.

    2012-11-01

    In this study, the imaging capability of our wide-spectrum frequency-domain photoacoustic (FD-PA) imaging alias "photoacoustic radar" methodology for imaging of soft tissues is explored. A practical application of the mathematical correlation processing method with relatively long (1 ms) frequency-modulated optical excitation is demonstrated for reconstruction of the spatial location of the PA sources. Image comparison with ultrasound (US) modality was investigated to see the complementarity between the two techniques. The obtained results with a phased array probe on tissue phantoms and their comparison to US images demonstrated that the FD-PA technique has strong potential for deep subsurface imaging with excellent contrast and high signal-to-noise ratio. FD-PA images of blood vessels in a human wrist and an in vivo subcutaneous tumor in a rat model are presented. As in other imaging modalities, the employment of contrast agents is desirable to improve the capability of medical diagnostics. Therefore, this study also evaluated and characterized the use of Food and Drug Administration (FDA)-approved superparamagnetic iron oxide nanoparticles (SPION) as PA contrast agents.

  12. Development of a new Sonovue™ contrast-enhanced ultrasound approach reveals temporal and age-related features of muscle microvascular responses to feeding

    PubMed Central

    Mitchell, William Kyle; Phillips, Bethan E; Williams, John P; Rankin, Debbie; Smith, Kenneth; Lund, Jonathan N; Atherton, Philip J

    2013-01-01

    Compromised limb blood flow in aging may contribute to the development of sarcopenia, frailty, and the metabolic syndrome. We developed a novel contrast-enhanced ultrasound technique using Sonovue™ to characterize muscle microvasculature responses to an oral feeding stimulus (15 g essential amino acids) in young (∼20 years) and older (∼70 years) men. Intensity-time replenishment curves were made via an ultrasound probe “fixed” over the quadriceps, with intermittent high mechanical index destruction of microbubbles within muscle vasculature. This permitted real-time measures of microvascular blood volume (MBV), microvascular flow velocity (MFV) and their product, microvascular blood flow (MBF). Leg blood flow (LBF) was measured by Doppler and insulin by enzyme-linked immunosorbent assay. Steady-state contrast concentrations needed for comparison between different physiological states were achieved <150 sec from commencing Sonovue™ infusion, and MFV and MBV measurements were completed <120 sec thereafter. Interindividual coefficients of variation in MBV and MFV were 35–40%, (N = 36). Younger men (N = 6) exhibited biphasic vascular responses to feeding with early increases in MBV (+36%, P < 0.008 45 min post feed) reflecting capillary recruitment, and late increases in MFV (+77%, P < 0.008) and MBF (+130%, P < 0.007 195 min post feed) reflecting more proximal vessel dilatation. Early MBV responses were synchronized with peak insulin but not increased LBF, while later changes in MFV and MBF occurred with insulin at post absorptive values but alongside increased LBF. All circulatory responses were absent in old men (N = 7). Thus, impaired postprandial circulation could impact age-related declines in muscle glucose disposal, protein anabolism, and muscle mass. PMID:24303186

  13. Comparison of trans-perineal ultrasound-guided pressure augmented saline colostomy distension study and conventional contrast radiographic colostography in children with anorectal malformation

    PubMed Central

    Ekwunife, Okechukwu Hyginus; Umeh, Eric Okechukwu; Ugwu, Jideofor Okechukwu; Ebubedike, Uzoamaka Rufina; Okoli, Chinedu Christian; Modekwe, Victor Ifeanyichukwu; Elendu, Kelechi Collins

    2016-01-01

    Background: In children with high and intermediate anorectal malformation, distal colostography is an important investigation done to determine the relationship between the position of the rectal pouch and the probable site of the neo-anus as well as the presence or absence of a fistula. Conventionally, this is done using contrast with fluoroscopy or still X-ray imaging. This, however, has the challenges of irradiation, availability and affordability, especially in developing countries. This study compared the accuracy of trans-perineal ultrasound-guided pressure augmented saline colostomy distension study (SCDS) with conventional contrast distal colostography (CCDC) in the determination of the precise location of the distal rectal pouch and in detecting the presence and site of fistulous communication between the rectum and the urogenital tract was studied. Materials and Methods: Trans-perineal ultrasound-guided pressure augmented SCDS, CCDC and intra-operative measurements were done sequentially for qualified infants with anorectal malformation and colostomy. Pouch skin distance and presence or absence of recto urinary or genital fistula was measured prospectively in each case. Statistical significance was inferred at P-value of <0.01. Results: There were thirteen infants, 9 males and 4 females. The age at onset of investigation ranged from 2 to 12 months with a median value of 9 months. Using paired t-test at a confidence interval of 95%, the P value when SCDS values are compared with CCDC is 0.19; and 0.06 when SCDS was compared with intra-operative measurements. Hence, there is no statistical difference as P > 0.01. On its ability to detect presence or absence of a fistula: SCDS had a sensitivity of 50.0%, specificity of 100.0%, accuracy of 69.2%, negative predictive value of fistulas of 55.6% and a positive predictive value of fistulas of 100.0%. Conclusion: Ultrasound-guided pressure augmented SCDS can safely and reliably be used to assess the distal colonic

  14. Can Doppler or contrast-enhanced ultrasound analysis add diagnostically important information about the nature of breast lesions?

    PubMed Central

    Stanzani, Daniela; Chala, Luciano F.; de Barros, Nestor; Cerri, Giovanni G.; Chammas, Maria Cristina

    2014-01-01

    OBJECTIVES: Despite evidence suggesting that Doppler ultrasonography can help to differentiate between benign and malignant breast lesions, it is rarely applied in clinical practice. The aim of this study was to determine whether certain vascular features of breast masses observed by duplex Doppler and color Doppler ultrasonography (before and/or after microbubble contrast injection) add information to the gray-scale analysis and support the Breast Imaging-Reporting and Data System (BI-RADS) classification. METHODS: Seventy solid lesions were prospectively evaluated with gray-scale ultrasonography, color Doppler ultrasonography, and contrast-enhanced ultrasonography. The morphological analysis and lesion vascularity were correlated with the histological results. RESULTS: Percutaneous core biopsies revealed that 25/70 (17.5%) lesions were malignant, while 45 were benign. Hypervascular lesions with tortuous and central vessels, a resistive index (RI)≥0.73 before contrast injection, and an RI≥0.75 after contrast injection were significantly predictive of malignancy (p<0.001). CONCLUSION: The combination of gray-scale ultrasonography data with unenhanced or enhanced duplex Doppler and color Doppler US data can provide diagnostically useful information. These techniques can be easily implemented because Doppler devices are already present in most health centers. PMID:24519198

  15. Comparison of blood velocity measurements between ultrasound Doppler and accelerated phase-contrast MR angiography in small arteries with disturbed flow

    NASA Astrophysics Data System (ADS)

    Jiang, Jingfeng; Strother, Charles; Johnson, Kevin; Baker, Sara; Consigny, Dan; Wieben, Oliver; Zagzebski, James

    2011-03-01

    Ultrasound Doppler (UD) velocity measurements are commonly used to quantify blood flow velocities in vivo. The aim of our work was to investigate the accuracy of in vivo spectral Doppler measurements of velocity waveforms. Waveforms were derived from spectral Doppler signals and corrected for intrinsic spectral broadening errors by applying a previously published algorithm. The method was tested in a canine aneurysm model by determining velocities in small arteries (3-4 mm diameter) near the aneurysm where there was moderately disturbed flow. Doppler results were compared to velocity measurements in the same arteries acquired with a rapid volumetric phase contrast MR angiography technique named phase contrast vastly undersampled isotropic projection reconstruction magnetic resonance angiography (PC-VIPR MRA). After correcting for intrinsic spectral broadening, there was a high degree of correlation between velocities obtained by the real-time UD and the accelerated PC-MRA technique. The peak systolic velocity yielded a linear correlation coefficient of r = 0.83, end diastolic velocity resulted in r = 0.81, and temporally averaged mean velocity resulted in r = 0.76. The overall velocity waveforms obtained by the two techniques were also highly correlated (r = 0.89 ± 0.06). There were, however, only weak correlations for the pulsatility index (PI: 0.25) and resistive index (RI: 0.14) derived from the two techniques. Results demonstrate that to avoid overestimations of peak systolic velocities, the results for UD must be carefully corrected to compensate for errors caused by intrinsic spectral broadening.

  16. Oral contrast enhanced bowel ultrasonography in the assessment of small intestine Crohn’s disease. A prospective comparison with conventional ultrasound, x ray studies, and ileocolonoscopy

    PubMed Central

    Parente, F; Greco, S; Molteni, M; Anderloni, A; Sampietro, G M; Danelli, P G; Bianco, R; Gallus, S; Bianchi Porro, G

    2004-01-01

    Background/Aim: Although ultrasound (US) has proved to be useful in intestinal diseases, barium enteroclysis (BE) remains the gold standard technique for assessing patients with small bowel Crohn’s disease (CD). The ingestion of anechoic non-absorbable solutions has been recently proposed in order to distend intestinal loops and improve small bowel visualisation. The authors’ aim was to evaluate the accuracy of oral contrast US in finding CD lesions, assessing their extent within the bowel, and detecting luminal complications, compared with BE and ileocolonoscopy. Methods: 102 consecutive patients with proven CD, having undergone complete x ray and endoscopic evaluation, were enrolled in the study. Each US examination, before and after the ingestion of a polyethylene glycol (PEG) solution (500–800 ml), was performed independently by two sonographers unaware of the results of other diagnostic procedures. The accuracy of conventional and contrast enhanced US in detecting CD lesions and luminal complications, as well as the extent of bowel involvement, were determined. Interobserver agreement between sonographers with both US techniques was also estimated. Results: After oral contrast, satisfactory distension of the intestinal lumen was obtained in all patients, with a mean time to reach the terminal ileum of 31.4 (SD 10.9) minutes. Overall sensitivity of conventional and oral contrast US in detecting CD lesions were 91.4% and 96.1%, respectively. The correlation coefficient between US and x ray extent of ileal disease was r1 = 0.83 (p<0.001) before and r2 = 0.94 (p<0.001) after PEG ingestion; r1 versus r2 p<0.01. Sensitivity in detecting strictures was 74% for conventional US and 89% for contrast US. Overall interobserver agreement for bowel wall thickness and disease location within the small bowel was already good before but significantly improved after PEG ingestion. Conclusions: Oral contrast bowel US is comparable with BE in defining anatomic

  17. An automatic respiratory gating method for the improvement of microcirculation evaluation: application to contrast-enhanced ultrasound studies of focal liver lesions

    NASA Astrophysics Data System (ADS)

    Mulé, S.; Kachenoura, N.; Lucidarme, O.; De Oliveira, A.; Pellot-Barakat, C.; Herment, A.; Frouin, F.

    2011-08-01

    Contrast-enhanced ultrasound (CEUS), with the recent development of both contrast-specific imaging modalities and microbubble-based contrast agents, allows noninvasive quantification of microcirculation in vivo. Nevertheless, functional parameters obtained by modeling contrast uptake kinetics could be impaired by respiratory motion. Accordingly, we developed an automatic respiratory gating method and tested it on 35 CEUS hepatic datasets with focal lesions. Each dataset included fundamental mode and cadence contrast pulse sequencing (CPS) mode sequences acquired simultaneously. The developed method consisted in (1) the estimation of the respiratory kinetics as a linear combination of the first components provided by a principal components analysis constrained by a prior knowledge on the respiratory rate in the frequency domain, (2) the automated generation of two respiratory-gated subsequences from the CPS mode sequence by detecting end-of-inspiration and end-of-expiration phases from the respiratory kinetics. The fundamental mode enabled a more reliable estimation of the respiratory kinetics than the CPS mode. The k-means algorithm was applied on both the original CPS mode sequences and the respiratory-gated subsequences resulting in clustering maps and associated mean kinetics. Our respiratory gating process allowed better superimposition of manually drawn lesion contours on k-means clustering maps as well as substantial improvement of the quality of contrast uptake kinetics. While the quality of maps and kinetics was satisfactory in only 11/35 datasets before gating, it was satisfactory in 34/35 datasets after gating. Moreover, noise amplitude estimated within the delineated lesions was reduced from 62 ± 21 to 40 ± 10 (p < 0.01) after gating. These findings were supported by the low residual horizontal (0.44 ± 0.29 mm) and vertical (0.15 ± 0.16 mm) shifts found during manual motion correction of each respiratory-gated subsequence. The developed technique

  18. Contrast M-mode power Doppler ultrasound in the detection of right-to-left shunts: utility of submandibular internal carotid artery recording.

    PubMed

    Topçuoglu, M A; Palacios, I F; Buonanno, F S

    2003-10-01

    Cardiac right-to-left shunts (RLSs) can be detected by echocardiography and transcranial Doppler ultrasound (TCD). In patients without adequate transtemporal bone windows, results may be obtained by insonating extracranial arteries; however, the sensitivity and practicality of this approach is unknown. In 34 patients evaluated with echocardiography for RLSs, 73 studies were performed with unilateral, simultaneous contrast TCD (cTCD) of the middle cerebral artery (MCA) and anterior cerebral artery (ACA) and submandibular power M-mode Doppler (PMD) ultrasound of the extracranial internal carotid artery (ecICA). The number of microbubble (MB) signals and their times of first appearance were determined. RLS volume was graded on 6 levels (I = trace, II = small, III = medium, IVa = large, IVb = shower, IVc = curtain) and compared between MCA and ecICA recordings. In 2 of 24 cTCD studies in 15 patients without evidence of RLSs on single-gated MCA monitoring, low-volume RLSs (grades I and II) were detected via ecICA insonation; in both, MB signatures were tracked in the ecICA, passing into the ipsilateral ACA. In 40 of 49 studies (26 patients) in which RLSs were demonstrated with single-gated MCA monitoring, more MBs were detected in the ecICA than the MCA, with either single-gated or M-mode images, with increases of 76.9% and 66.1%, respectively (P = .027). Compared to single-gated studies, M-mode technology detected nonsignificant increases in MB number in both the MCA and the ecICA (by 20.2% and 14.0%, respectively). Contrast PMD with cervical ICA recording is at least as sensitive and specific as the traditional MCA method in detecting RLSs; furthermore, this method seems to be more sensitive for low-volume RLSs (grades I-III) because of air MB decay (9.2%) and entry into the ipsilateral ACA (34.2%). This is in concordance with the increase of detected RLS grades observed in 32.7% of patients with echocardiography-documented RLSs. The authors therefore suggest the

  19. The use of non-contrast computed tomography and color Doppler ultrasound in the characterization of urinary stones - preliminary results

    PubMed Central

    Bulakçı, Mesut; Tefik, Tzevat; Akbulut, Fatih; Örmeci, Mehmet Tolgahan; Beşe, Caner; Şanlı, Öner; Oktar, Tayfun; Salmaslıoğlu, Artür

    2015-01-01

    Objective To investigate the role of density value in computed tomography (CT) and twinkling artifact observed in color Doppler analysis for the prediction of the mineral composition of urinary stones. Material and methods A total of 42 patients who were operated via percutaneous or endoscopic means and had undergone abdominal non-contrast CT and color Doppler ultrasonography examinations were included in the study. X-ray diffraction method was utilized to analyze a total of 86 stones, and the correlations between calculated density values and twinkling intensities with stone types were investigated for each stone. Results Analyses of extracted stones revealed the presence of 40 calcium oxalate monohydrate, 12 calcium oxalate dihydrate, 9 uric acid, 11 calcium phosphate, and 14 cystine stones. The density values were calculated as 1499±269 Hounsfield Units (HU) for calcium oxalate monohydrate, 1505±221 HU for calcium oxalate dihydrate, 348±67 HU for uric acid, 1106±219 HU for calcium phosphate, and 563±115 HU for cystine stones. The artifact intensities were determined as grade 0 in 15, grade 1 in 32, grade 2 in 24, and grade 3 in 15 stones. Conclusion In case the density value of the stone is measured below 780 HU and grade 3 artifact intensity is determined, it can be inferred that the mineral composition of the stone tends to be cystine. PMID:26623143

  20. Validation of Contrast Enhanced Ultrasound Technique to Wire Localization of Sentinel Lymph Node in Patients with Early Breast Cancer.

    PubMed

    Esfehani, Maryam H; Yazdankhah-Kenari, Adel; Omranipour, Ramesh; Mahmoudzadeh, Habib Allah; Shahriaran, Shahriar; Zafarghandi, Mohammad Reza; Amoli, Hadi Ahmadi

    2015-12-01

    Axillary staging is one of the primary steps in management of Breast cancer patients. Current standard methods including blue dye and radicolloid have limitations and disadvantages. In this study, the feasibility of visualization of lymph node pathways and localization of SLN with the help of CEUS was assessed. 50 patients with early breast cancer diagnosis underwent CEUS and wire localization, methylenblue dye, and isotope scan methods for SLN detection. The pathology findings of the wired SLN were compared with those obtained from, methylenblue dye, and isotope scan methods. Lymph node wiring was successfully performed in 48 patients.Radio-isotope technique detected SLN in all 50 patients while blue-dye succeeded in 48. Sensitivity of CEUS to detect SLN compared with radio-isotope and blue dye methods was 96 % and 100 %, respectively. Considering costs and facilities required to perform radio-isotope technique and complications of blue dye we may accept CEUS with the help of micro-bubble contrasts as a viable alternative. However, more studies with larger sample volumes, using various drugs, and including non-selective population are warranted to better clarify feasibility and accuracy of this technique in comparison with current methods. PMID:27065663

  1. PLGA/PFC particles loaded with gold nanoparticles as dual contrast agents for photoacoustic and ultrasound imaging

    NASA Astrophysics Data System (ADS)

    Wang, Yan J.; Strohm, Eric M.; Sun, Yang; Niu, Chengcheng; Zheng, Yuanyi; Wang, Zhigang; Kolios, Michael C.

    2014-03-01

    Phase-change contrast agents consisting of a perfluorocarbon (PFC) liquid core stabilized by a lipid, protein, or polymer shell have been proposed for a variety of clinical applications. Previous work has demonstrated that vaporization can be induced by laser irradiation through optical absorbers incorporated inside the droplet. In this study, Poly-lactide-coglycolic acid (PLGA) particles loaded with PFC liquid and silica-coated gold nanoparticles (GNPs) were developed and characterized using photoacoustic (PA) methods. Microsized PLGA particles were loaded with PFC liquid and GNPs (14, 35, 55nm each with a 20nm silica shell) using a double emulsion method. The PA signal intensity and optical vaporization threshold were investigated using a 375 MHz transducer and a focused 532-nm laser (up to 450-nJ per pulse). The laser-induced vaporization threshold energy decreased with increasing GNP size. The vaporization threshold was 850, 690 and 420 mJ/cm2 for 5μm-sized PLGA particles loaded with 14, 35 and 55 nm GNPs, respectively. The PA signal intensity increased as the laser fluence increased prior to the vaporization event. This trend was observed for all particles sizes. PLGA particles were then incubated with MDA-MB-231 breast cancer cells for 6 hours to investigate passive targeting, and the vaporization of the PLGA particles that were internalized within cells. The PLGA particles passively internalized by MDA cells were visualized via confocal fluorescence imaging. Upon PLGA particle vaporization, bubbles formed inside the cells resulting in cell destruction. This work demonstrates that GNPs-loaded PLGA/PFC particles have potential as PA theranostic agents in PA imaging and optically-triggered drug delivery systems.

  2. Contrast-Enhanced Ultrasound in Detection and Follow-Up of an Infrarenal Abdominal Aortic Aneurysm with Aorto-Caval Fistula and Endovascular Treatment

    SciTech Connect

    Clevert, D.-A. Stickel, M.; Flach, P.; Strautz, T.; Horng, A.; Jauch, K. W.; Reiser, M.

    2007-06-15

    An aorto-caval fistula is a rare complication of a symptomatic or ruptured infrarenal aortic aneurysm having a frequency of 3-6%. Patients typically present with clinical signs of diffuse abdominal pain associated with increasing venous congestion and tachycardia, rapid cardiopulmonary decompensation with acute dyspnea, and an audible machinerylike bruit. Perioperative mortality is high, ranging from 20% to 60%. We report a case of an endovascular aortic repair in a patient with a symptomatic infrarenal aortic aneurysm and an aorto-caval fistula. Contrast-enhanced ultrasound seems to be a promising new diagnostic option for the diagnosis and preoperative treatment planning for patients with abdominal aortic aneurysms with rupture into the inferior vena cava. It is in addition to computed tomography angiography. It might allow a more rapid and noninvasive diagnosis, especially for patients in intensive care because of its bedside availability. Because the examination is dynamic, additional information about blood flow between the aorta and inferior cava vein can be evaluated.

  3. Comparison of Contrast-Enhanced Ultrasound and Computed Tomography in Classifying Endoleaks After Endovascular Treatment of Abdominal Aorta Aneurysms: Preliminary Experience

    SciTech Connect

    Carrafiello, Gianpaolo Lagana, Domenico; Recaldini, Chiara; Mangini, Monica; Bertolotti, Elena; Caronno, Roberto; Tozzi, Matteo; Piffaretti, Gabriele; Annibale Genovese, Eugenio; Fugazzola, Carlo

    2006-12-15

    The purpose of the study was to assess the effectiveness of contrast-enhanced ultrasonography (CEUS) in endoleak classification after endovascular treatment of an abdominal aortic aneurysm compared to computed tomography angiography (CTA). From May 2001 to April 2003, 10 patients with endoleaks already detected by CTA underwent CEUS with Sonovue (registered) to confirm the CTA classification or to reclassify the endoleak. In three conflicting cases, the patients were also studied with conventional angiography. CEUS confirmed the CTA classification in seven cases (type II endoleaks). Two CTA type III endoleaks were classified as type II using CEUS and one CTA type II endoleak was classified as type I by CEUS. Regarding the cases with discordant classification, conventional angiography confirmed the ultrasound classification. Additionally, CEUS documented the origin of type II endoleaks in all cases. After CEUS reclassification of endoleaks, a significant change in patient management occurred in three cases. CEUS allows a better attribution of the origin of the endoleak, as it shows the flow in real time. CEUS is more specific than CTA in endoleak classification and gives more accurate information in therapeutic planning.

  4. VASCULAR LESIONS AND S-THROMBOMODULIN CONCENTRATIONS FROM AURICULAR ARTERIES OF RABBITS INFUSED WITH MICROBUBBLE CONTRAST AGENT AND EXPOSED TO PULSED ULTRASOUND

    PubMed Central

    Zachary, James F.; Blue, James P.; Miller, Rita J.; O’Brien, William D.

    2007-01-01

    Arterial injury resulting from the interaction of contrast agent (CA) with ultrasound (US) was studied in rabbit auricular arteries and assessed by histopathologic evaluation and s-thrombomodulin concentrations. Three sites on each artery were exposed (2.8 MHz, 5-min exposure duration, 10-Hz pulse repetition frequency, 1.4-μs pulse duration) using one of three in situ peak rarefactional pressures (0.85, 3.9 or 9.5 MPa). Saline, saline/CA, and saline/US infusion groups (n = 28) did not have histopathologic damage. The saline/CA/US infusion group (n = 10) at exposure conditions below the FDA mechanical index limit of 1.9 did not have histopathologic damage, whereas the saline/CA/US infusion group (n = 9) at exposure conditions above the FDA limit did have damage (5 of 9 arteries). Lesions were characteristic of acute coagulative necrosis. Mean s-thrombomodulin concentrations, a marker for endothelial cell injury, were highest in rabbits exposed to US at 0.85 and 3.9 MPa, suggesting that vascular injury may be physiological and not accompanied by irreversible cellular injury. PMID:17112964

  5. Predictive model for contrast-enhanced ultrasound of the breast: Is it feasible in malignant risk assessment of breast imaging reporting and data system 4 lesions?

    PubMed Central

    Luo, Jun; Chen, Ji-Dong; Chen, Qing; Yue, Lin-Xian; Zhou, Guo; Lan, Cheng; Li, Yi; Wu, Chi-Hua; Lu, Jing-Qiao

    2016-01-01

    AIM: To build and evaluate predictive models for contrast-enhanced ultrasound (CEUS) of the breast to distinguish between benign and malignant lesions. METHODS: A total of 235 breast imaging reporting and data system (BI-RADS) 4 solid breast lesions were imaged via CEUS before core needle biopsy or surgical resection. CEUS results were analyzed on 10 enhancing patterns to evaluate diagnostic performance of three benign and three malignant CEUS models, with pathological results used as the gold standard. A logistic regression model was developed basing on the CEUS results, and then evaluated with receiver operating curve (ROC). RESULTS: Except in cases of enhanced homogeneity, the rest of the 9 enhancement appearances were statistically significant (P < 0.05). These 9 enhancement patterns were selected in the final step of the logistic regression analysis, with diagnostic sensitivity and specificity of 84.4% and 82.7%, respectively, and the area under the ROC curve of 0.911. Diagnostic sensitivity, specificity, and accuracy of the malignant vs benign CEUS models were 84.38%, 87.77%, 86.38% and 86.46%, 81.29% and 83.40%, respectively. CONCLUSION: The breast CEUS models can predict risk of malignant breast lesions more accurately, decrease false-positive biopsy, and provide accurate BI-RADS classification. PMID:27358688

  6. Follow-up of endovascular aortic aneurysm repair: Preliminary validation of digital tomosynthesis and contrast enhanced ultrasound in detection of medium- to long-term complications

    PubMed Central

    Mazzei, Maria Antonietta; Guerrini, Susanna; Mazzei, Francesco Giuseppe; Cioffi Squitieri, Nevada; Notaro, Dario; de Donato, Gianmarco; Galzerano, Giuseppe; Sacco, Palmino; Setacci, Francesco; Volterrani, Luca; Setacci, Carlo

    2016-01-01

    AIM: To validate the feasibility of digital tomosynthesis of the abdomen (DTA) combined with contrast enhanced ultrasound (CEUS) in assessing complications after endovascular aortic aneurysm repair (EVAR) by using computed tomography angiography (CTA) as the gold standard. METHODS: For this prospective study we enrolled 163 patients (123 men; mean age, 65.7 years) referred for CTA for EVAR follow-up. CTA, DTA and CEUS were performed at 1 and 12 mo in all patients, with a maximum time interval of 2 d. RESULTS: Among 163 patients 33 presented complications at CTA. DTA and CTA correlated for the presence of complications in 32/33 (96.96%) patients and for the absence of complications in 127/130 (97.69%) patients; the sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV) and accuracy of DTA were 97%, 98%, 91%, 99%, and 98%, respectively. CEUS and CTA correlated for the presence of complications in 19/33 (57.57%) patients and for the absence of complications in 129/130 (99.23%) patients; the sensitivity, specificity, PPV, NPV and accuracy of CEUS were 58%, 99%, 95%, 90%, and 91%, respectively. Sensitivity, specificity and accuracy of combining DTA and CEUS together in detecting EVAR complications were 77%, 98% and 95%, respectively. CONCLUSION: Combining DTA and CEUS in EVAR follow-up has the potential to limit the use of CTA only in doubtful cases. PMID:27247719

  7. Sol-gel synthesis and electrospraying of biodegradable (P2O5)55-(CaO)30-(Na2O)15 glass nanospheres as a transient contrast agent for ultrasound stem cell imaging.

    PubMed

    Foroutan, Farzad; Jokerst, Jesse V; Gambhir, Sanjiv S; Vermesh, Ophir; Kim, Hae-Won; Knowles, Jonathan C

    2015-02-24

    Ultrasound imaging is a powerful tool in medicine because of the millisecond temporal resolution and submillimeter spatial resolution of acoustic imaging. However, the current generation of acoustic contrast agents is primarily limited to vascular targets due to their large size. Nanosize particles have the potential to be used as a contrast agent for ultrasound molecular imaging. Silica-based nanoparticles have shown promise here; however, their slow degradation rate may limit their applications as a contrast agent. Phosphate-based glasses are an attractive alternative with controllable degradation rate and easily metabolized degradation components in the body. In this study, biodegradable P2O5-CaO-Na2O phosphate-based glass nanospheres (PGNs) were synthesized and characterized as contrast agents for ultrasound imaging. The structure of the PGNs was characterized using scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), (31)P magic angle spinning nuclear magnetic resonance ((31)P MAS NMR), and Fourier transform infrared (FTIR) spectroscopy. The SEM images indicated a spherical shape with a diameter size range of 200-500 nm. The XRD, (31)P NMR, and FTIR results revealed the amorphous and glassy nature of PGNs that consisted of mainly Q(1) and Q(2) phosphate units. We used this contrast to label mesenchymal stem cells and determined in vitro and in vivo detection limits of 5 and 9 μg/mL, respectively. Cell counts down to 4000 could be measured with ultrasound imaging with no cytoxicity at doses needed for imaging. Importantly, ion-release studies confirmed these PGNs biodegrade into aqueous media with degradation products that can be easily metabolized in the body. PMID:25625373

  8. Sol-gel Synthesis and Electrospraying of Biodegradable (P2O5)55-(CaO)30-(Na2O)15 Glass Nanospheres as a Transient Contrast Agent for Ultrasound Stem Cell Imaging

    PubMed Central

    Gambhir, Sanjiv S.; Vermesh, Ophir; Kim, Hae-Won; Knowles, Jonathan C.

    2015-01-01

    Ultrasound imaging is a powerful tool in medicine because of the millisecond temporal resolution and sub-millimeter spatial resolution of acoustic imaging. However, the current generation of acoustic contrast agents is primarily limited to vascular targets due to their large size. Nano-size particles have the potential to be used as a contrast agent for ultrasound molecular imaging. Silica-based nanoparticles have shown promise here, however their slow degradation rate may limit their applications as a contrast agent. Phosphate-based glasses are an attractive alternative with controllable degradation rate and easily metabolized degradation components in the body. In this study, biodegradable P2O5-CaO-Na2O phosphate-based glass nanospheres (PGNs) were synthesized and characterized as contrast agents for ultrasound imaging. The structure of the PGNs was characterised using scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), 31P nuclear magnetic resonance (31P MAS-NMR), and Fourier transform infrared (FTIR) spectroscopy. The SEM images indicated a spherical shape with a diameter size range of 200-500 nm. The XRD, 31P NMR and FTIR results revealed the amorphous and glassy nature of PGNs that consisted of mainly Q1 and Q2 phosphate units. We used this contrast to label mesenchymal stem cells and determined in vitro and in vivo detection limits of 5 and 9 μg/mL, respectively. Cell counts down to 4000 could be measured with ultrasound imaging with no cytoxicity at doses needed for imaging. Importantly, ion release studies confirmed these PGNs biodegrade into aqueous media with degradation products that can be easily metabolized in the body. PMID:25625373

  9. Study on breast cancer animal model of tumor-micro vessel variation before and after the chemotherapy by contrast enhanced ultrasound quantitative analysis.

    PubMed

    Zhou, Shi-Chong; Le, Jian; Fan, Yi-Wu; Chen, Min; Chang, Cai

    2016-07-01

    Aim to discuss whether the contrast enhanced ultrasound (CEUS) can effectively monitor the efficacy on neoadjuvant chemotherapy of breast cancer or not by analyzing the indicators on chemotherapy CEUS and breast cancer tumor biology, especially tumor microcirculation indicator on animal mode. Human breast cancer cell lines MCF-7 are planted under the skins of nude mice. By simulating clinical neoadjuvant chemotherapy regimen periodically inject CMF (cyclophosphamide, methotrexate and fluorouracil) into the experimental group, and normal saline into the control group. Then detect the data from CEUS and record the parameters: maximum intensity (IMAX), rise time (RT), time to peak (TTP) and mean transit time (mTT). Execute animal after CEUS, obtain tumor biological indicator and record parameters: micro vessel density (MVD), vascular endothelial growth factor receptors 1/2/3/4 (VEGFR-1/2/3/4) and tumor cells. In the aspect of tumor biological indicator, the experimental group after the first drug delivery: inter- and intra-group comparisons of VEGFR-1/4drop significantly. The experimental group after the second drug delivery: inter- and intra-group comparisons of MVD, VEGFR-1/3/4drop significantly. In the aspect of parameters on tumor CEUS, the experimental group after the first drug delivery: inter- and intra-group comparisons of IMAX drop significantly. The experimental group after the second drug delivery: inter- and intra-group comparisons of IMAX decrease steeply; while inter-and intra-group comparisons of TTP rise significantly. There are great changes about the intra-group comparisons of the number of tumor cells before and after the experiment. In the process of chemotherapy, it maintains the consistency of the changes of CEUS parameters IMAX and TTP, tumor microcirculation indicators MVD and VEGFR-1/3/4 and tumor cells. So CEUS has a potential to make an early prediction on the efficacy of neoadjuvant chemotherapy. PMID:27592472

  10. Quantitative perfusion analysis in pancreatic contrast enhanced ultrasound (DCE-US): a promising tool for the differentiation between autoimmune pancreatitis and pancreatic cancer.

    PubMed

    Vitali, F; Pfeifer, L; Janson, C; Goertz, R S; Neurath, M F; Strobel, D; Wildner, D

    2015-10-01

    In the work-up of focal pancreatic lesions autoimmune pancreatitis (AIP) is a rare differential diagnosis to pancreatic cancer (PC) with similar clinical constellations. The aim of our study was to compare differences between proven AIP and PC using transabdominal dynamic contrast enhanced ultrasound (DCE-US). Therefore we recorded 3-minute-clips of CEUS examinations and analyzed perfusion parameters with VueBox®-quantification software. To obtain DCE-US Parameters, Regions-of-Interest were selected within the lesions and the surrounding pancreas parenchyma, serving as reference tissue. We compared 3 patients with AIP (mean age: 58 years; lesion mean size: 40 mm) to 17 patients with PC (mean age: 68 years; lesion mean size: 35.9 mm). Significant differences between PC and parenchyma could be found in the following parameters: Peak-Enhancement (PE), Wash-in-and-Wash-out-AUC, Wash-in Perfusion-Index. PE of AIP was comparable to normal parenchyma. The relation of PE between parenchyma and lesion (ΔPE) AIP and PC was significantly different [AIP: 0.21 (±0.06); PC: 0.81 (±0.1); p<0.01]. PE of neoplastic lesions was significantly lower as AIP and normal parenchyma (p<0.01). Therefore perfusion analysis in DCE-US can help to differentiate hypovascular PC from AIP presenting nearly isovascular time intensity curves. Diagnostic accuracy of DCE-US in this setting has to be validated in future prospective studies in comparison to CT and MRI. PMID:26480053

  11. Intravascular ultrasound

    MedlinePlus

    IVUS; Ultrasound - coronary artery; Endovascular ultrasound; Intravascular echocardiography ... A tiny ultrasound wand is attached to the top of a thin tube called a catheter. This ultrasound catheter is inserted ...

  12. Duplex ultrasound

    MedlinePlus

    ... ultrasound with Doppler ultrasound . Traditional ultrasound uses sound waves that bounce off blood vessels to create pictures. Doppler ultrasound records sound waves reflecting off moving objects, such as blood, to ...

  13. MS2 virus inactivation by atmospheric-pressure cold plasma using different gas carriers and power levels.

    PubMed

    Wu, Yan; Liang, Yongdong; Wei, Kai; Li, Wei; Yao, Maosheng; Zhang, Jue; Grinshpun, Sergey A

    2015-02-01

    In this study, airborne MS2 bacteriophages were exposed for subsecond time intervals to atmospheric-pressure cold plasma (APCP) produced using different power levels (20, 24, and 28 W) and gas carriers (ambient air, Ar-O2 [2%, vol/vol], and He-O2 [2%, vol/vol]). In addition, waterborne MS2 viruses were directly subjected to the APCP treatment for up to 3 min. MS2 viruses with and without the APCP exposure were examined by scanning electron microscopy (SEM), reverse transcription-PCR (RT-PCR), and sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Viral inactivation was shown to exhibit linear relationships with the APCP generation power and exposure time (R(2) > 0.95 for all energy levels tested) up to 95% inactivation (1.3-log reduction) after a subsecond airborne exposure at 28 W; about the same inactivation level was achieved for waterborne viruses with an exposure time of less than 1 min. A larger amount of reactive oxygen species (ROS), such as atomic oxygen, in APCP was detected for a higher generation power with Ar-O2 and He-O2 gas carriers. SEM images, SDS-PAGE, and agarose gel analysis of exposed waterborne viruses showed various levels of damage to both surface proteins and their related RNA genes after the APCP exposure, thus leading to the loss of their viability and infectivity. PMID:25416775

  14. MS2 Virus Inactivation by Atmospheric-Pressure Cold Plasma Using Different Gas Carriers and Power Levels

    PubMed Central

    Wu, Yan; Liang, Yongdong; Wei, Kai; Li, Wei; Grinshpun, Sergey A.

    2014-01-01

    In this study, airborne MS2 bacteriophages were exposed for subsecond time intervals to atmospheric-pressure cold plasma (APCP) produced using different power levels (20, 24, and 28 W) and gas carriers (ambient air, Ar-O2 [2%, vol/vol], and He-O2 [2%, vol/vol]). In addition, waterborne MS2 viruses were directly subjected to the APCP treatment for up to 3 min. MS2 viruses with and without the APCP exposure were examined by scanning electron microscopy (SEM), reverse transcription-PCR (RT-PCR), and sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Viral inactivation was shown to exhibit linear relationships with the APCP generation power and exposure time (R2 > 0.95 for all energy levels tested) up to 95% inactivation (1.3-log reduction) after a subsecond airborne exposure at 28 W; about the same inactivation level was achieved for waterborne viruses with an exposure time of less than 1 min. A larger amount of reactive oxygen species (ROS), such as atomic oxygen, in APCP was detected for a higher generation power with Ar-O2 and He-O2 gas carriers. SEM images, SDS-PAGE, and agarose gel analysis of exposed waterborne viruses showed various levels of damage to both surface proteins and their related RNA genes after the APCP exposure, thus leading to the loss of their viability and infectivity. PMID:25416775

  15. Contrast echocardiography 1996. A review.

    PubMed Central

    Villarraga, H R; Foley, D A; Mulvagh, S L

    1996-01-01

    Remarkable advances in the field of contrast echocardiography have been made during the last decade. Interest in ultrasound contrast agents that strengthen the backscattered ultrasound signal and improve image display has stimulated further research. Echocardiographic contrast agents providing left ventricular cavity image enhancement after intravenous injection are now available. A role for contrast echocardiography in the assessment of myocardial perfusion has been established within the invasive clinical setting. With the development of newer contrast agents and new ultrasound technology, myocardial perfusion imaging using contrast echocardiography after venous injection is no longer the unattainable "holy grail," but is fast approaching clinical applicability. Images PMID:8792539

  16. Feasibility of Using Volumetric Contrast-Enhanced Ultrasound with a 3-D Transducer to Evaluate Therapeutic Response after Targeted Therapy in Rabbit Hepatic VX2 Carcinoma.

    PubMed

    Kim, Jeehyun; Kim, Jung Hoon; Yoon, Soon Ho; Choi, Won Seok; Kim, Young Jae; Han, Joon Koo; Choi, Byung-Ihn

    2015-12-01

    The aim of this study was to assess the feasibility of using dynamic contrast-enhanced ultrasound (DCE-US) with a 3-D transducer to evaluate therapeutic responses to targeted therapy. Rabbits with hepatic VX2 carcinomas, divided into a treatment group (n = 22, 30 mg/kg/d sorafenib) and a control group (n = 13), were evaluated with DCE-US using 2-D and 3-D transducers and computed tomography (CT) perfusion imaging at baseline and 1 d after the first treatment. Perfusion parameters were collected, and correlations between parameters were analyzed. In the treatment group, both volumetric and 2-D DCE-US perfusion parameters, including peak intensity (33.2 ± 19.9 vs. 16.6 ± 10.7, 63.7 ± 20.0 vs. 30.1 ± 19.8), slope (15.3 ± 12.4 vs. 5.7 ± 4.5, 37.3 ± 20.4 vs. 15.7 ± 13.0) and area under the curve (AUC; 1004.1 ± 560.3 vs. 611.4 ± 421.1, 1332.2 ± 708.3 vs. 670.4 ± 388.3), had significantly decreased 1 d after the first treatment (p = 0.00). In the control group, 2-D DCE-US revealed that peak intensity, time to peak and slope had significantly changed (p < 0.05); however, volumetric DCE-US revealed that peak intensity, time-intensity AUC, AUC during wash-in and AUC during wash-out had significantly changed (p = 0.00). CT perfusion imaging parameters, including blood flow, blood volume and permeability of the capillary vessel surface, had significantly decreased in the treatment group (p = 0.00); however, in the control group, peak intensity and blood volume had significantly increased (p = 0.00). It is feasible to use DCE-US with a 3-D transducer to predict early therapeutic response after targeted therapy because perfusion parameters, including peak intensity, slope and AUC, significantly decreased, which is similar to the trend observed for 2-D DCE-US and CT perfusion imaging parameters. PMID:26365926

  17. Prostate Ultrasound

    MedlinePlus

    ... waves. Ultrasound imaging, also called ultrasound scanning or sonography , involves the use of a small transducer (probe) and ultrasound gel placed directly on the skin. High-frequency sound waves are transmitted from the ...

  18. Hip Ultrasound

    MedlinePlus

    ... waves. Ultrasound imaging, also called ultrasound scanning or sonography , involves the use of a small transducer (probe) and ultrasound gel placed directly on the skin. High-frequency sound waves are transmitted from the ...

  19. Ultrasound -- Vascular

    MedlinePlus

    ... waves. Ultrasound imaging, also called ultrasound scanning or sonography , involves the use of a small transducer (probe) and ultrasound gel placed directly on the skin. High-frequency sound waves are transmitted from the ...

  20. Musculoskeletal Ultrasound

    MedlinePlus

    ... waves. Ultrasound imaging, also called ultrasound scanning or sonography , involves the use of a small transducer (probe) and ultrasound gel placed directly on the skin. High-frequency sound waves are transmitted from the ...

  1. Ultrasound - Scrotum

    MedlinePlus

    ... waves. Ultrasound imaging, also called ultrasound scanning or sonography , involves the use of a small transducer (probe) and ultrasound gel placed directly on the skin. High-frequency sound waves are transmitted from the ...

  2. Pilot study of non-contrast-enhanced MRI vs. ultrasound in renal transplant recipients with acquired cystic kidney disease: a prospective intra-individual comparison.

    PubMed

    Mühlfeld, Anja S; Lange, Christian; Kroll, Gisela; Floege, Jürgen; Krombach, Gabriele A; Kuhl, Christiane; Eitner, Frank; Schrading, Simone

    2013-01-01

    The incidence of renal cell carcinoma (RCC) after kidney transplantation is 15-fold increased. Acquired cystic kidney disease (ACKD) is one of the known risk factors. We performed a small pilot study to assess the role of non-enhanced magnetic resonance imaging (MRI) as a tool for intensified screening in renal transplant recipients with ACKD. Renal ultrasound was used to assess the native kidneys of 215 renal transplant recipients. Thirty patients with 54 kidneys, fulfilling the criteria of ACKD, underwent non-enhanced MRI at 1.5T using T2- and T1-weighed as well as diffusion-weighted sequences with a high spatial resolution. Among the 54 kidneys assessed by both methods, three RCCs were identified (6%). Of those, one RCC was detected by both imaging methods (33%), while two RCCs were diagnosed by MRI alone (67%). MRI identified an additional four proteinaceous or hemorrhagic cysts that did not fulfill the criteria for RCC but were classified as suspicious. All of these lesions were stable in size and appearance in follow-up studies. In conclusion, non-enhanced MRI was more sensitive than ultrasound in identifying RCCs and lesions suspicious for RCC and thus appears to be a useful secondary screening tool in patients with ACKD after renal transplantation. PMID:24118352

  3. Cost-effective and non-invasive automated benign and malignant thyroid lesion classification in 3D contrast-enhanced ultrasound using combination of wavelets and textures: a class of ThyroScan™ algorithms.

    PubMed

    Acharya, U R; Faust, O; Sree, S V; Molinari, F; Garberoglio, R; Suri, J S

    2011-08-01

    Ultrasound has great potential to aid in the differential diagnosis of malignant and benign thyroid lesions, but interpretative pitfalls exist and the accuracy is still poor. To overcome these difficulties, we developed and analyzed a range of knowledge representation techniques, which are a class of ThyroScan™ algorithms from Global Biomedical Technologies Inc., California, USA, for automatic classification of benign and malignant thyroid lesions. The analysis is based on data obtained from twenty nodules (ten benign and ten malignant) taken from 3D contrast-enhanced ultrasound images. Fine needle aspiration biopsy and histology confirmed malignancy. Discrete Wavelet Transform (DWT) and texture algorithms are used to extract relevant features from the thyroid images. The resulting feature vectors are fed to three different classifiers: K-Nearest Neighbor (K-NN), Probabilistic Neural Network (PNN), and Decision Tree (DeTr). The performance of these classifiers is compared using Receiver Operating Characteristic (ROC) curves. Our results show that combination of DWT and texture features coupled with K-NN resulted in good performance measures with the area of under the ROC curve of 0.987, a classification accuracy of 98.9%, a sensitivity of 98%, and a specificity of 99.8%. Finally, we have proposed a novel integrated index called Thyroid Malignancy Index (TMI), which is made up of texture features, to diagnose benign or malignant nodules using just one index. We hope that this TMI will help clinicians in a more objective detection of benign and malignant thyroid lesions. PMID:21728394

  4. Medical Imaging with Ultrasound: Some Basic Physics.

    ERIC Educational Resources Information Center

    Gosling, R.

    1989-01-01

    Discussed are medical applications of ultrasound. The physics of the wave nature of ultrasound including its propagation and production, return by the body, spatial and contrast resolution, attenuation, image formation using pulsed echo ultrasound techniques, measurement of velocity and duplex scanning are described. (YP)

  5. Endoscopic ultrasound

    MedlinePlus

    Endoscopic ultrasound is a type of imaging test. It is used to see organs in and near the digestive ... Ultrasound is a way to see the inside of the body using high-frequency sound waves. Endoscopic ...

  6. Scrotal ultrasound

    MedlinePlus

    ... the scrotal sac to help transmit the sound waves. A handheld probe (the ultrasound transducer) is then ... The ultrasound machine sends out high-frequency sound waves. These waves reflect off areas in the scrotum ...

  7. Pregnancy ultrasound

    MedlinePlus

    ... 3D ultrasound References Richards DS. Obstetrical ultrasound: Imaging, dating, and growth. In: Gabbe SG, Niebyl JR, Simpson ... the first to achieve this important distinction for online health information and services. Learn more about A. ...

  8. Is Strain Elastography (IO-SE) Sufficient for Characterization of Liver Lesions before Surgical Resection—Or Is Contrast Enhanced Ultrasound (CEUS) Necessary?

    PubMed Central

    Jung, Ernst Michael; Platz Batista da Silva, Natascha; Jung, Wolfgang; Farkas, Stefan; Stroszczynski, Christian; Rennert, Janine

    2015-01-01

    Aim To evaluate the diagnostic accuracy of IO-SE in comparison to IO-CEUS for the differentiation between malignant and benign liver lesions. Material and Methods In a retrospective diagnostic study IO-CEUS and SE examinations of 49 liver lesions were evaluated and compared to histopathological examinations. Ultrasound was performed using a multifrequency linear probe (6–9 MHz). The loops of CEUS were evaluated up to 5 min. The qualitative characterization of IO-SE was based on a color coding system (blue = hard, red = soft). Stiffness of all lesions was quantified by a specific scaling of 0–6 (0 = low, 6 = high) using 7 ROIs (2 central, 5 peripheral). Results All malignant lesions displayed a characteristic portal venous washout and could be diagnosed correctly by IO-CEUS. 3/5 benign lesions could not be characterized properly either by IO-CEUS or IO-SE prior to resection. Thus for IO-CEUS sensitivity, specificity, positive and negative predictive value and accuracy were 100%, 40%, 94%, 100% and 94%. Lesion sizes were between 8 and 59 mm in diameter. Regarding the IO-SE, malignant lesions showed a marked variability. In qualitative analysis, 31 of the malignant lesions were blue colored denoting overall induration. Thirteen malignant lesions showed an inhomogenous color pattern with partial indurations. Two of the benign lesions also displayed overall induration. The other benign lesions showed an inhomogenous color mapping. Calculated sensitivity of the SE was 70.5%, specificity 60%, PPV 94%, NPV 18.75%, and accuracy 69%. Conclusion IO-CEUS is useful for localization and characterization of liver lesions prior to surgical resection whereas IO-SE provided correct characterization only for a limited number of lesions. PMID:26114286

  9. Pott's puffy tumour in a 5-year old boy: the role of ultrasound and contrast-enhanced CT imaging; surgical case report.

    PubMed

    Vanderveken, O M; De Smet, K; Dogan-Duyar, S; Desimpelaere, J; Duval, E L I M; De Praeter, M; Van Rompaey, D

    2012-01-01

    We report a case of Pott's puffy tumour, a subperiosteal abscess of the frontal bone associated with an underlying frontal osteomyelitis, in a 5-year-old boy. Ultrasonography played a crucial role in the diagnosis of our patient, suggesting the presence of a Pott's puffy tumour with epidural abscess by showing a subperiosteal abscess associated with erosion of the frontal bone. Subsequently, the diagnosis of Pott's puffy tumour with epidural abscess was confirmed by contrast-enhanced CT scanning. Prompt neurosurgical intervention with drainage of abscesses and debridement of bone sequestrate, together with prolonged antibiotic therapy, significantly contributes to a favorable outcome. PMID:22896932

  10. Quantification of dynamic contrast-enhanced ultrasound in HCC: prediction of response to a new combination therapy of sorafenib and panobinostat in advanced hepatocellular carcinoma.

    PubMed

    Knieling, Ferdinand; Waldner, Maximilian J; Goertz, Ruediger S; Strobel, Deike

    2012-01-01

    Here, we report the case of a patient, who showed an antitumour response to a new combination therapy of sorafenib and the histon deacetylase inhibitor panobinostat (LBH-589). D-CEUS (Dynamic contrast-enhanced ultrasonography) was able to predict response to the new therapy regime and may be an interesting tool in the early evaluation of response to therapy. It might be especially useful to differentiate between responders and non-responders of new-targeted pharmaceuticals like multikinase inhibitors in hepatocellular carcinomas. PMID:23257272

  11. Automated carotid IMT measurement and its validation in low contrast ultrasound database of 885 patient indian population epidemiological study: results of AtheroEdge™ Software

    PubMed Central

    MOLINARI, F.; MEIBURGER, K. M.; ZENG, G.; SABA, L.; ACHARYA, U. RAJENDRA; FAMIGLIETTI, L.; GEORGIOU, N.; NICOLAIDES, A.; MAMIDI, R. SRISWAN; KUPER, H.; SURI, J. S.

    2012-01-01

    Aim The aim of this paper was to demonstrate the usage of an automated computer-based IMT measurement system called - CALEX 3.0 (a class of patented AtheroEdge™ software) on a low contrast and low resolution image database acquired during an epidemiological study from India. The image contrast was very low with pixel density of 12.7 pixels/mm. Further, to demonstrate the accuracy and reproducibility of the AtheroEdge™ software system we compared it with the manual tracings of a vascular surgeon – considered as a gold standard. Methods We automatically measured the IMT value of 885 common carotid arteries in longitudinal B-Mode images. CALEX 3.0 consisted of a stage for the automatic recognition of the carotid artery and an IMT measurement modulus made of a fuzzy K-means classifier. Performance was assessed by measuring the system accuracy and reproducibility against manual tracings by experts. Results CALEX 3.0 processed all the 885 images of the dataset (100% success). The average automated obtained IMT measurement by CALEX 3.0 was 0.407±0.083 mm compared with 0.429 ± 0.052 mm for the manual tracings, which led to an IMT bias of 0.022±0.081mm. The IMT measurement accuracy (0.022 mm) was comparable to that obtained on high-resolution images and the reproducibility (0.081 mm) was very low and suitable to clinical application. The Figure-of-Merit defined as the percent agreement between the computer-estimated IMT and manually measured IMT for CALEX 3.0 was 94.7%. Conclusions CALEX 3.0 had a 100% success in processing low contrast/low-resolution images. CALEX 3.0 is the first technique, which has led to high accuracy and reproducibility on low-resolution images acquired during an epidemiological study. We propose CALEX 3.0 as a generalized framework for IMT measurement on large datasets. PMID:22330624

  12. Interventional ultrasound

    SciTech Connect

    Holm, H.H.; Kristensen, J.K.

    1985-01-01

    This book discusses: Introduction to interventional ultrasound/handling of aspirated material/general principles of fine needle aspiration cytology/procedure and principles in ultrasonically guided puncture/puncture of focal liver lesions/intraoperative puncture of the liver guided by ultrasound/Interventional ultrasound in cancer therapy/Interventional echocardiography/Fine-needle aspiration biopsy: Are there any risks./Puncture of renal mass lesions/Intrauterine needle diagnosis/Percutaneous nephrolithotomy.

  13. What's new in urologic ultrasound?

    PubMed

    Lal, Anupam; Naranje, Priyanka; Pavunesan, Santhosh Kumar

    2015-01-01

    Ultrasound is an imaging technology that has evolved swiftly and has come a long way since its beginnings. It is a commonly used initial diagnostic imaging modality as it is rapid, effective, portable, relatively inexpensive, and causes no harm to human health. In the last few decades, there have been significant technological improvements in the equipment as well as the development of contrast agents that allowed ultrasound to be even more widely adopted for urologic imaging. Ultrasound is an excellent guidance tool for an array of urologic interventional procedures and also has therapeutic application in the form of high-intensity focused ultrasound (HIFU) for tumor ablation. This article focuses on the recent advances in ultrasound technology and its emerging clinical applications in urology. PMID:26166960

  14. Molecular Ultrasound Imaging: Current Status and Future Directions

    PubMed Central

    Deshpande, Nirupama; Needles, Andrew; Willmann, Jürgen K.

    2011-01-01

    Targeted contrast-enhanced ultrasound (molecular ultrasound) is an emerging imaging strategy that combines ultrasound technology with novel molecularly-targeted ultrasound contrast agents for assessing biological processes at the molecular level. Molecular ultrasound contrast agents are nano- or micro-sized particles that are targeted to specific molecular markers by adding high-affinity binding ligands onto the surface of the particles. Following intravenous administration, these targeted ultrasound contrast agents accumulate at tissue sites overexpressing specific molecular markers, thereby enhancing the ultrasound imaging signal. High spatial and temporal resolution, real-time imaging, non-invasiveness, relatively low costs, lack of ionizing irradiation and wide availability of ultrasound systems are advantages compared to other molecular imaging modalities. In this article we review current concepts and future directions of molecular ultrasound imaging, including different classes of molecular ultrasound contrast agents, ongoing technical developments of preclinical and clinical ultrasound systems , the potential of molecular ultrasound for imaging different diseases at the molecular level, and the translation of molecular ultrasound into the clinic. PMID:20541656

  15. Repeat Targeted Prostate Biopsy under Guidance of Multiparametric MRI-Correlated Real-Time Contrast-Enhanced Ultrasound for Patients with Previous Negative Biopsy and Elevated Prostate-Specific Antigen: A Prospective Study

    PubMed Central

    Jang, Dong Ryul; Jung, Dae Chul; Oh, Young Taik; Noh, Songmi; Han, Kyunghwa; Kim, Kiwook; Rha, Koon-Ho; Choi, Young Deuk; Hong, Sung Joon

    2015-01-01

    Objectives To prospectively determine whether multi-parametric MRI (mpMRI) - contrast-enhanced ultrasound (CEUS) correlated, imaging-guided target biopsy (TB) method could improve the detection of prostate cancer in re-biopsy setting of patients with prior negative biopsy. Methods From 2012 to 2014, a total of 42 Korean men with a negative result from previous systematic biopsy (SB) and elevated prostate-specific antigen underwent 3T mpMRI and real-time CEUS guided TB. Target lesions were determined by fusion of mpMRI and CEUS. Subsequently, 12-core SB was performed by a different radiologist. We compared core-based cancer detection rates (CaDR) using the generalized linear mixed model (GLIMMIX) for each biopsy method. Results Core-based CaDR was higher in TB (17.92%, 38 of 212 cores) than in SB (6.15%, 31 of 504 cores) (p < 0.0001; GLIMMIX). In the cancer-positive TB cores, CaDR with suspicious lesions by mpMRI was higher than that by CEUS (86.8% vs. 60.5%, p= 0.02; paired t-test) and concordant rate between mpMRI and CEUS was significantly different with discordant rate (48% vs. 52%, p=0.04; McNemar’s test). Conclusion The mpMRI-CEUS correlated TB technique for the repeat prostate biopsy of patients with prior negative biopsy can improve CaDR based on the number of cores taken. PMID:26083348

  16. Ultrasound - Breast

    MedlinePlus

    ... discharge) and to characterize potential abnormalities seen on mammography or breast magnetic resonance imaging (MRI). Ultrasound imaging ... supply in breast lesions . Supplemental Breast Cancer Screening Mammography is the only screening tool for breast cancer ...

  17. Transvaginal ultrasound

    MedlinePlus

    ... germ cell neoplasms, sex-cord stromal tumors. In: Lentz GM, Lobo RA, Gershenson DM, Katz VL, eds. ... oviduct, ovary, ultrasound imaging of pelvic structures. In: Lentz GM, Lobo RA, Gershenson DM, Katz VL, eds. ...

  18. Abdominal Ultrasound

    MedlinePlus

    ... collects the sounds that bounce back and a computer then uses those sound waves to create an ... Ultrasound scanners consist of a console containing a computer and electronics, a video display screen and a ...

  19. Obstetrical Ultrasound

    MedlinePlus

    ... collects the sounds that bounce back and a computer then uses those sound waves to create an ... Ultrasound scanners consist of a console containing a computer and electronics, a video display screen and a ...

  20. Thyroid ultrasound

    MedlinePlus

    ... Performed Ultrasound is a painless method that uses sound waves to create images of the inside of the ... neck to help with the transmission of the sound waves. Next, the technician moves a wand, called a ...

  1. Breast ultrasound

    MedlinePlus

    ... JavaScript. Breast ultrasound is a test that uses sound waves to examine the breasts. How the Test is ... to the left or right. The device sends sound waves to the breast tissue. The sound waves help ...

  2. Pregnancy ultrasound

    MedlinePlus

    ... findings that might indicate an increased risk for Down syndrome A pregnancy ultrasound may also be done in ... weeks of pregnancy to look for signs of Down syndrome or other problems in the developing baby. This ...

  3. [Interventional ultrasound].

    PubMed

    Blázquez Sánchez, N; Fernández Canedo, I; Valdés Vilches, L; de Troya Martín, M

    2015-11-01

    High-frequency ultrasound has become increasingly used in dermatology. This technique is accessible, non-invasive, and rapid and provides information in real time. Consequently, it has become of great diagnostic value in dermatology. However, high-frequency ultrasound also has a promising future as a complementary technique in interventional diagnostic procedures, even though its application in this field has been little studied by dermatologists. PMID:26895944

  4. Automatic Contour Tracking in Ultrasound Images

    ERIC Educational Resources Information Center

    Li, Min; Kambhamettu, Chandra; Stone, Maureen

    2005-01-01

    In this paper, a new automatic contour tracking system, EdgeTrak, for the ultrasound image sequences of human tongue is presented. The images are produced by a head and transducer support system (HATS). The noise and unrelated high-contrast edges in ultrasound images make it very difficult to automatically detect the correct tongue surfaces. In…

  5. Droplets, Bubbles and Ultrasound Interactions.

    PubMed

    Shpak, Oleksandr; Verweij, Martin; de Jong, Nico; Versluis, Michel

    2016-01-01

    The interaction of droplets and bubbles with ultrasound has been studied extensively in the last 25 years. Microbubbles are broadly used in diagnostic and therapeutic medical applications, for instance, as ultrasound contrast agents. They have a similar size as red blood cells, and thus are able to circulate within blood vessels. Perfluorocarbon liquid droplets can be a potential new generation of microbubble agents as ultrasound can trigger their conversion into gas bubbles. Prior to activation, they are at least five times smaller in diameter than the resulting bubbles. Together with the violent nature of the phase-transition, the droplets can be used for local drug delivery, embolotherapy, HIFU enhancement and tumor imaging. Here we explain the basics of bubble dynamics, described by the Rayleigh-Plesset equation, bubble resonance frequency, damping and quality factor. We show the elegant calculation of the above characteristics for the case of small amplitude oscillations by linearizing the equations. The effect and importance of a bubble coating and effective surface tension are also discussed. We give the main characteristics of the power spectrum of bubble oscillations. Preceding bubble dynamics, ultrasound propagation is introduced. We explain the speed of sound, nonlinearity and attenuation terms. We examine bubble ultrasound scattering and how it depends on the wave-shape of the incident wave. Finally, we introduce droplet interaction with ultrasound. We elucidate the ultrasound-focusing concept within a droplets sphere, droplet shaking due to media compressibility and droplet phase-conversion dynamics. PMID:26486337

  6. Cranial Ultrasound/Head Ultrasound

    MedlinePlus

    ... collects the sounds that bounce back and a computer then uses those sound waves to create an ... Ultrasound scanners consist of a console containing a computer and electronics, a video display screen and a ...

  7. [High frequency ultrasound].

    PubMed

    Sattler, E

    2015-07-01

    Diagnostic ultrasound has become a standard procedure in clinical dermatology. Devices with intermediate high frequencies of 7.5-15 MHz are used in dermato-oncology for the staging and postoperative care of skin tumor patients and in angiology for improved vessel diagnostics. In contrast, the high frequency ultrasound systems with 20-100 MHz probes offer a much higher resolution, yet with a lower penetration depth of about 1 cm. The main indications are the preoperative measurements of tumor thickness in malignant melanoma and other skin tumors and the assessment of inflammatory and soft tissue diseases, offering information on the course of these dermatoses and allowing therapy monitoring. This article gives an overview on technical principles, devices, mode of examination, influencing factors, interpretation of the images, indications but also limitations of this technique. PMID:25636803

  8. [Quantitative ultrasound].

    PubMed

    Barkmann, R; Glüer, C-C

    2006-10-01

    Methods of quantitative ultrasound (QUS) can be used to obtain knowledge about bone fragility. Comprehensive study results exist showing the power of QUS for the estimation of osteoporotic fracture risk. Nevertheless, the variety of technologies, devices, and variables as well as different degrees of validation of the single devices have to be taken into account. Using methods to simulate ultrasound propagation, the complex interaction between ultrasound and bone could be understood and the propagation could be visualized. Preceding widespread clinical use, it has to be clarified if patients with low QUS values will profit from therapy, as it has been shown for DXA. Moreover, the introduction of quality assurance measures is essential. The user should know the limitations of the methods and be able to interpret the results correctly. Applied in an adequate manner QUS methods could then, due to lower costs and absence of ionizing radiation, become important players in osteoporosis management. PMID:16896637

  9. New ultrasound techniques for lymph node evaluation

    PubMed Central

    Cui, Xin-Wu; Jenssen, Christian; Saftoiu, Adrian; Ignee, Andre; Dietrich, Christoph F

    2013-01-01

    Conventional ultrasound (US) is the recommended imaging method for lymph node (LN) diseases with the advantages of high resolution, real time evaluation and relative low costs. Current indications of transcutaneous ultrasound and endoscopic ultrasound include the detection and characterization of lymph nodes and the guidance for LN biopsy. Recent advances in US technology, such as contrast enhanced ultrasound (CEUS), contrast enhanced endoscopic ultrasound (CE-EUS), and real time elastography show potential to improve the accuracy of US for the differential diagnosis of benign and malignant lymph nodes. In addition, CEUS and CE-EUS have been also used for the guidance of fine needle aspiration and assessment of treatment response. Complementary to size criteria, CEUS could also be used to evaluate response of tumor angiogenesis to anti-angiogenic therapies. In this paper we review current literature regarding evaluation of lymphadenopathy by new and innovative US techniques. PMID:23946589

  10. Contrast studies.

    PubMed

    Anderson, Susan M

    2006-01-01

    Contrast media plays an important role in imaging soft tissues and organs. Though contrast imaging is considered safe, radiologic technologists can improve the safety of contrast examinations by reviewing institutional safety procedures, safe practices for different methods of contrast administration and possible complications. The need for efficient communication and attention to detail during contrast procedures is essential for patient safety. PMID:16998193

  11. Ultrasound Annual, 1984

    SciTech Connect

    Sanders, R.C.; Hill, M.C.

    1984-01-01

    The 1984 edition of Ultrasound Annual explores new applications of ultrasound in speech and swallowing and offers guidelines on the use of ultrasound and nuclear medicine in thyroid and biliary tract disease. Other areas covered include Doppler sonography of the abdomen, intraoperative abdominal ultrasound, sonography of the placenta, ultrasound of the neonatal head and abdomen, and sonographic echo patterns created by fat.

  12. Ultrasound mediated gene transfection

    NASA Astrophysics Data System (ADS)

    Williamson, Rene G.; Apfel, Robert E.; Brandsma, Janet L.

    2002-05-01

    Gene therapy is a promising modality for the treatment of a variety of human diseases both inherited and acquired, such as cystic fibrosis and cancer. The lack of an effective, safe method for the delivery of foreign genes into the cells, a process known as transfection, limits this effort. Ultrasound mediated gene transfection is an attractive method for gene delivery since it is a noninvasive technique, does not introduce any viral particles into the host and can offer very good temporal and spatial control. Previous investigators have shown that sonication increases transfection efficiency with and without ultrasound contrast agents. The mechanism is believed to be via a cavitation process where collapsing bubble nuclei permeabilize the cell membrane leading to increased DNA transfer. The research is focused on the use of pulsed wave high frequency focused ultrasound to transfect DNA into mammalian cells in vitro and in vivo. A better understanding of the mechanism behind the transfection process is also sought. A summary of some in vitro results to date will be presented, which includes the design of a sonication chamber that allows us to model the in vivo case more accurately.

  13. Venous Ultrasound (Extremities)

    MedlinePlus

    ... waves. Ultrasound imaging, also called ultrasound scanning or sonography , involves the use of a small transducer (probe) and ultrasound gel placed directly on the skin. High-frequency sound waves are transmitted from the ...

  14. Eye and orbit ultrasound

    MedlinePlus

    Echography - eye orbit; Ultrasound - eye orbit; Ocular ultrasonography; Orbital ultrasonography ... ophthalmology department of a hospital or clinic. Your eye is numbed with medicine (anesthetic drops). The ultrasound ...

  15. Ultrasound of the male anterior urethra

    PubMed Central

    Shaida, N; Berman, L H

    2012-01-01

    Imaging of the anterior male urethra has traditionally been performed by fluoroscopic contrast urethrography. While providing easily interpretable images, this technique has a number of disadvantages associated with it. An alternative approach is to use ultrasound to assess the lumen of the urethra and the periurethral tissues. Here we describe the development of urethral ultrasound and the ascending and descending urethral ultrasound techniques employed in our institution with reference to commonly and uncommonly encountered pathologies. We also identify common pitfalls and how to avoid them. PMID:22674713

  16. [Liver ultrasound: focal lesions and diffuse diseases].

    PubMed

    Segura Grau, A; Valero López, I; Díaz Rodríguez, N; Segura Cabral, J M

    2016-01-01

    Liver ultrasound is frequently used as a first-line technique for the detection and characterization of the most common liver lesions, especially those incidentally found focal liver lesions, and for monitoring of chronic liver diseases. Ultrasound is not only used in the Bmode, but also with Doppler and, more recently, contrast-enhanced ultrasound. It is mainly used in the diagnosis of diffuse liver diseases, such as steatosis or cirrhosis. This article presents a practical approach for diagnosis workup, in which the different characteristics of the main focal liver lesions and diffuse liver diseases are reviewed. PMID:25523277

  17. Ultrasound annual, 1986

    SciTech Connect

    Sanders, R.C.; Hill, M.C.

    1986-01-01

    This book provides an analyses of developments in the field of diagnostic ultrasound. Endoscopic ultrasound and ultrasound-guided aspiration of ovarian follicles for in vitro fertilization are addressed. The use of Doppler ultrasound to measure blood flow in obstetrics is also examined.

  18. Ultrasound and Therapy

    NASA Astrophysics Data System (ADS)

    Lafon, Cyril

    This paper begins with an overview and a description of the interactions between ultrasound and biological tissues encountered during treatment protocols. In a second part of this seminar, two clinical applications of therapeutic ultrasound will be described in details: -Kidney stone destruction by ultrasound (lithotripsy) and High Intensity Focused Ultrasound for treating prostate cancer (HIFU).

  19. Ultrasound in Space Medicine

    NASA Technical Reports Server (NTRS)

    Dulchavsky, Scott A.; Sargsyan, A.E.

    2009-01-01

    This slide presentation reviews the use of ultrasound as a diagnostic tool in microgravity environments. The goals of research in ultrasound usage in space environments are: (1) Determine accuracy of ultrasound in novel clinical conditions. (2) Determine optimal training methodologies, (3) Determine microgravity associated changes and (4) Develop intuitive ultrasound catalog to enhance autonomous medical care. Also uses of Ultrasound technology in terrestrial applications are reviewed.

  20. Contrastive Lexicology.

    ERIC Educational Resources Information Center

    Hartmann, R. R. K.

    This paper deals with the relation between etymologically related words in different languages. A survey is made of seven stages in the development of contrastive lexicology. These are: prelinguistic word studies, semantics, lexicography, translation, foreign language learning, bilingualism, and finally contrastive analysis. Concerning contrastive…

  1. Ultrasound in Acute Kidney Disease.

    PubMed

    Meola, Mario; Nalesso, Federico; Petrucci, Ilaria; Samoni, Sara; Ronco, Claudio

    2016-01-01

    Kidneys' imaging provides useful information in acute kidney injury (AKI) diagnosis and management. Today, several imaging techniques give information on kidneys anatomy, urinary obstruction, differential diagnosis between AKI and chronic kidney disease (CKD), renal blood flow and glomerular filtration rate. Ultrasound is a safe, non-invasive and repeatable imaging technique so it is widely used in the first level work-up of AKI. The utility of contrast-enhanced computed tomography and magnetic resonance imaging in AKI or in AKI during CKD is limited because of renal toxicity associated with contrast agents used. PMID:27169556

  2. Ultrasound mediated nanoparticle drug delivery

    NASA Astrophysics Data System (ADS)

    Mullin, Lee B.

    Ultrasound is not only a powerful diagnostic tool, but also a promising therapeutic technology that can be used to improve localized drug delivery. Microbubble contrast agents are micron sized encapsulated gas filled bubbles that are administered intravenously. Originally developed to enhance ultrasound images, microbubbles are highly echogenic due to the gas core that provides a detectable impedance difference from the surrounding medium. The core also allows for controlled response of the microbubbles to ultrasound pulses. Microbubbles can be pushed using acoustic radiation force and ruptured using high pressures. Destruction of microbubbles can increase permeability at the cellular and vascular level, which can be advantageous for drug delivery. Advances in drug delivery methods have been seen with the introduction of nanoparticles, nanometer sized objects often carrying a drug payload. In chemotherapy, nanoparticles can deliver drugs to tumors while limiting systemic exposure due to abnormalities in tumor vasculature such large gaps between endothelial cells that allow nanoparticles to enter into the interstitial space; this is referred to as the enhanced permeability and retention (EPR) effect. However, this effect may be overestimated in many tumors. Additionally, only a small percentage of the injected dose accumulates in the tumor, which most the nanoparticles accumulating in the liver and spleen. It is hypothesized that combining the acoustic activity of an ultrasound contrast agent with the high payload and extravasation ability of a nanoparticle, localized delivery to the tumor with reduced systemic toxicity can be achieved. This method can be accomplished by either loading nanoparticles onto the shell of the microbubble or through a coadministration method of both nanoparticles and microbubbles. The work presented in this dissertation utilizes novel and commercial nanoparticle formulations, combined with microbubbles and a variety of ultrasound systems

  3. Contrast Materials

    MedlinePlus

    ... or other reactions to contrast materials are rare, radiology departments are well-equipped to deal with them. ... is given. However, both the American College of Radiology (ACR) and the European Society of Urogenital Radiology ...

  4. Ultrasound Annual, 1983

    SciTech Connect

    Sanders, R.C.; Hill, M.C.

    1983-01-01

    The 1983 edition of Ultrasound Annual features a state-of-the-art assessment of real-time ultrasound technology and a look at improvements in real-time equipment. Chapters discuss important new obstetric applications of ultrasound in measuring fetal umbilical vein blood flow and monitoring ovarian follicular development in vivo and in vitro fertilization. Other topics covered include transrectal prostate ultrasound using a linear array system; ultrasound of the common bile duct; ultrasound in tropical diseases; prenatal diagnosis of craniospinal anomalies; scrotal ultrasonography; opthalmic ultrasonography; and sonography of the upper abdominal venous system.

  5. Recent technological advancements in breast ultrasound.

    PubMed

    Eisenbrey, John R; Dave, Jaydev K; Forsberg, Flemming

    2016-08-01

    Ultrasound is becoming increasingly common as an imaging tool for the detection and characterization of breast tumors. This paper provides an overview of recent technological advancements, especially those that may have an impact in clinical applications in the field of breast ultrasound in the near future. These advancements include close to 100% fractional bandwidth high frequency (5-18MHz) 2D and 3D arrays, automated breast imaging systems to minimize the operator dependence and advanced processing techniques, such as those used for detection of microcalcifications. In addition, elastography and contrast-enhanced ultrasound examinations that are expected to further enhance the clinical importance of ultrasound based breast tumor screening are briefly reviewed. These techniques have shown initial promise in clinical trials and may translate to more comprehensive clinical adoption in the future. PMID:27179143

  6. Prenatal ultrasound - slideshow

    MedlinePlus

    ... page: //medlineplus.gov/ency/presentations/100197.htm Prenatal ultrasound - series To use the sharing features on this ... Editorial team. Related MedlinePlus Health Topics Prenatal Testing Ultrasound A.D.A.M., Inc. is accredited by ...

  7. Abdominal ultrasound (image)

    MedlinePlus

    Abdominal ultrasound is a scanning technique used to image the interior of the abdomen. Like the X-ray, MRI, ... it has its place as a diagnostic tool. Ultrasound scans use high frequency sound waves to produce ...

  8. Transvaginal ultrasound (image)

    MedlinePlus

    Transvaginal ultrasound is a method of imaging the genital tract in females. A hand held probe is inserted directly ... vaginal cavity to scan the pelvic structures, while ultrasound pictures are viewed on a monitor. The test ...

  9. Medical Ultrasound Imaging.

    ERIC Educational Resources Information Center

    Hughes, Stephen

    2001-01-01

    Explains the basic principles of ultrasound using everyday physics. Topics include the generation of ultrasound, basic interactions with material, and the measurement of blood flow using the Doppler effect. (Author/MM)

  10. Contrast lipocryolysis

    PubMed Central

    Pinto, Hernán; Melamed, Graciela

    2014-01-01

    Alternative crystal structures are possible for all lipids and each different crystal structure is called a polymorphic form. Inter-conversion between polymorphisms would imply the possibility of leaning crystal formation toward the most effective polymorphism for adipocyte destruction. Food industry has been tempering lipids for decades. Tempering technology applied to lipocryolysis gave birth to “contrast lipocryolysis”, which involves pre- and post-lipocryolysis fat layer heating as part of a specific tempering protocol. In this study, we evaluated the skinfold thickness of 10 subjects after a single contrast lipocryolysis session and witnessed important and fast reductions. PMID:25068088

  11. CT and Ultrasound Guided Stereotactic High Intensity Focused Ultrasound (HIFU)

    SciTech Connect

    Wood, Bradford J.; Frenkel, V.; Viswanathan, A.; Dromi, S.; Oh, K.; Kam, A.; Li, K. C. P.; Yanof, J.; Bauer, C.; Kruecker, J.; Seip, R.

    2006-05-08

    To demonstrate the feasibility of CT and B-mode Ultrasound (US) targeted HIFU, a prototype coaxial focused ultrasound transducer was registered and integrated to a CT scanner. CT and diagnostic ultrasound were used for HIFU targeting and monitoring, with the goals of both thermal ablation and non-thermal enhanced drug delivery. A 1 megahertz coaxial ultrasound transducer was custom fabricated and attached to a passive position-sensing arm and an active six degree-of-freedom robotic arm via a CT stereotactic frame. The outer therapeutic transducer with a 10 cm fixed focal zone was coaxially mounted to an inner diagnostic US transducer (2-4 megahertz, Philips Medical Systems). This coaxial US transducer was connected to a modified commercial focused ultrasound generator (Focus Surgery, Indianapolis, IN) with a maximum total acoustic power of 100 watts. This pre-clinical paradigm was tested for ability to heat tissue in phantoms with monitoring and navigation from CT and live US. The feasibility of navigation via image fusion of CT with other modalities such as PET and MRI was demonstrated. Heated water phantoms were tested for correlation between CT numbers and temperature (for ablation monitoring). The prototype transducer and integrated CT/US imaging system enabled simultaneous multimodality imaging and therapy. Pre-clinical phantom models validated the treatment paradigm and demonstrated integrated multimodality guidance and treatment monitoring. Temperature changes during phantom cooling corresponded to CT number changes. Contrast enhanced or non-enhanced CT numbers may potentially be used to monitor thermal ablation with HIFU. Integrated CT, diagnostic US, and therapeutic focused ultrasound bridges a gap between diagnosis and therapy. Preliminary results show that the multimodality system may represent a relatively inexpensive, accessible, and simple method of both targeting and monitoring HIFU effects. Small animal pre-clinical models may be translated to large

  12. CT and Ultrasound Guided Stereotactic High Intensity Focused Ultrasound (HIFU)

    NASA Astrophysics Data System (ADS)

    Wood, Bradford J.; Yanof, J.; Frenkel, V.; Viswanathan, A.; Dromi, S.; Oh, K.; Kruecker, J.; Bauer, C.; Seip, R.; Kam, A.; Li, K. C. P.

    2006-05-01

    To demonstrate the feasibility of CT and B-mode Ultrasound (US) targeted HIFU, a prototype coaxial focused ultrasound transducer was registered and integrated to a CT scanner. CT and diagnostic ultrasound were used for HIFU targeting and monitoring, with the goals of both thermal ablation and non-thermal enhanced drug delivery. A 1 megahertz coaxial ultrasound transducer was custom fabricated and attached to a passive position-sensing arm and an active six degree-of-freedom robotic arm via a CT stereotactic frame. The outer therapeutic transducer with a 10 cm fixed focal zone was coaxially mounted to an inner diagnostic US transducer (2-4 megahertz, Philips Medical Systems). This coaxial US transducer was connected to a modified commercial focused ultrasound generator (Focus Surgery, Indianapolis, IN) with a maximum total acoustic power of 100 watts. This pre-clinical paradigm was tested for ability to heat tissue in phantoms with monitoring and navigation from CT and live US. The feasibility of navigation via image fusion of CT with other modalities such as PET and MRI was demonstrated. Heated water phantoms were tested for correlation between CT numbers and temperature (for ablation monitoring). The prototype transducer and integrated CT/US imaging system enabled simultaneous multimodality imaging and therapy. Pre-clinical phantom models validated the treatment paradigm and demonstrated integrated multimodality guidance and treatment monitoring. Temperature changes during phantom cooling corresponded to CT number changes. Contrast enhanced or non-enhanced CT numbers may potentially be used to monitor thermal ablation with HIFU. Integrated CT, diagnostic US, and therapeutic focused ultrasound bridges a gap between diagnosis and therapy. Preliminary results show that the multimodality system may represent a relatively inexpensive, accessible, and simple method of both targeting and monitoring HIFU effects. Small animal pre-clinical models may be translated to large

  13. Ultrasound Imaging System Video

    NASA Technical Reports Server (NTRS)

    2002-01-01

    In this video, astronaut Peggy Whitson uses the Human Research Facility (HRF) Ultrasound Imaging System in the Destiny Laboratory of the International Space Station (ISS) to image her own heart. The Ultrasound Imaging System provides three-dimension image enlargement of the heart and other organs, muscles, and blood vessels. It is capable of high resolution imaging in a wide range of applications, both research and diagnostic, such as Echocardiography (ultrasound of the heart), abdominal, vascular, gynecological, muscle, tendon, and transcranial ultrasound.

  14. Nonlinear acoustics in biomedical ultrasound

    NASA Astrophysics Data System (ADS)

    Cleveland, Robin O.

    2015-10-01

    Ultrasound is widely used to image inside the body; it is also used therapeutically to treat certain medical conditions. In both imaging and therapy applications the amplitudes employed in biomedical ultrasound are often high enough that nonlinear acoustic effects are present in the propagation: the effects have the potential to be advantageous in some scenarios but a hindrance in others. In the case of ultrasound imaging the nonlinearity produces higher harmonics that result in images of greater quality. However, nonlinear effects interfere with the imaging of ultrasound contrast agents (typically micron sized bubbles with a strong nonlinear response of their own) and nonlinear effects also result in complications when derating of pressure measurements in water to in situ values in tissue. High intensity focused ultrasound (HIFU) is emerging as a non-invasive therapeutic modality which can result in thermal ablation of tissue. For thermal ablation, the extra effective attenuation resulting from nonlinear effects can result in enhanced heating of tissue if shock formation occurs in the target region for ablation - a highly desirable effect. However, if nonlinearity is too strong it can also result in undesired near-field heating and reduced ablation in the target region. The disruption of tissue (histotripsy) and fragmentation of kidney stones (lithotripsy) exploits shock waves to produce mechanically based effects, with minimal heating present. In these scenarios it is necessary for the waves to be of sufficient amplitude that a shock exists when the waveform reaches the target region. This talk will discuss how underlying nonlinear phenomenon act in all the diagnostic and therapeutic applications described above.

  15. Obstetric ultrasound simulation.

    PubMed

    Nitsche, Joshua F; Brost, Brian C

    2013-06-01

    Obstetric ultrasound is becoming an increasingly important part of the practice of maternal-fetal medicine. Thus, it is important to develop rigorous and effective training curricula for obstetrics and gynecology residents and maternal-fetal medicine fellows. Traditionally, this training has come almost entirely from exposure to ultrasound in the clinical setting. However, with the increased complexity of modern ultrasound and advent of duty-hour restrictions, a purely clinical training model is no longer viable. With the advent of high-fidelity obstetric ultrasound simulators, a significant amount of training can occur in a non-clinical setting which allows learners to obtain significant skill prior to their first patient ultrasound encounter and obtain proficiency in a shorter period of time. In this manuscript we discuss the available obstetric ultrasound simulators and ways to construct a comprehensive ultrasound training curricula to meet the increasing demands of modern maternal-fetal medicine. PMID:23721777

  16. Intravascular ultrasound imaging following balloon angioplasty.

    PubMed

    Tobis, J M; Mahon, D J; Moriuchi, M; Honye, J; McRae, M

    1991-01-01

    Despite its long history and reliability, contrast angiography has several inherent limitations. Because it is a two-dimensional projection image of the lumen contour, the wall thickness cannot be measured and the plaque itself is not visualized. This results in an underestimation of the amount of atherosclerotic disease by angiography. An assessment of atherosclerosis could be improved by an imaging modality: (1) that has an inherent larger magnification than angiography and (2) that directly visualizes the plaque. Intravascular ultrasound fulfils these criteria. This presentation will provide evidence that intravascular ultrasound may prove complimentary or even superior to angiography as an imaging modality. Intravascular ultrasound demonstrates excellent representations of lumen and plaque morphology of in vitro specimens compared with histology. There is very close intraobserver and interobserver variability of measurements made from intravascular ultrasound images. Phantom studies of stenoses in a tube model demonstrate that angiography can misrepresent the severity of stenosis when the lumen contour is irregular and not a typical ellipse, whereas intravascular ultrasound reproduces the cross-sectional morphology more accurately since it images the artery from within. In vitro studies of the atherosclerotic plaque tissue characteristics compare closely with the echo representation of fibrosis, calcification, and lipid material. In addition, in vitro studies of balloon angioplasty demonstrate that intravascular ultrasound accurately represents the changes in the structure of artery segments following balloon dilatation. PMID:1833473

  17. Novel fusion algorithms for medical ultrasound tomography

    NASA Astrophysics Data System (ADS)

    Bashford, Gregory R.; Morse, Jonathan L.; Melander, Jennifer R.

    2004-10-01

    Ultrasound tomography is a bioimaging method that combines the geometry of X-ray computed tomography with the non-ionizing energy of ultrasound. This modality has potential clinical utility in breast cancer screening and diagnosis. In conventional ultrasound tomography, data sets from different interrogation angles are used to reconstruct an estimate of a biomechanical property of the tissue, such as sound velocity, in the form of an image. Here we describe an alternative method of reconstruction using novel algorithms which weight the data based on a "quality" score. The quality score is derived from beamforming characteristics, for example, the weighting of angle-dependent data by its distance from the transmit focal zones. The new approach is that for each data set (taken at a different view angle), the reliability of the data (in the range dimension) is assumed to vary. By fusing (combining) the data based on the quality score, a complete image is formed. In this paper, we describe the construction of a rotational translation stage and tissue-mimicking phantoms that are used in conjunction with a commercial medical ultrasound machine to test our reconstruction algorithms. The new algorithms were found to increase the contrast-to-speckle ratio of simulated cysts by 114% from raw data over a 77% improvement by spatial compounding (averaging), and to decrease wire target width by 54% over a 39% reduction by spatial compounding alone. The new method shows promise as a computationally efficient method of improving contrast and resolution in ultrasound images.

  18. Nanobubbles for enhanced ultrasound imaging of tumors.

    PubMed

    Yin, Tinghui; Wang, Ping; Zheng, Rongqin; Zheng, Bowen; Cheng, Du; Zhang, Xinling; Shuai, Xintao

    2012-01-01

    The fabrication and initial applications of nanobubbles (NBs) have shown promising results in recent years. A small particle size is a basic requirement for ultrasound contrast-enhanced agents that penetrate tumor blood vessel pores to allow for targeted imaging and therapy. However, the nanoscale size of the particles used has the disadvantage of weakening the imaging ability of clinical diagnostic ultrasound. In this work, we fabricated a lipid NBs contrast-enhanced ultrasound agent and evaluated its passive targeting ability in vivo. The results showed that the NBs were small (436.8 ± 5.7 nm), and in vitro ultrasound imaging suggested that the ultrasonic imaging ability is comparable to that of microbubbles (MBs). In vivo experiments confirmed the ability of NBs to passively target tumor tissues. The NBs remained in the tumor area for a longer period because they exhibited enhanced permeability and retention. Direct evidence was obtained by direct observation of red fluorescence-dyed NBs in tumor tissue using confocal laser scanning microscopy. We have demonstrated the ability to fabricate NBs that can be used for the in vivo contrast-enhanced imaging of tumor tissue and that have potential for drug/gene delivery. PMID:22393289

  19. Clinical Impact of Ultrasound-Related Techniques on the Diagnosis of Focal Liver Lesions

    PubMed Central

    Salvatore, Veronica; Bolondi, Luigi

    2012-01-01

    Since its introduction in clinical practice, ultrasound technology has greatly impacted patient management, particularly in the case of liver diseases, where hepatologists usually perform ultrasound examinations. Clinicians are increasingly aware of the great potential of ultrasound waves and of the recent innovations that exploit the mechanical properties of ultrasound waves. Thus, at present, not only B-mode ultrasound but also contrast-enhanced ultrasound and, more recently, elastosonography are used worldwide in various settings. This review aims to describe why clinicians should be aware of ultrasound-based techniques, how they should use these techniques for assessing focal liver lesions, and how these techniques impact patient management. We will review the clinical potential of ultrasound-related techniques, starting from lesion detection, moving to characterization, and concluding with their utility in guiding treatments and analyzing their effects. PMID:24159588

  20. Ultrasound of the Thyroid Gland

    MedlinePlus

    ... waves. Ultrasound imaging, also called ultrasound scanning or sonography , involves the use of a small transducer (probe) and ultrasound gel placed directly on the skin. High-frequency sound waves are transmitted from the ...

  1. Medical ultrasound imaging.

    PubMed

    Jensen, Jørgen Arendt

    2007-01-01

    The paper gives an introduction to current medical ultrasound imaging systems. The basics of anatomic and blood flow imaging are described. The properties of medical ultrasound and its focusing are described, and the various methods for two- and three-dimensional imaging of the human anatomy are shown. Systems using both linear and non-linear propagation of ultrasound are described. The blood velocity can also be non-invasively visualized using ultrasound and the basic signal processing for doing this is introduced. Examples for spectral velocity estimation, color flow imaging and the new vector velocity images are presented. PMID:17092547

  2. Acoustic radiation pressure: A 'phase contrast' agent for x-ray phase contrast imaging

    SciTech Connect

    Bailat, Claude J.; Hamilton, Theron J.; Rose-Petruck, Christoph; Diebold, Gerald J.

    2004-11-08

    We show that the radiation pressure exerted by a beam of ultrasound can be used for contrast enhancement in high-resolution x-ray imaging of tissue and soft materials. Interfacial features of objects are highlighted as a result of both the displacement introduced by the ultrasound and the inherent sensitivity of x-ray phase contrast imaging to density variations. The potential of the method is demonstrated by imaging microscopic tumor phantoms embedded into tissue with a thickness typically presented in mammography. The detection limit of micrometer size masses exceeds the resolution of currently available mammography imaging systems. The directionality of the acoustic radiation force and its localization in space permits the imaging of ultrasound-selected tissue volumes. The results presented here suggest that the method may permit the detection of tumors in soft tissue in their early stage of development.

  3. A REVIEW OF LOW-INTENSITY ULTRASOUND FOR CANCER THERAPY

    PubMed Central

    WOOD, ANDREW K. W.; SEHGAL, CHANDRA M.

    2015-01-01

    The literature describing the use of low-intensity ultrasound in four major areas of cancer therapy was reviewed - sonodynamic therapy, ultrasound mediated chemotherapy, ultrasound mediated gene delivery and antivascular ultrasound therapy. Each technique consistently resulted in the death of cancer cells and the bioeffects of ultrasound were primarily attributed to thermal actions and inertial cavitation. In each therapeutic modality, theranostic contrast agents composed of microbubbles played a role in both therapy and vascular imaging. The development of these agents is important as it establishes a therapeutic-diagnostic platform which can monitor the success of anti-cancer therapy. Little attention, however, has been given to either the direct assessment of the underlying mechanisms of the observed bioeffects or to the viability of these therapies in naturally occurring cancers in larger mammals; if such investigations provided encouraging data there could be a prompt application of a therapy technique in treating cancer patients. PMID:25728459

  4. Musculoskeletal Ultrasound in Pediatrics.

    PubMed

    Harcke, H. Theodore

    1998-01-01

    Ultrasound is ideally suited to the evaluation of the pediatric musculoskeletal system because of the increased ratio of cartilage to bone in the immature skeleton. The purpose of this article is to review the current uses of musculoskeletal ultrasound in pediatric patients. Hip sonography is widely accepted; other applications are increasing in popularity. PMID:11387111

  5. Ultrasound skin imaging.

    PubMed

    Alfageme Roldán, F

    2014-12-01

    The interaction of high-frequency ultrasound waves with the skin provides the basis for noninvasive, fast, and accessible diagnostic imaging. This tool is increasingly used in skin cancer and inflammatory conditions as well as in cosmetic dermatology. This article reviews the basic principles of skin ultrasound and its applications in the different areas of dermatology. PMID:24838227

  6. Imaging nonmelanoma skin cancers with combined ultrasound-photoacoustic microscopy

    NASA Astrophysics Data System (ADS)

    Sunar, Ulas; Rohrbach, Daniel J.; Morgan, Janet; Zeitouni, Natalie

    2013-03-01

    PDT has become a treatment of choice especially for the cases with multiple sites and large areas. However, the efficacy of PDT is limited for thicker and deeper tumors. Depth and size information as well as vascularity can provide useful information to clinicians for planning and evaluating PDT. High-resolution ultrasound and photoacoustic imaging can provide information regarding skin structure and vascularity. We utilized combined ultrasound-photoacoustic microscopy for imaging a basal cell carcinoma (BCC) tumor pre-PDT and the results indicate that combined ultrasound-photoacoustic imaging can be useful tool for PDT planning by providing both structural and functional contrasts.

  7. Current Role of Ultrasound in Small Bowel Imaging.

    PubMed

    Wale, Anita; Pilcher, James

    2016-08-01

    Bowel ultrasound is cheap, relatively quick, allows dynamic evaluation of the bowel, has no radiation burden, is well tolerated by patients, and allows repeat imaging. Bowel ultrasound requires a systematic assessment of the entire bowel using high-frequency probes. In addition, hydrosonography and contrast-enhanced ultrasound may be performed. We present the normal sonographic appearances of large and small bowel and the sonographic appearances of acute appendicitis, Crohn's disease, celiac disease, intussusception, infectious enteritis, intestinal tuberculosis, small bowel ileus and obstruction, small bowel ischemia, and malignant tumors. PMID:27342894

  8. Standards of ultrasound imaging of the adrenal glands

    PubMed Central

    Jakubowski, Wiesław S.; Dobruch-Sobczak, Katarzyna; Kasperlik-Załuska, Anna A.

    2015-01-01

    Adrenal glands are paired endocrine glands located over the upper renal poles. Adrenal pathologies have various clinical presentations. They can coexist with the hyperfunction of individual cortical zones or the medulla, insufficiency of the adrenal cortex or retained normal hormonal function. The most common adrenal masses are tumors incidentally detected in imaging examinations (ultrasound, tomography, magnetic resonance imaging), referred to as incidentalomas. They include a range of histopathological entities but cortical adenomas without hormonal hyperfunction are the most common. Each abdominal ultrasound scan of a child or adult should include the assessment of the suprarenal areas. If a previously non-reported, incidental solid focal lesion exceeding 1 cm (incidentaloma) is detected in the suprarenal area, computed tomography or magnetic resonance imaging should be conducted to confirm its presence and for differentiation and the tumor functional status should be determined. Ultrasound imaging is also used to monitor adrenal incidentaloma that is not eligible for a surgery. The paper presents recommendations concerning the performance and assessment of ultrasound examinations of the adrenal glands and their pathological lesions. The article includes new ultrasound techniques, such as tissue harmonic imaging, spatial compound imaging, three-dimensional ultrasound, elastography, contrast-enhanced ultrasound and parametric imaging. The guidelines presented above are consistent with the recommendations of the Polish Ultrasound Society. PMID:26807295

  9. Ultrasound-guided interventional radiology in critical care.

    PubMed

    Nicolaou, Savvas; Talsky, Aaron; Khashoggi, Khalid; Venu, Vicnays

    2007-05-01

    Ultrasound-guided intervention is becoming an increasingly popular and valuable tool in the critical care setting. In general, image-guided procedures can expedite wait times and increase the accuracy, safety, and efficacy of many procedures commonly performed within intensive care units. In the intensive care unit setting, ultrasound has particular advantages over other imaging modalities such as computed tomography and fluoroscopy, including real-time visualization, portability permitting bedside procedures, and reduced exposure to nephrotoxic contrast agents. We review the technical and procedural aspects of a number of ultrasound-guided interventions appropriate for critical care patients. These include central venous catheter deployment, thoracentesis, paracentesis, and drainage of a wide variety of abscesses, and percutaneous nephrostomy, percutaneous cholecystectomy, and inferior vena cava filter placement. Although we believe ultrasound is significantly underutilized in critical care today, we anticipate that with the improvement of ultrasound technology and the innovation of new ultrasound-guided procedures, the role of ultrasound in the intensive care unit will continue to expand, with bedside ultrasound-guided interventions increasingly becoming the norm. PMID:17446778

  10. Standards of the Polish Ultrasound Society – update. Spleen examination

    PubMed Central

    Walas, Maria Krystyna

    2013-01-01

    Ultrasound scan of the spleen is an integral part of the overall abdominal examination. Due to its anatomical position, physical examination of the spleen is frequently supplemented with an ultrasound which plays a special role in the differential diagnostics of splenic diseases and facilitates the determination of further diagnostic and therapeutic procedures. Similarly to other types of ultrasound scans, the examiner should be familiar with all significant clinical information as well as results of examinations and tests conducted so far. This enables to narrow the scope of search for etiological factors and indicate specific disease entities in the findings as well as allows for accurate assessment of coexistent pathologies. The article presents the standards of the Polish Ultrasound Society concerning the apparatus, preparation for the examination, technique and description of the findings. The authors discuss the normal anatomy of the spleen and the most common pathologies ranging from splenomegaly to splenic traumas. The indications for the contrast-enhanced ultrasound and characteristic patterns of enhancement of individual focal lesions are presented. This article is supplemented with photographic documentation, which provides images of the discussed lesions. The ultrasound examination, if carried out in compliance with current standards, allows for accurate interpretation of detected changes. This article has been prepared on the basis of the Ultrasound Examination Standards of the Polish Ultrasound Society (2011) and updated with the current knowledge. PMID:26672802

  11. Improving photoacoustic imaging contrast of brachytherapy seeds

    NASA Astrophysics Data System (ADS)

    Pan, Leo; Baghani, Ali; Rohling, Robert; Abolmaesumi, Purang; Salcudean, Septimiu; Tang, Shuo

    2013-03-01

    Prostate brachytherapy is a form of radiotherapy for treating prostate cancer where the radiation sources are seeds inserted into the prostate. Accurate localization of seeds during prostate brachytherapy is essential to the success of intraoperative treatment planning. The current standard modality used in intraoperative seeds localization is transrectal ultrasound. Transrectal ultrasound, however, suffers in image quality due to several factors such speckle, shadowing, and off-axis seed orientation. Photoacoustic imaging, based on the photoacoustic phenomenon, is an emerging imaging modality. The contrast generating mechanism in photoacoustic imaging is optical absorption that is fundamentally different from conventional B-mode ultrasound which depicts changes in acoustic impedance. A photoacoustic imaging system is developed using a commercial ultrasound system. To improve imaging contrast and depth penetration, absorption enhancing coating is applied to the seeds. In comparison to bare seeds, approximately 18.5 dB increase in signal-to-noise ratio as well as a doubling of imaging depth are achieved. Our results demonstrate that the coating of the seeds can further improve the discernibility of the seeds.

  12. Tumor Functional and Molecular Imaging Utilizing Ultrasound and Ultrasound-Mediated Optical Techniques

    PubMed Central

    Yuan, Baohong; Rychak, Joshua

    2014-01-01

    Tumor functional and molecular imaging has significantly contributed to cancer preclinical research and clinical applications. Among typical imaging modalities, ultrasonic and optical techniques are two commonly used methods; both share several common features such as cost efficiency, absence of ionizing radiation, relatively inexpensive contrast agents, and comparable maximum-imaging depth. Ultrasonic and optical techniques are also complementary in imaging resolution, molecular sensitivity, and imaging space (vascular and extravascular). The marriage between ultrasonic and optical techniques takes advantages of both techniques. This review introduces tumor functional and molecular imaging using microbubble-based ultrasound and ultrasound-mediated optical imaging techniques. PMID:23219728

  13. Ultrasound simulation in bone.

    PubMed

    Kaufman, Jonathan J; Luo, Gangming; Siffert, Robert S

    2008-01-01

    The manner in which ultrasound interacts with bone is of key interest in therapy and diagnosis alike. These may include applications directly to bone, as, for example, in treatment to accelerate the healing of bone fractures and in assessment of bone density in osteoporosis, or indirectly in diagnostic imaging of soft tissue with interest in assessing exposure levels to nearby bone. Because of the lack of analytic solutions to virtually every "practical problem" encountered clinically, ultrasound simulation has become a widely used technique for evaluating ultrasound interactions in bone. This paper provides an overview of the use of ultrasound simulation in bone. A brief description of the mathematical model used to characterize ultrasound propagation in bone is first provided. A number of simulation examples are then presented that explain how simulation may be utilized in a variety of practical configurations. The focus of this paper in terms of examples presented is on diagnostic applications in bone, and, in particular, for assessment of osteoporosis. However, the use of simulation in other areas of interest can easily be extrapolated from the examples presented. In conclusion, this paper describes the use of ultrasound simulation in bone and demonstrates the power of computational methods for ultrasound research in general and tissue and bone applications in particular. PMID:18599409

  14. [Lung ultrasound in the newborn].

    PubMed

    Yousef, N

    2016-03-01

    Lung ultrasound (LU) is becoming a bedside point-of-care technique in critical care and emergency medicine as it is performed and immediately interpreted by the clinician. LU is quick, easy, relatively inexpensive, and provides accurate diagnostic information when compared with conventional lung imaging methods, such as CT scans and chest radiographs, with the additional advantage of being non-irradiating, adapted to bedside use, and easily repeatable with no side effects for the patient. LU is easy to learn, does not require sophisticated ultrasound machines or settings, and shows low intra- and interobserver variability when a standardized approach is used. A comprehensive and standardized ultrasound semiology has been described and validated in both adults and children. In summary, LU allows for quick easy recognition of a normally aerated lung in contrast to an interstitial or alveolar pattern. Recognition of these patterns may be even easier in neonates due to their small size and the absence of obesity and heavy musculature. Specific LU findings have been described for some types of neonatal lung injury, such as neonatal respiratory distress syndrome, transient tachypnea of the neonate, meconium aspiration syndrome, and neonatal pneumonia. In the newborn, LU has proved its usefulness in predicting the need for hospital admission and/or intubation based on simple LU patterns. A recently proposed LU score, adapted for the neonate, correlates well with oxygenation status, independently of gestational age and underlying respiratory condition. The score reliably predicts the need for surfactant treatment in preterm babies less than 34 weeks gestation treated with nasal CPAP from birth. LU is a promising tool with numerous potential applications that warrant future studies. However, like every technique, LU has its limitations and should not completely replace standard radiography. LU can nevertheless largely reduce exposure to ionizing radiation by limiting the

  15. Ultrasound assessment of schistosomiasis.

    PubMed

    Richter, J; Botelho, M C; Holtfreter, M C; Akpata, R; El Scheich, T; Neumayr, A; Brunetti, E; Hatz, C; Dong, Y; Dietrich, C F

    2016-07-01

    In 2000, the World Health Organization (WHO) issued an ultrasound field protocol for assessing the morbidity due to Schistosoma (S.) haematobium and S. mansoni. The experience with this classification has recently been reviewed systematically. The WHO protocol was well accepted worldwide. Here we review the use of ultrasound to assess the morbidity due to schistosomiasis with emphasis on easy, quick, and reproducible ways that can be used in the field. Findings obtained with high-end ultrasound scanners in the hospital setting that might eventually have applications in the field are also described. PMID:27429103

  16. A multitheragnostic nanobubble system to induce blood-brain barrier disruption with magnetically guided focused ultrasound.

    PubMed

    Huang, Hsin-Yang; Liu, Hao-Li; Hsu, Po-Hung; Chiang, Chih-Sheng; Tsai, Chih-Hung; Chi, Huei-Shang; Chen, San-Yuan; Chen, You-Yin

    2015-01-27

    A novel magnetically guidable nanobubble is designed for disrupting the blood-brain barrier (BBB) by combining magnetic guidance with focused ultrasound in vivo. The magnetic-nanobubble platform also demonstrates the potential to serve as a unique theranostic tool via performing focused ultrasound (FUS)-induced BBB disruption and magnetic resonance imaging (MRI)/ultrasound dual-modality contrast-agent imaging to improve the drug delivery of therapeutic substances or gene therapy into the central nervous system. PMID:25472627

  17. AUGMENTATION OF LIMB PERFUSION AND REVERSAL OF TISSUE ISCHEMIA PRODUCED BY ULTRASOUND-MEDIATED MICROBUBBLE CAVITATION

    PubMed Central

    Belcik, J. Todd; Mott, Brian H.; Xie, Aris; Zhao, Yan; Kim, Sajeevani; Lindner, Nathan J.; Ammi, Azzdine; Linden, Joel M.; Lindner, Jonathan R.

    2015-01-01

    Background Ultrasound can increase tissue blood flow in part through the intravascular shear produced by oscillatory pressure fluctuations. We hypothesized that ultrasound-mediated increases in perfusion can be augmented by microbubble contrast agents that undergo ultrasound-mediated cavitation, and sought to characterize the biologic mediators. Methods and Results Contrast ultrasound perfusion imaging of hindlimb skeletal muscle and femoral artery diameter measurement were performed in non-ischemic mice after unilateral 10 min exposure to intermittent ultrasound alone (mechanical index [MI] 0.6 or 1.3) or ultrasound with lipid microbubbles (2×108 I.V.). Studies were also performed after inhibiting shear- or pressure-dependent vasodilator pathways, and in mice with hindlimb ischemia. Ultrasound alone produced a 2-fold increase (p<0.05) in muscle perfusion regardless of ultrasound power. Ultrasound-mediated augmentation in flow was greater with microbubbles (3-fold and 10-fold higher than control for MI 0.6 and 1.3, respectively; p<0.05), as was femoral artery dilation. Inhibition of endothelial nitric oxide synthase (eNOS) attenuated flow augmentation produced by ultrasound and microbubbles by 70% (p<0.01), whereas inhibition of adenosine-A2a receptors and epoxyeicosatrienoic acids had minimal effect. Limb nitric oxide (NO) production and muscle phospho-eNOS increased in a stepwise fashion by ultrasound and ultrasound with microbubbles. In mice with unilateral hindlimb ischemia (40–50% reduction in flow), ultrasound (MI 1.3) with microbubbles increased perfusion by 2-fold to a degree that was greater than the control non-ischemic limb. Conclusions Increases in muscle blood flow during high-power ultrasound are markedly amplified by the intravascular presence of microbubbles and can reverse tissue ischemia. These effects are most likely mediated by cavitation-related increases in shear and activation of eNOS. PMID:25834183

  18. A Targeting Microbubble for Ultrasound Molecular Imaging

    PubMed Central

    Yeh, James Shue-Min; Sennoga, Charles A.; McConnell, Ellen; Eckersley, Robert; Tang, Meng-Xing; Nourshargh, Sussan; Seddon, John M.; Haskard, Dorian O.; Nihoyannopoulos, Petros

    2015-01-01

    Rationale Microbubbles conjugated with targeting ligands are used as contrast agents for ultrasound molecular imaging. However, they often contain immunogenic (strept)avidin, which impedes application in humans. Although targeting bubbles not employing the biotin-(strept)avidin conjugation chemistry have been explored, only a few reached the stage of ultrasound imaging in vivo, none were reported/evaluated to show all three of the following properties desired for clinical applications: (i) low degree of non-specific bubble retention in more than one non-reticuloendothelial tissue; (ii) effective for real-time imaging; and (iii) effective for acoustic quantification of molecular targets to a high degree of quantification. Furthermore, disclosures of the compositions and methodologies enabling reproduction of the bubbles are often withheld. Objective To develop and evaluate a targeting microbubble based on maleimide-thiol conjugation chemistry for ultrasound molecular imaging. Methods and Results Microbubbles with a previously unreported generic (non-targeting components) composition were grafted with anti-E-selectin F(ab’)2 using maleimide-thiol conjugation, to produce E-selectin targeting microbubbles. The resulting targeting bubbles showed high specificity to E-selectin in vitro and in vivo. Non-specific bubble retention was minimal in at least three non-reticuloendothelial tissues with inflammation (mouse heart, kidneys, cremaster). The bubbles were effective for real-time ultrasound imaging of E-selectin expression in the inflamed mouse heart and kidneys, using a clinical ultrasound scanner. The acoustic signal intensity of the targeted bubbles retained in the heart correlated strongly with the level of E-selectin expression (|r|≥0.8), demonstrating a high degree of non-invasive molecular quantification. Conclusions Targeting microbubbles for ultrasound molecular imaging, based on maleimide-thiol conjugation chemistry and the generic composition described

  19. Abdominal ultrasound (image)

    MedlinePlus

    Abdominal ultrasound is a scanning technique used to image the interior of the abdomen. Like the X- ... use high frequency sound waves to produce an image and do not expose the individual to radiation. ...

  20. Measurements in ultrasound

    SciTech Connect

    Goldberg, B.B.; Kurtz, A.B.; Goldberg, P.

    1988-01-01

    This book gathers all published and original data pertaining to anatomical measurements as projected on ultrasound scans. It covers all major anatomic regions and organ systems, including abdomen, pelvic, obstetrical, head and neck, and heart.

  1. Ultrasound in pregnancy (image)

    MedlinePlus

    The ultrasound has become a standard procedure used during pregnancy. It can demonstrate fetal growth and can detect increasing ... abnormalities, hydrocephalus, anencephaly, club feet, and other ... does not produce ionizing radiation and is considered ...

  2. Eye and orbit ultrasound

    MedlinePlus

    ... the eye (vitreous hemorrhage) Cancer of the retina ( retinoblastoma ), under the retina, or in other parts of ... Cataract removal Melanoma of the eye Retinal detachment Retinoblastoma Ultrasound Update Date 2/23/2015 Updated by: ...

  3. Ultrasound: Pelvis (For Parents)

    MedlinePlus

    ... pelvic area and images are recorded on a computer. The black-and-white images show the internal ... the images can be seen clearly on the computer screen. A technician (sonographer) trained in ultrasound imaging ...

  4. Ultrasound: Infant Hip

    MedlinePlus

    ... hip area, and images are recorded on a computer. The black-and-white images show the internal ... the images can be seen clearly on the computer screen. A technician (sonographer) trained in ultrasound imaging ...

  5. Ultrasound: Abdomen (For Parents)

    MedlinePlus

    ... abdominal area and images are recorded on a computer. The black-and-white images show the internal ... the images can be seen clearly on the computer screen. A technician (sonographer) trained in ultrasound imaging ...

  6. Ultrasound: Head (For Parents)

    MedlinePlus

    ... the head and images are recorded on a computer. The black-and-white images show the internal ... the images can be seen clearly on the computer screen. A technician (sonographer) trained in ultrasound imaging ...

  7. Ultrasound: Bladder (For Parents)

    MedlinePlus

    ... bladder area and images are recorded on a computer. The black-and-white images show the internal ... the images can be seen clearly on the computer screen. A technician (sonographer) trained in ultrasound imaging ...

  8. Ultrasound in perinatology

    SciTech Connect

    Maklad, N.F.

    1986-01-01

    This 19th volume in the series Clinics in Diagnostic Ultrasound provides an overview and update of some of the recent applications of ultrasound (US) in the pernatal period. Prenatal topics include estimation of gestational age; evaluation of intrauterine growth retardation, non-immune hydrops, and fetal urinary abnormalities; fetal echocardiography; and biophysical scoring. The discussion of postnatal topics includes US studies of the head and abdomen, echocardiography, and interventional procedures.

  9. [Summary of technical principles of contrast sonography and future perspectives].

    PubMed

    Greis, C

    2011-06-01

    Ultrasound contrast agents have considerably expanded the range of ultrasound diagnostics. Up to date ultrasound machines with contrast-specific software allow the selective demonstration and quantification of contrast agents in real-time based on the specific signal signature of oscillating contrast agent microbubbles. After intravenous injection the microbubbles are transported with the bloodstream and distributed purely intravascularly. This allows an artefact-free representation of the vascular architecture and delineation of the vascular lumen, independent of blood flow velocity and with high spatial resolution. Traumatic lesions and active bleeding can be detected with high sensitivity. Blood volume in vessels and organs can be assessed qualitatively and quantitatively. The possibility of short-term destruction of microbubbles within the ultrasound field allows the measurement of blood flow velocity during replenishment and based on that the assessment of perfusion in parenchymal tissue. Target-specific microbubbles for imaging of molecular surface structures as well as drug-loaded microbubbles for local ultrasound-mediated therapy are under development. PMID:21557023

  10. Endoscopic ultrasound: state-of-the-art GI tumor staging

    NASA Astrophysics Data System (ADS)

    Trowers, Eugene A.

    1999-06-01

    Videoendoscopy has truly enlarged the scope of diagnostic and therapeutic gastroenterology. However, videoendoscopic examinations are limited to the mucosal surface. Endoscopic ultrasound allows the endoscopist a view beyond the intestinal wall which opens the door to a variety of new gastroenterologic techniques. The evaluation of plain images in combination with contrast-enhanced imags has been found to be helpful when applied to CT and MRI. A similar advantage may be found for endoscopic ultrasound (EUS) studies. The efficacy of EUS with and without contrast enhancement is critically reviewed.

  11. Interlaced realtime channel-domain photoacoustic and ultrasound imaging

    NASA Astrophysics Data System (ADS)

    Harrison, Tyler; Zemp, Roger J.

    2011-03-01

    Photoacoustic imaging offers a new and complementary contrast mechanism to the traditional structural contrast of ultrasound. While the combination of these two modes has been demonstrated in the past with single-element transducers, array transducers offer clear advantages in both modes by eliminating mechanical scanning and allowing image formation from a single excitation. Given the abundance of commercially available ultrasound systems, it is desirable to use them as much as possible. However, these systems often only allow access to beamformed RF data. We discuss the applicability of ultrasound beamformers for photoacoustic imaging, and find that with only software-defined control over the speed of sound, walking aperture reconstruction is optimally performed using a speed correction factor of 1.414. When sector-scanning is used, a different strategy is required. We also demonstrate a new photoacoustic-ultrasound imaging system based on a Verasonics ultrasound array system. The system streams raw channel data to a 6-core PC at up to 1.4GB/s via PCI-Express, allowing interlaced ultrasound and photoacoustic data to be acquired and reconstructed at realtime rates. Using an L7-4 linear array transducer, we demonstrate the performance of this system and discuss potential applications. The system should provide new opportunities for clinical and pre-clinical imaging.

  12. 3D Flow reconstruction using ultrasound PIV

    NASA Astrophysics Data System (ADS)

    Poelma, C.; Mari, J. M.; Foin, N.; Tang, M.-X.; Krams, R.; Caro, C. G.; Weinberg, P. D.; Westerweel, J.

    2011-04-01

    Ultrasound particle image velocimetry (PIV) can be used to obtain velocity fields in non-transparent geometries and/or fluids. In the current study, we use this technique to document the flow in a curved tube, using ultrasound contrast bubbles as flow tracer particles. The performance of the technique is first tested in a straight tube, with both steady laminar and pulsatile flows. Both experiments confirm that the technique is capable of reliable measurements. A number of adaptations are introduced that improve the accuracy and applicability of ultrasound PIV. Firstly, due to the method of ultrasound image acquisition, a correction is required for the estimation of velocities from tracer displacements. This correction accounts for the fact that columns in the image are recorded at slightly different instances. The second improvement uses a slice-by-slice scanning approach to obtain three-dimensional velocity data. This approach is here demonstrated in a strongly curved tube. The resulting flow profiles and wall shear stress distribution shows a distinct asymmetry. To meaningfully interpret these three-dimensional results, knowledge of the measurement thickness is required. Our third contribution is a method to determine this quantity, using the correlation peak heights. The latter method can also provide the third (out-of-plane) component if the measurement thickness is known, so that all three velocity components are available using a single probe.

  13. Hydrodynamic Forces on Microbubbles under Ultrasound Excitation

    NASA Astrophysics Data System (ADS)

    Clark, Alicia; Aliseda, Alberto

    2014-11-01

    Ultrasound (US) pressure waves exert a force on microbubbles that can be used to steer them in a flow. To control the motion of microbubbles under ultrasonic excitation, the coupling between the volume oscillations induced by the ultrasound pressure and the hydrodynamic forces needs to be well understood. We present experimental results for the motion of small, coated microbubbles, with similar sizes and physico-chemical properties as clinically-available ultrasound contrast agents (UCAs). The size distribution for the bubbles, resulting from the in-house manufacturing process, was characterized by analysis of high magnification microscopic images and determined to be bimodal. More than 99% of the volume is contained in microbubbles less than 10 microns in diameter, the size of a red blood cell. The motion of the microbubbles in a pulsatile flow, at different Reynolds and Womersley numbers, is studied from tracking of high-speed shadowgraphy. The influence of ultrasound forcing, at or near the resonant frequency of the bubbles, on the hydrodynamic forces due to the pulsatile flow is determined from the experimental measurements of the trajectories. Previous evidence of a sign reversal in Saffman lift is the focus of particular attention, as this is frequently the only hydrodynamic force acting in the direction perpendicular to the flow pathlines. Application of the understanding of this physical phenomenon to targeted drug delivery is analyzed in terms of the transport of the microbubbles. NSF GRFP.

  14. The utility of ultrasound in patients with melanoma.

    PubMed

    Uren, Roger F; Sanki, Amira; Thompson, John F

    2007-11-01

    The highest quality gray-scale ultrasound images are obtained with high-frequency transducers; however, such high frequencies do not penetrate more than a few centimeters into body tissue. Fortunately, in patients with melanoma, the structures of interest are close to the skin surface, making them ideal targets for examination with high-resolution ultrasound. These include primary cutaneous melanomas, uveal melanomas and the regional lymph nodes draining the skin that lie in the axilla, groin, neck and other locations. Although ultrasound study of primary melanomas arising in the skin and eye has provided some insights, a major role for ultrasound has evolved recently, to provide early detection of metastatic melanoma in regional lymph nodes. Ultrasound is clearly superior to clinical palpation of the nodes during follow-up and, when combined with guided fine-needle biopsy, allows the earliest possible surgical intervention for regional nodal metastases. In the future the use of ultrasound contrast agents may improve the sensitivity of ultrasound in the detection of very small metastatic deposits. PMID:18020929

  15. A brief account of nanoparticle contrast agents for photoacoustic imaging.

    PubMed

    Pan, Dipanjan; Kim, Benjamin; Wang, Lihong V; Lanza, Gregory M

    2013-01-01

    Photoacoustic imaging (PAI) is a hybrid, nonionizing modality offering excellent spatial resolution, deep penetration, and high soft tissue contrast. In PAI, signal is generated based on the absorption of laser-generated optical energy by endogenous tissues or exogenous contrast agents leading to acoustic emissions detected by an ultrasound transducer. Research in this area over the years has shown that PAI has the ability to provide both physiological and molecular imaging, which can be viewed alone or used in a hybrid modality fashion to extend the anatomic and hemodynamic sensitivities of clinical ultrasound. PAI may be performed using inherent contrast afforded by light absorbing molecules such as hemoglobin, myoglobin, and melanin or exogenous small molecule contrast agent such as near infrared dyes and porphyrins. However, this review summarizes the potential of exogenous nanoparticle-based agents for PAI applications including contrast based on gold particles, carbon nanotubes, and encapsulated copper compounds. PMID:23983210

  16. A Brief Account of Nanoparticle Contrast Agents for Photoacoustic Imaging

    PubMed Central

    Pan, Dipanjan; Kim, Benjamin; Wang, Lihong V.; Lanza, Gregory M

    2014-01-01

    Photoacoustic imaging (PAI) is a hybrid, nonionizing modality offering excellent spatial resolution, deep penetration, and high soft tissue contrast. In PAI, signal is generated based on the absorption of laser-generated optical energy by endogenous tissues or exogenous contrast agents leading to acoustic emissions detected by an ultrasound transducer. Research in this area over the years has shown that PAI has the ability to provide both physiological and molecular imaging, which can be viewed alone or used in a hybrid modality fashion to extend the anatomic and hemodynamic sensitivities of clinical ultrasound. PAI may be performed using inherent contrast afforded by light absorbing molecules such as hemoglobin, myoglobin, and melanin or exogenous small molecule contrast agent such as near infrared dyes and porphyrins. However, this review summarizes the potential of exogenous nanoparticle-based agents for PAI applications including contrast based on gold particles, carbon nanotubes, and encapsulated copper compounds. PMID:23983210

  17. Microbubbles in Ultrasound-Triggered Drug and Gene Delivery

    PubMed Central

    Hernot, Sophie; Klibanov, Alexander L.

    2008-01-01

    Ultrasound contrast agents, in the form of gas-filled microbubbles, are becoming popular in perfusion monitoring; they are employed as molecular imaging agents. Microbubbles are manufactured from biocompatible materials, they can be injected intravenously, and some are approved for clinical use. Microbubbles can be destroyed by ultrasound irradiation. This destruction phenomenon can be applied to targeted drug delivery and enhancement of drug action. The ultrasonic field can be focused at the target tissues and organs; thus, selectivity of the treatment can be improved, reducing undesirable side effects. Microbubbles enhance ultrasound energy deposition in the tissues and serve as cavitation nuclei, increasing intracellular drug delivery. DNA delivery and successful tissue transfection is observed in the areas of the body where ultrasound is applied after intravascular administration of microbubbles and plasmid DNA. Accelerated blood clot dissolution in the areas of insonation by cooperative action of thrombolytic agents and microbubbles is demonstrated in several clinical trials. PMID:18486268

  18. Tissue Bioeffects during Ultrasound-mediated Drug Delivery

    NASA Astrophysics Data System (ADS)

    Sutton, Jonathan

    Ultrasound has been developed as both a valuable diagnostic tool and a potent promoter of beneficial tissue bioeffects for the treatment of cardiovascular disease. Vascular effects can be mediated by mechanical oscillations of circulating microbubbles, or ultrasound contrast agents, which may also encapsulate and shield a therapeutic agent in the bloodstream. Oscillating microbubbles can create stresses directly on nearby tissue or induce fluid effects that effect drug penetration into vascular tissue, lyse thrombi, or direct drugs to optimal locations for delivery. These investigations have spurred continued research into alternative therapeutic applications, such as bioactive gas delivery. This dissertation addresses a fundamental hypothesis in biomedical ultrasound: ultrasound-mediated drug delivery is capable of increasing the penetration of drugs across different physiologic barriers within the cardiovascular system, such as the vascular endothelium, blood clots, and smooth muscle cells.

  19. Screening MR imaging versus screening ultrasound: pros and cons.

    PubMed

    Mahoney, Mary C; Newell, Mary S

    2013-08-01

    Data support greater sensitivity of MR imaging compared with mammography and ultrasound in high-risk populations, in particular BRCA 1 and BRCA 2 carriers. Screening ultrasound improves cancer yield versus mammography alone in high-risk patients and in patients with dense breasts and is less expensive. Drawbacks include low positive predictive value, operator dependence, and significant physician time expenditure. Advances, such as refinement of automated whole-breast ultrasound, new outcomes data from ultrasound-detected masses in BI-RADS 3 and 4a categories, and development of new MR imaging sequences that allow rapid screening, potentially without use of contrast, will likely reveal the most appropriate tool over time. PMID:23928240

  20. AMUM LECTURE: Therapeutic ultrasound

    NASA Astrophysics Data System (ADS)

    Crum, Lawrence A.

    2004-01-01

    The use of ultrasound in medicine is now quite commonplace, especially with the recent introduction of small, portable and relatively inexpensive, hand-held diagnostic imaging devices. Moreover, ultrasound has expanded beyond the imaging realm, with methods and applications extending to novel therapeutic and surgical uses. These applications broadly include: tissue ablation, acoustocautery, lipoplasty, site-specific and ultrasound mediated drug activity, extracorporeal lithotripsy, and the enhancement of natural physiological functions such as wound healing and tissue regeneration. A particularly attractive aspect of this technology is that diagnostic and therapeutic systems can be combined to produce totally non-invasive, imageguided therapy. This general lecture will review a number of these exciting new applications of ultrasound and address some of the basic scientific questions and future challenges in developing these methods and technologies for general use in our society. We shall particularly emphasize the use of High Intensity Focused Ultrasound (HIFU) in the treatment of benign and malignant tumors as well as the introduction of acoustic hemostasis, especially in organs which are difficult to treat using conventional medical and surgical techniques.

  1. Medical ultrasound systems

    PubMed Central

    Powers, Jeff; Kremkau, Frederick

    2011-01-01

    Medical ultrasound imaging has advanced dramatically since its introduction only a few decades ago. This paper provides a short historical background, and then briefly describes many of the system features and concepts required in a modern commercial ultrasound system. The topics addressed include array beam formation, steering and focusing; array and matrix transducers; echo image formation; tissue harmonic imaging; speckle reduction through frequency and spatial compounding, and image processing; tissue aberration; Doppler flow detection; and system architectures. It then describes some of the more practical aspects of ultrasound system design necessary to be taken into account for today's marketplace. It finally discusses the recent explosion of portable and handheld devices and their potential to expand the clinical footprint of ultrasound into regions of the world where medical care is practically non-existent. Throughout the article reference is made to ways in which ultrasound imaging has benefited from advances in the commercial electronics industry. It is meant to be an overview of the field as an introduction to other more detailed papers in this special issue. PMID:22866226

  2. Tandem-pulsed acousto-optics: an analytical framework of modulated high-contrast speckle patterns.

    PubMed

    Resink, S G; Steenbergen, W

    2015-06-01

    Recently we presented acousto-optic (AO) probing of scattering media using addition or subtraction of speckle patterns due to tandem nanosecond pulses. Here we present a theoretical framework for ideal (polarized, noise-free) speckle patterns with unity contrast that links ultrasound-induced optical phase modulation, the fraction of light that is tagged by ultrasound, speckle contrast, mean square difference of speckle patterns and the contrast of the summation of speckle patterns acquired at different ultrasound phases. We derive the important relations from basic assumptions and definitions, and then validate them with simulations. For ultrasound-generated phase modulation angles below 0.7 rad (assuming uniform modulation), we are now able to relate speckle pattern statistics to the acousto-optic phase modulation. Hence our theory allows quantifying speckle observations in terms of ultrasonically tagged fractions of light for near-unity-contrast speckle patterns. PMID:25985079

  3. 3D ultrafast ultrasound imaging in vivo

    NASA Astrophysics Data System (ADS)

    Provost, Jean; Papadacci, Clement; Esteban Arango, Juan; Imbault, Marion; Fink, Mathias; Gennisson, Jean-Luc; Tanter, Mickael; Pernot, Mathieu

    2014-10-01

    Very high frame rate ultrasound imaging has recently allowed for the extension of the applications of echography to new fields of study such as the functional imaging of the brain, cardiac electrophysiology, and the quantitative imaging of the intrinsic mechanical properties of tumors, to name a few, non-invasively and in real time. In this study, we present the first implementation of Ultrafast Ultrasound Imaging in 3D based on the use of either diverging or plane waves emanating from a sparse virtual array located behind the probe. It achieves high contrast and resolution while maintaining imaging rates of thousands of volumes per second. A customized portable ultrasound system was developed to sample 1024 independent channels and to drive a 32  ×  32 matrix-array probe. Its ability to track in 3D transient phenomena occurring in the millisecond range within a single ultrafast acquisition was demonstrated for 3D Shear-Wave Imaging, 3D Ultrafast Doppler Imaging, and, finally, 3D Ultrafast combined Tissue and Flow Doppler Imaging. The propagation of shear waves was tracked in a phantom and used to characterize its stiffness. 3D Ultrafast Doppler was used to obtain 3D maps of Pulsed Doppler, Color Doppler, and Power Doppler quantities in a single acquisition and revealed, at thousands of volumes per second, the complex 3D flow patterns occurring in the ventricles of the human heart during an entire cardiac cycle, as well as the 3D in vivo interaction of blood flow and wall motion during the pulse wave in the carotid at the bifurcation. This study demonstrates the potential of 3D Ultrafast Ultrasound Imaging for the 3D mapping of stiffness, tissue motion, and flow in humans in vivo and promises new clinical applications of ultrasound with reduced intra—and inter-observer variability.

  4. 3D Ultrafast Ultrasound Imaging In Vivo

    PubMed Central

    Provost, Jean; Papadacci, Clement; Arango, Juan Esteban; Imbault, Marion; Gennisson, Jean-Luc; Tanter, Mickael; Pernot, Mathieu

    2014-01-01

    Very high frame rate ultrasound imaging has recently allowed for the extension of the applications of echography to new fields of study such as the functional imaging of the brain, cardiac electrophysiology, and the quantitative real-time imaging of the intrinsic mechanical properties of tumors, to name a few, non-invasively and in real time. In this study, we present the first implementation of Ultrafast Ultrasound Imaging in three dimensions based on the use of either diverging or plane waves emanating from a sparse virtual array located behind the probe. It achieves high contrast and resolution while maintaining imaging rates of thousands of volumes per second. A customized portable ultrasound system was developed to sample 1024 independent channels and to drive a 32×32 matrix-array probe. Its capability to track in 3D transient phenomena occurring in the millisecond range within a single ultrafast acquisition was demonstrated for 3-D Shear-Wave Imaging, 3-D Ultrafast Doppler Imaging and finally 3D Ultrafast combined Tissue and Flow Doppler. The propagation of shear waves was tracked in a phantom and used to characterize its stiffness. 3-D Ultrafast Doppler was used to obtain 3-D maps of Pulsed Doppler, Color Doppler, and Power Doppler quantities in a single acquisition and revealed, for the first time, the complex 3-D flow patterns occurring in the ventricles of the human heart during an entire cardiac cycle, and the 3-D in vivo interaction of blood flow and wall motion during the pulse wave in the carotid at the bifurcation. This study demonstrates the potential of 3-D Ultrafast Ultrasound Imaging for the 3-D real-time mapping of stiffness, tissue motion, and flow in humans in vivo and promises new clinical applications of ultrasound with reduced intra- and inter-observer variability. PMID:25207828

  5. Ultrasound of Peripheral Nerves

    PubMed Central

    Suk, Jung Im; Walker, Francis O.; Cartwright, Michael S.

    2013-01-01

    Over the last decade, neuromuscular ultrasound has emerged as a useful tool for the diagnosis of peripheral nerve disorders. This article reviews sonographic findings of normal nerves including key quantitative ultrasound measurements that are helpful in the evaluation of focal and possibly generalized peripheral neuropathies. It also discusses several recent papers outlining the evidence base for the use of this technology, as well as new findings in compressive, traumatic, and generalized neuropathies. Ultrasound is well suited for use in electrodiagnostic laboratories where physicians, experienced in both the clinical evaluation of patients and the application of hands-on technology, can integrate findings from the patient’s history, physical examination, electrophysiological studies, and imaging for diagnosis and management. PMID:23314937

  6. Ultrasound in space

    NASA Technical Reports Server (NTRS)

    Martin, David S.; South, Donna A.; Garcia, Kathleen M.; Arbeille, Philippe

    2003-01-01

    Physiology of the human body in space has been a major concern for space-faring nations since the beginning of the space era. Ultrasound (US) is one of the most cost effective and versatile forms of medical imaging. As such, its use in characterizing microgravity-induced changes in physiology is being realized. In addition to the use of US in related ground-based studies, equipment has also been modified to fly in space. This involves alteration to handle the stresses of launch and different power and cooling requirements. Study protocols also have been altered to accommodate the microgravity environment. Ultrasound studies to date have shown a pattern of adaptation to microgravity that includes changes in cardiac chamber sizes and vertebral spacing. Ultrasound has been and will continue to be an important component in the investigation of physiological and, possibly, pathologic changes occurring in space or as a result of spaceflight.

  7. Acoustically active liposome-nanobubble complexes for enhanced ultrasonic imaging and ultrasound-triggered drug delivery.

    PubMed

    Nguyen, An T; Wrenn, Steven P

    2014-01-01

    Ultrasound is well known as a safe, reliable imaging modality. A historical limitation of ultrasound, however, was its inability to resolve structures at length scales less than nominally 20 µm, which meant that classical ultrasound could not be used in applications such as echocardiography and angiogenesis where one requires the ability to image small blood vessels. The advent of ultrasound contrast agents, or microbubbles, removed this limitation and ushered in a new wave of enhanced ultrasound applications. In recent years, the microbubbles have been designed to achieve yet another application, namely ultrasound-triggered drug delivery. Ultrasound contrast agents are thus tantamount to 'theranostic' vehicles, meaning they can do both therapy (drug delivery) and imaging (diagnostics). The use of ultrasound contrast agents as drug delivery vehicles, however, is perhaps less than ideal when compared to traditional drug delivery vehicles (e.g., polymeric microcapsules and liposomes) which have greater drug carrying capacities. The drawback of the traditional drug delivery vehicles is that they are not naturally acoustically active and cannot be used for imaging. The notion of a theranostic vehicle is sufficiently intriguing that many attempts have been made in recent years to achieve a vehicle that combines the echogenicity of microbubbles with the drug carrying capacity of liposomes. The attempts can be classified into three categories, namely entrapping, tethering, and nesting. Of these, nesting is the newest-and perhaps the most promising. PMID:24459007

  8. Gene transfection by echo contrast agent microbubbles

    NASA Astrophysics Data System (ADS)

    Tachibana, Katsuro

    2002-11-01

    In vitro and in vivo experiments have demonstrated that various echo contrast agent microbubbles can be intentionally ruptured by diagnostic and therapeutic ultrasound. Violent microstreaming are produced during microbubble collapse. Researchers have hypothesized that these microjets or microstreaming could be applied to promote diffusion of drugs into various tissues and lesions. The most exciting application of this method is probably delivery of genes into cells. As various genes are currently under investigation for the purpose of treating diseases, ultrasound and microbubbles may be used as a modality to promote better outcome for gene therapy. Recent studies have shown that different gases contained within the bubbles greatly influence the degree of gene transfection. Also, the outer layer of the microbubbles can be custom-made for binding to target tissue. Recent advance on this topic will be discussed.

  9. Focused Ultrasound and Lithotripsy.

    PubMed

    Ikeda, Teiichiro; Yoshizawa, Shin; Koizumi, Norihiro; Mitsuishi, Mamoru; Matsumoto, Yoichiro

    2016-01-01

    Shock wave lithotripsy has generally been a first choice for kidney stone removal. The shock wave lithotripter uses an order of microsecond pulse durations and up to a 100 MPa pressure spike triggered at approximately 0.5-2 Hz to fragment kidney stones through mechanical mechanisms. One important mechanism is cavitation. We proposed an alternative type of lithotripsy method that maximizes cavitation activity to disintegrate kidney stones using high-intensity focused ultrasound (HIFU). Here we outline the method according to the previously published literature (Matsumoto et al., Dynamics of bubble cloud in focused ultrasound. Proceedings of the second international symposium on therapeutic ultrasound, pp 290-299, 2002; Ikeda et al., Ultrasound Med Biol 32:1383-1397, 2006; Yoshizawa et al., Med Biol Eng Comput 47:851-860, 2009; Koizumi et al., A control framework for the non-invasive ultrasound the ragnostic system. Proceedings of 2009 IEEE/RSJ International Conference on Intelligent Robotics and Systems (IROS), pp 4511-4516, 2009; Koizumi et al., IEEE Trans Robot 25:522-538, 2009). Cavitation activity is highly unpredictable; thus, a precise control system is needed. The proposed method comprises three steps of control in kidney stone treatment. The first step is control of localized high pressure fluctuation on the stone. The second step is monitoring of cavitation activity and giving feedback on the optimized ultrasound conditions. The third step is stone tracking and precise ultrasound focusing on the stone. For the high pressure control we designed a two-frequency wave (cavitation control (C-C) waveform); a high frequency ultrasound pulse (1-4 MHz) to create a cavitation cloud, and a low frequency trailing pulse (0.5 MHz) following the high frequency pulse to force the cloud into collapse. High speed photography showed cavitation collapse on a kidney stone and shock wave emission from the cloud. We also conducted in-vitro erosion tests of model and natural

  10. Cardiac 4D Ultrasound Imaging

    NASA Astrophysics Data System (ADS)

    D'hooge, Jan

    Volumetric cardiac ultrasound imaging has steadily evolved over the last 20 years from an electrocardiography (ECC) gated imaging technique to a true real-time imaging modality. Although the clinical use of echocardiography is still to a large extent based on conventional 2D ultrasound imaging it can be anticipated that the further developments in image quality, data visualization and interaction and image quantification of three-dimensional cardiac ultrasound will gradually make volumetric ultrasound the modality of choice. In this chapter, an overview is given of the technological developments that allow for volumetric imaging of the beating heart by ultrasound.

  11. Despeckling of Medical Ultrasound Images

    PubMed Central

    Michailovich, Oleg V.; Tannenbaum, Allen

    2013-01-01

    Speckle noise is an inherent property of medical ultrasound imaging, and it generally tends to reduce the image resolution and contrast, thereby reducing the diagnostic value of this imaging modality. As a result, speckle noise reduction is an important prerequisite, whenever ultrasound imaging is used for tissue characterization. Among the many methods that have been proposed to perform this task, there exists a class of approaches that use a multiplicative model of speckled image formation and take advantage of the logarithmical transformation in order to convert multiplicative speckle noise into additive noise. The common assumption made in a dominant number of such studies is that the samples of the additive noise are mutually uncorrelated and obey a Gaussian distribution. The present study shows conceptually and experimentally that this assumption is oversimplified and unnatural. Moreover, it may lead to inadequate performance of the speckle reduction methods. The study introduces a simple preprocessing procedure, which modifies the acquired radio-frequency images (without affecting the anatomical information they contain), so that the noise in the log-transformation domain becomes very close in its behavior to a white Gaussian noise. As a result, the preprocessing allows filtering methods based on assuming the noise to be white and Gaussian, to perform in nearly optimal conditions. The study evaluates performances of three different, nonlinear filters—wavelet denoising, total variation filtering, and anisotropic diffusion—and demonstrates that, in all these cases, the proposed preprocessing significantly improves the quality of resultant images. Our numerical tests include a series of computer-simulated and in vivo experiments. PMID:16471433

  12. Despeckling of medical ultrasound images.

    PubMed

    Michailovich, Oleg V; Tannenbaum, Allen

    2006-01-01

    Speckle noise is an inherent property of medical ultrasound imaging, and it generally tends to reduce the image resolution and contrast, thereby reducing the diagnostic value of this imaging modality. As a result, speckle noise reduction is an important prerequisite, whenever ultrasound imaging is used for tissue characterization. Among the many methods that have been proposed to perform this task, there exists a class of approaches that use a multiplicative model of speckled image formation and take advantage of the logarithmical transformation in order to convert multiplicative speckle noise into additive noise. The common assumption made in a dominant number of such studies is that the samples of the additive noise are mutually uncorrelated and obey a Gaussian distribution. The present study shows conceptually and experimentally that this assumption is oversimplified and unnatural. Moreover, it may lead to inadequate performance of the speckle reduction methods. The study introduces a simple preprocessing procedure, which modifies the acquired radio-frequency images (without affecting the anatomical information they contain), so that the noise in the log-transformation domain becomes very close in its behavior to a white Gaussian noise. As a result, the preprocessing allows filtering methods based on assuming the noise to be white and Gaussian, to perform in nearly optimal conditions. The study evaluates performances of three different, nonlinear filters--wavelet denoising, total variation filtering, and anisotropic diffusion--and demonstrates that, in all these cases, the proposed preprocessing significantly improves the quality of resultant images. Our numerical tests include a series of computer-simulated and in vivo experiments. PMID:16471433

  13. Recent advances in medical ultrasound

    NASA Astrophysics Data System (ADS)

    Crum, Lawrence

    2014-03-01

    Ultrasound has become one of the most widely used imaging modalities in medicine; yet, before ultrasound-imaging systems became available, high intensity ultrasound was used as early as the 1950s to ablate regions in the brains of human patients. Recently, a variety of novel applications of ultrasound have been developed that include site-specific and ultrasound-mediated drug delivery, acoustocautery, lipoplasty, histotripsy, tissue regeneration, and bloodless surgery, among many others. This lecture will review several new applications of therapeutic ultrasound and address some of the basic scientific questions and future challenges in developing these methods and technologies for general use in our society. We shall particularly emphasize the use of High Intensity Focused Ultrasound (HIFU) in the treatment of benign and malignant tumors.

  14. [Ultrasound guided percutaneous nephrolithotripsy].

    PubMed

    Guliev, B G

    2014-01-01

    The study was aimed to the evaluation of the effectiveness and results of ultrasound guided percutaneous nephrolithotripsy (PNL) for the treatment of patients with large stones in renal pelvis. The results of PNL in 138 patients who underwent surgery for kidney stones from 2011 to 2013 were analyzed. Seventy patients (Group 1) underwent surgery with combined ultrasound and radiological guidance, and 68 patients (Group 2)--only with ultrasound guidance. The study included patients with large renal pelvic stones larger than 2.2 cm, requiring the formation of a single laparoscopic approach. Using the comparative analysis, the timing of surgery, the number of intra- and postoperative complications, blood loss and length of stay were evaluated. Percutaneous access was successfully performed in all patients. Postoperative complications (exacerbation of chronic pyelonephritis, gross hematuria) were observed in 14.3% of patients in Group 1 and in 14.7% of patients in Group 2. Bleeding requiring blood transfusion, and injuries of adjacent organs were not registered. Efficacy of PNL in the Group 1 was 95.7%; 3 (4.3%) patients required additional interventions. In Group 2, the effectiveness of PNL was 94.1%, 4 (5.9%) patients additionally underwent extracorporeal lithotripsy. There were no significant differences in the effectiveness of PNL, the volume of blood loss and duration of hospitalization. Ultrasound guided PNL can be performed in large pelvic stones and sufficient expansion of renal cavities, thus reducing radiation exposure of patients and medical staff. PMID:25807772

  15. Ultrasound and the IRB

    ERIC Educational Resources Information Center

    Epstein, Melissa A.

    2005-01-01

    The purpose of this paper is to assist researchers in writing their research protocols and subject consent forms so that both the Institutional Review Board (IRB) and subjects are assured of the minimal risk associated with diagnostic B-scan ultrasound as it is used in speech research. There have been numerous epidemiological studies on fetal…

  16. Tracked ultrasound elastography (TRUE)

    NASA Astrophysics Data System (ADS)

    Foroughi, Pezhman

    Medical ultrasound research has experienced a renaissance in the past decade leading to innovations in flow mapping, elasticity and thermal imaging, measurement of optical properties, beamforming, and image enhancement. In this thesis, we focus on ultrasound elastography, an emerging imaging modality with great potential to become a part of several ultrasound diagnostic applications. Elastography images the stiffness of soft tissue by applying a mechanical stimulus and estimating the disturbance created by this stimulus. In freehand elastography, soft tissue is palpated by hand using the ultrasound transducer. The elastography image is generated by comparing the pre- and post-compression images to form a displacement map which is then differentiated to produce the final strain map. To achieve the best result in freehand elastography, the sonographer must compress and decompress the tissue uniformly in a specific direction with adequate compression. This can be a difficult task even for trained users. A small rotational or out-of-plane motion in the collected ultrasound frames can render them unusable for elastography. This has made freehand elastography highly qualitative and user-dependent. We tackle this issue by incorporating the extra information from a position sensor attached to the ultrasound transducer. Our aim is to show that the localization information of ultrasound images may be utilized to improve the quality and reliability of freehand elastography. For this purpose, we have developed a frame selection scheme that finds pairs of images with optimal compression and minimal lateral and out-of-plane displacement. Relying on the localization information, our algorithm merges multiple strain images computed from the selected frame pairs. This method is applicable to both 2D and 3D elastography. Our 3D elastography does not require for the transducer to be held still during the acquisition of each volume. Instead, the sonographer freely palpates the tissue

  17. Nonlocal Total-Variation-Based Speckle Filtering for Ultrasound Images.

    PubMed

    Wen, Tiexiang; Gu, Jia; Li, Ling; Qin, Wenjian; Wang, Lei; Xie, Yaoqin

    2016-07-01

    Ultrasound is one of the most important medical imaging modalities for its real-time and portable imaging advantages. However, the contrast resolution and important details are degraded by the speckle in ultrasound images. Many speckle filtering methods have been developed, but they are suffered from several limitations, difficult to reach a balance between speckle reduction and edge preservation. In this paper, an adaptation of the nonlocal total variation (NLTV) filter is proposed for speckle reduction in ultrasound images. The speckle is modeled via a signal-dependent noise distribution for the log-compressed ultrasound images. Instead of the Euclidian distance, the statistical Pearson distance is introduced in this study for the similarity calculation between image patches via the Bayesian framework. And the Split-Bregman fast algorithm is used to solve the adapted NLTV despeckling functional. Experimental results on synthetic and clinical ultrasound images and comparisons with some classical and recent algorithms are used to demonstrate its improvements in both speckle noise reduction and tissue boundary preservation for ultrasound images. PMID:26316172

  18. Contrast dispersion imaging for cancer localization.

    PubMed

    Mischi, Massimo; Wijkstra, Hessel

    2014-01-01

    Cancer growth is associated with angiogenic processes in many types of cancer. Several imaging strategies have therefore been developed that target angiogenesis as a marker for cancer localization. To this end, intravascular and extravascular tissue perfusion is typically assessed by dynamic contrast enhanced (DCE) ultrasound (US) and MRI. All the proposed strategies, however, overlook important changes in the microvascular architecture that result from angiogenic processes. To overcome these limitations, we have recently introduced a new imaging strategy that analyzes the intravascular dispersion kinetics of contrast agents spreading through the microvasculature. Contrast dispersion is mainly determined by microvascular multi-path trajectories, reflecting the underlying microvascular architecture. This paper reviews the results obtained for prostate cancer localization by US and MRI dispersion imaging, also presenting the latest new developments and future perspectives. PMID:25570935

  19. Hepatic lesions segmentation in ultrasound nonlinear imaging

    NASA Astrophysics Data System (ADS)

    Kissi, Adelaide A.; Cormier, Stephane; Pourcelot, Leandre; Tranquart, Francois

    2005-04-01

    Doppler has been used for many years for cardiovascular exploration in order to visualize the vessels walls and anatomical or functional diseases. The use of ultrasound contrast agents makes it possible to improve ultrasonic information. Nonlinear ultrasound imaging highlights the detection of these agents within an organ and hence is a powerful technique to image perfusion of an organ in real-time. The visualization of flow and perfusion provides important information for the diagnosis of various diseases as well as for the detection of tumors. However, the images are buried in noise, the speckle, inherent in the image formation. Furthermore at portal phase, there is often an absence of clear contrast between lesions and surrounding tissues because the organ is filled with agents. In this context, we propose a new method of automatic liver lesions segmentation in nonlinear imaging sequences for the quantification of perfusion. Our method of segmentation is divided into two stages. Initially, we developed an anisotropic diffusion step which raised the structural characteristics to eliminate the speckle. Then, a fuzzy competitive clustering process allowed us to delineate liver lesions. This method has been used to detect focal hepatic lesions (metastasis, nodular hyperplasia, adenoma). Compared to medical expert"s report obtained on 15 varied lesions, the automatic segmentation allows us to identify and delineate focal liver lesions during the portal phase which high accuracy. Our results show that this method improves markedly the recognition of focal hepatic lesions and opens the way for future precise quantification of contrast enhancement.

  20. Ultrasound Strain Imaging Towards Verification and Guidance of Prostate Thermal Therapy with Catheter-Based Ultrasound Applicators

    NASA Astrophysics Data System (ADS)

    Sridhar-Keralapura, Mallika; Chubb, Nicole; Scott, Serena; Phipps, Natalie; Burdette, Clif; Diederich, Chris

    2010-03-01

    Ultrasound based transurethral and interstitial catheters have been developed and tested in vivo to thermally ablate prostate cancers. Treatment validation and accurate control of therapy is currently done using MR thermal imaging (±1° C, update: 5-15 s). MRTI is effective for real-time monitoring and guidance, but, cost, setup time, and accessibility can be limiting. Ultrasound imaging methods could be a practicable approach to monitoring. We investigated Ultrasound Strain Imaging (USI) as a tool towards verifying and controlling prostate treatments by developing a novel methodology for tissue compression using ultrasound phantoms and ex vivo tissue models. We estimate strain using quasi real-time estimation algorithms and added automatic segmentation features. The methodology involved inserting an ultrasound applicator into ex vivo liver or porcine muscle tissue, ablating it for 10 min at 15 W to create a well defined thermal lesion. After treatment, the tissue was compressed either externally (3-5%) using the probe or by deflating/inflating the applicator's coupling balloon internally. Ultrasound RF data was recorded during the compression and USI was computed within 20 seconds and compared with photographs of corresponding excised tissue sections. USI estimated post ablation using balloon and external methods yielded significant contrast that correlated well with measurements of excised tissue sections. From these preliminary studies, USI can become an effective feasible tool for verification and guidance of ablation regions with these devices. Balloon compressions could potentially allow computation USI in clinical treatments for confirmation and boundary control.

  1. Multispectral photoacoustic imaging of nerves with a clinical ultrasound system

    NASA Astrophysics Data System (ADS)

    Mari, Jean Martial; West, Simeon; Beard, Paul C.; Desjardins, Adrien E.

    2014-03-01

    Accurate and efficient identification of nerves is of great importance during many ultrasound-guided clinical procedures, including nerve blocks and prostate biopsies. It can be challenging to visualise nerves with conventional ultrasound imaging, however. One of the challenges is that nerves can have very similar appearances to nearby structures such as tendons. Several recent studies have highlighted the potential of near-infrared optical spectroscopy for differentiating nerves and adjacent tissues, as this modality can be sensitive to optical absorption of lipids that are present in intra- and extra-neural adipose tissue and in the myelin sheaths. These studies were limited to point measurements, however. In this pilot study, a custom photoacoustic system with a clinical ultrasound imaging probe was used to acquire multi-spectral photoacoustic images of nerves and tendons from swine ex vivo, across the wavelength range of 1100 to 1300 nm. Photoacoustic images were processed and overlaid in colour onto co-registered conventional ultrasound images that were acquired with the same imaging probe. A pronounced optical absorption peak centred at 1210 nm was observed in the photoacoustic signals obtained from nerves, and it was absent in those obtained from tendons. This absorption peak, which is consistent with the presence of lipids, provides a novel image contrast mechanism to significantly enhance the visualization of nerves. In particular, image contrast for nerves was up to 5.5 times greater with photoacoustic imaging (0.82 +/- 0.15) than with conventional ultrasound imaging (0.148 +/- 0.002), with a maximum contrast of 0.95 +/- 0.02 obtained in photoacoustic mode. This pilot study demonstrates the potential of photoacoustic imaging to improve clinical outcomes in ultrasound-guided interventions in regional anaesthesia and interventional oncology.

  2. Compressive Deconvolution in Medical Ultrasound Imaging.

    PubMed

    Chen, Zhouye; Basarab, Adrian; Kouame, Denis

    2016-03-01

    The interest of compressive sampling in ultrasound imaging has been recently extensively evaluated by several research teams. Following the different application setups, it has been shown that the RF data may be reconstructed from a small number of measurements and/or using a reduced number of ultrasound pulse emissions. Nevertheless, RF image spatial resolution, contrast and signal to noise ratio are affected by the limited bandwidth of the imaging transducer and the physical phenomenon related to US wave propagation. To overcome these limitations, several deconvolution-based image processing techniques have been proposed to enhance the ultrasound images. In this paper, we propose a novel framework, named compressive deconvolution, that reconstructs enhanced RF images from compressed measurements. Exploiting an unified formulation of the direct acquisition model, combining random projections and 2D convolution with a spatially invariant point spread function, the benefit of our approach is the joint data volume reduction and image quality improvement. The proposed optimization method, based on the Alternating Direction Method of Multipliers, is evaluated on both simulated and in vivo data. PMID:26513780

  3. Ultrasound in the Assessment of Myopathic Disorders.

    PubMed

    Zaidman, Craig M; van Alfen, Nens

    2016-04-01

    Neuromuscular ultrasound (US) augments a careful physical examination and electrodiagnostic evaluation in the evaluation of suspected myopathy. Ultrasound evaluation of muscle can identify abnormal echo intensity, size, and movement. Because it is painless and noninvasive, US can be used to evaluate multiple muscles to direct the electrodiagnostic examination or muscle biopsy. Some patterns of muscle involvement can suggest specific etiologies. Most muscular dystrophies show homogenously increased muscle echo intensity with attenuation of the US signal, likely resultant from increased intramuscular fat and fibrosis. Inflammatory myopathies can also show homogenously increased echogenicity but lack the signal attenuation seen in muscular dystrophies. In contrast, denervation can show "moth-eaten," atrophic muscles with fasciculations. Advanced age and obesity also impacts muscle size and echo intensity and can hamper efforts to detect mild pathologies. The sensitivity and specificity of US for detecting neuromuscular disease have been best studied in children and depend on the type and severity of the disorder. In general, muscle US yields sensitivities and specificities of 67% to 100% for detecting neuromuscular disorders in children and is similar to electromyogram for detection of myopathy. Ultrasound is most sensitive for detecting muscular dystrophies and is less sensitive in metabolic myopathies and very young children. PMID:27035250

  4. Interaction of ultrasound with vortices in type-II superconductors

    SciTech Connect

    Sonin, E.B.

    1996-04-01

    The theory of ultrasound in the mixed state of type-II superconductors is suggested which takes into account the Magnus force on vortices, the anti-Magnus force on ions, and diamagnetism of the mixed state. The acoustic Faraday effect (rotation of polarization of the transverse ultrasonic wave propagating along vortices) is linear in the Magnus force in any regime of the flux flow for wavelengths now used in the ultrasound experiments. Therefore, in contrast to previous predictions, the Faraday effect should be looked for only in clean superconductors with a strong Magnus force. {copyright} {ital 1996 The American Physical Society.}

  5. Ultrasound elastography using carotid artery pulsation in the differential diagnosis of sonographically indeterminate thyroid nodules.

    PubMed

    Choi, Woo Jung; Park, Jeong Seon; Koo, Hye Ryoung; Kim, Soo-Yeon; Chung, Min Sung; Tae, Kyung

    2015-02-01

    OBJECTIVE. The purpose of this study was to evaluate the diagnostic performance of gray-scale ultrasound and a new method of thyroid ultrasound elastography using carotid artery pulsation in the differential diagnosis of sonographically indeterminate thyroid nodules. MATERIALS AND METHODS. A total of 102 thyroid nodules with indeterminate gray-scale ultrasound features from 102 patients (20 males and 82 females; age range, 16-74 years; mean age, 51 years) were included. The gray-scale ultrasound images of each nodule were reviewed and assigned a score from 1 (low) to 5 (high) according to the possibility of malignancy. Ultrasound elastography was performed using carotid pulsation as the compression source. The elasticity contrast index (ECI), which quantifies local strain contrast within a nodule, was automatically calculated. The radiologist reassessed the scores after concurrently reviewing gray-scale ultrasound and elastography. ROC curve analysis was used to evaluate the diagnostic performances of each dataset and to compare the AUC (Az) values of gray-scale ultrasound score alone, ECI alone, and a combined assessment. RESULTS. Significantly more malignant thyroid nodules were hypoechoic than benign nodules (p = 0.014). The ECI was significantly higher in malignant nodules than in benign thyroid nodules. The Az values of each dataset were 0.755 (95% CI, 0.660-0.835) for gray-scale ultrasound score, 0.835 (0.748-0.901) for ECI, and 0.853 (0.769-0.915) for a combined assessment. The Az value for a combined assessment of the gray-scale ultrasound score and the ECI was significantly higher than that for the gray-scale ultrasound score alone (p = 0.022). CONCLUSION. Combined assessment with gray-scale ultrasound and elastography using carotid artery pulsation is helpful for characterizing sonographically indeterminate thyroid nodules as benign or malignant. PMID:25615763

  6. Towards enabling ultrasound guidance in cervical cancer high-dose-rate brachytherapy

    NASA Astrophysics Data System (ADS)

    Wong, Adrian; Sojoudia, Samira; Gaudet, Marc; Yap, Wan Wan; Chang, Silvia D.; Abolmaesumi, Purang; Aquino-Parsons, Christina; Moradi, Mehdi

    2014-03-01

    MRI and Computed Tomography (CT) are used in image-based solutions for guiding High Dose Rate (HDR) brachytherapy treatment of cervical cancer. MRI is costly and CT exposes the patients to ionizing radiation. Ultrasound, on the other hand, is affordable and safe. The long-term goal of our work is to enable the use of multiparametric ultrasound imaging in image-guided HDR for cervical cancer. In this paper, we report the development of enabling technology for ultrasound guidance and tissue typing. We report a system to obtain the 3D freehand transabdominal ultrasound RF signals and B-mode images of the uterus, and a method for registration of ultrasound to MRI. MRI and 3D ultrasound images of the female pelvis were registered by contouring the uterus in the two modalities, creating a surface model, followed by rigid and B-spline deformable registration. The resulting transformation was used to map the location of the tumor from the T2-weighted MRI to ultrasound images and to determine cancerous and normal areas in ultrasound. B-mode images show a contrast for cancer vs. normal tissue. Our study shows the potential and the challenges of ultrasound imaging in guiding cervical cancer treatments.

  7. Ultrasound-Assisted Freezing

    NASA Astrophysics Data System (ADS)

    Delgado, A. E.; Sun, Da-Wen

    Freezing is a well-known preservation method widely used in the food industry. The advantages of freezing are to a certain degree counterbalanced by the risk of damage caused by the formation and size of ice crystals. Over recent years new approaches have been developed to improve and control the crystallization process, and among these approaches sonocrystallization has proved to be very useful, since it can enhance both the nucleation rate and the crystal growth rate. Although ultrasound has been successfully used for many years in the evaluation of various aspects of foods and in medical applications, the use of power ultrasound to directly improve processes and products is less popular in food manufacturing. Foodstuffs are very complex materials, and research is needed in order to define the specific sound parameters that aid the freezing process and that can later be used for the scale-up and production of commercial frozen food products.

  8. Resolution limits of ultrafast ultrasound localization microscopy.

    PubMed

    Desailly, Yann; Pierre, Juliette; Couture, Olivier; Tanter, Mickael

    2015-11-21

    As in other imaging methods based on waves, the resolution of ultrasound imaging is limited by the wavelength. However, the diffraction-limit can be overcome by super-localizing single events from isolated sources. In recent years, we developed plane-wave ultrasound allowing frame rates up to 20,000 fps. Ultrafast processes such as rapid movement or disruption of ultrasound contrast agents (UCA) can thus be monitored, providing us with distinct punctual sources that could be localized beyond the diffraction limit. We previously showed experimentally that resolutions beyond λ/10 can be reached in ultrafast ultrasound localization microscopy (uULM) using a 128 transducer matrix in reception. Higher resolutions are theoretically achievable and the aim of this study is to predict the maximum resolution in uULM with respect to acquisition parameters (frequency, transducer geometry, sampling electronics). The accuracy of uULM is the error on the localization of a bubble, considered a point-source in a homogeneous medium. The proposed model consists in two steps: determining the timing accuracy of the microbubble echo in radiofrequency data, then transferring this time accuracy into spatial accuracy. The simplified model predicts a maximum resolution of 40 μm for a 1.75 MHz transducer matrix composed of two rows of 64 elements. Experimental confirmation of the model was performed by flowing microbubbles within a 60 μm microfluidic channel and localizing their blinking under ultrafast imaging (500 Hz frame rate). The experimental resolution, determined as the standard deviation in the positioning of the microbubbles, was predicted within 6 μm (13%) of the theoretical values and followed the analytical relationship with respect to the number of elements and depth. Understanding the underlying physical principles determining the resolution of superlocalization will allow the optimization of the imaging setup for each organ. Ultimately, accuracies better than the size of

  9. Prostate Focused Ultrasound Therapy.

    PubMed

    Chapelon, Jean-Yves; Rouvière, Olivier; Crouzet, Sébastien; Gelet, Albert

    2016-01-01

    The tremendous progress in engineering and computing power coupled with ultrasound transducer technology and imaging modalities over the past 20 years have encouraged a revival of clinical interest in ultrasound therapy, mainly in High-Intensity Focused Ultrasound (HIFU). So far, the most extensive results from HIFU obtained in urology involve transrectal prostate ablation, which appears to be an effective therapeutic alternative for patients with malignant prostate tumors. Prostate cancer (PCa) is one of the most frequently diagnosed cancers in men. Several treatment options with different therapeutic approaches exist, including HIFU for localized PCa that has been in use for over 15 years. Since the early 2000s, two systems have been marketed for this application, and other devices are currently in clinical trials. HIFU treatment can be used either alone or in combination with (before- or after-) external beam radiotherapy (EBRT) (before or after HIFU) and can be repeated multiple times. HIFU treatment is performed under real-time monitoring with ultrasound or guided by MRI. Two indications are validated today: Primary care treatment and EBRT failure. The results of HIFU for primary care treatment are similar to standard conformal EBRT, even though no randomized comparative studies have been performed and no 10-year follow up data is yet available for HIFU. Salvage HIFU after EBRT failure is increasing with oncological outcomes, similar to those achieved with surgery but with the advantage of fewer adverse effects. HIFU is an evolving technology perfectly adapted for focal treatment. Thus, HIFU focal therapy is another pathway that must be explored when considering the accuracy and reliability for PCa mapping techniques. HIFU would be particularly suited for such a therapy since it is clear that HIFU outcomes and toxicity are relative to the volume of prostate treated. PMID:26486330

  10. Tissue identification by ultrasound

    NASA Technical Reports Server (NTRS)

    Lecroissette, D. H.; Heyser, R. C.; Gammell, P. M.; Wilson, R. L.

    1978-01-01

    The ultrasonic properties of animal and human soft tissue were measured over the frequency range of 1.5 to 10.0 MHz. The method employed a swept-frequency, coherent technique known as time delay spectrometry. Measurements of attenuation versus frequency on liver, backfat, kidney, pancreas, spleen, breast, and other tissue were made. Considerable attention was paid to tissue handling and in determining the effects of fixing on the attenuation of ultrasound in the tissue.

  11. Clinical ophthalmic ultrasound improvements

    NASA Technical Reports Server (NTRS)

    Garrison, J. B.; Piro, P. A.

    1981-01-01

    The use of digital synthetic aperture techniques to obtain high resolution ultrasound images of eye and orbit was proposed. The parameters of the switched array configuration to reduce data collection time to a few milliseconds to avoid eye motion problems in the eye itself were established. An assessment of the effects of eye motion on the performance of the system was obtained. The principles of synthetic techniques are discussed. Likely applications are considered.

  12. Black Endobronchial Ultrasound.

    PubMed

    Dhillon, Samjot S; Harris, Kassem; Ylagan, Lourdes

    2015-10-01

    The infrequent bronchoscopic finding of black airway pigmentation due to a variety of causes has been labeled as "Black Bronchoscopy." Black bronchioalveolar lavage has been sometimes described in tobacco, marijuana, and crack cocaine smokers. To add to this interesting panorama of bronchoscopic findings, we describe cases of black endobronchial ultrasound-guided transbronchial needle aspirates due to metastatic melanoma and anthracotic lymph nodes. PMID:26348692

  13. Spatiotemporal Clutter Filtering of Ultrafast Ultrasound Data Highly Increases Doppler and fUltrasound Sensitivity.

    PubMed

    Demené, Charlie; Deffieux, Thomas; Pernot, Mathieu; Osmanski, Bruno-Félix; Biran, Valérie; Gennisson, Jean-Luc; Sieu, Lim-Anna; Bergel, Antoine; Franqui, Stéphanie; Correas, Jean-Michel; Cohen, Ivan; Baud, Olivier; Tanter, Mickael

    2015-11-01

    Ultrafast ultrasonic imaging is a rapidly developing field based on the unfocused transmission of plane or diverging ultrasound waves. This recent approach to ultrasound imaging leads to a large increase in raw ultrasound data available per acquisition. Bigger synchronous ultrasound imaging datasets can be exploited in order to strongly improve the discrimination between tissue and blood motion in the field of Doppler imaging. Here we propose a spatiotemporal singular value decomposition clutter rejection of ultrasonic data acquired at ultrafast frame rate. The singular value decomposition (SVD) takes benefits of the different features of tissue and blood motion in terms of spatiotemporal coherence and strongly outperforms conventional clutter rejection filters based on high pass temporal filtering. Whereas classical clutter filters operate on the temporal dimension only, SVD clutter filtering provides up to a four-dimensional approach (3D in space and 1D in time). We demonstrate the performance of SVD clutter filtering with a flow phantom study that showed an increased performance compared to other classical filters (better contrast to noise ratio with tissue motion between 1 and 10mm/s and axial blood flow as low as 2.6 mm/s). SVD clutter filtering revealed previously undetected blood flows such as microvascular networks or blood flows corrupted by significant tissue or probe motion artifacts. We report in vivo applications including small animal fUltrasound brain imaging (blood flow detection limit of 0.5 mm/s) and several clinical imaging cases, such as neonate brain imaging, liver or kidney Doppler imaging. PMID:25955583

  14. Possibilities of interventional endoscopic ultrasound

    PubMed Central

    Nishimura, Makoto; Togawa, Osamu; Matsukawa, Miho; Shono, Takashi; Ochiai, Yasutoshi; Nakao, Masamitsu; Ishikawa, Keiko; Arai, Shin; Kita, Hiroto

    2012-01-01

    Since endoscopic ultrasound (EUS) was developed in the 1990s, EUS has become widely accepted as an imaging tool. EUS is categorized into radial and linear in design. Radial endoscopes provide cross-sectional imaging of the mediastinum, gastrointestinal tract, liver, spleen, kidney, adrenal gland, and pancreas, which has highly accuracy in the T and N staging of esophageal, lung, gastric, rectal, and pancreatic cancer. Tumor staging is common indication of radial-EUS, and EUS-staging is predictive of surgical resectability. In contrast, linear array endoscope uses a side-viewing probe and has advantages in the ability to perform EUS-guides fine needle aspiration (EUS-FNA), which has been established for cytologic diagnosis. For example, EUS-FNA arrows accurate nodal staging of esophageal cancer before surgery, which provides more accurate assessment of nodes than radial-EUS imaging alone. EUS-FNA has been also commonly used for diagnose of pancreatic diseases because of the highly accuracy than US or computed tomography. EUS and EUS-FNA has been used not only for TNM staging and cytologic diagnosis of pancreatic cancer, but also for evaluation of chronic pancreatitis, pancreatic cystic lesions, and other pancreatic masses. More recently, EUS-FNA has developed into EUS-guided fine needle injection including EUS-guided celiac plexus neurolysis, celiac plexus block, and other “interventional EUS” procedures. In this review, we have summarized the new possibilities offered by “interventional EUS”. PMID:22816010

  15. Possibilities of interventional endoscopic ultrasound.

    PubMed

    Nishimura, Makoto; Togawa, Osamu; Matsukawa, Miho; Shono, Takashi; Ochiai, Yasutoshi; Nakao, Masamitsu; Ishikawa, Keiko; Arai, Shin; Kita, Hiroto

    2012-07-16

    Since endoscopic ultrasound (EUS) was developed in the 1990s, EUS has become widely accepted as an imaging tool. EUS is categorized into radial and linear in design. Radial endoscopes provide cross-sectional imaging of the mediastinum, gastrointestinal tract, liver, spleen, kidney, adrenal gland, and pancreas, which has highly accuracy in the T and N staging of esophageal, lung, gastric, rectal, and pancreatic cancer. Tumor staging is common indication of radial-EUS, and EUS-staging is predictive of surgical resectability. In contrast, linear array endoscope uses a side-viewing probe and has advantages in the ability to perform EUS-guides fine needle aspiration (EUS-FNA), which has been established for cytologic diagnosis. For example, EUS-FNA arrows accurate nodal staging of esophageal cancer before surgery, which provides more accurate assessment of nodes than radial-EUS imaging alone. EUS-FNA has been also commonly used for diagnose of pancreatic diseases because of the highly accuracy than US or computed tomography. EUS and EUS-FNA has been used not only for TNM staging and cytologic diagnosis of pancreatic cancer, but also for evaluation of chronic pancreatitis, pancreatic cystic lesions, and other pancreatic masses. More recently, EUS-FNA has developed into EUS-guided fine needle injection including EUS-guided celiac plexus neurolysis, celiac plexus block, and other "interventional EUS" procedures. In this review, we have summarized the new possibilities offered by "interventional EUS". PMID:22816010

  16. Magnetic Microbubbles: Magnetically Targeted and Ultrasound-Triggered Vectors for Gene Delivery in Vitro

    NASA Astrophysics Data System (ADS)

    Vlaskou, Dialechti; Pradhan, Pallab; Bergemann, Christian; Klibanov, Alexander L.; Hensel, Karin; Schmitz, Georg; Plank, Christian; Mykhaylyk, Olga

    2010-12-01

    Based on the concept of magnetofection, we prepared lipid shell microbubbles loaded with highly positively charged iron oxide magnetic nanoparticles through electrostatic and matrix affinity interactions. These magnetic microbubbles showed strong ultrasound contrast. When the magnetic microbubbles were mixed with plasmid DNA encoding a reporter gene, gene delivery to HeLa cells was achieved only when ultrasound was applied. Gene transfer efficiency strongly depended on the application of a gradient magnetic field. Treatment of HeLa cells with the microbubbles and ultrasound resulted in strong concentration-dependent cytotoxic effects, whereas ultrasound alone, lipid microbubbles alone, magnetic nanoparticles or magnetic microbubbles alone did not significantly affect cell viability. These magnetic microbubbles could be used as magnetically targeted diagnostic agents for real-time ultrasound imaging or for cancer therapy, therapy of vascular thrombosis and gene therapy.

  17. Diagnostic sensitivity of ultrasound, radiography and computed tomography for gender determination in four species of lizards.

    PubMed

    Di Ianni, Francesco; Volta, Antonella; Pelizzone, Igor; Manfredi, Sabrina; Gnudi, Giacomo; Parmigiani, Enrico

    2015-01-01

    Gender determination is frequently requested by reptile breeders, especially for species with poor or absent sexual dimorphism. The aims of the current study were to describe techniques and diagnostic sensitivities of ultrasound, radiography, and computed tomography for gender determination (identification of hemipenes) in four species of lizards. Nineteen lizards of known sex, belonging to four different species (Pogona vitticeps, Uromastyx aegyptia, Tiliqua scincoides, Gerrhosaurus major) were prospectively enrolled. With informed owner consent, ultrasound, noncontrast CT, contrast radiography, and contrast CT (with contrast medium administered into the cloaca) were performed in conscious animals. Imaging studies were reviewed by three different operators, each unaware of the gender of the animals and of the results of the other techniques. The lizard was classified as a male when hemipenes were identified. Nineteen lizards were included in the study, 10 females and nine males. The hemipenes were seen on ultrasound in only two male lizards, and appeared as oval hypoechoic structures. Radiographically, hemipenes filled with contrast medium appeared as spindle-shaped opacities. Noncontrast CT identified hemipenes in only two lizards, and these appeared as spindle-shaped kinked structures with hyperattenuating content consistent with smegma. Hemipenes were correctly identified in all nine males using contrast CT (accuracy of 100%). Accuracy of contrast radiography was excellent (94.7%). Accuracy of ultrasound and of noncontrast CT was poor (64.3% and 63.1%, respectively). Findings from the current study supported the use of contrast CT or contrast radiography for gender determination in lizards. PMID:25065912

  18. A Novel Nit Comb Concept Using Ultrasound Actuation: Preclinical Evaluation.

    PubMed

    Burgess, Mark N; Brunton, Elizabeth R; Burgess, Ian F

    2016-01-01

    Nit combing and removal of head louse, Pediculus humanus capitis De Geer (Anoplura: Pediculidae), eggs is a task made more difficult because "nit combs" vary in efficiency. There is currently no evidence that the binding of the eggshell to the hair can be loosened chemically and few hair treatments improve the slip of the louse eggs along the hair. Ultrasound, applied through the teeth of a nit comb, may facilitate the flow of fluids into the gap between the hair shaft and the tube of fixative holding louse eggs in place to improve lubrication. Ultrasound alone had little effect to initiate sliding, requiring a force of 121.5 ± 23.8 millinewtons (mN) compared with 125.8 ± 18.0 mN without ultrasound, but once the egg started to move it made the process easier. In the presence of a conditioner-like creamy lotion, ultrasound reduced the Peak force required to start movement to 24.3 ± 8.8 mN from 50.4 ± 13.0 mN without ultrasound. In contrast, some head louse treatments made removal of eggs more difficult, requiring approximately twice the Peak force to initiate movement compared with dry hair in the absence of ultrasound. However, following application of ultrasound, the forces required to initiate movement increased for an essential oil product, remained the same for isopropyl myristate and cyclomethicone, and halved for 4% dimeticone lotion. Fixing the nit comb at an estimated angle of 16.5° to the direction of pull gave an optimum effect to improve the removal process when a suitable lubricant was used. PMID:26545717

  19. [Contrast sensitivity in glaucoma].

    PubMed

    Bartos, D

    1989-05-01

    Author reports on results of the contrast sensitivity examinations using the Cambridge low-contrast lattice test supplied by Clement Clarke International LTD, in patients with open-angle glaucoma and ocular hypertension. In glaucoma patients there was observed statistically significant decrease of the contrast sensitivity. In patients with ocular hypertension decrease of the contrast sensitivity was in patients affected by corresponding changes of the visual field and of the optical disc. The main advantages of the Cambridge low-contrast lattice test were simplicity, rapidity and precision of its performance. PMID:2743444

  20. A review of low-intensity ultrasound for cancer therapy.

    PubMed

    Wood, Andrew K W; Sehgal, Chandra M

    2015-04-01

    The literature describing the use of low-intensity ultrasound in four major areas of cancer therapy-sonodynamic therapy, ultrasound-mediated chemotherapy, ultrasound-mediated gene delivery and anti-vascular ultrasound therapy-was reviewed. Each technique consistently resulted in the death of cancer cells, and the bio-effects of ultrasound were attributed primarily to thermal actions and inertial cavitation. In each therapeutic modality, theranostic contrast agents composed of microbubbles played a role in both therapy and vascular imaging. The development of these agents is important as it establishes a therapeutic-diagnostic platform that can monitor the success of anti-cancer therapy. Little attention, however, has been given either to the direct assessment of the mechanisms underlying the observed bio-effects or to the viability of these therapies in naturally occurring cancers in larger mammals; if such investigations provided encouraging data, there could be prompt application of a therapy technique in the treatment of cancer patients. PMID:25728459

  1. Safety of Microbubbles and Transcranial Ultrasound in Rabbits

    NASA Astrophysics Data System (ADS)

    Culp, William C.; Brown, Aliza T.; Hennings, Leah; Lowery, John; Culp, Benjamin C.; Erdem, Eren; Roberson, Paula; Matsunaga, Terry O.

    2007-05-01

    The object of this study was to evaluate the safety of large doses of microbubbles and ultrasound administered to the head of rabbits as if they were receiving acute stroke therapy of a similar nature. Materials and Methods: Female New Zealand White rabbits were used, N=24, in three groups 1] n=4 control (no treatment), 2] n=10 bubble control (ultrasound plus aspirin), and 3] n=10 target group (ultrasound plus aspirin plus MRX-815 microbubbles). Group 3 was infused with IV bubbles over 1 hour at 0.16cc/kg. Ultrasound was delivered to the dehaired side of the head during bubble infusion and for 1 additional hour at 0.8 W/cm2 20% pulsed wave. Rabbits survived for 22 to 24 hours, were imaged with computerized tomography and 3 Tesla magnetic resonance imaging including contrast studies, and sacrificed. Tetrazolium (TTC) and Hematoxylin and Eosin (H&E) sections were made for pathological examination. Results: All 24 animals showed absence of bleeding, endothelial damage, EKG abnormalities, stroke, blood-brain-barrier breakdown, or other acute abnormalities. CT and MRI showed no bleeding or signs of stroke, but two animals had mild hydrocephalus. The EKGs showed normal variation in QTc. Rabbit behavior was normal in all. Minimal chronic inflammation unrelated to the study was seen in 5. Two animals were excluded because of protocol violations and replaced during the study. Conclusion: The administered dose of microbubbles and ultrasound demonstrated no detrimental effects on the healthy rabbit animal model.

  2. Quantitative Ultrasound Characterization of Cancer Radiotherapy Effects In Vitro

    SciTech Connect

    Vlad, Roxana M.; Alajez, Nehad M.; Giles, Anoja B.Sc.; Kolios, Michael C.; Czarnota, Gregory J.

    2008-11-15

    Purpose: Currently, no routinely used imaging modality is available to assess tumor responses to cancer treatment within hours to days after radiotherapy. In this study, we demonstrate the preclinical application of quantitative ultrasound methods to characterize the cellular responses to cancer radiotherapy in vitro. Methods and Materials: Three different cell lines were exposed to radiation doses of 2-8 Gy. Data were collected with an ultrasound scanner using frequencies of 10-30 MHz. As indicators of response, ultrasound integrated backscatter and spectral slope were determined from the cell samples. These parameters were corrected for ultrasonic attenuation by measuring the attenuation coefficient. Results: A significant increase in the ultrasound integrated backscatter of 4-7 dB (p < 0.001) was found for radiation-treated cells compared with viable cells at all radiation doses. The spectral slopes decreased in the cell samples that predominantly underwent mitotic arrest/catastrophe after radiotherapy, consistent with an increase in cell size. In contrast, the spectral slopes did not change significantly in the cell samples that underwent a mix of cell death (apoptosis and mitotic arrest), with no significant change in average cell size. Conclusion: The changes in ultrasound integrated backscatter and spectral slope were direct consequences of cell and nuclear morphologic changes associated with cell death. The results indicate that this combination of quantitative ultrasonic parameters has the potential to assess the cell responses to radiation, differentiate between different types of cell death, and provide a preclinical framework to monitor tumor responses in vivo.

  3. Opto-acoustic breast imaging with co-registered ultrasound

    NASA Astrophysics Data System (ADS)

    Zalev, Jason; Clingman, Bryan; Herzog, Don; Miller, Tom; Stavros, A. Thomas; Oraevsky, Alexander; Kist, Kenneth; Dornbluth, N. Carol; Otto, Pamela

    2014-03-01

    We present results from a recent study involving the ImagioTM breast imaging system, which produces fused real-time two-dimensional color-coded opto-acoustic (OA) images that are co-registered and temporally inter- leaved with real-time gray scale ultrasound using a specialized duplex handheld probe. The use of dual optical wavelengths provides functional blood map images of breast tissue and tumors displayed with high contrast based on total hemoglobin and oxygen saturation of the blood. This provides functional diagnostic information pertaining to tumor metabolism. OA also shows morphologic information about tumor neo-vascularity that is complementary to the morphological information obtained with conventional gray scale ultrasound. This fusion technology conveniently enables real-time analysis of the functional opto-acoustic features of lesions detected by readers familiar with anatomical gray scale ultrasound. We demonstrate co-registered opto-acoustic and ultrasonic images of malignant and benign tumors from a recent clinical study that provide new insight into the function of tumors in-vivo. Results from the Feasibility Study show preliminary evidence that the technology may have the capability to improve characterization of benign and malignant breast masses over conventional diagnostic breast ultrasound alone and to improve overall accuracy of breast mass diagnosis. In particular, OA improved speci city over that of conventional diagnostic ultrasound, which could potentially reduce the number of negative biopsies performed without missing cancers.

  4. X-ray elastography: Modification of x-ray phase contrast images using ultrasonic radiation pressure

    SciTech Connect

    Hamilton, Theron J.; Bailat, Claude; Rose-Petruck, Christoph; Diebold, Gerald J.; Gehring, Stephan; Laperle, Christopher M.; Wands, Jack

    2009-05-15

    The high resolution characteristic of in-line x-ray phase contrast imaging can be used in conjunction with directed ultrasound to detect small displacements in soft tissue generated by differential acoustic radiation pressure. The imaging method is based on subtraction of two x-ray images, the first image taken with, and the second taken without the presence of ultrasound. The subtraction enhances phase contrast features and, to a large extent, removes absorption contrast so that differential movement of tissues with different acoustic impedances or relative ultrasonic absorption is highlighted in the image. Interfacial features of objects with differing densities are delineated in the image as a result of both the displacement introduced by the ultrasound and the inherent sensitivity of x-ray phase contrast imaging to density variations. Experiments with ex vivo murine tumors and human tumor phantoms point out a diagnostic capability of the method for identifying tumors.

  5. Super-Resolution Ultrasound Imaging in Vivo with Transient Laser-Activated Nanodroplets.

    PubMed

    Luke, Geoffrey P; Hannah, Alexander S; Emelianov, Stanislav Y

    2016-04-13

    We have developed a method for super-resolution ultrasound imaging, which relies on a new class of blinking nanometer-size contrast agents: laser-activated nanodroplets (LANDs). The LANDs can be repeatedly optically triggered to undergo vaporization; the resulting spatially stationary, temporally transient microbubbles provide high ultrasound contrast for several to hundreds of milliseconds before recondensing to their native liquid nanodroplet state. By capturing high frame rate ultrasound images of blinking LANDs, we demonstrate the ability to detect individual recondensation events. Then we apply a newly developed super-resolution image processing algorithm to localize the LAND positions in vivo almost an order of magnitude better than conventional ultrasound imaging. These results pave the way for high resolution molecular imaging deep in tissue. PMID:27035761

  6. Ultrasound has synergistic effects in vitro with tirofiban and heparin for thrombus dissolution.

    PubMed

    Birnbaum, Y; Atar, S; Luo, H; Nagai, T; Siegel, R J

    1999-12-15

    Previous studies have shown synergism between ultrasound and thrombolytic agents or microbubbles on blood clot dissolution. It has not been investigated whether heparin or glycoprotein IIb/IIIa blockers enhance clot lysis by ultrasound. We compared the blood clot dissolution effect of saline, heparin, tissue plasminogen activator (tPA), tirofiban, and an echocardiographic contrast media (Optison) without and with ultrasound application. Human blood clots from four donors, 2 to 4 hours old, were cut into 200- to 400-mg sections, weighed, and immersed for 2 minutes in 1 L of normal saline 0.9% solution containing either heparin 1000 U, tirofiban 150 microg, tPA 20 mg, Optison 0.5 mL, or normal saline alone. Clots were randomized to 2 minutes ultrasound application or immersion alone without ultrasound. Ultrasound was applied with a 19.5 KHz catheter. After treatment, the clots were weighed, and the absolute and percent difference in weight was calculated. Immersion in heparin, tirofiban, and tPA without ultrasound did not augment clot disruption relative to normal saline alone. Immersion in Optison (p = 0.07) tended to result in less lysis than saline alone. Ultrasound enhanced clot dissolution compared to immersion alone with: saline (48.1+/-15.3% vs. 26.0+/-13.8%, p<0.0000002); heparin (60.8+/-17.5% vs. 30.8+/-15.1%, p = 0.000001); tirofiban (61.8+/-13.6% vs. 30.1+/-12.2%, p<0.0000001); tPA (53.1+/-15.3% vs. 30.2+/-11.5%, p<0.000002); and Optison (47.8+/-16.0% vs. 18.4+/-11.5%, p<0.0000001). The combination of tirofiban with ultrasound, as well as heparin with ultrasound, was associated with a significant augmentation of clot dissolution compared with the saline plus ultrasound group (p = 0.002, 0.013, respectively). Ultrasound with tPA or with Optison had no significant augmentation of clot dissolution over the ultrasound + saline effect. This in vitro study of catheter-delivered high-intensity low-frequency ultrasound demonstrates that: (1) tirofiban and heparin

  7. Ultrasound Detection of Lung Hepatization

    PubMed Central

    Durant, Andrea; Nagdev, Arun

    2010-01-01

    Bedside ultrasound interrogation of the thorax can aide the clinician in determining the cause of the respiratory dysfunction. Often plain radiographs are not sufficient to differentiate pathology. We present a case in which bedside ultrasound defined the pathology without the need for further imaging. PMID:21079701

  8. Real-time ultrasound elastography

    NASA Astrophysics Data System (ADS)

    Bae, Unmin; Kim, Yongmin

    2007-03-01

    Ultrasound elastography can provide tissue stiffness information that is complementary to the anatomy and blood flow information offered by conventional ultrasound machines, but it is computationally challenging due to many time-consuming modules and a large amount of data. To facilitate real-time implementations of ultrasound elastography, we have developed new methods that can significantly reduce the computational burden of common processing components in ultrasound elastography, such as the crosscorrelation analysis and spatial filtering applied to displacement and strain estimates. Using the new correlation-based search algorithm, the computational requirement of correlation-based search does not increase with the correlation window size. For typical parameters used in ultrasound elastography, the computation in correlation-based search can be reduced by a factor of more than 30. Median filtering is often performed to suppress the spike-like noise that results from correlation-based search. For fast median filtering, we have developed a method that efficiently finds a new median value utilizing the sort result of the previous pixel. With careful mapping of the new algorithms on digital signal processors, our work has led to development of a clinical ultrasound machine supporting real-time elastography. Our methods can help real-time implementations of various applications including ultrasound elastography, which could lead to increased use of ultrasound elastography in the clinic.

  9. Addressing Phonological Questions with Ultrasound

    ERIC Educational Resources Information Center

    Davidson, Lisa

    2005-01-01

    Ultrasound can be used to address unresolved questions in phonological theory. To date, some studies have shown that results from ultrasound imaging can shed light on how differences in phonological elements are implemented. Phenomena that have been investigated include transitional schwa, vowel coalescence, and transparent vowels. A study of…

  10. Endobronchial ultrasound elastography

    PubMed Central

    Dietrich, Christoph F.; Jenssen, Christian; Herth, Felix J. F.

    2016-01-01

    Elastographic techniques have recently become available as advanced diagnostic tools for tissue characterization. Strain elastography is a real-time technique used with transcutaneous ultrasound (US) and endoscopic US. Convincing evidence is available demonstrating a significant value of strain elastography for the discrimination of benign and malignant lymph nodes (LNs). This paper reviews preliminary data demonstrating the feasibility of performing real-time elastography during endobronchial US (EBUS) and a potential application of this technique for selection of LNs for EBUS-guided transbronchial needle aspiration in patients with lung cancer and extrathoracic malignancies. PMID:27503154

  11. Temperature estimation with ultrasound

    NASA Astrophysics Data System (ADS)

    Daniels, Matthew

    Hepatocelluar carcinoma is the fastest growing type of cancer in the United States. In addition, the survival rate after one year is approximately zero without treatment. In many instances, patients with hepatocelluar carcinoma may not be suitable candidates for the primary treatment options, i.e. surgical resection or liver transplantation. This has led to the development of minimally invasive therapies focused on destroying hepatocelluar by thermal or chemical methods. The focus of this dissertation is on the development of ultrasound-based image-guided monitoring options for minimally invasive therapies such as radiofrequency ablation. Ultrasound-based temperature imaging relies on relating the gradient of locally estimated tissue displacements to a temperature change. First, a realistic Finite Element Analysis/ultrasound simulation of ablation was developed. This allowed evaluation of the ability of ultrasound-based temperature estimation algorithms to track temperatures for three different ablation scenarios in the liver. It was found that 2-Dimensional block matching and a 6 second time step was able to accurately track the temperature over a 12 minute ablation procedure. Next, a tissue-mimicking phantom was constructed to determine the accuracy of the temperature estimation method by comparing estimated temperatures to that measured using invasive fiber-optic temperature probes. The 2-Dimensional block matching was able to track the temperature accurately over the entire 8 minute heating procedure in the tissue-mimicking phantom. Finally, two separate in-vivo experiments were performed. The first experiment examined the ability of our algorithm to track frame-to-frame displacements when external motion due to respiration and the cardiac cycle were considered. It was determined that a frame rate between 13 frames per second and 33 frames per second was sufficient to track frame-to-frame displacements between respiratory cycles. The second experiment examined

  12. Therapeutic Endoscopic Ultrasound

    PubMed Central

    Cheriyan, Danny

    2015-01-01

    Endoscopic ultrasound (EUS) technology has evolved dramatically over the past 20 years, from being a supplementary diagnostic aid available only in large medical centers to being a core diagnostic and therapeutic tool that is widely available. Although formal recommendations and practice guidelines have not been developed, there are considerable data supporting the use of EUS for its technical accuracy in diagnosing pancreaticobiliary and gastrointestinal pathology. Endosonography is now routine practice not only for pathologic diagnosis and tumor staging but also for drainage of cystic lesions and celiac plexus neurolysis. In this article, we cover the use of EUS in biliary and pancreatic intervention, ablative therapy, enterostomy, and vascular intervention. PMID:27118942

  13. Ultrasound-modulated optical tomography with intense acoustic bursts

    NASA Astrophysics Data System (ADS)

    Zemp, Roger J.; Kim, Chulhong; Wang, Lihong V.

    2007-04-01

    Ultrasound-modulated optical tomography (UOT) detects ultrasonically modulated light to spatially localize multiply scattered photons in turbid media with the ultimate goal of imaging the optical properties in living subjects. A principal challenge of the technique is weak modulated signal strength. We discuss ways to push the limits of signal enhancement with intense acoustic bursts while conforming to optical and ultrasonic safety standards. A CCD-based speckle-contrast detection scheme is used to detect acoustically modulated light by measuring changes in speckle statistics between ultrasound-on and ultrasound-off states. The CCD image capture is synchronized with the ultrasound burst pulse sequence. Transient acoustic radiation force, a consequence of bursts, is seen to produce slight signal enhancement over pure ultrasonic-modulation mechanisms for bursts and CCD exposure times of the order of milliseconds. However, acoustic radiation-force-induced shear waves are launched away from the acoustic sample volume, which degrade UOT spatial resolution. By time gating the CCD camera to capture modulated light before radiation force has an opportunity to accumulate significant tissue displacement, we reduce the effects of shear-wave image degradation, while enabling very high signal-to-noise ratios. Additionally, we maintain high-resolution images representative of optical and not mechanical contrast. Signal-to-noise levels are sufficiently high so as to enable acquisition of 2D images of phantoms with one acoustic burst per pixel.

  14. Integrated medical school ultrasound: development of an ultrasound vertical curriculum

    PubMed Central

    2013-01-01

    Background Physician-performed focused ultrasonography is a rapidly growing field with numerous clinical applications. Focused ultrasound is a clinically useful tool with relevant applications across most specialties. Ultrasound technology has outpaced the education, necessitating an early introduction to the technology within the medical education system. There are many challenges to integrating ultrasound into medical education including identifying appropriately trained faculty, access to adequate resources, and appropriate integration into existing medical education curricula. As focused ultrasonography increasingly penetrates academic and community practices, access to ultrasound equipment and trained faculty is improving. However, there has remained the major challenge of determining at which level is integrating ultrasound training within the medical training paradigm most appropriate. Methods The Ohio State University College of Medicine has developed a novel vertical curriculum for focused ultrasonography which is concordant with the 4-year medical school curriculum. Given current evidenced-based practices, a curriculum was developed which provides medical students an exposure in focused ultrasonography. The curriculum utilizes focused ultrasonography as a teaching aid for students to gain a more thorough understanding of basic and clinical science within the medical school curriculum. The objectives of the course are to develop student understanding in indications for use, acquisition of images, interpretation of an ultrasound examination, and appropriate decision-making of ultrasound findings. Results Preliminary data indicate that a vertical ultrasound curriculum is a feasible and effective means of teaching focused ultrasonography. The foreseeable limitations include faculty skill level and training, initial cost of equipment, and incorporating additional information into an already saturated medical school curriculum. Conclusions Focused

  15. Endoscopic ultrasound in mediastinal tuberculosis

    PubMed Central

    Sharma, Malay; Ecka, Ruth Shifa; Somasundaram, Aravindh; Shoukat, Abid; Kirnake, Vijendra

    2016-01-01

    Background: Tubercular lymphadenitis is the commonest extra pulmonary manifestation in cervical and mediastinal locations. Normal characteristics of lymph nodes (LN) have been described on ultrasonography as well as by Endoscopic Ultrasound. Many ultrasonic features have been described for evaluation of mediastinal lymph nodes. The inter and intraobserver agreement of the endosonographic features have not been uniformly established. Methods and Results: A total of 266 patients underwent endoscopic ultrasound guided fine needle aspiration and 134 cases were diagnosed as mediastinal tuberculosis. The endoscopic ultrasound location and features of these lymph nodes are described. Conclusion: Our series demonstrates the utility of endoscopic ultrasound guided fine needle aspiration as the investigation of choice for diagnosis of mediastinal tuberculosis and also describes various endoscopic ultrasound features of such nodes. PMID:27051097

  16. Ultrasound focusing images in superlattices

    NASA Astrophysics Data System (ADS)

    Narita, Michiko; Tanaka, Yukihiro; Tamura, Shin-ichiro

    2002-03-01

    We study theoretically ultrasound focusing in periodic multilayered structures, or superlattices, by solving the wave equation with the Green function method and calculating the transmitted ultrasound amplitude images of both the longitudinal and transverse modes. The constituent layers assumed are elastically isotropic but the periodically stacked structure is anisotropic. Thus anisotropy of ultrasound propagation is predicted even at low frequencies and it is enhanced significantly at higher frequencies due to the zone-folding effect of acoustic dispersion relations. An additional effect studied is the interference of ultrasound (known as the internal diffraction), which can be recognized when the propagation distance is comparable to the ultrasound wavelength. Numerical examples are developed for millimetre-scale Al/polymer multilayers used recently for imaging experiment with surface acoustic waves.

  17. Clinical combination of multiphoton tomography and high frequency ultrasound imaging for evaluation of skin diseases

    NASA Astrophysics Data System (ADS)

    König, K.; Speicher, M.; Koehler, M. J.; Scharenberg, R.; Elsner, P.; Kaatz, M.

    2010-02-01

    For the first time, high frequency ultrasound imaging, multiphoton tomography, and dermoscopy were combined in a clinical study. Different dermatoses such as benign and malign skin cancers, connective tissue diseases, inflammatory skin diseases and autoimmune bullous skin diseases have been investigated with (i) state-of-the-art and highly sophisticated ultrasound systems for dermatology, (ii) the femtosecond-laser multiphoton tomograph DermaInspectTM and (iii) dermoscopes. Dermoscopy provides two-dimensional color imaging of the skin surface with a magnification up to 70x. Ultrasound images are generated from reflections of the emitted ultrasound signal, based on inhomogeneities of the tissue. These echoes are converted to electrical signals. Depending on the ultrasound frequency the penetration depth varies from about 1 mm to 16 mm in dermatological application. The 100-MHz-ultrasound system provided an axial resolution down to 16 μm and a lateral resolution down to 32 μm. In contrast to the wide-field ultrasound images, multiphoton tomography provided horizontal optical sections of 0.36×0.36 mm2 down to 200 μm tissue depth with submicron resolution. The autofluorescence of mitochondrial coenzymes, melanin, and elastin as well as the secondharmonic- generation signal of the collagen network were imaged. The combination of ultrasound and multiphoton tomography provides a novel opportunity for diagnostics of skin disorders.

  18. Endocavity Ultrasound Probe Manipulators.

    PubMed

    Stoianovici, Dan; Kim, Chunwoo; Schäfer, Felix; Huang, Chien-Ming; Zuo, Yihe; Petrisor, Doru; Han, Misop

    2013-06-01

    We developed two similar structure manipulators for medical endocavity ultrasound probes with 3 and 4 degrees of freedom (DoF). These robots allow scanning with ultrasound for 3-D imaging and enable robot-assisted image-guided procedures. Both robots use remote center of motion kinematics, characteristic of medical robots. The 4-DoF robot provides unrestricted manipulation of the endocavity probe. With the 3-DoF robot the insertion motion of the probe must be adjusted manually, but the device is simpler and may also be used to manipulate external-body probes. The robots enabled a novel surgical approach of using intraoperative image-based navigation during robot-assisted laparoscopic prostatectomy (RALP), performed with concurrent use of two robotic systems (Tandem, T-RALP). Thus far, a clinical trial for evaluation of safety and feasibility has been performed successfully on 46 patients. This paper describes the architecture and design of the robots, the two prototypes, control features related to safety, preclinical experiments, and the T-RALP procedure. PMID:24795525

  19. Endocavity Ultrasound Probe Manipulators

    PubMed Central

    Stoianovici, Dan; Kim, Chunwoo; Schäfer, Felix; Huang, Chien-Ming; Zuo, Yihe; Petrisor, Doru; Han, Misop

    2014-01-01

    We developed two similar structure manipulators for medical endocavity ultrasound probes with 3 and 4 degrees of freedom (DoF). These robots allow scanning with ultrasound for 3-D imaging and enable robot-assisted image-guided procedures. Both robots use remote center of motion kinematics, characteristic of medical robots. The 4-DoF robot provides unrestricted manipulation of the endocavity probe. With the 3-DoF robot the insertion motion of the probe must be adjusted manually, but the device is simpler and may also be used to manipulate external-body probes. The robots enabled a novel surgical approach of using intraoperative image-based navigation during robot-assisted laparoscopic prostatectomy (RALP), performed with concurrent use of two robotic systems (Tandem, T-RALP). Thus far, a clinical trial for evaluation of safety and feasibility has been performed successfully on 46 patients. This paper describes the architecture and design of the robots, the two prototypes, control features related to safety, preclinical experiments, and the T-RALP procedure. PMID:24795525

  20. Aesthetic ultrasound therapy

    NASA Astrophysics Data System (ADS)

    Barthe, Peter G.; Slayton, Michael H.

    2012-10-01

    Ultrasound provides key benefits in aesthetic surgery compared to laser and RF based energy sources. We present results of research, development, pre-clinical and clinical studies, regulatory clearance and commercialization of a revolutionary non-invasive aesthetic ultrasound imaging and therapy system. Clinical applications for this platform include non-invasive face-lifts, brow-lifts, and neck-lifts achieved through fractionated treatment of the superficial musculoaponeurotic system (SMAS) and subcutaneous tissue. Treatment consists of placing a grid of micro-coagulative lesions on the order of 1 mm3 at depths in skin of 1 to 6 mm, source energy levels of 0.1 to 3 J, and spacing on the order of 1.5 mm, from 4 to 10 MHz dual-mode image/treat transducers. System details are described, as well as a regulatory pathway consisting of acoustic and bioheat simulations, source characterization (hydrophone, radiation force, and Schlieren), pre-clinical studies (porcine skin ex vivo, in vivo, and human cadaver), human safety studies (treat and resect) and efficacy trials which culminated in FDA clearance (2009) under a new device classification and world-wide usage. Clinical before and after photographs are presented which validate the clinical approach.

  1. Blinking Phase-Change Nanocapsules Enable Background-Free Ultrasound Imaging

    PubMed Central

    Hannah, Alexander S.; Luke, Geoffrey P.; Emelianov, Stanislav Y.

    2016-01-01

    Microbubbles are widely used as contrast agents to improve the diagnostic capability of conventional, highly speckled, low-contrast ultrasound imaging. However, while microbubbles can be used for molecular imaging, these agents are limited to the vascular space due to their large size (> 1 μm). Smaller microbubbles are desired but their ultrasound visualization is limited due to lower echogenicity or higher resonant frequencies. Here we present nanometer scale, phase changing, blinking nanocapsules (BLInCs), which can be repeatedly optically triggered to provide transient contrast and enable background-free ultrasound imaging. In response to irradiation by near-infrared laser pulses, the BLInCs undergo cycles of rapid vaporization followed by recondensation into their native liquid state at body temperature. High frame rate ultrasound imaging measures the dynamic echogenicity changes associated with these controllable, periodic phase transitions. Using a newly developed image processing algorithm, the blinking particles are distinguished from tissue, providing a background-free image of the BLInCs while the underlying B-mode ultrasound image is used as an anatomical reference of the tissue. We demonstrate the function of BLInCs and the associated imaging technique in a tissue-mimicking phantom and in vivo for the identification of the sentinel lymph node. Our studies indicate that BLInCs may become a powerful tool to identify biological targets using a conventional ultrasound imaging system. PMID:27570556

  2. Blinking Phase-Change Nanocapsules Enable Background-Free Ultrasound Imaging.

    PubMed

    Hannah, Alexander S; Luke, Geoffrey P; Emelianov, Stanislav Y

    2016-01-01

    Microbubbles are widely used as contrast agents to improve the diagnostic capability of conventional, highly speckled, low-contrast ultrasound imaging. However, while microbubbles can be used for molecular imaging, these agents are limited to the vascular space due to their large size (> 1 μm). Smaller microbubbles are desired but their ultrasound visualization is limited due to lower echogenicity or higher resonant frequencies. Here we present nanometer scale, phase changing, blinking nanocapsules (BLInCs), which can be repeatedly optically triggered to provide transient contrast and enable background-free ultrasound imaging. In response to irradiation by near-infrared laser pulses, the BLInCs undergo cycles of rapid vaporization followed by recondensation into their native liquid state at body temperature. High frame rate ultrasound imaging measures the dynamic echogenicity changes associated with these controllable, periodic phase transitions. Using a newly developed image processing algorithm, the blinking particles are distinguished from tissue, providing a background-free image of the BLInCs while the underlying B-mode ultrasound image is used as an anatomical reference of the tissue. We demonstrate the function of BLInCs and the associated imaging technique in a tissue-mimicking phantom and in vivo for the identification of the sentinel lymph node. Our studies indicate that BLInCs may become a powerful tool to identify biological targets using a conventional ultrasound imaging system. PMID:27570556

  3. Contrast Intravasation During Hysterosalpingography

    PubMed Central

    Bhoil, Rohit; Sood, Dinesh; Sharma, Tanupriya; Sood, Shilpa; Sharma, Jiten; Kumar, Nitesh; Ahluwalia, Ajay; Parekh, Dipen; Mistry, Kewal A.; Sood, Saurav

    2016-01-01

    Summary Hysterosalpingography is an imaging method to evaluate the endometrial and uterine morphology and fallopian tube patency. Contrast intravasation implies backflow of injected contrast into the adjoining vessels mostly the veins and may be related to factors altering endometrial vascularity and permeability. Radiologists and gynaecologists should be well acquainted with the technique of hysterosalpingography, its interpretation, and intravasation of contrast agents for safer procedure and to minimize the associated complications. PMID:27279925

  4. Determining Directions of Ultrasound in Solids

    NASA Technical Reports Server (NTRS)

    Generazio, Edward R.; Roth, Don J.

    1987-01-01

    Ultrasound shadows cast by grooves. Improved method for determining direction of ultrasound in materials is shadow method using Scanning laser acoustic microscopy (SLAM). Direction of ultrasound calculated from dimensions of groove and portion of surface groove shields from ultrasound. Method has variety of applications in nontraditional quality-control applications.

  5. Reflections on ultrasound image analysis.

    PubMed

    Alison Noble, J

    2016-10-01

    Ultrasound (US) image analysis has advanced considerably in twenty years. Progress in ultrasound image analysis has always been fundamental to the advancement of image-guided interventions research due to the real-time acquisition capability of ultrasound and this has remained true over the two decades. But in quantitative ultrasound image analysis - which takes US images and turns them into more meaningful clinical information - thinking has perhaps more fundamentally changed. From roots as a poor cousin to Computed Tomography (CT) and Magnetic Resonance (MR) image analysis, both of which have richer anatomical definition and thus were better suited to the earlier eras of medical image analysis which were dominated by model-based methods, ultrasound image analysis has now entered an exciting new era, assisted by advances in machine learning and the growing clinical and commercial interest in employing low-cost portable ultrasound devices outside traditional hospital-based clinical settings. This short article provides a perspective on this change, and highlights some challenges ahead and potential opportunities in ultrasound image analysis which may both have high impact on healthcare delivery worldwide in the future but may also, perhaps, take the subject further away from CT and MR image analysis research with time. PMID:27503078

  6. Unpowered wireless ultrasound tomography system

    NASA Astrophysics Data System (ADS)

    Zahedi, Farshad; Huang, Haiying

    2016-04-01

    In this paper, an unpowered wireless ultrasound tomography system is presented. The system consists of two subsystems; the wireless interrogation unit (WIU) and three wireless nodes installed on the structure. Each node is designed to work in generation and sensing modes, but operates at a specific microwave frequency. Wireless transmission of the ultrasound signals between the WIU and the wireless nodes is achieved by converting ultrasound signals to microwave signals and vice versa, using a microwave carrier signal. In the generation mode, both a carrier signal and an ultrasound modulated microwave signal are transmitted to the sensor nodes. Only the node whose operating frequency matches the carrier signal will receive these signals and demodulate them to recover the original ultrasound signal. In the sensing mode, a microwave carrier signal with two different frequency components matching the operating frequencies of the sensor nodes is broadcasted by the WIU. The sensor nodes, in turn, receive the corresponding carrier signals, modulate it with the ultrasound sensing signal, and wirelessly transmit the modulated signal back to the WIU. The demodulation of the sensing signals is performed in the WIU using a digital signal processing. Implementing a software receiver significantly reduces the complexity and the cost of the WIU. A wireless ultrasound tomography system is realized by interchanging the carrier frequencies so that the wireless transducers can take turn to serve as the actuator and sensors.

  7. Overcoming biological barriers with ultrasound

    NASA Astrophysics Data System (ADS)

    Thakkar, Dhaval; Gupta, Roohi; Mohan, Praveena; Monson, Kenneth; Rapoport, Natalya

    2012-10-01

    Effect of ultrasound on the permeability of blood vessels and cell membranes to macromolecules and nanodroplets was investigated using mouse carotid arteries and tumor cells. Model macromolecular drug, FITC-dextran with molecular weight of 70,000 Da was used in experiments with carotid arteries. The effect of unfocused 1-MHz ultrasound and and perfluoro-15-crown-5-ether nanodroplets stabilized with the poly(ethylene oxide)-co-poly(D, L-lactide) block copolymer shells was studied. In cell culture experiments, ovarian carcinoma cells and Doxorubicin (DOX) loaded poly(ethylene oxide)-co-polycaprolactone nanodroplets were used. The data showed that the application of ultrasound resulted in permeabilization of all biological barriers tested. Under the action of ultrasound, not only FITC-dextran but also nanodroplets effectively penetrated through the arterial wall; the effect of continuous wave ultrasound was stronger than that of pulsed ultrasound. In cell culture experiments, ultrasound triggered DOX penetration into cell nuclei, presumably due to releasing the drug from the carrier. Detailed mechanisms of the observed effects require further study.

  8. Safety Assurance in Obstetrical Ultrasound

    PubMed Central

    Miller, Douglas L

    2008-01-01

    Safety assurance for diagnostic ultrasound in obstetrics began with a tacit assumption of safety allowed by a federal law enacted in 1976 for then-existing medical ultrasound equipment. The implementation of the 510(k) pre-market approval process for diagnostic ultrasound resulted in the establishment of guideline upper limits for several examination categories in 1985. The obstetrical category has undergone substantial evolution from initial limits (I. e., 46 mW/cm2 spatial peak temporal average (SPTA) intensity) set in 1985. Thermal and mechanical exposure indices, which are displayed on-screen according to an Output Display Standard (ODS), were developed for safety assurance with relaxed upper limits. In 1992, with the adoption of the ODS, the allowable output for obstetrical ultrasound was increased both in terms of the average exposure (e. g. to a possible 720 mW/cm2 SPTA intensity) and of the peak exposure (via the Mechanical Index). There has been little or no subsequent research with the modern obstetrical ultrasound machines to systematically assess potential risks to the fetus using either relevant animal models of obstetrical exposure or human epidemiology studies. The assurance of safety for obstetrical ultrasound therefore is supported by three ongoing means: (I) review of a substantial but uncoordinated bioeffect research literature, (ii) the theoretical evaluation of diagnostic ultrasound exposure in terms of thermal and nonthermal mechanisms for bioeffects, and (iii) the skill and knowledge of professional sonographers. At this time, there is no specific reason to suspect that there is any significant health risk to the fetus or mother from exposure to diagnostic ultrasound in obstetrics. This assurance of safety supports the prudent use of diagnostic ultrasound in obstetrics by trained professionals for any medically indicated examination. PMID:18450141

  9. Safety assurance in obstetrical ultrasound.

    PubMed

    Miller, Douglas L

    2008-04-01

    Safety assurance for diagnostic ultrasound in obstetrics began with a tacit assumption of safety allowed by a federal law enacted in 1976 for then-existing medical ultrasound equipment. The implementation of the 510(k) pre-market-approval process for diagnostic ultrasound resulted in the establishment of guideline upper limits for several examination categories in 1985. The obstetrical category has undergone substantial evolution from initial limits (ie, 46 mW/cm2 spatial peak temporal average [SPTA] intensity) set in 1985. Thermal and mechanical exposure indices, which are displayed onscreen according to an Output Display Standard, were developed for safety assurance with relaxed upper limits. In 1992, with the adoption of the Output Display Standard, the allowable output for obstetrical ultrasound was increased in terms of both the average exposure (eg, to a possible 720 mW/cm2 SPTA intensity) and the peak exposure (via the Mechanical Index). There has been little or no subsequent research with the modern obstetrical ultrasound machines to systematically assess potential risks to the fetus using either relevant animal models of obstetrical exposure or human epidemiology studies. The assurance of safety for obstetrical ultrasound therefore is supported by three ongoing means: (1) review of a substantial but uncoordinated bioeffect research literature; (2) the theoretical evaluation of diagnostic ultrasound exposure in terms of thermal and nonthermal mechanisms for bioeffects; and (3) the skill and knowledge of professional sonographers. At this time, there is no specific reason to suspect that there is any significant health risk to the fetus or mother from exposure to diagnostic ultrasound in obstetrics. This assurance of safety supports the prudent use of diagnostic ultrasound in obstetrics by trained professionals for any medically indicated examination. PMID:18450141

  10. Value of Ultrasound in Rheumatologic Diseases

    PubMed Central

    Kang, Taeyoung; Horton, Laura; Emery, Paul

    2013-01-01

    The use of musculoskeletal ultrasound in rheumatology clinical practice has rapidly increased over the past decade. Ultrasound has enabled rheumatologists to diagnose, prognosticate and monitor disease outcome. Although international standardization remains a concern still, the use of ultrasound in rheumatology is expected to grow further as costs fall and the opportunity to train in the technique improves. We present a review of value of ultrasound, focusing on major applications of ultrasound in rheumatologic diseases. PMID:23580002

  11. Contrast-enhanced photoacoustic tomography of human joints

    NASA Astrophysics Data System (ADS)

    Tian, Chao; Keswani, Rahul K.; Gandikota, Girish; Rosania, Gus R.; Wang, Xueding

    2016-03-01

    Photoacoustic tomography (PAT) provides a unique tool to diagnose inflammatory arthritis. However, the specificity and sensitivity of PAT based on endogenous contrasts is limited. The development of contrast enhanced PAT imaging modalities in combination with small molecule contrast agents could lead to improvements in diagnosis and treatment of joint disease. Accordingly, we adapted and tested a PAT clinical imaging system for imaging the human joints, in combination with a novel PAT contrast agent derived from an FDA-approved small molecule drug. Imaging results based on a photoacoustic and ultrasound (PA/US) dual-modality system revealed that this contrast-enhanced PAT imaging system may offer additional information beyond single-modality PA or US imaging system, for the imaging, diagnosis and assessment of inflammatory arthritis.

  12. Adaptive contrast imaging: transmit frequency optimization

    NASA Astrophysics Data System (ADS)

    Ménigot, Sébastien; Novell, Anthony; Voicu, Iulian; Bouakaz, Ayache; Girault, Jean-Marc

    2010-01-01

    Introduction: Since the introduction of ultrasound (US) contrast imaging, the imaging systems use a fixed emitting frequency. However it is known that the insonified medium is time-varying and therefore an adapted time-varying excitation is expected. We suggest an adaptive imaging technique which selects the optimal transmit frequency that maximizes the acoustic contrast. Two algorithms have been proposed to find an US excitation for which the frequency was optimal with microbubbles. Methods and Materials: Simulations were carried out for encapsulated microbubbles of 2 microns by considering the modified Rayleigh-Plesset equation for 2 MHz transmit frequency and for various pressure levels (20 kPa up to 420kPa). In vitro experiments were carried out using a transducer operating at 2 MHz and using a programmable waveform generator. Contrast agent was then injected into a small container filled with water. Results and discussions: We show through simulations and in vitro experiments that our adaptive imaging technique gives: 1) in case of simulations, a gain of acoustic contrast which can reach 9 dB compared to the traditional technique without optimization and 2) for in vitro experiments, a gain which can reach 18 dB. There is a non negligible discrepancy between simulations and experiments. These differences are certainly due to the fact that our simulations do not take into account the diffraction and nonlinear propagation effects. Further optimizations are underway.

  13. Geometric reconstruction using tracked ultrasound strain imaging

    NASA Astrophysics Data System (ADS)

    Pheiffer, Thomas S.; Simpson, Amber L.; Ondrake, Janet E.; Miga, Michael I.

    2013-03-01

    The accurate identification of tumor margins during neurosurgery is a primary concern for the surgeon in order to maximize resection of malignant tissue while preserving normal function. The use of preoperative imaging for guidance is standard of care, but tumor margins are not always clear even when contrast agents are used, and so margins are often determined intraoperatively by visual and tactile feedback. Ultrasound strain imaging creates a quantitative representation of tissue stiffness which can be used in real-time. The information offered by strain imaging can be placed within a conventional image-guidance workflow by tracking the ultrasound probe and calibrating the image plane, which facilitates interpretation of the data by placing it within a common coordinate space with preoperative imaging. Tumor geometry in strain imaging is then directly comparable to the geometry in preoperative imaging. This paper presents a tracked ultrasound strain imaging system capable of co-registering with preoperative tomograms and also of reconstructing a 3D surface using the border of the strain lesion. In a preliminary study using four phantoms with subsurface tumors, tracked strain imaging was registered to preoperative image volumes and then tumor surfaces were reconstructed using contours extracted from strain image slices. The volumes of the phantom tumors reconstructed from tracked strain imaging were approximately between 1.5 to 2.4 cm3, which was similar to the CT volumes of 1.0 to 2.3 cm3. Future work will be done to robustly characterize the reconstruction accuracy of the system.

  14. Doppler ultrasound--basics revisited.

    PubMed

    Eagle, Mary

    Palpation of pedal pulses alone is known to be an unreliable indicator for the presence of arterial disease. Using portable Doppler ultrasound to measure the resting ankle brachial pressure index is superior to palpation of peripheral pulses as an assessment of the adequacy pf the arterial supply in the lower limb. Revisiting basics, this article aims to aid the clinician to understand and perform hand-held Doppler ultrasound effectively while involving the client or patient in the process. The author describes the basics of Doppler ultrasound, how to select correct equipment for the process, and interpretation of results to further enhance clinicians' knowledge. PMID:16835512

  15. Toward Critical Contrastive Rhetoric

    ERIC Educational Resources Information Center

    Kubota, Ryuko; Lehner, Al

    2004-01-01

    A traditional approach to contrastive rhetoric has emphasized cultural difference in rhetorical patterns among various languages. Despite its laudable pedagogical intentions to raise teachers' and students' cultural and rhetorical awareness in second language writing, traditional contrastive rhetoric has perpetuated static binaries between English…

  16. Delimitation of the lung region with distributed ultrasound transducers

    NASA Astrophysics Data System (ADS)

    Cardona Cárdenas, Diego Armando; Furuie, Sérgio Shiguemi

    2016-0