Science.gov

Sample records for gas-cooled reactor technology

  1. GAS COOLED NUCLEAR REACTORS

    DOEpatents

    Long, E.; Rodwell, W.

    1958-06-10

    A gas-cooled nuclear reactor consisting of a graphite reacting core and reflector structure supported in a containing vessel is described. A gas sealing means is included for sealing between the walls of the graphite structure and containing vessel to prevent the gas coolant by-passing the reacting core. The reacting core is a multi-sided right prismatic structure having a pair of parallel slots around its periphery. The containing vessel is cylindrical and has a rib on its internal surface which supports two continuous ring shaped flexible web members with their radially innermost ends in sealing engagement within the radially outermost portion of the slots. The core structure is supported on ball bearings. This design permits thermal expansion of the core stracture and vessel while maintainirg a peripheral seal between the tvo elements.

  2. (Gas-cooled reactor materials)

    SciTech Connect

    Rittenhouse, P.L.

    1988-06-30

    The meeting of the managers of the US/FRG/CH cooperative subprogram on materials for gas-cooled reactors is described and the status of each of the work packages comprising this cooperation is summarized. Four proposals for new areas of cooperative work were developed. Briefings by sponsoring organizations on the status of gas-cooled reactor programs in the FRG are discussed and experimental efforts being conducted at KFA on materials are reviewed.

  3. Reactor User Interface Technology Development Roadmaps for a High Temperature Gas-Cooled Reactor Outlet Temperature of 750 degrees C

    SciTech Connect

    Ian Mckirdy

    2010-12-01

    This report evaluates the technology readiness of the interface components that are required to transfer high-temperature heat from a High Temperature Gas-Cooled Reactor (HTGR) to selected industrial applications. This report assumes that the HTGR operates at a reactor outlet temperature of 750°C and provides electricity and/or process heat at 700°C to conventional process applications, including the production of hydrogen.

  4. High temperature gas-cooled reactor (HTGR) graphite pebble fuel: Review of technologies for reprocessing

    SciTech Connect

    Mcwilliams, A. J.

    2015-09-08

    This report reviews literature on reprocessing high temperature gas-cooled reactor graphite fuel components. A basic review of the various fuel components used in the pebble bed type reactors is provided along with a survey of synthesis methods for the fabrication of the fuel components. Several disposal options are considered for the graphite pebble fuel elements including the storage of intact pebbles, volume reduction by separating the graphite from fuel kernels, and complete processing of the pebbles for waste storage. Existing methods for graphite removal are presented and generally consist of mechanical separation techniques such as crushing and grinding chemical techniques through the use of acid digestion and oxidation. Potential methods for reprocessing the graphite pebbles include improvements to existing methods and novel technologies that have not previously been investigated for nuclear graphite waste applications. The best overall method will be dependent on the desired final waste form and needs to factor in the technical efficiency, political concerns, cost, and implementation.

  5. High-temperature gas-cooled reactor technology development program. Annual progress report for period ending December 31, 1982

    SciTech Connect

    Kasten, P.R.; Rittenhouse, P.L.; Bartine, D.E.; Sanders, J.P.

    1983-06-01

    During 1982 the High-Temperature Gas-Cooled Reactor (HTGR) Technology Program at Oak Ridge National Laboratory (ORNL) continued to develop experimental data required for the design and licensing of cogeneration HTGRs. The program involves fuels and materials development (including metals, graphite, ceramic, and concrete materials), HTGR chemistry studies, structural component development and testing, reactor physics and shielding studies, performance testing of the reactor core support structure, and HTGR application and evaluation studies.

  6. High-Temperature Gas-Cooled Reactor Technology Development Program: Annual progress report for period ending December 31, 1987

    SciTech Connect

    Jones, J.E.,Jr.; Kasten, P.R.; Rittenhouse, P.L.; Sanders, J.P.

    1989-03-01

    The High-Temperature Gas-Cooled Reactor (HTGR) Program being carried out under the US Department of Energy (DOE) continues to emphasize the development of modular high-temperature gas-cooled reactors (MHTGRs) possessing a high degree of inherent safety. The emphasis at this time is to develop the preliminary design of the reference MHTGR and to develop the associated technology base and licensing infrastructure in support of future reactor deployment. A longer-term objective is to realize the full high-temperature potential of HTGRs in gas turbine and high-temperature, process-heat applications. This document summarizes the activities of the HTGR Technology Development Program for the period ending December 31, 1987.

  7. Gas-cooled nuclear reactor

    DOEpatents

    Peinado, Charles O.; Koutz, Stanley L.

    1985-01-01

    A gas-cooled nuclear reactor includes a central core located in the lower portion of a prestressed concrete reactor vessel. Primary coolant gas flows upward through the core and into four overlying heat-exchangers wherein stream is generated. During normal operation, the return flow of coolant is between the core and the vessel sidewall to a pair of motor-driven circulators located at about the bottom of the concrete pressure vessel. The circulators repressurize the gas coolant and return it back to the core through passageways in the underlying core structure. If during emergency conditions the primary circulators are no longer functioning, the decay heat is effectively removed from the core by means of natural convection circulation. The hot gas rising through the core exits the top of the shroud of the heat-exchangers and flows radially outward to the sidewall of the concrete pressure vessel. A metal liner covers the entire inside concrete surfaces of the concrete pressure vessel, and cooling tubes are welded to the exterior or concrete side of the metal liner. The gas coolant is in direct contact with the interior surface of the metal liner and transfers its heat through the metal liner to the liquid coolant flowing through the cooling tubes. The cooler gas is more dense and creates a downward convection flow in the region between the core and the sidewall until it reaches the bottom of the concrete pressure vessel when it flows radially inward and up into the core for another pass. Water is forced to flow through the cooling tubes to absorb heat from the core at a sufficient rate to remove enough of the decay heat created in the core to prevent overheating of the core or the vessel.

  8. Gas-cooled reactor programs: high-temperature gas-cooled reactor technology development program. Annual progress report for period ending December 31, 1981

    SciTech Connect

    Not Available

    1982-06-01

    Information is presented concerning HTGR chemistry; fueled graphite development; irradiation services for General Atomic Company; prestressed concrete pressure vessel development; HTGR structural materials; graphite development; high-temperature reactor physics studies; shielding studies; component flow test loop studies; core support performance test; and application and project assessments.

  9. Gas-cooled reactor programs. High-temperature gas-cooled reactor technology development program. Annual progress report, December 31, 1983

    SciTech Connect

    Kasten, P.R.; Rittenhouse, P.L.; Bartine, D.E.; Sanders, J.P.

    1984-06-01

    ORNL continues to make significant contributions to the national program. In the HTR fuels area, we are providing detailed statistical information on the fission product retention performance of irradiated fuel. Our studies are also providing basic data on the mechanical, physical, and chemical behavior of HTR materials, including metals, ceramics, graphite, and concrete. The ORNL has an important role in the development of improved HTR graphites and in the specification of criteria that need to be met by commercial products. We are also developing improved reactor physics design methods. Our work in component development and testing centers in the Component Flow Test Loop (CFTL), which is being used to evaluate the performance of the HTR core support structure. Other work includes experimental evaluation of the shielding effectiveness of the lower portions of an HTR core. This evaluation is being performed at the ORNL Tower Shielding Facility. Researchers at ORNL are developing welding techniques for attaching steam generator tubing to the tubesheets and are testing ceramic pads on which the core posts rest. They are also performing extensive testing of aggregate materials obtained from potential HTR site areas for possible use in prestressed concrete reactor vessels. During the past year we continued to serve as a peer reviewer of small modular reactor designs being developed by GA and GE with balance-of-plant layouts being developed by Bechtel Group, Inc. We have also evaluated the national need for developing HTRs with emphasis on the longer term applications of the HTRs to fossil conversion processes.

  10. Fuel development for gas-cooled fast reactors

    NASA Astrophysics Data System (ADS)

    Meyer, M. K.; Fielding, R.; Gan, J.

    2007-09-01

    The Generation IV Gas-cooled Fast Reactor (GFR) concept is proposed to combine the advantages of high-temperature gas-cooled reactors (such as efficient direct conversion with a gas turbine and the potential for application of high-temperature process heat), with the sustainability advantages that are possible with a fast-spectrum reactor. The latter include the ability to fission all transuranics and the potential for breeding. The GFR is part of a consistent set of gas-cooled reactors that includes a medium-term Pebble Bed Modular Reactor (PBMR)-like concept, or concepts based on the Gas Turbine Modular Helium Reactor (GT-MHR), and specialized concepts such as the Very High-Temperature Reactor (VHTR), as well as actinide burning concepts [A Technology Roadmap for Generation IV Nuclear Energy Systems, US DOE Nuclear Energy Research Advisory Committee and the Generation IV International Forum, December 2002]. To achieve the necessary high power density and the ability to retain fission gas at high temperature, the primary fuel concept proposed for testing in the United States is dispersion coated fuel particles in a ceramic matrix. Alternative fuel concepts considered in the US and internationally include coated particle beds, ceramic clad fuel pins, and novel ceramic 'honeycomb' structures. Both mixed carbide and mixed nitride-based solid solutions are considered as fuel phases.

  11. Decay heat removal in GEN IV gas cooled fast reactors.

    SciTech Connect

    Cheng, L. Y.; Wei, T. Y. C.

    2009-08-01

    The safety goal of the current designs of advanced high-temperature thermal gas-cooled reactors (HTRs) is that no core meltdown would occur in a depressurization event with a combination of concurrent safety system failures. This study focused on the analysis of passive decay heat removal (DHR) in a GEN IV direct-cycle gas-cooled fast reactor (GFR) which is based on the technology developments of the HTRs. Given the different criteria and design characteristics of the GFR, an approach different from that taken for the HTRs for passive DHR would have to be explored. Different design options based on maintaining core flow were evaluated by performing transient analysis of a depressurization accident using the system code RELAP5-3D. The study also reviewed the conceptual design of autonomous systems for shutdown decay heat removal and recommends that future work in this area should be focused on the potential for Brayton cycle DHRs.

  12. High Temperature Gas-Cooled Test Reactor Options Status Report

    SciTech Connect

    Sterbentz, James William; Bayless, Paul David

    2015-08-01

    Preliminary scoping calculations are being performed for a 100 MWt gas-cooled test reactor. The initial design uses standard prismatic blocks and 15.5% enriched UCO fuel. Reactor physics and thermal-hydraulics simulations have been performed to identify some reactor design features to investigate further. Current status of the effort is described.

  13. Preparation of high temperature gas-cooled reactor fuel element

    DOEpatents

    Bradley, Ronnie A.; Sease, John D.

    1976-01-01

    This invention relates to a method for the preparation of high temperature gas-cooled reactor (HTGR) fuel elements wherein uncarbonized fuel rods are inserted in appropriate channels of an HTGR fuel element block and the entire block is inserted in an autoclave for in situ carbonization under high pressure. The method is particularly applicable to remote handling techniques.

  14. High-temperature gas-cooled reactor technology development program. Annual progress report for period ending December 31, 1980

    SciTech Connect

    Not Available

    1981-08-01

    Research activities are described concerning HTGR chemistry; fueled graphite development; prestressed concrete pressure vessel development; structural materials; HTGR graphite studies; HTR core evaluation; reactor physics; shielding; application and project assessments; and HTR Core Flow Test Loop studies.

  15. A review of gas-cooled reactor concepts for SDI (Strategic Defense Initiative) applications

    SciTech Connect

    Marshall, A.C.

    1989-08-01

    We have completed a review of multimegawatt gas-cooled reactor concepts proposed for SDI applications. Our study concluded that the principal reason for considering gas-cooled reactors for burst-mode operation was the potential for significant system mass savings over closed-cycle systems if open-cycle gas-cooled operation (effluent exhausted to space) is acceptable. The principal reason for considering gas-cooled reactors for steady-state operation is that they may represent a lower technology risk than other approaches. In the review, nine gas-cooled reactor concepts were compared to identify the most promising. For burst-mode operation, the NERVA (Nuclear Engine for Rocket Vehicle Application) derivative reactor concept emerged as a strong first choice since its performance exceeds the anticipated operational requirements and the technology has been demonstrated and is retrievable. Although the NERVA derivative concepts were determined to be the lead candidates for the Multimegawatt Steady-State (MMWSS) mode as well, their lead over the other candidates is not as great as for the burst mode. 90 refs., 2 figs., 10 tabs.

  16. Fuel Development For Gas-Cooled Fast Reactors

    SciTech Connect

    M. K. Meyer

    2006-06-01

    The Generation IV Gas-cooled Fast Reactor (GFR) concept is proposed to combine the advantages of high-temperature gas-cooled reactors (such as efficient direct conversion with a gas turbine and the potential for application of high-temperature process heat), with the sustainability advantages that are possible with a fast-spectrum reactor. The latter include the ability to fission all transuranics and the potential for breeding. The GFR is part of a consistent set of gas-cooled reactors that includes a medium-term Pebble Bed Modular Reactor (PBMR)-like concept, or concepts based on the Gas Turbine Modular Helium Reactor (GT-MHR), and specialized concepts such as the Very High Temperature Reactor (VHTR), as well as actinide burning concepts [ ]. To achieve the necessary high power density and the ability to retain fission gas at high temperature, the primary fuel concept proposed for testing in the United States is a dispersion coated fuel particles in a ceramic matrix. Alternative fuel concepts considered in the U.S. and internationally include coated particle beds, ceramic clad fuel pins, and novel ceramic ‘honeycomb’ structures. Both mixed carbide and mixed nitride-based solid solutions are considered as fuel phases.

  17. Pin-Type Gas Cooled Reactor for Nuclear Electric Propulsion

    NASA Astrophysics Data System (ADS)

    Wright, Steven A.; Lipinski, Ronald J.

    2003-01-01

    This paper describes a point design for a pin-type Gas-Cooled Reactor concept that uses a fuel pin design similar to the SP100 fuel pin. The Gas-Cooled Reactor is designed to operate at 100 kWe for 7 years plus have a reduced power mode of 20% power for a duration of 5 years. The power system uses a gas-cooled, UN-fueled, pin-type reactor to heat He/Xe gas that flows directly into a recuperated Brayton system to produce electricity. Heat is rejected to space via a thermal radiator that unfolds in space. The reactor contains approximately 154 kg of 93.15 % enriched UN in 313 fuel pins. The fuel is clad with rhenium-lined Nb-1Zr. The pressures vessel and ducting are cooled by the 900 K He/Xe gas inlet flow or by thermal radiation. This permits all pressure boundaries to be made of superalloy metals rather than refractory metals, which greatly reduces the cost and development schedule required by the project. The reactor contains sufficient rhenium (a neutron poison) to make the reactor subcritical under water immersion accidents without the use of internal shutdown rods. The mass of the reactor and reflectors is about 750 kg.

  18. Special applications of gas-cooled reactors

    SciTech Connect

    Peinado, C.O.

    1981-02-01

    The HTGR technology has been demonstrated by Peach Bottom, Fort St. Vrain, and AVR. Another member of the GCR family is the GCFR. Energy requirements for process heat applications of the HTGR high-temperature nuclear heat source are tabulated. 2 tables. (DLC)

  19. High temperature gas-cooled reactor: gas turbine application study

    SciTech Connect

    Not Available

    1980-12-01

    The high-temperature capability of the High-Temperature Gas-Cooled Reactor (HTGR) is a distinguishing characteristic which has long been recognized as significant both within the US and within foreign nuclear energy programs. This high-temperature capability of the HTGR concept leads to increased efficiency in conventional applications and, in addition, makes possible a number of unique applications in both electrical generation and industrial process heat. In particular, coupling the HTGR nuclear heat source to the Brayton (gas turbine) Cycle offers significant potential benefits to operating utilities. This HTGR-GT Application Study documents the effort to evaluate the appropriateness of the HTGR-GT as an HTGR Lead Project. The scope of this effort included evaluation of the HTGR-GT technology, evaluation of potential HTGR-GT markets, assessment of the economics of commercial HTGR-GT plants, and evaluation of the program and expenditures necessary to establish HTGR-GT technology through the completion of the Lead Project.

  20. High Temperature Gas-Cooled Test Reactor Point Design: Summary Report

    SciTech Connect

    Sterbentz, James William; Bayless, Paul David; Nelson, Lee Orville; Gougar, Hans David; Strydom, Gerhard

    2016-01-01

    A point design has been developed for a 200-MW high-temperature gas-cooled test reactor. The point design concept uses standard prismatic blocks and 15.5% enriched uranium oxycarbide fuel. Reactor physics and thermal-hydraulics simulations have been performed to characterize the capabilities of the design. In addition to the technical data, overviews are provided on the technology readiness level, licensing approach, and costs of the test reactor point design.

  1. Integration of High-Temperature Gas-Cooled Reactors into Industrial Process Applications

    SciTech Connect

    Lee Nelson

    2011-09-01

    This report is a summary of analyses performed by the NGNP project to determine whether it is technically and economically feasible to integrate high temperature gas cooled reactor (HTGR) technology into industrial processes. To avoid an overly optimistic environmental and economic baseline for comparing nuclear integrated and conventional processes, a conservative approach was used for the assumptions and calculations.

  2. Gas-cooled reactor power systems for space

    SciTech Connect

    Walter, C.E.

    1987-01-01

    Efficiency and mass characteristics for four gas-cooled reactor power system configurations in the 2- to 20-MWe power range are modeled. The configurations use direct and indirect Brayton cycles with and without regeneration in the power conversion loop. The prismatic ceramic core of the reactor consists of several thousand pencil-shaped tubes made from a homogeneous mixture of moderator and fuel. The heat rejection system is found to be the major contributor to system mass, particularly at high power levels. A direct, regenerated Brayton cycle with helium working fluid permits high efficiency and low specific mass for a 10-MWe system.

  3. Bottom shield for a gas cooled high temperature nuclear reactor

    SciTech Connect

    Schoening, J.; Elter, C.; Kolodzey, H. J.; Schwiers, H. G.; Stracke, W.

    1984-12-25

    A gas cooled, high temperature nuclear reactor is provided with a base plate arranged under the reactor core and over the bottom of the prestressed concrete pressure vessel serving as the bottom shield. The bottom shield comprises at least two plates arranged coaxially with respect to each other, one above the other. Each plate comprises several partially interconnected parts with the lower plate being placed at an axial and vertical distance from the bottom liner of the prestressed concrete pressure vessel and also from the upper plate.

  4. Evaluating the income and employment impacts of gas cooling technologies

    SciTech Connect

    Hughes, P.J.; Laitner, S.

    1995-03-01

    The purpose of this study is to estimate the potential employment and income benefits of the emerging market for gas cooling products. The emphasis here is on exports because that is the major opportunity for the U.S. heating, ventilating, and air-conditioning (HVAC) industry. But domestic markets are also important and considered here because without a significant domestic market, it is unlikely that the plant investments, jobs, and income associated with gas cooling exports would be retained within the United States. The prospects for significant gas cooling exports appear promising for a variety of reasons. There is an expanding need for cooling in the developing world, natural gas is widely available, electric infrastructures are over-stressed in many areas, and the cost of building new gas infrastructure is modest compared to the cost of new electric infrastructure. Global gas cooling competition is currently limited, with Japanese and U.S. companies, and their foreign business partners, the only product sources. U.S. manufacturers of HVAC products are well positioned to compete globally, and are already one of the faster growing goods-exporting sectors of the U.S. economy. Net HVAC exports grew by over 800 percent from 1987 to 1992 and currently exceed $2.6 billion annually (ARI 1994). Net gas cooling job and income creation are estimated using an economic input-output model to compare a reference case to a gas cooling scenario. The reference case reflects current policies, practices, and trends with respect to conventional electric cooling technologies. The gas cooling scenario examines the impact of accelerated use of natural gas cooling technologies here and abroad.

  5. Fuel leak detection apparatus for gas cooled nuclear reactors

    DOEpatents

    Burnette, Richard D.

    1977-01-01

    Apparatus is disclosed for detecting nuclear fuel leaks within nuclear power system reactors, such as high temperature gas cooled reactors. The apparatus includes a probe assembly that is inserted into the high temperature reactor coolant gaseous stream. The probe has an aperture adapted to communicate gaseous fluid between its inside and outside surfaces and also contains an inner tube for sampling gaseous fluid present near the aperture. A high pressure supply of noncontaminated gas is provided to selectively balance the pressure of the stream being sampled to prevent gas from entering the probe through the aperture. The apparatus includes valves that are operable to cause various directional flows and pressures, which valves are located outside of the reactor walls to permit maintenance work and the like to be performed without shutting down the reactor.

  6. VENTED FUEL ELEMENT FOR GAS-COOLED NEUTRONIC REACTORS

    DOEpatents

    Furgerson, W.T.

    1963-12-17

    A hollow, porous-walled fuel element filled with fissionable fuel and provided with an outlet port through its wall is described. In operation in a gas-cooled reactor, the element is connected, through its outlet port, to the vacuum side of a pump that causes a portion of the coolant gas flowing over the exterior surface of the element to be drawn through the porous walls thereof and out through the outlet port. This continuous purging gas flow sweeps away gaseous fission products as they are released by the fissioning fuel. (AEC) A fuel element for a nuclear reactor incorporating a body of metal of melting point lower than the temperature of operation of the reactor and a nuclear fuel in finely divided form dispersed in the body of metal as a settled slurry is presented. (AEC)

  7. Gas-cooled reactor for space power systems

    SciTech Connect

    Walter, C.E.; Pearson, J.S.

    1987-05-01

    Reactor characteristics based on extensive development work on the 500-MWt reactor for the Pluto nuclear ramjet are described for space power systems useful in the range of 2 to 20 MWe for operating times of 1 y. The modest pressure drop through the prismatic ceramic core is supported at the outlet end by a ceramic dome which also serves as a neutron reflector. Three core materials are considered which are useful at temperatures up to about 2000 K. Most of the calculations are based on a beryllium oxide with uranium dioxide core. Reactor control is accomplished by use of a burnable poison, a variable-leakage reflector, and internal control rods. Reactivity swings of 20% are obtained with a dozen internal boron-10 rods for the size cores studied. Criticality calculations were performed using the ALICE Monte Carlo code. The inherent high-temperature capability of the reactor design removes the reactor as a limiting condition on system performance. The low fuel inventories required, particularly for beryllium oxide reactors, make space power systems based on gas-cooled near-thermal reactors a lesser safeguard risk than those based on fast reactors.

  8. A Gas-Cooled Reactor Surface Power System

    SciTech Connect

    Harms, G.A.; Lenard, R.X.; Lipinski, R.J.; Wright, S.A.

    1998-11-09

    A human outpost on Mars requires plentiful power to assure survival of the astronauts. Anywhere from 50 to 500 kW of electric power (kWe) will be needed, depending on the number of astronauts, level of scientific activity, and life- cycle closure desired. This paper describes a 250-kWe power system based on a gas-cooled nuclear reactor with a recuperated closed Brayton cycle conversion system. The design draws upon the extensive data and engineering experience developed under the various high-temperature gas cooled reactor programs and under the SP-100 program. The reactor core is similar in power and size to the research reactors found on numerous university campuses. The fuel is uranium nitide clad in Nb 1 %Zr, which has been extensively tested under the SP-I 00 program The fiel rods are arranged in a hexagonal array within a BeO block. The BeO softens the spectrum, allowing better use of the fbel and stabilizing the geometty against deformation during impact or other loadings. The system has a negative temperature feedback coefficient so that the power level will automatically follow a variable load without the need for continuous adjustment of control elements. Waste heat is removed by an air-cooled heat exchanger using cold Martian air. The amount of radioactivity in the reactor at launch is very small (less than a Curie, and about equal to a truckload of uranium ore). The system will need to be engineered so that criticality cannot occur for any launch accident. This system is also adaptable for electric propulsion or life-support during transit to and from Mars.

  9. A gas-cooled reactor surface power system

    SciTech Connect

    Lipinski, R.J.; Wright, S.A.; Lenard, R.X.; Harms, G.A.

    1999-01-01

    A human outpost on Mars requires plentiful power to assure survival of the astronauts. Anywhere from 50 to 500 kW of electric power (kWe) will be needed, depending on the number of astronauts, level of scientific activity, and life-cycle closure desired. This paper describes a 250-kWe power system based on a gas-cooled nuclear reactor with a recuperated closed Brayton cycle conversion system. The design draws upon the extensive data and engineering experience developed under the various high-temperature gas cooled reactor programs and under the SP-100 program. The reactor core is similar in power and size to the research reactors found on numerous university campuses. The fuel is uranium nitride clad in Nb1{percent}Zr, which has been extensively tested under the SP-100 program. The fuel rods are arranged in a hexagonal array within a BeO block. The BeO softens the spectrum, allowing better use of the fuel and stabilizing the geometry against deformation during impact or other loadings. The system has a negative temperature feedback coefficient so that the power level will automatically follow a variable load without the need for continuous adjustment of control elements. Waste heat is removed by an air-cooled heat exchanger using cold Martian air. The amount of radioactivity in the reactor at launch is very small (less than a Curie, and about equal to a truckload of uranium ore). The system will need to be engineered so that criticality can not occur for any launch accident. This system is also adaptable for electric propulsion or life-support during transit to and from Mars. {copyright} {ital 1999 American Institute of Physics.}

  10. A gas-cooled reactor surface power system

    SciTech Connect

    Lipinski, Ronald J.; Wright, Steven A.; Lenard, Roger X.; Harms, Gary A.

    1999-01-22

    A human outpost on Mars requires plentiful power to assure survival of the astronauts. Anywhere from 50 to 500 kW of electric power (kWe) will be needed, depending on the number of astronauts, level of scientific activity, and life-cycle closure desired. This paper describes a 250-kWe power system based on a gas-cooled nuclear reactor with a recuperated closed Brayton cycle conversion system. The design draws upon the extensive data and engineering experience developed under the various high-temperature gas cooled reactor programs and under the SP-100 program. The reactor core is similar in power and size to the research reactors found on numerous university campuses. The fuel is uranium nitride clad in Nb1%Zr, which has been extensively tested under the SP-100 program. The fuel rods are arranged in a hexagonal array within a BeO block. The BeO softens the spectrum, allowing better use of the fuel and stabilizing the geometry against deformation during impact or other loadings. The system has a negative temperature feedback coefficient so that the power level will automatically follow a variable load without the need for continuous adjustment of control elements. Waste heat is removed by an air-cooled heat exchanger using cold Martian air. The amount of radioactivity in the reactor at launch is very small (less than a Curie, and about equal to a truckload of uranium ore). The system will need to be engineered so that criticality can not occur for any launch accident. This system is also adaptable for electric propulsion or life-support during transit to and from Mars.

  11. Brayton Cycle for High-Temperature Gas-Cooled Reactors

    SciTech Connect

    Oh, Chang H.; Moore, Richard L.

    2005-03-15

    This paper describes research on improving the Brayton cycle efficiency for a high-temperature gas-cooled reactor (HTGR). In this study, we are investigating the efficiency of an indirect helium Brayton cycle for the power conversion side of an HTGR power plant. A reference case based on a 250-MW(thermal) pebble bed HTGR was developed using helium gas as a working fluid in both the primary and power conversion sides. The commercial computer code HYSYS was used for process optimization. A numerical model using the Visual-Basic (V-B) computer language was also developed to assist in the evaluation of the Brayton cycle efficiency. Results from both the HYSYS simulation and the V-B model were compared with Japanese calculations based on the 300-MW(electric) Gas Turbine High-Temperature Reactor (GTHTR) that was developed by the Japan Atomic Energy Research Institute. After benchmarking our models, parametric investigations were performed to see the effect of important parameters on the cycle efficiency. We also investigated single-shaft versus multiple-shaft arrangements for the turbomachinery. The results from this study are applicable to other reactor concepts such as fast gas-cooled reactors, supercritical water reactors, and others.The ultimate goal of this study is to use other fluids such as supercritical carbon dioxide for the HTGR power conversion loop in order to improve the cycle efficiency over that of the helium Brayton cycle. This study is in progress, and the results will be published in a subsequent paper.

  12. Brayton Cycle for High Temperature Gas-Cooled Reactors

    SciTech Connect

    Chang Oh

    2005-03-01

    This paper describes research on improving the Brayton cycle efficiency for a high-temperature gas-cooled reactor (HTGR). In this study, we are investigating the efficiency of an indirect helium Brayton cycle for the power conversion side of an HTGR power plant. A reference case based on a 250-MW(thermal) pebble bed HTGR was developed using helium gas as a working fluid in both the primary and power conversion sides. The commercial computer code HYSYS was used for process optimization. A numerical model using the Visual-Basic (V-B) computer language was also developed to assist in the evaluation of the Brayton cycle efficiency. Results from both the HYSYS simulation and the V-B model were compared with Japanese calculations based on the 300-MW(electric) Gas Turbine High-Temperature Reactor (GTHTR) that was developed by the Japan Atomic Energy Research Institute. After benchmarking our models, parametric investigations were performed to see the effect of important parameters on the cycle efficiency. We also investigated single-shaft versus multiple-shaft arrangements for the turbomachinery. The results from this study are applicable to other reactor concepts such as fast gas-cooled reactors, supercritical water reactors, and others. The ultimate goal of this study is to use other fluids such as supercritical carbon dioxide for the HTGR power conversion loop in order to improve the cycle efficiency over that of the helium Brayton cycle. This study is in progress, and the results will be published in a subsequent paper.

  13. A gas-cooled reactor surface power system

    NASA Astrophysics Data System (ADS)

    Lipinski, Ronald J.; Wright, Steven A.; Lenard, Roger X.; Harms, Gary A.

    1999-01-01

    A human outpost on Mars requires plentiful power to assure survival of the astronauts. Anywhere from 50 to 500 kW of electric power (kWe) will be needed, depending on the number of astronauts, level of scientific activity, and life-cycle closure desired. This paper describes a 250-kWe power system based on a gas-cooled nuclear reactor with a recuperated closed Brayton cycle conversion system. The design draws upon the extensive data and engineering experience developed under the various high-temperature gas cooled reactor programs and under the SP-100 program. The reactor core is similar in power and size to the research reactors found on numerous university campuses. The fuel is uranium nitride clad in Nb1%Zr, which has been extensively tested under the SP-100 program. The fuel rods are arranged in a hexagonal array within a BeO block. The BeO softens the spectrum, allowing better use of the fuel and stabilizing the geometry against deformation during impact or other loadings. The system has a negative temperature feedback coefficient so that the power level will automatically follow a variable load without the need for continuous adjustment of control elements. Waste heat is removed by an air-cooled heat exchanger using cold Martian air. The amount of radioactivity in the reactor at launch is very small (less than a Curie, and about equal to a truckload of uranium ore). The system will need to be engineered so that criticality can not occur for any launch accident. This system is also adaptable for electric propulsion or life-support during transit to and from Mars.

  14. Power Conversion Study for High Temperature Gas-Cooled Reactors

    SciTech Connect

    Chang Oh; Richard Moore; Robert Barner

    2005-05-01

    The Idaho National Laboratory (INL) is investigating a Brayton cycle efficiency improvement on a high temperature gas-cooled reactor (HTGR) as part of Generation-IV nuclear engineering research initiative. There are some technical issues to be resolved before the selection of the final design of the high temperature gascooled reactor, called as a Next Generation Nuclear Plant (NGNP), which is supposed to be built at the INEEL by year 2017. The technical issues are the selection of the working fluid, direct vs. indirect cycle, power cycle type, the optimized design in terms of a number of intercoolers, and others. In this paper, we investigated a number of working fluids for the power conversion loop, direct versus indirect cycle, the effect of intercoolers, and other thermal hydraulics issues. However, in this paper, we present part of the results we have obtained. HYSYS computer code was used along with a computer model developed using Visual Basic computer language.

  15. Reference modular High Temperature Gas-Cooled Reactor Plant: Concept description report

    SciTech Connect

    Not Available

    1986-10-01

    This report provides a summary description of the Modular High Temperature Gas-Cooled Reactor (MHTGR) concept and interim results of assessments of costs, safety, constructibility, operability, maintainability, and availability. Conceptual design of this concept was initiated in October 1985 and is scheduled for completion in 1987. Participating industrial contractors are Bechtel National, Inc. (BNI), Stone and Webster Engineering Corporation (SWEC), GA Technologies, Inc. (GA), General Electric Co. (GE), and Combustion Engineering, Inc. (C-E).

  16. Gas cooled fuel cell systems technology development

    NASA Astrophysics Data System (ADS)

    1992-03-01

    This report documents in detail the work performed by Westinghouse Electric Corporation and the Energy Research Corporation during the fourth phase of a planned multiphase program to develop a Phosphoric Acid Fuel Cell (PAFC) for electric utility or industrial power plant applications. The results of this effort include (1) development of a baseline rolled electrode technology; (2) advancement of fuel cell technology through innovative improvements in the areas of acid management, catalyst selection, electrode and plate materials and processes, component designs, and quality assurance programs; (3) demonstration of improved fuel cell and stack performance and endurance; (4) successful scaleup of cell and stack design features into full height 100 kW stacks; and (5) demonstration of combining stacks into a 400 kW module that will be the building block for power plants, including the development of testing facilities and operating procedures applicable to plant operations.

  17. Gas cooled fuel cell systems technology development

    NASA Technical Reports Server (NTRS)

    Feret, J. M.

    1986-01-01

    The work performed during the Second Logical Unit of Work of a multi-year program designed to develop a phosphoric acid fuel cell (PAFC) for electric utility power plant application is discussed. The Second Logical Unit of Work, which covers the period May 14, 1983 through May 13, 1984, was funded by the U.S. Department of Energy, Office of Fossil Energy, Morgantown Energy Technology Center, and managed by the NASA Lewis Research Center.

  18. Facility Configuration Study of the High Temperature Gas-Cooled Reactor Component Test Facility

    SciTech Connect

    S. L. Austad; L. E. Guillen; D. S. Ferguson; B. L. Blakely; D. M. Pace; D. Lopez; J. D. Zolynski; B. L. Cowley; V. J. Balls; E.A. Harvego, P.E.; C.W. McKnight, P.E.; R.S. Stewart; B.D. Christensen

    2008-04-01

    A test facility, referred to as the High Temperature Gas-Cooled Reactor Component Test Facility or CTF, will be sited at Idaho National Laboratory for the purposes of supporting development of high temperature gas thermal-hydraulic technologies (helium, helium-Nitrogen, CO2, etc.) as applied in heat transport and heat transfer applications in High Temperature Gas-Cooled Reactors. Such applications include, but are not limited to: primary coolant; secondary coolant; intermediate, secondary, and tertiary heat transfer; and demonstration of processes requiring high temperatures such as hydrogen production. The facility will initially support completion of the Next Generation Nuclear Plant. It will secondarily be open for use by the full range of suppliers, end-users, facilitators, government laboratories, and others in the domestic and international community supporting the development and application of High Temperature Gas-Cooled Reactor technology. This pre-conceptual facility configuration study, which forms the basis for a cost estimate to support CTF scoping and planning, accomplishes the following objectives: • Identifies pre-conceptual design requirements • Develops test loop equipment schematics and layout • Identifies space allocations for each of the facility functions, as required • Develops a pre-conceptual site layout including transportation, parking and support structures, and railway systems • Identifies pre-conceptual utility and support system needs • Establishes pre-conceptual electrical one-line drawings and schedule for development of power needs.

  19. Gas-Cooled Fast Reactor (GFR) FY04 Annual Report

    SciTech Connect

    K. D. Weaver; T. C. Totemeier; D. E. Clark; E. E. Feldman; E. A. Hoffman; R. B. Vilim; T. Y. C. Wei; J. Gan; M. K. Meyer; W. F. Gale; M. J. Driscoll; M. Golay; G. Apostolakis; K. Czerwinski

    2004-09-01

    The gas-cooled fast reactor (GFR) was chosen as one of the Generation IV nuclear reactor systems to be developed based on its excellent potential for sustainability through reduction of the volume and radio toxicity of both its own fuel and other spent nuclear fuel, and for extending/utilizing uranium resources orders of magnitude beyond what the current open fuel cycle can realize. In addition, energy conversion at high thermal efficiency is possible with the current designs being considered, thus increasing the economic benefit of the GFR. However, research and development challenges include the ability to use passive decay heat removal systems during accident conditions, survivability of fuels and in-core materials under extreme temperatures and radiation, and economical and efficient fuel cycle processes. Nevertheless, the GFR was chosen as one of only six Generation IV systems to be pursued based on its ability to meet the Generation IV goals in sustainability, economics, safety and reliability, proliferation resistance and physical protection.

  20. Gas-Cooled Fast Reactor (GFR) Decay Heat Removal Concepts

    SciTech Connect

    K. D. Weaver; L-Y. Cheng; H. Ludewig; J. Jo

    2005-09-01

    Current research and development on the Gas-Cooled Fast Reactor (GFR) has focused on the design of safety systems that will remove the decay heat during accident conditions, ion irradiations of candidate ceramic materials, joining studies of oxide dispersion strengthened alloys; and within the Advanced Fuel Cycle Initiative (AFCI) the fabrication of carbide fuels and ceramic fuel matrix materials, development of non-halide precursor low density and high density ceramic coatings, and neutron irradiation of candidate ceramic fuel matrix and metallic materials. The vast majority of this work has focused on the reference design for the GFR: a helium-cooled, direct power conversion system that will operate with an outlet temperature of 850ºC at 7 MPa. In addition to the work being performed in the United States, seven international partners under the Generation IV International Forum (GIF) have identified their interest in participating in research related to the development of the GFR. These are Euratom (European Commission), France, Japan, South Africa, South Korea, Switzerland, and the United Kingdom. Of these, Euratom (including the United Kingdom), France, and Japan have active research activities with respect to the GFR. The research includes GFR design and safety, and fuels/in-core materials/fuel cycle projects. This report is a compilation of work performed on decay heat removal systems for a 2400 MWt GFR during this fiscal year (FY05).

  1. Gas-Cooled Fast Reactor (GFR) FY05 Annual Report

    SciTech Connect

    K. D. Weaver; T. Marshall; T. Totemeier; J. Gan; E.E. Feldman; E.A Hoffman; R.F. Kulak; I.U. Therios; C. P. Tzanos; T.Y.C. Wei; L-Y. Cheng; H. Ludewig; J. Jo; R. Nanstad; W. Corwin; V. G. Krishnardula; W. F. Gale; J. W. Fergus; P. Sabharwall; T. Allen

    2005-09-01

    The gas-cooled fast reactor (GFR) was chosen as one of the Generation IV nuclear reactor systems to be developed based on its excellent potential for sustainability through reduction of the volume and radio toxicity of both its own fuel and other spent nuclear fuel, and for extending/utilizing uranium resources orders of magnitude beyond what the current open fuel cycle can realize. In addition, energy conversion at high thermal efficiency is possible with the current designs being considered, thus increasing the economic benefit of the GFR. However, research and development challenges include the ability to use passive decay heat removal systems during accident conditions, survivability of fuels and in-core materials under extreme temperatures and radiation, and economical and efficient fuel cycle processes. Nevertheless, the GFR was chosen as one of only six Generation IV systems to be pursued based on its ability to meet the Generation IV goals in sustainability, economics, safety and reliability, proliferation resistance and physical protection. Current research and development on the Gas-Cooled Fast Reactor (GFR) has focused on the design of safety systems that will remove the decay heat during accident conditions, ion irradiations of candidate ceramic materials, joining studies of oxide dispersion strengthened alloys; and within the Advanced Fuel Cycle Initiative (AFCI) the fabrication of carbide fuels and ceramic fuel matrix materials, development of non-halide precursor low density and high density ceramic coatings, and neutron irradiation of candidate ceramic fuel matrix and metallic materials. The vast majority of this work has focused on the reference design for the GFR: a helium-cooled, direct power conversion system that will operate with on outlet temperature of 850 C at 7 MPa. In addition to the work being performed in the United States, seven international partners under the Generation IV International Forum (GIF) have identified their interest in

  2. High Temperature Gas-cooled Reactor Projected Markets and Scoping Economics

    SciTech Connect

    Larry Demick

    2010-08-01

    The NGNP Project has the objective of developing the high temperature gas-cooled reactor (HTGR) technology to supply high temperature process heat to industrial processes as a substitute for burning of fossil fuels, such as natural gas. Applications of the HTGR technology that have been evaluated by the NGNP Project for supply of process heat include supply of electricity, steam and high-temperature gas to a wide range of industrial processes, and production of hydrogen and oxygen for use in petrochemical, refining, coal to liquid fuels, chemical, and fertilizer plants.

  3. KEY DESIGN REQUIREMENTS FOR THE HIGH TEMPERATURE GAS-COOLED REACTOR NUCLEAR HEAT SUPPLY SYSTEM

    SciTech Connect

    L.E. Demick

    2010-09-01

    Key requirements that affect the design of the high temperature gas-cooled reactor nuclear heat supply system (HTGR-NHSS) as the NGNP Project progresses through the design, licensing, construction and testing of the first of a kind HTGR based plant are summarized. These requirements derive from pre-conceptual design development completed to-date by HTGR Suppliers, collaboration with potential end users of the HTGR technology to identify energy needs, evaluation of integration of the HTGR technology with industrial processes and recommendations of the NGNP Project Senior Advisory Group.

  4. Thermally Simulated Testing of a Direct-Drive Gas-Cooled Nuclear Reactor

    NASA Technical Reports Server (NTRS)

    Godfroy, Thomas; Bragg-Sitton, Shannon; VanDyke, Melissa

    2003-01-01

    This paper describes the concept and preliminary component testing of a gas-cooled, UN-fueled, pin-type reactor which uses He/Xe gas that goes directly into a recuperated Brayton system to produce electricity for nuclear electric propulsion. This Direct-Drive Gas-Cooled Reactor (DDG) is designed to be subcritical under water or wet-sand immersion in case of a launch accident. Because the gas-cooled reactor can directly drive the Brayton turbomachinery, it is possible to configure the system such that there are no external surfaces or pressure boundaries that are refractory metal, even though the gas delivered to the turbine is 1144 K. The He/Xe gas mixture is a good heat transport medium when flowing, and a good insulator when stagnant. Judicious use of stagnant cavities as insulating regions allows transport of the 1144-K gas while keeping all external surfaces below 900 K. At this temperature super-alloys (Hastelloy or Inconel) can be used instead of refractory metals. Super-alloys reduce the technology risk because they are easier to fabricate than refractory metals, we have a much more extensive knowledge base on their characteristics, and, because they have a greater resistance to oxidation, system testing is eased. The system is also relatively simple in its design: no additional coolant pumps, heat exchanger, or freeze-thaw systems are required. Key to success of this concept is a good knowledge of the heat transfer between the fuel pins and the gas, as well as the pressure drop through the system. This paper describes preliminary testing to obtain this key information, as well as experience in demonstrating electrical thermal simulation of reactor components and concepts.

  5. Direct-Drive Gas-Cooled Reactor Power System: Concept and Preliminary Testing

    NASA Technical Reports Server (NTRS)

    Wright, S. A.; Lipinski, R. J.; Godfroy, T. J.; Bragg-Sitton, S. M.; VanDyke, M. K.

    2002-01-01

    This paper describes the concept and preliminary component testing of a gas-cooled, UN-fueled, pin-type reactor which uses He/Xe gas that goes directly into a recuperated Brayton system to produce electricity for nuclear electric propulsion. This Direct-Drive Gas-Cooled Reactor (DDG) is designed to be subcritical under water or wet- sand immersion in case of a launch accident. Because the gas-cooled reactor can directly drive the Brayton turbomachinery, it is possible to configure the system such that there are no external surfaces or pressure boundaries that are refractory metal, even though the gas delivered to the turbine is 1144 K. The He/Xe gas mixture is a good heat transport medium when flowing, and a good insulator when stagnant. Judicious use of stagnant cavities as insulating regions allows transport of the 1144-K gas while keeping all external surfaces below 900 K. At this temperature super-alloys (Hastelloy or Inconel) can be used instead of refractory metals. Super-alloys reduce the technology risk because they are easier to fabricate than refractory metals, we have a much more extensive knowledge base on their characteristics, and, because they have a greater resistance to oxidation, system testing is eased. The system is also relatively simple in its design: no additional coolant pumps, heat exchanger, or freeze-thaw systems are required. Key to success of this concept is a good knowledge of the heat transfer between the fuel pins and the gas, as well as the pressure drop through the system. This paper describes preliminary testing to obtain this key information, as well as experience in demonstrating electrically heated testing of simulated reactor components.

  6. Helium circulator design considerations for modular high temperature gas-cooled reactor plant

    SciTech Connect

    McDonald, C.F.; Nichols, M.K.

    1986-12-01

    Efforts are in progress to develop a standard modular high temperature gas-cooled reactor (MHTGR) plant that is amenable to design certification and serial production. The MHTGR reference design, based on a steam cycle power conversion system, utilizes a 350 MW(t) annular reactor core with prismatic fuel elements. Flexibility in power rating is afforded by utilizing a multiplicity of the standard module. The circulator, which is an electric motor-driven helium compressor, is a key component in the primary system of the nuclear plant, since it facilitates thermal energy transfer from the reactor core to the steam generator; and, hence, to the external turbo-generator set. This paper highlights the helium circulator design considerations for the reference MHTGR plant and includes a discussion on the major features of the turbomachine concept, operational characteristics, and the technology base that exists in the US.

  7. Thermal Hydraulics of the Very High Temperature Gas Cooled Reactor

    SciTech Connect

    Chang Oh; Eung Kim; Richard Schultz; Mike Patterson; Davie Petti

    2009-10-01

    The U.S Department of Energy (DOE) is conducting research on the Very High Temperature Reactor (VHTR) design concept for the Next Generation Nuclear Plant (NGNP) Project. The reactor design will be a graphite moderated, thermal neutron spectrum reactor that will produce electricity and hydrogen in a highly efficient manner. The NGNP reactor core will be either a prismatic graphite block type core or a pebble bed core. The NGNP will use very high-burnup, low-enriched uranium, TRISO-coated fuel, and have a projected plant design service life of 60 years. The VHTR concept is considered to be the nearest-term reactor design that has the capability to efficiently produce hydrogen. The plant size, reactor thermal power, and core configuration will ensure passive decay heat removal without fuel damage or radioactive material releases during reactor core-accidents. The objectives of the NGNP Project are to: Demonstrate a full-scale prototype VHTR that is commercially licensed by the U.S. Nuclear Regulatory Commission, and Demonstrate safe and economical nuclear-assisted production of hydrogen and electricity. The DOE laboratories, led by the INL, perform research and development (R&D) that will be critical to the success of the NGNP, primarily in the areas of: • High temperature gas reactor fuels behavior • High temperature materials qualification • Design methods development and validation • Hydrogen production technologies • Energy conversion. This paper presents current R&D work that addresses fundamental thermal hydraulics issues that are relevant to a variety of possible NGNP designs.

  8. Decay Heat Removal in GEN IV Gas-Cooled Fast Reactors

    DOE PAGESBeta

    Cheng, Lap-Yan; Wei, Thomas Y. C.

    2009-01-01

    The safety goal of the current designs of advanced high-temperature thermal gas-cooled reactors (HTRs) is that no core meltdown would occur in a depressurization event with a combination of concurrent safety system failures. This study focused on the analysis of passive decay heat removal (DHR) in a GEN IV direct-cycle gas-cooled fast reactor (GFR) which is based on the technology developments of the HTRs. Given the different criteria and design characteristics of the GFR, an approach different from that taken for the HTRs for passive DHR would have to be explored. Different design options based on maintaining core flow weremore » evaluated by performing transient analysis of a depressurization accident using the system code RELAP5-3D. The study also reviewed the conceptual design of autonomous systems for shutdown decay heat removal and recommends that future work in this area should be focused on the potential for Brayton cycle DHRs.« less

  9. High Temperature Gas-Cooled Reactor Projected Markets and Preliminary Economics

    SciTech Connect

    Larry Demick

    2011-08-01

    This paper summarizes the potential market for process heat produced by a high temperature gas-cooled reactor (HTGR), the environmental benefits reduced CO2 emissions will have on these markets, and the typical economics of projects using these applications. It gives examples of HTGR technological applications to industrial processes in the typical co-generation supply of process heat and electricity, the conversion of coal to transportation fuels and chemical process feedstock, and the production of ammonia as a feedstock for the production of ammonia derivatives, including fertilizer. It also demonstrates how uncertainties in capital costs and financial factors affect the economics of HTGR technology by analyzing the use of HTGR technology in the application of HTGR and high temperature steam electrolysis processes to produce hydrogen.

  10. Modular High Temperature Gas-Cooled Reactor Safety Basis and Approach

    SciTech Connect

    David Petti; Jim Kinsey; Dave Alberstein

    2014-01-01

    Various international efforts are underway to assess the safety of advanced nuclear reactor designs. For example, the International Atomic Energy Agency has recently held its first Consultancy Meeting on a new cooperative research program on high temperature gas-cooled reactor (HTGR) safety. Furthermore, the Generation IV International Forum Reactor Safety Working Group has recently developed a methodology, called the Integrated Safety Assessment Methodology, for use in Generation IV advanced reactor technology development, design, and design review. A risk and safety assessment white paper is under development with respect to the Very High Temperature Reactor to pilot the Integrated Safety Assessment Methodology and to demonstrate its validity and feasibility. To support such efforts, this information paper on the modular HTGR safety basis and approach has been prepared. The paper provides a summary level introduction to HTGR history, public safety objectives, inherent and passive safety features, radionuclide release barriers, functional safety approach, and risk-informed safety approach. The information in this paper is intended to further the understanding of the modular HTGR safety approach. The paper gives those involved in the assessment of advanced reactor designs an opportunity to assess an advanced design that has already received extensive review by regulatory authorities and to judge the utility of recently proposed new methods for advanced reactor safety assessment such as the Integrated Safety Assessment Methodology.

  11. Optimum Reactor Outlet Temperatures for High Temperature Gas-Cooled Reactors Integrated with Industrial Processes

    SciTech Connect

    Lee O. Nelson

    2011-04-01

    This report summarizes the results of a temperature sensitivity study conducted to identify the optimum reactor operating temperatures for producing the heat and hydrogen required for industrial processes associated with the proposed new high temperature gas-cooled reactor. This study assumed that primary steam outputs of the reactor were delivered at 17 MPa and 540°C and the helium coolant was delivered at 7 MPa at 625–925°C. The secondary outputs of were electricity and hydrogen. For the power generation analysis, it was assumed that the power cycle efficiency was 66% of the maximum theoretical efficiency of the Carnot thermodynamic cycle. Hydrogen was generated via the hightemperature steam electrolysis or the steam methane reforming process. The study indicates that optimum or a range of reactor outlet temperatures could be identified to further refine the process evaluations that were developed for high temperature gas-cooled reactor-integrated production of synthetic transportation fuels, ammonia, and ammonia derivatives, oil from unconventional sources, and substitute natural gas from coal.

  12. Loss-of-coolant accident experiment at the AVR (Arbeitsgemeinschaft Versuchsreaktor) gas-cooled reactor

    SciTech Connect

    Krueger, K. ); Cleveland, J. )

    1989-11-01

    Loss of coolant is one of the most severe accidents for a nuclear power plant. To demonstrate inherent safety characteristics incorporated into modular gas-cooled reactor designs, loss-of-coolant accident (LOCA) simulation tests were conducted with the 15-MW(electric), 46-MW(thermal), pebble-bed, high-temperature Arbeitsgemeinschaft Versuchsreaktor (AVR) in the Federal Republic of Germany (FRG). This is the only nuclear power plant ever to have been intentionally subjected to LOCa conditions. Oak Ridge National Laboratory participation in the preparation and conduct of the tests was carried out within the U.S./FRG Agreement for Cooperation in Gas-Cooled Reactor Development.

  13. Computational Flow Predictions for the Lower Plenum of a High-Temperature, Gas-Cooled Reactor

    SciTech Connect

    Not Available

    2006-11-01

    Advanced gas-cooled reactors offer the potential advantage of higher efficiency and enhanced safety over present day nuclear reactors. Accurate simulation models of these Generation IV reactors are necessary for design and licensing. One design under consideration by the Very High Temperature Reactor (VHTR) program is a modular, prismatic gas-cooled reactor. In this reactor, the lower plenum region may experience locally high temperatures that can adversely impact the plant's structural integrity. Since existing system analysis codes cannot capture the complex flow effects occurring in the lower plenum, computational fluid dynamics (CFD) codes are being employed to model these flows [1]. The goal of the present study is to validate the CFD calculations using experimental data.

  14. Computational Flow Predictions for the Lower Plenum of a High-Temperature, Gas-Cooled Reactor

    SciTech Connect

    Donna Post Guillen

    2006-11-01

    Advanced gas-cooled reactors offer the potential advantage of higher efficiency and enhanced safety over present day nuclear reactors. Accurate simulation models of these Generation IV reactors are necessary for design and licensing. One design under consideration by the Very High Temperature Reactor (VHTR) program is a modular, prismatic gas-cooled reactor. In this reactor, the lower plenum region may experience locally high temperatures that can adversely impact the plant’s structural integrity. Since existing system analysis codes cannot capture the complex flow effects occurring in the lower plenum, computational fluid dynamics (CFD) codes are being employed to model these flows [1]. The goal of the present study is to validate the CFD calculations using experimental data.

  15. Control rod system useable for fuel handling in a gas-cooled nuclear reactor

    DOEpatents

    Spurrier, Francis R.

    1976-11-30

    A control rod and its associated drive are used to elevate a complete stack of fuel blocks to a position above the core of a gas-cooled nuclear reactor. A fuel-handling machine grasps the control rod and the drive is unlatched from the rod. The stack and rod are transferred out of the reactor, or to a new location in the reactor, by the fuel-handling machine.

  16. Gas-cooled fast reactor program. Progress report, January 1, 1980-June 30, 1981

    SciTech Connect

    Kasten, P.R.

    1981-09-01

    Since the national Gas-Cooled Fast Breeder Reactor Program has been terminated, this document is the last progress report until reinstatement. It is divided into three sections: Core Flow Test Loop, GCFR shielding and physics, and GCFR pressure vessel and closure studies. (DLC)

  17. High-temperature gas-cooled reactors: preliminary safety and environmental information document. Volume IV

    SciTech Connect

    Not Available

    1980-01-01

    Information is presented concerning medium-enriched uranium/thorium once-through fuel cycle; medium-enrichment uranium-233/thorium recycle fuel; high-enrichment uranium-235/thorium recycle (spiked) fuel cycle; high-enrichment uranium-233/thorium recycle (spiked) fuel cycle; and gas-turbine high-temperature gas-cooled reactor.

  18. MHTGR (Modular High-Temperature Gas-Cooled Reactor) design and development status

    SciTech Connect

    Turner, R.F.; Neylan, A.J.

    1988-08-01

    The Modular High-Temperature Gas-Cooled Reactor (MHTGR) is an advanced power plant concept which has been under design definition since 1984. The design utilizes basic high-temperature gas-cooled reactor features of ceramic fuel, helium coolant and a graphite moderator which have been under development for 30 years. The geometric arrangement of the reactor vessels, the core and the heat removal components has been selected to exploit the inherent characteristics associated with high temperature materials. The design utilizes passively safe features which provide a higher margin of safety and investment protection than current generation reactors. The design has been evaluated to be economically attractive relative to modern coal fired plants. The design and development program is a cooperative effort by the US government, the utilities and the nuclear industry. 8 refs., 4 figs., 4 tabs.

  19. Containment building atmosphere response during severe accidents in high temperature gas-cooled reactors

    SciTech Connect

    Kroeger, P.G.; Chan, B.C.

    1985-01-01

    Several safety evaluations for large High Temperature Gas Cooled Reactors (HTGR), using a Prestressed Concrete Reactor Vessel (PCRV) design, have concluded that Unrestricted Core Heatup Accidents (UCHA) present the most important severe accidents, resulting in the dominant source term. While the core thermohydraulic transients for such accident sequences have been presented previously, the subject of this paper is the containment building (CB) atmosphere transient, with primary emphasis on the CB atmosphere temperature and pressure, as overpressurization is the most likely failure mode.

  20. New approches for high temperature gas cooled reactors (HTGRs)

    SciTech Connect

    Kasten, P.R.; Cleveland, J.C.; Bowers, H.I.

    1984-01-01

    Several approaches are being evaluated in the US HTR Program to explore designs which might improve the commercial viability of nuclear power. The general approach is to reduce the power level of the reactor and increase ability to use passive methods for removing afterheat energy following extreme accidents. One approach most fully discussed in this paper is represented by modular HTRs for which the unit size and design are constrained such that extreme accidents do not result in significant release of radioactivity from the reactor circuit. Through such an approach, it should be possible to minimize the amount of nuclear grade components required in the balance-of-plant and achieve an economic system. Attaining such performance should provide low investment risk to the owner.

  1. A thermodynamic approach for advanced fuels of gas-cooled reactors

    NASA Astrophysics Data System (ADS)

    Guéneau, C.; Chatain, S.; Gossé, S.; Rado, C.; Rapaud, O.; Lechelle, J.; Dumas, J. C.; Chatillon, C.

    2005-09-01

    For both high temperature reactor (HTR) and gas cooled fast reactor (GFR) systems, the high operating temperature in normal and accidental conditions necessitates the assessment of the thermodynamic data and associated phase diagrams for the complex system constituted of the fuel kernel, the inert materials and the fission products. A classical CALPHAD approach, coupling experiments and thermodynamic calculations, is proposed. Some examples of studies are presented leading with the CO and CO 2 gas formation during the chemical interaction of [UO 2± x/C] in the HTR particle, and the chemical compatibility of the couples [UN/SiC], [(U, Pu)N/SiC], [(U, Pu)N/TiN] for the GFR system. A project of constitution of a thermodynamic database for advanced fuels of gas-cooled reactors is proposed.

  2. CFD modeling of high temperature gas cooled reactors

    SciTech Connect

    Janse van Rensburg, J.J.; Viljoen, C.; Van Staden, M.P.

    2006-07-01

    This paper presents an overview of how CFD has been applied to model the gas flow and heat transfer within the PBMR (Pebble Bed Modular reactor) with the aim of providing valuable design and safety information. The thermo-hydraulic calculations are performed using the STAR-CD [1] Computational Fluid Dynamics (CFD) code and the neutronic calculations are performed using VSOP [2]. Results are presented for steady-state normal operation and for a transient De-pressurized Loss Of Forced Cooling event (DLOFC). (authors)

  3. A combined gas cooled nuclear reactor and fuel cell cycle

    NASA Astrophysics Data System (ADS)

    Palmer, David J.

    Rising oil costs, global warming, national security concerns, economic concerns and escalating energy demands are forcing the engineering communities to explore methods to address these concerns. It is the intention of this thesis to offer a proposal for a novel design of a combined cycle, an advanced nuclear helium reactor/solid oxide fuel cell (SOFC) plant that will help to mitigate some of the above concerns. Moreover, the adoption of this proposal may help to reinvigorate the Nuclear Power industry while providing a practical method to foster the development of a hydrogen economy. Specifically, this thesis concentrates on the importance of the U.S. Nuclear Navy adopting this novel design for its nuclear electric vessels of the future with discussion on efficiency and thermodynamic performance characteristics related to the combined cycle. Thus, the goals and objectives are to develop an innovative combined cycle that provides a solution to the stated concerns and show that it provides superior performance. In order to show performance, it is necessary to develop a rigorous thermodynamic model and computer program to analyze the SOFC in relation with the overall cycle. A large increase in efficiency over the conventional pressurized water reactor cycle is realized. Both sides of the cycle achieve higher efficiencies at partial loads which is extremely important as most naval vessels operate at partial loads as well as the fact that traditional gas turbines operating alone have poor performance at reduced speeds. Furthermore, each side of the cycle provides important benefits to the other side. The high temperature exhaust from the overall exothermic reaction of the fuel cell provides heat for the reheater allowing for an overall increase in power on the nuclear side of the cycle. Likewise, the high temperature helium exiting the nuclear reactor provides a controllable method to stabilize the fuel cell at an optimal temperature band even during transients helping

  4. NGNP: High Temperature Gas-Cooled Reactor Key Definitions, Plant Capabilities, and Assumptions

    SciTech Connect

    Wayne Moe

    2013-05-01

    This document provides key definitions, plant capabilities, and inputs and assumptions related to the Next Generation Nuclear Plant to be used in ongoing efforts related to the licensing and deployment of a high temperature gas-cooled reactor. These definitions, capabilities, and assumptions were extracted from a number of NGNP Project sources such as licensing related white papers, previously issued requirement documents, and preapplication interactions with the Nuclear Regulatory Commission (NRC).

  5. A modular gas-cooled cermet reactor system for planetary base power

    SciTech Connect

    Jahshan, S.N.; Borkowski, J.A. )

    1993-01-15

    Fission nuclear power is foreseen as the source for electricity in planetary colonization and exploration. A six module gas-cooled, cermet-fueled reactor is proposed that can meet the design objectives. The highly enriched core is compact and can operate at high temperature for a long life. The helium coolant powers six modular Brayton cycles that compare favorably with the SP-100-based Brayton cycle.

  6. Overall plant design specification Modular High Temperature Gas-cooled Reactor. Revision 9

    SciTech Connect

    1990-05-01

    Revision 9 of the ``Overall Plant Design Specification Modular High Temperature Gas-Cooled Reactor,`` DOE-HTGR-86004 (OPDS) has been completed and is hereby distributed for use by the HTGR Program team members. This document, Revision 9 of the ``Overall Plant Design Specification`` (OPDS) reflects those changes in the MHTGR design requirements and configuration resulting form approved Design Change Proposals DCP BNI-003 and DCP BNI-004, involving the Nuclear Island Cooling and Spent Fuel Cooling Systems respectively.

  7. HTGR (High Temperature Gas-Cooled Reactor) ingress analysis using MINET

    SciTech Connect

    Van Tuyle, G.J.; Yang, J.W.; Kroeger, P.G.; Mallen, A.N.; Aronson, A.L.

    1989-04-01

    Modeling of water/steam ingress into the primary (helium) cooling circuit of a High Temperature Gas-Cooled Reactor (HTGR) is described. This modeling was implemented in the MINET Code, which is a program for analyzing transients in intricate fluid flow and heat transfer networks. Results from the simulation of a water ingress event postulated for the Modular HTGR are discussed. 27 refs., 6 figs., 6 tabs.

  8. Thermally Simulated 32kW Direct-Drive Gas-Cooled Reactor: Design, Assembly, and Test

    NASA Astrophysics Data System (ADS)

    Godfroy, Thomas J.; Kapernick, Richard J.; Bragg-Sitton, Shannon M.

    2004-02-01

    One of the power systems under consideration for nuclear electric propulsion is a direct-drive gas-cooled reactor coupled to a Brayton cycle. In this system, power is transferred from the reactor to the Brayton system via a circulated closed loop gas. To allow early utilization, system designs must be relatively simple, easy to fabricate, and easy to test using non-nuclear heaters to closely mimic heat from fission. This combination of attributes will allow pre-prototypic systems to be designed, fabricated, and tested quickly and affordably. The ability to build and test units is key to the success of a nuclear program, especially if an early flight is desired. The ability to perform very realistic non-nuclear testing increases the success probability of the system. In addition, the technologies required by a concept will substantially impact the cost, time, and resources required to develop a successful space reactor power system. This paper describes design features, assembly, and test matrix for the testing of a thermally simulated 32kW direct-drive gas-cooled reactor in the Early Flight Fission - Test Facility (EFF-TF) at Marshall Space Flight Center. The reactor design and test matrix are provided by Los Alamos National Laboratories.

  9. Thermally Simulated 32kW Direct-Drive Gas-Cooled Reactor: Design, Assembly, and Test

    SciTech Connect

    Godfroy, Thomas J.; Bragg-Sitton, Shannon M.; Kapernick, Richard J.

    2004-02-04

    One of the power systems under consideration for nuclear electric propulsion is a direct-drive gas-cooled reactor coupled to a Brayton cycle. In this system, power is transferred from the reactor to the Brayton system via a circulated closed loop gas. To allow early utilization, system designs must be relatively simple, easy to fabricate, and easy to test using non-nuclear heaters to closely mimic heat from fission. This combination of attributes will allow pre-prototypic systems to be designed, fabricated, and tested quickly and affordably. The ability to build and test units is key to the success of a nuclear program, especially if an early flight is desired. The ability to perform very realistic non-nuclear testing increases the success probability of the system. In addition, the technologies required by a concept will substantially impact the cost, time, and resources required to develop a successful space reactor power system. This paper describes design features, assembly, and test matrix for the testing of a thermally simulated 32kW direct-drive gas-cooled reactor in the Early Flight Fission - Test Facility (EFF-TF) at Marshall Space Flight Center. The reactor design and test matrix are provided by Los Alamos National Laboratories.

  10. A Gas-Cooled-Reactor Closed-Brayton-Cycle Demonstration with Nuclear Heating

    SciTech Connect

    Lipinski, Ronald J.; Wright, Steven A.; Dorsey, Daniel J.; Williamson, Joshua; Peters, Curtis D.; Brown, Nicholas; Jablonski, Jennifer

    2005-02-06

    A gas-cooled reactor may be coupled directly to turbomachinery to form a closed-Brayton-cycle (CBC) system in which the CBC working fluid serves as the reactor coolant. Such a system has the potential to be a very simple and robust space-reactor power system. Gas-cooled reactors have been built and operated in the past, but very few have been coupled directly to the turbomachinery in this fashion. In this paper we describe the option for testing such a system with a small reactor and turbomachinery at Sandia National Laboratories. Sandia currently operates the Annular Core Research Reactor (ACRR) at steady-state powers up to 4 MW and has an adjacent facility with heavy shielding in which another reactor recently operated. Sandia also has a closed-Brayton-Cycle test bed with a converted commercial turbomachinery unit that is rated for up to 30 kWe of power. It is proposed to construct a small experimental gas-cooled reactor core and attach this via ducting to the CBC turbomachinery for cooling and electricity production. Calculations suggest that such a unit could produce about 20 kWe, which would be a good power level for initial surface power units on the Moon or Mars. The intent of this experiment is to demonstrate the stable start-up and operation of such a system. Of particular interest is the effect of a negative temperature power coefficient as the initially cold Brayton gas passes through the core during startup or power changes. Sandia's dynamic model for such a system would be compared with the performance data. This paper describes the neutronics, heat transfer, and cycle dynamics of this proposed system. Safety and radiation issues are presented. The views expressed in this document are those of the author and do not necessarily reflect agreement by the government.

  11. A Gas-Cooled-Reactor Closed-Brayton-Cycle Demonstration with Nuclear Heating

    NASA Astrophysics Data System (ADS)

    Lipinski, Ronald J.; Wright, Steven A.; Dorsey, Daniel J.; Peters, Curtis D.; Brown, Nicholas; Williamson, Joshua; Jablonski, Jennifer

    2005-02-01

    A gas-cooled reactor may be coupled directly to turbomachinery to form a closed-Brayton-cycle (CBC) system in which the CBC working fluid serves as the reactor coolant. Such a system has the potential to be a very simple and robust space-reactor power system. Gas-cooled reactors have been built and operated in the past, but very few have been coupled directly to the turbomachinery in this fashion. In this paper we describe the option for testing such a system with a small reactor and turbomachinery at Sandia National Laboratories. Sandia currently operates the Annular Core Research Reactor (ACRR) at steady-state powers up to 4 MW and has an adjacent facility with heavy shielding in which another reactor recently operated. Sandia also has a closed-Brayton-Cycle test bed with a converted commercial turbomachinery unit that is rated for up to 30 kWe of power. It is proposed to construct a small experimental gas-cooled reactor core and attach this via ducting to the CBC turbomachinery for cooling and electricity production. Calculations suggest that such a unit could produce about 20 kWe, which would be a good power level for initial surface power units on the Moon or Mars. The intent of this experiment is to demonstrate the stable start-up and operation of such a system. Of particular interest is the effect of a negative temperature power coefficient as the initially cold Brayton gas passes through the core during startup or power changes. Sandia's dynamic model for such a system would be compared with the performance data. This paper describes the neutronics, heat transfer, and cycle dynamics of this proposed system. Safety and radiation issues are presented. The views expressed in this document are those of the author and do not necessarily reflect agreement by the government.

  12. [Gas cooled fuel cell systems technology development program

    SciTech Connect

    Not Available

    1988-03-01

    Objective is the development of a gas-cooled phosphoric acid fuel cell for electric utility power plant application. Primary objectives are to: demonstrate performance endurance in 10-cell stacks at 70 psia, 190 C, and 267 mA/cm[sup 2]; improve cell degradation rate to less than 8 mV/1000 hours; develop cost effective criteria, processes, and design configurations for stack components; design multiple stack unit and a single 100 kW fuel cell stack; design a 375 kW fuel cell module and demonstrate average cell beginning-of-use performance; manufacture four 375-kW fuel cell modules and establish characteristics of 1.5 MW pilot power plant. The work is broken into program management, systems engineering, fuel cell development and test, facilities development.

  13. Loss-of-coolant accident experiment at the AVR gas-cooled reactor

    SciTech Connect

    Krueger, K. ); Cleveland, J. )

    1990-01-01

    A landmark safety test has been conducted at the AVR-reactor, a high-temperature gas-cooled reactor (HTGR) in the Federal Republic of Germany owned by the Arbeitsgemeinschaft Versuchsreaktor, AVR in Juelich. The 46-MW(t), 15-MW(e) AVR reactor was subjected to a simulated loss-of-coolant accident (LOCA), a very severe occurrence in which the coolant escapes from the reactor core and no emergency system provides coolant flow to the core. The test, which demonstrated the inherently safe response of this reactor to a LOCA, marked the first time ever that a reactor has been intentionally subjected to loss-of-coolant conditions without emergency cooling. Oak Ridge National Laboratory (ORNL) and General Atomics participated in the test by working with AVR staff by jointly performing the analyses needed to obtain the license to conduct the test and by performing post test analyses. This participation was carried out under the cooperative AVR Subprogram which is conducted within the US/FRG Agreement for Cooperation in Gas-Cooled Reactor Development. 7 figs.

  14. Parametric Investigation of Brayton Cycle for High Temperature Gas-Cooled Reactor

    SciTech Connect

    Chang Oh

    2004-07-01

    The Idaho National Engineering and Environmental Laboratory (INEEL) is investigating a Brayton cycle efficiency improvement on a high temperature gas-cooled reactor (HTGR) as part of Generation-IV nuclear engineering research initiative. In this project, we are investigating helium Brayton cycles for the secondary side of an indirect energy conversion system. Ultimately we will investigate the improvement of the Brayton cycle using other fluids, such as supercritical carbon dioxide. Prior to the cycle improvement study, we established a number of baseline cases for the helium indirect Brayton cycle. These cases look at both single-shaft and multiple-shaft turbomachinary. The baseline cases are based on a 250 MW thermal pebble bed HTGR. The results from this study are applicable to other reactor concepts such as a very high temperature gas-cooled reactor (VHTR), fast gas-cooled reactor (FGR), supercritical water reactor (SWR), and others. In this study, we are using the HYSYS computer code for optimization of the helium Brayton cycle. Besides the HYSYS process optimization, we performed parametric study to see the effect of important parameters on the cycle efficiency. For these parametric calculations, we use a cycle efficiency model that was developed based on the Visual Basic computer language. As a part of this study we are currently investigated single-shaft vs. multiple shaft arrangement for cycle efficiency and comparison, which will be published in the next paper.The ultimate goal of this study is to use supercritical carbon dioxide for the HTGR power conversion loop in order to improve the cycle efficiency to values great than that of the helium Brayton cycle. This paper includes preliminary calculations of the steady state overall Brayton cycle efficiency based on the pebble bed reactor reference design (helium used as the working fluid) and compares those results with an initial calculation of a CO2 Brayton cycle.

  15. TRISO-Coated Fuel Processing to Support High Temperature Gas-Cooled Reactors

    SciTech Connect

    Del Cul, G.D.

    2002-10-01

    The initial objective of the work described herein was to identify potential methods and technologies needed to disassemble and dissolve graphite-encapsulated, ceramic-coated gas-cooled-reactor spent fuels so that the oxide fuel components can be separated by means of chemical processing. The purpose of this processing is to recover (1) unburned fuel for recycle, (2) long-lived actinides and fission products for transmutation, and (3) other fission products for disposal in acceptable waste forms. Follow-on objectives were to identify and select the most promising candidate flow sheets for experimental evaluation and demonstration and to address the needs to reduce technical risks of the selected technologies. High-temperature gas-cooled reactors (HTGRs) may be deployed in the next -20 years to (1) enable the use of highly efficient gas turbines for producing electricity and (2) provide high-temperature process heat for use in chemical processes, such as the production of hydrogen for use as clean-burning transportation fuel. Also, HTGR fuels are capable of significantly higher burn-up than light-water-reactor (LWR) fuels or fast-reactor (FR) fuels; thus, the HTGR fuels can be used efficiently for transmutation of fissile materials and long-lived actinides and fission products, thereby reducing the inventory of such hazardous and proliferation-prone materials. The ''deep-burn'' concept, described in this report, is an example of this capability. Processing of spent graphite-encapsulated, ceramic-coated fuels presents challenges different from those of processing spent LWR fuels. LWR fuels are processed commercially in Europe and Japan; however, similar infrastructure is not available for processing of the HTGR fuels. Laboratory studies on the processing of HTGR fuels were performed in the United States in the 1960s and 1970s, but no engineering-scale processes were demonstrated. Currently, new regulations concerning emissions will impact the technologies used in

  16. Evaluation of proposed German safety criteria for high-temperature gas-cooled reactors

    SciTech Connect

    Barsell, A.W.

    1980-05-01

    This work reviews proposed safety criteria prepared by the German Bundesministerium des Innern (BMI) for future licensing of gas-cooled high-temperature reactor (HTR) concepts in the Federal Republic of Germany. Comparison is made with US General Design Criteria (GDCs) in 10CFR50 Appendix A and with German light water reactor (LWR) criteria. Implications for the HTR design relative to the US design and safety approach are indicated. Both inherent characteristics and design features of the steam cycle, gas turbine, and process heat concepts are taken into account as well as generic design options such as a pebble bed or prismatic core.

  17. Fuel performance models for high-temperature gas-cooled reactor core design

    SciTech Connect

    Stansfield, O.M.; Simon, W.A.; Baxter, A.M.

    1983-09-01

    Mechanistic fuel performance models are used in high-temperature gas-cooled reactor core design and licensing to predict failure and fission product release. Fuel particles manufactured with defective or missing SiC, IPyC, or fuel dispersion in the buffer fail at a level of less than 5 x 10/sup -4/ fraction. These failed particles primarily release metallic fission products because the OPyC remains intact on 90% of the particles and retains gaseous isotopes. The predicted failure of particles using performance models appears to be conservative relative to operating reactor experience.

  18. Licensing topical report: interpretation of general design criteria for high-temperature gas-cooled reactors

    SciTech Connect

    Orvis, D.D.; Raabe, P.H.

    1980-01-01

    This Licensing Topical Report presents a set of General Design Criteria (GDC) which is proposed for applicability to licensing of graphite-moderated, high-temperature gas-cooled reactors (HTGRs). Modifications as necessary to reflect HTGR characteristics and design practices have been made to the GDC derived for applicability to light-water-cooled reactors and presented in Appendix A of Part 50, Title 10, Code of Federal Regulations, including the Introduction, Definitions, and Criteria. It is concluded that the proposed set of GDC affords a better basis for design and licensing of HTGRs.

  19. Concept of an inherently-safe high temperature gas-cooled reactor

    SciTech Connect

    Ohashi, Hirofumi; Sato, Hiroyuki; Tachibana, Yukio; Kunitomi, Kazuhiko; Ogawa, Masuro

    2012-06-06

    As the challenge to ensure no harmful release of radioactive materials at the accidents by deterministic approach instead to satisfy acceptance criteria or safety goal for risk by probabilistic approach, new concept of advanced reactor, an inherently-safe high temperature gas-cooled reactor, is proposed based on the experience of the operation of the actual High Temperature Gas-cooled Reactor (HTGR) in Japan, High Temperature Engineering Test Reactor (HTTR), and the design of the commercial plant (GTHTR300), utilizing the inherent safety features of the HTGR (i.e., safety features based on physical phenomena). The safety design philosophy of the inherently-safe HTGR for the safety analysis of the radiological consequences is determined as the confinement of radioactive materials is assured by only inherent safety features without engineered safety features, AC power or prompt actions by plant personnel if the design extension conditions occur. Inherent safety features to prevent the loss or degradation of the confinement function are identified. It is proposed not to apply the probabilistic approach for the evaluation of the radiological consequences of the accidents in the safety analysis because no inherent safety features fail for the mitigation of the consequences of the accidents. Consequently, there are no event sequences to harmful release of radioactive materials if the design extension conditions occur in the inherently-safe HTGR concept. The concept and future R and D items for the inherently-safe HTGR are described in this paper.

  20. A gas-cooled cermet reactor system for planetary base power

    SciTech Connect

    Jahshan, S.N.; Borkowski, J.A.

    1992-01-01

    Fission nuclear power is foreseen as the source for electricity in colonization exploration. A gas-cooled, cermet-fueled reactor is proposed that can meet many of the design objectives. The highly enriched core is compact and can operate at high temperature for a long life. The helium coolant powers a Brayton cycle that compares well with the SP-100-based Brayton cycle. The power cycle can be upgraded further under certain siting-related conditions by the addition of a low temperature Rankine cycle.

  1. A gas-cooled cermet reactor system for planetary base power

    SciTech Connect

    Jahshan, S.N.; Borkowski, J.A.

    1992-08-01

    Fission nuclear power is foreseen as the source for electricity in colonization exploration. A gas-cooled, cermet-fueled reactor is proposed that can meet many of the design objectives. The highly enriched core is compact and can operate at high temperature for a long life. The helium coolant powers a Brayton cycle that compares well with the SP-100-based Brayton cycle. The power cycle can be upgraded further under certain siting-related conditions by the addition of a low temperature Rankine cycle.

  2. Hypothetical air ingress scenarios in advanced modular high temperature gas cooled reactors

    SciTech Connect

    Kroeger, P.G.

    1988-01-01

    Considering an extremely hypothetical scenario of complete cross duct failure and unlimited air supply into the reactor vessel of a modular high temperature gas cooled ractor, it is found that the potential air inflow remains limited due to the high friction pressure drop through the active core. All incoming air will be oxidized to CO and some local external burning would be temporarily possible in such a scenario. The accident would have to continue with unlimited air supply for hundreds of hours before the core structural integrity would be jeopardized.

  3. Method for fabricating wrought components for high-temperature gas-cooled reactors and product

    DOEpatents

    Thompson, Larry D.; Johnson, Jr., William R.

    1985-01-01

    A method and alloys for fabricating wrought components of a high-temperature gas-cooled reactor are disclosed. These wrought, nickel-based alloys, which exhibit strength and excellent resistance to carburization at elevated temperatures, include aluminum and titanium in amounts and ratios to promote the growth of carburization resistant films while preserving the wrought character of the alloys. These alloys also include substantial amounts of molybdenum and/or tungsten as solid-solution strengtheners. Chromium may be included in concentrations less than 10% to assist in fabrication. Minor amounts of carbon and one or more carbide-forming metals also contribute to high-temperature strength.

  4. Dynamics and inherent safety features of small modular high temperature gas-cooled reactors

    SciTech Connect

    Harrington, R.M.; Ball, S.J.; Cleveland, J.C.

    1986-01-01

    Investigations were made at Oak Ridge National Laboratory to characterize the dynamics and inherent safety features of various modular high temperature gas-cooled reactor (HTGR) designs. This work was sponsored by the US Nuclear Regulatory Commission's HTGR Safety Research program. The US Department of Energy (DOE) and the Gas Cooled Reactor Associates (GCRA) have sponsored studies of several modular HTGR concepts, each having it own unique advantageous economic and inherent safety features. The DOE design team has recently choses a 350-MW(t) annular core with prismatic, graphite matrix fuel for its reference plant. The various safety features of this plant and of the pebble-bed core designs similar to those currently being developed and operated in the Federal Republic of Germany (FRG) are described. A varity of postulated accident sequences involving combinations of loss of forced circulation of the helium primary coolant, loss of primary coolant pressurization, and loss of normal and backup heat sinks were studied and are discussed. Results demonstrate that each concept can withstand an uncontrolled heatup accident without reaching excessive peak fuel temperatures. Comparisons of calculated and measured response for a loss of forced circulation test on the FRG reactor, AVR, are also presented. 10 refs.

  5. MHTGR [modular high-temperature gas-cooled reactor] core physics validation plan

    SciTech Connect

    Baxter, A.; Hackney, R.

    1988-01-01

    This document contains the verification and validation (V&V) plan for analytical methods utilized in the nuclear design for normal and off-normal conditions within the Modular High-Temperature Gas-Cooled Reactor (MHTGR). Regulations, regulatory guides, and industry standards have been reviewed and the approach for V&V has been developed. MHTGR core physics methods are described and the status of previous V&V is summarized within this document. Additional work required to verify and validate these methods is identified. The additional validation work includes comparison of calculations with available experimental data, benchmark comparison of calculations with available experimental data, benchmark comparisons with other validated codes, results from a cooperative program now underway at the Arbeitsgemeinschaft Versuchs-Reaktor GmbH (AVR) facility in Germany, results from a planned series of experiments on the Compact Nuclear Power Source (CNPS) facility at Los Alamos, and detailed documentation of all V&V studies. In addition, information will be obtained from planned international cooperative agreements to provide supplemental data for V&V. The regulatory technology development plan will be revised to include these additional experiments. A work schedule and cost estimate for completing this plan is also provided. This work schedule indicates the timeframe in which major milestones must be performed in order to complete V&V tasks prior to the issuance of preliminary design approval from the NRC. The cost to complete V&V tasks for core physics computational methods is estimated to be $2.2M. 41 refs., 13 figs., 8 tabs.

  6. Review of ORNL-TSF shielding experiments for the gas-cooled Fast Breeder Reactor Program

    SciTech Connect

    Abbott, L.S.; Ingersoll, D.T.; Muckenthaler, F.J.; Slater, C.O.

    1982-01-01

    During the period between 1975 and 1980 a series of experiments was performed at the ORNL Tower Shielding Facility in support of the shield design for a 300-MW(e) Gas Cooled Fast Breeder Demonstration Plant. This report reviews the experiments and calculations, which included studies of: (1) neutron streaming in the helium coolant passageways in the GCFR core; (2) the effectiveness of the shield designed to protect the reactor grid plate from radiation damage; (3) the adequacy of the radial shield in protecting the PCRV (prestressed concrete reactor vessel) from radiation damage; (4) neutron streaming between abutting sections of the radial shield; and (5) the effectiveness of the exit shield in reducing the neutron fluxes in the upper plenum region of the reactor.

  7. RCCS Experiments and Validation for High Temperature Gas-Cooled Reactor

    SciTech Connect

    Chang Oh; Cliff Davis; Goon C. Park

    2007-09-01

    A reactor cavity cooling system (RCCS), an air-cooled helical coil RCCS unit immersed in the water pool, was proposed to overcome the disadvantages of the weak cooling ability of air-cooled RCCS and the complex structure of water-cooled RCCS for the high temperature gas-cooled reactor (HTGR). An experimental apparatus was constructed to investigate the various heat transfer phenomena in the water pool type RCCS, such as the natural convection of air inside the cavity, radiation in the cavity, the natural convection of water in the water pool and the forced convection of air in the cooling pipe. The RCCS experimental results were compared with published correlations. The CFX code was validated using data from the air-cooled portion of the RCCS. The RELAP5 code was validated using measured temperatures from the reactor vessel and cavity walls.

  8. Adaptive polynomial chaos techniques for uncertainty quantification of a gas cooled fast reactor transient

    SciTech Connect

    Perko, Z.; Gilli, L.; Lathouwers, D.; Kloosterman, J. L.

    2013-07-01

    Uncertainty quantification plays an increasingly important role in the nuclear community, especially with the rise of Best Estimate Plus Uncertainty methodologies. Sensitivity analysis, surrogate models, Monte Carlo sampling and several other techniques can be used to propagate input uncertainties. In recent years however polynomial chaos expansion has become a popular alternative providing high accuracy at affordable computational cost. This paper presents such polynomial chaos (PC) methods using adaptive sparse grids and adaptive basis set construction, together with an application to a Gas Cooled Fast Reactor transient. Comparison is made between a new sparse grid algorithm and the traditionally used technique proposed by Gerstner. An adaptive basis construction method is also introduced and is proved to be advantageous both from an accuracy and a computational point of view. As a demonstration the uncertainty quantification of a 50% loss of flow transient in the GFR2400 Gas Cooled Fast Reactor design was performed using the CATHARE code system. The results are compared to direct Monte Carlo sampling and show the superior convergence and high accuracy of the polynomial chaos expansion. Since PC techniques are easy to implement, they can offer an attractive alternative to traditional techniques for the uncertainty quantification of large scale problems. (authors)

  9. Application of Gamma code coupled with turbomachinery models for high temperature gas-cooled reactors

    SciTech Connect

    Chang Oh

    2008-02-01

    The very high-temperature gas-cooled reactor (VHTR) is envisioned as a single- or dual-purpose reactor for electricity and hydrogen generation. The concept has average coolant temperatures above 9000C and operational fuel temperatures above 12500C. The concept provides the potential for increased energy conversion efficiency and for high-temperature process heat application in addition to power generation. While all the High Temperature Gas Cooled Reactor (HTGR) concepts have sufficiently high temperature to support process heat applications, such as coal gasification, desalination or cogenerative processes, the VHTR’s higher temperatures allow broader applications, including thermochemical hydrogen production. However, the very high temperatures of this reactor concept can be detrimental to safety if a loss-ofcoolant accident (LOCA) occurs. Following the loss of coolant through the break and coolant depressurization, air will enter the core through the break by molecular diffusion and ultimately by natural convection, leading to oxidation of the in-core graphite structure and fuel. The oxidation will accelerate heatup of the reactor core and the release of a toxic gas, CO, and fission products. Thus, without any effective countermeasures, a pipe break may lead to significant fuel damage and fission product release. Prior to the start of this Korean/United States collaboration, no computer codes were available that had been sufficiently developed and validated to reliably simulate a LOCA in the VHTR. Therefore, we have worked for the past three years on developing and validating advanced computational methods for simulating LOCAs in a VHTR. GAMMA code is being developed to implement turbomachinery models in the power conversion unit (PCU) and ultimately models associated with the hydrogen plant. Some preliminary results will be described in this paper.

  10. Development of GAMMA Code and Evaluation for a Very High Temperature gas-Cooled Reactor

    SciTech Connect

    Oh, Chang H; Lim, H.S.; Kim, E.S.; NO, H.C.

    2007-06-01

    The very high-temperature gas-cooled reactor (VHTR) is envisioned as a single- or dual-purpose reactor for electricity and hydrogen generation. The concept has average coolant temperatures above 9000C and operational fuel temperatures above 12500C. The concept provides the potential for increased energy conversion efficiency and for high-temperature process heat application in addition to power generation. While all the High Temperature Gas Cooled Reactor (HTGR) concepts have sufficiently high temperature to support process heat applications, such as coal gasification, desalination or cogenerative processes, the VHTR’s higher temperatures allow broader applications, including thermochemical hydrogen production. However, the very high temperatures of this reactor concept can be detrimental to safety if a loss-of-coolant accident (LOCA) occurs. Following the loss of coolant through the break and coolant depressurization, air will enter the core through the break by molecular diffusion and ultimately by natural convection, leading to oxidation of the in-core graphite structure and fuel. The oxidation will accelerate heatup of the reactor core and the release of toxic gasses (CO and CO2) and fission products. Thus, without any effective countermeasures, a pipe break may lead to significant fuel damage and fission product release. Prior to the start of this Korean/United States collaboration, no computer codes were available that had been sufficiently developed and validated to reliably simulate a LOCA in the VHTR. Therefore, we have worked for the past three years on developing and validating advanced computational methods for simulating LOCAs in a VHTR. This paper will also include what improvements will be made in the Gamma code for the VHTR.

  11. A 50-100 kWe gas-cooled reactor for use on Mars.

    SciTech Connect

    Peters, Curtis D.

    2006-04-01

    In the space exploration field there is a general consensus that nuclear reactor powered systems will be extremely desirable for future missions to the outer solar system. Solar systems suffer from the decreasing intensity of solar radiation and relatively low power density. Radioisotope Thermoelectric Generators are limited to generating a few kilowatts electric (kWe). Chemical systems are short-lived due to prodigious fuel use. A well designed 50-100 kWe nuclear reactor power system would provide sufficient power for a variety of long term missions. This thesis will present basic work done on a 50-100 kWe reactor power system that has a reasonable lifespan and would function in an extraterrestrial environment. The system will use a Gas-Cooled Reactor that is directly coupled to a Closed Brayton Cycle (GCR-CBC) power system. Also included will be some variations on the primary design and their effects on the characteristics of the primary design. This thesis also presents a variety of neutronics related calculations, an examination of the reactor's thermal characteristics, feasibility for use in an extraterrestrial environment, and the reactor's safety characteristics in several accident scenarios. While there has been past work for space reactors, the challenges introduced by thin atmospheres like those on Mars have rarely been considered.

  12. 2400MWt GAS-COOLED FAST REACTOR DHR STUDIES STATUS UPDATE.

    SciTech Connect

    CHENG,L.Y.; LUDEWIG, H.

    2007-06-01

    A topical report on demonstrating the efficacy of a proposed hybrid active/passive combination approach to the decay heat removal for an advanced 2400MWt GEN-IV gas-cooled fast reactor was published in March 2006. The analysis was performed with the system code RELAP5-3D (version 2.4.1.1a) and the model included the full complement of the power conversion unit (PCU): heat exchange components (recuperator, precooler, intercooler) and rotating machines (turbine, compressor). A re-analysis of the success case in Ref is presented in this report. The case was redone to correct unexpected changes in core heat structure temperatures when the PCU model was first integrated with the reactor model as documented in Ref [1]. Additional information on the modeling of the power conversion unit and the layout of the heat exchange components is provided in Appendix A.

  13. Monte Carlo studies on the burnup measurement for the high temperature gas cooling reactor

    NASA Astrophysics Data System (ADS)

    Yan, Wei-Hua; Zhang, Li-Guo; Zhang, Yan; Zhang, Zhao; Xiao, Zhi-Gang

    2013-11-01

    Online fuel pebble burnup measurement in a future high temperature gas cooling reactor is proposed for implementation through a high purity germanium (HPGe) gamma spectrometer. By using KORIGEN software and MCNP Monte Carlo simulations, the single pebble gamma radiations to be recorded in the detector are simulated under different irradiation histories. A specially developed algorithm is applied to analyze the generated spectra to reconstruct the gamma activity of the 137Cs monitoring nuclide. It is demonstrated that by taking into account the intense interfering peaks, the 137Cs activity in the spent pebbles can be derived with a standard deviation of 3.0% (1σ). The results support the feasibility of utilizing the HPGe spectrometry in the online determination of the pebble burnup in future modular pebble bed reactors.

  14. Power flattening on modified CANDLE small long life gas-cooled fast reactor

    SciTech Connect

    Monado, Fiber; Su'ud, Zaki; Waris, Abdul; Basar, Khairul; Ariani, Menik; Sekimoto, Hiroshi

    2014-09-30

    Gas-cooled Fast Reactor (GFR) is one of the candidates of next generation Nuclear Power Plants (NPPs) that expected to be operated commercially after 2030. In this research conceptual design study of long life 350 MWt GFR with natural uranium metallic fuel as fuel cycle input has been performed. Modified CANDLE burn-up strategy with first and second regions located near the last region (type B) has been applied. This reactor can be operated for 10 years without refuelling and fuel shuffling. Power peaking reduction is conducted by arranging the core radial direction into three regions with respectively uses fuel volume fraction 62.5%, 64% and 67.5%. The average power density in the modified core is about 82 Watt/cc and the power peaking factor decreased from 4.03 to 3.43.

  15. Power flattening on modified CANDLE small long life gas-cooled fast reactor

    NASA Astrophysics Data System (ADS)

    Monado, Fiber; Su'ud, Zaki; Waris, Abdul; Basar, Khairul; Ariani, Menik; Sekimoto, Hiroshi

    2014-09-01

    Gas-cooled Fast Reactor (GFR) is one of the candidates of next generation Nuclear Power Plants (NPPs) that expected to be operated commercially after 2030. In this research conceptual design study of long life 350 MWt GFR with natural uranium metallic fuel as fuel cycle input has been performed. Modified CANDLE burn-up strategy with first and second regions located near the last region (type B) has been applied. This reactor can be operated for 10 years without refuelling and fuel shuffling. Power peaking reduction is conducted by arranging the core radial direction into three regions with respectively uses fuel volume fraction 62.5%, 64% and 67.5%. The average power density in the modified core is about 82 Watt/cc and the power peaking factor decreased from 4.03 to 3.43.

  16. Loss-of-coolant accident experiment at the AVR gas-cooled reactor

    SciTech Connect

    Cleveland, J.; Krueger, K.; Kernforschungsanlage Juelich G.m.b.H. . Arbeitsgemeinschaft Versuchsreaktor)

    1989-01-01

    Loss-of-coolant is one of the most severe accidents for a nuclear power plant. To demonstrate inherent safety characteristics incorporated into small High-Temperature Gas Cooled Reactor (HTGR) designs, loss-of-coolant accident (LOCA) simulation tests have been conducted with the German pebble-bed High-Temperature Reactor AVR. The AVR is the only nuclear power plant ever to have been intentionally subjected to LOCA conditions. The LOCA test was planned to create conditions that would exist if a rapid LOCA occurred with the reactor operating at full power. The tests demonstrated this reactor's safe response to an accident in which the coolant escapes from the reactor core and no emergency system is available to provide coolant flow to the core. The test is of special interest because it demonstrates the inherent safety features incorporated into modular HTGR designs. The main LOCA test lasted for 5 d. After the test began, core temperatures increased for {approximately}13 h and then gradually and continually decreased as the rate of heat dissipation from the core exceeded accident levels of decay power. Throughout the test, temperatures remained below limiting values for the core and other reactor components. 3 refs., 9 figs., 1 tab.

  17. Depletion Analysis of Modular High Temperature Gas-cooled Reactor Loaded with LEU/Thorium Fuel

    SciTech Connect

    Sonat Sen; Gilles Youinou

    2013-02-01

    Thorium based fuel has been considered as an option to uranium-based fuel, based on considerations of resource utilization (Thorium is more widely available when compared to Uranium). The fertile isotope of Thorium (Th-232) can be converted to fissile isotope U-233 by neutron capture during the operation of a suitable nuclear reactor such as High Temperature Gas-cooled Reactor (HTGR). However, the fertile Thorium needs a fissile supporter to start and maintain the conversion process such as U-235 or Pu-239. This report presents the results of a study that analyzed the thorium utilization in a prismatic HTGR, namely Modular High Temperature Gas-Cooled Reactor (MHTGR) that was designed by General Atomics (GA). The collected for the modeling of this design come from Chapter 4 of MHTGR Preliminary Safety Information Document that GA sent to Department of Energy (DOE) on 1995. Both full core and unit cell models were used to perform this analysis using SCALE 6.1 and Serpent 1.1.18. Because of the long mean free paths (and migration lengths) of neutrons in HTRs, using a unit cell to represent a whole core can be non-trivial. The sizes of these cells were set to match the spectral index between unit cell and full core domains. It was found that for the purposes of this study an adjusted unit cell model is adequate. Discharge isotopics and one-group cross-sections were delivered to the transmutation analysis team. This report provides documentation for these calculations

  18. Validation of SCALE for High Temperature Gas-Cooled Reactors Analysis

    SciTech Connect

    Ilas, Germina; Ilas, Dan; Kelly, Ryan P; Sunny, Eva E

    2012-08-01

    This report documents verification and validation studies carried out to assess the performance of the SCALE code system methods and nuclear data for modeling and analysis of High Temperature Gas-Cooled Reactor (HTGR) configurations. Validation data were available from the International Handbook of Evaluated Reactor Physics Benchmark Experiments (IRPhE Handbook), prepared by the International Reactor Physics Experiment Evaluation Project, for two different HTGR designs: prismatic and pebble bed. SCALE models have been developed for HTTR, a prismatic fuel design reactor operated in Japan and HTR-10, a pebble bed reactor operated in China. The models were based on benchmark specifications included in the 2009, 2010, and 2011 releases of the IRPhE Handbook. SCALE models for the HTR-PROTEUS pebble bed configuration at the PROTEUS critical facility in Switzerland have also been developed, based on benchmark specifications included in a 2009 IRPhE draft benchmark. The development of the SCALE models has involved a series of investigations to identify particular issues associated with modeling the physics of HTGRs and to understand and quantify the effect of particular modeling assumptions on calculation-to-experiment comparisons.

  19. Steam Generator Component Model in a Combined Cycle of Power Conversion Unit for Very High Temperature Gas-Cooled Reactor

    SciTech Connect

    Oh, Chang H; Han, James; Barner, Robert; Sherman, Steven R

    2007-06-01

    The Department of Energy and the Idaho National Laboratory are developing a Next Generation Nuclear Plant (NGNP), Very High Temperature Gas-Cooled Reactor (VHTR) to serve as a demonstration of state-of-the-art nuclear technology. The purpose of the demonstration is two fold 1) efficient low cost energy generation and 2) hydrogen production. Although a next generation plant could be developed as a single-purpose facility, early designs are expected to be dual-purpose. While hydrogen production and advanced energy cycles are still in its early stages of development, research towards coupling a high temperature reactor, electrical generation and hydrogen production is under way. A combined cycle is considered as one of the power conversion units to be coupled to the very high-temperature gas-cooled reactor (VHTR). The combined cycle configuration consists of a Brayton top cycle coupled to a Rankine bottoming cycle by means of a steam generator. A detailed sizing and pressure drop model of a steam generator is not available in the HYSYS processes code. Therefore a four region model was developed for implementation into HYSYS. The focus of this study was the validation of a HYSYS steam generator model of two phase flow correlations. The correlations calculated the size and heat exchange of the steam generator. To assess the model, those calculations were input into a RELAP5 model and its results were compared with HYSYS results. The comparison showed many differences in parameters such as the heat transfer coefficients and revealed the different methods used by the codes. Despite differences in approach, the overall results of heat transfer were in good agreement.

  20. Porous nuclear fuel element for high-temperature gas-cooled nuclear reactors

    DOEpatents

    Youchison, Dennis L.; Williams, Brian E.; Benander, Robert E.

    2011-03-01

    Porous nuclear fuel elements for use in advanced high temperature gas-cooled nuclear reactors (HTGR's), and to processes for fabricating them. Advanced uranium bi-carbide, uranium tri-carbide and uranium carbonitride nuclear fuels can be used. These fuels have high melting temperatures, high thermal conductivity, and high resistance to erosion by hot hydrogen gas. Tri-carbide fuels, such as (U,Zr,Nb)C, can be fabricated using chemical vapor infiltration (CVI) to simultaneously deposit each of the three separate carbides, e.g., UC, ZrC, and NbC in a single CVI step. By using CVI, the nuclear fuel may be deposited inside of a highly porous skeletal structure made of, for example, reticulated vitreous carbon foam.

  1. ATWS Transients for the 2400 MWt Gas-Cooled Fast Reactor

    SciTech Connect

    Cheng,L.Y.; Ludewig, H.

    2007-08-05

    Reactivity transients have been analyzed with an updated RELAPS-3D (ver. 2.4.2) system model of the pin core design for the 2400MWt gas-cooled fast reactor (GCFR). Additional reactivity parameters were incorporated in the RELAP5 point-kinetics model to account for reactivity feedbacks due to axial and radial expansion of the core, fuel temperature changes (Doppler effect), and pressure changes (helium density changes). Three reactivity transients without scram were analyzed and the incidents were initiated respectively by reactivity ramp, loss of load, and depressurization. During the course of the analysis the turbine bypass model for the power conversion unit (PCU) was revised to enable a better utilization of forced flow cooling after the PCU is tripped. The analysis of the reactivity transients demonstrates the significant impact of the PCU on system pressure and core flow. Results from the modified turbine bypass model suggest a success path for the GCFR to mitigate reactivity transients without scram.

  2. Porous nuclear fuel element with internal skeleton for high-temperature gas-cooled nuclear reactors

    SciTech Connect

    Youchison, Dennis L.; Williams, Brian E.; Benander, Robert E.

    2013-09-03

    Porous nuclear fuel elements for use in advanced high temperature gas-cooled nuclear reactors (HTGR's), and to processes for fabricating them. Advanced uranium bi-carbide, uranium tri-carbide and uranium carbonitride nuclear fuels can be used. These fuels have high melting temperatures, high thermal conductivity, and high resistance to erosion by hot hydrogen gas. Tri-carbide fuels, such as (U,Zr,Nb)C, can be fabricated using chemical vapor infiltration (CVI) to simultaneously deposit each of the three separate carbides, e.g., UC, ZrC, and NbC in a single CVI step. By using CVI, the nuclear fuel may be deposited inside of a highly porous skeletal structure made of, for example, reticulated vitreous carbon foam.

  3. NGNP: High Temperature Gas-Cooled Reactor Key Definitions, Plant Capabilities, and Assumptions

    SciTech Connect

    Phillip Mills

    2012-02-01

    This document is intended to provide a Next Generation Nuclear Plant (NGNP) Project tool in which to collect and identify key definitions, plant capabilities, and inputs and assumptions to be used in ongoing efforts related to the licensing and deployment of a high temperature gas-cooled reactor (HTGR). These definitions, capabilities, and assumptions are extracted from a number of sources, including NGNP Project documents such as licensing related white papers [References 1-11] and previously issued requirement documents [References 13-15]. Also included is information agreed upon by the NGNP Regulatory Affairs group's Licensing Working Group and Configuration Council. The NGNP Project approach to licensing an HTGR plant via a combined license (COL) is defined within the referenced white papers and reference [12], and is not duplicated here.

  4. A demonstration of a whole core neutron transport method in a gas cooled reactor

    SciTech Connect

    Connolly, K. J.; Rahnema, F.

    2013-07-01

    This paper illustrates a capability of the whole core transport method COMET. Building on previous works which demonstrated the accuracy of the method, this work serves to emphasize the robust capability of the method while also accentuating its efficiency. A set of core configurations is presented based on an operating gas-cooled thermal reactor, Japan's HTTR, and COMET determines the eigenvalue and fission density profile throughout each core configuration. Results for core multiplication factors are compared to MCNP for accuracy and also to compare runtimes. In all cases, the values given by COMET differ by those given by MCNP by less than the uncertainty inherent in the stochastic solution procedure, however, COMET requires runtimes shorter on the order of a few hundred. Figures are provided illustrating the whole core fission density profile, with segments of pins explicitly modeled individually, so that pin-level neutron flux behavior can be seen without any approximation due to simplification strategies such as homogenization. (authors)

  5. Methods for manufacturing porous nuclear fuel elements for high-temperature gas-cooled nuclear reactors

    DOEpatents

    Youchison, Dennis L.; Williams, Brian E.; Benander, Robert E.

    2010-02-23

    Methods for manufacturing porous nuclear fuel elements for use in advanced high temperature gas-cooled nuclear reactors (HTGR's). Advanced uranium bi-carbide, uranium tri-carbide and uranium carbonitride nuclear fuels can be used. These fuels have high melting temperatures, high thermal conductivity, and high resistance to erosion by hot hydrogen gas. Tri-carbide fuels, such as (U,Zr,Nb)C, can be fabricated using chemical vapor infiltration (CVI) to simultaneously deposit each of the three separate carbides, e.g., UC, ZrC, and NbC in a single CVI step. By using CVI, a thin coating of nuclear fuel may be deposited inside of a highly porous skeletal structure made, for example, of reticulated vitreous carbon foam.

  6. Technical basis for extending storage of the UK's advanced gas-cooled reactor fuel

    SciTech Connect

    Hambley, D.I.

    2013-07-01

    The UK Nuclear Decommissioning Agency has recently declared a date for cessation of reprocessing of oxide fuel from the UK's Advanced Gas-cooled Reactors (AGRs). This will fundamentally change the management of AGR fuel: from short term storage followed by reprocessing to long term fuel storage followed, in all likelihood, by geological disposal. In terms of infrastructure, the UK has an existing, modern wet storage asset that can be adapted for centralised long term storage of dismantled AGR fuel under the required pond water chemistry. No AGR dry stores exist, although small quantities of fuel have been stored dry as part of experimental programmes in the past. These experimental programmes have shown concerns about corrosion rates.

  7. Solid-Core, Gas-Cooled Reactor for Space and Surface Power

    SciTech Connect

    King, Jeffrey C.; El-Genk, Mohamed S.

    2006-01-20

    The solid-core, gas-cooled, Submersion-Subcritical Safe Space (S and 4) reactor is developed for future space power applications and avoidance of single point failures. The Mo-14%Re reactor core is loaded with uranium nitride fuel in enclosed cavities, cooled by He-30%Xe, and sized to provide 550 kWth for seven years of equivalent full power operation. The beryllium oxide reflector disassembles upon impact on water or soil. In addition to decreasing the reactor and shadow shield mass, Spectral Shift Absorber (SSA) materials added to the reactor core ensure that it remains subcritical in the worst-case submersion accident. With a 0.1 mm thick boron carbide coating on the outside surface of the core block and 0.25 mm thick iridium sleeves around the fuel stacks, the reflector outer diameter is 43.5 cm and the combined reactor and shadow shield mass is 935.1 kg. With 12.5 atom% gadolinium-155 added to the fuel, 2.0 mm diameter gadolinium-155 sesquioxide intersititial pins, and a 0.1 mm thick gadolinium-155 sesquioxide coating, the S and 4 reactor has a slightly smaller reflector outer diameter of 43.0 cm, and a total reactor and shield mass of 901.7 kg. With 8.0 atom% europium-151 added to the fuel, 2.0 mm diameter europium-151 sesquioxide interstitial pins, and a 0.1 mm thick europium-151 sesquioxide coating, the reflector's outer diameter and the total reactor and shield mass are further reduced to 41.5 cm and 869.2 kg, respect0011ive.

  8. Air Ingress Analyses on a High Temperature Gas-Cooled Reactor

    SciTech Connect

    Oh, Chang H; Moore, Richard Leroy; Merrill, Brad Johnson; Petti, David Andrew

    2001-11-01

    A primary-pipe break accident is one of the design-basis accidents of a high-temperature gas-cooled reactor (HTGR). When this accident occurs, air is anticipated to enter the reactor core from the break and oxidize the in-core graphite structure in the modular pebble bed reactor (MPBR). This paper presents the results of the graphite oxidation model developed as part of the Idaho National Engineering and Environmental Laboratory's Direct Research and Development effort. Although gas reactors have been tried in the past with limited success, the innovations of modularity and integrated state-ofart control systems coupled with improved fuel design and a pebble bed core make this design potentially very attractive from an economic and technical perspective. A schematic diagram on a reference design of the MPBR has been established on a major component level (INEEL & MIT, 1999). Steady-state and transient thermal hydraulics models will be produced with key parameters established for these conditions at all major components. Development of an integrated plant model to allow for transient analysis on a more sophisticated level is now being developed. In this paper, preliminary results of the hypothetical air ingress are presented. A graphite oxidation model was developed to determine temperature and the control mechanism in the spherical graphite geometry.

  9. HYBRID SULFUR CYCLE FLOWSHEETS FOR HYDROGEN PRODUCTION USING HIGH-TEMPERATURE GAS-COOLED REACTORS

    SciTech Connect

    Gorensek, M.

    2011-07-06

    Two hybrid sulfur (HyS) cycle process flowsheets intended for use with high-temperature gas-cooled reactors (HTGRs) are presented. The flowsheets were developed for the Next Generation Nuclear Plant (NGNP) program, and couple a proton exchange membrane (PEM) electrolyzer for the SO2-depolarized electrolysis step with a silicon carbide bayonet reactor for the high-temperature decomposition step. One presumes an HTGR reactor outlet temperature (ROT) of 950 C, the other 750 C. Performance was improved (over earlier flowsheets) by assuming that use of a more acid-tolerant PEM, like acid-doped poly[2,2'-(m-phenylene)-5,5'-bibenzimidazole] (PBI), instead of Nafion{reg_sign}, would allow higher anolyte acid concentrations. Lower ROT was accommodated by adding a direct contact exchange/quench column upstream from the bayonet reactor and dropping the decomposition pressure. Aspen Plus was used to develop material and energy balances. A net thermal efficiency of 44.0% to 47.6%, higher heating value basis is projected for the 950 C case, dropping to 39.9% for the 750 C case.

  10. Emergency Decay Heat Removal in a GEN-IV Gas-Cooled Fast Reactor

    SciTech Connect

    Cheng, Lap Y.; Ludewig, Hans; Jo, Jae

    2006-07-01

    A series of transient analyses using the system code RELAP5-3d has been performed to confirm the efficacy of a proposed hybrid active/passive combination approach to the decay heat removal for an advanced 2400 MWt GEN-IV gas-cooled fast reactor. The accident sequence of interest is a station blackout simultaneous with a small break (10 sq.inch/0.645 m{sup 2}) in the reactor vessel. The analyses cover the three phases of decay heat removal in a depressurization accident: (1) forced flow cooling by the power conversion unit (PCU) coast down, (2) active forced flow cooling by a battery powered blower, and (3) passive cooling by natural circulation. The blower is part of an emergency cooling system (ECS) that by design is to sustain passive decay heat removal via natural circulation cooling 24 hours after shutdown. The RELAP5 model includes the helium-cooled reactor, the ECS (primary and secondary side), the PCU with all the rotating machinery (turbine and compressors) and the heat transfer components (recuperator, pre-cooler and inter-cooler), and the guard containment that surrounds the reactor and the PCU. The transient analysis has demonstrated the effectiveness of passive decay heat removal by natural circulation cooling when the guard containment pressure is maintained at or above 800 kPa. (authors)

  11. Effect of Fuel Fraction on Small Modified CANDLE Burn-up Based Gas Cooled Fast Reactors

    SciTech Connect

    Ariani, Menik; Su'ud, Zaki; Waris, Abdul; Asiah, Nur; Shafii, M. Ali; Khairurrijal

    2010-12-23

    A conceptual design study of Gas Cooled Fast Reactors with Modified CANDLE Burn-up has been performed. The objective of this research is to get optimal design parameters of such type reactors. The parameters of nuclear design including the critical condition, conversion ratio, and burn-up level were compared. These parameters are calculated by variation in the fuel fraction 47.5% up to 70%. Two dimensional full core multi groups diffusion calculations was performed by CITATION code. Group constant preparations are performed by using SRAC code system with JENDL-3.2 nuclear data library. In this design the reactor cores with cylindrical cell two dimensional R-Z core models are subdivided into several parts with the same volume in the axial directions. The placement of fuel in core arranged so that the result of plutonium from natural uranium can be utilized optimally for 10 years reactor operation. Modified CANDLE burn-up was established successfully in a core radial width 1.4 m. Total thermal power output for reference core is 550 MW. Study on the effect of fuel to coolant ratio shows that effective multiplication factor (k{sub eff}) is in almost linear relations with the change of the fuel volume to coolant ratio.

  12. Effect of Fuel Fraction on Small Modified CANDLE Burn-up Based Gas Cooled Fast Reactors

    NASA Astrophysics Data System (ADS)

    Ariani, Menik; Su'ud, Zaki; Waris, Abdul; Khairurrijal, Asiah, Nur; Shafii, M. Ali

    2010-12-01

    A conceptual design study of Gas Cooled Fast Reactors with Modified CANDLE Burn-up has been performed. The objective of this research is to get optimal design parameters of such type reactors. The parameters of nuclear design including the critical condition, conversion ratio, and burn-up level were compared. These parameters are calculated by variation in the fuel fraction 47.5% up to 70%. Two dimensional full core multi groups diffusion calculations was performed by CITATION code. Group constant preparations are performed by using SRAC code system with JENDL-3.2 nuclear data library. In this design the reactor cores with cylindrical cell two dimensional R-Z core models are subdivided into several parts with the same volume in the axial directions. The placement of fuel in core arranged so that the result of plutonium from natural uranium can be utilized optimally for 10 years reactor operation. Modified CANDLE burn-up was established successfully in a core radial width 1.4 m. Total thermal power output for reference core is 550 MW. Study on the effect of fuel to coolant ratio shows that effective multiplication factor (keff) is in almost linear relations with the change of the fuel volume to coolant ratio.

  13. Multicycle Optimization of Advanced Gas-Cooled Reactor Loading Patterns Using Genetic Algorithms

    SciTech Connect

    Ziver, A. Kemal; Carter, Jonathan N.; Pain, Christopher C.; Oliveira, Cassiano R.E. de; Goddard, Antony J. H.; Overton, Richard S.

    2003-02-15

    A genetic algorithm (GA)-based optimizer (GAOPT) has been developed for in-core fuel management of advanced gas-cooled reactors (AGRs) at HINKLEY B and HARTLEPOOL, which employ on-load and off-load refueling, respectively. The optimizer has been linked to the reactor analysis code PANTHER for the automated evaluation of loading patterns in a two-dimensional geometry, which is collapsed from the three-dimensional reactor model. GAOPT uses a directed stochastic (Monte Carlo) algorithm to generate initial population members, within predetermined constraints, for use in GAs, which apply the standard genetic operators: selection by tournament, crossover, and mutation. The GAOPT is able to generate and optimize loading patterns for successive reactor cycles (multicycle) within acceptable CPU times even on single-processor systems. The algorithm allows radial shuffling of fuel assemblies in a multicycle refueling optimization, which is constructed to aid long-term core management planning decisions. This paper presents the application of the GA-based optimization to two AGR stations, which apply different in-core management operational rules. Results obtained from the testing of GAOPT are discussed.

  14. Processing of FRG high-temperature gas-cooled reactor fuel elements at General Atomic under the US/FRG cooperative agreement for spent fuel elements

    SciTech Connect

    Holder, N.D.; Strand, J.B.; Schwarz, F.A.; Drake, R.N.

    1981-11-01

    The Federal Republic of Germany (FRG) and the United States (US) are cooperating on certain aspects of gas-cooled reactor technology under an umbrella agreement. Under the spent fuel treatment development section of the agreement, both FRG mixed uranium/ thorium and low-enriched uranium fuel spheres have been processed in the Department of Energy-sponsored cold pilot plant for high-temperature gas-cooled reactor (HTGR) fuel processing at General Atomic Company in San Diego, California. The FRG fuel spheres were crushed and burned to recover coated fuel particles suitable for further treatment for uranium recovery. Successful completion of the tests described in this paper demonstrated certain modifications to the US HTGR fuel burining process necessary for FRG fuel treatment. Results of the tests will be used in the design of a US/FRG joint prototype headend facility for HTGR fuel.

  15. Nuclear Engineering Computer Modules, Thermal-Hydraulics, TH-3: High Temperature Gas Cooled Reactor Thermal-Hydraulics.

    ERIC Educational Resources Information Center

    Reihman, Thomas C.

    This learning module is concerned with the temperature field, the heat transfer rates, and the coolant pressure drop in typical high temperature gas-cooled reactor (HTGR) fuel assemblies. As in all of the modules of this series, emphasis is placed on developing the theory and demonstrating its use with a simplified model. The heart of the module…

  16. Passive shutdown device for gas cooled fast reactor: Lithium injection module

    SciTech Connect

    Van Rooijen, W. F. G.; Kloosterman, J. L.; Van Der Hagen, T. H. J. J.; Van Dam, H.

    2006-07-01

    In this paper a passive reactivity control system for a Gas Cooled Fast Reactor is proposed. The Generation IV GCFR features a core with a relatively high power density, and control of transients and adequate shutdown under accidental situations must be assured for safe operation. Using a passive shutdown device rules out the possibility of unprotected transients. The proposed devices work by the passive introduction of {sup 6}Li into the core (Lithium Injection Module). Control is by the outlet temperature of the coolant gas in the fuel assemblies, employing a freeze seal. The proposed devices can be integrated into the regular control assemblies. A total of four LIMs is proposed in the core. Thermohydraulic calculations were done using the CATHARE code for a 600 MWth GCFR, for 2 types of transients: a loss of flow, and a control rod withdrawal. The calculations show that activation of one LIM is sufficient to keep the reactor power bounded, while activation of all LIMs in the core will shut down the reactor. The passive LIM devices are able to exclude unprotected transients in the GCFR core. (authors)

  17. Evaluation of an Integrated Gas-Cooled Reactor Simulator and Brayton Turbine-Generator

    NASA Technical Reports Server (NTRS)

    Hissam, David Andy; Stewart, Eric T.

    2006-01-01

    A closed-loop brayton cycle, powered by a fission reactor, offers an attractive option for generating both planetary and in-space electric power. Non-nuclear testing of this type of system provides the opportunity to safely work out integration and system control challenges for a modest investment. Recognizing this potential, a team at Marshall Space Flight Center has evaluated the viability of integrating and testing an existing gas-cooled reactor simulator and a modified commercially available, off-the-shelf, brayton turbine-generator. Since these two systems were developed independently of one another, this evaluation had to determine if they could operate together at acceptable power levels, temperatures, and pressures. Thermal, fluid, and structural analyses show that this combined system can operate at acceptable power levels and temperatures. In addition, pressure drops across the reactor simulator, although higher than desired, are also viewed as acceptable. Three potential working fluids for the system were evaluated: N2, He/Ar, and He/Xe. Other potential issues, such as electrical breakdown in the generator and the operation of the brayton foil bearings using various gas mixtures, were also investigated.

  18. Comparative evaluation of pebble-bed and prismatic fueled high-temperature gas-cooled reactors

    SciTech Connect

    Kasten, P.R.; Bartine, D.E.

    1981-01-01

    A comparative evaluation has been performed of the HTGR and the Federal Republic of Germany's Pebble Bed Reactor (PBR) for potential commercial applications in the US. The evaluation considered two reactor sizes (1000 and 3000 MW(t)) and three process applications (steam cycle, direct cycle, and process heat, with outlet coolant temperatures of 750, 850, and 950/sup 0/C, respectively). The primary criterion for the comparison was the levelized (15-year) cost of producing electricity or process heat. Emphasis was placed on the cost impact of differences between the prismatic-type HTGR core, which requires periodic refuelings during reactor shutdowns, and the pebble bed PBR core, which is refueled continuously during reactor operations. Detailed studies of key technical issues using reference HTGR and PBR designs revealed that two cost components contributing to the levelized power costs are higher for the PBR: capital costs and operation and maintenance costs. A third cost component, associated with nonavailability penalties, tended to be higher for the PBR except for the process heat application, for which there is a large uncertainty in the HTGR nonavailability penalty at the 950/sup 0/C outlet coolant temperature. A fourth cost component, fuel cycle costs, is lower for the PBR, but not sufficiently lower to offset the capital cost component. Thus the HTGR appears to be slightly superior to the PBR in economic performance. Because of the advanced development of the HTGR concept, large HTGRs could also be commercialized in the US with lower R and D costs and shorter lead times than could large PBRs. It is recommended that the US gas-cooled thermal reactor program continue giving primary support to the HTGR, while also maintaining its cooperative PBR program with FRG.

  19. Preliminary Study of Turbulent Flow in the Lower Plenum of a Gas-Cooled Reactor

    SciTech Connect

    D.P. Guillen; H.M.McIlroy

    2007-09-01

    A preliminary study of the turbulent flow in a scaled model of a portion of the lower plenum of a gas-cooled advanced reactor concept has been conducted. The reactor is configured such that hot gases at various temperatures exit the coolant channels in the reactor core, where they empty into a lower plenum and mix together with a crossflow past vertical cylindrical support columns, then exit through an outlet duct. An accurate assessment of the flow behavior will be necessary prior to final design to ensure that material structural limits are not exceeded. In this work, an idealized model was created to mimic a region of the lower plenum for a simplified set of conditions that enabled the flow to be treated as an isothermal, incompressible fluid with constant properties. This is a first step towards assessing complex thermal fluid phenomena in advanced reactor designs. Once such flows can be computed with confidence, heated flows will be examined. Experimental data was obtained using three-dimensional Particle Image Velocimetry (PIV) to obtain non-intrusive flow measurements for an unheated geometry. Computational fluid dynamic (CFD) predictions of the flow were made using a commercial CFD code and compared to the experimental data. The work presented here is intended to be scoping in nature, since the purpose of this work is to identify improvements that can be made to subsequent computations and experiments. Rigorous validation of computational predictions will eventually be necessary for design and analysis of new reactor concepts, as well as for safety analysis and licensing calculations.

  20. Conceptual Design study of Small Long-life Gas Cooled Fast Reactor With Modified CANDLE Burn-up Scheme

    SciTech Connect

    Nur Asiah, A.; Su'ud, Zaki; Ferhat, A.; Sekimoto, H.

    2010-06-22

    In this paper, conceptual design study of Small Long-life Gas Cooled Fast Reactors with Natural Uranium as Fuel Cycle Input has been performed. In this study Gas Cooled Fast Reactor is slightly modified by employing modified CANDLE burn-up scheme so that it can use Natural Uranium as fuel cycle input. Due to their hard spectrum, GCFR in this study showed very good performance in converting U-238 to plutonium in order to maintain the operation condition requirement of long-life reactors. Due to the limitation of thermal hydraulic aspects, the average power density of the proposed design is selected about 70 W/cc. With such condition we got an optimal design of 325 MWt reactors which can be operated 10 years without refueling and fuel shuffling and just need natural uranium as fuel cycle input. The average discharge burn-up is about 290 GWd/ton HM.

  1. Conceptual Design study of Small Long-life Gas Cooled Fast Reactor With Modified CANDLE Burn-up Scheme

    NASA Astrophysics Data System (ADS)

    Nur Asiah, A.; Su'ud, Zaki; Ferhat, A.; Sekimoto, H.

    2010-06-01

    In this paper, conceptual design study of Small Long-life Gas Cooled Fast Reactors with Natural Uranium as Fuel Cycle Input has been performed. In this study Gas Cooled Fast Reactor is slightly modified by employing modified CANDLE burn-up scheme so that it can use Natural Uranium as fuel cycle input. Due to their hard spectrum, GCFR in this study showed very good performance in converting U-238 to plutonium in order to maintain the operation condition requirement of long-life reactors. Due to the limitation of thermal hydraulic aspects, the average power density of the proposed design is selected about 70 W/cc. With such condition we got an optimal design of 325 MWt reactors which can be operated 10 years without refueling and fuel shuffling and just need natural uranium as fuel cycle input. The average discharge burn-up is about 290 GWd/ton HM.

  2. Modeling and performance of the MHTGR (Modular High-Temperature Gas-Cooled Reactor) reactor cavity cooling system

    SciTech Connect

    Conklin, J.C. )

    1990-04-01

    The Reactor Cavity Cooling System (RCCS) of the Modular High- Temperature Gas-Cooled Reactor (MHTGR) proposed by the U.S. Department of Energy is designed to remove the nuclear afterheat passively in the event that neither the heat transport system nor the shutdown cooling circulator subsystem is available. A computer dynamic simulation for the physical and mathematical modeling of and RCCS is described here. Two conclusions can be made form computations performed under the assumption of a uniform reactor vessel temperature. First, the heat transferred across the annulus from the reactor vessel and then to ambient conditions is very dependent on the surface emissivities of the reactor vessel and RCCS panels. These emissivities should be periodically checked to ensure the safety function of the RCCS. Second, the heat transfer from the reactor vessel is reduced by a maximum of 10% by the presence of steam at 1 atm in the reactor cavity annulus for an assumed constant in the transmission of radiant energy across the annulus can be expected to result in an increase in the reactor vessel temperature for the MHTGR. Further investigation of participating radiation media, including small particles, in the reactor cavity annulus is warranted. 26 refs., 7 figs., 1 tab.

  3. Initial Requirements for Gas-Cooled Fast Reactor (GFR) System Design, Performance, and Safety Analysis Models

    SciTech Connect

    Kevan D. Weaver; Thomas Y. C. Wei

    2004-08-01

    The gas-cooled fast reactor (GFR) was chosen as one of the Generation IV nuclear reactor systems to be developed based on its excellent potential for sustainability through reduction of the volume and radio toxicity of both its own fuel and other spent nuclear fuel, and for extending/utilizing uranium resources orders of magnitude beyond what the current open fuel cycle can realize. In addition, energy conversion at high thermal efficiency is possible with the current designs being considered, thus increasing the economic benefit of the GFR. However, research and development challenges include the ability to use passive decay heat removal systems during accident conditions, survivability of fuels and in-core materials under extreme temperatures and radiation, and economical and efficient fuel cycle processes. Nevertheless, the GFR was chosen as one of only six Generation IV systems to be pursued based on its ability to meet the Generation IV goals in sustainability, economics, safety and reliability, proliferation resistance and physical protection.

  4. THR-TH: a high-temperature gas-cooled nuclear reactor core thermal hydraulics code

    SciTech Connect

    Vondy, D.R.

    1984-07-01

    The ORNL version of PEBBLE, the (RZ) pebble bed thermal hydraulics code, has been extended for application to a prismatic gas cooled reactor core. The supplemental treatment is of one-dimensional coolant flow in up to a three-dimensional core description. Power density data from a neutronics and exposure calculation are used as the basic information for the thermal hydraulics calculation of heat removal. Two-dimensional neutronics results may be expanded for a three-dimensional hydraulics calculation. The geometric description for the hydraulics problem is the same as used by the neutronics code. A two-dimensional thermal cell model is used to predict temperatures in the fuel channel. The capability is available in the local BOLD VENTURE computation system for reactor core analysis with capability to account for the effect of temperature feedback by nuclear cross section correlation. Some enhancements have also been added to the original code to add pebble bed modeling flexibility and to generate useful auxiliary results. For example, an estimate is made of the distribution of fuel temperatures based on average and extreme conditions regularly calculated at a number of locations.

  5. Thermal-Mechanical Studies for Gas-Cooled Space Reactor Designs

    SciTech Connect

    Kapernick, Richard J.; Creamer, William C.

    2006-01-20

    Los Alamos National Laboratory has been involved in the development of reactor concepts to be used as a power source for nuclear electric propulsion and/or for surface power sources. As part of this effort, a high fidelity thermal-mechanical analysis method has been developed for rapid performance assessments of these designs. This method has been used to study several concept alternatives, including both annular and multi-hole monolithic block designs. This paper presents the analysis method developed and results of analyses performed for a gas-cooled reactor. Key results are 1) the annular block design is lower mass than the multi-hole block design, 2) fuel temperatures are effectively controlled by adjusting the number of fuel pins in the core, 3) large thermal-hydraulic performance enhancements are produced by increasing coolant pressure and/or helium mole fraction, and 4) manufacturing and assembly parameters have relatively small effects on thermal-hydraulic performance and care should be taken to balance mechanical design complexity and reliability issues with thermal-hydraulic performance.

  6. THATCH: A computer code for modelling thermal networks of high- temperature gas-cooled nuclear reactors

    SciTech Connect

    Kroeger, P.G.; Kennett, R.J.; Colman, J.; Ginsberg, T. )

    1991-10-01

    This report documents the THATCH code, which can be used to model general thermal and flow networks of solids and coolant channels in two-dimensional r-z geometries. The main application of THATCH is to model reactor thermo-hydraulic transients in High-Temperature Gas-Cooled Reactors (HTGRs). The available modules simulate pressurized or depressurized core heatup transients, heat transfer to general exterior sinks or to specific passive Reactor Cavity Cooling Systems, which can be air or water-cooled. Graphite oxidation during air or water ingress can be modelled, including the effects of added combustion products to the gas flow and the additional chemical energy release. A point kinetics model is available for analyzing reactivity excursions; for instance due to water ingress, and also for hypothetical no-scram scenarios. For most HTGR transients, which generally range over hours, a user-selected nodalization of the core in r-z geometry is used. However, a separate model of heat transfer in the symmetry element of each fuel element is also available for very rapid transients. This model can be applied coupled to the traditional coarser r-z nodalization. This report described the mathematical models used in the code and the method of solution. It describes the code and its various sub-elements. Details of the input data and file usage, with file formats, is given for the code, as well as for several preprocessing and postprocessing options. The THATCH model of the currently applicable 350 MW{sub th} reactor is described. Input data for four sample cases are given with output available in fiche form. Installation requirements and code limitations, as well as the most common error indications are listed. 31 refs., 23 figs., 32 tabs.

  7. Assessments of Water Ingress Accidents in a Modular High-Temperature Gas-Cooled Reactor

    SciTech Connect

    Zhang Zuoyi; Dong Yujie; Scherer, Winfried

    2005-03-15

    Severe water ingress accidents in the 200-MW HTR-module were assessed to determine the safety margins of modular pebble-bed high-temperature gas-cooled reactors (HTR-module). The 200-MW HTR-module was designed by Siemens under the criteria that no active safety protection systems were necessary because of its inherent safe nature. For simulating the behavior of the HTR-module during severe water ingress accidents, a water, steam, and helium multiphase cavity model was developed and implemented in the dynamic simulator for nuclear power plants (DSNP) simulation system. Comparisons of the DSNP simulations incorporating these models with experiments and with calculations using the time-dependent neutronics and temperature dynamics code were made to validate the simulation. The analysis of the primary circuit showed that the maximum water concentration increase in the reactor core was <0.3 kg/(m{sup 3}s). The water vaporization in the steam generator and characteristics of water transport from the steam generator to the reactor core would reduce the rate of water ingress into the reactor core. The analysis of a full cavitation of the feedwater pump showed that if the secondary circuit could be depressurized, the feedwater pump would be stopped by the full cavitation. This limits the water transported from the deaerator to the steam generator. A comprehensive simulation of the HTR-module power plant showed that the water inventory in the primary circuit was limited to {approx}3000 kg. The nuclear reactivity increase caused by the water ingress would lead to a fast power excursion, which would be inherently counterbalanced by negative feedback effects. The integrity of the fuel elements, because the safety-relevant temperature limit of 1600 deg. C is not reached in any case, is not challenged.

  8. Analysis of the conceptual shielding design for the upflow Gas-Cooled Fast Breeder Reactor

    SciTech Connect

    Slater, C.O.; Reed, D.A.; Cramer, S.N.; Emmett, M.B.; Tomlinson, E.T.

    1981-01-01

    Conceptual Shielding Configuration III for the Gas-Cooled Fast Breeder Reactor (GCFR) was analyzed by performing global calculations of neutron and gamma-ray fluences and correcting the results as appropriate with bias factors from localized calculations. Included among the localized calculations were the radial and axial cell streaming calculations, plus extensive preliminary calculations and three final confirmation calculations of the plenum flow-through shields. The global calculations were performed on the GCFR mid-level and the lower and upper plenum regions. Calculated activities were examined with respect to the design constraint, if any, imposed on the particular activity. The spatial distributions of several activities of interest were examined with the aid of isoplots (i.e., symbols are used to describe a surface on which the activity level is everywhere the same). In general the results showed that most activities were below the respective design constraints. Only the total neutron fluence in the core barrel appeared to be marginal with the present reactor design. Since similar results were obtained for an earlier design, it has been proposed that the core barrel be cooled with inlet plenum gas to maintain it at a temperature low enough that it can withstand a higher fluence limit. Radiation levels in the prestressed concrete reactor vessel (PCRV) and liner appeared to be sufficiently below the design constraint that expected results from the Radial Shield Heterogeneity Experiment should not force any levels above the design constraint. A list was also made of a number of issues which should be examined before completion of the final shielding design.

  9. Method to Assess the Radionuclide Inventory of Irradiated Graphite from Gas-Cooled Reactors - 13072

    SciTech Connect

    Poncet, Bernard

    2013-07-01

    About 17,000 t of irradiated graphite waste will be produced from the decommissioning of the six French gas-cooled nuclear reactors. Determining the radionuclide (RN) content of this waste is of relevant importance for safety reasons and in order to determine the best way to manage them. For many reasons the impurity content that gave rise to the RNs in irradiated graphite by neutron activation during operation is not always well known and sometimes actually unknown. So, assessing the RN content by the use of traditional calculation activation, starting from assumed impurity content, leads to a false assessment. Moreover, radiochemical measurements exhibit very wide discrepancies especially on RN corresponding to precursor at the trace level such as natural chlorine corresponding to chlorine 36. This wide discrepancy is unavoidable and is due to very simple reasons. The level of impurity is very low because the uranium fuel used at that very moment was not enriched, so it was a necessity to have very pure nuclear grade graphite and the very low size of radiochemical sample is a simple technical constraint because device size used to get mineralization product for measurement purpose is limited. The assessment of a radionuclide inventory only based on few number of radiochemical measurements lead in most cases, to a gross over or under-estimation that is detrimental for graphite waste management. A method using an identification calculation-measurement process is proposed in order to assess a radiological inventory for disposal sizing purpose as precise as possible while guaranteeing its upper character. This method present a closer approach to the reality of the main phenomenon at the origin of RNs in a reactor, while also incorporating the secondary effects that can alter this result such as RN (or its precursor) release during reactor operation. (authors)

  10. Generation IV nuclear energy system initiative. Pin core subassembly designfor the Gas-Cooled Fast Reactor.

    SciTech Connect

    Farmer, M. T.; Hoffman, E. A.; Pfeiffer, P. F.; Therios, I. U.

    2006-07-31

    The Gas-Cooled Fast Reactor (GFR) is one of six systems selected for viability assessment in the Generation IV program. It features a closed nuclear fuel cycle, consisting of a high-temperature helium-cooled fast spectrum reactor, coupled to a direct-cycle helium turbine for electricity production. The GFR combines the advances of fast spectrum systems with those of high-temperature systems. It was clear from the very beginning that GFR design should be driven by the objective to offer a complementary approach to liquid metal cooling. On this basis, CEA and the US DOE decided to collaborate on the pre-conceptual design of a GFR. This reactor design will provide a high level of safety and full recycling of the actinides, and will also be highly proliferation resistant and economically attractive. The status of this collaborative project is that two unit sizes, 600 MWt and 2400 MWt were selected as the focus of the design and safety studies. Researchers studied fuel forms, fuel assembly/element designs, core configurations, primary and balance-of-plant layouts, and safety approaches for both of these unit sizes. Results regarding the feasibility of this GFR design are encouraging. For example, sustainability and non-proliferation goals can be met and the proposed concept has attractive safety features. These features take advantage of the helium in terms of its neutronic quasi-transparency as well as the enhanced Doppler effect in connection with candidate fuel and structural materials. The current design trend is to consider high unit power for the GFR (2400 MWt), an attractive level for the power density (100 MW/m{sup 3}), and the implementation of an innovative plate type fuel or pin type sub-assembly with carbide-based actinide compounds and SiC-based structural materials. Work is still needed to refine the safety approach, to select the main system options, and to more definitively establish economic parameters.

  11. Options for treating high-temperature gas-cooled reactor fuel for repository disposal

    SciTech Connect

    Lotts, A.L.; Bond, W.D.; Forsberg, C.W.; Glass, R.W.; Harrington, F.E.; Micheals, G.E.; Notz, K.J.; Wymer, R.G.

    1992-02-01

    This report describes the options that can reasonably be considered for disposal of high-temperature gas-cooled reactor (HTGR) fuel in a repository. The options include whole-block disposal, disposal with removal of graphite (either mechanically or by burning), and reprocessing of spent fuel to separate the fuel and fission products. The report summarizes what is known about the options without extensively projecting or analyzing actual performance of waste forms in a repository. The report also summarizes the processes involved in convert spent HTGR fuel into the various waste forms and projects relative schedules and costs for deployment of the various options. Fort St. Vrain Reactor fuel, which utilizes highly-enriched {sup 235}U (plus thorium) and is contained in a prismatic graphite block geometry, was used as the baseline for evaluation, but the major conclusions would not be significantly different for low- or medium-enriched {sup 235}U (without thorium) or for the German pebble-bed fuel. Future US HTGRs will be based on the Fort St. Vrain (FSV) fuel form. The whole block appears to be a satisfactory waste form for disposal in a repository and may perform better than light-water reactor (LWR) spent fuel. From the standpoint of process cost and schedule (not considering repository cost or value of fuel that might be recycled), the options are ranked as follows in order of increased cost and longer schedule to perform the option: (1) whole block, (2a) physical separation, (2b) chemical separation, and (3) complete chemical processing.

  12. Structure interaction due to thermal bowing of shrouds in steam generator of gas-cooled reactor

    SciTech Connect

    Woo, H.H.

    1981-01-01

    The design of the gas-cooled reactor steam generators includes a tube bundle support plate system which restrains and supports the helical tubes in the steam generator. The support system consists of an array of radially oriented, perforated plates through which the helical tube coils are wound. These support plates have tabs on their edges which fit into vertical slots in the inner and outer shrouds. When the helical tube bundle and support plates are installed in the steam generator, they most likely cannot fit evenly between the inner and outer shrouds. This imperfection leads to different gaps between two extreme sides of the tube bundle and the shrouds. With different gaps through the tube bundle height, the helium flow experiences different cooling effects from the tube bundle. Hence, the temperature distribution in the shrouds will be non-uniform circumferentially since their surrounding helium flow temperatures are varied. These non-uniform temperatures in the shrouds result in the phenomenon of thermal bowing of shrouds.

  13. Interim Status Report on the Design of the Gas-Cooled Fast Reactor (GFR)

    SciTech Connect

    Weaver, K. D.

    2005-01-31

    Current research and development on the Gas-Cooled Fast Reactor (GFR) has focused on the design of safety systems that will remove the decay heat during accident conditions, ion irradiations of candidate ceramic materials, joining studies of oxide dispersion strengthened alloys; and within the Advanced Fuel Cycle Initiative (AFCI) the fabrication of carbide fuels and ceramic fuel matrix materials, development of non-halide precursor low density and high density ceramic coatings, and neutron irradiation of candidate ceramic fuel matrix and metallic materials. The vast majority of this work has focused on the reference design for the GFR: a helium-cooled, direct power conversion system that will operate with on outlet temperature of 850 C at 7 MPa. In addition to the work being performed in the United States, seven international partners under the Generation IV International Forum (GIF) have identified their interest in participating in research related to the development of the GFR. These are Euratom (European Commission), France, Japan, South Africa, South Korea, Switzerland, and the United Kingdom. Of these, Euratom (including the United Kingdom), France, and Japan have active research activities with respect to the GFR. The research includes GFR design and safety, and fuels/in-core materials/fuel cycle projects. This report outlines the current design status of the GFR, and includes work done in the areas mentioned above.

  14. Interim Status Report on the Design of the Gas-Cooled Fast Reactor (GFR)

    SciTech Connect

    Kevan D. Weaver

    2005-01-01

    Current research and development on the Gas-Cooled Fast Reactor (GFR) has focused on the design of safety systems that will remove the decay heat during accident conditions, ion irradiations of candidate ceramic materials, joining studies of oxide dispersion strengthened alloys; and within the Advanced Fuel Cycle Initiative (AFCI) the fabrication of carbide fuels and ceramic fuel matrix materials, development of non-halide precursor low density and high density ceramic coatings, and neutron irradiation of candidate ceramic fuel matrix and metallic materials. The vast majority of this work has focused on the reference design for the GFR: a helium-cooled, direct power conversion system that will operate with on outlet temperature of 850ºC at 7 MPa. In addition to the work being performed in the United States, seven international partners under the Generation IV International Forum (GIF) have identified their interest in participating in research related to the development of the GFR. These are Euratom (European Commission), France, Japan, South Africa, South Korea, Switzerland, and the United Kingdom. Of these, Euratom (including the United Kingdom), France, and Japan have active research activities with respect to the GFR. The research includes GFR design and safety, and fuels/in-core materials/fuel cycle projects. This report outlines the current design status of the GFR, and includes work done in the areas mentioned above.

  15. Thermochemical Analysis of Gas-Cooled Reactor Fuels Containing Am and Pu Oxides

    SciTech Connect

    Lindemer, T.B.

    2002-09-05

    Literature values and estimated data for the thermodynamics of the actinide oxides and fission products are applied to explain the chemical behavior in gas-cooled-reactor fuels. Emphasis is placed on the Am-O-C and Pu-O-C systems and the data are used to plot the oxygen chemical potential versus temperature of solid-solid and solid-gas equilibria. These results help explain observations of vaporization in Am oxides, nitrides, and carbides and provide guidance for the ceramic processing of the fuels. The thermodynamic analysis is then extended to the fission product systems and the Si-C-O system. Existing data on oxygen release (primarily as CO) as a function of burnup in the thoria-urania fuel system is reviewed and compared to values calculated from thermodynamic data. The calculations of oxygen release are then extended to the plutonia and americia fuels. Use of ZrC not only as a particle coating that may be more resistant to corrosion by Pd and other noble-metal fission products, but also as a means to getter oxygen released by fission is discussed.

  16. ANALYSIS OF A HIGH TEMPERATURE GAS-COOLED REACTOR POWERED HIGH TEMPERATURE ELECTROLYSIS HYDROGEN PLANT

    SciTech Connect

    M. G. McKellar; E. A. Harvego; A. M. Gandrik

    2010-11-01

    An updated reference design for a commercial-scale high-temperature electrolysis (HTE) plant for hydrogen production has been developed. The HTE plant is powered by a high-temperature gas-cooled reactor (HTGR) whose configuration and operating conditions are based on the latest design parameters planned for the Next Generation Nuclear Plant (NGNP). The current HTGR reference design specifies a reactor power of 600 MWt, with a primary system pressure of 7.0 MPa, and reactor inlet and outlet fluid temperatures of 322°C and 750°C, respectively. The reactor heat is used to produce heat and electric power to the HTE plant. A Rankine steam cycle with a power conversion efficiency of 44.4% was used to provide the electric power. The electrolysis unit used to produce hydrogen includes 1.1 million cells with a per-cell active area of 225 cm2. The reference hydrogen production plant operates at a system pressure of 5.0 MPa, and utilizes a steam-sweep system to remove the excess oxygen that is evolved on the anode (oxygen) side of the electrolyzer. The overall system thermal-to-hydrogen production efficiency (based on the higher heating value of the produced hydrogen) is 42.8% at a hydrogen production rate of 1.85 kg/s (66 million SCFD) and an oxygen production rate of 14.6 kg/s (33 million SCFD). An economic analysis of this plant was performed with realistic financial and cost estimating The results of the economic analysis demonstrated that the HTE hydrogen production plant driven by a high-temperature helium-cooled nuclear power plant can deliver hydrogen at a competitive cost. A cost of $3.03/kg of hydrogen was calculated assuming an internal rate of return of 10% and a debt to equity ratio of 80%/20% for a reactor cost of $2000/kWt and $2.41/kg of hydrogen for a reactor cost of $1400/kWt.

  17. A review of existing gas-cooled reactor circulators with application of the lessons learned to the new production reactor circulators

    SciTech Connect

    White, L.S.

    1990-07-01

    This report presents the results of a study of the lessons learned during the design, testing, and operation of gas-cooled reactor coolant circulators. The intent of this study is to identify failure modes and problem areas of the existing circulators so this information can be incorporated into the design of the circulators for the New Production Reactor (NPR)-Modular High-Temperature Gas Cooled Reactor (MHTGR). The information for this study was obtained primarily from open literature and includes data on high-pressure, high-temperature helium test loop circulators as well as the existing gas cooled reactors worldwide. This investigation indicates that trouble free circulator performance can only be expected when the design program includes a comprehensive prototypical test program, with the results of this test program factored into the final circulator design. 43 refs., 7 tabs.

  18. [USA/FRG cooperation in gas-cooled reactor development]. Foreign trip report, June 24--July 2, 1988

    SciTech Connect

    Jones, Jr, J E

    1988-07-26

    Reviews were conducted at Kernforschungsanlage (KFA) Juelich of the US and Federal Republic of Germany (FRG) high-temperature gas-cooled reactor (HTGR) programs under the US/FRG Umbrella Agreement, with emphasis on those technology development areas where cooperation is ongoing and planned. Specific subprogram areas are safety; materials; fuels, fission products, and graphite; and Arbeitsgemeinschaft Versuchs-Reaktor (AVR). The purpose was to assess the status of the cooperation, reach agreement on any changes needed, and identify new areas of cooperation. Overall, the agreement has been both effective and beneficial. Ongoing activities complement and support US technology development plans. Discussions were held in the United Kingdom (UK) at the Risley Nuclear Power Development Laboratory regarding a potential graphite technology exchange program between the US Department of Energy and the UK Atomic Energy Authority. A draft agreement was reviewed and appeared to be satisfactory to both parties and ready for signature. A summary of potential areas of activity in the exchange had been prepared by US representatives and was discussed and found to be acceptable to UK representatives.

  19. Validation of SCALE and the TRITON Depletion Sequence for Gas-Cooled Reactor Analysis

    SciTech Connect

    DeHart, Mark D; Pritchard, Megan L

    2008-01-01

    The very-high-temperature reactor (VHTR) is an advanced reactor concept that uses graphite-moderated fuel and helium gas as a coolant. At present there are two primary VHTR reactor designs under consideration for development: in the pebble-bed reactor, a core is loaded with 'pebbles' consisting of 6 cm diameter spheres, while in a high-temperature gas-cooled reactor, fuel rods are placed within prismatic graphite blocks. In both systems, fuel elements (spheres or rods) are comprised of tristructural-isotropic (TRISO) fuel particles. The TRISO particles are either dispersed in the matrix of a graphite pebble for the pebble-bed design or molded into compacts/rods that are then inserted into the hexagonal graphite blocks for the prismatic concept. Two levels of heterogeneity exist in such fuel designs: (1) microspheres of TRISO particles dispersed in a graphite matrix of a cylindrical or spherical shape, and (2) neutron interactions at the rod-to-rod or sphere-to-sphere level. Such double heterogeneity (DH) provides a challenge to multigroup cross-section processing methods, which must treat each level of heterogeneity separately. A new capability to model doubly heterogeneous systems was added to the SCALE system in the release of Version 5.1. It was included in the control sequences CSAS and CSAS6, which use the Monte Carlo codes KENO V.a and KENO-VI, respectively, for three-dimensional neutron transport analyses and in the TRITON sequence, which uses the two-dimensional lattice physics code NEWT along with both versions of KENO for transport and depletion analyses. However, the SCALE 5.1 version of TRITON did not support the use of the DH approach for depletion. This deficiency has been addressed, and DH depletion will be available as an option in the upcoming release of SCALE 6. At present Oak Ridge National Laboratory (ORNL) staff are developing a set of calculations that may be used to validate SCALE for DH calculations. This paper discusses the results of

  20. Measurement of Turbulent Flow Phenomena for the Lower Plenum of a Prismatic Gas-Cooled Reactor

    SciTech Connect

    Hugh M. McIlroy Jr.; Donald M. McEligot; Robert J. Pink; Keith G. Condie; Glenn E. McCreery

    2007-09-01

    Mean velocity field and turbulence data are presented for flow phenomena in a lower plenum of a typical prismatic gas-cooled reactor (GCR), such as in a Very High Temperature Reactor (VHTR) concept. In preparation for design, safety analyses and licensing, research has begun on readying the computational tools that will be needed to predict the thermal-hydraulics behavior of the reactor design. Fluid dynamics experiments have been designed and built to develop benchmark databases for the assessment of computational fluid dynamics (CFD) codes and their turbulence models for a typical VHTR plenum geometry in the limiting case of negligible buoyancy and constant fluid properties. This experiment has been proposed as a “Standard Problem” for assessing advanced reactor (CFD) analysis tools. Present results concentrate on the region of the plenum near its far reflector wall (away from the outlet duct). The flow in the lower plenum can locally be considered as multiple jets into a confined cross flow - with obstructions. A model of the lower plenum has been fabricated and scaled to the geometric dimensions of the Next Generation Nuclear Plant (NGNP) Point Design. The model consists of a row of full circular posts along its centerline with half-posts on the two parallel walls to induce flow features somewhat comparable to those expected from the staggered parallel rows of posts in the reactor design. Posts, side walls and end walls are fabricated from clear, fused quartz to match the refractive-index of the working fluid so that optical techniques may be employed for the measurements. The experiments were conducted in the Matched-Index-of-Refraction (MIR) Facility at the Idaho National Laboratory (INL). The benefit of the MIR technique is that it permits optical measurements to determine complex flow characteristics in passages and around objects to be obtained without locating a disturbing transducer in the flow field and without distortion of the optical paths. The

  1. The Gas-Cooled Fast Reactor: Report on Safety System Design for Decay Heat Removal

    SciTech Connect

    K. D. Weaver; T. Marshall; T. Y. C. Wei; E. E. Feldman; M. J. Driscoll; H. Ludewig

    2003-09-01

    The gas-cooled fast reactor (GFR) was chosen as one of the Generation IV nuclear reactor systems to be developed based on its excellent potential for sustainability through reduction of the volume and radiotoxicity of both its own fuel and other spent nuclear fuel, and for extending/utilizing uranium resources orders of magnitude beyond what the current open fuel cycle can realize. In addition, energy conversion at high thermal efficiency is possible with the current designs being considered, thus increasing the economic benefit of the GFR. However, research and development challenges include the ability to use passive decay heat removal systems during accident conditions, survivability of fuels and in-core materials under extreme temperatures and radiation, and economical and efficient fuel cycle processes. This report addresses/discusses the decay heat removal options available to the GFR, and the current solutions. While it is possible to design a GFR with complete passive safety (i.e., reliance solely on conductive and radiative heat transfer for decay heat removal), it has been shown that the low power density results in unacceptable fuel cycle costs for the GFR. However, increasing power density results in higher decay heat rates, and the attendant temperature increase in the fuel and core. Use of active movers, or blowers/fans, is possible during accident conditions, which only requires 3% of nominal flow to remove the decay heat. Unfortunately, this requires reliance on active systems. In order to incorporate passive systems, innovative designs have been studied, and a mix of passive and active systems appears to meet the requirements for decay heat removal during accident conditions.

  2. Thermal Hydraulic Challenges of Gas Cooled Fast Reactors with Passive Safety Features

    SciTech Connect

    Michael Pope; Jeong-Ik Lee; Pavel Hejzlar; Michael J. Driscoll

    2009-05-01

    Transient response of a Gas cooled Fast Reactor (GFR) coupled to a recompression supercritical CO2 (S-CO2) power conversion system (PCS) in a direct cycle to Loss of Coolant and Loss of Generator Load Accidents is analyzed using RELAP5-3D. A number of thermal hydraulic challenges for GFR design are pointed out as the designers strive to accommodate cooling of the high power density core of a fast reactor by a gas with its inherently low heat transfer capability, in particular under post LOCA events when system pressure is lost and when reliance on passive decay heat removal is emphasized. Although it is possible to design a S-CO2 cooled GFR that can survive LOCA by cooling the core through natural circulating loops between the core and elevated emergency cooling heat exchangers, it is not an attractive approach because of various bypass paths that can, depending on break location, degrade core cooling. Moreover, natural circulation gas loops can operate in deteriorated heat transfer regimes with substantial reduction of heat transfer coefficient: as low as 30% of forced convection values, and data and correlations in these regimes carry large uncertainties. Therefore, reliable battery powered blowers for post-LOCA decay heat removal (DHR) that provide flow in well defined regimes with low uncertainty, and can be easily over-designed to accommodate bypass flows were selected. The results confirm that a GFR with such a DHR system and negative coolant void worth can withstand LOCA with and without scram as well as loss of electrical load without exceeding core temperature and turbomachinery overspeed limits.

  3. Assessment of RELAP5-3D for Analysis of Very High Temperature Gas-Cooled Reactors

    SciTech Connect

    Chang Oh; Larry Siefken; Cliff Davis

    2005-10-01

    The RELAP5-3D© computer code is being improved for the analysis of very high temperature gas-cooled reactors. Diffusion and natural circulation can be important phenomena in gas-cooled reactors following a loss-of-coolant accident. Recent improvements to the code include the addition of models that simulate pressure loss across a pebble bed and molecular diffusion. These models were assessed using experimental data. The diffusion model was assessed using data from inverted U-tube experiments. The code’s capability to simulate natural circulation of air through a pebble bed was assessed using data from the NACOK facility. The calculated results were in reasonable agreement with the measured values.

  4. THE COMPONENT TEST FACILITY – A NATIONAL USER FACILITY FOR TESTING OF HIGH TEMPERATURE GAS-COOLED REACTOR (HTGR) COMPONENTS AND SYSTEMS

    SciTech Connect

    David S. Duncan; Vondell J. Balls; Stephanie L. Austad

    2008-09-01

    The Next Generation Nuclear Plant (NGNP) and other High-Temperature Gas-cooled Reactor (HTGR) Projects require research, development, design, construction, and operation of a nuclear plant intended for both high-efficiency electricity production and high-temperature industrial applications, including hydrogen production. During the life cycle stages of an HTGR, plant systems, structures and components (SSCs) will be developed to support this reactor technology. To mitigate technical, schedule, and project risk associated with development of these SSCs, a large-scale test facility is required to support design verification and qualification prior to operational implementation. As a full-scale helium test facility, the Component Test facility (CTF) will provide prototype testing and qualification of heat transfer system components (e.g., Intermediate Heat Exchanger, valves, hot gas ducts), reactor internals, and hydrogen generation processing. It will perform confirmation tests for large-scale effects, validate component performance requirements, perform transient effects tests, and provide production demonstration of hydrogen and other high-temperature applications. Sponsored wholly or in part by the U.S. Department of Energy, the CTF will support NGNP and will also act as a National User Facility to support worldwide development of High-Temperature Gas-cooled Reactor technologies.

  5. Analysis and Development of A Robust Fuel for Gas-Cooled Fast Reactors

    SciTech Connect

    Knight, Travis W

    2010-01-31

    The focus of this effort was on the development of an advanced fuel for gas-cooled fast reactor (GFR) applications. This composite design is based on carbide fuel kernels dispersed in a ZrC matrix. The choice of ZrC is based on its high temperature properties and good thermal conductivity and improved retention of fission products to temperatures beyond that of traditional SiC based coated particle fuels. A key component of this study was the development and understanding of advanced fabrication techniques for GFR fuels that have potential to reduce minor actinide (MA) losses during fabrication owing to their higher vapor pressures and greater volatility. The major accomplishments of this work were the study of combustion synthesis methods for fabrication of the ZrC matrix, fabrication of high density UC electrodes for use in the rotating electrode process, production of UC particles by rotating electrode method, integration of UC kernels in the ZrC matrix, and the full characterization of each component. Major accomplishments in the near-term have been the greater characterization of the UC kernels produced by the rotating electrode method and their condition following the integration in the composite (ZrC matrix) following the short time but high temperature combustion synthesis process. This work has generated four journal publications, one conference proceeding paper, and one additional journal paper submitted for publication (under review). The greater significance of the work can be understood in that it achieved an objective of the DOE Generation IV (GenIV) roadmap for GFR Fuel—namely the demonstration of a composite carbide fuel with 30% volume fuel. This near-term accomplishment is even more significant given the expected or possible time frame for implementation of the GFR in the years 2030 -2050 or beyond.

  6. Measurement of Flow Phenomena in a Lower Plenum Model of a Prismatic Gas-Cooled Reactor

    SciTech Connect

    Hugh M. McIlroy, Jr.; Doanld M. McEligot; Robert J. Pink

    2010-02-01

    Mean-velocity-field and turbulence data are presented that measure turbulent flow phenomena in an approximately 1:7 scale model of a region of the lower plenum of a typical prismatic gas-cooled reactor (GCR) similar to a General Atomics Gas-Turbine-Modular Helium Reactor (GTMHR) design. The data were obtained in the Matched-Index-of-Refraction (MIR) facility at Idaho National Laboratory (INL) and are offered for assessing computational fluid dynamics (CFD) software. This experiment has been selected as the first Standard Problem endorsed by the Generation IV International Forum. Results concentrate on the region of the lower plenum near its far reflector wall (away from the outlet duct). The flow in the lower plenum consists of multiple jets injected into a confined cross flow - with obstructions. The model consists of a row of full circular posts along its centerline with half-posts on the two parallel walls to approximate geometry scaled to that expected from the staggered parallel rows of posts in the reactor design. The model is fabricated from clear, fused quartz to match the refractive-index of the working fluid so that optical techniques may be employed for the measurements. The benefit of the MIR technique is that it permits optical measurements to determine flow characteristics in complex passages in and around objects to be obtained without locating intrusive transducers that will disturb the flow field and without distortion of the optical paths. An advantage of the INL system is its large size, leading to improved spatial and temporal resolution compared to similar facilities at smaller scales. A three-dimensional (3-D) Particle Image Velocimetry (PIV) system was used to collect the data. Inlet jet Reynolds numbers (based on the jet diameter and the time-mean bulk velocity) are approximately 4,300 and 12,400. Uncertainty analyses and a discussion of the standard problem are included. The measurements reveal developing, non-uniform, turbulent flow in the

  7. Measurement of Turbulent Flow Phenomena for the Lower Plenum of a Prismatic Gas-Cooled Reactor

    SciTech Connect

    Hugh M. McIlroy, Jr.; Donald M. McEligot; Robert J. Pink

    2010-02-01

    Mean velocity field and turbulence data are presented that measure turbulent flow phenomena in an approximately 1:7 scale model of a region of the lower plenum of a typical prismatic gas-cooled reactor (GCR) similar to a General Atomics design (Gas-Turbine-Modular Helium Reactor). The datawere obtained in the Matched-Index-of-Refraction (MIR) facility at Idaho National Laboratory (INL) and are offered as a benchmark for assessing computational fluid dynamics (CFD) software. This experiment has been selected as the first Standard Problem endorsed by the Generation IV International Forum. The primary objective of this paper is to document the experiment and present a sample of the data set that has been established for this standard problem. Present results concentrate on the region of the lower plenum near its far reflector wall (away from the outlet duct). The flowin the lower plenum consists of multiple jets injected into a confined crossflow—with obstructions. The model consists of a row of full circular posts along its centerline with half-posts on the two parallel walls to approximate flow scaled to that expected from the staggered parallel rows of posts in the reactor design. Posts, side walls and end walls are fabricated from clear, fused quartz to match the refractive index of the mineral oil working fluid so that optical techniques may be employed for the measurements. The benefit of the MIR technique is that it permits optical measurements to determine flow characteristics in complex passages and around objects to be obtained without locating intrusive transducers that will disturb the flow field and without distortion of the optical paths. An advantage of the INL system is its large size, leading to improved spatial and temporal resolution compared to similar facilities at smaller scales. A three-dimensional (3D) particle image velocimetry (PIV) system was used to collect the data. Inlet-jet Reynolds numbers (based on the hydraulic diameter of the jet

  8. Computational Fluid Dynamics Analysis of Very High Temperature Gas-Cooled Reactor Cavity Cooling System

    SciTech Connect

    Frisani, Angelo; Hassan, Yassin A; Ugaz, Victor M

    2010-11-02

    The design of passive heat removal systems is one of the main concerns for the modular very high temperature gas-cooled reactors (VHTR) vessel cavity. The reactor cavity cooling system (RCCS) is a key heat removal system during normal and off-normal conditions. The design and validation of the RCCS is necessary to demonstrate that VHTRs can survive to the postulated accidents. The computational fluid dynamics (CFD) STAR-CCM+/V3.06.006 code was used for three-dimensional system modeling and analysis of the RCCS. A CFD model was developed to analyze heat exchange in the RCCS. The model incorporates a 180-deg section resembling the VHTR RCCS experimentally reproduced in a laboratory-scale test facility at Texas A&M University. All the key features of the experimental facility were taken into account during the numerical simulations. The objective of the present work was to benchmark CFD tools against experimental data addressing the behavior of the RCCS following accident conditions. Two cooling fluids (i.e., water and air) were considered to test the capability of maintaining the RCCS concrete walls' temperature below design limits. Different temperature profiles at the reactor pressure vessel (RPV) wall obtained from the experimental facility were used as boundary conditions in the numerical analyses to simulate VHTR transient evolution during accident scenarios. Mesh convergence was achieved with an intensive parametric study of the two different cooling configurations and selected boundary conditions. To test the effect of turbulence modeling on the RCCS heat exchange, predictions using several different turbulence models and near-wall treatments were evaluated and compared. The comparison among the different turbulence models analyzed showed satisfactory agreement for the temperature distribution inside the RCCS cavity medium and at the standpipes walls. For such a complicated geometry and flow conditions, the tested turbulence models demonstrated that the

  9. Measurement of Flow Phenomena in a Lower Plenum Model of a Prismatic Gas-Cooled Reactor

    SciTech Connect

    Hugh M. McIlroy, Jr.; Donald M. McEligot; Robert J. Pink

    2008-05-01

    Mean-velocity-field and turbulence data are presented that measure turbulent flow phenomena in an approximately 1:7 scale model of a region of the lower plenum of a typical prismatic gas-cooled reactor (GCR) similar to a General Atomics Gas-Turbine-Modular Helium Reactor (GTMHR) design. The data were obtained in the Matched-Index-of-Refraction (MIR) facility at Idaho National Laboratory (INL) and are offered for assessing computational fluid dynamics (CFD) software. This experiment has been selected as the first Standard Problem endorsed by the Generation IV International Forum. This paper reviews the experimental apparatus and procedures, presents a sample of the data set, and reviews the INL Standard Problem. Results concentrate on the region of the lower plenum near its far reflector wall (away from the outlet duct). The flow in the lower plenum consists of multiple jets injected into a confined cross flow - with obstructions. The model consists of a row of full circular posts along its centerline with half-posts on the two parallel walls to approximate flow scaled to that expected from the staggered parallel rows of posts in the reactor design. The model is fabricated from clear, fused quartz to match the refractive-index of the mineral oil working fluid so that optical techniques may be employed for the measurements. The benefit of the MIR technique is that it permits optical measurements to determine flow characteristics in complex passages in and around objects to be obtained without locating intrusive transducers that will disturb the flow field and without distortion of the optical paths. An advantage of the INL system is its large size, leading to improved spatial and temporal resolution compared to similar facilities at smaller scales. A three-dimensional (3-D) Particle Image Velocimetry (PIV) system was used to collect the data. Inlet jet Reynolds numbers (based on the jet diameter and the time-mean average flow rate) are approximately 4,300 and 12

  10. STUDY ON AIR INGRESS MITIGATION METHODS IN THE VERY HIGH TEMPERATURE GAS COOLED REACTOR (VHTR)

    SciTech Connect

    Chang H. Oh

    2011-03-01

    An air-ingress accident followed by a pipe break is considered as a critical event for a very high temperature gas-cooled reactor (VHTR). Following helium depressurization, it is anticipated that unless countermeasures are taken, air will enter the core through the break leading to oxidation of the in-core graphite structure. Thus, without mitigation features, this accident might lead to severe exothermic chemical reactions of graphite and oxygen. Under extreme circumstances, a loss of core structural integrity may occur along with excessive release of radiological inventory. Idaho National Laboratory under the auspices of the U.S. Department of Energy is performing research and development (R&D) that focuses on key phenomena important during challenging scenarios that may occur in the VHTR. Phenomena Identification and Ranking Table (PIRT) studies to date have identified the air ingress event, following on the heels of a VHTR depressurization, as very important (Oh et al. 2006, Schultz et al. 2006). Consequently, the development of advanced air ingress-related models and verification and validation (V&V) requirements are part of the experimental validation plan. This paper discusses about various air-ingress mitigation concepts applicable for the VHTRs. The study begins with identifying important factors (or phenomena) associated with the air-ingress accident by using a root-cause analysis. By preventing main causes of the important events identified in the root-cause diagram, the basic air-ingress mitigation ideas can be conceptually derived. The main concepts include (1) preventing structural degradation of graphite supporters; (2) preventing local stress concentration in the supporter; (3) preventing graphite oxidation; (4) preventing air ingress; (5) preventing density gradient driven flow; (4) preventing fluid density gradient; (5) preventing fluid temperature gradient; (6) preventing high temperature. Based on the basic concepts listed above, various air

  11. ORIGEN-ARP Cross-Section Libraries for Magnox, Advanced Gas-Cooled, and VVER Reactor Designs

    SciTech Connect

    Murphy, BD

    2004-03-10

    Cross-section libraries for the ORIGEN-ARP system were extended to include four non-U.S. reactor types: the Magnox reactor, the Advanced Gas-Cooled Reactor, the VVER-440, and the VVER-1000. Typical design and operational parameters for these four reactor types were determined by an examination of a variety of published information sources. Burnup simulation models of the reactors were then developed using the SAS2H sequence from the Oak Ridge National Laboratory SCALE code system. In turn, these models were used to prepare the burnup-dependent cross-section libraries suitable for use with ORIGEN-ARP. The reactor designs together with the development of the SAS2H models are described, and a small number of validation results using spent-fuel assay data are reported.

  12. A Subcritical, Gas-Cooled Fast Transmutation Reactor with a Fusion Neutron Source

    SciTech Connect

    Stacey, W.M.; Beavers, V.L.; Casino, W.A.; Cheatham, J.R.; Friis, Z.W.; Green, R.D.; Hamilton, W.R.; Haufler, K.W.; Hutchinson, J.D.; Lackey, W.J.; Lorio, R.A.; Maddox, J.W.; Mandrekas, J.; Manzoor, A.A.; Noelke, C.A.; Oliveira, C. de; Park, M.; Tedder, D.W.; Terry, M.R.; Hoffman, E.A.

    2005-05-15

    A design is presented for a subcritical, He-cooled fast reactor, driven by a tokamak D-T fusion neutron source, for the transmutation of spent nuclear fuel (SNF). The reactor is fueled with coated transuranic (TRU) particles and is intended for the deep-burn (>90%) transmutation of the TRUs in SNF without reprocessing of the coated fuel particles. The reactor design is based on the materials, fuel, and separations technologies under near-term development in the U.S. Department of Energy (DOE) Nuclear Energy Program and on the plasma physics and fusion technologies under near-term development in the DOE Fusion Energy Sciences Program, with the objective of intermediate-term ({approx}2040) deployment. The physical and performance characteristics and research and development requirements of such a reactor are described.

  13. Preliminary Results of the Combined Third and Fourth Very High Temperature Gas-Cooled Reactor Irradiation in the Advanced Test Reactor

    SciTech Connect

    Davenport, Michael E.; Palmer, A. Joseph; Petti, David A.

    2001-10-01

    The United States Department of Energy’s Very High Temperature Reactor Technology Development Office (VHTR-TDO) Advanced Gas Reactor (AGR) Fuel Development and Qualification Program is irradiating up to seven low enriched uranium (LEU) tri-isotopic (TRISO) particle fuel (in compact form) experiments in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). These irradiations and fuel development are being accomplished to support development of the next generation high temperature gas-cooled reactors in the United States. The experiments will be irradiated over the next several years to demonstrate and qualify new TRISO coated particle fuel for use in high temperature gas reactors. The goals of the experiments are to provide irradiation performance data to support fuel process development, to qualify fuel for normal operating conditions, to support development and validation of fuel performance and fission product transport models and codes, and to provide irradiated fuel and materials for post irradiation examination (PIE) and safety testing. The experiments, which will each consist of several independent capsules, will be irradiated in an inert sweep gas atmosphere with individual on-line temperature monitoring and control of each capsule. The sweep gas will also have on-line fission product monitoring on its effluent to track performance of the fuel in each individual capsule during irradiation. The first experiment (designated AGR-1) started irradiation in December 2006 and was completed in November 2009. The second experiment (AGR-2) started irradiation in June 2010 and completed in October 2013. The third and fourth experiments were combined into a single experiment designated (AGR-3/4), which started its irradiation in December 2011 and completed in April 2014. Since the purpose of this combined experiment was to provide data on fission product migration and retention in a high temperature gas-cooled reactor (HTGR), the design of

  14. Production of liquid fuels with a high-temperature gas-cooled reactor

    NASA Astrophysics Data System (ADS)

    Quade, R. N.; Vrable, D. L.; Green, L., Jr.

    An exploration is made of the technical, economic and environmental impact feasibility of integrating coal liquefaction methods directly and indirectly with a nuclear reactor source of process heat, with stress on the production of synthetic jet fuel. Production figures and operating costs are compared for indirect conventional and nuclear processes using Lurgi-Fischer-Tropsch technology with direct conventional and nuclear techniques employing the advanced SRC-II technology, and it is concluded that significant advantages in coal savings and environmental impact can be expected from nuclear reactor integration.

  15. Summary of HTGR (high-temperature gas-cooled reactor) benchmark data from the high temperature lattice test reactor

    SciTech Connect

    Newman, D.F.

    1989-10-01

    The High Temperature Lattice Test Reactor (HTLTR) was a unique critical facility specifically built and operated to measure variations in neutronic characteristics of high temperature gas cooled reactor (HTGR) lattices at temperatures up to 1000{degree}C. The Los Alamos National Laboratory commissioned Pacific Northwest Laboratory (PNL) to prepare this summary reference report on the HTLTR benchmark data and its associated documentation. In the initial stages of the program, the principle of the measurement of k{sub {infinity}} using the unpoisoned technique (developed by R.E. Heineman of PNL) was subjected to extensive peer review within PNL and the General Atomic Company. A number of experiments were conducted at PNL in the Physical Constants Testing Reactor (PCTR) using both the unpoisoned technique and the well-established null reactivity technique that substantiated the equivalence of the measurements by direct comparison. Records of all data from fuel fabrication, the reactor experiments, and the analytical results were compiled and maintained to meet applicable quality assurance standards in place at PNL. Sensitivity of comparisons between measured and calculated k{sub {infinity}}(T) data for various HTGR lattices to changes in neutron cross section data, graphite scattering kernel models, and fuel block loading variations, were analyzed by PNL for the Electric Power Research Institute. As a part of this effort, the fuel rod composition in the dilute {sup 233}UO{sub 2}-ThO{sub 2} HTGR central cell (HTLTR Lattice {number sign}3) was sampled and analyzed by mass spectrometry. Values of k{sub {infinity}} calculated for that lattice were about 5% higher than those measured. Trace quantities of sodium chloride were found in the fuel rod that were equivalent to 22 atom parts-per-million of natural boron.

  16. Preliminary Design Study of Medium Sized Gas Cooled Fast Reactor with Natural Uranium as Fuel Cycle Input

    SciTech Connect

    Meriyanti; Su'ud, Zaki; Rijal, K.; Zuhair; Ferhat, A.; Sekimoto, H.

    2010-06-22

    In this study a feasibility design study of medium sized (1000 MWt) gas cooled fast reactors which can utilize natural uranium as fuel cycle input has been conducted. Gas Cooled Fast Reactor (GFR) is among six types of Generation IV Nuclear Power Plants. GFR with its hard neuron spectrum is superior for closed fuel cycle, and its ability to be operated in high temperature (850 deg. C) makes various options of utilizations become possible. To obtain the capability of consuming natural uranium as fuel cycle input, modified CANDLE burn-up scheme[1-6] is adopted this GFR system by dividing the core into 10 parts of equal volume axially. Due to the limitation of thermal hydraulic aspects, the average power density of the proposed design is selected about 70 W/cc. As an optimization results, a design of 1000 MWt reactors which can be operated 10 years without refueling and fuel shuffling and just need natural uranium as fuel cycle input is discussed. The average discharge burn-up is about 280 GWd/ton HM. Enough margin for criticality was obtained for this reactor.

  17. Preliminary Design Study of Medium Sized Gas Cooled Fast Reactor with Natural Uranium as Fuel Cycle Input

    NASA Astrophysics Data System (ADS)

    Meriyanti, Su'ud, Zaki; Rijal, K.; Zuhair, Ferhat, A.; Sekimoto, H.

    2010-06-01

    In this study a fesibility design study of medium sized (1000 MWt) gas cooled fast reactors which can utilize natural uranium as fuel cycle input has been conducted. Gas Cooled Fast Reactor (GFR) is among six types of Generation IV Nuclear Power Plants. GFR with its hard neuron spectrum is superior for closed fuel cycle, and its ability to be operated in high temperature (850° C) makes various options of utilizations become possible. To obtain the capability of consuming natural uranium as fuel cycle input, modified CANDLE burn-up scheme[1-6] is adopted this GFR system by dividing the core into 10 parts of equal volume axially. Due to the limitation of thermal hydraulic aspects, the average power density of the proposed design is selected about 70 W/cc. As an optimization results, a design of 1000 MWt reactors which can be operated 10 years without refueling and fuel shuffling and just need natural uranium as fuel cycle input is discussed. The average discharge burn-up is about 280 GWd/ton HM. Enough margin for criticallity was obtained for this reactor.

  18. Advanced Gas-Cooled Nuclear Reactor Materials Evaluation and Development Program. Progress report, April 1, 1979-June 30, 1979

    SciTech Connect

    Not Available

    1980-01-25

    The results are presented of work performed on the Advanced Gas-Cooled Nuclear Reactor Materials Evaluation and Development Program. The objectives of this program are to evaluate candidate alloys for Very High Temperature Reactor (VHTR) Nuclear Process Heat (NPH) and Direct Cycle Helium Turbine (DCHT) applications, in terms of the effect of simulated reactor primary coolant (helium containing small amounts of various other gases), high temperatures, and long time exposures, on the mechanical properties and structural and surface stability of selected candidate alloys. A second objective is to select and recommend materials for future test facilities and more extensive qualification programs. Work covered in this report includes the activities associated with the status of the simulated reactor helium supply system, testing equipment, and gas chemistry analysis instrumentation and equipment. The status of the data management system is presented. In addition, the progress in the screening test program is described.

  19. Advanced Gas Cooled Nuclear Reactor Materials Evaluation and Development Program. Progress report, January 1, 1980-March 31, 1980

    SciTech Connect

    Not Available

    1980-06-25

    Results are presented of work performed on the Advanced Gas-Cooled Nuclear Reactor Materials Evaluation and Development Program. The objectives of this program are to evaluate candidate alloys for Very High Temperature Reactor (VHTR) Nuclear Process Heat (NPH) and Direct Cycle Helium Turbine (DCHT) applications, in terms of the effect of simulated reactor primary coolant (helium containing small amounts of various other gases), high temperatures, and long time exposures, on the mechanical properties and structural and surface stability of selected candidate alloys. A second objective is to select and recommend materials for future test facilities and more extensive qualification programs. Included are the activities associated with the status of the simulated reactor helium supply system, testing equipment and gas chemistry analysis instrumentation and equipment. The progress in the screening test program is described, including screening creep results and metallographic analysis for materials thermally exposed or tested at 750, 850, and 950/sup 0/C.

  20. Advanced Gas-Cooled Nuclear Reactor Materials Evaluation and Development Program. Progress report, July 1, 1979-September 30, 1979

    SciTech Connect

    Not Available

    1980-03-07

    The results of work performed from July 1, 1979 through September 30, 1979 on the Advanced Gas-Cooled Nuclear Reactor Materials Evaluation and Development Program are presented. The objectives of this program are to evaluate candidate alloys for Very High Temperature Reactor (VHTR) Nuclear Process Heat (NPH) and Direct Cycle Helium Turbine (DCHT) applications, in terms of the effect of simulated reactor primary coolant (helium containing small amounts of various other gases), high temperatures, and long time exposures, on the mechanical properties and structural and surface stability of selected candidate alloys. A second objective is to select and recommend materials for future test facilities and more extensive qualification programs. Work covered in this report includes the activities associated with the status of the simulated reactor helium supply system, testing equipment, and gas chemistry analysis instrumentation and equipment. The status of the data management system is presented. In addition, the progress in the screening test program is described.

  1. Modular High-Temperature Gas-Cooled Reactor short term thermal response to flow and reactivity transients

    SciTech Connect

    Cleveland, J.C.

    1988-01-01

    The analyses reported here have been conducted at the Oak Ridge National Laboratory (ORNL) for the US Nuclear Regulatory Commission's (NRC's) Division of Regulatory Applications of the Office of Nuclear Regulatory Research. The short-term thermal response of the Modular High-Temperature Gas-Cooled Reactor (MHTGR) is analyzed for a range of flow and reactivity transients. These include loss of forced circulation (LOFC) without scram, moisture ingress, spurious withdrawal of a control rod group, hypothetical large and rapid positive reactivity insertion, and a rapid core cooling event. The coupled heat transfer-neutron kinetics model is also described.

  2. Radiochemical analysis of the first plateout probe from the Fort St. Vrain high-temperature gas-cooled reactor

    SciTech Connect

    Burnette, R.D.

    1982-06-01

    This report presents the analysis of radioactive elements on the first plateout probe from the Fort St. Vrain high-temperature gas-cooled reactor. The plateout probe is a device which samples the primary coolant for condensible fission products. Circuit inventories of individual radionuclides are estimated from the probe analysis. The analysis shows that the radioactive contamination in the primary circuit is remarkable low, with activation product concentrations much greater than that of fission products. The analysis demonstrates that the concentrations of the key fission products I-131 and Sr-90 are far below the limits allowed by the technical specification.

  3. Reanalysis of the gas-cooled fast reactor experiments at the zero power facility proteus - Spectral indices

    SciTech Connect

    Perret, G.; Pattupara, R. M.; Girardin, G.; Chawla, R.

    2012-07-01

    The gas-cooled fast reactor (GCFR) concept was investigated experimentally in the PROTEUS zero power facility at the Paul Scherrer Inst. during the 1970's. The experimental program was aimed at neutronics studies specific to the GCFR and at the validation of nuclear data in fast spectra. A significant part of the program used thorium oxide and thorium metal fuel either distributed quasi-homogeneously in the reference PuO{sub 2}/UO{sub 2} lattice or introduced in the form of radial and axial blanket zones. Experimental results obtained at the time are still of high relevance in view of the current consideration of the Gas-cooled Fast Reactor (GFR) as a Generation-IV nuclear system, as also of the renewed interest in the thorium cycle. In this context, some of the experiments have been modeled with modern Monte Carlo codes to better account for the complex PROTEUS whole-reactor geometry and to allow validating recent continuous neutron cross-section libraries. As a first step, the MCNPX model was used to test the JEFF-3.1, JEFF-3.1.1, ENDF/B-VII.0 and JENDL-3.3 libraries against spectral indices, notably involving fission and capture of {sup 232}Th and {sup 237}Np, measured in GFR-like lattices. (authors)

  4. Gas-Cooled Thermal Reactor Program. Semiannual technical progress report, April 1, 1983-September 30, 1983

    SciTech Connect

    Not Available

    1983-12-01

    An assessment of the HTGR opportunities from the year 2000 through 2045 was the principal activity on the Market Definition Task (WBS 03). Within the Plant Technology (WBS 13) task, there were activities to develop analytical methods for investigation of Coolant Transport Behavior and to define methods and criteria for High Temperature Structural Engineering design. The activities in support of the HTGR-SC/C Lead Plant (WBS 30 and 31) were the participation in the Lead Plant System Engineering (LPSE) effort and the plant simulation task. The efforts on the Advanced HTGR systems was performed under the Modular Reactor Systems (MRS) (WBS 41) to study the potential for multiple small reactors to provide lower costs, improved safety, and higher availability than the large monolithic core reactors.

  5. Axisymmetric whole pin life modelling of advanced gas-cooled reactor nuclear fuel

    NASA Astrophysics Data System (ADS)

    Mella, R.; Wenman, M. R.

    2013-06-01

    Thermo-mechanical contributions to pellet-clad interaction (PCI) in advanced gas-cooled reactors (AGRs) are modelled in the ABAQUS finite element (FE) code. User supplied sub-routines permit the modelling of the non-linear behaviour of AGR fuel through life. Through utilisation of ABAQUS's well-developed pre- and post-processing ability, the behaviour of the axially constrained steel clad fuel was modelled. The 2D axisymmetric model includes thermo-mechanical behaviour of the fuel with time and condition dependent material properties. Pellet cladding gap dynamics and thermal behaviour are also modelled. The model treats heat up as a fully coupled temperature-displacement study. Dwell time and direct power cycling was applied to model the impact of online refuelling, a key feature of the AGR. The model includes the visco-plastic behaviour of the fuel under the stress and irradiation conditions within an AGR core and a non-linear heat transfer model. A multiscale fission gas release model is applied to compute pin pressure; this model is coupled to the PCI gap model through an explicit fission gas inventory code. Whole pin, whole life, models are able to show the impact of the fuel on all segments of cladding including weld end caps and cladding pellet locking mechanisms (unique to AGR fuel). The development of this model in a commercial FE package shows that the development of a potentially verified and future-proof fuel performance code can be created and used. The usability of a FE based fuel performance code would be an enhancement over past codes. Pre- and post-processors have lowered the entry barrier for the development of a fuel performance model to permit the ability to model complicated systems. Typical runtimes for a 5 year axisymmetric model takes less than one hour on a single core workstation. The current model has implemented: Non-linear fuel thermal behaviour, including a complex description of heat flow in the fuel. Coupled with a variety of

  6. INVESTIGATION OF FUNDAMENTAL THERMAL-HYDRAULIC PHENOMENA IN ADVANCED GAS-COOLED REACTORS

    SciTech Connect

    INVESTIGATION OF FUNDAMENTAL THERMAL-HYDRAULIC PHE

    2006-09-01

    INL LDRD funded research was conducted at MIT to experimentally characterize mixed convection heat transfer in gas-cooled fast reactor (GFR) core channels in collaboration with INL personnel. The GFR for Generation IV has generated considerable interest and is under development in the U.S., France, and Japan. One of the key candidates is a block-core configuration first proposed by MIT, has the potential to operate in Deteriorated Turbulent Heat Transfer (DTHT) regime or in the transition between the DTHT and normal forced or laminar convection regime during post-loss-of-coolant accident (LOCA) conditions. This is contrary to most industrial applications where operation is in a well-defined and well-known turbulent forced convection regime. As a result, important new need emerged to develop heat transfer correlations that make possible rigorous and accurate predictions of Decay Heat Removal (DHR) during post LOCA in these regimes. Extensive literature review on these regimes was performed and a number of the available correlations was collected in: (1) forced laminar, (2) forced turbulent, (3) mixed convection laminar, (4) buoyancy driven DTHT and (5) acceleration driven DTHT regimes. Preliminary analysis on the GFR DHR system was performed and using the literature review results and GFR conditions. It confirmed that the GFR block type core has a potential to operate in the DTHT regime. Further, a newly proposed approach proved that gas, liquid and super critical fluids all behave differently in single channel under DTHT regime conditions, thus making it questionable to extrapolate liquid or supercritical fluid data to gas flow heat transfer. Experimental data were collected with three different gases (nitrogen, helium and carbon dioxide) in various heat transfer regimes. Each gas unveiled different physical phenomena. All data basically covered the forced turbulent heat transfer regime, nitrogen data covered the acceleration driven DTHT and buoyancy driven DTHT

  7. An analytical study of volatile metallic fission product release from very high temperature gas-cooled reactor fuel and core

    SciTech Connect

    Mitake, S.; Okamoto, F.

    1988-04-01

    Release characteristics of volatile metallic fission products from the coated fuel particle and the reactor core for a very high temperature gas-cooled reactor during its power operation has been studied using numerical analysis. A computer code FORNAX, based on Fick's diffusion law and the evaporation mass transfer relation, has been developed, which considers, in particular, distribution and time histories of power density, fuel temperature, and failed and degraded fuel particle fractions in the core. Applicability of the code to evaluate the core design has been shown and the following have been indicated on the release of cesium from the reactor: 1. The release from the intact fuel particles by diffusion through their intact coatings shows larger contribution in the total core release at higher temperature. 2. The diffusion release from the intact particle is governed not only by the diffusion in the silicon carbide layer but also by that in the fuel kernel.

  8. CFD Analysis of Turbulent Flow Phenomena in the Lower Plenum of a Prismatic Gas-Cooled Reactor

    SciTech Connect

    T. Gallaway; S.P. Antal; M.Z. Podowski; D.P. Guillen

    2007-09-01

    This paper is concerned with the implementation of a computational model of turbulent flow in a section of the lower plenum of Very High Temperature Reactor (VHTR). The proposed model has been encoded in a state-of-the-art CFD code, NPHASE. The results of NPHASE predictions have been compared against the experimental data collected using a scaled model of a sub-region in the lower plenum of a modular prismatic gas-cooled reactor. It has been shown that the NPHASE-based model is capable of predicting a three-dimensional velocity field in a complex geometrical configuration of VHTR lower plenum. The current and future validations of computational predictions are necessary for design and analysis of new reactor concepts, as well as for safety analysis and licensing calculations.

  9. A Personal Computer-Based Simulation-and-Control-Integrated Platform for 10-MW High-Temperature Gas-Cooled Reactor

    SciTech Connect

    Shi Lei; Liu Haibin; Yang Xiaojing; Gao Zuying; Dong Yujie; Zhang Zuoyi

    2004-02-15

    A personal computer-based simulation-and-control-integrated platform for the 10-MW high-temperature gas-cooled reactor (HTR-10), HTRSIMU, has been developed by the Institute of Nuclear Energy Technology (INET) of Tsinghua University in China to meet the requirements of safety analysis, operator training, and control system design. The HTRSIMU runs on a personal computer Windows2000 operating system and consists of three parts: simulation computing system (SCS), man/machine interface (MMI) system, and control system design platform (CDP). Simulation models and equations of the SCS are given, including models of the reactor core, the fuel ball, the primary loop, and the steam generator. Furthermore, functions and characteristics of the MMI and CDP are also described in detail. Moreover, steady state, several typical accidents, and a power control process of HTR-10 are simulated by using the HTRSIMU to demonstrate its simulation and control system design capability.

  10. Application of subgroup decomposition in diffusion theory to gas cooled thermal reactor problem

    SciTech Connect

    Yasseri, S.; Rahnema, F.

    2013-07-01

    In this paper, the accuracy and computational efficiency of the subgroup decomposition (SGD) method in diffusion theory is assessed in a ID benchmark problem characteristic of gas cooled thermal systems. This method can be viewed as a significant improvement in accuracy of standard coarse-group calculations used for VHTR whole core analysis in which core environmental effect and energy angle coupling are pronounced. It is shown that a 2-group SGD calculation reproduces fine-group (47) results with 1.5 to 6 times faster computational speed depending on the stabilizing schemes while it is as efficient as single standard 6-group diffusion calculation. (authors)

  11. Development of safety analysis codes and experimental validation for a very high temperature gas-cooled reactor Final report

    SciTech Connect

    Chang Oh

    2006-03-01

    The very high-temperature gas-cooled reactor (VHTR) is envisioned as a single- or dual-purpose reactor for electricity and hydrogen generation. The concept has average coolant temperatures above 9000C and operational fuel temperatures above 12500C. The concept provides the potential for increased energy conversion efficiency and for high-temperature process heat application in addition to power generation. While all the High Temperature Gas Cooled Reactor (HTGR) concepts have sufficiently high temperature to support process heat applications, such as coal gasification, desalination or cogenerative processes, the VHTR’s higher temperatures allow broader applications, including thermochemical hydrogen production. However, the very high temperatures of this reactor concept can be detrimental to safety if a loss-of-coolant accident (LOCA) occurs. Following the loss of coolant through the break and coolant depressurization, air will enter the core through the break by molecular diffusion and ultimately by natural convection, leading to oxidation of the in-core graphite structure and fuel. The oxidation will accelerate heatup of the reactor core and the release of toxic gasses (CO and CO2) and fission products. Thus, without any effective countermeasures, a pipe break may lead to significant fuel damage and fission product release. Prior to the start of this Korean/United States collaboration, no computer codes were available that had been sufficiently developed and validated to reliably simulate a LOCA in the VHTR. Therefore, we have worked for the past three years on developing and validating advanced computational methods for simulating LOCAs in a VHTR. Research Objectives As described above, a pipe break may lead to significant fuel damage and fission product release in the VHTR. The objectives of this Korean/United States collaboration were to develop and validate advanced computational methods for VHTR safety analysis. The methods that have been developed are now

  12. Gas-cooled fast breeder reactor. Quarterly progress report, February 1-April 30, 1980

    SciTech Connect

    Not Available

    1980-05-01

    Information is presented concerning the reactor vessel; reactivity control mechanisms and instrumentation; reactor internals; primary coolant circuits;core auxiliary cooling system; reactor core; systems engineering; and reactor safety and reliability;

  13. Hypothetical accident scenario analyses for a 250-MW(T) modular high temperature gas-cooled reactor

    SciTech Connect

    Harrington, R.M.; Ball, S.J.; Cleveland, J.C.

    1985-01-01

    This paper describes calculations performed at Oak Ridge National Laboratory, under the auspices of the U.S. Nuclear Regulatory Commission's HTGR Safety Research Program, to characterize the inherent safety of a 250-MW(t), 100-MW(e), pebble bed modular high temperature gas-cooled reactor (HTGR) design with vertical in-line arrangement (i.e. upflow core with steam generators directly above the core). A variety of postulated accident sequences involving combinations of loss of forced helium primary coolant circulation, loss of primary coolant pressurization, and loss of heat sink were studied and are discussed. Comparisons of calculated and measured response for a flow reduction test on the German reactor AVR are also presented.

  14. Neutron flux measurements in the side-core region of Hunterston B advanced gas-cooled reactor

    SciTech Connect

    Allen, D.A.; Shaw, S.E.; Huggon, A.P.; Steadman, R.J.; Thornton, D.A.; Whiley, G.S.

    2011-07-01

    The core restraints of advanced gas-cooled reactors are important structural components that are required to maintain the geometric integrity of the cores. A review of neutron dosimetry for the sister stations Hunterston B and Hinkley Point B identified that earlier conservative assessments predicted high thermal neutron dose rates to key components of the restraint structure (the restraint rod welds), with the implication that some of them may be predicted to fail during a seismic event. A revised assessment was therefore undertaken [Thornton, D. A., Allen, D. A., Tyrrell, R. J., Meese, T. C., Huggon, A.P., Whiley, G. S., and Mossop, J. R., 'A Dosimetry Assessment for the Core Restraint of an Advanced Gas Cooled Reactor,' Proceedings of the 13. International Symposium on Reactor Dosimetry (ISRD-13, May 2008), World Scientific, River Edge, NJ, 2009, W. Voorbraak, L. Debarberis, and P. D'hondt, Eds., pp. 679-687] using a detailed 3D model and a Monte Carlo radiation transport program, MCBEND. This reassessment resulted in more realistic fast and thermal neutron dose recommendations, the latter in particular being much lower than had been thought previously. It is now desirable to improve confidence in these predictions by providing direct validation of the MCBEND model through the use of neutron flux measurements. This paper describes the programme of work being undertaken to deploy two neutron flux measurement 'stringers' within the side-core region of one of the Hunterston B reactors for the purpose of validating the MCBEND model. The design of the stringers and the determination of the preferred deployment locations have been informed by the use of detailed MCBEND flux calculations. These computational studies represent a rare opportunity to design a flux measurement beforehand, with the clear intention of minimising the anticipated uncertainties and obtaining measurements that are known to be representative of the neutron fields to which the vulnerable steel

  15. Development of Safety Analysis Codes and Experimental Validation for a Very High Temperature Gas-Cooled Reactor

    SciTech Connect

    Chang, H. Oh, PhD; Cliff Davis; Richard Moore

    2004-11-01

    The very high temperature gas-cooled reactors (VHTGRs) are those concepts that have average coolant temperatures above 900 degrees C or operational fuel temperatures above 1250 degrees C. These concepts provide the potential for increased energy conversion efficiency and for high-temperature process heat application in addition to power generation and nuclear hydrogen generation. While all the High Temperature Gas Cooled Reactor (HTGR) concepts have sufficiently high temperatures to support process heat applications, such as desalination and cogeneration, the VHTGR's higher temperatures are suitable for particular applications such as thermochemical hydrogen production. However, the high temperature operation can be detrimental to safety following a loss-of-coolant accident (LOCA) initiated by pipe breaks caused by seismic or other events. Following the loss of coolant through the break and coolant depressurization, air from the containment will enter the core by molecular diffusion and ultimately by natural convection, leading to oxidation of the in-core graphite structures and fuel. The oxidation will release heat and accelerate the heatup of the reactor core. Thus, without any effective countermeasures, a pipe break may lead to significant fuel damage and fission product release. The Idaho National Engineering and Environmental Laboratory (INEEL) has investigated this event for the past three years for the HTGR. However, the computer codes used, and in fact none of the world's computer codes, have been sufficiently developed and validated to reliably predict this event. New code development, improvement of the existing codes, and experimental validation are imperative to narrow the uncertaninty in the predictions of this type of accident. The objectives of this Korean/United States collaboration are to develop advanced computational methods for VHTGR safety analysis codes and to validate these computer codes.

  16. Gas-cooled reactor programs. Fuel-management positioning and accounting module: FUELMANG Version V1. 11, September 1981

    SciTech Connect

    Medlin, T.W.; Hill, K.L.; Johnson, G.L.; Jones, J.E.; Vondy, D.R.

    1982-01-01

    This report documents the code module FUELMANG for fuel management of a reactor. This code may be used to position fuel during the calculation of a reactor history, maintain a mass balance history of the fuel movement, and calculate the unit fuel cycle component of the electrical generation cost. In addition to handling fixed feed fuel without recycle, provision has been made for fuel recycle with various options applied to the recycled fuel. A continuous fueling option is also available with the code. A major edit produced by the code is a detailed summary of the mass balance history of the reactor and a fuel cost analysis of that mass balance history. This code is incorporated in the system containing the VENTURE diffusion theory neutronics code for routine use. Fuel movement according to prescribed instructions is performed without the access of additional user input data during the calculation of a reactor operating history. Local application has been primarily for analysis of the performance of gas-cooled thermal reactor core concepts.

  17. Evaluation of Indirect Combined Cycle in Very High Temperature Gas--Cooled Reactor

    SciTech Connect

    Chang Oh; Robert Barner; Cliff Davis; Steven Sherman; Paul Pickard

    2006-10-01

    The U.S. Department of Energy and Idaho National Laboratory are developing a very high temperature reactor to serve as a demonstration of state-of-the-art nuclear technology. The purpose of the demonstration is twofold: (a) efficient, low-cost energy generation and (b) hydrogen production. Although a next-generation plant could be developed as a single-purpose facility, early designs are expected to be dual purpose, as assumed here. A dual-purpose design with a combined cycle of a Brayton top cycle and a bottom Rankine cycle was investigated. An intermediate heat transport loop for transporting heat to a hydrogen production plant was used. Helium, CO2, and a helium-nitrogen mixture were studied to determine the best working fluid in terms of the cycle efficiency. The relative component sizes were estimated for the different working fluids to provide an indication of the relative capital costs. The relative size of the turbomachinery was measured by comparing the power input/output of the component. For heat exchangers the volume was computed and compared. Parametric studies away from the baseline values of the cycle were performed to determine the effects of varying conditions in the cycle. This gives some insight into the sensitivity of the cycle to various operating conditions as well as trade-offs between efficiency and component size. Parametric studies were carried out on reactor outlet temperature, mass flow, pressure, and turbine cooling.

  18. The Addition of Noncondensable Gases into RELAP5-3D for Analysis of High Temperature Gas-Cooled Reactors

    SciTech Connect

    C. B. Davis; C. H. Oh

    2003-08-01

    Oxygen, carbon dioxide, and carbon monoxide have been added to the RELAP5-3D computer code as noncondensable gases to support analysis of high temperature gas-cooled reactors. Models of these gases are required to simulate the effects of air ingress on graphite oxidation following a loss-of-coolant accident. Correlations were developed for specific internal energy, thermal conductivity, and viscosity for each gas at temperatures up to 3000 K. The existing model for internal energy (a quadratic function of temperature) was not sufficiently accurate at these high temperatures and was replaced by a more general, fourth-order polynomial. The maximum deviation between the correlations and the underlying data was 2.2% for the specific internal energy and 7% for the specific heat capacity at constant volume. The maximum deviation in the transport properties was 4% for oxygen and carbon monoxide and 12% for carbon dioxide.

  19. High cycle fatigue behavior of Incoloy 800H in a simulated high-temperature gas-cooled reactor helium environment

    SciTech Connect

    Soo, P.; Sabatini, R.L.; Epel, L.G.; Hare, J.R. Sr.

    1980-01-01

    The current study was an attempt to evaluate the high cycle fatigue strength of Incoloy 800H in a High-Temperature Gas-Cooled Reactor helium environment containing significant quantities of moisture. As-heat-treated and thermally-aged materials were tested to determine the effects of long term corrosion in the helium test gas. Results from in-helium tests were compared to those from a standard air environment. It was found that the mechanisms of fatigue failure were very complex and involved recovery/recrystallization of the surface ground layer on the specimens, sensitization, hardness changes, oxide scale integrity, and oxidation at the tips of propagation cracks. For certain situations a corrosion-fatigue process seems to be controlling. However, for the helium environment studied, there was usually no aging or test condition for which air gave a higher fatigue strength.

  20. Changes in the mechanical properties of Hastelloy X when exposed to a typical gas-cooled reactor environment

    SciTech Connect

    McCoy, H.E. Jr.

    1981-01-01

    The helium used in a gas-cooled reactor will contain small amounts of H/sub 2/, CO, CH/sub 4/, H/sub 2/O, and N/sub 2/ which can lead to oxidation and carburization/decarburization of structural materials. Long-term creep tests were run on Hastelloy X to 30,000 h at 649 to 871/sup 0/C. It was found that extensive carburization occurred, the minimum creep rate and time to rupture were equal in air and impure helium environments, and the fracture strain was less in helium than in air. Thermal exposure in the temperature range of 538 to 871/sup 0/C resulted in the reduction of ductility in impact and tensile tests at ambient temperature, and this reduction was greater when the exposure was in impure helium rather than in air. A modified alloy with lower chromium and 2% titanium resisted carburization.

  1. MORECA: A computer code for simulating modular high-temperature gas-cooled reactor core heatup accidents

    SciTech Connect

    Ball, S.J. )

    1991-10-01

    The design features of the modular high-temperature gas-cooled reactor (MHTGR) have the potential to make it essentially invulnerable to damage from postulated core heatup accidents. This report describes the ORNL MORECA code, which was developed for analyzing postulated long-term core heatup scenarios for which active cooling systems used to remove afterheat following the accidents can be assumed to the unavailable. Simulations of long-term loss-of-forced-convection accidents, both with and without depressurization of the primary coolant, have shown that maximum core temperatures stay below the point at which any significant fuel failures and fission product releases are expected. Sensitivity studies also have been done to determine the effects of errors in the predictions due both to uncertainties in the modeling and to the assumptions about operational parameters. MORECA models the US Department of Energy reference design of a standard MHTGR.

  2. Single Channel Testing for Characterization of the Direct Gas Cooled Reactor and the SAFE-100 Heat Exchanger

    SciTech Connect

    Bragg-Sitton, S.M.; Kapernick, R.; Godfroy, T.J.

    2004-02-04

    Experiments have been designed to characterize the coolant gas flow in two space reactor concepts that are currently under investigation by NASA Marshall Space Flight Center and Los Alamos National Laboratory: the direct-drive gas-cooled reactor (DDG) and the SAFE-100 heatpipe-cooled reactor (HPR). For the DDG concept, initial tests have been completed to measure pressure drop versus flow rate for a prototypic core flow channel, with gas exiting to atmospheric pressure conditions. The experimental results of the completed DDG tests presented in this paper validate the predicted results to within a reasonable margin of error. These tests have resulted in a re-design of the flow annulus to reduce the pressure drop. Subsequent tests will be conducted with the re-designed flow channel and with the outlet pressure held at 150 psi (1 MPa). Design of a similar test for a nominal flow channel in the HPR heat exchanger (HPR-HX) has been completed and hardware is currently being assembled for testing this channel at 150 psi. When completed, these test programs will provide the data necessary to validate calculated flow performance for these reactor concepts (pressure drop and film temperature rise)

  3. Application of Simulated Reactivity Feedback in Nonnuclear Testing of a Direct-Drive Gas-Cooled Reactor

    NASA Technical Reports Server (NTRS)

    Bragg-Sitton, S. M.; Webster, K. L.

    2007-01-01

    Nonnuclear testing can be a valuable tool in the development of an in-space nuclear power or propulsion system. In a nonnuclear test facility, electric heaters are used to simulate heat from nuclear fuel. Standard testing allows one to fully assess thermal, heat transfer, and stress related attributes of a given system but fails to demonstrate the dynamic response that would be present in an integrated, fueled reactor system. The integration of thermal hydraulic hardware tests with simulated neutronic response provides a bridge between electrically heated testing and full nuclear testing. By implementing a neutronic response model to simulate the dynamic response that would be expected in a fueled reactor system, one can better understand system integration issues, characterize integrated system response times and response and response characteristics, and assess potential design improvements with a relatively small fiscal investment. Initial system dynamic response testing was demonstrated on the integrated SAFE 100a heat pipe cooled, electrically heated reactor and heat exchanger hardware. This Technical Memorandum discusses the status of the planned dynamic test methodology for implementation in the direct-drive gas-cooled reactor testing and assesses the additional instrumentation needed to implement high-fidelity dynamic testing.

  4. USA/FRG umbrella agreement for cooperation in gas-cooled reactor development: Subprogram plan for cooperation in AVR [Arbeitsgemeinschaft Versuchs Reaktor] Test Program

    SciTech Connect

    Cleveland, J C; Baxter, A M; Krueger, K

    1988-05-01

    This subprogram plan describes cooperative work related to the AVR Test Program. This cooperative work is being carried out under the USA/FRG Implementing Agreement for Cooperation in Gas-Cooled Reactor Development. Earlier cooperation in this area was conducted under the Project Work Statement (PWS) for the ORNL/KFA/AVR Cooperative Effort in HTR Physics, Performance and Safety. The purpose of the cooperation is to obtain experimental information from the AVR relevant to the performance and safety of modular gas-cooled reactors, and to compare measured results with predictions of analytical tools. The scope of the cooperation involves examining the behavior of the AVR under various planned test conditions pertinent to modular gas-cooled reactor performance. AVR test data will be utilized to help validate computational methods used in the areas of reactor physics, fission and activation product transport and plant transient response, and to help understand modular gas-cooled reactor safety behavior (e.g., fission product behavior, dust behavior, and thermofluid dynamic behavior).

  5. POWER CYCLE AND STRESS ANALYSES FOR HIGH TEMPERATURE GAS-COOLED REACTOR

    SciTech Connect

    Oh, Chang H; Davis, Cliff; Hawkes, Brian D; Sherman, Steven R

    2007-05-01

    The Department of Energy and the Idaho National Laboratory are developing a Next Generation Nuclear Plant (NGNP) to serve as a demonstration of state-of-the-art nuclear technology. The purpose of the demonstration is two fold 1) efficient low cost energy generation and 2) hydrogen production. Although a next generation plant could be developed as a single-purpose facility, early designs are expected to be dual-purpose. While hydrogen production and advanced energy cycles are still in its early stages of development, research towards coupling a high temperature reactor, electrical generation and hydrogen production is under way. Many aspects of the NGNP must be researched and developed in order to make recommendations on the final design of the plant. Parameters such as working conditions, cycle components, working fluids, and power conversion unit configurations must be understood. Three configurations of the power conversion unit were demonstrated in this study. A three-shaft design with three turbines and four compressors, a combined cycle with a Brayton top cycle and a Rankine bottoming cycle, and a reheated cycle with three stages of reheat were investigated. An intermediate heat transport loop for transporting process heat to a High Temperature Steam Electrolysis (HTSE) hydrogen production plant was used. Helium, CO2, and a 80% nitrogen, 20% helium mixture (by weight) were studied to determine the best working fluid in terms cycle efficiency and development cost. In each of these configurations the relative component size were estimated for the different working fluids. The relative size of the turbomachinery was measured by comparing the power input/output of the component. For heat exchangers the volume was computed and compared. Parametric studies away from the baseline values of the three-shaft and combined cycles were performed to determine the effect of varying conditions in the cycle. This gives some insight into the sensitivity of these cycles to

  6. Development Program of IS Process Pilot Test Plant for Hydrogen Production With High-Temperature Gas-Cooled Reactor

    SciTech Connect

    Jin Iwatsuki; Atsuhiko Terada; Hiroyuki Noguchi; Yoshiyuki Imai; Masanori Ijichi; Akihiro Kanagawa; Hiroyuki Ota; Shinji Kubo; Kaoru Onuki; Ryutaro Hino

    2006-07-01

    At the present time, we are alarmed by depletion of fossil energy and effects on global environment such as acid rain and global warming, because our lives depend still heavily on fossil energy. So, it is universally recognized that hydrogen is one of the best energy media and its demand will be increased greatly in the near future. In Japan, the Basic Plan for Energy Supply and Demand based on the Basic Law on Energy Policy Making was decided upon by the Cabinet on 6 October, 2003. In the plan, efforts for hydrogen energy utilization were expressed as follows; hydrogen is a clean energy carrier without carbon dioxide (CO{sub 2}) emission, and commercialization of hydrogen production system using nuclear, solar and biomass, not fossil fuels, is desired. However, it is necessary to develop suitable technology to produce hydrogen without CO{sub 2} emission from a view point of global environmental protection, since little hydrogen exists naturally. Hydrogen production from water using nuclear energy, especially the high-temperature gas-cooled reactor (HTGR), is one of the most attractive solutions for the environmental issue, because HTGR hydrogen production by water splitting methods such as a thermochemical iodine-sulfur (IS) process has a high possibility to produce hydrogen effectively and economically. The Japan Atomic Energy Agency (JAEA) has been conducting the HTTR (High-Temperature Engineering Test Reactor) project from the view to establishing technology base on HTGR and also on the IS process. In the IS process, raw material, water, is to be reacted with iodine (I{sub 2}) and sulfur dioxide (SO{sub 2}) to produce hydrogen iodide (HI) and sulfuric acid (H{sub 2}SO{sub 4}), the so-called Bunsen reaction, which are then decomposed endo-thermically to produce hydrogen (H{sub 2}) and oxygen (O{sub 2}), respectively. Iodine and sulfur dioxide produced in the decomposition reactions can be used again as the reactants in the Bunsen reaction. In JAEA, continuous

  7. Nuclear design of small-sized high temperature gas-cooled reactor for developing countries

    SciTech Connect

    Goto, M.; Seki, Y.; Inaba, Y.; Ohashi, H.; Sato, H.; Fukaya, Y.; Tachibana, Y.

    2012-07-01

    Japan Atomic Energy Agency (JAEA) has started a conceptual design of a small-sized HTGR with 50 MW thermal power (HTR50S), which is a first-of-a-kind commercial or demonstration plant of a small-sized HTGR to be deployed in developing countries such as Kazakhstan in the 2020's. The nuclear design of the HTR50S is performed by upgrading the proven technology of the High Temperature Engineering Test Reactor (HTTR) to reduce the cost for the construction. In the HTTR design, twelve kinds of fuel enrichment was used to optimize the power distribution, which is required to make the maximum fuel temperature below the thermal limitation during the burn-up period. However, manufacture of many kinds of fuel enrichment causes increase of the construction cost. To solve this problem, the present study challenges the nuclear design by reducing the number of fuel enrichment to as few as possible. The nuclear calculations were performed with SRAC code system whose validity was proven by the HTTR burn-up data. The calculation results suggested that the optimization of the power distribution was reasonably achieved and the maximum fuel temperature was kept below the limitation by using three kinds of fuel enrichment. (authors)

  8. Nuclear Island Engineering MHTGR [Modular High-Temperature Gas-cooled Reactor] preliminary and final designs. Technical progress report, December 12, 1988--September 30, 1989

    SciTech Connect

    1989-12-01

    This report summarizes the Department of Energy (DOE)-funded work performed by General Atomics (GA) under the Nuclear Island Engineering (NIE)-Modular High-Temperature Gas-cooled Reactor (MHTGR) Preliminary and Final Designs Contract DE-AC03-89SF17885 for the period December 12, 1988 through September 30, 1989. This reporting period is the first (partial) fiscal year of the 5-year contract performance period. The objective of DOE`s MHTGR program is to advance the design from the conceptual design phase into preliminary design and then on to final design in support of the Nuclear Regulatory Commission`s (NRC`s) design review and approval of the MHTGR Design Team, is focused on the Nuclear Island portion of the technology and design, primarily in the areas of the reactor and internals, fuel characteristics and fuel fabrication, helium services systems, reactor protection, shutdown cooling, circulator design, and refueling system. Maintenance and implementation of the functional methodology, plant-level analysis, support for probabilistic risk assessment, quality assurance, operations, and reliability/availability assessments are included in GA`s scope of work.

  9. Helium heater design for the helium direct cycle component test facility. [for gas-cooled nuclear reactor power plant

    NASA Technical Reports Server (NTRS)

    Larson, V. R.; Gunn, S. V.; Lee, J. C.

    1975-01-01

    The paper describes a helium heater to be used to conduct non-nuclear demonstration tests of the complete power conversion loop for a direct-cycle gas-cooled nuclear reactor power plant. Requirements for the heater include: heating the helium to a 1500 F temperature, operating at a 1000 psia helium pressure, providing a thermal response capability and helium volume similar to that of the nuclear reactor, and a total heater system helium pressure drop of not more than 15 psi. The unique compact heater system design proposed consists of 18 heater modules; air preheaters, compressors, and compressor drive systems; an integral control system; piping; and auxiliary equipment. The heater modules incorporate the dual-concentric-tube 'Variflux' heat exchanger design which provides a controlled heat flux along the entire length of the tube element. The heater design as proposed will meet all system requirements. The heater uses pressurized combustion (50 psia) to provide intensive heat transfer, and to minimize furnace volume and heat storage mass.

  10. Reanalysis of the Gas-cooled fast reactor experiments at the zero power facility Proteus - Spectral indices

    NASA Astrophysics Data System (ADS)

    Perret, G.; Pattupara, R. M.; Girardin, G.; Chawla, R.

    2013-03-01

    PROTEUS is a zero power reactor at the Paul Scherrer Institute which has been employed during the 1970's to study experimentally the physics of the gas-cooled fast reactor. Reaction rate distributions, flux spectrum and reactivity effects have been measured in several configurations featuring PuO2/UO2 fuel, absorbers, large iron shields, and thorium oxide and thorium metal fuel either distributed quasihomogeneously in the reference PuO2/UO2 lattice or introduced in the form of radial and axial blanket zones. This papers focus on the spectral indices - including fission and capture in 232Th and 237Np - measured in the reference PuO2/UO2 lattices and their predictions with an MCNPX model specially developed for the PROTEUS-GCFR core. Predictions were obtained with JEFF-3.1 and -3.11, ENDF/B-VII.0 and VII.1, and JENDL-3.3 and -4.0. A general good agreement was demonstrated. The ratio of 232Th fission to 239Pu fission, however, was under-predicted by 8.7±2.1% and 6.5±2.1% using ENDF/B-VII.0 and VII.1, respectively. Finally, the capture rates in 237Np tended to be underpredicted by the JEFF and JENDL libraries, although the new cross section in JEFF-3.1.1 slightly improved the 237Np capture to 239Pu fission results (3.4±2.4%).

  11. Effects of Burnup and Temperature Distributions to CANDLE Burnup of Block-Type High Temperature Gas Cooled Reactor

    SciTech Connect

    Yasunori Ohoka; Ismile; Hiroshi Sekimoto

    2004-07-01

    The CANDLE burnup strategy is a new reactor burnup concept, where the distributions of fuel nuclide densities, neutron flux, and power density move with the same constant speed along the core axis from bottom to top or from top to bottom of the core and without any change in their shapes. It can be applied easily to the block-type high temperature gas cooled reactor using an appropriate burnable poison mixed with uranium oxide fuel. In the present study, the burnup distribution and the temperature distribution in the core are investigated and their effects on the CANDLE burnup core characteristics are studied. In this study, the natural gadolinium is used as the burnable poison. With the fuel enrichment of 15%, the natural gadolinium concentration of 3.0% and the fuel pin pitch of 6.6 cm, the CANDLE burnup is realized with the burning region moving speed of 29 cm/year and the axial half width of power density distribution of 1.5 m for uniform group constant case at 900 K. When the effect of nuclide change by burnup is considered, the burning region speed becomes 25 cm/year and the axial half-width of power density distribution becomes 1.25 m. When the temperature distributions effect is considered, the effects on the core characteristics are smaller than the burnup distribution effect. The maximum fuel temperature of the parallel flow case is higher than the counter flow case. (authors)

  12. On0Line Fuel Failure Monitor for Fuel Testing and Monitoring of Gas Cooled Very High Temperature Reactor

    SciTech Connect

    Ayman I. Hawari; Mohamed A. Bourham

    2010-04-22

    IVery High Temperature Reactors (VHTR) utilize the TRISO microsphere as the fundamental fuel unit in the core. The TRISO microsphere (~ 1- mm diameter) is composed of a UO2 kernel surrounded by a porous pyrolytic graphite buffer, an inner pyrolytic graphite layer, a silicon carbide (SiC) coating, and an outer pyrolytic graphite layer. The U-235 enrichment of the fuel is expected to range from 4% – 10% (higher enrichments are also being considered). The layer/coating system that surrounds the UO2 kernel acts as the containment and main barrier against the environmental release of radioactivity. To understand better the behavior of this fuel under in-core conditions (e.g., high temperature, intense fast neutron flux, etc.), the US Department of Energy (DOE) is launching a fuel testing program that will take place at the Advanced Test Reactor (ATR) located at Idaho National Laboratory (INL). During this project North Carolina State University (NCSU) researchers will collaborate with INL staff for establishing an optimized system for fuel monitoring for the ATR tests. In addition, it is expected that the developed system and methods will be of general use for fuel failure monitoring in gas cooled VHTRs.

  13. Particle-bed gas-cooled fast reactor (PB-GCFR) design. Project final technical report (Sept 2001 - Aug 2003).

    SciTech Connect

    Taiwo, T. A.; Wei, T. Y. C.; Feldman, E. E.; Hoffman, E. A.; Fatone, M.; Holland, J. W.; Prokofiev, I. G.; Yang, W. S.; Palmiotti, G.; Hill, R. N.; Todosow, M.; Salvatores, M.; Gandini, A.

    2003-10-27

    The objective of this project is to develop a conceptual design of a particle-bed, gas-cooled fast reactor (PB-GCFR) core that meets the advanced reactor concept and enhanced proliferation-resistant goals of the US Department of Energy's NERI program. The key innovation of this project is the application of a fast neutron spectrum environment to enhance both the passive safety and transmutation characteristics of the advanced particle-bed and pebble-bed reactor designs. The PB-GCFR design is expected to produce a high-efficiency system with a low unit cost. It is anticipated that the fast neutron spectrum would permit small-sized units ({approx} 150 MWe) that can be built quickly and packaged into modular units, and whose production can be readily expanded as the demand grows. Such a system could be deployed globally. The goals of this two-year project are as follows: (1) design a reactor core that meets the future needs of the nuclear industry, by being passively safe with reduced need for engineered safety systems. This will entail an innovative core design incorporating new fuel form and type; (2) employ a proliferation-resistant fuel design and fuel cycle. This will be supported by a long-life core design that is refueled infrequently, and hence, reduces the potential for fuel diversion; (3) incorporate design features that permit use of the system as an efficient transmuter that could be employed for burning separated plutonium fuel or recycled LWR transuranic fuel, should the need arise; and (4) evaluate the fuel cycle for waste minimization and for the possibility of direct fuel disposal. The application of particle-bed fuel provides the promise of extremely high burnup and fission-product protection barriers that may permit direct disposal.

  14. Hybrid sulfur cycle operation for high-temperature gas-cooled reactors

    SciTech Connect

    Gorensek, Maximilian B

    2015-02-17

    A hybrid sulfur (HyS) cycle process for the production of hydrogen is provided. The process uses a proton exchange membrane (PEM) SO.sub.2-depolarized electrolyzer (SDE) for the low-temperature, electrochemical reaction step and a bayonet reactor for the high-temperature decomposition step The process can be operated at lower temperature and pressure ranges while still providing an overall energy efficient cycle process.

  15. CFD Model Development and validation for High Temperature Gas Cooled Reactor Cavity Cooling System (RCCS) Applications

    SciTech Connect

    Hassan, Yassin; Corradini, Michael; Tokuhiro, Akira; Wei, Thomas Y.C.

    2014-07-14

    The Reactor Cavity Cooling Systems (RCCS) is a passive safety system that will be incorporated in the VTHR design. The system was designed to remove the heat from the reactor cavity and maintain the temperature of structures and concrete walls under desired limits during normal operation (steady-state) and accident scenarios. A small scale (1:23) water-cooled experimental facility was scaled, designed, and constructed in order to study the complex thermohydraulic phenomena taking place in the RCCS during steady-state and transient conditions. The facility represents a portion of the reactor vessel with nine stainless steel coolant risers and utilizes water as coolant. The facility was equipped with instrumentation to measure temperatures and flow rates and a general verification was completed during the shakedown. A model of the experimental facility was prepared using RELAP5-3D and simulations were performed to validate the scaling procedure. The experimental data produced during the steady-state run were compared with the simulation results obtained using RELAP5-3D. The overall behavior of the facility met the expectations. The facility capabilities were confirmed to be very promising in performing additional experimental tests, including flow visualization, and produce data for code validation.

  16. A History of Dosimetry for the Advanced Gas-cooled Reactors

    NASA Astrophysics Data System (ADS)

    Shaw, Simon; Thornton, Dean

    2016-02-01

    This paper presents a summary of the methods used in the first ˜40 years of AGR neutron dosimetry and nuclear heating calculations, and the influence of the earlier Magnox reactor dosimetry programme. While the current state-of-the-art Monte Carlo methods are extremely powerful they still require very careful consideration of the quality of the input data, nuclear data validation and variance reduction techniques; in particular, this paper examines the difficulties in assuring the adequate convergence of calculations when Monte Carlo acceleration is applied in the presence of significant streaming paths through attenuating or scattering media.

  17. Intermediate Heat Transfer Loop Study for High Temperature Gas-Cooled Reactor

    SciTech Connect

    C. H. Oh; C. Davis; S. Sherman

    2008-08-01

    A number of possible configurations for a system that transfers heat between the nuclear reactor and the hydrogen and/or electrical generation plants were identified. These configurations included both direct and indirect cycles for the production of electricity. Both helium and liquid salts were considered as the working fluid in the intermediate heat transport loop. Methods were developed to perform thermal-hydraulic and cycleefficiency evaluations of the different configurations and coolants. The thermal-hydraulic evaluations estimated the sizes of various components in the intermediate heat transport loop for the different configurations. This paper also includes a portion of stress analyses performed on pipe configurations.

  18. Fuel Summary for Peach Bottom Unit 1 High-Temperature Gas-Cooled Reactor Cores 1 and 2

    SciTech Connect

    Karel I. Kingrey

    2003-04-01

    This fuel summary report contains background and summary information for the Peach Bottom Unit 1, High-Temperature, Gas-Cooled Reactor Cores 1 and 2. This report contains detailed information about the fuel in the two cores, the Peach Bottom Unit 1 operating history, nuclear parameters, physical and chemical characteristics, and shipping and storage canister related data. The data in this document have been compiled from a large number of sources and are not qualified beyond the qualification of the source documents. This report is intended to provide an overview of the existing data pertaining to spent fuel management and point to pertinent reference source documents. For design applications, the original source documentation must be used. While all referenced sources are available as records or controlled documents at the Idaho National Engineering and Environmental Laboratory (INEEL), some of the sources were marked as informal or draft reports. This is noted where applicable. In some instances, source documents are not consistent. Where they are known, this document identifies those instances and provides clarification where possible. However, as stated above, this document has not been independently qualified and such clarifications are only included for information purposes. Some of the information in this summary is available in multiple source documents. An effort has been made to clearly identify at least one record document as the source for the information included in this report.

  19. Maintaining a Critical Spectra within Monteburns for a Gas-Cooled Reactor Array by Way of Control Rod Manipulation

    DOE PAGESBeta

    Adigun, Babatunde John; Fensin, Michael Lorne; Galloway, Jack D.; Trellue, Holly Renee

    2016-06-07

    Our burnup study examined the effect of a predicted critical control rod position on the nuclide predictability of several axial and radial locations within a 4×4 graphite moderated gas cooled reactor fuel cluster geometry. To achieve this, a control rod position estimator (CRPE) tool was developed within the framework of the linkage code Monteburns between the transport code MCNP and depletion code CINDER90, and four methodologies were proposed within the tool for maintaining criticality. Two of the proposed methods used an inverse multiplication approach - where the amount of fissile material in a set configuration is slowly altered until criticalitymore » is attained - in estimating the critical control rod position. Another method carried out several MCNP criticality calculations at different control rod positions, then used a linear fit to estimate the critical rod position. The final method used a second-order polynomial fit of several MCNP criticality calculations at different control rod positions to guess the critical rod position. The results showed that consistency in prediction of power densities as well as uranium and plutonium isotopics was mutual among methods within the CRPE tool that predicted critical position consistently well. Finall, while the CRPE tool is currently limited to manipulating a single control rod, future work could be geared toward implementing additional criticality search methodologies along with additional features.« less

  20. Studies of the Deteriorated Turbulent Heat Transfer Regime for the Gas-Cooled Fast Reactor Decay Heat Removal System

    SciTech Connect

    Jeong Ik Lee; Hejzlar, Pavel; Kazimi, Mujid S.; Saha, Pradip

    2006-07-01

    Increased reliance on passive emergency cooling using natural circulation of gas at elevated pressure is one of the major goals for the Gas-cooled Fast Reactor (GFR). Since GFR cores have high power density and low thermal inertia, the decay heat removal (DHR) in depressurization accidents is a key challenge. Furthermore, due to its high surface heat flux and low velocities under natural circulation in any post-LOCA scenario, three effects impair the capability of turbulent gas flow to remove heat from the GFR core, namely: (1) Acceleration effect (2) Buoyancy effect (3) Properties variation. This paper reviews previous work on heat transfer mechanisms and flow characteristics of the Deteriorated Turbulent Heat Transfer (DTHT) regime. It is shown that the GFR's DHR system has a potential for operating in the DTHT regime by performing a simple analysis. A description of the MIT/INL experimental facility designed and built to investigate the DTHT regime is provided together with the first test results. The first runs were performed in the forced convection regime to verify facility operation against well-established forced convection correlations. The results of the three runs at Reynolds numbers 6700, 8000 and 12800 showed good agreement with the Gnielinsky correlation [4], which is considered the best available heat transfer correlation in the forced convection regime and is valid for a large range of Reynolds and Prandtl numbers. However, even in the forced convection regime, the effect of heat transfer properties variation of the fluid was found to be still significant. (authors)

  1. High Temperature Gas-Cooled Reactors Lessons Learned Applicable to the Next Generation Nuclear Plant

    SciTech Connect

    J. M. Beck; L. F. Pincock

    2011-04-01

    The purpose of this report is to identify possible issues highlighted by these lessons learned that could apply to the NGNP in reducing technical risks commensurate with the current phase of design. Some of the lessons learned have been applied to the NGNP and documented in the Preconceptual Design Report. These are addressed in the background section of this document and include, for example, the decision to use TRISO fuel rather than BISO fuel used in the Peach Bottom reactor; the use of a reactor pressure vessel rather than prestressed concrete found in Fort St. Vrain; and the use of helium as a primary coolant rather than CO2. Other lessons learned, 68 in total, are documented in Sections 2 through 6 and will be applied, as appropriate, in advancing phases of design. The lessons learned are derived from both negative and positive outcomes from prior HTGR experiences. Lessons learned are grouped according to the plant, areas, systems, subsystems, and components defined in the NGNP Preconceptual Design Report, and subsequent NGNP project documents.

  2. Scaling Studies for High Temperature Test Facility and Modular High Temperature Gas-Cooled Reactor

    SciTech Connect

    Richard R. Schult; Paul D. Bayless; Richard W. Johnson; James R. Wolf; Brian Woods

    2012-02-01

    The Oregon State University (OSU) High Temperature Test Facility (HTTF) is an integral experimental facility that will be constructed on the OSU campus in Corvallis, Oregon. The HTTF project was initiated, by the U.S. Nuclear Regulatory Commission (NRC), on September 5, 2008 as Task 4 of the 5-year High Temperature Gas Reactor Cooperative Agreement via NRC Contract 04-08-138. Until August, 2010, when a DOE contract was initiated to fund additional capabilities for the HTTF project, all of the funding support for the HTTF was provided by the NRC via their cooperative agreement. The U.S. Department of Energy (DOE) began their involvement with the HTTF project in late 2009 via the Next Generation Nuclear Plant (NGNP) project. Because the NRC's interests in HTTF experiments were only centered on the depressurized conduction cooldown (DCC) scenario, NGNP involvement focused on expanding the experimental envelope of the HTTF to include steady-state operations and also the pressurized conduction cooldown (PCC).

  3. High-Temperature Gas-Cooled Reactor Steam Cycle/Cogeneration Lead Project strategy plan

    SciTech Connect

    1982-03-01

    The strategy for developing the HTGR system and introducing it into the energy marketplace is based on using the most developed technology path to establish a HTGR-Steam Cycle/Cogeneration (SC/C) Lead Project. Given the status of the HTGR-SC/C technology, a Lead Plant could be completed and operational by the mid 1990s. While there is remaining design and technology development that must be accomplished to fulfill technical and licensing requirements for a Lead Project commitment, the major barriers to the realization a HTGR-SC/C Lead Project are institutional in nature, e.g. Project organization and management, vendor/supplier development, cost/risk sharing between the public and private sector, and Project financing. These problems are further exacerbated by the overall pervading issues of economic and regulatory instability that presently confront the utility and nuclear industries. This document addresses the major institutional issues associated with the HTGR-SC/C Lead Project and provides a starting point for discussions between prospective Lead Project participants toward the realization of such a Project.

  4. Gas-Cooled Fast Breeder Reactor Preliminary Safety Information Document, Amendment 10. GCFR residual heat removal system criteria, design, and performance

    SciTech Connect

    Not Available

    1980-09-01

    This report presents a comprehensive set of safety design bases to support the conceptual design of the gas-cooled fast breeder reactor (GCFR) residual heat removal (RHR) systems. The report is structured to enable the Nuclear Regulatory Commission (NRC) to review and comment in the licensability of these design bases. This report also presents information concerning a specific plant design and its performance as an auxiliary part to assist the NRC in evaluating the safety design bases.

  5. Particle image velocimetry measurements in a representative gas-cooled prismatic reactor core model for the estimation of bypass flow

    NASA Astrophysics Data System (ADS)

    Conder, Thomas E.

    Core bypass flow is considered one of the largest contributors to uncertainty in fuel temperature within the Modular High Temperature Gas-cooled Reactor (MHTGR). It refers to the coolant that navigates through the interstitial regions between the graphite fuel blocks instead of traveling through the designated coolant channels. These flows are of concern because they reduce the desired flow rates in the coolant channels, and thereby have significant influence on the maximum fuel element and coolant exit temperatures. Thus, accurate prediction of the bypass flow is important because it directly impacts core temperature, influencing the life and efficiency of the reactor. An experiment was conducted at Idaho National Laboratory to quantify the flow in the coolant channels in relation to the interstitial gaps between fuel blocks in a representative MHTGR core. Particle Image Velocimetry (PIV) was used to measure the flow fields within a simplified model, which comprised of a stacked junction of six partial fuel blocks with nine coolant tubes, separated by a 6mm gap width. The model had three sections: The upper plenum, upper block, and lower block. Model components were fabricated from clear, fused quartz where optical access was needed for the PIV measurements. Measurements were taken in three streamwise locations: in the upper plenum and in the midsection of the large and small fuel blocks. A laser light sheet was oriented parallel to the flow, while velocity fields were measured at millimeter intervals across the width of the model, totaling 3,276 PIV measurement locations. Inlet conditions were varied to incorporate laminar, transition, and turbulent flows in the coolant channels---all which produced laminar flow in the gap and non-uniform, turbulent flow in the upper plenum. The images were analyzed to create vector maps, and the data was exported for processing and compilation. The bypass flow was estimated by calculating the flow rates through the coolant

  6. Finite Element Based Stress Analysis of Graphite Component in High Temperature Gas Cooled Reactor Core Using Linear and Nonlinear Irradiation Creep Models

    SciTech Connect

    Mohanty, Subhasish; Majumdar, Saurindranath

    2015-01-01

    Irradiation creep plays a major role in the structural integrity of the graphite components in high temperature gas cooled reactors. Finite element procedures combined with a suitable irradiation creep model can be used to simulate the time-integrated structural integrity of complex shapes, such as the reactor core graphite reflector and fuel bricks. In the present work a comparative study was undertaken to understand the effect of linear and nonlinear irradiation creep on results of finite element based stress analysis. Numerical results were generated through finite element simulations of a typical graphite reflector.

  7. Development and investigations of compact heat-transfer equipment for a nuclear power station equipped with a high-temperature gas-cooled reactor

    NASA Astrophysics Data System (ADS)

    Golovko, V. F.; Dmitrieva, I. V.; Kodochigov, N. G.; Bykh, O. A.

    2013-07-01

    The project of a nuclear power station the reactor coolant system of which includes a high-temperature gas-cooled reactor combined with a gas-turbine energy conversion unit supposes the use of high-efficient gas-cycle-based heat-transfer equipment. An analysis aimed at selecting the optimal heat-transfer surfaces is presented together with the results from their calculated and experimental investigation. The design features of recuperators arranged integrally with end and intermediate coolers and placed in a vertical sealed high-pressure vessel of limited sizes are considered.

  8. The effect of water vapor in the reactor cavity in a MHTGR (Modular High Temperature Gas Cooled Reactor) on the radiation heat transfer

    SciTech Connect

    Cappiello, M.W.

    1991-01-01

    Analyses have been completed to determine the effect of the presence of water vapor in the reactor cavity in a modular high temperature gas cooled reactor on the predicted radiation heat transfer from the vessel wall to the reactor cavity cooling system. The analysis involves the radiation heat transfer between two parallel plates with an absorbing and emitting medium present. Because the absorption in the water vapor is spectrally dependent, the solution is difficult even for simple geometries. A computer code was written to solve the problem using the Monte Carlo method. The code was validated against closed form solutions, and shows excellent agreement. In the analysis of the reactor problem, the results show that the reduction in heat transfer, and the consequent increase in the vessel wall temperature, can be significant. This effect can be cast in terms of a reduction in the wall surface emissivities from 0.8 to 0.59. Because of the insulating effect of the water vapor, increasing the gap distance between the vessel wall and the cooling system will cause the vessel wall temperature to increase further. Care should be taken in the design of the facility to minimize the gap distance and keep temperature increase within allowable limits. 3 refs., 6 figs., 4 tabs.

  9. Detailed Reaction Kinetics for CFD Modeling of Nuclear Fuel Pellet Coating for High Temperature Gas-Cooled Reactors

    SciTech Connect

    Battaglia, Francine

    2008-11-29

    The research project was related to the Advanced Fuel Cycle Initiative and was in direct alignment with advancing knowledge in the area of Nuclear Fuel Development related to the use of TRISO fuels for high-temperature reactors. The importance of properly coating nuclear fuel pellets received a renewed interest for the safe production of nuclear power to help meet the energy requirements of the United States. High-temperature gas-cooled nuclear reactors use fuel in the form of coated uranium particles, and it is the coating process that was of importance to this project. The coating process requires four coating layers to retain radioactive fission products from escaping into the environment. The first layer consists of porous carbon and serves as a buffer layer to attenuate the fission and accommodate the fuel kernel swelling. The second (inner) layer is of pyrocarbon and provides protection from fission products and supports the third layer, which is silicon carbide. The final (outer) layer is also pyrocarbon and provides a bonding surface and protective barrier for the entire pellet. The coating procedures for the silicon carbide and the outer pyrocarbon layers require knowledge of the detailed kinetics of the reaction processes in the gas phase and at the surfaces where the particles interact with the reactor walls. The intent of this project was to acquire detailed information on the reaction kinetics for the chemical vapor deposition (CVD) of carbon and silicon carbine on uranium fuel pellets, including the location of transition state structures, evaluation of the associated activation energies, and the use of these activation energies in the prediction of reaction rate constants. After the detailed reaction kinetics were determined, the reactions were implemented and tested in a computational fluid dynamics model, MFIX. The intention was to find a reduced mechanism set to reduce the computational time for a simulation, while still providing accurate results

  10. Updating of ASME Nuclear Code Case N-201 to Accommodate the Needs of Metallic Core Support Structures for High Temperature Gas Cooled Reactors Currently in Development

    SciTech Connect

    Mit Basol; John F. Kielb; John F. MuHooly; Kobus Smit

    2007-05-02

    On September 29, 2005, ASME Standards Technology, LLC (ASME ST-LLC) executed a multi-year, cooperative agreement with the United States DOE for the Generation IV Reactor Materials project. The project's objective is to update and expand appropriate materials, construction, and design codes for application in future Generation IV nuclear reactor systems that operate at elevated temperatures. Task 4 was embarked upon in recognition of the large quantity of ongoing reactor designs utilizing high temperature technology. Since Code Case N-201 had not seen a significant revision (except for a minor revision in September, 2006 to change the SA-336 forging reference for 304SS and 316SS to SA-965 in Tables 1.2(a) and 1.2(b), and some minor editorial changes) since December 1994, identifying recommended updates to support the current high temperature Core Support Structure (CSS) designs and potential new designs was important. As anticipated, the Task 4 effort identified a number of Code Case N-201 issues. Items requiring further consideration range from addressing apparent inconsistencies in definitions and certain material properties between CC-N-201 and Subsection NH, to inclusion of additional materials to provide the designer more flexibility of design. Task 4 developed a design parameter survey that requested input from the CSS designers of ongoing high temperature gas cooled reactor metallic core support designs. The responses to the survey provided Task 4 valuable input to identify the design operating parameters and future needs of the CSS designers. Types of materials, metal temperature, time of exposure, design pressure, design life, and fluence levels were included in the Task 4 survey responses. The results of the survey are included in this report. This research proves that additional work must be done to update Code Case N-201. Task 4 activities provide the framework for the Code Case N-201 update and future work to provide input on materials. Candidate

  11. Maintaining gas cooling equipment

    SciTech Connect

    Rector, J.D.

    1997-05-01

    An often overlooked key to satisfactory operation and longevity of any mechanical device is proper operation and maintenance in accordance with the manufacturer`s written instructions. Absorption chillers, although they use a different technology than the more familiar vapor compression cycle to produce chilled water, operate successfully in a variety of applications if operated and maintained properly. Maintenance procedures may be more frequent than those required for vapor compression chillers, but they are also typically less complex. The goal of this article is to describe the basic operation of an absorption chiller to provide an understanding of the relatively simple tasks required to keep the machine operating at maximum efficiency for its design life and beyond. A good starting point is definitions. Gas cooling equipment is generally defined as alternative energy, non-electric cooling products. This includes absorption chillers, engine-drive chillers and packaged desiccant units, among others. Natural gas combustion drives the equipment.

  12. Conceptual design study on very small long-life gas cooled fast reactor using metallic natural Uranium-Zr as fuel cycle input

    NASA Astrophysics Data System (ADS)

    Monado, Fiber; Ariani, Menik; Su'ud, Zaki; Waris, Abdul; Basar, Khairul; Aziz, Ferhat; Permana, Sidik; Sekimoto, Hiroshi

    2014-02-01

    A conceptual design study of very small 350 MWth Gas-cooled Fast Reactors with Helium coolant has been performed. In this study Modified CANDLE burn-up scheme was implemented to create small and long life fast reactors with natural Uranium as fuel cycle input. Such system can utilize natural Uranium resources efficiently without the necessity of enrichment plant or reprocessing plant. The core with metallic fuel based was subdivided into 10 regions with the same volume. The fresh Natural Uranium is initially put in region-1, after one cycle of 10 years of burn-up it is shifted to region-2 and the each region-1 is filled by fresh Natural Uranium fuel. This concept is basically applied to all axial regions. The reactor discharge burn-up is 31.8% HM. From the neutronic point of view, this design is in compliance with good performance.

  13. Development of variable-width ribbon heating elements for liquid-metal and gas-cooled fast breeder reactor fuel-pin simulators

    SciTech Connect

    McCulloch, R.W.; Post, D.W.; Lovell, R.T.; Snyder, S.D.

    1981-04-01

    Variable-width ribbon heating elements that provide a chopped-cosine variable heat flux profile have been fabricated for fuel pin simulators used in test loops by the Breeder Reactor Program Thermal-Hydraulic Out-of-Reactor Safety test facility and the Gas-Cooled Fast Breeder Reactor-Core Flow Test Loop. Thermal, mechanical, and electrical design considerations are used to derive an analytical expression that precisely describes ribbon contour in terms of the major fabrication parameters. These parameters are used to generate numerical control tapes that control ribbon cutting and winding machines. Infrared scanning techniques are developed to determine the optimum transient thermal profile of the coils and relate this profile to that generated by the coils in completed fuel pin simulators.

  14. Conceptual design study on very small long-life gas cooled fast reactor using metallic natural Uranium-Zr as fuel cycle input

    SciTech Connect

    Monado, Fiber; Ariani, Menik; Su'ud, Zaki; Waris, Abdul; Basar, Khairul; Permana, Sidik; Aziz, Ferhat; Sekimoto, Hiroshi

    2014-02-12

    A conceptual design study of very small 350 MWth Gas-cooled Fast Reactors with Helium coolant has been performed. In this study Modified CANDLE burn-up scheme was implemented to create small and long life fast reactors with natural Uranium as fuel cycle input. Such system can utilize natural Uranium resources efficiently without the necessity of enrichment plant or reprocessing plant. The core with metallic fuel based was subdivided into 10 regions with the same volume. The fresh Natural Uranium is initially put in region-1, after one cycle of 10 years of burn-up it is shifted to region-2 and the each region-1 is filled by fresh Natural Uranium fuel. This concept is basically applied to all axial regions. The reactor discharge burn-up is 31.8% HM. From the neutronic point of view, this design is in compliance with good performance.

  15. Generation IV nuclear energy system initiative. Large GFR core subassemblydesign for the Gas-Cooled Fast Reactor.

    SciTech Connect

    Hoffman, E. A.; Kulak, R. F.; Therios, I. U.; Wei, T. Y. C.

    2006-07-31

    Gas-cooled fast reactor (GFR) designs are being developed to meet Gen IV goals of sustainability, economics, safety and reliability, and proliferation resistance and physical protection as part of an International Generation IV Nuclear Energy System Research Initiative effort. Different organizations are involved in the development of a variety of GFR design concepts. The current analysis has focused on the evaluation of low-pressure drop, pin-core designs with favorable passive cooling properties. Initial evaluation of the passive cooling safety case for the GFR during depressurized decay heat removal accidents with concurrent loss of electric power have resulted in requirements for a reduction of core power density to the 100 w/cc level and a low core pressure drop of 0.5 bars. Additional design constraints and the implementation of their constraints are evaluated in this study to enhance and passive cooling properties of the reactor. Passive cooling is made easier by a flat radial distribution of the decay heat. One goal of this study was to evaluate the radial power distribution and determine to what extent it can be flattened, since the decay heat is nearly proportional to the fission power at shutdown. In line with this investigation of the radial power profile, an assessment was also made of the control rod configuration. The layout provided a large number of control rod locations with a fixed area provided for control rods. The number of control rods was consistent with other fast reactor designs. The adequacy of the available control rod locations was evaluated. Future studies will be needed to optimize the control rod designs and evaluate the shutdown system. The case for low pressure drop core can be improved by the minimization of pressure drop sources such as the number of required fuel spacers in the subassembly design and by the details of the fuel pin design. The fuel pin design is determined by a number of neutronic, thermal-hydraulic (gas dynamics

  16. Thermohydraulics in a high-temperature gas-cooled reactor primary loop during early phases of unrestricted core-heatup accidents

    SciTech Connect

    Kroeger, P.G.; Colman, J.; Hsu, C.J.

    1983-01-01

    In High Temperature Gas Cooled Reactor (HTGR) siting considerations, the Unrestricted Core Heatup Accidents (UCHA) are considered as accidents of highest consequence, corresponding to core meltdown accidents in light water reactors. Initiation of such accidents can be, for instance, due to station blackout, resulting in scram and loss of all main loop forced circulation, with none of the core auxiliary cooling system loops being started. The result is a slow but continuing core heatup, extending over days. During the initial phases of such UCHA scenarios, the primary loop remains pressurized, with the system pressure slowly increasing until the relief valve setpoint is reached. The major objectives of the work described here were to determine times to depressurization as well as approximate loop component temperatures up to depressurization.

  17. Development of Safety Analysis Codes and Experimental Validation for a Very High Temperature Gas-Cooled Reactor - FY-05 Annual Report

    SciTech Connect

    Chang Oh

    2005-09-01

    The very high temperature gas-cooled reactors (VHTGRs) are those concepts that have average coolant temperatures above 9000C or operational fuel temperatures above 12500C. These concepts provide the potential for increased energy conversion efficiency and for high-temperature process heat application in addition to power generation and nuclear hydrogen generation. While all the High Temperature Gas Cooled Reactor (HTGR) concepts have sufficiently high temperatures to support process heat applications, such as desalination and cogeneration, the VHTGR’s higher temperatures are suitable for particular applications such as thermochemical hydrogen production. However, the high temperature operation can be detrimental to safety following a loss-of-coolant accident (LOCA) initiated by pipe breaks caused by seismic or other events. Following the loss of coolant through the break and coolant depressurization, air from the containment will enter the core by molecular diffusion and ultimately by natural convection, leading to oxidation of the in-core graphite structures and fuel. The oxidation will release heat and accelerate the heatup of the reactor core. Thus, without any effective countermeasures, a pipe break may lead to significant fuel damage and fission product release. The Idaho National Laboratory (INL) has investigated this event for the past three years for the HTGR. However, the computer codes used, and in fact none of the world’s computer codes, have been sufficiently developed and validated to reliably predict this event. New code development, improvement of the existing codes, and experimental validation are imperative to narrow the uncertainty in the predictions of this type of accident. The objectives of this Korean/United States collaboration are to develop advanced computational methods for VHTGR safety analysis codes and to validate these computer codes.

  18. The feasibility study of small long-life gas cooled fast reactor with mixed natural Uranium/Thorium as fuel cycle input

    SciTech Connect

    Ariani, Menik; Su'ud, Zaki; Waris, Abdul; Khairurrijal,; Monado, Fiber; Sekimoto, Hiroshi

    2012-06-06

    A conceptual design study of Gas Cooled Fast Reactors with Modified CANDLE burn-up scheme has been performed. In this study, design GCFR with Helium coolant which can be continuously operated by supplying mixed Natural Uranium/Thorium without fuel enrichment plant or fuel reprocessing plant. The active reactor cores are divided into two region, Thorium fuel region and Uranium fuel region. Each fuel core regions are subdivided into ten parts (region-1 until region-10) with the same volume in the axial direction. The fresh Natural Uranium and Thorium is initially put in region-1, after one cycle of 10 years of burn-up it is shifted to region-2 and the each region-1 is filled by fresh natural Uranium/Thorium fuel. This concept is basically applied to all regions in both cores area, i.e. shifted the core of i{sup th} region into i+1 region after the end of 10 years burn-up cycle. For the next cycles, we will add only Natural Uranium and Thorium on each region-1. The calculation results show the reactivity reached by mixed Natural Uranium/Thorium with volume ratio is 4.7:1. This reactor can results power thermal 550 MWth. After reactor start-up the operation, furthermore reactor only needs Natural Uranium/Thorium supply for continue operation along 100 years.

  19. The feasibility study of small long-life gas cooled fast reactor with mixed natural Uranium/Thorium as fuel cycle input

    NASA Astrophysics Data System (ADS)

    Ariani, Menik; Su'ud, Zaki; Waris, Abdul; Khairurrijal, Monado, Fiber; Sekimoto, Hiroshi

    2012-06-01

    A conceptual design study of Gas Cooled Fast Reactors with Modified CANDLE burn-up scheme has been performed. In this study, design GCFR with Helium coolant which can be continuously operated by supplying mixed Natural Uranium/Thorium without fuel enrichment plant or fuel reprocessing plant. The active reactor cores are divided into two region, Thorium fuel region and Uranium fuel region. Each fuel core regions are subdivided into ten parts (region-1 until region-10) with the same volume in the axial direction. The fresh Natural Uranium and Thorium is initially put in region-1, after one cycle of 10 years of burn-up it is shifted to region-2 and the each region-1 is filled by fresh natural Uranium/Thorium fuel. This concept is basically applied to all regions in both cores area, i.e. shifted the core of ith region into i+1 region after the end of 10 years burn-up cycle. For the next cycles, we will add only Natural Uranium and Thorium on each region-1. The calculation results show the reactivity reached by mixed Natural Uranium/Thorium with volume ratio is 4.7:1. This reactor can results power thermal 550 MWth. After reactor start-up the operation, furthermore reactor only needs Natural Uranium/Thorium supply for continue operation along 100 years.

  20. The Windscale Advanced Gas Cooled Reactor (WAGR) Decommissioning Project A Close Out Report for WAGR Decommissioning Campaigns 1 to 10 - 12474

    SciTech Connect

    Halliwell, Chris

    2012-07-01

    The reactor core of the Windscale Advanced Gas-Cooled Reactor (WAGR) has been dismantled as part of an ongoing decommissioning project. The WAGR operated until 1981 as a development reactor for the British Commercial Advanced Gas cooled Reactor (CAGR) power programme. Decommissioning began in 1982 with the removal of fuel from the reactor core which was completed in 1983. Subsequently, a significant amount of engineering work was carried out, including removal of equipment external to the reactor and initial manual dismantling operations at the top of the reactor, in preparation for the removal of the reactor core itself. Modification of the facility structure and construction of the waste packaging plant served to provide a waste route for the reactor components. The reactor core was dismantled on a 'top-down' basis in a series of 'campaigns' related to discrete reactor components. This report describes the facility, the modifications undertaken to facilitate its decommissioning and the strategies employed to recognise the successful decommissioning of the reactor. Early decommissioning tasks at the top of the reactor were undertaken manually but the main of the decommissioning tasks were carried remotely, with deployment systems comprising of little more than crane like devices, intelligently interfaced into the existing structure. The tooling deployed from the 3 tonne capacity (3te) hoist consisted either purely mechanical devices or those being electrically controlled from a 'push-button' panel positioned at the operator control stations, there was no degree of autonomy in the 3te hoist or any of the tools deployed from it. Whilst the ATC was able to provide some tele-robotic capabilities these were very limited and required a good degree of driver input which due to the operating philosophy at WAGR was not utilised. The WAGR box proved a successful waste package, adaptable through the use of waste box furniture specific to the waste-forms generated throughout

  1. Analytical Solution of Fick's Law of the TRISO-Coated Fuel Particles and Fuel Elements in Pebble-Bed High Temperature Gas-Cooled Reactors

    NASA Astrophysics Data System (ADS)

    Cao, Jian-Zhu; Fang, Chao; Sun, Li-Feng

    2011-05-01

    Two kinds of approaches are built to solve the fission products diffusion models (Fick's equation) based on sphere fuel particles and sphere fuel elements exactly. Two models for homogenous TRISO-coated fuel particles and fuel elements used in pebble-bed high temperature gas-cooled reactors are presented, respectively. The analytical solution of Fick's equation for fission products diffusion in fuel particles is derived by variables separation. In the fuel element system, a modification of the diffusion coefficient from D to D/r is made to characterize the difference of diffusion rates in distinct areas and it is shown that the Laplace and Hankel transformations are effective as the diffusion coefficient in Fick's equation is dependant on the radius of the fuel element. Both the solutions are useful for the prediction of the fission product behaviors and could be programmed in the corresponding engineering calculations.

  2. Use of a temperature-initiated passive cooling system (TIPACS) for the modular high-temperature gas-cooled reactor cavity cooling system (RCCS)

    SciTech Connect

    Forsberg, C.W.; Conklin, J.; Reich, W.J.

    1994-04-01

    A new type of passive cooling system has been invented (Forsberg 1993): the Temperature-Initiated Passive Cooling System (TIPACS). The characteristics of the TIPACS potentially match requirements for an improved reactor-cavity-cooling system (RCCS) for the modular high-temperature gas-cooled reactor (MHTGR). This report is an initial evaluation of the TIPACS for the MHTGR with a Rankines (steam) power conversion cycle. Limited evaluations were made of applying the TIPACS to MHTGRs with reactor pressure vessel temperatures up to 450 C. These temperatures may occur in designs of Brayton cycle (gas turbine) and process heat MHTGRs. The report is structured as follows. Section 2 describes the containment cooling issues associated with the MHTGR and the requirements for such a cooling system. Section 3 describes TIPACS in nonmathematical terms. Section 4 describes TIPACS`s heat-removal capabilities. Section 5 analyzes the operation of the temperature-control mechanism that determines under what conditions the TIPACS rejects heat to the environment. Section 6 addresses other design and operational issues. Section 7 identifies uncertainties, and Section 8 provides conclusions. The appendixes provide the detailed data and models used in the analysis.

  3. Idaho National Laboratory Experimental Program to Measure the Flow Phenomena in a Scaled Model of a Prismatic Gas-Cooled Reactor Lower Plenum for Validation of CFD Codes

    SciTech Connect

    Hugh M. McIlroy Jr.; Donald M. McEligot; Robert J. Pink

    2008-09-01

    The experimental program that is being conducted at the Matched Index-of-Refraction (MIR) Flow Facility at Idaho National Laboratory (INL) to obtain benchmark data on measurements of flow phenomena in a scaled model of a prismatic gas-cooled reactor lower plenum using 3-D Particle Image Velocimetry (PIV) is presented. A description of the scaling analysis, experimental facility, 3-D PIV system, measurement uncertainties and analysis, experimental procedures and samples of the data sets that have been obtained are included. Samples of the data set that will be presented include mean-velocity-field and turbulence data in an approximately 1:7 scale model of a region of the lower plenum of a typical prismatic gas-cooled reactor (GCR) similar to a General Atomics Gas-Turbine-Modular Helium Reactor (GTMHR) design. This experiment has been selected as the first Standard Problem endorsed by the Generation IV International Forum. The flow in the lower plenum consists of multiple jets injected into a confined cross flow - with obstructions. The model consists of a row of full circular posts along its centerline with half-posts on the two parallel walls to approximate flow scaled to that expected from the staggered parallel rows of posts in the reactor design. The model is fabricated from clear, fused quartz to match the refractive-index of the mineral oil working fluid. The benefit of the MIR technique is that it permits high-quality measurements to be obtained without locating intrusive transducers that disturb the flow field and without distortion of the optical paths. An advantage of the INL MIR system is its large size which allows improved spatial and temporal resolution compared to similar facilities at smaller scales. Results concentrate on the region of the lower plenum near its far reflector wall (away from the outlet duct). Inlet jet Reynolds numbers (based on the jet diameter and the time-mean average flow rate) are approximately 4,300 and 12,400. The measurements

  4. Application of Molten Salt Reactor Technology to Nuclear Electric Propulsion Mission

    NASA Technical Reports Server (NTRS)

    Patton, Bruce; Sorensen, Kirk; Rodgers, Stephen L. (Technical Monitor)

    2002-01-01

    Nuclear electric propulsion (NEP) and planetary surface power missions require reactors that are lightweight, operationally robust, and scalable in power for widely varying scientific mission objectives. Molten salt reactor technology meets all of these requirements and offers an interesting alternative to traditional gas cooled, liquid metal, and heat pipe space reactors.

  5. The study of capability natural uranium as fuel cycle input for long life gas cooled fast reactors with helium as coolant

    NASA Astrophysics Data System (ADS)

    Ariani, Menik; Satya, Octavianus Cakra; Monado, Fiber; Su'ud, Zaki; Sekimoto, Hiroshi

    2016-03-01

    The objective of the present research is to assess the feasibility design of small long-life Gas Cooled Fast Reactor with helium as coolant. GCFR included in the Generation-IV reactor systems are being developed to provide sustainable energy resources that meet future energy demand in a reliable, safe, and proliferation-resistant manner. This reactor can be operated without enrichment and reprocessing forever, once it starts. To obtain the capability of consuming natural uranium as fuel cycle input modified CANDLE burn-up scheme was adopted in this system with different core design. This study has compared the core with three designs of core reactors with the same thermal power 600 MWth. The fuel composition each design was arranged by divided core into several parts of equal volume axially i.e. 6, 8 and 10 parts related to material burn-up history. The fresh natural uranium is initially put in region 1, after one cycle of 10 years of burn-up it is shifted to region 2 and the region 1 is filled by fresh natural uranium fuel. This concept is basically applied to all regions, i.e. shifted the core of the region (i) into region (i+1) region after the end of 10 years burn-up cycle. The calculation results shows that for the burn-up strategy on "Region-8" and "Region-10" core designs, after the reactors start-up the operation furthermore they only needs natural uranium supply to the next life operation until one period of refueling (10 years).

  6. A three-dimensional methodology for the assessment of neutron damage and nuclear energy deposition in graphite components of advanced gas-cooled reactors

    SciTech Connect

    Morgan, D.O.; Robinson, A.T.; Allen, D.A.; Picton, D.J.; Thornton, D.A.; Shaw, S.E.

    2011-07-01

    This paper describes the development of a three-dimensional methodology for the assessment of neutron damage and nuclear energy deposition (or nuclear heating) throughout the graphite cores of the UK's Advanced Gas-cooled Reactors. Advances in the development of the Monte Carlo radiation transport code MCBEND have enabled the efficient production of detailed fully three-dimensional models that utilise three-dimensional source distributions obtained from Core Follow data supplied by the reactor physics code PANTHER. The calculational approach can be simplified to reduce both the requisite number of intensive radiation transport calculations, as well as the quantity of data output. These simplifications have been qualified by comparison with explicit calculations and they have been shown not to introduce significant systematic uncertainties. Simple calculational approaches are described that allow users of the data to address the effects on neutron damage and nuclear energy deposition predictions of the feedback resulting from the mutual dependencies of graphite weight loss and nuclear energy deposition. (authors)

  7. A Computational Fluid Dynamic and Heat Transfer Model for Gaseous Core and Gas Cooled Space Power and Propulsion Reactors

    NASA Technical Reports Server (NTRS)

    Anghaie, S.; Chen, G.

    1996-01-01

    A computational model based on the axisymmetric, thin-layer Navier-Stokes equations is developed to predict the convective, radiation and conductive heat transfer in high temperature space nuclear reactors. An implicit-explicit, finite volume, MacCormack method in conjunction with the Gauss-Seidel line iteration procedure is utilized to solve the thermal and fluid governing equations. Simulation of coolant and propellant flows in these reactors involves the subsonic and supersonic flows of hydrogen, helium and uranium tetrafluoride under variable boundary conditions. An enthalpy-rebalancing scheme is developed and implemented to enhance and accelerate the rate of convergence when a wall heat flux boundary condition is used. The model also incorporated the Baldwin and Lomax two-layer algebraic turbulence scheme for the calculation of the turbulent kinetic energy and eddy diffusivity of energy. The Rosseland diffusion approximation is used to simulate the radiative energy transfer in the optically thick environment of gas core reactors. The computational model is benchmarked with experimental data on flow separation angle and drag force acting on a suspended sphere in a cylindrical tube. The heat transfer is validated by comparing the computed results with the standard heat transfer correlations predictions. The model is used to simulate flow and heat transfer under a variety of design conditions. The effect of internal heat generation on the heat transfer in the gas core reactors is examined for a variety of power densities, 100 W/cc, 500 W/cc and 1000 W/cc. The maximum temperature, corresponding with the heat generation rates, are 2150 K, 2750 K and 3550 K, respectively. This analysis shows that the maximum temperature is strongly dependent on the value of heat generation rate. It also indicates that a heat generation rate higher than 1000 W/cc is necessary to maintain the gas temperature at about 3500 K, which is typical design temperature required to achieve high

  8. Advanced Gas Cooled Nuclear Reactor Materials Evaluation and Development Program. Progress report, July 1, 1980-September 30, 1980

    SciTech Connect

    Not Available

    1980-12-12

    Objectives of this program are to evaluate candidate alloys for Very High Temperature Reactor (VHTR) Nuclear Process Heat (NPH) and Direct Cycle Helium Turbine (DCHT) applications, in terms of the effect of simulated reactor primary coolant (helium containing small amounts of various other gases), high temperatures, and long time exposures, on the mechanical properties and structural and surface stability of selected candidate alloys. A second objective is to select and recommend materials for future test facilities and more extensive qualification programs. Work covered in this report includes the activities associated with the status of the simulated reactor helium supply system, testing equipment and gas chemistry analysis instrumentation and equipment. The progress in the screening test program is described: screening creep results and metallographic analysis for materials thermally exposed or tested at 750, 850, 950 and 1050/sup 0/C. Initiation of controlled purity helium creep-rupture testing in the intensive screening test program is discussed. In addition, the results of 1000-hour exposures at 750 and 850/sup 0/C on several experimental alloys are discussed.

  9. Advanced Gas Cooled Nuclear Reactor Materials Evaluation and Development Program. Progress report, April 1, 1980-June 30, 1980

    SciTech Connect

    Not Available

    1980-11-14

    Objectives of this program are to evaluate candidate alloys for Very High Temperature Reactor (VHTR) Nuclear Process Heat (NPH) and Direct Cycle Helium Turbine (DCHT) applications, in terms of the effect of simulated reactor primary coolant (helium containing small amounts of various other gases), high temperatures, and long time exposures, on the mechanical properties and structural and surface stability of selected candidate alloys. A second objective is to select and recommend materials for future test facilities and more extensive qualification programs. Work covered in this report includes the activities associated with the status of the simulated reactor helium supply system, testing equipment and gas chemistry analysis instrumentation and equipment. The progress in the screening test program is described; this includes: screening creep results and metallographic analysis for materials thermally exposed or tested at 750, 850 and 950/sup 0/C. The initiation of air creep-rupture testing in the intensive screening test program is discussed. In addition, the status of the data management system is described.

  10. Advanced gas cooled nuclear reactor materials evaluation and development program. Progress report, October 1, 1979-December 31, 1979

    SciTech Connect

    Not Available

    1980-04-18

    This report presents the results of work performed from October 1, 1979 through December 31, 1979. Work covered in this report includes the activities associated with the status of the simulated reactor helium supply system, testing equipment and gas chemistry analysis instrumentation and equipment. The progress in the screening test program is described. This includes: screening creep results, weight gain and post-exposure mechanical properties for materials thermally exposed at 750/sup 0/ and 850/sup 0/C (1382/sup 0/ and 1562/sup 0/F). In addition, the status of the data management system is described.

  11. [Gas cooled fuel cell systems technology development program]. Quarterly technical progress narrative No. 21, December 1, 1987--February 29, 1988

    SciTech Connect

    Not Available

    1988-03-01

    Objective is the development of a gas-cooled phosphoric acid fuel cell for electric utility power plant application. Primary objectives are to: demonstrate performance endurance in 10-cell stacks at 70 psia, 190 C, and 267 mA/cm{sup 2}; improve cell degradation rate to less than 8 mV/1000 hours; develop cost effective criteria, processes, and design configurations for stack components; design multiple stack unit and a single 100 kW fuel cell stack; design a 375 kW fuel cell module and demonstrate average cell beginning-of-use performance; manufacture four 375-kW fuel cell modules and establish characteristics of 1.5 MW pilot power plant. The work is broken into program management, systems engineering, fuel cell development and test, facilities development.

  12. Long term out-of-pile thermocouple tests in conditions representative for nuclear gas-cooled high temperature reactors

    SciTech Connect

    Laurie, M.; Fourrez, S.; Fuetterer, M. A.; Lapetite, J. M.

    2011-07-01

    During irradiation tests at high temperature, failure of commercial Inconel 600 sheathed thermocouples is commonly encountered. To understand and remedy this problem, out-of-pile tests were performed with thermocouples in carburizing atmospheres which can be assumed to be at least locally representative for High Temperature Reactors. The objective was to screen those thermocouples which would consecutively be used under irradiation. Two such screening tests have been performed with a set of thermocouples embedded in graphite (mainly conventional Type N thermocouples and thermocouples with innovative sheaths) in a dedicated furnace with helium flushing. Performance indicators such as thermal drift, insulation and loop resistance were monitored and compared to those from conventional Type N thermocouples. Several parameters were investigated: niobium sleeves, bending, thickness, sheath composition, temperature as well as the chemical environment. After the tests, Scanning Electron Microscopy (SEM) examinations were performed to analyze possible local damage in wires and in the sheath. The present paper describes the two experiments, summarizes results and outlines further work, in particular to further analyze the findings and to select suitable thermocouples for qualification under irradiation. (authors)

  13. Application of Molten Salt Reactor Technology to MMW In-Space NEP and Surface Power Missions

    NASA Technical Reports Server (NTRS)

    Patton, Bruce; Sorensen, Kirk; Rodgers, Stephen (Technical Monitor)

    2002-01-01

    Anticipated manned nuclear electric propulsion (NEP) and planetary surface power missions will require multimegawatt nuclear reactors that are lightweight, operationally robust, and scalable in power for widely varying scientific mission objectives. Molten salt reactor technology meets all of these requirements and offers an interesting alternative to traditional multimegawatt gas-cooled and liquid metal concepts.

  14. Gas-cooled reactor programs: High-Temperature Gas-Cooled Reactor Base-Technology Program. Annual progress report for period ending December 31, 1979

    SciTech Connect

    Not Available

    1980-07-01

    Progress in HTGR studies is reported in the following areas: HTGR chemistry; fueled graphite development; prestressed concrete pressure vessel development; structural materials; HTGR graphite studies; and evaluation of the pebble-bed HTR.

  15. Evaluation of Alternate Materials for Coated Particle Fuels for the Gas-Cooled Fast Reactor. Laboratory Directed Research and Development Program FY 2006 Final Report

    SciTech Connect

    Paul A. Demkowicz; Karen Wright; Jian Gan; David Petti; Todd Allen; Jake Blanchard

    2006-09-01

    Candidate ceramic materials were studied to determine their suitability as Gas-Cooled Fast Reactor particle fuel coatings. The ceramics examined in this work were: TiC, TiN, ZrC, ZrN, AlN, and SiC. The studies focused on (i) chemical reactivity of the ceramics with fission products palladium and rhodium, (ii) the thermomechanical stresses that develop in the fuel coatings from a variety of causes during burnup, and (iii) the radiation resiliency of the materials. The chemical reactivity of TiC, TiN, ZrC, and ZrN with Pd and Rh were all found to be much lower than that of SiC. A number of important chemical behaviors were observed at the ceramic-metal interfaces, including the formation of specific intermetallic phases and a variation in reaction rates for the different ceramics investigated. Based on the data collected in this work, the nitride ceramics (TiN and ZrN) exhibit chemical behavior that is characterized by lower reaction rates with Pd and Rh than the carbides TiC and ZrC. The thermomechanical stresses in spherical fuel particle ceramic coatings were modeled using finite element analysis, and included contributions from differential thermal expansion, fission gas pressure, fuel kernel swelling, and thermal creep. In general the tangential stresses in the coatings during full reactor operation are tensile, with ZrC showing the lowest values among TiC, ZrC, and SiC (TiN and ZrN were excluded from the comprehensive calculations due to a lack of available materials data). The work has highlighted the fact that thermal creep plays a critical role in the development of the stress state of the coatings by relaxing many of the stresses at high temperatures. To perform ion irradiations of sample materials, an irradiation beamline and high-temperature sample irradiation stage was constructed at the University of Wisconsin’s 1.7MV Tandem Accelerator Facility. This facility is now capable of irradiating of materials to high dose while controlling sample temperature

  16. Studies Related to the Oregon State University High Temperature Test Facility: Scaling, the Validation Matrix, and Similarities to the Modular High Temperature Gas-Cooled Reactor

    SciTech Connect

    Richard R. Schultz; Paul D. Bayless; Richard W. Johnson; William T. Taitano; James R. Wolf; Glenn E. McCreery

    2010-09-01

    The Oregon State University (OSU) High Temperature Test Facility (HTTF) is an integral experimental facility that will be constructed on the OSU campus in Corvallis, Oregon. The HTTF project was initiated, by the U.S. Nuclear Regulatory Commission (NRC), on September 5, 2008 as Task 4 of the 5 year High Temperature Gas Reactor Cooperative Agreement via NRC Contract 04-08-138. Until August, 2010, when a DOE contract was initiated to fund additional capabilities for the HTTF project, all of the funding support for the HTTF was provided by the NRC via their cooperative agreement. The U.S. Department of Energy (DOE) began their involvement with the HTTF project in late 2009 via the Next Generation Nuclear Plant project. Because the NRC interests in HTTF experiments were only centered on the depressurized conduction cooldown (DCC) scenario, NGNP involvement focused on expanding the experimental envelope of the HTTF to include steady-state operations and also the pressurized conduction cooldown (PCC). Since DOE has incorporated the HTTF as an ingredient in the NGNP thermal-fluids validation program, several important outcomes should be noted: 1. The reference prismatic reactor design, that serves as the basis for scaling the HTTF, became the modular high temperature gas-cooled reactor (MHTGR). The MHTGR has also been chosen as the reference design for all of the other NGNP thermal-fluid experiments. 2. The NGNP validation matrix is being planned using the same scaling strategy that has been implemented to design the HTTF, i.e., the hierarchical two-tiered scaling methodology developed by Zuber in 1991. Using this approach a preliminary validation matrix has been designed that integrates the HTTF experiments with the other experiments planned for the NGNP thermal-fluids verification and validation project. 3. Initial analyses showed that the inherent power capability of the OSU infrastructure, which only allowed a total operational facility power capability of 0.6 MW, is

  17. Integration of High Temperature Gas-cooled Reactor Technology with Oil Sands Processes

    SciTech Connect

    L.E. Demick

    2011-10-01

    This paper summarizes an evaluation of siting an HTGR plant in a remote area supplying steam, electricity and high temperature gas for recovery and upgrading of unconventional crude oil from oil sands. The area selected for this evaluation is the Alberta Canada oil sands. This is a very fertile and active area for bitumen recovery and upgrading with significant quantities piped to refineries in Canada and the U.S Additionally data on the energy consumption and other factors that are required to complete the evaluation of HTGR application is readily available in the public domain. There is also interest by the Alberta oil sands producers (OSP) in identifying alternative energy sources for their operations. It should be noted, however, that the results of this evaluation could be applied to any similar oil sands area.

  18. High-temperature gas-cooled reactor safety studies for the Division of Reactor Safety Research. Quarterly progress report, January 1-March 31, 1980

    SciTech Connect

    Ball, S.J.; Cleveland, J.C.; Conklin, J.C.; Harrington, R.M.

    1980-08-01

    Work continued on development of the ORTAP, ORECA, and BLAST codes; and verification studies were continued on the ORECA, CORTAP, and BLAST codes. An improved steam turbine plant model (ORTURB) for use in ORTAP was developed and checked. Predictions from BLAST, CORTAP, and ORECA were compared with various transient test data from the Fort St. Vrain reactor.

  19. The effect of water vapor on the release of fission gas from the fuel elements of high temperature, gas-cooled reactors: A preliminary assessment of experiments HRB-17, HFR-B1, HFR-K6 and KORA

    SciTech Connect

    Myers, B.F.

    1995-09-01

    The effect of water vapor on the release of fission gas from the fuel elements of high temperature, gas-cooled reactors has been measured in different laboratories under both irradiation and post irradiation conditions. The data from experiments HRB-17, HFR-B1, HFR-K6, and in the KORA facility are compared to assess their consistency and complimentarily. The experiments are consistent under comparable experimental conditions and reveal two general mechanisms involving exposed fuel kernels embedded in carbonaceous materials. One is manifest as a strong dependence of fission gas release on the partial pressure of water vapor below 1 kPa and the other, as a weak dependence above 1 kPa.

  20. Development of a fuel-rod simulator and small-diameter thermocouples for high-temperature, high-heat-flux tests in the Gas-Cooled Fast Reactor Core Flow Test Loop

    SciTech Connect

    McCulloch, R.W.; MacPherson, R.E.

    1983-03-01

    The Core Flow Test Loop was constructed to perform many of the safety, core design, and mechanical interaction tests in support of the Gas-Cooled Fast Reactor (GCFR) using electrically heated fuel rod simulators (FRSs). Operation includes many off-normal or postulated accident sequences including transient, high-power, and high-temperature operation. The FRS was developed to survive: (1) hundreds of hours of operation at 200 W/cm/sup 2/, 1000/sup 0/C cladding temperature, and (2) 40 h at 40 W/cm/sup 2/, 1200/sup 0/C cladding temperature. Six 0.5-mm type K sheathed thermocouples were placed inside the FRS cladding to measure steady-state and transient temperatures through clad melting at 1370/sup 0/C.

  1. Gas cooled traction drive inverter

    SciTech Connect

    Chinthavali, Madhu Sudhan

    2013-10-08

    The present invention provides a modular circuit card configuration for distributing heat among a plurality of circuit cards. Each circuit card includes a housing adapted to dissipate heat in response to gas flow over the housing. In one aspect, a gas-cooled inverter includes a plurality of inverter circuit cards, and a plurality of circuit card housings, each of which encloses one of the plurality of inverter cards.

  2. Gas cooled traction drive inverter

    DOEpatents

    Chinthavali, Madhu Sudhan

    2016-04-19

    The present invention provides a modular circuit card configuration for distributing heat among a plurality of circuit cards. Each circuit card includes a housing adapted to dissipate heat in response to gas flow over the housing. In one aspect, a gas-cooled inverter includes a plurality of inverter circuit cards, and a plurality of circuit card housings, each of which encloses one of the plurality of inverter cards.

  3. Nuclear Reactors and Technology

    SciTech Connect

    Cason, D.L.; Hicks, S.C.

    1992-01-01

    This publication Nuclear Reactors and Technology (NRT) announces on a monthly basis the current worldwide information available from the open literature on nuclear reactors and technology, including all aspects of power reactors, components and accessories, fuel elements, control systems, and materials. This publication contains the abstracts of DOE reports, journal articles, conference papers, patents, theses, and monographs added to the Energy Science and Technology Database during the past month. Also included are US information obtained through acquisition programs or interagency agreements and international information obtained through the International Energy Agency`s Energy Technology Data Exchange or government-to-government agreements. The digests in NRT and other citations to information on nuclear reactors back to 1948 are available for online searching and retrieval on the Energy Science and Technology Database and Nuclear Science Abstracts (NSA) database. Current information, added daily to the Energy Science and Technology Database, is available to DOE and its contractors through the DOE Integrated Technical Information System. Customized profiles can be developed to provide current information to meet each user`s needs.

  4. Space-reactor system and subsystem investigations: Cost and schedule estimates for reactor and shield subsystems technology development. SP-100 program

    NASA Astrophysics Data System (ADS)

    Determan, W. R.; Harty, R. B.; Hylin, C.

    1983-06-01

    Cost and schedule estimates of the technology development for reactor and shielding subsystems of a 100-kWe class space reactor electric system are presented. The subsystems technology development (which includes reactor and shield subsystems ground testing) is supported by materials and processes development and component development. For the purpose of the cost estimate, seven generic types of reactor subsystems were used: uranium-zirconium hydride, NaK-cooled thermal reactor; lithium-cooled, refractory-clad fast reactors; Na- or K-cooled fast reactor; in-core thermionic reactor; inert gas-cooled particle fuel reactor; inert gas-cooled metal-clad fast reactor; and heat pipe-cooled fast reactor. Also three levels of technology were included for each of the generic types of reactor subsystem: current, improved, and advanced. The data in this report encompass all these technology levels. The shielding subsystem uses both gamma (heavy-metal) and neutron (hydrogenous material) shields. The shields considered would be used in conjunction with unmanned payloads.

  5. IDAHO NATIONAL LABORATORY PROGRAM TO OBTAIN BENCHMARK DATA ON THE FLOW PHENOMENA IN A SCALED MODEL OF A PRISMATIC GAS-COOLED REACTOR LOWER PLENUM FOR THE VALIDATION OF CFD CODES

    SciTech Connect

    Hugh M. McIlroy Jr.; Donald M. McEligot; Robert J. Pink

    2008-09-01

    The experimental program that is being conducted at the Matched Index-of-Refraction (MIR) Flow Facility at Idaho National Laboratory (INL) to obtain benchmark data on measurements of flow phenomena in a scaled model of a typical prismatic gas-cooled (GCR) reactor lower plenum using 3-D Particle Image Velocimetry (PIV) is presented. A detailed description of the model, scaling, the experimental facility, 3-D PIV system, measurement uncertainties and analysis, experimental procedures and samples of the data sets that have been obtained are included. Samples of the data set that are presented include mean-velocity-field and turbulence data in an approximately 1:7 scale model of a region of the lower plenum of a typical prismatic GCR design. This experiment has been selected as the first Standard Problem endorsed by the Generation IV International Forum. Results concentrate on the region of the lower plenum near its far reflector wall (away from the outlet duct). Inlet jet Reynolds numbers (based on the jet diameter and the time-mean average flow rate) are approximately 4,300 and 12,400. The measurements reveal undeveloped, non-uniform flow in the inlet jets and complicated flow patterns in the model lower plenum. Data include three-dimensional vector plots, data displays along the coordinate planes (slices) and charts that describe the component flows at specific regions in the model. Information on inlet flow is also presented.

  6. Lessons Learned From Gen I Carbon Dioxide Cooled Reactors

    SciTech Connect

    David E. Shropshire

    2004-04-01

    This paper provides a review of early gas cooled reactors including the Magnox reactors originating in the United Kingdom and the subsequent development of the Advanced Gas-cooled Reactors (AGR). These early gas cooled reactors shared a common coolant medium, namely carbon dioxide (CO2). A framework of information is provided about these early reactors and identifies unique problems/opportunities associated with use of CO2 as a coolant. Reactor designers successfully rose to these challenges. After years of successful use of the CO2 gas cooled reactors in Europe, the succeeding generation of reactors, called the High Temperature Gas Reactors (HTGR), were designed with Helium gas as the coolant. Again, in the 21st century, with the latest reactor designs under investigation in Generation IV, there is a revived interest in developing Gas Cooled Fast Reactors that use CO2 as the reactor coolant. This paper provides a historical perspective on the 52 CO2 reactors and the reactor programs that developed them. The Magnox and AGR design features and safety characteristics were reviewed, as well as the technologies associated with fuel storage, reprocessing, and disposal. Lessons-learned from these programs are noted to benefit the designs of future generations of gas cooled nuclear reactors.

  7. Design of an Online Fission Gas Monitoring System for Post-irradiation Examination Heating Tests of Coated Fuel Particles for High-Temperature Gas-Cooled Reactors

    SciTech Connect

    Dawn Scates

    2010-10-01

    A new Fission Gas Monitoring System (FGMS) has been designed at the Idaho National Laboratory (INL) for use of monitoring online fission gas-released during fuel heating tests. The FGMS will be used with the Fuel Accident Condition Simulator (FACS) at the Hot Fuels Examination Facility (HFEF) located at the Materials and Fuels Complex (MFC) within the INL campus. Preselected Advanced Gas Reactor (AGR) TRISO (Tri-isotropic) fuel compacts will undergo testing to assess the fission product retention characteristics under high temperature accident conditions. The FACS furnace will heat the fuel to temperatures up to 2,000ºC in a helium atmosphere. Released fission products such as Kr and Xe isotopes will be transported downstream to the FGMS where they will accumulate in cryogenically cooledcollection traps and monitored with High Purity Germanium (HPGe) detectors during the heating process. Special INL developed software will be used to monitor the accumulated fission products and will report data in near real-time. These data will then be reported in a form that can be readily available to the INL reporting database. This paper describes the details of the FGMS design, the control and acqusition software, system calibration, and the expected performance of the FGMS. Preliminary online data may be available for presentation at the High Temperature Reactor (HTR) conference.

  8. PARTICLE IMAGE VELOCIMETRY MEASUREMENTS IN A REPRESENTATIVE GAS-COOLED PRISMATIC REACTOR CORE MODEL: FLOW IN THE COOLANT CHANNELS AND INTERSTITIAL BYPASS GAPS

    SciTech Connect

    Thomas E. Conder; Richard Skifton; Ralph Budwig

    2012-11-01

    Core bypass flow is one of the key issues with the prismatic Gas Turbine-Modular Helium Reactor, and it refers to the coolant that navigates through the interstitial, non-cooling passages between the graphite fuel blocks instead of traveling through the designated coolant channels. To determine the bypass flow, a double scale representative model was manufactured and installed in the Matched Index-of-Refraction flow facility; after which, stereo Particle Image Velocimetry (PIV) was employed to measure the flow field within. PIV images were analyzed to produce vector maps, and flow rates were calculated by numerically integrating over the velocity field. It was found that the bypass flow varied between 6.9-15.8% for channel Reynolds numbers of 1,746 and 4,618. The results were compared to computational fluid dynamic (CFD) pre-test simulations. When compared to these pretest calculations, the CFD analysis appeared to under predict the flow through the gap.

  9. Development of Tritium Permeation Analysis Code and Tritium Transport in a High Temperature Gas-Cooled Reactor Coupled with Hydrogen Production System

    SciTech Connect

    Chang H. Oh; Eung S. Kim; Mike Patterson

    2010-06-01

    Abstract – A tritium permeation analyses code (TPAC) was developed by Idaho National Laboratory for the purpose of analyzing tritium distributions in very high temperature reactor (VHTR) systems, including integrated hydrogen production systems. A MATLAB SIMULINK software package was used in developing the code. The TPAC is based on the mass balance equations of tritium-containing species and various forms of hydrogen coupled with a variety of tritium sources, sinks, and permeation models. In the TPAC, ternary fission and neutron reactions with 6Li, 7Li 10B, and 3He were taken into considerations as tritium sources. Purification and leakage models were implemented as main tritium sinks. Permeation of tritium and H2 through pipes, vessels, and heat exchangers were considered as main tritium transport paths. In addition, electroyzer and isotope exchange models were developed for analyzing hydrogen production systems, including high temperature electrolysis and sulfur-iodine processes.

  10. Advanced Gas Cooled Nuclear Reactor Materials Evaluation and Development program. Progress report, October 1, 1981-December 31, 1981. [Alloy-MA-956; alloy-MA-754

    SciTech Connect

    Kimball, O.F.

    1982-06-15

    Work covered in this report includes the activities associated with the status of the simulated reactor helium supply systems and testing equipment. The progress in the screening test program is descibed; this includes: screening creep results and metallographic analysis for materials thermally exposed or tested at 750/sup 0/, 850/sup 0/, 950/sup 0/ and 1050/sup 0/C (1382/sup 0/, 1562/sup 0/, 1742/sup 0/, and 1922/sup 0/F) in controlled-purity helium. The status of creep-rupture in controlled-purity helium and air and fatigue testing in the controlled-purity helium in the intensive screening test program is discussed. The results of metallographic studies of screening alloys exposed in controlled-purity helium for 3000 hours at 750/sup 0/C and 5500 hours at 950/sup 0/C, 3000 hours at 1050/sup 0/C and 6000 hours at 1050/sup 0/C and for weldments exposed in controlled-purity helium for 6000 hours at 750/sup 0/C and 6000 hours at 1050/sup 0/C are presented and discussed.