Science.gov

Sample records for gas-phase release characteristics

  1. Organic molecules in ices and their release into the gas phase

    NASA Astrophysics Data System (ADS)

    Fayolle, Edith; Oberg, Karin I.; Garrod, Robin; van Dishoeck, Ewine; Rajappan, Mahesh; Bertin, Mathieu; Romanzin, Claire; Michaut, Xavier; Fillion, Jean-Hugues

    2015-08-01

    Organic molecules in the early stages of star formation are mainly produced in icy mantles surrounding interstellar dust grains. Identifying these complex organics and quantifying their abundance during the evolution of young stellar objects is of importance to understand the emergence of life. Simple molecules in ices, up to methanol in size, have been identified in the interstellar medium through their mid-IR vibrations, but band confusion prevents detections of more complex and less abundant organic molecules in interstellar ices. The presence of complex organics on grains can instead be indirectly inferred from observations of their rotational lines in the gas phase following ice sublimation.Thermal sublimation of protostellar ices occurs when icy grains flow toward a central protostar, resulting in the formation of a hot-core or a hot-corinos. The high degree of chemical complexity observed in these dense and warm regions can be the results of i) direct synthesis on the grains followed by desorption, but also to ii) the desorption of precursors from the ice followed by gas-phase chemistry. I will show how spatially resolved millimetric observations of hot cores and cooler protostellar environments, coupled to ice observations can help us pinpoint the ice or gas-phase origin of these organic species.Organic molecules have also recently been observed in cold environments where thermal desorption can be neglected. The presence of these cold molecules in the gas phase is most likely due to non-thermal desorption processes induced by, for e.g., photon-, electron-, cosmic-ray-irradiation, shock, exothermic reactions... I will present laboratory and observational efforts that push our current understanding of these non-thermal desorption processes and how they could be use to quantify the amount of organics in ices.

  2. Quantitation of gas-phase perfluoroalkyl surfactants and fluorotelomer alcohols released from nonstick cookware and microwave popcorn bags.

    PubMed

    Sinclair, Ewan; Kim, Seung Kyu; Akinleye, Henry B; Kannan, Kurunthachalam

    2007-02-15

    Fluoropolymer dispersions are used for coating certain cookware products and food-contact packaging to impart oil and water repellency. Since salts of perfluorooctanoic acid (PFOA) are used as a processing aid in the manufacture of many fluoropolymers, it is necessary to determine if these compounds are still present as residuals after the process used to coat nonstick cookware or packaging, and could be released during typical cooking conditions. In this study, we identified and measured perfluoroalkyl carboxylates (PFCAs), particularly PFOA, and fluorotelomer alcohols (FTOHs; 6:2 FTOH and 8:2 FTOH), released from nonstick cookware into the gas phase under normal cooking temperatures (179 to 233 degrees C surface temperature). PFOA was released into the gas phase at 7-337 ng (11-503 pg/cm2) per pan from four brands of nonstick frying pans. 6:2 FTOH and 8:2 FTOH were found in the gas phase of four brands of frying pans, and the sources of FTOHs released from nonstick cookware are under investigation. We observed a significant decrease in gas-phase PFOA following repeated use of one brand of pan, whereas the other brand did not show a significant reduction in PFOA release following multiple uses. PFOA was found at >5 ng during the fourth use of both brands of pans. FTOHs were not found after the second use of either brand of pans. PFOA was found at 5-34 ng in the vapors produced from a prepacked microwave popcorn bag. PFOA was not found in the vapors produced from plain white corn kernels popped in a polypropylene container. 6:2 FTOH and 8:2 FTOH were measured in the vapors produced from one brand of prepacked microwave popcorn at 223 + 37 ng and 258 +/- 36 ng per bag, respectively, but not measured at >20 ng (LOQ) in the other two brands. On the packaging surface of one brand of microwave popcorn several PFCAs, including C5-C12, 6:2 FTOH, and 8:2 FTOH, were found at concentrations in the order of 0.5-6.0 ng/cm2. This study suggests that residual PFOA is not

  3. Comparison of electrical and optical characteristics in gas-phase and gas-liquid phase discharges

    NASA Astrophysics Data System (ADS)

    Qazi, H. I. A.; Nie, Qiu-Yue; Li, He-Ping; Zhang, Xiao-Fei; Bao, Cheng-Yu

    2015-12-01

    This paper presents an AC-excited argon discharge generated using a gas-liquid (two-phase) hybrid plasma reactor, which mainly consists of a powered needle electrode enclosed in a conical quartz tube and grounded deionized water electrode. The discharges in the gas-phase, as well as in the two-phase, exhibit two discharge modes, i.e., the low current glow-like diffuse mode and the high current streamer-like constrict mode, with a mode transition, which exhibits a negative resistance of the discharges. The optical emission spectral analysis shows that the stronger diffusion of the water vapor into the discharge region in the two-phase discharges boosts up the generation of OH (A-X) radicals, and consequently, leads to a higher rotational temperature in the water-phase plasma plume than that of the gas-phase discharges. Both the increase of the power input and the decrease of the argon flow rate result in the increase of the rotational temperature in the plasma plume of the water-phase discharge. The stable two-phase discharges with a long plasma plume in the water-phase under a low power input and gas flow rate may show a promising prospect for the degradation of organic pollutants, e.g., printing and dyeing wastewater, in the field of environmental protection.

  4. Comparison of electrical and optical characteristics in gas-phase and gas-liquid phase discharges

    SciTech Connect

    Qazi, H. I. A.; Li, He-Ping Zhang, Xiao-Fei; Bao, Cheng-Yu; Nie, Qiu-Yue

    2015-12-15

    This paper presents an AC-excited argon discharge generated using a gas-liquid (two-phase) hybrid plasma reactor, which mainly consists of a powered needle electrode enclosed in a conical quartz tube and grounded deionized water electrode. The discharges in the gas-phase, as well as in the two-phase, exhibit two discharge modes, i.e., the low current glow-like diffuse mode and the high current streamer-like constrict mode, with a mode transition, which exhibits a negative resistance of the discharges. The optical emission spectral analysis shows that the stronger diffusion of the water vapor into the discharge region in the two-phase discharges boosts up the generation of OH (A–X) radicals, and consequently, leads to a higher rotational temperature in the water-phase plasma plume than that of the gas-phase discharges. Both the increase of the power input and the decrease of the argon flow rate result in the increase of the rotational temperature in the plasma plume of the water-phase discharge. The stable two-phase discharges with a long plasma plume in the water-phase under a low power input and gas flow rate may show a promising prospect for the degradation of organic pollutants, e.g., printing and dyeing wastewater, in the field of environmental protection.

  5. Aerosol and gas-phase characteristics in relation to meteorology: Case studies in populated arid settings

    NASA Astrophysics Data System (ADS)

    Crosbie, Ewan Colin

    Atmospheric aerosols and trace gases are a highly relevant component of the climate system affecting atmospheric radiative transfer and the hydrologic cycle. In arid and semi-arid regions, where cloud cover is often low and precipitation is generally scarce and sporadic, the driving processes accounting for the production, loss and transport of atmospheric constituents are often distinctly different from other climates. In arid regions, the same circulation dynamics that suppress cloud formation can be responsible for creating strong subsidence inversions, which cap atmospheric mixing and trap pollutants close to the surface, often placing populated arid regions high on global rankings of air pollution concerns. In addition, low soil moisture can encourage wind-blown dust emissions, which can be a significant fraction of the total aerosol loading in both coarse and fine modes on a mass basis. Three distinct focus regions are investigated over varying time scales, using a diverse set of techniques, and with wide-ranging primary goals. 1) the Tehran metropolitan area in Iran over a ten-year period from 2000-2009, 2) Tucson, Arizona over 2012-2014 with three intensive monitoring periods during summer 2014 and winter 2015 and 3) the San Joaquin Valley in California during the NASA DISCOVER-AQ campaign during Jan-Feb 2013. However, in all cases, local and regional scale meteorology play a significant role in controlling the spatiotemporal variability in trace gas and aerosol concentrations. Particular emphasis is placed on understanding transport pathways due to the local wind patterns and the importance of key meteorological parameters such as temperature, humidity and solar radiation on controlling production and loss mechanisms. While low in magnitude, the precipitation pattern is still an important sink mechanism that modulates gas phase and particle abundances in all three regions, either through scavenging or by promoting vertical mixing. The reported measurements

  6. Seasonal characteristics of gas-phase air pollutants: implications for public health in northeastern New Jersey

    NASA Astrophysics Data System (ADS)

    Roberts-Semple, D. A.; Gao, Y.

    2011-12-01

    To characterize the impact of urban air pollution and local weather conditions on human health, the ambient air concentrations of nitrogen oxide (NOx) and ground-level ozone (O3) were measured at the Meadowlands in Lyndhurst, NJ (41N, 74W) from June 1, 2007 to May 31, 2008. Meteorological data, mainly temperature, wind speed, relative humidity and barometric pressure, were supplemented with data from Weather Underground. Public health data were obtained from the New Jersey Department of Health and Senior Services (NJDHSS). The relationship between gas-phase pollutants and hospital admissions were examined through path analytic models by using multiple regressions and bivariate correlations. The meteorological conditions and air pollutants that may be associated with human respiratory health effects are analyzed. Preliminary results demonstrate that the ambient levels of NOx and O3 are influenced by certain meteorological conditions in the Meadowlands, and that there is a strong relationship between hospital admission and personal exposure to NO2 over the short-term. There is no direct relationship between O3 and hospital admission (r=-0.092), whereas hospital admission and NOx correlate (r=0.317) but more significantly with NO2 (r=.359) at a significance level of 0.01. Hospital admission rates are indirectly affected by humidity (r=-0.077). The seasonal dependence of pollutants is caused mainly by low wind speed and differences in chemical processing, making them interdependent. The monthly average O3 ranged from 11.1ppb to 36.2ppb with the highest values in summer; NOx ranged from 17.0ppb to 29.0ppb with no marked seasonal variations and were lower on weekends than on week days. There were dissimilar diurnal patterns and an inverse relationship between the hourly average of NOx and O3 concentrations, suggesting that O3 formation was not limited by the availability of NOx but is likely influenced by a VOC-sensitive chemical regime. This study provides a basis for

  7. Volatile out gassing characteristics of highly filled ethylene vinyl acetate binder materials: Gas phase infra-red spectroscopy

    DOE PAGESBeta

    Patel, Mogon; Bowditch, Martin; Jones, Ben; Netherton, David; Khan, Niaz; Letant, Sonia; Maxwell, Robert S.; Birdsell, Stephen A.

    2012-12-08

    Gas phase Infra-red (IR) spectroscopy has been used to investigate volatile out gassing properties of highly filled poly (ethylene-co-vinyl acetate) materials. In these studies, a Scout-ENTM heated gas cell was interfaced to a vacuum FTIR spectrometer, and the quantification of evolved species was achieved through calibration of the gas cell with certified gas standards. The volatile out gassing properties were monitored as a function of time during storage at 75°C under vacuum conditions (< 1mbar). Acetic acid, carbon dioxide and water were identified as the major out gassing products through IR absorption peaks at 1797, 2354 and 3853 cm-1, respectively.more » We present a comparison of three highly filled poly (ethyleneco- vinyl acetate) resins.« less

  8. Volatile out gassing characteristics of highly filled ethylene vinyl acetate binder materials: Gas phase infra-red spectroscopy

    SciTech Connect

    Patel, Mogon; Bowditch, Martin; Jones, Ben; Netherton, David; Khan, Niaz; Letant, Sonia; Maxwell, Robert S.; Birdsell, Stephen A.

    2012-12-08

    Gas phase Infra-red (IR) spectroscopy has been used to investigate volatile out gassing properties of highly filled poly (ethylene-co-vinyl acetate) materials. In these studies, a Scout-ENTM heated gas cell was interfaced to a vacuum FTIR spectrometer, and the quantification of evolved species was achieved through calibration of the gas cell with certified gas standards. The volatile out gassing properties were monitored as a function of time during storage at 75°C under vacuum conditions (< 1mbar). Acetic acid, carbon dioxide and water were identified as the major out gassing products through IR absorption peaks at 1797, 2354 and 3853 cm-1, respectively. We present a comparison of three highly filled poly (ethyleneco- vinyl acetate) resins.

  9. Gas Phase Nanoparticle Synthesis

    NASA Astrophysics Data System (ADS)

    Granqvist, Claes; Kish, Laszlo; Marlow, William

    This book deals with gas-phase nanoparticle synthesis and is intended for researchers and research students in nanomaterials science and engineering, condensed matter physics and chemistry, and aerosol science. Gas-phase nanoparticle synthesis is instrumental to nanotechnology - a field in current focus that raises hopes for environmentally benign, resource-lean manufacturing. Nanoparticles can be produced by many physical, chemical, and even biological routes. Gas-phase synthesis is particularly interesting since one can achieve accurate manufacturing control and hence industrial viability.

  10. Investigation of the characteristics of biofilms grown in gas-phase biofilters with and without ozone injection by CLSM technique.

    PubMed

    Saingam, Prakit; Xi, Jinying; Xu, Yang; Hu, Hong-Ying

    2016-02-01

    Recently, ozone injection technique was developed as a novel biomass control method to reduce bed clogging in biofilters treating volatile organic compounds (VOCs). However, the effects of ozone on the characteristics of biofilms are still unknown. In this study, two identical lab-scale biofilters treating gaseous toluene were operated in parallel except that one was continuously injected with 200 mg/m(3) ozone. Four glass slides were placed inside each biofilter on day 57 and then were taken out sequentially after 1, 2, 4, and 6 weeks of cultivation. The biofilms grown on the glass slides were stained by the ViaGram™ Red + Bacterial Gram Stain and Viability Kit and observed through the confocal laser scanning microscopy (CLSM). According to the CLSM images of 1, 2, and 4 weeks, the ozonated biofilm was significantly thinner than the control biofilm, which demonstrated that ozone could effectively control the biomass in the biofilter. For the biofilter without ozone injection, the ratios of viable cells (0.51~0.89) and the ratios of Gram-positive bacteria (0.22~0.57) both decreased within 4 weeks of cultivation. The CLSM image analysis results also demonstrated that a continuous injection of 200 mg/m(3) ozone was able to significantly enhance the ratio of viable cells to 0.77~0.97 and allow the dominance of Gram-positive bacteria in the biofilms with the ratio 0.46~0.88 instead of Gram-negative bacteria. For the 6-week samples, the biofilm thickness of the control system was reduced significantly which indicated the detachment of accumulated biofilms might occur in the samples without ozone. PMID:26536873

  11. On-line analysis of gas-phase composition in the combustion chamber and particle emission characteristics during combustion of wood and waste in a small batch reactor.

    PubMed

    Ferge, T; Maguhn, J; Hafner, K; Mühlberger, F; Davidovic, M; Warnecke, R; Zimmermann, R

    2005-03-15

    The emission of particulate matter and gaseous compounds during combustion of wood and refuse-derived fuel in a small batch reactor is investigated by laser mass-spectrometric on-line measurement techniques for gas-phase analysis and simultaneous registration of physical aerosol properties (number size distribution). The gas-phase composition is addressed by a laser-based mass spectrometric method, namely, vacuum-UV single-photon ionization time-of-flight mass spectrometry (VUV-SPI-TOFMS). Particle-size distributions are measured with a scanning mobility particle sizer. Furthermore, a photoelectric aerosol sensor is applied for detection of particle-bound polycyclic aromatic hydrocarbons. The different phases of wood combustion are distinguishable by both the chemical profiles of gas-phase components (e.g., polycyclic aromatic hydrocarbons, PAH) and the particle-size distribution. Furthermore, short disturbances of the combustion process due to air supply shortages are investigated regarding their effect on particle-size distribution and gas-phase composition, respectively. It is shown that the combustion conditions strongly influence the particle-size distribution as well as on the emission of particle-bound polycyclic aromatic hydrocarbons. PMID:15819190

  12. Theoretical Investigation of the Reaction Paths of the Aluminum Cluster Cation with Water Molecule in the Gas Phase: A Facile Route for Dihydrogen Release.

    PubMed

    Moc, Jerzy

    2015-08-13

    The gas-phase reaction of the Al6(+) cation with a water molecule is investigated computationally by coupled cluster and density functional theories. Several low-energy paths of the mechanism for dihydrogen production from H2O by the positively charged aluminum cluster are identified. This reaction involves the initial formation of the association complex, exothermic by 25 kcal/mol, followed by the water dissociation and H2 elimination major steps, yielding the Al6O(+) product oxide with either the nonplanar or planar structure. The H2O dissociation on Al6(+) is the rate-determining step. Of the paths probed, the one kinetically most preferred leads from the O-H bond dissociation transition state lying below the separated reactants to the immediate HAl6OH(+) intermediate of the "open" type and involves further the more compact intermediate from which H2 is eliminated. The other reaction paths explored involve the activation enthalpy (at 0 K) for the rate-determining step of less than 2 kcal/mol relative to the Al6(+) + H2O. Natural population analysis based charges indicate that forming of H2 along the elimination coordinate is facilitated by the interaction of the hydridic and protic hydrogens. For the kinetically most favorable route detected, the coupled cluster singles and doubles with perturbative triples (CCSD(T)) relative energies calculated with the unrestricted and restricted HF references are in a good agreement. This investigation is relevant specifically to the recent mass spectrometric study of the reactivity of Aln(+) with water by Arakawa et al., and it provides a mechanistic insight into the formation of the observed AlnO(+) product oxide with n = 6. PMID:26200102

  13. Major factors influencing gas-phase chemistry in power-plant plumes during long-range transport—I. Release time and dispersion rate for dispersion into a 'rural' ambient atmosphere

    NASA Astrophysics Data System (ADS)

    Cocks, Alan T.; Fletcher, Ian S.

    A gas-phase chemical kinetic scheme combined with a simple dispersion model has been used to examine the influence of season, time of release and dispersion rate on the chemical behaviour of a powerplant plume emitted into an ambient atmosphere defined by rural emissions. Simulations were carried out over 24 h for a plume trajectory primarily over the sea at a typical Northern European latitude. The temporal behaviour of in-plume hydroxyl radical concentrations is a complex function of the parameters studied. For daytime plume releases, mean OH concentrations over 24 h are predicted to be lower than the ambient values and to decrease with dispersion rate. For evening and night releases, mean OH concentrations are calculated to be greater than the corresponding ambient values and also the plume concentrations for a daytime release, with little dependence on dispersion rate. The effect of the variations of parameters studied on mean OH concentrations is much smaller than the maximum effect during the simulation. Mean effective first-order rate constants for the gas-phase oxidation of plume SO 2 are estimated to be ca 0.5% h -1, 0.2% h -1 and 0.03% h -1, for summer, autumn/spring and winter, respectively. Most of the plume and ambient NO x is predicted to be converted to HNO 3 in summer and autumn/spring within 24 h and concentrations of nitric acid are predicted to greatly exceed those of H 2SO 4. Ozone, H 2O 2 and PAN concentrations in power-plant plumes are normally predicted to be less than the corresponding ambient values. A significant O 3 excess in plumes is only expected for slowly dispersing plumes under summer conditions after 24 h, and even in these cases, the total O 3 produced over the simulation time is less than that in the corresponding ambient air. The differences between reaction rates in atmospheres defined by diffuse sources and those produced by large point sources may have significance in determining control strategies.

  14. Gas-phase chemical dynamics

    SciTech Connect

    Weston, R.E. Jr.; Sears, T.J.; Preses, J.M.

    1993-12-01

    Research in this program is directed towards the spectroscopy of small free radicals and reactive molecules and the state-to-state dynamics of gas phase collision, energy transfer, and photodissociation phenomena. Work on several systems is summarized here.

  15. Gas phase chemistry of the transactinides

    NASA Astrophysics Data System (ADS)

    Türler, A.

    1999-01-01

    In the past few years the gas phase chemistry of the first three transactinide elements rutherfordium (element 104), dubnium (element 105) and seaborgium (element 106) has been studied experimentally using OLGA, the On-line Gas chemistry Apparatus, developed at Paul Scherrer Institute. In each experiment, the investigated transactinide element was identified by measuring the characteristic decay properties of its isotopes. In the chemistry of rutherfordium and dubnium evidence for relativistic effects were found, as predicted previously in theoretical calculations. For the first time, the volatility of Sg oxychlorides in comparison to its lighter homologues W and Mo was measured. Also, the half-lives and SF-branches of the nuclides 265Sg and 266Sg were determined. Finally, prospects for a chemical separation of bohrium (element 107) and hassium (element 108) using gas phase chemistry will be discussed.

  16. [Nutrient release characteristics and use efficiency of slow- and controlled release fertilizers].

    PubMed

    Duan, Lu-Lu; Zhang, Min; Liu, Gang; Shang, Zhao-Cong; Yang, Yi

    2009-05-01

    Water extraction method and soil incubation method were used to study the nutrient release characteristics of four slow- and controlled release fertilizers (CRF1, CRF2, SCU, and IBDU), and pot experiment was conducted to assess the effects of the release characteristics on the nutrient requirements of canola (Brassica napus L.). The nutrient release curves of test fertilizers in water were S pattern for CRF1 and CRF2, burst pattern for SCU, and reverse L pattern for IBDU. The nutrient release characteristics of the four fertilizers in water and in soil all fitted binomial equations, suggesting that there existed some similarities in the nutrient release in the two media. The nutrient uptake and biomass of canola plants treated with CRF1 and CRF2 were significantly higher than those treated with SCU and IBDU, and CRF2 had the greatest effect. The nutrient release curves of CRF1 and CRF2 accorded more closely with the nutrient requirements of canola. PMID:19803169

  17. CREKID: A computer code for transient, gas-phase combustion of kinetics

    NASA Technical Reports Server (NTRS)

    Pratt, D. T.; Radhakrishnan, K.

    1984-01-01

    A new algorithm was developed for fast, automatic integration of chemical kinetic rate equations describing homogeneous, gas-phase combustion at constant pressure. Particular attention is paid to the distinguishing physical and computational characteristics of the induction, heat-release and equilibration regimes. The two-part predictor-corrector algorithm, based on an exponentially-fitted trapezoidal rule, includes filtering of ill-posed initial conditions, automatic selection of Newton-Jacobi or Newton iteration for convergence to achieve maximum computational efficiency while observing a prescribed error tolerance. The new algorithm was found to compare favorably with LSODE on two representative test problems drawn from combustion kinetics.

  18. Acoustic Instabilities Driven by Slip Between a Condensed Phase and the Gas Phase in Combustion Systems

    NASA Technical Reports Server (NTRS)

    DiCicco, M.; Buckmaster, J.

    1994-01-01

    In the context of gas turbine combustion chambers, this study describes how slip affects the response time of fuel sprays to pressure fluctuations in a gaseous flow field. Slip between the condensed and gas phases is shown to cause fuel vapor mass fraction fluctuations upstream of the reaction zone. A resulting oscillating heat release can drive the pressure fluctuations, depending on the phase difference between them. This generates an acoustic instability. With relevance to previous experimental results, differences are explored in the evaporation characteristics among three different fuel sprays (JP-4, JP-5, and D-2) in relation to their effect on the magnitude of the fuel vapor mass fraction perturbations.

  19. Rate processes in gas phase

    NASA Technical Reports Server (NTRS)

    Hansen, C. F.

    1983-01-01

    Reaction-rate theory and experiment are given a critical review from the engineers' point of view. Rates of heavy-particle, collision-induced reaction in gas phase are formulated in terms of the cross sections and activation energies for reaction. The effect of cross section function shape and of excited state contributions to reaction both cause the slope of Arrhenius plots to differ from the true activation energy, except at low temperature. The master equations for chemically reacting gases are introduced, and dissociation and ionization reactions are shown to proceed primarily from excited states about kT from the dissociation or ionization limit. Collision-induced vibration, vibration-rotation, and pure rotation transitions are treated, including three-dimensional effects and conservation of energy, which have usually been ignored. The quantum theory of transitions at potential surface crossing is derived, and results are found to be in fair agreement with experiment in spite of some questionable approximations involved.

  20. Oscillatory burning of solid propellants including gas phase time lag.

    NASA Technical Reports Server (NTRS)

    T'Ien, J. S.

    1972-01-01

    An analysis has been performed for oscillatory burning of solid propellants including gas phase time lag. The gaseous flame is assumed to be premixed and laminar with a one-step overall chemical reaction. The propellant is assumed to decompose according to the Arrenhius Law, with no condensed phase reaction. With this model, strong gas phase resonance has been found in certain cases at the characteristic gas-phase frequencies, but the peaking of the acoustic admittance is in the direction favoring the damping of pressure waves. At still higher frequencies, moderate wave-amplifying ability was found. The limit of low frequency response obtained previously by Denison and Baum was recovered, and the limitations of the quasi-steady theory were investigated.

  1. Release characteristics of polyurethane tablets containing dicarboxylic acids as release modifiers - a case study with diprophylline.

    PubMed

    Claeys, Bart; De Bruyn, Sander; Hansen, Laurent; De Beer, Thomas; Remon, Jean Paul; Vervaet, Chris

    2014-12-30

    The influence of several dicarboxylic acids on the release characteristics of polyurethane tablets with a high drug load was investigated. Mixtures of diprophylline (Dyph) and thermoplastic polyurethane (TPUR) (ratio: 50/50, 65/35 and 75/25 wt.%) were hot-melt extruded and injection molded with the addition of 1, 2.5, 5 and 10% wt.% dicarboxylic acid as release modifier. Incorporating malonic, succinic, maleic and glutaric acid in the TPUR matrices enhanced drug release, proportional to the dicarboxylic acid concentration in the formulation. No correlation was found between the water solubility, melting point, logP and pKa of the acids and their drug release modifying capacity. Succinic and maleic acid had the highest drug release modifying capacity which was linked to more intense molecular interactions with Dyph. A structural fit between the primary and secondary alcohol of Dyph and both carboxylic groups of the acids was at the origin of this enhanced interaction. PMID:25445517

  2. Release characteristics of encapsulated formulations incorporating plant growth factors.

    PubMed

    Wybraniec, Slawomir; Schwartz, Liliana; Wiesman, Zeev; Markus, Arie; Wolf, David

    2002-05-01

    The release characteristics of encapsulated formulations containing a combination of plant growth factors (PGF)--plant hormones (IBA, paclobutrazol), nutrients (fertilizers, microelements), and fungicide (prochloraz)--were studied. The formulations were prepared by encapsulating the active ingredients in a polyethylene matrix and, in some cases, subsequently coating the product with polyurethane. Dissolution experiments were carried out with both coated and non-coated formulations to determine the sustained release patterns of the active ingredients. The PGF controlled-release systems obtained have been shown to promote development of root systems, vegetative growth, and reproductive development in cuttings, potted plants, or garden plants of various plant species. These beneficial effects are attributable to the lasting and balanced PGF availability provided by these systems. PMID:12009194

  3. Release of compact nucleoids with characteristic shapes from Escherichia coli.

    PubMed

    Zimmerman, S B; Murphy, L D

    2001-09-01

    The genomic DNA of bacteria is contained in one or a few compact bodies known as nucleoids. We describe a simple procedure that retains the general shape and compaction of nucleoids from Escherichia coli upon cell lysis and nucleoid release from the cell envelope. The procedure is a modification of that used for the preparation of spermidine nucleoids (nucleoids released in the presence of spermidine) (T. Kornberg, A. Lockwood, and A. Worcel, Proc. Natl. Acad. Sci. USA 71:3189--3193, 1974). Polylysine is added to prevent the normal decompaction of nucleoids which occurs upon cell lysis. Nucleoids retained their characteristic shapes in lysates of exponential-phase cells or in lysates of cells treated with chloramphenicol or nalidixate to alter nucleoid morphology. The notably unstable nucleoids of rifampin-treated cells were obtained in compact, stable form in such lysates. Nucleoids released in the presence of polylysine were easily processed and provided well-defined DNA fluorescence and phase-contrast images. Uniform populations of nucleoids retaining characteristic shapes could be isolated after formaldehyde fixation and heating with sodium dodecyl sulfate. PMID:11489856

  4. Electrothermal vaporization, part 1: gas phase chemistry

    NASA Astrophysics Data System (ADS)

    Majidi, Vahid; Xu, Ning; Smith, Robert G.

    2000-01-01

    This manuscript is the first of a two-part publication on evaluation of vaporization and atomization processes in electrothermal vaporizers (ETV). Part 1 is specifically focused on gas phase (and heterogeneous) chemistry in ETVs. Molecular absorption spectroscopy and thermogravimetric analysis (in conjunction with gas-phase mass spectrometry) are used to investigate the vaporization of Mg, Ca, Sr, Ba, Co and Ni (chloride and nitrate salts). Graphite, Pt, and Ta were used as substrate material for vaporizers to elucidate some observations of gas-phase chemistry. The experiments in Part I and II of this series are intentionally performed using wall vaporization to closely mimic the conditions used when ETV is employed as a sample introduction device.

  5. Continuous-Flow Gas-Phase Bioreactors

    NASA Technical Reports Server (NTRS)

    Wise, Donald L.; Trantolo, Debra J.

    1994-01-01

    Continuous-flow gas-phase bioreactors proposed for biochemical, food-processing, and related industries. Reactor contains one or more selected enzymes dehydrated or otherwise immobilized on solid carrier. Selected reactant gases fed into reactor, wherein chemical reactions catalyzed by enzyme(s) yield product biochemicals. Concept based on discovery that enzymes not necessarily placed in traditional aqueous environments to function as biocatalysts.

  6. Gas-Phase Infrared; JCAMP Format

    National Institute of Standards and Technology Data Gateway

    SRD 35 NIST/EPA Gas-Phase Infrared; JCAMP Format (PC database for purchase)   This data collection contains 5,228 infrared spectra in the JCAMP-DX (Joint Committee for Atomic and Molecular Physical Data "Data Exchange") format.

  7. EPA GAS PHASE CHEMISTRY CHAMBER STUDIES

    EPA Science Inventory

    Gas-phase smog chamber experiments are being performed at EPA in order to evaluate a number of current chemical mechanisms for inclusion in EPA regulatory and research models. The smog chambers are 9000 L in volume and constructed of 2-mil teflon film. One of the chambers is co...

  8. Gas phase chemistry of chlorine nitrate

    SciTech Connect

    Okumura, M.; Moore, T.A.; Crellin, K.C.

    1995-12-31

    Chlorine nitrate (ClONO{sub 2}) is a reservoir of both ClO{sub x} and NO{sub x} radicals in Earth`s stratosphere, and its decomposition is important in determining the abundance of stratospheric ozone. We present experimental and theoretical studies that explore the mechanisms and dynamics of processes leading to ClONO{sub 2} destruction in the stratosphere. Molecular beam photodissociation experiments have been performed to determine the decomposition pathways of ClONO{sub 2} upon excitation at 308 nm and to explore the possibility of a long-lived excited state. We have also investigated the reaction of chlorine nitrate with chloride ions Cl{sup -} in the gas phase. The gas phase ionic reaction may elucidate ionic mechanisms of heterogeneous reactions occurring on the surfaces of Polar Stratospheric Cloud particles and also raise doubts about proposed schemes to mitigate ozone depletion by electrifying the stratosphere.

  9. The gas-phase acidity of nitrocyclopropane

    NASA Astrophysics Data System (ADS)

    Bartmess, John E.; Wilson, Burton; Sorensen, Daniel N.; Bloor, John E.

    1992-09-01

    Nitrocyclopropane is 10.5 kcal mol-1 weaker as an acid in the gas phase than its open-chain analog, 2-nitropropane. This is attributed to the conflicting hybridization requirements for carbanion stabilization by the cyclopropyl ring and by the nitro group. Based on reactivities, the deprotonated form does not ring-open to either the 2-nitroallyl anion or the 1-nitroallyl anion.

  10. Gas-Phase Photoionization Of A Protein

    NASA Astrophysics Data System (ADS)

    Milosavljevic, A. R.; Giuliani, A.; Nicolas, C.; Gil, J.-F.; Lemaire, J.; Refregiers, M.; Nahon, L.

    2010-07-01

    We present preliminary results on gas phase photoionization of electrosprayproduced multiply protonated cytochrome c protein (104 amino acids; ˜12.4 kDa), which has been achieved with a newly developed experimental system for spectroscopy of electrosprayed ions in a linear quadrupole ion trap using a monochromatized vacuum ultraviolet (VUV) synchrotron radiation and tandem mass spectrometry method. The investigation of proteins in the gas phase, where they are free of the influence of counterions and solvent molecules, offer a possibility to understand their intrinsic molecular properties. However, due to limited both ion densities and available number of photons, the use of synchrotron radiation for the trapped ions spectroscopy is a rather challenging task. The feasibility of coupling a Fourier transform ion cyclotron resonance ion trap with soft x-ray synchrotron beamline and the first successful use of synchrotron radiation for spectroscopy of electrosprayed negative ions stored in a three-dimensional quadrupole ion trap have been demonstrated only recently (R. Thissen et al., 2008, Phys. Rev. Lett., 100, 223001; A. Giulliani et al., Proc. 57th ASMS Conf., Philadelphia, 2009). The present results are the first reported on photoionization of kDa species in the gas phase and are valuable regarding both a fundamental interest of accessing physical properties of large biological ions isolated in vacuo and potential development of a new technique for proteomics.

  11. Gas phase thermochemistry of organogermanium compounds

    SciTech Connect

    Engel, J.P.

    1993-12-07

    A variety of silyl- and alkyl-germylene precursors have been synthesized and subsequently pyrolyzed in the gas phase. Arrhenius parameters were obtained employing a pulsed-stirred flow reactor for these unimolecular decompositions. These precursors are divided into two major categories by mechanism of germylene extrusion: {alpha}-elimination precursors and germylacetylenes. The extrusion of germylenes from germylacetylene precursors is of primary interest. A mechanism is proposed employing a germacyclopropene intermediate. Evidence supporting this mechanism is presented. In the process of exploring germylacetylenes as germylene precursors, an apparent dyatropic rearrangement between germanium and silicon was observed. This rearrangement was subsequently explored.

  12. Receptors useful for gas phase chemical sensing

    DOEpatents

    Jaworski, Justyn W; Lee, Seung-Wuk; Majumdar, Arunava; Raorane, Digvijay A

    2015-02-17

    The invention provides for a receptor, capable of binding to a target molecule, linked to a hygroscopic polymer or hydrogel; and the use of this receptor in a device for detecting the target molecule in a gaseous and/or liquid phase. The invention also provides for a method for detecting the presence of a target molecule in the gas phase using the device. In particular, the receptor can be a peptide capable of binding a 2,4,6-trinitrotoluene (TNT) or 2,4,-dinitrotoluene (DNT).

  13. Gas Phase Model of Surface Reactions for N{2} Afterglows

    NASA Astrophysics Data System (ADS)

    Marković, V. Lj.; Petrović, Z. Lj.; Pejović, M. M.

    1996-07-01

    The adequacy of the homogeneous gas phase model as a representation of the surface losses of diffusing active particles in gas phase is studied. As an example the recent data obtained for the surface recombination coefficients are reanalyzed. The data were obtained by the application of the breakdown delay times which consists of the measurements of the breakdown delay times t_d as a function of the afterglow period tau. It was found that for the conditions of our experiment, the diffusion should not be neglected as the final results are significantly different when obtained by approximate gas phase representation and by exact numerical solution to the diffusion equation. While application of the gas phase effective coefficients to represent surface losses gives an error in the value of the recombination coefficient, it reproduces correctly other characteristics such as order of the process which can be obtained from simple fits to the experimental data. Dans cet article, nous étudions la validité du modèle approximatif représentant les pertes superficielles des particules actives qui diffusent de la phase gazeuse comme pertes dans la phase homogène du gaz. Les données actuelles du coefficient de recombination en surface sont utilisées par cette vérification . Les données experimentales sont obtenues en utilisant la technique qui consiste en la mesure du temps de retard du début de la décharge en fonction de la période de relaxation. Nous avons trouvé que, pour nos conditions expérimentales, la diffusion ne peut être négligée. Aussi, les résultats finals sont considérablement différents quand ils sont obtenus en utilisant le modèle approximatif par comparaison aves les résultats obtenus par la solution numérique exacte de l'équation de la diffusion. L'application des coefficients effectifs dans la phase gaseuse pour la présentation des pertes superficielles donne, pour les coefficients de la recombinaison, des valeurs qui diffèrent en

  14. Release characteristics of selected carbon nanotube polymer composites

    EPA Science Inventory

    Multi-walled carbon nanotubes (MWCNTs) are commonly used in polymer formulations to improve strength, conductivity, and other attributes. A developing concern is the potential for carbon nanotube polymer nanocomposites to release nanoparticles into the environment as the polymer ...

  15. Base pair analogs in the gas phase.

    PubMed

    Roscioli, Joseph R; Pratt, David W

    2003-11-25

    A rotationally resolved electronic spectrum of the gas-phase dimer 2-aminopyridine.2-pyridone, an analog of the adenine.thymine base pair, has been observed and assigned, leading to precise measurements of its moments of inertia and preliminary determinations of its structure. A Watson-Crick configuration results, with N...H-N and N-H...O hydrogen bond lengths of 2.898 and 2.810 A, respectively. The two bases are found not to be coplanar; a dihedral angle of 6.1 degrees between the base planes is also estimated from the measured moments of inertia. Possible chemical and biological implications of these results are discussed. PMID:14612563

  16. Gas-phase protonation thermochemistry of adenosine.

    PubMed

    Touboul, David; Bouchoux, Guy; Zenobi, Renato

    2008-09-18

    The goal of this work was to obtain a detailed insight on the gas-phase protonation energetic of adenosine using both mass spectrometric experiments and quantum chemical calculations. The experimental approach used the extended kinetic method with nanoelectrospray ionization and collision-induced dissociation tandem mass spectrometry. This method provides experimental values for proton affinity, PA(adenosine) = 979 +/- 1 kJ.mol (-1), and for the "protonation entropy", Delta p S degrees (adenosine) = S degrees (adenosineH +) - S degrees (adenosine) = -5 +/- 5 J.mol (-1).K (-1). The corresponding gas-phase basicity is consequently equal to: GB(adenosine) = 945 +/- 2 kJ.mol (-1) at 298K. Theoretical calculations conducted at the B3LYP/6-311+G(3df,2p)//B3LYP/6-31+G(d,p) level, including 298 K enthalpy correction, predict a proton affinity value of 974 kJ.mol (-1) after consideration of isodesmic proton transfer reactions with pyridine as the reference base. Moreover, computations clearly showed that N3 is the most favorable protonation site for adenosine, due to a strong internal hydrogen bond involving the hydroxyl group at the 2' position of the ribose sugar moiety, unlike observations for adenine and 2'-deoxyadenosine, where protonation occurs on N1. The existence of negligible protonation entropy is confirmed by calculations (theoretical Delta p S degrees (adenosine) approximately -2/-3 J.mol (-1).K (-1)) including conformational analysis and entropy of hindered rotations. Thus, the calculated protonation thermochemical properties are in good agreement with our experimental measurements. It may be noted that the new PA value is approximately 10 kJ.mol (-1) lower than the one reported in the National Institute of Standards and Technology (NIST) database, thus pointing to a correction of the tabulated protonation thermochemistry of adenosine. PMID:18720985

  17. The gas-phase metallicity of central and satellite galaxies in the Sloan Digital Sky Survey

    NASA Astrophysics Data System (ADS)

    Pasquali, Anna; Gallazzi, Anna; van den Bosch, Frank C.

    2012-09-01

    We exploit the galaxy groups catalogue of Yang et al. and the galaxy properties measured in the Sloan Digital Sky Survey Data Releases 4 and 7 to study how the gas-phase metallicities of star-forming galaxies depend on environment. We find that satellite and central galaxies follow a qualitatively similar stellar mass (M★)-gas-phase metallicity relation, whereby their gas-phase metallicity increases with M★. Satellites, though, have higher gas-phase metallicities than equally massive centrals, and this difference increases with decreasing stellar mass. We find a maximum offset of 0.06 dex at log(M★/h-2 M⊙) ≃ 8.25. At fixed halo mass, centrals are more metal rich than satellites by ˜0.5 dex on average. This is simply due to the fact that, by definition, centrals are the most massive galaxies in their groups, and the fact that gas-phase metallicity increases with stellar mass. More interestingly, we also find that the gas-phase metallicity of satellites increases with halo mass (Mh) at fixed stellar mass. This increment is more pronounced for less massive galaxies, and, at M★ ≃ 109 h-2 M⊙, corresponds to ˜0.15 dex across the range 11 < log (Mh/h-1 M⊙) < 14. We also show that low-mass satellite galaxies have higher gas-phase metallicities than central galaxies of the same stellar metallicity. This difference becomes negligible for more massive galaxies of roughly solar metallicity. We demonstrate that the observed differences in gas-phase metallicity between centrals and satellites at fixed M★ are not a consequence of stellar mass stripping (advocated by Pasquali et al. in order to explain similar differences but in stellar metallicity), nor to the past star formation history of these galaxies as quantified by their surface mass density or gas mass fraction. Rather, we argue that these trends probably originate from a combination of three environmental effects: (i) strangulation, which prevents satellite galaxies from accreting new, low

  18. NUTRIENT RELEASE CHARACTERISTICS FROM FOUR TYPES OF CONTROLLED-RELEASE FERTILIZERS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Release patterns of ammonium, nitrate, phosphorous, potassium, calcium, magnesium, iron, manganese, and zinc were measured during an eleven month period for four types of Controlled Release Fertilizers (CRF): Apex 17-5-11, Multicote 17-5-11, Nutricote 18-6-8, and Osmocote 24-4-9. Rate of fertilizer...

  19. Release and characteristics of fungal fragments in various conditions.

    PubMed

    Mensah-Attipoe, Jacob; Saari, Sampo; Veijalainen, Anna-Maria; Pasanen, Pertti; Keskinen, Jorma; Leskinen, Jari T T; Reponen, Tiina

    2016-03-15

    Intact spores and submicrometer size fragments are released from moldy building materials during growth and sporulation. It is unclear whether all fragments originate from fungal growth or if small pieces of building materials are also aerosolized as a result of microbial decomposition. In addition, particles may be formed through nucleation from secondary metabolites of fungi, such as microbial volatile organic compounds (MVOCs). In this study, we used the elemental composition of particles to characterize the origin of submicrometer fragments released from materials contaminated by fungi. Particles from three fungal species (Aspergillus versicolor, Cladosporium cladosporioides and Penicillium brevicompactum), grown on agar, wood and gypsum board were aerosolized using the Fungal Spore Source Strength Tester (FSSST) at three air velocities (5, 16 and 27 m/s). Released spores (optical size, dp ≥ 0.8 μm) and fragments (dp ≤ 0.8 μm) were counted using direct-reading optical aerosol instruments. Particles were also collected on filters, and their morphology and elemental composition analyzed using scanning electron microscopes (SEMs) coupled with an Energy-Dispersive X-ray spectroscopy (EDX). Among the studied factors, air velocity resulted in the most consistent trends in the release of fungal particles. Total concentrations of both fragments and spores increased with an increase in air velocity for all species whereas fragment-spore (F/S) ratios decreased. EDX analysis showed common elements, such as C, O, Mg and Ca, for blank material samples and fungal growth. However, N and P were exclusive to the fungal growth, and therefore were used to differentiate biological fragments from non-biological ones. Our results indicated that majority of fragments contained N and P. Because we observed increased release of fragments with increased air velocities, nucleation of MVOCs was likely not a relevant process in the formation of fungal fragments. Based on elemental

  20. Preparation and comparative release characteristics of three anthocyanin encapsulation systems.

    PubMed

    Oidtmann, Johannes; Schantz, Markus; Mäder, Karsten; Baum, Matthias; Berg, Sonja; Betz, Michael; Kulozik, Ulrich; Leick, Sabine; Rehage, Heinz; Schwarz, Karin; Richling, Elke

    2012-01-25

    Bilberries (Vaccinium myrtillus L.) and their major polyphenolic constituents, anthocyanins, have preventive activities inter alia against colon cancer and inflammatory bowel diseases. However, anthocyanins are sensitive to environmental conditions; thus their bioavailability in the gastrointestinal tract is an important determinant of their in vivo activity. In the study reported here, the potential benefits of encapsulating an anthocyanin rich bilberry extract (BE) on anthocyanin stability were investigated. Nonencapsulated BE and three different BE loaded microcapsule systems were incubated in simulated gastric fluid (SGF) and fed state simulated intestinal fluid (FeSSIF). After exposure to these media, released anthocyanins were identified and quantified by HPLC with UV/Vis detection. Although a rapid release of anthocyanins was observed within the first 20 min, encapsulation of anthocyanins doubled the amount of available anthocyanins after 150 min of incubation. These results illustrate the ability of encapsulation to inhibit early degradation of anthocyanins in the intestinal system. PMID:22224434

  1. Transferring pharmaceuticals into the gas phase

    NASA Astrophysics Data System (ADS)

    Christen, Wolfgang; Krause, Tim; Rademann, Klaus

    2008-11-01

    The dissolution of molecules of biological interest in supercritical carbon dioxide is investigated using pulsed molecular beam mass spectrometry. Due to the mild processing temperatures of most supercritical fluids, their adiabatic expansion into vacuum permits to transfer even thermally very sensitive substances into the gas phase, which is particularly attractive for pharmaceutical and biomedical applications. In addition, supercritical CO2constitutes a chemically inert solvent that is compatible with hydrocarbon-free ultrahigh vacuum conditions. Here, we report on the dissolution and pulsed supersonic jet expansion of caffeine (C8H10N4O2), the provitamin menadione (C11H8O2), and the amino acid derivative l-phenylalanine tert-butyl ester hydrochloride (C6H5CH2CH(NH2)COOC(CH3)3[dot operator]HCl), into vacuum. An on-axis residual gas analyzer is used to monitor the relative amounts of solute and solvent in the molecular beam as a function of solvent densityE The excellent selectivity and sensitivity provided by mass spectrometry permits to probe even trace amounts of solutes. The strong density variation of CO2 close to the critical point results in a pronounced pressure dependence of the relative ion currents of solute and solvent molecules, reflecting a substantial change in solubility.

  2. Gas-phase basicity of 2-furaldehyde.

    PubMed

    Ricci, Andreina; Piccolella, Simona; Pepi, Federico; Patsilinakos, Alexandros; Ragno, Rino; Garzoli, Stefania; Giacomello, Pierluigi

    2012-11-01

    2-Furaldehyde (2-FA), also known as furfural or 2-furancarboxaldehyde, is an heterocyclic aldehyde that can be obtained from the thermal dehydration of pentose monosaccharides. This molecule can be considered as an important sustainable intermediate for the preparation of a great variety of chemicals, pharmaceuticals and furan-based polymers. Despite the great importance of this molecule, its gas-phase basicity (GB) has never been measured. In this work, the GB of 2-FA was determined by the extended Cooks's kinetic method from electrospray ionization triple quadrupole tandem mass spectrometric experiments along with theoretical calculations. As expected, computational results identify the aldehydic oxygen atom of 2-FA as the preferred protonation site. The geometries of O-O-cis and O-O-trans 2-FA and of their six different protomers were calculated at the B3LYP/aug-TZV(d,p) level of theory; proton affinity (PA) values were also calculated at the G3(MP2, CCSD(T)) level of theory. The experimental PA was estimated to be 847.9 ± 3.8 kJ mol(-1), the protonation entropy 115.1 ± 5.03 J mol(-1) K(-1) and the GB 813.6 ± 4.08 kJ mol(-1) at 298 K. From the PA value, a ΔH°(f) of 533.0 ± 12.4 kJ mol(-1) for protonated 2-FA was derived. PMID:23147827

  3. Hydrocarbon radical thermochemistry: Gas-phase ion chemistry techniques

    SciTech Connect

    Ervin, Kent M.

    2014-03-21

    Final Scientific/Technical Report for the project "Hydrocarbon Radical Thermochemistry: Gas-Phase Ion Chemistry Techniques." The objective of this project is to exploit gas-phase ion chemistry techniques for determination of thermochemical values for neutral hydrocarbon radicals of importance in combustion kinetics.

  4. Pressure Dependence of Gas-Phase Reaction Rates

    ERIC Educational Resources Information Center

    De Persis, Stephanie; Dollet, Alain; Teyssandier, Francis

    2004-01-01

    It is presented that only simple concepts, mainly taken from activated-complex or transition-state theory, are required to explain and analytically describe the influence of pressure on gas-phase reaction kinetics. The simplest kind of elementary gas-phase reaction is a unimolecular decomposition reaction.

  5. Humidity independent mass spectrometry for gas phase chemical analysis via ambient proton transfer reaction.

    PubMed

    Zhu, Hongying; Huang, Guangming

    2015-03-31

    In this work, a humidity independent mass spectrometric method was developed for rapid analysis of gas phase chemicals. This method is based upon ambient proton transfer reaction between gas phase chemicals and charged water droplets, in a reaction chamber with nearly saturate humidity under atmospheric pressure. The humidity independent nature enables direct and rapid analysis of raw gas phase samples, avoiding time- and sample-consuming sample pretreatments in conventional mass spectrometry methods to control sample humidity. Acetone, benzene, toluene, ethylbenzene and meta-xylene were used to evaluate the analytical performance of present method. The limits of detection for benzene, toluene, ethylbenzene and meta-xylene are in the range of ∼0.1 to ∼0.3 ppbV; that of benzene is well below the present European Union permissible exposure limit for benzene vapor (5 μg m(-3), ∼1.44 ppbV), with linear ranges of approximately two orders of magnitude. The majority of the homemade device contains a stainless steel tube as reaction chamber and an ultrasonic humidifier as the source of charged water droplets, which makes this cheap device easy to assemble and facile to operate. In addition, potential application of this method was illustrated by the real time identification of raw gas phase chemicals released from plants at different physiological stages. PMID:25813029

  6. Gas-phase protonation thermochemistry of arginine.

    PubMed

    Bouchoux, Guy; Desaphy, Sylvain; Bourcier, Sophie; Malosse, Christian; Bimbong, Rosa Ngo Biboum

    2008-03-20

    The gas-phase basicity (GB), proton affinity (PA), and protonation entropy (DeltapS degrees (M)=S degrees (MH+)-S degrees (M)) of arginine (Arg) have been experimentally determined by the extended kinetic method using an electrospray ionization quadrupole time-of-flight (ESI-Q-TOF) mass spectrometer. This method provides GB(Arg)=1004.3+/-2.2 (4.9) kJ.mol(-1) (indicated errors are standard deviations, and in parentheses, 95% confidence limits are given). Consideration of previous experimental data using a fast atom bombardment ionization tandem sector mass spectrometer slightly modifies these estimates since GB(Arg)=1005.9+/-3.1 (6.6) kJ.mol(-1). Lower limits of the proton affinity, PA(Arg)=1046+/-4 (7) kJ.mol(-1), and of the "protonation entropy", DeltapS degrees (Arg)=S degrees (ArgH+)-S degrees (Arg)=-27+/-7 (15) J.mol(-1).K(-1), are also provided by the experiments. Theoretical calculations conducted at the B3LYP/6-311+G(3df,2p)//B3LYP/6-31+G(d,p) level, including 298 K enthalpy correction, predict a proton affinity value of ca. 1053 kJ.mol-1 after consideration of isodesmic proton-transfer reactions with guanidine as the reference base. Computations including explicit treatment of hindered rotations and mixing of conformers confirm that a noticeable entropy loss does occur upon protonation, which leads to a theoretical DeltapS degrees (Arg) term of ca. -45 J.mol(-1).K(-1). The following evaluated thermochemical parameter values are proposed: GB(Arg)=1005+/-3 kJ.mol(-1); PA(Arg)=1051+/-5 kJ.mol(-1), and DeltapS degrees (Arg)=-45+/-12 J.mol(-1).K(-1). PMID:18288831

  7. Characteristics of pollutant gas releases from swine, dairy, beef, and layer manure, and municipal wastewater.

    PubMed

    Dai, Xiao-Rong; Saha, Chayan Kumer; Ni, Ji-Qin; Heber, Albert J; Blanes-Vidal, Victoria; Dunn, James L

    2015-06-01

    Knowledge about characteristics of gas releases from various types of organic wastes can assist in developing gas pollution reduction technologies and establishing environmental regulations. Five different organic wastes, i.e., four types of animal manure (swine, beef, dairy, and layer hen) and municipal wastewater, were studied for their characteristics of ammonia (NH3), carbon dioxide (CO2), hydrogen sulfide (H2S), and sulfur dioxide (SO2) releases for 38 or 43 days in reactors under laboratory conditions. Weekly waste additions and continuous reactor headspace ventilation were supplied to simulate waste storage conditions. Results demonstrated that among the five waste types, layer hen manure and municipal wastewater had the highest and lowest NH3 release potentials, respectively. Layer manure had the highest and dairy manure had the lowest CO2 release potentials. Dairy manure and layer manure had the highest and lowest H2S release potentials, respectively. Beef manure and layer manure had the highest and lowest SO2 releases, respectively. The physicochemical characteristics of the different types of wastes, especially the total nitrogen, total ammoniacal nitrogen, dry matter, and pH, had strong influence on the releases of the four gases. Even for the same type of waste, the variation in physicochemical characteristics affected the gas releases remarkably. PMID:25794466

  8. Macro- and micro-nutrient release characteristics of three polymer-coated fertilizers: Theory and measurements

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In spite of several published studies we have an incomplete understanding of the ion release mechanisms and characteristics of primary polymer-coated fertilizer (PCF) technologies. Here we extend current conceptual models describing release mechanisms and describe the critical effects of substrate m...

  9. Gas phase atomic and molecular processes

    NASA Astrophysics Data System (ADS)

    Zhu, Cheng

    . that in interstellar clouds HF is the major form of gas phase fluorine.

  10. Release characteristics of alkali and alkaline earth metallic species during biomass pyrolysis and steam gasification process.

    PubMed

    Long, Jiang; Song, Hu; Jun, Xiang; Sheng, Su; Lun-Shi, Sun; Kai, Xu; Yao, Yao

    2012-07-01

    Investigating the release characteristics of alkali and alkaline earth metallic species (AAEMs) is of potential interest because of AAEM's possible useful service as catalysts in biomass thermal conversion. In this study, three kinds of typical Chinese biomass were selected to pyrolyse and their chars were subsequently steam gasified in a designed quartz fixed-bed reactor to investigate the release characteristics of alkali and alkaline earth metallic species (AAEMs). The results indicate that 53-76% of alkali metal and 27-40% of alkaline earth metal release in pyrolysis process, as well as 12-34% of alkali metal and 12-16% of alkaline earth metal evaporate in char gasification process, and temperature is not the only factor to impact AAEMs emission. The releasing characteristics of AAEMs during pyrolysis and char gasification process of three kinds of biomass were discussed in this paper. PMID:22525260

  11. Thermodynamics and kinetics of gas-phase reactions in the Ti-Cl-H system

    SciTech Connect

    Teyssandier, F.; Allendorf, M.D.

    1998-06-01

    A mechanism and associated rate constants for the gas-phase chemical reactions that occur during the chemical vapor deposition (CVD) of titanium from titanium tetrachloride (TiCl{sub 4})/hydrogen mixtures is presented. TiCl{sub 4} is the most widely used inorganic precursor employed in the CVD of titanium-containing materials, such as titanium nitride, titanium carbide, and titanium diboride. In this work, rate constants for the unimolecular decomposition reactions of the titanium chlorides were predicted using Rice-Ramsberger-Kassel-Marcus theory for unimolecular reaction, while the rate constants for bimolecular reactions between TiCl{sub n} species and hydrogen atoms were estimated using an empirical correlation. Calculations at thermodynamic equilibrium over a range of temperatures and total pressures characteristic of Ti CVD conditions are presented first. The time-dependent evolution of the gas-phase composition is then simulated using the proposed mechanism. The results suggest that equilibrium predictions of gas-phase concentrations should be a good approximation at 1,500 K, unless very short residence times and low pressures are involved. In contrast, equilibrium calculations do not accurately reflect the gas-phase composition at 1,000 K.

  12. Effect of carboxymethylation on rheological and drug release characteristics of locust bean gum matrix tablets.

    PubMed

    Chakravorty, Amrita; Barman, Gouranga; Mukherjee, Sudipta; Sa, Biswanath

    2016-06-25

    This study was undertaken to investigate correlation between the carboxymethylation-induced rheological changes and drug release characteristics of locust bean gum (LBG) matrix tablets. LBG was derivatized to carboxymethyl LBG (CMLBG) and characterized by (13)C NMR, FTIR and elemental analyses. Rheological studies revealed that LBG, in contact with water, produced a strong elastic gel which swelled less due to lower penetration of water resulting in slower drug release. On the other hand, CMLBG formed a viscous polymer solution through which higher influx of water resulted in rapid swelling of the matrix and faster drug release. Although the release from a particular matrix was dependent on drugs' solubilities, CMLBG matrix tablet produced faster release of all the drugs than LBG matrix tablets. In conclusion, rheological study appeared to be an useful tool to predict release of drugs from polysaccharide matrix tablets. PMID:27083792

  13. Fizzy Extraction of Volatile and Semivolatile Compounds into the Gas Phase.

    PubMed

    Chang, Cheng-Hao; Urban, Pawel L

    2016-09-01

    Extraction of volatile and semivolatile compounds from liquid matrixes with high yields, and transferring the extracts to detectors in real time, is challenging. Common extraction procedures involve heating the samples to release the analytes to the gas phase and, in some cases, trapping the gas-phase analytes into sorbents or containers. Here, we propose a new method for fast extraction of volatile and semivolatile compounds from liquid matrixes. This method involves dissolution of a carrier gas in the liquid sample by applying a moderate overpressure (∼150 kPa) and stirring the sample. An abrupt decompression of the extraction chamber leads to effervescence. In this step, many bubbles are instantly formed in the sample matrix. The dissolved carrier gas as well as dissolved volatiles are liberated into the headspace of the extraction chamber within a short period of time (few seconds). The gaseous effluent of the extraction chamber is immediately transferred to the online detector; in this case, an atmospheric pressure chemical ionization interface of a triple quadrupole mass spectrometer. The fast release of the gas-phase extract gives rise to a high signal recorded by the detector; several times higher than the signal recorded during direct infusion of headspace vapors without fizzy extraction. This feature provides the means to detect and quantify analytes present in solutions in a short period of time. Here we show that fizzy extraction is suitable for analysis of volatile/semivolatile compounds present in various samples, including those containing complex matrixes. PMID:27504910

  14. Thermodynamic analysis of fuels in gas phase: ethanol, gasoline and ethanol - gasoline predicted by DFT method.

    PubMed

    Neto, A F G; Lopes, F S; Carvalho, E V; Huda, M N; Neto, A M J C; Machado, N T

    2015-10-01

    This paper presents a theoretical study using density functional theory to calculate thermodynamics properties of major molecules compounds at gas phase of fuels like gasoline, ethanol, and gasoline-ethanol mixture in thermal equilibrium on temperature range up to 1500 K. We simulated a composition of gasoline mixture with ethanol for a thorough study of thermal energy, enthalpy, Gibbs free energy, entropy, heat capacity at constant pressure with respect to temperature in order to study the influence caused by ethanol as an additive to gasoline. We used semi-empirical computational methods as well in order to know the efficiency of other methods to simulate fuels through this methodology. In addition, the ethanol influence through the changes in percentage fractions of chemical energy released in combustion reaction and the variations on thermal properties for autoignition temperatures of fuels was analyzed. We verified how ethanol reduces the chemical energy released by gasoline combustion and how at low temperatures the gas phase fuels in thermal equilibrium have similar thermodynamic behavior. Theoretical results were compared with experimental data, when available, and showed agreement. Graphical Abstract Thermodynamic analysis of fuels in gas phase. PMID:26386958

  15. Impact of release characteristics of sinomenine hydrochloride dosage forms on its pharmacokinetics in beagle dogs

    PubMed Central

    Sun, Jin; Shi, Jie-Ming; Zhang, Tian-Hong; Gao, Kun; Mao, Jing-Jing; Li, Bing; Sun, Ying-Hua; He, Zhong-Gui

    2005-01-01

    AIM: To investigate the effect of release behavior of sustained-release dosage forms of sinomenine hydrochloride (SM•HCl) on its pharmacokinetics in beagle dogs. METHODS: The in vitro release behavior of two SM•HCl dosage forms, including commercial 12-h sustained-release tablets and 24-h sustained-release pellets prepared in our laboratory, was examined. The two dosage forms were orally administrated to beagle dogs, and then the in vivo SM•HCl pharmacokinetics was investigated and compared. RESULTS: The optimal SM•HCl sustained-release formulation was achieved by mixing slow- and rapid-release pellets (9:1, w/w). The SM•HCl release profiles of the sustained-release pellets were scarcely influenced by the pH of the dissolution medium. Release from the 12-h sustained-release tablets was markedly quicker than that from the 24-h sustained-release pellets, the cumulative release up to 12-h was 99.9% vs 68.7%. From a pharmacokinetic standpoint, the 24-h SM•HCl sustained-release pellets had longer tmax and lower Cmax compared to the 12-h sustained-release tablets, the tmax being 2.67×0.52 h vs 9.83×0.98 h and the Cmax being 1 334.45±368.76 ng/mL vs 893.12±292.55 ng/mL, respectively. However, the AUC0-tn of two SM•HCl dosage forms was comparable and both preparations were statistically bioequivalent. Furthermore, the two preparations had good correlations between SM•HCl percentage absorption in vivo and the cumulative percentage release in vitro. CONCLUSION: The in vitro release properties of the dosage forms strongly affect their pharmacokinetic behavior in vivo. Therefore, managing the in vitro release behavior of dosage forms is a promising strategy for obtaining the optimal in vivo pharmacokinetic characteristics and safe therapeutic drug concentration-time curves. PMID:16052686

  16. Estimate of radionuclide release characteristics into containment under severe accident conditions. Final report

    SciTech Connect

    Nourbakhsh, H.P.

    1993-11-01

    A detailed review of the available light water reactor source term information is presented as a technical basis for development of updated source terms into the containment under severe accident conditions. Simplified estimates of radionuclide release and transport characteristics are specified for each unique combination of the reactor coolant and containment system combinations. A quantitative uncertainty analysis in the release to the containment using NUREG-1150 methodology is also presented.

  17. Gas-phase saturation and evaporative cooling effects during wet compression of a fuel aerosol under RCM conditions

    SciTech Connect

    Goldsborough, S.S.; Johnson, M.V.; Zhu, G.S.; Aggarwal, S.K.

    2011-01-15

    Wet compression of a fuel aerosol has been proposed as a means of creating gas-phase mixtures of involatile diesel-representative fuels and oxidizer + diluent gases for rapid compression machine (RCM) experiments. The use of high concentration aerosols (e.g., {proportional_to}0.1 mL{sub fuel}/L{sub gas}, {proportional_to}1 x 10{sup 9} droplets/L{sub gas} for stoichiometric fuel loading at ambient conditions) can result in droplet-droplet interactions which lead to significant gas-phase fuel saturation and evaporative cooling during the volumetric compression process. In addition, localized stratification (i.e., on the droplet scale) of the fuel vapor and of temperature can lead to non-homogeneous reaction and heat release processes - features which could prevent adequate segregation of the underlying chemical kinetic rates from rates of physical transport. These characteristics are dependent on many factors including physical parameters such as overall fuel loading and initial droplet size relative to the compression rate, as well as fuel and diluent properties such as the boiling curve, vaporization enthalpy, heat capacity, and mass and thermal diffusivities. This study investigates the physical issues, especially fuel saturation and evaporative cooling effects, using a spherically-symmetric, single-droplet wet compression model. n-Dodecane is used as the fuel with the gas containing 21% O{sub 2} and 79% N{sub 2}. An overall compression time and compression ratio of 15.3 ms and 13.4 are used, respectively. It is found that smaller droplets (d{sub 0}{proportional_to} 2-3 {mu}m) are more affected by 'far-field' saturation and cooling effects, while larger droplets (d{sub 0}{proportional_to} 14 {mu}m) result in greater localized stratification of the gas-phase due to the larger diffusion distances for heat and mass transport. Vaporization of larger droplets is more affected by the volumetric compression process since evaporation requires more time to be completed

  18. Effect of duty-cycles on the air plasma gas-phase of dielectric barrier discharges

    NASA Astrophysics Data System (ADS)

    Barni, R.; Biganzoli, I.; Dell'Orto, E. C.; Riccardi, C.

    2015-10-01

    An experimental investigation concerning the effects of a duty-cycle in the supply of a dielectric barrier discharge in atmospheric pressure air has been performed. Electrical characteristics of the discharge have been measured, focusing mainly on the statistical properties of the current filaments and on dielectric surface charging, both affected by the frequent repetition of breakdown imposed by the duty-cycle. Information on the gas-phase composition was gathered too. In particular, a strong enhancement in the ozone formation rate is observed when suitable long pauses separate the active discharge phases. A simulation of the chemical kinetics in the gas-phase, based on a simplified discharge modeling, is briefly described in order to shed light on the observed increase in ozone production. The effect of a duty-cycle on surface modification of polymeric films in order to increase their wettability has been investigated too.

  19. Elusive Sulfurous Acid: Gas-Phase Basicity and IR Signature of the Protonated Species.

    PubMed

    Sinha, Rajeev K; Scuderi, Debora; Maitre, Philippe; Chiavarino, Barbara; Crestoni, Maria Elisa; Fornarini, Simonetta

    2015-05-01

    The ion corresponding to protonated sulfurous acid, H3SO3(+), has been successfully delivered into the gas phase by electrospray ionization of the solution of a suitable precursor and an in-source fragmentation process. The neutral acid is a highly elusive molecule. However, its gas-phase basicity has been ascertained by means of a kinetic study of proton-transfer reactivity. The structure of the H3SO3(+) sampled ion has been probed by IRMPD spectroscopy in two complementary IR frequency ranges in conjunction with density functional theory calculations and found to conform to a trihydroxosulfonium ion. The characteristic IR signatures may aid in deciphering the presence of this species in extraterrestrial atmospheres. PMID:26263321

  20. 3D Printing of Medicines: Engineering Novel Oral Devices with Unique Design and Drug Release Characteristics.

    PubMed

    Goyanes, Alvaro; Wang, Jie; Buanz, Asma; Martínez-Pacheco, Ramón; Telford, Richard; Gaisford, Simon; Basit, Abdul W

    2015-11-01

    Three dimensional printing (3D printing) was used to fabricate novel oral drug delivery devices with specialized design configurations. Each device was loaded with multiple actives, with the intent of applying this process to the production of personalized medicines tailored at the point of dispensing or use. A filament extruder was used to obtain drug-loaded--paracetamol (acetaminophen) or caffeine--filaments of poly(vinyl alcohol) with characteristics suitable for use in fused-deposition modeling 3D printing. A multinozzle 3D printer enabled fabrication of capsule-shaped solid devices containing the drug with different internal structures. The design configurations included a multilayer device, with each layer containing drug, whose identity was different to the drug in the adjacent layers, and a two-compartment device comprising a caplet embedded within a larger caplet (DuoCaplet), with each compartment containing a different drug. Raman spectroscopy was used to collect 2-dimensional hyper spectral arrays across the entire surface of the devices. Processing of the arrays using direct classical least-squares component matching to produce false color representations of distribution of the drugs was used. This clearly showed a definitive separation between the drug layers of paracetamol and caffeine. Drug release tests in biorelevant bicarbonate media showed unique drug release profiles dependent on the macrostructure of the devices. In the case of the multilayer devices, release of both paracetamol and caffeine was simultaneous and independent of drug solubility. With the DuoCaplet design, it was possible to engineer either rapid drug release or delayed release by selecting the site of incorporation of the drug in the device; the lag-time for release from the internal compartment was dependent on the characteristics of the external layer. The study confirms the potential of 3D printing to fabricate multiple-drug containing devices with specialized design

  1. Negative ion gas-phase chemistry of arenes.

    PubMed

    Danikiewicz, Witold; Zimnicka, Magdalena

    2016-01-01

    Reactions of aromatic and heteroaromatic compounds involving anions are of great importance in organic synthesis. Some of these reactions have been studied in the gas phase and are occasionally mentioned in reviews devoted to gas-phase negative ion chemistry, but no reviews exist that collect all existing information about these reactions. This work is intended to fill this gap. In the first part of this review, methods for generating arene anions in the gas phase and studying their physicochemical properties and fragmentation reactions are presented. The main topics in this part are as follows: processes in which gas-phase arene anions are formed, measurements and calculations of the proton affinities of arene anions, proton exchange reactions, and fragmentation processes of substituted arene anions, especially phenide ions. The second part is devoted to gas-phase reactions of arene anions. The most important of these are reactions with electrophiles such as carbonyl compounds and α,β-unsaturated carbonyl and related compounds (Michael acceptors). Other reactions including oxidation of arene anions and halogenophilic reactions are also presented. In the last part of the review, reactions of electrophilic arenes with nucleophiles are discussed. The best known of these is the aromatic nucleophilic substitution (SN Ar) reaction; however, other processes that lead to the substitution of a hydrogen atom in the aromatic ring are also very important. Aromatic substrates in these reactions are usually but not always nitroarenes bearing other substituents in the ring. The first step in these reactions is the formation of an anionic σ-adduct, which, depending on the substituents in the aromatic ring and the structure of the attacking nucleophile, is either an intermediate or a transition state in the reaction path. In the present review, we attempted to collect the results of both experimental and computational studies of the aforementioned reactions conducted since the

  2. Analysis of the gas phase reactivity of chlorosilanes.

    PubMed

    Ravasio, Stefano; Masi, Maurizio; Cavallotti, Carlo

    2013-06-27

    Trichlorosilane is the most used precursor to deposit silicon for photovoltaic applications. Despite of this, its gas phase and surface kinetics have not yet been completely understood. In the present work, it is reported a systematic investigation aimed at determining what is the dominant gas phase chemistry active during the chemical vapor deposition of Si from trichlorosilane. The gas phase mechanism was developed calculating the rate constant of each reaction using conventional transition state theory in the rigid rotor-harmonic oscillator approximation. Torsional vibrations were described using a hindered rotor model. Structures and vibrational frequencies of reactants and transition states were determined at the B3LYP/6-31+G(d,p) level, while potential energy surfaces and activation energies were computed at the CCSD(T) level using aug-cc-pVDZ and aug-cc-pVTZ basis sets extrapolating to the complete basis set limit. As gas phase and surface reactivities are mutually interlinked, simulations were performed using a microkinetic surface mechanism. It was found that the gas phase reactivity follows two different routes. The disilane mechanism, in which the formation of disilanes as reaction intermediates favors the conversion between the most stable monosilane species, and the radical pathway, initiated by the decomposition of Si2HCl5 and followed by a series of fast propagation reactions. Though both mechanisms are active during deposition, the simulations revealed that above a certain temperature and conversion threshold the radical mechanism provides a faster route for the conversion of SiHCl3 into SiCl4, a reaction that favors the overall Si deposition process as it is associated with the consumption of HCl, a fast etchant of Si. Also, this study shows that the formation of disilanes as reactant intermediates promotes significantly the gas phase reactivity, as they contribute both to the initiation of radical chain mechanisms and provide a catalytic route for

  3. Gas phase acetaldehyde production in a continuous bioreactor

    SciTech Connect

    Hwang, Soon Ook . Dept. of Chemical Engineering); Trantolo, D.J. . Center for Biotechnology Engineering); Wise, D.L. . Dept. of Chemical Engineering Northeastern Univ., Boston, MA . Center for Biotechnology Engineering)

    1993-08-20

    The gas phase continuous production of acetaldehyde was studied with particular emphasis on the development of biocatalyst (alcohol oxidase on solid phase support materials) for a fixed bed reactor. Based on the experimental results in a batch bioreactor, the biocatalysts were prepared by immobilization of alcohol oxidase on Amberlite IRA-400, packed into a column, and the continuous acetaldehyde production in the gas phase by alcohol oxidase was performed. The effects of the reaction temperature, flow rates of gaseous stream, and ethanol vapor concentration on the performance of the continuous bioreactor were investigated.

  4. Entrapment and release characteristics of 2-methoxynaphthalene from cylindrical microstructures formed from phospholipids.

    PubMed

    Price, R R; Patchan, M

    1993-01-01

    Many natural products that exhibit biocidal activity have poor solubility in water. In order to explore the prolonged delivery of these compounds from microtubules we have utilized 2-methoxynaphthalene as a model to elucidate release characteristics of hydrophobic compounds entrapped in microtubules by spectrophotometric absorbance at 255 nm. Entrapment of this compound in microcylinders was accomplished by addition of 2-methoxynaphthalene to a water-soluble epoxy, or entrapment of the neat compound. Variation of the release rate is possible for 2-methoxynaphthalene based on the mode of entrapment and by variations in the methods used to immobilize the compound within the microcylinders. Unlike conventional microencapsulation techniques which require inclusion of the active agent at the time of formation, the use of microcylinders allows for the inclusion of a variety of active agents and the tailoring of release characteristics after their formation. We report the results of in vitro release rates of 2-methoxynaphthalene from a static diffusion system designed to explore release of hydrophobic compounds into an aqueous environment. PMID:8331494

  5. The distribution characteristics of pollutants released at different cross-sectional positions of a river.

    PubMed

    Huang, Heqing; Chen, Guang; Zhang, Qian-Feng

    2010-05-01

    The distribution characteristics of heavier or lighter pollutants released at different cross-sectional positions of a wide river is investigated with a well-tested three-dimensional numerical model of gravity flows based on Reynolds-Averaged Navier-Stokes equations and turbulence k-epsilon model. By focusing on investigating the influences of flow and buoyancy on pollutants, it is found that while carrying by the river flow downstream: i) a heavier pollutant released from the cross-sectional side position, forms transverse oscillation between two banks with decreased amplitude, i.e. forms kind of helical flow pattern along the straight part of channel bed; ii) a heavier pollutant released from the cross-sectional middle position, forms collapse oscillation in the middle of the straight channel part with reduced amplitude; iii) in the downstream sinuous channel, heavier pollutant is of higher concentration on the outer side of channel bends; iv) a light pollutant released from the cross-sectional side position, slips partly to the other side of the river, resulting in higher concentrations on two sides of the channel top; v) a light pollutant released from the cross-sectional middle position, splits into two parts symmetrically along two sides of the channel top; vi) in the downstream sinuous channel, light pollutant presents higher concentration on the inner side of channel bends. These findings may assist in cost-effective scientific countermeasures to be taken for accidental or planned pollutant releases into a river. PMID:20170996

  6. Movable fiber probe for gas-phase laser-induced breakdown spectroscopy.

    PubMed

    Dumitrescu, Cosmin E; Puzinauskas, Paulius V; Olcmen, Semih

    2008-11-01

    A movable probe that fiber couples both the beam delivery and the signal collection functions of gas-phase laser-induced breakdown spectroscopy (LIBS) measurements was evaluated. The adjustable probe was used to investigate the effect of delivery fiber curvature on plasma characteristics and the associated effect on LIBS spectra and to further identify issues remaining to facilitate fully fiber-coupled gas-phase LIBS measurements. LIBS data were collected from lean methane-air mixtures of various equivalence ratios and spectroscopically analyzed to establish the ability to determine relative fuel-air ratio. Measurements with straight delivery fiber were compared to those with the fiber curved at specific radii. Decreasing fiber radius of curvature decreased fiber transmission efficiency and reduced the spark formation probability by almost a factor of 2. For constant fiber input energy, this decreased transmission increased the percentage of failed spark formations and influenced the LIBS elemental ratio calculations. However, minimal difference was found between LIBS measurements with straight or curved fiber as long as the output energy and a constant laser beam spot diameter were maintained on the exit beam focusing lens. A significant reduction in data scatter and improved linearity were achieved by using the Balmer series H(alpha) and H(beta) hydrogen emission line ratio as a data selection criterion. Observed linear variation of H/N elemental ratio with equivalence ratio confirmed the possibility of a flexible, light-contained, fully fiber-coupled probe for remote gas-phase LIBS analysis. PMID:19122708

  7. Statistical and Microscopic Approach to Gas Phase Chemical Kinetics.

    ERIC Educational Resources Information Center

    Perez, J. M.; Quereda, R.

    1983-01-01

    Describes advanced undergraduate laboratory exercise examining the dependence of the rate constants and the instantaneous concentrations with the nature and energy content in a gas-phase complex reaction. Computer program (with instructions and computation flow charts) used with the exercise is available from the author. (Author/JN)

  8. Apparatus for the premixed gas phase combustion of liquid fuels

    SciTech Connect

    Roffe, G.A.; Trucco, H.A.

    1981-04-21

    This invention relates to improvements in the art of liquid fuel combustion and, more particularly, concerns a method and apparatus for the controlled gasification of liquid fuels, the thorough premixing of the then gasified fuel with air and the subsequent gas-phase combustion of the mixture to produce a flame substantially free of soot, carbon monoxide, nitric oxide and unburned fuel.

  9. INVESTIGATION OF GAS-PHASE OZONE AS A POTENTIAL BIOCIDE

    EPA Science Inventory

    The paper presents data on the effect of ozone on both vegetative and spore-forming fungi as well as on spore-forming bacteria. (NOTE: Despite the wide use of ozone generators in indoor air cleaning, there is little research data on ozone's biocidal activity in the gas phase.) Dr...

  10. Can the ordinary chondrites have condensed from a gas phase

    NASA Technical Reports Server (NTRS)

    Herndon, J. M.; Suess, H. E.

    1977-01-01

    The conditions under which ordinary chondrites containing iron in three different chemical states can form in thermodynamic equilibrium with a gas phase are calculated. Hydrogen depletion factors of 100-1000 are obtained and the formation of liquid condensates from residual gases occurs at pressures (prior to hydrogen depletion) of roughly equal to or greater than 1 atm.

  11. Ion-Molecule Reactions in Gas Phase Radiation Chemistry.

    ERIC Educational Resources Information Center

    Willis, Clive

    1981-01-01

    Discusses some aspects of the radiation chemistry of gases, focusing on the ion-molecule and charge neutralization reactions which set study of the gas phase apart. Uses three examples that illustrate radiolysis, describing the radiolysis of (1) oxygen, (2) carbon dioxide, and (3) acetylene. (CS)

  12. Charged supramolecular assemblies of surfactant molecules in gas phase.

    PubMed

    Bongiorno, David; Ceraulo, Leopoldo; Indelicato, Sergio; Turco Liveri, Vincenzo; Indelicato, Serena

    2016-01-01

    The aim of this review is to critically analyze recent literature on charged supramolecular assemblies formed by surfactant molecules in gas phase. Apart our specific interest on this research area, the stimuli to undertake the task arise from the widespread theoretical and applicative benefits emerging from a comprehensive view of this topic. In fact, the study of the formation, stability, and physicochemical peculiarities of non-covalent assemblies of surfactant molecules in gas phase allows to unveil interesting aspects such as the role of attractive, repulsive, and steric intermolecular interactions as driving force of supramolecular organization in absence of interactions with surrounding medium and the size and charge state dependence of aggregate structural and dynamical properties. Other interesting aspects worth to be investigated are joined to the ability of these assemblies to incorporate selected solubilizates molecules as well as to give rise to chemical reactions within a single organized structure. In particular, the incorporation of large molecules such as proteins has been of recent interest with the objective to protect their structure and functionality during the transition from solution to gas phase. Exciting fall-out of the study of gas phase surfactant aggregates includes mass and energy transport in the atmosphere, origin of life and simulation of supramolecular aggregation in the interstellar space. Moreover, supramolecular assemblies of amphiphilic molecules in gas phase could find remarkable applications as atmospheric cleaning agents, nanosolvents and nanoreactors for specialized chemical processes in confined space. Mass spectrometry techniques have proven to be particularly suitable to generate these assemblies and to furnish useful information on their size, size polydispersity, stability, and structural organization. On the other hand molecular dynamics simulations have been very useful to rationalize many experimental findings and to

  13. Novel Solid Encapsulation of Ethylene Gas Using Amorphous α-Cyclodextrin and the Release Characteristics.

    PubMed

    Ho, Binh T; Bhandari, Bhesh R

    2016-05-01

    This research investigated the encapsulation of ethylene gas into amorphous α-cyclodextrins (α-CDs) at low (LM) and high (HM) moisture contents at 1.0-1.5 MPa for 24-120 h and its controlled release characteristics at 11.2-52.9% relative humidity (RH) for 1-168 h. The inclusion complexes (ICs) were characterized using X-ray diffractometry (XRD), nuclear magnetic resonance spectroscopy (CP-MAS (13)C NMR), and scanning electron microscopy (SEM). Ethylene concentrations in the ICs were from 0.45 to 0.87 mol of ethylene/mol CD and from 0.42 to 0.54 mol of ethylene/mol CD for LM and HM α-CDs, respectively. Ethylene gas released from the encapsulated powder at higher rates with increasing RH. An analysis of release kinetics using Avrami's equation showed that the LM and HM amorphous α-CDs were not associated with significant differences in release constant k and parameter n for any given RH condition. NMR spectra showed the presence of the characteristic carbon-carbon double bond of ethylene gas in the encapsulated α-CD powder. PMID:27071729

  14. Measuring Uptake Coefficients and Henry's Law Constants of Gas-Phase Species with Models for Secondary Organic Aerosol

    NASA Astrophysics Data System (ADS)

    Fairhurst, M. C.; Waring-Kidd, C.; Ezell, M. J.; Finlayson-Pitts, B. J.

    2014-12-01

    Volatile organic compounds (VOC) are oxidized in the atmosphere and their products contribute to secondary organic aerosol (SOA) formation. These particles have been shown to have effects on visibility, climate, and human health. Current models typically under-predict SOA concentrations from field measurements. Underestimation of these concentrations could be a result of how models treat particle growth. It is often assumed that particles grow via instantaneous thermal equilibrium partitioning between liquid particles and gas-phase species. Recent work has shown that growth may be better represented by irreversible, kinetically limited uptake of gas-phase species onto more viscous, tar-like SOA. However, uptake coefficients for these processes are not known. The goal of this project is to measure uptake coefficients and solubilities for different gases onto models serving as proxies for SOA and determine how they vary based on the chemical composition of the gas and the condensed phase. Experiments were conducted using two approaches: attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy and a flow system coupled to a mass spectrometer. The ATR crystal was coated with the SOA proxy and the gas-phase species introduced via a custom flow system. Uptake of the gas-phase species was characterized by measuring the intensity of characteristic IR bands as a function of time, from which a Henry's law constant and initial estimate of uptake coefficients could be obtained. Uptake coefficients were also measured in a flow system where the walls of the flow tube were coated with the SOA proxy and gas-phase species introduced via a moveable inlet. Uptake coefficients were derived from the decay in gas-phase species measured by mass spectrometry. The results of this work will establish a structure-interaction relationship for uptake of gases into SOA that can be implemented into regional and global models.

  15. Going clean: structure and dynamics of peptides in the gas phase and paths to solvation.

    PubMed

    Baldauf, Carsten; Rossi, Mariana

    2015-12-16

    The gas phase is an artificial environment for biomolecules that has gained much attention both experimentally and theoretically due to its unique characteristic of providing a clean room environment for the comparison between theory and experiment. In this review we give an overview mainly on first-principles simulations of isolated peptides and the initial steps of their interactions with ions and solvent molecules: a bottom up approach to the complexity of biological environments. We focus on the accuracy of different methods to explore the conformational space, the connections between theory and experiment regarding collision cross section evaluations and (anharmonic) vibrational spectra, and the challenges faced in this field. PMID:26598600

  16. Going clean: structure and dynamics of peptides in the gas phase and paths to solvation

    NASA Astrophysics Data System (ADS)

    Baldauf, Carsten; Rossi, Mariana

    2015-12-01

    The gas phase is an artificial environment for biomolecules that has gained much attention both experimentally and theoretically due to its unique characteristic of providing a clean room environment for the comparison between theory and experiment. In this review we give an overview mainly on first-principles simulations of isolated peptides and the initial steps of their interactions with ions and solvent molecules: a bottom up approach to the complexity of biological environments. We focus on the accuracy of different methods to explore the conformational space, the connections between theory and experiment regarding collision cross section evaluations and (anharmonic) vibrational spectra, and the challenges faced in this field.

  17. Gas Phase Reactivity of Carboxylates with N-Hydroxysuccinimide Esters

    NASA Astrophysics Data System (ADS)

    Peng, Zhou; McGee, William M.; Bu, Jiexun; Barefoot, Nathan Z.; McLuckey, Scott A.

    2015-01-01

    N-hydroxysuccinimide (NHS) esters have been used for gas-phase conjugation reactions with peptides at nucleophilic sites, such as primary amines (N-terminus, ɛ-amine of lysine) or guanidines, by forming amide bonds through a nucleophilic attack on the carbonyl carbon. The carboxylate has recently been found to also be a reactive nucleophile capable of initiating a similar nucleophilic attack to form a labile anhydride bond. The fragile bond is easily cleaved, resulting in an oxygen transfer from the carboxylate-containing species to the reagent, nominally observed as a water transfer. This reactivity is shown for both peptides and non-peptidic species. Reagents isotopically labeled with O18 were used to confirm reactivity. This constitutes an example of distinct differences in reactivity of carboxylates between the gas phase, where they are shown to be reactive, and the solution phase, where they are not regarded as reactive with NHS esters.

  18. Substituent effects on the gas-phase acidity of silane

    SciTech Connect

    Gordon, M.S.; Volk, D.E. ); Gano, D.R. )

    1989-12-20

    In a previous paper, the gas-phase acidities of XH{sub n} compounds (X = C, N, O, F, Si, P, S, Cl) were predicted with ab initio wave functions. At the MP4{sup 2} level of theory with extended basis sets acidities for these species were determined to be within 2 kcal/mol of experimental value. In the present work, with 6-31G(d) geometries and full MP4/MC-311++G{sup 6}(3df,2pd) energies, the effects of CH{sub 3}, NH{sub 2}, OH, F, SiH{sub 3}, PH{sub 2}, SH, and Cl on the gas-phase acidity of silane are examined. Only a few related calculations have been carried out. All calculations were performed with Gaussian86, and all structures were verified as minima by diagonalizing the analytically determined hessians. Only the valence electrons were correlated in the perturbation theory calculations.

  19. Gas-phase diffusion in porous media: Comparison of models

    SciTech Connect

    Webb, S.W.

    1998-09-01

    Two models are commonly used to analyze gas-phase diffusion in porous media in the presence of advection, the Advective-Dispersive Model (ADM) and the Dusty-gas Model (DGM). The ADM, which is used in TOUGH2, is based on a simple linear addition of advection calculated by Darcy`s law and ordinary diffusion using Fick`s law with a porosity-tortuosity-gas saturation multiplier to account for the porous medium. Another approach for gas-phase transport in porous media is the Dusty-Gas Model. This model applies the kinetic theory of gases to the gaseous components and the porous media (or dust) to combine transport due to diffusion and advection that includes porous medium effects. The two approaches are compared in this paper.

  20. Para-Hydrogen-Enhanced Gas-Phase Magnetic Resonance Imaging

    SciTech Connect

    Bouchard, Louis-S.; Kovtunov, Kirill V.; Burt, Scott R.; Anwar,M. Sabieh; Koptyug, Igor V.; Sagdeev, Renad Z.; Pines, Alexander

    2007-02-23

    Herein, we demonstrate magnetic resonance imaging (MRI) inthe gas phase using para-hydrogen (p-H2)-induced polarization. A reactantmixture of H2 enriched in the paraspin state and propylene gas is flowedthrough a reactor cell containing a heterogenized catalyst, Wilkinson'scatalyst immobilized on modified silica gel. The hydrogenation product,propane gas, is transferred to the NMR magnet and is spin-polarized as aresult of the ALTADENA (adiabatic longitudinal transport and dissociationengenders net alignment) effect. A polarization enhancement factor of 300relative to thermally polarized gas was observed in 1D1H NMR spectra.Enhancement was also evident in the magnetic resonance images. This isthe first demonstration of imaging a hyperpolarized gaseous productformed in a hydrogenation reaction catalyzed by a supported catalyst.This result may lead to several important applications, includingflow-through porous materials, gas-phase reaction kinetics and adsorptionstudies, and MRI in low fields, all using catalyst-free polarizedfluids.

  1. Gas-phase reactivity of ruthenium carbonyl cluster anions.

    PubMed

    Henderson, Matthew A; Kwok, Samantha; McIndoe, J Scott

    2009-04-01

    Partially-ligated anionic ruthenium carbonyl clusters react with alkenes, arenes, and alkanes in the gas phase; the products undergo extensive C-H activation and lose dihydrogen and carbon monoxide under collision-induced dissociation conditions. Triethylsilane and phenylsilane are also reactive towards the unsaturated clusters, and oxygen was shown to rapidly break down the cluster core by oxidative cleavage of the metal-metal bonds. These qualitative gas-phase reactivity studies were conducted using an easily-installed and inexpensive modification of a commercial electrospray ionization mass spectrometer. Interpretation of the large amounts of data generated in these studies is made relatively straightforward by employing energy-dependent electrospray ionization mass spectrometry (EDESI-MS). PMID:19185511

  2. Kinetics of gas phase tetramethyldioxetane decomposition and chemiluminescence

    SciTech Connect

    Cannon, B.D.; Crim, F.F.

    1981-11-04

    Pulsed-laser excitation of overtone vibrations or a weak electronic transition in gas-phase tetramethyldioxetane in combination with temporally and spectrally resolved detection of decomposition product luminescence reveals the presence, along with electronically excited acetone, of an additional emitting species which is not observed in solution studies. The emission is at shorter wavelengths than the acetone phosphorescence, and the emitting species has a zero-pressure decay rate of 0.019 +- 0.014 ..mu..s/sup -1/. The rapid collisional quenching which occurs on roughly every other encounter (k/sub q/ = 5.6 ..mu..s/sup -1/ torr/sup -1/) explains the inability of solution measurements to detect this feature of the tetramethyldioxetane decomposition kinetics. This newly observed component is likely to extend the interpretation of gas-phase decomposition experiments using infrared multiphoton absorption or collisions with fast Xe atoms to excite tetramethyldioxetane.

  3. Ionization of vitamin C in gas phase: Theoretical study.

    PubMed

    Abyar, Fatemeh; Farrokhpour, Hossein

    2016-07-01

    In this work, the gas phase ionization energies and photoelectron spectra of four important conformers of vitamin C were calculated. Symmetry adapted cluster/configuration interaction methodology employing the single and double excitation operators (SAC-CI SD-R) along with D95++(d,p) basis set were used for the calculations. Thermochemistry calculations were also performed on all possible conformers of vitamin C to find the relative stability of conformers in the gas phase. The calculated ionization bands of each conformer were assigned by calculating the contribution of natural bonding orbital (NBO) in the calculated canonical molecular orbitals involved in the ionization. SAC-CI calculations showed that the first ionization band of vitamin C is related to the π electrons of CC bond of the ring of molecule although, there is the lone electron pairs of oxygen atoms and π electrons of CO bond in the molecule. PMID:27092998

  4. Liquid-gas phase transition in nuclear matter including strangeness

    SciTech Connect

    Wang, P.; Leinweber, D.B.; Williams, A.G.; Thomas, A.W.

    2004-11-01

    We apply the chiral SU(3) quark mean field model to study the properties of strange hadronic matter at finite temperature. The liquid-gas phase transition is studied as a function of the strangeness fraction. The pressure of the system cannot remain constant during the phase transition, since there are two independent conserved charges (baryon and strangeness number). In a range of temperatures around 15 MeV (precise values depending on the model used) the equation of state exhibits multiple bifurcates. The difference in the strangeness fraction f{sub s} between the liquid and gas phases is small when they coexist. The critical temperature of strange matter turns out to be a nontrivial function of the strangeness fraction.

  5. Release characteristics of single-wall carbon nanotubes during manufacturing and handling

    NASA Astrophysics Data System (ADS)

    Ogura, I.; Kotake, M.; Hashimoto, N.; Gotoh, K.; Kishimoto, A.

    2013-04-01

    We investigated the release characteristics of single-wall carbon nanotubes (CNTs) synthesized by a pilot-scale plant. In addition to on-site aerosol measurements at the pilot-scale plant where the CNTs were synthesized, harvested, and packed, we conducted dustiness tests by vortex shaking and by transferring CNTs from one bowl to another. In the results of the on-site aerosol measurements, slight increases in the concentration were observed by aerosol monitoring instruments in the enclosure where CNTs were harvested and packed. In filter samples collected in this enclosure, micron-sized CNT clusters were observed by electron microscopy analysis. For samples collected outside the enclosure or during other processes, no CNTs were observed. The concentrations of elemental carbon at all locations were lower than the proposed occupational exposure limits of CNTs. The results of the dustiness tests revealed that submicron-sized particles were dominant in the number concentration measured by aerosol monitoring instruments, whereas micron-sized CNT clusters were mainly observed by electron microscopy analysis. The results of dustiness tests indicate that these CNTs have a low release characteristic. The lower drop impact of CNT clusters due to their lower bulk density resulted in lower CNT release from falling CNTs.

  6. Gas phase fractionation method using porous ceramic membrane

    DOEpatents

    Peterson, Reid A.; Hill, Jr., Charles G.; Anderson, Marc A.

    1996-01-01

    Flaw-free porous ceramic membranes fabricated from metal sols and coated onto a porous support are advantageously used in gas phase fractionation methods. Mean pore diameters of less than 40 .ANG., preferably 5-20 .ANG. and most preferably about 15 .ANG., are permeable at lower pressures than existing membranes. Condensation of gases in small pores and non-Knudsen membrane transport mechanisms are employed to facilitate and increase membrane permeability and permselectivity.

  7. Modifying release characteristics from 3D printed drug-eluting products.

    PubMed

    Boetker, Johan; Water, Jorrit Jeroen; Aho, Johanna; Arnfast, Lærke; Bohr, Adam; Rantanen, Jukka

    2016-07-30

    This work describes an approach to modify the release of active compound from a 3D printed model drug product geometry intended for flexible dosing and precision medication. The production of novel polylactic acid and hydroxypropyl methylcellulose based feed materials containing nitrofurantoin for 3D printing purposes is demonstrated. Nitrofurantoin, Metolose® and polylactic acid were successfully co-extruded with up to 40% Metolose® content, and subsequently 3D printed into model disk geometries (ø10mm, h=2mm). Thermal analysis with differential scanning calorimetry and solid phase identification with Raman spectroscopy showed that nitrofurantoin remained in its original solid form during both hot-melt extrusion and subsequent 3D printing. Rheological measurements of the different compositions showed that the flow properties were sensitive to the amount of undissolved particles present in the formulation. Release of nitrofurantoin from the disks was dependent on Metolose® loading, with higher accumulated release observed for higher Metolose® loads. This work shows the potential of custom-made, drug loaded feed materials for 3D printing of precision drug products with tailored drug release characteristics. PMID:26987609

  8. Analysis of the Release Characteristics of Cu-Treated Antimicrobial Implant Surfaces Using Atomic Absorption Spectrometry

    PubMed Central

    Zietz, Carmen; Fritsche, Andreas; Finke, Birgit; Stranak, Vitezslav; Haenle, Maximilian; Hippler, Rainer; Mittelmeier, Wolfram; Bader, Rainer

    2012-01-01

    New developments of antimicrobial implant surfaces doped with copper (Cu) ions may minimize the risk of implant-associated infections. However, experimental evaluation of the Cu release is influenced by various test parameters. The aim of our study was to evaluate the Cu release characteristics in vitro according to the storage fluid and surface roughness. Plasma immersion ion implantation of Cu (Cu-PIII) and pulsed magnetron sputtering process of a titanium copper film (Ti-Cu) were applied to titanium alloy (Ti6Al4V) samples with different surface finishing of the implant material (polished, hydroxyapatite and corundum blasted). The samples were submersed into either double-distilled water, human serum, or cell culture medium. Subsequently, the Cu concentration in the supernatant was measured using atomic absorption spectrometry. The test fluid as well as the surface roughness can alter the Cu release significantly, whereby the highest Cu release was determined for samples with corundum-blasted surfaces stored in cell medium. PMID:22162672

  9. Analysis of the release characteristics of cu-treated antimicrobial implant surfaces using atomic absorption spectrometry.

    PubMed

    Zietz, Carmen; Fritsche, Andreas; Finke, Birgit; Stranak, Vitezslav; Haenle, Maximilian; Hippler, Rainer; Mittelmeier, Wolfram; Bader, Rainer

    2012-01-01

    New developments of antimicrobial implant surfaces doped with copper (Cu) ions may minimize the risk of implant-associated infections. However, experimental evaluation of the Cu release is influenced by various test parameters. The aim of our study was to evaluate the Cu release characteristics in vitro according to the storage fluid and surface roughness. Plasma immersion ion implantation of Cu (Cu-PIII) and pulsed magnetron sputtering process of a titanium copper film (Ti-Cu) were applied to titanium alloy (Ti6Al4V) samples with different surface finishing of the implant material (polished, hydroxyapatite and corundum blasted). The samples were submersed into either double-distilled water, human serum, or cell culture medium. Subsequently, the Cu concentration in the supernatant was measured using atomic absorption spectrometry. The test fluid as well as the surface roughness can alter the Cu release significantly, whereby the highest Cu release was determined for samples with corundum-blasted surfaces stored in cell medium. PMID:22162672

  10. Gas phase decontamination of gaseous diffusion process equipment

    SciTech Connect

    Bundy, R.D.; Munday, E.B.; Simmons, D.W.; Neiswander, D.W.

    1994-03-01

    D&D of the process facilities at the gaseous diffusion plants (GDPs) will be an enormous task. The EBASCO estimate places the cost of D&D of the GDP at the K-25 Site at approximately $7.5 billion. Of this sum, nearly $4 billion is associated with the construction and operation of decontamination facilities and the dismantlement and transport of contaminated process equipment to these facilities. In situ long-term low-temperature (LTLT) gas phase decontamination is being developed and demonstrated at the K-25 site as a technology that has the potential to substantially lower these costs while reducing criticality and safeguards concerns and worker exposure to hazardous and radioactive materials. The objective of gas phase decontamination is to employ a gaseous reagent to fluorinate nonvolatile uranium deposits to form volatile LJF6, which can be recovered by chemical trapping or freezing. The LTLT process permits the decontamination of the inside of gas-tight GDP process equipment at room temperature by substituting a long exposure to subatmospheric C1F for higher reaction rates at higher temperatures. This paper outlines the concept for applying LTLT gas phase decontamination, reports encouraging laboratory experiments, and presents the status of the design of a prototype mobile system. Plans for demonstrating the LTLT process on full-size gaseous diffusion equipment are also outlined briefly.

  11. Characteristics and kinetics simulation of controlled-release KMnO4 for phenol remediation.

    PubMed

    Xiong, Houfeng; Huo, Mingxin; Zhou, Dandan; Dong, Shuangshi; Zou, Donglei

    2016-01-01

    Controlled-release KMnO4 (CRP) technology has been recently developed as an improved, highly efficient technique in wastewater treatment. In this study, batch-style experiments were conducted to evaluate this technology. The release characteristics of CRP in distilled water and the reaction between CRP and phenol were studied and fitted using MATLAB software. Results indicated that in distilled water, temperature (T) and pH value had a larger effect than dissolved oxygen (DO) concentration on the release characteristics of KMnO4, and this relationship can be accurately described by the following kinetic equation: logQ = log[1.141T(0.152)(pH)(-1.0536)(DO)(0.4674)] + [0.0048T(0.3756)(pH)(1.8854)(DO)(-0.0509)]logt. KMnO4 released from CRP can effectively degrade phenol-contaminated water with different concentrations. A simulated equation (r = -dCA/dt = -15.1705 CA(0.6840)CP(-0.1406)) characterizing phenol degradation was developed using MATLAB software. Comparison between the theoretical phenol removal rates deduced by the above two equations and the initial phenol concentration as well as the CRP dosage with the experimental data indicates that the differences between them were less than 20%. The results indicate phenol can be effectively removed by CRP and smaller dosage of KMnO4 was required compared with literature values. The models can provide guidance for CRP application in real polluted sites, which can lower the cost for site remediation. PMID:27508369

  12. Measurements of gas phase reactive nitrogen during two wildfires in Colorado

    NASA Astrophysics Data System (ADS)

    Prenni, A. J.; Chen, X.; Hecobian, A.; Kreidenweis, S. M.; Collett, J. L.; Schichtel, B. A.

    2012-12-01

    Biomass burning represents an important source of particles and trace gases to the global atmosphere. In addition to carbon species, nitrogen compounds are abundant in biomass burning emissions, with NOx, N2O, and N2 released primarily during flaming combustion, and NH3, amines and nitriles associated with smoldering combustion. Although nitrogen emissions from fires have been documented from laboratory and satellite measurements, and during prescribed burns, few direct measurements have been made during major wildfires. In this presentation, we summarize measurements of gas-phase nitrogen species observed during two wildfires in northern Colorado in 2012: the Hewlett Gulch Fire and High Park Fire. The Hewlett Gulch Fire was directly northwest of Fort Collins, CO and covered 3,100 hectares, while the High Park fire was significantly larger (35,300 hectares), encompassing the Hewlett Gulch Fire and coming within 3-4 km of our laboratory at Colorado State University. Emissions from both fires reached our laboratory, where measurements were made of NOx, NOy, NH3, and additional, unspeciated gas-phase nitrogen compounds. Smoke impacts at our facility ranged from background conditions to periods with very heavy smoke, depending on the local meteorology. We observed dramatic increases in measured concentrations during periods influenced by the fires.

  13. Preparation, Characterization and in vivo Evaluation of Simple Monolithic Ethylcellulose-coated Pellets Containing Topiramate with Biphasic Release Characteristics.

    PubMed

    Gong, Wei; Wang, Yuli; Shao, Shuai; Xie, Si; Shan, Li; Yang, Meiyan; Gao, Chunsheng; Zhong, Wu

    2016-01-01

    In our previous study, polyvinylpyrrolidone (PVP) was used both as a binder and a pore-former to prepare ethylcellulose (EC)-coated pellets to deliver topiramate (TPM) for a controlled release profile. The objective of this work was to further optimize the formulation and evaluate the in vivo profiles of TPM sustained-release pellets. Similar to the previous formulation with no binder, the in vitro drug release of TPM sustained-release pellets with 50% PVP binder in drug layer was sensitive to pore-former PVP level ranged from 27.0% to 29.0%. The higher the level of PVP was, the quicker release rate in vitro was. Moreover, when the proportion of poreformer PVP decreased, the Cmax decreased, and the tmax and mean residence time of TPM coated pellets were both prolonged. The in vitro release profile of optimal formulation showed biphasic release characteristics similar to reference formulation Trokendi XR(®), i.e., involving immediate release of TPM in initial release stage followed by a sustained release up to 24 h. Moreover, the impact of the pH of release medium on the drug release rate of TPM sustained-release pellets was not significant. The release mechanism of TPM from the sustained-release pellets might be the interaction of diffusion (coating-film) and corrosion (drug layer). The in vivo pharmacokinetics results showed the TPM sustained-release pellets had the similar in vivo pattern compared with Trokendi XR(®). These studies provide valuable basis for further development of TPM sustained-release pellets. PMID:26563941

  14. Fluorescence Spectroscopy of Gas-phase Polycyclic Aromatic Hydrocarbons

    NASA Technical Reports Server (NTRS)

    Thomas, J. D.; Witt, A. N.

    2006-01-01

    The purpose of this investigation was to produce fluorescence spectra of polycyclic aromatic hydrocarbon (PAH) molecules in the gas-phase for comparison with blue luminescence (BL) emission observed in astrophysical sources Vijh et al. (2004, 2005a,b). The BL occurs roughly from 350 to 450 nm, with a sharp peak near 380 nm. PAHs with three to four rings, e.g. anthracene and pyrene, were found to produce luminescence in the appropriate spectral region, based on existing studies. Relatively few studies of the gas-phase fluorescence of PAHs exist; those that do exist have dealt primarily with the same samples commonly available for purchase such as pyrene and anthracene. In an attempt to understand the chemistry of the nebular environment we also obtained several nitrogen substituted PAHs from our colleagues at NASA Ames. In order to simulate the astrophysical environment we also took spectra by heating the PAHs in a flame. The flame environment counteracts the formation of eximers and permits the spectroscopy of free-flying neutral molecules. Experiments with coal tar demonstrate that fluorescence spectroscopy reveals primarily the presence of the smallest molecules, which are most abundant and which possess the highest fluorescence efficiencies. One gas-phase PAH that seems to fit the BL spectrum most closely is phenanthridine. In view of the results from the spectroscopy of coal tar, a compound containing a mixture of PAHs ranging from small to very large PAH molecules, we can not preclude the presence of larger PAHs in interstellar sources exhibiting BL.

  15. Multiscale Aspects of Modeling Gas-Phase Nanoparticle Synthesis

    PubMed Central

    Buesser, B.; Gröhn, A.J.

    2013-01-01

    Aerosol reactors are utilized to manufacture nanoparticles in industrially relevant quantities. The development, understanding and scale-up of aerosol reactors can be facilitated with models and computer simulations. This review aims to provide an overview of recent developments of models and simulations and discuss their interconnection in a multiscale approach. A short introduction of the various aerosol reactor types and gas-phase particle dynamics is presented as a background for the later discussion of the models and simulations. Models are presented with decreasing time and length scales in sections on continuum, mesoscale, molecular dynamics and quantum mechanics models. PMID:23729992

  16. Gas-phase chemiluminescent reactions of ozone with monoterpenes

    NASA Astrophysics Data System (ADS)

    Arora, P. K.; Chatha, J. P. S.; Vohra, K. G.

    1983-08-01

    Chemiluminescent reactions of ozone with monoterpenes such as linallol, geraniol, d-limonene and α-pinene have been studied in the gas phase at low pressures. Methylglyoxal phosphorescence has been observed in the first two reactions. Emissions from HCHO( 1A 2) and glyoxal ( 3A u) are observed in the reaction of ozone with d-limonene and formation of excited glyoxal is found to be first order in ozone. The reaction of ozone with β-pinene gives rise to emission from a α-dicarbonyl compound and this is found to be first order in ozone. The mechanisms for the formation of excited species are proposed.

  17. The solar system/interstellar medium connection - Gas phase abundances

    NASA Technical Reports Server (NTRS)

    Lutz, Barry L.

    1987-01-01

    Gas-phase abundances in the outer solar system are presented as diagnostics of the interstellar medium at the time of the solar system formation, some 4.55 billion years ago. Possible influences of the thermal and chemical histories of the primitive solar nebula and of the processes which led to the formation and evolution of the outer planets and comets on the elemental and molecular composition of the primordial matter are outlined. The major components of the atmospheres of the outer planets and of the comae of comets are identified, and the cosmogonical and cosmological implications are discussed.

  18. Gas Phase Chemical Detection with an Integrated Chemical Analysis System

    SciTech Connect

    Baca, Albert G.; Casalnuovo, Stephen A.; Frye-Mason, Gregory C.; Heller, Edwin J.; Hietala, Susan L.; Hietala, Vincent M.; Kottenstette, Richard J.; Lewis, Patrick R.; Manginell, Ronald P.; Matzke, Carloyn M.; Reno, John L.; Sasaki, Darryl Y.; Schubert, W. Kent

    1999-07-08

    Microfabrication technology has been applied to the development of a miniature, multi-channel gas phase chemical laboratory that provides fast response, small size, and enhanced versatility and chemical discrimination. Each analysis channel includes a sample concentrator followed by a gas chromatographic separator and a chemically selective surface acoustic wave detector array to achieve high sensitivity and selectivity. The performance of the components, individually and collectively, is described. The design and performance of novel micromachined acoustic wave devices, with the potential for improved chemical sensitivity, are also described.

  19. Neurotransmitters in the Gas Phase: La-Mb Studies

    NASA Astrophysics Data System (ADS)

    Cabezas, C.; Mata, S.; López, J. C.; Alonso, J. L.

    2011-06-01

    LA-MB-FTMW spectroscopy combines laser ablation with Fourier transform microwave spectroscopy in supersonic jets overcoming the problems of thermal decomposition associated with conventional heating methods. We present here the results on LA-MB-FTMW studies of some neurotransmitters. Six conformers of dopamine, four of adrenaline, five of noradrenaline and three conformers of serotonin have been characterized in the gas phase. The rotational and nuclear quadrupole coupling constants extracted from the analysis of the rotational spectrum are directly compared with those predicted by ab initio methods to achieve the conclusive identification of different conformers and the experimental characterization of the intramolecular forces at play which control conformational preferences.

  20. Electrons Mediate the Gas-Phase Oxidation of Formic Acid with Ozone.

    PubMed

    van der Linde, Christian; Tang, Wai-Kit; Siu, Chi-Kit; Beyer, Martin K

    2016-08-26

    Gas-phase reactions of CO3 (.-) with formic acid are studied using Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry. Signal loss indicates the release of a free electron, with the formation of neutral reaction products. This is corroborated by adding traces of SF6 to the reaction gas, which scavenges 38 % of the electrons. Quantum chemical calculations of the reaction potential energy surface provide a reaction path for the formation of neutral carbon dioxide and water as the thermochemically favored products. From the literature, it is known that free electrons in the troposphere attach to O2 , which in turn transfer the electron to O3 . O3 (.-) reacts with CO2 to form CO3 (.-) . The reaction reported here formally closes the catalytic cycle for the oxidation of formic acid with ozone, catalyzed by free electrons. PMID:27400953

  1. Heterogeneous oxidation of atmospheric aerosol particles by gas-phase radicals

    NASA Astrophysics Data System (ADS)

    George, I. J.; Abbatt, J. P. D.

    2010-09-01

    Atmospheric aerosol particles play pivotal roles in climate and air quality. Just as chemically reduced gases experience oxidation in the atmosphere, it is now apparent that solid and liquid atmospheric particulates are also subject to similar oxidative processes. The most reactive atmospheric gas-phase radicals, in particular the hydroxyl radical, readily promote such chemistry through surficial interactions. This Review looks at progress made in this field, discussing the radical-initiated heterogeneous oxidation of organic and inorganic constituents of atmospheric aerosols. We focus on the kinetics and reaction mechanisms of such processes as well as how they can affect the physico-chemical properties of particles, such as their composition, size, density and hygroscopicity. Potential impacts on the atmosphere include the release of chemically reactive gases such as halogens, aldehydes and organic acids, reactive loss of particle-borne molecular tracer and toxic species, and enhanced hygroscopic properties of aerosols that may improve their ability to form cloud droplets.

  2. Effect of calcium concentration, hardening agent and drying condition on release characteristics of oral proteins from calcium pectinate gel beads.

    PubMed

    Sriamornsak, P

    1999-07-01

    Pectin has been investigated for its ability to produce solid calcium pectinate gel (CPG) beads containing bovine serum albumin (BSA). Several factors can influence the properties and release characteristics of the CPG beads. In this study, the effect of calcium concentration, hardening agent and drying condition on the encapsulation and release characteristics of BSA from the matrix gel beads made of calcium pectinate were studied. BSA release studies under conditions mimicking mouth to colon transit have shown that calcium pectinate protects the drug from being released completely in the physiological environment of the upper gastrointestinal tract, and is susceptible to the enzymatic action with consequent drug release. In addition, the release of BSA from CPG beads was strongly affected by calcium concentration and drying condition. However, the release was not particularly affected by the presence of hardening agent at the concentration of 1% or lower. Since the release of BSA as a model protein drug could be controlled by the regulation of the preparation conditions of CPG beads, the CPG beads may be used for a potential oral controlled release system for protein drugs. PMID:10379045

  3. Gas-phase reactions of cyclopropenylidene with protonated alkyl amines.

    PubMed

    Lin, Ziqing; Tan, Lei; Yang, Yang; Dai, Mingji; Tureček, František; Ouyang, Zheng; Xia, Yu

    2016-04-21

    Vinylidene carbenes (C3H2) are of high interest to interstellar, combustion, and organic chemistry. Due to their high instability, the direct experimental investigation of their chemical reactivity has rarely been achieved. Herein, we report a first study on the reactions of cyclopropenylidene (c-C3H2) with protonated alkyl amines in the gas phase using a home-built ion trap mass spectrometer. The high gas-phase basicity (GB) of ((1)A1) c-C3H2 (calculated as 920 kJ mol(-1)) facilitates the formation of a proton-bound dimer with protonated amines as the first step in the reaction. The dimer can stay as it is or rearrange to a covalent product. The formation of the covalent complex is highly exothermic and its yield is affected by the GB of alkyl amines. The highest yield (82%) was achieved when the GB of the amine was slightly lower but comparable to that of c-C3H2. Our results demonstrate a new reaction pathway of c-C3H2, which has long been considered as a "dead end" in interstellar carbon chemistry. PMID:26978226

  4. Gas phase oxidation downstream of a catalytic combustor

    NASA Technical Reports Server (NTRS)

    Tien, J. S.; Anderson, D. N.

    1979-01-01

    Effect of the length available for gas-phase reactions downstream of the catalytic reactor on the emission of CO and unburned hydrocarbons was investigated. A premixed, prevaporized propane/air feed to a 12/cm/diameter catalytic/reactor test section was used. The catalytic reactor was made of four 2.5 cm long monolithic catalyst elements. Four water cooled gas sampling probes were located at positions between 0 and 22 cm downstream of the catalytic reactor. Measurements of unburned hydrocarbon, CO, and CO2 were made. Tests were performed with an inlet air temperature of 800 K, a reference velocity of 10 m/s, pressures of 3 and 600,000 Pa, and fuel air equivalence ratios of 0.14 to 0.24. For very lean mixtures, hydrocarbon emissions were high and CO continued to be formed downstream of the catalytic reactor. At the highest equivalence ratios tested, hydrocarbon levels were much lower and CO was oxidized to CO2 in the gas phase downstream. To achieve acceptable emissions, a downstream region several times longer than the catalytic reactor could be required.

  5. Gas-Phase Fragmentation Analysis of Nitro-Fatty Acids

    NASA Astrophysics Data System (ADS)

    Bonacci, Gustavo; Asciutto, Eliana K.; Woodcock, Steven R.; Salvatore, Sonia R.; Freeman, Bruce A.; Schopfer, Francisco J.

    2011-09-01

    Nitro-fatty acids are electrophilic signaling mediators formed in increased amounts during inflammation by nitric oxide and nitrite-dependent redox reactions. A more rigorous characterization of endogenously-generated species requires additional understanding of their gas-phase induced fragmentation. Thus, collision induced dissociation (CID) of nitroalkane and nitroalkene groups in fatty acids were studied in the negative ion mode to provide mass spectrometric tools for their structural characterization. Fragmentation of nitroalkanes occurred mainly through loss of the NO{2/-} anion or neutral loss of HNO2. The CID of nitroalkenes proceeds via a more complex cyclization, followed by fragmentation to nitrile and aldehyde products. Gas-phase fragmentation of nitroalkene functional groups with additional γ or δ unsaturation occurred through a multiple step cyclization reaction process, leading to 5 and 6 member ring heterocyclic products and carbon chain fragmentation. Cyclization products were not obtained during nitroalkane fragmentation, highlighting the role of double bond π electrons during NO{2/-} rearrangements, stabilization and heterocycle formation. The proposed structures, mechanisms and products of fragmentation are supported by analysis of 13C and 15N labeled parent molecules, 6 different nitroalkene positional isomers, 6 nitroalkane positional isomers, accurate mass determinations at high resolution and quantum mechanics calculations. Multiple key diagnostic ion fragments were obtained through this analysis, allowing for the precise placement of double bonds and sites of fatty acid nitration, thus supporting an ability to predict nitro positions in biological samples.

  6. Preconceptual design of the gas-phase decontamination demonstration cart

    SciTech Connect

    Munday, E.B.

    1993-12-01

    Removal of uranium deposits from the interior surfaces of gaseous diffusion equipment will be a major portion of the overall multibillion dollar effort to decontaminate and decommission the gaseous diffusion plants. Long-term low-temperature (LTLT) gas-phase decontamination is being developed at the K-25 Site as an in situ decontamination process that is expected to significantly lower the decontamination costs, reduce worker exposure to radioactive materials, and reduce safeguard concerns. This report documents the preconceptual design of the process equipment that is necessary to conduct a full-scale demonstration of the LTLT method in accordance with the process steps listed above. The process equipment and method proposed in this report are not intended to represent a full-scale production campaign design and operation, since the gas evacuation, gas charging, and off-gas handling systems that would be cost effective in a production campaign are not cost effective for a first-time demonstration. However, the design presented here is expected to be applicable to special decontamination projects beyond the demonstration, which could include the Deposit Recovery Program. The equipment will therefore be sized to a 200 ft size 1 converter (plus a substantial conservative design margin), which is the largest item of interest for gas phase decontamination in the Deposit Recovery Program. The decontamination equipment will allow recovery of the UF{sub 6}, which is generated from the reaction of ClF{sub 3} with the uranium deposits, by use of NaF traps.

  7. Gas-Phase Acidities of Phosphorylated Amino Acids.

    PubMed

    Stover, Michele L; Plummer, Chelsea E; Miller, Sean R; Cassady, Carolyn J; Dixon, David A

    2015-11-19

    Gas-phase acidities and heats of formation have been predicted at the G3(MP2)/SCRF-COSMO level of theory for 10 phosphorylated amino acids and their corresponding amides, including phospho-serine (pSer), -threonine (pThr), and -tyrosine (pTyr), providing the first reliable set of these values. The gas-phase acidities (GAs) of the three named phosphorylated amino acids and their amides have been determined using proton transfer reactions in a Fourier transform ion cyclotron mass spectrometer. Excellent agreement was found between the experimental and predicted GAs. The phosphate group is the deprotonation site for pSer and pThr and deprotonation from the carboxylic acid generated the lowest energy anion for pTyr. The infrared spectra were calculated for six low energy anions of pSer, pThr, and pTyr. For deprotonated pSer and pThr, good agreement is found between the experimental IRMPD spectra and the calculated spectra for our lowest energy anion structure. For pTyr, the IR spectra for a higher energy phosphate deprotonated structure is in good agreement with experiment. Additional experiments tested electrospray ionization (ESI) conditions for pTyr and determined that variations in solvent, temperature, and voltage can result in a different experimental GA value, indicating that ESI conditions affect the conformation of the pTyr anion. PMID:26492552

  8. Gas phase contributions to topochemical hydride reduction reactions

    SciTech Connect

    Kobayashi, Yoji; Li, Zhaofei; Hirai, Kei; Tassel, Cédric; Loyer, François; Ichikawa, Noriya; Abe, Naoyuki; Yamamoto, Takafumi; Shimakawa, Yuichi; and others

    2013-11-15

    Alkali and alkali earth hydrides have been used as solid state reductants recently to yield many interesting new oxygen-deficient transition metal oxides. These reactions have tacitly been assumed to be a solid phase reaction between the reductant and parent oxide. We have conducted a number of experiments with physical separation between the reductant and oxides, and find that in some cases reduction proceeds even when the reagents are physically separated, implying reactions with in-situ generated H{sub 2} and, to a lesser extent, getter mechanisms. Our findings change our understanding of these topochemical reactions, and should enhance the synthesis of additional new oxides and nanostructures. - Graphical abstract: Topochemical reductions with hydrides: Solid state or gas phase reaction? Display Omitted - Highlights: • SrFeO{sub 2} and LaNiO{sub 2} were prepared by topochemical reduction of oxides. • Separating the reducing agent (CaH{sub 2}, Mg metal) from the oxide still results in reduction. • Such topochemical reactions can occur in the gas phase.

  9. Gas-phase reactivity of novel Ziegler-Natta catalysts

    SciTech Connect

    Alameddin, N.G.; Eyler, J.R.; Richardson, D.E.

    1994-12-31

    The discovery of soluble group 4 metallocene-based catalysts for the Ziegler-Natta polymerization of olefins has generated considerable interest in the field. In particular, the versatility of the Cp (cyclopentadienyl) ligand has made practical the development of a host of novel catalysts which can produce extremely regiospecific and stereospecific polymers. With further improvements in activity and stability, these catalysts are expected to make a major impact on the polymerization industry. Presently, catalyst design is driven by using the steric and electronic properties of the ligands to guide the monomer addition. However, since these ligands have considerable steric bulk, the choice of solvent will significantly affect their catalytic properties. Therefore, an understanding of the intrinsic reactivity of these catalysts independent of a solvent is one of the first steps to building a better catalyst. The work in progress is a study of the reactivity of zircononene-based catalysts in the gas phase. The authors are in the process of studying the rates of reaction of a series of these compounds with H{sub 2} as well as with a number of olefins. In the gas phase, the intrinsic reactivity of these catalysts is revealed and their chemistry can be studied in detail.

  10. Diesel-related hydrocarbons can dominate gas phase reactive carbon in megacities

    NASA Astrophysics Data System (ADS)

    Dunmore, R. E.; Hopkins, J. R.; Lidster, R. T.; Lee, J. D.; Evans, M. J.; Rickard, A. R.; Lewis, A. C.; Hamilton, J. F.

    2015-03-01

    Hydrocarbons are key precursors to two priority air pollutants, ozone and particulate matter. Those with two to seven carbons have historically been straightforward to observe and have been successfully reduced in many developed cities through air quality policy interventions. Longer chain hydrocarbons released from diesel vehicles are not considered explicitly as part of air quality strategies and there are few direct measurements of their gaseous abundance in the atmosphere. This study describes the chemically comprehensive and continuous measurements of organic compounds in a developed megacity (London), which demonstrate that on a seasonal median basis, diesel-related hydrocarbons represent only 20-30% of the total hydrocarbon mixing ratio but comprise more than 50% of the atmospheric hydrocarbon mass and are a dominant local source of secondary organic aerosols. This study shows for the first time that, 60% of the winter primary hydrocarbon hydroxyl radical reactivity is from diesel-related hydrocarbons and using the maximum incremental reactivity scale, we predict that they contribute up to 50% of the ozone production potential in London. Comparing real-world urban composition with regulatory emissions inventories in the UK and US highlights a previously unaccounted for but, very significant under-reporting of diesel related hydrocarbons; an underestimation of a factor ~ 4 for C9 species rising to a factor of over 70 for C12 during winter. These observations show that hydrocarbons from diesel vehicles can dominate gas phase reactive carbon in cities with high diesel fleet fractions. Future control of urban particulate matter and ozone in such locations requires a shift in policy focus onto gas phase hydrocarbons released from diesels as this vehicle type continues to displace gasoline world-wide.

  11. Diesel-related hydrocarbons can dominate gas phase reactive carbon in megacities

    NASA Astrophysics Data System (ADS)

    Dunmore, R. E.; Hopkins, J. R.; Lidster, R. T.; Lee, J. D.; Evans, M. J.; Rickard, A. R.; Lewis, A. C.; Hamilton, J. F.

    2015-09-01

    Hydrocarbons are key precursors to two priority air pollutants, ozone and particulate matter. Those with two to seven carbons have historically been straightforward to observe and have been successfully reduced in many developed cities through air quality policy interventions. Longer chain hydrocarbons released from diesel vehicles are not considered explicitly as part of air quality strategies and there are few direct measurements of their gaseous abundance in the atmosphere. This study describes the chemically comprehensive and continuous measurements of organic compounds in a developed megacity (London), which demonstrate that on a seasonal median basis, diesel-related hydrocarbons represent only 20-30 % of the total hydrocarbon mixing ratio but comprise more than 50 % of the atmospheric hydrocarbon mass and are a dominant local source of secondary organic aerosols. This study shows for the first time that 60 % of the winter primary hydrocarbon hydroxyl radical reactivity is from diesel-related hydrocarbons and using the maximum incremental reactivity scale, we predict that they contribute up to 50 % of the ozone production potential in London. Comparing real-world urban composition with regulatory emissions inventories in the UK and US highlights a previously unaccounted for, but very significant, under-reporting of diesel-related hydrocarbons; an underestimation of a factor ~4 for C9 species rising to a factor of over 70 for C12 during winter. These observations show that hydrocarbons from diesel vehicles can dominate gas phase reactive carbon in cities with high diesel fleet fractions. Future control of urban particulate matter and ozone in such locations requires a shift in policy focus onto gas phase hydrocarbons released from diesels as this vehicle type continues to displace gasoline world-wide.

  12. A Simple and Rapid Method for Standard Preparation of Gas Phase Extract of Cigarette Smoke

    PubMed Central

    Higashi, Tsunehito; Mai, Yosuke; Noya, Yoichi; Horinouchi, Takahiro; Terada, Koji; Hoshi, Akimasa; Nepal, Prabha; Harada, Takuya; Horiguchi, Mika; Hatate, Chizuru; Kuge, Yuji; Miwa, Soichi

    2014-01-01

    Cigarette smoke consists of tar and gas phase: the latter is toxicologically important because it can pass through lung alveolar epithelium to enter the circulation. Here we attempt to establish a standard method for preparation of gas phase extract of cigarette smoke (CSE). CSE was prepared by continuously sucking cigarette smoke through a Cambridge filter to remove tar, followed by bubbling it into phosphate-buffered saline (PBS). An increase in dry weight of the filter was defined as tar weight. Characteristically, concentrations of CSEs were represented as virtual tar concentrations, assuming that tar on the filter was dissolved in PBS. CSEs prepared from smaller numbers of cigarettes (original tar concentrations ≤15 mg/ml) showed similar concentration-response curves for cytotoxicity versus virtual tar concentrations, but with CSEs from larger numbers (tar ≥20 mg/ml), the curves were shifted rightward. Accordingly, the cytotoxic activity was detected in PBS of the second reservoir downstream of the first one with larger numbers of cigarettes. CSEs prepared from various cigarette brands showed comparable concentration-response curves for cytotoxicity. Two types of CSEs prepared by continuous and puff smoking protocols were similar regarding concentration-response curves for cytotoxicity, pharmacology of their cytotoxicity, and concentrations of cytotoxic compounds. These data show that concentrations of CSEs expressed by virtual tar concentrations can be a reference value to normalize their cytotoxicity, irrespective of numbers of combusted cigarettes, cigarette brands and smoking protocols, if original tar concentrations are ≤15 mg/ml. PMID:25229830

  13. Surface and gas-phase resistances to the evaporation of droplets.

    PubMed

    Zung, J T

    1975-01-01

    Attempt has been made to asses quantitatively the magnitudes of both the gas-phase resistance and the surface resistance to the evaporation of droplets and to determine the transition point at which the evaporation changes from a diffusion-controlled to a surface-controlled process. This transition point is strongly dependent upon the ambient pressure and the droplet size. It is found that at atmospheric pressure the particle radius at which the transition takes place is in the range of 1 - 10mu for water, 0.1mu for n-dibutylphthalate, 0.1 - 1.0mu for mercury, and 0.001mu for liquid helium. Furthermore, we have found that the surface resistance and the gas-phase resistance vary with the size of the droplet in opposite direction, leading to the existence of a maximum rate of evaporation at a certain value of the droplet radius, this radius being dependent upon the characteristics of the liquid concerned. This conclusion may be useful in the search for an optimum and most efficient method of combustion of fuel sprays in automotive engines, gas turbines, and oil-burning power plants. PMID:1149699

  14. Investigation of condensed and early stage gas phase hypergolic reactions

    NASA Astrophysics Data System (ADS)

    Dennis, Jacob Daniel

    Traditional hypergolic propellant combinations, such as those used on the space shuttle orbital maneuvering system first flown in 1981, feature hydrazine based fuels and nitrogen tetroxide (NTO) based oxidizers. Despite the long history of hypergolic propellant implementation, the processes that govern hypergolic ignition are not well understood. In order to achieve ignition, condensed phase fuel and oxidizer must undergo simultaneous physical mixing and chemical reaction. This process generates heat, intermediate condensed phase species, and gas phase species, which then may continue to react and generate more heat until ignition is achieved. The process is not well understood because condensed and gas phase reactions occur rapidly, typically in less than 200 μs, on much faster timescales than traditional diagnostic methods can observe. A detailed understanding of even the gas phase chemistry is lacking, but is critical for model development. Initial research has provided confidence that a study of condensed phase hypergolic reactions is useful and possible. Results obtained using an impinging jet apparatus have shown a critical residence time of 0.3 ms is required for the reaction between monomethylhydrazine (MMH) and red fuming nitric acid (RFNA, ~85% HNO3 + 15% N2O4) to achieve conditions favorable for ignition. This critical residence time spans the time required for liquid phase reactions to occur at the fuel/oxidizer interface and can give some insight into the reaction rates for this propellant combination. Experiments performed in a forced mixing constant volume reactor have demonstrated that the chamber pressurization rate for MMH/RFNA can be significantly reduced by diluting the MMH with deionized water. This result indicates that propellant dilution can slow the chemical reaction rates to occur over observable time scales. The research described in this document consists of two efforts that contribute knowledge to the propulsion community regarding the

  15. A study comparing biopharmaceutic characteristics of four once daily controlled release diltiazem preparations.

    PubMed

    Hendriks, M G; Dogterom, P; Ebels, J T; Oosterhuis, B; Geertsema, L R; Hulot, T; Bianchetti, G; Jonkman, J H

    1998-01-01

    In the present study we have compared the steady state biopharmaceutic characteristics of four diltiazem once daily controlled release capsules: Mono-Tildiem LP 300 (300 mg), Adizem XL (300 mg), Cardizem (300 mg) and Dilacor (240 mg). Sixteen healthy male volunteers (aged 22.9 +/- 3.3 years, range 19-31 years) completed an open label, multiple oral dose, randomized, four-period crossover study without a washout period in between. The volunteers received each diltiazem formulation once daily for four days. Trough diltiazem and metabolites plasma concentrations were determined on days 3 and 4. The 24-h plasma concentration-time profiles were assessed after the dose on day 4 of each period. The following steady state pharmacokinetic parameters for diltiazem were calculated: the minimum plasma concentration (cmin), the maximum plasma concentration (cmax), the time to reach that concentration (tmax), the time interval during which the plasma concentration exceeds 50% of cmax (t50), the area under the plasma concentration-time curve (AUC72-96) and the peak-to-trough fluctuation (PTF). For the metabolites of diltiazem, N-mono-desmethyl-diltiazem (NDM) and desacetyldiltiazem (DAD), AUC72-96 (AUCNDM and AUCDAD) and the ratio metabolite/parent compound were calculated. Steady state was achieved on day 3. Except one, all controlled release formulations have satisfactory controlled release properties allowing once daily administration. However, significant (P < 0.05) differences were found between the pharmacokinetic characteristics which do not allow exchange of the various formulations. Concentrations well below 50 ng.mL-1 in the morning hours were observed for Dilacor (240 mg) and Adizem XL (300 mg), which could be a disadvantage of these formulations as it is well-known that ischaemic events occur at a higher rate during that part of the day. The plasma concentration profiles NDM and DAD, the major circulating metabolites, parallel the plasma concentration profiles for the

  16. Experimental study of PLLA/INH slow release implant fabricated by three dimensional printing technique and drug release characteristics in vitro

    PubMed Central

    2014-01-01

    Background Local slow release implant provided long term and stable drug release in the lesion. The objective of this study was to fabricate biodegradable slow release INH/PLLA tablet via 3 dimensional printing technique (3DP) and to compare the drug release characteristics of three different structured tablets in vitro. Methods Three different drug delivery systems (columnar-shaped tablet (CST), doughnut-shaped tablet (DST) and multilayer doughnut-shaped tablet (MDST)) were manufactured by the three dimensional printing machine and isoniazid was loaded into the implant. Dynamic soaking method was used to study the drug release characteristics of the three implants. MTT cytotoxicity test and direct contact test were utilized to study the biocompatibility of the implant. The microstructures of the implants’ surfaces were observed with electron microscope. Results The PLLA powder in the tablet could be excellently combined through 3DP without disintegration. Electron microscope observations showed that INH distributed evenly on the surface of the tablet in a “nest-shaped” way, while the surface of the barrier layer in the multilayer doughnut shaped tablet was compact and did not contain INH. The concentration of INH in all of the three tablets were still higher than the effective bacteriostasis concentration (Isoniazid: 0.025 ~ 0.05 μg/ml) after 30 day’s release in vitro. All of the tablets showed initial burst release of the INH in the early period. Drug concentration of MDST became stable and had little fluctuation starting from the 6th day of the release. Drug concentration of DST and CST decreased gradually and the rate of decrease in concentration was faster in DST than CST. MTT cytotoxicity test and direct contact test indicated that the INH-PLLA tablet had low cytotoxicity and favorable biocompatibility. Conclusions Three dimensional printing technique was a reliable technique to fabricate complicated implants. Drug release pattern in MDST was

  17. Conformational Study of Taurine in the Gas Phase

    NASA Astrophysics Data System (ADS)

    Cortijo, Vanessa; Sanz, M. Eugenia; López, Juan C.; Alonso, José L.

    2009-08-01

    The conformational preferences of the amino sulfonic acid taurine (NH2-CH2-CH2-SO3H) have been investigated in the gas phase by laser ablation molecular beam Fourier transform microwave spectroscopy (LA-MB-FTMW) in the 6-14 GHz frequency range. One conformer has been observed, and its rotational, centrifugal distortion, and hyperfine quadrupole coupling constants have been determined from the analysis of its rotational spectrum. Comparison of the experimental constants with those calculated theoretically identifies the detected conformer unambiguously. The observed conformer of taurine is stabilized by an intramolecular hydrogen bond O-H···N between the hydrogen of the sulfonic acid group and the nitrogen atom of the amino group.

  18. Gas-phase synthesis of magnetic metal/polymer nanocomposites.

    PubMed

    Starsich, Fabian H L; Hirt, Ann M; Stark, Wendelin J; Grass, Robert N

    2014-12-19

    Highly magnetic metal Co nanoparticles were produced via reducing flame spray pyrolysis, and directly coated with an epoxy polymer in flight. The polymer content in the samples varied between 14 and 56 wt% of nominal content. A homogenous dispersion of Co nanoparticles in the resulting nanocomposites was visualized by electron microscopy. The size and crystallinity of the metallic fillers was not affected by the polymer, as shown by XRD and magnetic hysteresis measurements. The good control of the polymer content in the product nanocomposite was shown by elemental analysis. Further, the successful polymerization in the gas phase was demonstrated by electron microscopy and size measurements. The presented effective, dry and scalable one-step synthesis method for highly magnetic metal nanoparticle/polymer composites presented here may drastically decrease production costs and increase industrial yields. PMID:25422410

  19. Chemistry inside molecular containers in the gas phase

    NASA Astrophysics Data System (ADS)

    Lee, Tung-Chun; Kalenius, Elina; Lazar, Alexandra I.; Assaf, Khaleel I.; Kuhnert, Nikolai; Grün, Christian H.; Jänis, Janne; Scherman, Oren A.; Nau, Werner M.

    2013-05-01

    Inner-phase chemical reactions of guest molecules encapsulated in a macromolecular cavity give fundamental insight into the relative stabilization of transition states by the surrounding walls of the host, thereby modelling the situation of substrates in enzymatic binding pockets. Although in solution several examples of inner-phase reactions are known, the use of cucurbiturils as macrocyclic hosts and bicyclic azoalkanes as guests has now enabled a systematic mass spectrometric investigation of inner-phase reactions in the gas phase, where typically the supply of thermal energy results in dissociation of the supramolecular host-guest assembly. The results reveal a sensitive interplay in which attractive and repulsive van der Waals interactions between the differently sized hosts and guests need to be balanced with a constrictive binding to allow thermally activated chemical reactions to compete with dissociation. The results are important for the understanding of supramolecular reactivity and have implications for catalysis.

  20. Reduced-background gas-phase absorption spectroscopy.

    PubMed

    Sweetser, J N; Trebino, R

    1998-08-15

    We propose and demonstrate a new method for single-shot multiplex absorption spectroscopy that permits enhanced sensitivity in the simultaneous measurement of multiple spectral lines in rapidly changing gas-phase media, such as turbulent flames. It uses an ultrashort laser pulse that propagates through the absorbing medium, for which the relevant absorption information resides in the free-induction decay that is trailing behind the transmitted pulse. Time gating out most of the transmitted pulse, but not the free-induction decay, enhances the relative fraction of light that contains absorption information when the spectrum is measured. This procedure reduces the background associated with the input light, thus enhancing detection sensitivity. PMID:18087501

  1. Gas-phase interaction of protonated lysine with water

    NASA Astrophysics Data System (ADS)

    Rozman, Marko; Srzic, Dunja; Klasinc, Leo

    2006-07-01

    Gas-phase interaction of LysH+ with D2O has been investigated in order to elucidate the H/D exchange reaction mechanism and possibility of water assisted ion-zwitterion structure formation. The proceed of the interaction is modeled by DFT calculations. Potential energy profiles for: the perturbation from ion-molecule to ion-zwitterion structure, the "flip-flop" and the "bridging" mechanism are presented. Analysis of H/D exchange kinetics results for LysH+ with D2O and CD3OD measured in a Fourier transform ion cyclotron resonance (FTICR) mass spectrometer agree with ion-molecule structure of LysH+. Both experimental and theoretical findings suggest that during interaction of LysH+ with D2O isotopic exchange is favored over the water assisted conformational change from ion-molecule into ion-zwitterion structure.

  2. Dissociative attachment reactions of electrons with gas phase superacids

    SciTech Connect

    Liu, X.

    1992-01-01

    Using the flowing afterglow Langmuir probe (FALP) technique, dissociative attachment coefficients [beta] for reactions of electrons with gas phase superacids HCo(PF[sub 3])[sub 4], HRh(PF[sub 3])[sub 4] and carbonyl hydride complexes HMn(CO)[sub 5], HRe(CO)[sub 5] have been determined under thermal conditions over the approximate temperature range 300[approximately]550 K. The superacids react relatively slowly (<1/20 of [beta][sub max]) with free electrons in a thermal plasma, and the values of [beta] obtained this far do not show a correlation between acidity and [beta]. The pioneer researchers in this field had speculated that any superacid would be a rapid attacher of electrons; it was found that this speculation is not true in general. The product distribution of electron attachment reaction to HCo(PF[sub 3])[sub 4] was found to be independent of temperature even though the [beta][HCo(PF[sub 3])[sub 4

  3. Silicon Nanowire-Based Devices for Gas-Phase Sensing

    PubMed Central

    Cao, Anping; Sudhölter, Ernst J.R.; de Smet, Louis C.P.M.

    2014-01-01

    Since their introduction in 2001, SiNW-based sensor devices have attracted considerable interest as a general platform for ultra-sensitive, electrical detection of biological and chemical species. Most studies focus on detecting, sensing and monitoring analytes in aqueous solution, but the number of studies on sensing gases and vapors using SiNW-based devices is increasing. This review gives an overview of selected research papers related to the application of electrical SiNW-based devices in the gas phase that have been reported over the past 10 years. Special attention is given to surface modification strategies and the sensing principles involved. In addition, future steps and technological challenges in this field are addressed. PMID:24368699

  4. Regenerable Air Purification System for Gas-Phase Contaminant Control

    NASA Technical Reports Server (NTRS)

    Constantinescu, Ileana C.; Qi, Nan; LeVan, M. Douglas; Finn, Cory K.; Finn, John E.; Luna, Bernadette (Technical Monitor)

    2000-01-01

    A regenerable air purification system (RAPS) that uses water vapor to displace adsorbed contaminants from an. adsorbent column into a closed oxidation loop is under development through cooperative R&D between Vanderbilt University and NASA Ames Research Center. A unit based on this design can be used for removing trace gas-phase contaminants from spacecraft cabin air or from polluted process streams including incinerator exhaust. Recent work has focused on fabrication and operation of a RAPS breadboard at NASA Ames, and on measurement of adsorption isotherm data for several important organic compounds at Vanderbilt. These activities support the use and validation of RAPS modeling software also under development at Vanderbilt, which will in turn be used to construct a prototype system later in the project.

  5. Regenerable Air Purification System for Gas-Phase Contaminant Control

    NASA Technical Reports Server (NTRS)

    Constantinescu, Ileana C.; Finn, John E.; LeVan, M. Douglas; Lung, Bernadette (Technical Monitor)

    2000-01-01

    Tests of a pre-prototype regenerable air purification system (RAPS) that uses water vapor to displace adsorbed contaminants from an adsorbent column have been performed at NASA Ames Research Center. A unit based on this design can be used for removing trace gas-phase contaminants from spacecraft cabin air or from polluted process streams including incinerator exhaust. During the normal operation mode, contaminants are removed from the air on the column. Regeneration of the column is performed on-line. During regeneration, contaminants are displaced and destroyed inside the closed oxidation loop. In this presentation we discuss initial experimental results for the performance of RAPS in the removal and treatment of several important spacecraft contaminant species from air.

  6. Infrared photodissociation spectroscopy of protonated neurotransmitters in the gas phase

    NASA Astrophysics Data System (ADS)

    MacLeod, N. A.; Simons, J. P.

    2007-03-01

    Protonated neurotransmitters have been produced in the gas phase via a novel photochemical scheme: complexes of the species of interest, 1-phenylethylamine, 2-amino-1-phenylethanol and the diastereo-isomers, ephedrine and pseudoephedrine, with a suitable proton donor, phenol (or indole), are produced in a supersonic expansion and ionized by resonant two photon ionization of the donor. Efficient proton transfer generates the protonated neurotransmitters, complexed to a phenoxy radical. Absorption of infrared radiation, and subsequent evaporation of the phenoxy tag, coupled with time of flight mass spectrometry, provides vibrational spectra of the protonated (and also hydrated) complexes for comparison with the results of quantum chemical computation. Comparison with the conformational structures of the neutral neurotransmitters (established previously) reveals the effect of protonation on their structure. The photochemical proton transfer strategy allows spectra to be recorded from individual laser shots and their quality compares favourably with that obtained using electro-spray or matrix assisted laser desorption ion sources.

  7. Synthesis and Gas Phase Thermochemistry of Germanium-Containing Compounds

    SciTech Connect

    Nathan Robert Classen

    2002-12-31

    The driving force behind much of the work in this dissertation was to gain further understanding of the unique olefin to carbene isomerization observed in the thermolysis of 1,1-dimethyl-2-methylenesilacyclobutane by finding new examples of it in other silicon and germanium compounds. This lead to the examination of a novel phenylmethylenesilacyclobut-2-ene, which did not undergo olefin to carbene rearrangement. A synthetic route to methylenegermacyclobutanes was developed, but the methylenegermacyclobutane system exhibited kinetic instability, making the study of the system difficult. In any case the germanium system decomposed through a complex mechanism which may not include olefin to carbene isomerization. However, this work lead to the study of the gas phase thermochemistry of a series of dialkylgermylene precursors in order to better understand the mechanism of the thermal decomposition of dialkylgermylenes. The resulting dialkylgermylenes were found to undergo a reversible intramolecular {beta} C-H insertion mechanism.

  8. Printing nanoparticles from the liquid and gas phases using nanoxerography

    NASA Astrophysics Data System (ADS)

    Barry, Chad R.; Steward, Michael G.; Lwin, Nyein Z.; Jacobs, Heiko O.

    2003-10-01

    This paper reports on the directed self-assembly of nanoparticles onto charged surface areas with a resolution of 200 nm from the liquid phase and 100 nm from the gas phase. The charged areas required for this type of nanoxerographic printing were fabricated using a parallel method that employs a flexible, electrically conductive, electrode to charge a thin-film electret. As electrodes, we used metal-coated polymeric stamps and 10 µm thick doped silicon wafers carrying a pattern in topography. Each electrode was brought in contact with a thin-film electret on an n-doped silicon substrate. The charge pattern was transferred into the thin-film electret by applying a voltage pulse between the conductive electrode and the silicon substrate. Areas as large as 1 cm2 were patterned with charge with 100 nm scale resolution in 10 s. These charge patterns attract nanoparticles. A liquid-phase assembly process where electrostatic forces compete with disordering forces due to ultrasonication has been developed to assemble nanoparticles onto charged based receptors in 10 s from a liquid suspension. A gas-phase assembly process was developed that uses a transparent particle assembly module to direct particles towards the charged surface while monitoring the total charge of assembled particles. Nanoparticles were generated using a tube furnace by evaporation and condensation at the outlet. The electrostatically directed assembly of 10-100 nm sized metal (gold, silver) and 30 nm sized carbon particles was accomplished with a resolution 500-1000 times greater than the resolution of existing xerographic printers.

  9. Surfactants from the gas phase may promote cloud droplet formation.

    PubMed

    Sareen, Neha; Schwier, Allison N; Lathem, Terry L; Nenes, Athanasios; McNeill, V Faye

    2013-02-19

    Clouds, a key component of the climate system, form when water vapor condenses upon atmospheric particulates termed cloud condensation nuclei (CCN). Variations in CCN concentrations can profoundly impact cloud properties, with important effects on local and global climate. Organic matter constitutes a significant fraction of tropospheric aerosol mass, and can influence CCN activity by depressing surface tension, contributing solute, and influencing droplet activation kinetics by forming a barrier to water uptake. We present direct evidence that two ubiquitous atmospheric trace gases, methylglyoxal (MG) and acetaldehyde, known to be surface-active, can enhance aerosol CCN activity upon uptake. This effect is demonstrated by exposing acidified ammonium sulfate particles to 250 parts per billion (ppb) or 8 ppb gas-phase MG and/or acetaldehyde in an aerosol reaction chamber for up to 5 h. For the more atmospherically relevant experiments, i.e., the 8-ppb organic precursor concentrations, significant enhancements in CCN activity, up to 7.5% reduction in critical dry diameter for activation, are observed over a timescale of hours, without any detectable limitation in activation kinetics. This reduction in critical diameter enhances the apparent particle hygroscopicity up to 26%, which for ambient aerosol would lead to cloud droplet number concentration increases of 8-10% on average. The observed enhancements exceed what would be expected based on Köhler theory and bulk properties. Therefore, the effect may be attributed to the adsorption of MG and acetaldehyde to the gas-aerosol interface, leading to surface tension depression of the aerosol. We conclude that gas-phase surfactants may enhance CCN activity in the atmosphere. PMID:23382211

  10. Surfactants from the gas phase may promote cloud droplet formation

    PubMed Central

    Sareen, Neha; Schwier, Allison N.; Lathem, Terry L.; Nenes, Athanasios; McNeill, V. Faye

    2013-01-01

    Clouds, a key component of the climate system, form when water vapor condenses upon atmospheric particulates termed cloud condensation nuclei (CCN). Variations in CCN concentrations can profoundly impact cloud properties, with important effects on local and global climate. Organic matter constitutes a significant fraction of tropospheric aerosol mass, and can influence CCN activity by depressing surface tension, contributing solute, and influencing droplet activation kinetics by forming a barrier to water uptake. We present direct evidence that two ubiquitous atmospheric trace gases, methylglyoxal (MG) and acetaldehyde, known to be surface-active, can enhance aerosol CCN activity upon uptake. This effect is demonstrated by exposing acidified ammonium sulfate particles to 250 parts per billion (ppb) or 8 ppb gas-phase MG and/or acetaldehyde in an aerosol reaction chamber for up to 5 h. For the more atmospherically relevant experiments, i.e., the 8-ppb organic precursor concentrations, significant enhancements in CCN activity, up to 7.5% reduction in critical dry diameter for activation, are observed over a timescale of hours, without any detectable limitation in activation kinetics. This reduction in critical diameter enhances the apparent particle hygroscopicity up to 26%, which for ambient aerosol would lead to cloud droplet number concentration increases of 8–10% on average. The observed enhancements exceed what would be expected based on Köhler theory and bulk properties. Therefore, the effect may be attributed to the adsorption of MG and acetaldehyde to the gas–aerosol interface, leading to surface tension depression of the aerosol. We conclude that gas-phase surfactants may enhance CCN activity in the atmosphere. PMID:23382211

  11. Feasibility of gas-phase decontamination of gaseous diffusion equipment

    SciTech Connect

    Munday, E.B.; Simmons, D.W.

    1993-02-01

    The five buildings at the K-25 Site formerly involved in the gaseous diffusion process contain 5000 gaseous diffusion stages as well as support facilities that are internally contaminated with uranium deposits. The gaseous diffusion facilities located at the Portsmouth Gaseous Diffusion Plant and the Paducah Gaseous Diffusion Plant also contain similar equipment and will eventually close. The decontamination of these facilities will require the most cost-effective technology consistent with the criticality, health physics, industrial hygiene, and environmental concerns; the technology must keep exposures to hazardous substances to levels as low as reasonably achievable (ALARA). This report documents recent laboratory experiments that were conducted to determine the feasibility of gas-phase decontamination of the internal surfaces of the gaseous diffusion equipment that is contaminated with uranium deposits. A gaseous fluorinating agent is used to fluorinate the solid uranium deposits to gaseous uranium hexafluoride (UF{sub 6}), which can be recovered by chemical trapping or freezing. The lab results regarding the feasibility of the gas-phase process are encouraging. These results especially showed promise for a novel decontamination approach called the long-term, low-temperature (LTLT) process. In the LTLT process: The equipment is rendered leak tight, evacuated, leak tested, and pretreated, charged with chlorine trifluoride (ClF{sub 3}) to subatmospheric pressure, left for an extended period, possibly > 4 months, while processing other items. Then the UF{sub 6} and other gases are evacuated. The UF{sub 6} is recovered by chemical trapping. The lab results demonstrated that ClF{sub 3} gas at subatmospheric pressure and at {approx} 75{degree}F is capable of volatilizing heavy deposits of uranyl fluoride from copper metal surfaces sufficiently that the remaining radioactive emissions are below limits.

  12. Gas-phase products and secondary organic aerosol formation from the ozonolysis and photooxidation of myrcene

    NASA Astrophysics Data System (ADS)

    Böge, Olaf; Mutzel, Anke; Iinuma, Yoshiteru; Yli-Pirilä, Pasi; Kahnt, Ariane; Joutsensaari, Jorma; Herrmann, Hartmut

    2013-04-01

    Terrestrial vegetation releases a great variety of volatile organic compounds (VOC) into the atmosphere. Monoterpenes, like myrcene, contribute significantly to this global biogenic VOC emission. In the atmosphere, monoterpenes rapidly undergo oxidation reactions by OH radicals (mainly during the daytime), NO3 radicals (mainly during the nighttime) and O3 to form multifunctional oxidation products. The products of these reactions are likely to be of low volatility and hence might lead to secondary organic aerosol (SOA) formation. In the present study, we report results from a series of chamber experiments performed in the LEAK chamber at TROPOS in which the gas-phase products and SOA yields obtained from myrcene O3 reactions with and without an OH radical scavenger as well as from the myrcene OH radical reaction in the presence of NOx have been measured. During the experiments the consumption of myrcene as well as the formation of gas-phase products was monitored using a proton transfer reaction mass spectrometer (PTR-MS). Ozone concentration was measured by an O3 monitor and the mixing ratios of nitrogen oxides were measured by a NOx monitor. Particle size distributions between 3-900 nm were monitored every 11 min using a differential mobility particle sizer (DMPS) system. In addition to the products observed by means of the PTR-MS by their m/z values, an identification of carbonylic compounds by their DNPH derivatives was performed. Beside low molecular mass products the formation of 4-vinyl-4-pentenal with a yield of 55 % in myrcene ozonolysis has been observed. The further oxidation of this major first generation product lead to the formation of two dicarbonylic products with m/z 113 and to SOA formation. The influence of the continuing oxidation of 4-vinyl-4-pentenal on SOA formation will be discussed in detail. The emergence of the gas-phase product hydroxyacetone as direct result of the myrcene ozone reaction will be mooted, because hydroxyacetone seems to

  13. Nonstatistical UV Fragmentation of Gas-Phase Peptides Reveals Conformers and Their Structural Features.

    PubMed

    Kopysov, Vladimir; Makarov, Alexander; Boyarkin, Oleg V

    2016-03-17

    Solving the 3D structure of a biomolecule requires recognition of its conformers and measurements of their individual structural identities, which can be compared with calculations. We employ the phenomenon of nonstatistical photofragmentation, detected by a combination of UV cold ion spectroscopy and high-resolution mass spectrometry, to identify the main conformers of gas-phase peptides and to recover individual UV absorption and mass spectra of all of these conformers in a single laser scan. We first validate this approach with a benchmark dipeptide, Tyr-Ala, and then apply it to a decapeptide, gramicidin S. The revealed characteristic structural difference between the conformers of the latter identifies some of the previously calculated structures of gramicidin S as the most likely geometries of its remaining unsolved conformer. PMID:26950179

  14. A highly efficient Yb-doped silica laser fiber prepared by gas phase doping technology

    NASA Astrophysics Data System (ADS)

    Unger, Sonja; Lindner, Florian; Aichele, Claudia; Leich, Martin; Schwuchow, Anka; Kobelke, Jens; Dellith, Jan; Schuster, Kay; Bartelt, Hartmut

    2014-03-01

    In this paper we report on an alternative technique for the preparation of ytterbium (Yb)-doped silica fibers and their characteristics compared to the conventional modified chemical vapor deposition (MCVD) process in combination with solution doping and powder sinter technology (REPUSIL). In the case of the technique applied here, the active core diameter in the preform can be significantly increased via the deposition of Yb and the most important codopant, aluminum (Al), in the gas phase through the high-temperature evaporation of the Yb chelate compound and Al chloride in the MCVD process. The prepared preform shows a homogenous distribution of the refractive index and dopant concentration. The background loss of the drawn fiber was measured to be 25 dB km-1 at 1200 nm. Efficient lasing up to 200 W, showing a slope efficiency of about 80%, was demonstrated, which is comparable to fibers made via MCVD/solution doping and the REPUSIL technique.

  15. High resolution ion mobility measurements for gas phase proteins: correlation between solution phase and gas phase conformations

    NASA Astrophysics Data System (ADS)

    Hudgins, Robert R.; Woenckhaus, Jürgen; Jarrold, Martin F.

    1997-11-01

    Our high resolution ion mobility apparatus has been modified by attaching an electrospray source to perform measurements for biological molecules. While the greater resolving power permits the resolution of more conformations for BPTI and cytochrome c, the resolved features are generally much broader than expected for a single rigid conformation. A major advantage of the new experimental configuration is the much gentler introduction of ions into the drift tube, so that the observed gas phase conformations appear to more closely reflect those present in solution. For example, it is possible to distinguish between the native state of cytochrome c and the methanol-denatured form on the basis of the ion mobility measurements; the mass spectra alone are not sensitive enough to detect this change. Thus this approach may provide a quick and sensitive tool for probing the solution phase conformations of biological molecules.

  16. Formation and emissions of carbonyls during and following gas-phase ozonation of indoor materials

    NASA Astrophysics Data System (ADS)

    Poppendieck, D. G.; Hubbard, H. F.; Weschler, C. J.; Corsi, R. L.

    Ozone concentrations that are several orders of magnitude greater than typical urban ambient concentrations are necessary for gas-phase ozonation of buildings, either for deodorization or for disinfection of biological agents. However, there is currently no published literature on the interaction of building materials and ozone under such extreme conditions. It would be useful to understand, for example in the case of building re-occupation planning, what types and amounts of reaction products may form and persist in a building after ozonation. In this study, 24 materials were exposed to ozone at concentrations of 1000 ppm in the inlet stream of experimental chambers. Fifteen target carbonyls were selected and measured as building ozonation by-products (BOBPs). During the 36 h that include the 16 h ozonation and 20 h persistence phase, the total BOBP mass released from flooring and wall coverings ranged from 1 to 20 mg m -2, with most of the carbonyls being of lower molecular weight (C 1-C 4). In contrast, total BOBP mass released from wood-based products ranged from 20 to 100 mg m -2, with a greater fraction of the BOBPs being heavier carbonyls (C 5-C 9). The total BOBP mass released during an ozonation event is a function of both the total surface area of the material and the BOBP emission rate per unit area of material. Ceiling tile, carpet, office partition, and gypsum wallboard with flat latex paint often have large surface areas in commercial buildings and these same materials exhibited relatively high BOBP releases. The greatest overall BOBP mass releases were observed for three materials that building occupants might have significant contact with: paper, office partition, and medium density fiberboard, e.g., often used in office furniture. These materials also exhibited extended BOBP persistence following ozonation; some BOBPs (e.g., nonanal) persist for months or more at emission rates large enough to result in indoor concentrations that exceed their odor

  17. Molecular characteristics of continuously released DOM during one year of root and leaf litter decomposition

    NASA Astrophysics Data System (ADS)

    Altmann, Jens; Jansen, Boris; Kalbitz, Karsten; Filley, Timothy

    2013-04-01

    Dissolved organic matter (DOM) is one of the most dynamic carbon pools linking the terrestrial with the aquatic carbon cycle. Besides the insecure contribution of terrestrial DOM to the greenhouse effect, DOM also plays an important role for the mobility and availability of heavy metals and organic pollutants in soils. These processes depend very much on the molecular characteristics of the DOM. Surprisingly the processes that determine the molecular composition of DOM are only poorly understood. DOM can originate from various sources, which influence its molecular composition. It has been recognized that DOM formation is not a static process and DOM characteristics vary not only between different carbon sources. However, molecular characteristics of DOM extracts have scarcely been studied continuously over a longer period of time. Due to constant molecular changes of the parent litter material or soil organic matter during microbial degradation, we assumed that also the molecular characteristics of litter derived DOM varies at different stages during root and needle decomposition. For this study we analyzed the chemical composition of root and leaf samples of 6 temperate tree species during one year of litter decomposition in a laboratory incubation. During this long-term experiment we measured continuously carbon and nitrogen contents of the water extracts and the remaining residues, C mineralization rates, and the chemical composition of water extracts and residues by Curie-point pyrolysis mass spectrometry with TMAH We focused on the following questions: (I) How mobile are molecules derived from plant polymers like tannin, lignin, suberin and cutin? (II) How does the composition of root and leaf derived DOM change over time in dependence on the stage of decomposition and species? Litter derived DOM was generally dominated by aromatic compounds. Substituded fatty acids as typically cutin or suberin derived were not detected in the water extracts. Fresh leaf and

  18. REMOVAL OF ALDEHYDES FROM INDOOR AIR: ELUCIDATING ADSORPTION MECHANISMS, MODELING COMPETITIVE ADSORPTION, AND PREDICTING REMOVAL IN GAS-PHASE AIR CLEANERS

    EPA Science Inventory

    This research project will identify specific chemical and physical characteristics of activated carbon surfaces that promote the removal of gas-phase, polar organic pollutants. It is expected that basic and acidic functional groups will influence aldehyde adsorption through di...

  19. Drug release characteristics from chitosan-alginate matrix tablets based on the theory of self-assembled film.

    PubMed

    Li, Liang; Wang, Linlin; Shao, Yang; Ni, Rui; Zhang, Tingting; Mao, Shirui

    2013-06-25

    The aim of this study was to better understand the underlying drug release characteristics from chitosan-alginate matrix tablets containing different types of drugs. Theophylline, paracetamol, metformin hydrochloride and trimetazidine hydrochloride were used as model drugs exhibiting significantly different solubilities (12, 16, 346 and >1000 mg/ml at 37 °C in water). A novel concept raised was that drugs were released from chitosan-alginate matrix tablets based on the theory of a self-assembled film-controlled release system. The film was only formed on the surface of tablets in gastrointestinal environment and originated from chitosan-alginate polyelectrolyte complex, confirmed by differential scanning calorimetry characterization. The formed film could decrease the rate of polymer swelling to a degree, also greatly limit the erosion of tablets. Drugs were all released through diffusion in the hydrated matrix and polymer relaxation, irrespective of the drug solubility. The effects of polymer level and initial drug loading on release depended on drug properties. Drug release was influenced by the change of pH. In contrast, the impact of ionic strength of the release medium within the physiological range was negligible. Importantly, hydrodynamic conditions showed a key factor determining the superiority of the self-assembled film in controlling drug release compared with conventional matrix tablets. The new insight into chitosan-alginate matrix tablets can help to broaden the application of this type of dosage forms. PMID:23624081

  20. Adsorption and reaction of trace gas-phase organic compounds on atmospheric water film surfaces: a critical review.

    PubMed

    Donaldson, D J; Valsaraj, Kalliat T

    2010-02-01

    The air-water interface in atmospheric water films of aerosols and hydrometeors (fog, mist, ice, rain, and snow) presents an important surface for the adsorption and reaction of many organic trace gases and gaseous reactive oxidants (hydroxyl radical (OH(.)), ozone (O(3)), singlet oxygen (O(2)((1)Delta(g))), nitrate radicals (NO(3)(.)), and peroxy radicals (RO(2)(.)). Knowledge of the air-water interface partition constant of hydrophobic organic species is necessary for elucidating the significance of the interface in atmospheric fate and transport. Various methods of assessing both experimental and theoretical values of the thermodynamic partition constant and adsorption isotherm are described in this review. Further, the reactivity of trace gases with gas-phase oxidants (ozone and singlet oxygen) at the interface is summarized. Oxidation products are likely to be more water-soluble and precursors for secondary organic aerosols in hydrometeors. Estimation of characteristic times shows that heterogeneous photooxidation in water films can compete effectively with homogeneous gas-phase reactions for molecules in the atmosphere. This provides further support to the existing thesis that reactions of organic compounds at the air-water interface should be considered in gas-phase tropospheric chemistry. PMID:20058916

  1. Impact of pore characteristics of silica materials on loading capacity and release behavior of ibuprofen.

    PubMed

    Numpilai, Thanapha; Muenmee, Suthaporn; Witoon, Thongthai

    2016-02-01

    Impact of pore characteristics of porous silica supports on loading capacity and release behavior of ibuprofen was investigated. The porous silica materials and ibuprofen-loaded porous silica materials were thoroughly characterized by N2-sorption, thermal gravimetric and derivative weight analyses (TG-DTW), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscope (SEM), transmission electron microscope (TEM) to determine the physical properties of materials, amount of ibuprofen adsorbed and position of ibuprofen. The detailed characterization reveals that the ibuprofen molecules adsorbed inside the mesopores. Increasing the mesopore size from 5nm to 10nm increased the ibuprofen loading from 0.74 to 0.85mmol/g, respectively. Incorporation of macropore into the structure of porous silica materials enhanced the ibuprofen loading capacity of 11.8-20.3%. The ibuprofen-loaded bimodal meso-macroporous silica materials exhibited the highest dissolution of 92wt.% within an hour. The ibuprofen particles deposited on the external surface of the porous silica materials showed a lower dissolution rate than the ibuprofen adsorbed inside the mesopores due to the formation of ibuprofen crystalline. PMID:26652347

  2. Substrate-free gas-phase synthesis of graphene

    NASA Astrophysics Data System (ADS)

    Dato, Albert Manglallan

    Graphene is a single atomic layer of sp2-bonded carbon atoms tightly packed in a two-dimensional honeycomb lattice. The material possesses remarkable properties and has been envisioned for use in numerous applications. Contemporary graphene production techniques require substrates or graphite crystals to create graphene. Furthermore, these approaches involve multiple steps, and sometimes non-ambient conditions, to produce atomically-thin sheets. This dissertation presents the first substrate-free gas-phase graphene synthesis method. The technique can synthesize graphene in a single step at atmospheric pressure, without the use of graphite or substrates. The novel synthesis method was discovered through experiments that tested the hypothesis that graphene could be synthesized through the delivery of alcohols into argon plasmas. The experiments presented in this dissertation were conducted in an atmospheric-pressure microwave plasma reactor. Solid carbon materials were produced by delivering liquid ethanol droplets directly into argon plasmas. Numerous characterization techniques were used to unambiguously prove that the synthesized materials were clean and highly ordered graphene sheets. Additional studies investigated the effects of variable experimental parameters on the graphene synthesis process. The applied microwave power did not significantly affect the types of structures produced in the reactor. Lowering the volumetric flow rate of the plasma gas resulted in the synthesis of graphitic particles. The composition of the precursors delivered into the reactor also affected graphene synthesis. Graphene was not produced through the delivery of methanol or isopropyl alcohol droplets. However, graphene was obtained through dimethyl ether, which is an organic compound with the same atomic composition as ethanol. Thus, the flow rate and precursor composition significantly affected the nucleation, growth, and residence time of the materials created during experiments

  3. Space and time characteristics of transmitter release at the nerve-electroplaque junction of Torpedo.

    PubMed Central

    Girod, R; Corrèges, P; Jacquet, J; Dunant, Y

    1993-01-01

    1. A loose patch electrode was used to stimulate axon terminals and to record evoked electroplaque currents (EPCs) in a limited area of innervated membrane of the electric organ of Torpedo marmorata. Electrophysiological signals were compared to the predictions of a semi-quantitative model of synaptic transmission which was designed to simulate the release of several packets of neurotransmitter molecules, at the same or at different sites of the synapse, synchronously or with various temporal patterns. 2. The amplitude distribution of EPCs evoked by activation of nerve terminals showed quantal steps. The time to peak of EPCs was in most cases independent of amplitude, but in their decaying phase a positive correlation was seen between half-decay time and amplitude. Comparison with the model suggested that (i) a dynamic interaction occurred at the end of the EPC between the fields of postsynaptic membrane activated by individual quanta, and (ii) the sites of quantal release in the electric organ are separated from each other by 600-1000 nm. 3. Spontaneous miniature electroplaque potentials (MEPPs) were recorded externally with the same type of loose patch electrode. The majority (75%) of external MEPPs displayed a homogeneous and rapid time course. This fast MEPP population had a mean time to peak of 0.43 ms, a half-decay time of 0.45 ms and a time constant of decay of 0.35 ms. 4. Despite homogeneous characteristics of time course, fast MEPPs exhibited a wide amplitude distribution with a main population which could be fitted by a Gaussian curve around 1 mV, and another population of small amplitude. Both the time-to-peak and the half-decay time of fast MEPPs showed a positive correlation with the amplitude from the smallest to the largest events. Acetylcholinesterase was not blocked. 5. In addition to the fast MEPPs, spontaneous signals exhibiting a slow rate of rise, or a slow rate of decay, or both were observed. They occurred at any time during the experiment

  4. Characteristics of nitrogen release from synthetic zeolite Na-P1 occluding NH4NO3.

    PubMed

    Park, Man; Kim, Jong Su; Choi, Choong Lyeal; Kim, Jang-Eok; Heo, Nam Ho; Komarneni, Sridhar; Choi, Jyung

    2005-08-18

    Zeolites can accommodate a considerable amount of occluded salt such as NH4NO3, which can serve as a good source of slow-release plant nutrient. This study evaluates the kinetics of ion release from NH4NO3-occluded Na-P1 (N-NaP) using a simulated soil solution and deionized water as leaching solutions. The patterns of ion releases were examined as a function of leaching time under both static and continuous-flow conditions for more than one month. Releases of both NH4+ and NO3- from N-NaP were found to be slow and steady under both the above conditions. The soil solution affected the release of NH4+ and NO3- differently, while deionized water released nearly the same equivalents of these ions. This clearly indicates that ion release from salt-occluded zeolite involves two different reactions, cation exchange and dissolution. The kinetics of ion release from occluded NH4NO3 under static condition was best described by the standard Elovich model while the power function model best expressed these under continuous-flow condition. The initial ion release patterns under both conditions exhibited considerable deviation from the simulated models, probably as a result of the presence of hydrated occluded NH4NO3. Flow condition and the presence of electrolytes in leaching solution affected the release kinetics significantly. Release of occluded NH4NO3 was delayed by the presence of the NH4NO3 coated on zeolite crystals. These results indicate that the ion release property of occluded salt could be predicted and controlled. This study clearly shows that NH4NO3-occluded zeolites could be developed as slow release fertilizers. PMID:15963593

  5. Visible and ultraviolet spectroscopy of gas phase rhodamine 575 cations.

    PubMed

    Daly, Steven; Kulesza, Alexander; Knight, Geoffrey; MacAleese, Luke; Antoine, Rodolphe; Dugourd, Philippe

    2015-06-01

    The visible and ultraviolet spectroscopy of gas phase rhodamine 575 cations has been studied experimentally by action-spectroscopy in a modified linear ion trap between 220 and 590 nm and by time-dependent density functional theory (TDDFT) calculations. Three bands are observed that can be assigned to the electronic transitions S0 → S1, S0 → S3, and S0 → (S8,S9) according to the theoretical prediction. While the agreement between theory and experiment is excellent for the S3 and S8/S9 transitions, a large shift in the value of the calculated S1 transition energy is observed. A theoretical analysis of thermochromism, potential vibronic effects, and-qualitatively-electron correlation revealed it is mainly the latter that is responsible for the failure of TDDFT to accurately reproduce the S1 transition energy, and that a significant thermochromic shift is also present. Finally, we investigated the nature of the excited states by analyzing the excitations and discussed their different fragmentation behavior. We hypothesize that different contributions of local versus charge transfer excitations are responsible for 1-photon versus 2-photon fragmentation observed experimentally. PMID:25961329

  6. Hydration of potassiated amino acids in the gas phase.

    PubMed

    Wincel, Henryk

    2007-12-01

    The thermochemistry of stepwise hydration of several potassiated amino acids was studied by measuring the gas-phase equilibria, AAK(+)(H(2)O)(n-1) + H(2)O = AAK(+)(H(2)O)(n) (AA = Gly, AL, Val, Met, Pro, and Phe), using a high-pressure mass spectrometer. The AAK(+) ions were obtained by electrospray and the equilibrium constants K(n-1,n) were measured in a pulsed reaction chamber at 10 mbar bath gas, N(2), containing a known partial pressure of water vapor. Determination of the equilibrium constants at different temperatures was used to obtain the DeltaH(n)(o), DeltaS(n)(o), and DeltaG(n)(o) values. The results indicate that the water binding energy in AAK(+)(H(2)O) decreases as the K(+) affinity to AA increases. This trend in binding energies is explained in terms of changes in the side-chain substituent, which delocalize the positive charge from K(+) to AA in AAK(+) complexes, varying the AAK(+)-H(2)O electrostatic interaction. PMID:17928233

  7. Engine exhaust particulate and gas phase contributions to vascular toxicity.

    PubMed

    Campen, Matthew; Robertson, Sarah; Lund, Amie; Lucero, Joann; McDonald, Jacob

    2014-05-01

    Cardiovascular health effects of near-roadway pollution appear more substantial than other sources of air pollution. The underlying cause of this phenomenon may simply be concentration-related, but the possibility remains that gases and particulate matter (PM) may physically interact and further enhance systemic vascular toxicity. To test this, we utilized a common hypercholesterolemic mouse model (Apolipoprotein E-null) exposed to mixed vehicle emission (MVE; combined gasoline and diesel exhausts) for 6 h/d × 50 d, with additional permutations of removing PM by filtration and also removing gaseous species from PM by denudation. Several vascular bioassays, including matrix metalloproteinase-9 protein, 3-nitrotyrosine and plasma-induced vasodilatory impairments, highlighted that the whole emissions, containing both particulate and gaseous components, was collectively more potent than MVE-derived PM or gas mixtures, alone. Thus, we conclude that inhalation of fresh whole emissions induce greater systemic vascular toxicity than either the particulate or gas phase alone. These findings lend credence to the hypothesis that the near-roadway environment may have a more focused public health impact due to gas-particle interactions. PMID:24730681

  8. Gas phase chromatography of halides of elements 104 and 105

    SciTech Connect

    Tuerler, A.; Gregorich, K.E.; Czerwinski, K.R.; Hannink, N.J.; Henderson, R.A.; Hoffman, D.C.; Kacher, C.D.; Kadkhodayan, B.; Kreek, S.A.; Lee, D.M.; Leyba, J.D.; Nurmia, M.J. ); Gaeggeler, H.W.; Jost, D.T.; Kovacs, J.; Scherer, U.W.; Vermeulen, D.; Weber, A. , Villigen ); Barth, H.; Gober, M.K.; Kratz, J.V. (Philipps-Univ., Marburg

    1991-04-01

    On-line isothermal gas phase chromatography was used to study halides of {sup 261}104 (T{sub {1/2}} = 65 s) and {sup 262,263}105 (T{sub {1/2}} = 34 s and 27 s) produced an atom-at-a time via the reactions {sup 248}Cm({sup 18}O, 5n) and {sup 249}Bk({sup 18}O, 5n, 4n), respectively. Using HBr and HCl gas as halogenating agents, we were able to produce volatile bromides and chlorides of the above mentioned elements and study their behavior compared to their lighter homologs in Groups 4 or 5 of the periodic table. Element 104 formed more volatile bromides than its homolog Hf. In contrast, element 105 bromides were found to be less volatile than the bromides of the group 5 elements Nb and Ta. Both 104 and Hf chlorides were observed to be more volatile than their respective bromides. 31 refs., 8 figs.

  9. Tracking Gas Phase Composition in Oil evaporation and Oxidation Experiments

    NASA Astrophysics Data System (ADS)

    Amador-Muñoz, O.; Zhang, H.; Misztal, P. K.; Worton, D.; Drozd, G.; Goldstein, A. H.

    2015-12-01

    Primary Organic Aerosol (POA) is emitted directly by anthropogenic or natural sources, whereas Secondary Organic Aerosol (SOA) is formed in the atmosphere through chemical reactions that result from conversion of more volatile species into lower volatility oxidized products and their subsequent condensation to the particulate phase. We studied SOA formation from evaporation of Macondo crude oil (MC 252) using a wind tunnel coupled to a flow tube oxidation reactor. Ozone, UV lights, and water vapor were used to make OH radicals. Organic compounds in the gas phase, both those evaporated from the wind tunnel and those formed in the flow tube oxidation experiments, were monitored using proton-transfer-reaction mass spectrometry (PTR-qMS and PTR-TOF-MS). We observed approximately 400 different species. Compounds with less than C10 were mostly evaporated in the first 5 hours when maximum SOA formation was also obtained. Hydrocarbons with carbon number (11-14) were still present in the oil after 12 h of continuous evaporation at wind speed of 2 m s-1. We will show the implications of these results for the production of SOA related to the range of evaporated chemical size and reactivity.

  10. Gas phase synthesis of two ensembles of silicon nanoparticles

    NASA Astrophysics Data System (ADS)

    Mohan, A.; de Jong, M. M.; Poulios, I.; Schropp, R. E. I.; Rath, J. K.

    2015-09-01

    Dusty plasmas provide a very favorable environment for the growth of silicon nanocrystals. For application of silicon nanocrystals in a solar cell, the fabrication of monodisperse silicon quantum dots has been challenging. We report a single step method to synthesize silicon (Si) nanoparticles in a custom designed dedicated plasma reactor. The nanoparticles produced in the gas phase belong to two different phases exhibiting different structural and optical properties. Particles made in the bulk of the plasma are aggregates of crystalline particles with a mean size of 100 nm. Particles made in locally enhanced plasma regions produced at holes present in the grounded electrode contain free-standing quantum sized particles with crystallites (with mean size of 2.95 nm) embedded within an amorphous matrix. We provide insight on different plasma processes leading to the formation of aggregates and free-standing particles. We hypothesize that the free standing particles are formed due to the excess energetic electrons present in locally enhanced discharges.

  11. Gas phase plasma impact on phenolic compounds in pomegranate juice.

    PubMed

    Herceg, Zoran; Kovačević, Danijela Bursać; Kljusurić, Jasenka Gajdoš; Jambrak, Anet Režek; Zorić, Zoran; Dragović-Uzelac, Verica

    2016-01-01

    The aim of the study was to evaluate the effect of gas phase plasma on phenolic compounds in pomegranate juice. The potential of near infrared reflectance spectroscopy combined with partial least squares for monitoring the stability of phenolic compounds during plasma treatment was explored, too. Experiments are designed to investigate the effect of plasma operating conditions (treatment time 3, 5, 7 min; sample volume 3, 4, 5 cm(3); gas flow 0.75, 1, 1.25 dm(3) min(-1)) on phenolic compounds and compared to pasteurized and untreated pomegranate juice. Pasteurization and plasma treatment resulted in total phenolic content increasing by 29.55% and 33.03%, respectively. Principal component analysis and sensitivity analysis outputted the optimal treatment design with plasma that could match the pasteurized sample concerning the phenolic stability (5 min/4 cm(3)/0.75 dm(3) min(-1)). Obtained results demonstrate the potential of near infrared reflectance spectroscopy that can be successfully used to evaluate the quality of pomegranate juice upon plasma treatment considering the phenolic compounds. PMID:26213024

  12. ENGINE EXHAUST PARTICULATE AND GAS PHASE CONTRIBUTIONS TO VASCULAR TOXICITY

    PubMed Central

    Campen, Matthew; Robertson, Sarah; Lund, Amie; Lucero, Joann; McDonald, Jacob

    2014-01-01

    Cardiovascular health effects of near-roadway pollution appear more substantial than other sources of air pollution. The underlying cause of this phenomenon may simply be concentration-related, but the possibility remains that gases and particulate matter (PM) may physically interact and further enhance systemic vascular toxicity. To test this, we utilized a common hypercholesterolemic mouse model (Apolipoprotein E-null) exposed to mixed vehicular emissions (MVE; combined gasoline and diesel exhausts) for 6 h/d × 50 days, with additional permutations of removing PM by filtration and also removing gaseous species from PM by denudation. Several vascular bioassays, including matrix metalloproteinase 9 (MMP9) protein, 3-nitrotyrosine, and plasma-induced vasodilatory impairments, highlighted that the whole emissions, containing both particulate and gaseous components, was collectively more potent than MVE-derived PM or gas mixtures, alone. Thus, we conclude that inhalation of fresh whole emissions induce greater systemic vascular toxicity than either the particulate or gas phase alone. These findings lend credence to the hypothesis that the near-roadway environment may have a more focused public health impact due to gas-particle interactions. PMID:24730681

  13. Gas-phase electronic spectrum of the indole radical cation

    NASA Astrophysics Data System (ADS)

    Chalyavi, N.; Catani, K. J.; Sanelli, J. A.; Dryza, V.; Bieske, E. J.

    2015-08-01

    The visible and near-UV electronic spectrum of the indole radical cation is measured in the gas phase by photodissociation of indole+-Ar and indole+-He complexes in a tandem mass spectrometer. A series of resolved vibronic transitions extending from 610 to 460 nm are assigned to the D2 ← D0 band system, while weak transitions between 390 and 360 nm are assigned to the D3 ← D0 system, and a stronger, broad, unresolved absorption between 350 and 300 nm is attributed to the D4 ← D0 system. Time-dependent density functional theory calculations are used to assign vibronic structure of the D2 ← D0 band system, and show that the main active vibrational modes correspond to in-plane ring deformations. The strongest D2 ← D0 vibronic transitions of indole+-He do not correspond with any catalogued diffuse interstellar bands, even considering band displacements of up to 50 cm-1possibly caused by the attached He atom.

  14. Project ARGO: Gas phase formation in simulated microgravity

    NASA Technical Reports Server (NTRS)

    Powell, Michael R.; Waligora, James M.; Norfleet, William T.; Kumar, K. Vasantha

    1993-01-01

    The ARGO study investigated the reduced incidence of joint pain decompression sickness (DCS) encountered in microgravity as compared with an expected incidence of joint pain DCS experienced by test subjects in Earth-based laboratories (unit gravity) with similar protocols. Individuals who are decompressed from saturated conditions usually acquire joint pain DCS in the lower extremities. Our hypothesis is that the incidence of joint pain DCS can be limited by a significant reduction in the tissue gas micronuclei formed by stress-assisted nucleation. Reductions in dynamic and kinetic stresses in vivo are linked to hypokinetic and adynamic conditions of individuals in zero g. We employed the Doppler ultrasound bubble detection technique in simulated microgravity studies to determine quantitatively the degree of gas phase formation in the upper and lower extremities of test subjects during decompression. We found no evidence of right-to-left shunting through pulmonary vasculature. The volume of gas bubble following decompression was examined and compared with the number following saline contrast injection. From this, we predict a reduced incidence of DCS on orbit, although the incidence of predicted mild DCS still remains larger than that encountered on orbit.

  15. Synthesis of Cu nanopowders by condensation from the gas phase

    NASA Astrophysics Data System (ADS)

    Chepkasov, IV; Gafner, Yu Ya; Zobov, K. V.; Batoroev, S. B.; Bardakhanov, S. P.

    2016-02-01

    In order to determine the most efficient regimes of copper nanoparticles synthesis, a series of experiments were conducted by evaporation and subsequent condensation of the raw material in an argon atmosphere. During the tests it was found that an increase of evaporation rate increases significantly the average size of the synthesized particles. However, the study of the dependence of dimensional parameters of the produced clusters on the intensity of the buffer gas flow rate has encountered significant difficulties associated because the results significantly divergent from the previously conducted experiments on the synthesis of transition metal oxides. In order to solve this contradiction the computer simulation was held of copper atoms condensation from the gas phase for the three different cooling rates and for the two final temperatures T = 373 K and T = 77 K. It was found after analysis that the rate of cooling of the gas mixture and the final temperature directly influences the number and the size of particles produced. For instance, with the 10 times of cooling rate decreases the average size of the particles obtained had increased by 2.7 times at a final temperature of 77 K and by 3.1 times at Tf = 373 K.

  16. Surface plasmon sensing of gas phase contaminants using optical fiber.

    SciTech Connect

    Thornberg, Steven Michael; White, Michael I.; Rumpf, Arthur Norman; Pfeifer, Kent Bryant

    2009-10-01

    Fiber-optic gas phase surface plasmon resonance (SPR) detection of several contaminant gases of interest to state-of-health monitoring in high-consequence sealed systems has been demonstrated. These contaminant gases include H{sub 2}, H{sub 2}S, and moisture using a single-ended optical fiber mode. Data demonstrate that results can be obtained and sensitivity is adequate in a dosimetric mode that allows periodic monitoring of system atmospheres. Modeling studies were performed to direct the design of the sensor probe for optimized dimensions and to allow simultaneous monitoring of several constituents with a single sensor fiber. Testing of the system demonstrates the ability to detect 70mTorr partial pressures of H{sub 2} using this technique and <280 {micro}Torr partial pressures of H{sub 2}S. In addition, a multiple sensor fiber has been demonstrated that allows a single fiber to measure H{sub 2}, H{sub 2}S, and H{sub 2}O without changing the fiber or the analytical system.

  17. Full field gas phase velocity measurements in microgravity

    NASA Technical Reports Server (NTRS)

    Griffin, Devon W.; Yanis, William

    1995-01-01

    Measurement of full-field velocities via Particle Imaging Velocimetry (PIV) is common in research efforts involving fluid motion. While such measurements have been successfully performed in the liquid phase in a microgravity environment, gas-phase measurements have been beset by difficulties with seeding and laser strength. A synthesis of techniques developed at NASA LeRC exhibits promise in overcoming these difficulties. Typical implementation of PIV involves forming the light from a pulsed laser into a sheet that is some fraction of a millimeter thick and 50 or more millimeters wide. When a particle enters this sheet during a pulse, light scattered from the particle is recorded by a detector, which may be a film plane or a CCD array. Assuming that the particle remains within the boundaries of the sheet for the second pulse and can be distinguished from neighboring particles, comparison of the two images produces an average velocity vector for the time between the pulses. If the concentration of particles in the sampling volume is sufficiently large but the particles remain discrete, a full field map may be generated.

  18. Gas-phase Chemistry of the Cyanate Ion, OCN-

    NASA Astrophysics Data System (ADS)

    Cole, Callie A.; Wang, Zhe-Chen; Snow, Theodore P.; Bierbaum, Veronica M.

    2015-10-01

    Cyanate (OCN-) is the only ion to date whose presence has been confirmed in the icy mantles that coat interstellar dust grains. Understanding the chemical behavior of cyanate at a fundamental level is therefore integral to the advancement of astrochemistry. We seek to unravel the chemistry of this intriguing anion through a combination of gas-phase experiments and theoretical explorations. Our approach is twofold: first, employing a flowing afterglow-selected ion flow tube apparatus, the reactions between OCN- and three of the most abundant atomic species in the interstellar medium, hydrogen, nitrogen, and oxygen, are examined. Hydrogen atoms readily react by associative detachment, but the remarkable stability of OCN- does not give rise to an observable reaction with either nitrogen or oxygen atoms. To explain these results, the potential energy surfaces of several reactions are investigated at the B3LYP/6-311++G(d,p) level of theory. Second, collision induced dissociation experiments involving deprotonated uracil, thymine, and cytosine in an ion trap mass spectrometer reveal an interesting connection between these pyrimidine nucleobase anions and OCN-. Theoretical calculations at the B3LYP/6-311++G(d,p) level of theory are performed to delineate the mechanisms of dissociation and explore the possible role of OCN- as a biomolecule precursor.

  19. Atomic and molecular physics in the gas phase

    SciTech Connect

    Toburen, L.H.

    1990-09-01

    The spatial and temporal distributions of energy deposition by high-linear-energy-transfer radiation play an important role in the subsequent chemical and biological processes leading to radiation damage. Because the spatial structures of energy deposition events are of the same dimensions as molecular structures in the mammalian cell, direct measurements of energy deposition distributions appropriate to radiation biology are infeasible. This has led to the development of models of energy transport based on a knowledge of atomic and molecular interactions process that enable one to simulate energy transfer on an atomic scale. Such models require a detailed understanding of the interactions of ions and electrons with biologically relevant material. During the past 20 years there has been a great deal of progress in our understanding of these interactions; much of it coming from studies in the gas phase. These studies provide information on the systematics of interaction cross sections leading to a knowledge of the regions of energy deposition where molecular and phase effects are important and that guide developments in appropriate theory. In this report studies of the doubly differential cross sections, crucial to the development of stochastic energy deposition calculations and track structure simulation, will be reviewed. Areas of understanding are discussed and directions for future work addressed. Particular attention is given to experimental and theoretical findings that have changed the traditional view of secondary electron production for charged particle interactions with atomic and molecular targets.

  20. Relating gas phase to solution conformations: Lessons from disordered proteins

    PubMed Central

    Beveridge, Rebecca; Phillips, Ashley S.; Denbigh, Laetitia; Saleem, Hassan M.; MacPhee, Cait E.

    2015-01-01

    In recent years both mass spectrometry (MS) and ion mobility mass spectrometry (IM‐MS) have been developed as techniques with which to study proteins that lack a fixed tertiary structure but may contain regions that form secondary structure elements transiently, namely intrinsically disordered proteins (IDPs). IM‐MS is a suitable method for the study of IDPs which provides an insight to conformations that are present in solution, potentially enabling the analysis of lowly populated structural forms. Here, we describe the IM‐MS data of two IDPs; α‐Synuclein (α‐Syn) which is implicated in Parkinson's disease, and Apolipoprotein C‐II (ApoC‐II) which is involved in cardiovascular diseases. We report an apparent discrepancy in the way that ApoC‐II behaves in the gas phase. While most IDPs, including α‐Syn, present in many charge states and a wide range of rotationally averaged collision cross sections (CCSs), ApoC‐II presents in just four charge states and a very narrow range of CCSs, independent of solution conditions. Here, we compare MS and IM‐MS data of both proteins, and rationalise the differences between the proteins in terms of different ionisation processes which they may adhere to. PMID:25920945

  1. Relating gas phase to solution conformations: Lessons from disordered proteins.

    PubMed

    Beveridge, Rebecca; Phillips, Ashley S; Denbigh, Laetitia; Saleem, Hassan M; MacPhee, Cait E; Barran, Perdita E

    2015-08-01

    In recent years both mass spectrometry (MS) and ion mobility mass spectrometry (IM-MS) have been developed as techniques with which to study proteins that lack a fixed tertiary structure but may contain regions that form secondary structure elements transiently, namely intrinsically disordered proteins (IDPs). IM-MS is a suitable method for the study of IDPs which provides an insight to conformations that are present in solution, potentially enabling the analysis of lowly populated structural forms. Here, we describe the IM-MS data of two IDPs; α-Synuclein (α-Syn) which is implicated in Parkinson's disease, and Apolipoprotein C-II (ApoC-II) which is involved in cardiovascular diseases. We report an apparent discrepancy in the way that ApoC-II behaves in the gas phase. While most IDPs, including α-Syn, present in many charge states and a wide range of rotationally averaged collision cross sections (CCSs), ApoC-II presents in just four charge states and a very narrow range of CCSs, independent of solution conditions. Here, we compare MS and IM-MS data of both proteins, and rationalise the differences between the proteins in terms of different ionisation processes which they may adhere to. PMID:25920945

  2. Gas-phase ion-molecule reactions of small nitroalkanes and their deprotonated anions.

    PubMed

    Kato, Shuji; Carrigan, Kathleen E; DePuy, Charles H; Bierbaum, Veronica M

    2004-01-01

    Gas-phase reactions of nitromethane (1), nitroethane (2), 2-nitropropane (3), 2-methyl-2-nitropropane (4) and nitrocyclopropane (5) were studied at 300 K using the flowing afterglow technique. These nitroalkanes react with gas-phase bases HO(-), CH(3)O(-) and HOO(-) very rapidly with rate coefficients of (2.5-4.3) x 10(-9) cm(3) s(-1) and reaction efficiencies of 60-100%, for example, k = 3.2 x 10(-9) cm(3) s(-1) (86%) for 5 reacting with hydroperoxide anion. Proton transfer (PT) is the only reaction observed for 1 while elimination (E2) is the exclusive pathway for 4 yielding isobutene and NO(2)(-). Both PT and E2 reactions are observed for 2, 3 and 5, the former being the major pathway. Deprotonated anions of 1, 2, 3 and 5 were subjected to reactivity studies with CH(3)I, CO(2), CS(2) and SO(2). Nucleophilic substitution (S(N)2) reaction occurs with CH(3)I while characteristic products CS(2)O(-) and SO(3)(-) are formed from CS(2) and SO(2), respectively, along with competing adduct formation. The SN(2) rate is greater, whereas the reactivities with the triatomic reagents are smaller for deprotonated nitrocyclopropane than for the other acyclic anions. These observations strongly suggest that the reactions of nitroalkane [M - H](-) anions occur through initial attack from the terminal oxygen; the nitrocyclopropane carbanion is more strained and, thus, less stabilized by resonance [R(2)C(-) - NO2 <--> R(2)=NO(2)(-)] resulting in the greater basicity/nucleophilicy and the less negative charge on the oxygen site. PMID:15103100

  3. A Phosphohistidine Proteomics Strategy Based on Elucidation of a Unique Gas-Phase Phosphopeptide Fragmentation Mechanism

    PubMed Central

    2015-01-01

    Protein histidine phosphorylation is increasingly recognized as a critical posttranslational modification (PTM) in central metabolism and cell signaling. Still, the detection of phosphohistidine (pHis) in the proteome has remained difficult due to the scarcity of tools to enrich and identify this labile PTM. To address this, we report the first global proteomic analysis of pHis proteins, combining selective immunoenrichment of pHis peptides and a bioinformatic strategy based on mechanistic insight into pHis peptide gas-phase fragmentation during LC–MS/MS. We show that collision-induced dissociation (CID) of pHis peptides produces prominent characteristic neutral losses of 98, 80, and 116 Da. Using isotopic labeling studies, we also demonstrate that the 98 Da neutral loss occurs via gas-phase phosphoryl transfer from pHis to the peptide C-terminal α-carboxylate or to Glu/Asp side chain residues if present. To exploit this property, we developed a software tool that screens LC–MS/MS spectra for potential matches to pHis-containing peptides based on their neutral loss pattern. This tool was integrated into a proteomics workflow for the identification of endogenous pHis-containing proteins in cellular lysates. As an illustration of this strategy, we analyzed pHis peptides from glycerol-fed and mannitol-fed Escherichia coli cells. We identified known and a number of previously speculative pHis sites inferred by homology, predominantly in the phosphoenolpyruvate:sugar transferase system (PTS). Furthermore, we identified two new sites of histidine phosphorylation on aldehyde-alcohol dehydrogenase (AdhE) and pyruvate kinase (PykF) enzymes, previously not known to bear this modification. This study lays the groundwork for future pHis proteomics studies in bacteria and other organisms. PMID:25156620

  4. Exposure characteristics of ferric oxide nanoparticles released during activities for manufacturing ferric oxide nanomaterials.

    PubMed

    Xing, Mingluan; Zhang, Yuanbao; Zou, Hua; Quan, Changjian; Chang, Bing; Tang, Shichuan; Zhang, Meibian

    2015-02-01

    The exposure characteristics of Fe2O3 nanoparticles (NPs) released in a factory were investigated, as exposure data on this type of NP is absent. The nature of the particles was identified in terms of their concentrations [i.e. number concentration (NC(20-1000 nm)), mass concentration (MC(100-1000 nm)), surface area concentration (SAC(10-1000 nm))], size distribution, morphology and elemental composition. The relationships between different exposure metrics were determined through analyses of exposure ranking (ER), concentration ratios (CR), correlation coefficients and shapes of the particle concentration curves. Work activities such as powder screening, material feeding and packaging generated higher levels of NPs as compared to those of background particles (p < 0.01). The airborne Fe2O3 NPs exhibited a unimodal size distribution and a spindle-like morphology and consisted predominantly of the elements O and Fe. Periodic and activity-related characteristics were noticed in the temporal variations in NC(20-1000 nm) and SAC(10-1000 nm). The modal size of the Fe2O3 NPs remained relatively constant (ranging from 10 to 15 nm) during the working periods. The ER, CR values and the shapes of NC(20-1000 nm) and SAC(10-1000 nm) curves were similar; however, these were significantly different from those for MC(100-1000 nm). There was a high correlation between NC(20-1000 nm) and SAC(10-1000 nm), and relatively lower correlations between the two and MC(100-1000 nm). These findings suggest that the work activities during the manufacturing processes generated high levels of primary Fe2O3 NPs. The particle concentrations exhibited periodicity and were activity dependent. The number and SACs were found to be much more relevant metrics for characterizing NPs than was the mass concentration. PMID:25703513

  5. Magnetic field dependence of the product yields of cycloheptanone photolysis in the dilute gas phase

    NASA Astrophysics Data System (ADS)

    Stich, E. M.; Baumeister, W. F.; Huber, J. Robert

    1984-07-01

    The product yields of the gas-phase photolysis of cycloheptanone were measured in magnetic fields up to 10 kG. The magnetic-field effect is explained in terms of the radical pair model. A reaction mechanism is proposed that explains the magnetic field dependence, pressure dependence, and excitation enegy dependence of the gas-phase photochemistry of cycloheptanone.

  6. GAS PHASE SELECTIVE PHOTOXIDATION OF ALCOHOLS USING LIGHT-ACTIVATED TITANIUM DIOXIDE AND MOLECULAR OXYGEN

    EPA Science Inventory

    Gas Phase Selective Oxidation of Alcohols Using Light-Activated Titanium Dioxide and Molecular Oxygen

    Gas phase selective oxidations of various primary and secondary alcohols are studied in an indigenously built stainless steel up-flow photochemical reactor using ultravi...

  7. Characteristics of intracellular Ca/sup 2 +/ release mediated by GTP

    SciTech Connect

    Rice, H.L.; Williamson, J.R.; Joseph, S.K.

    1987-05-01

    GTP (but not non-hydrolysable analogs) promotes microsomal Ca/sup 2 +/ release from several tissues provided polyethylene glycol (PEG) is present in the incubation medium. GTP-mediated Ca/sup 2 +/ release from insulinoma or rat liver microsomes is slow and proceeds only after a lag. Rapid Ca/sup 2 +/ release promoted by inositol trisphosphate occurs in microsomes from insulinoma but not liver unless GTP is present. Further experiments indicate that the effects of GTP are dependent on the ionic strength of the incubation medium, the intravesicular Ca/sup 2 +/ load, and are retained upon salt-washing or further purification of the microsomes. GTP-mediated Ca/sup 2 +/ release is halted by an excess of GTP..gamma..S added during the lag or at any stage of Ca/sup 2 +/ release indicating the continued requirement for GTP to sustain release. However, analogs do not promote Ca/sup 2 +/ re-accumulation when added after the release is complete. The relative potency with which analogs inhibit GTP-mediated Ca/sup 2 +/ release was similar to their ability to displace bound ..cap alpha../sup 32/P-GTP. 7-Methyl GTP was found to be relatively ineffective at releasing Ca/sup 2 +/ or displacing ..cap alpha../sup 32/P-GTP. PEG stimulated the rate of ..cap alpha../sup 32/P-GTP binding without affecting the equilibrium value. The lack of a similar effect on /sup 35/S-GTP-..gamma..S binding is consistent with previous studies suggesting that the step affected by PEG is GTP hydrolysis. Experiments on the purification of microsomal high affinity GTPase will be presented and the physiological relevance of this Ca/sup 2 +/ release mechanism will be assessed.

  8. Effect of emulsifier blend on the characteristics of sustained release diclofenac microspheres.

    PubMed

    Lewis, L; Boni, R; Adeyeye, C M

    1998-01-01

    This investigation involved the evaluation of the emulsifier blend effect on the development of sustained release diclofenac microspheres intended for use in a suspension formulation. The microspheres were prepared using the hydrophobic congealable disperse phase method. The emulsifier blend consisted of glycerol, monostearate (GMS), a hydrophobic emulsifier with HLB = 3.8, and Tween 80, a hydrophilic emulsifier with a HLB value of 15. The effect of this blend on the encapsulation efficiency, size distribution and drug release from the microspheres was studied. A critical amount of GMS (> 0.2 g) was found to be necessary for good encapsulation efficiency. X-ray diffractograms revealed that the drug retains its crystalline state within the microspheres, indicating that the drug is present as a dispersion within the wax matrix. Increasing amounts of Tween 80 caused an increase in the drug release while increased amounts of GMS retarded the release. The hydrophilic emulsifier and the emulsifier blend influenced the size distribution of the formed microspheres. With an increase in the amount of hydrophilic emulsifier, there was an initial increase in the percent of desired size fraction (137.5 microns) of microspheres followed by a decrease. Microspheres with a larger size released the drug slowly compared to smaller size microspheres, while increase in drug load increased the rate of drug release. The release pattern fitted the Higuchi dissolution kinetics for spherical matrices. Different impeller blade designs formed microspheres that exhibited different release rates. The microspheres (mean size 137.5 microns), had a release profile that made them suitable to be formulated as a sustained release suspension. PMID:9608393

  9. Gas-Phase Combustion Synthesis of Aluminum Nitride Powder

    NASA Technical Reports Server (NTRS)

    Axelbaum, R. L.; Lottes, C. R.; Huertas, J. I.; Rosen, L. J.

    1996-01-01

    Due to its combined properties of high electrical resistivity and high thermal conductivity aluminum nitride (AlN) is a highly desirable material for electronics applications. Methods are being sought for synthesis of unagglomerated, nanometer-sized powders of this material, prepared in such a way that they can be consolidated into solid compacts having minimal oxygen content. A procedure for synthesizing these powders through gas-phase combustion is described. This novel approach involves reacting AlCl3, NH3, and Na vapors. Equilibrium thermodynamic calculations show that 100% yields can be obtained for these reactants with the products being AlN, NaCl, and H2. The NaCl by-product is used to coat the AlN particles in situ. The coating allows for control of AlN agglomeration and protects the powders from hydrolysis during post-flame handling. On the basis of thermodynamic and kinetic considerations, two different approaches were employed to produce the powder, in co-flow diffusion flame configurations. In the first approach, the three reactants were supplied in separate streams. In the second, the AlCl3 and NH3 were premixed with HCl and then reacted with Na vapor. X-ray diffraction (XRD) spectra of as-produced powders show only NaCl for the first case and NaCl and AlN for the second. After annealing at 775 C tinder dynamic vacuum, the salt was removed and XRD spectra of powders from both approaches show only AlN. Aluminum metal was also produced in the co-flow flame by reacting AlCl3 with Na. XRD spectra of as-produced powders show the products to be only NaCl and elemental aluminum.

  10. Gas phase selective hydrogenation over oxide supported Ni-Au.

    PubMed

    Cárdenas-Lizana, Fernando; Keane, Mark A

    2015-11-14

    The chemoselective continuous gas phase (T = 573 K; P = 1 atm) hydrogenation of nitroarenes (p-chloronitrobenzene (p-CNB) and m-dinitrobenzene (m-DNB)) has been investigated over a series of oxide (Al2O3 and TiO2) supported Au and Ni-Au (1 : 10 mol ratio; 0.1-1 mol% Au) catalysts. Monometallic supported Au with mean particle size 3-9 nm promoted exclusive formation of p-chloroaniline (p-CAN) and m-nitroaniline (m-NAN). Selective hydrogenation rate was higher over smaller Au particles and can be attributed to increased surface hydrogen (from TPD measurements) at higher metal dispersion. (S)TEM analysis has confirmed an equivalent metal particle size for the supported bimetallics at the same Au loading where TPR indicates Ni-Au interaction and EDX surface mapping established Ni in close proximity to Au on isolated nanoparticles with a composition (Au/Ni) close to the bulk value (= 10). Increased spillover hydrogen due to the incorporation of Ni in the bimetallics resulted in elevated -NO2 group reduction rate. Full selectivity to p-CAN was maintained over all the bimetallic catalysts. Conversion of m-DNB over the lower loaded Ni-Au/Al2O3 generated m-NAN as sole product. An increase in Ni content (0.01 → 0.1 mol%) or a switch from Al2O3 to TiO2 as support resulted in full -NO2 reduction (to m-phenylenediamine). Our results demonstrate the viability of Ni-promotion of Au in the continuous production of functionalised anilines. PMID:25752655

  11. Dissociative Attachment Reactions of Electrons with Gas Phase Superacids

    NASA Astrophysics Data System (ADS)

    Liu, Xifan

    Using the flowing afterglow Langmuir probe (FALP) technique, dissociative attachment coefficients beta for reactions of electrons with gas phase superacids HCo(PF_3)_4, HRh(PF _3)_4 and carbonyl hydride complexes HMn(CO)_5, HRe(CO) _5 have been determined under thermal conditions over the approximate temperature range 300~ 550 K. The superacids react relatively slowly (< 1/20 of beta_{rm max}) with free electrons in a thermal plasma, and the values of beta obtained this far do not show a correlation between acidity and beta. The pioneer researchers in this field had speculated that any superacid would be a rapid attacher of electrons; we found that this speculation is not true in general. The product distribution of electron attachment reaction to HCo(PF_3)_4 was found to be independent of temperature even though the beta (HCo(PF_3)_4 ) increases with temperature. This leads us to propose that the electron attachment process occurs well before the excited complex dissociates. In addition, the activation energy of HCo(PF_3)_4 for electron attachment has been derived from the Arrhenius plots. The carbonyl hydride complexes, HMn(CO) _5 and HRe(CO)_5, react relatively rapidly (>1/4 of beta_{rm max}) with free electrons in thermal plasma. This indicates that these reactions cannot be significantly endothermic. Observation of rapid attachment for these non-superacids shows that the Mn-CO and Re-CO bonds are weaker than the Mn-H and Re-H bonds, respectively. Comparisons between the carbonyl and trifluorophosphine cases implies that fast electron capture is related more to the CO ligand than to the transition -metal species.

  12. Phototransformation of polychlorinated aromatics in gas phase and on aerosol

    NASA Astrophysics Data System (ADS)

    Zhang, Xinzhong

    1999-12-01

    A number of polychlorinated aromatics have been shown to pose health risks even at very low concentration levels. However, routes of introduction of these toxic congeners into the environment remain unclear. It is speculated that some of the toxic congeners may evolve, in part, from transformation of other less toxic congeners. The most likely route for these transformations is photolysis during atmospheric transport. An investigation of this phenomenon was undertaken in this study, and phototransformation of selected polychlorinated aromatics, representing the compound of environmental concern, such as PCDDs, PCDFs and PCBs, in gas phase were examined. The study involved monitoring the effect of various atmospheres on phototransformation mechanism and kinetics. The experimental setup consisted of the photoreactor coupled to a vapor generator, a particle generator, an electrostatic classifier, and a particle counter. This arrangement permitted introduction of contaminants at known concentrations in vapor or aerosol form. The contaminants were irradiated for varied periods and the disappearance kinetics was studied as a function of irradiation time. The correlation between congeners and the photodegradation pathway was also investigated. The first order kinetic constants and the quantum yields were measured. The experimental results showed that the vapor phase phototransformation rates are affected by the atmospheric parameters, e.g., phototransformation rates are significantly enhanced in the presence of oxygen. In general, less chlorinated compounds decomposed faster than higher chlorinated ones. The reductive dechlorination was evidenced through the formation of products with less chlorine substitution. The presence of hydrogen donors significantly increased the yield of the reductive dechlorination products. The oxygen dominated the phototransformation rates by the mechanisms other than reductive dechlorination. The phototransformation rates of the PCDDs

  13. Measurement of Gas-phase Acids in Diesel Exhaust

    NASA Astrophysics Data System (ADS)

    Wentzell, J. J.; Liggio, J.; Li, S.; Vlasenko, A. L.; Staebler, R. M.; Brook, J.; Lu, G.; Poitras, M.; Chan, T.

    2012-12-01

    Gas-phase acids were measured using chemical ionization mass spectrometry (CIMS) as part of the Diesel Engine Emission Research Experiment (DEERE). The CIMS technique, utilizing acetate ion (CH3COO-) as a reagent ion, proved to be a rapid (measurements on the order of seconds) and sensitive (several counts/pptv) method of quantifying the acid emissions. Diluted diesel exhaust measurements were made from a Constant Volume Sampling dilution tunnel using a light duty (1.9L turbocharged Volkswagen Jetta TDI) diesel engine equipped with an OEM diesel oxidation catalyst and exhaust gas recirculation, mounted on an engine dynamometer. Acids measured included isocyanic, nitrous, nitric, propionic and sum of lactic and oxalic, as well as other unidentified compounds. Complimentary measurements of CO, CO2, Total Hydrocarbon (THC), and NOx, were also performed. Several engine modes (different engine rpm and torque outputs) at steady state were examined to determine their effect on acid emissions. Emission rates with respect to NOx and fuel based emission factors were determined. Measurements of HONO fuel emission factors agree well with real-world measurements within a traffic tunnel.1 The first estimate of isocyanic acid emission factors from a diesel engine is reported, and suggests that the emission of this highly toxic compound in diesel exhaust should not be ignored. 1. Kurtenbach, R., Becker, K. H., Gomes, J. A. G., Kleffmann, J.,Lorzer, J. C., Spittler, M., Wiesen, P., Ackermann, R., Geyer, A.,and Platt, U.: Investigations of emissions and heterogeneous formation of HONO in a road traffic tunnel, Atmos. Environ., 35, 3385-3394, doi:10.1016/S1352-2310(01)00138-8, 2001.

  14. IV-VI semiconductor lasers for gas phase biomarker detection

    NASA Astrophysics Data System (ADS)

    McCann, Patrick; Namjou, Khosrow; Roller, Chad; McMillen, Gina; Kamat, Pratyuma

    2007-09-01

    A promising absorption spectroscopy application for mid-IR lasers is exhaled breath analysis where sensitive, selective, and speedy measurement of small gas phase biomarker molecules can be used to diagnose disease and monitor therapies. Many molecules such as nitric oxide, ethane, formaldehyde, acetaldehyde, acetone, carbonyl sulfide, and carbon disulfide have been connected to diseases or conditions such as asthma, oxidative stress, breast cancer, lung cancer, diabetes, organ transplant rejection, and schizophrenia. Measuring these and other, yet to be discovered, biomarker molecules in exhaled breath with mid-IR lasers offers great potential for improving health care since such tests are non-invasive, real-time, and do not require expensive consumables or chemical reagents. Motivated by these potential benefits, mid-IR laser spectrometers equipped with presently available cryogenically-cooled IV-VI lasers mounted in compact Stirling coolers have been developed for clinical research applications. This paper will begin with a description of the development of mid-IR laser instruments and their use in the largest known exhaled breath clinical study ever performed. It will then shift to a description of recent work on the development of new IV-VI semiconductor quantum well materials and laser fabrication methods that offer the promise of low power consumption (i.e. efficient) continuous wave emission at room temperature. Taken together, the demonstration of compelling clinical applications with large market opportunities and the clear identification of a viable pathway to develop low cost mid-IR laser instrumentation can create a renewed focus for future research and development efforts within the mid-IR materials and devices area.

  15. Gas-Phase Combustion Synthesis of Nonoxide Nanoparticles in Microgravity

    NASA Technical Reports Server (NTRS)

    Axelbaum, R. L.; Kumfer, B. M.; Sun, Z.; Chao, B. H.

    2001-01-01

    Gas-phase combustion synthesis is a promising process for creating nanoparticles for the growing nanostructure materials industry. The challenges that must be addressed are controlling particle size, preventing hard agglomerates, maintaining purity, and, if nonoxides are synthesized, protecting the particles from oxidation and/or hydrolysis during post-processing. Sodium-halide Flame Encapsulation (SFE) is a unique methodology for producing nonoxide nanoparticles that addresses these challenges. This flame synthesis process incorporates sodium and metal-halide chemistry, resulting in nanoparticles that are encapsulated in salt during the early stages of their growth in the flame. Salt encapsulation has been shown to allow control of particle size and morphology, while serving as an effective protective coating for preserving the purity of the core particles. Metals and compounds that have been produced using this technology include Al, W, Ti, TiB2, AlN, and composites of W-Ti and Al-AlN. Oxygen content in SFE synthesized nano- AlN has been measured by neutron activation analysis to be as low as 0.54wt.%, as compared to over 5wt.% for unprotected AlN of comparable size. The overall objective of this work is to study the SFE process and nano-encapsulation so that they can be used to produce novel and superior materials. SFE experiments in microgravity allow the study of flame and particle dynamics without the influence of buoyancy forces. Spherical sodium-halide flames are produced in microgravity by ejecting the halide from a spherical porous burner into a quiescent atmosphere of sodium vapor and argon. Experiments are performed in the 2.2 sec Drop Tower at the NASA-Glenn Research Center. Numerical models of the flame and particle dynamics were developed and are compared with the experimental results.

  16. Dissociative electron attachment to the gas-phase nucleobase hypoxanthine

    SciTech Connect

    Dawley, M. Michele; Tanzer, Katrin; Denifl, Stephan E-mail: Sylwia.Ptasinska.1@nd.edu; Carmichael, Ian; Ptasińska, Sylwia E-mail: Sylwia.Ptasinska.1@nd.edu

    2015-06-07

    We present high-resolution measurements of the dissociative electron attachment (DEA) to isolated gas-phase hypoxanthine (C{sub 5}H{sub 4}N{sub 4}O, Hyp), a tRNA purine base. The anion mass spectra and individual ion efficiency curves from Hyp were measured as a function of electron energy below 9 eV. The mass spectra at 1 and 6 eV exhibit the highest anion yields, indicating possible common precursor ions that decay into the detectable anionic fragments. The (Hyp − H) anion (C{sub 5}H{sub 3}N{sub 4}O{sup −}) exhibits a sharp resonant peak at 1 eV, which we tentatively assign to a dipole-bound state of the keto-N1H,N9H tautomer in which dehydrogenation occurs at either the N1 or N9 position based upon our quantum chemical computations (B3LYP/6-311+G(d,p) and U(MP2-aug-cc-pVDZ+)) and prior studies with adenine. This closed-shell dehydrogenated anion is the dominant fragment formed upon electron attachment, as with other nucleobases. Seven other anions were also observed including (Hyp − NH){sup −}, C{sub 4}H{sub 3}N{sub 4}{sup −}/C{sub 4}HN{sub 3}O{sup −}, C{sub 4}H{sub 2}N{sub 3}{sup −}, C{sub 3}NO{sup −}/HC(HCN)CN{sup −}, OCN{sup −}, CN{sup −}, and O{sup −}. Most of these anions exhibit broad but weak resonances between 4 and 8 eV similar to many analogous anions from adenine. The DEA to Hyp involves significant fragmentation, which is relevant to understanding radiation damage of biomolecules.

  17. The Gas-Phase Deuterium Fractionation of Formaldehyde

    NASA Astrophysics Data System (ADS)

    Osamura, Yoshihiro; Roberts, Helen; Herbst, Eric

    2005-03-01

    The dominant mechanism for the deuteration of formaldehyde in the gas phase of low-temperature interstellar cloud cores occurs via reaction with the deuterating ions H2D+, HD+2, and D+3. Until now, it has been assumed that deuteration leads to an ion that, on recombination with electrons, can produce a deuterated neutral species with a statistical branching fraction. Quantum chemical calculations reported here, however, show an entirely different picture, in which the deuteration of formaldehyde leads to the molecular ion H2COD+, where the deuterium binds only on the oxygen side of the molecule. The structure is quite stable, while an alternative structure, H2DCO+, cannot be produced in a straightforward manner. Dissociative recombination of H2COD+ to reproduce a formaldehyde structure then removes the deuteration if the dissociation is direct, i.e., it occurs without change of structure. There are several possible indirect mechanisms by which dissociative recombination can lead to HDCO, however. For example, if the direct products are HCOD+H, it is possible that subsequent isomerization to HDCO can occur, although this involved process is unlikely. Another possibility is isomerization during the actual dissociation of the H2COD intermediate. Models of deuterium fractionation in which dissociative recombination is predominantly direct are presented, and it is found that the deuterium fractionation of formaldehyde to form both HDCO and D2CO can still occur via other mechanisms, although with less efficiency than previously obtained. If the dissociative recombination is half indirect, however, then we can recover the previously calculated efficiency.

  18. Production of BSA-loaded alginate microcapsules: influence of spray dryer parameters on the microcapsule characteristics and BSA release.

    PubMed

    Benchabane, Samir; Subirade, Muriel; Vandenberg, Grant W

    2007-09-01

    The aim of this study was to optimize the production of BSA-loaded alginate microcapsules by spray drying and to study the release of bovine serum albumin fraction V (BSA) under gastric simulated conditions. Microcapsule yield, BSA release, microcapsule size and size distribution were characterized following the application of different production parameters including inlet air temperature, inlet air pressure and liquid feed rate. The microcapsules were incubated in 0.1 N HCl and BSA release was quantified over time. The yields were higher with the pressure of 3 bar compared to 4 bar and with a feed rate of 0.45 vs. 0.2 ml s(-1). A high feed rate (0.45 vs. 0.2 ml s(-1)) allows one to obtain microcapsules with a low BSA release (p = 0.0327). The increase of the atomizer inlet temperature leads to microcapsules with a higher BSA release (p = 0.0230). A higher air pressure of 4 bar compared to 3 bar resulted in a lower microcapsule size (2.55 vs. 2.80 microm) and led to a narrower size distribution (0.92 vs. 1.07). In conclusion, the spray dryer parameters influenced the alginate microcapsule characteristics as well as subsequent protein release into a simulated gastric medium. PMID:17654176

  19. The load and release characteristics on a strong cationic ion-exchange fiber: kinetics, thermodynamics, and influences

    PubMed Central

    Yuan, Jing; Gao, Yanan; Wang, Xinyu; Liu, Hongzhuo; Che, Xin; Xu, Lu; Yang, Yang; Wang, Qifang; Wang, Yan; Li, Sanming

    2014-01-01

    Ion-exchange fibers were different from conventional ion-exchange resins in their non-cross-linked structure. The exchange was located on the surface of the framework, and the transport resistance reduced significantly, which might mean that the exchange is controlled by an ionic reaction instead of diffusion. Therefore, this work aimed to investigate the load and release characteristics of five model drugs with the strong cationic ion-exchange fiber ZB-1. Drugs were loaded using a batch process and released in United States Pharmacopoeia (USP) dissolution apparatus 2. Opposing exchange kinetics, suitable for the special structure of the fiber, were developed for describing the exchange process with the help of thermodynamics, which illustrated that the load was controlled by an ionic reaction. The molecular weight was the most important factor to influence the drug load and release rate. Strong alkalinity and rings in the molecular structures made the affinity between the drug and fiber strong, while logP did not cause any profound differences. The drug–fiber complexes exhibited sustained release. Different kinds and concentrations of counter ions or different amounts of drug–fiber complexes in the release medium affected the release behavior, while the pH value was independent of it. The groundwork for in-depth exploration and further application of ion-exchange fibers has been laid. PMID:25114504

  20. Gonadotropin-releasing Hormone Agonist Overuse: Urologists’ Response to Reimbursement and Characteristics Associated with Persistent Overuse

    PubMed Central

    Ellis, Shellie D.; Nielsen, Matthew E.; Carpenter, William R.; Jackson, George L.; Wheeler, Stephanie B.; Liu, Huan; Weinberger, Morris

    2015-01-01

    BACKGROUND Medicare reimbursement cuts have been associated with declining Gonadotropin-releasing Hormone (GnRH) agonist overuse in localized prostate cancer. Medical school affiliation and foreign training have been associated with persistent overuse. However, physician-level prescribing changes and the practice type of persistent overusers have not been examined. We sought to describe physician-level changes in GnRH agonist overuse and test the association of time in practice and solo practice type with GnRH agonist overuse. METHODS We matched American Medical Association physician data for 2,138 urologists to SEER–Medicare data for 12,943 men diagnosed with early stage and lower grade adenocarcinoma of the prostate between 2000 and 2007. We conducted a population-based, retrospective study using multi-level modeling to control for patient and provider characteristics. RESULTS Three distinct patterns of GnRH agonist overuse were observed. Urologists’ time in practice was not associated with GnRH agonist overuse (OR 0.89; 95% CI 0.75–1.05).However, solo practice type (OR 1.65; 95% CI 1.34–2.02), medical school affiliation (OR 0.65; 95% CI 0.55–0.77), and patient race were. Compared to non-Hispanic whites, non-Hispanic blacks (OR 1.76; 95% CI 1.37–2.27), Hispanics (OR 1.41; 95% CI 1.12–1.79) and men of “other” race (OR 1.44; 95% CI 1.04–1.99) had greater odds of receiving unnecessary GnRH agonists. CONCLUSIONS GnRH agonist overuse remains high among some urologists who may be professionally isolated and difficult to reach. These urologists treat more vulnerable populations, which may contribute to health disparities in prostate cancer treatment quality. Nonetheless, these findings provide guidance to develop interventions to address overuse in prostate cancer. PMID:25849354

  1. Characteristics of organic, nitrogen and phosphorus species released from ultrasonic treatment of waste activated sludge.

    PubMed

    Wang, Xiaoxia; Qiu, Zhaofu; Lu, Shuguang; Ying, Weichi

    2010-04-15

    Batch ultrasonic treatments (sonication) were performed on two waste activated sludge (WAS) samples, BNR-WAS from the biological nitrogen removal unit and BNPR-WAS from the biological nitrogen and phosphorus removal unit of two Shanghai municipal WWTPs, to determine the effects of sonication time and intensity on the amount and distribution of the organic, N and P species released from the samples. The concentration profiles of COD, TOC fractions in different molecular weight (MW) ranges (<2 kDa, 2-100 kDa, and >100 kDa), TN, organic-N, NH(3)-N, TP and PO(4)-P were monitored during the treatment at three sonication intensity levels (0.167, 0.330 and 0.500 W/mL). Species releases increased with sonication time and/or intensity; the release rates were accelerated when the sonication intensity was above a critical level between 0.330 and 0.500 W/mL. After 1 h of treatment, 37.9%, 37.5% and 50.8% of the organic content (measured as COD) of BNR-WAS were released, while the same for BNPR-WAS were 40.9%, 55.3% and 56.9%. It also resulted in the release of 40.9%, 38.7%, and 52.1% of total nitrogen from BNR-WAS, relative to 46.2%, 61.6%, and 70.4% of the same from BNPR-WAS; most released nitrogen were organic-N (65.0% and 84.9%), followed by NH(3)-N (34.7% and 14.9%) and trace amounts of nitrate and nitrite. More total phosphorus of a higher orthophosphate content was released from BNRP-WAS (>60% release after 1 h of sonication, 80% was PO(4)-P) than from BNR-WAS (<50% release, 40% was PO(4)-P). The differences in the releases as well as the molecular weight distribution pattern of the soluble TOC species were due to the different structure and composition of the sludge samples. Sonication is a viable sludge treatment process when it is combined with a phosphorus recovery process to remove most of the released PO(4)-P so that the supernatant may be returned for further biological treatment. PMID:20022695

  2. Effect of calcium ions on the gelling and drug release characteristics of xanthan matrix tablets.

    PubMed

    Baumgartner, Sasa; Pavli, Matej; Kristl, Julijana

    2008-06-01

    Xanthan is a well-known biopolymer. It is an anionic polysaccharide, whose primary structure depends on the bacterial strain and fermentation conditions. Xanthan was extensively studied in combination with galactomannans, and over 90 patents cover the technology of this preparation. Our aim was to investigate the relation between the physical properties of a xanthan matrix in the absence or presence of calcium ions and its influence on the release of pentoxifylline. The release of pentoxifylline from xanthan tablets in purified water was shown to be very slow and governed by the process of polymer relaxation. The presence of calcium ions significantly increased the drug release, changing the release mechanism into a more diffusion controlled one. Xanthan matrices showed substantially faster and more extensive swelling in water than in the presence of Ca2+ ions. Surprisingly, negative correlation between drug release and degree of swelling was obtained for xanthan: the higher the swelling, the slower the drug release. Higher ionic strength led to lower erosion of xanthan tablets, and the gel layers formed were more rigid and of firmer texture, as shown by rheological experiments and textural profiling. The results indicate that the presence of Ca2+ ions in the solution or in matrices does not cause crosslinking of xanthan polymers, but causes charge screening of ionized groups on the trisaccharide side chains of xanthan, leading to lower inter-molecular repulsion and changing water arrangement. The understanding of the parameters influencing drug release leads to the conclusion that xanthan is suitable for controlled release formulations, especially with the incorporation of certain small counterions. PMID:18248802

  3. Measurements of gas phase acids in diesel exhaust: a relevant source of HNCO?

    PubMed

    Wentzell, Jeremy J B; Liggio, John; Li, Shao-Meng; Vlasenko, A; Staebler, Ralf; Lu, Gang; Poitras, Marie-Josée; Chan, Tak; Brook, Jeffrey R

    2013-07-16

    Gas-phase acids in light duty diesel (LDD) vehicle exhaust were measured using chemical ionization mass spectrometry (CIMS). Fuel based emission factors (EF) and NOx ratios for these species were determined under differing steady state engine operating conditions. The derived HONO and HNO3 EFs agree well with literature values, with HONO being the single most important acidic emission. Of particular importance is the quantification of the EF for the toxic species, isocyanic acid (HNCO). The emission factors for HNCO ranged from 0.69 to 3.96 mg kgfuel(-1), and were significantly higher than previous biomass burning emission estimates. Further ambient urban measurements of HNCO demonstrated a clear relationship with the known traffic markers of benzene and toluene, demonstrating for the first time that urban commuter traffic is a source of HNCO. Estimates based upon the HNCO-benzene relationship indicate that upward of 23 tonnes of HNCO are released annually from commuter traffic in the Greater Toronto Area, far exceeding the amount possible from LDD alone. Nationally, 250 to 770 tonnes of HNCO may be emitted annually from on-road vehicles, likely representing the dominant source of exposure in urban areas, and with emissions comparable to that of biomass burning. PMID:23781923

  4. Stable stoichiometry of gas-phase cerium oxide cluster ions and their reactions with CO.

    PubMed

    Nagata, Toshiaki; Miyajima, Ken; Mafuné, Fumitaka

    2015-03-12

    Cerium oxide cluster ions, Ce(n)O(2n+x)(+) (n = 2-9, x = -1 to +2), were prepared in the gas phase by laser ablation of a cerium oxide rod in the presence of oxygen diluted in He as the carrier gas. The stable stoichiometry of the cluster ions was investigated using a mass spectrometer in combination with a newly developed post heating device. The oxygen-rich clusters, Ce(n)O(2n+x)(+) (x = 1, 2), were found to release oxygen molecules, and Ce(n)O(2n+x)(+) (x = -1, 0) were exclusively formed by post heating treatment at 573 K. The Ce(n)O(2n-1)(+) and Ce(n)O(2n)(+) clusters were found to be thermally stable, and the oxygen-rich clusters consisted of robust Ce(n)O(2n-1)(+) and Ce(n)O(2n)(+) and weakly bound oxygen atoms. Evaluation of the reactivity of Ce(n)O(2n+x)(+) with CO molecules demonstrated that Ce(n)O(2n)(+) oxidized CO to form Ce(n)O(2n-1)(+) and CO2, and the rate constants of the reaction were in the range of 10(-12)-10(-16) cm(3) s(-1). The CO oxidation reaction was distinct for n = 5, which occurred in parallel with the CO attachment reaction. PMID:25651032

  5. Gas-Phase Synthesis and Characterization of CH4-Loaded Hydroquinone Clathrates

    SciTech Connect

    Lee, J.; Lee, Y; Takeya, S; Kawamura, T; Yamamoto, Y; Lee, Y; Yoon, J

    2010-01-01

    A CH{sub 4}-loaded hydroquinone (HQ) clathrate was synthesized via a gas-phase reaction using the {alpha}-form of crystalline HQ and CH{sub 4} gas at 12 MPa and room temperature. Solid-state {sup 13}C cross-polarization/magic angle spinning (CP/MAS) NMR and Raman spectroscopic measurements confirm the incorporation of CH{sub 4} molecules into the cages of the HQ clathrate framework. The chemical analysis indicates that about 69% of the cages are filled by CH{sub 4} molecules, that is, 0.69 CH{sub 4} per three HQ molecules. Rietveld refinement using synchrotron X-ray powder diffraction (XRD) data shows that the CH{sub 4}-loaded HQ clathrate adopts the {beta}-form of HQ clathrate in a hexagonal space group R3 with lattice parameters of a = 16.6191 {angstrom} and c = 5.5038 {angstrom}. Time-resolved synchrotron XRD and quadrupole mass spectroscopic measurements show that the CH{sub 4}-loaded HQ clathrate is stable up to 368 K and gradually transforms to the {alpha}-form by releasing the confined CH{sub 4} gases between 368-378 K. Using solid-state {sup 13}C CP/MAS NMR, the reaction kinetics between the {alpha}-form HQ and CH{sub 4} gas is qualitatively described in terms of the particle size of the crystalline HQ.

  6. Chemical behavior of the gas-phase pentacoordinated carbonium ion, C2H+7

    NASA Astrophysics Data System (ADS)

    Heck, Albert J. R.; de Koning, Leo J.; Nibbering, Nico M. M.

    1992-09-01

    The uni- and bimolecular chemistry of C2H+7 ions have been studied in the gas phase using the methods of sector and Fourier transform ion cyclotron resonance mass spectrometry. Unimolecular decomposition of the C2H+7 ions predominantly shows the elimination of a hydrogen molecule which proceeds without a significant kinetic energy release. However, the elimination of a hydrogen molecule is found to suffer from a very large isotope effect, which has been rationalized by the difference in Gibbs free energy change for H2, HD and D2 loss from the various isotopomers of protonated ethane. In general, long-lived C2H+7 ions can be generated either by proton transfer to ethane, methyl cation transfer to methane or by association of C2H+5 and H2. Conversely, C2H+7 ions can react as a proton or a methyl cation donor, or eliminate an H2 molecule. In contrast to CH+5, C2H+7 displays an ambident chemical behavior, which shows a balanced competition between a proton and a methyl cation donor. Both the uni- and bimolecular reactivity of C2H+7 reveal that the proton accepted in an exothermic protonation of ethane randomizes with the original hydrogen atoms of ethane. This intramolecular randomization is found to be a very fast process which precedes decomposition of the metastable C2H+7 ions as well as the bimolecular processes of the long-lived C2H+7 ions.

  7. Structure and reactivity of benzoylnitrene radical anion in the gas phase.

    PubMed

    Wijeratne, Neloni R; Wenthold, Paul G

    2007-12-01

    The open-shell benzoylnitrene radical anion, readily generated by electron ionization of benzoylazide, undergoes unique chemical reactivity with radical reagents and Lewis acids in the gas phase. Reaction with nitric oxide, NO, proceeds by loss of N2 and formation of benzoate ion. This novel reaction is also observed to occur with phenylnitrene anion, forming phenoxide. Similar reactivity was observed in the reaction between benzoylnitrene radical anion and NO2, forming benzoate ion and nitrous oxide. Electronic structure calculations indicate that the reaction has a high-energy barrier that is overcome by the energy released by bond formation. Benzoylnitrene radical anion also transfers oxygen anion to NO and NO2 as well as to CS2 and SO2. In contrast, phenylnitrene anion reacts with carbon disulfide by C+ or CS+ abstraction, forming S- or S2-. Electronic structure calculations indicate that benzoylnitrene in the ground state resembles a slightly polarized benzoate anion, but with a free radical localized on the nitrogen. PMID:18001090

  8. A new method for measurement of gas-phase ammonia and amines in air

    NASA Astrophysics Data System (ADS)

    Dawson, M. L.; Gomez, A.; Arquero, K. D.; Perraud, V. M.; Finlayson-Pitts, B. J.

    2013-12-01

    Accurately predicting particle formation and growth from gas phase precursors is an essential component of modeling the impact of particulate matter on human health, visibility and climate. While the reactions of ammonia with nitric and sulfuric acids to form particulate nitrate and sulfate particles is well known, it has been recently recognized that gas-phase amines, even at low ppb levels, significantly enhance particle formation from common atmospheric acids. As a result, accurate data on the sources, sinks and typical background concentrations of gas-phase amines, are crucial to predicting new particle formation in the atmosphere. However, gas-phase amines are notoriously difficult to measure, as they have a tendency to stick to surfaces, including sampling lines and inlets. In addition, background amine concentrations in the atmosphere are typically a few ppb or lower, requiring low detection limits for ambient sampling techniques. Here we report the development of a simple, reliable method for detection of gas-phase amines at atmospherically relevant concentrations using collection on a cation exchange sorbent followed by in-line extraction and ion chromatography. Gas-phase standards of several amines and ammonia are used to characterize the technique and results from ambient samples in an agricultural area are presented. The application of this technique to field measurements as well as to laboratory measurements of new particle formation from gas-phase ammonia and amines are discussed.

  9. Gas-phase lithium cation affinity of glycine.

    PubMed

    Bourcier, Sophie; Chiaa, Ru Xuan; Mimbong, Rosa Ngo Biboum; Bouchoux, Guy

    2015-01-01

    The gas-phase lithium cation binding thermochemistry of glycine has been determined theoretically by quantum chemical calculations at the G4 level and experimentally by the extended kinetic method using electrospray ionization quadrupole time-of-flight tandem mass spectrometry. The lithium cation affinity of glycine, ∆(Li)H°(298)(GLY), i.e. the∆(Li)H°(298) of the reaction GlyLi(+)→ Gly + Li(+)) given by the G4 method is equal to 241.4 kJ.mol(-1) if only the most stable conformer of glycine is considered or to 242.3 kJ.mol(-1) if the 298K equilibrium mixture of neutral conformers is included in the calculation. The ∆(Li)H°(298)(GLY) deduced from the extended kinetic method is obviously dependent on the choice of the Li(+) affinity scale, thus∆(Li)H°(298)(GLY) is equal to 228.7±0.9(2.0) kJ.mol(- 1) if anchored to the recently re-evaluated lithium cation affinity scale but shifted to 235.4±1.0 kJ.mol(-1) if G4 computed lithium cation affinities of the reference molecules is used. This difference of 6.3 kJ.mol(-1) may originate from a compression of the experimental lithium affinity scale in the high ∆(Li)H°(298) region. The entropy change associated with the reaction GlyLi(+)→Gly + Li(+) reveals a gain of approximately 15 J.mol(-) 1.K(-1) with respect to monodentate Li(+) acceptors. The origin of this excess entropy is attributed to the bidentate interaction between the Li(+) cation and both the carbonyl oxygen and the nitrogen atoms of glycine. The computed G4 Gibbs free energy,∆(Li)G°(298)(GLY) is equal to 205.3 kJ.mol(-1), a similar result, 201.0±3.4 kJ.mol(-1), is obtained from the experiment if the∆(Li)G°(298) of the reference molecules is anchored on the G4 results. PMID:26307695

  10. Detection methods for atoms and radicals in the gas phase

    NASA Astrophysics Data System (ADS)

    Hack, W.

    This report lists atoms and free radicals in the gas phase which are of interest for environmental and flame chemistry and have been detected directly. The detection methods which have been used are discussed with respect to their range of application, specificity and sensitivity. In table 1, detection methods for the five atoms of group IV (C, Si, Ge, Sn, Pb) and about 60 radicals containing at least one atom of group IV are summarized (CH, Cd, Cf, CC1, CBr, Cn, Cs, CSe, CH2, CD2, Chf, Cdf, CHC1, CHBr, CF2, CC12, CBr2, CFC1, CFBr, CH3, CD3, CF3, CH2F, CH2C1, CH2Br, CHF2, CHC12, CHBr2, Hco, Fco, CH30, CD30, CH2OH, CH3S, Nco, CH4N, CH302, CF302; C2, C2N, C2H, C20, C2HO, C2H3, C2F3, C2H5, C2HsO, C2H4OH, CH3CO, CD3CO, C2H3O, C2H502, CH3COO2, C2H4N, C2H6N, C3; Si, SiF, SiF2, SiO, SiC, Si2; Ge, GeC, GeO, GeF, GeF2, GeCl2, Sn, SnF, SnO, SnF2, Pb, PbF, PbF2, PbO, PbS). In table 2 detection methods for about 25 other atoms and 60 radicals are listed: (H, D, O, O2, Oh, Od, HO2, DO2, F, Ci, Br, I, Fo, Cio, BrO, Io, FO2, C1O2, Li, Na, K, Rb, Cs, N, N3, Nh, Nd, Nf, Nci, NBr, NH2, ND2, Nhd, Nhf, NF2, NC12, N2H3, No, NO2, NO3, Hno, Dno, P, Ph, Pd, Pf, Pci, PH2, PD2, PF2, Po, As, AsO, AsS, Sb, Bi, S, S2, Sh, Sd, Sf, SF2, So, Hso, Dso, Sn, Se, Te, Se2, SeH, SeD, SeF, SeO, SeS, SeN, TeH, TeO, Bh, BH2, Bo, Bn, B02, Cd, Hg, UF5). The tables also cite some recent kinetic applications of the various methods.

  11. Thermal degradation events as health hazards: particle vs gas phase effects, mechanistic studies with particles.

    PubMed

    Oberdörster, G; Ferin, J; Finkelstein, J; Soderholm, S

    1992-01-01

    Exposure to thermal degradation products arising from fire or smoke could be a major concern for manned space missions. Severe acute lung damage has been reported in people after accidental exposure to fumes from plastic materials, and animal studies revealed the extremely high toxicity of freshly generated fumes whereas a decrease in toxicity of aged fumes has been found. This and the fact that toxicity of the freshly generated fumes can be prevented with filters raises the question whether the toxicity may be due to the particulate rather than the gas phase components of the thermodegradation products. Indeed, results from recent studies implicate ultrafine particles (particle diameter in the nm range) as potential severe pulmonary toxicants. We have conducted a number of in vivo (inhalation and instillation studies in rats) and in vitro studies to test the hypothesis that ultrafine particles possess an increased potential to injure the lung compared to larger-sized particles. We used as surrogate particles ultrafine TiO2 particles (12 and 20 nm diameter). Results in exposed rats showed that the ultrafine TiO2 particles not only induce a greater acute inflammatory reaction in the lung than larger-sized TiO2 particles, but can also lead to persistent chronic effects, as indicated by an adverse effect on alveolar macrophage mediated clearance function of particles. Release of mediators from alveolar macrophages during phagocytosis of the ultrafine particles and an increased access of the ultrafine particles to the pulmonary interstitium are likely factors contributing to their pulmonary toxicity. In vitro studies with lung cells (alveolar macrophages) showed, in addition, that ultrafine TiO2 particles have a greater potential to induce cytokines than larger-sized particles. We conclude from our present studies that ultrafine particles have a significant potential to injure the lung and that their occurrence in thermal degradation events can play a major role in the

  12. The gas-phase thermal chemistry of tetralin and related model systems

    SciTech Connect

    Malandra, J.

    1993-05-01

    The thesis is divided into 5 papers: gas-phase thermal decomposition of tetralin; flash vacuum pyrolysis of 3-benzocycloheptenone and 1,3, 4,5-tetrahydro-2-benzothiepin-2,2-dioxide (model systems for gas-phase pyrolysis of tetralin); high-temperature gas-phase reactions of o-allylbenzyl radicals generated by flash vacuum pyrolysis of is(o-allylbenzyl) oxalate; flash vacuum pyrolysis of 1,4-diphenylbutane; and flash vacuum pyrolysis of o-allyltoluene, o-(3-butenyl)toluene and o-(pentenyl)toluene were also used.

  13. Coordinated coupling control of tethered space robot using releasing characteristics of space tether

    NASA Astrophysics Data System (ADS)

    Huang, Panfeng; Zhang, Fan; Xu, Xiudong; Meng, Zhongjie; Liu, Zhengxiong; Hu, Yongxin

    2016-04-01

    Tethered space robot (TSR) is a new concept of space robot, which is released from the platform satellite, and retrieved via connected tether after space debris capture. In this paper, we propose a new coordinate control scheme for optimal trajectory and attitude tracking, and use releasing motor torque to instead the tension force, since it is difficult to track in practical. Firstly, the 6-DOF dynamics model of TSR is derived, in which the dynamics of tether releasing system is taken into account. Then, we propose and design the coordinated coupled controller, which is composed of a 6-DOF sliding mode controller and a PD controller tether's releasing. Thrust is treated as control input of the 6-DOF sliding mode controller to control the in-plane and out-of-plane angle of the tether and attitude angles of the TSR. The torque of releasing motor is used as input of PD controller, which controls the length rate of space tether. After the verification of the control scheme, finally, the simulation experiment is presented in order to validate the effectiveness of this control method. The results show that TSR can track the optimal approaching trajectory accurately. Simultaneously, the attitude angles can be changed to the desired attitude angles in control period, and the terminal accuracy is ±0.3°.

  14. Preparation and Analysis of Type II Xerogel Films with Antifouling/Foul Release Characteristics

    NASA Astrophysics Data System (ADS)

    Sokolova, Anastasiya

    In order to combat biofouling, xerogel coatings comprised of aminopropyl, fluorocarbon, and hydrocarbon silanes were prepared and tested for their antifouling/foul release properties against Ulva, Navicula, barnacles, and tubeworms. Many of the coatings showed settlement and removal of Ulva to be as good as or better than the poly(dimethylsiloxane) (PDMSE) standard. Barnacle removal assays showed excellent results for some coatings while others did not fair so well. The best foul release coatings for barnacles were comprised of aminopropyl/hydrocarbon- and fluorocarbon/hydrocarbon-modified silanes. For the majority of coatings tested, water wettability and surface energy did not play a role in the antifouling/ foul release properties of the coatings.

  15. Adsorption and Desorption of Hydrogen by Gas-Phase Palladium Clusters Revealed by In Situ Thermal Desorption Spectroscopy.

    PubMed

    Takenouchi, Masato; Kudoh, Satoshi; Miyajima, Ken; Mafuné, Fumitaka

    2015-07-01

    Adsorption and desorption of hydrogen by gas-phase Pd clusters, Pdn(+), were investigated by thermal desorption spectroscopy (TDS) experiments and density functional theory (DFT) calculations. The desorption processes were examined by heating the clusters that had adsorbed hydrogen at room temperature. The clusters remaining after heating were monitored by mass spectrometry as a function of temperature up to 1000 K, and the temperature-programmed desorption (TPD) curve was obtained for each Pdn(+). It was found that hydrogen molecules were released from the clusters into the gas phase with increasing temperature until bare Pdn(+) was formed. The threshold energy for desorption, estimated from the TPD curve, was compared to the desorption energy calculated by using DFT, indicating that smaller Pdn(+) clusters (n ≤ 6) tended to have weakly adsorbed hydrogen molecules, whereas larger Pdn(+) clusters (n ≥ 7) had dissociatively adsorbed hydrogen atoms on the surface. Highly likely, the nonmetallic nature of the small Pd clusters prevents hydrogen molecule from adsorbing dissociatively on the surface. PMID:26043808

  16. Excitation and dissociation of molecules by femtosecond IR laser radiation in the gas phase and on dielectric surfaces

    SciTech Connect

    Kompanets, V O; Laptev, Vladimir B; Makarov, Aleksandr A; Pigulskii, S V; Ryabov, Evgenii A; Chekalin, Sergei V

    2013-04-30

    This paper presents an overview of early studies and new experimental data on the effect of near-IR (0.8-1.8 {mu}m) and mid-IR (3.3-5.8 {mu}m) intense femtosecond (130-350 fs) laser pulses on polyatomic molecules in the gas phase and on the surface of substrates. We examine the vibrational dynamics of nine molecules containing a C=O chromophore group, which are initiated by resonance femtosecond IR laser radiation at a wavelength of {approx}5 {mu}m, and report measured characteristic times of intramolecular vibrational redistribution. The characteristic time of molecules containing a single C=O group lies in the range 2.4-20 ps and that of the Fe(CO){sub 5} and Cr(CO){sub 6} molecules lies in the nanosecond range ({approx}1.0 and {approx}1.5 ns, respectively). Carbon structures have been observed for the first time to result from the decomposition of (CF{sub 3}){sub 2}CCO molecules on the surface of metal fluorides under the effect of femtosecond IR laser radiation in the wavelength range 3.3-5.4 {mu}m with no gas-phase decomposition of the molecules. (extreme light fields and their applications)

  17. Effect of Polyethylene Glycol and Sodium Lauryl Sulphate on the Compaction Characteristics of Eudragit and Drug Release from its Matrix

    NASA Astrophysics Data System (ADS)

    Emeje, M. O.; Isimi, C. Y.; Kunle, O. O.; Ofoefule, S. I.

    A study on the compaction characteristics of Eudragit l-100 both in the presence and in the absence of two commonly used additives, polyethylene glycol 6000 (PEG 6000) and Sodium Lauryl Sulphate (SLS) was done. Eudragit granules, with and without the additives and drug were prepared separately by the wet granulation method and compacts were made at varying compression pressures. Compaction characteristics using Kawakita and Heckel analysis revealed a concentration dependent effect of the additives on the compressibility of Eudragit granules, with 2.5% PEG 6000 producing the largest effect and 5.0% PEG 6000, the least. Irrespective of the concentration of PEG 6000, the yield value increased, while SLS either had no effect or decreased the yield value of Eudragit granules. The highest yield value of 21.69 kN was produced by formulations containing 2.5% PEG 6000. While in some cases, the effect of the additive was slight, in others, it was drastic. The extent and nature of the effect depended on both the type and concentration of the additive used. SLS was found to increase the deformation of Eudragit more than PEG 6000. In vitro dissolution in simulated intestinal fluid as indicated by time for 70% drug release (t70%) shows that both additives modulated drug release, with 2.5 % SLS and 5% PEG 6000 enhancing drug release, while 5% SLS resulted in retarded but erratic drug release. The results of this study show that additives such as PEG 6000 and SLS affect the compaction characteristics of Eudragit l-100 and these were also found to affect the retardant behavior of Eudragit.

  18. Effects of Model Characteristics on Observational Learning of Inmates in a Pre-Release Center.

    ERIC Educational Resources Information Center

    Fliegel, Alan B.

    Subjects were 138 inmates from the pre-release unit of a Southwestern prison system, randomly divided into three groups of 46 each. Each group viewed a video-taped model delivering a speech. The independent variable had three levels: (1) lecturer attired in a shirt and tie; (2) lecturer attired in a correctional officer's uniform; and (3) model…

  19. pH-dependent release characteristics of antimony and arsenic from typical antimony-bearing ores.

    PubMed

    Hu, Xingyun; Guo, Xuejun; He, Mengchang; Li, Sisi

    2016-06-01

    The pH-dependent leaching of antimony (Sb) and arsenic (As) from three typical Sb-bearing ores (Banxi, Muli and Tongkeng Antimony Mine) in China was assessed using a pH-static leaching experiment. The pH changes of the leached solutions and pH-dependent leaching of Sb and As occurred in different ways. For the Banxi and Muli Sb ores, alkaline conditions were more favorable for the release of Sb compared to neutral and acidic conditions, but the reverse was true for the pH-dependent release of As. For the Tongkeng Sb ore, unlike the previous two Sb-bearing ores, acidic conditions were more favorable for Sb release than neutral and alkaline conditions. The ores with lower Sb and As contents released higher percentages of their Sb and As after 16day leaching, suggesting that they are the largest potential sources of pollution. This work may provide key information on the geochemistry of Sb and As in the weathering zone. PMID:27266313

  20. Characteristics of inositol trisphosphate mediated Ca/sup 2 +/ release from permeabilized hepatocytes

    SciTech Connect

    Joseph, S.K.; Williamson, J.R.

    1986-05-01

    Ca/sup 2 +/ release triggered by inositol trisphosphate (IP/sub 3/) has been measured in saponin-permeabilized hepatocytes with /sup 45/Ca/sup 2 +/ or Quin 2. The initial rate of Ca/sup 2 +/ release was not markedly affected by the incubation temperature (175 +/- 40 pmol/s/mg at 30/sup 0/C versus 133 +/- 24 pmol/s/mg at 4/sup 0/C). This result is consistent with the membrane translocation of Ca/sup 2 +/ occurring through an ion-channel rather than an ion-carrier. The amount of Ca/sup 2 +/ released by IP/sub 3/ was not affected by pH (6.5-8.0) or by compounds that inhibit voltage-gated Ca/sup 2 +/ channels. La/sup 3 +/ (100 ..mu..M) markedly inhibits the effect of 1 ..mu..M IP/sub 3/. The possibility that La/sup 3 +/ chelates IP/sub 3/ cannot be excluded since the effect of La/sup 3 +/ can be overcome by increasing the IP/sub 3/ concentration. IP/sub 3/-mediated Ca/sup 2 +/ release displays a requirement for a permeant cation in the incubation medium. Optimal release is observed with K/sup +/ gluconate. Other monovalent cations, with the exception of Li/sup +/, can substitute for K/sup +/. Permeant anions, at concentrations above 40 mM, inhibit Ca/sup 2 +/ release produced by IP/sub 3/. Cl/sup -/, Br/sup -/, I/sup -/, and SO/sub 4//sup 2 -/ were equally effective. Ca/sup 2 +/ release was not inhibited by DIDS or Furosemide. /sup 85/Sr/sup 2 +/ and /sup 54/Mn/sup 2 +/ fluxes were also stimulated by IP/sub 3/. These results suggest that IP/sub 3/ acts to gate a divalent cation channel. The translocation of positive charge through this channel is balanced by ancillary movements of monovalent cations and anions across the reticular membrane.

  1. Characteristics of inositol trisphosphate-mediated Ca/sup 2 +/ release from permeabilized hepatocytes

    SciTech Connect

    Joseph, S.K.; Williamson, J.R.

    1986-11-05

    Ca/sup 2 +/ release triggered by inositol trisphosphate (Ins(1,4,5)P/sub 3/) has been measured in saponin-permeabilized hepatocytes with /sup 45/Ca/sup 2 +/ or Quin 2. The initial rate of Ca/sup 2 +/ release was not greatly affected by the incubation temperature. The amount of Ca/sup 2 +/ released by Ins(1,4,5)P/sub 3/ was not affected by pH (6.5-8.0). La/sup 3 +/ (100 ..mu..M) markedly inhibited the effect of 1 ..mu..M Ins(1,4,5)P/sub 3/. The possibility that La/sup 3 +/ chelates Ins(1,4,5)P/sub 3/ cannot be excluded since the effect of La/sup 3 +/ could be overcome by increasing the Ins(1,4,5)P/sub 3/ concentration. Ins(1,4,5)P/sub 3/-mediated Ca/sup 2 +/ release showed a requirement for permeant cations in the incubation medium. Optimal release was observed with potassium gluconate. Other monovalent cations, with the exception of Li/sup +/, can substitute for K/sup +/. Permeant anions, at concentrations above 40 mM, inhibited Ca/sup 2 +/ release produced by Ins(1,4,5)P/sub 3/. Cl/sup -/, Br/sup -/, I/sup -/, and SO/sup 2 -//sub 4/ were equally effective as inhibitors. Ins(1,4,5)P/sub 3/ also caused the release of /sup 54/Mn/sup 2 +/ and /sup 85/Sr/sup 2 +/ accumulated by the permeabilized hepatocytes. The results are consistent with Ins(1,4,5)P/sub 3/ promoting the membrane translocation of divalent cations through an ion channel rather than an ion carrier. The translocation of positive charge through this channel is balanced by ancillary movements of monovalent cations and anions across the reticular membranes. The transport systems responsible for these compensatory ion movements may represent a potential site for the regulation of the hormone-mediated Ca/sup 2 +/ signal.

  2. Physiological characteristics and related gene expression of after-ripening on seed dormancy release in rice.

    PubMed

    Du, W; Cheng, J; Cheng, Y; Wang, L; He, Y; Wang, Z; Zhang, H

    2015-11-01

    After-ripening is a common method used for dormancy release in rice. In this study, the rice variety Jiucaiqing (Oryza sativa L. subsp. japonica) was used to determine dormancy release following different after-ripening times (1, 2 and 3 months). Germination speed, germination percentage and seedling emergence increased with after-ripening; more than 95% germination and 85% seedling emergence were observed following 1 month of after-ripening within 10 days of imbibition, compared with <45% germination and 20% seedling emergence in freshly harvested seed. Hence, 3 months of after-ripening could be considered a suitable treatment period for rice dormancy release. Dormancy release by after-ripening is mainly correlated with a rapid decline in ABA content and increase in IAA content during imbibition. Subsequently, GA(1)/ABA, GA(7)/ABA, GA(12)/ABA, GA(20)/ABA and IAA/ABA ratios significantly increased, while GA(3)/ABA, GA(4)/ABA and GAs/IAA ratio significantly decreased in imbibed seeds following 3 months of after-ripening, thereby altering α-amylase activity during seed germination. Peak α-amylase activity occurred at an earlier germination stage in after-ripened seeds than in freshly harvested seeds. Expression of ABA, GA and IAA metabolism genes and dormancy-related genes was regulated by after-ripening time upon imbibition. Expression of OsCYP707A5, OsGA2ox1, OsGA2ox2, OsGA2ox3, OsILR1, OsGH3-2, qLTG3-1 and OsVP1 increased, while expression of Sdr4 decreased in imbibed seeds following 3 months of after-ripening. Dormancy release through after-ripening might be involved in weakening tissues covering the embryo via qLTG3-1 and decreased ABA signalling and sensitivity via Sdr4 and OsVP1. PMID:26205956

  3. GAS PHASE EXPOSURE HISTORY DERIVED FROM MATERIAL PHASE CONCENTRATION PROFILES USING SOLID PHASE MICRO-EXTRACTION

    EPA Science Inventory

    EPA Identifier: F8P31059
    Title: Gas Phase Exposure History Derived from Material Phase Concentration Profiles Using Solid Phase Micro-Extraction
    Fellow (Principal Investigator): Jonathan Lewis McKinney
    Institution: University of Missouri - ...

  4. Gas-phase water-mediated equilibrium between methylglyoxal and its geminal diol

    PubMed Central

    Axson, Jessica L.; Takahashi, Kaito; De Haan, David O.; Vaida, Veronica

    2010-01-01

    In aqueous solution, aldehydes, and to a lesser extent ketones, hydrate to form geminal diols. We investigate the hydration of methylglyoxal (MG) in the gas phase, a process not previously considered to occur in water-restricted environments. In this study, we spectroscopically identified methylglyoxal diol (MGD) and obtained the gas-phase partial pressures of MG and MGD. These results, in conjunction with the relative humidity, were used to obtain the equilibrium constant, KP, for the water-mediated hydration of MG in the gas phase. The Gibbs free energy for this process, ΔG°, obtained as a result, suggests a larger than expected gas-phase diol concentration. This may have significant implications for understanding the role of organics in atmospheric chemistry. PMID:20142510

  5. Electronic Effects of 11β Substituted 17β-Estradiol Derivatives and Instrumental Effects on the Relative Gas Phase Acidity

    NASA Astrophysics Data System (ADS)

    Bourgoin-Voillard, Sandrine; Fournier, Françoise; Afonso, Carlos; Zins, Emilie-Laure; Jacquot, Yves; Pèpe, Claude; Leclercq, Guy; Tabet, Jean-Claude

    2012-12-01

    Numerous studies have highlighted the role of the proton donor characteristics of the phenol group of 17β-estradiol (E2) in its association with the estrogen receptor alpha (ERα). Since the substitutions at position C(11) have been reported to modulate this association, we hypothesized that such substitutions may modify the phenol acidity. Hence, phenol gas-phase acidity of nine C(11)-substituted E2-derivatives were evaluated using the extended Cooks' kinetic method, which is a method widely used to determine thermochemical properties by mass spectrometry. To enhance accuracy in data collection we recorded data from several instruments, including quadrupole ion trap, triple quadrupole, and hybrid QqTOF. Indeed, we report for the first time the use of the QqTOF instrument to provide a novel means to improve data accuracy by giving access to an intermediate effective temperature range. All experimental gas-phase acidity values were supported by theoretical calculations. Our results confirmed the ability of distant substituents at C(11) to modulate the phenol acidity through electrostatic interactions, electron withdrawing inductive effects, and mesomeric effects. However, no relationship was found between the phenol gas-phase acidity of investigated steroids and their binding affinity for ERα assessed in solution. Thus, our results highlight that the intrinsic properties of the hormone do not influence sufficiently the stabilization of the hormone/ERα complex. It is more likely that such stabilization would be more related to factors depending on the environment within the binding pocket such as hydrophobic, steric as well as direct intermolecular electrostatic effects between ERα residues and the substituted steroidal estrogens.

  6. Ligand field spectroscopy of Cu(II) and Ag(II) complexes in the gas phase: theory and experiment.

    PubMed

    Puskar, Ljiljana; Cox, Hazel; Goren, Alan; Aitken, Georgina D C; Stace, Anthony J

    2003-01-01

    Ligand field spectra have been recorded in the gas phase for the two series of complexes containing either Cu(II) or Ag(II) in association with pyridine. Where comparisons are possible, the gas phase spectra match those recorded in the condensed phase; however, for Ag(II) systems the results differ in interpretation. The Ag(II) data are attributed to a ligand-to-metal charge transfer process, and the Cu(II) data (spectral region and extinction coefficient) match the characteristics of a d-d transition. A detailed theoretical analysis of two complexes. [Cu(py)4]2+ and [Ag(py)4]2+ provides evidence of a minimum energy, D4h structure and two less stable D2h and D2d structures within approximately 60 kJ mol(-1). From these structures it is possible to identify a range of optically and vibronically allowed transitions that could contribute to spectra observed in the gas phase. In the case of calculations on [Ag(py)4]2+ there is strong evidence of an electronic transition that would account for the observation of charge transfer in the experiments. Less detailed calculations on [Cu(py)6]2+ and [Ag(py)6]2+ show structural evidence of extensive Jahn Teller distortion. Taken together with incremental binding energies calculated for complexes containing between two and six pyridine molecules, these results show that the level of theory adopted is capable of providing a semi-quantitative understanding of the experimental data. PMID:14527220

  7. An atmospheric pressure flow reactor: Gas phase kinetics and mechanism in tropospheric conditions without wall effects

    NASA Technical Reports Server (NTRS)

    Koontz, Steven L.; Davis, Dennis D.; Hansen, Merrill

    1988-01-01

    A new type of gas phase flow reactor, designed to permit the study of gas phase reactions near 1 atm of pressure, is described. A general solution to the flow/diffusion/reaction equations describing reactor performance under pseudo-first-order kinetic conditions is presented along with a discussion of critical reactor parameters and reactor limitations. The results of numerical simulations of the reactions of ozone with monomethylhydrazine and hydrazine are discussed, and performance data from a prototype flow reactor are presented.

  8. Sulfur hexafluoride: Optimal use as a gas-phase, infrared sensitizer

    SciTech Connect

    Stanley, A.E.; Ludwick, L.M.; White, D.; Andrews, D.E.; Godbey, S.E. )

    1992-12-01

    Investigations into the use of sulfur hexafluoride, SF[sub 6], as a gas-phase, infrared photochemical sensitizer have revealed several interesting phenomena. The expedient use of SF[sub 6] can produce an optimal quantity of nitrated product in the gas-phase, laser-induced nitration of cyclopentane. The optimal utilization of sulfur hexafluoride required critical optimization of both frequency and quantity. The results are described herein. 12 refs., 3 figs., 1 tab.

  9. Gas-Phase Molecular Dynamics: High Resolution Spectroscopy and Collision Dynamics of Transient Species

    SciTech Connect

    Hall G. E.; Goncharov, V.

    2012-05-29

    This research is carried out as part of the Gas-Phase Molecular Dynamics program in the Chemistry Department at Brookhaven National Laboratory. Chemical intermediates in the elementary gas-phase reactions involved in combustion chemistry are investigated by high resolution spectroscopic tools. Production, reaction, and energy transfer processes are investigated by transient, double resonance, polarization and saturation spectroscopies, with an emphasis on technique development and connection with theory, as well as specific molecular properties.

  10. Ultrafast electronic relaxation of excited state vitamin B 12 in the gas phase

    NASA Astrophysics Data System (ADS)

    Shafizadeh, Niloufar; Poisson, Lionel; Soep, Benoıˆt

    2008-06-01

    The time evolution of electronically excited vitamin B 12 (cyanocobalamin) has been observed for the first time in the gas phase. It reveals an ultrafast decay to a state corresponding to metal excitation. This decay is interpreted as resulting from a ring to metal electron transfer. This opens the observation of the excited state of other complex biomimetic systems in the gas phase, the key to the characterisation of their complex evolution through excited electronic states.

  11. Conformational preferences of flavone and isoflavone in the gas phase, aqueous solution and organic solution

    NASA Astrophysics Data System (ADS)

    Ishiki, Hamilton Mitsugu; Alemán, Carlos; Galembeck, Sérgio Emanuel

    1998-05-01

    Flavone and isoflavone are an important class of secondary metabolites that are widely distributed in nature. In this Letter we have determined the conformational preferences of each compound in the gas phase, aqueous solution and organic solution. Gas-phase calculations were performed using AM1, MNDO, HF/3-21G, HF/6-31G(d) and B3-LYP/6-31G(d) calculations. Besides solution calculations were performed using the MST solvation model.

  12. Gas-Phase Molecular Dynamics: High Resolution Spectroscopy and Collision Dynamics of Transient Species

    SciTech Connect

    Hall, G.E.

    2011-05-31

    This research is carried out as part of the Gas-Phase Molecular Dynamics program in the Chemistry Department at Brookhaven National Laboratory. Chemical intermediates in the elementary gas-phase reactions involved in combustion chemistry are investigated by high resolution spectroscopic tools. Production, reaction, and energy transfer processes are investigated by transient, double resonance, polarization and saturation spectroscopies, with an emphasis on technique development and connection with theory, as well as specific molecular properties.

  13. Interaction of Gas Phase Oxalic Acid with Ammonia and its Atmospheric Implications

    SciTech Connect

    Peng, Xiu-Qiu; Liu, Yi-Rong; Huang, Teng; Jiang, Shuai; Huang, Wei

    2015-04-14

    Oxalic acid is believed to play an important role in the formation and growth of atmospheric organic aerosols. However, as a common organic acid, the understanding of the larger clusters formed by gas phase oxalic acid with multiple ammonia molecules is incomplete. In this work, the structural characteristics and thermodynamics of oxalic acid clusters with up to six ammonia molecules have been investigated at the PW91PW91/6-311++G(3df,3pd) level of theory. We found that oxalic acid forms relatively stable clusters with ammonia molecules, and that ionization events play a key role. The analyses of the thermodynamics and atmospheric relevance indicate that the heterodimer (H2C2O4)(NH3) shows an obvious relative concentration in the atmosphere, and thus likely participates in new particle formation. However, with increasing number of ammonia molecules, the concentration of clusters decreases gradually. Additionally, clusters of oxalic acid with ammonia molecules are predicted to form favorably in low temperature conditions and show high Rayleigh scattering intensities.

  14. Hydrogen-bonded glycine-HCN complexes in gas phase: structure, energetics, electric properties and cooperativity

    NASA Astrophysics Data System (ADS)

    Machado da Silva, Arnaldo; Chakrabarty, Sumana; Chaudhuri, Puspitapallab

    2015-03-01

    Twelve hydrogen-bonded complexes of glycine and hydrogen cyanide have been studied using high-level quantum-chemical calculations in gas phase. In particular, six 1:1 glycine-HCN dimers and six 1:2 glycine-HCN trimers have been considered. Besides the characteristics of the hydrogen bonds and their effect on molecular structure and energetics, several molecular electric properties have been calculated utilising two different models: MP2/6-31++G(d,p) and DFT-B3LYP/6-31++G(d,p). Although the structural parameters calculated by the two models are similar, equilibrium electronic energies of the clusters show model dependence. The lowest energy dimer is same in both the models which is ca. 3.0 kcal/mol more stable than the highest energy dimer. However, the lowest energy trimer is different in two methods. The energetic difference of stability between the highest and lowest trimer is 4.2 kcal/mol (4.4 kcal/mol) at an MP2 (B3LYP) level of calculation. The bond angles of glycine, in particular, are quite sensitive to the hydrogen-bond formation. Four out of six trimers are found to be strongly cooperative in both the models. Significant changes of dipole moments and polarisabilities of isolated glycine and hydrogen cyanide are observed due to the formation of hydrogen bonding. The Rayleigh scattering intensities of all clusters are much larger than those of their constituent monomers.

  15. Gas Phase Pressure Effects on the Apparent Thermal Conductivity of JSC-1A Lunar Regolith Simulant

    NASA Technical Reports Server (NTRS)

    Yuan, Zeng-Guang; Kleinhenz, Julie E.

    2011-01-01

    Gas phase pressure effects on the apparent thermal conductivity of a JSC-1A/air mixture have been experimentally investigated under steady state thermal conditions from 10 kPa to 100 kPa. The result showed that apparent thermal conductivity of the JSC-1A/air mixture decreased when pressure was lowered to 80 kPa. At 10 kPa, the conductivity decreased to 0.145 W/m/degree C, which is significantly lower than 0.196 W/m/degree C at 100 kPa. This finding is consistent with the results of previous researchers. The reduction of the apparent thermal conductivity at low pressures is ascribed to the Knudsen effect. Since the characteristic length of the void space in bulk JSC-1A varies over a wide range, both the Knudsen regime and continuum regime can coexist in the pore space. The volume ratio of the two regimes varies with pressure. Thus, as gas pressure decreases, the gas volume controlled by Knudsen regime increases. Under Knudsen regime the resistance to the heat flow is higher than that in the continuum regime, resulting in the observed pressure dependency of the apparent thermal conductivity.

  16. Influence of excipients on characteristics and release profiles of poly(ε-caprolactone) microspheres containing immunoglobulin G.

    PubMed

    Erdemli, Özge; Keskin, Dilek; Tezcaner, Ayşen

    2015-03-01

    Protein instability during microencapsulation has been one of the major drawbacks of protein delivery systems. In this study, the effects of various excipients (poly vinyl alcohol, glucose, starch, heparin) on the stability of encapsulated human immunoglobulin G (IgG) in poly(ε-caprolactone) (PCL) microspheres and on microsphere characteristics were investigated before and after γ-sterilization. Microspheres formulated without any excipients and with glucose had a mean particle size around 3-4μm whereas the mean particle sizes of other microspheres were around 5-6μm. Use of PVA significantly increased the IgG-loading and encapsulation efficiency of microspheres. After γ-irradiation, IgG stability was mostly maintained in the microspheres with excipients compared to microspheres without any excipients. According to the μBCA results, microspheres without any excipient showed a high initial burst release as well as a fast release profile among all groups. Presence of PVA decreased the loss in the activity of IgG released before (completely retained after 6h and 15.69% loss after 7days) and after γ-irradiation (26.04% loss and 52.39% loss after 6h and 7days, respectively). The stabilization effect of PVA on the retention of the activity of released IgG was found more efficient compared to other groups formulated with carbohydrates. PMID:25579939

  17. Release characteristics of reattached barnacles to non-toxic silicone coatings.

    PubMed

    Kim, Jongsoo; Nyren-Erickson, Erin; Stafslien, Shane; Daniels, Justin; Bahr, James; Chisholm, Bret J

    2008-01-01

    Release mechanisms of barnacles (Amphibalanus amphitrite or Balanus amphitrite) reattached to platinum-cured silicone coatings were studied as a function of coating thickness (210-770 microm), elastic modulus (0.08-1.3 MPa), and shear rate (2-22 microm s(-1)). It was found that the shear stress of the reattached, live barnacles necessary to remove from the silicone coatings was controlled by the combined term (E/t)(0.5) of the elastic modulus (E) and thickness (t). As the ratio of the elastic modulus to coating thickness decreased, the barnacles were more readily removed from the silicone coatings, showing a similar release behavior to pseudobarnacles (epoxy glue). The barnacle mean shear stress ranged from 0.017 to 0.055 MPa whereas the pseudobarnacle mean shear stress ranged from 0.022 to 0.095 MPa. PMID:18568668

  18. Characteristics of basal taurine release in the rat striatum measured by microdialysis.

    PubMed

    Molchanova, S; Oja, S S; Saransaari, P

    2004-12-01

    Taurine is a sulfur-containing amino acid thought to be an osmoregulator, neurotransmitter or neuromodulator in the brain. Our objective was to establish how much taurine is released in the striatum and examine the mechanisms controlling extracellular taurine concentrations under resting conditions. The experiments were made on rats by microdialysis in vivo. Changes in taurine were compared with those in glutamate, glycine and the non-neuroactive amino acid threonine. Using the zero net flux approach we showed the extracellular concentration of taurine to be 25.2 +/- 5.1 muM. Glutamate was increased by tetrodotoxin and decreased by Ca2+ omission, glycine and threonine were not affected and both treatments increased extracellular taurine. The basal taurine release was increased by the taurine transport inhibitor guanidinoethanesulfonate and reduced by the anion channel blocker 4-acetamido-4'-isothiocyanatostilbene-2,2'-disulfonic acid. PMID:15549491

  19. Drug release characteristics from nanoclay hybrids and their dispersions in organic polymers.

    PubMed

    Ha, Jin Uk; Xanthos, Marino

    2011-07-29

    This study establishes and compares structure-property-processing relationships on three drug delivery systems containing an anionic active pharmaceutical ingredient (API) in the following excipient carriers: (a) an inorganic anionic nanoclay, (b) pH responsive acrylic polymers, and (c) combinations thereof. The effects of the excipients on the APIs dissolution rate were studied from their release profile in simulated body fluids (SBFs) with different pH. In the API-nanoclay system, calcination of the clay followed by its reconstitution in an API solution was successfully used to intercalate the API in its amorphous state in the clay. As a result, the API showed increased apparent solubility vs. its crystalline form with its release mechanism from the clay being predominantly diffusion controlled and depending on the pH of the SBFs. In melt mixed ternary polymer systems containing the above hybrids, as a result of an additional diffusional step due to presence of nanoplatelets, the API showed a more controlled release vs. polymer systems that contained only API. By comparison to the low pH SBF, the ternary system in the pH 7.4 SBF showed a reduced diffusion contribution due to the presence of clay platelets, the latter unaffected by the high pH value. Reasonable agreement was found with predictions from literature diffusion/erosion models. It is confirmed that hot melt mixing offers opportunities to produce systems with enhanced API apparent solubility. The presence of nanoclays can also increase the API's apparent solubility and affect its release in a controlled manner. PMID:21601624

  20. [Spectral characteristics of dissolved organic matter released during the metabolic process of small medusa].

    PubMed

    Guo, Dong-Hui; Yi, Yue-Yuan; Zhao, Lei; Guo, Wei-Dong

    2012-06-01

    The metabolic processes of jellyfish can produce dissolved organic matter (DOM) which will influence the functioning of the aquatic ecosystems, yet the optical properties of DOM released by jellyfish are unknown. Here we report the absorption and fluorescence properties of DOM released by a medusa species Black fordia virginica during a 24 h incubation experiment. Compared with the control group, an obvious increase in the concentrations of dissolved organic carbon (DOC), absorption coefficient (a280) and total dissolved nitrogen (TDN) was observed in incubation group. This clearly demonstrated the release of DOM, chromophoric DOM (CDOM) and dissolved nutrients by B. virginica which feed on enough of Artemia sp. before the experiment. The increase in spectral slope ratio (SR) and decrease in humification index (HIX) indicated that the released DOM was less-humified and had relatively lower molecular weight. Parallel factor analysis (PARAFAC) decomposed the fluorescence matrices of DOM into three humic-like components (C1-C3) and one protein-like component (C4). The Fmax of two components (C2: < 250, 295/386 nm; C4: 275/334 nm) with the emission wavelength < 400 nm increased significantly during the metabolic process of B. virginica. However, the Fmax of the other two components with the emission wavelength > 400 nm showed little changes. Thus, we suggested a zooplankton index (ZIX) to trace and characterize the DOM excreted by metabolic activity of zooplankton, which is calculated as the ratio of the sum of Fmax of all fluorescence components with the emission wavelength < 400 nm to the sum of Fmax of the other components with the emission wavelength > 400 nm. PMID:22870644

  1. Quantitative measurements of vaporization, burst ionization, and emission characteristics of shaped charge barium releases

    SciTech Connect

    Hoch, E.L.; Hallinan, T.J.; Stenbaek-Nielsen, H.C.

    1994-07-01

    Intensity-calibrated color video recordings of three barium-shaped charge injections in the ionosphere were used to determine the initial ionization, the column density corresponding to unity optical depth, and the yield of vaporized barium in the fast jet. It was found that the initial ionization at the burst was less than 1% and that 0% burst ionization was consistent with the observations. Owing to the Doppler shift, the column density for optical thickness in the neutral barium varies somewhat according to the velocity distribution. For the cases examined here, the column density was 2-5x10{sup 10} atoms/cm{sup 2}. This value, which occurred 12 to 15 s after release, should be approximately valid for most shaped charge experiments. The yield was near 30% (15% in the fast jet) for two of the releases and was somewhat lower in the third, which also had a lower peak velocity. This study also demonstrated the applicability of the computer simulation code developed for chemical releases by Stenbaek-Nielsen and provided experimental verification of the Doppler-corrected emission rates calculated by Stenbaek-Nielsen (1989). 22 refs., 4 figs., 6 tabs.

  2. Interfacial adsorption and surfactant release characteristics of magnetically functionalized halloysite nanotubes for responsive emulsions.

    PubMed

    Owoseni, Olasehinde; Nyankson, Emmanuel; Zhang, Yueheng; Adams, Daniel J; He, Jibao; Spinu, Leonard; McPherson, Gary L; Bose, Arijit; Gupta, Ram B; John, Vijay T

    2016-02-01

    Magnetically responsive oil-in-water emulsions are effectively stabilized by a halloysite nanotube supported superparamagnetic iron oxide nanoparticle system. The attachment of the magnetically functionalized halloysite nanotubes at the oil-water interface imparts magnetic responsiveness to the emulsion and provides a steric barrier to droplet coalescence leading to emulsions that are stabilized for extended periods. Interfacial structure characterization by cryogenic scanning electron microscopy reveals that the nanotubes attach at the oil-water interface in a side on-orientation. The tubular structure of the nanotubes is exploited for the encapsulation and release of surfactant species that are typical of oil spill dispersants such as dioctyl sulfosuccinate sodium salt and polyoxyethylene (20) sorbitan monooleate. The magnetically responsive halloysite nanotubes anchor to the oil-water interface stabilizing the interface and releasing the surfactants resulting in reduction in the oil-water interfacial tension. The synergistic adsorption of the nanotubes and the released surfactants at the oil-water interface results in oil emulsification into very small droplets (less than 20μm). The synergy of the unique nanotubular morphology and interfacial activity of halloysite with the magnetic properties of iron oxide nanoparticles has potential applications in oil spill dispersion, magnetic mobilization and detection using magnetic fields. PMID:26555959

  3. Quantitative measurements of vaporization, burst ionization, and emission characteristics of shaped charge barium releases

    NASA Technical Reports Server (NTRS)

    Hoch, Edward L.; Hallinan, Thomas J.; Stenbaek-Nielsen, Hans C.

    1994-01-01

    Intensity-calibrated color video recordings of three barium-shaped charge injections in the ionopshere were used to determine the initial ionization, the column density corresponding to unity optical depth, and the yield of vaporized barium in the fast jet. It was found that the initial ionization at the burst was less than 1% and that 0% burst ionization was consistent with the observations. Owing to the Doppler shift, the column density for optical thickness in the neutral barium varies somewhat according to the velocity distribution. For the cases examined here, the column density was 2-5 x 10(exp 10) atoms/sq cm. This value, which occurred 12 to 15 s after release, should be approximately valid for most shaped charge experiments. The yield was near 30% (15% in the fast jet) for two of the releases and was somewhat lower in the third, which also had a lower peak velocity. This study also demonstrated the applicability of the computer simulation code developed for chemical releases by Stenbaek-Nielsen and provided experimental verification of the Doppler-corrected emission rates calculated b Stenbaek-Nielsen (1989).

  4. Thermokarst dynamics and soil organic matter characteristics controlling initial carbon release from permafrost soils in the Siberian Yedoma region

    NASA Astrophysics Data System (ADS)

    Weiss, Niels; Blok, Daan; Elberling, Bo; Hugelius, Gustaf; Jørgensen, Christian Juncher; Siewert, Matthias Benjamin; Kuhry, Peter

    2016-07-01

    This study relates soil organic matter (SOM) characteristics to initial soil incubation carbon release from upper permafrost samples in Yedoma region soils of northeastern Siberia, Russia. Carbon (C) and nitrogen (N) content, carbon to nitrogen ratios (C:N), δ13C and δ15N values show clear trends that correspond with SOM age and degree of decomposition. Incubation results indicate that older and more decomposed soil material shows higher C respiration rates per unit incubated C than younger and less decomposed samples with higher C content. This is important as undecomposed material is often assumed to be more reactive upon thawing. Large stocks of SOM and their potential decomposability, in combination with complex landscape dynamics that include one or more events of Holocene thaw in most of the landscape, are of consequence for potential greenhouse gas release from permafrost soils in the Yedoma region.

  5. Selective transport of amino acids into the gas phase: driving forces for amino acid solubilization in gas-phase reverse micelles.

    PubMed

    Fang, Yigang; Bennett, Andrew; Liu, Jianbo

    2011-01-28

    We report a study on encapsulation of various amino acids into gas-phase sodium bis(2-ethylhexyl) sulfosuccinate (NaAOT) reverse micelles, using electrospray ionization guided-ion-beam tandem mass spectrometry. Collision-induced dissociation of mass-selected reverse micellar ions with Xe was performed to probe structures of gas-phase micellar assemblies, identify solute-surfactant interactions, and determine preferential incorporation sites of amino acids. Integration into gas-phase reverse micelles depends upon amino acid hydrophobicity and charge state. For examples, glycine and protonated amino acids (such as protonated tryptophan) are encapsulated within the micellar core via electrostatic interactions; while neutral tryptophan is adsorbed in the surfactant layer. As verified using model polar hydrophobic compounds, the hydrophobic effect and solute-interface hydrogen-bonding do not provide sufficient driving force needed for interfacial solubilization of neutral tryptophan. Neutral tryptophan, with a zwitterionic structure, is intercalated at the micellar interface between surfactant molecules through complementary effects of electrostatic interactions between tryptophan backbone and AOT polar heads, and hydrophobic interactions between tryptophan side chain and AOT alkyl tails. Protonation of tryptophan could significantly improve its incorporation capacity into gas-phase reverse micelles, and displace its incorporation site from the micellar interfacial zone to the core; protonation of glycine, on the other hand, has little effect on its encapsulation capacity. Another interesting observation is that amino acids of different isoelectric points could be selectively encapsulated into, and transported by, reverse micelles from solution to the gas phase, based upon their competition for protonation and subsequent encapsulation within the micellar core. PMID:21140022

  6. Bone regenerating effect of surface-functionalized titanium implants with sustained-release characteristics of strontium in ovariectomized rats.

    PubMed

    Offermanns, Vincent; Andersen, Ole Zoffmann; Riede, Gregor; Andersen, Inge Hald; Almtoft, Klaus Pagh; Sørensen, Søren; Sillassen, Michael; Jeppesen, Christian Sloth; Rasse, Michael; Foss, Morten; Kloss, Frank

    2016-01-01

    Since strontium (Sr) is known for its anabolic and anticatabolic effect on bone, research has been focused on its potential impact on osseointegration. The objective of this study was to investigate the performance of nanotopographic implants with a Sr-functionalized titanium (Ti) coating (Ti-Sr-O) with respect to osseointegration in osteoporotic bone. The trial was designed to examine the effect of sustained-release characteristics of Sr in poor-quality bone. Three Ti-Sr-O groups, which differed from each other in coating thickness, Sr contents, and Sr release, were examined. These were prepared by a magnetron sputtering process and compared to uncoated grade 4 Ti. Composition, morphology, and mechanical stability of the coatings were analyzed, and Sr release data were gained from in vitro washout experiments. In vivo investigation was carried out in an osteoporotic rat model and analyzed histologically, 6 weeks and 12 weeks after implantation. Median values of bone-to-implant contact and new bone formation after 6 weeks were found to be 84.7% and 54.9% (best performing Sr group) as compared to 65.2% and 23.8% (grade 4 Ti reference), respectively. The 12-week observation period revealed 84.3% and 56.5% (best performing Sr group) and 81.3% and 39.4% (grade 4 Ti reference), respectively, for the same measurements. The increase in new bone formation was found to correlate with the amount of Sr released in vitro. The results indicate that sputtered nanostructured Ti-Sr-O coatings showed sustained release of Sr and accelerate osseointegration even in poor-quality bone, and thus, may have impact on practical applications for medical implants. PMID:27313456

  7. Bone regenerating effect of surface-functionalized titanium implants with sustained-release characteristics of strontium in ovariectomized rats

    PubMed Central

    Offermanns, Vincent; Andersen, Ole Zoffmann; Riede, Gregor; Andersen, Inge Hald; Almtoft, Klaus Pagh; Sørensen, Søren; Sillassen, Michael; Jeppesen, Christian Sloth; Rasse, Michael; Foss, Morten; Kloss, Frank

    2016-01-01

    Since strontium (Sr) is known for its anabolic and anticatabolic effect on bone, research has been focused on its potential impact on osseointegration. The objective of this study was to investigate the performance of nanotopographic implants with a Sr-functionalized titanium (Ti) coating (Ti–Sr–O) with respect to osseointegration in osteoporotic bone. The trial was designed to examine the effect of sustained-release characteristics of Sr in poor-quality bone. Three Ti–Sr–O groups, which differed from each other in coating thickness, Sr contents, and Sr release, were examined. These were prepared by a magnetron sputtering process and compared to uncoated grade 4 Ti. Composition, morphology, and mechanical stability of the coatings were analyzed, and Sr release data were gained from in vitro washout experiments. In vivo investigation was carried out in an osteoporotic rat model and analyzed histologically, 6 weeks and 12 weeks after implantation. Median values of bone-to-implant contact and new bone formation after 6 weeks were found to be 84.7% and 54.9% (best performing Sr group) as compared to 65.2% and 23.8% (grade 4 Ti reference), respectively. The 12-week observation period revealed 84.3% and 56.5% (best performing Sr group) and 81.3% and 39.4% (grade 4 Ti reference), respectively, for the same measurements. The increase in new bone formation was found to correlate with the amount of Sr released in vitro. The results indicate that sputtered nanostructured Ti–Sr–O coatings showed sustained release of Sr and accelerate osseointegration even in poor-quality bone, and thus, may have impact on practical applications for medical implants. PMID:27313456

  8. Absolute configuration assignment of a chiral molecule in the gas phase using foil-induced Coulomb explosion imaging

    NASA Astrophysics Data System (ADS)

    Herwig, Philipp; Zawatzky, Kerstin; Schwalm, Dirk; Grieser, Manfred; Heber, Oded; Jordon-Thaden, Brandon; Krantz, Claude; Novotný, Oldřich; Repnow, Roland; Schurig, Volker; Vager, Zeev; Wolf, Andreas; Trapp, Oliver; Kreckel, Holger

    2014-11-01

    Chiral molecules exist in two configurations that are nonsuperposable mirror images of one another. The underlying molecular structure is referred to as the absolute configuration. In chiral environments, the handedness of molecules influences their chemical characteristics dramatically, and therefore the determination of absolute configurations is of fundamental interest in organic chemistry and biology. Commonly applied techniques to assign absolute configuration are anomalous single-crystal x-ray diffraction and vibrational circular dichroism. However, these techniques become increasingly more challenging when applied to molecules that are made out of light atoms exclusively. Furthermore, there is no established method to determine the absolute handedness of gas-phase molecules that are not optically active. In this work, we apply the foil-induced Coulomb explosion imaging technique to determine directly the absolute configuration of the chiral molecule trans-2,3-dideuterooxirane (C2OD2H2) in the gas phase. The experiment leads to the definitive assignment of the (R ,R ) configuration to an enantio-selected dideuterooxirane sample with a statistical confidence of 5 σ . As the handedness of trans-2,3-dideuterooxirane is unambiguously linked by chemical synthesis to the stereochemical key reference glyceraldehyde, our results provide an independent verification of the absolute configuration of the stereochemical reference standard.

  9. Nuclear liquid-gas phase transition at large N{sub c} in the van der Waals approximation

    SciTech Connect

    Torrieri, Giorgio; Mishustin, Igor

    2010-11-15

    We examine the nuclear liquid-gas phase transition at a large number of colors (N{sub c}) within the framework of the van der Waals (VdW) We argue that the VdW equation is appropriate for describing internucleon forces, and discuss how each parameter scales with N{sub c}. We demonstrate that N{sub c}=3 (our world) is not large with respect to the other dimensionless scale relevant to baryonic matter, the number of neighbors in a dense system N{sub N}. Consequently, we show that the liquid-gas phase transition looks dramatically different at N{sub c{yields}{infinity}} with respect to our world: The critical-point temperature becomes of the order of {Lambda}{sub QCD} rather than below it. The critical-point density becomes of the order of the baryonic density, rather than an order of magnitude below it. These are precisely the characteristics usually associated with the ''quarkyonic phase.'' We therefore conjecture that quarkyonic matter is simply the large-N{sub c} limit of the nuclear liquid, and the interplay between N{sub c} and N{sub N} is the reason that the nuclear liquid in our world is so different from quarkyonic matter. We conclude by suggesting ways in which our conjecture can be tested in future lattice measurements.

  10. Stability of lithium superoxide LiO2 in the gas phase: computational study of dimerization and disproportionation reactions.

    PubMed

    Bryantsev, Vyacheslav S; Blanco, Mario; Faglioni, Francesco

    2010-08-12

    Knowledge of the precise molecular mechanisms during the discharge and recharge processes in the lithium-air battery is critical for achieving desired improvements in specific capacity, current density, and cyclability. The initial oxygen reduction product formed in the presence of Li(+) ions is lithium superoxide LiO(2). In this study, we report the computed structures and thermodynamic parameters of LiO(2) dimerization in the gas phase, which enables us to provide a baseline for the reaction free energy profile of the subsequent disproportionation of (LiO(2))(2) to lithium peroxide Li(2)O(2) and O(2). Our calculations identified several low-lying (LiO(2))(2) dimers, with the singlet bipyramidal structure giving IR bands that are consistent with the characteristic IR vibration frequencies of (LiO(2))(2) in the oxygen matrix at T = 15-40 K. The activation barrier for (LiO(2))(2) = Li(2)O(2)+O(2) is 10.9 kcal/mol at the UCCSD(T)/CBS level (T = 298 K), suggesting that in the gas phase LiO(2) and its aggregates could only be observed at low temperatures. PMID:20684589

  11. Processes forming Gas, Tar, and Coke in Cellulose Gasification from Gas-Phase Reactions of Levoglucosan as Intermediate.

    PubMed

    Fukutome, Asuka; Kawamoto, Haruo; Saka, Shiro

    2015-07-01

    The gas-phase pyrolysis of levoglucosan (LG), the major intermediate species during cellulose gasification, was studied experimentally over the temperature range of 400-900 °C. Gaseous LG did not produce any dehydration products, which include coke, furans, and aromatic substances, although these are characteristic products of the pyrolysis of molten LG. Alternatively, at >500 °C, gaseous LG produced only fragmentation products, such as noncondensable gases and condensable C1 -C3 fragments, as intermediates during noncondensable gas formation. Therefore, it was determined that secondary reactions of gaseous LG can result in the clean (tar- and coke-free) gasification of cellulose. Cooling of the remaining LG in the gas phase caused coke formation by the transition of the LG to the molten state. The molecular mechanisms that govern the gas- and molten-phase reactions of LG are discussed in terms of the acid catalyst effect of intermolecular hydrogen bonding to promote the molten-phase dehydration reactions. PMID:26099988

  12. Generation of gas-phase zirconium fluoroanions by electrospray of an ionic liquid

    SciTech Connect

    Gary S. Groenewold; James E. Delmore; Michael T. Benson; Tetsuya Tsuda; Rika Hagiwara

    2014-06-01

    RATIONALE: When measuring extremely wide isotope ratios (= 1 x 109) accelerator mass spectrometry (AMS) is the instrument of choice, however it requires an anion for injection into the tandem accelerator. Since many elements do not have positive electronegativities they do not form stable negative atomic ions, and hence are not compatible for isotope ratio measurement using AMS. Thus new approaches for forming anions are sought; fluoroanions are particularly attractive because fluorine is monoisotopic, and thus will not have overlapping isobars with the isotope of interest. METHODS: An approach is described for making zirconium fluoroanions using the fluorinating ionic liquid (IL) 1-ethyl-3-methylimidazolium fluorohydrogenate, which was used to generate abundant [ZrF5-] using electrospray ionization. The IL was dissolved in acetonitrile, combined with a dilute solution of either Zr4+ or ZrO2+, and then electrosprayed. Mass analysis and collision induced dissociation were conducted using a time-of-flight mass spectrometer. Cluster structures were predicted using density functional theory calculations. RESULTS: The fluorohydrogenate IL solutions generated abundant [ZrF5-] starting from solutions of both Zr4+ and ZrO2+. The mass spectra also contained IL-bearing cluster ions, whose compositions indicated the presence of [ZrF6]2- in solution, a conclusion supported by the structural calculations. Rinsing out the zirconium-IL solution with acetonitrile decreased the IL clusters, but enhanced [ZrF5]-, which was sorbed by the polymeric electrospray supply capillary, and then released upon rinsing. This reduced the ion background in the mass spectrum. CONCLUSIONS: The fluorohydrogenate-IL solutions are a facile way to form zirconium fluoroanions in the gas phase using electrospray. The approach has potential as a source of fluoroanions for injection into an AMS, which would enable high-sensitivity measurement of minor zirconium isotopes, and benefits from the absence of

  13. Antibody Binding Alters the Characteristics and Contents of Extracellular Vesicles Released by Histoplasma capsulatum

    PubMed Central

    Nakayasu, Ernesto S.; Sobreira, Tiago J. P.; Choi, Hyungwon; Casadevall, Arturo; Nimrichter, Leonardo; Nosanchuk, Joshua D.

    2016-01-01

    ABSTRACT Histoplasma capsulatum produces extracellular vesicles containing virulence-associated molecules capable of modulating host machinery, benefiting the pathogen. Treatment of H. capsulatum cells with monoclonal antibodies (MAbs) can change the outcome of infection in mice. We evaluated the sizes, enzymatic contents, and proteomic profiles of the vesicles released by fungal cells treated with either protective MAb 6B7 (IgG1) or nonprotective MAb 7B6 (IgG2b), both of which bind H. capsulatum heat shock protein 60 (Hsp60). Our results showed that treatment with either MAb was associated with changes in size and vesicle loading. MAb treatments reduced vesicle phosphatase and catalase activities compared to those of vesicles from untreated controls. We identified 1,125 proteins in vesicles, and 250 of these manifested differences in abundance relative to that of proteins in vesicles isolated from yeast cells exposed to Hsp60-binding MAbs, indicating that surface binding of fungal cells by MAbs modified protein loading in the vesicles. The abundance of upregulated proteins in vesicles upon MAb 7B6 treatment was 44.8% of the protein quantities in vesicles from fungal cells treated with MAb 6B7. Analysis of orthologous proteins previously identified in vesicles from other fungi showed that different ascomycete fungi have similar proteins in their extracellular milieu, many of which are associated with virulence. Our results demonstrate that antibody binding can modulate fungal cell responses, resulting in differential loading of vesicles, which could alter fungal cell susceptibility to host defenses. This finding provides additional evidence that antibody binding modulates microbial physiology and suggests a new function for specific immunoglobulins through alterations of fungal secretion. IMPORTANCE Diverse fungal species release extracellular vesicles, indicating that this is a common pathway for the delivery of molecules to the extracellular space. However

  14. Antibody Binding Alters the Characteristics and Contents of Extracellular Vesicles Released by Histoplasma capsulatum.

    PubMed

    Matos Baltazar, Ludmila; Nakayasu, Ernesto S; Sobreira, Tiago J P; Choi, Hyungwon; Casadevall, Arturo; Nimrichter, Leonardo; Nosanchuk, Joshua D

    2016-01-01

    Histoplasma capsulatum produces extracellular vesicles containing virulence-associated molecules capable of modulating host machinery, benefiting the pathogen. Treatment of H. capsulatum cells with monoclonal antibodies (MAbs) can change the outcome of infection in mice. We evaluated the sizes, enzymatic contents, and proteomic profiles of the vesicles released by fungal cells treated with either protective MAb 6B7 (IgG1) or nonprotective MAb 7B6 (IgG2b), both of which bind H. capsulatum heat shock protein 60 (Hsp60). Our results showed that treatment with either MAb was associated with changes in size and vesicle loading. MAb treatments reduced vesicle phosphatase and catalase activities compared to those of vesicles from untreated controls. We identified 1,125 proteins in vesicles, and 250 of these manifested differences in abundance relative to that of proteins in vesicles isolated from yeast cells exposed to Hsp60-binding MAbs, indicating that surface binding of fungal cells by MAbs modified protein loading in the vesicles. The abundance of upregulated proteins in vesicles upon MAb 7B6 treatment was 44.8% of the protein quantities in vesicles from fungal cells treated with MAb 6B7. Analysis of orthologous proteins previously identified in vesicles from other fungi showed that different ascomycete fungi have similar proteins in their extracellular milieu, many of which are associated with virulence. Our results demonstrate that antibody binding can modulate fungal cell responses, resulting in differential loading of vesicles, which could alter fungal cell susceptibility to host defenses. This finding provides additional evidence that antibody binding modulates microbial physiology and suggests a new function for specific immunoglobulins through alterations of fungal secretion. IMPORTANCE Diverse fungal species release extracellular vesicles, indicating that this is a common pathway for the delivery of molecules to the extracellular space. However, there has

  15. [Effects of controlled-release fertilizer on chrysanthemum leaf chlorophyll fluorescence characteristics and ornamental quality].

    PubMed

    Song, Xu-xu; Zheng, Cheng-shu; Sun, Xia; Ma, Hai-yan

    2011-07-01

    Taking cut flower chrysanthemum 'Baima' as test material, a pot experiment was conducted to study the effects of controlled-release fertilizer on the leaf chlorophyll fluorescence parameters, chlorophyll and nutrient contents, and ornamental quality of chrysanthemum. Under no fertilization, the maximal photochemical efficiency of PS II in dark (F(v)/F(m)), potential photochemical efficiency of PS II (F(v)/F(0)), and quantum yield of PS II electron transport (phi(PS II)) decreased significantly, compared with those under fertilization. With the application of conventional compound fertilizers CCFA (N:P:K=20:8:10) and CCFB (N:P:K= 14:14:14), the F(v)/F(m), F(v)/F(0) and phi(PS II) had a slight increase in early period (30-60 d) but a remarkable decrease in mid and later periods (75 - 120 d), compared with those under the application of controlled-release fertilizers CRFA (N:P:K = 20:8:10) and CRFB (N:P:K= 14:14:14). Under the application of CRFA, the F(v)/F(m), phi(PS II), and photochemical quenching (q(P)) had somewhat increase, as compared with the application of CRFB. The non-photochemical quenching (NPQ) under the application of CRFA and CRFB decreased significantly, compared with that under the application of CCFA and CCFB and the control. The chlorophyll content had a similar change trend with F(v)/F(m), F(v)/F(0), and phi(PS II). The leaf N, P, and K contents, flower stalk length and stalk diameter, flower diameter, and flower fresh and dry mass at harvest stage all increased under the application of CRFA and CRFB, compared with those under the application of CCFA and CCFB and the control, and the flower fresh and dry mass was significantly higher under the application of CRFA than of CRFB. This study showed that controlled-release fertilizer could improve the ornamental quality of chrysanthemum via improving the leaf chlorophyll content, photochemical transduction rate, and nutrient uptake, and CRFA had better effects than CRFB. PMID:22007449

  16. Drug-loaded electrospun mats of poly(vinyl alcohol) fibres and their release characteristics of four model drugs

    NASA Astrophysics Data System (ADS)

    Taepaiboon, Pattama; Rungsardthong, Uracha; Supaphol, Pitt

    2006-05-01

    Mats of PVA nanofibres were successfully prepared by the electrospinning process and were developed as carriers of drugs for a transdermal drug delivery system. Four types of non-steroidal anti-inflammatory drug with varying water solubility property, i.e. sodium salicylate (freely soluble in water), diclofenac sodium (sparingly soluble in water), naproxen (NAP), and indomethacin (IND) (both insoluble in water), were selected as model drugs. The morphological appearance of the drug-loaded electrospun PVA mats depended on the nature of the model drugs. The 1H-nuclear magnetic resonance results confirmed that the electrospinning process did not affect the chemical integrity of the drugs. Thermal properties of the drug-loaded electrospun PVA mats were analysed by differential scanning calorimetry and thermogravimetric analysis. The molecular weight of the model drugs played a major role on both the rate and the total amount of drugs released from the as-prepared drug-loaded electrospun PVA mats, with the rate and the total amount of the drugs released decreasing with increasing molecular weight of the drugs. Lastly, the drug-loaded electrospun PVA mats exhibited much better release characteristics of the model drugs than drug-loaded as-cast films.

  17. Cold Heat Release Characteristics of Solidified Oil Droplet-Water Solution Latent Heat Emulsion by Air Bubbles

    NASA Astrophysics Data System (ADS)

    Inaba, Hideo; Morita, Shin-Ichi

    The present work investigates the cold heat-release characteristics of the solidified oil droplets (tetradecane, C14H30, freezing point 278.9 K)/water solution emulsion as a latent heat-storage material having a low melting point. An air bubbles-emulsion direct-contact heat exchange method is selected for the cold heat-results from the solidified oil droplet-emulsion layer. This type of direct-contact method results in the high thermal efficiency. The diameter of air bubbles in the emulsion increases as compared with that in the pure water. The air bubbles blown from a nozzle show a strong mixing behavior during rising in the emulsion. The temperature effectiveness, the sensible heat release time and the latent heat release time have been measured as experimental parameters. The useful nondimensional emulsion level equations for these parameters have been derived in terms of the nondimensional emalsion level expressed the emulsion layer dimensions, Reynolds number for air flow, Stefan number and heat capacity ratio.

  18. Morphology, release characteristics, and antimicrobial effect of nisin-loaded electrospun gelatin fiber mat.

    PubMed

    Dheraprasart, Chanuttaporn; Rengpipat, Sirirat; Supaphol, Pitt; Tattiyakul, Jirarat

    2009-11-01

    Gelatin electrospun (e-spun) fiber mats containing nisin were produced by electrostatic spinning of gelatin-nisin in 70% (vol/vol) acetic acid aqueous solutions. Varying nisin loading concentration (0 to 3% [wt/wt]) did not affect the fiber average diameter, whereas increasing gelatin concentration from 20 to 24% (wt/vol) caused an increase in the average diameter. All nisin-loaded gelatin e-spun fiber mats demonstrated inhibition against Lactobacillus plantarum TISTR 850. However, all fiber mats were fragile and easily dissolved in water. Cross-linking by saturated glutaraldehyde vapor at 37 degrees C for 5 min was done to strengthen the mat. Tensile strength, Young's modulus, and elongation of the cross-linked gelatin-nisin e-spun fiber mats varied in the range of 2.6 to 20.3 MPa, 163 to 966 MPa, and 1.7 to 5.9% , respectively. Cross-linking did not affect the mat's inhibition activity against L. plantarum TISTR 850. Nisin retention in cross-linked antimicrobial gelatin e-spun fiber mats was in the range of 1.0 to 1.22% . Increasing temperature caused an increase in nisin release, but increasing water activity did not cause a significant difference in nisin release over 50 h. After storage at 25 degrees C for 5 months, the antimicrobial gelatin e-spun fiber mat still showed inhibition against L. plantarum TISTR 850. The mats also inhibited the growth of Staphylococcus aureus and Listeria monocytogenes but not Salmonella Typhimurium. PMID:19903391

  19. Characteristics of cocaine block of purified cardiac sarcoplasmic reticulum calcium release channels.

    PubMed Central

    Tsushima, R G; Kelly, J E; Wasserstrom, J A

    1996-01-01

    We have examined the effects of cocaine on the SR Ca2+ release channel purified from canine cardiac muscle. Cocaine induced a flicker block of the channel from the cytoplasmic side, which resulted in an apparent reduction in the single-channel current amplitude without a marked reduction in the single-channel open probability. This block was evident only at positive holding potentials. Analysis of the block revealed that cocaine binds to a single site with an effective valence of 0.93 and an apparent dissociation constant at 0 mV (Kd(0)) of 38 mM. The kinetics of cocaine block were analyzed by amplitude distribution analysis and showed that the voltage and concentration dependence lay exclusively in the blocking reaction, whereas the unblocking reaction was independent of both voltage and concentration. Modification of the channel by ryanodine dramatically attenuated the voltage and concentration dependence of the on rates of cocaine block while diminishing the off rates to a lesser extent. In addition, ryanodine modification changed the effective valence of cocaine block to 0.52 and the Kd(0) to 110 mM, suggesting that modification of the channel results in an alteration in the binding site and its affinity for cocaine. These results suggest that cocaine block of the SR Ca2+ release channel is due to the binding at a single site within the channel pore and that modification of the channel by ryanodine leads to profound changes in the kinetics of cocaine block. Images FIGURE 6 PMID:8785282

  20. DISCOVERY OF THE METHOXY RADICAL, CH{sub 3}O, TOWARD B1: DUST GRAIN AND GAS-PHASE CHEMISTRY IN COLD DARK CLOUDS

    SciTech Connect

    Cernicharo, J.; Jimenez-Escobar, A.; Munoz Caro, G. M.; Marcelino, N.; Roueff, E.; Gerin, M.

    2012-11-10

    We report on the discovery of the methoxy radical (CH{sub 3}O) toward the cold and dense core B1-b based on the observation, with the IRAM 30 m radio telescope, of several lines at 3 and 2 mm wavelengths. Besides this new molecular species we also report on the detection of many lines arising from methyl mercaptan (CH{sub 3}SH), formic acid (HCOOH), propynal (HCCCHO), acetaldehyde (CH{sub 3}CHO), dimethyl ether (CH{sub 3}OCH{sub 3}), methyl formate (CH{sub 3}OCOH), and the formyl radical (HCO). The column density of all these species is {approx_equal}10{sup 12} cm{sup -2}, corresponding to abundances of {approx_equal}10{sup -11}. The similarity in abundances for all these species strongly suggest that they are formed on the surface of dust grains and ejected to the gas phase through non-thermal desorption processes, most likely cosmic rays or secondary photons. Nevertheless, laboratory experiments indicate that the CH{sub 3}O isomer released to the gas phase is CH{sub 2}OH rather than the methoxy one. Possible gas-phase formation routes to CH{sub 3}O from OH and methanol are discussed.

  1. Formation of complex organic molecules in cold objects: the role of gas-phase reactions

    NASA Astrophysics Data System (ADS)

    Balucani, Nadia; Ceccarelli, Cecilia; Taquet, Vianney

    2015-04-01

    While astrochemical models are successful in reproducing many of the observed interstellar species, they have been struggling to explain the observed abundances of complex organic molecules. Current models tend to privilege grain surface over gas-phase chemistry in their formation. One key assumption of those models is that radicals trapped in the grain mantles gain mobility and react on lukewarm ( ≳ 30 K) dust grains. Thus, the recent detections of methyl formate (MF) and dimethyl ether (DME) in cold objects represent a challenge and may clarify the respective role of grain-surface and gas-phase chemistry. We propose here a new model to form DME and MF with gas-phase reactions in cold environments, where DME is the precursor of MF via an efficient reaction overlooked by previous models. Furthermore, methoxy, a precursor of DME, is also synthesized in the gas phase from methanol, which is desorbed by a non-thermal process from the ices. Our new model reproduces fairly well the observations towards L1544. It also explains, in a natural way, the observed correlation between DME and MF. We conclude that gas-phase reactions are major actors in the formation of MF, DME and methoxy in cold gas. This challenges the exclusive role of grain-surface chemistry and favours a combined grain-gas chemistry.

  2. Spectroscopic studies of kinetically trapped conformations in the gas phase: the case of triply protonated bradykinin.

    PubMed

    Voronina, Liudmila; Rizzo, Thomas R

    2015-10-21

    Understanding the relation between the gas-phase structure of biological molecules and their solution-phase structure is important when attempting to use gas-phase techniques to address biologically relevant questions. Directly after electrospray ionization, molecules can be kinetically trapped in a state that retains some "memory" of its conformation in solution and is separated from the lowest-energy gas-phase structure by barriers on the potential energy surface. In order to identify and characterize kinetically trapped structures, we have explored the conformational space of triply protonated bradykinin in the gas phase by combining field-asymmetric ion mobility spectrometry (FAIMS) with cold ion spectroscopy. We isolate three distinct conformational families and characterize them by recording their UV-photofragment spectra and vibrational spectra. Annealing of the initial conformational distribution produced by electrospray reveals that one of the conformational families is kinetically trapped, while two others are stable, gas-phase structures. We compare our results to previously published results obtained using drift-tube ion mobility spectrometry (IMS) and propose a correspondence between the conformational families separated by FAIMS and those by IMS. PMID:25940085

  3. Functional and metabolic properties of alveolar macrophages in response to the gas phase of tobacco smoke.

    PubMed Central

    Drath, D B; Shorey, J M; Huber, G L

    1981-01-01

    The effect of whole tobacco smoke and the gas phase of tobacco smoke on the metabolism and phagocytic ability of alveolar macrophages was monitored over a 30-day exposure period. It was demonstrated that both the gas phase and whole tobacco smoke induced a weight loss in exposed rats. Alveolar macrophage oxygen consumption was markedly increased by both exposure regimens. Superoxide generation was not affected by whole tobacco smoke exposure but was increased in response to the filtered gas phase. Hexose monophosphate shunt activity was not altered by either treatment. When metabolic alterations were seen in response to the separate exposures, they were seen only after a phagocytic challenge to the macrophage and not when the cell was unchallenged. Neither whole tobacco smoke nor the gas phase had any significant effect on the ability of alveolar macrophages to phagocytize a viable challenge of Staphylococcus aureus. Our results suggest that many of the metabolic and functional effects of tobacco smoke on alveolar macrophages can be attributed to the gas-phase component of whole tobacco smoke. PMID:6271676

  4. Functional and metabolic properties of alveolar macrophages in response to the gas phase of tobacco smoke.

    PubMed

    Drath, D B; Shorey, J M; Huber, G L

    1981-10-01

    The effect of whole tobacco smoke and the gas phase of tobacco smoke on the metabolism and phagocytic ability of alveolar macrophages was monitored over a 30-day exposure period. It was demonstrated that both the gas phase and whole tobacco smoke induced a weight loss in exposed rats. Alveolar macrophage oxygen consumption was markedly increased by both exposure regimens. Superoxide generation was not affected by whole tobacco smoke exposure but was increased in response to the filtered gas phase. Hexose monophosphate shunt activity was not altered by either treatment. When metabolic alterations were seen in response to the separate exposures, they were seen only after a phagocytic challenge to the macrophage and not when the cell was unchallenged. Neither whole tobacco smoke nor the gas phase had any significant effect on the ability of alveolar macrophages to phagocytize a viable challenge of Staphylococcus aureus. Our results suggest that many of the metabolic and functional effects of tobacco smoke on alveolar macrophages can be attributed to the gas-phase component of whole tobacco smoke. PMID:6271676

  5. Comparison of liquid-phase and gas-phase pure thermal cracking on n-hexadecane

    SciTech Connect

    Wu, G.; Katsumura, Yosuke; Matsuura, Chihiro; Ishigure, Kenkichi; Kubo, Junichi

    1996-12-01

    Thermal cracking of n-hexadecane in the mild temperature (330--375 C) range has been investigated in liquid and gas phases. The kinetic data of liquid-phase cracking are shown to be very similar to those of gas-phase cracking. However, the pattern and distribution of the products are greatly phase dependent. In liquid-phase cracking, there is an equimolar distribution of n-alkane and 1-alkene products in the C{sub 3}--C{sub 13} range at low conversion; when the conversion is increased, more alkanes than alkenes are produced. To the contrary, more alkenes than alkanes are always determined in products from gas-phase cracking. Liquid-phase cracking gives a low selectivity of gas products and a high selectivity of addition compounds (C{sub 18}--C{sub 30}), whereas gas-phase cracking produces a large amount of gas products and no addition compounds. The phase dependence of products can be interpreted in terms of a low concentration of hexadecane, under which {beta}-scission occurs more preferentially than in liquid phase. Reaction mechanisms are suggested based on the product analysis to account for cracking behaviors of liquid-phase and gas-phase cracking.

  6. Structural effect of the in situ generated titania on its ability to oxidize and capture the gas-phase elemental mercury.

    PubMed

    Lee, Tai Gyu; Hyun, Jung Eun

    2006-01-01

    Structural effect of the in situ generated TiO(2) sorbent particle was examined for its ability to capture elemental mercury under UV irradiation in a simulated combustion flue gas. Titania particles were prepared by thermal gas-phase oxidation of Titanium (IV) isopropoxide (TTIP) using a high temperature electric furnace reactor. The structural characteristics of the in situ generated TiO(2) at various synthesis temperatures were investigated; size distribution and the geometric mean diameter were measured using a scanning mobility particle sizer, while fractal dimension and radius of gyration were evaluated from the transmission electron microscopy images. Results from the Hg(0) capture experiment show that with increasing titania synthesis temperature, the overall aggregate size increases and the morphology becomes more open-structured to gas-phase Hg(0) and UV light, resulting in the improved mercury removal capability. PMID:15949836

  7. Photooxygenation and gas-phase reactivity of multiply threaded pseudorotaxanes.

    PubMed

    Nowosinski, Karol; Warnke, Stephan; Pagel, Kevin; Komáromy, Dávid; Jiang, Wei; Schalley, Christoph A

    2016-04-01

    The solution-phase photooxygenation of multiply threaded crown/ammonium pseudorotaxanes containing anthracene spacers is monitored by electrospray ionization Fourier-transform ion-cyclotron-resonance (ESI-FTICR) mass spectrometry. The oxygenated pseudorotaxanes are mass-selected and fragmented by infrared multiphoton dissociation (IRMPD) and/or collision-induced dissociation (CID) experiments and and their behavior compared to that of the non-oxygenated precursors. [4+2]Cycloreversion reactions lead to the loss of O2, when no other reaction channel with competitive energy demand is available. Thus, the release of molecular oxygen can serve as a reference reaction for the energy demand of other fragmentation reactions such as the dissociation of the crown/ammonium binding motifs. The photooxygenation induces curvature into the initially planar anthracene and thus significantly changes the geometry of the divalent, anthracene-spacered wheel. This is reflected in ion-mobility data. Coulomb repulsion in multiply charged pseudorotaxanes assists the oxygen loss as the re-planarization of the anthracene increases the distance between the two charges. PMID:27041657

  8. Dynamical Characteristics of Rydberg Electrons Released by a Weak Electric Field.

    PubMed

    Diesen, Elias; Saalmann, Ulf; Richter, Martin; Kunitski, Maksim; Dörner, Reinhard; Rost, Jan M

    2016-04-01

    The dynamics of ultraslow electrons in the combined potential of an ionic core and a static electric field is discussed. With state-of-the-art detection it is possible to create such electrons through strong intense-field photoabsorption and to detect them via high-resolution time-of-flight spectroscopy despite their very low kinetic energy. The characteristic feature of their momentum spectrum, which emerges at the same position for different laser orientations, is derived and could be revealed experimentally with an energy resolution of the order of 1 meV. PMID:27104706

  9. Dynamical Characteristics of Rydberg Electrons Released by a Weak Electric Field

    NASA Astrophysics Data System (ADS)

    Diesen, Elias; Saalmann, Ulf; Richter, Martin; Kunitski, Maksim; Dörner, Reinhard; Rost, Jan M.

    2016-04-01

    The dynamics of ultraslow electrons in the combined potential of an ionic core and a static electric field is discussed. With state-of-the-art detection it is possible to create such electrons through strong intense-field photoabsorption and to detect them via high-resolution time-of-flight spectroscopy despite their very low kinetic energy. The characteristic feature of their momentum spectrum, which emerges at the same position for different laser orientations, is derived and could be revealed experimentally with an energy resolution of the order of 1 meV.

  10. Dynamical characteristics of Rydberg electrons released by a weak electric field

    DOE PAGESBeta

    Diesen, Elias; Saalmann, Ulf; Richter, Martin; Kunitski, Maksim; Dorner, Reinhard; Rost, Jan M.

    2016-04-08

    This paper discuss the dynamics of ultraslow electrons in the combined potential of an ionic core and a static electric field. With state-of-the-art detection it is possible to create such electrons through strong intense-field photoabsorption and to detect them via high-resolution time-of-flight spectroscopy despite their very low kinetic energy. The characteristic feature of their momentum spectrum, which emerges at the same position for different laser orientations, is derived and could be revealed experimentally with an energy resolution of the order of 1 meV.

  11. Device for two-dimensional gas-phase separation and characterization of ion mixtures

    DOEpatents

    Tang, Keqi; Shvartsburg, Alexandre A.; Smith, Richard D.

    2006-12-12

    The present invention relates to a device for separation and characterization of gas-phase ions. The device incorporates an ion source, a field asymmetric waveform ion mobility spectrometry (FAIMS) analyzer, an ion mobility spectrometry (IMS) drift tube, and an ion detector. In one aspect of the invention, FAIMS operating voltages are electrically floated on top of the IMS drift voltage. In the other aspect, the FAIMS/IMS interface is implemented employing an electrodynamic ion funnel, including in particular an hourglass ion funnel. The present invention improves the efficiency (peak capacity) and sensitivity of gas-phase separations; the online FAIMS/IMS coupling creates a fundamentally novel two-dimensional gas-phase separation technology with high peak capacity, specificity, and exceptional throughput.

  12. Measurement of gas-phase ionic mercury(II) species in ambient air

    SciTech Connect

    Stratton, W.J.; Lindberg, S.E.

    1995-12-31

    One of the important questions in the biogeochemical cycling of mercury is the speciation of mercury in the atmosphere. Although a large fraction of Hg in ambient air is Hg(O), a small fraction is believed to be gas-phase Hg(II). This fraction is highly water-soluble and thus is important to explaining the high concentration of Hg in precipitation. We have developed a novel technique for measuring gas-phase Hg(II), using a high-flow refluxing mist chamber to trap the water-soluble Hg(II) in an aerosol mist. Measured concentrations of gas-phase Hg(II) in ambient air are generally in the range 0.05-0.1 ng/m{sup 3}, or 2-4% of the total gaseous Hg. In this talk, representative data under different atmospheric and geographic conditions will be presented, along with a summary of some of the experimental difficulties and unanswered questions.

  13. Gas phase salt clusters from electrosprayed alkaline earth colloids

    NASA Astrophysics Data System (ADS)

    Pope, R. Marshall; Shen, Nanzhu; Nicoll, Jeremy; Tarnawiecki, Boris; Dejsupa, Chadin; Dearden, David V.

    1997-03-01

    Several distributions of small polynuclear ions of general form [nM + mA + pS]q+ (where M represents an alkaline earth cation (Mg, Ca, Sr or Ba), n = 2-10, A represents a halide, acetate or nitrate counterion originating in the divalent salt, and S represents an acetic acid or methanol adduct) are detected by FTICR when water/methanol solutions of alkaline earth salts are electrosprayed. For example, the largest cluster ion derived from 6.3 mM solutions of calcium acetate acidified with 2%x acetic acid have n= 10, m = 18, p = 5 and q = 2. Characteristics of these solutions suggest the presence of colloidal dispersions. These characteristics include stability upon aging, light scattering response and the requisite pre-etching of the glass containers. Aqueous mixtures of two group II salts produce mixed-salt cluster ions. For instance, from a mixture of calcium and magnesium acetate we trap mixed-cation clusters characterized by a complete set of binary partitions of n, for n = 2-6. Specifically, the manifold of clusters with four cations contains 4:0, 3:1, 2:2, 1:3 and 0:4 ratios of magnesium to calcium. Isolated alkaline earth clusters react with a low-pressure background of 18-crown-6 (C6) by salt abstraction exclusively. In general, the more facile abstraction from a mixed cluster produces a pair of products in which the neutral conforms to the hard-soft acid-base principle. The reactions of C6 with [MgSr(OAc)3]+ provide evidence for the existence of isomeric clusters at m/z 289. This is supported by bimodal kinetics and preliminary results of ab initio calculations.

  14. Amphipols Outperform Dodecylmaltoside Micelles in Stabilizing Membrane Protein Structure in the Gas Phase

    PubMed Central

    2014-01-01

    Noncovalent mass spectrometry (MS) is emerging as an invaluable technique to probe the structure, interactions, and dynamics of membrane proteins (MPs). However, maintaining native-like MP conformations in the gas phase using detergent solubilized proteins is often challenging and may limit structural analysis. Amphipols, such as the well characterized A8-35, are alternative reagents able to maintain the solubility of MPs in detergent-free solution. In this work, the ability of A8-35 to retain the structural integrity of MPs for interrogation by electrospray ionization-ion mobility spectrometry-mass spectrometry (ESI-IMS-MS) is compared systematically with the commonly used detergent dodecylmaltoside. MPs from the two major structural classes were selected for analysis, including two β-barrel outer MPs, PagP and OmpT (20.2 and 33.5 kDa, respectively), and two α-helical proteins, Mhp1 and GalP (54.6 and 51.7 kDa, respectively). Evaluation of the rotationally averaged collision cross sections of the observed ions revealed that the native structures of detergent solubilized MPs were not always retained in the gas phase, with both collapsed and unfolded species being detected. In contrast, ESI-IMS-MS analysis of the amphipol solubilized MPs studied resulted in charge state distributions consistent with less gas phase induced unfolding, and the presence of lowly charged ions which exhibit collision cross sections comparable with those calculated from high resolution structural data. The data demonstrate that A8-35 can be more effective than dodecylmaltoside at maintaining native MP structure and interactions in the gas phase, permitting noncovalent ESI-IMS-MS analysis of MPs from the two major structural classes, while gas phase dissociation from dodecylmaltoside micelles leads to significant gas phase unfolding, especially for the α-helical MPs studied. PMID:25495802

  15. An Unexpected Gas-Phase Binding Motif for Metal Dication Complexation with Peptides: Irmpd Spectroscopic Structure Determination

    NASA Astrophysics Data System (ADS)

    Dunbar, Robert C.; Steill, Jeffrey; Polfer, Nicolas; Berden, Giel; Oomens, Jos

    2011-06-01

    The favorable orientation of the amide linkage and the aromatic side chain of N-terminal Phe or Trp leads to several favorable motifs for metal ion binding to dipeptides, having distinct characteristics in the IR spectrum. Infrared multiple photon photodissociation spectroscopy using the FELIX free electron laser has enabled clear resolution of these isomeric forms. The spectral patterns of complexes of small dications (Mg2+, Ni2+ and Co2+) reveal an unexpected new isomeric form, in which the metal ion displaces the amide hydrogen, forming a metal-nitrogen bond with covalent character which is unprecedented in such gas-phase complexes. Spectra of the ions were acquired by irradiating the cell of the Fourier-transform ion cyclotron resonance mass spectrometer with infrared light from the FELIX laser at wavelengths in the approximate range 500 to 1900 Cm-1.

  16. Gas-phase formation of silicon carbides, oxides, and sulphides from atomic silicon ions

    NASA Technical Reports Server (NTRS)

    Bohme, Diethard K.; Wlodek, Stanislaw; Fox, Arnold

    1989-01-01

    A systematic experimental study of the kinetics and mechanisms of the chemical reactions in the gas phase between ground-state Si(+)2p and a variety of astrophysical molecules. The aim of this study is to identify the reactions which trigger the formation of chemical bonds between silicon and carbon, oxygen and sulphur, and the chemical pathways which lead to further molecular growth. Such knowledge is valuable in the identification of new extraterrestrial silicon-bearing molecules and for an assessment of the gas-phase transition from atomic silicon to silicon carbide and silicate grain particles in carbon-rich and oxygen-rich astrophysical environments.

  17. Gas Phase Spectra and Structural Determination of Glucose 6 Phosphate Using Cryogenic Ion Vibrational Spectroscopy

    NASA Astrophysics Data System (ADS)

    Kregel, Steven J.; Voss, Jonathan; Marsh, Brett; Garand, Etienne

    2014-06-01

    Glucose-6-Phosphate (G6P) is one member of a class of simple phosphorylated sugars that are relevant in biological processes. We have acquired a gas phase infrared spectrum of G6P- using cryogenic ion vibrational spectroscopy (CIVS) in a home-built spectrometer. The experimental spectrum was compared with calculated vibrational spectra from a systematic conformer search. For both of the α and β anomers, results show that only the lowest energy conformers are present in the gas phase. If spectral signatures for similar sugars could be cataloged, it would allow for conformer-specific determination of mixture composition, for example, for glycolyzation processes.

  18. Time-dependent gas phase kinetics in a hydrogen diluted silane plasma

    SciTech Connect

    Nunomura, S.; Kondo, M.; Yoshida, I.

    2009-02-16

    The gas phase kinetics in a high-pressure hydrogen diluted silane plasma has been studied at time scales of 10{sup -2}-6x10{sup 2} s. The time-resolved gas phase composition shows the following kinetics at different time scales: silane decomposition and polysilane generation in < or approx. 2x10{sup -1} s, nanoparticle formation and plasma density reduction in 10{sup -1}-10{sup 0} s, polysilane accumulation in 10{sup 0}-10{sup 2} s, and silane depletion and electrode heating in > or approx. 10{sup 1} s. Disilane radicals are implied to be the dominant film precursors in addition to silyl radicals.

  19. Spray characterization and gas phase interaction downstream of a simplified atomizer

    NASA Astrophysics Data System (ADS)

    Hebrard, P.; Trichet, P.; Millan, P.

    1992-07-01

    A detailed study of the flowfield produced by a simplified airblast atomizer was performed. This atomizer consists of an annular liquid sheet introduced into coflowing nonswirling and swirling air flow fields. Droplet size and velocity were measured in the resultant spray using a two components Phase/Doppler Particle Analyzer. A complete set of measurements was obtained at axial locations from 8 mm to 150 mm downstream from the nozzle. Laser velocimetry was also employed to measure the gas phase properties. The effect of swirl on droplet transport process is examined for this type of airblast atomizer and the results demonstrate the strong influence the spray has on the gas phase.

  20. Study of Hind Limb Tissue Gas Phase Formation in Response to Suspended Adynamia and Hypokinesia

    NASA Technical Reports Server (NTRS)

    Butler, Bruce D.

    1996-01-01

    The purpose of this study was to investigate the hypothesis that reduced joint/muscle activity (hypo kinesia) as well as reduced or null loading of limbs (adynamia) in gravity would result in reduced decompression-induced gas phase and symptoms of decompression sickness (DCS). Finding a correlation between the two phenomena would correspond to the proposed reduction in tissue gas phase formation in astronauts undergoing decompression during extravehicular activity (EVA) in microgravity. The observation may further explain the reported low incidence of DCS in space.

  1. Gas phase investigations of sulfonium salts by electrospray ft-icr/ms

    NASA Astrophysics Data System (ADS)

    Katritzky, Alan R.; Shipkova, Petia A.; Watson, Clifford H.; Eyler, John R.; Kevill, Dennis N.

    1997-11-01

    Twelve sulfonium salts were studied by electrospray Fourier transform ion cyclotron resonance mass spectrometry. Collisionally activated dissociation, CAD, reactions, using neutral argon as the collision gas, were performed to investigate dissociation pathways in the gas phase and to study the stabilizing/destabilizing effects of electron donating/withdrawing substituents on the sulfonium ions. Ion-molecule reactions were attempted to identify SN2 reaction mechanisms, but to date we have detected exclusively SN1-type reactions in the gas phase. Literature reports on the mass spectrometry of sulfonium cations are reviewed.

  2. Control of gas phase nanoparticle shape and its effect on MRI relaxivity

    NASA Astrophysics Data System (ADS)

    Aktaş, Sıtkı; Thornton, Stuart C.; Binns, Chris; Lari, Leonardo; Pratt, Andrew; Kröger, Roland; Horsfield, Mark A.

    2015-03-01

    We have used a sputtering gas aggregation source to produce Fe@FeO nanoparticles with different shapes, by annealing them at different temperatures in the gas phase. Without annealing, the most common shape found for the nanoparticles is cubic but annealing the nanoparticles at 1129 °C transforms the cubes into cuboctahedra. Measurements of the MRI relaxivity show that the cubic nanoparticles have a higher performance by a factor of two, which is attributed to a higher saturation magnetization for this shape. This indicates that the shape-control enabled by gas-phase synthesis is important for obtaining optimal performance in applications.

  3. A pressure cell for nonresonant inelastic x-ray scattering studies of gas phases

    SciTech Connect

    Minzer, M.; Bradley, J. A.; Musgrave, R.; Seidler, G. T.; Skilton, A.

    2008-08-15

    We report the design and performance of a gas-phase sample cell for measurements of momentum transfer (q) dependent nonresonant inelastic x-ray scattering (NRIXS). NRIXS measurements from He gas at 2 MPa (20 bars) readily demonstrate dipole-allowed and dipole-forbidden final states for two-electron excitations. Direct comparison of gas-phase NRIXS measurements with the corresponding nonresonant electron energy loss spectroscopy results (EELS) will be a valuable method for characterizing systematic errors in either technique for studies that require absolute normalization of the double differential cross section.

  4. Atmospheric chemistry of gas-phase polycyclic aromatic hydrocarbons: formation of atmospheric mutagens.

    PubMed Central

    Atkinson, R; Arey, J

    1994-01-01

    The atmospheric chemistry of the 2- to 4-ring polycyclic aromatic hydrocarbons (PAH), which exist mainly in the gas phase in the atmosphere, is discussed. The dominant loss process for the gas-phase PAH is by reaction with the hydroxyl radical, resulting in calculated lifetimes in the atmosphere of generally less than one day. The hydroxyl (OH) radical-initiated reactions and nitrate (NO3) radical-initiated reactions often lead to the formation of mutagenic nitro-PAH and other nitropolycyclic aromatic compounds, including nitrodibenzopyranones. These atmospheric reactions have a significant effect on ambient mutagenic activity, indicating that health risk assessments of combustion emissions should include atmospheric transformation products. PMID:7821285

  5. Time-dependent gas phase kinetics in a hydrogen diluted silane plasma

    NASA Astrophysics Data System (ADS)

    Nunomura, S.; Yoshida, I.; Kondo, M.

    2009-02-01

    The gas phase kinetics in a high-pressure hydrogen diluted silane plasma has been studied at time scales of 10-2-6×102 s. The time-resolved gas phase composition shows the following kinetics at different time scales: silane decomposition and polysilane generation in ≲2×10-1 s, nanoparticle formation and plasma density reduction in 10-1-100 s, polysilane accumulation in 100-102 s, and silane depletion and electrode heating in ≳101 s. Disilane radicals are implied to be the dominant film precursors in addition to silyl radicals.

  6. Conditional Release of Forensic Psychiatric Patients Consistent with or Contrary to Behavioral Experts' Recommendations in the Netherlands: Prevalence Rates, Patient Characteristics and Recidivism After Discharge from Conditional Release.

    PubMed

    Nagtegaal, Maria H; Boonmann, Cyril

    2016-03-01

    The present study examined a group of 447 Dutch forensic psychiatric patients on conditional release (CR). After a brief overview of the Dutch CR system for forensic psychiatric patients is presented, two sets of factors were studied: factors associated with behavioral experts' recommendations on CR readiness (prevalence rates of recommendations in contrast to or consistent with the judge's decision on CR, written vs. oral recommendations and consensus among parties); and characteristics of forensic psychiatric patients on CR imposed consistent with or contrary to behavioral experts' recommendations (i.e., demographic variables, psychopathology, judicial background and outcomes of violent behavior). Patients on CR consistent with or contrary to the behavioral experts' recommendations did not differ in demographic background variables and psychopathology. Patients on CR contrary to the behavioral experts' recommendations, however, had more prior convictions, and their index offense more often included a sex offense and a property offense (with or without violence) as compared to patients on CR consistent with the behavioral experts' recommendations. In addition, decisions contrary to the behavioral experts' recommendations were more often reached after a 3-month continuation adjournment and after an appeal. Also, patients on CR contrary to the behavioral experts' recommendations were less often found to have been on trial leave before their CR. Finally, recidivism rates were found to be much higher for those on CR contrary to, as compared with those on CR consistent with the behavioral experts' recommendations. However, when corrected for other well-known static predictors of recidivism, this significant difference was no longer prevalent. The implications for evaluators' CR readiness reports and lessons that may be learned from the Dutch forensic psychiatric CR system are discussed. Copyright © 2016 John Wiley & Sons, Ltd. PMID:27256002

  7. Gas-phase particle size distributions and lead loss during spray pyrolysis of (Bi,Pb)--Sr--Ca--Cu--O

    SciTech Connect

    Gurav, A.S.; Kodas, T.T.; Joutsensaari, J.; Kauppinen, E.I.; Zilliacus, R.

    1995-07-01

    Gas-phase particle size distributions and lead loss were measured during formation of (Bi,Pb)--Sr--Ca--Cu--O and pure PbO particles by spray pyrolysis at different temperatures. A differential mobility analyzer (DMA) in conjunction with a condensation particle counter (CPC) was used to monitor the gas-phase particle size distributions, and a Berner-type low-pressure impactor was used to obtain mass size distributions and a Berner-type low-pressure impactor was used to obtain mass size distributions and size-classified samples for chemical analysis. For (Bi,Pb)--Sr--Ca--Cu--O, as the processing temperature was raised from 200 to 700 {degree}C, the number average particle size decreased due to metal nitrate decomposition, intraparticle reactions forming mixed-metal oxides and particle densification. The geometric number mean particle diameter was 0.12 {mu}m at 200 {degree}C and reduced to 0.08 and 0.07 {mu}m, respectively, at 700 and 900 {degree}C. When the reactor temperature was raised from 700 and 800 {degree}C to 900 {degree}C, a large number ({similar_to}10{sup 7} no./cm{sup 3}) of new ultrafine particles were formed from PbO vapor released from the particles and the reactor walls. Particles made at temperatures up to 700 {degree}C maintained their initial stoichiometry over the whole range of particle size monitored, however; those made at 800 {degree}C and above were heavily depleted in lead in the size range 0.5--5.0 {mu}m. The evaporative losses of lead oxide from (Bi,Pb)--Sr--Ca--Cu--O particles were compared with the losses from PbO particles to gain insight into the pathways involved in lead loss and the role of intraparticle processes in controlling it.

  8. Development of a technical approach for assessing environmental release and migration characteristics of Hanford Grout

    SciTech Connect

    Serne, R. J.; Treat, R. L.; Lokken, R. O.

    1985-09-01

    A Transportable Grout Facility is being constructed at the Hanford Site to immobilize low-level liquid radioactive waste in grout. This report addresses the grout and sediment testing methodology that is being developed at PNL to support assessments of the long-term performance of the disposed grout. Sediment is the soil that surrounds and underlies the disposed grout. A goal of these efforts is to certify tests for application at Hanford. An assessment of the long-term risks posed by grout requires data on the ability of grout to resist leaching of wastes contained within the grout. Additionally, data are needed on the ability of the sediments to retard the mobility of any wastes released from grout. The effects of aging on the ability of grout to retain waste must also be understood. Aging of grout can reduce or enhance the ability of the grout to contain waste. Credible predictive modeling of the fate of hazardous constituents in disposed grout for periods of up to 10,000 years would best be performed using comprehensive, coupled hydrologic and chemical reaction codes based on knowledge of the mechanisms that control waste release and mobility. It is not clear yet how soon such codes will be available or which types of waste disposal options they will apply to. In the interim we must be content with simpler and separate models that address individual reactions such as leaching and adsorption. One of these models, the Semi-Infinite Solid Diffusion Leach Model, is a popular release model used to describe the leaching of grouts and other cemented waste forms. Because others have found success in describing laboratory leach experiments with cemented waste forms using this leach model and because it appears likely to err on the conservative side for the Hanford application, we currently endorse the use of this model and its supporting experimental methodology for approximations of grout waste release rates. At the present time it is believed that the leachate from

  9. Study of Cold Heat Energy Release Characteristics of Flowing Ice Water Slurry in a Pipe

    NASA Astrophysics Data System (ADS)

    Inaba, Hideo; Horibe, Akihiko; Ozaki, Koichi; Yokota, Maki

    This paper has dealt with melting heat transfer characteristics of ice water slurry in an inside tube of horizontal double tube heat exchanger in which a hot water circulated in an annular gap between the inside and outside tubes. Two kinds of heat exchangers were used; one is made of acrylic resin tube for flow visualization and the other is made of stainless steel tube for melting heat transfer measurement. The result of flow visualization revealed that ice particles flowed along the top of inside tube in the ranges of small ice packing factor and low ice water slurry velocity, while ice particles diffused into the whole of tube and flowed like a plug built up by ice particles for large ice packing factor and high velocity. Moreover, it was found that the flowing ice plug was separated into numbers of small ice clusters by melting phenomenon. Experiments of melting heat transfer were carried out under some parameters of ice packing factor, ice water slurry flow rate and hot water temperature. Consequently, the correlation equation of melting heat transfer was derived as a function of those experimental parameters.

  10. Polymerization in the gas phase, in clusters, and on nanoparticle surfaces.

    PubMed

    El-Shall, M Samy

    2008-07-01

    Gas phase and cluster experiments provide unique opportunities to quantitatively study the effects of initiators, solvents, chain transfer agents, and inhibitors on the mechanisms of polymerization. Furthermore, a number of important phenomena, unique structures, and novel properties may exist during gas-phase and cluster polymerization. In this regime, the structure of the growing polymer may change dramatically and the rate coefficient may vary significantly upon the addition of a single molecule of the monomer. These changes would be reflected in the properties of the oligomers deposited from the gas phase. At low pressures, cationic and radical cationic polymerizations may proceed in the gas phase through elimination reactions. In the same systems at high pressure, however, the ionic intermediates may be stabilized, and addition without elimination may occur. In isolated van der Waals clusters of monomer molecules, sequential polymerization with several condensation steps can occur on a time scale of a few microseconds following the ionization of the gas-phase cluster. The cluster reactions, which bridge gas-phase and condensed-phase chemistry, allow examination of the effects of controlled states of aggregation. This Account describes several examples of gas-phase and cluster polymerization studies where the most significant results can be summarized as follows: (1) The carbocation polymerization of isobutene shows slower rates with increasing polymerization steps resulting from entropy barriers, which could explain the need for low temperatures for the efficient propagation of high molecular weight polymers. (2) Radical cation polymerization of propene can be initiated by partial charge transfer from an ionized aromatic molecule such as benzene coupled with covalent condensation of the associated propene molecules. This novel mechanism leads exclusively to the formation of propene oligomer ions and avoids other competitive products. (3) Structural information

  11. SPECIATION OF GAS-PHASE AND FINE PARTICLE EMISSIONS FROM BURNING OF FOLIAR FUELS: JOURNAL ARTICLE

    EPA Science Inventory

    NRMRL-RTP-P- 620 Hays**, M.D., Geron*, C.D., Linna**, K.J., Smith*, N.D., and Schauer, J.J. Speciation of Gas-Phase and Fine Particle Emissions from Burning of Foliar Fuels. Submitted to: Environmental Science & Technology EPA/600/J-02/234, http://pubs.acs.org/journals/esthag/...

  12. ANALYSIS OF A GAS-PHASE PARTITIONING TRACER TEST CONDUCTED THROUGH FRACTURED MEDIA

    EPA Science Inventory

    The gas-phase partitioning tracer method was used to estimate non-aqueous phase liquid (NAPL), water, and air saturations in the vadose zone at a chlorinated-solvent contaminated field site in Tucson, AZ. The tracer test was conducted in a fractured clay system that is the confin...

  13. CONTINUOUS STIRRED TANK REACTOR INVESTIGATION OF THE GAS-PHASE REACTION OF HYDROXYL RADICALS AND TOLUENE

    EPA Science Inventory

    A continuous stirred tank reactor (CSTR) was used to study the gas phase reaction between HO and toluene. HO was generated by the in situ photolysis of nitrous acid. Flow reactor operation at steady state conditions with a residence time of 20 minutes allowed investigation of pri...

  14. EFFECTS OF RING STRAIN ON GAS-PHASE RATE CONSTANTS. 2. OH RADICAL REACTIONS WITH CYCLOALKENES

    EPA Science Inventory

    Relative rate constants for the gas phase reactions of OH radicals with a series of cycloalkenes have been determined at 298 + or - 2 K, using methyl nitrite photolysis in air as a source of OH radicals. The data show that the rate constants for the nonconjugated cycloalkenes stu...

  15. Probing aerosol formation by comprehensive measurements of gas phase oxidation products

    NASA Astrophysics Data System (ADS)

    Ehn, Mikael; Kleist, Einhard; Junninen, Heikki; Sipilä, Mikko; Petäjä, Tuukka; Pullinen, Iida; Springer, Monika; Andres, Stefanie; Rissanen, Matti; Kontkanen, Jenni; Schobesberger, Siegfried; Rubach, Florian; Tillman, Ralf; Lee, Ben H.; Lopez-Hilfiker, Felipe; Kerminen, Veli-Matti; Kulmala, Markku; Worsnop, Douglas R.; Thornton, Joel; Wildt, Jürgen; Mentel, Thomas F.

    2013-05-01

    A comprehensive suite of chemical ionization mass spectrometers (CIMS) were deployed for chamber studies of monoterpene oxidation. The CIMS instruments were able to detect several different groups of compounds ranging from volatile to practically non-volatile. The compound groups showed very different behavior and correlations with aerosol number and mass. Results suggest that major gas phase contributors are not considered in current models.

  16. A Lithium Amide Protected Against Protonation in the Gas Phase: Unexpected Effect of LiCl.

    PubMed

    Lesage, Denis; Barozzino-Consiglio, Gabriella; Duwald, Romain; Fressigné, Catherine; Harrison-Marchand, Anne; Faull, Kym F; Maddaluno, Jacques; Gimbert, Yves

    2015-06-19

    In cold THF and in the presence of LiCl, a lithium pyrrolidinylamide forms a 1:1 mixed aggregate, which is observed directly by ESI-MS. Gas-phase protonation of this species leads to selective transfer of H(+) to the chlorine, suggesting that LiCl shields the amide nitrogen and prevents its direct protonation. PMID:25997158

  17. CHEMICAL TRANSFORMATION MODULES FOR EULERIAN ACID DEPOSITION MODELS. VOLUME 1. THE GAS-PHASE CHEMISTRY

    EPA Science Inventory

    This study focuses on the review and evaluation of mechanistic and kinetic data for the gas-phase reactions that lead to the production of acidic substances in the environment. A master mechanism is designed that treats oxides, sulfur dioxide, ozone, hydrogen peroxide, ammonia, t...

  18. ADVANCED OXIDATION AND REDUCTION PROCESSES IN THE GAS PHASE USING NON-THERMAL PLASMAS

    EPA Science Inventory

    In the past several years interest in gas-phase pollution control has increased, arising from a larger body of regulations and greater respect for the environment. Advanced oxidation technologies (AOTs), historically used to treat recalcitrant water pollutants via hydroxyl-radica...

  19. ECO LOGIC INTERNATIONAL GAS-PHASE CHEMICAL REDUCTION PROCESS - THE THERMAL DESORPTION UNIT - APPLICATIONS ANALYSIS REPORT

    EPA Science Inventory

    ELI ECO Logic International, Inc.'s Thermal Desorption Unit (TDU) is specifically designed for use with Eco Logic's Gas Phase Chemical Reduction Process. The technology uses an externally heated bath of molten tin in a hydrogen atmosphere to desorb hazardous organic compounds fro...

  20. Bond-Specific Dissociation Following Excitation Energy Transfer for Distance Constraint Determination in the Gas Phase

    PubMed Central

    2015-01-01

    Herein, we report chemistry that enables excitation energy transfer (EET) to be accurately measured via action spectroscopy on gaseous ions in an ion trap. It is demonstrated that EET between tryptophan or tyrosine and a disulfide bond leads to excited state, homolytic fragmentation of the disulfide bond. This phenomenon exhibits a tight distance dependence, which is consistent with Dexter exchange transfer. The extent of fragmentation of the disulfide bond can be used to determine the distance between the chromophore and disulfide bond. The chemistry is well suited for the examination of protein structure in the gas phase because native amino acids can serve as the donor/acceptor moieties. Furthermore, both tyrosine and tryptophan exhibit unique action spectra, meaning that the identity of the donating chromophore can be easily determined in addition to the distance between donor/acceptor. Application of the method to the Trpcage miniprotein reveals distance constraints that are consistent with a native-like fold for the +2 charge state in the gas phase. This structure is stabilized by several salt bridges, which have also been observed to be important previously in proteins that retain native-like structures in the gas phase. The ability of this method to measure specific distance constraints, potentially at numerous positions if combined with site-directed mutagenesis, significantly enhances our ability to examine protein structure in the gas phase. PMID:25174489

  1. Bond-specific dissociation following excitation energy transfer for distance constraint determination in the gas phase.

    PubMed

    Hendricks, Nathan G; Lareau, Nichole M; Stow, Sarah M; McLean, John A; Julian, Ryan R

    2014-09-24

    Herein, we report chemistry that enables excitation energy transfer (EET) to be accurately measured via action spectroscopy on gaseous ions in an ion trap. It is demonstrated that EET between tryptophan or tyrosine and a disulfide bond leads to excited state, homolytic fragmentation of the disulfide bond. This phenomenon exhibits a tight distance dependence, which is consistent with Dexter exchange transfer. The extent of fragmentation of the disulfide bond can be used to determine the distance between the chromophore and disulfide bond. The chemistry is well suited for the examination of protein structure in the gas phase because native amino acids can serve as the donor/acceptor moieties. Furthermore, both tyrosine and tryptophan exhibit unique action spectra, meaning that the identity of the donating chromophore can be easily determined in addition to the distance between donor/acceptor. Application of the method to the Trpcage miniprotein reveals distance constraints that are consistent with a native-like fold for the +2 charge state in the gas phase. This structure is stabilized by several salt bridges, which have also been observed to be important previously in proteins that retain native-like structures in the gas phase. The ability of this method to measure specific distance constraints, potentially at numerous positions if combined with site-directed mutagenesis, significantly enhances our ability to examine protein structure in the gas phase. PMID:25174489

  2. SPECIATION OF GAS-PHASE AND FINE PARTICLE EMISSIONS FROM BURNING OF FOLIAR FUELS

    EPA Science Inventory

    Particle size distributions (10-1000 nm aerodynamic diameter), physical and chemical properties of fine particle matter (PM2.5) with aerodynamic diameter <2.5 micrometers, and gas-phase emissions from controlled open burning of assorted taxa were measured. Chemical speciation of ...

  3. Methylation of 2-Naphthol Using Dimethyl Carbonate under Continuous-Flow Gas-Phase Conditions

    ERIC Educational Resources Information Center

    Tundo, Pietro; Rosamilia, Anthony E.; Arico, Fabio

    2010-01-01

    This experiment investigates the methylation of 2-naphthol with dimethyl carbonate. The volatility of the substrates, products, and co-products allows the reaction to be performed using a continuous-flow gas-phase setup at ambient pressure. The reaction uses catalytic quantities of base, achieves high conversion, produces little waste, and…

  4. Gas phase regioselectivity in the deprotonation of p-cresol radical cation

    NASA Astrophysics Data System (ADS)

    Chiavarino, B.; Crestoni, M. E.; Fornarini, S.

    2003-04-01

    The deprotonation of the radical cation of p-cresol, a model of tyrosine residues, has been studied kinetically in the gas phase. The reaction has revealed the operation of competitive deprotonation sites depending on the strength of the base, as shown by an FT-ICR study using d-labelling.

  5. Chemical studies of elements with Z ⩾ 104 in gas phase

    NASA Astrophysics Data System (ADS)

    Türler, Andreas; Eichler, Robert; Yakushev, Alexander

    2015-12-01

    Chemical investigations of superheavy elements in the gas-phase, i.e. elements with Z ≥ 104, allow assessing the influence of relativistic effects on their chemical properties. Furthermore, for some superheavy elements and their compounds quite unique gas-phase chemical properties were predicted. The experimental verification of these properties yields supporting evidence for a firm assignment of the atomic number. Prominent examples are the high volatility observed for HsO4 or the very weak interaction of Cn with gold surfaces. The unique properties of HsO4 were exploited to discover the doubly-magic even-even nucleus 270Hs and the new isotope 271Hs. The combination of kinematic pre-separation and gas-phase chemistry allowed gaining access to a new class of relatively fragile compounds, the carbonyl complexes of elements Sg through Mt. A not yet resolved issue concerns the interaction of Fl with gold surfaces. While competing experiments agree on the fact that Fl is a volatile element, there are discrepancies concerning its adsorption on gold surfaces with respect to its daughter Cn. The elucidation of these and other questions amounts to the fascination that gas-phase chemical investigations exert on current research at the extreme limits of chemistry today.

  6. SELECTIVE OXIDATION OF ALCOHOLS IN GAS PHASE USING LIGHT-ACTIVATED TITANIUM DIOXIDE

    EPA Science Inventory

    Selective oxidations of various primary and secondary alcohols were studied in a gas phase photochemical reactor using immobilized TiO2 catalyst. An annular photoreactor was used at 463K with an average contact time of 32sec. The system was found to be specifically suited for the...

  7. APPLICATIONS ANALYSIS REPORT: ECO LOGIC INTERNATIONAL GAS-PHASE CHEMICAL REDUCTION PROCESS - THE REACTOR SYSTEM

    EPA Science Inventory

    This report details the Superfund Innovative Technology Evaluation of Eco Logic International's gas-phase chemical reduction process, with an emphasis on their Reactor System. he Eco Logic process employees a high temperature reactor filled with hydrogen gas as the means to destr...

  8. GAS-PHASE OXIDATION PRODUCTS OF BIPHENYL AND POLYCHLORINATED BIPHENYLS (R825377)

    EPA Science Inventory

    Our laboratory recently measured the gas-phase reaction rate constants of
    polychlorinated biphenyls (PCBs) with the hydroxyl radical (OH) and concluded
    that OH reactions are the primary removal pathway of PCBs from the atmosphere.
    With the reaction system previousl...

  9. OH REACTION KINETICS OF GAS-PHASE A- AND G-HEXACHLOROCYCLOHEXANE AND HEXACHLOROBENZENE. (R825377)

    EPA Science Inventory

    Rate constants for the gas-phase reactions of the hydroxyl
    radical (OH) with - and -hexachlorocyclohexane (-
    and DEMONSTRATION BULLETIN: GAS-PHASE CHEMICAL REDUCTION - ECO LOGIC INTERNATIONAL, INC.

    EPA Science Inventory

    The patented Eco Logic Process employs a gas-phase reduction reaction of hydrogen with organic and chlorinated organic compounds at elevated temperatures to convert aqueous and oily hazardous contaminants into a hydrocarbon-rich gas product. After passing through a scrubber, the ...

  10. Gas-phase reaction study of disilane pyrolysis: Applications to low pressure chemical vapor deposition

    SciTech Connect

    Johannes, J.E.; Ekerdt, J.G. . Dept. of Chemical Engineering)

    1994-08-01

    The gas-phase thermal reactions during disilane decomposition at low pressure chemical vapor deposition conditions were studied from 300 to 1,000 K using resonance enhanced multiphoton ionization (REMPI) and multiphoton ionization (MPI). REMPI of gas-phase Si, mass 28, was detected from 640 to 840 K and 1 to 10 Torr, with a maximum signal intensity between 700 to 720 K. During disilane decomposition, no SiH (427.8 nm), SiH[sub 2] (494-515 nm), or SiH[sub 3] (419.0 nm) was detected. MPI of higher silanes, silenes, and silylenes were detected through mass fragments 2, 32, and 60; these species reached a maximum signal intensity 20 degrees prior to the mass-28 maximum. Modeling studies that included a detailed low pressure gas-phase kinetic scheme predict relative gas-phase partial pressures generated during disilane pyrolysis. The model predicted experimental trends in the Si partial pressure and the higher silane, silene, and silylene partial pressures.

  11. Development of a gas phase source for perfluoroalkyl acids to examine atmospheric sampling methods.

    PubMed

    MacInnis, John J; VandenBoer, Trevor C; Young, Cora J

    2016-06-21

    An inability to produce environmentally relevant gaseous mixing ratios of perfluoroalkyl acids (PFAAs), ubiquitous global contaminants, limits the analytical reliability of atmospheric chemists to make accurate gas and particulate measurements that are demonstrably free of interferences due to sampling artefacts. A gas phase source for PFAAs based on the acid displacement mechanism using perfluoropropionate (PFPrA), perfluorobutanoate (PFBA), perfluorohexanoate (PFHxA), and perfluorooctanoate (PFOA) has been constructed. The displacement efficiency of gas phase perfluorocarboxylic acids (PFCAs) is inversely related to chain length. Decreasing displacement efficiencies for PFPrA, PFBA, PFHxA, and PFOA were 90% ± 20%, 40% ± 10%, 40% ± 10%, 9% ± 4%, respectively. Generating detectable amounts of gas phase perfluorosulfonic acids (PFSAs) was not possible. It is likely that lower vapour pressure and much higher acidity play a role in this lack of emission. PFCA emission rates were not elevated by increasing relative humidity (25%-75%), nor flow rate of carrier gas from 33-111 sccm. Overall, reproducible gaseous production of PFCAs was within the error of the production of hydrochloric acid (HCl) as a displacing acid (±20%) and was accomplished using a dry nitrogen flow of 33 ± 2 sccm. A reproducible mass emission rate of 0.97 ± 0.10 ng min(-1) (n = 8) was observed for PFBA. This is equivalent to an atmospheric mixing ratio of 12 ppmv, which is easily diluted to environmentally relevant mixing ratios of PFBA. Conversely, generating gas phase perfluorononanoic acid (PFNA) by sublimating the solid acid under the same conditions produced a mass emission rate of 2800 ng min(-1), which is equivalent to a mixing ratio of 18 ppthv and over a million times higher than suspected atmospheric levels. Thus, for analytical certification of atmospheric sampling methods, generating gas phase standards for PFCAs is best accomplished using acid displacement under dry conditions

  12. Intermolecular interactions of trifluorohalomethanes with Lewis bases in the gas phase: An ab initio study

    SciTech Connect

    Wang, Yi-Siang; Yin, Chih-Chien; Chao, Sheng D.

    2014-10-07

    We perform an ab initio computational study of molecular complexes with the general formula CF{sub 3}X—B that involve one trifluorohalomethane CF{sub 3}X (X = Cl or Br) and one of a series of Lewis bases B in the gas phase. The Lewis bases are so chosen that they provide a range of electron-donating abilities for comparison. Based on the characteristics of their electron pairs, we consider the Lewis bases with a single n-pair (NH{sub 3} and PH{sub 3}), two n-pairs (H{sub 2}O and H{sub 2}S), two n-pairs with an unsaturated bond (H{sub 2}CO and H{sub 2}CS), and a single π-pair (C{sub 2}H{sub 4}) and two π-pairs (C{sub 2}H{sub 2}). The aim is to systematically investigate the influence of the electron pair characteristics and the central atom substitution effects on the geometries and energetics of the formed complexes. The counterpoise-corrected supermolecule MP2 and coupled-cluster single double with perturbative triple [CCSD(T)] levels of theory have been employed, together with a series of basis sets up to aug-cc-pVTZ. The angular and radial configurations, the binding energies, and the electrostatic potentials of the stable complexes have been compared and discussed as the Lewis base varies. For those complexes where halogen bonding plays a significant role, the calculated geometries and energetics are consistent with the σ-hole model. Upon formation of stable complexes, the C–X bond lengths shorten, while the C–X vibrational frequencies increase, thus rendering blueshifting halogen bonds. The central atom substitution usually enlarges the intermolecular bond distances while it reduces the net charge transfers, thus weakening the bond strengths. The analysis based on the σ-hole model is grossly reliable but requires suitable modifications incorporating the central atom substitution effects, in particular, when interaction components other than electrostatic contributions are involved.

  13. The Stability of CI02 as a Product of Gas Phase Decontamination Treatments

    SciTech Connect

    D. W. Simmons

    1994-09-01

    The gas phase decontamination project is investigating the use of chlorine trifluoride (ClF{sub 3}) to fluorinate nonvolatile uranium deposits to produce uranium hexafluoride (UF{sub 6}) gas. The potential existence of chlorine dioxide (ClO{sub 2}) during gas phase decontamination with ClF{sub 3} has been the subject of recent safety discussions. Some of the laboratory data collected during feasibility studies of the gas phase process has been evaluated for the presence of ClO{sub 2} in the product gas stream. The preliminary evidence to date can be summarized as follows: (1) ClO{sub 2} was not detected in the flow loop in the absence of ClF{sub 3}; (2) ClO{sub 2} was not detected in the static reactors in the absence of both ClF{sub 3} and ClF; and (3) ClO{sub 2} was detected in a static reactor in the absence of all fluorinating gases. The experimental evidence suggests that ClO{sub 2} will not exist in the presence of ClF{sub 3}, ClF, or UF{sub 6}. The data analyzed to date is insufficient to determine the stability of ClO{sub 2} in the presence of ClO{sub 2}F. Thermodynamic calculations of the ClF{sub 3} + H{sub 2}O system support the experimental evidence, and suggest that ClO{sub 2} will not exist in the presence of ClO{sub 2}F. Additional experimental efforts are needed to provide a better understanding of the gas phase ClF{sub 3} treatments and the product gases. However, preliminary evidence to date suggests that ClO{sub 2} should not be present as a product during the normal operations of the gas phase decontamination project.

  14. Novel characterization of the aerosol and gas-phase composition of aerosolized jet fuel.

    PubMed

    Tremblay, Raphael T; Martin, Sheppard A; Fisher, Jeffrey W

    2010-04-01

    Few robust methods are available to characterize the composition of aerosolized complex hydrocarbon mixtures. The difficulty in separating the droplets from their surrounding vapors and preserving their content is challenging, more so with fuels, which contain hydrocarbons ranging from very low to very high volatility. Presented here is a novel method that uses commercially available absorbent tubes to measure a series of hydrocarbons in the vapor and droplets from aerosolized jet fuels. Aerosol composition and concentrations were calculated from the differential between measured total (aerosol and gas-phase) and measured gas-phase concentrations. Total samples were collected directly, whereas gas-phase only samples were collected behind a glass fiber filter to remove droplets. All samples were collected for 1 min at 400 ml min(-1) and quantified using thermal desorption-gas chromatography-mass spectrometry. This method was validated for the quantification of the vapor and droplet content from 4-h aerosolized jet fuel exposure to JP-8 and S-8 at total concentrations ranging from 200 to 1000 mg/m(3). Paired samples (gas-phase only and total) were collected every approximately 40 min. Calibrations were performed with neat fuel to calculate total concentration and also with a series of authentic standards to calculate specific compound concentrations. Accuracy was good when compared to an online GC-FID (gas chromatography-flame ionization detection) technique. Variability was 15% or less for total concentrations, the sum of all gas-phase compounds, and for most specific compound concentrations in both phases. Although validated for jet fuels, this method can be adapted to other hydrocarbon-based mixtures. PMID:20218763

  15. The role of gas phase reactions in the deflagration-to-detonation transition of high energy propellants

    NASA Technical Reports Server (NTRS)

    Boggs, T. L.; Price, C. F.; Atwood, A. I.; Zurn, D. E.; Eisel, J. L.; Derr, R. L.

    1980-01-01

    The inadequacies of the two commonly used assumptions are shown, along with the need for considering gas phase reactions. Kinetic parameters that describe the gas phase reactions for several ingredients are provided, and the first steps in convective combustion leading to deflagration to detonation transition are described.

  16. MOLECULAR SPECTROSCPY AND REACTIONS OF ACTINIDES IN THE GAS PHASE AND CRYOGENIC MATRICES

    SciTech Connect

    Heaven, Michael C.; Gibson, John K.; Marcalo, Joaquim

    2009-02-01

    In this chapter we review the spectroscopic data for actinide molecules and the reaction dynamics for atomic and molecular actinides that have been examined in the gas phase or in inert cryogenic matrices. The motivation for this type of investigation is that physical properties and reactions can be studied in the absence of external perturbations (gas phase) or under minimally perturbing conditions (cryogenic matrices). This information can be compared directly with the results from high-level theoretical models. The interplay between experiment and theory is critically important for advancing our understanding of actinide chemistry. For example, elucidation of the role of the 5f electrons in bonding and reactivity can only be achieved through the application of experimentally verified theoretical models. Theoretical calculations for the actinides are challenging due the large numbers of electrons that must be treated explicitly and the presence of strong relativistic effects. This topic has been reviewed in depth in Chapter 17 of this series. One of the goals of the experimental work described in this chapter has been to provide benchmark data that can be used to evaluate both empirical and ab initio theoretical models. While gas-phase data are the most suitable for comparison with theoretical calculations, there are technical difficulties entailed in generating workable densities of gas-phase actinide molecules that have limited the range of species that have been characterized. Many of the compounds of interest are refractory, and problems associated with the use of high temperature vapors have complicated measurements of spectra, ionization energies, and reactions. One approach that has proved to be especially valuable in overcoming this difficulty has been the use of pulsed laser ablation to generate plumes of vapor from refractory actinide-containing materials. The vapor is entrained in an inert gas, which can be used to cool the actinide species to room

  17. Gas-phase chemistry in dense interstellar clouds including grain surface molecular depletion and desorption

    NASA Technical Reports Server (NTRS)

    Bergin, E. A.; Langer, W. D.; Goldsmith, P. F.

    1995-01-01

    We present time-dependent models of the chemical evolution of molecular clouds which include depletion of atoms and molecules onto grain surfaces and desorption, as well as gas-phase interactions. We have included three mechanisms to remove species from the grain mantles: thermal evaporation, cosmic-ray-induced heating, and photodesorption. A wide range of parameter space has been explored to examine the abundance of species present both on the grain mantles and in the gas phase as a function of both position in the cloud (visual extinction) and of evolutionary state (time). The dominant mechanism that removes molecules from the grain mantles is cosmic-ray desorption. At times greater than the depletion timescale, the abundances of some simple species agree with abundances observed in the cold dark cloud TMC-1. Even though cosmic-ray desorption preserves the gas-phase chemistry at late times, molecules do show significant depletions from the gas phase. Examination of the dependence of depletion as a function of density shows that when the density increases from 10(exp 3)/cc to 10(exp 5)/cc several species including HCO(+), HCN, and CN show gas-phase abundance reductions of over an order of magnitude. The CO: H2O ratio in the grain mantles for our standard model is on the order of 10:1, in reasonable agreement with observations of nonpolar CO ice features in rho Ophiuchus and Serpens. We have also examined the interdependence of CO depletion with the space density of molecular hydrogen and binding energy to the grain surface. We find that the observed depletion of CO in Taurus in inconsistent with CO bonding in an H2O rich mantle, in agreement with observations. We suggest that if interstellar grains consist of an outer layer of CO ice, then the binding energies for many species to the grain mantle may be lower than commonly used, and a significant portion of molecular material may be maintained in the gas phase.

  18. Sulfur doping of diamond films: Spectroscopic, electronic, and gas-phase studies

    NASA Astrophysics Data System (ADS)

    Petherbridge, James R.; May, Paul W.; Fuge, Gareth M.; Robertson, Giles F.; Rosser, Keith N.; Ashfold, Michael N. R.

    2002-03-01

    Chemical vapor deposition (CVD) has been used to grow sulfur doped diamond films on undoped Si and single crystal HPHT diamond as substrates, using a 1% CH4/H2 gas mixture with various levels of H2S addition (100-5000 ppm), using both microwave (MW) plasma enhanced CVD and hot filament (HF) CVD. The two deposition techniques yield very different results. HFCVD produces diamond films containing only trace amounts of S (as analyzed by x-ray photoelectron spectroscopy), the film crystallinity is virtually unaffected by gas phase H2S concentration, and the films remain highly resistive. In contrast, MWCVD produces diamond films with S incorporated at levels of up to 0.2%, and the amount of S incorporation is directly proportional to the H2S concentration in the gas phase. Secondary electron microscopy observations show that the crystal quality of these films reduces with increasing S incorporation. Four point probe measurements gave the room temperature resistivities of these S-doped and MW grown films as ˜200 Ω cm, which makes them ˜3 times more conductive than undoped diamond grown under similar conditions. Molecular beam mass spectrometry has been used to measure simultaneously the concentrations of the dominant gas phase species present during growth, for H2S doping levels (1000-10 000 ppm in the gas phase) in 1% CH4/H2 mixtures, and for 1% CS2/H2 gas mixtures, for both MW and HF activation. CS2 and CS have both been detected in significant concentrations in all of the MW plasmas that yield S-doped diamond films, whereas CS was not detected in the gas phase during HF growth. This suggests that CS may be an important intermediary facilitating S incorporation into diamond. Furthermore, deposition of yellow S was observed on the cold chamber walls when using H2S concentrations >5000 ppm in the MW system, but very little S deposition was observed for the HF system under similar conditions. All of these results are rationalized by a model of the important gas phase

  19. Gas phase versus surface contributions to photolytic laser chemical vapor deposition rates

    NASA Astrophysics Data System (ADS)

    Braichotte, D.; van den Bergh, H.

    1988-04-01

    The rate of cw photolytic laser chemical vapor deposition (LCVD) of platinum is measured for λ≈350 nm as a function of the light intensity and the metalorganic vapor pressure. The growth of the metal films is studied in situ and in real time by monitoring their optical transmission. At low intensities the transmitted light decreases monotonically with time, and the LCVD process is photolytic with its rate limiting step in the surface adlayer. At higher intensities we observe two distinct time domains: Relatively slow initial photolytic deposition with its rate limiting step in the gas phase, which is followed by much faster pyrolytic LCVD. An improved method for distinguishing between adlayer and gas-phase limiting processes is demonstrated. These observations are confirmed by studying the photolytic deposition rates while varying the thickness of the adlayer.

  1. Theoretical Study of the Pyrolysis of Methyltrichlorosilane in the Gas Phase. 1.Thermodynamics

    SciTech Connect

    Ge, Yingbin; Gordon, Mark S.; Battaglia, Francine; Fox, Rodney O.

    2007-03-01

    Structures and energies of the gas-phase species produced during and after the various unimolecular decomposition reactions of methyltrichlorosilane (MTS) with the presence of H2 carrier gas were determined using second-order perturbation theory (MP2). Single point energies were obtained using singles + doubles coupled cluster theory, augmented by perturbative triples, CCSD(T). Partition functions were obtained using the harmonic oscillator-rigid rotor approximation. A 114-reaction mechanism is proposed to account for the gas-phase chemistry of MTS decompositions. Reaction enthalpies, entropies, and Gibbs free energies for these reactions were obtained at 11 temperatures ranging from 0 to 2000 K including room temperature and typical chemical vapor deposition (CVD) temperatures. Calculated and experimental thermodynamic properties such as heat capacities and entropies of various species and reaction enthalpies are compared, and theory is found to provide good agreement with experiment.

  2. Supramolecular reactivity in the gas phase: investigating the intrinsic properties of non-covalent complexes.

    PubMed

    Cera, Luca; Schalley, Christoph A

    2014-03-21

    The high vacuum inside a mass spectrometer offers unique conditions to broaden our view on the reactivity of supramolecules. Because dynamic exchange processes between complexes are efficiently suppressed, the intrinsic and intramolecular reactivity of the complexes of interest is observed. Besides this, the significantly higher strength of non-covalent interactions in the absence of competing solvent allows processes to occur that are unable to compete in solution. The present review highlights a series of examples illustrating different aspects of supramolecular gas-phase reactivity ranging from the dissociation and formation of covalent bonds in non-covalent complexes through the reactivity in the restricted inner phase of container molecules and step-by-step mechanistic studies of organocatalytic reaction cycles to cage contraction reactions, processes induced by electron capture, and finally dynamic molecular motion within non-covalent complexes as unravelled by hydrogen-deuterium exchange processes performed in the gas phase. PMID:24435245

  3. Activation of gas-phase uranyl: from an oxo to a nitrido complex.

    PubMed

    Gong, Yu; Vallet, Valérie; Michelini, Maria del Carmen; Rios, Daniel; Gibson, John K

    2014-01-01

    The uranyl moiety, UO2(2+), is ubiquitous in the chemistry of uranium, the most prevalent actinide. Replacing the strong uranium-oxygen bonds in uranyl with other ligands is very challenging, having met with only limited success. We report here uranyl oxo bond activation in the gas phase to form a terminal nitrido complex, a previously elusive transformation. Collision induced dissociation of gas-phase UO2(NCO)Cl2(-) in an ion trap produced the nitrido oxo complex, NUOCl2(-), and CO2. NUOCl2(-) was computed by DFT to have Cs symmetry and a singlet ground state. The computed bond length and order indicate a triple U-N bond. Endothermic activation of UO2(NCO)Cl2(-) to produce NUOCl2(-) and neutral CO2 was computed to be thermodynamically more favorable than NCO ligand loss. Complete reaction pathways for the CO2 elimination process were computed at the DFT level. PMID:24354492

  4. Properties of clusters in the gas phase. V - Complexes of neutral molecules onto negative ions

    NASA Technical Reports Server (NTRS)

    Keesee, R. G.; Lee, N.; Castleman, A. W., Jr.

    1980-01-01

    Ion-molecules association reactions of the form A(-)(B)n-1 + B = A(-)(B)n were studied over a range of temperatures in the gas phase using high pressure mass spectrometry. Enthalpy and entropy changes were determined for the stepwise clustering reactions of (1) sulfur dioxide onto Cl(-), I(-), and NO2(-) with n ranging from one to three or four, and onto SO2(-) and SO3(-) with n equal to one; and (2) carbon dioxide onto Cl(-), I(-), NO2(-), CO3(-), and SO3(-) with n equal to one. From these data and earlier hydration results, the order of the magnitude of the enthalpy changes on the association of the first neutral for a series of negative ions was found to parallel the gas-phase basicity of those anions.

  5. Unusual hydroxyl migration in the fragmentation of β-alanine dication in the gas phase.

    PubMed

    Piekarski, Dariusz Grzegorz; Delaunay, Rudy; Maclot, Sylvain; Adoui, Lamri; Martín, Fernando; Alcamí, Manuel; Huber, Bernd A; Rousseau, Patrick; Domaracka, Alicja; Díaz-Tendero, Sergio

    2015-07-14

    We present a combined experimental and theoretical study of the fragmentation of doubly positively charged β-alanine molecules in the gas phase. The dissociation of the produced dicationic molecules, induced by low-energy ion collisions, is analysed by coincidence mass spectrometric techniques; the coupling with ab initio molecular dynamics simulations allows rationalisation of the experimental observations. The present strategy gives deeper insights into the chemical mechanisms of multiply charged amino acids in the gas phase. In the case of the β-alanine dication, in addition to the expected Coulomb explosion and hydrogen migration processes, we have found evidence of hydroxyl-group migration, which leads to unusual fragmentation products, such as hydroxymethyl cation, and is necessary to explain some of the observed dominant channels. PMID:26035826

  6. Anchoring the gas-phase acidity scale: From formic acid to methanethiol

    NASA Astrophysics Data System (ADS)

    Eyet, Nicole; Villano, Stephanie M.; Bierbaum, Veronica M.

    2009-06-01

    We have measured the gas-phase acidities of nine compounds: formic acid, acetic acid, 1,3-propanedithiol, 2-methyl-2-propanethiol, 3-methyl-1-butanethiol, 2-propanethiol, 1-propanethiol, ethanethiol, and methanethiol, with acidities ranging from 338.6 to 351.1 kcal mol-1 using proton transfer kinetics and the resulting equilibrium constants. These acids were anchored to the well-known acidity of hydrogen sulfide; the measured acidities are in good agreement with previous experimental values, but error bars are significantly reduced. The gas-phase acidity of 3-methyl-1-butanethiol was determined to be 347.1 (5) kcal mol-1; there were no previous measurements of this value. Entropies of deprotonation were calculated and enthalpies of deprotonation were determined.

  7. Gas-phase acidities of tetrahedral oxyacids from ab initio electronic structure theory

    SciTech Connect

    Rustad, J.R.; Dixon, D.A.; Kubicki, J.D.; Felmy, A.R.

    2000-05-04

    Density functional calculations have been performed on several protonation states of the oxyacids of Si, P, V, As, Cr, and S. Structures and vibrational frequencies are in good agreement with experimental values where these are available. A reasonably well-defined correlation between the calculated gas-phase acidities and the measured pK{sub a} in aqueous solution has been found. The pK{sub a}/gas-phase acidity slopes are consistent with those derived from previous molecular mechanics calculations on ferric hydrolysis and the first two acidity constants for orthosilicic acid. The successive deprotonation of other H{sub n}TO{sub 4} species, for a given tetrahedral anion T are roughly consistent with this slope, but not to the extent that there is a universal correlation among all species.

  8. Fundamental studies of gas phase ionic reactions by ion mobility spectrometry

    NASA Technical Reports Server (NTRS)

    Giles, K.; Knighton, W. B.; Sahlstrom, K. E.; Grimsrud, E. P.

    1995-01-01

    Ion mobility spectrometry (IMS) provides a promising approach to the study of gas phase ionic reactions in buffer gases at unusually high pressures. This point is illustrated here by studies of the Sn2 nucleophilic displacement reaction, Cl(-) + CH3Br yields Br + CH3Br, using IMS at atmospheric pressure. The equilibrium clustering reaction, Cl(-)(CHCI3)(n - 1) + CHCI3 yields Cl(-)(CHCI3)(n), where n = 1 and 2, and the effect of clustering on the Sn2 reaction with CH3Br have also been characterized by this IMS-based kinetic method. Present problems and anticipated improvements in the application of ion mobility spectrometry to studies of other gas phase ionic processes are discussed.

  9. Polar Effects Control the Gas-phase Reactivity of Charged para-Benzyne Analogs

    PubMed Central

    Wittrig, Ashley M.; Archibold, Enada F.; Sheng, Huaming; Nash, John J.; Kenttämaa, Hilkka I.

    2014-01-01

    The gas-phase reactivity of charged para-benzynes is entirely unexplored as they and/or their precursors tend to undergo ring-opening upon their generation. We report here a gas-phase reactivity study of two such benzynes, the 2,5-didehydropyridinium and 5,8-didehydroisoquinolinium cations, generated in a modified dual-linear quadrupole ion trap (DLQIT) mass spectrometer. Both biradicals were found to form diagnostic products with organic molecules, indicating the presence of two radical sites. As opposed to earlier predictions that the singlet-triplet (S-T) splitting controls the radical reactivity of such species, the 2,5-didehydropyridinium cation reacts much faster in spite of its larger S-T splitting. Calculated vertical electron affinities of the radical sites of the para-benzynes, a parameter related to the polarity of the transition states of their reactions, appears to be the most important reactivity controlling factor. PMID:25838787

  10. Kinetics and mechanisms of UV-photodegradation of chlorinated organics in the gas phase.

    PubMed

    Feiyan, Chen; Pehkonen, S O; Ray, Madhumita B

    2002-10-01

    Over the last two decades, the application of photodegradation for the destruction of a wide spectrum of organic compounds in air has gained considerable interest in abating environmental pollution. This paper presents the results of a fundamental study conducted to evaluate the gas phase oxidation kinetics of volatile organic compounds (VOCs) with respect to different parameters pertinent to the operating conditions of air stripping and soil vapor extraction processes. Photodegradations of three chlorinated VOCs: chloroform, carbon tetrachloride (CTC) and trichloroethylene (TCE), were investigated in a semi-batch reactor using a low-pressure mercury UV lamp. The effects of different experimental parameters, such as the initial concentrations of the VOCs, the reaction medium, relative humidity, light intensity, temperature and the effect of mixture that may influence the kinetics of the gas phase photodegradation were evaluated. Mechanisms of photodegradation as supported by the experimental data are also proposed. PMID:12420925

  11. Gas-Phase Femtosecond Particle Spectroscopy: A Bottom-Up Approach to Nucleotide Dynamics.

    PubMed

    Stavros, Vasilios G; Verlet, Jan R R

    2016-05-27

    We summarize how gas-phase ultrafast charged-particle spectroscopy has been used to provide an understanding of the photophysics of DNA building blocks. We focus on adenine and discuss how, following UV excitation, specific interactions determine the fates of its excited states. The dynamics can be probed using a systematic bottom-up approach that provides control over these interactions and that allows ever-larger complexes to be studied. Starting from a chromophore in adenine, the excited state decay mechanisms of adenine and chemically substituted or clustered adenine are considered and then extended to adenosine mono-, di-, and trinucleotides. We show that the gas-phase approach can offer exquisite insight into the dynamics observed in aqueous solution, but we also highlight stark differences. An outlook is provided that discusses some of the most promising developments in this bottom-up approach. PMID:26980306

  12. Investigation of gas-phase decontamination of internally radioactively contaminated gaseous diffusion process equipment and piping

    SciTech Connect

    Bundy, R.D.; Munday, E.B.

    1991-01-01

    Construction of the gaseous diffusion plants (GDPs) was begun during World War 2 to produce enriched uranium for defense purposes. These plants, which utilized UF{sub 6} gas, were used primarily for this purpose through 1964. From 1959 through 1968, production shifted primarily to uranium enrichment to supply the nuclear power industry. Additional UF{sub 6}-handling facilities were built in feed and fuel-processing plants associated with the uranium enrichment process. Two of the five process buildings at Oak ridge were shut down in 1964. Uranium enrichment activities at Oak Ridge were discontinued altogether in 1985. In 1987, the Department of Energy (DOE) decided to proceed with a permanent shutdown of the Oak Ridge Gaseous Diffusion Plant (ORGDP). DOE intends to begin decommissioning and decontamination (D D) of ORGDP early in the next century. The remaining two GDPs are expected to be shut down during the next 10 to 40 years and will also require D D, as will the other UF{sub 6}-handling facilities. This paper presents an investigation of gas- phase decontamination of internally radioactively contaminated gaseous diffusion process equipment and piping using powerful fluorinating reagents that convert nonvolatile uranium compounds to volatile UF{sub 6}. These reagents include ClF{sub 3}, F{sub 2}, and other compounds. The scope of D D at the GDPs, previous work of gas-phase decontamination, four concepts for using gas-phase decontamination, plans for further study of gas-phase decontamination, and the current status of this work are discussed. 13 refs., 15 figs.

  13. Microwave detection of the primary ozonide of ethylene in the gas phase

    NASA Astrophysics Data System (ADS)

    Zozom, J.; Gillies, C. W.; Suenram, R. D.; Lovas, F. J.

    1987-09-01

    The primary ozonide of ethylene ? has been observed and studied in the gas phase for the first time. A specially designed low-temperature absorption cell was employed in which the primary ozonide was prepared in situ by the low-temperature reaction of ozone with ethylene. An assignment of the rotational spectrum and electric dipole moment measurements have established the oxygen envelope conformation (C s symmetry) to the lowest-energy form for this elusive chemical species.

  14. GAS PHASE MOLECULAR DYNAMICS: HIGH-RESOLUTION SPECTROSCOPIC PROBES OF CHEMICAL DYNAMICS.

    SciTech Connect

    HALL, G.E.

    2006-05-30

    This research is carried out as part of the Gas Phase Molecular Dynamics group program in the Chemistry Department at Brookhaven National Laboratory. High-resolution spectroscopic tools are developed and applied to problems in chemical dynamics. Recent topics have included the state-resolved studies of collision-induced electronic energy transfer, dynamics of barrierless unimolecular reactions, and the kinetics and spectroscopy of transient species.

  15. a Nucleoside Under Observation in the Gas Phase: a Rotational Study of Uridine

    NASA Astrophysics Data System (ADS)

    Peña, Isabel; Alonso, José L.

    2014-06-01

    The nucleoside of uridine has been placed in the gas phase by laser ablation and the most stable C2{'}-anti conformation characterized by broadband chirped pulse (CP-FTMW) and narrowband molecular beam Fourier transform microwave (LA-MB-FTMW) spectroscopies. The quadrupole hyperfine structure, originated by two 14N nuclei, has been completely resolved. Intramolecular hydrogen bonds involving uracil and ribose moieties have been found to play an important role in the stabilization of the nucleoside.

  16. Gas phase heterogeneous catalytic oxidation of alkanes to aliphatic ketones and/or other oxygenates

    SciTech Connect

    Lin, Manhua; Wang, Xiang; Yeom, Younghoon

    2015-03-17

    A catalyst, its method of preparation and its use for producing aliphatic ketones by subjecting alkanes C.sub.3 to C.sub.9 to a gas phase catalytic oxidation in the presence of air or oxygen, and, optionally, steam and/or one or more diluting gases. The catalyst comprises a catalytically active mixed metal oxide phase and a suitable support material onto and/or into which the active catalytic phase id dispersed.

  17. Gas phase heterogeneous catalytic oxidation of alkanes to aliphatic ketones and/or other oxygenates

    SciTech Connect

    Lin, Manhua; Wang, Xiang; Yeom, Younghoon

    2015-09-29

    A catalyst, its method of preparation and its use for producing aliphatic ketones by subjecting alkanes C.sub.3 to C.sub.9 to a gas phase catalytic oxidation in the presence of air or oxygen, and, optionally, steam and/or one or more diluting gases. The catalyst comprises a catalytically active mixed metal oxide phase and a suitable support material onto and/or into which the active catalytic phase is dispersed.

  18. Gas-Phase Neutral Binary Oxide Clusters: Distribution, Structure, and Reactivity toward CO.

    PubMed

    Wang, Zhe-Chen; Yin, Shi; Bernstein, Elliot R

    2012-09-01

    Neutral binary (vanadium-cobalt) oxide clusters are generated and detected in the gas phase for the first time. Their reactivities toward carbon monoxide (CO) are studied both experimentally and theoretically. Experimental results suggest that neutral VCoO4 can react with CO to generate VCoO3 and CO2. Density functional theory studies show parallel results as well as provide detailed reaction mechanisms. PMID:26292125

  19. Comparison of ozone determinations by ultraviolet photometry and gas-phase titration

    NASA Technical Reports Server (NTRS)

    Demore, W. B.; Patapoff, M.

    1976-01-01

    A comparison of ozone determinations based on ultraviolet absorption photometry and gas-phase titration (GPT) shows good agreement between the two methods. Together with other results, these findings indicate that three candidate reference methods for ozone, UV photometry, IR photometry, and GPT are in substantial agreement. However, the GPT method is not recommended for routine use by air pollution agencies for calibration of ozone monitors because of susceptibility to experimental error.

  20. Missing gas-phase source of HONO inferred from Zeppelin measurements in the troposphere

    NASA Astrophysics Data System (ADS)

    Li, Xin; Rohrer, Franz; Hofzumahaus, Andreas; Brauers, Theo; Häseler, Rolf; Bohn, Birger; Broch, Sebastian; Fuchs, Hendrik; Gomm, Sebastian; Holland, Frank; Jäger, Julia; Kaiser, Jennifer; Keutsch, Frank N.; Lohse, Insa; Tillmann, Ralf; Wegener, Robert; Wolfe, Glenn M.; Mentel, Thomas F.; Kiendler-Scharr, Astrid; Wahner, Andreas

    2014-05-01

    Nitrous acid (HONO) is an important trace gas in the atmosphere due to its contribution to the cycles of nitrogen oxides (NOX) and hydrogen oxides (HOX). In the past decades, ground-based observations of HONO around the world showed much higher daytime concentrations than can be explained by the known gas-phase chemistry (i.e., HONO + hν → OH + NO, HONO + OH → NO2 + H2O, OH + NO + M → HONO + M). Different light-dependent reactions on ground surfaces have been proposed as additional daytime HONO sources. However, due to lack of measurements, little is known about the concentrations of HONO and its sources in the planetary boundary layer (PBL) at higher altitudes above the earth's surface. The airship Zeppelin NT is an ideal platform to investigate the chemistry and dynamics of the PBL. During the PEGASOS field campaigns in 2012 and 2013, HONO and its gas-phase sources and sinks were measured simultaneously on-board the airship Zeppelin NT, for the lowest 1 km of the PBL. In the upper part of the altitude range during morning hours, when the airmass is still isolated from processes at the earth's surface by the remaining nocturnal boundary layer, we find unexpectedly large concentrations of HONO which can neither be explained by heterogeneous reactions on aerosol and ground surfaces, nor by known gas-phase reactions. Our observations show evidence for an unknown gas-phase light-dependent HONO production which dominates the overall HONO formation in the lower troposphere. This new HONO source requires NOX and possibly OH or HO2 radicals. As a result, the general impact of HONO on the OH formation is likely overestimated.

  1. Method and apparatus for selective capture of gas phase analytes using metal .beta.-diketonate polymers

    DOEpatents

    Harvey, Scott D [Kennewick, WA

    2011-06-21

    A process and sensor device are disclosed that employ metal .beta.-diketonate polymers to selectively capture gas-phase explosives and weaponized chemical agents in a sampling area or volume. The metal .beta.-diketonate polymers can be applied to surfaces in various analytical formats for detection of: improvised explosive devices, unexploded ordinance, munitions hidden in cargo holds, explosives, and chemical weapons in public areas.

  2. Gas phase condensation of superparamagnetic iron oxide-silica nanoparticles - control of the intraparticle phase distribution

    NASA Astrophysics Data System (ADS)

    Stötzel, C.; Kurland, H.-D.; Grabow, J.; Müller, F. A.

    2015-04-01

    Spherical, softly agglomerated and superparamagnetic nanoparticles (NPs) consisting of maghemite (γ-Fe2O3) and amorphous silica (SiO2) were prepared by CO2 laser co-vaporization (CoLAVA) of hematite powder (α-Fe2O3) and quartz sand (SiO2). The α-Fe2O3 portion of the homogeneous starting mixtures was gradually increased (15 mass%-95 mass%). It was found that (i) with increasing iron oxide content the NPs' morphology changes from a nanoscale SiO2 matrix with multiple γ-Fe2O3 inclusions to Janus NPs consisting of a γ-Fe2O3 and a SiO2 hemisphere to γ-Fe2O3 NPs each carrying one small SiO2 lens on its surface, (ii) the multiple γ-Fe2O3 inclusions accumulate at the NPs' inner surfaces, and (iii) all composite NPs are covered by a thin layer of amorphous SiO2. These morphological characteristics are attributed to (i) the phase segregation of iron oxide and silica within the condensed Fe2O3-SiO2 droplets, (ii) the temperature gradient within these droplets which arises during rapid cooling in the CoLAVA process, and (iii) the significantly lower surface energy of silica when compared to iron oxide. The proposed growth mechanism of these Fe2O3-SiO2 composite NPs during gas phase condensation can be transferred to other systems comprising a glass-network former and another component that is insoluble in the regarding glass. Thus, our model will facilitate the development of novel functional composite NPs for applications in biomedicine, optics, electronics, or catalysis.Spherical, softly agglomerated and superparamagnetic nanoparticles (NPs) consisting of maghemite (γ-Fe2O3) and amorphous silica (SiO2) were prepared by CO2 laser co-vaporization (CoLAVA) of hematite powder (α-Fe2O3) and quartz sand (SiO2). The α-Fe2O3 portion of the homogeneous starting mixtures was gradually increased (15 mass%-95 mass%). It was found that (i) with increasing iron oxide content the NPs' morphology changes from a nanoscale SiO2 matrix with multiple γ-Fe2O3 inclusions to Janus NPs

  3. Gas-Phase Oxidation, Particle Uptake, and Product Studies of Isoprene Epoxydiols

    NASA Astrophysics Data System (ADS)

    Bates, K. H.; Nguyen, T. B.; St Clair, J. M.; Crounse, J.; Zhang, X.; Coggon, M.; Schwantes, R.; Bennett, N.; Stoltz, B.; Wennberg, P. O.; Seinfeld, J.

    2013-12-01

    Isoprene epoxydiols (IEPOX), discovered in 2009 as low-NOx atmospheric oxidation products of the ubiquitous biogenic precursor isoprene, are key intermediates in the formation of secondary organic aerosol (SOA) from biogenic emissions. Recent studies carried out in the Caltech environmental chambers have elucidated the gas-phase OH oxidation rates and products, particle uptake rates, and particle-phase OH oxidation products of three isomers of IEPOX synthesized in-house. Gas-phase oxidation studies were conducted in 1 m3 chambers at both high- and low-NOx conditions, and were monitored by GC-FID, two types of chemical ionization mass spectrometry (CIMS), and GC-CIMS. Comparisons with previous studies on isoprene showed that the two β-IEPOX isomers dominate over the ∂ isomers under atmospheric conditions, and the use of propene as an internal standard provided a robust estimate of OH oxidation rates between 0.99*10-11 and 1.67*10-11 cm3molec-1s-1 for the three isomers. Particle uptake and oxidation studies were conducted in 28 m3 chambers, and were monitored by GC-FID, CIMS, an aerosol mass spectrometer (AMS), and a differential mobility analyzer (DMA). Particle uptake showed a strong dependence on humidity, with no uptake on dry seed, and was faster on ammonium sulfate seed than sodium chloride seed. Particle-phase oxidation gave similar products to gas-phase oxidation by OH radicals.

  4. A Gas-phase Formation Route to Interstellar Trans-methyl Formate

    NASA Astrophysics Data System (ADS)

    Cole, Callie A.; Wehres, Nadine; Yang, Zhibo; Thomsen, Ditte L.; Snow, Theodore P.; Bierbaum, Veronica M.

    2012-07-01

    The abundance of methyl formate in the interstellar medium has previously been underpredicted by chemical models. Additionally, grain surface chemistry cannot account for the relative abundance of the cis- and trans-conformers of methyl formate, and the trans-conformer is not even formed at detectable abundance on these surfaces. This highlights the importance of studying formation pathways to methyl formate in the gas phase. The rate constant and branching fractions are reported for the gas-phase reaction between protonated methanol and formic acid to form protonated trans-methyl formate and water as well as adduct ion: Rate constants were experimentally determined using a flowing afterglow-selected ion flow tube apparatus at 300 K and a pressure of 530 mTorr helium. The results indicate a moderate overall rate constant of (3.19 ± 0.39) × 10-10 cm3 s-1 (± 1σ) and an average branching fraction of 0.05 ± 0.04 for protonated trans-methyl formate and 0.95 ± 0.04 for the adduct ion. These experimental results are reinforced by ab initio calculations at the MP2(full)/aug-cc-pVTZ level of theory to examine the reaction coordinate and complement previous density functional theory calculations. This study underscores the need for continued observational studies of trans-methyl formate and for the exploration of other gas-phase formation routes to complex organic molecules.

  5. The Decomposition of Hydrazine in the Gas Phase and over an Iridium Catalyst

    SciTech Connect

    Schmidt, Michael W.; Gordon, Mark S.

    2013-09-30

    Hydrazine is an important rocket fuel, used as both a monopropellant and a bipropellant. This paper presents theoretical results to complement the extensive experimental studies of the gas phase and Ir catalyzed decompositions involved in the monopropellant applications of hydrazine. Gas phase electronic structure theory calculations that include electron correlation predict that numerous molecular and free radical reactions occur within the same energy range as the basic free radical pathways: NN bond breaking around 65 kcal/mol and NH bond breaking around 81 kcal/mol. The data suggest that a revision to existing kinetics modeling is desirable, based on the energetics and the new elementary steps reported herein. A supported Ir-6 octahedron model for the Shell 405 Iridium catalyst used in thrusters was developed. Self-Consistent Field and electron correlation calculations (with core potentials and associated basis sets) find a rich chemistry for hydrazine on this catalyst model. The model catalyst provides dramatically lower NN and NH bond cleavage energies and an even smaller barrier to breaking the NH bond by NH2 abstractions. Thus, the low temperature decomposition over the catalyst is interpreted in terms of consecutive NH2 abstractions to produce ammonia and nitrogen. The higher temperature channel, which has hydrogen and nitrogen products, may be due to a mixture of two mechanisms. These two mechanisms are successive NH cleavages with surface H + H recombinations, and the same type of assisted H-2 eliminations found to occur in the gas phase part of this study.

  6. Solution Versus Gas-Phase Modification of Peptide Cations with NHS-Ester Reagents

    NASA Astrophysics Data System (ADS)

    Mentinova, Marija; Barefoot, Nathan Z.; McLuckey, Scott A.

    2012-02-01

    A comparison between solution and gas phase modification of primary amine sites in model peptide cations with N-hydroxysuccinimide (NHS) ester reagents is presented. In all peptides, the site of modification in solution was directed to the N-terminus by conducting reactions at pH = 5, whereas for the same peptides, a lysine residue was preferentially modified in the gas phase. The difference in pKa values of the N-terminus and ɛ-amino group of the lysine allows for a degree of control over sites of protonation of the peptides in aqueous solution. With removal of the dielectric and multiple charging of the peptide ions in the gas phase, the accommodation of excess charge can affect the preferred sites of reaction. Interaction of the lone pair of the primary nitrogen with a proton reduces its nucleophilicity and, as a result, its reactivity towards NHS-esters. While no evidence for reaction of the N-terminus with sulfo-NHS-acetate was noted in the model peptide cations, a charge inversion experiment using bis[sulfosuccinimidyl] suberate, a cross-linking reagent with two sulfo-NHS-ester functionalities, showed modification of the N-terminus. Hence, an unprotonated N-terminus can serve as a nucleophile to displace NHS, which suggests that its lack of reactivity with the peptide cations is likely due to the participation of the N-terminus in solvating excess charge.

  7. Quantification of Conventional and Nonconventional Charge-Assisted Hydrogen Bonds in the Condensed and Gas Phases.

    PubMed

    Katsyuba, Sergey A; Vener, Mikhail V; Zvereva, Elena E; Fei, Zhaofu; Scopelliti, Rosario; Brandenburg, Jan Gerit; Siankevich, Sviatlana; Dyson, Paul J

    2015-11-01

    Charge-assisted hydrogen bonds (CAHBs) play critical roles in many systems from biology through to materials. In none of these areas has the role and function of CAHBs been explored satisfactorily because of the lack of data on the energy of CAHBs in the condensed phases. We have, for the first time, quantified three types of CAHBs in both the condensed and gas phases for 1-(2'-hydroxylethyl)-3-methylimidazolium acetate ([C2OHmim][OAc]). The energy of conventional OH···[OAc](-) CAHBs is ∼10 kcal·mol(-1), whereas nonconventional C(sp2)H···[OAc](-) and C(sp3)H···[OAc](-) CAHBs are weaker by ∼5-7 kcal·mol(-1). In the gas phase, the strength of the nonconventional CAHBs is doubled, whereas the conventional CAHBs are strengthened by <20%. The influence of cooperativity effects on the ability of the [OAc](-) anion to deprotonate the imidazolium cation is evaluated. The ability to quantify CAHBs in the condensed phase on the basis of easier accessible gas-phase estimates is highlighted. PMID:26496074

  8. Gas-phase exposure history derived from material-phase concentration profiles

    NASA Astrophysics Data System (ADS)

    Morrison, G. C.; Little, J. C.; Xu, Y.; Rao, M.; Enke, D.

    Non-reactive gas-phase pollutants such as benzene diffuse into indoor furnishings and leave behind a unique material-phase concentration profile that serves as a record of the past gas-phase indoor concentrations. The inverse problem to be solved is the diffusion equation in a slab such as vinyl flooring. Using knowledge of the present material-phase concentration profile in the slab, we seek to determine the historical material-phase concentration at the surface exposed to indoor air, and hence the historical gas-phase concentration, which can be used directly to determine exposure. The problem as posed has a unique solution that may be solved using a variety of approaches. We use a trained artificial neural network (ANN) to derive solutions for hypothetical exposure scenarios. The ANN results show that it is possible to estimate the intensity and timing of past exposures from the material-phase concentration profile in a building material. The overall method is limited by (1) the resolution of techniques for measuring spatial material-phase concentration profiles, (2) how far back in time we seek to determine exposure and (3) the representational power of the ANN solution. For example, we estimate that this technique can estimate exposure to phenol up to 0.5 y in the past from analyses of vinyl flooring.

  9. Gas-phase Ion Isomer Analysis Reveals the Mechanism of Peptide Sequence Scrambling

    PubMed Central

    Jia, Chenxi; Wu, Zhe; Lietz, Christopher B.; Liang, Zhidan; Cui, Qiang; Li, Lingjun

    2014-01-01

    Peptide sequence scrambling during mass spectrometry-based gas-phase fragmentation analysis causes misidentification of peptides and proteins. Thus, there is a need to develop an efficient approach to probing the gas-phase fragment ion isomers related to sequence scrambling and the underlying fragmentation mechanism, which will facilitate the development of bioinformatics algorithm for proteomics research. Herein, we report on the first use of electron transfer dissociation (ETD)-produced diagnostic fragment ions to probe the components of gas-phase peptide fragment ion isomers. In combination with ion mobility spectrometry (IMS) and formaldehyde labeling, this novel strategy enables qualitative and quantitative analysis of b-type fragment ion isomers. ETD fragmentation produced diagnostic fragment ions indicative of the precursor ion isomer components, and subsequent IMS analysis of b ion isomers provided their quantitative and structural information. The isomer components of three representative b ions (b9, b10, and b33 from three different peptides) were accurately profiled by this method. IMS analysis of the b9 ion isomers exhibited dynamic conversion among these structures. Furthermore, molecular dynamics simulation predicted theoretical drift time values which were in good agreement with experimentally measured values. Our results strongly support the mechanism of peptide sequence scrambling via b ion cyclization, and provide the first experimental evidence to support that the conversion from molecular precursor ion to cyclic b ion (M→cb) pathway is less energetically (or kinetically) favored. PMID:24313304

  10. Kinetics of gas phase oxygen control system (OCS) for stagnant and flowing Pb-Bi Systems

    NASA Astrophysics Data System (ADS)

    Lefhalm, C. H.; Knebel, J. U.; Mack, K. J.

    2001-07-01

    Pb and Pb-Bi are known to be very corrosive to structural materials at elevated temperatures. In recent studies, the necessity of measurement and control of the oxygen concentration in the liquid metal in order to safely operate a liquid Pb or Pb-Bi loop has been shown. The dynamic behaviour of the gas phase oxygen control system (OCS), which was developed at Forschungszentrum Karlsruhe (FZK), is investigated with respect to diffusion as the limiting process of oxygen exchange between the gas phase and the liquid metal. In this paper the development of a physical model for this diffusion process is described and compared to experimental results of a stagnant liquid Pb-Bi system. The experimental findings are in very good agreement with the theoretical equations describing the thermodynamic and kinetic behaviour of such a system. Recent investigations in a Pb-Bi loop at the Karlsruhe Lead Laboratory (KALLA) indicate that this gas phase OCS is a promising candidate system for an accelerator-driven subcritical system (ADS).

  11. The use of gas-phase substrates to study enzyme catalysis at low hydration.

    PubMed Central

    Dunn, Rachel V; Daniel, Roy M

    2004-01-01

    Although there are varying estimates as to the degree of enzyme hydration required for activity, a threshold value of ca. 0.2 g of water per gram of protein has been widely accepted. The evidence upon which this is based is reviewed here. In particular, results from the use of gas-phase substrates are discussed. Results using solid-phase enzyme-substrate mixtures are not altogether in accord with those obtained using gas-phase substrates. The use of gaseous substrates and products provides an experimental system in which the hydration of the enzyme can be easily controlled, but which is not limited by diffusion. All the results show that increasing hydration enhances activity. The results using gas-phase substrates do not support the existence of a critical hydration value below which enzymatic activity is absent, and suggest that enzyme activity is possible at much lower hydrations than previously thought; they do not support the notion that significant hydration of the surface polar groups is required for activity. However, the marked improvement of activity as hydration is increased suggests that water does play a role, perhaps in optimizing the structure or facilitating the flexibility required for maximal activity. PMID:15306385

  12. A GAS-PHASE FORMATION ROUTE TO INTERSTELLAR TRANS-METHYL FORMATE

    SciTech Connect

    Cole, Callie A.; Wehres, Nadine; Yang Zhibo; Thomsen, Ditte L.; Bierbaum, Veronica M.; Snow, Theodore P. E-mail: Nadine.Wehres@colorado.edu E-mail: Veronica.Bierbaum@colorado.edu E-mail: dlt@chem.ku.dk

    2012-07-20

    The abundance of methyl formate in the interstellar medium has previously been underpredicted by chemical models. Additionally, grain surface chemistry cannot account for the relative abundance of the cis- and trans-conformers of methyl formate, and the trans-conformer is not even formed at detectable abundance on these surfaces. This highlights the importance of studying formation pathways to methyl formate in the gas phase. The rate constant and branching fractions are reported for the gas-phase reaction between protonated methanol and formic acid to form protonated trans-methyl formate and water as well as adduct ion: Rate constants were experimentally determined using a flowing afterglow-selected ion flow tube apparatus at 300 K and a pressure of 530 mTorr helium. The results indicate a moderate overall rate constant of (3.19 {+-} 0.39) Multiplication-Sign 10{sup -10} cm{sup 3} s{sup -1} ({+-} 1{sigma}) and an average branching fraction of 0.05 {+-} 0.04 for protonated trans-methyl formate and 0.95 {+-} 0.04 for the adduct ion. These experimental results are reinforced by ab initio calculations at the MP2(full)/aug-cc-pVTZ level of theory to examine the reaction coordinate and complement previous density functional theory calculations. This study underscores the need for continued observational studies of trans-methyl formate and for the exploration of other gas-phase formation routes to complex organic molecules.

  13. Gas-Phase Photoluminescence Characterization of Stoichiometrically Pure Nonanuclear Lanthanoid Hydroxo Complexes Comprising Europium or Gadolinium.

    PubMed

    Greisch, Jean-François; Chmela, Jiří; Harding, Michael E; Klopper, Wim; Kappes, Manfred M; Schooss, Detlef

    2016-04-01

    Gas-phase photoluminescence measurements involving mass-spectrometric techniques enable determination of the properties of selected molecular systems with knowledge of their exact composition and unaffected by matrix effects such as solvent interactions or crystal packing. The resulting reduced complexity facilitates a comparison with theory. Herein, we provide a detailed report of the intrinsic luminescence properties of nonanuclear europium(III) and gadolinium(III) 9-hydroxyphenalen-1-one (HPLN) hydroxo complexes. Luminescence spectra of [Eu9(PLN)16(OH)10](+) ions reveal an europium-centered emission dominated by a 4-fold split Eu(III) hypersensitive transition, while photoluminescence lifetime measurements for both complexes support an efficient europium sensitization via a PLN-centered triplet-state manifold. The combination of gas-phase measurements with density functional theory computations and ligand-field theory is used to discuss the antiprismatic core structure of the complexes and to shed light on the energy-transfer mechanism. This methodology is also employed to fit a new set of parameters, which improves the accuracy of ligand-field computations of Eu(III) electronic transitions for gas-phase species. PMID:26974169

  14. [Seasonal release characteristics of Ca, Mg and Mn of foliar litter of six tree species in subtropical evergreen broadleaved forest].

    PubMed

    Ma, Zhi-liang; Gao, Shun; Yang, Wan-qin; Wu, Fu-zhong

    2015-10-01

    Seasonal release dynamics of Ca, Mg and Mn during decomposition of foliar litter of Pinus massoniana, Cryptomeria fortunei, Cunninghamia lanceolata, Cinnamomum camphora, Toona ciliate, and Quercus acutissima were investigated in subtropical evergreen broad-leaved forest employing the method of litterbag. After one-year decomposition, the release rates of Ca, Mg and Mn in foliar litter of the studied tree species ranged from -13.8% to 92.3%, from 4.0% to 64.8%, and from 41.6% to 81.1%, respectively. Ca dynamics in foliar litter of P. massoniana, C. camphora exhibited the pattern of accumulating early and releasing later, while that of the other four tree species showed direct release. Similarly, the dynamics of Mg released from foliar litter of C. camphora showed the pattern of accumulating early and then releasing, while that of the other five tree species exhibited continuous release. Meanwhile, the dynamics of Mn released from foliar litter of C. fortunei and T. ciliate exhibited early accumulation, and subsequent release, while that of the other four tree species showed continuous release. The releases of Ca, Mg and Mn in foliar litter were greatly influenced by seasonal rainfall, and varied with tree species. Furthermore, the rates and amounts of Ca, Mg and Mn released from foliar litter were higher in rainy season than in dry season. In conclusion, the initial nutrient concentrations and precipitation were two key factors influencing the release dynamics of Ca, Mg and Mn during decomposition of foliar litter in the subtropical evergreen broad-leaved forest. PMID:26995897

  15. Toxic gas phase emissions from the combustion of pulverized coal mixed with powders of waste plastics or tire crumb

    SciTech Connect

    Levendis, Y.A.; Courtemanche, B.; Atal, A.

    1997-07-01

    This paper presents results on the gas phase emissions from the combustion of coal and alternative waste fuels (plastics and automobile tires). The plastics examined were poly(ethylene) and poly(styrene). All fuels were burned in powder form. Mixtures (50- 50 by weight) of the above waste fuels with coal were also burned. Results are reported on the SO{sub 2}, NO{sub x}, CO and CO{sub 2} emissions. For a limited number of cases results are also presented on the release of organic air toxics, in particular the polynuclear aromatic hydrocarbons (PAHs). Experiments were conducted under well-controlled conditions in bench-scale laboratory facilities. Coal particles, {approx}100 {mu}m, and particles of pulverized alternative fuels, {approx}200 {mu}m, were injected and burned in an electrically-heated droptube furnace. The furnace temperature was set to 1250{degrees}C. The residence time of the gas was 1 s. Experiments spanned a range of fuel-lean ({phi} < 1), stoichiometric ({phi} = 1) and fuel-rich ({phi} > 1) conditions. Results showed that (a) the NO{sub x} emissions of tires were a few times lower than those of coal and those of plastics were even lower. Thus, blending these alterative fuels with coal drastically reduced NO{sub x} emissions.

  16. Cryogenic Ion Mobility-Mass Spectrometry: Tracking Ion Structure from Solution to the Gas Phase.

    PubMed

    Servage, Kelly A; Silveira, Joshua A; Fort, Kyle L; Russell, David H

    2016-07-19

    Electrospray ionization (ESI) combined with ion mobility-mass spectrometry (IM-MS) is adding new dimensions, that is, structure and dynamics, to the field of biological mass spectrometry. There is increasing evidence that gas-phase ions produced by ESI can closely resemble their solution-phase structures, but correlating these structures can be complicated owing to the number of competing effects contributing to structural preferences, including both inter- and intramolecular interactions. Ions encounter unique hydration environments during the transition from solution to the gas phase that will likely affect their structure(s), but many of these structural changes will go undetected because ESI-IM-MS analysis is typically performed on solvent-free ions. Cryogenic ion mobility-mass spectrometry (cryo-IM-MS) takes advantage of the freeze-drying capabilities of ESI and a cryogenically cooled IM drift cell (80 K) to preserve extensively solvated ions of the type [M + xH](x+)(H2O)n, where n can vary from zero to several hundred. This affords an experimental approach for tracking the structural evolution of hydrated biomolecules en route to forming solvent-free gas-phase ions. The studies highlighted in this Account illustrate the varying extent to which dehydration can alter ion structure and the overall impact of cryo-IM-MS on structural studies of hydrated biomolecules. Studies of small ions, including protonated water clusters and alkyl diammonium cations, reveal structural transitions associated with the development of the H-bond network of water molecules surrounding the charge carrier(s). For peptide ions, results show that water networks are highly dependent on the charge-carrying species within the cluster. Specifically, hydrated peptide ions containing lysine display specific hydration behavior around the ammonium ion, that is, magic number clusters with enhanced stability, whereas peptides containing arginine do not display specific hydration around the

  17. STUDYING THE IMPACT OF FORMULATION AND PROCESSING PARAMETERS ON THE RELEASE CHARACTERISTICS FROM HYDROXYPROPYL METHYLCELLULOSE MATRIX TABLETS OF DICLOFENAC.

    PubMed

    Elzayat, Ehab M; Abdel-Rahman, Ali A; Ahmed, Sayed M; Alanazi, Fars K; Habib, Walid A; Sakr, Adel

    2016-01-01

    Hydrophilic matrices, especially HPMC based, are widely used to provide sustained delivery where drug release occurs mainly by diffusion. A 3(2) full factorial design was used to develop and evaluate HPMC matrix tablet for sustained delivery of diclofenac. The influences of polymer concentration/viscosity, diluent type/ratio, drug load/solubility, compression force and pH change on drug release were investigated. Ten tablet formulations were prepared using wet granulation. HPMC K15M (10-30% w/w) was used as the polymer forming matrix. The release kinetics, compatibility studies, lot reproducibility and effect on storage were discussed. Increasing polymer concentration and compression force showed antagonistic effect on release rate. Mannitol tends to increase release rate more than lactose. Reversing diluent ratio between lactose and MCC did not affect drug release. Changing pH resulted in burst release whereas drug solubility is pH independent. F1 showed similar release to Voltaren SR and followed Higuchi model. Drug and polymer were compatible to each other. The formulation is stable at long and intermediate conditions with a significant increase in release rate at accelerated conditions due to water uptake and polymer swelling. The developed formulation was successful for a sustained delivery of diclofenac. PMID:27180437

  18. Gas phase emissions from cooking processes and their secondary aerosol production potential

    NASA Astrophysics Data System (ADS)

    Klein, Felix; Platt, Stephen; Bruns, Emily; Termime-roussel, Brice; Detournay, Anais; Mohr, Claudia; Crippa, Monica; Slowik, Jay; Marchand, Nicolas; Baltensperger, Urs; Prevot, Andre; El Haddad, Imad

    2014-05-01

    -ToF-MS) were used to quantify OA and VOC emissions, respectively. SOA production potential of the different emissions was quantified by introducing them into the PSI mobile smog chamber and a potential aerosol chamber (PAM) where they were photochemically aged. The measurements of primary emissions suggest that the COA factor identified in ambient atmospheric aerosols is mostly related to fat release from frying with vegetable oils or grilling fatty-meats. In contrast, vegetable cooking (boiling and frying) was associated with significant VOC emissions. The VOC emissions from frying consist mainly of aldehydes which are formed through breaking of fatty acids. Gas phase composition, emission factors and SAPP from all these processes will be presented. This work was supported by the Swiss National Science Foundation as well as the Swiss Federal Office for the Environment. The research leading to these results has received funding from the European Community's Seventh Framework Programme (FP7/2007-2013) under grant agreement n.° 290605 (COFUND: PSI-FELLOW). J. Allan et al, Atmos. Chem. Phys. 10, 647-668 (2010) X.-F. Huang et al, Atmos. Chem. Phys. 10, 8933-8945 (2010) Y.-L. Sun et al, Atmos. Chem. Phys. 11, 1581-1602 (2011)

  19. Multivariate optimization of formulation and process variables influencing physico-mechanical characteristics of site-specific release isoniazid pellets.

    PubMed

    Pund, Swati; Joshi, Amita; Vasu, Kamala; Nivsarkar, Manish; Shishoo, Chamanlal

    2010-03-30

    In the present study, isoniazid was formulated as site-specific release pellets with high drug loading (65%, w/w) using extrusion-spheronization followed by aqueous coating of Sureteric (35% weight gain). A statistical experimental strategy was developed to optimize simultaneously the effect of the two formulation variables and one process variable on the critical physico-mechanical properties of the core pellets of isoniazid. Amount of granulating fluid and amount of binder were selected as formulation variables and spheronization speed as a process variable. A 2(3) full factorial experimental design was employed for the present study. Pellets were characterized for physico-mechanical properties viz. usable yield, pellet size, pellips, porosity, abrasion resistance, mechanical crushing force, residual moisture and dissolution efficiency. Graphical and mathematical analysis of the results allowed the identification and quantification of the formulation and process variables active on the selected responses. A polynomial equation fitted to the data was used to predict the responses in the optimal region. The optimum formulation and process parameters were found to be 44.24% (w/w) of granulating fluid, 2.13% (w/w) of binder and spheronization speed of 1000rpm. Optimized formulation showed usable yield 84.95%, particle size 1021.32microm, pellips 0.945, porosity 46.11%, and abrasion resistance 0.485%. However, mechanical crushing force, residual moisture and dissolution efficiency were not significantly affected by the selected independent variables. These results demonstrate the importance of, amount of water, binder and spheronization speed, on physico-mechanical characteristics of the isoniazid core pellets with high drug loading. PMID:20035851

  20. Terpenes in the gas phase: The structural conformation of S-(-)-perillaldehyde investigated by microwave spectroscopy and quantum chemical calculations

    NASA Astrophysics Data System (ADS)

    Avilés Moreno, Juan Ramón; Partal Ureña, Francisco; López González, Juan Jesús; Huet, Thérèse R.

    2009-04-01

    S-(-)-perillaldehyde (C 10H 14O) has been characterized in the gas phase using a Fourier transform microwave spectroscopy experiment in a supersonic molecular beam. Two conformers - with the isopropenyl group in the equatorial position - have been detected and described by a set of molecular parameters including the principal rotational constants and the quartic centrifugal distortion parameters. Quantum chemical calculations indicate that a third conformer might not be observed due to relaxation processes in the jet. The gas phase results are compared with the liquid phase IR-Raman-VCD spectra. Our study shows that gas phase spectroscopy is a powerful tool for characterizing monoterpenes.

  1. The Role of Methoxy Group in the Nazarov Cyclization of 1,5- bis-(2-Methoxyphenyl)-1,4-Pentadien-3-one in the Gas Phase and Condensed Phase

    NASA Astrophysics Data System (ADS)

    Cyriac, June; Paulose, Justin; George, Mathai; Ramesh, Marupaka; Srinivas, Ragampeta; Giblin, Daryl; Gross, Michael L.

    2014-03-01

    ESI-protonated 1,5- bis-(2-methoxyphenyl)-1,4-pentadien-3-one (1) undergoes a gas-phase Nazarov cyclization and dissociates via expulsions of ketene and anisole. The dissociations of the [M + D]+ ions are accompanied by limited HD scrambling that supports the proposed cyclization. Solution cyclization of 1 was effected to yield the cyclic ketone, 2,3- bis-(2-methoxyphenyl)-cyclopent-2-ene-1-one, (2) on a time scale that is significantly shorter than the time for cyclization of dibenzalacetone. The dissociation characteristics of the ESI-generated [M + H]+ ion of the synthetic cyclic ketone closely resemble those of 1, suggesting that gas-phase and solution cyclization products are the same. Additional mechanistic studies by density functional theory (DFT) methods of the gas-phase reaction reveals that the initial cyclization is followed by two sequential 1,2-aryl migrations that account for the observed structure of the cyclic product in the gas phase and solution. Furthermore, the DFT calculations show that the methoxy group serves as a catalyst for the proton migrations necessary for both cyclization and fragmentation after aryl migration. An isomer formed by moving the 2-methoxy to the 4-position requires relatively higher collision energy for the elimination of anisole, as is consistent with DFT calculations. Replacement of the 2-methoxy group with an OH shows that the cyclization followed by aryl migration and elimination of phenol occurs from the [M + H]+ ion at low energy similar to that for 1.

  2. Analytical characteristics and application of novel chitosan coated magnetic nanoparticles as an efficient drug delivery system for ciprofloxacin. Enhanced drug release kinetics by low-frequency ultrasounds.

    PubMed

    Kariminia, Samira; Shamsipur, Ali; Shamsipur, Mojtaba

    2016-09-10

    A pH-responsive drug carrier based on chitosan coated iron oxide nanoparticles (CS-Fe3O4) for prolonged antibiotic release in a controlled manner is reported. As an antibiotic drug model, ciprofloxacin was loaded onto the nanocarrier via H-bonding interactions. The nanoparticles were characterized using scanning electron microscopy, X-ray diffraction, energy-dispersive X-ray spectroscopy, photon correlation spectroscopy and Fourier transform infrared spectroscopy. The particle size of CS-Fe3O4 nanoparticles were found to lie in the range of 30-80nm. The analytical characteristics of the designed system were thoroughly investigated. The in vitro drug loading at pH 4.8 and release kinetics at pH 7.4 studies revealed that the drug delivery system can take 99% of ciprofloxacin load and quantitatively release the drug over a sustained period of 5 days. The release kinetics study indicated that the system follows a zero order kinetics via a diffusion-controlled mechanism. These results indicated that CS-Fe3O4 nanoparticles have the potential for use as controlled antibiotic delivery systems through oral administration by avoiding the drug release in the highly acidic gastric fluid region of the stomach. Furthermore, the ability of low-frequency ultrasound in fast release of the encapsulated drug in less than 60min from the CS-Fe3O4 nanoparticles in a controlled manner was confirmed. PMID:27497305

  3. Gas-phase naphthalene concentration data recovery in ambient air and its relevance as a tracer of sources of volatile organic compounds

    NASA Astrophysics Data System (ADS)

    Uria-Tellaetxe, Iratxe; Navazo, Marino; de Blas, Maite; Durana, Nieves; Alonso, Lucio; Iza, Jon

    2016-04-01

    Despite the toxicity of naphthalene and the fact that it is a precursor of atmospheric photooxidants and secondary aerosol, studies on ambient gas-phase naphthalene are generally scarce. Moreover, as far as we are concerned, this is the first published one using long-term hourly ambient gas-phase naphthalene concentrations. In this work, it has been also demonstrated the usefulness of ambient gas-phase naphthalene to identify major sources of volatile organic compounds (VOC) in complex scenarios. Initially, in order to identify main benzene emission sources, hourly ambient measurements of 60 VOC were taken during a complete year together with meteorological data in an urban/industrial area. Later, due to the observed co-linearity of some of the emissions, a procedure was developed to recover naphthalene concentration data from recorded chromatograms to use it as a tracer of the combustion and distillation of petroleum products. The characteristic retention time of this compound was determined comparing previous GC-MS and GC-FID simultaneous analysis by means of relative retention times, and its concentration was calculated by using relative response factors. The obtained naphthalene concentrations correlated fairly well with ethene (r = 0.86) and benzene (r = 0.92). Besides, the analysis of daily time series showed that these compounds followed a similar pattern, very different from that of other VOC, with minimum concentrations at day-time. This, together with the results from the assessment of the meteorological dependence pointed out a coke oven as the major naphthalene and benzene emitting sources in the study area.

  4. The Gas-Phase Photophysics of Eosin Y and its Maleimide Conjugate.

    PubMed

    Daly, Steven; Kulesza, Alexander; Knight, Geoffrey; MacAleese, Luke; Antoine, Rodolphe; Dugourd, Philippe

    2016-05-26

    The use of the xanthene family of dyes as fluorescent probes in a wide range of applications has provided impetus for the studying of their photophysical properties. In particular, recent advances in gas-phase techniques such as FRET that utilize such chromophores have placed a greater importance on the characterization of these properties in the gas phase. Additionally, the use of synthetic linker chains to graft the chromophores in a site-specific manner to their target system is ubiquitous. There is, however, often limited information on how the addition of such a linker chain may affect the photophysical properties of the chromophores, which is of fundamental importance for interpretation of experimental data reliant on grafted chromophores. Here, we present data on the optical spectroscopy of different protonation states of Eosin Y, a fluorescein derivative. We compare the photophysics of Eosin Y to its maleimide conjugate, and to the thioether product of the reaction of this conjugate with cysteamine. Comparison of the mass spectra following laser irradiation shows that very different relaxation takes place upon addition of the maleimide moiety but that the photophysics of the bare chromophore are restored upon addition of cysteamine. This radical change in the photophysics is interpreted in terms of charge-transfer states, whose energy relative to the S1 ← S0 transition of the chromophore is dependent on the conjugation of the maleimide moiety. We also show that the shape of the absorption band is unchanged in the gas-phase as compared to the solution-phase, showing a maximum with a shoulder toward the blue, and examination of isotope distributions of the isolated ions show that this shoulder cannot be due to the presence of dimers. Consideration of the fluorescence emission spectrum allows a tentative assignment of the shoulder to be due to a vibrational progression with a high Franck-Condon factor. PMID:27118657

  5. The gas phase origin of complex organic molecules precursors in prestellar cores

    NASA Astrophysics Data System (ADS)

    Bacmann, A.; Faure, A.

    2016-05-01

    Complex organic molecules (COMs) have long been observed in the warm regions surrounding nascent protostars. The recent discovery of oxygen-bearing COMs like methyl formate or dimethyl ether in prestellar cores (Bacmann et al. [2]), where gas and dust temperatures rarely exceed 10-15 K, has challenged the previously accepted models according to which COM formation relied on the diffusion of heavy radicals on warm (˜30 K) grains. Following these detections, new questions have arisen: do non-thermal processes play a role in increasing radical mobility or should new gas-phase routes be explored? The radicals involved in the formation of the aforementioned COMs, HCO and CH3O represent intermediate species in the grain-surface synthesis of methanol which proceeds via successive hydrogenations of CO molecules in the ice. We present here observations of methanol and its grain-surface precursors HCO, H2CO, CH3O in a sample of prestellar cores and derive their relative abundances. We find that the relative abundances HCO:H2CO:CH3O:CH3OH are constant across the core sample, close to 10:100:1:100. Our results also show that the amounts of HCO and CH3O are consistent with a gas-phase synthesis of these species from H2CO and CH3OH via radical-neutral or ion-molecule reactions followed by dissociative recombinations. Thus, while grain chemistry is necessary to explain the abundances of the parent volatile CH3OH, and possibly H2CO, the reactive species HCO and CH3O might be daughter molecules directly produced in the gas-phase.

  6. Gas-Phase Thermal Tautomerization of Imidazole-Acetic Acid: Theoretical and Computational Investigations

    PubMed Central

    Aziz, Saadullah G.; Osman, Osman I.; Elroby, Shaaban A.; Hilal, Rifaat H.

    2015-01-01

    The gas-phase thermal tautomerization reaction between imidazole-4-acetic (I) and imidazole-5-acetic (II) acids was monitored using the traditional hybrid functional (B3LYP) and the long-range corrected functionals (CAM-B3LYP and ωB97XD) with 6-311++G** and aug-cc-pvdz basis sets. The roles of the long-range and dispersion corrections on their geometrical parameters, thermodynamic functions, kinetics, dipole moments, Highest Occupied Molecular Orbital–Lowest Unoccupied Molecular Orbital (HOMO–LUMO) energy gaps and total hyperpolarizability were investigated. All tested levels of theory predicted the preference of I over II by 0.750–0.877 kcal/mol. The origin of predilection of I is assigned to the H-bonding interaction (nN8→σ*O14–H15). This interaction stabilized I by 15.07 kcal/mol. The gas-phase interconversion between the two tautomers assumed a 1,2-proton shift mechanism, with two transition states (TS), TS1 and TS2, having energy barriers of 47.67–49.92 and 49.55–52.69 kcal/mol, respectively, and an sp3-type intermediate. A water-assisted 1,3-proton shift route brought the barrier height down to less than 20 kcal/mol in gas-phase and less than 12 kcal/mol in solution. The relatively high values of total hyperpolarizability of I compared to II were interpreted and discussed. PMID:26556336

  7. Position for determining gas phase volatile organic compound concentrations in transuranic waste containers

    SciTech Connect

    Connolly, M.J.; Liekhus, K.J.; Djordjevic, S.M.; Loehr, C.A. Spangler, L.R.

    1995-12-01

    In the conditional no-migration determination (NMD) for the test phase of the Waste isolation Pilot Plant (WIPP), the US Environmental Protection Agency (EPA) imposed certain conditions on the US Department of Energy (DOE) regarding gas phase volatile organic compound (VOC) concentrations in the void space of transuranic (TRU) waste containers. The EPA required the DOE to ensure that each waste container has no layer of confinement that contains flammable mixtures of gases or mixtures of gases that could become flammable when mixed with air. The EPA also required that sampling of the headspace of waste containers outside inner layers of confinement be representative of the entire void space of the container. The EPA stated that all layers of confinement in a container would have to be sampled until DOE can demonstrate to the EPA that sampling of all layers is unnecessary. A test program was conducted to demonstrate that the gas phase VOC concentration in the void space of each layer of confinement in vented drums can be estimated from measured drum headspace using a theoretical transport model and that sampling of each layer of confinement is unnecessary. This report summarizes the studies performed in the INEL test program and extends them for the purpose of developing a methodology for determining gas phase VOC concentrations in both vented and unvented TRU waste containers. The methodology specifies conditions under which waste drum headspace gases can be said to be representative of drum gases as a whole and describes a method for predicting drum concentrations in situations where the headspace concentration is not representative.

  8. Aqueous nitrite ion determination by selective reduction and gas phase nitric oxide chemiluminescence

    NASA Technical Reports Server (NTRS)

    Dunham, A. J.; Barkley, R. M.; Sievers, R. E.; Clarkson, T. W. (Principal Investigator)

    1995-01-01

    An improved method of flow injection analysis for aqueous nitrite ion exploits the sensitivity and selectivity of the nitric oxide (NO) chemilluminescence detector. Trace analysis of nitrite ion in a small sample (5-160 microL) is accomplished by conversion of nitrite ion to NO by aqueous iodide in acid. The resulting NO is transported to the gas phase through a semipermeable membrane and subsequently detected by monitoring the photoemission of the reaction between NO and ozone (O3). Chemiluminescence detection is selective for measurement of NO, and, since the detection occurs in the gas-phase, neither sample coloration nor turbidity interfere. The detection limit for a 100-microL sample is 0.04 ppb of nitrite ion. The precision at the 10 ppb level is 2% relative standard deviation, and 60-180 samples can be analyzed per hour. Samples of human saliva and food extracts were analyzed; the results from a standard colorimetric measurement are compared with those from the new chemiluminescence method in order to further validate the latter method. A high degree of selectivity is obtained due to the three discriminating steps in the process: (1) the nitrite ion to NO conversion conditions are virtually specific for nitrite ion, (2) only volatile products of the conversion will be swept to the gas phase (avoiding turbidity or color in spectrophotometric methods), and (3) the NO chemiluminescence detector selectively detects the emission from the NO + O3 reaction. The method is free of interferences, offers detection limits of low parts per billion of nitrite ion, and allows the analysis of up to 180 microL-sized samples per hour, with little sample preparation and no chromatographic separation. Much smaller samples can be analyzed by this method than in previously reported batch analysis methods, which typically require 5 mL or more of sample and often need chromatographic separations as well.

  9. Gas-phase products and secondary aerosol yields from the ozonolysis of ten different terpenes

    NASA Astrophysics Data System (ADS)

    Lee, Anita; Goldstein, Allen H.; Keywood, Melita D.; Gao, Song; Varutbangkul, Varuntida; Bahreini, Roya; Ng, Nga L.; Flagan, Richard C.; Seinfeld, John H.

    2006-04-01

    The ozonolyses of six monoterpenes (α-pinene, β-pinene, 3-carene, terpinolene, α-terpinene, and myrcene), two sesquiterpenes (α-humulene and β-caryophyllene), and two oxygenated terpenes (methyl chavicol and linalool) were conducted individually in Teflon chambers to examine the gas-phase oxidation product and secondary organic aerosol (SOA) yields from these reactions. Particle size distribution and number concentration were monitored and allowed for the calculation of the SOA yield from each experiment, which ranged from 1 to 54%. A proton transfer reaction mass spectrometer (PTR-MS) was used to monitor the evolution of gas-phase products, identified by their mass to charge ratio (m/z). Several gas-phase oxidation products, formaldehyde, acetaldehyde, formic acid, acetone, acetic acid, and nopinone, were identified and calibrated. Aerosol yields, and the yields of these identified and calibrated oxidation products, as well as many higher m/z oxidation products observed with the PTR-MS, varied significantly between the different parent terpene compounds. The sum of measured oxidation products in the gas and particle phase ranged from 33 to 77% of the carbon in the reacted terpenes, suggesting there are still unmeasured products from these reactions. The observations of the higher molecular weight oxidation product ions provide evidence of previously unreported compounds and their temporal evolution in the smog chamber from multistep oxidation processes. Many of the observed ions, including m/z 111 and 113, have also been observed in ambient air above a Ponderosa pine forest canopy, and our results confirm they are consistent with products from terpene + O3 reactions. Many of these products are stable on the timescale of our experiments and can therefore be monitored in field campaigns as evidence for ozone oxidative chemistry.

  10. The effect of molecular dynamics sampling on the calculated observable gas-phase structures.

    PubMed

    Tikhonov, Denis S; Otlyotov, Arseniy A; Rybkin, Vladimir V

    2016-07-21

    In this study, we compare the performance of various ab initio molecular dynamics (MD) sampling methods for the calculation of the observable vibrationally-averaged gas-phase structures of benzene, naphthalene and anthracene molecules. Nose-Hoover (NH), canonical and quantum generalized-Langevin-equation (GLE) thermostats as well as the a posteriori quantum correction to the classical trajectories have been tested and compared to the accurate path-integral molecular dynamics (PIMD), static anharmonic vibrational calculations as well as to the experimental gas electron diffraction data. Classical sampling methods neglecting quantum effects (NH and canonical GLE thermostats) dramatically underestimate vibrational amplitudes for the bonded atom pairs, both C-H and C-C, the resulting radial distribution functions exhibit nonphysically narrow peaks. This deficiency is almost completely removed by taking the quantum effects on the nuclei into account. The quantum GLE thermostat and a posteriori correction to the canonical GLE and NH thermostatted trajectories capture most vibrational quantum effects and closely reproduce computationally expensive PIMD and experimental radial distribution functions. These methods are both computationally feasible and accurate and are therefore recommended for calculations of the observable gas-phase structures. A good performance of the quantum GLE thermostat for the gas-phase calculations is encouraging since its parameters have been originally fitted for the condensed-phase calculations. Very accurate molecular structures can be predicted by combining the equilibrium geometry obtained at a high level of electronic structure theory with vibrational amplitudes and corrections calculated using MD driven by a lower level of electronic structure theory. PMID:27331660

  11. Quantum Control of Femtochemistry in the Gas Phase, Liquid Phase and on Surfaces

    NASA Astrophysics Data System (ADS)

    Gerber, Gustav

    2008-03-01

    By using coherent control techniques we control the behavior of quantum systems on their natural fs-time scale by applying ultrashort coherent light fields in the wavelength range from the IR to the UV. These laser pulses can be variably shaped in space and time using a laser pulse shaper consisting of a liquid-crystal display [1]. Laser-optimized femtochemistry in the gas phase and liquid phase is one field in which this new technique is successfully employed. Automated optimization of branching ratios and total product yields of gas phase photodissociation reactions as well as chemically selective molecular excitation in the liquid phase is performed [2][3]. Structural changes of a molecule in the liquid phase have been controlled by laser-optimized photoisomerization of a cyanine dye molecule [4] and of retinal in bacteriorhodopsin [5]. So far, optimal control techniques have been restricted to gas phase and condensed phase optimization experiments. Recently we have demonstrated femtosecond laser-assisted catalytic reactions on a Pd(100) single crystal surface. By applying a closed-loop optimal control scheme, we manipulate these reactions and selectively optimize the ratio of different bond-forming reaction channels, in contrast to previous quantum control experiments aiming at bond-cleavage. The results represent a first step towards selective photocatalysis of molecules. [1] T. Baumert et al, Appl. Phys. B 65, 779 (1997) [2] A. Assion et al, Science 282, 919(1998); T. Brixner et al, J. Mod. Opt. 50, 539 (2003) [3] T. Brixner et al, Nature, Vol. 414, 57 (2001) and J. Chem. Phys. 118, 3692 (2003) [4] G. Krampert et al, Phys. Rev. Lett. 94, 068305 (2005) [5] G. Vogt et al, Chem. Phys. Lett. 433, 211 (2006) P. Nuernberger et al, Phys. Chem. Chem. Phys. 9, 2470 (2007)

  12. Position for determining gas-phase volatile organic compound concentrations in transuranic waste containers. Revision 2

    SciTech Connect

    Connolly, M.J.; Liekhus, K.J.; Djordjevic, S.M.; Loehr, C.A.; Spangler, L.R.

    1998-06-01

    In the conditional no-migration determination (NMD) for the test phase of the Waste Isolation Pilot Plant (WIPP), the US Environmental Protection Agency (EPA) imposed certain conditions on the US Department of Energy (DOE) regarding gas phase volatile organic compound (VOC) concentrations in the void space of transuranic (TRU) waste containers. Specifically, the EPA required the DOE to ensure that each waste container has no layer of confinement that contains flammable mixtures of gases or mixtures of gases that could become flammable when mixed with air. The EPA also required that sampling of the headspace of waste containers outside inner layers of confinement be representative of the entire void space of the container. The EPA stated that all layers of confinement in a container would have to be sampled until DOE can demonstrate to the EPA that sampling of all layers is either unnecessary or can be safely reduced. A test program was conducted at the Idaho National Engineering and Environmental Laboratory (INEEL) to demonstrate that the gas phase VOC concentration in the void space of each layer of confinement in vented drums can be estimated from measured drum headspace using a theoretical transport model and that sampling of each layer of confinement is unnecessary. This report summarizes the studies performed in the INEEL test program and extends them for the purpose of developing a methodology for determining gas phase VOC concentrations in both vented and unvented TRU waste containers. The methodology specifies conditions under which waste drum headspace gases can be said to be representative of drum gases as a whole and describes a method for predicting drum concentrations in situations where the headspace concentration is not representative. The methodology addresses the approach for determining the drum VOC gas content for two purposes: operational period drum handling and operational period no-migration calculations.

  13. Position for determining gas phase volatile organic compound concentrations in transuranic waste containers. Revision 1

    SciTech Connect

    Connolly, M.J.; Liekhus, K.J.; Djordjevic, S.M.; Loehr, C.A.; Spangler, L.R.

    1995-08-01

    In the conditional no-migration determination (NMD) for the test phase of the Waste Isolation Pilot Plant (WIPP), the US Environmental Protection Agency (EPA) imposed certain conditions on the US Department of Energy (DOE) regarding gas phase volatile organic compound (VOC) concentrations in the void space of transuranic (TRU) waste containers. Specifically, the EPA required the DOE to ensure that each waste container has no layer of confinement that contains flammable mixtures of gases or mixtures of gases that could become flammable when mixed with air. The EPA also required that sampling of the headspace of waste containers outside inner layers of confinement be representative of the entire void space of the container. The EPA stated that all layers of confinement in a container would have to be sampled until DOE can demonstrate to the EPA that sampling of all layers is either unnecessary or can be safely reduced. A test program was conducted at the Idaho National Engineering Laboratory (INEL) to demonstrate that the gas phase VOC concentration in the void space of each layer of confinement in vented drums can be estimated from measured drum headspace using a theoretical transport model and that sampling of each layer of confinement is unnecessary. This report summarizes the studies performed in the INEL test program and extends them for the purpose of developing a methodology for determining gas phase VOC concentrations in both vented and unvented TRU waste containers. The methodology specifies conditions under which waste drum headspace gases can be said to be representative of drum gases as a whole and describes a method for predicting drum concentrations in situations where the headspace concentration is not representative. The methodology addresses the approach for determining the drum VOC gas content for two purposes: operational period drum handling and operational period no-migration calculations.

  14. Are ionic liquids pairwise in gas phase? A cluster approach and in situ IR study.

    PubMed

    Dong, Kun; Zhao, Lidong; Wang, Qian; Song, Yuting; Zhang, Suojiang

    2013-04-28

    In this work, we discussed the vaporization and gas species of ionic liquids (ILs) by a cluster approach of quantum statistical thermodynamics proposed by R. Luwig (Phys. Chem. Chem. Phys., 10, 4333), which is a controversial issue up to date. Based on the different sized clusters (2-12 ion-pairs) of the condensed phase, the molar enthalpies of vaporization (ΔvapH, 298.15 K, 1bar) of four representative ILs, 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([Emim][NTf2]) 1-ethyl-2,3-dimethylimidazolium bis(trifluoromethylsulfonyl)imide ([Emmim][NTf2]) 1-ethyl-3-methylimidazolium chloride ([Emim]Cl) and ethylammonium nitrate ([EtAm][NO3]), were calculated. The predicted ΔvapH were increased remarkably; even the values of [EtAm][NO3] were larger than 700 kJ mol(-1) when the charged isolated ions were assumed to be gas species. However, the ΔvapH were close to experimental measurements when the gas species assumed to be anion-cation pairwise, indicating that the different conformational ion-pairs can coexist in the gas phase when the IL is evaporated. Particularly for the protic IL, [EtAm][NO3], even the neutral precursor molecules by proton transfer can occur in gas phase. In addition, it's found that the effect of hydrogen bonds on the vaporization cannot be negligible by comparing the ΔvapH of [Emim][NTf2] with [Emmim][NTf2]. The in situ and calculated IR spectra provided the further proof that the ions are pairwise in gas phase. PMID:23493905

  15. Analyte induced water adsorbability in gas phase biosensors: the influence of ethinylestradiol on the water binding protein capacity.

    PubMed

    Snopok, Borys; Kruglenko, Ivanna

    2015-05-01

    An ultra-sensitive gas phase biosensor/tracer/bio-sniffer is an emerging technology platform designed to provide real-time information on air-borne analytes, or those in liquids, through classical headspace analysis. The desired bio-sniffer measures gaseous 17α- ethinylestradiol (ETED) as frequency changes on a quartz crystal microbalance (QCM), which is a result of the interactions of liquid sample components in the headspace (ETED and water) with a biorecognition layer. The latter was constructed by immobilization of polyclonal antiserum against a phenolic A-ring of estrogenic receptors through protein A. The QCM response exhibited stretched exponential kinetics of negative frequency shifts with reversible and "irreversible" components of mass uptake onto the sensor surface in static headspace conditions when exposed to water solutions of ETED over the sensor working range, from 10(-10) to 10(-17) g L(-1). It was shown that the variations in the QCM response characteristics are due to the change of the water-binding capacity of the sensing layer induced by protein transformations initiated by the binding of ETED molecules. This result is well correlated with the natural physiological function of estrogens in controlling the homeostasis of body fluids in living beings. PMID:25763411

  16. Quantum-chemical study and FTIR jet spectroscopy of CHCl(3)-NH(3) association in the gas phase.

    PubMed

    Hippler, Michael; Hesse, Susanne; Suhm, Martin A

    2010-11-01

    High level ab initio quantum chemical calculations have been performed on the association of chloroform with ammonia in the gas phase (counterpoise corrected MP2 and coupled-cluster CCSD(T) calculations with 6-311++G(d,p) basis functions). Minimum energy equilibrium structures have been found for CHCl(3)-NH(3) dimer, CHCl(3)-(NH(3))(2) trimer and CHCl(3)-(NH(3))(3) tetramer. Association is characterised by a CHN hydrogen bond between a chloroform and an ammonia molecule, with further ammonia units attached by hydrogen bonds to ammonia and by an electrostatic NHCl interaction to chloroform. Cooperative effects provide additional stabilisation. The complexes exhibit characteristic shifts of vibrational bands and change of IR intensity; in particular there is a pronounced progressive shift of the CH-stretching vibration towards lower wavenumber with each unit of ammonia attached in the complex. The shift is accompanied by an up to 600 fold increase in IR intensity. The experimental FTIR jet spectra have provided firm evidence of CHCl(3)-NH(3) association, with the clearest effects seen in the region of the CH-stretching vibration. First tentative assignments have been made based on the dependence of relative intensities of cluster features on the concentration of monomers, and assignments have been corroborated by the quantum chemical calculations. The present combined ab initio and FTIR spectroscopy study reveals the structure and energetics of cluster formation and intermolecular bonding in CHCl(3)-NH(3) association. PMID:20694238

  17. Higher-order structure of nucleic acids in the gas phase: top-down analysis of base-pairing interactions

    PubMed Central

    Fabris, D.; Kellersberger, K.A.; Wilhide, J.A.

    2012-01-01

    Non-ergodic as well as ergodic activation methods are capable of maintaining the integrity of base pairs during the top-down analysis of nucleic acids. Here, we investigate the significance of this characteristic in the investigation of higher-order structures of increasing complexity. We show that cognate fragments produced by typical backbone cleavages may not be always detected as separate sequence ions, but rather as individual products that remain associated through mutual pairing contacts. This effect translates into unintended masking of cleavage events that take place in double-stranded regions, thus leading to the preferential detection of fragments originating from unpaired regions. Such effect is determined by the stability of the weak non-covalent association between complementary stretches, which is affected by base composition, length of the double-stranded structure, and charge of the precursor ion selected for analysis. Although such effect may prevent the achievement of full sequence coverage for primary structure determination, it may provide the key to correctly differentiate double- versus single-stranded regions, in what could be defined as gas-phase footprinting experiments. In light of the critical role played by base pairs in defining the higher-order structure of nucleic acids, these approaches will be expected to support an increased utilization of mass spectrometry for the investigation of nucleic acid structure and dynamics. PMID:24027423

  18. Gas-phase Watson-Crick and Hoogsteen isomers of the nucleobase mimic 9-methyladenine x 2-pyridone.

    PubMed

    Frey, Jann A; Leist, Roman; Müller, Andreas; Leutwyler, Samuel

    2006-07-17

    2-Pyridone (pyridin-2-one) is a mimic of the uracil and thymine nucleobases, with only one N--H and C==O group. It provides a single H-bonding site, compared to three for the canonical pyrimidine nucleobases. Employing the supersonically cooled 9-methyladenine2-pyridone (9MAd x 2PY) complex, which is the simplest base pair to mimic adenine-uracil or adenine-thymine, we show that its gas-phase UV spectrum consists of contributions from two isomers. Based on the H-bonding sites of 9-methyladenine, these are the Watson-Crick and Hoogsteen forms. Combining two-color two-photon ionisation (2C-R2PI), UV-UV depletion and laser-induced fluorescence spectroscopies allows separation of the two band systems, revealing characteristic intermolecular in-plane vibrations of the two isomers. The calculated S(0) and S(1) intermolecular frequencies are in good agreement with the experimental ones. Ab initio calculations predict the Watson-Crick isomer to be slightly more stable (D(0)=-16.0 kcal mol(-1)) than the Hoogsteen isomer (D(0)=-15.0 kcal mol(-1)). The calculated free energies Delta(f)G(0) of the Watson-Crick and Hoogsteen isomers agree qualitatively with the experimental isomer concentration ratio of 3:1. PMID:16755637

  19. Vapor pressures and gas-phase PVT data for 1,1,1,2-tetrafluoroethane

    SciTech Connect

    Weber, L.A. )

    1989-05-01

    The authors present new data for the vapor pressure and PVT surface of 1,1,1,2-tetrafluoroethane (Refrigerant 134a) in the temperature range 40{degree}C (313 K) to 150{degree}C (423 K). The PVT data are for the gas phase at densities up to one-half critical. Densities of the saturated vapor are derived at five temperatures from the intersections of the experimental isochores with the vapor pressure curve. The data are represented analytically in order to demonstrate experimental precision and to facilitate calculation of thermodynamic properties.

  20. Gas Phase Vibrational Spectroscopy of Weakly Volatil Safe Taggants Using a Synchrotron Source

    NASA Astrophysics Data System (ADS)

    Cuisset, Arnaud; Hindle, Francis; Mouret, Gael; Gruet, Sebastien; Pirali, Olivier; Roy, Pascale

    2013-06-01

    The high performances of the AILES beamline of SOLEIL allow to study at medium resolution (0.5 cm^{-1}) the gas phase THz vibrational spectra of weakly volatil compounds. Between 2008 and 2010 we recorded and analyzed the THz/Far-IR spectra of phosphorous based nerve agents thanks to sufficient vapour pressures from liquid samples at room temperature. Recently, we extended these experiments towards the vibrational spectroscopy of vapour pressures from solid samples. This project is quite challenging since we target lower volatile compounds, and so requires very high sensitive spectrometers. Moreover a specially designed heated multipass-cell have been developped for the gas phase study of very weak vapor pressures. Thanks to skills acquired during initial studies and recent experiments performed on AILES with solid PAHs, we have recorded and assigned the gas phase vibrational fingerprints from the THz to the NIR spectral domain (10-4000 cm-1) of a set of targeted nitro-derivatives. The study was focused onto the para, ortho-mononitrotoluene (p-NT, o-NT), the 1,4 Dinitrobenzene (1,4 DNB), the 2,3-dimethyl-2,3-dinitrobutane (DMNB), and 2,4 and 2,6-dinitrotoluene (2,4-2,6 DNT), which are safe taggants widely used for the detection of commercial explosives. These taggants are usually added to plastic explosives in order to facilitate their vapour detection. Therefore, there is a continuous interest for their detection and identification in realistic conditions via optical methods. A first step consists in the recording of their gas phase vibrational spectra. These expected spectra focused onto molecules involved into defence and security domains are not yet available to date and will be very useful for the scientific community. This work is supported by the contract ANR-11-ASTR-035-01. A. Cuisset, G. Mouret, O. Pirali, P. Roy, F. Cazier, H. Nouali, J. Demaison, J. Phys. Chem. B, 2008, 112:, 12516-12525 I. Smirnova, A. Cuisset, R. Bocquet, F. Hindle, G. Mouret, O

  1. Critical temperature for the nuclear liquid-gas phase transition (from multifragmentation and fission)

    SciTech Connect

    Karnaukhov, V. A.; Oeschler, H.; Budzanowski, A.; Avdeyev, S. P.; Botvina, A. S.; Cherepanov, E. A.; Karcz, W.; Kirakosyan, V. V.; Rukoyatkin, P. A.; Skwirczynska, I.; Norbeck, E.

    2008-12-15

    Critical temperature T{sub c} for the nuclear liquid-gas phase transition is estimated from both the multifragmentation and fission data. In the first case, the critical temperature is obtained by analysis of the intermediate-mass-fragment yields in p(8.1 GeV) + Au collisions within the statistical model of multifragmentation. In the second case, the experimental fission probability for excited {sup 188}Os is compared with the calculated one with T{sub c} as a free parameter. It is concluded for both cases that the critical temperature is higher than 15 MeV.

  2. Gas-Phase Molecular Dynamics: Theoretical Studies in Spectroscopy and Chemical Dynamics

    SciTech Connect

    Yu, H.G.; Muckerman, J.T.

    2010-06-01

    The goal of this program is the development and application of computational methods for studying chemical reaction dynamics and molecular spectroscopy in the gas phase. We are interested in developing rigorous quantum dynamics algorithms for small polyatomic systems and in implementing approximate approaches for complex ones. Particular focus is on the dynamics and kinetics of chemical reactions and on the rovibrational spectra of species involved in combustion processes. This research also explores the potential energy surfaces of these systems of interest using state-of-the-art quantum chemistry methods.

  3. Chemical dynamics in the gas phase : quantum mechanics of chemical reactions.

    SciTech Connect

    Gray, S. K.

    2006-01-01

    This research program focuses on both the development and application of accurate quantum mechanical methods to describe gas phase chemical reactions and highly excited molecules. Emphasis is often placed on time-dependent or integrative approaches that, in addition to computational simplifications, yield useful mechanistic insights. Applications to systems of current experimental and theoretical interest are emphasized. The results of these calculations also allow one to gauge the quality of the underlying potential energy surfaces and the reliability of more approximate theoretical approaches such as classical trajectories and transition state theories.

  4. Reinvestigation of the gas-phase structure of tris(trifluoromethyl)arsine

    NASA Astrophysics Data System (ADS)

    Berger, Raphael J. F.; Mitzel, Norbert W.

    2010-08-01

    The gas-phase structure of tris(trifluoromethyl)arsine (As(CF)3) at ambient temperature has been re-investigated by means of electron diffraction. Substantial higher accuracy in structural parameters compared to the previous investigation has been achieved. In contrast to the previously reported C3v structure we found C3 symmetry. Selected r structure parameters are: As-C = 2.007(2) Å; C-As-C = 95.5(3)°. The experimental structure parameters are compared to parameters obtained in HF/TZVPP and MP2/TZVPP calculations, the latter being in excellent agreement with the experimental structure.

  5. UV/Vis Action Spectroscopy and Structures of Tyrosine Peptide Cation Radicals in the Gas Phase.

    PubMed

    Viglino, Emilie; Shaffer, Christopher J; Tureček, František

    2016-06-20

    We report the first application of UV/Vis photodissociation action spectroscopy for the structure elucidation of tyrosine peptide cation radicals produced by oxidative intramolecular electron transfer in gas-phase metal complexes. Oxidation of Tyr-Ala-Ala-Ala-Arg (YAAAR) produces Tyr-O radicals by combined electron and proton transfer involving the phenol and carboxyl groups. Oxidation of Ala-Ala-Ala-Tyr-Arg (AAAYR) produces a mixture of cation radicals involving electron abstraction from the Tyr phenol ring and N-terminal amino group in combination with hydrogen-atom transfer from the Cα positions of the peptide backbone. PMID:27159034

  6. Terpenes in the gas phase: The Far-IR spectrum of perillaldehyde

    NASA Astrophysics Data System (ADS)

    Huet, T. R.; Aviles Moreno, J.-R.; Pirali, O.; Tudorie, M.; Partal Ureña, F.; Lopez Gonzalez, J.-J.

    2012-07-01

    The far infrared spectrum of S-(-)-perillaldehyde, a monoterpene containing an aldehyde functional group, has been recorded in the gas phase using FTIR spectroscopy. The vibration signature of the three most populated rotamers has been observed and identified in the 30-650 cm-1 range. The vibration assignment was based on the scaled B3LYP/cc-pVDZ harmonic force field of Partal Ureña et al., 2008 [10]. Anharmonic contributions calculated at the HF/6-31+G* level were found negligible.

  7. Analysis of thermal effects on copper nanoparticles synthesized from the gas phase

    NASA Astrophysics Data System (ADS)

    Chepkasov, I. V.; Popov, Z. I.

    2015-04-01

    Molecular dynamics method using the tight-binding potential to carry out simulation of ultrafast heating of the synthesized particles from the gas phase to a temperature T= 600K and T= 900K, at which the particles were kept about 10 ns. As a result of the simulation revealed that the method of ultrafast heating the particles to high temperatures virtually eliminates the possibility of a clusters of defective education, but as a result of the heat treatment, the some of investigated particles can disconnect (burst) into smaller clusters.

  8. Headspace analysis gas-phase infrared spectroscopy: a study of xanthate decomposition on mineral surfaces

    NASA Astrophysics Data System (ADS)

    Vreugdenhil, Andrew J.; Brienne, Stephane H. R.; Markwell, Ross D.; Butler, Ian S.; Finch, James A.

    1997-03-01

    The O-ethyldithiocarbonate (ethyl xanthate, CH 3CH 2OCS -2) anion is a widely used reagent in mineral processing for the separation of sulphide minerals by froth flotation. Ethyl xanthate interacts with mineral powders to produce a hydrophobic layer on the mineral surface. A novel infrared technique, headspace analysis gas-phase infrared spectroscopy (HAGIS) has been used to study the in situ thermal decomposition products of ethyl xanthate on mineral surfaces. These products include CS 2, COS, CO 2, CH 4, SO 2, and higher molecular weight alkyl-containing species. Decomposition pathways have been proposed with some information determined from 2H- and 13C-isotope labelling experiments.

  9. Gas-Phase Molecular Dynamics: Theoretical Studies In Spectroscopy and Chemical Dynamics

    SciTech Connect

    Yu H. G.; Muckerman, J.T.

    2012-05-29

    The main goal of this program is the development and application of computational methods for studying chemical reaction dynamics and molecular spectroscopy in the gas phase. We are interested in developing rigorous quantum dynamics algorithms for small polyatomic systems and in implementing approximate approaches for complex ones. Particular focus is on the dynamics and kinetics of chemical reactions and on the rovibrational spectra of species involved in combustion processes. This research also explores the potential energy surfaces of these systems of interest using state-of-the-art quantum chemistry methods, and extends them to understand some important properties of materials in condensed phases and interstellar medium as well as in combustion environments.

  10. Forming NCO(-) in Dense Molecular Clouds: Possible Gas-Phase Chemical Paths From Quantum Calculations.

    PubMed

    Yurtsever, E; Gianturco, F A; Wester, R

    2016-07-14

    The existence of NCO(-) anions in the interstellar medium (ISM) has been suggested and searched for over the years but without any formal definitive sighting of that molecule. We discuss in this work the possible formation of either NCO(-) directly or of NCO neutral as a precursor to NCO(-) formation by electron attachment. We follow simple, gas-phase chemical reactions for which the general features are obtained from accurate quantum calculations. The results are shedding some additional light on the likely presence of this anion in the ISM environment, drawing further information from the specific features of the considered reactions on the additional chemical options that exist for its formation. PMID:26696323

  11. Gas Phase Chromatography of some Group 4, 5, and 6 Halides

    SciTech Connect

    Sylwester, Eric Robert

    1998-10-01

    Gas phase chromatography using The Heavy Element Volatility Instrument (HEVI) and the On Line Gas Apparatus (OLGA III) was used to determine volatilities of ZrBr{sub 4}, HfBr{sub 4}, RfBr{sub 4}, NbBr{sub 5}, TaOBr{sub 3}, HaCl{sub 5}, WBr{sub 6}, FrBr, and BiBr{sub 3}. Short-lived isotopes of Zr, Hf, Rf, Nb, Ta, Ha, W, and Bi were produced via compound nucleus reactions at the 88-Inch Cyclotron at Lawrence Berkeley National Laboratory and transported to the experimental apparatus using a He gas transport system. The isotopes were halogenated, separated from the other reaction products, and their volatilities determined by isothermal gas phase chromatography. Adsorption Enthalpy ({Delta}H{sub a}) values for these compounds were calculated using a Monte Carlo simulation program modeling the gas phase chromatography column. All bromides showed lower volatility than molecules of similar molecular structures formed as chlorides, but followed similar trends by central element. Tantalum was observed to form the oxybromide, analogous to the formation of the oxychloride under the same conditions. For the group 4 elements, the following order in volatility and {Delta}H{sub a} was observed: RfBr{sub 4} > ZrBr{sub 4} > HfBr{sub 4}. The {Delta}H{sub a} values determined for the group 4, 5, and 6 halides are in general agreement with other experimental data and theoretical predictions. Preliminary experiments were performed on Me-bromides. A new measurement of the half-life of {sup 261}Rf was performed. {sup 261}Rf was produced via the {sup 248}Cm({sup 18}O, 5n) reaction and observed with a half-life of 74{sub -6}{sup +7} seconds, in excellent agreement with the previous measurement of 78{sub -6}{sup +11} seconds. We recommend a new half-life of 75{+-}7 seconds for {sup 261}Rf based on these two measurements. Preliminary studies in transforming HEVI from an isothermal (constant temperature) gas phase chromatography instrument to a thermochromatographic (variable temperature

  12. Forming NCO– in Dense Molecular Clouds: Possible Gas-Phase Chemical Paths From Quantum Calculations

    PubMed Central

    2015-01-01

    The existence of NCO– anions in the interstellar medium (ISM) has been suggested and searched for over the years but without any formal definitive sighting of that molecule. We discuss in this work the possible formation of either NCO– directly or of NCO neutral as a precursor to NCO– formation by electron attachment. We follow simple, gas-phase chemical reactions for which the general features are obtained from accurate quantum calculations. The results are shedding some additional light on the likely presence of this anion in the ISM environment, drawing further information from the specific features of the considered reactions on the additional chemical options that exist for its formation. PMID:26696323

  13. Fluorometric method for the determination of gas-phase hydrogen peroxide

    NASA Technical Reports Server (NTRS)

    Kok, Gregory L.; Lazrus, Allan L.

    1986-01-01

    The fluorometric gas-phase hydrogen peroxide procedure is based on the technique used by Lazrus et. al. for the determination of H2O2 in the liquid phase. The analytical method utilizes the reaction of H2O2 with horseradish peroxidase and p-hydroxphenylacetic acid (POPHA) to form the fluorescent dimer of POPHA. The analytical reaction responds stoichiometrically to both H2O2 and some organic hydroperoxides. To discriminate H2O2 from organic hydroperoxides, catalase is used to preferentially destroy H2O2. Using a dual-channel flow system the H2O2 concentration is determined by difference.

  14. Chemical dynamics in the gas phase : quantum mechanics of chemical reactions.

    SciTech Connect

    Gray, S. K.

    1999-07-02

    This research program focuses on both the development and application of accurate quantum mechanical methods to describe gas phase chemical reactions and highly excited molecules. Emphasis is often placed on time-dependent or integrative approaches that, in addition to computational simplifications, yield useful mechanistic insights. Applications to systems of current experimental and theoretical interest are emphasized. The results of these calculations also allow one to gauge the quality of the underlying potential energy surfaces and the reliability of more approximate theoretical approaches such as classical trajectories and transition state theories.

  15. An index of the literature for bimolecular gas phase cation-molecule reaction kinetics

    NASA Technical Reports Server (NTRS)

    Anicich, V. G.

    2003-01-01

    This is an index to the literature for gas phase bimolecular positive ionmolecule reactions. Over 2300 references are cited. Reaction rate coefficients and product distributions of the reactions are abstracted out of the original citations where available. This index is intended to cover the literature from 1936 to 2003. This is a continuation of several surveys: the original (Huntress Astrophys. J. Suppl. Ser., 33, 495 (1977)), an expansion (Anicich and Huntress, Astrophys. J. Suppl. Ser. 62, 553 (1986)), a supplement (Anicich, Astrophys. J. Suppl. Ser. 84, 215 (1993)), and an evaluation (Anicich, V. G. J. Phys. Chem. Ref. Data 22,1469 (1993b). The Table of reactions is listed by reactant ion.

  16. Theoretical studies of fundamental pathways for alkaline hydrolysis of carboxylic acid esters in gas phase

    SciTech Connect

    Zhan, C.G.; Landry, D.W.; Ornstein, R.L.

    2000-02-23

    Fundamental reaction pathways for the alkaline hydrolysis of carboxylic acid esters, RCOOR{prime}, were examined through a series of first-principle calculations. The reactions of six representative esters with hydroxide ion were studied in the gas phase. A total of three competing reaction pathways were found and theoretically confirmed for each of the esters examined: bimolecular base-catalyzed acyl-oxygen cleavage (B{sub AC}2), bimolecular base-catalyzed alkyl-oxygen cleavage (B{sub AL}2), and carbonyl oxygen exchange with hydroxide. For the two-step B{sub AC}2 process, this is the first theoretical study to consider the individual sub-steps of the reaction process and to consider substituent effects. For the carbonyl oxygen exchange with hydroxide and for the one-step B{sub AL}2 process, the authors report here the first quantitative theoretical results for the reaction pathways and for the energy barriers. The energy barrier calculated for the second step of the B{sub AC}2 process, that is, the decomposition of the tetrahedral intermediate, is larger in the gas phase than that of the first step, that is, the formation of the tetrahedral intermediate, for all but one of the esters examined. The exception, CH{sub 3}COOC(CH{sub 3}){sub 3}, does not have an {alpha} hydrogen in the leaving group. The highest energy barrier calculated for the B{sub AC}2 process is always lower than the barriers for the oxygen exchange and for the B{sub AL}2 process. The difference between the barrier for the B{sub AL}2 process and the highest barrier for the B{sub AC}2 process is only {approximately}1--3 kcal/mol for the methyl esters, but becomes much larger for the others. Substitution of an {alpha} hydrogen in R{prime} with a methyl group considerably increases the energy barrier for the B{sub AL}2 process, and significantly decreases the energy barrier for the second step of the B{sub AC}2 process. The calculated substituent shifts of the energy barrier for the first step of the

  17. Gas-phase oxidation of propane in the presence of azaporphin compounds

    SciTech Connect

    Enikobpov, N.S.; Moshkina, R.I.; Nikisha, L.V.; Polyak, S.S.; Promyslova, V.V.

    1985-07-01

    The gas-phase oxidation of an equimolar mixture of propane with oxygen was studied in the presence of various polyphthalocyanins: metal-free PPC and mono- and bimetallic complexes PPC-Fe, PPC-Co, PPC-Cu-Fe, and PPC-Mg-Fe. The inhibition of oxidation increases in the series: PPC-Co < PPC-Fe approx. = PPC-Mg-Fe < PPC < PPC-Cu-Fe. The qualitative and quantitative composition of the products is virtually unchanged in comparison with the untreated reactor.

  18. Gas-phase synthesis of morpholine from diethylene glycol and ammonia

    SciTech Connect

    Kronich, I.G.; Dobrovol'skii, S.V.; Nikolaev, Y.T.; Shikunov, B.I.; Dyumaev, K.M.

    1982-11-01

    The theory and practice of catalysis in the process of amination of compounds which contain two or more hydroxyl groups has generated much interest. Specifically, there is particular interest in the reaction of diethylene glycol and ammonia; the amination process in this case is accompanied by cyclization with formation of morpholine - a very important product which is needed in growing amounts in the production of rubber vulcanization accelerators, optical bleaches and a number of other products. The possibility of producing morpholine from diethylene glycol and ammonia in gas phase in the presence of hydrogenating-dehydrogenating catalysts was demonstrated earlier. This report presents the results of further research in this area.

  19. Nanocomposite exchange-spring magnet synthesized by gas phase method: From isotropic to anisotropic

    NASA Astrophysics Data System (ADS)

    Liu, Xiaoqi; He, Shihai; Qiu, Jiao-Ming; Wang, Jian-Ping

    2011-05-01

    The fabrication of anisotropic nanocomposite exchange-spring magnets is demonstrated experimentally by using a gas-phase nanoparticle deposition technique. High resolution transmission electron microscopy images prove the experimental easy-axis definition of embedded hard magnetic nanoparticles in soft magnetic matrix. Exchange coupling between the hard and soft phases is confirmed by measuring recoil loops and δ M-H curve of the anisotropic FePt/Fe0.8Ni0.2 nanocomposite. The magnetic energy product for the anisotropic exchange-spring magnet is 224% higher than the isotropic case.

  20. CASCADER: An m-chain gas-phase radionuclide transport and fate model. [CASCADER Model

    SciTech Connect

    Lindstrom, F.T.; Cawlfield, D.E.; Emer, D.F.; Shott, G.J.; Donahue, M.E.

    1992-06-01

    Chemicals and radionuclides move either in the gas-phase, liquid-phase, or both phases in soils. They may be acted upon by either biological or abiotic processes as they are advected and/or dispersed. Furthermore, parent and daughter radionuclides may decay as they are transported in the soil. CASCADER is a gas-phase, one space dimensional transport and fate model for an m-chain of radionuclides in very dry soil. This model contains barometric pressure-induced advection and diffusion together with linear irreversible and linear reversible sorption for each radionuclide. The advocation velocity is derived from an embedded air-pumping submodel. The airpumping submodel is based on an assumption of isothermal conditions and is barometric pressure driven. CASCADER allows the concentration of source radionuclides to decay via the classical Bateman chain of simple, first-order kinetic processes. The transported radionuclides also decay via first-order processes while in the soil. A mass conserving, flux-type inlet and exit set of boundary conditions is used. The user must supply the initial distribution for the parent radionuclide in the soil. The initial daughter distribution is found using equilibrium rules. The model is user friendly as it uses a prompt-driven, free-form input. The code is ANSI standard Fortran 77.

  1. CASCADER: An M-chain gas-phase radionuclide transport and fate model

    SciTech Connect

    Lindstrom, F.T.; Cawlfield, D.E.; Emer, D.F.; Shott, G.J.; Donahue, M.E.

    1993-02-01

    Chemicals and radionuclides move either in the gas-phase, liquid-phase, or both phases in soils. They may be acted upon by either biological or abiotic processes through advection and diffusion. Furthermore, parent and daughter radionuclides may decay as they are transported in the soil. CASCADER is a gas-phase, one-space dimensional transport and fate model for M-chain radionuclides in very dry homogeneous or heterogeneous soil. This model contains barometric pressure-induced advection and diffusion together with linear irreversible and linear reversible sorption for each radionuclide. The advection velocity is derived from an embedded air-pumping submodel. The air-pumping submodel is based on an assumption of isothermal conditions, which is driven by barometric pressure. CASCADER allows the concentration of source radionuclides to decay via the classical Bateman chain of simple, first-order kinetic processes. The transported radionuclides also decay via first-order processes while in the soil. A mass conserving, flux-type inlet and exit set of boundary conditions are used. The user must supply the initial distribution for the parent radionuclide in the soil. The initial daughter distribution is found using equilibrium rules. The model is user friendly as it uses a prompt-driven, free-form input. The code is ANSI standard Fortran 77.

  2. First Detection of Gas-phase Methanol in a Protoplanetary Disk

    NASA Astrophysics Data System (ADS)

    Walsh, Catherine; Loomis, Ryan A.; Öberg, Karin I.; Kama, Mihkel; van ’t Hoff, Merel L. R.; Millar, Tom J.; Aikawa, Yuri; Herbst, Eric; Widicus Weaver, Susanna L.; Nomura, Hideko

    2016-05-01

    The first detection of gas-phase methanol in a protoplanetary disk (TW Hya) is presented. In addition to being one of the largest molecules detected in disks to date, methanol is also the first disk organic molecule with an unambiguous ice chemistry origin. The stacked methanol emission, as observed with the Atacama Large Millimeter/submillimeter Array, is spectrally resolved and detected across six velocity channels (\\gt 3σ ), reaching a peak signal-to-noise of 5.5σ , with the kinematic pattern expected for TW Hya. Using an appropriate disk model, a fractional abundance of 3× {10}-12{--}4× {10}-11 (with respect to H2) reproduces the stacked line profile and channel maps, with the favored abundance dependent upon the assumed vertical location (midplane versus molecular layer). The peak emission is offset from the source position, suggesting that the methanol emission has a ring-like morphology: the analysis here suggests it peaks at ≈ 30 {{au}}, reaching a column density ≈ 3{--}6× {10}12 cm‑2. In the case of TW Hya, the larger (up to millimeter-sized) grains, residing in the inner 50 au, may thus host the bulk of the disk ice reservoir. The successful detection of cold gas-phase methanol in a protoplanetary disk implies that the products of ice chemistry can be explored in disks, opening a window into studying complex organic chemistry during planetary system formation.

  3. Continuous-wave terahertz by photomixing: applications to gas phase pollutant detection and quantification

    NASA Astrophysics Data System (ADS)

    Hindle, Francis; Cuisset, Arnaud; Bocquet, Robin; Mouret, Gaël

    2008-03-01

    Recent advances in the development of monochromatic continuous-wave terahertz sources suitable for high resolution gas phase spectroscopy and pollution monitoring are reviewed. Details of a source using an ultra fast opto-electronic photomixing element are presented. The construction of a terahertz spectrometer using this source has allowed spectroscopic characterisation and application studies to be completed. Analysis of H 2S and OCS under laboratory conditions are used to demonstrate the spectrometer performance, and the determination of the transition line strengths and pressure self broadening coefficients for pure rotational transitions of OCS. The spectral purity 5 MHz, tunability 0.3 to 3 THz, and long wavelength ≈200 μm of this source have been exploited to identify and quantify numerous chemical species in cigarette smoke. The key advantages of this frequency domain are its high species selectivity and the possibility to make reliable measurements of gas phase samples heavily contaminated by aerosols and particles. To cite this article: F. Hindle et al., C. R. Physique 9 (2008).

  4. Optical Absorptions of Oxygenated Carbon Chain Cations in the Gas Phase

    NASA Astrophysics Data System (ADS)

    Hardy, F.-X.; Rice, C. A.; Chakraborty, A.; Fulara, J.; Maier, J. P.

    2016-06-01

    The gas-phase electronic spectra of linear OC4O+ and a planar C6H2O+ isomer were obtained at a rotational temperature of ≈10 K. Absorption measurements in a 6 K neon matrix were followed by gas-phase observations in a cryogenic radiofrequency ion trap. The origin bands of the 1{}2{{{\\Pi }}}u ≤ftarrow X{}2{{{\\Pi }}}g transition of OC4O+ and the 1{}2A{}2 ≤ftarrow X{}2B1 of HCCC(CO)CCH+ lie at 417.31 ± 0.01 nm and 523.49 ± 0.01 nm, respectively. These constitute the first electronic spectra of oxygenated carbon chain cations studied under conditions that are relevant to the diffuse interstellar bands (DIBs), as both have a visible transition. The recent analysis of the 579.5 nm DIB indicates that small carriers, five to seven heavy atoms, continue to be possible candidates (Huang & Oka 2015). Astronomical implications are discussed regarding this kind of oxygenated molecules.

  5. Gas-phase structure and reactivity of the keto tautomer of the deoxyguanosine radical cation.

    PubMed

    Feketeová, Linda; Chan, Bun; Khairallah, George N; Steinmetz, Vincent; Maître, Philippe; Radom, Leo; O'Hair, Richard A J

    2015-10-21

    Guanine radical cations are formed upon oxidation of DNA. Deoxyguanosine (dG) is used as a model, and the gas-phase infrared (IR) spectroscopic signature and gas-phase unimolecular and bimolecular chemistry of its radical cation, dG˙(+), A, which is formed via direct electrospray ionisation (ESI/MS) of a methanolic solution of Cu(NO3)2 and dG, are examined. Quantum chemistry calculations have been carried out on 28 isomers and comparisons between their calculated IR spectra and the experimentally-measured spectra suggest that A exists as the ground-state keto tautomer. Collision-induced dissociation (CID) of A proceeds via cleavage of the glycosidic bond, while its ion–molecule reactions with amine bases occur via a number of pathways including hydrogen-atom abstraction, proton transfer and adduct formation. A hidden channel, involving isomerisation of the radical cation via adduct formation, is revealed through the use of two stages of CID, with the final stage of CID showing the loss of CH2O as a major fragmentation pathway from the reformed radical cation, dG˙(+). Quantum chemistry calculations on the unimolecular and bimolecular reactivity are also consistent with A being present as a ground-state keto tautomer. PMID:25942055

  6. Kinetic and Product Yields of the Gas-Phase Reactions of Isoprene Hydroperoxides with Atmospheric Oxidants

    NASA Astrophysics Data System (ADS)

    Kumar, V.; Lozano, E. I.; Maitra, S.; Manning, D. M.; Cervantes, R.; Hasson, A. S.

    2015-12-01

    Isoprene is a volatile organic compound (VOC) that is emitted into the atmosphere by plants and trees. It has the largest emission rate of any non-methane VOC and is very reactive, and therefore has a major impact on the chemical composition of the atmosphere. Isoprene Hydroperoxides (IHP) are formed in the atmosphere from the chemical degradation of isoprene. These compounds can then potentially react in the atmosphere with atmospheric oxidants (ozone, OH, NO3) to produce secondary products. This chemistry is potentially important as it may contribute to particle growth and to mediation of ozone concentrations. In this work, the kinetics and mechanisms of the reactions of two IHPs with ozone were investigated. IHPs were synthesized and purified, and were characterized by NMR and HPLC. The gas phase chemistry of these compounds was then studied in chamber experiments using PTRMS as the primary analytical tool. The rate coefficients for reaction with ozone were measured at room temperature and 1 atmosphere using the relative rate technique, and yields of major gas phase reaction products were measured. Implications of these results will be discussed.

  7. Growth of AlGaN epilayers related gas-phase reactions using TPIS-MOCVD

    NASA Astrophysics Data System (ADS)

    Kim, Sunwoon; Seo, Junho; Lee, Kyuhan; Lee, Haeseok; Park, Keunseop; Kim, Younghoon; Kim, Chang-Soo

    2002-11-01

    AlGaN epilayers on GaN/sapphire were successfully grown under various growth conditions using a thermally pre-cracked ion-supplied metalorganic chemical vapor deposition. The Al composition in the solid was affected by the gas-phase parasitic reaction between NH 3 and trimethylaluminum (TMAl). As the operating pressure decreased, the Al composition in the solid increased over the ideal incorporation efficiency. This is due to a scavenging effect and a site-blocking effect. As the TMAl flow rate increased with fixed flow rates of NH 3 and trimethylgallium (TMGa), the Al concentration in the solid increased but started to saturate. As the TMGa flow rate decreased, the solid Al composition increased linearly, which means different parasitic reactions between TMGa:NH 3 and TMAl:NH 3. In addition, we found that the separating plate that was inserted to the reactor in front of the heated susceptor to separate ammonia gas flow from MO source input played an important role in the AlGaN growth. Particularly, the separating plate was more attractive under high operating pressure. When it was inserted, a white crystalline solid formed by the adduct (TMAl:NH 3) of parasitic reaction in the gas phase disappeared. It also increased the Al concentration in the solid. SEM images of AlGaN epilayer's surface showed many small islands due to the lack of surface mobility of adatoms.

  8. Oxidation of Methionine Residues in Polypeptide Ions Via Gas-Phase Ion/Ion Chemistry

    NASA Astrophysics Data System (ADS)

    Pilo, Alice L.; McLuckey, Scott A.

    2014-06-01

    The gas-phase oxidation of methionine residues is demonstrated here using ion/ion reactions with periodate anions. Periodate anions are observed to attach in varying degrees to all polypeptide ions irrespective of amino acid composition. Direct proton transfer yielding a charge-reduced peptide ion is also observed. In the case of methionine and, to a much lesser degree, tryptophan-containing peptide ions, collisional activation of the complex ion generated by periodate attachment yields an oxidized peptide product (i.e., [M + H + O]+), in addition to periodic acid detachment. Detachment of periodic acid takes place exclusively for peptides that do not contain either a methionine or tryptophan side chain. In the case of methionine-containing peptides, the [M + H + O]+ product is observed at a much greater abundance than the proton transfer product (viz., [M + H]+). Collisional activation of oxidized Met-containing peptides yields a signature loss of 64 Da from the precursor and/or product ions. This unique loss corresponds to the ejection of methanesulfenic acid from the oxidized methionine side chain and is commonly used in solution-phase proteomics studies to determine the presence of oxidized methionine residues. The present work shows that periodate anions can be used to `label' methionine residues in polypeptides in the gas phase. The selectivity of the periodate anion for the methionine side chain suggests several applications including identification and location of methionine residues in sequencing applications.

  9. Sources and potential health risk of gas phase PAHs in Hexi Corridor, Northwest China.

    PubMed

    Mao, Xiaoxuan; Yu, Zhousuo; Ding, Zhongyuan; Huang, Tao; Ma, Jianmin; Zhang, Gan; Li, Jun; Gao, Hong

    2016-02-01

    Gas phase polycyclic aromatic hydrocarbons (PAHs) in Hexi Corridor, Northwest China were determined during heating and non-heating seasons, respectively, using passive air samplers. Polyurethane foam (PUF) disks were chosen as the sampling medium. Fifteen PAHs out of the 16 PAHs classified by the United States Environmental Protection Agency (U.S. EPA) were detected in this field sampling investigation. The atmospheric levels of sampled PAHs were higher at urban sites than that at rural sites among 14 sampling sites and increased during heating season. The highest concentration (11.34 ng m(-3)) was observed in Lanzhou during the heating season, the capital and largest industrial city of Gansu Province. PAH contamination in air was dominated by three aromatic ring congeners. Possible sources of PAHs were apportioned using PAH species ratios and the principle component analysis (PCA) combined with a multiple linear regression (MLR) method. Fossil fuel consumption was identified to be the predominant source of PAHs over Hexi Corridor, accounting for 43 % of the concentration of total (15) PAHs. Backward and forward trajectory and cluster analysis were also carried out to identify potential origins of PAHs monitored at several urban and rural sites. Lung cancer risk of local residents to gas phase PAHs via inhalation exposure throughout the province was found to be around a critical value of the lung cancer risk level at 10(-6) recommended by the U.S. EPA risk assessment guideline. PMID:26432264

  10. Encapsulating Cytochrome c in Silica Aerogel Nanoarchitectures without Metal Nanoparticles while Retaining Gas-phase Bioactivity

    PubMed Central

    Harper-Leatherman, Amanda S.; Pacer, Elizabeth R.; Kosciuszek, Nina D.

    2016-01-01

    Applications such as sensors, batteries, and fuel cells have been improved through the use of highly porous aerogels when functional compounds are encapsulated within the aerogels. However, few reports on encapsulating proteins within sol–gels that are processed to form aerogels exist. A procedure for encapsulating cytochrome c (cyt. c) in silica (SiO2) sol-gels that are supercritically processed to form bioaerogels with gas-phase activity for nitric oxide (NO) is presented. Cyt. c is added to a mixed silica sol under controlled protein concentration and buffer strength conditions. The sol mixture is then gelled and the liquid filling the gel pores is replaced through a series of solvent exchanges with liquid carbon dioxide. The carbon dioxide is brought to its critical point and vented off to form dry aerogels with cyt. c encapsulated inside. These bioaerogels are characterized with UV-visible spectroscopy and circular dichroism spectroscopy and can be used to detect the presence of gas-phase nitric oxide. The success of this procedure depends on regulating the cyt. c concentration and the buffer concentration and does not require other components such as metal nanoparticles. It may be possible to encapsulate other proteins using a similar approach making this procedure important for potential future bioanalytical device development. PMID:26967257

  11. Novel Applications of Gas-Phase Analytical Methods to Semiconductor Process Emissions

    NASA Astrophysics Data System (ADS)

    Goolsby, Brian; Vartanian, Victor H.

    2003-09-01

    The semiconductor industry currently faces technical challenges in transistor design as traditional materials used for decades are being driven to their physical limits. High-k materials (k>7 for Si3N4) are being developed as gate oxides for sub 100 nm MOSFETs to prevent electron tunneling between source and drain. Organometallic precursors under consideration could produce hazardous byproducts. Low-k materials (k<3.9 for SiO2) are being developed as insulators or barriers in the dielectric stack to reduce RC time delays and cross talk between adjacent conductors. Precursors containing carbon or fluorine may increase the emission of CF4 during chamber cleans. Heavily doped polysilicon or metals currently in use as gate electrodes may be replaced with metals or metal oxides having greater corrosion resistance or other advantageous properties. All of these new materials must be characterized from the standoint of process byproduct emissions and abatement performance. Gas-phase analysis is critical to the safe and timely incorporation of these novel materials. Several new applications of Fourier transform infra-red spectroscopy (FTIR) are presented, including techniques being applied to address some of the current challenges facing the semiconductor industry. This report describes the characterization of various chemical vapor deposition (CVD) processes. Applications of gas-phase analytical methods to process optimization are also described.

  12. Supramolecular Adducts of Cucurbit[7]uril and Amino Acids in the Gas Phase

    NASA Astrophysics Data System (ADS)

    Kovalenko, Ekaterina; Vilaseca, Marta; Díaz-Lobo, Mireia; Masliy, A. N.; Vicent, Cristian; Fedin, Vladimir P.

    2016-02-01

    The complexation of the macrocyclic cavitand cucurbit[7]uril (Q7) with a series of amino acids (AA) with different side chains (Asp, Asn, Gln, Ser, Ala, Val, and Ile) is investigated by ESI-MS techniques. The 1:1 [Q7 + AA + 2H]2+ adducts are observed as the base peak when equimolar Q7:AA solutions are electrosprayed, whereas the 1:2 [Q7 + 2AA + 2H]2+ dications are dominant when an excess of the amino acid is used. A combination of ion mobility mass spectrometry (IM-MS) and DFT calculations of the 1:1 [Q7 + AA + 2H]2+ (AA = Tyr, Val, and Ser) adducts is also reported and proven to be unsuccessful at discriminating between exclusion or inclusion-type conformations in the gas phase. Collision induced dissociation (CID) revealed that the preferred dissociation pathways of the 1:1 [Q7 + AA + 2H]2+ dications are strongly influenced by the identity of the amino acid side chain, whereas ion molecule reactions towards N-butylmethylamine displayed a common reactivity pattern comprising AA displacement. Special emphasis is given on the differences between the gas-phase behavior of the supramolecular adducts with amino acids (AA = Asp, Asn, Gln, Ser, Ala, Val, and Ile) and those featuring basic (Lys and Arg) and aromatic (Tyr and Phe) side chains.

  13. Observations of gas phase hydrochloric acid in the polluted marine boundary layer

    NASA Astrophysics Data System (ADS)

    Crisp, Timia A.; Lerner, Brian M.; Williams, Eric J.; Quinn, Patricia K.; Bates, Timothy S.; Bertram, Timothy H.

    2014-06-01

    Ship-based measurements of gas phase hydrochloric acid (HCl), particulate chloride (pCl-), and reactive nitrogen oxides (NOy) were made in the polluted marine boundary layer along the California coastline during spring 2010. These observations are used to assess both the rate of Cl atom production from HCl and the role of direct HCl emissions and subsequent partitioning as a source for pCl-. Observations of HCl made in coastal Southern California are broadly correlated with NOz (NOz ≡ NOy - NOx), peaking at 11 A.M. The observed median HCl mixing ratio in Southern California is 1.3 ppb (interquartile range: 0.53-2.7 ppb), as compared to 0.19 ppb (interquartile range: 0.10-0.38 ppb) measured along the Sacramento River between San Francisco and Sacramento. Concurrent measurements of aerosol ion chemistry indicate that aerosol particles sampled in Northern California are heavily depleted in Cl-, corresponding to a mean pCl- deficit of 0.05 ± 0.03 (1σ) ppb for sub-10 µm aerosol particles. In comparison, aerosols measured in Southern California indicate that over 25% of particles showed an addition of Cl- to the particle population. Observations presented here suggest that primary sources of HCl, or gas phase chlorine precursors to HCl, are likely underestimated in the California Air Resource Board emissions inventory. These results highlight the need for future field observations designed to better constrain direct reactive halogen emissions.

  14. TRANSITION STATE FOR THE GAS-PHASE REACTION OF URANIUM HEXAFLUORIDE WITH WATER

    SciTech Connect

    Garrison, S; James Becnel, J

    2008-03-18

    Density Functional Theory and small-core, relativistic pseudopotentials were used to look for symmetric and asymmetric transitions states of the gas-phase hydrolysis reaction of uranium hexafluoride, UF{sub 6}, with water. At the B3LYP/6-31G(d,p)/SDD level, an asymmetric transition state leading to the formation of a uranium hydroxyl fluoride, U(OH)F{sub 5}, and hydrogen fluoride was found with an energy barrier of +77.3 kJ/mol and an enthalpy of reaction of +63.0 kJ/mol (both including zero-point energy corrections). Addition of diffuse functions to all atoms except uranium led to only minor changes in the structure and relative energies of the reacting complex and transition state. However, a significant change in the product complex structure was found, significantly reducing the enthalpy of reaction to +31.9 kJ/mol. Similar structures and values were found for PBE0 and MP2 calculations with this larger basis set, supporting the B3LYP results. No symmetric transition state leading to the direct formation of uranium oxide tetrafluoride, UOF{sub 4}, was found, indicating that the reaction under ambient conditions likely includes several more steps than the mechanisms commonly mentioned. The transition state presented here appears to be the first published transition state for the important gas-phase reaction of UF{sub 6} with water.

  15. Detection of the Elusive Triazane Molecule (N3 H5 ) in the Gas Phase.

    PubMed

    Förstel, Marko; Maksyutenko, Pavlo; Jones, Brant M; Sun, Bing-Jian; Chen, Shih-Hua; Chang, Agnes H-H; Kaiser, Ralf I

    2015-10-26

    We report the detection of triazane (N3 H5 ) in the gas phase. Triazane is a higher order nitrogen hydride of ammonia (NH3 ) and hydrazine (N2 H4 ) of fundamental importance for the understanding of the stability of single-bonded chains of nitrogen atoms and a potential key intermediate in hydrogen-nitrogen chemistry. The experimental results along with electronic-structure calculations reveal that triazane presents a stable molecule with a nitrogen-nitrogen bond length that is a few picometers shorter than that of hydrazine and has a lifetime exceeding 6±2 μs at a sublimation temperature of 170 K. Triazane was synthesized through irradiation of ammonia ice with energetic electrons and was detected in the gas phase upon sublimation of the ice through soft vacuum ultraviolet (VUV) photoionization coupled with a reflectron-time-of-flight mass spectrometer. Isotopic substitution experiments exploiting [D3 ]-ammonia ice confirmed the identification through the detection of its fully deuterated counterpart [D5 ]-triazane (N3 D5 ). PMID:26331382

  16. Gas-phase degradation of the herbicide ethalfluralin under atmospheric conditions.

    PubMed

    Muñoz, Amalia; Vera, Teresa; Ródenas, Milagros; Borrás, Esther; Mellouki, Abdelwahid; Treacy, Jack; Sidebottom, Howard

    2014-01-01

    The gas-phase degradation of ethalfluralin, N-ethyl-α,α,α-trifluoro-N-(2-methylallyl)-2,6-dinitro-p-toluidine, a widely used herbicide, was investigated under atmospheric conditions at the large outdoor European simulation chamber (EUPHORE) in Valencia, Spain. The photolysis of ethalfluralin was investigated under solar radiation and the mean photolysis rate coefficient was determined: J(ethalfluralin)=(1.3±0.2)×10(-3) s(-1) (JNO2=8×10(-3) s(-1)). The rate coefficients for the reactions of hydroxyl radicals and ozone with ethalfluralin in the dark were also measured under atmospheric conditions using the relative rate and the absolute rate technique, respectively. The rate coefficients values for the reactions of kOH(ethalfluralin)=(3.5±0.9)×10(-11)cm(3)molecule(-1)s(-1), and kO3(ethalfluralin)=(1.6±0.4)×10(-17) cm(3) molecule(-1) s(-1) were determined at 300±5 K and atmospheric pressure. The results show that removal of ethalfluralin from the atmosphere by reactions with OH radicals (τ ~ 4 h) or ozone (τ ~ 25 h) is slow compared to loss by photolysis. The available kinetic data suggest that the gas-phase tropospheric degradation of ethalfluralin will be controlled mainly by photolysis and provide an estimate for the tropospheric lifetime of approximately 12 min. The atmospheric implications of using ethalfluralin as a herbicide are discussed. PMID:24139158

  17. Can an ab initio three-body virial equation describe the mercury gas phase?

    PubMed

    Wiebke, J; Wormit, M; Hellmann, R; Pahl, E; Schwerdtfeger, P

    2014-03-27

    We report a sixth-order ab initio virial equation of state (EOS) for mercury. The virial coefficients were determined in the temperature range from 500 to 7750 K using a three-body approximation to the N-body interaction potential. The underlying two-body and three-body potentials were fitted to highly accurate Coupled-Cluster interaction energies of Hg2 (Pahl, E.; Figgen, D.; Thierfelder, C.; Peterson, K. A.; Calvo, F.; Schwerdtfeger, P. J. Chem. Phys. 2010, 132, 114301-1) and equilateral-triangular configurations of Hg3. We find the virial coefficients of order four and higher to be negative and to have large absolute values over the entire temperature range considered. The validity of our three-body, sixth-order EOS seems to be limited to small densities of about 1.5 g cm(-3) and somewhat higher densities at higher temperatures. Termwise analysis and comparison to experimental gas-phase data suggest a small convergence radius of the virial EOS itself as well as a failure of the three-body interaction model (i.e., poor convergence of the many-body expansion for mercury). We conjecture that the nth-order term of the virial EOS is to be evaluated from the full n-body interaction potential for a quantitative picture. Consequently, an ab initio three-body virial equation cannot describe the mercury gas phase. PMID:24547987

  18. Gas phase dynamics of laser-generated nanoparticle populations and its application to nanomaterials fabrication

    NASA Astrophysics Data System (ADS)

    Bulut, Mevlut

    Naturally occurring materials often derive their outstanding properties from optimal anisotropic arrangements of nanoscale constituents. This requires a hierarchical organization of matter over several length scales, which is difficult to achieve in artificial materials made by conventional physical and chemical methods. This dissertation explores the combination of laser and aerosol processes as a novel approach to make thin film materials with a level of microscopic organization similar to that found in nature. Through a systematic investigation of the behavior of the gas-phase dynamics of nanoparticles generated by laser ablation of solid target materials in background gases and a study of the physical processes involved in gas-phase nanoparticle processing, a new instrument integrating a laser ablation source and an aerosol spectrometer was designed and implemented. Film deposition and nanoparticle deposition processes can be manipulated independently affording greater flexibility for materials fabrication than other laser methods. The integrated laser-aerosol method is very flexible and can be used in the synthesis of a variety of materials. In this dissertation it is applied to the deposition of nanocomposite thin films comprising tetrahedral amorphous carbon (ta-C) with embedded metal nanoparticles. The controlled incorporation of metal nanoparticles enables the modulation of the electrical conductivity of ta-C over four orders of magnitude without significantly or adversely affecting its mechanical properties.

  19. The gas-phase iron abundance in Herbig-Haro objects

    NASA Technical Reports Server (NTRS)

    Beck-Winchatz, B.; Bohm, K. H.; Noriega-Crespo, A.

    1994-01-01

    The gas-phase abundance ratios Fe/S and Fe/O have been determined for the Herbig-Haro objects HH 1, HH 7, HH 11, HH 43A, and 'Burnham's Nebula' (HH 255). It is the purpose of this study to decide whether a sizeable fraction of the Fe in these HH objects is still bound in dust grains or whether the observed matter has gone through sufficiently fast shock waves so that the dust grains have been essentially destroyed and most of the iron has gone back into the gas phase. We have determined the abundance ratios using statistical equilibrium calculations for the ions Fe(+), S(+), and O(+). (These are the most abundant ions of the elements in question.) Abundance determinations have been made using homogeneous models of the HH objects for which electron temperatures and densities have been determined observationally from forbidden line ratios. The results show that the Fe/S ratio in the objects HH 1, HH 7, HH 11, and HH 43A agrees very well with the Population I abundance ratio. Only Burnham's Nebula (HH255) shows an Fe/S ratio which is about three times lower indicating a shock-wave history which is quite different from that of the other HH objects.

  20. Transition state for the gas-phase reaction of uranium hexafluoride with water.

    PubMed

    Garrison, Stephen L; Becnel, James M

    2008-06-19

    Density functional theory and small-core, relativistic pseudopotentials were used to look for symmetric and asymmetric transition states of the gas-phase hydrolysis reaction of uranium hexafluoride, UF 6, with water. At the B3LYP/6-31G(d,p)/SDD level, an asymmetric transition state leading to the formation of a uranium hydroxyl fluoride, U(OH)F 5, and hydrogen fluoride was found with an energy barrier of +77.3 kJ/mol and an enthalpy of reaction of +63.0 kJ/mol (both including zero-point energy corrections). Addition of diffuse functions to all atoms except uranium led to only minor changes in the structures and relative energies of the reacting complex and transition state. However, a significant change in the structure of the product complex was found, significantly reducing the enthalpy of reaction to +31.9 kJ/mol. Similar structures and values were found for PBE0 and MP2 calculations with this larger basis set, supporting the B3LYP results. No symmetric transition state leading to the direct formation of uranium oxide tetrafluoride, UOF 4, was found, indicating that the reaction under ambient conditions likely includes several more steps than the mechanisms commonly mentioned. The transition state presented here appears to be the first published transition state for the important gas-phase reaction of UF 6 with water. PMID:18500792

  1. Determination of Water Saturation in Relatively Dry Porous Media Using Gas-phase Tracer Tests

    SciTech Connect

    Oostrom, Martinus; Tartakovsky, Guzel D.; Wietsma, Thomas W.; Truex, Michael J.; Dane, Jacob H.

    2011-04-15

    Soil desiccation (drying), involving water evaporation induced by dry air injection and extraction, is a potentially robust remediation process to slow migration of inorganic or radionuclide contaminants through the vadose zone. The application of gas-phase partitioning tracer tests has been proposed as a means to estimate initial water volumes and to monitor the progress of the desiccation process at pilot-test and field sites. In this paper, tracer tests have been conducted in porous medium columns with various water saturations using sulfur hexafluoride as the conservative tracer and tricholorofluoromethane and difluoromethane as the water-partitioning tracers. For porous media with minimal silt and/or organic matter fractions, tracer tests provided reasonable saturation estimates for saturations close to zero. However, for sediments with significant silt and/or organic matter fractions, tracer tests only provided satisfactory results when the water saturation was at least 0.1 - 0.2. For dryer conditions, the apparent tracer retardation increases due to air – soil sorption, which is not included in traditional retardation coefficients derived from advection-dispersion equations accounting only for air – water partitioning and water – soil sorption. Based on these results, gas-phase partitioning tracer tests may be used to determine initial water volumes in sediments, provided the initial water saturations are sufficiently large. However, tracer tests are not suitable for quantifying moisture content in desiccated sediments.

  2. Native like helices in a specially designed β peptide in the gas phase.

    PubMed

    Schubert, Franziska; Pagel, Kevin; Rossi, Mariana; Warnke, Stephan; Salwiczek, Mario; Koksch, Beate; von Helden, Gert; Blum, Volker; Baldauf, Carsten; Scheffler, Matthias

    2015-02-21

    In the natural peptides, helices are stabilized by hydrogen bonds that point backward along the sequence direction. Until now, there is only little evidence for the existence of analogous structures in oligomers of conformationally unrestricted β amino acids. We specifically designed the β peptide Ac-(β(2)hAla)6-LysH(+) to form native like helical structures in the gas phase. The design follows the known properties of the peptide Ac-Ala6-LysH(+) that forms a α helix in isolation. We perform ion-mobility mass-spectrometry and vibrational spectroscopy in the gas phase, combined with state-of-the-art density-functional theory simulations of these molecular systems in order to characterize their structure. We can show that the straightforward exchange of alanine residues for the homologous β amino acids generates a system that is generally capable of adopting native like helices with backward oriented H-bonds. By pushing the limits of theory and experiments, we show that one cannot assign a single preferred structure type due to the densely populated energy landscape and present an interpretation of the data that suggests an equilibrium of three helical structures. PMID:25611682

  3. Potential health hazards from thermal degradation events - Particulate vs. gas phase effects

    NASA Technical Reports Server (NTRS)

    Oberdorster, Gunter; Ferin, Juraj; Finkelstein, Jacob; Baggs, Raymond; Stavert, D. M.; Lehnert, Bruce E.

    1992-01-01

    The effect of instillation of ultrafine TiO2 particles (10-nm anatase-TiO2 and 12-nm rutile-TiO2 (administered in doses from 60 to 1000 microg/rat and 500 microg/rat, respectively) on the respiratory tract of exposed rats was compared to the effects of larger (250 nm anatase-TiO2 and 220-nm rutile-TiO2 particles (given in doses 500 or 1000 microg/rat and 500 microg/rat, respectively). These effects were also compared to the effects of inhalation of 20-nm and 250-nm anatase-TiO2 particles and inhalation with surrogate gas phase components (HF and HCl). It was found that ultrafine TiO2 particles induced greater inflammatory reaction in the lung, had greater adverse effect on alveolar macrophage-mediated clearance function, and had a greater potential to induce mediators which can adversely affect other lung cells than did larger-sized particles. Inhalation of surrogate gas phase components caused injury only to the upper respiratory tract, in contrast to the ultrafine particles, which affected the deep lung.

  4. Encapsulating Cytochrome c in Silica Aerogel Nanoarchitectures without Metal Nanoparticles while Retaining Gas-phase Bioactivity.

    PubMed

    Harper-Leatherman, Amanda S; Pacer, Elizabeth R; Kosciuszek, Nina D

    2016-01-01

    Applications such as sensors, batteries, and fuel cells have been improved through the use of highly porous aerogels when functional compounds are encapsulated within the aerogels. However, few reports on encapsulating proteins within sol-gels that are processed to form aerogels exist. A procedure for encapsulating cytochrome c (cyt. c) in silica (SiO2) sol-gels that are supercritically processed to form bioaerogels with gas-phase activity for nitric oxide (NO) is presented. Cyt. c is added to a mixed silica sol under controlled protein concentration and buffer strength conditions. The sol mixture is then gelled and the liquid filling the gel pores is replaced through a series of solvent exchanges with liquid carbon dioxide. The carbon dioxide is brought to its critical point and vented off to form dry aerogels with cyt. c encapsulated inside. These bioaerogels are characterized with UV-visible spectroscopy and circular dichroism spectroscopy and can be used to detect the presence of gas-phase nitric oxide. The success of this procedure depends on regulating the cyt. c concentration and the buffer concentration and does not require other components such as metal nanoparticles. It may be possible to encapsulate other proteins using a similar approach making this procedure important for potential future bioanalytical device development. PMID:26967257

  5. Prediction of (L)-methionine VCD spectra in the gas phase and water solution.

    PubMed

    Rode, Joanna E; Dobrowolski, Jan Cz; Sadlej, Joanna

    2013-11-21

    In this paper we provide a computational study of the l-methionine conformational landscape and VCD spectra in the gas phase and a water environment simulated by implicit PCM and the hybrid model, i.e., a combination of explicit "microsolvation" and implicit models. In the gas phase, two groups of conformers differing in H-bonding, i.e., OH···NH2 and NH···O═C, could be distinguished based solely on the IR ν(OH) and ν(NH) stretching vibrations range. On the other hand, VCD better reflected chain differences. The most stable OH···NH2 conformer was predicted to be easily detected, and the presence of two out of four NH···O═C conformers could be confirmed. Three zwitterionic methionine conformers were shown to dominate in water. Their VCD spectra, simulated within the hybrid model at the B3LYP-IEF-PCM/aug-cc-pVDZ level of theory, indicated that they could be recognized in the mixture. Use of the hybrid model is crucial for good reproduction of the hydrogen bonding pattern in the VCD spectra of methionine in water solution. However, the 1300-800 cm(-1) region of the skeleton vibrations of methionine appeared to be relatively insensitive to the model of the solvent. PMID:24195697

  6. Exclusively Gas-Phase Passivation of Native Oxide-Free Silicon(100) and Silicon(111) Surfaces.

    PubMed

    Tao, Ye; Hauert, Roland; Degen, Christian L

    2016-05-25

    Reactions in the gas phase are of primary technological importance for applications in nano- and microfabrication technology and in the semiconductor industry. We present exclusively gas-phase protocols to chemically passivate oxide-free Si(111) and Si(100) surfaces with short-chain alkynes. The resulting surfaces showed equal or better oxidation resistance than most existing liquid-phase-derived surfaces and rivaled the outstanding stability of a full-coverage Si(111)-propenyl surface.1,2 The most stable surface (Si(111)-ethenyl) grew one-fifth of a monolayer of oxide (0.04 nm) after 1 month of air exposure. We monitored the regrowth of oxides on passivated Si(111) and Si(100) surfaces by X-ray photoelectron spectroscopy (XPS) and observed a significant crystal-orientation dependence of initial rates when total oxide thickness was below approximately one monolayer (0.2 nm). This difference was correlated with the desorption kinetics of residual surface Si-F bonds formed during HF treatment. We discuss applications of the technology and suggest future directions for process optimization. PMID:27153212

  7. Direct Time-Domain Observation of Conformational Relaxation in Gas-Phase Cold Collisions.

    PubMed

    Drayna, Garrett K; Hallas, Christian; Wang, Kenneth; Domingos, Sergio R; Eibenberger, Sandra; Doyle, John M; Patterson, David

    2016-04-11

    Cooling molecules in the gas phase is important for precision spectroscopy, cold molecule physics, and physical chemistry. Measurements of conformational relaxation cross sections shed important light on potential energy surfaces and energy flow within a molecule. However, gas-phase conformational cooling has not been previously observed directly. In this work, we directly observe conformational dynamics of 1,2-propanediol in cold (6 K) collisions with atomic helium using microwave spectroscopy and buffer-gas cooling. Precise knowledge and control of the collisional environment in the buffer-gas allows us to measure the absolute collision cross-section for conformational relaxation. Several conformers of 1,2-propanediol are investigated and found to have relaxation cross-sections with He ranging from σ=4.7(3.0)×10(-18)  cm(2) to σ>5×10(-16)  cm(2) . Our method is applicable to a broad class of molecules and could be used to provide information about the potential energy surfaces of previously uninvestigated molecules. PMID:26992036

  8. The Conformation of Pentanoates in the Solid and in the Gas Phase

    NASA Astrophysics Data System (ADS)

    Merkens, Carina; Stadtmüller, Tom; Englert, Ulli; Mouhib, Halima; Stahl, Wolfgang

    2014-07-01

    Suitable derivatives of the four isomeric pentanoates have been structurally characterized in the solid and the gas phase. For the latter, the volatile ethyl esters of valeric, isovaleric, methylbutyric, and pivalic acid were investigated by a combination of molecular beam Fourier transform microwave (MB-FTMW) spectroscopy and theoretical calculations. Crystalline salts rather than esters were formed by reaction between the carboxylic acids and trans-1,2-diaminocyclohexane. For both gaseous and crystalline methylbutyrates, an essentially perpendicular arrangement of carboxylate and methyl group was observed; earlier structure determinations documented in the data base agree with this result. Two competing conformers of favourable energy were relevant for the corresponding isovalerates: They were associated with torsion angles around 20° and 50° between the carboxylate and the alkyl chain. Good agreements in conformation have also been achieved for our experimentally observed unbranched valerate derivatives and fully branched pivalates in solid and gas phase. Despite the apparent simplicity of the pentanoates, the identification of their lowest energy conformers represents a challenge for different methods and levels of theory.

  9. Gas-Phase Amidation of Carboxylic Acids with Woodward's Reagent K Ions

    NASA Astrophysics Data System (ADS)

    Peng, Zhou; Pilo, Alice L.; Luongo, Carl A.; McLuckey, Scott A.

    2015-06-01

    Gas-phase amidation of carboxylic acids in multiply-charged peptides is demonstrated via ion/ion reactions with Woodward's reagent K (wrk) in both positive and negative mode. Woodward's reagent K, N-ethyl-3-phenylisoxazolium-3'-sulfonate, is a commonly used reagent that activates carboxylates to form amide bonds with amines in solution. Here, we demonstrate that the analogous gas-phase chemistry occurs upon reaction of the wrk ions and doubly protonated (or doubly deprotonated) peptide ions containing the carboxylic acid functionality. The reaction involves the formation of the enol ester intermediate in the electrostatic complex. Upon collisional activation, the ethyl amine on the reagent is transferred to the activated carbonyl carbon on the peptide, resulting in the formation of an ethyl amide (addition of 27 Da to the peptide) with loss of a neutral ketene derivative. Further collision-induced dissociation (CID) of the products and comparison with solution-phase amidation product confirms the structure of the ethyl amide.

  10. Probing Vitamine C, Aspirin and Paracetamol in the Gas Phase: High Resolution Rotational Studies

    NASA Astrophysics Data System (ADS)

    Mata, S.; Cabezas, C.; Varela, M.; Pena, I.; Nino, A.; López, J. C.; Alonso, J. L.; Grabow, J.-U.

    2011-06-01

    A solid sample of Vitamin C (m.p. 190°C) vaporized by laser ablation has been investigated in gas phase and characterized through their rotational spectra. Two spectroscopy techniques has been used to obtain the spectra: a new design of broadband chirped pulse Fourier transform microwave spectroscopy with in-phase/quadrature-phase-modulation passage-acquired-coherence technique (IMPACT) and conventional laser ablation molecular beam Fourier transform microwave spectroscopy (LA-MB-FTMW). Up to now, two low-energy conformer have been observed and their rotational constants determined. Ab initio calculations at the MP2/6-311++G (d,p) level of theory predicted rotational constants which helped us to identify these conformers unequivocally. Among the molecules to benefit from the LA-MB-FTMW technique there are common important drugs never observed in the gas phase through rotational spectroscopy. We present here the results on acetyl salicylic acid and acetaminophen (m.p. 136°C), commonly known as aspirin and paracetamol respectively. We have observed two stable conformers of aspirin and two for paracetamol. The internal rotation barrier of the methyl group in aspirin has been determined for both conformers from the analysis of the A-E splittings due to the coupling of internal and overall rotation. J. L. Alonso, C. Pérez, M. E. Sanz, J. C. López, S. Blanco, Phys. Chem. Chem. Phys. 11,617-627 (2009)and references therein

  11. The bimolecular gas-phase reaction of protonated alkyldipeptides with acetonylacetone

    NASA Astrophysics Data System (ADS)

    Gur, Erez H.; de Koning, L. J.; Nibbering, N. M. M.

    1997-11-01

    The gas-phase reaction of protonated alkyldipeptides with acetonylacetone has been studied in a Fourier-transform ion cyclotron resonance (FT-ICR) mass spectrometer. The reaction is identified as the gas-phase analogue of Paal-Knorr pyrrole synthesis. Under thermal conditions, the reaction complex loses a water molecule during a condensation reaction, which couples the dipeptide to the acetonylacetone molecule via an imine bond. Low energy collisional activation of the long-lived imine product ion induces additional loss of a water molecule to form the protonated 2,5-dimethylpyrrole derivative of the dipeptide. Detailed insight into the mechanism is obtained by a comparison of the reactivity of various alkyldipeptides with model compounds with amino functional groups. The reaction is catalysed by the peptide carbonyl groups, which assist in the protonation of the acetonylacetone carbonyl oxygen atoms, making the acetonylacetone carbonyl carbon atoms susceptible to nucleophilic attack by the peptide amino group. From both the previously studied bimolecular hydrogen-deuterium exchange behaviour and the presently studied reaction with acetonylacetone, it follows that the bimolecular reactivity of protonated alkyldipeptides is related to the extent of mobility of the proton within the reactive complex.

  12. Carbonyl Compounds in the Gas Phase of Cigarette Mainstream Smoke and Their Pharmacological Properties.

    PubMed

    Horinouchi, Takahiro; Higashi, Tsunehito; Mazaki, Yuichi; Miwa, Soichi

    2016-01-01

    Cigarette mainstream smoke is composed of gas and tar phases and contains >4000 chemical constituents, including nicotine and tar. The substances in the gas phase but not in the tar phase can pass through the airway epithelial barrier, enter the systemic circulation via the pulmonary circulation, and increase systemic oxidative damage, leading to the development of cigarette smoking-related diseases such as atherosclerosis. Recently, we identified some stable carbonyl compounds, including acrolein (ACR) and methyl vinyl ketone (MVK), as major cytotoxic factors in nicotine- and tar-free cigarette smoke extract (CSE) of the gas phase. CSE, ACR, and MVK induce protein kinase C (PKC)-dependent activation of reduced nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX) and subsequent generation of reactive oxygen species (ROS) via NOX, causing plasma membrane damage and cell apoptosis. CSE, ACR, and MVK also trigger carbonylation of PKC, which is an irreversible oxidative modification. Cell damage and PKC carbonylation in response to treatment with CSE, ACR, or MVK are abolished by thiol-containing antioxidants such as N-acetyl-L-cysteine and reduced glutathione. Thus pharmacological modulation of PKC and NOX activities and the trapping of ROS are potential strategies for the prevention of diseases related to cigarette smoking. PMID:27251492

  13. Fluorescence probe of polypeptide conformational dynamics in gas phase and in solution

    NASA Astrophysics Data System (ADS)

    Iavarone, Anthony T.; Meinen, Jan; Schulze, Susanne; Parks, Joel H.

    2006-07-01

    Fluorescence measurements of polypeptides derivatized with the fluorescent dye BODIPY TMR have been used to probe the polypeptide conformational dynamics as a function of temperature and charge state. Measurements of (BODIPY TMR)-[Pro]n-Arg-Trp and (BODIPY TMR)-[Gly-Ser]m-Arg-Trp have been performed for charge states 1+ and 2+ of n = 4 and 10 and m = 2 and 5. The 2+ charge states of both of these polypeptides exhibit similar temperature dependences for equal chain lengths (n = 4, m = 2 and n = 10, m = 5) and suggest conformations dominated by Coulomb repulsion. In the absence of such Coulomb repulsion, the 1+ charge state conformations appear to be characterized by the flexibility of the polypeptide chain for which [Gly-Ser]m > [Pro]n. Comparisons of these gas phase polypeptide measurements with corresponding measurements in solution provide a direct measure of the effects of solvent on the conformational dynamics. The change in fluorescence as a function of temperature in the gas phase is two orders of magnitude greater than that in solution, a dramatic result we attribute to the restrictions on intramolecular dynamics imposed by diffusion-limited kinetics and the lack of shielding by solvent. Measurements were also made of unsolvated Pron peptides without the tryptophan (Trp) residue to isolate the interaction of the fluorescent dye with charges.

  14. Gas-Phase Lasers - a Historical Perspective in Relation to the GEC

    NASA Astrophysics Data System (ADS)

    Hays, Gerry

    1997-10-01

    Understanding of gas-phase lasers inevitably involves an expertise in many of the specialties of the GEC community - especially homogenous and heterogeneous kinetics, collision cross-sections, gas breakdown physics and fundamental swarm parameters. The GEC community decided early in the evolution of gas-phase lasers to include papers on this topic and the result was many years of contributions to the evolution of and improvement in our understanding of this important class of lasers. Many of the ground-breaking results in gas laser technology were presented at the GEC over the last 3 decades as the traditional rare-gas atomic physics and low-temperature plasma groups turned their attention to parameters of interest to the laser modelers and experimenters. This paper will trace the development of this field, especially as it pertained to the GEC. Some of the key results will be highlighted, together with some of the unpublished trivia and anecdotal incidents in order to capture the flavor of the rapid developments in the early days. The talk will include speculation as to the direction this field is taking, and some suggestions as to opportunities. This work supported by the United States Department of Energy under Contract DE-AC04-94AL85000. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed-Martin Company, for the United States Department of Energy.

  15. Combining density functional theory (DFT) and collision cross-section (CCS) calculations to analyze the gas-phase behaviour of small molecules and their protonation site isomers.

    PubMed

    Boschmans, Jasper; Jacobs, Sam; Williams, Jonathan P; Palmer, Martin; Richardson, Keith; Giles, Kevin; Lapthorn, Cris; Herrebout, Wouter A; Lemière, Filip; Sobott, Frank

    2016-06-20

    Electrospray ion mobility-mass spectrometry (IM-MS) data show that for some small molecules, two (or even more) ions with identical sum formula and mass, but distinct drift times are observed. In spite of showing their own unique and characteristic fragmentation spectra in MS/MS, no configurational or constitutional isomers are found to be present in solution. Instead the observation and separation of such ions appears to be inherent to their gas-phase behaviour during ion mobility experiments. The origin of multiple drift times is thought to be the result of protonation site isomers ('protomers'). Although some important properties of protomers have been highlighted by other studies, correlating the experimental collision cross-sections (CCSs) with calculated values has proven to be a major difficulty. As a model, this study uses the pharmaceutical compound melphalan and a number of related molecules with alternative (gas-phase) protonation sites. Our study combines density functional theory (DFT) calculations with modified MobCal methods (e.g. nitrogen-based Trajectory Method algorithm) for the calculation of theoretical CCS values. Calculated structures can be linked to experimentally observed signals, and a strong correlation is found between the difference of the calculated dipole moments of the protomer pairs and their experimental CCS separation. PMID:27264846

  16. Gas-phase Mechanisms of Sulfur Isotope Mass-independent Fractionation

    NASA Astrophysics Data System (ADS)

    Lyons, J. R.

    2006-12-01

    Mass-independent fractionation (MIF) in sulfur isotopes in ancient sulfur-bearing rocks (Farquhar et al. 2000a) is interpreted as evidence for gas-phase MIF processes in the early Earth atmosphere. This interpretation is made by analogy with oxygen isotope MIF in the modern atmosphere (produced during ozone formation), and by laboratory photolysis experiments on SO2 (Farquhar et al. 2001; Wing et al. 2004) that yield both elemental sulfur and sulfate with S MIF signatures at wavelengths above and below the SO2 dissociation limit. What is lacking is a quantitative understanding of the mechanisms of gas-phase S MIF. Quantification is essential in order to extract the full implications of sulfur MIF throughout Earth history, including for bacterial sulfate reduction processes which largely conserve D33S and D36S. Several sulfur MIF mechanisms are possible. The most obvious is the gas-phase thiozone reaction, which is isovalent to the ozone formation reaction. Ozone formation produces a well-known MIF signature in oxygen isotopes (Thiemens and Heidenreich 1983), and a symmetry-dependent non-RRKM mechanism has been proposed as the origin of O MIF (Gao and Marcus 2001). It is possible and perhaps likely that S3 formation also proceeds by a non-RRKM process. Data are lacking on isotopic (an even non-isotopic) rates of S3 formation, so it is not possible to make definitive statements about MIF in S3 at this time. However modeling results suggest that the vapor pressure of S2 is too low for gas-phase S3 formation to be significant. Two additional species that may exhibit a non-RRKM MIF signature are S2O2 and S4. Again, there is a lack of isotopomer-specific kinetic data for these reactions, and gas-phase formation of S4 is likely inconsequential. Perhaps the most obvious mechanism is simply the primary act of SO2 photolysis. The SO2 absorption spectrum is highly structured, with strong vibronic bands above and below the dissociation limit. In contrast H2S, with its mostly

  17. The Contribution of the Activation Entropy to the Gas-Phase Stability of Modified Nucleic Acid Duplexes

    NASA Astrophysics Data System (ADS)

    Hari, Yvonne; Dugovič, Branislav; Istrate, Alena; Fignolé, Annabel; Leumann, Christian J.; Schürch, Stefan

    2016-04-01

    Tricyclo-DNA (tcDNA) is a sugar-modified analogue of DNA currently tested for the treatment of Duchenne muscular dystrophy in an antisense approach. Tandem mass spectrometry plays a key role in modern medical diagnostics and has become a widespread technique for the structure elucidation and quantification of antisense oligonucleotides. Herein, mechanistic aspects of the fragmentation of tcDNA are discussed, which lay the basis for reliable sequencing and quantification of the antisense oligonucleotide. Excellent selectivity of tcDNA for complementary RNA is demonstrated in direct competition experiments. Moreover, the kinetic stability and fragmentation pattern of matched and mismatched tcDNA heteroduplexes were investigated and compared with non-modified DNA and RNA duplexes. Although the separation of the constituting strands is the entropy-favored fragmentation pathway of all nucleic acid duplexes, it was found to be only a minor pathway of tcDNA duplexes. The modified hybrid duplexes preferentially undergo neutral base loss and backbone cleavage. This difference is due to the low activation entropy for the strand dissociation of modified duplexes that arises from the conformational constraint of the tc-sugar-moiety. The low activation entropy results in a relatively high free activation enthalpy for the dissociation comparable to the free activation enthalpy of the alternative reaction pathway, the release of a nucleobase. The gas-phase behavior of tcDNA duplexes illustrates the impact of the activation entropy on the fragmentation kinetics and suggests that tandem mass spectrometric experiments are not suited to determine the relative stability of different types of nucleic acid duplexes.

  18. The Contribution of the Activation Entropy to the Gas-Phase Stability of Modified Nucleic Acid Duplexes.

    PubMed

    Hari, Yvonne; Dugovič, Branislav; Istrate, Alena; Fignolé, Annabel; Leumann, Christian J; Schürch, Stefan

    2016-07-01

    Tricyclo-DNA (tcDNA) is a sugar-modified analogue of DNA currently tested for the treatment of Duchenne muscular dystrophy in an antisense approach. Tandem mass spectrometry plays a key role in modern medical diagnostics and has become a widespread technique for the structure elucidation and quantification of antisense oligonucleotides. Herein, mechanistic aspects of the fragmentation of tcDNA are discussed, which lay the basis for reliable sequencing and quantification of the antisense oligonucleotide. Excellent selectivity of tcDNA for complementary RNA is demonstrated in direct competition experiments. Moreover, the kinetic stability and fragmentation pattern of matched and mismatched tcDNA heteroduplexes were investigated and compared with non-modified DNA and RNA duplexes. Although the separation of the constituting strands is the entropy-favored fragmentation pathway of all nucleic acid duplexes, it was found to be only a minor pathway of tcDNA duplexes. The modified hybrid duplexes preferentially undergo neutral base loss and backbone cleavage. This difference is due to the low activation entropy for the strand dissociation of modified duplexes that arises from the conformational constraint of the tc-sugar-moiety. The low activation entropy results in a relatively high free activation enthalpy for the dissociation comparable to the free activation enthalpy of the alternative reaction pathway, the release of a nucleobase. The gas-phase behavior of tcDNA duplexes illustrates the impact of the activation entropy on the fragmentation kinetics and suggests that tandem mass spectrometric experiments are not suited to determine the relative stability of different types of nucleic acid duplexes. Graphical Abstract ᅟ. PMID:27080005

  19. The Contribution of the Activation Entropy to the Gas-Phase Stability of Modified Nucleic Acid Duplexes

    NASA Astrophysics Data System (ADS)

    Hari, Yvonne; Dugovič, Branislav; Istrate, Alena; Fignolé, Annabel; Leumann, Christian J.; Schürch, Stefan

    2016-07-01

    Tricyclo-DNA (tcDNA) is a sugar-modified analogue of DNA currently tested for the treatment of Duchenne muscular dystrophy in an antisense approach. Tandem mass spectrometry plays a key role in modern medical diagnostics and has become a widespread technique for the structure elucidation and quantification of antisense oligonucleotides. Herein, mechanistic aspects of the fragmentation of tcDNA are discussed, which lay the basis for reliable sequencing and quantification of the antisense oligonucleotide. Excellent selectivity of tcDNA for complementary RNA is demonstrated in direct competition experiments. Moreover, the kinetic stability and fragmentation pattern of matched and mismatched tcDNA heteroduplexes were investigated and compared with non-modified DNA and RNA duplexes. Although the separation of the constituting strands is the entropy-favored fragmentation pathway of all nucleic acid duplexes, it was found to be only a minor pathway of tcDNA duplexes. The modified hybrid duplexes preferentially undergo neutral base loss and backbone cleavage. This difference is due to the low activation entropy for the strand dissociation of modified duplexes that arises from the conformational constraint of the tc-sugar-moiety. The low activation entropy results in a relatively high free activation enthalpy for the dissociation comparable to the free activation enthalpy of the alternative reaction pathway, the release of a nucleobase. The gas-phase behavior of tcDNA duplexes illustrates the impact of the activation entropy on the fragmentation kinetics and suggests that tandem mass spectrometric experiments are not suited to determine the relative stability of different types of nucleic acid duplexes.

  20. Strategies and methodologies to develop techniques for computer-assisted analysis of gas phase formation during altitude decompression

    NASA Technical Reports Server (NTRS)

    Powell, Michael R.; Hall, W. A.

    1993-01-01

    It would be of operational significance if one possessed a device that would indicate the presence of gas phase formation in the body during hypobaric decompression. Automated analysis of Doppler gas bubble signals has been attempted for 2 decades but with generally unfavorable results, except with surgically implanted transducers. Recently, efforts have intensified with the introduction of low-cost computer programs. Current NASA work is directed towards the development of a computer-assisted method specifically targeted to EVA, and we are most interested in Spencer Grade 4. We note that Spencer Doppler Grades 1 to 3 have increased in the FFT sonogram and spectrogram in the amplitude domain, and the frequency domain is sometimes increased over that created by the normal blood flow envelope. The amplitude perturbations are of very short duration, in both systole and diastole and at random temporal positions. Grade 4 is characteristic in the amplitude domain but with modest increases in the FFT sonogram and spectral frequency power from 2K to 4K over all of the cardiac cycle. Heart valve motion appears to characteristic display signals: (1) the demodulated Doppler signal amplitude is considerably above the Doppler-shifted blow flow signal (even Grade 4); and (2) demodulated Doppler frequency shifts are considerably greater (often several kHz) than the upper edge of the blood flow envelope. Knowledge of these facts will aid in the construction of a real-time, computer-assisted discriminator to eliminate cardiac motion artifacts. There could also exist perturbations in the following: (1) modifications of the pattern of blood flow in accordance with Poiseuille's Law, (2) flow changes with a change in the Reynolds number, (3) an increase in the pulsatility index, and/or (4) diminished diastolic flow or 'runoff.' Doppler ultrasound devices have been constructed with a three-transducer array and a pulsed frequency generator.

  1. Characterization of physical mixtures and directly compressed tablets of sulfamerazine polymorphs: implications on in vitro release characteristics.

    PubMed

    Roy, Shouvik; Alexander, Kenneth S; Riga, Alan T; Chatterjee, Koustuv

    2003-04-01

    The present study evaluates the effects of excipients, compression pressure, and relative humidity (RH) on the stability of sulfamerazine polymorphs (referred here as SMZ I and SMZ II) and their release from directly compressed tablets using differential scanning calorimetry (DSC), powder X-ray diffraction (PXRD), and dissolution analysis. SMZ I and SMZ II tablets were compressed with magnesium stearate (MGST), and microcrystalline cellulose (MCC) at 5000, 7500, and 10,000 lbs. pressures and stored at 40, 75, 95, and 100% RH conditions for 5 weeks. There were indications of possible drug-excipient interaction in the binary mixtures under different relative humidity conditions from the DSC data, but they could not be confirmed by PXRD because the crystal structures of the drug and excipients remained unaltered. The crystal structures of the polymorphs in the tablet also remained unaltered under the above conditions. There were, however, significant differences observed in the drug release properties of the two polymorphs. SMZ II was found in general to have a higher rate of drug release than SMZ I. Extensive gelation of MCC under higher moisture conditions, compression pressure during tableting, and inherent tabletability of the sulfamerazine crystals were factors that affected drug release. All these factors contributed towards prolonging the disintegration and deaggregation of the tablet particles and were therefore concluded to be the rate limiting steps for the dissolution process. PMID:12661061

  2. Effect of non-cross-linked calcium on characteristics, swelling behaviour, drug release and mucoadhesiveness of calcium alginate beads.

    PubMed

    Dalaty, Adnan Al; Karam, Ayman; Najlah, Mohammad; Alany, Raid G; Khoder, Mouhamad

    2016-04-20

    In this study, ibuprofen-loaded calcium alginate beads (CABs) with varying amounts of non-cross-linked calcium (NCL-Ca) were prepared using different washing methods. The influence of NCL-Ca on beads properties was investigated. Increasing the number or duration of washes led to significant decreases in the amount of NCL-Ca whereas the impact of the volume of washes was not significant. Approximately 70% of the initial amount of Ca(2+) was NCL-Ca which was removable by washing while only 30% was cross-linked (CL-Ca). Ca(2+) release from the CABs was bimodal; NCL-Ca was burst-released followed by a slower release of CL-Ca. Washing methods and the amount of NCL-Ca had significant influences on the encapsulation efficiency, beads weight, beads swelling, drug release profile and the mucoadhesiveness of CABs. This study highlighted the importance of washing methods and the amount of NCL-Ca to establish CABs properties and understand their behaviour in the simulated intestinal fluids (SIFs). PMID:26876840

  3. Thermal, mechanical and drug release characteristics of an acrylic film using active pharmaceutical ingredient as non-traditional plasticizer.

    PubMed

    Wiranidchapong, Chutima; Kieongarm, Waraporn; Managit, Chittima; Phrompittayarat, Watoo

    2016-01-01

    The objective of this study was to investigate thermal and mechanical properties as well as in vitro drug release of Eudragit® RL (ERL) film using chlorpheniramine maleate (CPM) as either active pharmaceutical ingredient or non-traditional plasticizer. Differential scanning calorimeter was used to measure the glass transition temperature (Tg) of 0-100% w/w CPM in ERL physical mixture. Instron testing machine was used to investigate Young's modulus, tensile stress and tensile strain (%) of ERL film containing 20-60% w/w CPM. Finally, a Franz diffusion cell was used to study drug release from ERL films obtained from four formulations, i.e. CRHP0/0, CRHP0/5, CRHP2/0 and CRHP2/5. The Tg of ERL was decreased when the weight percentage of CPM increased. The reduction of the Tg could be described by Kwei equation, indicating the interaction between CPM and ERL. Modulus and tensile stress decreased whereas tensile strain (%) increased when weight percentage of CPM increased. The change of mechanical properties was associated with the reduction of the Tg when weight percentage of CPM increased. ERL films obtained from four formulations could release the drug in no less than 10 h. Cumulative amount of drug release per unit area of ERL film containing only CPM (CRHP0/0) was lower than those obtained from the formulations containing traditional plasticizer (CRHP0/5), surfactant (CRHP2/0) or both of them (CRHP2/5). The increase of drug release was a result of the increase of drug permeability through ERL film and drug solubility based on traditional plasticizer and surfactant, respectively. PMID:26133082

  4. First detection of gas-phase ammonia in a planet-forming disk. NH3, N2H+, and H2O in the disk around TW Hydrae

    NASA Astrophysics Data System (ADS)

    Salinas, Vachail N.; Hogerheijde, Michiel R.; Bergin, Edwin A.; Cleeves, L. Ilsedore; Brinch, Christian; Blake, Geoffrey A.; Lis, Dariusz C.; Melnick, Gary J.; Panić, Olja; Pearson, John C.; Kristensen, Lars; Yıldız, Umut A.; van Dishoeck, Ewine F.

    2016-06-01

    literature estimates that were based on lower excitation transitions. These masses correspond to a disk-averaged abundances of 0.2-17.0 × 10-11, 0.1-9.0 × 10-10 and 7.6 × 10-11 for NH3, H2O and N2H+ respectively. Conclusions: Only in the most compact and settled adopted configuration is the inferred NH3/H2O consistent with interstellar ices and solar system bodies of ~5%-10%; all other spatial distributions require additional gas-phase NH3 production mechanisms. Volatile release in the midplane may occur through collisions between icy bodies if the available surface for subsequent freeze-out is significantly reduced, for instance, through growth of small grains into pebbles or larger bodies.

  5. Effects of surface area to volume ratio of PLGA scaffolds with different architectures on scaffold degradation characteristics and drug release kinetics.

    PubMed

    Chew, Sue Anne; Arriaga, Marco A; Hinojosa, Victor A

    2016-05-01

    In this work, PLGA scaffolds with different architectures were fabricated to investigate the effects of surface area to volume ratio (SVR) (which resulted from the different architectures) on scaffold degradation characteristics and drug release kinetics with minocycline as the model drug. It was hypothesized that the thin strand scaffolds, which had the highest SVR, would degrade faster than the thick strand and globular scaffolds as the increase in surface area will allow more contact between water molecules and degradable ester groups in the polymer. However, it was found that globular scaffolds, which had the lowest SVR, resulted in the fastest degradation which demonstrated that the amount of degradation of the scaffolds does not only depend on the SVR but also on other factors such as the retention of acidic degradation byproducts in the scaffold and scaffold porosity. PLGA 50 : 50 globular scaffolds resulted in a biphasic release profile, with a burst release in the beginning and the middle of the release study which may be beneficial for some drug delivery applications. A clear correlation between SVR and release rates was not observed, indicating that besides the availability of more surface area for drug to diffuse out of the polymer matrix, other factors such as amount of scaffold degradation and scaffold porosity may play a role in determining drug release kinetics. Further studies, such as scanning electron microscopy, need to be performed in the future to further evaluate the porosity, morphology and structure of the scaffolds. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 1202-1211, 2016. PMID:26780154

  6. Ultrafast electron diffraction from laser-aligned molecules in the gas phase

    NASA Astrophysics Data System (ADS)

    Yang, Jie

    Ultrafast electron diffraction has emerged since the end of last century, and has become an increasingly important tool for revealing great details of molecular dynamics. In comparison to spectroscopic techniques, ultrafast electron diffraction directly probes time-resolved structure of target molecules, and therefore can potentially provide "molecular movies" of the reactions being studied. These molecular movies are critical for understanding and ultimately controlling the energy conversion pathways and efficiencies of photochemical processes. In this dissertation, I have focused on ultrafast electron diffraction from gas-phase molecules, and have investigated several long-standing challenges that have been preventing researchers from being able to achieve 3-D molecular movies of photochemical reactions. The first challenge is to resolve the full 3-D structure for molecules in the gas phase. The random orientation of molecules in the gas phase smears out the diffraction signal, which results in only 1-D structural information being accessible. The second challenge lies in temporal resolution. In order to resolve coherent nuclear motions on their natural time scale, a temporal resolution of ˜200 femtosecond or better is required. However, due to experimental limitations the shortest temporal resolution that had been achieved was only a few picoseconds in early 2000, by Zewail group from Caltech. The first challenge is tackled by laser-alignment. In the first half of the dissertation, I approach this method both theoretically and experimentally, and demonstrate that by using a short laser pulse to transiently align target molecules in space, 3-D molecular structure can be reconstructed ab-initio from diffraction patterns. The second half of the dissertation presents two experiments, both of which are important steps toward imaging coherent nuclear motions in real time during photochemical reactions. The first experiment simultaneously resolves molecular alignment

  7. Enhancement of gas-phase diffusion in the presence of liquid

    NASA Astrophysics Data System (ADS)

    Webb, S.; Angert, A.

    2003-04-01

    Gas diffusion in porous media occurs in both the gas and liquid phases. In many instances, gas diffusion in the liquid phase is ignored. However, under many conditions, gas diffusion in the liquid phase may be more important than gas diffusion in the gas phase. Two different cases will be examined in this work. The first case is a continuous liquid path between the gas concentrations of interest modeled after Jury et al. (1984). The second case is the situation at low liquid saturation where liquid islands exist. For the first case, Jury's model can be rewritten as a ratio of the total gas diffusion in the gas and liquid phases to that just in the gas phase. The liquid diffusion coefficient is approximately 10-4 times the gas diffusion coefficient consistent with Jury et al. (1984). The ratio of total diffusion to gas-phase diffusion is then only a function of Henry's constant and the liquid saturation. For higher values of Henry's constant, such as for CO2 and O2, the effect of diffusion in the liquid phase is small except at high liquid saturations. For small values of Henry's constant, such as for some VOCs and explosive compounds, diffusion in the liquid phase dominates for low and moderate liquid saturation values. The second case is the enhancement of diffusion caused by liquid islands at low liquid saturation. Enhanced vapor diffusion across liquid islands has been observed and modeled by Webb and Ho (1999), where condensation and evaporation occur on opposite ends of the liquid island. Vapor diffusion enhancement of up to a factor of 10 has been observed. Similarly, gas can diffuse through the liquid island. For high values of Henry's constant, gas diffusion through liquid islands is negligible and can be ignored. For small values of Henry's constant, diffusion through liquid islands may be much greater than diffusion through gas, so the rate is enhanced. The work was sponsored by the Geneva International Center for Humanitarian Demining (GICHD) under the

  8. The origin of gas-phase HCO and CH3O radicals in prestellar cores

    NASA Astrophysics Data System (ADS)

    Bacmann, A.; Faure, A.

    2016-03-01

    Context. The recent unexpected detection of terrestrial complex organic molecules in the cold (~10 K) gas has cast doubts on the commonly accepted formation mechanisms of these species. Standard gas-phase mechanisms are inefficient and tend to underproduce these molecules, and many of the key reactions involved are unconstrained. Grain-surface mechanisms, which were presented as a viable alternative, suffer from the fact that they rely on grain surface diffusion of heavy radicals, which is not possible thermally at very low temperatures. Aims: One of the simplest terrestrial complex organic molecules, methanol is believed to form on cold grain surfaces following from successive H atom additions on CO. Unlike heavier species, H atoms are very mobile on grain surfaces even at 10 K. Intermediate species involved in grain surface methanol formation by CO hydrogenation are the radicals HCO and CH3O, as well as the stable species formaldehyde H2CO. These radicals are thought to be precursors of complex organic molecules on grain surfaces. Methods: We present new observations of the HCO and CH3O radicals in a sample of prestellar cores and carry out an analysis of the abundances of the species HCO, H2CO, CH3O, and CH3OH, which represent the various stages of grain-surface hydrogenation of CO to CH3OH. Results: The abundance ratios between the various intermediate species in the hydrogenation reaction of CO on grains are similar in all sources of our sample, HCO:H2CO:CH3O:CH3OH ~10:100:1:100. We argue that these ratios may not be representative of the primordial abundances on the grains but, rather, suggest that the radicals HCO and CH3O are gas-phase products of the precursors H2CO and CH3OH, respectively. Various gas-phase pathways are considered, including neutral-neutral and ion-molecule reactions, and simple estimates of HCO and CH3O abundances are compared to the observations. Critical reaction rate constants, branching ratios, and intermediate species are finally

  9. Comparing the gas-phase fragmentation reactions of protonated and radical cations of the tripeptides GXR

    NASA Astrophysics Data System (ADS)

    Wee, Sheena; O'Hair, Richard A. J.; McFadyen, W. David

    2004-05-01

    Electrospray ionization (ESI) mass spectrometry of methanolic solutions of mixtures of the copper salt (2,2':6',2''-terpyridine)copper(II) nitrate monohydrate ([Cu(II)(tpy)(NO3)2].H2O) and a tripeptide GXR (where X = 1 of the 20 naturally occurring amino acids) yielded [Cu(II)(tpy)(GXR)][radical sign]2+ ions, which were then subjected to collision induced dissociation (CID). In all but one case (GRR), these [Cu(II)(tpy)(GXR)][radical sign]2+ ions fragment to form odd electron GXR[radical sign]+ radical cations with sufficient abundance to examine their gas-phase fragmentation reactions. The GXR[radical sign]+ radical cations undergo a diverse range of fragmentation reactions which depend on the nature of the side chain of X. Many of these reactions can be rationalized as arising from the intermediacy of isomeric distonic ions in which the charge (i.e. proton) is sequestered by the highly basic arginine side chain and the radical site is located at various positions on the tripeptide including the peptide back bone and side chains. The radical sites in these distonic ions often direct the fragmentation reactions via the expulsion of small radicals (to yield even electron ions) or small neutrals (to form radical cations). Both classes of reaction can yield useful structural information, allowing for example, distinction between leucine and isoleucine residues. The gas-phase fragmentation reactions of the GXR[radical sign]+ radical cations are also compared to their even electron [GXR+H]+ and [GXR+2H]2+ counterparts. The [GXR+H]+ ions give fewer sequence ions and more small molecule losses while the [GXR+2H]2+ ions yield more sequence information, consistent with the [`]mobile proton model' described in previous studies. In general, all three classes of ions give complementary structural information, but the GXR[radical sign]+ radical cations exhibit a more diverse loss of small species (radicals and neutrals). Finally, links between these gas-phase results and key

  10. Photoinduced intermolecular cross-linking of gas phase triacylglycerol lipid ions.

    PubMed

    Nie, Shuai; Pham, Huong T; Blanksby, Stephen J; Reid, Gavin E

    2015-01-01

    Complex mixtures of plant derived triglycerol (TG) lipids are commonly used as feedstock components for the production of industrial polymers. However, there remains a need for the development of analytical strategies to investigate the intrinsic intermolecular cross-linking reactivity of individual TG molecules within these mixtures as a function of their structures and physicochemical properties, and for the characterization of the resultant products. Here, to address this need, we describe a novel multistage tandem mass spectrometry based method for intermolecular cross-linking and subsequent structural characterization of TG lipid ions in the gas phase. Cross-linking reactions were initiated using 266 nm ultraviolet photodissociation tandem mass spectrometry (UVPD-MS/MS) of saturated or unsaturated TG dimers introduced via electrospray ionization into a linear ion trap mass spectrometer as noncovalent complexes with protonated 3,4-, 2,4- or 3,5- diiodoaniline (diIA). UVPD resulted in the initial formation of an anilinyl biradical via the sequential loss of two iodine radicals, which underwent further reaction to yield multiple cross-linked TG products along with competing noncross-linking processes. These chemistries are proposed to occur via sequential combinations of hydrogen abstraction (H-abstraction), radical addition and radical recombination. Multistage collision induced dissociation tandem mass spectrometry (CID-MS(n)) was used to obtain evidence for the structures and mechanisms of formation for these products, as a function of both the TG lipid and diIA ion structures. The efficiency of the UVPD reaction was shown to be dependent on the number of unsaturation sites present within the TG lipids. However, when unsaturation sites were present, formation of the cross-linked and noncross-linked product ions via H-abstraction and radical addition mechanisms was found to be competitive. Finally, the identity of the anilinyl biradical (e.g., 3,4- versus 2

  11. A Method for Deriving Accurate Gas-Phase Abundances for the Multiphase Interstellar Galactic Halo

    NASA Astrophysics Data System (ADS)

    Howk, J. Christopher; Sembach, Kenneth R.; Savage, Blair D.

    2006-01-01

    We describe a new method for accurately determining total gas-phase abundances for the Galactic halo interstellar medium with minimal ionization uncertainties. For sight lines toward globular clusters containing both ultraviolet-bright stars and radio pulsars, it is possible to measure column densities of H I and several ionization states of selected metals using ultraviolet absorption line measurements and of H II using radio dispersion measurements. By measuring the ionized hydrogen column, we minimize ionization uncertainties that plague abundance measurements of Galactic halo gas. We apply this method for the first time to the sight line toward the globular cluster Messier 3 [(l,b)=(42.2d,+78.7d), d=10.2 kpc, z=10.0 kpc] using Far Ultraviolet Spectroscopic Explorer and Hubble Space Telescope ultraviolet spectroscopy of the post-asymptotic giant branch star von Zeipel 1128 and radio observations by Ransom et al. of recently discovered millisecond pulsars. The fraction of hydrogen associated with ionized gas along this sight line is 45%+/-5%, with the warm (T~104 K) and hot (T>~105 K) ionized phases present in roughly a 5:1 ratio. This is the highest measured fraction of ionized hydrogen along a high-latitude pulsar sight line. We derive total gas-phase abundances logN(S)/N(H)=-4.87+/-0.03 and logN(Fe)/N(H)=-5.27+/-0.05. Our derived sulfur abundance is in excellent agreement with recent solar system determinations of Asplund, Grevesse, & Sauval. However, it is -0.14 dex below the solar system abundance typically adopted in studies of the interstellar medium. The iron abundance is ~-0.7 dex below the solar system abundance, consistent with the significant incorporation of iron into interstellar grains. Abundance estimates derived by simply comparing S II and Fe II to H I are +0.17 and +0.11 dex higher, respectively, than the abundance estimates derived from our refined approach. Ionization corrections to the gas-phase abundances measured in the standard way are

  12. Gas-phase lithium cation basicity of histamine and its agonist 2-([beta]-aminoethyl)-pyridine

    NASA Astrophysics Data System (ADS)

    Hallmann, M.; Raczynska, E. D.; Gal, J. F.; Maria, P. C.

    2007-11-01

    The gas-phase lithium cation basicities (LCBs) were obtained for histamine (HA) and its agonist 2-([beta]-aminoethyl)-pyridine (AEP) from collision-induced dissociation of lithium adducts using Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR-MS). For measurements, MeO(CH2)2OMe, Et3PO and (Me2N)3PO (HMPA) were used as the reference compounds. The experimental LCB of AEP was located between those of Et3PO and (Me2N)3PO. The experimental LCB of HA was found to be higher than those of AEP and HMPA by more than 2 kcal mol-1 clearly indicating that the LCB of HA is higher than any LCB for a neutral base yet measured (crown-ethers excepted). The experimental LCBs of the parent bases (pyridine and imidazole) are lower by more than 10 kcal mol-1. In parallel, DFT calculations {B3LYP/6-31G*//B3LYP/6-31G* and B3LYP/6-311+G**//B3LYP/6-31G*} were performed for HA, AEP and their lithium adducts. Among the 22 reasonable conformations of the HA-Li+ adduct, only one appears to be significantly more stable than the others. This is also the case for one structure among seven conformations of the AEP-Li+ adduct. These two stable structures have the [`]scorpion' conformation, in which the Li+ cation is almost equally chelated by two basic nitrogen atoms, the ring N-aza and the chain N-amino. Other HA-Li+ and AEP-Li+ conformations have noticeably higher energies than the [`]scorpion' structures. The difference between the DFT calculated LCBs of HA and AEP (about 4 kcal mol-1) is in agreement with that experimentally obtained (>2 kcal mol-1). The high experimental and theoretical values of LCB for HA and AEP militate in favor of a strong chelation of Li+ by both ligands in the gas-phase. This chelation effect was also evidenced previously for the proton gas-phase basicity.

  13. Noble metal alloy clusters in the gas phase derived from protein templates: unusual recognition of palladium by gold.

    PubMed

    Baksi, Ananya; Pradeep, T

    2013-12-21

    Matrix assisted laser desorption ionization of a mixture of gold and palladium adducts of the protein lysozyme (Lyz) produces naked alloy clusters of the type Au24Pd(+) in the gas phase. While a lysozyme-Au adduct forms Au18(+), Au25(+), Au38(+) and Au102(+) ions in the gas phase, lysozyme-Pd alone does not form any analogous cluster. Addition of various transition metal ions (Ag(+), Pt(2+), Pd(2+), Cu(2+), Fe(2+), Ni(2+) and Cr(3+)) in the adducts contributes to drastic changes in the mass spectrum, but only palladium forms alloys in the gas phase. Besides alloy formation, palladium enhances the formation of specific single component clusters such as Au38(+). While other metal ions like Cu(2+) help forming Au25(+) selectively, Fe(2+) catalyzes the formation of Au25(+) over all other clusters. Gas phase cluster formation occurs from protein adducts where Au is in the 1+ state while Pd is in the 2+ state. The creation of alloys in the gas phase is not affected whether a physical mixture of Au and Pd adducts or a Au and Pd co-adduct is used as the precursor. The formation of Au cores and AuPd alloy cores of the kind comparable to monolayer protected clusters implies that naked clusters themselves may be nucleated in solution. PMID:24146135

  14. Characteristics of cyclic heat release variability in the transition from spark ignition to HCCI in a gasoline engine

    SciTech Connect

    Sen, Asok K; Litak, Grzegorz; Edwards, Kevin Dean; FINNEY, Charles E A; Daw, C Stuart; Wagner, Robert M

    2011-01-01

    We study selected examples of previously published cyclic heat-release measurements from a single-cylinder gasoline engine as stepwise valve timing adjustments were made to shift from spark ignited (SI) combustion to homogeneous charge compression ignition (HCCI). Wavelet analysis of the time series, combined with conventional statistics and multifractal analysis, revealed previously undocumented features in the combustion variability as the shift occurred. In the spark-ignition combustion mode, the heat-release variations were very small in amplitude and exhibited more persistent low-frequency oscillations with intermittent high-frequency bursts. In the HCCI combustion mode, the amplitude of the heat-release variations again was small and involved mainly low-frequency oscillations. At intermediate states between SI and HCCI, a wide range of very large-amplitude oscillations occurred, including both persistent low-frequency periodicities and intermittent high-frequency bursts. It appears from these results that real-time wavelet decomposition of engine cylinder pressure measurements may be useful for on-board tracking of SI HCCI combustion regime shifts.

  15. Gas-Phase Tropospheric Chemistry of Volatile Organic Compounds: 1. Alkanes and Alkenes

    SciTech Connect

    Atkinson, R. |

    1997-03-01

    Literature data (through mid-1996) concerning the gas-phase reactions of alkanes and alkenes (including isoprene and monoterpenes) leading to their first generation products are reviewed and evaluated for tropospheric conditions. The recommendations of the most recent IUPAC evaluation [J. Phys. Chem. Ref. Data, {bold 26}, No. 3 (1997)] are used for the {le}C{sub 3} organic compounds, unless more recent data necessitates reevaluation. The most recent review and evaluation of Atkinson [J. Phys. Chem. Ref. Data, Monograph {bold 2}, 1 (1994)] concerning the kinetics of the reactions of OH radicals, NO{sub 3} radicals, and O{sub 3} is also updated for these two classes of volatile organic compounds. {copyright} {ital 1997 American Institute of Physics and American Chemical Society.} {copyright} {ital 1997} {ital American Institute of Physics and American Chemical Society}

  16. Relaxation rates of low-field gas-phase ^129Xe storage cells

    NASA Astrophysics Data System (ADS)

    Limes, Mark; Saam, Brian

    2010-10-01

    A study of longitudinal nuclear relaxation rates T1 of ^129Xe and Xe-N2 mixtures in a magnetic field of 3.8 mT is presented. In this regime, intrinsic spin relaxation is dominated by the intramolecular spin-rotation interaction due to persistent xenon dimers, a mechanism that can be quelled by introducing large amounts of N2 into the storage cell. Extrinsic spin relaxation is dominated by the wall-relaxation rate, which is the primary quantity of interest for the various low-field storage cells and coatings that we have tested. Previous group work has shown that extremely long gas-phase relaxation times T1 can be obtained, but only at large magnetic fields and low xenon densities. The current work is motivated by the practical benefits of retaining hyperpolarized ^129Xe for extended periods of time in a small magnetic field.

  17. Electronic Structure and Gas-Phase Behaviour of the Heaviest Elements

    SciTech Connect

    Pershina, V.; Anton, J.; Jacob, T.; Borschevsky, A.

    2010-04-30

    Electronic structures and gas-phase adsorption behaviour of the heaviest elements 112, 113 and 114 and of their lighter homologs Hg, Tl and Pb is studied on the basis of ab initio Dirac-Coulomb atomic and four-component Density Functional Theory molecular and cluster calculations. The heaviest elements were shown to have low adsorption enthalpies on Teflon and should, therefore, be well transported through Teflon capillaries from the target chamber to the chemistry set up. Adsorption enthalpies of these elements on the Au(111) surface are predicted as -44.5 kJ/mol, -158.6 kJ/mol and -68.5 kJ/mol, respectively, giving the following sequence in the adsorption temperatures 113>114>112.

  18. Thermodynamic and kinetic stability of zwitterionic histidine: Effects of gas phase hydration

    NASA Astrophysics Data System (ADS)

    Lee, Sung-Sik; Kim, Ju-Young; Han, Yuna; Shim, Hyun-Jin; Lee, Sungyul

    2015-09-01

    We present calculations for histidine-(H2O)n (n = 0-6) to examine the effects of micro-hydrating water molecules on the relative stability of the zwitterionic vs. canonical forms of histidine. We calculate the structures and Gibbs free energies of the conformers at wB97XD/6-311++G(d,p) level of theory. We find that six water molecules are required to produce the thermodynamically stable histidine zwitterion. By calculating the barriers of canonical ↔ zwitterionic transformation, we predict that both the most stable canonical and zwitterionic forms of histidine-(H2O)6 may be observed in low temperature gas phase environment.

  19. Technical Basis for Gas-Phase Vadose Zone Remediation Technologies at Hanford: A Review - 12186

    SciTech Connect

    Truex, M.J.; Oostrom, M.; Szecsody, J.E.; Strickland, C.E.; Chronister, G.B.; Benecke, M.W.

    2012-07-01

    In situ vadose zone remediation approaches are being evaluated as potential options to mitigate the transport of inorganic and radionuclide contaminants from the vadose zone to the groundwater. Some of the candidate approaches are based on changing the contaminant or subsurface conditions in a way that slows downward migration of the contaminants through the vadose zone using amendments delivered in the gas-phase. Two promising approaches that have undergone testing at Hanford include soil desiccation to address technetium-99 contamination and ammonia-induced sequestration of uranium. For soil desiccation, a dry gas is injected to desiccate a targeted portion of the subsurface and thereby decrease contaminant movement by removing moisture and decreasing the hydraulic conductivity of the desiccated zone. Ammonia-induced sequestration of uranium relies on changing the pore water chemistry, primarily through pH changes, to induce dissolution and precipitation processes that decrease the amount of mobile uranium in the vadose zone. (authors)

  20. Accurate proton affinity and gas-phase basicity values for molecules important in biocatalysis

    PubMed Central

    Moser, Adam; Range, Kevin; York, Darrin M.

    2010-01-01

    Benchmark quantum calculations of proton affinities and gas phase basicities of molecules relevant to biochemical processes, particulsarly acid/base catalysis, are presented and compared for a variety of multi-level and density-functional quantum models. Included are nucleic acid bases in both keto and enol tautomeric forms, ribose in B-form and A-form sugar pucker conformations, amino acid side chains and backbone molecules, and various phosphates and phosphoranes including thio substitutions. This work presents a high-level thermodynamic characterization of biologically relevant protonation states, and provides a benchmark database for development of next-generation semiempirical and approximate density-functional quantum models, and parameterization of methods to predict pKa values and relative solvation energies. PMID:20942500

  1. Germanium-silicon alloy and core-shell nanocrystals by gas phase synthesis

    NASA Astrophysics Data System (ADS)

    Mehringer, Christian; Kloner, Christian; Butz, Benjamin; Winter, Benjamin; Spiecker, Erdmann; Peukert, Wolfgang

    2015-03-01

    In this work we present a novel route to synthesize well defined germanium-silicon alloy (GexSi1-x) and core-shell nanocrystals (NCs) employing monosilane (SiH4) and monogermane (GeH4) as precursors in a continuously operated two-stage hot-wall aerosol reactor setup. The first hot-wall reactor stage (HWR I) is used to produce silicon (Si) seed particles from SiH4 pyrolysis in Argon (Ar). The resulting seeding aerosol is fed into the second reactor stage (HWR II) and a mixture of SiH4 and GeH4 is added. The ratio of the precursors in the feed, their partial pressures, the synthesis temperature in HWR II and the overall pressure are varied depending on the desired morphology and composition. Alloy particle production is achieved in the heterogeneous surface reaction regime, meaning that germanium (Ge) and Si are deposited on the seed surface simultaneously. The NCs can be synthesized with any desired composition, whilst maintaining a mean diameter around 30 nm with a geometric standard deviation (GSD) around 1.25. The absorption behavior and the related fundamental optical band gap energy in dependence on the alloy composition are exemplarily presented. They prove the possibility to tailor NC properties for electronical and opto-electronical applications. In the homogeneous gas phase reaction regime facetted Ge-Si core-shell structures are accessible. The Ge deposition on the seeds precedes the Si deposition due to different gas phase reaction kinetics of the precursors. The Si layer grows epitaxially on the Ge core and is around 5 nm thick.In this work we present a novel route to synthesize well defined germanium-silicon alloy (GexSi1-x) and core-shell nanocrystals (NCs) employing monosilane (SiH4) and monogermane (GeH4) as precursors in a continuously operated two-stage hot-wall aerosol reactor setup. The first hot-wall reactor stage (HWR I) is used to produce silicon (Si) seed particles from SiH4 pyrolysis in Argon (Ar). The resulting seeding aerosol is fed into

  2. GAS-PHASE ELECTRONIC SPECTRA OF POLYACETYLENE CATIONS: RELEVANCE OF HIGHER EXCITED STATES

    SciTech Connect

    Rice, C. A.; Rudnev, V.; Dietsche, R.; Maier, J. P.

    2010-07-15

    Transitions to higher electronic states of polyacetylene cations (HC{sub 2n}H{sup +}, n = 4, 5, 6) have been measured in the gas phase at {approx}20 K. The absorption spectra were obtained using a resonant two-color, two-photon fragmentation technique in an ion trap, allowing a direct comparison between laboratory and astrophysical data. The purpose was to investigate the relevance of such transitions to astronomical observations because the general expectation is that the bands could be too broad due to fast intramolecular processes. It is shown that the origin bands are still narrow enough (1-10 cm{sup -1}) to be considered, especially as the higher-lying transitions often possess large oscillator strengths.

  3. Direct method gas-phase oxygen abundances of four Lyman break analogs

    SciTech Connect

    Brown, Jonathan S.; Croxall, Kevin V.; Pogge, Richard W.

    2014-09-10

    We measure the gas-phase oxygen abundances in four Lyman break analogs using auroral emission lines to derive direct abundances. The direct method oxygen abundances of these objects are generally consistent with the empirically derived strong-line method values, confirming that these objects are low oxygen abundance outliers from the mass-metallicity (MZ) relation defined by star forming Sloan Digital Sky Survey galaxies. We find slightly anomalous excitation conditions (Wolf-Rayet features) that could potentially bias the empirical estimates toward high values if caution is not exercised in the selection of the strong-line calibration. The high rate of star formation and low oxygen abundance of these objects is consistent with the predictions of the fundamental metallicity relation, in which the infall of relatively unenriched gas simultaneously triggers an episode of star formation and dilutes the interstellar medium of the host galaxy.

  4. The Northwest Infrared (NWIR) gas-phase spectral database of industrial and environmental chemicals: Recent updates

    SciTech Connect

    Brauer, Carolyn S.; Johnson, Timothy J.; Blake, Thomas A.; Sharpe, Steven W.; Sams, Robert L.; Tonkyn, Russell G.

    2014-05-22

    With continuing improvements in both standoff- and point-sensing techniques, there is an ongoing need for high-quality infrared spectral databases. The Northwest Infrared Database (NWIR) contains quantitative, gas-phase infrared spectra of nearly 500 pure chemical species that can be used for a variety of applications such as atmospheric monitoring, biomass burning studies, etc. The data, recorded at 0.1 cm-1 resolution, are pressure broadened to one atmosphere (N2) in order to mimic atmospheric conditions. Each spectrum is a composite composed of multiple individual measurements. Recent updates to the database include over 60 molecules that are known or suspected biomass-burning effluents. Examples from this set of measurements will be presented and experimental details will be discussed in the context of the utility of NWIR for environmental applications.

  5. Catalytic Dechlorination of Gas-phase Perchloroethylene under Mixed Redox Conditions

    PubMed Central

    Orbay, Özer; Gao, Song; Barbaris, Brian; Rupp, Erik; Sáez, A. Eduardo; Arnold, Robert G.; Betterton, Eric A.

    2008-01-01

    The validity of a new method to destroy gas-phase perchloroethylene (PCE) is demonstrated at bench scale using a fixed-bed reactor that contains a Pt/Rh catalyst. Hydrogen and oxygen were simultaneously fed to the reactor together with PCE. The conversion efficiencies of PCE were sensitive to H2/O2 ratio and reactor temperature. When the temperature was ≥ 400 °C and H2/O2 was ≥ 2.15, PCE conversion efficiency was maintained at ≥ 90%. No catalyst deactivation was observed for over two years, using only mild, convenient regeneration procedures. It is likely that PCE reduction steps precede oxidation reactions and that the importance of oxidation lies in its elimination of intermediates that would otherwise lead to catalyst poisoning. In practice, this catalytic dechlorination method holds potential for low-cost, large-scale field operation. PMID:19234593

  6. Quantifying the stabilizing effects of protein–ligand interactions in the gas phase

    PubMed Central

    Allison, Timothy M.; Reading, Eamonn; Liko, Idlir; Baldwin, Andrew J.; Laganowsky, Arthur; Robinson, Carol V.

    2015-01-01

    The effects of protein–ligand interactions on protein stability are typically monitored by a number of established solution-phase assays. Few translate readily to membrane proteins. We have developed an ion-mobility mass spectrometry approach, which discerns ligand binding to both soluble and membrane proteins directly via both changes in mass and ion mobility, and assesses the effects of these interactions on protein stability through measuring resistance to unfolding. Protein unfolding is induced through collisional activation, which causes changes in protein structure and consequently gas-phase mobility. This enables detailed characterization of the ligand-binding effects on the protein with unprecedented sensitivity. Here we describe the method and software required to extract from ion mobility data the parameters that enable a quantitative analysis of individual binding events. This methodology holds great promise for investigating biologically significant interactions between membrane proteins and both drugs and lipids that are recalcitrant to characterization by other means. PMID:26440106

  7. Microbial use of gas phase organic compounds in the surface ocean

    NASA Astrophysics Data System (ADS)

    Arrieta, Jesus M.; Duarte, Carlos M.; Monserrat Sala, M.; Dachs, Jordi

    2016-04-01

    Large diffusive air-sea fluxes of gas-phase organic carbon (GOC) have been identified, indicating that the ocean may be a major sink for these compounds. However, little is known about the fate of these GOC compounds entering the surface ocean. We report efficient use of atmospheric GOC by marine prokaryotes at different locations in the NE Subtropical Atlantic Ocean, the Arctic Ocean and the Mediterranean Sea. Our results indicate that between 2 to 27% of the prokaryotic carbon demand was supported by GOC. Between 1 and 94% of the GOC entering the ocean was consumed by prokaryotes depending on locations, thus sustaining a disequilibrium, which drives the transfer of GOC from the atmosphere into the ocean. The magnitude of this, previously unnoticed, microbial GOC utilization stresses the need for incorporating the oceanic uptake of gaseous organic carbon into the global carbon budget.

  8. LSENS, a general chemical kinetics and sensitivity analysis code for gas-phase reactions: User's guide

    NASA Technical Reports Server (NTRS)

    Radhakrishnan, Krishnan; Bittker, David A.

    1993-01-01

    A general chemical kinetics and sensitivity analysis code for complex, homogeneous, gas-phase reactions is described. The main features of the code, LSENS, are its flexibility, efficiency and convenience in treating many different chemical reaction models. The models include static system, steady, one-dimensional, inviscid flow, shock initiated reaction, and a perfectly stirred reactor. In addition, equilibrium computations can be performed for several assigned states. An implicit numerical integration method, which works efficiently for the extremes of very fast and very slow reaction, is used for solving the 'stiff' differential equation systems that arise in chemical kinetics. For static reactions, sensitivity coefficients of all dependent variables and their temporal derivatives with respect to the initial values of dependent variables and/or the rate coefficient parameters can be computed. This paper presents descriptions of the code and its usage, and includes several illustrative example problems.

  9. Structural Isomerization of the Gas Phase 2-NORBORNYL Cation Revealed with Infrared Spectroscopy and Computational Chemistry

    NASA Astrophysics Data System (ADS)

    Mauney, Daniel; Mosley, Jonathan; Duncan, Michael A.

    2014-06-01

    The non-classical structure of the 2-norborny cation (C_7H11+) which was at the center of "the most heated chemical controversy of our time" has been observed in the condensed phase and recently using X-ray crystallography. However, no gas phase vibrational spectrum has been collected. The C_7H11+ cation is produced via H_3+ protonation of norbornene by pulsed discharge in a supersonic expansion of H_2/Ar. Ions are mass-selected and probed using infrared photodissociation spectroscopy. Due to high exothermicity, protonation via H_3+ leads to a structural isomerization to the global minimum structure 1,3-dimethylcyclopentenyl (DMCP+). Experiments are currently being conducted to find softer protonation techniques that could lead to the authentic 2-norbornyl cation. Schleyer,P.v.R. et. al.; Stable Carbocation Chemistry, John Wiley & Sons,Inc.; New York, 1997, Chapter 2

  10. Origin of the Regioselectivity in the Gas-Phase Aniline+CH3 (+) Electrophilic Aromatic Substitution.

    PubMed

    Kinzel, Daniel; Zilberg, Shmuel; González, Leticia

    2015-08-01

    Nonadiabatic ab initio molecular dynamics simulations are carried out to monitor the attack of CH3 (+) on aniline in the gas phase to form the corresponding σ complexes. The reaction is ultrafast and is governed by a single electron transfer within 30 fs, which involves two sequential conical intersections and finally produces a radical pair. Positive-charge allocation in the aromatic compound is found to govern the substitution pattern in ortho, meta, or para position. Although the major products in the first step of the electrophilic aromatic substitution are the ortho and para σ complexes, initially 26 % of the simulated trajectories also form meta complexes, which then undergo H shifts, mainly to the para position. PMID:26037166

  11. Spatially resolved gas phase composition measurements in supersonic flows using tunable diode laser absorption spectroscopy.

    PubMed

    Paci, Paolo; Zvinevich, Yury; Tanimura, Shinobu; Wyslouzil, Barbara E; Zahniser, Mark; Shorter, Joanne; Nelson, David; McManus, Barry

    2004-11-22

    We used a tunable diode laser absorption spectrometer to follow the condensation of D(2)O in a supersonic Laval nozzle. We measured both the concentration of the condensible vapor and the spectroscopic temperature as a function of position and compared the results to those inferred from static pressure measurements. Upstream and in the early stages of condensation, the quantitative agreement between the different experimental techniques is good. Far downstream, the spectroscopic results predict a lower gas phase concentration, a higher condensate mass fraction, and a higher temperature than the pressure measurements. The difference between the two measurement techniques is consistent with a slight compression of the boundary layers along the nozzle walls during condensation. PMID:15549871

  12. Tuning the Reactivity of a Cu/ZnO Nanocatalyst via Gas Phase Pressure

    NASA Astrophysics Data System (ADS)

    Martínez-Suárez, Luis; Frenzel, Johannes; Marx, Dominik; Meyer, Bernd

    2013-02-01

    By calculation of a thermodynamic phase diagram we provide an atomistic understanding of the morphological changes in ZnO-supported Cu nanocatalysts, which are subject to strong metal-support interactions, in response to the redox properties of the surrounding gas phase, i.e., depending on temperature and pressure. The reactivity, and thus the strong metal-support interactions, of this catalyst is traced back to a redox-state dependent occupation of delocalized ZnO substrate bands and localized Cu cluster states at the Fermi level. It is shown that at the conditions of industrial methanol synthesis complex electronic charge transfer processes across the metal-support interface, driven by morphological and electronic changes, explain the enhanced catalytic reactivity toward CO2.

  13. Tuning the reactivity of a Cu/ZnO nanocatalyst via gas phase pressure.

    PubMed

    Martínez-Suárez, Luis; Frenzel, Johannes; Marx, Dominik; Meyer, Bernd

    2013-02-22

    By calculation of a thermodynamic phase diagram we provide an atomistic understanding of the morphological changes in ZnO-supported Cu nanocatalysts, which are subject to strong metal-support interactions, in response to the redox properties of the surrounding gas phase, i.e., depending on temperature and pressure. The reactivity, and thus the strong metal-support interactions, of this catalyst is traced back to a redox-state dependent occupation of delocalized ZnO substrate bands and localized Cu cluster states at the Fermi level. It is shown that at the conditions of industrial methanol synthesis complex electronic charge transfer processes across the metal-support interface, driven by morphological and electronic changes, explain the enhanced catalytic reactivity toward CO(2). PMID:23473174

  14. Infrared and Ultraviolet Spectroscopy of Gas-Phase Imidazolium and Pyridinium Ionic Liquids.

    NASA Astrophysics Data System (ADS)

    Young, Justin W.; Booth, Ryan S.; Annesley, Christopher; Stearns, Jaime A.

    2015-06-01

    Ionic liquids (ILs) are a highly variable and potentially game-changing class of molecules for a number of Air Force applications such as satellite propulsion, but the complex nature of IL structure and intermolecular interactions makes it difficult to adequately predict structure-property relationships in order to make new IL-based technology a reality. For example, methylation of imidazolium ionic liquids leads to a substantial increase in viscosity but the underlying physical mechanism is not understood. In addition, the role of hydrogen bonding in ILs, and especially its relationship to macroscopic properties, is a matter of ongoing research. Here we describe the gas-phase spectroscopy of a series of imidazolium- and pyridinium-based ILs, using a combination of infrared spectroscopy and density functional theory to establish the intermolecular interactions present in various ILs, to assess how well they are described by theory, and to relate microscopic structure to macroscopic properties.

  15. Measurement of gas-phase temperatures in flames with a point-diffraction interferometer.

    PubMed

    Goldmeer, J S; Urban, D L; Yuan, Z G

    2001-09-20

    Experiments were performed to evaluate the performance of a point-diffraction interferometry (PDI) system to measure gas-phase temperatures in flames. PDI is an interferometric technique that creates the reference beam after the laser beam passes through the test section and directly provides the index of refraction in two dimensions. PDI-based temperature measurements were compared with thermocouple measurements of two-dimensional and axisymmetric thermal boundary layers, as well as two-dimensional and axisymmetric diffusion flames. The PDI system provided excellent agreement in the measurement of thermal profiles in the boundary layers and was within the uncertainties that are due to the radiation corrections for the thermocouple-based flame temperature measurements. PMID:18360522

  16. S1 and S2 Excited States of Gas-Phase Schiff-Base Retinal Chromophores

    NASA Astrophysics Data System (ADS)

    Nielsen, I. B.; Lammich, L.; Andersen, L. H.

    2006-01-01

    Photoabsorption studies of 11-cis and all-trans Schiff-base retinal chromophore cations in the gas phase have been performed at the electrostatic ion storage ring in Aarhus. A broad absorption band due to the optically allowed excitation to the first electronically excited singlet state (S1) is observed at around 600 nm. A second “dark” excited state (S2) just below 400 nm is reported for the first time. It is located ˜1.2eV above S1 for both chromophores. The S2 state was not visible in a solution measurement where only one highly blueshifted absorption band corresponding to the first excited state was visible. Knowledge of the position of the excited states in retinal is essential for the understanding of the fast photoisomerization in, for example, visual pigments.

  17. Arctic Gas Phase Water Vapor Measurements from the NASA DC-8 During SOLVE

    NASA Technical Reports Server (NTRS)

    Podolske, James; Sachse, Glen; Hipskind, R. Stephen (Technical Monitor)

    2000-01-01

    The NASA Langley / Ames Diode Laser Hygrometer (DLH) was flown aboard the NASA DC-8 during all three arctic deployments of the SOLVE campaign. The DLH measures gas phase H2O in the freestream air between the fuselage and the outer right engine cowling, essentially free from aircraft perturbations. It uses wavelength-modulated near-IR laser radiation at about 1.4 microns to detect the H2O absorption. Calibration is based on short path experiments in the laboratory using a NIST-traceable dewpoint hygrometer with carefully conditioned air at dewpoints between - 10 and + 10 degrees C. The theory of operation of the DLH instrument will be presented, along with a description of the calibration methodology. A simple climatology of H2O observations from SOLVE will be presented.

  18. Influence of spin polarizability on liquid gas phase transition in the nuclear matter

    NASA Astrophysics Data System (ADS)

    Rezaei, Z.; Bigdeli, M.; Bordbar, G. H.

    2015-10-01

    In this paper, we investigate the liquid gas phase transition for the spin polarized nuclear matter. Applying the lowest order constrained variational (LOCV) method, and using two microscopic potentials, AV18 and UV14+TNI, we calculate the free energy, equation of state (EOS), order parameter, entropy, heat capacity and compressibility to derive the critical properties of spin polarized nuclear matter. Our results indicate that for the spin polarized nuclear matter, the second-order phase transition takes place at lower temperatures with respect to the unpolarized one. It is also shown that the critical temperature of our spin polarized nuclear matter with a specific value of spin polarization parameter is in good agreement with the experimental result.

  19. Stability of polyphenols in chokeberry juice treated with gas phase plasma.

    PubMed

    Bursać Kovačević, Danijela; Gajdoš Kljusurić, Jasenka; Putnik, Predrag; Vukušić, Tomislava; Herceg, Zoran; Dragović-Uzelac, Verica

    2016-12-01

    Chokeberry juice was subjected to cold atmospheric gas phase plasma and changes in hydroxycinnamic acids, flavonols and anthocyanins were monitored. Plasma treatments were carried out under different treatment times and juice volumes under constant gas flow (0.75dm(3)min(-1)). The results were compared against control (untreated) and pasteurized chokeberry juice (80°C/2min). During pasteurization, the most unstable were hydroxycinnamic acids with losses of up to 59%, while flavonols and anthocyanins increased by 5% and 9%, respectively. On the contrary, plasma treated chokeberry juice showed higher concentrations of hydroxycinnamic acids and 23% loss of anthocyanins in comparison to untreated juice. In order to obtain the optimal cold plasma treatment parameters principal component and sensitivity analysis were used. Such parameters can be potentially used for pasteurization in terms of phenolic stability of chokeberry juice. Optimal treatment was at 4.1min and sample volume of 3cm(3). PMID:27374539

  20. Laser-driven synthesis of nanocrystalline alumina powders from gas-phase precursors

    NASA Astrophysics Data System (ADS)

    Borsella, E.; Botti, S.; Giorgi, R.; Martelli, S.; Turtù, S.; Zappa, G.

    1993-09-01

    Carbon dioxide laser synthesis from gaseous precursors has been successfully applied to produce nanosized Al2O3 particles. Trimethylaluminum [Al(CH3)3] and nitrous-oxide (N2O) were used as gas phase reactants. Ethylene (C2H4) was added as sensitizer gas. The as-synthesized powder particles showed considerable carbon contamination and an amorphouslike structure. After thermal treatment at 1200-1400 °C, the powder transformed to hexagonal α-Al2O3 with very low carbon contamination, confirmed by x-ray diffraction, x-ray photoelectron spectroscopy, and chemical analysis. The thermally treated powder was composed of spherical single-crystal nanoparticles with a mean size of 15-20 nm, as determined by x-ray diffraction, electron microscopy, and Brunauer-Emmett-Teller specific surface measurements. The laser synthesized Al2O3 particles are suitable dispersoids for intermetallic alloy technology.

  1. Treatment of gas-phase trichloroethene by UV/O{sub 3} process

    SciTech Connect

    Young Ku; Yung-Shuen Shen

    1996-12-31

    The reaction behaviors of the photolysis of gas-phase trichloroethene (TCE) in presence of ozone was studied. The distributions and temporal behaviors of TCE and chlorinated intermediates were studied and described in terms of a two-step consecutive dechlorination kinetic model. The decomposition of TCE (324 ppmv) was found to be completed (99%) within 22 seconds and the rate was increased with increasing light intensity. Supplementary ozone would have more contribution to the dechlorination of chlorinated intermediates than that of TCE by the UV/O{sub 3} process. The enhancement of UV light intensity would promote the dechlorination of TCE more effectively than the supplement of ozone. 8 refs., 6 figs.

  2. A generalized expression for lag-time in the gas-phase permeation of hollow tubes

    NASA Technical Reports Server (NTRS)

    Shah, K. K.; Nelson, H. G.; Johnson, D. L.; Hamaker, F. M.

    1975-01-01

    A generalized expression for the nonsteady-state parameter, lag-time, has been obtained from Fick's second law for gas-phase transport through hollow, cylindrical membranes. This generalized expression is simplified for three limiting cases of practical interest: (1) diffusion controlled transport, (2) phase boundary reaction control at the inlet surface, and (3) phase boundary reaction control at the outlet surface. In all three cases the lag-time expressions were found to be inversely proportional only to the diffusion coefficient and functionally dependent on the membrane radii. Finally, the lag-time expressions were applied to experimentally obtained lag-time data for alpha-phase titanium and alpha-phase iron.

  3. Gas-phase activation of methane by ligated transition-metal cations

    PubMed Central

    Schröder, Detlef; Schwarz, Helmut

    2008-01-01

    Motivated by the search for ways of a more efficient usage of the large, unexploited resources of methane, recent progress in the gas-phase activation of methane by ligated transition-metal ions is discussed. Mass spectrometric experiments demonstrate that the ligands can crucially influence both reactivity and selectivity of transition-metal cations in bond-activation processes, and the most reactive species derive from combinations of transition metals with the electronegative elements fluorine, oxygen, and chlorine. Furthermore, the collected knowledge about intramolecular kinetic isotope effects associated with the activation of C–H(D) bonds of methane can be used to distinguish the nature of the bond activation as a mere hydrogen-abstraction, a metal-assisted mechanism or more complex reactions such as formation of insertion intermediates or σ-bond metathesis. PMID:18955709

  4. The Northwest Infrared (NWIR) gas-phase spectral database of industrial and environmental chemicals: recent updates

    NASA Astrophysics Data System (ADS)

    Brauer, Carolyn S.; Johnson, Timothy J.; Blake, Thomas A.; Sharpe, Steven W.; Sams, Robert L.; Tonkyn, Russell G.

    2014-05-01

    With continuing improvements in both standoff- and point-sensing techniques, there is an ongoing need for high-quality infrared spectral databases. The Northwest Infrared Database (NWIR) contains quantitative, gas-phase infrared spectra of nearly 500 pure chemical species that can be used for a variety of applications such as atmospheric monitoring, biomass burning studies, etc. The data, recorded at 0.1 cm-1 resolution, are pressure broadened to one atmosphere (N2). Each spectrum is a composite composed of multiple individual measurements. Recent updates to the database include over 60 molecules that are known or suspected biomass-burning effluents. Examples from this set of measurements will be presented and experimental details will be discussed in the context of the utility of NWIR for environmental applications.

  5. Gas-phase study on uridine: Conformation and X-ray photofragmentation.

    PubMed

    Itälä, Eero; Kooser, Kuno; Rachlew, Elisabeth; Levola, Helena; Ha, Dang Trinh; Kukk, Edwin

    2015-05-21

    Fragmentation of RNA nucleoside uridine, induced by carbon 1s core ionization, has been studied. The measurements by combined electron and ion spectroscopy have been performed in gas phase utilizing synchrotron radiation. As uridine is a combination of d-ribose and uracil, which have been studied earlier with the same method, this study also considers the effect of chemical environment and the relevant functional groups. Furthermore, since in core ionization the initial core hole is always highly localized, charge migration prior to fragmentation has been studied here. This study also demonstrates the destructive nature of core ionization as in most cases the C 1s ionization of uridine leads to concerted explosions producing only small fragments with masses ≤43 amu. In addition to fragmentation patterns, we found out that upon evaporation the sugar part of the uridine molecule attains hexagonal form. PMID:26001457

  6. Gas-phase study on uridine: Conformation and X-ray photofragmentation

    NASA Astrophysics Data System (ADS)

    Itälä, Eero; Kooser, Kuno; Rachlew, Elisabeth; Levola, Helena; Ha, Dang Trinh; Kukk, Edwin

    2015-05-01

    Fragmentation of RNA nucleoside uridine, induced by carbon 1s core ionization, has been studied. The measurements by combined electron and ion spectroscopy have been performed in gas phase utilizing synchrotron radiation. As uridine is a combination of d-ribose and uracil, which have been studied earlier with the same method, this study also considers the effect of chemical environment and the relevant functional groups. Furthermore, since in core ionization the initial core hole is always highly localized, charge migration prior to fragmentation has been studied here. This study also demonstrates the destructive nature of core ionization as in most cases the C 1s ionization of uridine leads to concerted explosions producing only small fragments with masses ≤43 amu. In addition to fragmentation patterns, we found out that upon evaporation the sugar part of the uridine molecule attains hexagonal form.

  7. Missing gas-phase source of HONO inferred from Zeppelin measurements in the troposphere.

    PubMed

    Li, Xin; Rohrer, Franz; Hofzumahaus, Andreas; Brauers, Theo; Häseler, Rolf; Bohn, Birger; Broch, Sebastian; Fuchs, Hendrik; Gomm, Sebastian; Holland, Frank; Jäger, Julia; Kaiser, Jennifer; Keutsch, Frank N; Lohse, Insa; Lu, Keding; Tillmann, Ralf; Wegener, Robert; Wolfe, Glenn M; Mentel, Thomas F; Kiendler-Scharr, Astrid; Wahner, Andreas

    2014-04-18

    Gaseous nitrous acid (HONO) is an important precursor of tropospheric hydroxyl radicals (OH). OH is responsible for atmospheric self-cleansing and controls the concentrations of greenhouse gases like methane and ozone. Due to lack of measurements, vertical distributions of HONO and its sources in the troposphere remain unclear. Here, we present a set of observations of HONO and its budget made onboard a Zeppelin airship. In a sunlit layer separated from Earth's surface processes by temperature inversion, we found high HONO concentrations providing evidence for a strong gas-phase source of HONO consuming nitrogen oxides and potentially hydrogen oxide radicals. The observed properties of this production process suggest that the generally assumed impact of HONO on the abundance of OH in the troposphere is substantially overestimated. PMID:24744373

  8. Sulfur Transfer via Gas Phase in Iron-making Blast Furnace under Intensive Coal Injection

    NASA Astrophysics Data System (ADS)

    Yoshiyuki, Matsui; Rikizou, Tadai; Kenji, Ito; Tadasu, Matsuo; Korehito, Kadoguchi; Reiji, Ono

    The steel industry will move toward more value additive products in the future. In order to support the value additive steel products, iron sources have to be secured with stable operation of furnaces and control of furnace have to be evolved. Environment consciousness including CO2 reduction leads more toward lower reducing agents ratio operation. It is common technical issue on both the more value additive products the environment consciousness to control the sulfur in the hot metal, slag and gas phase.In the present study, the amount of sulfur gasification was measured by combustion experiments with the attention on the simultaneous gasification of sulfur with carbon. By description of sulfurization from gas to burden materials based on the temperature distribution measured in actual furnace, the amount of sulfur transferred to gas was evaluated.

  9. Analysis of organic gas phase compounds formed by hydrothermal liquefaction of Dried Distillers Grains with Solubles.

    PubMed

    Madsen, René B; Christensen, Per S; Houlberg, Kasper; Lappa, Elpiniki; Mørup, Anders J; Klemmer, Maika; Olsen, Eva M; Jensen, Mads M; Becker, Jacob; Iversen, Bo B; Glasius, Marianne

    2015-09-01

    This work provides a comprehensive characterization of the gas phase from hydrothermal liquefaction of Dried Distillers Grains with Solubles (DDGS) collected during a 24-h continuous experiment. The gas consisted mainly of CO2, CO, H2, CH4 and C2H6 accounting for 96 v/v% while further analysis by gas chromatography coupled to mass spectrometry (GC-MS) showed additionally 62 compounds of which 54 were tentatively identified. These products included methanethiol, dimethyl sulfide, various olefins and several aromatic compounds. The composition provided clear indication of the steady state of the system. Apart from CO2, olefins were the most abundant compound class and could provide a source of revenue. PMID:26051525

  10. ORTHO-PARA SELECTION RULES IN THE GAS-PHASE CHEMISTRY OF INTERSTELLAR AMMONIA

    SciTech Connect

    Faure, A.; Hily-Blant, P.; Le Gal, R.; Rist, C.

    2013-06-10

    The ortho-para chemistry of ammonia in the cold interstellar medium is investigated using a gas-phase chemical network. Branching ratios for the primary reaction chain involved in the formation and destruction of ortho- and para-NH{sub 3} were derived using angular momentum rules based on the conservation of the nuclear spin. We show that the 'anomalous' ortho-to-para ratio of ammonia ({approx}0.7) observed in various interstellar regions is in fact consistent with nuclear spin selection rules in a para-enriched H{sub 2} gas. This ratio is found to be independent of temperature in the range 5-30 K. We also predict an ortho-to-para ratio of {approx}2.3 for NH{sub 2}. We conclude that a low ortho-to-para ratio of H{sub 2} naturally drives the ortho-to-para ratios of nitrogen hydrides below the statistical values.

  11. Onset conditions for gas phase reaction and nucleation in the CVD of transition metal oxides

    NASA Technical Reports Server (NTRS)

    Collins, J.; Rosner, D. E.; Castillo, J.

    1992-01-01

    A combined experimental/theoretical study is presented of the onset conditions for gas phase reaction and particle nucleation in hot substrate/cold gas CVD of transition metal oxides. Homogeneous reaction onset conditions are predicted using a simple high activation energy reacting gas film theory. Experimental tests of the basic theory are underway using an axisymmetric impinging jet CVD reactor. No vapor phase ignition has yet been observed in the TiCl4/O2 system under accessible operating conditions (below substrate temperature Tw = 1700 K). The goal of this research is to provide CVD reactor design and operation guidelines for achieving acceptable deposit microstructures at the maximum deposition rate while simultaneously avoiding homogeneous reaction/nucleation and diffusional limitations.

  12. Formation of organic acids from the gas-phase ozonolysis of terpinolene.

    PubMed

    Ma, Yan; Marston, George

    2009-06-01

    Gas-phase ozonolysis of terpinolene was studied in static chamber experiments using gas chromatography coupled to mass spectrometric and flame ionisation detection to separate and detect products. Two isomers of C(7)-diacids and three isomers of C(7)-aldehydic acids were identified in the condensed phase after derivatisation. Possible mechanisms of formation of these acids were investigated using different OH radical scavengers and relative humidities, and were compared to those reported earlier for the ozonolysis of beta-pinene. In addition, branching ratios for some of the individual reaction steps, e.g. the branching ratio between the two hydroperoxide channels of the C(7)-CI, were deduced from the quantitative product yield data. Branching ratios for POZ decomposition and the stabilisation/decomposition of the C(7-)CI were also obtained from measurements of the C(7) primary carbonyl product. PMID:19458821

  13. Gas-phase study on uridine: Conformation and X-ray photofragmentation

    SciTech Connect

    Itälä, Eero Kooser, Kuno; Levola, Helena; Rachlew, Elisabeth; Ha, Dang Trinh; Kukk, Edwin

    2015-05-21

    Fragmentation of RNA nucleoside uridine, induced by carbon 1s core ionization, has been studied. The measurements by combined electron and ion spectroscopy have been performed in gas phase utilizing synchrotron radiation. As uridine is a combination of d-ribose and uracil, which have been studied earlier with the same method, this study also considers the effect of chemical environment and the relevant functional groups. Furthermore, since in core ionization the initial core hole is always highly localized, charge migration prior to fragmentation has been studied here. This study also demonstrates the destructive nature of core ionization as in most cases the C 1s ionization of uridine leads to concerted explosions producing only small fragments with masses ≤43 amu. In addition to fragmentation patterns, we found out that upon evaporation the sugar part of the uridine molecule attains hexagonal form.

  14. Gas-phase catalysis by platinum-group metals—past, present, and future

    NASA Astrophysics Data System (ADS)

    Golunski, Stan

    2001-10-01

    Platinum-group metals (PGMs) are the chosen catalysts for many modern gas-phase processes, in both the clean production and the clean destruction of chemicals. These metals are inherently stable, even when highly dispersed, and yet they have enough surface reactivity to activate a range of different molecular species. Traditionally used to catalyze single reactions under steady-state conditions, they are increasingly being applied to more complex processes. Their ability to catalyze two energetically opposing reactions means that energy-consuming and energy-wasting processes can be combined in a single efficient reactor. Furthermore, the electronic properties of PGMs can be exploited in M-MO composites, in which the metal does not provide the active sites, but modifies the solid-state chemistry of the metal oxide to make it catalytically productive.

  15. Gas-phase reactions of pd with acetone: A theoretical investigation using density functional theory

    NASA Astrophysics Data System (ADS)

    Dai, Guo-Liang; Wang, Chuan-Feng

    2012-12-01

    The gas-phase reaction of palladium atom with acetone is investigated using density functional theory. Geometries and energies of the reactants, intermediates, and products involved are calculated. Both ground and excited state potential energy surfaces are investigated in detail. The present results show that the title reaction start with the formation of an η2-CH3COCH3-metal complex, followed by C-O, C-H, and C-C activation. These reactions can lead to four different products (PdO + C3H6, PdCH2COCH3 + H, PdCH2 + CH3CHO, and PdCOCH2 + CH4). The present results may be helpful in understanding the mechanism of the title reaction and further experimental investigation of the reaction.

  16. Process Conditions and Microstructures of Ceramic Coatings by Gas Phase Deposition Based on Plasma Spraying

    NASA Astrophysics Data System (ADS)

    Mauer, G.; Hospach, A.; Zotov, N.; Vaßen, R.

    2013-03-01

    Plasma spraying at very low pressure (50-200 Pa) is significantly different from atmospheric plasma conditions (APS). By applying powder feedstock, it is possible to fragment the particles into very small clusters or even to evaporate the material. As a consequence, the deposition mechanisms and the resulting coating microstructures could be quite different compared to conventional APS liquid splat deposition. Thin and dense ceramic coatings as well as columnar-structured strain-tolerant coatings with low thermal conductivity can be achieved offering new possibilities for application in energy systems. To exploit the potential of such a gas phase deposition from plasma spray-based processes, the deposition mechanisms and their dependency on process conditions must be better understood. Thus, plasma conditions were investigated by optical emission spectroscopy. Coating experiments were performed, partially at extreme conditions. Based on the observed microstructures, a phenomenological model is developed to identify basic growth mechanisms.

  17. Kinetics of gas-phase reactions relevant to the chemical vapor deposition of indium compounds

    SciTech Connect

    Allendorf, M.D.; McDaniel, A.H.

    1998-03-01

    Compounds containing indium are of interest for electronic and optical applications. These compounds include III-V semiconductors such as InP and InAs used in both electronic devices and solar cells, and indium tin oxide, which can be used for optical memory and antireflection coatings. Chemical vapor deposition (CVD) techniques can be used to deposit these materials on a variety of substrates. At the temperatures typically employed (550--900 K), gas-phase chemical reactions involving the indium-containing precursor can occur. The kinetics of trimethylindium pyrolysis are investigated in a flow reactor equipped with a molecular-beam mass-spectrometric sampling system. Data are analyzed using a new computational approach that accounts for heat and mass transport in the reactor. The measured activation energy, 46.2 kcal/mol, is in good agreement with previously reported values.

  18. A detailed investigation of proposed gas-phase syntheses of ammonia in dense interstellar clouds

    NASA Technical Reports Server (NTRS)

    Herbst, Eric; Defrees, D. J.; Mclean, A. D.

    1987-01-01

    The initial reactions of the Herbst and Klemperer (1973) and the Dalgarno (1974) schemes (I and II, respectively) for the gas-phase synthesis of ammonia in dense interstellar clouds were investigated. The rate of the slightly endothermic reaction between N(+) and H2 to yield NH(+) and H (scheme I) under interstellar conditions was reinvestigated under thermal and nonthermal conditions based on laboratory data. It was found that the relative importance of this reaction in synthesizing ammonia is determined by how the laboratory data at low temperature are interpreted. On the other hand, the exothermic reaction between N and H3(+) to form NH2(+) + H (scheme II) was calculated to possess significant activation energy and, therefore, to have a negligible rate coefficient under interstellar conditions. Consequently, this reaction cannot take place appreciably in interstellar clouds.

  19. Detection of unknown gas-phase chemical plumes in hyperspectral imagery

    NASA Astrophysics Data System (ADS)

    Theiler, James; Wohlberg, Brendt

    2013-05-01

    Gas-phase chemical plumes exhibit, particularly in the infrared, distinctive emission signatures as a function of wavelength. Hyperspectral imagery can exploit this distinctiveness to detect specific chemicals, even at low concentrations, using matched filters that are tailored both the the specific structure of the chemical signature and to the statistics of the background clutter. But what if the chemical species is unknown? One can apply matched filters to a long list of candidate chemicals (or chemical mixtures), or one can treat the problem as one of anomaly detection. In this case, however, the anomalous signals of interest are not completely unknown. Gas spectra are generically sparse (absorbing or emitting at only a few wavelengths), and this property can be exploited to enhance the sensitivity of anomaly detection algorithms. This paper investigates the utility of sparse signal anomaly detection for the problem of finding plumes of gas with unknown chemistry in hyperspectral imagery.

  20. Gas-phase electronic transitions of C₁₇H₁₂N⁺ at 15 K.

    PubMed

    Hardy, F-X; Rice, C A; Gause, O; Maier, J P

    2015-03-01

    The electronic spectrum of C17H12N(+), phenanthrene with a side chain, was measured in the gas phase at a vibrational and rotational temperature of ∼15 K in an ion trap using a resonant multiphoton dissociation technique. The C17H12N(+) structure was produced in a chemical ionization source and identified by a comparison with theoretical calculations of stable structures and excitation energies. The (3), (2), (1) (1)A ← X (1)A electronic transitions of this nitrogen-containing aromatic species with 30 atoms have origin band maxima at 23,586 ± 1 cm(-1), 16,120 ± 50 cm(-1), and 14,519 ± 30 cm(-1). Distinct vibrational structure in the (3) (1)A state is observed, and assignments are made. Astronomical aspects are considered. PMID:25264926

  1. Gas-Phase Infrared and NMR Investigation of the Conformers of Diacetone Diperoxide (DADP).

    PubMed

    Guo, Chunlei; Persons, John; Woodford, Jeffrey N; Harbison, Gerard S

    2015-10-01

    Gas-phase infrared measurements of diacetone diperoxide (DADP) indicate a chair conformation with less than 5% of the predicted twist conformer. Vibrational frequencies are very similar to those previously measured in the solid state. Solution NMR measurements using 2D exchange spectroscopy (EXSY) also set a very low maximum limit on the equilibrium population of the twist conformer, with a room-temperature free-energy difference in excess of 14.5 kJ/mol. These experimental results are in accord with high-level quantum calculations incorporating full thermochemistry and solvation effects, which indicate a free-energy difference in the range of 14.7-17.5 kJ/mol in polar solvents. PMID:26387762

  2. Selective Gas-Phase Capture of Explosives on Metal Beta-diketonate Polymers

    SciTech Connect

    Harvey, Scott D.; Wenzel, Thomas J.

    2008-05-30

    A variety of metal beta-diketonate polymers were assessed for gas-phase selective retention of nitro aromatic, nitrate ester, and peroxide explosives. La(dihed) showed 13-42 times the retention for the nitro aromatics compared to a control column (identical column but lacking the 5% loading of the metal beta-diketonate polymer). Nitrate esters, the peroxide explosive TATP, and the taggant DMDNB were too strongly retained to elute from the La(dihed) column; however, these compounds could be eluted from the less retentive Cu(dihed) or Zn(dihed) columns. A Kovats index of 2124 for TNT the on the La(dihed) column compared to 1662 on the control illustrates the excellent discrimination against non-polar hydrocarbons, the principal matrix interference expected in air samples. A proof-of-principle experiment demonstrated analysis of an extrapolated 47 part-per trillion(v/v) of TNT in an air extract concentrate.

  3. Gas-phase silicon atom densities in the chemical vapor deposition of silicon from silane

    SciTech Connect

    Coltrin, M.E.; Breiland, W.G.; Ho, P.

    1993-12-31

    Silicon atom number density profiles have been measured using laser-induced fluorescence during the chemical vapor deposition of silicon from silane. Measurements were obtained in a rotating-disk reactor as a function of silane partial pressure and the amount of hydrogen added to the carrier gas. Absolute number densities were obtained using an atomic absorption technique. Results were compared with calculated density profiles from a model of the coupled fluid flow, gas-phase and surface chemistry for an infinite-radius rotating disk. An analysis of the reaction mechanism showed that the unimolecular decomposition of SiH{sub 2} is not the dominant source of Si atoms. Profile shapes and positions, and all experimental trends are well matched by the calculations. However, the calculated number density is up to 100 times smaller than measured.

  4. The modeling of gas phase permeation through iron and nickel membranes

    NASA Technical Reports Server (NTRS)

    Kuhn, David K.; Shanabarger, Mickey R.

    1989-01-01

    The gas phase permeation of hydrogen through metal membranes encompasses many kinetic processes. This paper reviews a permeation model which incorporates second order gas-surface reaction kinetics with simple bulk diffusion. The model is used to investigate the effect of this particular surface reaction of steady-state permeation. The dependence of the steady-state permeation flux on temperature, pressure, and thickness of the membrane has been calculated. The model predicts that the bulk controlled steady-state flux will change to a surface limited steady-state flux as either the temperature or thickness of the membrane is reduced. Finally, using independently derived parameters, the model is compared with permeation measurements on iron and nickel membranes.

  5. MOGADOC (Molecular Gas Phase Documentation) — An interactive computerised search/retrieval system

    NASA Astrophysics Data System (ADS)

    Lohr, A.; Mez-Starck, B.; Schirdewahn, H.-G.; Watson, D. G.

    1983-02-01

    For 22 years the Section for Structure Documentation (SSD), University of Ulm, has provided a documentation service covering the literature of molecules studied in the gas phase by electron diffraction, microwave spectroscopy and other techniques. Much of the information which has been accumulated over these years has now been keyboarded to constitute a computerised database. An interactive search/retrieval system, MOGADOC, has been written using the SIMULA language implemented on the UNIVAC 1100/82 computer at the University of Freiburg. MOGADOC enables the user to search the database on the basis of bibliographic, chemical and physical search terms. SIMULA is claimed to be the only general purpose high level programming language which is reasonable wide spread and allows direct implementation of abstract data types.

  6. Gas-phase pyrolysis mechanisms of 3-anilino-1-propanol: Density functional theory study

    NASA Astrophysics Data System (ADS)

    Zhao, Jing; Tang, Ming-Sheng; Wei, Dong-Hui; Zhao, Chu-Feng; Zhang, Wen-Jing; Wang, Hong-Ming

    The gas-phase pyrolytic decomposition mechanisms of 3-anilino-1-propanol with the products of aniline, ethylene, and formaldehyde or N-methyl aniline and aldehyde were studied by density functional theory. The geometries of the reactant, transition states, and intermediates were optimized at the B3LYP/6-31G (d, p) level. Vibration analysis was carried out to confirm the transition state structures, and the intrinsic reaction coordinate method was performed to search the minimum energy path. Four possible reaction channels are shown, including two concerted reactions of direct pyrolytic decomposition and two indirect channels in which the reactant first becomes a ring-like intermediate, followed by concerted pyrogenation. One of the concerted reactions in the direct pyrolytic decomposition has the lowest activation barrier among all the four channels, and so, it occurs more often than others. The results appear to be consistent with the experimental outcomes.

  7. Development of a Chemiluminescence Method for Gas-Phase HO2 Detection

    NASA Astrophysics Data System (ADS)

    Zheng, J.; Lloyd, J.; Springston, S.

    2003-12-01

    Hydroperoxyl Radical (HO2) is a highly reactive intermediate species that participates in photochemical processes in the troposphere. Accurate measurement of HO2 will facilitate the verification of the ozone production mechanism used by the atmospheric chemistry community. HO2 is also the major source of H2O2, which is responsible for the oxidation of SO2 in droplets. Here, we describe a new HO2 detection method based on flow injection analysis (FIA) with a chemiluminescence detector. Gas-phase HO2 is first scrubbed into a pH 9 borax buffer solution, then injected into a chemiluminescence detector, where HO2 and its conjugate base O2- react with MCLA, a synthetic analog of the luciferin from the crustacean Cypridina, to emit light at 465 nm. This technique shows high sensitivity (DL = 0.1 nM in liquid phase or 1 pptv in gas phase) and selectivity for the HO2 / O2- system. A unique feature of our technique is the calibration with a radiolytic method that uses a 60Co gamma ray source to quantitatively produce stable aqueous HO2 / O2- standards. This calibration method is highly reproducible, producing an instrument response that varies less than 5% from day to day. We tested our instrument in the meteorology field at Brookhaven National Laboratory (BNL), which is considered a clean remote rural site with background ozone levels about 30 ppbv. On July 17, 2003, a clear sunny day, with a steady NW wind, HO2 started to build up after sunrise and reached a maximum of 9 pptv at about 3 pm local time, approximately two hours after the maximum solar intensity. Our technique has the advantages of simplicity, low cost and ease of operation. It is especially suitable for field measurements, where space and energy resources are usually limited.

  8. Oxidation of elemental mercury by chlorine: Gas phase, Surface,and Photo-induced reaction pathways

    SciTech Connect

    Yan, Nai-Qiang; Liu, Shou-Heng; Chang, Shih-Ger

    2004-10-22

    Accurate oxidation rate constants of mercury gas are needed for determining its dispersion and lifetime in the atmosphere. They would also help in developing a technology for the control of mercury emissions from coal-fired power plants. However, it is difficult to establish the accurate rate constants primarily due to the fact that mercury easily adsorbs on solid surface and its reactions can be catalyzed by the surface. We have demonstrated a procedure that allows the determination of gas phase, surface-induced, and photo-induced contributions in the kinetic study of the oxidation of mercury by chlorine gas. The kinetics was studied using reactors with various surface to volume ratios. The effect of the surface and the photo irradiation on the reaction was taken into consideration. The pressure dependent study revealed that the gas phase oxidation was a three-body collision process. The third order rate constant was determined to be 7.5({+-}0.2) x 10{sup -39} mL{sup 2} molecules{sup -2}s{sup -1} with N{sub 2} as the third body at 297 {+-} 1 K. The surface induced reaction on quartz window was second order and the rate constant was 2.7 x 10{sup -17} mL{sup 2} molecules{sup -1} cm{sup -2} sec. Meanwhile, the 253.7 nm photon employed for mercury detection was found to accelerate the reaction. The utilization efficiency of 253.7 nm photon for Hg{sup 0} oxidation was 6.7 x 10{sup -4} molecules photon{sup -1} under the conditions employed in this study.

  9. Simulation of a turbulent spray flame using coupled PDF gas phase and spray flamelet modeling

    SciTech Connect

    Ge, Hai-Wen; Gutheil, Eva

    2008-04-15

    A joint mixture fraction-enthalpy probability density function (PDF) is proposed for the simulation of turbulent spray flames. The PDF transport equation is deduced and modeled. The interaction-by-exchange-with-the-mean (IEM) model that has been developed for gas-phase flows is extended to describe molecular mixing in nonreactive and reactive spray flows. The joint PDF transport equation is solved by a hybrid finite-volume and Lagrangian Monte Carlo method. Standard spray and turbulence models are used to describe the gas phase and the liquid phase. A turbulent methanol/air spray flame is simulated using the present method. Detailed chemistry is implemented through the spray flamelet model. The precalculated spray flamelet library for methanol/air combustion comprises 23 species and 168 elementary reactions. Thus, the model is capable of predicting the formation of radicals and of pollutants. Different values for the model constant C{sub {phi}} in the IEM model are tested. The numerical results for the gas velocity, the gas temperature, and the mass fraction of methanol vapor are compared with experimental data in the literature. Good agreement with experiment is obtained when C{sub {phi}}=2.0. Marginal PDFs of mixture fraction, enthalpy, and gas temperature are presented. The computed PDFs of mixture fraction are compared with the presumed standard {beta} function and modified {beta} function. The results show that the standard {beta} function fails to reproduce bimodal shapes observed in transported PDF computation, while the modified {beta} function, fits the computed PDFs very well. Moreover, joint PDFs of mixture fraction and enthalpy are presented and analyzed. The enthalpy and mixture fraction are strongly correlated. The samples that deviate from the linear correlation are due to the energy consumption of local spray evaporation. (author)

  10. Gas-phase uranyl, neptunyl, and plutonyl: hydration and oxidation studied by experiment and theory.

    PubMed

    Rios, Daniel; Michelini, Maria C; Lucena, Ana F; Marçalo, Joaquim; Bray, Travis H; Gibson, John K

    2012-06-18

    The following monopositive actinyl ions were produced by electrospray ionization of aqueous solutions of An(VI)O(2)(ClO(4))(2) (An = U, Np, Pu): U(V)O(2)(+), Np(V)O(2)(+), Pu(V)O(2)(+), U(VI)O(2)(OH)(+), and Pu(VI)O(2)(OH)(+); abundances of the actinyl ions reflect the relative stabilities of the An(VI) and An(V) oxidation states. Gas-phase reactions with water in an ion trap revealed that water addition terminates at AnO(2)(+)·(H(2)O)(4) (An = U, Np, Pu) and AnO(2)(OH)(+)·(H(2)O)(3) (An = U, Pu), each with four equatorial ligands. These terminal hydrates evidently correspond to the maximum inner-sphere water coordination in the gas phase, as substantiated by density functional theory (DFT) computations of the hydrate structures and energetics. Measured hydration rates for the AnO(2)(OH)(+) were substantially faster than for the AnO(2)(+), reflecting additional vibrational degrees of freedom in the hydroxide ions for stabilization of hot adducts. Dioxygen addition resulted in UO(2)(+)(O(2))(H(2)O)(n) (n = 2, 3), whereas O(2) addition was not observed for NpO(2)(+) or PuO(2)(+) hydrates. DFT suggests that two-electron three-centered bonds form between UO(2)(+) and O(2), but not between NpO(2)(+) and O(2). As formation of the UO(2)(+)-O(2) bonds formally corresponds to the oxidation of U(V) to U(VI), the absence of this bonding with NpO(2)(+) can be considered a manifestation of the lower relative stability of Np(VI). PMID:22656318

  11. Gas Phase Thz Spectroscopy of Organosulfide and Organophosphorous Compounds Using a Synchrotron Source

    NASA Astrophysics Data System (ADS)

    Cuisset, Arnaud; Smirnova, Irina; Bocquet, Robin; Hindle, Francis; Mouret, Gael; Sadovskii, Dmitrii A.; Pirali, Olivier; Roy, Pascale

    2011-06-01

    This study concerns the gas phase rovibrational spectroscopy of organosulfide and organophosphorous which are considered as non toxic model compounds in the analysis of chemical weapon materials, high pathogenic and mutagenic agents, and other environmentally interesting air-borne species. The coupling of the synchrotron radiation with multipass cells and the FTIR spectrometer allowed to obtain very conclusive results in term of sensitivity and resolution and improved the previous results obtained with classical sources. For DMSO, using an optical path of 150 m the spectra have been recorded at the ultimate resolution of 0.001 Cm-1 allowing to fully resolve the rotational structure of the lowest vibrational modes observed in the THz region. In the 290 - 420 Cm-1 region, the rovibrational spectrum of the "perpendicular" and "parallel" vibrational bands associated with, respectively, the asymmetric ν23 and symmetric ν11 bending modes of DMSO have been recorded with a resolution of 1.5× 10-3 Cm-1. The gas phase vibrational spectra of organophosphorous compounds were measured by FTIR spectroscopy using the vapor pressure of the compounds. Except for TBP, the room temperature vapor pressure was sufficient to detect all active vibrational modes from THz to NIR domain. Contrary to DMSO, the rotational patterns of alkyl phosphates and alkyl phosphonates could not be resolved; only a vibrational analysis may be performed. Nevertheless, the spectral fingerprints observed in the THz region allowed a clear discrimination between the molecules and between the different molecular conformations. A. Cuisset, G. Mouret, O. Pirali, P. Roy, F. Cazier, H. Nouali, J. Demaison, J. Phys. Chem. B, 2008, 112:, 12516-12525 A. Cuisset, L. Nanobashvili, I. Smirnova, R. Bocquet, F. Hindle, G. Mouret, O. Pirali, P. Roy and D. A. Sadovskií, Chem. Phys. Lett., 2010, 492: 30-34 I. Smirnova, A. Cuisset, R. Bocquet, F. Hindle, G. Mouret, O. Pirali, P. Roy, J. Phys. Chem. B, 2010, 114: 16936-16947.

  12. Simplified procedure for encapsulating cytochrome c in silica aerogel nanoarchitectures while retaining gas-phase bioactivity.

    PubMed

    Harper-Leatherman, Amanda S; Iftikhar, Mariam; Ndoi, Adela; Scappaticci, Steven J; Lisi, George P; Buzard, Kaitlyn L; Garvey, Elizabeth M

    2012-10-16

    Cytochrome c (cyt. c) has been encapsulated in silica sol-gels and processed to form bioaerogels with gas-phase activity for nitric oxide through a simplified synthetic procedure. Previous reports demonstrated a need to adsorb cyt. c to metal nanoparticles prior to silica sol-gel encapsulation and processing to form aerogels. We report that cyt. c can be encapsulated in aerogels without added nanoparticles and retain structural stability and gas-phase activity for nitric oxide. While the UV-visible Soret absorbance and nitric oxide response indicate that cyt. c encapsulated with nanoparticles in aerogels remains slightly more stable and functional than cyt. c encapsulated alone, these properties are not very different in the two types of aerogels. From UV-visible and Soret circular dichroism results, we infer that cyt. c encapsulated alone self-organizes to reduce contact with the silica gel in a way that may bear at least some resemblance to the way cyt. c self-organizes into superstructures of protein within aerogels when nanoparticles are present. Both the buffer concentration and the cyt. c concentration of solutions used to synthesize the bioaerogels affect the structural integrity of the protein encapsulated alone within the dried aerogels. Optimized bioaerogels are formed when cyt. c is encapsulated from 40 mM phosphate buffered solutions, and when the loaded cyt. c concentration in the aerogel is in the range of 5 to 15 μM. Increased viability of cyt. c in aerogels is also observed when supercritical fluid used to produce aerogels is vented over relatively long times. PMID:22924640

  13. An overlooked series of gas phase diatomic metal oxide ions that are long-lived.

    PubMed

    Schofield, Keith

    2006-06-01

    Although the "Golden" years of spectroscopy and the major studies on ionization processes now are behind us, as with many branches of science, much yet remains to be gleaned from such topics that is both full of interest and of significance to present day research. Presented here is one such overlooked example, an observation that relates to both these fields. An analysis is presented for the periodic table concerning the gas-phase thermochemical nature of MO+ and MO2+ ions. Unexpectedly, a pattern of 18 elements has been identified that exhibit the potential for having long-lived MO+ ions. Normally such molecular ions are expected to decay extremely rapidly by dissociative recombination with electrons, but in particular, 12 of this group behave not like molecules but rather as atomic ions. These are the diatomic oxide ions of Sc, Y, La, Zr, Hf, Ce, Pr, Nd, Pm, Gd, Tb, and Th. In the gas phase, they decay by much slower three-body recombination channels. As may be noted, these elements are located in the first two columns of the transition elements, among the earlier rare earths and an actinide. From all the elements, UO2+ is the only dioxide ion that behaves similarly. These findings now elevate the potential importance of these ions and should facilitate their spectral characterization. Moreover, subsequent comparisons with spectra of well-known isoelectronic and isovalent neutral monoxides and other diatomics will help in the stimulation of further theoretical advances. In addition, once characterized, an ease of spectrally monitoring such ionic states will provide a useful analytical tool. PMID:16722708

  14. Effect of dimethylamine on the gas phase sulfuric acid concentration measured by Chemical Ionization Mass Spectrometry

    PubMed Central

    Ehrhart, S.; Kürten, A.; Adamov, A.; Bianchi, F.; Breitenlechner, M.; Duplissy, J.; Franchin, A.; Dommen, J.; Donahue, N. M.; Dunne, E. M.; Flagan, R. C.; Hakala, J.; Hansel, A.; Keskinen, H.; Kim, J.; Jokinen, T.; Lehtipalo, K.; Leiminger, M.; Praplan, A.; Riccobono, F.; Rissanen, M. P.; Sarnela, N.; Schobesberger, S.; Simon, M.; Sipilä, M.; Smith, J. N.; Tomé, A.; Tröstl, J.; Tsagkogeorgas, G.; Vaattovaara, P.; Winkler, P. M.; Williamson, C.; Wimmer, D.; Baltensperger, U.; Kirkby, J.; Kulmala, M.; Petäjä, T.; Worsnop, D. R.; Curtius, J.

    2016-01-01

    Abstract Sulfuric acid is widely recognized as a very important substance driving atmospheric aerosol nucleation. Based on quantum chemical calculations it has been suggested that the quantitative detection of gas phase sulfuric acid (H2SO4) by use of Chemical Ionization Mass Spectrometry (CIMS) could be biased in the presence of gas phase amines such as dimethylamine (DMA). An experiment (CLOUD7 campaign) was set up at the CLOUD (Cosmics Leaving OUtdoor Droplets) chamber to investigate the quantitative detection of H2SO4 in the presence of dimethylamine by CIMS at atmospherically relevant concentrations. For the first time in the CLOUD experiment, the monomer sulfuric acid concentration was measured by a CIMS and by two CI‐APi‐TOF (Chemical Ionization‐Atmospheric Pressure interface‐Time Of Flight) mass spectrometers. In addition, neutral sulfuric acid clusters were measured with the CI‐APi‐TOFs. The CLOUD7 measurements show that in the presence of dimethylamine (<5 to 70 pptv) the sulfuric acid monomer measured by the CIMS represents only a fraction of the total H2SO4, contained in the monomer and the clusters that is available for particle growth. Although it was found that the addition of dimethylamine dramatically changes the H2SO4 cluster distribution compared to binary (H2SO4‐H2O) conditions, the CIMS detection efficiency does not seem to depend substantially on whether an individual H2SO4 monomer is clustered with a DMA molecule. The experimental observations are supported by numerical simulations based on A Self‐contained Atmospheric chemistry coDe coupled with a molecular process model (Sulfuric Acid Water NUCleation) operated in the kinetic limit. PMID:27610289

  15. Effect of dimethylamine on the gas phase sulfuric acid concentration measured by Chemical Ionization Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Rondo, L.; Ehrhart, S.; Kürten, A.; Adamov, A.; Bianchi, F.; Breitenlechner, M.; Duplissy, J.; Franchin, A.; Dommen, J.; Donahue, N. M.; Dunne, E. M.; Flagan, R. C.; Hakala, J.; Hansel, A.; Keskinen, H.; Kim, J.; Jokinen, T.; Lehtipalo, K.; Leiminger, M.; Praplan, A.; Riccobono, F.; Rissanen, M. P.; Sarnela, N.; Schobesberger, S.; Simon, M.; Sipilä, M.; Smith, J. N.; Tomé, A.; Tröstl, J.; Tsagkogeorgas, G.; Vaattovaara, P.; Winkler, P. M.; Williamson, C.; Wimmer, D.; Baltensperger, U.; Kirkby, J.; Kulmala, M.; Petäjä, T.; Worsnop, D. R.; Curtius, J.

    2016-03-01

    Sulfuric acid is widely recognized as a very important substance driving atmospheric aerosol nucleation. Based on quantum chemical calculations it has been suggested that the quantitative detection of gas phase sulfuric acid (H2SO4) by use of Chemical Ionization Mass Spectrometry (CIMS) could be biased in the presence of gas phase amines such as dimethylamine (DMA). An experiment (CLOUD7 campaign) was set up at the CLOUD (Cosmics Leaving OUtdoor Droplets) chamber to investigate the quantitative detection of H2SO4 in the presence of dimethylamine by CIMS at atmospherically relevant concentrations. For the first time in the CLOUD experiment, the monomer sulfuric acid concentration was measured by a CIMS and by two CI-APi-TOF (Chemical Ionization-Atmospheric Pressure interface-Time Of Flight) mass spectrometers. In addition, neutral sulfuric acid clusters were measured with the CI-APi-TOFs. The CLOUD7 measurements show that in the presence of dimethylamine (<5 to 70 pptv) the sulfuric acid monomer measured by the CIMS represents only a fraction of the total H2SO4, contained in the monomer and the clusters that is available for particle growth. Although it was found that the addition of dimethylamine dramatically changes the H2SO4 cluster distribution compared to binary (H2SO4-H2O) conditions, the CIMS detection efficiency does not seem to depend substantially on whether an individual H2SO4 monomer is clustered with a DMA molecule. The experimental observations are supported by numerical simulations based on A Self-contained Atmospheric chemistry coDe coupled with a molecular process model (Sulfuric Acid Water NUCleation) operated in the kinetic limit.

  16. LSPRAY: Lagrangian Spray Solver for Applications With Parallel Computing and Unstructured Gas-Phase Flow Solvers

    NASA Technical Reports Server (NTRS)

    Raju, Manthena S.

    1998-01-01

    Sprays occur in a wide variety of industrial and power applications and in the processing of materials. A liquid spray is a phase flow with a gas as the continuous phase and a liquid as the dispersed phase (in the form of droplets or ligaments). Interactions between the two phases, which are coupled through exchanges of mass, momentum, and energy, can occur in different ways at different times and locations involving various thermal, mass, and fluid dynamic factors. An understanding of the flow, combustion, and thermal properties of a rapidly vaporizing spray requires careful modeling of the rate-controlling processes associated with the spray's turbulent transport, mixing, chemical kinetics, evaporation, and spreading rates, as well as other phenomena. In an attempt to advance the state-of-the-art in multidimensional numerical methods, we at the NASA Lewis Research Center extended our previous work on sprays to unstructured grids and parallel computing. LSPRAY, which was developed by M.S. Raju of Nyma, Inc., is designed to be massively parallel and could easily be coupled with any existing gas-phase flow and/or Monte Carlo probability density function (PDF) solver. The LSPRAY solver accommodates the use of an unstructured mesh with mixed triangular, quadrilateral, and/or tetrahedral elements in the gas-phase solvers. It is used specifically for fuel sprays within gas turbine combustors, but it has many other uses. The spray model used in LSPRAY provided favorable results when applied to stratified-charge rotary combustion (Wankel) engines and several other confined and unconfined spray flames. The source code will be available with the National Combustion Code (NCC) as a complete package.

  17. Germanium-silicon alloy and core-shell nanocrystals by gas phase synthesis.

    PubMed

    Mehringer, Christian; Kloner, Christian; Butz, Benjamin; Winter, Benjamin; Spiecker, Erdmann; Peukert, Wolfgang

    2015-03-12

    In this work we present a novel route to synthesize well defined germanium-silicon alloy (GexSi1-x) and core-shell nanocrystals (NCs) employing monosilane (SiH4) and monogermane (GeH4) as precursors in a continuously operated two-stage hot-wall aerosol reactor setup. The first hot-wall reactor stage (HWR I) is used to produce silicon (Si) seed particles from SiH4 pyrolysis in Argon (Ar). The resulting seeding aerosol is fed into the second reactor stage (HWR II) and a mixture of SiH4 and GeH4 is added. The ratio of the precursors in the feed, their partial pressures, the synthesis temperature in HWR II and the overall pressure are varied depending on the desired morphology and composition. Alloy particle production is achieved in the heterogeneous surface reaction regime, meaning that germanium (Ge) and Si are deposited on the seed surface simultaneously. The NCs can be synthesized with any desired composition, whilst maintaining a mean diameter around 30 nm with a geometric standard deviation (GSD) around 1.25. The absorption behavior and the related fundamental optical band gap energy in dependence on the alloy composition are exemplarily presented. They prove the possibility to tailor NC properties for electronical and opto-electronical applications. In the homogeneous gas phase reaction regime facetted Ge-Si core-shell structures are accessible. The Ge deposition on the seeds precedes the Si deposition due to different gas phase reaction kinetics of the precursors. The Si layer grows epitaxially on the Ge core and is around 5 nm thick. PMID:25700152

  18. Description and control of dissociation channels in gas-phase protein complexes

    NASA Astrophysics Data System (ADS)

    Thachuk, Mark; Fegan, Sarah K.; Raheem, Nigare

    2016-08-01

    Using molecular dynamics simulations of a coarse-grained model of the charged apo-hemoglobin protein complex, this work expands upon our initial report [S. K. Fegan and M. Thachuk, J. Am. Soc. Mass Spectrom. 25, 722-728 (2014)] about control of dissociation channels in the gas phase using specially designed charge tags. Employing a charge hopping algorithm and a range of temperatures, a variety of dissociation channels are found for activated gas-phase protein complexes. At low temperatures, a single monomer unfolds and becomes charge enriched. At higher temperatures, two additional channels open: (i) two monomers unfold and charge enrich and (ii) two monomers compete for unfolding with one eventually dominating and the other reattaching to the complex. At even higher temperatures, other more complex dissociation channels open with three or more monomers competing for unfolding. A model charge tag with five sites is specially designed to either attract or exclude charges. By attaching this tag to the N-terminus of specific monomers, the unfolding of those monomers can be decidedly enhanced or suppressed. In other words, using charge tags to direct the motion of charges in a protein complex provides a mechanism for controlling dissociation. This technique could be used in mass spectrometry experiments to direct forces at specific attachment points in a protein complex, and hence increase the diversity of product channels available for quantitative analysis. In turn, this could provide insight into the function of the protein complex in its native biological environment. From a dynamics perspective, this system provides an interesting example of cooperative behaviour involving motions with differing time scales.

  19. Formation of Small Gas Phase Carbonyls from Heterogeneous Oxidation of Polyunsaturated Fatty Acids (PUFA)

    NASA Astrophysics Data System (ADS)

    Zhou, S.; Zhao, R.; Lee, A.; Gao, S.; Abbatt, J.

    2011-12-01

    Fatty acids (FAs) are emitted into the atmosphere from gas and diesel powered vehicles, cooking, plants, and marine biota. Field measurements have suggested that FAs, including polyunsaturated fatty acids (PUFA), could make up an important contribution to the organic fraction of atmospheric aerosols. Due to the existence of carbon-carbon double bonds in their molecules, PUFA are believed to be highly reactive towards atmospheric oxidants such as OH and NO3 radicals and ozone, which will contribute to aerosol hygroscopicity and cloud condensation nuclei activity. Previous work from our group has shown that small carbonyls formed from the heterogeneous reaction of linoleic acid (LA) thin films with gas-phase O3. It is known that the formation of small carbonyls in the atmosphere is not only relevant to the atmospheric budget of volatile organic compounds but also to secondary organic aerosol formation. In the present study, using an online proton transfer reaction mass spectrometry (PTR-MS) and off-line gas chromatography-mass spectrometry (GC-MS) we again investigated carbonyl formation from the same reaction system, i.e. the heterogeneous ozonolysis of LA film. In addition to the previously reported carbonyls, malondialdehyde (MDA), a source of reactive oxygen species that is mutagenic, has been identified as a product for the first time. Small dicarbonyls, e.g. glyoxal, are expected to be formed from the further oxidation of MDA. In this presentation, the gas-phase chemistry of MDA with OH radicals using a newly built Teflon chamber in our group will also be presented.

  20. Conformational preferences of γ-aminobutyric acid in the gas phase and in water

    NASA Astrophysics Data System (ADS)

    Song, Il Keun; Kang, Young Kee

    2012-09-01

    The conformational study of γ-aminobutyric acid (GABA) has been carried out at the M06-2X/cc-pVTZ level of theory in the gas phase and the SMD M06-2X/cc-pVTZ level of theory in water. In the gas phase, the folded conformation gG1 with gauche- and gauche+ conformations for the Cβsbnd Cα and Cγsbnd Cβ bonds, respectively, is found to be lowest in energy and enthalpy, which can be ascribed to the favored hyperconjugative n → π* interaction between the lone electron pair of the amine nitrogen atom and the Cdbnd O bond of the carboxylic group and the favored antiparallel dipole-dipole interaction between the Nsbnd H bond and the Cdbnd O bond. In addition, the intramolecular hydrogen bonds between the carboxylic group and the amine Nsbnd H group have contributed to stabilize some low-energy conformers. However, the most preferred conformation is found to be tG1 and more stable by 0.4 kcal/mol in ΔG than the conformer gG1, in which the favored entropic term due to the conformational flexibility and the other favored n → σ*, σ → σ*, and π → σ* interactions seem to play a role. The conformational preferences of the neutral GABA calculated by ΔG's are reasonably consistent with the populations deduced from FT microwave spectroscopy in supersonic jets combined with laser ablation. In water, the two folded conformers Gg and gG of the zwitterionic GABA are dominantly populated, each of which has the population of 47%, and the hydrogen bond between the ammonium Nsbnd H group and the lone electron pair of the Csbnd O- group seems to be crucial in stabilizing these conformers. Our calculated result that the folded conformers preferentially exist in water is consistent with the 1H NMR experiments in D2O.