Sample records for gasb-based iii-v alloys

  1. Ordering-enhanced dislocation glide in III-V alloys

    NASA Astrophysics Data System (ADS)

    McMahon, William E.; Kang, Joongoo; France, Ryan M.; Norman, Andrew G.; Friedman, Daniel J.; Wei, Su-Huai

    2013-11-01

    Ordering-induced effects on dislocations in metallic alloys have been extensively studied due to their importance in technology applications. We demonstrate that dislocation behavior in ordered III-V semiconductor alloys can be drastically different. This is because ordering in bulk metallic alloys is generally stable, whereas the surface-stabilized group-III sublattice ordering of a III-V alloy is only metastable in the bulk. Here, we show that dislocation glide can release some of the energy stored by ordering of III-V alloys, enhancing the glide of any dislocation which cuts through the ordered layers to create an antiphase boundary in the ordering pattern. This leads to an experimentally observed glide-plane switch which is unique to ordered III-V alloys. Implications for other unique strain-relaxation processes in III-V ordered alloys are also discussed.

  2. Atomic ordering in III/V semiconductor alloys

    SciTech Connect

    Stringfellow, G.B.; Chen, G.S. (University of Utah, Salt Lake City, Utah 84112 (US))

    1991-07-01

    The phenomenon of spontaneous atomic scale ordering was first reported for semiconductor alloys only {similar to}5 years ago. Since that time, ordering has been observed in nearly all III/V alloy systems. This paper will describe the ordered structures observed, as well as the extent of ordering, in specific III/V alloys. The effects of ordering on the fundamental properties will be described briefly. The paper will emphasize a summary of our current understanding of the phenomenon. Both thermodynamic and kinetic factors play a role in determining the degree of order for specific epitaxial growth parameters and on which planes the compositional modulations occur.

  3. III-V alloy heterostructure high speed avalanche photodiodes

    NASA Technical Reports Server (NTRS)

    Law, H. D.; Nakano, K.; Tomasetta, L. R.

    1979-01-01

    Heterostructure avalanche photodiodes have been successfully fabricated in several III-V alloy systems: GaAlAs/GaAs, GaAlSb/GaAlSb, and InGaAsP/InP. These diodes cover optical wavelengths from 0.4 to 1.8 micron. Early stages of development show very encouraging results. High speed response of less than 35 ps and high quantum efficiency more than 95 percent have been obtained. The dark currents and the excess avalanche noise are also dicussed. A direct comparison of GaAlSb, GaAlAsSb, and In GaAsP avalanche photodiodes is given.

  4. An extended Hückel study of the electronic properties of III-V compounds and their alloys

    NASA Astrophysics Data System (ADS)

    Ribeiro, Ingrid A.; Ribeiro, Fabio J.; Martins, A. S.

    2014-05-01

    In this work, we performed tight binding calculations of the electronic structure of III-V semiconductors compounds and their alloys based on the Extended Hückel Theory (EHT). In particular, this paper is focused on the dependency between band gap and the applied pressure and also the alloy composition.

  5. Effective band structure of random III-V alloys

    NASA Astrophysics Data System (ADS)

    Popescu, Voicu; Zunger, Alex

    2010-03-01

    Random substitutional alloys have no long range order (LRO) or translational symmetry so rigorously speaking they have no E(k) band structure or manifestations thereof. Yet, many experiments on alloys are interpreted using the language of band theory, e.g. inferring Van Hove singularities, band dispersion and effective masses. Many standard alloy theories (VCA- or CPA-based) have the LRO imposed on the alloy Hamiltonian, assuming only on-site disorder, so they can not be used to judge the extent of LRO that really exists. We adopt the opposite way, by using large (thousand atom) randomly generated supercells in which chemically identical alloy atoms are allowed to have different local environments (a polymorphous representation). This then drives site-dependent atomic relaxation as well as potential fluctuations. The eigenstates from such supercells are then mapped onto the Brillouin zone (BZ) of the primitive cell, producing effective band dispersion. Results for (In,Ga)X show band-like behaviour only near the centre and faces of the BZ but rapidly lose such characteristics away from ? or for higher bands. We further analyse the effects of stoichiometry variation, internal relaxation, and short-range order on the alloy band structure.

  6. Theoretical and experimental study of solid phase miscibility gaps in III/V quaternary alloys

    SciTech Connect

    Stringfellow, G.B.

    1989-06-02

    The first 8 years of this DOE supported research was directed toward understanding, for the first time, the thermodynamics of miscibility gaps and ordering in III/V alloys. This research has led to the publication of 32 papers in technical journals as well as 17 invited papers and national and international conferences. In addition, this work led directly to the invitation to organize the Joint US/Japan Workshop on Alloy Semiconductor Physics and Electronics'' held October 1988 in Hawaii. This report contains a brief project summary, a listing of papers and talks, and a section devoted to supported and graduated students.

  7. Predicting the Direct to Indirect Transition in III-V Alloys

    NASA Astrophysics Data System (ADS)

    Nicklas, Jeremy; Wilkins, John

    2011-03-01

    The screened hybrid functional, HSE, used in density functional theory (DFT) has been gaining traction recently for its predictive powers of the band structure in bulk semiconductors. It is natural to assume that these accurate results would carry over to alloy semiconductors, but little work has been done to confirm this. We recently investigated the compositional dependence on the electronic band structure for a range of III-V semiconducting alloys (AlGaAs, InAlAs, AlInP, InGaP, and GaAsP) [1]. These alloys have a critical composition where the band gap crosses over from a direct band gap (having optoelectronic uses) to an indirect band gap (window layers in solar cells). A direct comparison of this critical composition is made between HSE and the standard density functional, PBE, revealing crossover compositions within 12% atomic composition when compared to experiment while PBE overestimates by as much as 39% atomic composition. Such results give merit that HSE is a reliable functional for tuning the electronic properties of semiconducting alloys.[4pt] [1] Jeremy W. Nicklas and John W. Wilkins, Appl. Phys. Lett. 97, 091902 (2010)

  8. Atomistic modeling of bond lengths in random and ordered III-V alloys

    NASA Astrophysics Data System (ADS)

    Detz, H.; Strasser, G.

    2013-09-01

    This work provides comprehensive modeling for the bond length and angle distributions in random and spontaneously ordered ternary III-V alloys using empirical interaction potentials. The compounds InxGa1-xAs, GaAs1-xSbx, and InxGa1-xP were used as model systems due to their technological importance and the fact that ordered structures were observed experimentally in these materials. For random alloys, we reproduce the bimodal bond length distribution, which allows linear fits with slopes between 0.087 Å and 0.1059 Å for all bond types. The calculated values for dilute compositions slightly deviate from these functions, causing stronger deformations. In the case of CuPt-ordered structures, the bond length distribution is shown to collapse to four sharp peaks with an area ratio of 1:3:3:1, which originate from a different atom to atom distance within the different (111) planes and perpendicular to these. An essential consequence of this atomic arrangement is the different spacings for the different stacked binaries along the (111) direction, which also leads to strain values up to -0.819% for In0.5Ga0.5P and -1.827% for GaAs0.5Sb0.5. Furthermore, the broad bond angle distributions of random alloys collapse into two peaks for CuPt-like structures. On the other hand, CuAu-type ordering is shown to lead to a sharp bimodal bond length distribution but with five different groups of bond angles, which can be identified with the different atomic configurations in ternary zincblende crystals.

  9. Annealing group III-V compound doped silicon-germanium alloy for improved thermo-electric conversion efficiency

    NASA Technical Reports Server (NTRS)

    Vandersande, Jan W. (inventor); Wood, Charles (inventor); Draper, Susan L. (inventor)

    1989-01-01

    The thermoelectric conversion efficiency of a GaP doped SiGe alloy is improved about 30 percent by annealing the alloy at a temperature above the melting point of the alloy, preferably stepwise from 1200 C to 1275 C in air to form large grains having a size over 50 microns and to form a GeGaP rich phase and a silicon rich phase containing SiP and SiO2 particles.

  10. III-V-N alloys grown by MOVPE in H2 and N2 mixed carrier gases

    NASA Astrophysics Data System (ADS)

    Kuboya, S.; Thieu, Q. T.; Sanorpim, S.; Katayama, R.; Onabe, K.

    2012-01-01

    The MOVPE growth properties of GaAsN and InAsN in H2 and N2 mixed carrier gases are studied. The N contents of the GaAsN and InAsN films increase with increasing the N2/(H2+N2) ratio in the H2 and N2 mixed carrier gas. The growth rate reduction of GaAsN films in higher N2/(H2+N2) ratio is explained by the smaller diffusion coefficients of precursors. The pyrolysis of 1,1-dimethylhydrazine (DMHy) is investigated by a quadrupole mass spectrometer (QMS) that is combined with the MOVPE growth reactor. At lower temperatures, the pyrolysis of DMHy in H2 carrier gas is higher than that in N2 carrier gas. The results indicate that the higher N contents at the higher N2/(H2+N2) ratios in the mixed carrier gases are attributed to the suppression of the decomposition of III-V-N films as NHx. The higher reactor pressure also exhibits higher N contents in each carrier gas. It is interpreted as the effect of the faster growth rates and the higher DMHy pyrolysis.

  11. Defect engineering in III–V ternary alloys: effects of strain and local charge on the formation of substitutional and interstitial native defects

    Microsoft Academic Search

    A. Amore Bonapasta; P. Giannozzi

    2001-01-01

    The effects of external and internal strains and of defect charges on the formation of vacancies, antisites and interstitials in GaAs and In0.5Ga0.5As have been investigated by first principles density functional methods. Present results show that strain and doping permit a defect engineering of III–V semiconductors. Specifically, they predict that doping may have major effects on the formation of antisites

  12. Defect engineering in III–V ternary alloys: Effects of strain and local charge on the formation of native deep defects

    Microsoft Academic Search

    A. Amore Bonapasta; P. Giannozzi

    2002-01-01

    The effects of external and internal strains, and of defect charges on the formation of vacancies and antisites in GaAs and In0.5Ga0.5As have been investigated by first principles density functional methods. Present results show that a proper use of strain and defect charges permits the development of a defect engineering of III–V semiconductors. Specifically, they predict that doping may have

  13. Progress and Continuing Challenges in GaSb-based III-V Alloys and Heterostructures Grown by Organometallic Vapor Phase Epitaxy

    SciTech Connect

    CA Wang

    2004-05-06

    This paper discusses progress in the preparation of mid-IR GaSb-based III-V materials grown by organometallic vapor phase epitaxy (OMVPE). The growth of these materials is complex, and fundamental and practical issues associated with their growth are outlined. Approaches that have been explored to further improve the properties and performance are briefly reviewed. Recent materials and device results on GaInAsSb bulk layers and GaInAsSb/AlGaAsSb heterostructures, grown lattice matched to GaSb, are presented. State-of-the-art GaInAsSb materials and thermophotovoltaic devices have been achieved. This progress establishes the high potential of OMVPE for mid-IR GaSb-based devices.

  14. Dry etching of III-V nitrides

    SciTech Connect

    Pearton, S.J. [Florida Univ., Gainesville, FL (United States); Shul, R.J. [Sandia National Labs., Albuquerque, NM (United States); McLane, G.F. [Army Research Laboratory, Ft. Monmouth, NJ (United States); Constantine, C. [Plasma Therm IP, St. Petersburg, FL (United States)

    1995-12-01

    The chemical inertness and high bond strengths of the III-V nitrides lead to slower plasma etching rates than for more conventional III-V semiconductors under the same conditions. High ion density conditions (>3{times}l0{sup 9}cm{sup {minus}3}) such as those obtained in ECR or magnetron reactors produce etch rates up to an order of magnitude higher than for RIE, where the ion densities are in the 10{sup 9}cm{sup {minus}3} range. We have developed smooth anisotropic dry etches for GaN, InN, AlN and their alloys based on Cl{sub 2}/CH{sub 4}/H{sub 2}/Ar, BCl{sub 3}/Ar, Cl{sub 2}/H{sub 2}, Cl{sub 2}/SF{sub 6}, HBr/H{sub 2} and HI/H{sub 2} plasma chemistries achieving etch rates up to {approximately}4,000{angstrom}/min at moderate dc bias voltages ({le}-150V). Ion-induced damage in the nitrides appears to be less apparent than in other III-V`s. One of the key remaining issues is the achievement of high selectivities for removal of one layer from another.

  15. Study of the Local Structure of GALLIUM(X)INDIUM(1 -X)ARSENIDE(Y)ANTIMONY(1-Y), a Quaternary Iii-V Semiconductor Alloy, Using the Extended X-Ray Absorption Fine Structure (exafs) Technique.

    NASA Astrophysics Data System (ADS)

    Islam, Shaheen Momtaz

    The technological importance of quaternary semiconductor alloys has stimulated considerable interest in the basic physics of these materials. Understanding of the local structure of these alloys is of fundamental importance. In this work, the extended x-ray absorption fine structure (EXAFS) technique has been used to investigate the atomic-scale structure of the III-V quaternary alloy series Ga_{rm x}In _{rm 1-x}As _{rm y}Sb_ {rm 1-y}, where Ga and In atoms occupy one sublattice and As and Sb atoms are distributed over the other sublattice. Two series of these alloys were studied with varying x (from 0.05 to 0.95) and keeping y constant (y = 0.05 or y = 0.10). The samples were polycrystalline powders of various compositions. EXAFS data were obtained at the As K-edge at room temperature for all these alloys. Our measurements reveal the number and types of atoms and the nearest neighbor distances about the average As atom. Our results show a consistent deviation from random site occupation in all these alloys, with Ga-As (and therefore In-Sb) pairs being clearly preferred over In-As and Ga -Sb pairs. This result is consistent with a theoretical model based on the pair approximation. From EXAFS measurements we also observe that the variation of Ga-As and In-As near-neighbor distances with composition is linear and that the bond-lengths remain nearly constant, closer to those in the pure binary compounds and varying only by 0.03 to 0.05A. On the other hand, the x-ray diffraction results show that the average cation -anion distance in the alloys changes by as much as 0.165A in accordance with Vegard's law. This linear variation of lattice constant with composition between the end members suggests that the atomic volume is conserved regardless of the details of the local distortions of lattice.

  16. Synthesis of III-V nitride nanowires with controlled structure, morphology, and composition

    E-print Network

    Crawford, Samuel Curtis

    2014-01-01

    The III-V nitride materials system offers tunable electronic and optical properties that can be tailored for specific electronic and optoelectronic applications by varying the (In,Ga,Al)N alloy composition. While nitride ...

  17. Accurate ab initio predictions of III-V direct-indirect band gap crossovers

    NASA Astrophysics Data System (ADS)

    Nicklas, Jeremy W.; Wilkins, John W.

    2010-08-01

    We report the compositional dependence of the electronic band structure for a range of III-V alloys. Standard density functional theory is insufficient to mimic the electronic gap energies at different symmetry points of the Brillouin zone. The Heyd-Scuseria-Ernzerhof hybrid functional with screened exchange accurately reproduces the experimental band gaps and, more importantly, the alloy concentration of the direct-indirect gap crossovers for the III-V alloys studied here: AlGaAs, InAlAs, AlInP, InGaP, and GaAsP.

  18. Photodetectors using III-V nitrides

    DOEpatents

    Moustakas, T.D.; Misra, M.

    1997-10-14

    A photodetector using a III-V nitride and having predetermined electrical properties is disclosed. The photodetector includes a substrate with interdigitated electrodes formed on its surface. The substrate has a sapphire base layer, a buffer layer formed from a III-V nitride and a single crystal III-V nitride film. The three layers are formed by electron cyclotron resonance microwave plasma-assisted molecular beam epitaxy (ECR-assisted MBE). Use of the ECR-assisted MBE process allows control and predetermination of the electrical properties of the photodetector. 24 figs.

  19. Photodetectors using III-V nitrides

    DOEpatents

    Moustakas, Theodore D. (Dover, MA); Misra, Mira (Arlington, MA)

    1997-01-01

    A photodetector using a III-V nitride and having predetermined electrical properties is disclosed. The photodetector includes a substrate with interdigitated electrodes formed on its surface. The substrate has a sapphire base layer, a buffer layer formed from a III-V nitride and a single crystal III-V nitride film. The three layers are formed by electron cyclotron resonance microwave plasma-assisted molecular beam epitaxy (ECR-assisted MBE). Use of the ECR-assisted MBE process allows control and predetermination of the electrical properties of the photodetector.

  20. Hybrid III-V/silicon lasers

    NASA Astrophysics Data System (ADS)

    Kaspar, P.; Jany, C.; Le Liepvre, A.; Accard, A.; Lamponi, M.; Make, D.; Levaufre, G.; Girard, N.; Lelarge, F.; Shen, A.; Charbonnier, P.; Mallecot, F.; Duan, G.-H.; Gentner, J.-.; Fedeli, J.-M.; Olivier, S.; Descos, A.; Ben Bakir, B.; Messaoudene, S.; Bordel, D.; Malhouitre, S.; Kopp, C.; Menezo, S.

    2014-05-01

    The lack of potent integrated light emitters is one of the bottlenecks that have so far hindered the silicon photonics platform from revolutionizing the communication market. Photonic circuits with integrated light sources have the potential to address a wide range of applications from short-distance data communication to long-haul optical transmission. Notably, the integration of lasers would allow saving large assembly costs and reduce the footprint of optoelectronic products by combining photonic and microelectronic functionalities on a single chip. Since silicon and germanium-based sources are still in their infancy, hybrid approaches using III-V semiconductor materials are currently pursued by several research laboratories in academia as well as in industry. In this paper we review recent developments of hybrid III-V/silicon lasers and discuss the advantages and drawbacks of several integration schemes. The integration approach followed in our laboratory makes use of wafer-bonded III-V material on structured silicon-on-insulator substrates and is based on adiabatic mode transfers between silicon and III-V waveguides. We will highlight some of the most interesting results from devices such as wavelength-tunable lasers and AWG lasers. The good performance demonstrates that an efficient mode transfer can be achieved between III-V and silicon waveguides and encourages further research efforts in this direction.

  1. Preparation of III-V semiconductor nanocrystals

    DOEpatents

    Alivisatos, A. Paul (Berkeley, CA); Olshavsky, Michael A. (Brunswick, OH)

    1996-01-01

    Nanometer-scale crystals of III-V semiconductors are disclosed, They are prepared by reacting a group III metal source with a group V anion source in a liquid phase at elevated temperature in the presence of a crystallite growth terminator such as pyridine or quinoline.

  2. Photodetectors using III-V nitrides

    DOEpatents

    Moustakas, Theodore D. (Dover, MA)

    1998-01-01

    A bandpass photodetector using a III-V nitride and having predetermined electrical properties. The bandpass photodetector detects electromagnetic radiation between a lower transition wavelength and an upper transition wavelength. That detector comprises two low pass photodetectors. The response of the two low pass photodetectors is subtracted to yield a response signal.

  3. Photodetectors using III-V nitrides

    DOEpatents

    Moustakas, T.D.

    1998-12-08

    A bandpass photodetector using a III-V nitride and having predetermined electrical properties is disclosed. The bandpass photodetector detects electromagnetic radiation between a lower transition wavelength and an upper transition wavelength. That detector comprises two low pass photodetectors. The response of the two low pass photodetectors is subtracted to yield a response signal. 24 figs.

  4. Preparation of III-V semiconductor nanocrystals

    DOEpatents

    Alivisatos, A.P.; Olshavsky, M.A.

    1996-04-09

    Nanometer-scale crystals of III-V semiconductors are disclosed. They are prepared by reacting a group III metal source with a group V anion source in a liquid phase at elevated temperature in the presence of a crystallite growth terminator such as pyridine or quinoline. 4 figs.

  5. Electron g-factor Engineering in III-V Semiconductors for Quantum Communications

    E-print Network

    Hideo Kosaka; Andrey A. Kiselev; Filipp A. Baron; Ki Wook Kim; Eli Yablonovitch

    2001-02-22

    An entanglement-preserving photo-detector converts photon polarization to electron spin. Up and down spin must respond equally to oppositely polarized photons, creating a requirement for degenerate spin energies, ge=0 for electrons. We present a plot of ge-factor versus lattice constant, analogous to bandgap versus lattice constant, that can be used for g-factor engineering of III-V alloys and quantum wells

  6. Design of a lattice-matched III-V-N/Si photovoltaic tandem cell monolithically integrated on silicon

    E-print Network

    Paris-Sud XI, Université de

    Design of a lattice-matched III-V-N/Si photovoltaic tandem cell monolithically integrated cells monolithically grown on a silicon substrate using GaAsPN absorber layer. InGaAs(N) quantum dots emission. For photovoltaic applications, we consider the GaAsPN diluted nitride alloy as the top junction

  7. III-V semiconductor devices integrated with silicon III-V semiconductor devices integrated with silicon

    NASA Astrophysics Data System (ADS)

    Hopkinson, Mark; Martin, Trevor; Smowton, Peter

    2013-09-01

    The integration of III-V semiconductor devices with silicon is one of the most topical challenges in current electronic materials research. The combination has the potential to exploit the unique optical and electronic functionality of III-V technology with the signal processing capabilities and advanced low-cost volume production techniques associated with silicon. Key industrial drivers include the use of high mobility III-V channel materials (InGaAs, InAs, InSb) to extend the performance of Si CMOS, the unification of electronics and photonics by combining photonic components (GaAs, InP) with a silicon platform for next-generation optical interconnects and the exploitation of large-area silicon substrates and high-volume Si processing capabilities to meet the challenges of low-cost production, a challenge which is particularly important for GaN-based devices in both power management and lighting applications. The diverse nature of the III-V and Si device approaches, materials technologies and the distinct differences between industrial Si and III-V processing have provided a major barrier to integration in the past. However, advances over the last decade in areas such as die transfer, wafer fusion and epitaxial growth have promoted widespread renewed interest. It is now timely to bring some of these topics together in a special issue covering a range of approaches and materials providing a snapshot of recent progress across the field. The issue opens a paper describing a strategy for the epitaxial integration of photonic devices where Kataria et al describe progress in the lateral overgrowth of InP/Si. As an alternative, Benjoucef and Reithmaier report on the potential of InAs quantum dots grown direct onto Si surfaces whilst Sandall et al describe the properties of similar InAs quantum dots as an optical modulator device. As an alternative to epitaxial integration approaches, Yokoyama et al describe a wafer bonding approach using a buried oxide concept, Corbett et al describe the transfer printing and bonding of III-V die on to CMOS wafers and Dastjerdi et al describe the optical performance of free-standing InGaAsP tube optical cavities which may be transferred to silicon substrates. Finally, describing important recent progress on GaN-based devices Jiang et al describe their work on InGaN light-emitting diodes on Si (1?1?1) substrates, Wallis et al describe similar structures with the emphasis on x-ray methods for the control of AlGaN buffer layer strain, Kumar et al describe low leakage current, large-area Schottky barrier photodetectors on Si, whilst Soltani et al describe their recent progress on AlGaN/GaN high electron mobility transistors grown on (1?0?0) and (1?1?0) silicon substrates. Overall, we think that this special issue of Semiconductor Science and Technology provides a timely overview of progress and the opportunities in this exciting and important field. Finally, we would like to thank the IOP editorial staff, in particular Alice Malhador, for their support, and we would also like to thank all contributors for their efforts in making this special issue possible.

  8. Silicon CMOS Ohmic Contact Technology for Contacting III-V Compound Materials

    E-print Network

    Pacella, Nan Y.

    Silicon (Si)-encapsulated III-V compound (III-V) device layers enable Si-complementary metal-oxide semiconductor (CMOS) friendly ohmic contact formation to III-V compound devices, allowing for the ultimate seamless planar ...

  9. III-V High-Efficiency Multijunction Photovoltaics (Fact Sheet)

    SciTech Connect

    Not Available

    2011-06-01

    Capabilities fact sheet that includes scope, core competencies and capabilities, and contact/web information for III-V High-Efficiency Multijunction Photovoltaics at the National Center for Photovoltaics.

  10. Ion exchange synthesis of III-V nanocrystals.

    PubMed

    Beberwyck, Brandon J; Alivisatos, A Paul

    2012-12-12

    III-V nanocrystals displaying high crystallinity and low size dispersity are difficult to access by direct synthesis from molecular precursors. Here, we demonstrate that cation exchange of cadmium pnictide nanocrystals with group 13 ions yields monodisperse, crystalline III-V nanocrystals, including GaAs, InAs, GaP, and InP. This report highlights the versatility of cation exchange for accessing nanocrystals with covalent lattices. PMID:23190283

  11. Progress Towards III-V Photovoltaics on Flexible Substrates

    NASA Technical Reports Server (NTRS)

    McNatt, Jeremiah S.; Pal, AnnaMaria T.; Clark, Eric B.; Sayir, Ali; Raffaelle, Ryne P.; Bailey, Christopher G.; Hubbard, Seth M.; Maurer, William F.; Fritzemeier, Les

    2008-01-01

    Presented here is the recent progress of the NASA Glenn Research Center OMVPE group's efforts in the development of high efficiency thin-film polycrystalline III-V photovoltaics on optimum substrates. By using bulk polycrystalline germanium (Ge) films, devices of high efficiency and low mass will be developed and incorporated onto low-cost flexible substrates. Our progress towards the integration of high efficiency polycrystalline III-V devices and recrystallized Ge films on thin metal foils is discussed.

  12. Electronic band structure calculations for biaxially strained Si, Ge, and III-V semiconductors

    NASA Astrophysics Data System (ADS)

    Kim, Jiseok; Fischetti, Massimo V.

    2010-07-01

    Electronic band structure and effective masses for relaxed and biaxially strained Si, Ge, III-V compound semiconductors (GaAs, GaSb, InAs, InSb, InP) and their alloys (InxGa1-xAs, InxGa1-xSb) on different interface orientations, (001), (110), and (111), are calculated using nonlocal empirical pseudopotential with spin-orbit interaction. Local and nonlocal pseudopotential parameters are obtained by fitting transport-relevant quantities, such as band gap and deformation potentials, to available experimental data. A cubic-spline interpolation is used to extend local form factors to arbitrary q and to obtain correct workfunctions. The nonlocal and spin-orbit terms are linearly interpolated between anions and cations for III-V semiconductors. The virtual crystal approximation is employed for the InxGa1-xAs and InxGa1-xSb alloys and deformation potentials are determined using linear deformation-potential theory. Band gap bowing parameters are extracted using least-square fitting for relaxed alloys and for strained InxGa1-xAs on (001), (110), and (111) InP. The dependence on biaxial strain of the electron and hole effective masses at the symmetry points ?, X, and L exhibits a continuous variation at ? and L but sudden changes appear at ? minima caused by the flatness of the dispersion along the ? line near the minimum.

  13. Projected performance of III-V epitaxial multijunction solar cells in space

    NASA Technical Reports Server (NTRS)

    Maloney, T. J.

    1981-01-01

    The monolithic epitaxial multijunction stack, to be fabricated from III-V quaternary alloys, has been analyzed for use in space with a detailed computer model. AlGaInAs and AlGaAsSb three-junction cells, each having an AlAsSb window, were modeled as functions of temperature, concentration, minority carrier diffusion length, etc., as were AlGaAs/GaAs and AlGaAsSb/InP two-junction cells. Cell efficiencies for one expected operating point in space (50 suns, 125 C) were around 20% for the two-junction cells and around 23-24% for the three-junction cells, using projected minority carrier diffusion lengths of 1.5 microns. Longer diffusion lengths in the III-V alloys (approaching those of GaAs) would allow the three-junction cells to reach 30% efficiency, if such conditions as 100 suns, 50 C can be achieved. The major technological challenges facing the high-efficiency multijunction cell are summarized and discussed in light of the modeling results.

  14. III-V semiconductor solid solution single crystal growth

    NASA Technical Reports Server (NTRS)

    Gertner, E. R.

    1982-01-01

    The feasibility and desirability of space growth of bulk IR semiconductor crystals for use as substrates for epitaxial IR detector material were researched. A III-V ternary compound (GaInSb) and a II-VI binary compound were considered. Vapor epitaxy and quaternary epitaxy techniques were found to be sufficient to permit the use of ground based binary III-V crystals for all major device applications. Float zoning of CdTe was found to be a potentially successful approach to obtaining high quality substrate material, but further experiments were required.

  15. Recent progress in III-V based ferromagnetic semiconductors: Band structure, Fermi level, and tunneling transport

    SciTech Connect

    Tanaka, Masaaki, E-mail: masaaki@ee.t.u-tokyo.ac.jp [Department of Electrical Engineering and Information Systems, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Institute for Nano Quantum Electronics, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505 (Japan); Ohya, Shinobu, E-mail: ohya@cryst.t.u-tokyo.ac.jp; Nam Hai, Pham, E-mail: pham@cryst.t.u-tokyo.ac.jp [Department of Electrical Engineering and Information Systems, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan)

    2014-03-15

    Spin-based electronics or spintronics is an emerging field, in which we try to utilize spin degrees of freedom as well as charge transport in materials and devices. While metal-based spin-devices, such as magnetic-field sensors and magnetoresistive random access memory using giant magnetoresistance and tunneling magnetoresistance, are already put to practical use, semiconductor-based spintronics has greater potential for expansion because of good compatibility with existing semiconductor technology. Many semiconductor-based spintronics devices with useful functionalities have been proposed and explored so far. To realize those devices and functionalities, we definitely need appropriate materials which have both the properties of semiconductors and ferromagnets. Ferromagnetic semiconductors (FMSs), which are alloy semiconductors containing magnetic atoms such as Mn and Fe, are one of the most promising classes of materials for this purpose and thus have been intensively studied for the past two decades. Here, we review the recent progress in the studies of the most prototypical III-V based FMS, p-type (GaMn)As and its heterostructures with focus on tunneling transport, Fermi level, and bandstructure. Furthermore, we cover the properties of a new n-type FMS, (In,Fe)As, which shows electron-induced ferromagnetism. These FMS materials having zinc-blende crystal structure show excellent compatibility with well-developed III-V heterostructures and devices.

  16. BAs-GaAs Semiconductor Alloys as a Photovoltaic Alternative to Nitride Alloys

    SciTech Connect

    Hart, G. L. W.; Zunger, A.

    2000-01-01

    Nitrogen alloyed III-V semiconductor compounds have been intensely studied in recent years due to unusual effects caused by nitrogen alloying. These effects are exploited in band gap engineering for specific applications such as solar cells and blue lasers.

  17. Investigation of new semiinsulating behavior of III-V compounds

    NASA Technical Reports Server (NTRS)

    Lagowski, Jacek

    1990-01-01

    The investigation of defect interactions and properties related to semiinsulating behavior of III-V semiconductors resulted in about twenty original publications, six doctoral thesis, one masters thesis and numerous conference presentations. The studies of new compensation mechanisms involving transition metal impurities have defined direct effects associated with deep donor/acceptor levels acting as compensating centers. Electrical and optical properties of vanadium and titanium levels were determined in GaAs, InP and also in ternary compounds InGaAs. The experimental data provided basis for the verification of chemical trends and the VRBE method. They also defined compositional range for III-V mixed crystals whereby semiinsulating behavior can be achieved using transition elements deep levels and a suitable codoping with shallow donor/acceptor impurities.

  18. III-V/Silicon Lattice-Matched Tandem Solar Cells

    SciTech Connect

    Geisz, J.; Olson, J.; Friedman, D.; Kurtz, S.; McMahon, W.; Romero, M.; Reedy, R.; Jones, K.; Norman, A.; Duda, A.; Kibbler, A.; Kramer, C.; Young, M.

    2005-01-01

    A two-junction device consisting of a 1.7-eV GaNPAs junction on a 1.1-eV silicon junction has the theoretical potential to achieve nearly optimal efficiency for a two-junction tandem cell. We have demonstrated a monolithic III-V-on-silicon tandem solar cell in which most of the III-V layers are nearly lattice-matched to the silicon substrate. The cell includes a GaNPAs top cell, a GaP-based tunnel junction (TJ), and a diffused silicon junction formed during the epitaxial growth of GaNP on the silicon substrate. To accomplish this, we have developed techniques for the growth of high crystalline quality lattice-matched GaNPAs on silicon by metal-organic vapor-phase epitaxy.

  19. Method of fabricating vertically aligned group III-V nanowires

    DOEpatents

    Wang, George T; Li, Qiming

    2014-11-25

    A top-down method of fabricating vertically aligned Group III-V micro- and nanowires uses a two-step etch process that adds a selective anisotropic wet etch after an initial plasma etch to remove the dry etch damage while enabling micro/nanowires with straight and smooth faceted sidewalls and controllable diameters independent of pitch. The method enables the fabrication of nanowire lasers, LEDs, and solar cells.

  20. Heterogeneously integrated III-V/silicon distributed feedback lasers.

    PubMed

    Keyvaninia, S; Verstuyft, S; Van Landschoot, L; Lelarge, F; Duan, G-H; Messaoudene, S; Fedeli, J M; De Vries, T; Smalbrugge, B; Geluk, E J; Bolk, J; Smit, M; Morthier, G; Van Thourhout, D; Roelkens, G

    2013-12-15

    Heterogeneously integrated III-V-on-silicon second-order distributed feedback lasers utilizing an ultra-thin DVS-BCB die-to-wafer bonding process are reported. A novel DFB laser design exploiting high confinement in the active waveguide is demonstrated. A 14 mW single-facet output power coupled to a silicon waveguide, 50 dB side-mode suppression ratio and continuous wave operation up to 60°C around 1550 nm is obtained. PMID:24343010

  1. Band-gap narrowing in novel III-V semiconductors

    NASA Astrophysics Data System (ADS)

    Jain, S. C.; McGregor, J. M.; Roulston, D. J.

    1990-10-01

    A predictive model for band-gap narrowing has been applied to several III-V semiconductors. Band-gap narrowing is expressed as ?Eg =AN1/3+BN1/4+CN1/2 ; values for A, B, and C are predicted for these materials. The commonly used N1/3 relation is shown to be valid for the p-type materials considered, but not for n-type materials.

  2. FOREWORD: The physics of III-V nitrides The physics of III-V nitrides

    NASA Astrophysics Data System (ADS)

    Ridley, B. K.

    2009-04-01

    The evolution of semiconductor physics is driven by the increasing sophistication of the art of crystal growing and fabrication techniques. From Ge at the birth of the transistor, possibly the purest material ever grown, through Si, the work-horse of the crystal revolution, to the III-Vs, whose optical properties opened up a second front, namely, optoelectronics. Crystal growth with monolayer control gave us quantum wells, superlattices, quantum wires and quantum dots, along with the quantum Hall effect and quantized resistance. The potential for high-power devices triggered interest in the III-V nitrides with their large bandgaps. The nitrides mostly crystallize in the hexagonal form, and this has introduced the phenomenon of spontaneous polarization into mainstream semiconductor physics. Its effect manifests itself in huge electric fields in heterostructures like AlGaN/GaN which, in turn, causes the induction of substantial electron populations in the channel of a HFET without the need for doping. High-power microwave transistors have been successfully fabricated, even though there are features associated with spontaneous polarization that still needs clarifying. Another strange effect is the large electron population on the surface of InN. The lack of a suitable substrate for growing GaN has meant that the dislocation density is higher than we would wish, but that situation is expected to steadily improve. Given the current interest in the physics of nitrides, it is natural to come across a special issue devoted to this topic. The difficulty presented by the surface layer in InN in the attempt to measure transport properties is discussed in the paper by King et al. A property that can affect transport is the lifetime of optical phonons and its dependence on electron density. Measurements of phonon lifetime in InN are reported by Tsen and Ferry, and in GaN channels, via the measure of hot-electron fluctuations, by Matulionis. The dependence on electron density is thought to be associated with the coupling of plasma and phonon modes, and this is discussed by Dyson. The intrinsic cause of phonon decay is the anharmonic interaction involving three phonons, and this process is described for zinc blende BN and hexagonal AlN, GaN and InN by Srivastava. The principal electron scattering mechanism at room temperature is associated with the interaction with polar optical modes. At high fields, transfer to the upper conduction-band valleys can take place and this involves the deformation-potential interaction. Deformation potentials have been derived by Yamakawa et al for GaN, and they have been incorporated into a cellular Monte Carlo simulation to describe high-field transport. In high-power devices, thermal as well as electronic transport is important. The thermal conductivity of the substrate of devices is a vital factor, and the possible use of AlN ceramics is discussed by AlShaikhi and Srivastarva. A striking device based on a zinc blende superlattice is the quantum cascade laser. Exploiting intersubband transitions in the AlN/GaN superlattice for the high-speed detection of infrared light is described by Hofstetter et al, clearly a first step towards a nitride based quantum cascade laser. In bulk material the displacement of As by N that transforms GaAs to GaN produces a huge change in properties. Adding a small amount of N to GaAs might be expected to produce a gradual more-or-less linear shift towards the properties of GaN, but this turns out to be far from the case. The strange properties of dilute nitrides have intrigued many workers in recent years. Its curious bandstructure suggested that hot-electron transport could exhibit a negative differential resistance, and a report on this topic can be found in the article by Patane et al A comprehensive study of transport of electrons and holes in dilute nitride/GaAs quantum wells is reported by Sun et al. An unusual new device—a spin filter—is presaged by the work of Zhao et al on spin-dependent recombination, controllable by adjusting the N content. Answers to a numbe

  3. Electronic bands and excited states of III-V semiconductor polytypes with screened-exchange density functional calculations

    SciTech Connect

    Akiyama, Toru; Nakamura, Kohji; Ito, Tomonori [Department of Physics Engineering, Mie University, 1577 Kurima-Machiya, Tsu 514-8507 (Japan); Freeman, Arthur J. [Department of Physics and Astronomy, Northwestern University, Evanston, Illinois 60208 (United States)

    2014-03-31

    The electronic band structures and excited states of III-V semiconductors such as GaP, AlP, AlAs, and AlSb for various polytypes are determined employing the screened-exchange density functional calculations implemented in the full-potential linearized augmented plane-wave methods. We demonstrate that GaP and AlSb in the wurtzite (WZ) structure have direct gap while III-V semiconductors in the zinc blende, 4H, and 6H structures considered in this study exhibit an indirect gap. Furthermore, we find that inclusion of Al atoms less than 17% and 83% in the hexagonal Al{sub x}Ga{sub 1?x}P and Al{sub x}Ga{sub 1?x}As alloys, respectively, leads to a direct transition with a gap energy of ?2.3 eV. The feasibility of III-V semiconductors with a direct gap in WZ structure offers a possible crystal structure engineering to tune the optical properties of semiconductor materials.

  4. Recent Soviet microelectronics research on III-V compounds semiconductors

    NASA Astrophysics Data System (ADS)

    Sello, H.; Kirkpatrick, C. G.

    1988-08-01

    The activity in the Soviet Union on III-V compound semiconductor devices during the past five years is examined in the areas of materials, processes, radiation effects, and devices by a search of the translated technical journals. The majority of the work in III-V materials is concerned with gallium arsenide (GaAs), and the materials are certainly of the quality needed to make integrated circuits (ICs). However, the focus of Soviet growth and characterization studies appears to be basic materials properties, rather than development of capabilities and understanding for making integrated circuits. In processing, the Soviets appear to have very little effort on metaloorganic chemical vapor deposition on III-V compounds, while this is the process of choice in the West. There is, however, a substantial effort on X-ray lithography for silicon that could be extended to GaAs. High-quality work is also reported for ion beam, electron beam, optical projection, and laser processing silicon. Research on metallization (interconnection) and dielectric deposition processes for GaAs is absent. Soviet research on ion implantation and laser annealing in compound semiconductors is largely directed toward basic phenomena, such as defect information, rather than on electrical characteristics considered important for integrated circuit fabrication. Outstanding basic work is also being conducted on the radiation effects of electrons, protons, alpha, gamma, and X-rays on materials. These Soviet studies of radiation effects do not appear to be directed toward the fabrication of actual devices. Soviet GaAs device work appears to be generally of a theoretical nature, relying in part on device data obtained from Western articles. The most advanced involves the junction field effect transistor and heterojunction bipolar transistor, with little work reported on the fabrication of GaAs integrated circuits.

  5. Hybrid III-V/silicon SOA for photonic integrated circuits

    NASA Astrophysics Data System (ADS)

    Kaspar, P.; Brenot, R.; Le Liepvre, A.; Accard, A.; Make, D.; Levaufre, G.; Girard, N.; Lelarge, F.; Duan, G.-H.; Olivier, S.; Jany, Christophe; Kopp, C.; Menezo, S.

    2014-11-01

    Silicon photonics has reached a considerable level of maturity, and the complexity of photonic integrated circuits (PIC) is steadily increasing. As the number of components in a PIC grows, loss management becomes more and more important. Integrated semiconductor optical amplifiers (SOA) will be crucial components in future photonic systems for loss compensation. In addition, there are specific applications, where SOAs can play a key role beyond mere loss compensation, such as modulated reflective SOAs in carrier distributed passive optical networks or optical gates in packet switching. It is, therefore, highly desirable to find a generic integration platform that includes the possibility of integrating SOAs on silicon. Various methods are currently being developed to integrate light emitters on silicon-on-insulator (SOI) waveguide circuits. Many of them use III-V materials for the hybrid integration on SOI. Various types of lasers have been demonstrated by several groups around the globe. In some of the integration approaches, SOAs can be implemented using essentially the same technology as for lasers. In this paper we will focus on SOA devices based on a hybrid integration approach where III-V material is bonded on SOI and a vertical optical mode transfer is used to couple light between SOI waveguides and guides formed in bonded III-V semiconductor layers. In contrast to evanescent coupling schemes, this mode transfer allows for a higher confinement factor in the gain material and thus for efficient light amplification over short propagation distances. We will outline the fabrication process of our hybrid components and present some of the most interesting results from a fabricated and packaged hybrid SOA.

  6. III-V Growth on Silicon Toward a Multijunction Cell

    SciTech Connect

    Geisz, J.; Olson, J.; McMahon, W.; Friedman, D.; Kibbler, A.; Kramer, C.; Young, M.; Duda, A.; Ward, S.; Ptak, A.; Kurtz, S.; Wanlass, M.; Ahrenkiel, P.; Jiang, C. S.; Moutinho, H.; Norman, A.; Jones, K.; Romero, M.; Reedy, B.

    2005-11-01

    A III-V on Si multijunction solar cell promises high efficiency at relatively low cost. The challenges to epitaxial growth of high-quality III-Vs on Si, though, are extensive. Lattice-matched (LM) dilute-nitride GaNPAs solar cells have been grown on Si, but their performance is limited by defects related to the nitrogen. Advances in the growth of lattice-mismatched (LMM) materials make more traditional III-Vs, such as GaInP and GaAsP, very attractive for use in multijunction solar cells on silicon.

  7. Carbon doping of III-V compound semiconductors

    SciTech Connect

    Moll, A.J.

    1994-09-01

    Focus of the study is C acceptor doping of GaAs, since C diffusion coefficient is at least one order of magnitude lower than that of other common p-type dopants in GaAs. C ion implantation results in a concentration of free holes in the valence band < 10% of that of the implanted C atoms for doses > 10{sup 14}/cm{sup 2}. Rutherford backscattering, electrical measurements, Raman spectroscopy, and Fourier transform infrared spectroscopy were amonth the techniques used. Ga co-implantation increased the C activation in two steps: first, the additional radiation damage creates vacant As sites that the implanted C can occupy, and second, it maintains the stoichiometry of the implanted layer, reducing the number of compensating native defects. In InP, the behavior of C was different from that in GaAs. C acts as n-type dopant in the In site; however, its incorporation by implantation was difficult to control; experiments using P co-implants were inconsistent. The lattice position of inactive C in GaAs in implanted and epitaxial layers is discussed; evidence for formation of C precipitates in GaAs and InP was found. Correlation of the results with literature on C doping in III-V semiconductors led to a phenomenological description of C in III-V compounds (particularly GaAs): The behavior of C is controlled by the chemical nature of C and the instrinsic Fermi level stabilization energy of the material.

  8. Status of ion implantation doping and isolation of III-V nitrides

    SciTech Connect

    Zolper, J.C. [Sandia National Labs., Albuquerque, NM (United States); Pearton, S.J.; Abernathy, C.R. [Univ. of Florida, Gainesville, FL (United States)] [and others

    1995-09-01

    Ion implantation doping and isolation has played a critical role in the realization of high performance photonic and electronic devices in all mature semiconductor material systems. This is also expected to be the case for the binary III-V nitrides (InN, GaN, and AlN) and their alloys as the epitaxial material quality improves and more advanced device structures are fabricated. With this in mind, we review the status of implant doping and isolation of GaN and the ternary alloys AlGaN, InGaN, and InAlN. In particular, we reported on the successful n- and p-type doping of GaN by ion implantation of Mg+P and Si, respectively, and subsequent high temperature rapid thermal anneals in excess of 1000{degrees}C. In the area of implant isolation, N-implantation has been shown to compensate both n- and p-type GaN, N and O-implantation effectively compensates InAlN, and InGaN shows limited compensation with either N or F implantation.

  9. Methods for fabricating thin film III-V compound solar cell

    DOEpatents

    Pan, Noren; Hillier, Glen; Vu, Duy Phach; Tatavarti, Rao; Youtsey, Christopher; McCallum, David; Martin, Genevieve

    2011-08-09

    The present invention utilizes epitaxial lift-off in which a sacrificial layer is included in the epitaxial growth between the substrate and a thin film III-V compound solar cell. To provide support for the thin film III-V compound solar cell in absence of the substrate, a backing layer is applied to a surface of the thin film III-V compound solar cell before it is separated from the substrate. To separate the thin film III-V compound solar cell from the substrate, the sacrificial layer is removed as part of the epitaxial lift-off. Once the substrate is separated from the thin film III-V compound solar cell, the substrate may then be reused in the formation of another thin film III-V compound solar cell.

  10. High rate ECR etching of III-V nitride materials

    SciTech Connect

    Shul, R.J.; Howard, A.J.; Kilcoyne, S.P. [Sandia National Labs., Albuquerque, NM (United States); Pearton, S.J.; Abernathy, C.R.; Vartuli, C.B. [Univ. of Florida, Gainesville, FL (United States); Barnes, P.A.; Bozack, M.J. [Auburn Univ., AL (United States)

    1994-12-31

    The III-V nitride compound semiconductors are attracting considerable attention for blue and ultraviolet light emitting diodes (LEDs) and lasers as well as high temperature electronics due to their wide band gaps and high dielectric constants. The recent progress observed in the growth of these materials has not been matched by progress in processing techniques to fabricate more highly sophisticated devices. Patterning these materials has been especially difficult due to the relatively inert chemical nature of the group-III nitrides. The authors review dry etch techniques which have been used to pattern these materials including electron cyclotron resonance (ECR), reactive ion etch (RIE), and chemically assisted ion beam etching (CAIBE). ECR etch rates greater than 3,800 {angstrom}/min for InN, 3,500 {angstrom}/min for GaN, and 1,170 A/min for AlN are reported. Etch anisotropy, surface morphology, and near-surface stoichiometry will be discussed.

  11. Carbon Doping of Iii-V Compound Semiconductors

    NASA Astrophysics Data System (ADS)

    Moll, Amy Jo.

    This thesis describes the behavior of carbon in III-V compound semiconductors. The focus of this study is C acceptor doping of GaAs which is of particular interest since the diffusion coefficient of C is at least one order of magnitude lower than the diffusion coefficients of the other common p-type dopants in GaAs. Doping with C by ion implantation results in a concentration of free holes in the valence band that is less than 10% of the concentration of C atoms implanted into the substrate when the implantation dose is greater than 10^{14} cm^{-2} Ga co-implantation resulted in a dramatic increase in the activation of C. To study both the chemical and structural effects of co-implantation, a series of different elements was co-implanted. A second series of samples was studied in which the Ga dose was varied. The structural properties of the implanted layers were measured with channeling Rutherford backscattering spectrometry. The electrical characteristics were determined by Hall effect and electrochemical capacitance-voltage measurements. The amount of substitutional C_ {rm As} was ascertained using local vibrational mode spectroscopy. The increase in activation of C due to co-implantation of Ga was shown to be a two -step process: first, the additional radiation damage creates vacant As sites that the implanted C can occupy, and second, it maintains the stoichiometry of the implanted layer thereby reducing the number of compensating native defects. In InP, the behavior of C was found to be extremely different from its behavior in GaAs. C acts as an n-type dopant occupying the In site, however its incorporation by implantation was difficult to control. Results from experiments using P co-implants were inconsistent. This thesis further addresses the lattice position of the inactive C in GaAs both in implanted and in epitaxial layers. A number of research groups have grown epitaxial layers with ultra-high concentrations ({> }10^{21} cm^ {-3}) of free holes using C doping. However, at high concentrations, the doping in these layers is not thermally stable. Annealing results in a rapid decrease in the free carrier concentration. Various models have been proposed to explain the loss of free carriers. Most assume a change in the lattice location of the carbon rendering it electrically inactive. Based on Raman spectroscopy and isotope substitution, the first direct evidence for the formation of C precipitates in GaAs was obtained. C precipitation was also shown to readily occur in C implanted InP. In GaAs, the presence of compensating native point defects was also found to affect the carrier concentration. By correlating the results presented here with those in the literature for C doping in III-V semiconductors, a phenomenological description of the behavior of C in III-V compound semiconductors, in general, and in GaAs in particular, is presented. The behavior of C in III -V semiconductors is controlled by the chemical nature of C and by the intrinsic Fermi level stabilization energy of the particular semiconductor.

  12. Characteristics of III-V Semiconductor Devices at High Temperature

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.; Young, Paul G.; Taub, Susan R.; Alterovitz, Samuel A.

    1994-01-01

    This paper presents the development of III-V based pseudomorphic high electron mobility transistors (PHEMT's) designed to operate over the temperature range 77 to 473 K (-196 to 200 C). These devices have a pseudomorphic undoped InGaAs channel that is sandwiched between an AlGaAs spacer and a buffer layer; gate widths of 200, 400, 1600, and 3200 micrometers; and a gate length of 2 micrometers. Measurements were performed at both room temperature and 473 K (200 C) and show that the drain current decreases by 30 percent and the gate current increases to about 9 microns A (at a reverse bias of -1.5 V) at the higher temperature. These devices have a maximum DC power dissipation of about 4.5 W and a breakdown voltage of about 16 V.

  13. III-V Nanowire Array Growth by Selective Area Epitaxy

    SciTech Connect

    Chu, Hyung-Joon; Stewart, Lawrence [Ming Hsieh Department of Electrical Engineering, University of Southern California (United States); Yeh, Tingwei [Mork Family Department of Chemical Engineering and Material Science, University of Southern California 3651 Watt Way, VHE-314, Los Angeles, CA90089 (United States); Dapkus, P. Daniel [Ming Hsieh Department of Electrical Engineering, University of Southern California (United States); Mork Family Department of Chemical Engineering and Material Science, University of Southern California 3651 Watt Way, VHE-314, Los Angeles, CA90089 (United States)

    2011-12-23

    III-V semiconductor nanowires are unique material phase due to their high aspect ratio, large surface area, and strong quantum confinement. This affords the opportunity to control charge transport and optical properties for electrical and photonic applications. Nanoscale selective area metalorganic chemical vapor deposition growth (NS-SAG) is a promising technique to maximize control of nanowire diameter and position, which are essential for device application. In this work, InP and GaAs nanowire arrays are grown by NS-SAG. We observe enhanced sidewall growth and array uniformity disorder in high growth rate condition. Disorder in surface morphology and array uniformity of InP nanowire array is explained by enhanced growth on the sidewall and stacking faults. We also find that AsH{sub 3} decomposition on the sidewall affects the growth behavior of GaAs nanowire arrays.

  14. III-V nanowires grown in a simple, homebuilt system.

    NASA Astrophysics Data System (ADS)

    Schroer, M. D.; Petta, J. R.

    2009-03-01

    Semiconductor nanowires are promising experimental platforms for studying quantum transport due to their built-in one-dimensional confinement of charge carriers. To enable the study of III-V semiconducting nanowires, we built a simple tube furnace based MOCVD reactor. Growth of InP and InAs nanowires using trimethylindium, di-tert-butylphosphine and triethylarsenic has been studied as a function of temperature, pressure, precursor concentration and growth substrate. At optimal growth conditions, wires of 20-100 nm in diameter and up to 10 ?m in length are achievable on InAs substrates. Characterization was performed using SEM, EDS and TEM; both wurtzite and zincblende structures have been observed. We will also present transport measurements of nanowires grown using this system. 8pt

  15. III–V Nanowires on Si Substrate: Selective-Area Growth and Device Applications

    Microsoft Academic Search

    Katsuhiro Tomioka; Tomotaka Tanaka; Shinjiro Hara; Kenji Hiruma; Takashi Fukui

    2011-01-01

    III-V nanowires (NWs) on Si are promising building blocks for future nanoscale electrical and optical devices on Si plat- forms. We present position-controlled and orientation-controlled growth of InAs, GaAs, and InGaAs NWs on Si by selective-area growth, and discuss how to control growth directions of III-V NW on Si. Basic studies on III-V\\/Si interface showing heteroepitaxial growth with misfit dislocations

  16. III-V Compound Detectors for CO2 DIAL Measurements

    NASA Technical Reports Server (NTRS)

    Refaat, Tamer F.; Abedin, M. Nurul; Sulima, Oleg V.; Ismail, Syed; Singh, Upendra N.

    2005-01-01

    Profiling of atmospheric carbon dioxide (CO2) is important for understanding the natural carbon cycle on Earth and its influence on global warming and climate change. Differential absorption lidar is a powerful remote sensing technique used for profiling and monitoring atmospheric constituents. Recently there has been an interest to apply this technique, at the 2 m wavelength, for investigating atmospheric CO2. This drives the need for high quality detectors at this wavelength. Although 2 m detectors are commercially available, the quest for a better detector is still on. The detector performance, regarding quantum efficiency, gain and associated noise, affects the DIAL signal-to-noise ratio and background signal, thereby influencing the instrument sensitivity and dynamic range. Detectors based on the III-V based compound materials shows a strong potential for such application. In this paper the detector requirements for a long range CO2 DIAL profiles will be discussed. These requirements were compared to newly developed III-V compound infrared detectors. The performance of ternary InGaSb pn junction devices will be presented using different substrates, as well as quaternary InGaAsSb npn structure. The performance study was based on experimental characterization of the devices dark current, spectral response, gain and noise. The final results are compared to the current state-of-the-art InGaAs technology. Npn phototransistor structure showed the best performance, regarding the internal gain and therefore the device signal-to-noise ratio. 2-micrometers detectivity as high as 3.9 x 10(exp 11) cmHz(sup 1/2)/W was obtained at a temperature of -20 C and 4 V bias voltage. This corresponds to a responsivity of 2650 A/W with about 60% quantum efficiency.

  17. III-V compound detectors for CO2 DIAL measurements

    NASA Astrophysics Data System (ADS)

    Refaat, Tamer F.; Abedin, M. Nurul; Sulima, Oleg V.; Ismail, Syed; Singh, Upendra N.

    2005-08-01

    Profiling of atmospheric carbon dioxide (CO2) is important for understanding the natural carbon cycle on Earth and its influence on global warming and climate change. Differential absorption lidar is a powerful remote sensing technique used for profiling and monitoring atmospheric constituents. Recently there has been an interest to apply this technique, at the 2 ?m wavelength, for investigating atmospheric CO2. This drives the need for high quality detectors at this wavelength. Although 2 ?m detectors are commercially available, the quest for a better detector is still on. The detector performance, regarding quantum efficiency, gain and associated noise, affects the DIAL signal-to-noise ratio and background signal, thereby influencing the instrument sensitivity and dynamic range. Detectors based on the III-V based compound materials shows a strong potential for such application. In this paper the detector requirements for a long range CO2 DIAL profiles will be discussed. These requirements were compared to newly developed III-V compound infrared detectors. The performance of ternary InGaSb pn junction devices will be presented using different substrates, as well as quaternary InGaAsSb npn structure. The performance study was based on experimental characterization of the devices dark current, spectral response, gain and noise. The final results are compared to the current state-of-the-art InGaAs technology. Npn phototransistor structure showed the best performance, regarding the internal gain and therefore the device signal-to-noise ratio. 2-?m detectivity as high as 3.9x1011 cmHz1/2/W was obtained at a temperature of -20°C and 4 V bias voltage. This corresponds to a responsivity of 2650 A/W with about 60% quantum efficiency.

  18. Nanostencil lithography for fabrication of III-V nanostructures

    NASA Astrophysics Data System (ADS)

    Vora, Kaushal; Karouta, Fouad; Jagadish, Chennupati

    2013-09-01

    Nanostencil Lithography (NStL), while comparatively still in infant stages, is proving to be a viable option for low-cost and high resolution fabrication. An ideal stencil for NStL consists of a low-stressed silicon nitride membrane supported on a silicon chip with required patterned features in nanometer range that become apertures. The stencil is used as a shadow mask and placed in close contact on top of a substrate/wafer. This pair is then ready for either depositing metal through the apertures in the stencil using variety of deposition techniques or etching the substrate using dry etching techniques with stencil acting as a mask. The nanostencils were fabricated using focused ion beam writing on a silicon nitride window/membrane. We made well-ordered array of 700 nm diameter and 15 nm thick gold and chromium nanodots on III-V substrate. Metal layers were deposited using e-beam evaporator. The formed gold nanodots can be used for vapor-liquid-solid nanowire growth (bottom-up), while the chromium nanodots were used as a mask for reactive ion etching of GaAs structures, for instance, fabricating nanowires (top-down approach). We used the nanostencil directly as a mask for dry etching of InP substrate for making nanoholes array. Making these types of nanoholes in silicon oxide layer deposited on the top of III-V substrate opens the possibility to use in selective area growth of nanowires. Additionally, we fabricated optical nanoantenna structures to demonstrate other possible usage of NStL.

  19. Heterogeneously integrated III-V laser on thin SOI with compact optical vertical interconnect access.

    PubMed

    Pu, Jing; Lim, Kim Peng; Ng, Doris Keh Ting; Krishnamurthy, Vivek; Lee, Chee Wei; Tang, Kun; Seng Kay, Anthony Yew; Loh, Ter Hoe; Wang, Qian

    2015-04-01

    A new heterogeneously integrated III-V/Si laser structure is reported in this report that consists of a III-V ridge waveguide gain section on silicon, III-V/Si optical vertical interconnect accesses (VIAs), and silicon-on-insulator (SOI) nanophotonic waveguide sections. The III-V semiconductor layers are introduced on top of the 300-nm-thick SOI layer through low temperature, plasma-assisted direct wafer-bonding and etched to form a III-V ridge waveguide on silicon as the gain section. The optical VIA is formed by tapering the III-V and the beneath SOI in the same direction with a length of 50 ?m for efficient coupling of light down to the 600 nm wide silicon nanophotonic waveguide or vice versa. Fabrication details and specification characterizations of this heterogeneous III-V/Si Fabry-Perot (FP) laser are given. The fabricated FP laser shows a continuous-wave lasing with a threshold current of 65 mA at room temperature, and the slope efficiency from single facet is 144??mW/A. The maximal single facet emitting power is about 4.5 mW at a current of 100 mA, and the side-mode suppression ratio is ?30??dB. This new heterogeneously integrated III-V/Si laser structure demonstrated enables more complex laser configuration with a sub-system on-chip for various applications. PMID:25831337

  20. Antisites in III-V semiconductors: Density functional theory calculations

    SciTech Connect

    Chroneos, A., E-mail: alex.chroneos@open.ac.uk [Engineering and Innovation, The Open University, Milton Keynes MK7 6AA (United Kingdom); Tahini, H. A. [Department of Materials, Imperial College London, London SW7 2AZ (United Kingdom); PSE Division, KAUST, Thuwal 23955-6900 (Saudi Arabia); Schwingenschlögl, U., E-mail: udo.schwingenschlogl@kaust.edu.sa [PSE Division, KAUST, Thuwal 23955-6900 (Saudi Arabia); Grimes, R. W., E-mail: r.grimes@imperial.ac.uk [Department of Materials, Imperial College London, London SW7 2AZ (United Kingdom)

    2014-07-14

    Density functional based simulation, corrected for finite size effects, is used to investigate systematically the formation of antisite defects in III-V semiconductors (III?=?Al, Ga, and In and V?=?P, As, and Sb). Different charge states are modelled as a function of the Fermi level and under different growth conditions. The formation energies of group III antisites (III{sub V}{sup q}) decrease with increasing covalent radius of the group V atom though not group III radius, whereas group V antisites (V{sub III}{sup q}) show a consistent decrease in formation energies with increase in group III and group V covalent radii. In general, III{sub V}{sup q} defects dominate under III-rich conditions and V{sub III}{sup q} under V-rich conditions. Comparison with equivalent vacancy formation energy simulations shows that while antisite concentrations are always dominant under stoichiometric conditions, modest variation in growth or doping conditions can lead to a significantly higher concentration of vacancies.

  1. Fabrication and characterization of nanostructured III-V thermoelectric materials

    NASA Astrophysics Data System (ADS)

    Novotny, Clint; Sharifi, Fred

    2013-09-01

    Approximately two thirds of all fossil fuel used is lost as heat. Thermoelectric materials, which convert heat into electrical energy, may provide a solution to partially recover some of this lost energy. To date, most commercial thermoelectric materials are too inefficient to be a viable option for most waste heat applications. This research proposes to investigate the fabrication and characterization of nanostructured III-V semiconductor thermoelectric materials with the goal of increasing the performance of existing technology. In order to improve thermoelectric material efficiency, either the lattice thermal conductivity must be lowered or the thermoelectric power factor must be increased. This research will focus on the latter by modifying the density of states of the semiconductor material and studying the effect of quantum confinement on the material's thermoelectric properties. Using focused ion beam milling, nanostructured cantilevers are fabricated from single crystal wafers. An all around gate dielectric and electrode are deposited to create a depletion region along the outer core of the cantilever, thus creating an inner conductive core. The Seebeck coefficient can then be measured as a function of confinement by varying the gate voltage. This technique can be applied to various material systems to investigate the effects of confinement on their thermoelectric properties.

  2. Trapping of free electrons in III-V superlattices

    NASA Astrophysics Data System (ADS)

    Laikhtman, B.

    2012-11-01

    Non-radiative trapping of electrons to deep traps in III-V superlattices is studied. An advancement in the technique of the calculation made it possible to avoid some approximation used in earlier calculation and to obtain a simpler, more precise, and clear results that extend applicability of the theory to narrow band gap materials and superlattices. It is shown that the non-radiative trapping rate in regular Huang-Rhys model has an activation temperature dependence with the activation energy equal to a portion of the phonon energy. The trapping to deep states can be accompanied with emission of phonons of different modes with different frequencies that can significantly reduce the activation energy. I argue that the role of superlattice phonons is relatively small except very low temperature where processes with their participation can have zero activation energy. A specific attention is paid in the paper to a qualitative explanation of every step of the calculation and details of the result. The theoretical results are used for understanding of recently measured temperature dependence of the minority carrier lifetime in InAs/GaSb superlattices.

  3. Extraordinary optoconductance in III-V metal semiconductor hybrid structures

    NASA Astrophysics Data System (ADS)

    Wieland, Kristopher Allen

    Extraordinary Optoconductance (EOC) is a measurement of the geometric enhancement to the opto- (or photo-) conductivity of a device. This dissertation elucidates the proof of principle of EOC using III-V semiconductor hybrids. For EOC two devices, identical save the addition of a metal shunt, are compared. The device without metal, referred to as the bare device or the unshunted device, serves as a control to which the device with the metal shunt (the hybrid) is compared. Photons perturb the transport properties in the semiconductor by introducing electron-hole pairs. This is unique to EOC, as other extraordinary or "EXX" devices perturb the metal-semiconductor interface whereas here the photons perturbed the bulk properties of the semiconductor. By comparing the bare semiconductor with the metal-semiconductor hybrid, we directly see the effect of the metal shunt. An EOC of 500% was discovered first at low temperature (30K) with GaAs and In metal. A theory of EOC in GaAs based on the mobility of the minority carriers was presented which reproduced the temperature and positional dependence observed. This theory also predicted that EOC depends on the differential mobility of the carriers. The focus of research shifted to InSb, a semiconductor with a higher differential mobility than GaAs. Here an EOC of 50% at room temperature with InSb-In was realized. Much of the future research is directed to take the EOC sensors to the nanoscale regime. EOC is an increase in signal voltage due to topological and geometrical effects. The EOC phenomena is due to the several orders of magnitude difference in resistivity of the components of the hybrid structure. With optical exposure, the voltage generated by the light is enhanced in the metal semiconductor hybrid structures as compared to the homogenous semiconductor. It is therefore beneficial to explore the physics of EOC, once proof of principle has been established. This dissertation further explores key components to enhance the EOC effect under uniform illumination. Also crucial to understanding EOC is to develop a theoretical model that will elucidate the underlying physics and aid in further optimization. This research uses semiconductor samples of macroscopic dimensions in a four probe setup to obtain voltages of the control (no metal shunt) and the hybrid (identical sample with the addition of a metal shunt). Previous research has identified several experimental parameters of interest, such as: (1) geometry of the device including symmetric and asymmetric lead placement; (2) composition of components, particularly the doping levels of the III-V semiconductors; (3) current bias; and (4) temperature dependence. Unique to EOC is the option of studying these additional parameters: (1) optical power density; (2) wavelength; and (3) positional dependence. To be technologically relevant as an optical sensor, it is advantageous to scale the EOC devices to the nano-regime. At this scale, however, light is uniform over the sensor and, with symmetric leads, a net zero signal is observed. To break the symmetry, EOC is then explored under uniform illumination over the whole device with asymmetric leads and under uniform illumination over half of the device with asymmetric leads using an analytic model.

  4. Dopant Profiling of III-V Nanostructures for Electronic Applications

    NASA Astrophysics Data System (ADS)

    Ford, Alexandra Caroline

    2011-12-01

    High electron mobility III-V compound semiconductors such as indium arsenide (InAs) are promising candidates for future active channel materials of electron devices to further enhance device performance. In particular, compound semiconductors heterogeneously integrated on Si substrates have been studied, combining the high mobility of III-V semiconductors and the well-established, low cost processing of Si technology. However, one of the primary challenges of III-V device fabrication is controllable, post-growth dopant profiling. Here InAs nanowires and ultrathin layers (nanoribbons) on SiO2/Si are investigated as the channel material for high performance field-effect transistors (FETs) and post-growth, patterned doping techniques are demonstrated. First, the synthesis of crystalline InAs nanowires with high yield and tunable diameters by using Ni nanoparticles as the catalyst material on SiO 2/Si substrates is demonstrated. The back-gated InAs nanowire FETs have electron field-effect mobilities of ˜4,000 cm2/Vs and ION/IOFF ˜104. The uniformity of the InAs nanowires is demonstrated by large-scale assembly of parallel arrays of nanowires (˜400 nanowires) on SiO2/Si substrates by a contact printing process. This enables high performance, "printable" transistors with 5--10 mA ON currents. Second, an epitaxial transfer method for the integration of ultrathin layers of single-crystalline InAs on SiO2/Si substrates is demonstrated. As a parallel to silicon-on-insulator (SOI) technology, the abbreviation "XOI" is used to represent this compound semiconductor-on-insulator platform. A high quality InAs/dielectric interface is obtained by the use of a thermally grown interfacial InAsOx layer (˜1 nm thick). Top-gated FETs exhibit a peak transconductance of ˜1.6 mS/microm at V DS=0.5V with ION/I OFF >104 and subthreshold swings of 107--150 mV/decade for a channel length of ˜0.5 microm. Next, temperature-dependent I-V and C-V studies of single InAs nanowire FETs are utilized to investigate the intrinsic electron transport properties as a function of nanowire radius. From C-V characterization, the densities of thermally-activated fixed charges and trap states on the surface of as-grown (unpassivated) nanowires are investigated to allow the accurate measurement of the gate oxide capacitance. This allows the direct assessment of the electron field-effect mobility. The field-effect mobility is found to monotonically decrease as the radius is reduced to sub-10 nm, with the low temperature transport data highlighting the impact of surface roughness scattering on the mobility degradation for smaller radius nanowires. Next, the electrical properties of the InAs XOI transistors are studied, showing the critical role of quantum confinement in the transport properties of ultrathin XOI layers. Following the investigation of the electrical properties of undoped InAs nanostructures, post-growth, surface doping processes for InAs nanostructures are addressed. Nanoscale, sulfur doping of InAs planar substrates with high dopant areal dose and uniformity by using a self-limiting monolayer doping approach is demonstrated as a means to create ultrashallow junctions. From transmission electron microscopy (TEM) and secondary ion mass spectrometry (SIMS), a dopant profile abruptness of ˜3.5 nm/decade is observed without significant lattice damage. The n+/ p+ junctions fabricated using this doping method exhibit negative differential resistance (NDR) behavior, demonstrating the utility of this approach for device fabrication with high electrically active sulfur concentrations of ˜8x1018 cm-3. Next, a gas phase doping approach for InAs nanowires and ultrathin XOI layers using zinc is demonstrated as an effective means for enabling post-growth dopant profiling of nanostructures. The versatility of the approach is demonstrated by the fabrication of gated diodes and p-MOSFETs. Electrically active zinc concentrations of ˜1x1019 cm-3 are achieved which is necessary for compensating the high electron concentration at the surface o

  5. Development of X-ray lithography and nanofabrication techniques for III-V optical devices

    E-print Network

    Lim, Michael H. (Michael Hong)

    2002-01-01

    This dissertation covers the development of fabrication techniques for Bragg-grating-based integrated optical devices in III-V materials. Work on this rich family of devices has largely been limited to numerical analysis ...

  6. Nano-scale metal contacts for future III-V CMOS

    E-print Network

    Guo, Alex

    2012-01-01

    As modem transistors continue to scale down in size, conventional Si CMOS is reaching its physical limits and alternative technologies are needed to extend Moore's law. Among different candidates, MOSFETs with a III-V ...

  7. Production of Semiconducting III–V Single Crystals: Current Status and Outlook

    Microsoft Academic Search

    A. V. Markov

    2003-01-01

    The current status of and outlook for the worldwide production of semiconducting III–V single crystals, primarily gallium arsenide, are examined. Particular emphasis is placed on improving production technologies and reaching head positions in the vertical crystallization technology.

  8. Precise measurement of charged defects in III-V compounds (supplement 2)

    NASA Technical Reports Server (NTRS)

    Soest, J. F.

    1973-01-01

    Experimental methods and related theory which will permit the measurement of low concentrations of vacancies and other defects in III-V compound semiconductors are discussed. Once the nature of these defects has been determined, this information can be incorporated into a transport theory for devices constructed from these materials, and experiments conducted to test the theory. The vacancies and other defects in the III-V compounds are detected by measurement of the nuclear magnetic resonance (NMR) line width. Most of the III-V compounds have at least one isotope with a nuclear quadrupole moment. In a crystal with a cubic crystal field (characteristic of most III-V compounds) there is no quadrupole splitting of the Zeeman resonance line. However, a defect removes the cubic symmetry locally and causes splitting which result in a change of the NMR width. This change can be used to detect the presence of vacancies.

  9. A ballistic transport model for HEMTs and III-V MOSFETs

    E-print Network

    Warnock, Shireen M

    2013-01-01

    As silicon MOSFETs keep scaling down in size, the continued improvement on their logic performance is threated by their fundamental physical limits. With silicon approaching these limits, MOSFETs designed with III-V ...

  10. Substrate engineering for monolithic integration of III-V semiconductors with Si CMOS technology

    E-print Network

    Dohrman, Carl Lawrence

    2008-01-01

    Ge virtual substrates, fabricated using Si1-xGex-.Ge, compositionally graded buffers, enable the epitaxial growth of device-quality GaAs on Si substrates, but monolithic integration of III-V semiconductors with Si CMOS ...

  11. Improved Precursor Chemistry for the Synthesis of III–V Quantum Dots

    E-print Network

    Harris, Daniel K.

    The synthesis of III–V quantum dots has been long known to be more challenging than the synthesis of other types of inorganic quantum dots. This is attributed to highly reactive group-V precursors. We synthesized molecules ...

  12. The coupling of thermochemistry and phase diagrams for group III-V semiconductor systems. Final report

    SciTech Connect

    Anderson, T.J.

    1998-07-21

    The project was directed at linking the thermochemical properties of III-V compound semiconductors systems with the reported phase diagrams. The solid-liquid phase equilibrium problem was formulated and three approaches to calculating the reduced standard state chemical potential were identified and values were calculated. In addition, thermochemical values for critical properties were measured using solid state electrochemical techniques. These values, along with the standard state chemical potentials and other available thermochemical and phase diagram data, were combined with a critical assessment of selected III-V systems. This work was culminated with a comprehensive assessment of all the III-V binary systems. A novel aspect of the experimental part of this project was the demonstration of the use of a liquid encapsulate to measure component activities by a solid state emf technique in liquid III-V systems that exhibit high vapor pressures at the measurement temperature.

  13. Platform for monolithic integration of III-V devices with Si CMOS technology

    E-print Network

    Pacella, Nan Yang

    2012-01-01

    Monolithic integration of III-V compound semiconductors and Si complementary metal-oxide- semiconductor (CMOS) enables the creation of advanced circuits with new functionalities. In order to merge the two technologies, ...

  14. III-V multijunction solar cells for concentrations around 1000X: the IES-UPM strategy

    Microsoft Academic Search

    B. Galiana; I. Garcia; J. R. Gonzalez; M. Baudrit; I. Rey-Stolle; C. Algora

    2007-01-01

    The IES-UPM has a large trajectory in the III-V concentration solar cells research. Nowadays, the long term aim is to achieve efficiencies around 35% at 1000 X by multijunction solar cells and to transfer the technology to industry. For this purpose three complementary lines are ongoing: the growth of III-V and solar cells structures by MOVPE, the reliability study of

  15. Optimizing bottom subcells for III-V-on-Si multijunction solar cells

    Microsoft Academic Search

    E. Garcia-Tabares; I. Garcia; D. Martin; I. Rey-Stolle

    2011-01-01

    Dual-junction solar cells formed by a GaAsP or GaInP top cell and a silicon bottom cell seem to be attractive candidates to materialize the long sought-for integration of III-V materials on silicon for photovoltaic applications. Such integration would offer a cost breakthrough for photovoltaic technology, unifying the low cost of silicon and the efficiency potential of III-V multijunction solar cells.

  16. Calculation of the electron mobility in III-V inversion layers with high-kappa dielectrics

    Microsoft Academic Search

    T. P. O'Regan; M. V. Fischetti; B. Sorée; S. Jin; W. Magnus; M. Meuris

    2010-01-01

    We calculate the electron mobility for a metal-oxide-semiconductor system with a metallic gate, high-kappa dielectric layer, and III-V substrate, including scattering with longitudinal-optical (LO) polar-phonons of the III-V substrate and with the interfacial excitations resulting from the coupling of insulator and substrate optical modes among themselves and with substrate plasmons. In treating scattering with the substrate LO-modes, multisubband dynamic screening

  17. Epitaxial growth of III-V compounds for electroluminescent light sources

    NASA Technical Reports Server (NTRS)

    Chu, T. L.; Smeltzer, R. K.

    1973-01-01

    The epitaxial growth techniques used in the fabrication of III-V compound electroluminescent devices are reviewed. Both vapor and liquid phase epitaxial techniques are discussed, including the applications of these techniques to well established materials as well as newer materials. The state of the art of light-emitting devices fabricated from members of the III-V compounds and their solid solutions is also reviewed.

  18. Recent progress in integration of III-V nanowire transistors on Si substrate by selective-area growth

    NASA Astrophysics Data System (ADS)

    Tomioka, Katsuhiro; Fukui, Takashi

    2014-10-01

    We report on the recent progress in electronic applications using III-V nanowires (NWs) on Si substrates using the selective-area growth method. This method could align vertical III-V NWs on Si under specific growth conditions. Detailed studies of the III-V NW/Si heterointerface showed the possibility of achieving coherent growth regardless of misfit dislocations in the III-V/Si heterojunction. The vertical III-V NWs grown using selective-area growth were utilized for high performance vertical field-effect transistors (FETs). Furthermore, III-V NW/Si heterointerfaces with fewer misfit dislocations provided us with a unique band discontinuity with a new functionality that can be used for the application of tunnel diodes and tunnel FETs. These demonstrations could open the door to a new approach for creating low power switches using III-V NWs as building-blocks of future nanometre-scaled electronic circuits on Si platforms.

  19. Structural and optical properties of II-VI and III-V compound semiconductors

    NASA Astrophysics Data System (ADS)

    Huang, Jingyi

    This dissertation is on the study of structural and optical properties of some III-V and II-VI compound semiconductors. The first part of this dissertation is a study of the deformation mechanisms associated with nanoindentation and nanoscratching of InP, GaN, and ZnO crystals. The second part is an investigation of some fundamental issues regarding compositional fluctuations and microstructure in GaInNAs and InAlN alloys. In the first part, the microstructure of (001) InP scratched in an atomic force microscope with a small diamond tip has been studied as a function of applied normal force and crystalline direction in order to understand at the nanometer scale the deformation mechanisms in the zinc-blende structure. TEM images show deeper dislocation propagation for scratches along <110> compared to <100>. High strain fields were observed in <100> scratches, indicating hardening due to locking of dislocations gliding on different slip planes. Reverse plastic flow have been observed in <110> scratches in the form of pop-up events that result from recovery of stored elastic strain. In a separate study, nanoindentation-induced plastic deformation has been studied in c-, a-, and m-plane ZnO single crystals and c-plane GaN respectively, to study the deformation mechanism in wurtzite hexagonal structures. TEM results reveal that the prime deformation mechanism is slip on basal planes and in some cases, on pyramidal planes, and strain built up along particular directions. No evidence of phase transformation or cracking was observed in both materials. CL imaging reveals quenching of near band-edge emission by dislocations. In the second part, compositional inhomogeneity in quaternary GaInNAs and ternary InAlN alloys has been studied using TEM. It is shown that exposure to antimony during growth of GaInNAs results in uniform chemical composition in the epilayer, as antimony suppresses the surface mobility of adatoms that otherwise leads to two-dimensional growth and elemental segregation. In a separate study, compositional instability is observed in lattice-matched InAlN films grown on GaN, for growth beyond a certain thickness. Beyond 200 nm of thickness, two sub-layers with different indium content are observed, the top one with lower indium content.

  20. Development of III-V p-MOSFETs with high-kappa gate stack for future CMOS applications

    NASA Astrophysics Data System (ADS)

    Nagaiah, Padmaja

    As the semiconductor industry approaches the limits of traditional silicon CMOS scaling, non-silicon materials and new device architectures are gradually being introduced to improve Si integrated circuit performance and continue transistor scaling. Recently, the replacement of SiO2 with a high-k material (HfO2) as gate dielectric has essentially removed one of the biggest advantages of Si as channel material. As a result, alternate high mobility materials are being considered to replace Si in the channel to achieve higher drive currents and switching speeds. III-V materials in particular have become of great interest as channel materials, owing to their superior electron transport properties. However, there are several critical challenges that need to be addressed before III-V based CMOS can replace Si CMOS technology. Some of these challenges include development of a high quality, thermally stable gate dielectric/III-V interface, and improvement in III-V p-channel hole mobility to complement the n-channel mobility, low source/drain resistance and integration onto Si substrate. In this thesis, we would be addressing the first two issues i.e. the development high performance III-V p-channels and obtaining high quality III-V/high-k interface. We start with using the device architecture of the already established InGaAs n-channels as a baseline to understand the effect of remote scattering from the high-k oxide and oxide/semiconductor interface on channel transport properties such as electron mobility and channel electron concentration. Temperature dependent Hall electron mobility measurements were performed to separate various scattering induced mobility limiting factors. Dependence of channel mobility on proximity of the channel to the oxide interface, oxide thickness, annealing conditions are discussed. The results from this work will be used in the design of the p-channel MOSFETs. Following this, InxGa1-xAs (x>0.53) is chosen as channel material for developing p-channel MOSFETs. Band engineering, strain induced valence band splitting and quantum confinement is used to improve channel hole mobility. Experimental results on the Hall hole mobility is presented for InxGa1-xAs channels with varying In content, thickness of the quantum well and temperature. Then, high mobility InxGa 1-xAs heterostructure thus obtained are integrated with in-situ deposited high-k gate oxide required for high performance p-MOSFET and discuss the challenges associated with the gated structure and draw conclusions on this material system. Antimonide based channel materials such as GaSb and InxGa 1-xSb are explored for III-V based p-MOSFETs in last two chapters. Options for Sb based strained QW channels to obtain maximum hole mobility by varying the strain, channel and barrier material, thickness of the layers etc. is discussed followed by the growth of these Sb channels on GaAs and InP substrates using molecular beam epitaxy. The physical properties of the structures such as the heterostructure quality, alloy content and surface roughness are examined via TEM, XRD and AFM. Following this, electrical measurement results on Hall hole mobility is presented. The effect of strain, alloy content, temperature and thickness on channel mobility and concentration is reported. Development of GaSb n- and p-MOS capacitor structures with in-situ deposited HfO2 gate oxide dielectric using in-situ deposited amorphous Si (a-Si) interface passivation layer (IPL) to improve the interface quality of high-k oxide and (In)GaSb surface is presented. In-situ deposited gate oxides such as Al2O3 and combination oxide of Al 2O3 and HfO2 with and without the a-Si IPL are also explored as alternate gate dielectrics. Subsequently, MOS capacitor structures using buried InGaSb QWs are demonstrated. Development of an inversion type bulk GaSb with implanted source-drain contacts and in-situ deposited gate oxide HfO2 gate oxide is discussed. The merits of biaxial compressive strain is demonstrated on strained surface and buried channel In0.36 Ga0.64Sb QW MOSFETs with thin top

  1. Fabrication of high-efficiency heterogeneous Si/III-V integration with short optical vertical interconnect access

    NASA Astrophysics Data System (ADS)

    Ng, Doris K. T.; Pu, Jing; Wang, Qian; Lim, Kim-Peng; Wei, Yongqiang; Wang, Yadong; Lai, Yicheng; Ho, Seng-Tiong

    2013-03-01

    Silicon nanophotonic platform based on a silicon-on-insulator substrate enables dense photonic integration due to transparency for light propagation and ultra-high refractive index contrast for light confinement. Here, we integrate silicon together with III-V for high-efficiency heterogeneous Silicon/III-V and short vertical optical interconnect access. The fabrication involves 3 critical processes: 1) obtaining more than 80% maximum bonded areas of Si with III-V, 2) precise alignment of III-V nano-devices on top of the passive devices and 3) vertical sidewall etch profile of Si and III-V devices. The measurement results show around 90% coupling efficiency. The realization of this heterogeneous Si/III-V integration platform will open up enormous opportunities for photonic system on silicon through integrating various devices.

  2. III-V/Si on silicon-on-insulator platform for hybrid nanoelectronics

    NASA Astrophysics Data System (ADS)

    Prucnal, Slawomir; Zhou, Shengqiang; Ou, Xin; Facsko, Stefan; Oskar Liedke, Maciej; Bregolin, Felipe; Liedke, Bartosz; Grebing, Jochen; Fritzsche, Monika; Hübner, Rene; Mücklich, Arndt; Rebohle, Lars; Helm, Manfred; Turek, Marcin; Drozdziel, Andrzej; Skorupa, Wolfgang

    2014-02-01

    The unique properties of SOI wafers enable the integration of heterogeneous materials with distinct functionalities in different layers. In particular, III-V compound semiconductors are very attractive for low-noise and high-speed electronic and photonic components integrated on a single chip. We have developed a CMOS compatible and fully integrated solution for the integration of III-V compound semiconductors with silicon technology for optoelectronic applications. InAs compound semiconductor nanostructures are synthesized in SOI wafers using the combined ion beam implantation and millisecond liquid-phase epitaxial growth. Optoelectronic and microstructural investigations carried out on implanted, annealed, and selectively etched samples confirm the formation of high-quality III-V compound semiconductor nanostructures.

  3. Relaxation Models of the (110) Zinc-Blende III-V Semiconductor Surfaces: Density Functional Study

    SciTech Connect

    Ye, H.; Chen, G.; Wu, Y.; Zhu, Y.; Wei, S. H.

    2008-11-01

    Clean III-V zinc-blende (110) surfaces are the most extensively studied semiconductor surface. For conventional III-V compounds such as GaAs and InP, the surface relaxation follows a bond rotation relaxation model. However, for III-nitrides recent study indicates that they follow a bond-constricting relaxation model. First-principles atom relaxation calculations are performed to explore the origin of the difference between the two groups of materials. By analyzing the individual shift trends and ionic properties of the top layer anions and cations, we attribute the difference between the conventional and nitride III-V compounds to the strong electronegativity of N, which leads to the s{sup 2}p{sup 3} pyramid bond angle to be larger than the ideal one in bulk (109.5{sup o}). The general trends of the atomic relaxation at the III-nitrides (110) surfaces are explained.

  4. III-V/Si on silicon-on-insulator platform for hybrid nanoelectronics

    SciTech Connect

    Prucnal, Slawomir, E-mail: s.prucnal@hzdr.de; Zhou, Shengqiang; Ou, Xin; Facsko, Stefan; Oskar Liedke, Maciej; Bregolin, Felipe; Liedke, Bartosz; Grebing, Jochen; Fritzsche, Monika; Hübner, Rene; Mücklich, Arndt; Rebohle, Lars; Skorupa, Wolfgang [Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstr. 400, 01328 Dresden (Germany); Helm, Manfred [Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstr. 400, 01328 Dresden (Germany); Center for Advancing Electronics Dresden (CFAED), Technische Universität Dresden, 01062 Dresden (Germany); Turek, Marcin; Drozdziel, Andrzej [Maria Curie-Sklodowska University, Pl. M. Curie-Sklodowskiej 1, 20-035 Lublin (Poland)

    2014-02-21

    The unique properties of SOI wafers enable the integration of heterogeneous materials with distinct functionalities in different layers. In particular, III-V compound semiconductors are very attractive for low-noise and high-speed electronic and photonic components integrated on a single chip. We have developed a CMOS compatible and fully integrated solution for the integration of III-V compound semiconductors with silicon technology for optoelectronic applications. InAs compound semiconductor nanostructures are synthesized in SOI wafers using the combined ion beam implantation and millisecond liquid-phase epitaxial growth. Optoelectronic and microstructural investigations carried out on implanted, annealed, and selectively etched samples confirm the formation of high-quality III-V compound semiconductor nanostructures.

  5. Microstructural evaluation of heteroepitaxial III-V semiconductor thin films

    NASA Astrophysics Data System (ADS)

    Chen, Eric Brice

    Microstructural features of single and multilayered strained (In xGa1-xAs/GaAs, (Al)GaAs1-ySb y/GaAs) and unstrained (In0.49Ga0.51P/GaAs) heteroepitaxial structures were evaluated. During growth of a 1.5% mismatched InxGa 1-xAs layer on GaAs at 470°C, real-time multibeam optical stress sensor measurements revealed an unexpected shoulder in the strain-thickness profile. Real-time data was used to pause film growth at pre-determined stress-states surrounding the shoulder region (pre-, mid- and post-shoulder) to probe its origin. Dislocation structure of each stress-state was characterized by transmission electron microscopy. The shoulder coincided with reactions between 60° dislocations forming edge dislocations, suggesting an increased dislocation mobility which is required for multiplication. Dislocation half-loops were observed via cross-sectional microscopy, resulting in rapid relaxation of the film. In-graded (InxGa1-xAs) and Sb-graded (Al0.5Ga0.5As1-ySby, GaAs 1-ySby) compositionally step-graded multilayer buffers were analyzed to determine the optimal alloy for preventing the propagation of threading dislocations to the epitaxial surface. Multilayers were graded from a lattice parameter of 0.564 nm to 0.591 nm (4.6% mismatch) over a 1 mum film thickness. Threading dislocation density in the top-most layer of the Sb-graded structures (?109 cm-2) was lower than the In-graded alloy (>1010 cm-2). In the InxGa1-xAs structure, threading dislocations were observed to congregate in discrete channels directly correlated to surface crosshatches. As/Sb compositional modulations in the Sb-graded structures reveal a more planar growth surface, preventing threading dislocation trapping. Characterization of dislocation structure indicated a directional asymmetry in the 60° and edge dislocation density for the GaAs1-ySb y multilayer. Replacing Ga with Al0.5Ga0.5 in the Sb-graded ternary improved planarity, resulting in a more uniform dislocation density. Residual strain (calculated from quantitative x-ray analysis and dislocation density) in each of the buffer layers was within the bounds predicted by existing relaxation models and dependent upon lattice mismatch strain. Lattice-matched In0.49Ga0.51P-GaAs junctions as active regions of a heterojuction bipolar transistor were evaluated by high-resolution transmission electron microscopy and related to device performance. Microscopy was established as a feasible technique for characterizing interfacial roughness which was related to interface crystal quality (quantified by reverse-biased leakage currents) but not low-voltage device performance.

  6. Silicon MCM substrates for integration of III-V photonic devices and CMOS IC`s

    SciTech Connect

    Seigal, P.; Carson, R.; Flores, R.; Rose, B.

    1993-07-01

    The progress made in advanced packaging development at Sandia National Laboratories for integration of III-V photonic devices and CMOS IC`s on Silicon MCM substrates for planar aid stacked applications will be reported. Studies to characterize precision alignment techniques using solder attach materials compatible with both silicon IC`s and III-V devices will be discussed. Examples of the use of back-side alignment and IR through-wafer inspection will be shown along with the extra processing steps that are used. Under bump metallurgy considerations are also addressed.

  7. III-V/silicon germanium tandem solar cells on silicon substrates

    NASA Astrophysics Data System (ADS)

    Schmieder, Kenneth J.

    The development of a cost-effective high voltage tandem solar cell that can be grown directly on a silicon (Si) platform can lead to a 34% increase in efficiency over the present best monocrystalline Si laboratory device. III-V devices are known to yield some of the highest efficiencies in photovoltaics, but the high cost of lattice matched substrates and metal organic chemical vapor deposition (MOCVD) and device development make them prohibitively expensive in many markets. By utilizing silicon substrates and limiting the thickness of the III-V MOCVD material growth, this cost can be reduced. The leveraging technology of this initiative is a metamorphic silicon:germanium (SiGe) buffer between the silicon substrate and the active device layers. As developed by AmberWave Inc., it provides a low-dislocation interface for III-V nucleation and a high quality bottom cell grown by reduced pressure chemical vapor deposition (RPCVD). This research first reports on the theoretical limits of a III-V/SiGe tandem solar cell. Results will evaluate multiple III-V materials for the determination of optimal material composition to be lattice-matched with SiGe. Following this, a more complex device simulation, incorporating all major loss mechanisms, is accomplished in order to predict ideal efficiency targets and evaluate present experimental structures. Results demonstrate a robust model capable of simulating a wide range of binary and ternary III-V devices. Predictions show the capability of a tandem device operating at 32.5% 1-sun efficiency without requiring TDD improvement beyond that of the present SiGe layers. Following simulations, experimental III-V structures are grown via MOCVD and characterized, indicating successful process development for growth of III-V materials on the SiGe platform. This growth is then validated via the design and development of experimental solar device structures. Each iteration, beginning with the single-junction windowless GaAsP solar cell and concluding with a GaAsP/SiGe tandem device, is analyzed and reported. GaAsP bandgap-voltage offsets achieve a record best result of 0.54 Volts in single-junction devices while dual-junction devices demonstrate a result toward AM1.5 19.4% efficiency with AR-correction and light trapping.

  8. Common twinning characteristics of silicon and III-V compound crystals during growth from the melt

    Microsoft Academic Search

    A. N. Buzynin; V. A. Antonov; V. V. Osiko; V. M. Tatarintsev

    1988-01-01

    A comparative study is made of the newly discovered and known twinning characteristics of silicon and III-V compound crystals grown from the melt by the Czochralski, Stepanov, and crucibleless zone melting techniques. The structural characteristics of twinned crystals are examined. The possible mechanisms of growth-related twinning are analyzed in the light of the available experimental data.

  9. Low-index nanopatterned barrier for hybrid oxide-free III-V silicon conductive bonding.

    PubMed

    Bougot-Robin, Kristelle; Talneau, Anne; Benisty, Henri

    2014-09-22

    Oxide-free bonding of a III-V active stack emitting at 1300-1600 nm to a silicon-on-insulator wafer offers the capability to electrically inject lasers from the silicon side. However, a typical 500-nm-thick silicon layer notably attracts the fundamental guided mode of the silicon + III-V stack, a detrimental feature compared to established III-V Separate-Confinement Heterostructure (SCH) stacks. We experimentally probe with photoluminescence as an internal light source the guiding behavior for oxide-free bonding to a nanopatterned silicon wafer that acts as a low-index barrier. We use a sub-wavelength square array of small holes as an effective "low-index silicon" medium. It is weakly modulated along one dimension (superperiodic array) to outcouple the resulting guided modes to free space, where we use an angle-resolved spectroscopy study. Analysis of experimental branches confirms the capability to operate with a fundamental mode well localized in the III-V heterostructures. PMID:25321802

  10. Mexican Americans. An Appendix to "A Curriculum Guide in Spanish (Levels III-V)".

    ERIC Educational Resources Information Center

    Kennedy, Dora F.

    This teaching and resource unit on Mexican Americans is specifically designed for advanced Spanish students. Though it is presented mostly in English, it is to be implemented for the most part in Spanish, according to the methodology set forth in "A Curriculum Guide in Spanish (Levels III-V)." The main purpose of the unit is to increase student…

  11. Hybrid silicon evanescent laser fabricated with a silicon waveguide and III-V offset quantum wells

    E-print Network

    Bowers, John

    Hybrid silicon evanescent laser fabricated with a silicon waveguide and III-V offset quantum wells: A novel laser that utilizes a silicon waveguide bonded to AlGaInAs quantum wells is demonstrated. This wafer scale fabrication approach allows the optical waveguide to be defined by CMOS-compatible silicon

  12. SUNS-VOC AND MINORITY CARRIER LIFETIME MEASUREMENTS OF III-V TANDEM SOLAR CELLS

    E-print Network

    Honsberg, Christiana

    SUNS-VOC AND MINORITY CARRIER LIFETIME MEASUREMENTS OF III-V TANDEM SOLAR CELLS Bhumika Chhabra to determine the minority carrier lifetime, saturation current and surface recombination velocity transient or quasi-steady state) and examination of the open circuit voltage with light intensity

  13. Monte Carlo simulation of III-V material-based MOSFET for high frequency and ultra-low consumption applications.

    PubMed

    Shi, Ming; Saint-Martin, Jérôme; Bournel, Arnaud; Maher, Hassan; Renvoise, Michel; Dollfus, Philippe

    2010-11-01

    High-mobility III-V heterostructures are emerging and very promising materials likely to fulfil high-speed and low-power specifications for ambient intelligent applications. The main objective of this work is to theoretically explore the potentialities of MOSFET based on III-V materials with low bandgap and high electron mobility. First, the charge control is studied in III-V MOS structures using a Schrödinger-Poisson solver. Electronic transport in III-V devices is then analyzed using a particle Monte Carlo device simulator. The external access resistances used in the calculations are carefully calibrated on experimental results. The performance of different structures of nanoscale MOS transistor based on III-V materials is evaluated and the quasi-ballistic character of electron transport is compared to that in Si transistors of same gate length. PMID:21137856

  14. MBE growth technology for high quality strained III-V layers

    NASA Technical Reports Server (NTRS)

    Grunthaner, Frank J. (Inventor); Liu, John K. (Inventor); Hancock, Bruce R. (Inventor)

    1992-01-01

    III-V films are grown on large automatically perfect terraces of III-V substrates which have a different lattice constant, with temperature and Group II and V arrival rates chosen to give a Group III element stable surface. The growth is pulsed to inhibit Group III metal accumulation to low temperature, and to permit the film to relax to equilibrium. The method of the invention 1) minimizes starting step density on sample surface; 2) deposits InAs and GaAs using an interrupted growth mode (0.25 to 2 mono-layers at a time); 3) maintains the instantaneous surface stoichiometry during growth (As-stable for GaAs, In-stable for InAs); and 4) uses time-resolved RHEED to achieve aspects (1)-14 (3).

  15. Bifunctional redox flow battery-1 V(III)\\/V(II)–glyoxal(O 2) system

    Microsoft Academic Search

    Y. H. Wen; J. Cheng; P. H. Ma; Y. S. Yang

    2008-01-01

    Bifunctional redox flow batteries (BRFB) possess functions of both electricity storage and electrochemical preparation, having the potential for increasing the electrical energy utilization. A V(III)\\/V(II)–glyoxal(O2) system has been developed. Separators of the BRFB play a key role in BRFB performance. A Nafion solution was sprayed on a gas diffusion layer (GDL) at the Nafion loading of 2mgcm?2, and the GDL

  16. New and unified model for Schottky barrier and III--V insulator interface states formation

    Microsoft Academic Search

    W. E. Spicer; P. W. Chye; P. R. Skeath; C. Y. Su; I. Lindau

    1979-01-01

    For n- and p-doped III--V compounds, Fermi-level pinning and accompanying phenomena of the (110) cleavage surface have been studied using photoemission at h..nu..< or approx. =300 eV (so that core as well as valence band levels could be studied). Both the clean surfaces and the changes produced, as metals or oxygen are added to those surfaces in submonolayer quantities, have

  17. Growth and properties III–V films and multilayered structures on fianite substrates and buffer layers

    Microsoft Academic Search

    Yu. N. Buzynin; A. N. Buzynin; V. V. Osiko; M. N. Drozdov; E. E. Lomonova; O. I. Khrykin; B. N. Zvonkov

    2010-01-01

    The opportunity of the use Si and GaAs with single and double buffer layers and YSZ substrates for III-V(GaAs, InAs, GaSb, InGaAs, AlGaAs, GaN, AlN) epitaxy by a MOCVD method is investigated. The technology of single YSZ and double (YSZ on porous material) buffer layers preparation on Si and GaAs substrates is developed. By using porous substrate, we improved structure

  18. III–V multijunction solar cells for ultra-high concentration photovoltaics

    Microsoft Academic Search

    Carlos Algora; Ignacio Rey-Stolle; Iván García; Beatriz Galiana; Mathieu Baudrit; Pilar Espinet; Enrique Barrigón; José Ramón González

    2009-01-01

    In this paper, the benefits of the ultra high concentration (¿ 1000 suns) are shown in terms of cost reduction and efficiency increase. Accordingly, the strategy followed at IES-UPM for more than 15 years is the development of III-V solar cells suitable for operation at 1000 suns or more. Recently, we have developed and manufactured a GaInP\\/GaAs dual-junction cell which

  19. Photovoltaic efficiencies in lattice-matched III-V multijunction solar cells with unconventional lattice parameters

    Microsoft Academic Search

    Emily. C. Warmann; Marina S. Leite; Harry A. Atwater

    2011-01-01

    We explore the potential for high efficiency multijunction solar cells that are not lattice matched to currently available single crystal substrates, but are still formed of component subcells that can be lattice matched to one another in the III-V GaInAsP compound semiconductor material system. Using detailed balance calculations, the theoretical efficiency of three and four junction cells with lattice constants

  20. Magnetic and magnetotransport properties of new III-V diluted magnetic semiconductors: GaMnAs

    Microsoft Academic Search

    T. Hayashi; M. Tanaka; T. Nishinaga; H. Shimada

    1997-01-01

    We have studied magnetic and magnetotransport properties of novel III-V diluted magnetic semiconductors, (Ga1?xMnx)As. The GaMnAs thin films were grown on GaAs(001) substrates by low temperature molecular beam epitaxy. We present magnetoresistance, extraordinary Hall effect, and M–H characteristics of two (Ga1?xMnx)As samples having different Mn content x.

  1. Improved adhesion of photoresist to III-V substrates using PECVD carbon films

    Microsoft Academic Search

    David P. Mancini; Steven M. Smith; Andrew F. Hooper; A. Talin; Daniel Chang; Douglas J. Resnick; Steven A. Voight

    2002-01-01

    Amorphous PECVD carbon films have been investigated as a means to prepare III-V compound semiconductor substrates for improved photoresist adhesion. Results show that significant improvements in adhesive durability of patterned photoresist occurred for carbon primed GaAs and InGaAs wafers used in conjunction with both i-line and DUV lithography processes. These carbon layers, were 50-100 Angstrom in thickness, and varied in

  2. Optical Properties of Iii-V and II-Vi Strained Semiconductor Heterostructures Under Pressure

    Microsoft Academic Search

    Seon-Ju. Hwang

    1994-01-01

    Scope and method of study. Optical properties of strained heterostructures in III-V and II-VI compounds have been investigated using various optical spectroscopic techniques, such as photoluminescence, photoluminescence excitation, photoreflectance, and photomodulated transmission measurements. Hydrostatic pressure, using a diamond anvil high-pressure cell, has been applied to study the pressure dependence of PL. Findings and conclusions. Pressure induced Gamma-X band crossover has

  3. Improved Precursor Chemistry for the Synthesis of III-V Quantum Dots

    PubMed Central

    Harris, Daniel K.; Bawendi, Moungi G.

    2012-01-01

    The synthesis of III-V Quantum Dots has been long known to be more challenging than the synthesis of other types of inorganic quantum dots. This is attributed to highly reactive group-V precursors. We synthesized molecules that are suitable for use as group-V precursors and characterized their reactivity using multiple complementary techniques. We show that the size distribution of indium arsenide quantum dots indeed improves with decreased precursor reactivity. PMID:23228014

  4. Controlled formation of epitaxial III-V nanowires for device applications

    NASA Astrophysics Data System (ADS)

    Martensson, Thomas

    2007-03-01

    For the realization of devices with dimensions on the 10 nm scale, there is today a great interest in the possible use of self-assembly as a tool. In this talk will be described the state-of-the-art in growth of epitaxially nucleated, vertically standing semiconductor nanowires made from III-V semiconductors, with high level of control of dimensions, position and structural properties. Such wires hold great promise for use in future electronics and photonics applications. Three key aspects will be specifically addressed, namely: (1) The combination of top-down and bottom-up processes in lithographically aided formation of nanowires. A concern from industry is that bottom up techniques should suffer from ``fundamental placement problem[s], i.e. there is no practical and reliable way to precisely align and position them.'' (Chau R., et al. Opportunities and challenges of III-V nanoelectronics for future high-speed, low-power logic applications. (2005)). One way to resolve this issue is lithography where individual nanowire site control with high precision can be achieved. Electron beam lithography has the advantage of being a flexible high-resolution method, whereas nanoimprint lithography offers great opportunities for up-scaling and high-throughput processing. (2) The successful growth of III-V nanowires on silicon, including designed heterostructures. The special nanowire geometry with tens of nanometer radius and very small nanowire / substrate interface, enables monolithic integration of high-performance III-V materials on Silicon substrates. As an example, GaAsP heterostructure nanowires for photonic applications are discussed. Also the formation of InAs nanowires for high-speed and low-power-electronics directly on Si will be described. In the latter process, the use of foreign metal particles for wire growth is completely avoided, greatly reducing compatibility concerns between CMOS and nanowire technology. (3) Nanowire devices, such as field-effect transistors and light-emitting diodes will be discussed.

  5. Process for forming shaped group III-V semiconductor nanocrystals, and product formed using process

    DOEpatents

    Alivisatos, A. Paul (Oakland, CA); Peng, Xiaogang (Fayetteville, AR); Manna, Liberato (Palo del Colle, IT)

    2001-01-01

    A process for the formation of shaped Group III-V semiconductor nanocrystals comprises contacting the semiconductor nanocrystal precursors with a liquid media comprising a binary mixture of phosphorus-containing organic surfactants capable of promoting the growth of either spherical semiconductor nanocrystals or rod-like semiconductor nanocrystals, whereby the shape of the semiconductor nanocrystals formed in said binary mixture of surfactants is controlled by adjusting the ratio of the surfactants in the binary mixture.

  6. Electrically driven hybrid Si\\/III-V lasers based on adiabatic mode transformers

    Microsoft Academic Search

    B. Ben Bakir; N. Olivier; Ph. Grosse; S. Messaoudène; S. Brision; E. Augendre; P. Philippe; K. Gilbert; D. Bordel; J. Harduin; J.-M. Fedeli

    2010-01-01

    We report the first Silicon\\/III-V evanescent laser based on adiabatic mode transformers. The hybrid structure is formed by two vertically superimposed waveguides separated by a 100nm-thick SiO2 layer. The top waveguide, fabricated in an InP\\/InGaAsP-based heterostructure, serves to provide optical gain, and the bottom Si-waveguides system, which supports all optical functions, is constituted by two tapered rib-waveguides (mode transformers), two

  7. Theoretical consideration of III-V nanowire/Si triple-junction solar cells

    NASA Astrophysics Data System (ADS)

    Wen, Long; Li, Xinhua; Zhao, Zhifei; Bu, Shaojiang; Zeng, XueSong; Huang, Jin-hua; Wang, Yuqi

    2012-12-01

    In this paper, we report theoretical consideration and simulation of a proposed III-V nanowire (NW)/Si triple-junction solar cell. The cell consists of two axially connected III-V NW subcells that are grown and electrically integrated on an active Si substrate. The optical properties of the cell are thoroughly analyzed by using the finite-difference time-domain method. It is found that NW subcells with optimized geometry have high absorption throughout their absorption region. Meanwhile, beyond the absorption edge of the top and middle NW subcells, the NWs act as an efficient antireflection coating for the bottom Si subcell due to the formation of an optical cavity within the NW layer. The physics responsible for the enhanced light harvesting process is qualitatively explained through modal analysis. In addition, we have shown that the condition of current matching in a III-V NW/Si multi-junction can be fulfilled by adjusting the diameter of the NWs. In order to study the current-voltage characteristics of the proposed cell, the optical generation profiles under AM1.5G illumination are incorporated into an electrical modeling. Our optoelectrical simulations indicate that, with an excellent current matching between subcells, the performance of the proposed structure is comparable with state-of-the-art multi-junction cells. The results presented here indicate that semiconductor NWs may provide a promising route toward high efficiency multi-junction solar cells.

  8. Present Status in the Development of III-V Multi-Junction Solar Cells

    NASA Astrophysics Data System (ADS)

    Philipps, Simon P.; Guter, Wolfgang; Welser, Elke; Schöne, Jan; Steiner, Marc; Dimroth, Frank; Bett, Andreas W.

    During the last yearshigh-concentration photovoltaics (HCPV) technology has gained growing attention. Excellent operatingAC-system efficiencies of up to 25% have been reported. One of the driving forces for this high system efficiency has been the continuous improvement of III-V multi-junction solar cell efficiencies. In consequence, the demand for these solar cells has risen, and strong efforts are undertaken to further increase the solar cell efficiency as well as the volume of cell output. The production capacity for multi-junction solar cells does not constitute a limitation. Already now several tens of MWp per year can be produced and the capacities can easily be increased. The state-of-the art approach for highly efficient photovoltaic energy conversion is marked by the Ga0.50In0.50P/Ga0.99In0.01As/Ge structure. This photovoltaic device is today well established in space applications and recently has entered the terrestrial market. The following chapter presents an overview about the present research status in III-V multi-junction solar cells at Fraunhofer ISE regarding cell design, expected performance, numerical simulation tools, adaptation of devices to different incident spectra and the fabrication of these devices. Finally, an outlook on future developments of III-V multi-junction solar cells is given.

  9. Electrically driven hybrid Si/III-V lasers based on adiabatic mode transformers

    NASA Astrophysics Data System (ADS)

    Ben Bakir, B.; Olivier, N.; Grosse, Ph.; Messaoudène, S.; Brision, S.; Augendre, E.; Philippe, P.; Gilbert, K.; Bordel, D.; Harduin, J.; Fedeli, J.-M.

    2010-05-01

    We report the first Silicon/III-V evanescent laser based on adiabatic mode transformers. The hybrid structure is formed by two vertically superimposed waveguides separated by a 100nm-thick SiO2 layer. The top waveguide, fabricated in an InP/InGaAsP-based heterostructure, serves to provide optical gain, and the bottom Si-waveguides system, which supports all optical functions, is constituted by two tapered rib-waveguides (mode transformers), two distributed Bragg reflectors (DBR), and a surface-grating coupler. The supermode of this hybrid structure is controlled by an appropriate design of the tapers located at the edges of the gain region. In the middle part of the devices, almost all the field resides in the III-V waveguide so that the optical mode experiences maximal gain, while in regions near the III-V facets, mode transformers ensure an efficient transfer of the power flow towards Si-waveguides. The investigated device operates under quasi-continuous wave regime. The room temperature threshold current is 100 mA, the side mode suppression ratio is as high as 20dB, and the fiber-coupled output power is ~7mW.

  10. Application of reactor neutrons to the investigation of the radiation resistance of semiconductor materials of Group III-V and sensors

    NASA Astrophysics Data System (ADS)

    Bolshakova, I. A.; Kulikov, S. A.; Konopleva, R. F.; Chekanov, V. A.; Vasilevskii, I. S.; Shurygin, F. M.; Makido, E. Yu.; Duran, I.; Moroz, A. P.; Shtabalyuk, A. P.

    2014-01-01

    The investigation of the radiation resistance of Group III-V semiconductor materials is an important and urgent problem. Magnetic sensors based on radiation resistant semiconductor materials are widely used in magnetomeasuring systems of thermonuclear industrial and experimental reactors. The basic approaches to the study of semiconductor materials under conditions of neutron irradiation and the results of some experiments on testing indium-containing semiconductor materials InSb, InAs, and their alloys InAs x Sb1 - x are presented. The presented experience of the development of equipment for on-line testing of materials and magnetic diagnostic sensors under radiation conditions can be used for testing a wide range of materials under conditions close to those of the ITER and other thermonuclear reactors.

  11. Progress in the Development of Metamorphic Multi-Junction III-V Space-Solar Cells at Essential Research Incorporated

    NASA Technical Reports Server (NTRS)

    Sinharoy, Samar; Patton, Martin O.; Valko, Thomas M., Sr.; Weizer, Victor G.

    2002-01-01

    Theoretical calculations have shown that highest efficiency III-V multi-junction solar cells require alloy structures that cannot be grown on a lattice-matched substrate. Ever since the first demonstration of high efficiency metamorphic single junction 1.1 eV and 1.2 eV InGaAs solar cells by Essential Research Incorporated (ERI), interest has grown in the development of multi-junction cells of this type using graded buffer layer technology. ERI is currently developing a dual-junction 1.6 eV InGaP/1.1 eV InGaAs tandem cell (projected practical air-mass zero (AM0), one-sun efficiency of 28%, and 100-sun efficiency of 37.5%) under a Ballistic Missile Defense Command (BMDO) SBIR Phase II program. A second ongoing research effort at ERI involves the development of a 2.1 eV AlGaInP/1.6 eV InGaAsP/1.2 eV InGaAs triple-junction concentrator tandem cell (projected practical AM0 efficiency of 36.5% under 100 suns) under a SBIR Phase II program funded by the Air Force. We are in the process of optimizing the dual-junction cell performance. In case of the triple-junction cell, we have developed the bottom and the middle cell, and are in the process of developing the layer structures needed for the top cell. A progress report is presented in this paper.

  12. Performance and Reliability of Multijunction III-V Modules for Concentrator Dish and Central Receiver Applications

    SciTech Connect

    Verlinden, P. J.; Lewandowski, A.; Bingham, C.; Kinsey, G. S.; Sherif, R. A.; Laisch, J. B.

    2006-01-01

    Over the last 15 years, Solar Systems have developed a dense array receiver PV technology for 500X concentrator reflective dish applications. This concentrator PV technology has been successfully deployed at six different locations in Australia, counting for more than 1 MWp of installed peak power. A new Multijunction III-V receiver to replace the current silicon Point-Contact solar cells has recently been developed. The new receiver technology is based on high-efficiency (>32%) Concentrator Ultra Triple Junction (CUTJ) solar cells from Spectrolab, resulting in system power and energy performance improvement of more than 50% compared to the silicon cells. The 0.235 m{sup 2} concentrator PV receiver, designed for continuous 500X operation, is composed of 64 dense array modules, and made of series and parallel-connected solar cells, totaling approximately 1,500 cells. The individual dense array modules have been tested under high intensity pulsed light, as well as with concentrated sunlight at the Solar Systems research facility and at the National Renewable Energy Laboratory's High Flux Solar Furnace. The efficiency of the dense array modules ranges from 30% to 36% at 500X (50 W/cm{sup 2}, AM1.5D low AOD, 21C). The temperature coefficients for power, voltage and current, as well as the influence of Air Mass on the cell responsivity, were measured. The reliability of the dense array multijunction III-V modules has been studied with accelerated aging tests, such as thermal cycling, damp heat and high-temperature soak, and with real-life high-intensity exposure. The first 33 kWp multijunction III-V receiver was recently installed in a Solar Systems dish and tested in real-life 500X concentrated sunlight conditions. Receiver efficiencies of 30.3% and 29.0% were measured at Standard Operating Conditions and Normal Operating Conditions respectively.

  13. Formation of III-V-on-insulator structures on Si by direct wafer bonding

    NASA Astrophysics Data System (ADS)

    Yokoyama, Masafumi; Iida, Ryo; Ikku, Yuki; Kim, Sanghyeon; Takagi, Hideki; Yasuda, Tetsuji; Yamada, Hisashi; Ichikawa, Osamu; Fukuhara, Noboru; Hata, Masahiko; Takenaka, Mitsuru; Takagi, Shinichi

    2013-09-01

    We have studied the formation of III-V-compound-semiconductors-on-insulator (III-V-OI) structures with thin buried oxide (BOX) layers on Si wafers by using developed direct wafer bonding (DWB). In order to realize III-V-OI MOSFETs with ultrathin body and extremely thin body (ETB) InGaAs-OI channel layers and ultrathin BOX layers, we have developed an electron-cyclotron resonance (ECR) O2 plasma-assisted DWB process with ECR sputtered SiO2 BOX layers and a DWB process based on atomic-layer-deposition Al2O3 (ALD-Al2O3) BOX layers. It is essential to suppress micro-void generation during wafer bonding process to achieve excellent wafer bonding. We have found that major causes of micro-void generation in DWB processes with ECR-SiO2 and ALD-Al2O3 BOX layers are desorption of Ar and H2O gas, respectively. In order to suppress micro-void generation in the ECR-SiO2 BOX layers, it is effective to introduce the outgas process before bonding wafers. On the other hand, it is a possible solution for suppressing micro-void generation in the ALD-Al2O3 BOX layers to increase the deposition temperature of the ALD-Al2O3 BOX layers. It is also another possible solution to deposit ALD-Al2O3 BOX layers on thermally oxidized SiO2 layers, which can absorb the desorption gas from ALD-Al2O3 BOX layers.

  14. Piezoelectric Effects in Misfit-Strained Iii-V Compound Heterostructures

    NASA Astrophysics Data System (ADS)

    Caridi, Elisa Ava

    1990-01-01

    Elasticity and piezoelectricity are anisotropic properties of a crystal. In pseudomorphic strained layers, these properties will depend critically on the orientation of growth relative to the crystallographic orientation. Microscopically, the state of strain modifies the crystal Hamiltonian, changes the optical selection rules, and produces splittings of otherwise degenerate states. Macroscopically, the elastic accommodation of misfit-strain in (hkk) growth oriented heterostructures, unlike the conventional (001) growth axis, induces a homogeneous electric polarization in the strained layer via the piezoelectric effect. Large internal electric fields result, which can approach the dielectric breakdown field. To date, our understanding of the microscopic properties has come from a rich resource of literature on the (001) oriented III-V compounds. This fact is in no small part due to the inherent ease of achieving stoichiometric growth on this surface. Conversely, the achievement of stoichiometric growth on the (111) oriented III-V compounds has not been so successful. By employing vicinal substrates, and with the aid of the in-situ surface analysis in the MBE growth chamber, excellent morphology of GaAs and strained GaInAs on the (111) orientation are demonstrated in this thesis. With this achievement, the macroscopic piezoelectric effect has been demonstrated in a (111) growth axis zincblende heterostructure, for the first time. Misfit-strained (hkk) heterostructures provide an important new class of piezoelectrically active materials for use in designing novel structures with unique electronic and optical properties. The modelling of these properties, the MBE crystal growth of (111) strained III-V compound films, and the first direct experimental evidence of misfit-strain generated electric fields, are the subject of this thesis.

  15. Heteroepitaxial III–V films on fianite substrates and buffer layers

    Microsoft Academic Search

    Yu. N. Buzynin; M. N. Drozdov; A. N. Buzynin; V. V. Osiko; B. N. Zvonkov; Yu. N. Drozdov; A. E. Parafin; A. V. Murel; O. I. Khrykin; A. E. Luk’yanov; F. A. Luk’yanov; R. A. Sennov

    2009-01-01

    GaAs, GaSb, AlGaAs, and InGaAs epitaxial films and multilayer AlGaAs\\/InGaAs\\/GaAs heterostructures for PHEMT field-effect transistors\\u000a have been obtained on fianite substrates by metal-organic vapour phase epitaxy. Films of different III–V compounds, including\\u000a GaN, were grown on Si and GaAs substrates with a simple single buffer layer (fianite) and double buffer layer (fianite on\\u000a porous Si and GaAs). It is established

  16. Solid-state lighting : the III-V Epi Killer App.

    SciTech Connect

    Tsao, Jeffrey Yeenien

    2010-06-01

    Throughout its history, lighting technology has made tremendous progress: the efficiency with which power is converted into usable light has increased 2.8 orders of magnitude over three centuries. This progress has, in turn, fueled large increases in the consumption of light and productivity of human society. In this talk, we review an emerging new technology, solid-state lighting: its frontier performance potential; the underlying advances in physics and materials that might enable this performance potential; the resulting energy consumption and human productivity benefits; and the impact on worldwide III-V epi manufacture.

  17. Hybrid silicon evanescent laser fabricated with a silicon waveguide and III-V offset quantum wells

    NASA Astrophysics Data System (ADS)

    Park, Hyundai; Fang, Alexander W.; Kodama, Satoshi; Bowers, John E.

    2005-11-01

    A novel laser that utilizes a silicon waveguide bonded to AlGaInAs quantum wells is demonstrated. This wafer scale fabrication approach allows the optical waveguide to be defined by CMOS-compatible silicon processing while optical gain is provided by III-V materials. The AlGaInAs quantum well structure is bonded to the silicon wafer using low temperature oxygen plasma-assisted wafer bonding. The optically pumped 1538 nm laser has a pulsed threshold of 30 mW and an output power of 1.4 mW.

  18. Dry etching of III-V semiconductors in IBr\\/Ar electron cyclotron resonance plasmas

    Microsoft Academic Search

    J. W. Lee; J. Hong; E. S. Lambers; C. R. Abernathy; S. J. Pearton; W. S. Hobson; F. Ren

    1997-01-01

    IBr\\/Ar plasmas were found to be promising candidates for room temperature dry etch processing of the III-V semiconductors GaAs, AlGaAs, GaSb, InP, InGaAs, and InSb. Results showed fast etch rates (˜3,000Å\\/min) at high microwave power (1000W) and good surface morphology (typical root mean square roughness ˜2 nm), while retaining the near-surface stoichiometry. There was little variation of surface smoothness over

  19. Dry etching of III-V semiconductors in IBr\\/Ar electron cyclotron resonance plasmas

    Microsoft Academic Search

    J. W. Lee; J. Hong; E. S. Lambers; C. R. Abernathy; S. J. Pearton; W. S. Hobson; F. Ren

    1997-01-01

    IBr\\/Ar plasmas were found to be promising candidates for room temperature dry etch processing of the III-V semiconductors\\u000a GaAs, AlGaAs, GaSb, InP, InGaAs, and InSb. Results showed fast etch rates (?3,000?\\/min) at high microwave power (1000W) and\\u000a good surface morphology (typical root mean square roughness ?2 nm), while retaining the near-surface stoichiometry. There\\u000a was little variation of surface smoothness over

  20. Defect State Passivation at III-V – oxide Interfaces for CMOS devices

    E-print Network

    Robertson, J.; Guo, Y.; Lin, L.

    2014-01-01

    suitable for commercial production. A landmark event was Intel’s announcement of the first InGaAs quantum well MOSFET which used an InP capping layer and a Ta silicate gate dielectric [28,29], as shown in Fig 4. It showed that a fully engineered III-V FET... of adjacent Si sites in the outer layer only. On the other hand, GaAs(100) has a number of reconstructions. A typical one is the (2x4)GaAs(100) surface which covers three layers (Fig 8) [45-47]. The observed reconstructions of GaAs (and ZnSe) were found...

  1. General theory of the transverse dielectric constant of III-V semiconducting compounds

    NASA Technical Reports Server (NTRS)

    Kahen, K. B.; Leburton, J. P.

    1985-01-01

    A general model of the transverse dielectric constant of III-V compounds is developed using a hybrid method which combines the kp method with a nonlocal pseudopotential calculation. In this method the Brillouin zone is partitioned into three regions by expanding the energy bands and matrix elements about the F, X, and L symmetry points. The real and imaginary parts of the dielectric constant are calculated as a sum of the individual contributions of each region. By using this partition method, it is possible to get good insight into the dependence of the dielectric constant on the shape of the band structure.

  2. A novel reactor concept for multiwafer growth of III?V semiconductors

    NASA Astrophysics Data System (ADS)

    Beccard, R.; Protzmann, H.; Schmitz, D.; Strauch, G.; Heuken, M.; Juergensen, H.

    1999-03-01

    Since the invention of the Planetary Reactors ® a reliable tool for mass production of various III-V compounds has existed. These reactors have proven to grow extremely uniform films together with a highly efficient utilization of the precursors. Now a new generation of Planetary Reactors ® is introduced: the so-called G3 systems. Their main features are: an inductive heating system with extremely low thermal mass for precise and fast heating, high flexibility in the reactor size (15×2?, 35×2? to 9×4? wafers per load so far, further enlargement possible) and the option to use a fully automated cassette-to-cassette wafer loading system. The benefits of this new design are very short cycle times, extreme run-to-run stability and even further reduced cost of ownership. The performance of this reactor will be discussed in conjunction with the well established AIX 2400 reactor with a set up of 15×2? or 5×4? wafer. Uniformity of thickness, luminescence intensity and composition of the most important III-V compounds such as GaInP, GaInAsP and AlGaInP are shown.

  3. III-V/Si hybrid photonic devices by direct fusion bonding.

    PubMed

    Tanabe, Katsuaki; Watanabe, Katsuyuki; Arakawa, Yasuhiko

    2012-01-01

    Monolithic integration of III-V compound semiconductors on silicon is highly sought after for high-speed, low-power-consumption silicon photonics and low-cost, light-weight photovoltaics. Here we present a GaAs/Si direct fusion bonding technique to provide highly conductive and transparent heterojunctions by heterointerfacial band engineering in relation to doping concentrations. Metal- and oxide-free GaAs/Si ohmic heterojunctions have been formed at 300°C; sufficiently low to inhibit active material degradation. We have demonstrated 1.3 ?m InAs/GaAs quantum dot lasers on Si substrates with the lowest threshold current density of any laser on Si to date, and AlGaAs/Si dual-junction solar cells, by p-GaAs/p-Si and p-GaAs/n-Si bonding, respectively. Our direct semiconductor bonding technique opens up a new pathway for realizing ultrahigh efficiency multijunction solar cells with ideal bandgap combinations that are free from lattice-match restrictions required in conventional heteroepitaxy, as well as enabling the creation of novel high performance and practical optoelectronic devices by III-V/Si hybrid integration. PMID:22470842

  4. III-V/Si hybrid photonic devices by direct fusion bonding

    PubMed Central

    Tanabe, Katsuaki; Watanabe, Katsuyuki; Arakawa, Yasuhiko

    2012-01-01

    Monolithic integration of III-V compound semiconductors on silicon is highly sought after for high-speed, low-power-consumption silicon photonics and low-cost, light-weight photovoltaics. Here we present a GaAs/Si direct fusion bonding technique to provide highly conductive and transparent heterojunctions by heterointerfacial band engineering in relation to doping concentrations. Metal- and oxide-free GaAs/Si ohmic heterojunctions have been formed at 300°C; sufficiently low to inhibit active material degradation. We have demonstrated 1.3 ?m InAs/GaAs quantum dot lasers on Si substrates with the lowest threshold current density of any laser on Si to date, and AlGaAs/Si dual-junction solar cells, by p-GaAs/p-Si and p-GaAs/n-Si bonding, respectively. Our direct semiconductor bonding technique opens up a new pathway for realizing ultrahigh efficiency multijunction solar cells with ideal bandgap combinations that are free from lattice-match restrictions required in conventional heteroepitaxy, as well as enabling the creation of novel high performance and practical optoelectronic devices by III-V/Si hybrid integration. PMID:22470842

  5. Calculation of the electron mobility in III-V inversion layers with high-? dielectrics

    NASA Astrophysics Data System (ADS)

    O'Regan, T. P.; Fischetti, M. V.; Sorée, B.; Jin, S.; Magnus, W.; Meuris, M.

    2010-11-01

    We calculate the electron mobility for a metal-oxide-semiconductor system with a metallic gate, high-? dielectric layer, and III-V substrate, including scattering with longitudinal-optical (LO) polar-phonons of the III-V substrate and with the interfacial excitations resulting from the coupling of insulator and substrate optical modes among themselves and with substrate plasmons. In treating scattering with the substrate LO-modes, multisubband dynamic screening is included and compared to the dielectric screening in the static limit and with the commonly used screening model obtained by defining an effective screening wave vector. The electron mobility components limited by substrate LO phonons and interfacial modes are calculated for In0.53Ga0.47As and GaAs substrates with SiO2 and HfO2 gate dielectrics. The mobility components limited by the LO-modes and interfacial phonons are also investigated as a function of temperature. Scattering with surface roughness, fixed interface charge, and nonpolar-phonons is also included to judge the relative impact of each scattering mechanism in the total mobility for In0.53Ga0.47As with HfO2 gate dielectric. We show that InGaAs is affected by interfacial-phonon scattering to an extent larger than Si, lowering the expected performance, but probably not enough to question the technological relevance of InGaAs.

  6. Structure, energetics, and electronic states of III-V compound polytypes

    NASA Astrophysics Data System (ADS)

    Bechstedt, Friedhelm; Belabbes, Abderrezak

    2013-07-01

    Recently several hexagonal polytypes such as 2H, 4H, and 6H have been discovered for conventional III-V semiconductor compounds in addition to the cubic 3C zinc-blende polytype by investigating nanorods grown in the [111] direction in different temperature regimes. Also III-mononitrides crystallizing in the hexagonal 2H wurtzite structure under ambient conditions can be deposited in zinc-blende geometry using various growth techniques. The polytypic crystal structures influence the local electronic properties and the internal electric fields due to the spontaneous polarization in non-cubic crystals. In this paper we give a comprehensive review on the thermodynamic, structural, and electronic properties of twelve Al, Ga, and In antimonides, arsenides, phosphides, and nitrides as derived from ab initio calculations. Their lattice parameters, energetic stability, and characteristic band structure energies are carefully discussed and related to the atomic geometries of the polytypes. Chemical trends are investigated. Band offsets between polytypes and their consequences for heterocrystalline structures are derived. The described properties are discussed in the light of available experimental data and previous computations. Despite several contradictory results in the literature, a unified picture of the III-V polytypes and their heterocrystalline structures is developed.

  7. Structure, energetics, and electronic states of III-V compound polytypes.

    PubMed

    Bechstedt, Friedhelm; Belabbes, Abderrezak

    2013-07-10

    Recently several hexagonal polytypes such as 2H, 4H, and 6H have been discovered for conventional III-V semiconductor compounds in addition to the cubic 3C zinc-blende polytype by investigating nanorods grown in the [111] direction in different temperature regimes. Also III-mononitrides crystallizing in the hexagonal 2H wurtzite structure under ambient conditions can be deposited in zinc-blende geometry using various growth techniques. The polytypic crystal structures influence the local electronic properties and the internal electric fields due to the spontaneous polarization in non-cubic crystals.In this paper we give a comprehensive review on the thermodynamic, structural, and electronic properties of twelve Al, Ga, and In antimonides, arsenides, phosphides, and nitrides as derived from ab initio calculations. Their lattice parameters, energetic stability, and characteristic band structure energies are carefully discussed and related to the atomic geometries of the polytypes. Chemical trends are investigated. Band offsets between polytypes and their consequences for heterocrystalline structures are derived. The described properties are discussed in the light of available experimental data and previous computations. Despite several contradictory results in the literature, a unified picture of the III-V polytypes and their heterocrystalline structures is developed. PMID:23778868

  8. Recipes for crystal phase design in Au-catalyzed III-V nanowires

    NASA Astrophysics Data System (ADS)

    Dubrovskii, Vladimir G.; Grecenkov, Jurij

    2014-10-01

    We develop a kinetic model for the crystal structure of Au-catalyzed III-V nanowires which is capable of describing the wurtzite content as a function of the growth temperature, group V flux, and the nanowire elongation rate. The self-consistency condition with the correct pre-exponent in the Zeldovich nucleation rate allows us to estimate the actual group III concentration in the droplet which corresponds to a given elongation rate. Our model predicts a non-monotonic dependence of the wurtzite percentage on the group III concentration. We analyze relevant experimental data on the preferred crystal structure of Au-catalyzed GaAs nanowires obtained by three different epitaxy techniques and explain why the MBE-grown GaAs nanowires at near 550°C are predominantly wurtzite, while the MOCVD and HVPE-grown GaAs nanowires obtained with very high As fluxes and at very different temperatures (464°C and 715°C) are zincblende. Overall, the model provides some simple recipes for structural design of III-V nanowires by tuning the technologically controlled growth conditions such as temperature and fluxes.

  9. GaN based III?V nitrides by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Morkoç, H.; Botchkarev, A.; Salvador, A.; Sverdlov, B.

    1995-05-01

    GaN and its allied compounds, AlGaN and InGaN, exhibited electrical and optical properties that are well suited for applications to green/blue/UV emitters and detectors, and high temperature electronics. While vacuum deposition of III-V nitrides is not new, only recently have noteworthy results become available. This is in part due to the use of electron cyclotron resonance (ECR) and other reactive nitrogen sources and clean molecular beam epitaxy (MBE) systems. Low-temperature deposition capability, controlled and hydrogen-free environment, and in situ diagnostic capabilities afforded by MBE make this approach attractive for producing novel structures for devices and understanding the growth pathways which are distinctly different from the conventional III-V compounds. Cubic and wurtzite phases of GaN have been grown with MBE on GaAs, Si, sapphire and SiC, 3C and 6H, substrates. The p-type Mg-doped films require no post-anneals for activation, albeit with lower mobilities than those of organometallic chemical vapor deposition (OMCVD) films. Band edge luminescence with negligible yellow emission has been obtained. Electron mobilities are as high as about 600 cm 2/V · s with n-type doping levels in the high 10 16 cm -3 in wurtzitic films with cubic phase exhibiting higher values.

  10. Alloys

    NASA Astrophysics Data System (ADS)

    Jung, Sung-Jin; Kim, Seong Keun; Park, Hyung-Ho; Hyun, Dow-Bin; Baek, Seung-Hyub; Kim, Jin-Sang

    2014-06-01

    The effects of mechanical deformation and subsequent annealing on the thermoelectric properties and microstructure have been investigated for p-type (Bi0.25Sb0.75)2Te3 alloys prepared by melting followed by quenching. The mechanically deformed pellets were prepared by repetition of cold-pressing of quenched samples at room temperature. Cold-pressed pellets were then annealed at 300°C in vacuum, and the thermoelectric properties and microstructure were traced through the course of the heat treatment. For the heavily deformed samples, the Seebeck coefficient rapidly increased at the very early stage of annealing and did not change as the annealing time increased, due to recrystallization of a new ?-phase which equilibrated at the annealing temperature of 300°C (?300-phase). At the initial stage of annealing (recovery stage), the electrical resistivity sharply increased, probably due to the interaction of antistructural defects with vacancies produced during the cold-pressing treatment. However, for the lightly deformed samples, recrystallization occurred only at some portion of the grain boundaries, and the newly generated ?300-phase slowly replaced the original, as-solidified ?ingot-phase.

  11. New III-V cell design approaches for very high efficiency

    SciTech Connect

    Lundstrom, M.S.; Melloch, M.R.; Lush, G.B.; O'Bradovich, G.J.; Young, M.P. (Purdue Univ., Lafayette, IN (United States))

    1993-01-01

    This report describes progress during the first year of a three-year project. The objective of the research is to examine new design approaches for achieving very high conversion efficiencies. The program is divided into two areas. The first centers on exploring new thin-film approaches specifically designed for III-V semiconductors. The second area centers on exploring design approaches for achieving high conversion efficiencies without requiring extremely high quality material. Research activities consisted of an experimental study of minority carrier recombination in n-type, metal-organic chemical vapor deposition (MOCVD)-deposited GaAs, an assessment of the minority carrier lifetimes in n-GaAs grown by molecular beam epitaxy, and developing a high-efficiency cell fabrication process.

  12. Dynamics of Wet Oxidation of High-AL-Content III-V Materials

    SciTech Connect

    Ashby, C.I.H.

    1999-01-27

    Oxidation of layers of high-Al-content III-V materials by water vapor has become the enabling process for high-efficiency vertical cavity surface emitting lasers (VCSELS) and has potential applications for reducing substrate current leakage in GaAs-on-insulator (GOI) MESFETS. Because of the established importance of wet oxidation in optoelectronic devices and its potential applications in electronic devices, it has become increasingly important to understand the mechanism of wet oxidation and how it might be expected to affect both the fabrication and subsequent operation of devices that have been made using this technique. The mechanism of wet oxidation and the consequence of this mechanism for heterostructure design and ultimate device operation are discussed here.

  13. Dilute Group III-V nitride intermediate band solar cells with contact blocking layers

    DOEpatents

    Walukiewicz, Wladyslaw (Kensington, CA); Yu, Kin Man (Lafayette, CA)

    2012-07-31

    An intermediate band solar cell (IBSC) is provided including a p-n junction based on dilute III-V nitride materials and a pair of contact blocking layers positioned on opposite surfaces of the p-n junction for electrically isolating the intermediate band of the p-n junction by blocking the charge transport in the intermediate band without affecting the electron and hole collection efficiency of the p-n junction, thereby increasing open circuit voltage (V.sub.OC) of the IBSC and increasing the photocurrent by utilizing the intermediate band to absorb photons with energy below the band gap of the absorber layers of the IBSC. Hence, the overall power conversion efficiency of a IBSC will be much higher than an conventional single junction solar cell. The p-n junction absorber layers of the IBSC may further have compositionally graded nitrogen concentrations to provide an electric field for more efficient charge collection.

  14. New III-V cell design approaches for very high efficiency

    SciTech Connect

    Lundstrom, M.S.; Melloch, M.R.; Lush, G.B.; Patkar, M.P.; Young, M.P. (Purdue Univ., Lafayette, IN (United States))

    1993-04-01

    This report describes to examine new solar cell desip approaches for achieving very high conversion efficiencies. The program consists of two elements. The first centers on exploring new thin-film approaches specifically designed for M-III semiconductors. Substantial efficiency gains may be possible by employing light trapping techniques to confine the incident photons, as well as the photons emitted by radiative recombination. The thin-film approach is a promising route for achieving substantial performance improvements in the already high-efficiency, single-junction, III-V cell. The second element of the research involves exploring desip approaches for achieving high conversion efficiencies without requiring extremely high-quality material. This work has applications to multiple-junction cells, for which the selection of a component cell often involves a compromise between optimum band pp and optimum material quality. It could also be a benefit manufacturing environment by making the cell's efficiency less dependent on materialquality.

  15. Analytical modeling of III-V solar cells close to the fundamental limit

    NASA Astrophysics Data System (ADS)

    Lumb, Matthew P.; Steiner, Myles A.; Geisz, John F.; Walters, Robert J.

    2014-03-01

    A highly effective strategy of photon management is to use a back surface reflector. In this work, we present a full analytical model incorporating effects from both the modified generation function and photon recycling in GaAs solar cells with a BSR. We discuss the impact of doping concentration, non-radiative recombination, solar cell dimensions and BSR reflectivity on the efficiency, and compare the prediction of the device models to experimental data measured on GaAs devices. We use the model to predict the performance of alternative III-V materials, such as InP, comparing the predicted performance to state-of-the-art GaAs solar cells.

  16. Lattice-Mismatched III-V Epilayers for High-Efficiency Photovoltaics

    SciTech Connect

    Ahrenkiel, Scott Phillip [South Dakota School of Mines & Technology] [South Dakota School of Mines & Technology

    2013-06-30

    The project focused on development of new approaches and materials combinations to expand and improve the quality and versatility of lattice-mismatched (LMM) III-V semiconductor epilayers for use in high-efficiency multijunction photovoltaic (PV) devices. To address these goals, new capabilities for materials synthesis and characterization were established at SDSM&T that have applications in modern opto- and nano-electronics, including epitaxial crystal growth and transmission electron microscopy. Advances were made in analyzing and controlling the strain profiles and quality of compositional grades used for these technologies. In particular, quaternary compositional grades were demonstrated, and a quantitative method for characteristic X-ray analysis was developed. The project allowed enhanced collaboration between scientists at NREL and SDSM&T to address closely related research goals, including materials exchange and characterization.

  17. Phase transitions in Group III-V and II-VI semiconductors at high pressure

    NASA Technical Reports Server (NTRS)

    Yu, S. C.; Liu, C. Y.; Spain, I. L.; Skelton, E. F.

    1979-01-01

    The structures and transition pressures of Group III-V and II-VI semiconductors and of a pseudobinary system (Ga/x/In/1-x/Sb) have been investigated. Results indicate that GaP, InSb, GaSb, GaAs and possible AlP assume Metallic structures at high pressures; a tetragonal, beta-Sn-like structure is adopted by only InSb and GaSb. The rocksalt phase is preferred in InP, InAs, AlSb, ZnO and ZnS. The model of Van Vechten (1973) gives transition pressures which are in good agreement with measured values, but must be refined to account for the occurrence of the ionic rocksalt structure in some compounds. In addition, discrepancies between the theoretical scaling values for volume changes at the semiconductor-to-metal transitions are observed.

  18. Theory of Non-linear Optical Susceptibility of Wide-Band-Gap III-V Nitrides

    NASA Astrophysics Data System (ADS)

    Nayak, Santanu K.; Sahu, Trinath; Mohanty, Sarada P.; Misra, Prasanta K.

    1997-03-01

    We use a linear combination of hybrids (LCH) method developed by us to calculate the third-order non-linear optical susceptibilty of III-V nitrides. We have constructed appropriate LCH basis functions for the valence and conduction bands. We have used these functions to obtain expressions for the optical susceptibility of these wide-band-gap semiconductors in terms of matrix elements between intra-site hybrids and between hybrids of adjacent sites forming a bond. Our expressions for susceptibility are related to the chemical bond parameters such as bond lengths, ionicity, overlap integrals and energy gaps. We report our results for BN, AlN, GaN and InN.

  19. Heterogeneously integrated III-V/silicon dual-mode distributed feedback laser array for terahertz generation.

    PubMed

    Shao, Haifeng; Keyvaninia, Shahram; Vanwolleghem, Mathias; Ducournau, Guillaume; Jiang, Xiaoqing; Morthier, Geert; Lampin, Jean-Francois; Roelkens, Gunther

    2014-11-15

    We demonstrate an integrated distributed feedback (DFB) laser array as a dual-wavelength source for narrowband terahertz (THz) generation. The laser array is composed of four heterogeneously integrated III-V-on-silicon DFB lasers with different lengths enabling dual-mode lasing tolerant to process variations, bias fluctuations, and ambient temperature variations. By optical heterodyning the two modes emitted by the dual-wavelength DFB laser in the laser array using a THz photomixer composed of an uni-traveling carrier photodiode (UTC-PD), a narrow and stable carrier signal with a frequency of 0.357 THz is generated. The central operating frequency and the emitted terahertz wave linewidth are analyzed, along with their dependency on the bias current applied to the laser diode and ambient temperature. PMID:25490479

  20. Temperature dependence of defect-related photoluminescence in III-V and II-VI semiconductors

    SciTech Connect

    Reshchikov, Michael A., E-mail: mreshchi@vcu.edu [Department of Physics, Virginia Commonwealth University, Richmond, Virginia 23284 (United States)

    2014-01-07

    Mechanisms of thermal quenching of photoluminescence (PL) related to defects in semiconductors are analyzed. We conclude that the Schön-Klasens (multi-center) mechanism of the thermal quenching of PL is much more common for defects in III–V and II–VI semiconductors as compared to the Seitz-Mott (one-center) mechanism. The temperature dependencies of PL are simulated with a phenomenological model. In its simplest version, three types of defects are included: a shallow donor, an acceptor responsible for the PL, and a nonradiative center that has the highest recombination efficiency. The case of abrupt and tunable thermal quenching of PL is considered in more detail. This phenomenon is predicted to occur in high-resistivity semiconductors. It is caused by a sudden redirection of the recombination flow from a radiative acceptor to a nonradiative defect.

  1. Ion beam damage-induced masking for photoelectrochemical etching of III-V semiconductors

    NASA Astrophysics Data System (ADS)

    Chi, G. C.; Ostermayer, F. W., Jr.; Cummings, K. D.; Harriott, L. R.

    1986-12-01

    Ion implantation damage has been used as a mask for patterning III-V semiconductors by photoelectrochemical etching. The damage inhibits etching and the optical absorption of the semiconductor prevents light from penetrating through the damaged layer. Patterns of ion implantation damage have been produced on the surface of InP, InGaAs, and InGaAsP by implantation of 50 and 150-keV Be+ ions through a photoresist mask and with a focused beam of 20-keV Ga+ ions. Subsequent photoelectrochemical etching produces surface relief features corresponding to the damage pattern. The effect of the electrolyte and the spectral composition of the light on the resolution are described. Micron size features have been delineated and the technique may be preferable to alternate masking methods (metallization or projection) in certain applications.

  2. Charged native point defects in GaAs and other III?V compounds

    NASA Astrophysics Data System (ADS)

    Hurle, D. T. J.

    2002-04-01

    The solubility of both native point defects and dopants in semiconductors is dependent on growth temperature, on crystal stoichiometry and on Fermi level position. At high temperatures III-V compounds contain high concentrations of predominantly charged native point defects. Published titration and density/lattice parameter measurements on GaAs show conclusively that melt-grown crystals contain ˜10 19 cm -3 As-vacancies and As-interstitials at the melting point. The arsenic vacancies form a relatively shallow (˜ Ec-0.1 eV) donor state. The concentration of these ionised vacancies at the melting point of GaAs, and under the conditions used for LPE growth from Ga-solution, exceeds the intrinsic electron-hole concentration. Hence, these ionised vacancies control the electro-neutrality of the crystal (and hence the position of the Fermi level) during growth under these conditions. The As vacancy concentration obtained from titration measurements, when inserted into a comprehensive equilibrium thermodynamic description of the system, accurately predicts the observed range of linear dopant solubility obtained for both Groups IV and VI donor dopants. The currently accepted hypothesis that this linear range is determined by a non-equilibrium incorporation process controlled by a Schottky barrier at the crystal/melt interface is therefore unnecessary. It is shown that donor and acceptor dopant incorporation, EL2 formation and annealing behaviour in GaAs can all be fully explained by the thermodynamic model. The differing doping behaviour exhibited by the various other zinc-blende III-V compounds is shown to be related to the differing relative numbers of native point defects on the two sub-lattices.

  3. Strain behavior of quantum wires and quantum boxes in III-V material systems

    NASA Astrophysics Data System (ADS)

    Tentarelli, Eric S.

    Directly etched and regrown quantum wires and quantum boxes have been fabricated, characterized, and modeled in order to study the behavior of non-uniform strain in quantum heterostructures in III-V material systems. Photoluminescence data show a dramatic decrease in peak intensity as quantum wire or box width decreases, while the energy at which peak emission occurs and the width of the emission peak both increase with decreasing feature width. It is shown that strain is primarily responsible for these three effects, as each quantum heterostructure's growth-direction dilation, caused by horizontal lattice-matching to the substrate and cap layer, is opposed by growth-direction compression from lattice-matching the cladding material on the heterostructure sidewalls. Through photoluminescence data and calculations based on transmission electron microscopy measurements of spatial variation of lattice constant, the peak intensity reduction, peak energy shift, and spectral broadening are quantitatively explained by a combination of non-uniform strain behavior and purely geometric considerations. That these factors suffice to explain the observed intensity reduction also refutes the presence of strain-induced dislocations. A new theoretical analysis of strain behavior in quantum heterostructures is developed, valid for small systems whose discreteness precludes classical continuum treatment. The variation of growth-direction and in-plane lattice constants within a quantum heterostructure and the surrounding cladding is systematically derived, and novel predictions are made; the aspect ratio of the quantum wire or quantum box cross-section is found to be the principal determinant of the qualitative strain behavior. A computer simulation, executing lattice dynamics at the atomic level using the Stillinger-Weber and modified Lennard-Jones potentials, is created and is successfully used to confirm all predictions of the theoretical model. The simulation, able to model any quantum well, quantum wire, or quantum box system in III- V zincblende materials, also adds quantitative predictability to the theoretical analysis and illuminates the experimental photoluminescence and microscopy data.

  4. Design and Growth of III-V on Si Microwire Array Tandem Solar Cells Christopher T. Chen1

    E-print Network

    Atwater, Harry

    Design and Growth of III-V on Si Microwire Array Tandem Solar Cells Christopher T. Chen1 , Daniel B Abstract -- Tandem Ga1-xInxP/Si microwire array solar cells are a route towards a high efficiency, low cost "buffer" layer between the bottom cell and tunnel junction is assumed to harbor a high density of lattice

  5. XPS as characterization tool for PV: From the substrate to complete III-V multijunction solar cells

    Microsoft Academic Search

    M. Gabas; M. C. Lopez-Escalante; C. Algora; I. Rey-Stolle; E. Barrigon; I. Garcia; B. Galiana; S. Palanco; S. Bijani; J. R. Ramos-Barrado

    2011-01-01

    This contribution aims to illustrate the potential of the X-ray photoelectron spectroscopy (XPS) technique as a tool to analyze different parts of a solar cell (surface state, heterointerfaces, profile composition of ohmic contacts, etc). Here, the analysis is specifically applied to III-V multijunction solar cells used in concentrator systems. The information provided from such XPS analysis has helped to understand

  6. Interface engineering and chemistry of Hf-based high-k dielectrics on III-V substrates

    NASA Astrophysics Data System (ADS)

    He, Gang; Chen, Xiaoshuang; Sun, Zhaoqi

    2013-03-01

    Recently, III-V materials have been extensively studied as potential candidates for post-Si complementary metal-oxide-semiconductor (CMOS) channel materials. The main obstacle to implement III-V compound semiconductors for CMOS applications is the lack of high quality and thermodynamically stable insulators with low interface trap densities. Due to their excellent thermal stability and relatively high dielectric constants, Hf-based high-k gate dielectrics have been recently highlighted as the most promising high-k dielectrics for III-V-based devices. This paper provides an overview of interface engineering and chemistry of Hf-based high-k dielectrics on III-V substrates. We begin with a survey of methods developed for generating Hf-based high-k gate dielectrics. To address the impact of these hafnium based materials, their interfaces with GaAs as well as a variety of semiconductors are discussed. After that, the integration issues are highlighted, including the development of high-k deposition without Fermi level pinning, surface passivation and interface state, and integration of novel device structure with Si technology. Finally, we conclude this review with the perspectives and outlook on the future developments in this area. This review explores the possible influences of research breakthroughs of Hf-based gate dielectrics on the current and future applications for nano-MOSFET devices.

  7. High Efficiency Nanostructured III-V Photovoltaics for Solar Concentrator Application

    SciTech Connect

    Hubbard, Seth

    2012-09-12

    The High Efficiency Nanostructured III-V Photovoltaics for Solar Concentrators project seeks to provide new photovoltaic cells for Concentrator Photovoltaics (CPV) Systems with higher cell efficiency, more favorable temperature coefficients and less sensitivity to changes in spectral distribution. The main objective of this project is to provide high efficiency III-V solar cells that will reduce the overall cost per Watt for power generation using CPV systems.This work is focused both on a potential near term application, namely the use of indium arsenide (InAs) QDs to spectrally "tune" the middle (GaAs) cell of a SOA triple junction device to a more favorable effective bandgap, as well as the long term goal of demonstrating intermediate band solar cell effects. The QDs are confined within a high electric field i-region of a standard GaAs solar cell. The extended absorption spectrum (and thus enhanced short circuit current) of the QD solar cell results from the increase in the sub GaAs bandgap spectral response that is achievable as quantum dot layers are introduced into the i-region. We have grown InAs quantum dots by OMVPE technique and optimized the QD growth conditions. Arrays of up to 40 layers of strain balanced quantum dots have been experimentally demonstrated with good material quality, low residual stain and high PL intensity. Quantum dot enhanced solar cells were grown and tested under simulated one sun AM1.5 conditions. Concentrator solar cells have been grown and fabricated with 5-40 layers of QDs. Testing of these devices show the QD cells have improved efficiency compared to baseline devices without QDs. Device modeling and measurement of thermal properties were performed using Crosslight APSYS. Improvements in a triple junction solar cell with the insertion of QDs into the middle current limiting junction was shown to be as high as 29% under one sun illumination for a 10 layer stack QD enhanced triple junction solar cell. QD devices have strong potential for net gains in efficiency at high concentration.

  8. Ga-rich GaxIn1-xP solar cells on Si with 1.95 eV bandgap for ideal III-V/Si photovoltaics

    NASA Astrophysics Data System (ADS)

    Ratcliff, Christopher; Grassman, T. J.; Carlin, J. A.; Chmielewski, D. J.; Ringel, S. A.

    2014-03-01

    Theoretical models for III-V compound multijunction solar cells show that solar cells with bandgaps of 1.95-2.3 eV are needed to create ideal optical partitioning of the solar spectrum for device architectures containing three, four and more junctions. For III-V solar cells integrated with an active Si sub-cell, GaInP alloys in the Ga-rich regime are ideal since direct bandgaps of up to ~ 2.25 eV are achieved at lattice constants that can be integrated with appropriate GaAsP, SiGe and Si materials, with efficiencies of almost 50% being predicted using practical solar cell models under concentrated sunlight. Here we report on Ga-rich, lattice-mismatched Ga0.57In0.43P sub-cell prototypes with a bandgap of 1.95 eV grown on tensile step-graded metamorphic GaAsyP1-y buffers on GaAs substrates. The goal is to create a high bandgap top cell for integration with Si-based III-V/Si triple-junction devices. Excellent carrier collection efficiency was measured via internal quantum efficiency measurements and with their design being targeted for multijunction implementation (i.e. they are too thin for single junction cells), initial cell results are encouraging. The first generation of identical 1.95 eV cells on Si were fabricated as well, with efficiencies for these large bandgap, thin single junction cells ranging from 7% on Si to 11% on GaAs without antireflection coatings, systematically tracking the change in defect density as a function of growth substrate.

  9. Ion implantation for high performance III-V JFETS and HFETS

    SciTech Connect

    Zolper, J.C.; Baca, A.G.; Sherwin, M.E.; Klem, J.F.

    1996-06-01

    Ion implantation has been an enabling technology for realizing many high performance electronic devices in III-V semiconductor materials. We report on advances in ion implantation processing for GaAs JFETs (joint field effect transistors), AlGaAs/GaAs HFETs (heterostructure field effect transistors), and InGaP or InAlP-barrier HFETs. The GaAs JFET has required the development of shallow p-type implants using Zn or Cd with junction depths down to 35 nm after the activation anneal. Implant activation and ionization issues for AlGaAs are reported along with those for InGaP and InAlP. A comprehensive treatment of Si-implant doping of AlGaAs is given based on donor ionization energies and conduction band density-of-states dependence on Al-composition. Si and Si+P implants in InGaP are shown to achieve higher electron concentrations than for similar implants in AlGaAs due to absence of the deep donor level. An optimized P co- implantation scheme in InGaP is shown to increase the implanted donor saturation level by 65%.

  10. Positron annihilation studies of defects in molecular beam epitaxy grown III-V layers

    SciTech Connect

    Umlor, M.T.; Keeble, D.J. [Michigan Technological Univ., Houghton, MI (United States). Dept. of Physics; Asoka-Kumar, P.; Lynn, K.G. [Brookhaven National Lab., Upton, NY (United States); Cooke, P.W. [Geo-Centers, Inc., Eatontown, NJ (United States). Fort Monmouth Operation

    1994-08-01

    A summary of recent positron annihilation experiments on molecular beam epitaxy (MBE) grown III-V layers is Presented. Variable energy positron beam measurements on Al{sub 0.32}Ga{sub 0.68}As undoped and Si doped have been completed. Positron trapping at a open volume defect in Al{sub 0.32}Ga{sub 0.68}:Si for temperatures from 300 to 25 K in the dark was observed. The positron trap was lost after 1.3 eV illumination at 25K. These results indicate an open volume defect is associated with the local structure of the deep donor state of the DX center. Stability of MBE GaAs to thermal annealing war, investigated over the temperature range of 230 to 700{degrees}C, Proximity wafer furnace anneals in flowing argon were used, Samples grown above 450{degrees}C were shown to be stable but for sample below this temperature an anneal induced vacancy related defect was produced for anneals between 400 and 500{degrees}C. The nature of the defect was shown to be different for material grown at 350 and 230{degrees}C. Activation energies of 2.5 eV to 2.3 eV were obtained from isochronal anneal experiments for samples grown at 350 and 230{degrees}C, respectively.

  11. Simulation of III-V strained quantum well lasers with coupled concentric racetrack resonators

    NASA Astrophysics Data System (ADS)

    Viegas, Jaime; Xing, Peng; Serunjogi, Solomon M.

    2014-03-01

    The simulation of the lasing behavior of semiconductor quantum well structures with accurate description of transport phenomena and optical propagation poses great challenges when complex epitaxial layers are coupled with optical cavities in the transverse direction that are more complex than the well know Fabry-Pérot and distributed feedbackreflector based resonators. In this work, we present an approximate approach for the simulation of an electricallypumped III-V strained quantum well laser with coupled concentric racetrack resonators. The electrical, thermal and optical behavior of an epitaxial stack with at least one quantum well is obtained from a physics based simulator for a reduced dimensionality problem, and this solution is coupled with the cold cavity analysis of the resonator using either finite difference time domain simulation or coupled-mode analysis. The effects of gain and charge transport on the active resonator are then taken into account as a perturbation and the approximate solution derived. Comparison with actual devices based on InGaAlAs/InGaAs/InP and InGaSb/AlGaAsSb/GaSb shows reasonable agreement. The concentric racetrack resonator exhibits complex dispersive behavior, with possible applications in sensing, nonlinear phenomena and optical signal processing.

  12. Raising the Efficiency Ceiling with Multijunction III-V Concentrator Photovoltaics

    SciTech Connect

    King, R. R.; Boca, A.; Edmondson, K. M.; Romero, M. J.; Yoon, H.; Law, D. C.; Fetzer, C. M.; Haddad, M.; Zakaria, A.; Hong, W.; Mesropian, S.; Krut, D. D.; Kinsey, G. S.; Pien, R.; Sherif, R. A.; Karam, N. H.

    2008-01-01

    In this paper, we look at the question 'how high can solar cell efficiency go?' from both theoretical and experimental perspectives. First-principle efficiency limits are analyzed for some of the main candidates for high-efficiency multijunction terrestrial concentrator cells. Many of these cell designs use lattice-mismatched, or metamorphic semiconductor materials in order to tune subcell band gaps to the solar spectrum. Minority-carrier recombination at dislocations is characterized in GaInAs inverted metamorphic solar cells, with band gap ranging from 1.4 to 0.84 eV, by light I-V, electron-beam-induced current (EBIC), and cathodoluminescence (CL). Metamorphic solar cells with a 3-junction GaInP/ GaInAs/ Ge structure were the first cells to reach over 40% efficiency, with an independently confirmed efficiency of 40.7% (AM1.5D, low-AOD, 240 suns, 25 C). The high efficiency of present III-V multijunction cells now in high-volume production, and still higher efficiencies of next-generation cells, is strongly leveraging for low-cost terrestrial concentrator PV systems.

  13. Alternative N-, P- and As-precursors for III/V-epitaxy

    NASA Astrophysics Data System (ADS)

    Stolz, W.

    2000-02-01

    The present status of the research on alternative metalorganic P- as well as As-compounds is briefly summarized, leading to tertiarybutylphosphine (TBP) and tertiarybutylarsine (TBAs) as optimal choices as P- and As-precursors for III/V-epitaxy techniques. A variety of different N-compounds is applied for the MOVPE deposition of III-nitride layers. Due to the different thermal cracking behavior of alkylamine compounds as compared to the respective P- and As-counterparts, these compounds lead to a high C-incorporation. Thus, 1,1-dimethylhydrazine (UDMHy) or correspondingly substituted hydrazine compounds seem to be the most viable alternative sources for N in MOVPE. In addition, the realization of high-quality heterostructures in the novel, metastable (GaIn)(NAs)/GaAs material systems using TBAs and UDMHy is described leading to GaAs-based 1.3 ?m laser diodes with promising device characteristics. Finally, the realization of high purity, low-O-content (AlGa)As and (AlGaIn)P layers using TBAs and TBP, respectively, is demonstrated. These experiments clearly underline that the application of TBAs and TBP not only leads to a safer and more efficient epitaxial growth process but offers distinct advantages in particular for the realization of high-quality layers and novel device structures at reduced deposition temperatures also for high-Al-concentration heterostructures.

  14. Diamagnetic and dielectric susceptibilities of III-V nitride compound semiconductors

    NASA Astrophysics Data System (ADS)

    Sahu, T.; Nayak, S. K.; Acharya, R. N.

    1991-09-01

    We calculate the magnetic susceptibility (?) and dielectric constant (? 0) of III-V isoanionic series of nitride compounds (BN, AIN, GaN, and InN) by using a linear combination of hybrids (LCH) method developed by us. We have constructed basic functions for the valence and conduction bands and used them in the general expression for ? of intrinsic semiconductors to derive an expression for ? of these A NB 8-N semiconductors. We have also used our LCH basis states in the Kramers-Kronig relation at w = 0 to obtain an expression for ? 0 of these tetrahedral semiconductors. We have used the Hall-Weaire approximation to calculate the matrix elements between different hybrids and made an average energy gap ansatz ( Eg) for the energy gap denominator occuring in the expression for ? and ? 0. Our expression for ? and ? 0, which are obtained in terms of matrix elements between intrasite hybrids and between adjacent hybrids forming a bond, are free from any scaling parameter. There is good agreement between our results and the available experimental results. We have shown that our results of ? and ? 0 are related to the tetrahedral chemical-bond parameters such as bond length, ionicity, overlap integral and average energy gap of these solids.

  15. Fabrication of III-V nano- and microtubes using MOVPE grown materials

    NASA Astrophysics Data System (ADS)

    Paetzelt, H.; Gottschalch, V.; Bauer, J.; Herrnberger, H.; Wagner, G.

    2006-04-01

    We fabricated III-V nano- and microtubes with a diameter in the range of 140 nm to 6 ?m using strained heterostructures with high quality interfaces, which were grown by metal-organic vapor-phase epitaxy (MOVPE). Investigations of the two-layer system BGaAs/InGaAs which forms tubes by selective etching of an AlAs sacrificial layer are presented. Calculations of the tube diameter and the internal strain using continuum strain theory dependent on the layer thickness and composition were made. We also fabricated AlGaAs/InGaAs microtubes containing a GaAs quantum well (QW) in different sections of the AlGaAs barrier material and studied the optical properties of this embedded QW using photo- and cathodoluminescence spectroscopy at different temperatures. By measuring the luminescence peak-shift of the QW caused by uniaxially stress, we were able to verify our calculations of the radial profile of the strain within the microtube wall.

  16. Exploring cryogenic focused ion beam milling as a Group III-V device fabrication tool

    NASA Astrophysics Data System (ADS)

    Dolph, Melissa Commisso; Santeufemio, Christopher

    2014-06-01

    In this paper, we compare the features observed on a Group III-V strained layer superlattice (SLS) materials system as a result of room temperature Ga+ focused ion beam (FIB) milling to the features observed as a result of cryogenic FIB (cryo-FIB) milling at -135 °C under the same beam conditions (30 kV:1 nA). The features on the cryo-FIB milled material were observed both when the material was still cold and after it returned to room temperature. Although cryo-FIB milling yielded patterned features that were initially cleaner than comparable features defined by FIB milling at room temperature, we found that both room temperature FIB milling and cryo-FIB milling with subsequent sample warm-up resulted in the formation of Group III enriched features. These findings suggest that the structural and chemical properties of features fabricated by cryo-FIB milling are temperature-dependent, which is an important consideration when it comes to device fabrication. These dependencies will need to be better understood and controlled if cryo-FIB milling is to have future applications in this area.

  17. III-V Multi-junction solar cells and concentrating photovoltaic (CPV) systems

    NASA Astrophysics Data System (ADS)

    Philipps, Simon P.; Bett, Andreas W.

    2014-12-01

    It has been proven that the only realistic path to practical ultra-high efficiency solar cells is the monolithic multi-junction approach, i.e., to stack pn-junctions made of different semiconductor materials on top of each other. Each sub pn-junction, i.e., sub solar cell, converts a specific part of the sun's spectrum. In this way, the energy of the sunlight photons is converted with low thermalization losses. However, large-area multi-junction solar cells are still far too expensive if applied in standard PV modules. A viable solution to solve the cost issue is to use tiny solar cells in combination with optical concentrating technology, in particular, high concentrating photovoltaics (HCPV), in which the light is concentrated over the solar cells more than 500 times. The combination of ultra-high efficient solar cells and optical concentration lead to low cost on system level and eventually to low levelized cost of electricity, today, well below 8 €cent/kWh and, in the near future, below 5 €cent/kWh. A wide variety of approaches exists for III-V multi-junction solar cells and HCPV systems. This article is intended to provide an overview about the different routes being followed.

  18. Gate control of Berry phase in III-V semiconductor quantum dots

    NASA Astrophysics Data System (ADS)

    Prabhakar, Sanjay; Melnik, Roderick; Bonilla, Luis L.

    2014-06-01

    We analyze the Berry phase in III-V semiconductor quantum dots (QDs). We show that the Berry phase is highly sensitive to electric fields arising from the interplay between the Rashba and Dresselhaus spin-orbit (SO) couplings. We report that the accumulated Berry phase can be induced from other available quantum states that differ only by one quantum number of the corresponding spin state. The sign change in the g-factor due to the penetration of Bloch wave functions into the barrier materials can be reflected in the Berry phase. We provide characteristics of the Berry phase for three different length scales (spin-orbit length, hybrid orbital length, and orbital radius). We solve the time-dependent Schrödinger equation by utilizing the Feynman disentangling technique, and we investigate the evolution of spin dynamics during the adiabatic transport of QDs in the two-dimensional plane. Our results can pave the way to building a topological quantum computer in which the Berry phase can be engineered and be manipulated with the application of the spin-orbit couplings through gate-controlled electric fields.

  19. A survey of ohmic contacts to III-V compound semiconductors

    SciTech Connect

    Baca, A.G.; Zolper, J.C.; Briggs, R.D. [Sandia National Labs., Albuquerque, NM (United States); Ren, F. [Lucent Technologies, Murray Hill, NJ (United States); Pearton, S.J. [Univ. of Florida, Gainesville, FL (United States)

    1997-04-01

    A survey of ohmic contact materials and properties to GaAs, InP, GaN will be presented along with critical issues pertaining to each semiconductor material. Au-based alloys (e.g., GeAuNi for n-type GaAs) are the most commonly used contacts for GaAs and InP materials for both n- and p-type contacts due to the excellent contact resistivity, reliability, and usefulness over a wide range of doping levels. Research into new contacting schemes for these materials has focused on addressing limitations of the conventional Au-alloys in thermal stability, propensity for spiking, poor edge definition, and new approaches for a non-alloyed contact. The alternative contacts to GaAs and InP include alloys with higher temperature stability, contacts based on solid phase regrowth, and contacts that react with the substrate to form lower bandgap semiconductors alloys at the interface. A new area of contact studies is for the wide bandgap group III-Nitride materials. At present, low resistivity ohmic contact to p-type GaN has not been obtained primarily due to the large acceptor ionization energy and the resultant difficulty in achieving high free hole concentrations at room temperature. For n-type GaN, however, significant progress has been reported with reactive Ti-based metalization schemes or the use of graded InGaN layers. The present status of these approaches will be reviewed.

  20. Effects of Strain and Local Charge on the Formation of Deep Defects in III-V Ternary Alloys

    Microsoft Academic Search

    A. Amore Bonapasta; P. Giannozzi

    2000-01-01

    The effects of external and internal strains and of defect charges on the formation of gallium vacancies and arsenic antisites in GaAs and In0.5Ga0.5As have been investigated by ab initio density functional methods. Present results show that a proper understanding of strain and defect charge permits the development of a defect engineering of semiconductors. Specifically, they predict that arsenic antisites

  1. Quantitative secondary ion mass spectrometry (SIMS) of III-V materials

    NASA Astrophysics Data System (ADS)

    Van Lierde, Patrick; Tian, Chunsheng; Rothman, Bruce; Hockett, Richard A.

    2002-05-01

    Secondary ion mass spectrometry (SIMS) provides direct methods to characterize the chemical composition of III-V materials at major, minor and trace level concentrations as a function of layer depth. SIMS employs keV primary ions to sputter the surface and sensitive mass spectrometry techniques to mass analyze and detect sputtered secondary ions which are characteristic of the sample composition. In-depth compositional analysis of these materials by SIMS relies on a number of its unique features including: (1) keV primary ion sputtering yielding nanometer depth resolutions, (2) the use of MCs+ detection techniques for quantifying major and minor constituents, and (3) ion implant standards for quantifying trace constituents like dopants and impurities. Nanometer depth resolution in SIMS sputtering provides accurate detection of diffusion of dopants, impurities and major constituents. MCs+ refers to the detection of molecular ions of an element (M) and the Cs+ primary beam. MCs+ minimizes SIMS matrix effects in analysis for major and minor constituents, thus providing good quantification. This paper presents a SIMS study of AlxGa(1-x)As structures with three different x values. MCs+ (M=Al or Ga) data are presented for the accurate determination of major and minor components. Rutherford backscattering spectrometry (RBS) and x-ray diffraction (XRD) data were cross-correlated with the MCs+ results. Three specimens with different x values were ion implanted with H, C, O, Mg, Si, Zn and Se to study quantification of trace levels. SIMS data acquired on a double focusing instrument (CAMECA IMS-4f) and a quadrupole instrument (PHI ADEPT 1010) are also compared. Lastly, we discuss our efforts to improve the analysis precision for p- and n-type dopants in AlGaAs which currently is +/- 3% (1 sigma).

  2. A novel surface preparation methodology for epi-ready antimonide based III-V substrates

    NASA Astrophysics Data System (ADS)

    Dutta, P. S.; Rajagopalan, G.; Kim, H. J.; Kumar, A.

    2005-05-01

    Surfaces of GaSb substrates currently available from various commercial vendors are nowhere close to device grade GaAs, Si or InP wafer surfaces. Hence epitaxial growth and device fabrication on as-received commercial substrates poses significant difficulties amongst antimonide based researchers. Antimonide based materials are known to have poor surface oxide quality and not so well understood chemical reactions with various chemicals used to remove the oxides prior to growth. There are no existing reports on the detailed recipe for the preparation of "atomically flat and clean" surfaces that works on wafers obtained from various commercial vendors. This paper presents a detailed recipe for obtaining atomically flat and clean GaSb surfaces, irrespective of the initial polishing source. The same recipe (with slight modification) has been found to be successful with other III-V and II-VI compounds. The novel surface preparation process developed in our laboratory includes, chemical-mechanical polishing using an agglomerate-free sub-micron alumina slurry on a soft pad such as velvet, surface cleaning using dilute ammonium or potassium hydroxide-H2O solution and surfactant or glycerol, surface degreasing using organic solvents, oxide desorption using HCl-H2O and HF-H2O mixtures, mild chemical etching using ammonium sulfide and a final rinse in high purity deionized (DI) water and methanol. Using this recipe, we have been able to achieve surfaces with atomic flatness (RMS surface roughness close to 0.5 nm over a 10 x 10 mm2) and extremely clean surfaces, irrespective of the initial contamination or the sources of the wafers. Results of wafer surfaces before and after polishing using our recipe will be presented.

  3. A III-V nanowire channel on silicon for high-performance vertical transistors.

    PubMed

    Tomioka, Katsuhiro; Yoshimura, Masatoshi; Fukui, Takashi

    2012-08-01

    Silicon transistors are expected to have new gate architectures, channel materials and switching mechanisms in ten years' time. The trend in transistor scaling has already led to a change in gate structure from two dimensions to three, used in fin field-effect transistors, to avoid problems inherent in miniaturization such as high off-state leakage current and the short-channel effect. At present, planar and fin architectures using III-V materials, specifically InGaAs, are being explored as alternative fast channels on silicon because of their high electron mobility and high-quality interface with gate dielectrics. The idea of surrounding-gate transistors, in which the gate is wrapped around a nanowire channel to provide the best possible electrostatic gate control, using InGaAs channels on silicon, however, has been less well investigated because of difficulties in integrating free-standing InGaAs nanostructures on silicon. Here we report the position-controlled growth of vertical InGaAs nanowires on silicon without any buffering technique and demonstrate surrounding-gate transistors using InGaAs nanowires and InGaAs/InP/InAlAs/InGaAs core-multishell nanowires as channels. Surrounding-gate transistors using core-multishell nanowire channels with a six-sided, high-electron-mobility transistor structure greatly enhance the on-state current and transconductance while keeping good gate controllability. These devices provide a route to making vertically oriented transistors for the next generation of field-effect transistors and may be useful as building blocks for wireless networks on silicon platforms. PMID:22854778

  4. Difference in formation of ferromagnetic MnAs nanoclusters on III-V semiconducting nanowire templates

    NASA Astrophysics Data System (ADS)

    Hara, Shinjiro; Fujimagari, Hiromu; Sakita, Shinya; Yatago, Masatoshi

    2013-09-01

    The authors report on the differences in ferromagnetic MnAs nanocluster formation on GaAs, GaAs/AlGaAs, GaAs/GaAsP, and InAs nanowire templates by combing selective-area metal-organic vapor phase epitaxy of semiconducting nanowires and endotaxial nanoclustering of MnAs. To characterize the dependences of MnAs nanocluster formation on semiconducting materials of the nanowire templates, GaAs, GaAs/AlGaAs core-shell, and GaAs/GaAsP core-shell nanowires have been grown at 750 °C, whereas InAs nanowires have been grown at 580 °C. MnAs nanoclusters are commonly and most frequently formed at six ridges between two {0-11} crystal facets on hexagonal prisms of III-V semiconducting nanowires. That is presumably because many atomic steps exist between the crystal facets. Here, MnAs nanoclusters are grown "into" the nanowires, as a result of the phenomenon of "endotaxy". Manganese atoms on the nanowires surface form chemical bonds mainly with arsenic atoms of the nanowires, because only manganese organometallic source and hydrogen are supplied, i.e. no supply of arsenic hydride source during the endotaxy of MnAs. In the case of GaAs/GaAsP core-shell and InAs nanowires, however, MnAs nanoclusters are formed on the top {111}B surfaces of the nanowires, as well as at six ridges of the hexagonal prisms. The results obtained in the current work possibly show that the endotaxy of MnAs depends on the thermal stability of the nanowires and/or the strength of atomic bonds in the host materials of nanowires.

  5. III-V semiconductor waveguides for photonic functionality at 780 nm

    NASA Astrophysics Data System (ADS)

    Maclean, Jessica O.; Greenaway, Mark T.; Campion, Richard P.; Pyragius, Tadas; Fromhold, T. Mark; Kent, Anthony J.; Mellor, Christopher J.

    2014-03-01

    Photonic integrated circuits based on III-V semiconductor polarization-maintaining waveguides were designed and fabricated for the first time for application in a compact cold-atom gravimeter1,2 at an operational wavelength of 780 nm. Compared with optical fiber-based components, semiconductor waveguides achieve very compact guiding of optical signals for both passive functions, such as splitting and recombining, and for active functions, such as switching or modulation. Quantum sensors, which have enhanced sensitivity to a physical parameter as a result of their quantum nature, can be made from quantum gases of ultra-cold atoms. A cloud of ultra-cold atoms may start to exhibit quantum-mechanical properties when it is trapped and cooled using laser cooling in a magneto-optical trap, to reach milli-Kelvin temperatures. The work presented here focuses on the design and fabrication of optical devices for a quantum sensor to measure the acceleration of gravity precisely and accurately. In this case the cloud of ultra-cold atoms consists of rubidium (87Rb) atoms and the sensor exploits the hyperfine structure of the D1 transition, from an outer electronic state of 5 2S ½ to 5 2P3/2 which has an energy of 1.589 eV or 780.241 nm. The short wavelength of operation of the devices dictated stringent requirements on the Molecular Beam Epitaxy (MBE) and device fabrication in terms of anisotropy and smoothness of plasma etch processes, cross-wafer uniformities and alignment tolerances. Initial measurements of the optical loss of the polarization-maintaining waveguide, assuming Fresnel reflection losses only at the facets, suggested a loss of 8 dB cm-1, a loss coefficient, ?, of 1.9 (+/-0.3) cm-1.

  6. Accumulation capacitance frequency dispersion of III-V metal-insulator-semiconductor devices due to disorder induced gap states

    SciTech Connect

    Galatage, R. V. [Department of Electrical Engineering, The University of Texas at Dallas, Richardson, Texas 75080 (United States); Zhernokletov, D. M. [Department of Materials Science and Engineering, The University of Texas at Dallas, Richardson, Texas 75080 (United States); Dong, H.; Brennan, B.; Hinkle, C. L. [Department of Physics, The University of Texas at Dallas, Richardson, Texas 75080 (United States); Wallace, R. M. [Department of Materials Science and Engineering, The University of Texas at Dallas, Richardson, Texas 75080 (United States); Department of Physics, The University of Texas at Dallas, Richardson, Texas 75080 (United States); Vogel, E. M. [School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States)

    2014-07-07

    The origin of the anomalous frequency dispersion in accumulation capacitance of metal-insulator-semiconductor devices on InGaAs and InP substrates is investigated using modeling, electrical characterization, and chemical characterization. A comparison of the border trap model and the disorder induced gap state model for frequency dispersion is performed. The fitting of both models to experimental data indicate that the defects responsible for the measured dispersion are within approximately 0.8?nm of the surface of the crystalline semiconductor. The correlation between the spectroscopically detected bonding states at the dielectric/III-V interface, the interfacial defect density determined using capacitance-voltage, and modeled capacitance-voltage response strongly suggests that these defects are associated with the disruption of the III-V atomic bonding and not border traps associated with bonding defects within the high-k dielectric.

  7. Accumulation capacitance frequency dispersion of III-V metal-insulator-semiconductor devices due to disorder induced gap states

    NASA Astrophysics Data System (ADS)

    Galatage, R. V.; Zhernokletov, D. M.; Dong, H.; Brennan, B.; Hinkle, C. L.; Wallace, R. M.; Vogel, E. M.

    2014-07-01

    The origin of the anomalous frequency dispersion in accumulation capacitance of metal-insulator-semiconductor devices on InGaAs and InP substrates is investigated using modeling, electrical characterization, and chemical characterization. A comparison of the border trap model and the disorder induced gap state model for frequency dispersion is performed. The fitting of both models to experimental data indicate that the defects responsible for the measured dispersion are within approximately 0.8 nm of the surface of the crystalline semiconductor. The correlation between the spectroscopically detected bonding states at the dielectric/III-V interface, the interfacial defect density determined using capacitance-voltage, and modeled capacitance-voltage response strongly suggests that these defects are associated with the disruption of the III-V atomic bonding and not border traps associated with bonding defects within the high-k dielectric.

  8. Gold-Free Ternary III–V Antimonide Nanowire Arrays on Silicon: Twin-Free down to the First Bilayer

    PubMed Central

    2013-01-01

    With the continued maturation of III–V nanowire research, expectations of material quality should be concomitantly raised. Ideally, III–V nanowires integrated on silicon should be entirely free of extended planar defects such as twins, stacking faults, or polytypism, position-controlled for convenient device processing, and gold-free for compatibility with standard complementary metal–oxide–semiconductor (CMOS) processing tools. Here we demonstrate large area vertical GaAsxSb1–x nanowire arrays grown on silicon (111) by molecular beam epitaxy. The nanowires’ complex faceting, pure zinc blende crystal structure, and composition are mapped using characterization techniques both at the nanoscale and in large-area ensembles. We prove unambiguously that these gold-free nanowires are entirely twin-free down to the first bilayer and reveal their three-dimensional composition evolution, paving the way for novel infrared devices integrated directly on the cost-effective Si platform. PMID:24329502

  9. Origin of d0 magnetism in II-VI and III-V semiconductors by substitutional doping at anion site

    Microsoft Academic Search

    Kesong Yang; Rongqin Wu; Lei Shen; Yuan Ping Feng; Ying Dai; Baibiao Huang

    2010-01-01

    By first-principles electronic structure calculations on carbon and nitrogen doped II-VI and III-V semiconductors, we demonstrate that substitutional doping at anion site by 2p light elements results in spontaneous spin polarization. However, to have a stable magnetic ground state, the 2p orbitals of the dopant must be sufficiently localized in the energy gap of the host semiconductors. The spin magnetic

  10. Bianchi type- I, III, V, VIo and Kantowski-Sachs models in scalar-tensor theories with dynamic cosmological constant

    NASA Astrophysics Data System (ADS)

    Singh, T.; Chaubey, R.

    2008-12-01

    The effect of a time-dependent cosmological constant is considered in a family of scalar-tensor theories. The Bianchi type I, III, V, VIo and Kantowski-Sachs models for vacuum and perfect fluid matter are found. The gravitational constant decreases with time so that these models satisfy the Dirac hypothesis. The “cosmological constant” also decreases with time, therefore it can have a very small value at the present time.

  11. Tunnel Diode Modeling, Including Nonlocal Trap-Assisted Tunneling: A Focus on III–V Multijunction Solar Cell Simulation

    Microsoft Academic Search

    Mathieu Baudrit; Carlos Algora

    2010-01-01

    Multijunction solar cells (MJCs) based on III-V semiconductors constitute the state-of-the-art approach for high-efficiency solar energy conversion. These devices, consisting of a stack of various solar cells, are interconnected by tunnel diodes. Reliable simulations of the tunnel diode behavior are still a challenge for solar cell applications. In this paper, a complete description of the model implemented in Silvaco ATLAS

  12. LATTICE THERMAL CONDUCTIVITY OF p-TYPE III-V SEMICONDUCTORS AND p-Si AT LOW TEMPERATURES

    E-print Network

    Paris-Sud XI, Université de

    , India (Reçu le 10 janvier 1974) Résumé. 2014 Le rôle des interactions entre phonons et trou lié dans la phonons sont dus aux effets de bord, aux défauts ponctuels et aux phonons eux-mêmes. En général, les hole-phonon interaction in the phonon conductivity of lightly doped p-type III-V semiconductors

  13. Estimation of the isotope effect on the lattice thermal conductivity of group IV and group III-V semiconductors

    Microsoft Academic Search

    D. T. Morelli; J. P. Heremans; G. A. Slack

    2002-01-01

    The isotope effect on the lattice thermal conductivity for group IV and group III-V semiconductors is calculated using the Debye-Callaway model modified to include both transverse and longitudinal phonon modes explicitly. The frequency and temperature dependences of the normal and umklapp phonon-scattering rates are kept the same for all compounds. The model requires as adjustable parameters only the longitudinal and

  14. Impact of Interface States on Sub-threshold Response of III-V MOSFETs, MOS HEMTs and Tunnel FETs

    E-print Network

    Yener, Aylin

    Impact of Interface States on Sub-threshold Response of III-V MOSFETs, MOS HEMTs and Tunnel FETs W MOSFETs with ALD Al2O3, HfO2 and MBD LaAlO3 oxides as well as insulated gate InGaAs MOS HEMT devices haveGaAs based MOSFETs and MOS HEMTs with the former typically showing higher values than the latter [9

  15. Understanding the Potential and Limitations of Dilute Nitride Alloys for Solar Cells

    SciTech Connect

    Kurtz, S.; Ptak, A.; Johnston, S.; Kramer, C.; Young, M.; Friedman, D.; Geisz, J.; McMahon, W.; Kibbler, A.; Olson, J.; Crandall, R.; Branz, H.

    2005-11-01

    Dilute nitride alloys provide a powerful tool for engineering the band gap and lattice constant of III-V alloys. However, nitrogen degrades the performance of GaAs solar cells. This project seeks to understand and demonstrate the limits of performance of GaInNAs alloys by (a) correlating deep-level transient spectroscopy (DLTS) data with device performance and (b) using molecular beam epitaxy (MBE) to reduce background impurity concentrations.

  16. Thermodynamic analysis of the short-range clustering in III V solid solutions

    E-print Network

    Boyer, Edmond

    , France (**) CNRS, Laboratoire de Physique du Solide et de l'Energie solaire, rue B. Grégory, Sophia for predict- ing experimental conditions of temary or quatemary crystal growth. A strain energy term associated with lattice mismatch may be introduced [1-3] in the Gibbs energy of the alloy. On the other hand

  17. III-V compound semiconductor growth on silicon via germanium buffer and surface passivation for CMOS technology

    NASA Astrophysics Data System (ADS)

    Choi, Donghun

    Integration of III-V compound semiconductors on silicon substrates has recently received much attention for the development of optoelectronic and high speed electronic devices. However, it is well known that there are some key challenges for the realization of III-V device fabrication on Si substrates: (i) the large lattice mismatch (in case of GaAs: 4.1%), and (ii) the formation of antiphase domain (APD) due to the polar compound semiconductor growth on non-polar elemental structure. Besides these growth issues, the lack of a useful surface passivation technology for compound semiconductors has precluded development of metal-oxide-semiconductor (MOS) devices and causes high surface recombination parasitics in scaled devices. This work demonstrates the growth of high quality III-V materials on Si via an intermediate Ge buffer layer and some surface passivation methods to reduce interface defect density for the fabrication of MOS devices. The initial goal was to achieve both low threading dislocation density (TDD) and low surface roughness on Ge-on-Si heterostructure growth. This was achieved by repeating a deposition-annealing cycle consisting of low temperature deposition + high temperature-high rate deposition + high temperature hydrogen annealing, using reduced-pressure chemical-vapor deposition (CVD). We then grew III-V materials on the Ge/Si virtual substrates using molecular-beam epitaxy (MBE). The relationship between initial Ge surface configuration and antiphase boundary formation was investigated using surface reflection high-energy electron diffraction (RHEED) patterns and atomic force microscopy (AFM) image analysis. In addition, some MBE growth techniques, such as migration enhanced epitaxy (MEE) and low temperature GaAs growth, were adopted to improve surface roughness and solve the Ge self-doping problem. Finally, an Al2O3 gate oxide layer was deposited using atomic-layer-deposition (ALD) system after HCl native oxide etching and ALD in-situ pre-annealing at 400 °C. A 100 nm thick aluminum layer was deposited to form the gate contact for a MOS device fabrication. C-V measurement results show very small frequency dispersion and 200-300 mV hysteresis, comparable to our best results for InGaAs/GaAs MOS structures on GaAs substrate. Most notably, the quasi-static C-V curve demonstrates clear inversion layer formation. I-V curves show a reasonable leakage current level. The inferred midgap interface state density, Dit, of 2.4 x 1012 eV-1cm-2 was calculated by combined high-low frequency capacitance method. In addition, we investigated the interface properties of amorphous LaAlO 3/GaAs MOS capacitors fabricated on GaAs substrate. The surface was protected during sample transfer between III-V and oxide molecular beam deposition (MBD) chambers by a thick arsenic-capping layer. An annealing method, a low temperature-short time RTA followed by a high temperature RTA, was developed, yielding extremely small hysteresis (˜ 30 mV), frequency dispersion (˜ 60 mV), and interface trap density (mid 1010 eV-1cm -2). We used capacitance-voltage (C-V) and current-voltage (I-V) measurements for electrical characterization of MOS devices, tapping-mode AFM for surface morphology analysis, X-ray photoelectron spectroscopy (XPS) for chemical elements analysis of interface, cross section transmission-electron microscopy (TEM), X-ray diffraction (XRD), secondary ion mass spectrometry (SIMS), and photoluminescence (PL) measurement for film quality characterization. This successful growth and appropriate surface treatments of III-V materials provides a first step for the fabrication of III-V optical and electrical devices on the same Si-based electronic circuits.

  18. Lasing characteristics and optical properties of II-VI and III-V semiconductor microdisks

    NASA Astrophysics Data System (ADS)

    Wang, Wei-Hua

    This dissertation focuses on exploring the interaction between confined photons and confined electronic states in new classes of semiconductor microcavities. We apply epitaxial and microfabrication technologies to make semiconductor microstructures that contain embedded nanostructures such as quantum wells and quantum dots. We use optical techniques, such as cryogenic static and dynamic microphotoluminescence, to study the physics of confined photons and confined electronic states in these systems. The first set of experiments focus on ZnSe microdisks containing Zn 0.7Cd0.3Se quantum wells. Unlike the more extensively investigated microcavities based upon the III-V semiconductors, these wide band gap systems are expected to be characterized by stronger excitonic effects. We have developed new protocols for the consistent fabrication of ZnSe microdisks of high structural quality, supported on (Al,Ga)As pedestals. The photoluminescence emission spectrum is dominated by excitonic recombination in the quantum well region. We observe a set of sharp emission lines on the low energy shoulder of the quantum well photoluminescence. We attribute these features to the coupling between exciton emission and the whispering-gallery modes of the microdisk. This inference is consistent with our temperature-dependent measurements. However, power-dependent measurements of these microdisks did not produce any evidence for stimulated emission, even when excited at high optical intensities using pulsed excitation. We conclude that harmful surface recombination may be responsible for these observations. The next set of experiments focus on the steady state and dynamic optical properties of GaAs/(Ga,Al)As microdisk containing interface fluctuation quantum dots. These constitute a departure from previously studied GaAs/(Ga,Al)As microdisk systems that contain self assembled quantum dots. We have developed a new processing protocol for fabricating these microdisks, including a surface passivation technique that greatly enhances the optical properties of these systems. Stimulated emission is achieved in the microdisk cavity using optical excitation. Steady-state measurements of the stimulated emission via whispering gallery modes yield a quality factor Q ˜ 5800 and a coupling constant beta ˜ 0.09. The broad gain spectrum produces mode hopping between spectrally adjacent whispering gallery modes as a function of temperature and excitation power. (Abstract shortened by UMI.)

  19. Hybrid integration of III-V and silicon materials and devices

    NASA Astrophysics Data System (ADS)

    Luo, Zhongsheng

    Laser liftoff (LLO) based hybrid integration techniques including the double-transfer process and the pixel-to-point transfer process have been developed to integrate III-V photonics with silicon materials and circuitry. No degradation in the device performance has been observed using the LLO based transfer techniques. On the contrary, performance improvements in both electrical characteristics and electroluminescence (EL) output have been found for the (In,Ga)N light emitting diodes (LEDs) transferred onto Si substrate. Based on computer simulation, it is found that as much as 70% enhancement in EL output could be expected by optimizing the metal layering on the backside of the transferred LEDs. In order to understand the existing experimental data and improve controllability and damage-free transfer yield of the LLO process, a novel, comprehensive LLO model based on thermal-mechanical analysis has been proposed and developed. The LLO model has been validated in the well-studied GaN/sapphire system. By employing the LLO based transfer technique, two optoelectronic systems have been designed and demonstrated. The first one is an integrated fluorescence microsystem, which involved the integration of Cd(S,Se) bandgap filters, (In,Ga)N LEDs, Poly(dimethylsiloxane) (PDMS) microfluidic channels with a pre-fabricated Si PIN photodiode chip. Prototypes with both one color (blue LED) excitation and two-color (blue and green LED) excitation have consistently demonstrated a detection capability of as low as 1 nM fluosphere beads using Molecular Probes FluoSpheresRTM dye. Furthermore, the feasibility of multi-wavelength design has been verified using the bi-wavelength prototype. To optimize signal-to-noise ratio and detection sensitivity of the microsystem via system design, an in-depth mathematic analysis has also been performed. The second application is a zero-footprint optical metrology wafer, which relies on the reflection at the optical detection window, through which important parameters such as thickness, refractive index and density of the film on top of the detecting window can be probed in a real-time and location-specific manner. A novel methodology has been developed to ensure accurate and precise measurement across the wafer. A prototype wafer with 3x3 metrology cells has been prototyped and calibrated using a SF6 plasma etching process of silicon oxide.

  20. Chemical and morphological characterization of III-V strained layered heterostructures

    NASA Astrophysics Data System (ADS)

    Gray, Allen Lindsay

    This dissertation describes investigations into the chemical and morphological characterization of III-V strained layered heterostructures by high-resolution x-ray diffraction. The purpose of this work is two-fold. The first was to use high-resolution x-ray diffraction coupled with transmission electron microscopy to characterize structurally a quaternary AlGaAsSb/InGaAsSb multiple quantum well heterostructure laser device. A method for uniquely determining the chemical composition of the strain quaternary quantum well, information previously thought to be unattainable using high resolution x-ray diffraction is thoroughly described. The misconception that high-resolution x-ray diffraction can separately find the well and barrier thickness of a multi-quantum well from the pendellosung fringe spacing is corrected, and thus the need for transmission electron microscopy is motivated. Computer simulations show that the key in finding the well composition is the intensity of the -3rd order satellite peaks in the diffraction pattern. The second part of this work addresses the evolution of strain relief in metastable multi-period InGaAs/GaAs multi-layered structures by high-resolution x-ray reciprocal space maps. Results are accompanied by transmission electron and differential contrast microscopy. The evolution of strain relief is tracked from a coherent "pseudomorphic" growth to a dislocated state as a function of period number by examining the x-ray diffuse scatter emanating from the average composition (zeroth-order) of the multi-layer. Relaxation is determined from the relative positions of the substrate with respect to the zeroth-order peak. For the low period number, the diffuse scatter from the multi-layer structure region arises from periodic, coherent crystallites. For the intermediate period number, the displacement fields around the multi-layer structure region transition to random coherent crystallites. At the higher period number, displacement fields of overlapping dislocations from relaxation of the random crystallites cause the initial stages of relaxation of the multi-layer structure. At the highest period number studied, relaxation of the multi-layer structure becomes bi-modal characterized by overlapping dislocations caused by mosaic block relaxation and periodically spaced misfit dislocations formed by 60°-type dislocations. The relaxation of the multi-layer structure has an exponential dependence on the diffuse scatter length-scale, which is shown to be a sensitive measure of the onset of relaxation.

  1. III-V nitride micro- and nano-scale cantilevers for multimodal sensing applications

    NASA Astrophysics Data System (ADS)

    Quddus, Ehtesham B.

    Recent research trends in chemical and biological sensing have been geared toward developing molecular sensor devices that are fast, label free, miniaturized and portable. The performance of these devices can be dramatically improved by utilizing multimodal detection techniques, new materials and micro-/nanofabrication technologies. This is especially true for micro-/nanoscale cantilever sensors, which undergo changes in mechanical or electrical properties upon the specific binding of molecules. To develop the sensor devices with the above attributes, we utilized III-V nitride materials: InN nanowires for realizing nanoscale cantilevers and AlGaN/GaN heterostuctures with or without embedded HFETs, for developing microcantilevers. There are mainly two approaches of fabricating these sensor devices: bottom-up approach for nanocantilevers, and top-down approach for microcantilevers. InN NWs, which exhibit interesting properties such as high carrier density, superior electron mobility, strong surface charge accumulation, and chemical inertness, were synthesized using Chemical Vapor Deposition (CVD) technique by Vapor-Liquid-Solid (VLS) mechanism. The synthesis process was optimized to obtain growth direction modulation and enhanced performance of the devices, largely avoiding the complexity of nanofabrication/etching typically involved in the realization of nanoscale sensors. With dimensions much smaller than conventional cantilevers, the nanocantilevers are expected to have dramatically improved physical, chemical, and biological sensitivity for sensor applications. The piezoresistive and piezoelectric properties of AlGaN/GaN heterostructures, their wide bandgap, and chemical inertness make the microcantilevers very attractive for developing highly sensitive sensors suitable for harsh environment applications. The large variation in 2-dimensional electron gas (2DEG) at the interface with mechanical strain makes these microcantilevers much more sensitive than conventional Si based piezoresistive microcantilevers. A process was developed to fabricate free standing AlGaN/GaN microcantilevers on Si(111) substrate using various processing steps involving photolithography, GaN and through wafer Si etching, and dielectric and metal deposition. The detection performance of these cantilevers is largely improved by the utilization of a multimodal detection technique.

  2. Optimized III-V Multijunction Concentrator Solar Cells on Patterned Si and Ge Substrates: Final Technical Report, 15 September 2004--30 September 2006

    SciTech Connect

    Ringel, S. A.

    2008-11-01

    Goal is to demo realistic path to III-V multijunction concentrator efficiencies > 40% by substrate-engineering combining compositional grading with patterned epitaxy for small-area cells for high concentration.

  3. Silicon, germanium, and III-V-based tunneling devices for low-power applications

    NASA Astrophysics Data System (ADS)

    Smith, Joshua T.

    While the scaling of transistor dimensions has kept pace with Moore's Law, the voltages applied to these devices have not scaled in tandem, giving rise to ever-increasing power/heating challenges in state-of-the-art integrated circuits. A primary reason for this scaling mismatch is due to the thermal limit---the 60 mV minimum required at room temperature to change the current through the device by one order of magnitude. This voltage scaling limitation is inherent in devices that rely on the mechanism of thermal emission of charge carriers over a gate-controlled barrier to transition between the ON- and OFF-states, such as in the case of conventional CMOS-based technologies. To overcome this voltage scaling barrier, several steep-slope device concepts have been pursued that have experimentally demonstrated sub-60-mV/decade operation since 2004, including the tunneling-field effect transistor (TFET), impact ionization metal-oxide-semiconductor (IMOS), suspended-gate FET (SG-FET), and ferroelectric FET (Fe-FET). These reports have excited strong efforts within the semiconductor research community toward the realization of a low-power device that will support continued scaling efforts, while alleviating the heating issues prevalent in modern computer chips. Literature is replete with claims of sub-60-mV/decade operation, but often with neglect to other voltage scaling factors that offset this result. Ideally, a low-power device should be able to attain sub-60-mV/decade inverse subthreshold slopes (S) employing low supply and gate voltages with a foreseeable path toward integration. This dissertation describes the experimental development and realization of CMOS-compatible processes to enhance tunneling efficiency in Si and Si/Ge nanowire (NW) TFETs for improved average S (S avg) and ON-currents (ION), and a novel, III-V-based tunneling device alternative is also proposed. After reviewing reported efforts on the TFET, IMOS, and SG-FET, the TFET is highlighted as the most promising low-power device candidate, owing to its potential to operate within small supply and gate voltage windows. In a critical analysis of the TFET, the advantages of 1-D systems, such as NWs, that can potentially access the so-called quantum capacitance limit (QCL) are discussed, and the remaining challenges for TFETs, such as source/channel doping abruptness, and material tradeoffs are considered. To this end, substantial performance improvements, as measured by Savg and ION, are experimentally realized in top-down fabricated Si NW-TFET arrays by systematically varying the annealing process used to enhance doping abruptness at the source/channel junction---a critical feature for maximizing tunneling efficiency. A combination of excimer laser annealing (ELA) and a low-temperature rapid thermal anneal (LT-RTA) are identified as an optimum choice, resulting in a 36% decrease in Savg as well as ˜500% improvement in ION over the conventional RTA approach. Extrapolation of these results with simulation shows that sub-60-mV/decade operation is possible on a Si-based platform for aggressively scaled, yet realistic, NW-TFET devices. Back-gated NW-FET measurements are also presented to assess the material quality of Ge/Si core/shell NW heterostructures with an n+-doped shell, and these NWs are found to be suitable building blocks for the fabrication of more efficient TFET systems, owing to the very abrupt doping profile at the shell/core (source/channel) interface and smaller bandgap/effective mass of the Ge channel. Finally, low current levels in conventional TFETs have recently led researchers to re-examine III-V heterostructures, particularly those with a broken-gap band alignment to allow a tunneling probability near unity. Along these lines, a novel tunnel-based alternative is presented---the broken-gap tunnel MOS---that enables a constant S < 60 mV/decade. The proposed device permits the use of 2-D device architectures without degradation of S given the source-controlled operation mechanism, while simultaneously avoiding undesirable nonlinearities in

  4. Dilute nitride-based III-V heterostructures for unhindered carrier transport in quantum-confined p-i-n solar cells

    Microsoft Academic Search

    A. Alemu; A. Freundlich

    2009-01-01

    Successions of dilute nitride-based III-V semiconductor staircase like superlattice structures are incorporated in the intrinsic region of common III-V p-i-n solar cells. The choices of material system and energy band design are tuned towards facilitating the collection of all photo-generated carriers while minimizing recombination losses. Band structure calculations including strain effects, band anti-crossing models and transfer matrix methods are used

  5. Metabolomic and proteomic biomarkers for III-V semiconductors: Chemical-specific porphyrinurias and proteinurias

    SciTech Connect

    Fowler, Bruce A. [Program in Toxicology, University of Maryland, Baltimore, MD 21201 (United States)]. E-mail: bxf9@cdc.gov; Conner, Elizabeth A. [Program in Toxicology, University of Maryland, Baltimore, MD 21201 (United States); Yamauchi, Hiroshi [Program in Toxicology, University of Maryland, Baltimore, MD 21201 (United States)

    2005-08-07

    A pressing need exists to develop and validate molecular biomarkers to assess the early effects of chemical agents, both individually and in mixtures. This is particularly true for new and chemically intensive industries such as the semiconductor industry. Previous studies from this laboratory and others have demonstrated element-specific alterations of the heme biosynthetic pathway for the III-V semiconductors gallium arsenide (GaAs) and indium arsenide (InAs) with attendant increased urinary excretion of specific heme precursors. These data represent an example of a metabolomic biomarker to assess chemical effects early, before clinical disease develops. Previous studies have demonstrated that the intratracheal or subcutaneous administration of GaAs and InAs particles to hamsters produces the induction of the major stress protein gene families in renal proximal tubule cells. This was monitored by 35-S methionine labeling of gene products followed by two-dimensional gel electrophoresis after exposure to InAs particles. The present studies examined whether these effects were associated with the development of compound-specific proteinuria after 10 or 30 days following subcutaneous injection of GaAs or InAs particles in hamsters. The results of these studies demonstrated the development of GaAs- and InAs-specific alterations in renal tubule cell protein expression patterns that varied at 10 and 30 days. At the 30-day point, cells in hamsters that received InAs particles showed marked attenuation of protein expression, suggesting inhibition of the stress protein response. These changes were associated with GaAs and InAs proteinuria patterns as monitored by two-dimensional gel electrophoresis and silver staining. The intensity of the protein excretion patterns increased between the 10- and 30-day points and was most pronounced for animals in the 30-day InAs treatment group. No overt morphologic signs of cell death were seen in renal tubule cells of these animals. Western blot analyses of the urines with antibodies to the 32-, 70-, and 90-kDa stress protein families did not show the presence of these molecules, indicating that these proteins were not excreted in the urine samples. These data suggest that the observed proteinuria patterns were not a result of cell death and that the observed chemical-specific proteinurias were produced before marked cellular toxicity. These findings suggest a hypothesis involving GaAs and InAs interference with stress protein chaperoning of reabsorbed proteins for proteosomic degradation and the probable chaperoning of damaged intracellular proteins from renal proximal tubule cells into the urinary filtrate. Overall, the results of these studies provide further information on the nephrotoxicity of these semiconductor compounds. They also suggest the use of two-dimensional gel electrophoresis with silver staining of urinary protein patterns as a potentially useful proteomic approach to renal damage early in relation to intracellular proteotoxicity in kidney tubule cells.

  6. Numerical and experimental assessment of charge control in III-V nano-metal-oxide-semiconductor field-effect transistor.

    PubMed

    Shi, Ming; Saint-Martin, Jérôme; Bournel, Arnaud; Querlioz, Damien; Dollfus, Philippe; Mo, Jiongjong; Wichmann, Nicolas; Desplanque, Ludovic; Wallart, Xavier; Danneville, Francois; Bollaert, Sylvain

    2013-02-01

    III-V Metal-Oxide-Semiconductor Field-Effect Transistor (MOSFET) with a gate stack based on high-kappa dielectric appears as an appealing solution to increase the performance of either microwave or logic circuits with low supply voltage (V(DD)). The main objective of this work is to provide a theoretical model of the gate charge control in III-V MOS capacitors (MOSCAPs) using the accurate self-consistent solution of 1D and 2D Poisson-Schrödinger equations. This study allows us to identify the major mechanisms which must be included to get theoretical calculations in good agreement with experiments. Actually, our results obtained for an Al2O3/In0.53Ga0.47As MOSCAP structure are successfully compared to experimental measurements. We evaluate how III-V MOS technology is affected by the density of interface states which favors the Fermi level pinning at the Al2O3/In0.53Ga0.47As interface in both depletion and inversion regimes, which is a consequence of the poor gate control of the mobile inversion carrier density. The high energy valleys (satellite valleys) contribution observed in many theoretical calculations appears to be fully negligible in the presence of interface states. The enhancement of doping density in the channel is shown to improve the short-channel effect (SCE) immunity but to the price of higher sensitivity to the interface trap effect which manifests through a low Fermi level movement efficiency at interface in OFF-state and a low inversion carrier density in ON-state, even in the long channel case. PMID:23646513

  7. Continuous-wave quasi-phase-matched waveguide correlated photon pair source on a III–V chip

    SciTech Connect

    Sarrafi, Peyman, E-mail: peyman.sarrafi@mail.utoronto.ca; Zhu, Eric Y.; Dolgaleva, Ksenia; Aitchison, J. Stewart; Qian, Li [Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Road, Toronto, Ontario M5S 3G4 (Canada)] [Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Road, Toronto, Ontario M5S 3G4 (Canada); Holmes, Barry M.; Hutchings, David C. [School of Engineering, University of Glasgow, Glasgow G12 8QQ, Scotland (United Kingdom)] [School of Engineering, University of Glasgow, Glasgow G12 8QQ, Scotland (United Kingdom)

    2013-12-16

    We report on the demonstration of correlated photon pair generation in a quasi-phase-matched superlattice GaAs/AlGaAs waveguide using a continuous-wave pump. Our photon pair source has a low noise level and achieves a high coincidence-to-accidental ratio greater than 100, which is the highest value reported in III–V chips so far. This correlated photon pair source has the potential to be monolithically integrated with on-chip pump laser sources fabricated on the same superlattice wafer structure, enabling direct correlated/entangled photon pair production from a compact electrically powered chip.

  8. A proposal of monolithicly integrated multijunction solar cells using lattice-matched II\\/VI and III\\/V semiconductors

    Microsoft Academic Search

    Yong-Hang Zhang; Song-Nan Wu; Ding Ding; Shui-Qing Yu; Shane R. Johnson

    2008-01-01

    High-efficiency multijunction solar cells are highly desirable for space and terrestrial applications. This paper proposes novel multijunction solar cell designs using lattice-matched II\\/VI (ZnCdMg)(SeTe) and III\\/V (InAlGa)(AsSb) direct bandgap materials that can be grown on GaSb or InAs substrates. Both material systems have been studied in detail separately for different applications. The combination of these lattice-matched materials uniquely offers very

  9. A direct thin-film path towards low-cost large-area III-V photovoltaics

    PubMed Central

    Kapadia, Rehan; Yu, Zhibin; Wang, Hsin-Hua H.; Zheng, Maxwell; Battaglia, Corsin; Hettick, Mark; Kiriya, Daisuke; Takei, Kuniharu; Lobaccaro, Peter; Beeman, Jeffrey W.; Ager, Joel W.; Maboudian, Roya; Chrzan, Daryl C.; Javey, Ali

    2013-01-01

    III-V photovoltaics (PVs) have demonstrated the highest power conversion efficiencies for both single- and multi-junction cells. However, expensive epitaxial growth substrates, low precursor utilization rates, long growth times, and large equipment investments restrict applications to concentrated and space photovoltaics (PVs). Here, we demonstrate the first vapor-liquid-solid (VLS) growth of high-quality III-V thin-films on metal foils as a promising platform for large-area terrestrial PVs overcoming the above obstacles. We demonstrate 1–3??m thick InP thin-films on Mo foils with ultra-large grain size up to 100??m, which is ~100 times larger than those obtained by conventional growth processes. The films exhibit electron mobilities as high as 500?cm2/V-s and minority carrier lifetimes as long as 2.5?ns. Furthermore, under 1-sun equivalent illumination, photoluminescence efficiency measurements indicate that an open circuit voltage of up to 930?mV can be achieved, only 40?mV lower than measured on a single crystal reference wafer. PMID:23881474

  10. Towards large size substrates for III-V co-integration made by direct wafer bonding on Si

    NASA Astrophysics Data System (ADS)

    Daix, N.; Uccelli, E.; Czornomaz, L.; Caimi, D.; Rossel, C.; Sousa, M.; Siegwart, H.; Marchiori, C.; Hartmann, J. M.; Shiu, K.-T.; Cheng, C.-W.; Krishnan, M.; Lofaro, M.; Kobayashi, M.; Sadana, D.; Fompeyrine, J.

    2014-08-01

    We report the first demonstration of 200 mm InGaAs-on-insulator (InGaAs-o-I) fabricated by the direct wafer bonding technique with a donor wafer made of III-V heteroepitaxial structure grown on 200 mm silicon wafer. The measured threading dislocation density of the In0.53Ga0.47As (InGaAs) active layer is equal to 3.5 × 109 cm-2, and it does not degrade after the bonding and the layer transfer steps. The surface roughness of the InGaAs layer can be improved by chemical-mechanical-polishing step, reaching values as low as 0.4 nm root-mean-square. The electron Hall mobility in 450 nm thick InGaAs-o-I layer reaches values of up to 6000 cm2/Vs, and working pseudo-MOS transistors are demonstrated with an extracted electron mobility in the range of 2000-3000 cm2/Vs. Finally, the fabrication of an InGaAs-o-I substrate with the active layer as thin as 90 nm is achieved with a Buried Oxide of 50 nm. These results open the way to very large scale production of III-V-o-I advanced substrates for future CMOS technology nodes.

  11. A direct thin-film path towards low-cost large-area III-V photovoltaics.

    PubMed

    Kapadia, Rehan; Yu, Zhibin; Wang, Hsin-Hua H; Zheng, Maxwell; Battaglia, Corsin; Hettick, Mark; Kiriya, Daisuke; Takei, Kuniharu; Lobaccaro, Peter; Beeman, Jeffrey W; Ager, Joel W; Maboudian, Roya; Chrzan, Daryl C; Javey, Ali

    2013-01-01

    III-V photovoltaics (PVs) have demonstrated the highest power conversion efficiencies for both single- and multi-junction cells. However, expensive epitaxial growth substrates, low precursor utilization rates, long growth times, and large equipment investments restrict applications to concentrated and space photovoltaics (PVs). Here, we demonstrate the first vapor-liquid-solid (VLS) growth of high-quality III-V thin-films on metal foils as a promising platform for large-area terrestrial PVs overcoming the above obstacles. We demonstrate 1-3??m thick InP thin-films on Mo foils with ultra-large grain size up to 100??m, which is ~100 times larger than those obtained by conventional growth processes. The films exhibit electron mobilities as high as 500?cm²/V-s and minority carrier lifetimes as long as 2.5?ns. Furthermore, under 1-sun equivalent illumination, photoluminescence efficiency measurements indicate that an open circuit voltage of up to 930?mV can be achieved, only 40?mV lower than measured on a single crystal reference wafer. PMID:23881474

  12. High-coherence semiconductor lasers based on integral high-Q resonators in hybrid Si/III-V platforms

    PubMed Central

    Santis, Christos Theodoros; Steger, Scott T.; Vilenchik, Yaakov; Vasilyev, Arseny; Yariv, Amnon

    2014-01-01

    The semiconductor laser (SCL) is the principal light source powering the worldwide optical fiber network. The ever-increasing demand for data is causing the network to migrate to phase-coherent modulation formats, which place strict requirements on the temporal coherence of the light source that no longer can be met by current SCLs. This failure can be traced directly to the canonical laser design, in which photons are both generated and stored in the same, optically lossy, III-V material. This leads to an excessive and large amount of noisy spontaneous emission commingling with the laser mode, thereby degrading its coherence. High losses also decrease the amount of stored optical energy in the laser cavity, magnifying the effect of each individual spontaneous emission event on the phase of the laser field. Here, we propose a new design paradigm for the SCL. The keys to this paradigm are the deliberate removal of stored optical energy from the lossy III-V material by concentrating it in a passive, low-loss material and the incorporation of a very high-Q resonator as an integral (i.e., not externally coupled) part of the laser cavity. We demonstrate an SCL with a spectral linewidth of 18 kHz in the telecom band around 1.55 ?m, achieved using a single-mode silicon resonator with Q of 106. PMID:24516134

  13. Inter-band optoelectronic properties in quantum dot structure of low band gap III-V semiconductors

    SciTech Connect

    Dey, Anup, E-mail: a-dey2002@yahoo.com [Electronics and Communication Engineering Department, Kalyani Government Engineering College, Kalyani 741235 (India); Maiti, Biswajit [Physics Department, Kalyani Government Engineering College, Kalyani 741235 (India); Chanda, Debasree [Department of Engineering and Technological Studies, Kalyani University, Kalyani 741235 (India)

    2014-04-14

    A generalized theory is developed to study inter-band optical absorption coefficient (IOAC) and material gain (MG) in quantum dot structures of narrow gap III-V compound semiconductor considering the wave-vector (k{sup ?}) dependence of the optical transition matrix element. The band structures of these low band gap semiconducting materials with sufficiently separated split-off valance band are frequently described by the three energy band model of Kane. This has been adopted for analysis of the IOAC and MG taking InAs, InSb, Hg{sub 1?x}Cd{sub x}Te, and In{sub 1?x}Ga{sub x}As{sub y}P{sub 1?y} lattice matched to InP, as example of III–V compound semiconductors, having varied split-off energy band compared to their bulk band gap energy. It has been found that magnitude of the IOAC for quantum dots increases with increasing incident photon energy and the lines of absorption are more closely spaced in the three band model of Kane than those with parabolic energy band approximations reflecting the direct the influence of energy band parameters. The results show a significant deviation to the MG spectrum of narrow-gap materials having band nonparabolicity compared to the parabolic band model approximations. The results reflect the important role of valence band split-off energies in these narrow gap semiconductors.

  14. III-V-N materials for super high-efficiency multijunction solar cells

    SciTech Connect

    Yamaguchi, Masafumi; Bouzazi, Boussairi; Suzuki, Hidetoshi; Ikeda, Kazuma; Kojima, Nobuaki; Ohshita, Yoshio [Toyota Technological Institute, Nagoya 468-8511 (Japan)

    2012-10-06

    We have been studying concentrator multi-junction solar cells under Japanese Innovative Photovoltaic R and D program since FY2008. InGaAsN is one of appropriate materials for 4-or 5-junction solar cell configuration because this material can be lattice-matched to GaAs and Ge substrates. However, present InGaAsN single-junction solar cells have been inefficient because of low minority-carrier lifetime due to N-related recombination centers and low carrier mobility due to alloy scattering and non-homogeneity of N. This paper presents our major results in the understanding of majority and minority carrier traps in GaAsN grown by chemical beam epitaxy and their relationships with the poor electrical properties of the materials.

  15. High-performance III-V MOSFET with nano-stacked high-k gate dielectric and 3D fin-shaped structure.

    PubMed

    Chen, Szu-Hung; Liao, Wen-Shiang; Yang, Hsin-Chia; Wang, Shea-Jue; Liaw, Yue-Gie; Wang, Hao; Gu, Haoshuang; Wang, Mu-Chun

    2012-01-01

    A three-dimensional (3D) fin-shaped field-effect transistor structure based on III-V metal-oxide-semiconductor field-effect transistor (MOSFET) fabrication has been demonstrated using a submicron GaAs fin as the high-mobility channel. The fin-shaped channel has a thickness-to-width ratio (TFin/WFin) equal to 1. The nano-stacked high-k Al2O3 dielectric was adopted as a gate insulator in forming a metal-oxide-semiconductor structure to suppress gate leakage. The 3D III-V MOSFET exhibits outstanding gate controllability and shows a high Ion/Ioff ratio?>?105 and a low subthreshold swing of 80 mV/decade. Compared to a conventional Schottky gate metal-semiconductor field-effect transistor or planar III-V MOSFETs, the III-V MOSFET in this work exhibits a significant performance improvement and is promising for future development of high-performance n-channel devices based on III-V materials. PMID:22853458

  16. Material growth and characterization directed toward improving III-V heterojunction solar cells

    NASA Technical Reports Server (NTRS)

    Stefanakos, E. K.; Alexander, W. E.; Collis, W.; Abul-Fadl, A.

    1979-01-01

    In addition to the existing materials growth laboratory, the photolithographic facility and the device testing facility were completed. The majority of equipment for data acquisition, solar cell testing, materials growth and device characterization were received and are being put into operation. In the research part of the program, GaAs and GaA1As layers were grown reproducibly on GaAs substrates. These grown layers were characterized as to surface morphology, thickness and thickness uniformity. The liquid phase epitaxial growth process was used to fabricate p-n junctions in Ga(1-x)A1(x)As. Sequential deposition of two alloy layers was accomplished and detailed analysis of the effect of substrate quality and dopant on the GaA1As layer quality is presented. Finally, solar cell structures were formed by growing a thin p-GaA1As layer upon an epitaxial n-GaA1As layer. The energy gap corresponding to the long wavelength cutoff of the spectral response characteristic was 1.51-1.63 eV. Theoretical calculations of the spectral response were matched to the measured response.

  17. Toward the Development of Group III-V Photodetectors and Imaging Arrays

    NASA Technical Reports Server (NTRS)

    Wickenden, Dennis K.

    2003-01-01

    A collaboration between researchers at NASA Goddard Space Flight Center (GSFC) (Code 718.1) and the Johns Hopkins University Applied Physics Laboratory (APL) on the development of gallium nitride (GaN) based photodetectors has been in existence since July 1994. This collaboration, based on APL undertaking the material growth and GSFC undertaking the device processing, has led to discrete GaN photoconductive detectors with superior characteristics to those of similar devices reported in the literature and, more recently, to the development of state-of-the art 256x256 imaging arrays with the pixels indium bump-bonded to a silicon readout circuit (RIOC). The object of this proposal is to continue the collaboration for the period 1998-2002 by outlining a program of work at the APL on the metalorganic chemical vapor deposition (MOCVD) growth of GaN and related materials for UV detector applications. In particular, emphasis will be placed on the optimization of growth on 2 in diameter substrates, on the growth of In(sub x)Ga(1-x)N and Al(sub x)Ga(1-x)N alloy structures to produce devices with a wider range of tailored cut-off wavelengths, and on the growth of pn-junction structures for photovoltaic devices.

  18. InGaAsP Grating Couplers Fabricated Using Complementary-Metal-Oxide-Semiconductor-Compatible III-V-on-Insulator on Si

    NASA Astrophysics Data System (ADS)

    Takenaka, Mitsuru; Yokoyama, Masafumi; Sugiyama, Masakazu; Nakano, Yoshiaki; Takagi, Shinichi

    2013-04-01

    We have demonstrated InGaAsP grating couplers using the III-V-on-insulator (III-V-OI) on a Si wafer. The direct bonding of an InGaAsP/InP wafer and a thermally oxidized SiO2/Si wafer allows us to fabricate the grating couplers through the standard complementary metal-oxide-semiconductor (CMOS)-compatible process. The grating coupler, which was designed by the time-domain beam-propagation method (TD-BPM), exhibited a coupling efficiency of 38%, the 3 dB bandwidth of 37 nm, and the 1 dB lateral alignment tolerance of ±2.5 µm for the c-band wavelength, making it suitable for the III-V CMOS photonics platform.

  19. AES and EELS tools associated to TRIM simulation methods to study nanostructures on III-V semiconductor surfaces

    NASA Astrophysics Data System (ADS)

    Ouerdane, A.; Bouslama, M.; Ghaffour, M.; Abdellaoui, A.; Nouri, A.; Hamaida, K.; Monteuil, Y.

    2012-02-01

    At low energy (300 eV), the Ar+ ions bombardment lead to the formation of small nanodots on the InP and the InSb surface compounds. We used the Auger electron spectroscopy (AES) and electron energy loss spectroscopy (EELS) to detect the presence of these features. However, these techniques alone do not allow us to determine with accuracy their disturbed dimension related to the height and periodicity. For this reason, we combine these spectroscopy methods with the TRIM (transport and range of ions in matter), SRIM (Stopping and Range of Ion in Matter) and Sigmund simulation methods to show the mechanism of interaction between the argon ions and the III-V compounds cited above and determine the dimension of disturbed areas as a function of Ar+ energy during 30 min.

  20. Broadband microwave photonic fully tunable filter using a single heterogeneously integrated III-V/SOI-microdisk-based phase shifter.

    PubMed

    Lloret, Juan; Morthier, Geert; Ramos, Francisco; Sales, Salvador; Van Thourhout, Dries; Spuesens, Thijs; Olivier, Nicolas; Fédéli, Jean-Marc; Capmany, José

    2012-05-01

    A broadband microwave photonic phase shifter based on a single III-V microdisk resonator heterogeneously integrated on and coupled to a nanophotonic silicon-on-insulator waveguide is reported. The phase shift tunability is accomplished by modifying the effective index through carrier injection. A comprehensive semi-analytical model aiming at predicting its behavior is formulated and confirmed by measurements. Quasi-linear and continuously tunable 2? phase shifts at radiofrequencies greater than 18 GHz are experimentally demonstrated. The phase shifter performance is also evaluated when used as a key element in tunable filtering schemes. Distortion-free and wideband filtering responses with a tuning range of ~100% over the free spectral range are obtained. PMID:22565703

  1. Au-Seeded Growth of Vertical and in-Plane III–V Nanowires on Graphite Substrates

    PubMed Central

    2014-01-01

    Graphene is promising as a transparent, flexible, and possibly cost-effective substrate for nanowire-based devices. We have investigated Au-seeded III–V nanowire growth with graphite as a model substrate. The highest yield of undoped vertical nanowires was found for InAs, but we also observed vertical nanowires for the InP, GaP, and GaAs materials. The yield of vertical nanowires for GaP and GaAs was strongly improved by supplying the p-dopant DEZn before nanowire growth but not by supplying H2S or HCl. In-plane GaAs and GaP nanowire growth exhibited an unexpected behavior, where the seed particles seemingly reflected on the side facets of other nanowires. These results pave the way for vertical and in-plane hybrid graphene- nanowire devices. PMID:24592968

  2. Engineering the Cell-Semiconductor Interface: A Materials Modification Approach using II-VI and III-V Semiconductor Materials.

    PubMed

    Bain, Lauren E; Ivanisevic, Albena

    2015-02-01

    Developing functional biomedical devices based on semiconductor materials requires an understanding of interactions taking place at the material-biosystem interface. Cell behavior is dependent on the local physicochemical environment. While standard routes of material preparation involve chemical functionalization of the active surface, this review emphasizes both biocompatibility of unmodified surfaces as well as use of topographic features in manipulating cell-material interactions. Initially, the review discusses experiments involving unmodified II-VI and III-V semiconductors - a starting point for assessing cytotoxicity and biocompatibility - followed by specific surface modification, including the generation of submicron roughness or the potential effect of quantum dot structures. Finally, the discussion turns to more recent work in coupling topography and specific chemistry, enhancing the tunability of the cell-semiconductor interface. With this broadened materials approach, researchers' ability to tune the interactions between semiconductors and biological environments continues to improve, reaching new heights in device function. PMID:25387841

  3. Effects of proton irradiation on luminescence and carrier dynamics of self-assembled III-V quatum dots

    NASA Technical Reports Server (NTRS)

    Leon, R.; Marcinkevicius, S.; Siegert, J.; Magness, B.; Taylor, W.; Lobo, C.

    2002-01-01

    The effects of proton irradiation (1.5 MeV) on photoluminescence intensities and carrier dynamics were compared between III-V quantum dots and similar quantum well structures. A significant enhancement in radiation tolerance is seen with three-dimensional quantum confinement. Measurements were carried out in different quantum dot (QD) structures, varying in material (InGaAs/GaAs and InAlAs/AlGaAs), QD surface density (4x10^8 to 3x10'^10 cm^-2), and substrate orientation [(100) and (311) B]. Similar trends were observed for all QD samples. A slight increase in PL emission after low to intermediate proton doses, are also observed in InGaAs/GaAs (100) QD structures. The latter is explained in terms of more efficient carrier transfer from the wetting layer via radiation-induced defects.

  4. Nucleation, Growth, and Strain Relaxation of Lattice-Mismatched III-V Semiconductor Epitaxial Layers

    NASA Technical Reports Server (NTRS)

    Welser, R. E.; Guido, L. J.

    1994-01-01

    We have investigated the early stages of evolution of highly strained 2-D InAs layers and 3-D InAs islands grown by metal-organic chemical vapor deposition (MOCVD) on (100) and (111) B GaAs substrates. The InAs epilayer / GaAs substrate combination has been chosen because the lattice-mismatch is severe (approx. 7.20%), yet these materials are otherwise very similar. By examining InAs-on-GaAs composites Instead of the more common In(x)Ga(1-x)As alloy, we remove an additional degree of freedom (x) and thereby simplify data interpretation. A matrix of experiments is described in which the MOCVD growth parameters -- susceptor temperature, TMIn flux, and AsH3 flux -- have been varied over a wide range. Scanning electron microscopy, atomic force microscopy, transmission electron microscopy, and electron microprobe analysis have been employed to observe the thin film surface morphology. In the case of 3-D growth, we have extracted activation energies and power-dependent exponents that characterize the nucleation process. As a consequence, optimized growth conditions have been identified for depositing approx. 250 A thick (100) and (111)B oriented InAs layers with relatively smooth surfaces. Together with preliminary data on the strain relaxation of these layers, the above results on the evolution of thin InAs films indicate that the (111)B orientation is particularly promising for yielding lattice-mismatched films that are fully relaxed with only misfit dislocations at the epilayer / substrate interface.

  5. Chemical trends of stability and band alignment of lattice-matched II-VI/III-V semiconductor interfaces

    NASA Astrophysics Data System (ADS)

    Deng, Hui-Xiong; Luo, Jun-Wei; Wei, Su-Huai

    2015-02-01

    Using the first-principles density functional theory method, we systematically investigate the structural and electronic properties of heterovalent interfaces of the lattice-matched II-VI/III-V semiconductors, i.e., ZnTe/GaSb, ZnSe/GaAs, ZnS/GaP, and ZnO/GaN. We find that, independent of the orientations, the heterovalent superlattices with period n =6 are energetically more favorable to form nonpolar interfaces. For the [001] interface, the stable nonpolar interfaces are formed by mixing 50% group-III with 50% group-II atoms or by mixing 50% group-V with 50% group-VI atoms; for the [111] nonpolar interfaces, the mixings are 25% group-III (II) and 75% group-II (III) atoms or 25% group-V (VI) and 75% group-VI (V) atoms. For all the nonpolar interfaces, the [110] interface has the lowest interfacial energy because it has the minimum number of II-V or III-VI "wrong bonds" per unit interfacial area. The interfacial energy increases when the atomic number of the elements decreases, except for the ZnO/GaN system. The band alignments between the II-VI and III-V compounds are drastically different depending on whether they have mixed-cation or mixed-anion interfaces, but the averaged values are nearly independent of the orientations. Similarly, other than ZnO/GaN, the valence-band offsets also increase as the atomic number of the elements decreases. The abnormal trends in interfacial energy and band alignment for ZnO/GaN are primarily attributed to the very short bond lengths in this system. The underlying physics behind these trends are explained.

  6. Impact of a Metal-Organic Vapor Phase Epitaxy Environment on Silicon Substrates for III-V-on-Si Multijunction Solar Cells

    NASA Astrophysics Data System (ADS)

    García-Tabarés, Elisa; García, Iván; Lelièvre, Jean-Francois; Rey-Stolle, Ignacio

    2012-10-01

    With the final goal of integrating III-V materials to silicon for tandem solar cells, the influence of the metal-organic vapor phase epitaxy (MOVPE) environment on the minority carrier properties of silicon wafers has been evaluated. These properties will essentially determine the photovoltaic performance of the bottom cell in a III-V-on-Si tandem solar cell device. A comparison of the base minority carrier lifetimes obtained for different thermal processes carried out in a MOVPE reactor on Czochralski silicon wafers has been carried out. The effect of the formation of the emitter by phosphorus diffusion has also been evaluated.

  7. Basic studies of III-V high-efficiency cell components: Annual subcontract report, 15 August 1985-14 August 1986

    SciTech Connect

    Lundstrom, M S; Melloch, M R; Kyono, C S; McMahon, C P; Noren, R E; Rancour, D P

    1987-03-01

    This report documents research on the fabrication and photovoltaic characterization of the basic building blocks of III-V cells: the pn junction, the pn heterojunction, the isotype (p-p and n-n) heterojunction, and graded-gap semiconductors. The goal of the project is to maximize cell performance by characterizing the electrical properties of high-efficiency cell components. Other goals are to demonstrate new cell structures fabricated by molecular beam epitaxy (MBE), develop measurement techniques, and characterize methodologies. This work should help identify paths toward higher efficiency III-V cells.

  8. Iii-V Compound Multiple Quantum Well Based Modulator and Switching Devices.

    NASA Astrophysics Data System (ADS)

    Hong, Songcheol

    A general formalism to study the absorption and photocurrent in multiple quantum well is provided with detailed consideration of quantum confined Stark shift, exciton binding energy, line broadening, tunneling, polarization, and strain effects. Results on variation of exciton size, binding energies and transition energies as a function electric field and well size have been presented. Inhomogeneous line broadening of exciton lines due to interface roughness, alloy disorder and well to well size fluctuation is calculated. The potential of material tailoring by introducing strain for specific optical response is discussed. Theoretical and experimental results on excitonic and band-to-band absorption spectra in strained multi-quantum well structures are shown. I also report on polarization dependent optical absorption for excitonic and interband transitions in lattice matched and strained multiquantum well structures in presence of transverse electric field. Photocurrent in a p-i(MQW)-n diode with monochromatic light is examined with respect to different temperatures and intensities. The negative resistance of I-V characteristic of the p-i-n diode is based on the quantum confined Stark effect of the heavy hole excitonic transition in a multiquantum well. This exciton based photocurrent characteristic allows efficient switching. A general purpose low power optical logic device using the controller-modulator concept bas been proposed and realized. The controller is a heterojunction phototransistor with multiquantum wells in the base-collector depletion region. This allows an amplified photocurrent controlled voltage feedback with low light intensity levels. Detailed analysis of the sensitivity of this device in various modes of operation is studied. Studies are also presented on the cascadability of the device as well as its integrating -thresholding properties. A multiquantum well heterojunction bipolar transistor (MHBT), which has N^+ -p^+-i(MQW)-N structure has been fabricated to test the concept. Gain (>30) is obtained in the MBE grown devices and efficient switching occurs due to the amplification of the exciton based photocurrent. The level shift operation of the base contacted MHBT are demonstrated.

  9. Ab initio all-electron calculation of absolute volume deformation potentials of IV-IV, III-V, and II-VI semiconductors: The chemical trends

    E-print Network

    Gong, Xingao

    Ab initio all-electron calculation of absolute volume deformation potentials of IV-IV, III for all group IV, III-V, and II-VI semiconductors. Unlike previous calculations that involve various, the mea- sured values are strongly influenced by the presence of sur- faces or interfaces11 and in most

  10. Abstract A comprehensive overview of density functional theory simulations of high-k oxide/III-V semiconductor interfaces is presented. The methodologies of

    E-print Network

    Kummel, Andrew C.

    93 Abstract A comprehensive overview of density functional theory simulations of high-k oxide/III-V semiconductor interfaces is presented. The methodologies of realistic amorphous high-k oxide generation/semiconductor model designs and rules for formation of unpinned high-k oxide/semiconductor interfaces are discussed

  11. Performance Comparison of Scaled III-V and Si Nanowire MOSFET Lingquan Wang*, Bo Yu*, Peter Asbeck*, Yuan Taur*, Mark Rodwell+

    E-print Network

    Rodwell, Mark J. W.

    Performance Comparison of Scaled III-V and Si Nanowire MOSFET Lingquan Wang*, Bo Yu*, Peter Asbeck Barbara Recently, scaled MOSFET structures based on nanowires have received intensive research interest nanowire MOSFETs (NWMOSFET). The simulation reveals interesting tradeoffs between the two types

  12. Characteristics of an Electron Cyclotron Resonance Plasma Source for the Production of Active Nitrogen Species in III-V Nitride Epitaxy

    NASA Technical Reports Server (NTRS)

    Meyyappan, Meyya; Arnold, James O. (Technical Monitor)

    1997-01-01

    A simple analysis is provided to determine the characteristics of an electron cyclotron resonance (ECR) plasma source for the generation of active nitrogen species in the molecular beam epitaxy of III-V nitrides. The effects of reactor geometry, pressure, power, and flow rate on the dissociation efficiency and ion flux are presented. Pulsing the input power is proposed to reduce the ion flux.

  13. Recombination mechanisms at window/emitter interface in InP and other III-V semiconductor based solar cells

    SciTech Connect

    Lammasniemi, J.; Tappura, K.; Smekalin, K. [Tampere Univ. of Technology (Finland). Dept. of Physics

    1994-12-31

    The effect of various window layers for InP solar cells are studied. Window materials that have type 1 and type 2 alignment in the window/emitter interface are compared. All window materials that form a type 2 alignment with InP, such as Al{sub 0.20}In{sub 0.80}P, Ga{sub 0.20}In{sub 0.80}P, Al{sub 0.55}In{sub 0.45}As and Al{sub 0.60}In{sub 0.40}P, cause a high interface recombination velocity, which deteriorates the carrier collection. This recombination takes place due to the spatially indirect quantum well transition between the triangular quantum wells formed in the interface. ZnSe as a window layer material with type 1 alignment does not have this problem, but still decreased response in the short wavelength region is observed due to misfit dislocation induced trap sites. Future prospects for the window layer development for InP are discussed. The discussion is extended also to other III-V semiconductor based solar cell materials, such as Ga{sub 0.5}In{sub 0.5}P solar cells with Al{sub x}Ga{sub 1{minus}x}As window layers.

  14. Proteomic and metabolomic biomarkers for III-V semiconductors: And prospects for application to nano-materials

    SciTech Connect

    Fowler, Bruce A. [Program in Toxicology, University of Maryland, Baltimore, Maryland (United States); ATSDR, Atlanta, Georgia (United States)], E-mail: bxf9@cdc.gov; Conner, Elizabeth A. [Program in Toxicology, University of Maryland, Baltimore, Maryland (United States); NCI, Bethesda, Maryland (United States); Yamauchi, Hiroshi [Program in Toxicology, University of Maryland, Baltimore, Maryland (United States); Kitasato University (Japan)

    2008-11-15

    There has been an increased appreciation over the last 20 years that chemical agents at very low dose levels can produce biological responses in protein expression patterns (proteomic responses) or alterations in sensitive metabolic pathways (metabolomic responses). Marked improvements in analytical methodologies, such as 2-D gel electrophoresis, matrix-assisted laser desorption-time of flight (MALDI-TOF) and surface enhanced laser desorption-time of flight (SELDI-TOF) technologies are capable of identifying specific protein patterns related to exposure to chemicals either alone or as mixtures. The detection and interpretation of early cellular responses to chemical agents have also made great advances through correlative ultrastructural morphometric and biochemical studies. Similarly, advances in analytical technologies such as HPLC, proton NMR, MALDI-TOF, and SELDI-TOF have permitted early detection of changes in a number of essential metabolic pathways following chemical exposures by measurement of alterations in metabolic products from those pathways. Data from these approaches are increasingly regarded as potentially useful biomarkers of chemical exposure and early cellular responses. Validation and establishment of linkages to biological outcomes are needed in order for biomarkers of effect to be established. This short review will cover a number of the above techniques and report data from chemical exposures to two binary III-V semiconductor compounds to illustrate gender differences in proteomic responses. In addition, the use of these methodologies in relation to rapid safety evaluations of nanotechnology products will be discussed. (Supported in part by NIH R01-ES4879)

  15. Novel Approaches to High-Efficiency III-V Nitride Heterostructure Emitters for Next-Generation Lighting Applications

    SciTech Connect

    Russell D. Dupuis

    2004-09-30

    We report research activities and technical progress on the development of high-efficiency long wavelength ({lambda} {approx} 540nm) green light emitting diodes which covers the first year of the three-year program ''Novel approaches to high-efficiency III-V nitride heterostructure emitters for next-generation lighting applications''. The first year activities were focused on the installation, set-up, and use of advanced equipment for the metalorganic chemical vapor deposition growth of III-nitride films and the characterization of these materials (Task 1) and the design, fabrication, testing of nitride LEDs (Task 4). As a progress highlight, we obtained improved quality of {approx} 2 {micro}m-thick GaN layers (as measured by the full width at half maximum of the asymmetric (102) X-ray diffraction peak of less than 350 arc-s) and higher p-GaN:Mg doping level (free hole carrier higher than 1E18 cm{sup -3}). Also in this year, we have developed the growth of InGaN/GaN active layers for long-wavelength green light emitting diodes, specifically, for emission at {lambda} {approx} 540nm. The effect of the Column III precursor (for Ga) and the post-growth thermal annealing effect were also studied. Our LED device fabrication process was developed and initially optimized, especially for low-resistance ohmic contacts for p-GaN:Mg layers, and blue-green light emitting diode structures were processed and characterized.

  16. Depth-Resolved Cathodoluminescence of III-V Nitride Films Grown by Plasma-Assisted Molecular Beam Epitaxy

    NASA Astrophysics Data System (ADS)

    Myoung, Jae-Min; Shim, Kyu-Hwan; Kim, Sangsig

    2001-02-01

    The luminescence properties of III-V nitride films (an undoped GaN, an undoped GaN/Al0.2Ga0.8N multiquantum well, and a p-type Mg-doped GaN films) were investigated using the depth-resolved cathodoluminescence (CL) spectroscopy. From the low- and room-temperature CL of the undoped GaN and GaN/AlGaN MQW films, an emission at 2.9 eV was found with the longer penetration depth and is attributed to the higher density of dislocations at the interface between the film and the substrate. In order to explain the depth-resolved CL of the Mg-doped GaN film, the configuration coordinate model is proposed on the basis of the local strain near the Mg impurities. This model demonstrates that local strain may play a crucial role in controlling the radiative efficiency, line width, and peak position of the luminescence from the film.

  17. Study of Metal Organic Chemical Vapour Deposition (MOCVD) semiconductors III-V hyperstructures with Secondary Ion Mass Spectrometry (SIMS)

    NASA Astrophysics Data System (ADS)

    Padilla-Rueda, D.; Téllez Lozano, H.; Vadillo, José M.; Laserna, J. J.

    2014-06-01

    One of the most promising technologies in high efficiency solar cells is based on quaternary structures grown by epitaxial techniques as Metal Organic Chemical Vapour deposition (MOCVD). The semiconductors III-V structures are elaborated under tailored parameters, allowing the use of a broader area of the solar spectrum. Analytical techniques capable of providing accurate and precise information in cross sections about the composition and thickness of the layers are demanded. Secondary Ion Mass Spectrometry (SIMS) has been used for characterization of these structures due to its high depth resolution and sensitivity, stability and reproducibility. It was detected the diffusion process of Al and In across the cell interfaces and the layer diffusion over GaAs substrates. The Al diffusion was associated at incorrect incorporation of elements during growth process and the layer diffusion was associated at changes of manufacturing parameters. Such studies show the SIMS ability to diagnose of faults during the growth process, detection of impurities and incorrect diffusion of dopants that may affect the layer properties and the structure functionality.

  18. Soil attenuation of As(III, V) and Se(IV, VI) seepage potential at ash disposal facilities.

    PubMed

    Hyun, Seunghun; Lee, Linda S

    2013-11-01

    Leachate from ash landfills is frequently enriched with As and Se but their off-site movement is not well understood. The attenuation potential of As and Se by soils surrounding selected landfills during leachate seepage was investigated in laboratory column studies using simulated ash leachate. As(III, V) and Se(IV, VI) concentrations as well as pH, flow rate, and a tracer were monitored in influent and effluent for up to 800 pore volumes followed by sequential desorption, extraction, and digestion of column segments. Column breakthrough curves (BTCs) were compared to predictions based on previously measured sorption isotherms. Early As(V) breakthrough and retarded As(III) breakthrough relative to predicted BTCs are indicative of oxidative transformation during seepage. For Se(VI), which exhibits linear sorption and the lowest sorption propensity, measured BTCs were predicted fairly well by equilibrium sorption isotherms, except for the early arrival of Se(IV) in one site soil, which in part, may be due to higher column pH values compared to batch isotherms. Most of the As and Se retained by soils during leaching was found to be strongly sorbed (60-90%) or irreversibly bound (10-40%) with <5% readily desorbable. Redox potential favoring transformation to the more sorptive valence states of As(V) and Se(IV) will invoke additional attenuation beyond equilibrium sorption-based predictions. With the exception of Se(IV) on one site soil, results indicate that attenuation by down-gradient soils of As and Se in ash landfill seepage will often be no less than what is predicted by equilibrium sorption capacity with further attenuation expected due to favorable redox transformation processes, thus mitigating contaminant plumes and associated risks. PMID:24054132

  19. Novel Approaches to High-Efficiency III-V Nitride Heterostructure Emitters for Next-Generation Lighting Applications

    SciTech Connect

    Russell Dupuis

    2007-06-30

    We report research activities and technical progress on the development of high-efficiency long wavelength ({lambda} {approx} 540nm) green light emitting diodes which covers whole years of the three-year program 'Novel approaches to high-efficiency III-V nitride heterostructure emitters for next-generation lighting applications'. The research activities were focused on the development of p-type layer that has less/no detrimental thermal annealing effect on as well as excellent structural and electrical properties and the development of green LED active region that has superior luminescence quality for {lambda}{approx}540nm green LEDs. We have also studied (1) the thermal annealing effect on blue and green LED active region during the p-type layer growth; (2) the effect of growth parameters and structural factors for LED active region on electroluminescence properties; (3) the effect of substrates and orientation on electrical and electro-optical properties of green LEDs. As a progress highlight, we obtained green-LED-active-region-friendly In{sub 0.04}Ga{sub 0.96}N:Mg exhibiting low resistivity with higher hole concentration (p=2.0 x 10{sup 18} cm{sup -3} and a low resistivity of 0.5 {omega}-cm) and improved optical quality green LED active region emitting at {approx}540nm by electroluminescence. The LEDs with p-InGaN layer can act as a quantum-confined Stark effect mitigation layer by reducing strain in the QW. We also have achieved (projected) peak IQE of {approx}25% at {lambda}{approx}530 nm and of {approx}13% at {lambda}{approx}545 nm. Visible LEDs on a non-polar substrate using (11-20) {alpha}-plane bulk substrates. The absence of quantum-confined Stark effect was confirmed but further improvement in electrical and optical properties is required.

  20. Novel Approaches to High-Efficiency III-V Nitride Heterostructure Emitters for Next-Generation Lighting Applications

    SciTech Connect

    Russell D. Dupuis

    2006-01-01

    We report research activities and technical progress on the development of high-efficiency long wavelength ({lambda} {approx} 540nm) green light emitting diodes which covers the second year of the three-year program ''Novel approaches to high-efficiency III-V nitride heterostructure emitters for next-generation lighting applications''. The second year activities were focused on the development of p-type layer that has less/no detrimental thermal annealing effect on green LED active region as well as excellent structural and electrical properties and the development of green LED active region that has superior luminescence quality for {lambda} {approx}540nm green LEDs. We have also studied the thermal annealing effect on blue and green LED active region during the p-type layer growth. As a progress highlight, we obtained green-LED-active-region-friendly In{sub 0.04}Ga{sub 0.96}N:Mg exhibiting low resistivity with higher hole concentration (p=2.0 x 10{sup 18} cm{sup -3} and a low resistivity of 0.5 {Omega}-cm) and improved optical quality green LED active region emitting at {lambda} {approx}540nm by electroluminescence. The active region of the green LEDs was found to be much more sensitive to the thermal annealing effect during the p-type layer growth than that of the blue LEDs. We have designed grown, fabricated green LED structures for both 520 nm and 540 nm for the evaluation of second year green LED development.

  1. Strain relaxation and interfacial stability in III–V semiconductor strained-layer heteroepitaxy: atomistic and continuum modeling and comparisons with experiments

    Microsoft Academic Search

    Dimitrios Maroudas; Luis A. Zepeda-Ruiz; Rodney I. Pelzel; Brett Z. Nosho; W. Henry Weinberg

    2002-01-01

    A systematic study is presented of interfacial stability and strain relaxation through misfit dislocation formation in III–V semiconductor layer-by-layer heteroepitaxy. A multiscale modeling strategy is developed that links continuum elasticity theory with atomistic structural relaxation and Monte Carlo simulations using a valence force field description of interatomic interactions. Results are presented for the energetics of the transition from a coherent

  2. Influence of PH3 exposure on silicon substrate morphology in the MOVPE growth of III-V on silicon multijunction solar cells

    NASA Astrophysics Data System (ADS)

    García-Tabarés, E.; García, I.; Martín, D.; Rey-Stolle, I.

    2013-11-01

    Dual-junction solar cells formed by a GaAsP or GaInP top cell and a silicon bottom cell seem to be attractive candidates to materialize the long sought-for integration of III-V materials on silicon for photovoltaic applications. One of the first issues to be considered in the development of this structure will be the strategy to create the silicon emitter of the bottom subcell. In this study, we explore the possibility of forming the silicon emitter by phosphorus diffusion (i.e. exposing the wafer to PH3 in a MOVPE reactor) and still obtain good surface morphologies to achieve a successful III-V heteroepitaxy as occurs in conventional III-V on germanium solar cell technology. Consequently, we explore the parameter space (PH3 partial pressure, time and temperature) that is needed to create optimized emitter designs and assess the impact of such treatments on surface morphology using atomic force microscopy. Although a strong degradation of surface morphology caused by prolonged exposure of silicon to PH3 is corroborated, it is also shown that subsequent anneals under H2 can recover silicon surface morphology and minimize its RMS roughness and the presence of pits and spikes.

  3. GaN as an Interfacial Passivation Layer: Tuning Band Offset and Removing Fermi Level Pinning for III-V MOS Devices.

    PubMed

    Zhang, Zhaofu; Cao, Ruyue; Wang, Changhong; Li, Hao-Bo; Dong, Hong; Wang, Wei-Hua; Lu, Feng; Cheng, Yahui; Xie, Xinjian; Liu, Hui; Cho, Kyeongjae; Wallace, Robert; Wang, Weichao

    2015-03-11

    The use of an interfacial passivation layer is one important strategy for achieving a high quality interface between high-k and III-V materials integrated into high-mobility metal-oxide-semiconductor field-effect transistor (MOSFET) devices. Here, we propose gallium nitride (GaN) as the interfacial layer between III-V materials and hafnium oxide (HfO2). Utilizing first-principles calculations, we explore the structural and electronic properties of the GaN/HfO2 interface with respect to the interfacial oxygen contents. In the O-rich condition, an O8 interface (eight oxygen atoms at the interface, corresponding to 100% oxygen concentration) displays the most stability. By reducing the interfacial O concentration from 100 to 25%, we find that the interface formation energy increases; when sublayer oxygen vacancies exist, the interface becomes even less stable compared with O8. The band offset is also observed to be highly dependent on the interfacial oxygen concentration. Further analysis of the electronic structure shows that no interface states are present at the O8 interface. These findings indicate that the O8 interface serves as a promising candidate for high quality III-V MOS devices. Moreover, interfacial states are present when such interfacial oxygen is partially removed. The interface states, leading to Fermi level pinning, originate from unsaturated interfacial Ga atoms. PMID:25639492

  4. Comparison for the carrier mobility between the III–V nitrides and AlGaAs/GaAs heterostructure field-effect transistors

    NASA Astrophysics Data System (ADS)

    Chongbiao, Luan; Zhaojun, Lin; Yuanjie, Lü; Zhihong, Feng; Jingtao, Zhao; Yang, Zhou; Ming, Yang

    2014-09-01

    Using the measured capacitance-voltage curves of Ni/Au Schottky contacts with different areas and the current-voltage characteristics for the AlGaAs/GaAs, AlGaN/AlN/GaN and In0.18 Al0.82N/AlN/GaN heterostructure field-effect transistors (HFETs) at low drain-source voltage, the two-dimensional electron gas (2DEG) electron mobility for the prepared HFETs was calculated and analyzed. It was found that there is an obvious difference for the variation trend of the mobility curves between the III–V nitride HFETs and the AlGaAs/GaAs HFETs. In the III–V nitride HFETs, the variation trend for the curves of the 2DEG electron mobility with the gate bias is closely related to the ratio of the gate length to the drain-to-source distance. While the ratio of the gate length to the drain-to-source distance has no effect on the variation trend for the curves of the 2DEG electron mobility with the gate bias in the AlGaAs/GaAs HFETs. The reason is attributed to the polarization Coulomb field scattering in the III–V nitride HFETs.

  5. Structural properties of bismuth-bearing semiconductor alloys

    NASA Technical Reports Server (NTRS)

    Berding, M. A.; Sher, A.; Chen, A.-B.; Miller, W. E.

    1988-01-01

    The structural properties of bismuth-bearing III-V semiconductor alloys InPBi, InAsBi, and InSbBi were studied theoretically. Bond energies, bond lengths, and strain coefficients were calculated for pure AlBi, GaBi, and InBi compounds and their alloys, and predictions were made for the mixing enthalpies, miscibility gaps, and critical metastable-to-stable material transition temperatures. Miscibility calculations indicate that InSbBi will be the most miscible, and the InPBi will be the the most difficult to mix. However, calculations of the hardness of the Bi compounds indicate that, once formed, the InPBi alloy will be harder than the other Bi alloys and substantially harder than the currently favored narrow-gap semiconductor HgCdTe.

  6. TOPICAL REVIEW: The shallow-to-deep instability of hydrogen and muonium in II VI and III V semiconductors

    NASA Astrophysics Data System (ADS)

    Cox, S. F. J.

    2003-11-01

    The structure and electrical activity of monatomic hydrogen defect centres are inferred from the spectroscopy and charge-state transitions of muonium, the light pseudo-isotope of hydrogen. Introductions are given to all these topics. Special attention is paid to the shallow-donor behaviour recently established in a number of II VI compounds and one III nitride. This contrasts with trapped-atom states suggestive of an acceptor function in other members of the II VI family as well as with the deep-level amphoteric behaviour which has long been known in the elemental group-IV semiconductors and certain III V compounds. The systematics of this remarkable shallow-to-deep instability are examined in terms of simple chemical considerations, as well as current theoretical and computational models. The muonium data appear to confirm predictions that the switch from shallow to deep behaviour is governed primarily by the depth of the conduction-band minimum below the vacuum continuum. The threshold electron affinity is around 3.5 eV, which compares favourably with computational estimates of a so-called pinning level for hydrogen (+/-) charge-state transitions of between -3 and -4.5 eV. A purely ionic model gives some intuitive understanding of this behaviour as well as the invariance of the threshold. Another current description applies equally to covalent materials and relates the threshold to the origin of the electrochemical scale. At the present level of approximation, zero-point energy corrections to the transition levels are small, so that muonium data should provide a reliable guide to the behaviour of hydrogen. Muonium spectroscopy proves to be more sensitive to the (0/+) donor level than to the (+/-) pinning level but, as a tool which does not rely on favourable hydrogen solubility, it looks set to test further predictions of these models in a large number of other materials, notably oxides. Certain candidate thin-film insulators and high-permittivity gate dielectrics appear to be uncomfortably close to conditions in which hydrogen impurity may cause electronic conduction.

  7. Surface reactions during the atomic layer deposition of high-kappa dielectrics on III-V semiconductor surfaces

    NASA Astrophysics Data System (ADS)

    Ye, Liwang

    The quality of the dielectric/semiconductor interface is one of the most critical parameters for the fabrication of high-speed and low-power-consumption III-V semiconductor based metal-oxide-semiconductor field effect transistors (MOSFETs), as it determines the device performance. This dissertation contains investigations of the deposition and interface of binary oxide films on GaAs(100) and InAs(100) surfaces aiming at understanding the removal of the surface native oxides during certain atomic layer deposition (ALD) processes. To accomplish that, two complementary experimental approaches have been used. Initially, films were deposited in a conventional ALD reactor and characterized ex situ using spectroscopic ellipsometry (SE), X-ray photoelectron spectroscopy (XPS), high-resolution transmission electron microscopy (HRTEM), and atomic force microscopy (AFM). The systems examined were Ta2O 5 on GaAs(100) surfaces from pentakis(dimethylamino) tantalum (Ta(N(CH 3)2)5, PDMAT) and TiO2 on GaAs(100) and InAs(100) surfaces from tetrakis(dimethylamino) titanium (Ti(N(CH 3)2)4, TDMAT). For these systems, deposition at the optimal ALD temperature resulted in practically sharp interfaces. Indium oxides were found to diffuse through ~ 6 nm of TiO2 film and accumulate on the topmost film layer. For the ALD of Ta2O5 on GaAs(100) surfaces, native oxide removal was enhanced at deposition temperatures above the ALD window; for ALD of TiO2 on both GaAs(100) and InAs(100) surfaces, native oxide removal was enhanced as the deposition temperatures increased up to 250 A°C, while oxidation of the interface was observed for deposition above 300 A°C due to the formation of noncontinuous films. To elucidate the surface reactions occurring during the deposition, an in situ attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy apparatus was constructed and used to investigate the surface reactions during the ALD of TiO2 and HfO2 on GaAs(100) surfaces. The existence of a ligand exchange mechanism was verified for both processes. Additionally, the formation of methylmethyleneimine (CH3N=CH 2, MMI) was observed, indicating the existence of a beta hydride reaction pathway. Additionally, at 275 A°C continuous removal of arsenic oxides was observed during the first 20 process cycles, an observation that challenges the prevailing understanding of the native oxide removal and indicates a much more complex surface chemistry.

  8. Nanostructures produced by phase-separation during growth of (III-V).sub.1-x(IV.sub.2).sub.x alloys

    DOEpatents

    Norman, Andrew G. (Evergreen, CO); Olson, Jerry M. (Lakewood, CO)

    2007-06-12

    Nanostructures (18) and methods for production thereof by phase separation during metal organic vapor-phase epitaxy (MOVPE). An embodiment of one of the methods may comprise providing a growth surface in a reaction chamber and introducing a first mixture of precursor materials into the reaction chamber to form a buffer layer (12) thereon. A second mixture of precursor materials may be provided into the reaction chamber to form an active region (14) on the buffer layer (12), wherein the nanostructure (18) is embedded in a matrix (16) in the active region (14). Additional steps are also disclosed for preparing the nanostructure (18) product for various applications.

  9. A thermodynamic analysis of native point defect and dopant solubilities in zinc-blende III-V semiconductors

    NASA Astrophysics Data System (ADS)

    Hurle, D. T. J.

    2010-06-01

    A thermodynamic model is used to analyze available experimental data relevant to point defects in the binary zinc-blende III-V compounds (Ga,In)-(P,As,Sb). The important point defects and their complexes in each of the materials are identified and included in the model. Essentially all of the available experimental data on dopant solubility, crystal density, and lattice parameter of melt and solution grown crystals and epilayers are reproduced by the model. It extends an earlier study [Hurle, J. Appl. Phys. 85, 6957 (1999)] devoted solely to GaAs. Values for the enthalpy and entropy of formation of both native and dopant related point defects are obtained by fitting to experimental data. In undoped material, vacancies, and interstitials on the Group V sublattice dominate in the vicinity of the melting point (MP) in both the phosphides and arsenides, whereas, in the antimonides, vacancies on both sublattices dominate. The calculated concentrations of the native point defects are used to construct the solidus curves of all the compounds. The charged native point defect concentrations at the MP in four of the six materials are significantly higher than their intrinsic carrier concentrations. Thus the usually assumed high temperature "intrinsic" electroneutrality condition for undoped material (n=p) is not valid for these materials. In GaSb, the GaSb antisite defect appears to be grown-in from the melt. This contrasts with the AsGa defect in GaAs for which the concentration grown-in at the MP is negligibly small. Compensation of donor-doped material by donor-Group III vacancy complexes is shown to exist in all the compounds except InP where Group VI doped crystals are uncompensated and in InSb where there is a lack of experimental data. The annealing effects in n+ GaAs, including lattice superdilation, which were shown in the earlier paper to be due to Group III vacancy undersaturation during cooling, are found to be present also in GaSb and InAs. Results for native point defects are compared with reported "first principles" calculations for GaAs. It is seen that, while there is some accord with experimental findings for low temperature molecular beam epitaxial (MBE) growth, they fail totally to predict the behavior under high temperature growth conditions. The analysis of data on liquid phase epitaxy (LPE) growth of GaAs from Bi solution in the earlier paper has been re-calculated in the light of experimental data that showed that the model used in that paper to represent the Ga-As-Bi phase equilibria was inadequate. An improved model reveals that Ga vacancies exert a greater effect in controlling the extent of the linear range of donor dopant solubility than previously predicted. It has also led to a re-evaluation of the equilibrium EL2 and Ga vacancy concentrations in GaAs during MBE growth under As-rich conditions at low temperatures (˜500 K). The amended model predicts that the very high concentrations of EL2 and of Ga vacancies observed experimentally are near equilibrium values. The predicted increase in the equilibrium concentrations of these defects at low temperatures results from coulombic attraction between the two defects. At temperatures somewhat lower than 500 K the rate of increase becomes catastrophic.

  10. Beyond CMOS: heterogeneous integration of III–V devices, RF MEMS and other dissimilar materials/devices with Si CMOS to create intelligent microsystems

    PubMed Central

    Kazior, Thomas E.

    2014-01-01

    Advances in silicon technology continue to revolutionize micro-/nano-electronics. However, Si cannot do everything, and devices/components based on other materials systems are required. What is the best way to integrate these dissimilar materials and to enhance the capabilities of Si, thereby continuing the micro-/nano-electronics revolution? In this paper, I review different approaches to heterogeneously integrate dissimilar materials with Si complementary metal oxide semiconductor (CMOS) technology. In particular, I summarize results on the successful integration of III–V electronic devices (InP heterojunction bipolar transistors (HBTs) and GaN high-electron-mobility transistors (HEMTs)) with Si CMOS on a common silicon-based wafer using an integration/fabrication process similar to a SiGe BiCMOS process (BiCMOS integrates bipolar junction and CMOS transistors). Our III–V BiCMOS process has been scaled to 200?mm diameter wafers for integration with scaled CMOS and used to fabricate radio-frequency (RF) and mixed signals circuits with on-chip digital control/calibration. I also show that RF microelectromechanical systems (MEMS) can be integrated onto this platform to create tunable or reconfigurable circuits. Thus, heterogeneous integration of III–V devices, MEMS and other dissimilar materials with Si CMOS enables a new class of high-performance integrated circuits that enhance the capabilities of existing systems, enable new circuit architectures and facilitate the continued proliferation of low-cost micro-/nano-electronics for a wide range of applications. PMID:24567473

  11. Charge-injection induced magnetism and half metallicity in single-layer hexagonal group III/V (BN, BP, AlN, AlP) systems

    NASA Astrophysics Data System (ADS)

    Wu, Menghao; Zhang, Zhuhua; Zeng, Xiao Cheng

    2010-08-01

    Based on the first-principles calculations, we predict that strong ferromagnetism and half metallicity can be induced via charge injection in single-layer hexagonal boron nitride (BN) and BN nanoribbons. This phenomenon can be understood based on the Stoner criterion and the relationship between induced magnetic moment and charge density. Other group-III/V two-dimensional honeycomb systems such as boron phosphide (BP), aluminum nitride (AlN), and aluminum phosphide (AIP) exhibit similar ferromagnetic behavior upon charge injection. Like BN, the single-layer hexagonal AlN can be converted to a half metal at certain positive charge states.

  12. Comment on ``Atomic structure and ordering in semiconducting alloys''

    NASA Astrophysics Data System (ADS)

    Podgórny, M.; Czyzyk, M. T.

    1987-08-01

    Recently, an ab initio total-energy calculation for the ordered ternary phases of a III-V zinc-blende semiconductor was reported [G.P. Srivastava, J. L. Martins, and A. Zunger, Phys. Rev. B 31, 2561 (1985)]. We compare these results with those of a simple empirical model. Both models are used in a new approach to the calculation of thermodynamic properties of ternary alloys including the calculation of the cation distribution in the mixed sublattice. The applicability of the models is critically discussed.

  13. Alloy materials

    DOEpatents

    Hans Thieme, Cornelis Leo (Westborough, MA); Thompson, Elliott D. (Coventry, RI); Fritzemeier, Leslie G. (Acton, MA); Cameron, Robert D. (Franklin, MA); Siegal, Edward J. (Malden, MA)

    2002-01-01

    An alloy that contains at least two metals and can be used as a substrate for a superconductor is disclosed. The alloy can contain an oxide former. The alloy can have a biaxial or cube texture. The substrate can be used in a multilayer superconductor, which can further include one or more buffer layers disposed between the substrate and the superconductor material. The alloys can be made a by process that involves first rolling the alloy then annealing the alloy. A relatively large volume percentage of the alloy can be formed of grains having a biaxial or cube texture.

  14. Optical and electrical properties of III-V nitride wide bandgap semiconductors. Annual report, April 1, 1997--May 31, 1998

    SciTech Connect

    NONE

    1998-06-01

    The objectives of this project were to investigate the optical and electrical properties of III-nitride wide bandgap semiconductors (GaN, InGaN, AlGaN) and quantum wells, to understand the fundamental optical transitions and impurity properties of these materials, to study the physics components of GaN-based devices, and to provide input for new approaches toward the improvement of materials quality and the optimization of device design. We were the first group to employ transport measurement techniques on the persistent photoconductivity (PPC) state to study the impurity properties of III-nitrides. We were also one of the few research groups m in the world to employ picosecond time-resolved photoluminescence (PL) measurement technique to study mechanisms of optical transitions, LED emission, and lasing m in GaN materials. During this funding period, we have investigated a variety of GaN samples and structures grown by MBE as well as by MOCVD. We have also made a significant progress in MOCVD GaN materials growth. This report briefly discusses the following accomplishments: effects of deep level impurities in the AlGaN/GaN heterostructures; materials characterization of III-nitrides alloys; optical studies of III-nitride epilayers and quantum wells; fabrication and optical studies of III-nitride microdisk arrays; and materials growth by MOCVD.

  15. The recombination velocity at III-V compound heterojunctions with applications to Al (x) Ga(1-x)As-GaAs(1-y)Sb(y)

    NASA Technical Reports Server (NTRS)

    Kim, J. S.

    1978-01-01

    Interface recombination velocity in AlxGa1-xAs-GaAs and A10.85 Ga0.15As-GaAs1-ySby heterojunction systems was studied as a function of lattice mismatch. The results are applied to the design of highly efficient III-V heterojunction solar cells. A horizontal liquid-phase epitaxial growth system was used to prepare p-p-p and p-p-n double heterojunction test samples with specified values of x and y. Samples were grown at each composition, with different GaAs and GaAsSb layer thicknesses. A method was developed to obtain the lattice mismatch and lattice constants in mixed single crystals grown on (100) and (111)B oriented GaAs substrates.

  16. New III-V cell design approaches for very high efficiency. Annual subcontract report, 1 August 1990--31 July 1991

    SciTech Connect

    Lundstrom, M.S.; Melloch, M.R.; Lush, G.B.; O`Bradovich, G.J.; Young, M.P. [Purdue Univ., Lafayette, IN (United States)

    1993-01-01

    This report describes progress during the first year of a three-year project. The objective of the research is to examine new design approaches for achieving very high conversion efficiencies. The program is divided into two areas. The first centers on exploring new thin-film approaches specifically designed for III-V semiconductors. The second area centers on exploring design approaches for achieving high conversion efficiencies without requiring extremely high quality material. Research activities consisted of an experimental study of minority carrier recombination in n-type, metal-organic chemical vapor deposition (MOCVD)-deposited GaAs, an assessment of the minority carrier lifetimes in n-GaAs grown by molecular beam epitaxy, and developing a high-efficiency cell fabrication process.

  17. Low-driving-current InGaAsP photonic-wire optical switches using III-V CMOS photonics platform.

    PubMed

    Ikku, Yuki; Yokoyama, Masafumi; Ichikawa, Osamu; Hata, Masahiko; Takenaka, Mitsuru; Takagi, Shinichi

    2012-12-10

    Electrically-driven Mach-Zehnder interferometer type InGaAsP photonic-wire optical switches have been demonstrated using a III-V-on-insulator structure bonded on a thermally oxidized Si with an Al(2)O(3)/InP bonding interfacial layer which enables strong wafer bonding and low propagation loss. Lateral p-i-n junctions in the InGaAsP photonic-wire waveguides were formed by using ion implantation for changing refractive index in the InGaAsP waveguide through carrier injection. Optical switching with 10 dB extinction ratio was achieved with driving current of 200 µA which is approximately 10 times smaller than that of Si photonic-wire optical switch owing to larger free-carrier effect in InGaAsP than that in Si. PMID:23262873

  18. Dependence of doubly curved regions on drying method in the fabrication of long-side rolled-up III-V microtubes

    NASA Astrophysics Data System (ADS)

    Li, Bochang; Wang, Qi; Wang, Eryang; Jia, Zhigang; Yan, Yingce; Bian, Zhiqiang; Ren, Xiaomin; Cai, Shiwei; Huang, Yongqing

    2013-07-01

    Through improving fabrication process, short-side rolling phenomenon has been eliminated, and well-aligned long-side rolled-up III-V microtube arrays have been achieved. Finite element method (FEM) has been exploited to simulate the evolution of strain energy in the entire self-rolling process, showing that the difference of strain-released regions is the major factor that determines the rolling direction. Meanwhile, the doubly curved regions have been observed around the openings of air-dried microtubes but do not exist on the microtubes dried in critical point dryer, which demonstrates this structural deformation results not from the release of residual strain energy but from the surface tension.

  19. Ordered structures and metastable alloys grown by OMVPE

    SciTech Connect

    Stringfellow, G.B.

    1989-01-01

    Our understanding of the thermodynamics of mixing in semiconductor solids has evolved from the purely empirical regular solution model to models based on the electron energy states in the solid, including the delta-lattice parameter (DLP) model and, more recently, first principles calculations. These models are in agreement that the enthalpy of mixing is invariably /ge/0 for III/V and II/VI alloys, and increases with increasing difference in lattice constant for the constituent binary compounds. In terms of the simple thermochemical mixing models, this suggests the occurrence of miscibility gaps. Solid phase immiscibility has indeed been observed in a number of systems. Nevertheless, such alloys can be grown by OMVPE, including the highly metastable alloys GaPSb and InPSb. Ordered structures have now been observed in several III/V alloy systems including the ternary systems GaAsSb, GaInP, AlInAs, AlGaAs, and GaInAs, and the quaternaries GaInAsP, GaInAsSb, and AlGaInP. In this paper, ordering in other alloy systems such as GaPSb, InPSb, InAsSb, and GaAsP will be described. An unexpected observation is that the preferred ordered structure for the ternaries GaInP, GaPSb, InAsSb, and GaAsP involves ordering along the /l angle/111/r angle/ directions, forming the Cu--Pt(L1/sub 1/) structure. This is also true of GaAsSb grown by MBE. Both the first principles calculations and simple strain energy calculations indicate that such ordered structures are more stable than the disordered solid solution, but less stable than other ordered structures. 56 refs., 4 figs., 1 tab.

  20. Theoretical modeling and optimization of III-V GaInP/GaAs/Ge monolithic triple-junction solar cells

    NASA Astrophysics Data System (ADS)

    Leem, Jung Woo; Yu, Jae Su; Kim, Jong Nam; Noh, Sam Kyu

    2014-05-01

    We design and optimize monolithic III-V GaInP/GaAs/Ge triple-junction (TJ) solar cells by using a commercial software Silvaco ATLAS simulator to obtain the maximum short-circuit current density J sc . The maximum J sc , which is a current matching value between the GaInP top and GaAs middle subcells, can be determined by varying the base thicknesses of the GaInP top and GaAs middle subcells. From the numerical simulation results, a matched maximum J sc value of 13.92 mA/cm2 is obtained at base thicknesses of 0.57 ?m and 3 ?m for the GaInP top and GaAs middle subcells, respectively, under 1-sun air mass 1.5 global spectrum illumination, leading to a high power conversion efficiency of 30.72%. The open-circuit voltage and the fill factor are 2.55 V and 86.55%, respectively. For the optimized cell structure, the external quantum efficiency and the photogeneration rate distributions are also investigated. To obtain efficient antireflection coatings (ARCs), we perform optical reflectance calculations by using a rigorous coupled-wave analysis method. For this, a silicon oxide/titanium oxide double-layer is used as an ARC on the TJ solar cell.

  1. Fabrication of HfO2 patterns by laser interference nanolithography and selective dry etching for III-V CMOS application

    PubMed Central

    2011-01-01

    Nanostructuring of ultrathin HfO2 films deposited on GaAs (001) substrates by high-resolution Lloyd's mirror laser interference nanolithography is described. Pattern transfer to the HfO2 film was carried out by reactive ion beam etching using CF4 and O2 plasmas. A combination of atomic force microscopy, high-resolution scanning electron microscopy, high-resolution transmission electron microscopy, and energy-dispersive X-ray spectroscopy microanalysis was used to characterise the various etching steps of the process and the resulting HfO2/GaAs pattern morphology, structure, and chemical composition. We show that the patterning process can be applied to fabricate uniform arrays of HfO2 mesa stripes with tapered sidewalls and linewidths of 100 nm. The exposed GaAs trenches were found to be residue-free and atomically smooth with a root-mean-square line roughness of 0.18 nm after plasma etching. PACS: Dielectric oxides 77.84.Bw, Nanoscale pattern formation 81.16.Rf, Plasma etching 52.77.Bn, Fabrication of III-V semiconductors 81.05.Ea PMID:21711946

  2. Incomplete solubility in nitride alloys

    SciTech Connect

    Ho, I.H.; Stringfellow, G.B. [Univ. of Utah, Salt Lake City, UT (United States). Dept. of Materials Science and Engineering

    1997-12-31

    A model based on the valence-force-field (VFF) model has been developed specifically for the calculation of the miscibility gaps in III-V nitride alloys. In the dilute limit, this model allows the relaxation of the atoms on both sublattices. It was found that the energy due to bond stretching and bond bending was lowered and the solubility limit was increased substantially when both sublattices were allowed to relax to distances as large as the sixth nearest neighbor positions. Using this model, the equilibrium mole fraction of N in GaP was calculated to be 6 {times} 10{sup {minus}7} at 700 C. This is slightly higher than the calculated results from the semi-empirical delta lattice parameter (DLP) model. Both the temperature dependence and the absolute values of the calculated solubility agree closely with the experimental data. The solubility is more than three orders of magnitude larger than the result obtained using the VFF model with the group V atom positions given by the virtual crystal approximation, i.e., with relaxation of only the first neighbor bonds. Other nitride systems, such as GaAsN, AlPN, AlAsN, InPN, and InAsN were investigated as well. The equilibrium mole fractions of nitrogen in InP and InAs are the highest, which agrees well with recent experimental data where high N concentrations have been produced in InAsN alloys. Calculations were also performed for the alloy systems with mixing on the group III sublattice that are so important for device applications. Allowing relaxation to the 3rd nearest neighbor gives an In solubility in GaN at 800 C of less than 6%. Again, this is in agreement with the results of the DLP model calculation. This result may partially explain the difficulties experienced with the growth of these alloys. Indeed, evidence of solid immiscibility has recently been reported. A significant miscibility gap was also calculated for the AlInN system, but the AlGaN system is completely miscible.

  3. Mechanical Alloying

    Microsoft Academic Search

    J. S. Benjamin

    1976-01-01

    A new technique of combining metals has been developed which overcomes many of the limitations of conventional alloying. Ball mills that generate higher energies than conventional ball mills are used to tumble a mixture of powders, such as WC and Co, in order to form a composite. Ni-base alloys can be dispersion-hardened in this way with an oxide such as

  4. Structural properties of bismuth-bearing semiconductor alloys

    NASA Technical Reports Server (NTRS)

    Berding, M. A.; Sher, A.; Chen, A. B.

    1986-01-01

    The structural properties of bismuth-bearing III-V semiconductor alloys are addressed. Because the Bi compounds are not known to form zincblende structures, only the anion-substituted alloys InPBi, InAsBi, and InSbBi are considered candidates as narrow-gap semiconductors. Miscibility calculations indicate that InSbBi will be the most miscible, and InPBi, with the large lattice mismatch of the constituents, will be the most difficult to mix. Calculations of the hardness of the Bi compounds indicate that, once formed, the InPBi alloy will be harder than the other Bi alloys, and substantially harder than the currently favored narrow-gap semiconductor HgCdTe. Thus, although InSbBi may be an easier material to prepare, InPBi promises to be a harder material. Growth of the Bi compounds will require high effective growth temperatures, probably attainable only through the use of nonequilibrium energy-assisted epitaxial growth techniques.

  5. A standards-based method for compositional analysis by energy dispersive X-ray spectrometry using multivariate statistical analysis: application to multicomponent alloys.

    PubMed

    Rathi, Monika; Ahrenkiel, S P; Carapella, J J; Wanlass, M W

    2013-02-01

    Given an unknown multicomponent alloy, and a set of standard compounds or alloys of known composition, can one improve upon popular standards-based methods for energy dispersive X-ray (EDX) spectrometry to quantify the elemental composition of the unknown specimen? A method is presented here for determining elemental composition of alloys using transmission electron microscopy-based EDX with appropriate standards. The method begins with a discrete set of related reference standards of known composition, applies multivariate statistical analysis to those spectra, and evaluates the compositions with a linear matrix algebra method to relate the spectra to elemental composition. By using associated standards, only limited assumptions about the physical origins of the EDX spectra are needed. Spectral absorption corrections can be performed by providing an estimate of the foil thickness of one or more reference standards. The technique was applied to III-V multicomponent alloy thin films: composition and foil thickness were determined for various III-V alloys. The results were then validated by comparing with X-ray diffraction and photoluminescence analysis, demonstrating accuracy of approximately 1% in atomic fraction. PMID:23298470

  6. Aluminum alloy

    NASA Technical Reports Server (NTRS)

    Blackburn, Linda B. (inventor); Starke, Edgar A., Jr. (inventor)

    1989-01-01

    This invention relates to aluminum alloys, particularly to aluminum-copper-lithium alloys containing at least about 0.1 percent by weight of indium as an essential component, which are suitable for applications in aircraft and aerospace vehicles. At least about 0.1 percent by weight of indium is added as an essential component to an alloy which precipitates a T1 phase (Al2CuLi). This addition enhances the nucleation of the precipitate T1 phase, producing a microstructure which provides excellent strength as indicated by Rockwell hardness values and confirmed by standard tensile tests.

  7. Investigating the growth, structural and electrical properties of III-V semiconductor nanopillars for the next-generation electronic and optoelectronic devices

    NASA Astrophysics Data System (ADS)

    Lin, Andrew

    Extensive research efforts have been devoted to the study and development of III-V compound semiconductor nanowires (NWs) and nanopillars (NPs) because of their unique physical properties and ability to form high quality, highly lattice-mismatched axial and radial heterostructures. These advantages lead to precise nano-bandgap engineering to achieve new device functionalities. One unique and powerful approach to realize these NPs is by catalyst-free, selective-area epitaxy (SAE) via metal-organic chemical vapor deposition, in which the NP location and diameter can be precisely controlled lithographically. Early demonstrations of electronic and optoelectronic devices based on these NPs, however, are often inferior compared to their planar counterparts due to a few factors: (1) interface/surface states, (2) inaccurate doping calibration, and (3) increased carrier scattering and trapping from stacking fault formation in the NPs. In this study, the detailed growth mechanisms of different III-As, III-Sb and III-P NPs and their heterostructures are investigated. These NPs are then fabricated into single-NP field-effect transistors (FETs) to probe their electrical properties. It is shown that these devices are highly diameter-dependent, mainly because of the effects of surface states. By growing a high band-gap shell around the NP cores to passivate the surface, the device performance can be significantly improved. Further fabrication and characterization of vertical surround-gate FETs using a high-mobility InAs/InP NP channel is also discussed. Aside from the radial NP heterostructures, different approaches to achieve purely axial heterostructures in InAs/In(As)P materials are also presented with excellent interface quality. Both single barrier and double barrier structures are realized and fabricated into devices that show carrier transport characteristics over a barrier and even resonant tunneling behavior. Antimonide-based NPs are also studied for their immense application in high-speed electronics and mid-IR optoelectronics. Different growth regimes are probed to achieve InSb NPs and InAsSb NPs.

  8. Multiple doping of silicon-germanium alloys for thermoelectric applications

    NASA Technical Reports Server (NTRS)

    Fleurial, Jean-Pierre; Vining, Cronin B.; Borshchevsky, Alex

    1989-01-01

    It is shown that heavy doping of n-type Si/Ge alloys with phosphorus and arsenic (V-V doping interaction) by diffusion leads to a significant enhancement of their carrier concentration and possible improvement of the thermoelectric figure of merit. High carrier concentrations were achieved by arsenic doping alone, but for a same doping level higher carrier mobilities and lower resistivities are obtained through phosphorus doping. By combining the two dopants with the proper diffusion treatments, it was possible to optimize the different properties, obtaining high carrier concentration, good carrier mobility and low electrical resistivity. Similar experiments, using the III-V doping interaction, were conducted on boron-doped p-type samples and showed the possibility of overcompensating the samples by diffusing arsenic, in order to get n-type behavior.

  9. Elevated temperature aluminum alloys

    NASA Technical Reports Server (NTRS)

    Meschter, Peter (Inventor); Lederich, Richard J. (Inventor); O'Neal, James E. (Inventor)

    1989-01-01

    Three aluminum-lithium alloys are provided for high performance aircraft structures and engines. All three alloys contain 3 wt % copper, 2 wt % lithium, 1 wt % magnesium, and 0.2 wt % zirconium. Alloy 1 has no further alloying elements. Alloy 2 has the addition of 1 wt % iron and 1 wt % nickel. Alloy 3 has the addition of 1.6 wt % chromium to the shared alloy composition of the three alloys. The balance of the three alloys, except for incidentql impurities, is aluminum. These alloys have low densities and improved strengths at temperatures up to 260.degree. C. for long periods of time.

  10. Thin semiconductor alloy films: Fabrication and physical properties

    NASA Astrophysics Data System (ADS)

    Liu, Xinyu

    The main emphasis of this thesis is on fabrication and physical properties of thin semiconductor alloy films. We investigated the detailed processes which play a role in fabricating these materials, and systematically investigated the links between the fabrication processes and physical properties of the alloys of interest. Wide-gap semiconductor ternary alloys based on combining group-II and group-VI elements were grown by molecular beam epitaxy (MBE) over a wide range of compositions. The indices of refraction of these II-VI ternary alloys were measured at wavelengths below their respective energy gaps. A set of empirical parameters were establish for each alloy family, which can then be used to calculate the index of refraction for an arbitrary alloy composition at arbitrary wavelength. We applied the single effective oscillator (SEO) model to the experimental data in order to examine the effect of the covalency (or ionicity) of these semiconductor alloys, and to establish a method for extrapolating physical properties for different zinc-blende II-VI compounds. Furthermore, to fit the data near the energy gap, an additional term was added to the SEO model, which accounts for the effect of the direct energy gap. In addition to our investigation of II-VI-based alloys, we also fabricated ferromagnetic semiconductor III-Mn-V alloys using a low temperature MBE technique. A thorough investigation of the physical properties (such as growth, magnetic, and transport properties) of III-Mn-V alloys was carried out. Specifically, we have studied two issues involving these materials: low temperature annealing of GaMnAs under different strain conditions; and fabrication of hybrid magnetic structures comprised of GaMnAs and ZnMnSe, the latter system involving antiferromagnetic interactions between the Mn ions. Furthermore, we fabricated semiconductor superlattices of ZnSe1-x Tex and GaAs1-xSbx in which the chemical composition x varies sinusoidally along the direction of growth, and we studied the physical properties of these novel structures. The sinusoidal nature of the compositional profiles of these materials was inferred from the presence of only a single superlattice Fourier component in the x-ray diffraction spectra. Superlattice formation is additionally supported by systematic photoluminescence data. In the end, we have fabricated and studied various digital alloys of III-V/Mn, where Mn-containing monolayers are "inserted" periodically in the III-V host material. Most of these digital structures exhibited ferromagnetism at low temperature, as demonstrated by hysteresis loops in the magnetization, and a metallic p-type conductivity with a strong anomalous Hall effect. The GaSb/Mn digital system exhibited high temperature ferromagnetic behavior, as demonstrated by a strong anomalous Hall effect characterized by hysteresis loops up to 400 K.

  11. Arsenic(III, V) adsorption on a goethite-based adsorbent in the presence of major co-existing ions: Modeling competitive adsorption consistent with spectroscopic and molecular evidence

    NASA Astrophysics Data System (ADS)

    Kanematsu, Masakazu; Young, Thomas M.; Fukushi, Keisuke; Green, Peter G.; Darby, Jeannie L.

    2013-04-01

    Adsorption of the two oxyanions, arsenate (As(V)) and arsenite (As(III)), on a common goethite-based granular porous adsorbent is studied in the presence of major co-existing ions in groundwater (i.e., phosphate, silicic acid, sulfate, carbonate, magnesium, and calcium) and predicted using the extended triple layer model (ETLM), a dipole modified single-site triple layer surface complexation model consistent with spectroscopic and molecular evidence. Surface species of all ions were selected according to the previous ETLM studies and published experimental spectroscopic/theoretical molecular information. The adsorption equilibrium constants for all ions were determined using adsorption data obtained in single-solute systems. The adsorption equilibrium constants referenced to the site-occupancy standard state (indicated by K?) were compared with those for goethite in the literature if available. The values of these constants for the goethite-based adsorbent are found to be close to the values for goethite previously studied. These "constrained" adsorption equilibrium constants determined in single-solute systems were used in the ETLM to predict the competitive interactions of As(III, V) with the co-existing ions in binary-solute systems. The ETLM is capable of predicting As(III, V) adsorption in the presence of oxyanions (phosphate, silicic acid, sulfate, and carbonate). This study presents the first successful and systematic prediction of the competitive interactions of As(III, V) with these oxyanions using the ETLM. The ETLM prediction of surface (and aqueous) speciation also provides insights into the distinct adsorption behavior of As(III, V) in the presence of the oxyanions. Magnesium and calcium significantly enhanced As(V) adsorption at higher pH values, while they had little effect on As(III) adsorption. The enhanced adsorption of As(V), however, could not be predicted by the ETLM using the surface species proposed in previous ETLM studies. Further studies are necessary to identify ternary complexes, especially at high pH. Adsorption isotherms of As(V), a dominant form of arsenic in adsorptive water treatment systems, in the presence of the co-existing ions under relevant conditions of water treatment systems are also obtained and predicted by the ETLM to study and compare the effect of the co-existing ions on As(V) removal.

  12. VAl Alloy

    NASA Astrophysics Data System (ADS)

    Mikami, M.; Mizoshiri, M.; Ozaki, K.; Takazawa, H.; Yamamoto, A.; Terazawa, Y.; Takeuchi, T.

    2014-06-01

    Power generation performance of a thermoelectric module consisting of the Heusler Fe2VAl alloy was evaluated. For construction of the module, W-doped Fe2VAl alloys were prepared using powder metallurgy process. Power generation tests of the module consisting of 18 pairs of p- n junctions were conducted on a heat source of 373-673 K in vacuum. The reduction of thermal conductivity and improvement of thermoelectric figure of merit by W-doping enhanced the conversion efficiency and the output power. High output power density of 0.7 W/cm2 was obtained by virtue of the high thermoelectric power factor of the Heusler alloy. The module exhibited good durability, and the relatively high output power was maintained after temperature cycling test in air.

  13. Electronic Band Structure of GaNxPyAs1-x -y Highly Mismatched Alloys: Suitability for Intermediate-Band Solar Cells

    NASA Astrophysics Data System (ADS)

    Kudrawiec, R.; Luce, A. V.; Gladysiewicz, M.; Ting, M.; Kuang, Y. J.; Tu, C. W.; Dubon, O. D.; Yu, K. M.; Walukiewicz, W.

    2014-04-01

    Formation of an intermediate band in GaNxP0.4As0.6-x alloys due to the isovalent doping by nitrogen is studied by photoreflectance and absorption spectroscopy. The fundamental energy gap transition (E0) observed for an N-free alloy is replaced by two optical transitions (E- and E+) in GaNPAs layers. The E - and E+ transitions are explained within the band anticrossing model, where the localized level of nitrogen interacts with the conduction band of the GaPAs host, splitting it into two subbands. The valence band (VB) is mostly unaffected by nitrogen incorporation as confirmed by the same spin-orbit splitting for N-free and N-containing alloys. The energy position of the E - subband and a strong optical absorption between the VB and the E- subband indicates the GaNPAs alloys have an electronic structure suitable for intermediate-band solar cells. Such an electronic structure is not observed for other III-V alloys like GaInAs, GaInAsP, etc., for which the virtual crystal approximation can be applied to describe the evolution of the electronic structure with the alloy content. Results obtained in this work clearly show that GaNPAs with a few percent of nitrogen is an unusual material system, for which the electronic structure properties differ very significantly from properties of well-known III-V alloys, and the application of virtual crystal approximation in this case is inappropriate or very limited.

  14. Amorphous metal alloys produced by mechanical alloying

    SciTech Connect

    Tiainen, T.J.; Schwarz, R.B.

    1989-01-01

    Mechanical alloying is a powder metallurgy method used in commercial production of high temperature superalloys. Under specific conditions, mechanical alloying allows the synthesis of amorphous metal alloys from mixtures of pure metal powders or from the powders of intermetallic compounds. Because the amorphizing transformation during mechanical alloying is a solid state reaction, most of the difficulties related to the amorphization by rapid solidification of melts can be avoided. Mechanical alloying allows the synthesis of amorphous alloys from metals with high melting temperatures and the resulting alloys have interesting properties such as high hardness and high crystallization temperatures. We used mechanical alloying for the synthesis of amorphous alloys in the binary alloy systems Nl-Sn, Nb-Si and Al-Hf. The amorphous alloy powders were characterized by x-ray diffraction, differential scanning calorimetry, scanning and transmission electron microscopy and hardness measurements. Produced alloys were compacted by hot pressing and the obtained compacts were characterized by x-ray diffraction, density and hardness measurements and by optical and scanning electron microscopy. The results of the amorphization and compaction studies are presented and discussed together with the characteristics of the mechanical alloying process. 15 refs., 5 figs.

  15. Metal alloy identifier

    DOEpatents

    Riley, William D. (Avondale, MD); Brown, Jr., Robert D. (Avondale, MD)

    1987-01-01

    To identify the composition of a metal alloy, sparks generated from the alloy are optically observed and spectrographically analyzed. The spectrographic data, in the form of a full-spectrum plot of intensity versus wavelength, provide the "signature" of the metal alloy. This signature can be compared with similar plots for alloys of known composition to establish the unknown composition by a positive match with a known alloy. An alternative method is to form intensity ratios for pairs of predetermined wavelengths within the observed spectrum and to then compare the values of such ratios with similar values for known alloy compositions, thereby to positively identify the unknown alloy composition.

  16. Semiconductor structures having electrically insulating and conducting portions formed from an AlSb-alloy layer

    DOEpatents

    Spahn, O.B.; Lear, K.L.

    1998-03-10

    The semiconductor structure comprises a plurality of semiconductor layers formed on a substrate including at least one layer of a III-V compound semiconductor alloy comprising aluminum (Al) and antimony (Sb), with at least a part of the AlSb-alloy layer being chemically converted by an oxidation process to form superposed electrically insulating and electrically conducting portions. The electrically insulating portion formed from the AlSb-alloy layer comprises an oxide of aluminum (e.g., Al{sub 2}O{sub 3}), while the electrically conducting portion comprises Sb. A lateral oxidation process allows formation of the superposed insulating and conducting portions below monocrystalline semiconductor layers for forming many different types of semiconductor structures having particular utility for optoelectronic devices such as light-emitting diodes, edge-emitting lasers, vertical-cavity surface-emitting lasers, photodetectors and optical modulators (waveguide and surface normal), and for electronic devices such as heterojunction bipolar transistors, field-effect transistors and quantum-effect devices. The invention is expected to be particularly useful for forming light-emitting devices for use in the 1.3--1.6 {mu}m wavelength range, with the AlSb-alloy layer acting to define an active region of the device and to effectively channel an electrical current therein for efficient light generation. 10 figs.

  17. Semiconductor structures having electrically insulating and conducting portions formed from an AlSb-alloy layer

    DOEpatents

    Spahn, Olga B. (Albuquerque, NM); Lear, Kevin L. (Albuquerque, NM)

    1998-01-01

    A semiconductor structure. The semiconductor structure comprises a plurality of semiconductor layers formed on a substrate including at least one layer of a III-V compound semiconductor alloy comprising aluminum (Al) and antimony (Sb), with at least a part of the AlSb-alloy layer being chemically converted by an oxidation process to form superposed electrically insulating and electrically conducting portions. The electrically insulating portion formed from the AlSb-alloy layer comprises an oxide of aluminum (e.g. Al.sub.2 O.sub.3), while the electrically conducting portion comprises Sb. A lateral oxidation process allows formation of the superposed insulating and conducting portions below monocrystalline semiconductor layers for forming many different types of semiconductor structures having particular utility for optoelectronic devices such as light-emitting diodes, edge-emitting lasers, vertical-cavity surface-emitting lasers, photodetectors and optical modulators (waveguide and surface normal), and for electronic devices such as heterojunction bipolar transistors, field-effect transistors and quantum-effect devices. The invention is expected to be particularly useful for forming light-emitting devices for use in the 1.3-1.6 .mu.m wavelength range, with the AlSb-alloy layer acting to define an active region of the device and to effectively channel an electrical current therein for efficient light generation.

  18. Turbine Blade Alloy

    NASA Technical Reports Server (NTRS)

    MacKay, Rebecca

    2001-01-01

    The High Speed Research Airfoil Alloy Program developed a fourth-generation alloy with up to an +85 F increase in creep rupture capability over current production airfoil alloys. Since improved strength is typically obtained when the limits of microstructural stability are exceeded slightly, it is not surprising that this alloy has a tendency to exhibit microstructural instabilities after high temperature exposures. This presentation will discuss recent results obtained on coated fourth-generation alloys for subsonic turbine blade applications under the NASA Ultra-Efficient Engine Technology (UEET) Program. Progress made in reducing microstructural instabilities in these alloys will be presented. In addition, plans will be presented for advanced alloy development and for computational modeling, which will aid future alloy development efforts.

  19. Empty cage to three-dimensional structural transition in nanoparticles of III-V compound semiconductors: The finding of magic (AlP)13 and (GaP)32

    NASA Astrophysics Data System (ADS)

    Kaur, Prabhsharan; Sekhon, S. S.; Kumar, Vijay

    2012-02-01

    Small nanoparticles of III-V compound semiconductors have often been considered to have open-cage structures. However, using first-principles calculations, we report the finding of a structural transition from empty-cage structures for (AlN)n and (GaN)n nanoparticles up to n = 34 that we studied, to a filled-cage structure for (InN)32. Further, phosphides and arsenides of Al and In have an early transition to three-dimensional (3D) filled-cage structures. Our results show that a 3D (AlP)13 is strongly magic with high binding energy and large highest occupied-lowest unoccupied molecular orbital gap. But nanoparticles of GaP show a transition from an empty cage for n = 13 to a strongly magic 3D filled cage for n = 32. The latter has a cage of (GaP)28 and a (GaP)4 squashed cube inside, the atoms on which are well connected with the cage. The bonding characteristics and the reason for structural transition are discussed.

  20. 'Candidatus Phytoplasma sudamericanum', a novel taxon, and strain PassWB-Br4, a new subgroup 16SrIII-V phytoplasma, from diseased passion fruit (Passiflora edulis f. flavicarpa Deg.).

    PubMed

    Davis, Robert E; Zhao, Yan; Dally, Ellen L; Jomantiene, Rasa; Lee, Ing-Ming; Wei, Wei; Kitajima, Elliot W

    2012-04-01

    Symptoms of abnormal proliferation of shoots resulting in formation of witches'-broom growths were observed on diseased plants of passion fruit (Passiflora edulis f. flavicarpa Deg.) in Brazil. RFLP analysis of 16S rRNA gene sequences amplified in PCRs containing template DNAs extracted from diseased plants collected in Bonito (Pernambuco) and Viçosa (Minas Gerais) Brazil, indicated that such symptoms were associated with infections by two mutually distinct phytoplasmas. One phytoplasma, PassWB-Br4 from Bonito, represents a new subgroup, 16SrIII-V, in the X-disease phytoplasma group ('Candidatus Phytoplasma pruni'-related strains). The second phytoplasma, PassWB-Br3 from Viçosa, represents a previously undescribed subgroup in group 16SrVI. Phylogenetic analyses of 16S rRNA gene sequences were consistent with the hypothesis that strain PassWB-Br3 is distinct from previously described 'Ca. Phytoplasma' species. Nucleotide sequence alignments revealed that strain PassWB-Br3 shared less than 97.5 % 16S rRNA gene sequence similarity with previously described 'Ca. Phytoplasma' species. The unique properties of its DNA, in addition to natural host and geographical occurrence, support the recognition of strain PassWB-Br3 as a representative of a novel taxon, 'Candidatus Phytoplasma sudamericanum'. PMID:21669919

  1. Organometallic vapor phase epitaxial growth of a new semiconductor alloy: GaP/sub 1-//sub x/Sb/sub x/

    SciTech Connect

    Jou, M.J.; Cherng, Y.T.; Jen, H.R.; Stringfellow, G.B.

    1988-02-15

    The III/V semiconductor alloy GaP/sub 1-//sub x/Sb/sub x/ has been grown for the first time. This alloy, which has a large miscibility gap at the growth temperatures of 530--600 /sup 0/C, has been grown by organometallic vapor phase epitaxy at atmospheric pressure. In spite of the miscibility gap, which is calculated to extend from x = 0.01 to 0.99 at 530 /sup 0/C, layers with excellent surface morphologies could be grown throughout the entire composition range. The 10 K energy band gap has been determined as a function of composition by using photoluminescence, x-ray diffraction, and electron microprobe analysis, yielding bowing parameters of 3.8 and 2.7 eV for the GAMMA and X conduction band minima, respectively.

  2. Extrusion of aluminium alloys

    SciTech Connect

    Sheppard, T.

    1999-01-01

    In recent years the importance of extruded alloys has increased due to the decline in copper extrusion, increased use in structural applications, environmental impact and reduced energy consumption. There have also been huge technical advances. This text provides comprehensive coverage of the metallurgical, mathematical and practical features of the process. The contents include: continuum principles; metallurgical features affecting the extrusion of Al-alloys; extrusion processing; homogenization and extrusion conditions for specific alloys; processing of 6XXX alloys; plant utilization; Appendix A: specification of AA alloys and DIN equivalents; Appendix B: chemical compositions; and Appendix C: typical properties.

  3. High strength alloys

    DOEpatents

    Maziasz, Phillip James [Oak Ridge, TN; Shingledecker, John Paul [Knoxville, TN; Santella, Michael Leonard [Knoxville, TN; Schneibel, Joachim Hugo [Knoxville, TN; Sikka, Vinod Kumar [Oak Ridge, TN; Vinegar, Harold J [Bellaire, TX; John, Randy Carl [Houston, TX; Kim, Dong Sub [Sugar Land, TX

    2010-08-31

    High strength metal alloys are described herein. At least one composition of a metal alloy includes chromium, nickel, copper, manganese, silicon, niobium, tungsten and iron. System, methods, and heaters that include the high strength metal alloys are described herein. At least one heater system may include a canister at least partially made from material containing at least one of the metal alloys. At least one system for heating a subterranean formation may include a tubular that is at least partially made from a material containing at least one of the metal alloys.

  4. High strength alloys

    DOEpatents

    Maziasz, Phillip James; Shingledecker, John Paul; Santella, Michael Leonard; Schneibel, Joachim Hugo; Sikka, Vinod Kumar; Vinegar, Harold J.; John, Randy Carl; Kim, Dong Sub

    2012-06-05

    High strength metal alloys are described herein. At least one composition of a metal alloy includes chromium, nickel, copper, manganese, silicon, niobium, tungsten and iron. System, methods, and heaters that include the high strength metal alloys are described herein. At least one heater system may include a canister at least partially made from material containing at least one of the metal alloys. At least one system for heating a subterranean formation may include a tublar that is at least partially made from a material containing at least one of the metal alloys.

  5. Surface phonons of III-V semiconductors

    E-print Network

    Das, Pradip Kumar

    1994-01-01

    it; water can not wet it. ' 'Even when the body is destroyed, it (soul) does not die. ' - Bhagavad-Gita (Mshavsrat) p. s. To the author, here soul means the ideals. ACKNOWLEDGEMENTS I express my sincere respect and gratitude to Dr. Allen...

  6. Alloy 10: A 1300F Disk Alloy

    NASA Technical Reports Server (NTRS)

    Gayda, John

    2000-01-01

    Gas turbine engines for future subsonic transports will probably have higher pressure ratios which will require nickel-base superalloy disks with 13000 to 1400 F temperature capability. Several advanced disk alloys are being developed to fill this need. One of these, Allied Signal's Alloy 10, is a promising candidate for gas turbine engines to be used on smaller, regional aircraft. For this application, compressor/turbine disks must withstand temperatures of 1300 F for several hundred hours over the life of the engine. In this paper, three key properties of Alloy 10--tensile, 0.2% creep, and fatigue crack growth--will be assessed at 1300 F.

  7. Aluminum Alloys for High Temperatures

    NASA Technical Reports Server (NTRS)

    Meschter, Peter J.; Lederich, Richard J.; O'Neal, James E.

    1987-01-01

    New Al/Li alloys processed by rapid solidification show greatly improved strength-to-density ratios. Alloys suitable substitutes for heavier titanium alloys and weaker aluminum alloys in high-performance aircraft, bombers, and transports. Also suitable for use in high-performance-aircraft structures heated by engines and normally constructed from titanium alloys.

  8. Towards III-V solar cells on Si: Improvement in the crystalline quality of Ge-on-Si virtual substrates through low porosity porous silicon buffer layer and annealing

    SciTech Connect

    Calabrese, Gabriele; Baricordi, Stefano; Bernardoni, Paolo; Fin, Samuele; Guidi, Vincenzo; Vincenzi, Donato [University of Ferrara - Physics and Earth Science Department, Via Saragat 1, 44122 Ferrara (Italy)

    2014-09-26

    A comparison between the crystalline quality of Ge grown on bulk Si and on a low porosity porous Si (pSi) buffer layer using low energy plasma enhanced chemical vapor deposition is reported. Omega/2Theta coupled scans around the Ge and Si (004) diffraction peaks show a reduction of the Ge full-width at half maximum (FWHM) of 22.4% in presence of the pSi buffer layer, indicating it is effective in improving the epilayer crystalline quality. At the same time atomic force microscopy analysis shows an increase in root means square roughness for Ge grown on pSi from 38.5 nm to 48.0 nm, as a consequence of the larger surface roughness of pSi compared to bulk Si. The effect of 20 minutes vacuum annealing at 580°C is also investigated. The annealing leads to a FWHM reduction of 23% for Ge grown on Si and of 36.5% for Ge on pSi, resulting in a FWHM of 101 arcsec in the latter case. At the same time, the RMS roughness is reduced of 8.8% and of 46.5% for Ge grown on bulk Si and on pSi, respectively. The biggest improvement in the crystalline quality of Ge grown on pSi with respect to Ge grown on bulk Si observed after annealing is a consequence of the simultaneous reorganization of the Ge epilayer and the buffer layer driven by energy minimization. A low porosity buffer layer can thus be used for the growth of low defect density Ge on Si virtual substrates for the successive integration of III-V multijunction solar cells on Si. The suggested approach is simple and fast –thus allowing for high throughput-, moreover is cost effective and fully compatible with subsequent wafer processing. Finally it does not introduce new chemicals in the solar cell fabrication process and can be scaled to large area silicon wafers.

  9. Towards III-V solar cells on Si: Improvement in the crystalline quality of Ge-on-Si virtual substrates through low porosity porous silicon buffer layer and annealing

    NASA Astrophysics Data System (ADS)

    Calabrese, Gabriele; Baricordi, Stefano; Bernardoni, Paolo; Fin, Samuele; Guidi, Vincenzo; Vincenzi, Donato

    2014-09-01

    A comparison between the crystalline quality of Ge grown on bulk Si and on a low porosity porous Si (pSi) buffer layer using low energy plasma enhanced chemical vapor deposition is reported. Omega/2Theta coupled scans around the Ge and Si (004) diffraction peaks show a reduction of the Ge full-width at half maximum (FWHM) of 22.4% in presence of the pSi buffer layer, indicating it is effective in improving the epilayer crystalline quality. At the same time atomic force microscopy analysis shows an increase in root means square roughness for Ge grown on pSi from 38.5 nm to 48.0 nm, as a consequence of the larger surface roughness of pSi compared to bulk Si. The effect of 20 minutes vacuum annealing at 580°C is also investigated. The annealing leads to a FWHM reduction of 23% for Ge grown on Si and of 36.5% for Ge on pSi, resulting in a FWHM of 101 arcsec in the latter case. At the same time, the RMS roughness is reduced of 8.8% and of 46.5% for Ge grown on bulk Si and on pSi, respectively. The biggest improvement in the crystalline quality of Ge grown on pSi with respect to Ge grown on bulk Si observed after annealing is a consequence of the simultaneous reorganization of the Ge epilayer and the buffer layer driven by energy minimization. A low porosity buffer layer can thus be used for the growth of low defect density Ge on Si virtual substrates for the successive integration of III-V multijunction solar cells on Si. The suggested approach is simple and fast -thus allowing for high throughput-, moreover is cost effective and fully compatible with subsequent wafer processing. Finally it does not introduce new chemicals in the solar cell fabrication process and can be scaled to large area silicon wafers.

  10. Superficies y Vaco 9, 253-255, Diciembre 1999 Sociedad Mexicana de Ciencia de Superficies y de Vaco Effect of a III-V buffer layer on the quality of ZnSe thin films grown by MBE on GaAs

    E-print Network

    Meléndez Lira, Miguel Angel

    is produced in Zn1-xCdxSe quantum wells within ZnSe barriers. GaAs substrates have been commonly employed Vacío 253 Effect of a III-V buffer layer on the quality of ZnSe thin films grown by MBE on Ga we present a study of ZnSe films grown on buffer layers of the ternary compounds InxGa1-xAs and Alx

  11. Catalyst Alloys Processing

    NASA Astrophysics Data System (ADS)

    Tan, Xincai

    2014-10-01

    Catalysts are one of the key materials used for diamond formation at high pressures. Several such catalyst products have been developed and applied in China and around the world. The catalyst alloy most widely used in China is Ni70Mn25Co5 developed at Changsha Research Institute of Mining and Metallurgy. In this article, detailed techniques for manufacturing such a typical catalyst alloy will be reviewed. The characteristics of the alloy will be described. Detailed processing of the alloy will be presented, including remelting and casting, hot rolling, annealing, surface treatment, cold rolling, blanking, finishing, packaging, and waste treatment. An example use of the catalyst alloy will also be given. Industrial experience shows that for the catalyst alloy products, a vacuum induction remelt furnace can be used for remelting, a metal mold can be used for casting, hot and cold rolling can be used for forming, and acid pickling can be used for metal surface cleaning.

  12. Low activation ferritic alloys

    DOEpatents

    Gelles, David S. (West Richland, WA); Ghoniem, Nasr M. (Granada Hills, CA); Powell, Roger W. (Pasco, WA)

    1986-01-01

    Low activation ferritic alloys, specifically bainitic and martensitic stainless steels, are described for use in the production of structural components for nuclear fusion reactors. They are designed specifically to achieve low activation characteristics suitable for efficient waste disposal. The alloys essentially exclude molybdenum, nickel, nitrogen and niobium. Strength is achieved by substituting vanadium, tungsten, and/or tantalum in place of the usual molybdenum content in such alloys.

  13. Low activation ferritic alloys

    DOEpatents

    Gelles, D.S.; Ghoniem, N.M.; Powell, R.W.

    1985-02-07

    Low activation ferritic alloys, specifically bainitic and martensitic stainless steels, are described for use in the production of structural components for nuclear fusion reactors. They are designed specifically to achieve low activation characteristics suitable for efficient waste disposal. The alloys essentially exclude molybdenum, nickel, nitrogen and niobium. Strength is achieved by substituting vanadium, tungsten, and/or tantalum in place of the usual molybdenum content in such alloys.

  14. Amorphous metal alloy

    DOEpatents

    Wang, R.; Merz, M.D.

    1980-04-09

    Amorphous metal alloys of the iron-chromium and nickel-chromium type have excellent corrosion resistance and high temperature stability and are suitable for use as a protective coating on less corrosion resistant substrates. The alloys are stabilized in the amorphous state by one or more elements of titanium, zirconium, hafnium, niobium, tantalum, molybdenum, and tungsten. The alloy is preferably prepared by sputter deposition.

  15. Ferromagnetic bulk amorphous alloys

    Microsoft Academic Search

    Akihisa Inoue; Akira Takeuchi; Tao Zhang

    1998-01-01

    This article reviews our recent results on the development of ferromagnetic bulk amorphous alloys prepared by casting processes.\\u000a The multicomponent Fe-(Al,Ga)-(P,C,B,Si) alloys are amorphized in the bulk form with diameters up to 2 mm, and the temperature\\u000a interval of the supercooled liquid region before crystallization is in the range of 50 to 67 K. These bulk amorphous alloys\\u000a exhibit good

  16. Aluminum battery alloys

    DOEpatents

    Thompson, D.S.; Scott, D.H.

    1984-09-28

    Aluminum alloys suitable for use as anode structures in electrochemical cells are disclosed. These alloys include iron levels higher than previously felt possible, due to the presence of controlled amounts of manganese, with possible additions of magnesium and controlled amounts of gallium.

  17. Aluminum battery alloys

    DOEpatents

    Thompson, David S. (Richmond, VA); Scott, Darwin H. (Mechanicsville, VA)

    1985-01-01

    Aluminum alloys suitable for use as anode structures in electrochemical cs are disclosed. These alloys include iron levels higher than previously felt possible, due to the presence of controlled amounts of manganese, with possible additions of magnesium and controlled amounts of gallium.

  18. Shape Memory Alloys

    Microsoft Academic Search

    Abhijit Bhattacharyya; Dimitris C Lagoudas

    2007-01-01

    This special issue on shape memory alloys (SMA) is an encore to a special issue on the same topic edited by us six years ago (Smart Mater. Struct.9 (5) October 2000). A total of 19 papers is offered in this issue, organized into the three broad categories of modeling, characterization and applications. In addition to thermally activated shape memory alloys,

  19. Ductile transplutonium metal alloys

    DOEpatents

    Conner, W.V.

    1981-10-09

    Alloys of Ce with transplutonium metals such as Am, Cm, Bk and Cf have properties making them highly suitable as souces of the transplutonium element, e.g., for use in radiation detector technology or as radiation sources. The alloys are ductile, homogeneous, easy to prepare and have a fairly high density.

  20. Cesium iodide alloys

    DOEpatents

    Kim, H.E.; Moorhead, A.J.

    1992-12-15

    A transparent, strong CsI alloy is described having additions of monovalent iodides. Although the preferred iodide is AgI, RbI and CuI additions also contribute to an improved polycrystalline CsI alloy with outstanding multispectral infrared transmittance properties. 6 figs.

  1. Copper-tantalum alloy

    DOEpatents

    Schmidt, Frederick A. (Ames, IA); Verhoeven, John D. (Ames, IA); Gibson, Edwin D. (Ames, IA)

    1986-07-15

    A tantalum-copper alloy can be made by preparing a consumable electrode consisting of an elongated copper billet containing at least two spaced apart tantalum rods extending longitudinally the length of the billet. The electrode is placed in a dc arc furnace and melted under conditions which co-melt the copper and tantalum to form the alloy.

  2. Ductile transplutonium metal alloys

    DOEpatents

    Conner, William V. (Boulder, CO)

    1983-01-01

    Alloys of Ce with transplutonium metals such as Am, Cm, Bk and Cf have properties making them highly suitable as sources of the transplutonium element, e.g., for use in radiation detector technology or as radiation sources. The alloys are ductile, homogeneous, easy to prepare and have a fairly high density.

  3. Neutron Absorbing Alloys

    DOEpatents

    Mizia, Ronald E. (Idaho Falls, ID); Shaber, Eric L. (Idaho Falls, ID); DuPont, John N. (Whitehall, PA); Robino, Charles V. (Albuquerque, NM); Williams, David B. (Bethlehem, PA)

    2004-05-04

    The present invention is drawn to new classes of advanced neutron absorbing structural materials for use in spent nuclear fuel applications requiring structural strength, weldability, and long term corrosion resistance. Particularly, an austenitic stainless steel alloy containing gadolinium and less than 5% of a ferrite content is disclosed. Additionally, a nickel-based alloy containing gadolinium and greater than 50% nickel is also disclosed.

  4. Alloys for aerospace

    SciTech Connect

    Tuominen, S.; Wojcik, C. [Teledyne Wah Chang, Albany, OR (United States)

    1995-04-01

    Aerospace industries require special allows with many properties tailored to meet specific needs. Prerequisites include clean melting techniques to maintain low impurity levels, tight control of alloy chemistry, and the analytical capability to characterize the product. Teledyne Wah Chang (TWC) produces specially refractory metals, including zirconium, hafnium, titanium, niobium and vanadium, which are essential components of many aerospace alloys. Alloys are prepared by vacuum-arc-remelting (VAR) or electron beam (EB) melting, and ingots are processed to products ranging from bar and tube stock to wire and foil. Chemical, mechanical, and microstructural tests are all conducted at TWC`s in-house laboratory facilities. Of the alloys described here, Ti-3Al-2.5V, Tiadyne 3515 (Alloy C), NiTiFe, and C-103 are produced commercially, while orthorhombic titanium aluminides are promising candidates for future light-weight composite matrices.

  5. Dual alloy interface stability

    NASA Technical Reports Server (NTRS)

    Harf, F. H.

    1982-01-01

    Powder metallurgy dual alloy fabrication is applied to combinations of superalloys having a high iron, and low strategic metal content, with standard nickel base superalloys, containing the strategic metals chromium, cobalt, and columbium. The possibility of combining Alloy 901 (12 percent Cr, 36 percent Fe, 0 percent Co, and 0 percent Cb) with turbine disk alloys Rene 95 (13 percent Cr, 8 percent Co, and 4 percent Cb) or low carbon astroloy (L.C.A.; 15 percent Cr, 17 percent Co, and 0 percent Cb) is investigated. Preliminary results for combinations show that a strong interface with rapid diffusion is obtained between alloys and that the standard heat treatments for either alloy may be satisfactory.

  6. Ductile ordered intermetallic alloys.

    PubMed

    Liu, C T; Stiegler, J O

    1984-11-01

    Many ordered intermetallic alloys have attractive high-temperature properties; however, low ductility and brittle fracture limit their use for structural applications. The embrittlement in these alloys is mainly caused by an insufficient number of slip systems (bulk brittleness) and poor grain-boundary cohesion. Recent studies have shown that the ductility and fabricability of ordered intermetallics can be substantially improved by alloying processes and control of microstructural features through rapid solidification and thermomechanical treatments. These results demonstrate that the brittleness problem associated with ordered intermetallics can be overcome by using physical metallurgical principles. Application of these principles will be illustrated by results on Ni(3)Al and Ni(3)V-Co(3)V-Fe(3)V. The potential for developing these alloys as a new class of high-temperature structural materials is discussed. PMID:17774926

  7. Electroplating on titanium alloy

    NASA Technical Reports Server (NTRS)

    Lowery, J. R.

    1971-01-01

    Activation process forms adherent electrodeposits of copper, nickel, and chromium on titanium alloy. Good adhesion of electroplated deposits is obtained by using acetic-hydrofluoric acid anodic activation process.

  8. Mechanical alloying and milling

    Microsoft Academic Search

    C. Suryanarayana

    2001-01-01

    Mechanical alloying (MA) is a solid-state powder processng technique involving repeated welding, fracturing, and rewelding of powder particles in a high-energy ball mill. Originally developed to produce oxide-dispersion strengthened (ODS) nickel- and iron-base superalloys for applications in the aerospace industry, MA has now been shown to be capable of synthesizing a variety of equilibrium and non-equilibrium alloy phases starting from

  9. Integration of GaAsP alloys on SiGe virtual substrates for Si-based dual-junction solar cells

    E-print Network

    Sharma, Prithu

    2013-01-01

    Integration of III-V compound semiconductors with silicon is an area that has generated a lot of interest because III-V materials and Si are best suited for different types of devices. Monolithic integration enables the ...

  10. Ultrahigh temperature intermetallic alloys

    SciTech Connect

    Brady, M.P.; Zhu, J.H.; Liu, C.T.; Tortorelli, P.F.; Wright, J.L.; Carmichael, C.A.

    1998-11-01

    A new family of Cr-Cr{sub 2}Ta intermetallic alloys based on Cr-(6--10)Ta (at.%) is under development for structural use in oxidizing environments in the 1,000-1,300 C (1,832--2,372 F) temperature range. Development objectives relate to high temperature strength and oxidation resistance and room temperature fracture toughness. The 1,200 C (2,192 F) strength goals have been met: yield and fracture strengths of 275 MPa (40 ksi) and 345 MPa (50 ksi), respectively, were achieved. Progress in attaining reasonable fracture toughness of Cr-Cr{sub 2}Ta alloys has been made; current alloys exhibit room-temperature values of about 10--12 MPa{radical}m (1.1 MPa{radical}m = 1 ksi{radical}in.). Oxidation rates of these alloys at 950 C (1,742 F) in air are in the range of those reported for chromia-forming alloys. At 1,100 C (2,012 F) in air, chromia volatility was significant but, nevertheless, no scale spallation and positive weight gains of 1--5 mg/cm{sup 2} have been observed during 120-h, 6-cycle oxidation screening tests. These mechanical and oxidative properties represent substantial improvement over Cr-Cr{sub 2}Nb and Cr-Cr{sub 2}Zr alloys previously developed.

  11. Lattice constant grading in the Al.sub.y Ga.sub.1-y As.sub.1-x Sb.sub.x alloy system

    DOEpatents

    Moon, Ronald L. (Palo Alto, CA)

    1980-01-01

    Liquid phase epitaxy is employed to grow a lattice matched layer of GaAsSb on GaAs substrates through the compositional intermediary of the III-V alloy system AlGaAsSb which acts as a grading layer. The Al constituent reaches a peak atomic concentration of about 6% within the first 2.5 .mu.m of the transition layer, then decreases smoothly to about 1% to obtain a lattice constant of 5.74 A. In the same interval the equilibrium concentration of Sb smoothly increases from 0 to about 9 atomic percent to form a surface on which a GaAsSb layer having the desired energy bandgap of 1.1 ev for one junction of an optimized dual junction photolvoltaic device. The liquid phase epitaxy is accomplished with a step cooling procedure whereby dislocation defects are more uniformly distributed over the surface of growing layer.

  12. Lattice constant grading in the Al.sub.y Ca.sub.1-y As.sub.1-x Sb.sub.x alloy system

    DOEpatents

    Moon, Ronald L. (Palo Alto, CA)

    1981-01-01

    Liquid phase epitaxy is employed to grow a lattice matched layer of GaAsSb on GaAs substrates through the compositional intermediary of the III-V alloy system AlGaAsSb which acts as a grading layer. The Al constituent reaches a peak atomic concentration of about 6% within the first 2.5.mu.m of the transition layer, then decreases smoothly to about 1% to obtain a lattice constant of 5.74 A. In the same interval the equilibrium concentration of Sb smoothly increases from 0 to about 9 atomic percent to form a surface on which a GaAsSb layer having the desired energy bandgap of 1.1 ev for one junction of an optimized dual junction photovoltaic device. The liquid phase epitaxy is accomplished with a step cooling procedure whereby dislocation defects are more uniformly distributed over the surface of the growing layer.

  13. Electron beam surface remelting and alloying of aluminium alloys

    Microsoft Academic Search

    P Petrov

    1997-01-01

    This paper reports results of a study of structural and mechanical changes in layers of hypereutectic cast Al? Si alloys as results electron beam remelting and alloying with Fe?Cr powders and followed by electron beam remelting.

  14. Optical absorption and emission of GaP sub 1 minus x Sb sub x alloys

    SciTech Connect

    Reihlen, E.H.; Jou, M.J.; Jaw, D.H.; Stringfellow, G.B. (University of Utah, 304 EMRO, Salt Lake City, Utah 84112 (USA). Department of Electrical Engineering University of Utah, 304 EMRO, Salt Lake City, Utah 84112 (USA). Department of Material Science and Engineering)

    1990-07-15

    The first detailed optical investigation of the metastable III/V semiconductor alloy GaP{sub 1{minus}{ital x}}Sb{sub {ital x}} is presented. Epilayers are grown by atmospheric pressure organometallic vapor phase epitaxy throughout the entire compositional range on GaP, GaAs, and GaSb substrates. The approximately 1-{mu}m-thick layers are partially strained with values of lattice mismatch as large as 1.7{times}10{sup {minus}2}. Values of band gap are determined for the first time from absorption spectra measured at 10 and 300 K and corrected for strain-induced energy shifts. The resultant values of bowing parameter for the direct and indirect band gaps are {ital c}{sub {Gamma}}=3.11{plus minus}0.18 eV and {ital c}{sub {ital x}} =2.06{plus minus}0.18 eV, independent of temperature, yielding a value of direct/indirect crossover composition, {ital x}{sub {ital c}}, of 0.32{plus minus}0.07. Single photoluminescence (PL) peaks are observed between 10 and 300 K for all samples. For samples with 0.37{le}{ital x}{le}0.47, they are assigned to recombination of carriers localized in bandtail states induced by compositional fluctuations. The stretch of the tails into the gap is greatly enhanced over the random alloy limit by the metastability of the Ga{sub 1{minus}{ital x}}Sb{sub {ital x}} alloys. PL peaks for samples with {ital x}{le}0.32 are assigned to recombination via deep centers in the gap. The PL peak of a sample with {ital x}=0.91 is assigned to recombination involving shallow acceptors.

  15. Translating alloy using Boolean circuits

    E-print Network

    Daitch, Samuel Isaac

    2004-01-01

    Alloy is a automatically analyzable modelling language based on first-order logic. An Alloy model can be translated into a Boolean formula whose satisfying assignments correspond to instances in the model. Currently, the ...

  16. Oxidation of tantalum carbide alloys

    Microsoft Academic Search

    É. I. Golovko; L. F. Ochkas; M. S. Koval'chenko; A. F. Nikityuk

    1976-01-01

    1.A study was made of the oxidation of hot-pressed specimens of tantalum carbide, alloys of tantalum carbide with 5, 10, and 15% Ni and 10% (Ni, W), and VK8 alloy in air at temperatures of 500, 600, and 700°C.2.It was established that in the temperature range investigated tantalum carbide and its alloys are superior in oxidation resistance to VK8 alloy.

  17. Utilization of titanium alloy equipment

    Microsoft Academic Search

    N. M. Shmakov; V. S. Mikheev

    1974-01-01

    Alloys AT-3 and AT-6 have wide application in practice in contrast to many series containing titanium alloyed with cheap obtainable elements such as aluminum, chromium, iron, silicon, and boron. Alloys AT-3 and AT-6 are processable. Extruded electrodes consisting of magnesio-thermic titanium and added alloying elements were fused twice in a vacuum arc furnace in an argon atmosphere. After machining to

  18. De-alloyed platinum nanoparticles

    DOEpatents

    Strasser, Peter (Houston, TX); Koh, Shirlaine (Houston, TX); Mani, Prasanna (Houston, TX); Ratndeep, Srivastava (Houston, TX)

    2011-08-09

    A method of producing de-alloyed nanoparticles. In an embodiment, the method comprises admixing metal precursors, freeze-drying, annealing, and de-alloying the nanoparticles in situ. Further, in an embodiment de-alloyed nanoparticle formed by the method, wherein the nanoparticle further comprises a core-shell arrangement. The nanoparticle is suitable for electrocatalytic processes and devices.

  19. Semiconductor alloys - Structural property engineering

    NASA Technical Reports Server (NTRS)

    Sher, A.; Van Schilfgaarde, M.; Berding, M.; Chen, A.-B.

    1987-01-01

    Semiconductor alloys have been used for years to tune band gaps and average bond lengths to specific applications. Other selection criteria for alloy composition, and a growth technique designed to modify their structural properties, are presently considered. The alloys Zn(1-y)Cd(y)Te and CdSe(y)Te(1-y) are treated as examples.

  20. Surface modification of high temperature iron alloys

    DOEpatents

    Park, Jong-Hee (Clarendon Hills, IL)

    1995-01-01

    A method and article of manufacture of a coated iron based alloy. The method includes providing an iron based alloy substrate, depositing a silicon containing layer on the alloy surface while maintaining the alloy at a temperature of about 700.degree. C.-1200.degree. C. to diffuse silicon into the alloy surface and exposing the alloy surface to an ammonia atmosphere to form a silicon/oxygen/nitrogen containing protective layer on the iron based alloy.

  1. Microstructural studies on Alloy 693

    NASA Astrophysics Data System (ADS)

    Halder, R.; Dutta, R. S.; Sengupta, P.; Samajdar, I.; Dey, G. K.

    2014-10-01

    Superalloy 693, is a newly identified ‘high-temperature corrosion resistant alloy’. Present study focuses on microstructure and mechanical properties of the alloy prepared by double ‘vacuum melting’ route. In general, the alloy contains ordered Ni3Al precipitates distributed within austenitic matrix. M6C primary carbide, M23C6 type secondary carbide and NbC particles are also found to be present. Heat treatment of the alloy at 1373 K for 30 min followed by water quenching (WQ) brings about a microstructure that is free from secondary carbides and Ni3Al type precipitates but contains primary carbides. Tensile property of Alloy 693 materials was measured with as received and solution annealed (1323 K, 60 min, WQ) and (1373 K, 30 min, WQ) conditions. Yield strength, ultimate tensile strength (UTS) and hardness of the alloy are found to drop with annealing. It is noted that in annealed condition, considerable cold working of the alloy can be performed.

  2. Alloyed coatings for dispersion strengthened alloys

    NASA Technical Reports Server (NTRS)

    Wermuth, F. R.; Stetson, A. R.

    1971-01-01

    Processing techniques were developed for applying several diffusion barriers to TD-Ni and TD-NiCr. Barrier coated specimens of both substrates were clad with Ni-Cr-Al and Fe-Cr-Al alloys and diffusion annealed in argon. Measurement of the aluminum distribution after annealing showed that, of the readily applicable diffusion barriers, a slurry applied tungsten barrier most effectively inhibited the diffusion of aluminum from the Ni-Cr-Al clad into the TD-alloy substrates. No barrier effectively limited interdiffusion of the Fe-Cr-Al clad with the substrates. A duplex process was then developed for applying Ni-Cr-Al coating compositions to the tungsten barrier coated substrates. A Ni-(16 to 32)Cr-3Si modifier was applied by slurry spraying and firing in vacuum, and was then aluminized by a fusion slurry process. Cyclic oxidation tests at 2300 F resulted in early coating failure due to inadequate edge coverage and areas of coating porosity. EMP analysis showed that oxidation had consumed 70 to 80 percent of the aluminum in the coating in less than 50 hours.

  3. Molybdenum-based alloy

    SciTech Connect

    Koizumi, H.; Ishihara, H.; Kawakita, K.; Matsumoto, T.

    1984-02-07

    A molybdenum-based alloy improved in mechanical strength and hot workability, which consists of 0.01 to 5.0% by weight of vanadium, 10 to 100 ppm of boron, 10 to 1,000 ppm of carbon, and the balance of molybdenum.

  4. Quinary metallic glass alloys

    DOEpatents

    Lin, X.; Johnson, W.L.

    1998-04-07

    At least quinary alloys form metallic glass upon cooling below the glass transition temperature at a rate less than 10{sup 3}K/s. Such alloys comprise zirconium and/or hafnium in the range of 45 to 65 atomic percent, titanium and/or niobium in the range of 4 to 7.5 atomic percent, and aluminum and/or zinc in the range of 5 to 15 atomic percent. The balance of the alloy compositions comprise copper, iron, and cobalt and/or nickel. The composition is constrained such that the atomic percentage of iron is less than 10 percent. Further, the ratio of copper to nickel and/or cobalt is in the range of from 1:2 to 2:1. The alloy composition formula is: (Zr,Hf){sub a}(Al,Zn){sub b}(Ti,Nb){sub c}(Cu{sub x}Fe{sub y}(Ni,Co){sub z}){sub d} wherein the constraints upon the formula are: a ranges from 45 to 65 atomic percent, b ranges from 5 to 15 atomic percent, c ranges from 4 to 7.5 atomic percent, d comprises the balance, d{hor_ellipsis}y is less than 10 atomic percent, and x/z ranges from 0.5 to 2.

  5. Quinary metallic glass alloys

    DOEpatents

    Lin, Xianghong (Pasadena, CA); Johnson, William L. (Pasadena, CA)

    1998-01-01

    At least quinary alloys form metallic glass upon cooling below the glass transition temperature at a rate less than 10.sup.3 K/s. Such alloys comprise zirconium and/or hafnium in the range of 45 to 65 atomic percent, titanium and/or niobium in the range of 4 to 7.5 atomic percent, and aluminum and/or zinc in the range of 5 to 15 atomic percent. The balance of the alloy compositions comprise copper, iron, and cobalt and/or nickel. The composition is constrained such that the atomic percentage of iron is less than 10 percent. Further, the ratio of copper to nickel and/or cobalt is in the range of from 1:2 to 2:1. The alloy composition formula is: (Zr,Hf).sub.a (Al,Zn).sub.b (Ti,Nb).sub.c (Cu.sub.x Fe.sub.y (Ni,Co).sub.z).sub.d wherein the constraints upon the formula are: a ranges from 45 to 65 atomic percent, b ranges from 5 to 15 atomic percent, c ranges from 4 to 7.5 atomic percent, d comprises the balance, d.multidot.y is less than 10 atomic percent, and x/z ranges from 0.5 to 2.

  6. Optical absorption and emission of InP sub 1 minus x Sb sub x alloys

    SciTech Connect

    Reihlen, E.H.; Jou, M.J.; Fang, Z.M.; Stringfellow, G.B. (Department of Electrical Engineering, University of Utah, Salt Lake City, UT (USA) Materials Science and Engineering, University of Utah, Salt Lake City, UT (USA))

    1990-11-01

    A detailed optical study of the metastable III/V semiconductor alloy InP{sub 1{minus}{ital x}}Sb{sub {ital x}} is presented. InP{sub 1{minus}{ital x}}Sb{sub {ital x}} layers are grown throughout the entire compositional range by atmospheric pressure organometallic vapor phase epitaxy on InP, InAs, and InSb substrates. Composition and strain are measured by combined electron microprobe analysis and x-ray diffractometry. The dependence of band gap on composition is experimentally established for the first time from absorption spectra measured at 10 and 300 K. The resultant value of the band-gap bowing parameter is 1.52{plus minus}0.08 eV, independent of temperature. The absorption spectra show the InP{sub 1{minus}{ital x}}Sb{sub {ital x}} layers to have long band tails, which extend further into the gap as the Sb concentration is increased. The band tails are induced by compositional clustering. Photoluminescence (PL) spectra are measured between 10 and 300 K. The PL peaks are assigned to recombination between carriers occupying band-tail states or to recombination via deep centers in the gap.

  7. Lasing in direct-bandgap GeSn alloy grown on Si

    NASA Astrophysics Data System (ADS)

    Wirths, S.; Geiger, R.; von den Driesch, N.; Mussler, G.; Stoica, T.; Mantl, S.; Ikonic, Z.; Luysberg, M.; Chiussi, S.; Hartmann, J. M.; Sigg, H.; Faist, J.; Buca, D.; Grützmacher, D.

    2015-02-01

    Large-scale optoelectronics integration is limited by the inability of Si to emit light efficiently, because Si and the chemically well-matched Ge are indirect-bandgap semiconductors. To overcome this drawback, several routes have been pursued, such as the all-optical Si Raman laser and the heterogeneous integration of direct-bandgap III–V lasers on Si. Here, we report lasing in a direct-bandgap group IV system created by alloying Ge with Sn without mechanically introducing strain. Strong enhancement of photoluminescence emerging from the direct transition with decreasing temperature is the signature of a fundamental direct-bandgap semiconductor. For T???90?K, the observation of a threshold in emitted intensity with increasing incident optical power, together with strong linewidth narrowing and a consistent longitudinal cavity mode pattern, highlight unambiguous laser action. Direct-bandgap group IV materials may thus represent a pathway towards the monolithic integration of Si-photonic circuitry and complementary metal–oxide–semiconductor (CMOS) technology.

  8. Filler metal alloy for welding cast nickel aluminide alloys

    DOEpatents

    Santella, Michael L. (Knoxville, TN); Sikka, Vinod K. (Oak Ridge, TN)

    1998-01-01

    A filler metal alloy used as a filler for welding east nickel aluminide alloys contains from about 15 to about 17 wt. % chromium, from about 4 to about 5 wt. % aluminum, equal to or less than about 1.5 wt. % molybdenum, from about 1 to about 4.5 wt. % zirconium, equal to or less than about 0.01 wt. % yttrium, equal to or less than about 0.01 wt. % boron and the balance nickel. The filler metal alloy is made by melting and casting techniques such as are melting the components of the filler metal alloy and east in copper chill molds.

  9. Filler metal alloy for welding cast nickel aluminide alloys

    DOEpatents

    Santella, M.L.; Sikka, V.K.

    1998-03-10

    A filler metal alloy used as a filler for welding cast nickel aluminide alloys contains from about 15 to about 17 wt. % chromium, from about 4 to about 5 wt. % aluminum, equal to or less than about 1.5 wt. % molybdenum, from about 1 to about 4.5 wt. % zirconium, equal to or less than about 0.01 wt. % yttrium, equal to or less than about 0.01 wt. % boron and the balance nickel. The filler metal alloy is made by melting and casting techniques such as are melting the components of the filler metal alloy and cast in copper chill molds. 3 figs.

  10. Two phase titanium aluminide alloy

    DOEpatents

    Deevi, Seetharama C. (Midlothian, VA); Liu, C. T. (Oak Ridge, TN)

    2001-01-01

    A two-phase titanic aluminide alloy having a lamellar microstructure with little intercolony structures. The alloy can include fine particles such as boride particles at colony boundaries and/or grain boundary equiaxed structures. The alloy can include alloying additions such as .ltoreq.10 at % W, Nb and/or Mo. The alloy can be free of Cr, V, Mn, Cu and/or Ni and can include, in atomic %, 45 to 55% Ti, 40 to 50% Al, 1 to 5% Nb, 0.3 to 2% W, up to 1% Mo and 0.1 to 0.3% B. In weight %, the alloy can include 57 to 60% Ti, 30 to 32% Al, 4 to 9% Nb, up to 2% Mo, 2 to 8% W and 0.02 to 0.08% B.

  11. Magnesium-lithium casting alloys

    NASA Technical Reports Server (NTRS)

    Latenko, V. P.; Silchenko, T. V.; Tikhonov, V. A.; Maltsev, V. P.; Korablin, V. P.

    1974-01-01

    The strength properties of magnesium-lithium alloys at room, low, and high temperatures are investigated. It is found that the alloys may have practical application at ambient temperatures up to 100 C, that negative temperatures have a favorable influence on the alloy strength, and that cyclic temperature variations have practically no effect on the strength characteristics. The influence of chemical coatings on corrosion resistance of the MgLi alloys is examined. Several facilities based on pressure casting machines, low-pressure casting machines, and magnetodynamic pumps were designed for producing MgLi alloy castings. Results were obtained for MgLi alloys reinforced with fibers having a volumetric content of 15%.

  12. Alchemy: Transmuting Base Alloy Specifications into Implementations

    E-print Network

    Krishnamurthi, Shriram

    Alchemy: Transmuting Base Alloy Specifications into Implementations Shriram Krishnamurthi Brown to define lightweight models of systems. We present Alchemy, which compiles Alloy specifi- cations into implementations that execute against persistent databases. Alchemy translates a subset of Alloy predicates

  13. Materials data handbook, aluminum alloy 7075

    NASA Technical Reports Server (NTRS)

    Sessler, J.; Weiss, V.

    1967-01-01

    Materials data handbook on aluminum alloy 7075 includes data on the properties of the alloy at cryogenic, ambient, and elevated temperatures, and other pertinent engineering information required for the design and fabrication of components and equipment utilizing this alloy.

  14. Alloy Interface Interdiffusion Modeled

    NASA Technical Reports Server (NTRS)

    Bozzolo, Guillermo H.; Garces, Jorge E.; Abel, Phillip B.

    2003-01-01

    With renewed interest in developing nuclear-powered deep space probes, attention will return to improving the metallurgical processing of potential nuclear fuels so that they remain dimensionally stable over the years required for a successful mission. Previous work on fuel alloys at the NASA Glenn Research Center was primarily empirical, with virtually no continuing research. Even when empirical studies are exacting, they often fail to provide enough insight to guide future research efforts. In addition, from a fundamental theoretical standpoint, the actinide metals (which include materials used for nuclear fuels) pose a severe challenge to modern electronic-structure theory. Recent advances in quantum approximate atomistic modeling, coupled with first-principles derivation of needed input parameters, can help researchers develop new alloys for nuclear propulsion.

  15. Shape Memory Alloys

    NSDL National Science Digital Library

    This experiment, presented by the National Nanotechnology Infrastructure Network, covers Shape Memory Alloys or Smart Materials. A Smart Material or Shape Memory Alloys belongs to a class of materials which displays the shape memory effect (SME); they possess the ability to radically change crystal structure or phase at a distinct temperature. The lab will "explore how smart materials work and what applications these materials are used in." Additionally, students will be provided with a brief history lesson about the origins of smart material. The experiment is quite fun, students will observe how smart materials can "think and do amazing things." A student and teacher guide is provided with the lab. Overall, this is a great exercise for any science classroom interested in the workings of nanotechnology.

  16. Surface Segregation in Ternary Alloys

    NASA Technical Reports Server (NTRS)

    Good, Brian; Bozzolo, Guillermo H.; Abel, Phillip B.

    2000-01-01

    Surface segregation profiles of binary (Cu-Ni, Au-Ni, Cu-Au) and ternary (Cu-Au-Ni) alloys are determined via Monte Carlo-Metropolis computer simulations using the BFS method for alloys for the calculation of the energetics. The behavior of Cu or Au in Ni is contrasted with their behavior when both are present. The interaction between Cu and Au and its effect on the segregation profiles for Cu-Au-Ni alloys is discussed.

  17. Titanium-tantalum alloy development

    SciTech Connect

    Cotton, J.D.; Bingert, J.F.; Dunn, P.S.; Butt, D.P.; Margevicius, R.W. [Los Alamos National Lab., NM (United States). Materials Science and Technology Div.

    1996-04-01

    Research has been underway at Los Alamos National Laboratory for several years to develop an alloy capable of containing toxic materials in the event of a fire involving a nuclear weapon. Due to their high melting point, good oxidation resistance, and low solubility in molten plutonium, alloys based on the Ti-Ta binary system have been developed for this purpose. The course of the alloy development to-date, along with processing and property data, are presented in this overview.

  18. Shape memory alloys — characterization techniques

    Microsoft Academic Search

    Jayagopal Uchil

    2002-01-01

    Shape memory alloys are the generic class of alloys that show both thermal and mechanical memory. The basic physics involved\\u000a in the shape memory effect is the reversible thermoelastic martensitic transformation. In general, there exists two phases\\u000a in shape memory alloys, viz., a high-temperature phase or austenitic phase (A) and a low-temperature phase or martensitic\\u000a phase (M). In addition, an

  19. Amorphous metal alloy and composite

    DOEpatents

    Wang, Rong (Richland, WA); Merz, Martin D. (Richland, WA)

    1985-01-01

    Amorphous metal alloys of the iron-chromium and nickel-chromium type have excellent corrosion resistance and high temperature stability and are suitable for use as a protective coating on less corrosion resistant substrates. The alloys are stabilized in the amorphous state by one or more elements of titanium, zirconium, hafnium, niobium, tantalum, molybdenum, and tungsten. The alloy is preferably prepared by sputter deposition.

  20. Nanocrystal dispersed amorphous alloys

    NASA Technical Reports Server (NTRS)

    Perepezko, John H. (Inventor); Allen, Donald R. (Inventor); Foley, James C. (Inventor)

    2001-01-01

    Compositions and methods for obtaining nanocrystal dispersed amorphous alloys are described. A composition includes an amorphous matrix forming element (e.g., Al or Fe); at least one transition metal element; and at least one crystallizing agent that is insoluble in the resulting amorphous matrix. During devitrification, the crystallizing agent causes the formation of a high density nanocrystal dispersion. The compositions and methods provide advantages in that materials with superior properties are provided.

  1. Shape memory alloy actuator

    DOEpatents

    Varma, Venugopal K. (Knoxville, TN)

    2001-01-01

    An actuator for cycling between first and second positions includes a first shaped memory alloy (SMA) leg, a second SMA leg. At least one heating/cooling device is thermally connected to at least one of the legs, each heating/cooling device capable of simultaneously heating one leg while cooling the other leg. The heating/cooling devices can include thermoelectric and/or thermoionic elements.

  2. Palladium alloys for biomedical devices.

    PubMed

    Wataha, John C; Shor, Kavita

    2010-07-01

    In the biomedical field, palladium has primarily been used as a component of alloys for dental prostheses. However, recent research has shown the utility of palladium alloys for devices such as vascular stents that do not distort magnetic resonance images. Dental palladium alloys may contain minor or major percentages of palladium. As a minor constituent, palladium hardens, strengthens and increases the melting range of alloys. Alloys that contain palladium as the major component also contain copper, gallium and sometimes tin to produce strong alloys with high stiffness and relatively low corrosion rates. All current evidence suggests that palladium alloys are safe, despite fears about harmful effects of low-level corrosion products during biomedical use. Recent evidence suggests that palladium poses fewer biological risks than other elements, such as nickel or silver. Hypersensitivity to palladium alone is rare, but accompanies nickel hypersensitivity 90-100% of the time. The unstable price of palladium continues to influence the use of palladium alloys in biomedicine. PMID:20583886

  3. Titanium-tantalum alloy development

    Microsoft Academic Search

    J. D. Cotton; J. F. Bingert; P. S. Dunn; D. P. Butt; R. W. Margevicius

    1996-01-01

    Research has been underway at Los Alamos National Laboratory for several years to develop an alloy capable of containing toxic materials in the event of a fire involving a nuclear weapon. Due to their high melting point, good oxidation resistance, and low solubility in molten plutonium, alloys based on the Ti-Ta binary system have been developed for this purpose. The

  4. Aluminum and its light alloys

    NASA Technical Reports Server (NTRS)

    Merica, Paul D

    1920-01-01

    Report is a summary of research work which has been done here and abroad on the constitution and mechanical properties of the various alloy systems with aluminum. The mechanical properties and compositions of commercial light alloys for casting, forging, or rolling, obtainable in this country are described.

  5. Heat storage in alloy transformations

    NASA Technical Reports Server (NTRS)

    Birchenall, C. E.; Gueceri, S. I.; Farkas, D.; Labdon, M. B.; Nagaswami, N.; Pregger, B.

    1981-01-01

    The feasibility of using metal alloys as thermal energy storage media was determined. The following major elements were studied: (1) identification of congruently transforming alloys and thermochemical property measurements; (2) development of a precise and convenient method for measuring volume change during phase transformation and thermal expansion coefficients; (3) development of a numerical modeling routine for calculating heat flow in cylindrical heat exchangers containing phase change materials; and (4) identification of materials that could be used to contain the metal alloys. Several eutectic alloys and ternary intermetallic phases were determined. A method employing X-ray absorption techniques was developed to determine the coefficients of thermal expansion of both the solid and liquid phases and the volume change during phase transformation from data obtained during one continuous experimental test. The method and apparatus are discussed and the experimental results are presented. The development of the numerical modeling method is presented and results are discussed for both salt and metal alloy phase change media.

  6. Thermomechanical treatment of alloys

    DOEpatents

    Bates, John F. (Ogden, UT); Brager, Howard R. (Richland, WA); Paxton, Michael M. (Gaithersburg, MD)

    1983-01-01

    An article of an alloy of AISI 316 stainless steel is reduced in size to predetermined dimensions by cold working in repeated steps. Before the last reduction step the article is annealed by heating within a temperature range, specifically between 1010.degree. C. and 1038.degree. C. for a time interval between 90 and 60 seconds depending on the actual temperature. By this treatment the swelling under neutron bombardment by epithermal neutrons is reduced while substantial recrystallization does not occur in actual use for a time interval of at least of the order of 5000 hours.

  7. Wedlable nickel aluminide alloy

    DOEpatents

    Santella, Michael L. (Knoxville, TN); Sikka, Vinod K. (Oak Ridge, TN)

    2002-11-19

    A Ni.sub.3 Al alloy with improved weldability is described. It contains about 6-12 wt % Al, about 6-12 wt % Cr, about 0-3 wt % Mo, about 1.5-6 wt % Zr, about 0-0.02 wt % B and at least one of about 0-0.15 wt % C, about 0-0.20 wt % Si, about 0-0.01 wt % S and about 0-0.30 wt % Fe with the balance being Ni.

  8. NUCLEATION IN A TWO COMPONENT METAL ALLOY

    E-print Network

    Sander, Evelyn

    NUCLEATION IN A TWO COMPONENT METAL ALLOY Kalea Sebesta Department of Applied Mathematics, known as nucleation, in a two component metal alloy. The motivation behind this study is to use component metal alloys. These alloys are seen in material sciences; therefore, understanding

  9. Liquid metal ion source and alloy

    Microsoft Academic Search

    Clark Jr. William M; Mark W. Utlaut; Robert G. Behrens; Eugene G. Szklarz; Edmund K. Storms; Robert P. Santandrea; Lynwood W. Swanson

    1988-01-01

    A liquid metal ion source and alloy, wherein the species to be emitted from the ion source is contained in a congruently vaporizing alloy. In one embodiment, the liquid metal ion source acts as a source of arsenic, and in a source alloy the arsenic is combined with palladium, preferably in a liquid alloy having a range of compositions from

  10. High-temperature oxidation of alloys

    Microsoft Academic Search

    Graham C. Wood

    1970-01-01

    Some recent developments in the understanding of the oxidation of alloys at elevated temperatures are reviewed, with special reference to binary and ternary alloys upon which many commercial materials are based. Following an initial classification of alloy systems, certain basic principles and their limitations are considered, including factors determining whether an alloy displays surface scaling only, internal oxidation only, or

  11. Oxidation resistant alloys, method for producing oxidation resistant alloys

    DOEpatents

    Dunning, John S.; Alman, David E.

    2002-11-05

    A method for producing oxidation-resistant austenitic alloys for use at temperatures below 800 C. comprising of: providing an alloy comprising, by weight %: 14-18% chromium, 15-18% nickel, 1-3% manganese, 1-2% molybdenum, 2-4% silicon, 0% aluminum and the balance being iron; heating the alloy to 800 C. for between 175-250 hours prior to use in order to form a continuous silicon oxide film and another oxide film. The method provides a means of producing stainless steels with superior oxidation resistance at temperatures above 700 C. at a low cost

  12. Oxidation resistant alloys, method for producing oxidation resistant alloys

    DOEpatents

    Dunning, John S. (Corvallis, OR); Alman, David E. (Salem, OR)

    2002-11-05

    A method for producing oxidation-resistant austenitic alloys for use at temperatures below 800.degree. C. comprising of: providing an alloy comprising, by weight %: 14-18% chromium, 15-18% nickel, 1-3% manganese, 1-2% molybdenum, 2-4% silicon, 0% aluminum and the balance being iron; heating the alloy to 800.degree. C. for between 175-250 hours prior to use in order to form a continuous silicon oxide film and another oxide film. The method provides a means of producing stainless steels with superior oxidation resistance at temperatures above 700.degree. C. at a low cost

  13. High performance alloy electroforming

    NASA Technical Reports Server (NTRS)

    Malone, G. A.; Winkelman, D. M.

    1989-01-01

    Electroformed copper and nickel are used in structural applications for advanced propellant combustion chambers. An improved process has been developed by Bell Aerospace Textron, Inc. wherein electroformed nickel-manganese alloy has demonstrated superior mechanical and thermal stability when compared to previously reported deposits from known nickel plating processes. Solution chemistry and parametric operating procedures are now established and material property data is established for deposition of thick, large complex shapes such as the Space Shuttle Main Engine. The critical operating variables are those governing the ratio of codeposited nickel and manganese. The deposition uniformity which in turn affects the manganese concentration distribution is affected by solution resistance and geometric effects as well as solution agitation. The manganese concentration in the deposit must be between 2000 and 3000 ppm for optimum physical properties to be realized. The study also includes data regarding deposition procedures for achieving excellent bond strength at an interface with copper, nickel-manganese or INCONEL 718. Applications for this electroformed material include fabrication of complex or re-entry shapes which would be difficult or impossible to form from high strength alloys such as INCONEL 718.

  14. (NH{sub 4})[V{sub 1-x}{sup III}V{sub x}{sup IV}(AsO{sub 4})F{sub 1-x}O{sub x}]: A new mixed valence vanadium(III,IV) fluoro-arsenate with ferromagnetic interactions and electronic conductivity

    SciTech Connect

    Berrocal, Teresa [Departamento de Mineralogia y Petrologia, Facultad de Ciencia y Tecnologia, Universidad del Pais Vasco/EHU, Apdo. 644, E-48080 Bilbao (Spain); Mesa, Jose L. [Departamento de Quimica Inorganica, Facultad de Ciencia y Tecnologia, Universidad del Pais Vasco/EHU, Apdo. 644, E-48080 Bilbao (Spain)], E-mail: joseluis.mesa@ehu.es; Pizarro, Jose L.; Bazan, Begona [Departamento de Mineralogia y Petrologia, Facultad de Ciencia y Tecnologia, Universidad del Pais Vasco/EHU, Apdo. 644, E-48080 Bilbao (Spain); Ruiz de Larramendi, Idoia [Departamento de Quimica Inorganica, Facultad de Ciencia y Tecnologia, Universidad del Pais Vasco/EHU, Apdo. 644, E-48080 Bilbao (Spain); Arriortua, Maria I. [Departamento de Mineralogia y Petrologia, Facultad de Ciencia y Tecnologia, Universidad del Pais Vasco/EHU, Apdo. 644, E-48080 Bilbao (Spain); Rojo, Teofilo [Departamento de Quimica Inorganica, Facultad de Ciencia y Tecnologia, Universidad del Pais Vasco/EHU, Apdo. 644, E-48080 Bilbao (Spain)

    2009-01-15

    A new mixed valence vanadium(III,IV) fluoro-arsenate compound, with formula (NH{sub 4})[V{sub 1-x}{sup III}V{sub x}{sup IV}(AsO{sub 4})F{sub 1-x}O{sub x}] and KTP structure-type, has been synthesized by mild hydrothermal techniques. The crystal structure has been solved from single crystal X-ray diffraction data in the Pna2{sub 1} orthorhombic space group. The unit-cell parameters are a=13.196(2) A, b=6.628(1) A and c=10.7379(7) A with Z=8. The final R factors were R1=0.0438 and wR2=0.0943 [all data]. The crystal structure consists of a three-dimensional framework formed by (V{sup III,IV}O{sub 4}F{sub 2}) octahedra and (AsO{sub 4}){sup 3-} tetrahedra arsenate oxoanions. The vanadium(III,IV) cations, from the (V{sup III,IV}O{sub 4}F{sub 2}) octahedra, are linked through the fluorine atoms giving rise to zigzag chains. The ammonium cations are located in the cavities of the structure compensating the anionic charge of the [V{sub 1-x}{sup III}V{sub x}{sup IV}(AsO{sub 4})F{sub 1-x}O{sub x}]{sup -} inorganic skeleton. The thermal stability limit of the phase is 345 deg. C, around to this temperature the ammonium cation and fluoride anion are lost. The IR spectrum shows the characteristic bands of the (NH{sub 4}){sup +} and (AsO{sub 4}){sup 3-} ions. Magnetic measurements indicate the existence of weak ferromagnetic interactions. Electronic conductivity, via a hopping mechanism, occurs with an activation energy of 0.66 eV. - Graphical abstract: Polyhedral view of the crystal structure of (NH{sub 4})[V{sup III}{sub 1-x}V{sup IV}{sub x}(AsO{sub 4})F{sub 1-x}O{sub x}].

  15. New Amorphous Silicon Alloy Systems

    NASA Astrophysics Data System (ADS)

    Kapur, Mridula N.

    1990-01-01

    The properties of hydrogenated amorphous silicon (a-Si:H) have been modified by alloying with Al, Ga and S respectively. The Al and Ga alloys are in effect quaternary alloys as they were fabricated in a carbon-rich discharge. The alloys were prepared by the plasma assisted chemical vapor deposition (PACVD) method. This method has several advantages, the major one being the relatively low defect densities of the resulting materials. The PACVD system used to grow the alloy films was designed and constructed in the laboratory. It was first tested with known (a-Si:H and a-Si:As:H) materials. Thus, it was established that device quality alloy films could be grown with the home-made PACVD setup. The chemical composition of the alloys was characterized by secondary ion mass spectrometry (SIMS), and electron probe microanalysis (EPMA). The homogeneous nature of hydrogen distribution in the alloys was established by SIMS depth profile analysis. A quantitative analysis of the bulk elemental content was carried out by EPMA. The analysis indicated that the alloying element was incorporated in the films more efficiently at low input gas concentrations than at the higher concentrations. A topological model was proposed to explain the observed behavior. The optical energy gap of the alloys could be varied in the 0.90 to 1.92 eV range. The Al and Ga alloys were low band gap materials, whereas alloying with S had the effect of widening the energy gap. It was observed that although the Si-Al and Si-Ga alloys contained significant amounts of C and H, the magnitude of the energy gap was determined by the metallic component. The various trends in optical properties could be related to the binding characteristics of the respective alloy systems. A quantitative explanation of the results was provided by White's tight binding model. The dark conductivity-temperature dependence of the alloys was examined. A linear dependence was observed for the Al and Ga systems. Electronic conduction in the S-alloys appeared to proceed by a two step mechanism. The thermal activation energies for the high Al content and S-alloys were close to half the band gap value. The photoresponse of the films was determined from the light to dark conductivity ratio. The best photoresponse (sigma_ {L}/sigma_{D} = 4 times 10^2) was obtained for the Si-S alloys showing that they are promising electrode materials for solar cell application. A single unit photovoltaic electrolyzer was constructed by combining a-Si:H solar cells with an electrolysis cell. Several different configurations ((PIN), (PIN)^2 , and (PIN)^3) of the solar cells were tested. Both electric power and chemical energy (H_2) could be simultaneously drawn from the electrolyzer.

  16. Heat storage in alloy transformations

    NASA Technical Reports Server (NTRS)

    Birchenall, C. E.

    1980-01-01

    The feasibility of using metal alloys as thermal energy storage media was investigated. The elements selected as candidate media were limited to aluminum, copper, magnesium, silicon, zinc, calcium, and phosphorus on the basis of low cost and latent heat of transformation. Several new eutectic alloys and ternary intermetallic phases were determined. A new method employing X-ray absorption techniques was developed to determine the coefficients of thermal expansion of both the solid and liquid phases and the volume change during phase transformation. The method and apparatus are discussed and the experimental results are presented for aluminum and two aluminum-eutectic alloys. Candidate materials were evaluated to determine suitable materials for containment of the metal alloys. Graphite was used to contain the alloys during the volume change measurements. Silicon carbide was identified as a promising containment material and surface-coated iron alloys were also evaluated. System considerations that are pertinent if alloy eutectics are used as thermal energy storage media are discussed. Potential applications to solar receivers and industrial furnaces are illustrated schematically.

  17. Heat storage in alloy transformations

    NASA Astrophysics Data System (ADS)

    Birchenall, C. E.

    1980-04-01

    The feasibility of using metal alloys as thermal energy storage media was investigated. The elements selected as candidate media were limited to aluminum, copper, magnesium, silicon, zinc, calcium, and phosphorus on the basis of low cost and latent heat of transformation. Several new eutectic alloys and ternary intermetallic phases were determined. A new method employing X-ray absorption techniques was developed to determine the coefficients of thermal expansion of both the solid and liquid phases and the volume change during phase transformation. The method and apparatus are discussed and the experimental results are presented for aluminum and two aluminum-eutectic alloys. Candidate materials were evaluated to determine suitable materials for containment of the metal alloys. Graphite was used to contain the alloys during the volume change measurements. Silicon carbide was identified as a promising containment material and surface-coated iron alloys were also evaluated. System considerations that are pertinent if alloy eutectics are used as thermal energy storage media are discussed. Potential applications to solar receivers and industrial furnaces are illustrated schematically.

  18. Some thoughts on alloy design

    SciTech Connect

    Martin, P.L.; Williams, J.C.

    1984-01-01

    This paper discusses some of the problems associated with attempts to use first principles in alloy design. We briefly summarize the role of microstructure on the properties of high temperature alloys and illustrate some of the microstructural features of conventional superalloys. We also describe how theory and experiment are converging toward some predictive capabilities for relating microstructure and composition using Ni-Al-Mo-X alloys as an example. Finally, this paper suggests that progress is being made in combining the results of condensed matter theory and experimental research.

  19. Modeling dissolution in aluminum alloys

    NASA Astrophysics Data System (ADS)

    Durbin, Tracie Lee

    2005-07-01

    Aluminum and its alloys are used in many aspects of modern life, from soda cans and household foil to the automobiles and aircraft in which we travel. Aluminum alloy systems are characterized by good workability that enables these alloys to be economically rolled, extruded, or forged into useful shapes. Mechanical properties such as strength are altered significantly with cold working, annealing, precipitation-hardening, and/or heat-treatments. Heat-treatable aluminum alloys contain one or more soluble constituents such as copper, lithium, magnesium, silicon and zinc that individually, or with other elements, can form phases that strengthen the alloy. Microstructure development is highly dependent on all of the processing steps the alloy experiences. Ultimately, the macroscopic properties of the alloy depend strongly on the microstructure. Therefore, a quantitative understanding of the microstructural changes that occur during thermal and mechanical processing is fundamental to predicting alloy properties. In particular, the microstructure becomes more homogeneous and secondary phases are dissolved during thermal treatments. Robust physical models for the kinetics of particle dissolution are necessary to predict the most efficient thermal treatment. A general dissolution model for multi-component alloys has been developed using the front-tracking method to study the dissolution of precipitates in an aluminum alloy matrix. This technique is applicable to any alloy system, provided thermodynamic and diffusion data are available. Treatment of the precipitate interface is explored using two techniques: the immersed-boundary method and a new technique, termed here the "sharp-interface" method. The sharp-interface technique is based on a variation of the ghost fluid method and eliminates the need for corrective source terms in the characteristic equations. In addition, the sharp-interface method is shown to predict the dissolution behavior of precipitates in aluminum alloys when compared with published experimental results. The influence of inter-particle spacing is examined and shown to have a significant effect on dissolution kinetics. Finally, the impact of multiple particles of various sizes interacting in an aluminum matrix is investigated. It is shown that smaller particles dissolve faster, as expected, but influence the dissolution of larger particles through soft-impingement, even after the smaller particles have disappeared.

  20. Development of nano-structure Cu–Zr alloys by the mechanical alloying process

    Microsoft Academic Search

    M. Azimi; G. H. Akbari

    2011-01-01

    Cu–Zr alloys have many applications in electrical and welding industries for their high strength and high electrical and thermal conductivities. These alloys are among age-hardenable alloys with capability of having nano-structure with high solute contents obtainable by the mechanical alloying process. In the present work, Cu–Zr alloys have been developed by the mechanical alloying process. Pure copper powders with different

  1. The stochastic model for ternary and quaternary alloys: Application of the Bernoulli relation to the phonon spectra of mixed crystals

    SciTech Connect

    Marchewka, M., E-mail: marmi@ur.edu.pl; Wo?ny, M.; Polit, J.; Sheregii, E. M. [Faculty of Mathematics and Natural Sciences, Centre for Microelectronics and Nanotechnology, University of Rzeszów, Pigonia 1, 35-959 Rzeszów (Poland); Kisiel, A. [Institute of Physics, Jagiellonian University, Reymonta 4, Kraków 30-059 (Poland); Robouch, B. V.; Marcelli, A. [INFN-Laboratori Nazionali di Frascati, Via E. Fermi 40, I-00044 Frascati (Italy)

    2014-03-21

    To understand and interpret the experimental data on the phonon spectra of the solid solutions, it is necessary to describe mathematically the non-regular distribution of atoms in their lattices. It appears that such description is possible in case of the strongly stochastically homogenous distribution which requires a great number of atoms and very carefully mixed alloys. These conditions are generally fulfilled in case of high quality homogenous semiconductor solid solutions of the III–V and II–VI semiconductor compounds. In this case, we can use the Bernoulli relation describing probability of the occurrence of one n equivalent event which can be applied, to the probability of finding one from n configurations in the solid solution lattice. The results described in this paper for ternary HgCdTe and GaAsP as well as quaternary ZnCdHgTe can provide an affirmative answer to the question: whether stochastic geometry, e.g., the Bernoulli relation, is enough to describe the observed phonon spectra.

  2. Shape memory alloy cables

    NASA Astrophysics Data System (ADS)

    Reedlunn, Benjamin; Shaw, John A.

    2008-03-01

    Conventional structural cables (or wire ropes) are composed of steel wires helically wound into strands, which, in turn, are wound around a core. Cables made from shape memory alloy (SMA) wires are a new structural element with promising properties for a broad range of new applications. Among the many potential advantages of this form are increased bending flexibility for spooling/packaging, better fatigue performance, energy absorption and damping, reduced thermal lag, redundancy, and signicant design flexibility. Currently there are no known studies of SMA cables in the literature, so exploratory thermo-mechanical experiments were performed on two commercially available cable designs as part of an ongoing research program to systematically characterize their thermomechanical behavior and demonstrate their potential utility as adaptive or resilient tension elements.

  3. Metallic alloy stability studies

    NASA Technical Reports Server (NTRS)

    Firth, G. C.

    1983-01-01

    The dimensional stability of candidate cryogenic wind tunnel model materials was investigated. Flat specimens of candidate materials were fabricated and cryo-cycled to assess relative dimensional stability. Existing 2-dimensional airfoil models as well as models in various stages of manufacture were also cryo-cycled. The tests indicate that 18 Ni maraging steel offers the greatest dimensional stability and that PH 13-8 Mo stainless steel is the most stable of the stainless steels. Dimensional stability is influenced primarily by metallurgical transformations (austenitic to martensitic) and manufacturing-induced stresses. These factors can be minimized by utilization of stable alloys, refinement of existing manufacturing techniques, and incorporation of new manufacturing technologies.

  4. Alloyed steel wastes utilization

    SciTech Connect

    Sokol, I.V. [Russian Academy of Sciences, Khabarovsk (Russian Federation). Inst. of Materials

    1995-12-31

    Alloyed steel chips and swarf formed during metal processing are looked upon as additional raw materials in metallurgical production. This paper presents some new methods for steel waste chips and swarf cleaning. One of them is swarf and steel chips cleaning in tetrachloroethylene with ultrasonic assistance and solvent regeneration. Thermal cleaning of waste chips and swarf provides off gas products utilization. The catalyst influence of the metal surface on the thermal decomposition of liquid hydrocarbons during the cleaning process has been studied. It has been determined that the efficiency of this metal waste cleaning technique depends on the storage time of the swarf. The waste chips and swarf cleaning procedures have been proven to be economically advantageous and environmentally appropriate.

  5. Design of Stable Nanocrystalline Alloys

    E-print Network

    Chookajorn, Tongjai

    Nanostructured metals are generally unstable; their grains grow rapidly even at low temperatures, rendering them difficult to process and often unsuitable for usage. Alloying has been found to improve stability, but only ...

  6. Microfissuring in Alloys During Welding

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Evaluating cause of intergranular cracking (microfissuring) in high-temperature alloys during welding done by measuring number of microcracks as function of temperature and plastic strain. Two mechanisms of microfissuring in heat-affected zones suggested.

  7. Casting Characteristics of Aluminum Die Casting Alloys

    SciTech Connect

    Makhlouf M. Makhlouf; Diran Apelian

    2002-02-05

    The research program investigates the casting characteristics of selected aluminum die casting alloys. Specifically, the alloys' tendencies towards die soldering and sludge formation, and the alloys' fluidity and machinability are evaluated. It was found that: When the Fe and Mn contents of the alloy are low; caution has to be taken against possible die soldering. When the alloy has a high sludge factor, particularly a high level of Fe, measures must be taken to prevent the formation of large hardspots. For this kind of alloy, the Fe content should be kept at its lowest allowable level and the Mn content should be at its highest possible level. If there are problems in die filling, measures other than changing the alloy chemistry need to be considered first. In terms of alloy chemistry, the elements that form high temperature compounds must be kept at their lowest allowable levels. The alloys should not have machining problems when appropriate machining techniques and machining parameters are used.

  8. The mechanism of mechanical alloying

    Microsoft Academic Search

    J. S. Benjamin; T. E. Volin

    1974-01-01

    The mechanical alloying process is a new method for producing composite metal powders with controlled microstructures. It\\u000a is unique in that it is an entirely solid state process, permitting dispersion of insoluble phases such as refractory oxides\\u000a and addition of reactive alloying elements such as aluminum and titanium. Interdispersion of the ingredients occurs by repeated\\u000a cold welding and fracture of

  9. Zirconium alloys in nuclear technology

    Microsoft Academic Search

    R. Krishnan; M. K. Asundi

    1981-01-01

    This paper describes the historical development of zirconium and its alloys as structural materials for nuclear reactors.\\u000a The various problems encountered in the early stages of the development of zircaloys and their performance in reactors operating\\u000a presently are described in detail. The development of Zr-2.5 % Nb alloys for pressure tube applications is discussed. The\\u000a paper concludes with a detailed

  10. Sintered titanium carbide hard alloys

    Microsoft Academic Search

    G. V. Samsonov; N. N. Sergeev; G. T. Dzodziev; V. K. Vitryanyuk; L. V. Latyaeva

    1971-01-01

    1.A study was made of the preparation of titanium carbide hard alloys with a nickel binder. It is shown that satisfactory mechanical properties (bend strength 107–115 kg\\/mm2, hardness 90–90.5 HRA) are exhibited by 80% TiC-20% Ni alloys produced from fine-milled mixtures by sintering in a vacuum of 5·10-3 mm Hg at a temperature of 1300‡C and an isothermal holding time

  11. Alloy dissolution in argon stirred steel

    NASA Astrophysics Data System (ADS)

    Webber, Darryl Scott

    Alloying is required for the production of all steel products from small castings to large beams. Addition of large quantities of bulk alloys can result in alloy segregation and inconsistent alloy recovery. The objective of this research was to better understand alloy dissolution in liquid steel especially as it relates to Missouri S&Ts' patented continuous steelmaking process. A 45-kilogram capacity ladle with a single porous plug was used to evaluate the effect of four experimental factors on alloy dissolution: alloy species, alloy size or form, argon flow rate, and furnace tap temperature. Four alloys were tested experimentally including Class I low carbon ferromanganese, nickel and tin (as a surrogate for low melting alloys) and Class II ferroniobium. The alloys ranged in size and form from granular to 30 mm diameter lumps. Experimental results were evaluated using a theoretically based numerical model for the steel shell period, alloy mixing (Class I) and alloy dissolution (Class II). A CFD model of the experimental ladle was used to understand steel motion in the ladle and to provide steel velocity magnitudes for the numerical steel shell model. Experiments and modeling confirmed that smaller sized alloys have shorter steel shell periods and homogenize faster than larger particles. Increasing the argon flow rate shortened mixing times and reduced the delay between alloy addition and the first appearance of alloy in the melt. In addition, for every five degree increase in steel bath temperature the steel shell period was shortened by approximately four percent. Class II ferroniobium alloy dissolution was an order of magnitude slower than Class I alloy mixing.

  12. Choosing An Alloy For Automotive Stirling Engines

    NASA Technical Reports Server (NTRS)

    Stephens, Joseph R.

    1988-01-01

    Report describes study of chemical compositions and microstructures of alloys for automotive Stirling engines. Engines offer advantages of high efficiency, low pollution, low noise, and ability to use variety of fuels. Twenty alloys evaluated for resistance to corrosion permeation by hydrogen, and high temperature. Iron-based alloys considered primary candidates because of low cost. Nickel-based alloys second choice in case suitable iron-based alloy could not be found. Cobalt-based alloy included for comparison but not candidate, because it is expensive strategic material.

  13. Ni{sub 3}Al aluminide alloys

    SciTech Connect

    Liu, C.T.

    1993-10-01

    This paper provides a brief review of the recent progress in research and development of Ni{sub 3}Al and its alloys. Emphasis has been placed on understanding low ductility and brittle fracture of Ni{sub 3}Al alloys at ambient and elevated temperatures. Recent studies have resulted in identifying both intrinsic and extrinsic factors governing the fracture behavior of Ni{sub 3}Al alloys. Parallel efforts on alloy design using physical metallurgy principles have led to properties for structural use. Industrial interest in these alloys is high, and examples of industrial involvement in processing and utilization of these alloys are briefly mentioned.

  14. High strength forgeable tantalum base alloy

    NASA Technical Reports Server (NTRS)

    Buckman, R. W., Jr.

    1975-01-01

    Increasing tungsten content of tantalum base alloy to 12-15% level will improve high temperature creep properties of existing tantalum base alloys while retaining their excellent fabrication and welding characteristics.

  15. III-V optically pumped mid-IR LEDs

    NASA Astrophysics Data System (ADS)

    Matveev, Boris A.; Zotova, Nonna V.; Karandashev, Sergey A.; Remennyi, Maxim A.; Stus', Nikolai M.; Talalakin, Georgii N.

    2001-05-01

    InAs, InSb compounds and InAs(Sb)(P), In(Ga)As(Sb) based heterostructures grown onto InAs substrate have been used as a 'phosphor' for the optically pumped light emitting diodes emitting in the mid-IR spectral range (3 divided by 7 micrometer) at room and above room temperatures. The pulse output of the LEDs composed of GaAs pumping LED ((eta) ext equals 6 divided by 8%) and 2 divided by 20 micrometer thick mid-IR 'phosphor' joint together through a transparent 'glue' was as high as 40 divided by 500 (mu) W which is fairy close to the best reported values for 'cascade' and single quantum well diodes operating in a spontaneous mode.

  16. Chemical beam epitaxy growth of III–V semiconductor nanowires

    SciTech Connect

    Mohummed Noori, Farah T. [University of Baghdad , College of science, Physics department , Jadiriya ,Baghdad (Iraq)

    2013-12-16

    Indium- Arsenide (InAs) nanowires were grown in a high vacuum chemical beam epitaxy (CBE) unit on InAs(111) wafers substrates at 425–454°C. Two types of nanogold were used as orientation catalyst, 40nm and 80nm. The measurements were performed using scanning electron microscopy showed that uniform nanowires. The nanowires orient vertically in the InAs nanowire scanning electron microscopy of an array 80nm diameter InAs nanowire with length is in the range 0.5–1 ?m and of an array 40nm diameter with length is in the range 0.3–0.7?m. The nanowire length with growth time shows that the linear increase of nanowires start to grow as soon as TMIn is available. The growth rate with temperature was studied.

  17. ICP dry etching of III-V nitrides

    SciTech Connect

    Vartuli, C.B.; Lee, J.W.; MacKenzie, J.D. [Univ. of Florida, Gainesville, FL (United States)] [and others

    1997-10-01

    Inductively coupled plasma etching of GaN, AlN, InN, InGaN and InAlN was investigated in CH{sub 4}/H{sub 2}/Ar plasmas as a function of dc bias, and ICP power. The etch rates were generally quite low, as is common for III-nitrides in CH{sub 4} based chemistries. The etch rates increased with increasing dc bias. At low rf power (150 W), the etch rates increased with increasing ICP power, while at 350 W rf power, a peak was found between 500 and 750 W ICP power. The etched surfaces were found to be smooth, while selectivities of etch were {le} 6 for InN over GaN, AlN, InGaN and InAlN under all conditions.

  18. High temperature surface degradation of III-V nitrides

    SciTech Connect

    Vartuli, C.B.; Pearton, S.J.; Abernathy, C.R.; MacKenzie, J.D.; Lambers, E.S. [Univ. of Florida, Gainesville, FL (United States). Dept. of Materials Science and Engineering; Zolper, J.C. [Sandia National Labs., Albuquerque, NM (United States)

    1996-05-01

    The surface stoichiometry, surface morphology and electrical conductivity of AlN, GaN, InN, InGaN and InAlN was examined at rapid thermal annealing temperatures up to 1,150 C. The sheet resistance of the AlN dropped steadily with annealing, but the surface showed signs of roughening only above 1,000 C. Auger Electronic Spectroscopy (AES) analysis showed little change in the surface stoichiometry even at 1,150 C. GaN root mean square (RMS) surface roughness showed an overall improvement with annealing, but the surface became pitted at 1,000 C, at which point the sheet resistance also dropped by several orders of magnitude, and AES confirmed a loss of N from the surface. The InN surface had roughened considerably even at 650 C, and scanning electron microscopy (SEM) showed significant degradation. In contrast to the binary nitrides the sheet resistance of InAlN was found to increase by {approximately} 10{sup 2} from the as grown value after annealing at 800 C and then remain constant up to 1,000 C, while that of InGaN increased rapidly above 700 C. The RMS roughness increased above 800 C and 700 C respectively for InAlN and InGaN samples. In droplets began to form on the surface at 900 C for InAlN and at 800 C for InGaN, and then evaporate at 1,000 C leaving pits. AES analysis showed a decrease in the N concentration in the top 500 {angstrom} of the sample for annealing {ge} 800 C in both materials.

  19. Novel compound semiconductor devices based on III-V nitrides

    SciTech Connect

    Pearton, S.J.; Abernathy, C.R. [Florida Univ., Gainesville, FL (United States); Ren, F. [AT & T Bell Laboratories, Murray Hill, NJ (United States)] [and others

    1995-10-01

    New developments in dry and wet etching, ohmic contacts and epitaxial growth of Ill-V nitrides are reported. These make possible devices such as microdisk laser structures and GaAs/AlGaAs heterojunction bipolar transistors with improved InN ohmic contacts.

  20. III-V semiconductor quantum well and superlattice detectors

    NASA Astrophysics Data System (ADS)

    Walther, Martin; Fuchs, Frank; Schneider, Harald; Fleissner, Joachim; Schmitz, J.; Pletschen, Wilfried; Braunstein, Juergen; Ziegler, Johann; Cabanski, Wolfgang A.; Koidl, Peter; Weimann, Guenter

    1998-10-01

    The paper reviews the development of IR detectors for the 8 - 12 micrometer wavelength range based on GaAs/AlGaAs quantum well structures and InAs/(GaIn)Sb short-period superlattices (SPSLs) at the Fraunhofer-Institute IAF. Photoconductive GaAs/AlGaAs quantum well infrared photodetectors (QWIPs) are used for the fabrication of starring IR cameras for thermal imaging in the third atmospheric window. The long wavelength infrared (LWIR) camera, devleoped in cooperation with AEG Infrarot-Module (AIM), consists of a two-dimensional focal plane array (FPA) with 256 X 256 detector elements, flip- chip bonded to a read-out integrated circuit (ROIC). The technology for the fabrication of FPAs, electrical and optical properties of single detector elements in the two-dimensional arrangement and the properties of the LWIR camera system are reported. A noise equivalent temperature difference (NETD) below 10 mK has been measured at an operation temperature of T equals 65 K with an integration time of 20 ms. More than 99.8% of all pixels are working and no cluster defects are observed. InAs/(GaIn)Sb SPSLs with a broken gap type-II band alignment are well suited for the fabrication of IR detectors covering the 3 - 12 micrometer spectral range. Due to the lattice mismatch of the InAs/(GaIn)Sb SPSL with respect to GaSb, tight control of thickness and composition of the layers and a controlled formation of the chemical bonds across the interface in the SPSLs are used for strain compensation. Photodiodes with a cut-off wavelength (lambda) c equals 8 micrometer and a current responsivity R(lambda ) equals 2 A/W exhibit a dynamic impedance of R0A equals 1k(Omega) cm2 at T equals 77 K. This leads to a Johnson- noise limited detectivity in excess of D* equals 1 X 1012 cm(Hz)1/2/W for these type of detectors.

  1. The Performance of Advanced III-V Solar Cells

    NASA Technical Reports Server (NTRS)

    Mueller, Robert L.; Gaddy, Edward; Day, John H. (Technical Monitor)

    2002-01-01

    Test results show triple junction solar cells with efficiencies as high as 27% at 28C and 136.7 mw/sq cm. Triple junction cells also achieve up to 27.5% at -120 C and 5 mw/sq cm, conditions applicable to missions to Jupiter. Some triple junction cells show practically no degradation as a result of Low Intensity Low Temperature (LILT) effects, while others show some; this degradation can be overcome with minor changes to the cell design.

  2. Surface Localization of Buried III-V Semiconductor Nanostructures.

    PubMed

    Alonso-González, P; González, L; Fuster, D; Martín-Sánchez, J; González, Yolanda

    2009-01-01

    In this work, we study the top surface localization of InAs quantum dots once capped by a GaAs layer grown by molecular beam epitaxy. At the used growth conditions, the underneath nanostructures are revealed at the top surface as mounding features that match their density with independence of the cap layer thickness explored (from 25 to 100 nm). The correspondence between these mounds and the buried nanostructures is confirmed by posterior selective strain-driven formation of new nanostructures on top of them, when the distance between the buried and the superficial nanostructures is short enough (d = 25 nm). PMID:20596455

  3. Piezoelectricity and growth polarization in III-V nitrides

    NASA Astrophysics Data System (ADS)

    Tavernier, Philip Ross

    GaN, AlN and InN form a relatively new class of semiconductors being utilized for their direct wide bandgap and polarization effects. Novel transistors using only piezoelectric doping have already surpassed the power handling capabilities of traditional silicon transistors. GaN light emitting diodes and solid state lasers, sensitive to the effects of piezoelectric polarization, are rapidly proliferating for use in lighting and next generation optical storage devices. GaN and AIN sensors and MEMS devices using the strong piezoelectric coupling coefficients of these materials are slowly being introduced into communications and chemical sensing applications. Despite the importance of the piezoelectric effect in each of these devices, relatively little is known of the magnitude of the effect in GaN and AIN as measured experimentally. The present work seeks to develop an experimental method of measuring the piezoelectric effect in thin films of GaN and AIN. Using a stress pulse induced by the single shot of a Nd:YAG laser, substrates of polar GaAs and ZnO are subject to short duration loading which generates piezoelectric dipoles. The orientation and magnitude of these dipoles induces current flow in an external circuit which is measured as a function time. By comparing the magnitude of the current generated in this circuit and the applied stress, it is shown that the axial piezoelectric constant, e 33, can be determined. Extending the measurement technique to thin films of GaN and AIN on sapphire and silicon, we have observed the magnitude and orientation of the piezoelectric dipoles in these materials. A value of 0.45 C/m2 for e33 in GaN was determined. This work motivated a closer investigation of the polarity of GaN during crystal growth. The addition of Mg during MOCVD was found to cause a uniform inversion of the growth axis producing nitrogen terminated surfaces under certain growth conditions. Chemical-mechanical polishing of these surfaces with colloidal silica was found to produce smooth, damage free surfaces suitable for regrowth or additional processing. Growth of GaN and InGaN along the nitrogen polar direction was characterized by AFM, TEM, SIMS, x-ray, PL, and Hall measurements revealing surprisingly high quality material suitable for optical and electrical devices.

  4. Carbon films grown from plasma on III-V semiconductors

    NASA Technical Reports Server (NTRS)

    Pouch, J. J.; Warner, J. D.; Liu, D. C.

    1985-01-01

    Dielectric carbon films were grown on n- and p-type GaAs and InP substrates using plasmas generated at 30 KHz from gaseous hydrocarbons. The effect of gas source, flow rate, and power on film growth were investigated. Methane and n-butane gases were utilized. The flow rate and power ranged from 30 to 50 sccm and 25 to 300 W, respectively. AES measurements show only carbon to be present in the films. The relative Ar ion sputtering rate (3 KeV) of carbon depends on the ratio power/pressure. In addition, the degree of asymmetry associated with the carbon-semiconductor interface is approximately power-independent. SIMS spectra indicate different H-C bonding configurations to be present in the films. Band gaps as high as 3.05 eV are obtained from optical absorption studies.

  5. [Update of breast cancer in Primary Care (III/V)].

    PubMed

    Álvarez Hernández, C; Vich Pérez, P; Brusint, B; Cuadrado Rouco, C; Díaz García, N; Robles Díaz, L

    2014-01-01

    Breast cancer is a prevalent disease with implications in all aspects of patients? life, therefore, family doctors must know this pathology in depth, in order to optimize the health care provided to these patients with the best available resources. This series of five articles on breast cancer is based on a review of the scientific literature of the last ten years. This third article will review the clinical context and the staging and prognostic factors of the disease. This summary report aims to provide a global, current and practical review about this problem, providing answers to family doctors and helping them to be by the patients for their benefit throughout their illness. PMID:24953699

  6. Characterization of novel III-V semiconductor devices

    E-print Network

    Young, Sue Y

    2006-01-01

    This thesis presents the characterization of tunnel junctions and tunnel-junction-coupled lasers. The reverse-biased leakage current in a tunnel junction can be exploited to tunnel electrons from the valence band of one ...

  7. Ion implantation and annealing studies in III-V nitrides

    SciTech Connect

    Zolper, J.C. [Sandia National Labs., Albuquerque, NM (United States); Pearton, S.J. [Univ. of Florida, Gainesville, FL (United States). Dept. of Materials Science and Engineering; Williams, J.S.; Tan, H.H. [Australian National Univ., Canberra (Australia). Dept. of Electronic Materials Engineering; Karlicek, R.J. Jr.; Stall, R.A. [Emcore Corp., Somerset, NJ (United States)

    1996-12-31

    Ion implantation doping and isolation is expected to play an enabling role for the realization of advanced III-Nitride based devices. In fact, implantation has already been used to demonstrate n- and p-type doping of GaN with Si and Mg or Ca, respectively, as well as to fabricate the first GaN junction field effect transistor. Although these initial implantation studies demonstrated the feasibility of this technique for the III-Nitride materials, further work is needed to realize its full potential. After reviewing some of the initial studies in this field, the authors present new results for improved annealing sequences and defect studies in GaN. First, sputtered AlN is shown by electrical characterization of Schottky and Ohmic contacts to be an effect encapsulant of GaN during the 1,100 C implant activation anneal. The AlN suppresses N-loss from the GaN surface and the formation of a degenerate n{sup +}-surface region that would prohibit Schottky barrier formation after the implant activation anneal. Second, they examine the nature of the defect generation and annealing sequence following implantation using both Rutherford Backscattering (RBS) and Hall characterization. They show that for a Si-dose of 1 x 10{sup 16} cm{sup {minus}2} 50% electrical donor activation is achieved despite a significant amount of residual implantation-induced damage in the material.

  8. Nano-scale ohmic contacts for III-V MOSFETs

    E-print Network

    Lu, Wenjie

    2014-01-01

    As modem silicon CMOS has been scaled down to extremely small dimensions, there is an urgent need for technological innovations of new devices architectures that would allow the continuation of Moore's Law into the future. ...

  9. Characterization of Hydrogen Complex Formation in III-V Semiconductors

    SciTech Connect

    Williams, Michael D.

    2006-09-28

    Atomic hydrogen has been found to react with some impurity species in semiconductors. Hydrogenation is a methodology for the introduction of atomic hydrogen into the semiconductor for the express purpose of forming complexes within the material. Efforts to develop hydrogenation as an isolation technique for AlGaAs and Si based devices failed to demonstrate its commercial viability. This was due in large measure to the low activation energies of the formed complexes. Recent studies of dopant passivation in long wavelength (0.98 - 1.55?m) materials suggested that for the appropriate choice of dopants much higher activation energies can be obtained. This effort studied the formation of these complexes in InP, This material is extensively used in optoelectronics, i.e., lasers, modulators and detectors. The experimental techniques were general to the extent that the results can be applied to other areas such as sensor technology, photovoltaics and to other material systems. The activation energies for the complexes have been determined and are reported in the scientific literature. The hydrogenation process has been shown by us to have a profound effect on the electronic structure of the materials and was thoroughly investigated. The information obtained will be useful in assessing the long term reliability of device structures fabricated using this phenomenon and in determining new device functionalities.

  10. III-V solar cells and doping processes

    SciTech Connect

    Fraas, L.M.; Sundaram, V.S.; Avery, J.E.; Gruenhaum, P.E.; Malocsay, E.

    1993-06-08

    A tandem solar cell concentrator module is described comprising: (a) a concentrator lens for focusing incident solar radiation; (b) a tandem solar cell substantially at the focus of the lens, the cell including: (i) an upper AlGaAs/GaAs primary cell having: (1) an AlGaAs window covering a photoactive region of a generally n-type GaAs wafer, and (2) a zinc-diffused, p-type emitter region having a concentration of zinc of between about 10[sup 18]-10[sup 19] atoms/cm[sup 3]; and (ii) a lower GaSb booster cell positioned to receive solar radiation that passes through the primary cell, the booster cell including grid lines on the upper surface for collecting current produced in the booster cell by incident radiation, a heavy concentration of zinc under the rid lines to provide low ohmic contact resistance, and a light concentration of zinc between the grid lines, the light concentration being effective to preserve the minority carrier lifetime in the booster cell to increase the short circuit current; wherein the booster cell includes texture etching to increase the conversion efficiency and to reduce reflection losses, the etching patterning the booster cell in the regions between the grid lines, and includes a backside metallization comprising layers of indium tin oxide, titanium tungsten nitride, and silver overlying one another, the indium tin oxide adjacent the GaSb and the silver at the exposed surface; (c) a heat spreader attached to both the primary cell and booster cell for holding the two in proper spaced relationship and for conveying excess heat away from either to a heat sink; and (d) current collection means connected to the primary cell and booster cell for collecting current generated in both when solar radiation is focused on the module.

  11. Oxidation Behavior of Glassy Alloys

    NASA Technical Reports Server (NTRS)

    Yurek, G.

    1985-01-01

    The oxidation behavior of high temperature glassy alloys produced by rapid solidification processing is investigated and the effects of processing and composition on oxidation behavior is studied. Glassy Ta-44.5at%Ir, Ta-40at%Ir-10at%B and Nb-45at%Ir oxidized rapidly at 700 to 800 C at an oxygen partial pressure of .001 atm. The alloys were embrittled during the oxidation process. No apparent oxidation or embrittlement of the Ta-Ir alloy occurred after oxidation for 4h at 500 C at an oxygen partial pressure of .001 atm. Embrittlement occurred, however, after 100h of exposure under the latter conditions. Alloy embrittlement is associated with the partial or full conversion of the metallic glass to a mixture of crystalline beta-Ta2O5 and metallic iridium. Hot compaction of glassy alloys of this type must be limited to relatively low temperatures (approx. 500 C) and short times at the low temperatures unless extremely low oxygen partial pressures can be achieved during the compaction process.

  12. Superconducting compounds and alloys research

    NASA Technical Reports Server (NTRS)

    Otto, G.

    1975-01-01

    Resistivity measurements as a function of temperature were performed on alloys of the binary material system In sub(1-x) Bi sub x for x varying between 0 and 1. It was found that for all single-phase alloys (the pure elements, alpha-In, and the three intermetallic compounds) at temperatures sufficiently above the Debye-temperature, the resistivity p can be expressed as p = a sub o T(n), where a sub o and n are composition-dependent constants. The same exponential relationship can also be applied for the sub-system In-In2Bi, when the two phases are in compositional equilibrium. Superconductivity measurements on single and two-phase alloys can be explained with respect to the phase diagram. There occur three superconducting phases (alpha-In, In2Bi, and In5Bi3) with different transition temperatures in the alloying system. The magnitude of the transition temperatures for the various intermetallic phases of In-Bi is such that the disappearance or occurrence of a phase in two component alloys can be demonstrated easily by means of superconductivity measurements.

  13. Oxidation of low cobalt alloys

    NASA Technical Reports Server (NTRS)

    Barrett, C. A.

    1982-01-01

    Four high temperature alloys: U-700, Mar M-247, Waspaloy and PM/HIP U-700 were modified with various cobalt levels ranging from 0 percent to their nominal commercial levels. The alloys were then tested in cyclic oxidation in static air at temperatures ranging from 1000 to 1150 C at times from 500 to 100 1 hour cycles. Specific weight change with time and X-ray diffraction analyses of the oxidized samples were used to evaluate the alloys. The alloys tend to be either Al2O3/aluminate spinel or Cr2O3/chromite spinel formers depending on the Cr/Al ratio in the alloy. Waspaloy with a ratio of 15:1 is a strong Cr2O3 former while this U-700 with a ratio of 3.33:1 tends to form mostly Cr2O3 while Mar M-247 with a ratio of 1.53:1 is a strong Al2O3 former. The best cyclic oxidation resistance is associated with the Al2O3 formers. The cobalt levels appear to have little effect on the oxidation resistance of the Al2O3/aluminate spinel formers while any tendency to form Cr2O3 is accelerated with increased cobalt levels and leads to increased oxidation attack.

  14. Nickel aluminide alloys with improved weldability

    DOEpatents

    Santella, Michael L. (Knoxville, TN); Goodwin, Gene M. (Lenior City, TN)

    1995-05-09

    Weldable nickel aluminide alloys which are essentially free, if not entirely free, of weld hot cracking are provided by employing zirconium concentrations in these alloys of greater than 2.6 wt. % or sufficient to provide a substantial presence of Ni--Zr eutectic phase in the weld so as to prevent weld hot cracking. Weld filler metals formed from these so modified nickel aluminide alloys provide for crack-free welds in previously known nickel aluminide alloys.

  15. Nickel aluminide alloys with improved weldability

    DOEpatents

    Santella, M.L.; Goodwin, G.M.

    1995-05-09

    Weldable nickel aluminide alloys which are essentially free, if not entirely free, of weld hot cracking are provided by employing zirconium concentrations in these alloys of greater than 2.6 wt. % or sufficient to provide a substantial presence of Ni--Zr eutectic phase in the weld so as to prevent weld hot cracking. Weld filler metals formed from these so modified nickel aluminide alloys provide for crack-free welds in previously known nickel aluminide alloys. 5 figs.

  16. Deoxidation of Titanium alloy using hydrogen

    Microsoft Academic Search

    Yanqing Su; Liang Wang; Liangshun Luo; Xiaohong Jiang; Jingjie Guo; Hengzhi Fu

    2009-01-01

    In this paper we present a simple and effective method to reduce the oxygen content of titanium alloys by using the mixture of hydrogen (H2)\\/Ar gases as the reactive atmosphere during the remelting process of titanium alloys. The experimental results show that the decrease of oxygen content of Ti64 alloy is related to the hydrogen fraction of the mixture gas

  17. Alloy catalysts designed from first principles

    Microsoft Academic Search

    Jeff Greeley; Manos Mavrikakis

    2004-01-01

    The rational design of pure and alloy metal catalysts from fundamental principles has the potential to yield catalysts of greatly improved activity and selectivity. A promising area of research concerns the role that near-surface alloys (NSAs) can play in endowing surfaces with novel catalytic properties. NSAs are defined as alloys wherein a solute metal is present near the surface of

  18. Temperature Gradients in Semiconductor Alloying Technology

    Microsoft Academic Search

    E. P. EerNisse; H. W. Thompson

    1965-01-01

    Experiments have been conducted with Ge and Si to define the metallurgical effects of temperature gradients in the alloying technology. These effects are defined in terms of the electrical characteristics of alloyed diodes and transistors and in terms of the physical appearance of the p-n junction. The presence of temperature gradients during the dissolution phase of an alloy cycle results

  19. Alloy rotary kilns for hazardous waste disposal

    Microsoft Academic Search

    J. V. Del Bene; J. K. Shah; E. F. Colburn

    1987-01-01

    The major conclusions of the study of rotary kilns for processing abrasive, energetic or corrosive hazardous wastes are: Alloy kilns are preferable to smaller refractory lined kilns for abrasive and\\/or explosive feed materials. Alloy construction and bolted sections make alloy kilns transportable; a pyrolysis operating mode can reduce the equipment size for wastes with a high energy release rate. However,

  20. Alchemy: transmuting base alloy specifications into implementations

    Microsoft Academic Search

    Shriram Krishnamurthi; Kathi Fisler; Daniel J. Dougherty; Daniel Yoo

    2008-01-01

    Alloy specifications are used to define lightweight models of systems. We present Alchemy, which compiles Alloy specifi- cations into implementations that execute against persistent databases. Alchemy translates a subset of Alloy predicates into imperative update operations, and it converts facts into database integrity constraints that it maintains automati- cally in the face of these imperative actions. In addition to presenting

  1. High strength uranium-tungsten alloy process

    DOEpatents

    Dunn, Paul S. (Santa Fe, NM); Sheinberg, Haskell (Los Alamos, NM); Hogan, Billy M. (Los Alamos, NM); Lewis, Homer D. (Bayfield, CO); Dickinson, James M. (Los Alamos, NM)

    1990-01-01

    Alloys of uranium and tungsten and a method for making the alloys. The amount of tungsten present in the alloys is from about 4 wt % to about 35 wt %. Tungsten particles are dispersed throughout the uranium and a small amount of tungsten is dissolved in the uranium.

  2. High strength uranium-tungsten alloys

    DOEpatents

    Dunn, Paul S. (Santa Fe, NM); Sheinberg, Haskell (Los Alamos, NM); Hogan, Billy M. (Los Alamos, NM); Lewis, Homer D. (Bayfield, CO); Dickinson, James M. (Los Alamos, NM)

    1991-01-01

    Alloys of uranium and tungsten and a method for making the alloys. The amount of tungsten present in the alloys is from about 4 wt % to about 35 wt %. Tungsten particles are dispersed throughout the uranium and a small amount of tungsten is dissolved in the uranium.

  3. Characterizing Semiconductor Alloys for Infrared Sensors

    NASA Technical Reports Server (NTRS)

    Lehoczky, B. S. L.; Szofran, F. R.; Martin, B. G.

    1986-01-01

    Report presents results of continuing program aimed at characterizing mercury/cadmium/tellurium alloys and eventually developing improved methods of preparing alloys for use as infrared sensors. Work covered by report includes series of differential thermal analysis (DTA) measurements of alloy compositions with x varied from 9 to 1 in 0.1 increments.

  4. High-temperature nickel-brazing alloy

    NASA Technical Reports Server (NTRS)

    Powell, A. H.; Thompson, S. R.

    1970-01-01

    Gold-nickel brazing alloy, with 5 percent indium added to depress the melting point, is used for brazing of nickel-clad silver electrical conductors which operate at temperatures to 1200 deg F. Alloy has low resistivity, requires no flux, and is less corrosive than other gold-nickel, gold-copper alloys.

  5. Materials data handbook, aluminum alloy 6061

    NASA Technical Reports Server (NTRS)

    Sessler, J.; Weiss, V.

    1969-01-01

    Comprehensive compilation of technical data on aluminum alloy 6061 is presented in handbook form. The text includes data on the properties of the alloy at cryogenic, ambient, and elevated temperatures and other pertinent information required for the design and fabrication of components and equipment utilizing this alloy.

  6. Roll Casting of Aluminum Alloy Clad Strip

    Microsoft Academic Search

    R. Nakamura; T. Haga; H. Tsuge; H. Watari; S. Kumai

    2011-01-01

    Casting of aluminum alloy three layers of clad strip was tried using the two sets of twin roll casters, and effects of the casting parameters on the cladding conditions were investigated. One twin roll caster was mounted on the other twin roll caster. Base strip was 8079 aluminum alloy and overlay strips were 6022 aluminum alloy. Effects of roll-load of

  7. Diffusion phase transitions in alloys

    NASA Astrophysics Data System (ADS)

    Ustinovshchikov, Yu I.

    2014-07-01

    We present a critical analysis of research on the thermodynamics, kinetics, and morphology of diffusion phase transitions in alloys. We show that diffusion phase transitions are mainly driven by the chemical potential difference due to a change in the sign of the chemical interaction among the component atoms. We explain how the sign of the chemical interaction energy can be obtained from experimental measurements. Examples are given to illustrate the kinetics and morphology of the ordering-separation phase transition in Ni- and Co-based alloys. We show how introducing the concept of the ordering-separation phase transition may affect our thinking in this area.

  8. Alloy softening in binary iron solid solutions

    NASA Technical Reports Server (NTRS)

    Stephens, J. R.; Witzke, W. R.

    1976-01-01

    An investigation was conducted to determine softening and hardening behavior in 19 binary iron-alloy systems. Microhardness tests were conducted at four temperatures in the range 77 to 411 K. Alloy softening was exhibited by 17 of the 19 alloy systems. Alloy softening observed in 15 of the alloy systems was attributed to an intrinsic mechanism, believed to be lowering of the Peierls (lattice friction) stress. Softening and hardening rates could be correlated with the atomic radius ratio of solute to iron. Softening observed in two other systems was attributed to an extrinsic mechanism, believed to be associated with scavenging of interstitial impurities.

  9. Protective claddings for high strength chromium alloys

    NASA Technical Reports Server (NTRS)

    Collins, J. F.

    1971-01-01

    The application of a Cr-Y-Hf-Th alloy as a protective cladding for a high strength chromium alloy was investigated for its effectiveness in inhibiting nitrogen embrittlement of a core alloy. Cladding was accomplished by a combination of hot gas pressure bonding and roll cladding techniques. Based on bend DBTT, the cladding alloy was effective in inhibiting nitrogen embrittlement of the chromium core alloy for up to 720 ks (200hours) in air at 1422 K (2100 F). A significant increase in the bend DBTT occurred with longer time exposures at 1422 K or short time exposures at 1589 K (2400 F).

  10. Liquid metal ion source and alloy

    DOEpatents

    Clark, Jr., William M. (Thousand Oaks, CA); Utlaut, Mark W. (Saugus, CA); Behrens, Robert G. (Los Alamos, NM); Szklarz, Eugene G. (Los Alamos, NM); Storms, Edmund K. (Los Alamos, NM); Santandrea, Robert P. (Santa Fe, NM); Swanson, Lynwood W. (McMinnville, OR)

    1988-10-04

    A liquid metal ion source and alloy, wherein the species to be emitted from the ion source is contained in a congruently vaporizing alloy. In one embodiment, the liquid metal ion source acts as a source of arsenic, and in a source alloy the arsenic is combined with palladium, preferably in a liquid alloy having a range of compositions from about 24 to about 33 atomic percent arsenic. Such an alloy may be readily prepared by a combustion synthesis technique. Liquid metal ion sources thus prepared produce arsenic ions for implantation, have long lifetimes, and are highly stable in operation.

  11. Semiempirical Analysis of Surface Alloy Formation

    NASA Technical Reports Server (NTRS)

    Bozzolo, Guillermo; Ferrante, John; Ibanez-Meier, Rodrigo

    1995-01-01

    The BFS method for alloys is applied to the study of surface alloy formation. This method was previously used to examine the experimental STM observation of surface alloying of Au on Ni(110) for low Au coverages by means of a numerical simulation. In this work, we extend the study to include other cases of surface alloying for immiscible as well as miscible metals. All binary combinations of Ni, Au, Cu, and Al are considered and the simulation results are compared to experiment when data is available. The driving mechanisms of surface alloy formation are then discussed in terms of the BFS method and the available results.

  12. Creep Behavior of Hydrogenated Zirconium Alloys

    NASA Astrophysics Data System (ADS)

    Sarkar, A.; Boopathy, K.; Eapen, J.; Murty, K. L.

    2014-10-01

    Zirconium (Zr) alloys are the primary structural materials of most water reactors. Creep is considered to be one of the important degradation mechanisms of Zr alloys during reactor operating and repository conditions. Zr alloys pick up hydrogen (H2) during their service from the coolant water. Hydrogen can be present in solid solution or precipitated hydride form in Zr alloys depending upon the temperature and concentration. This study reviews the effect of hydrogen on creep behavior of Zr alloys used in the water reactors.

  13. Passive Corrosion Behavior of Alloy 22

    SciTech Connect

    R.B. Rebak; J.H. Payer

    2006-01-20

    Alloy 22 (NO6022) was designed to stand the most aggressive industrial applications, including both reducing and oxidizing acids. Even in the most aggressive environments, if the temperature is lower than 150 F (66 C) Alloy 22 would remain in the passive state having particularly low corrosion rates. In multi-ionic solutions that may simulate the behavior of concentrated ground water, even at near boiling temperatures, the corrosion rate of Alloy 22 is only a few nano-meters per year because the alloy is in the complete passive state. The corrosion rate of passive Alloy 22 decreases as the time increases. Immersion corrosion testing also show that the newer generation of Ni-Cr-Mo alloys may offer a better corrosion resistance than Alloy 22 only in some highly aggressive conditions such as in hot acids.

  14. Environmental fatigue in aluminum-lithium alloys

    NASA Technical Reports Server (NTRS)

    Piascik, Robert S.

    1992-01-01

    Aluminum-lithium alloys exhibit similar environmental fatigue crack growth characteristics compared to conventional 2000 series alloys and are more resistant to environmental fatigue compared to 7000 series alloys. The superior fatigue crack growth behavior of Al-Li alloys 2090, 2091, 8090, and 8091 is due to crack closure caused by tortuous crack path morphology and crack surface corrosion products. At high R and reduced closure, chemical environment effects are pronounced resulting in accelerated near threshold da/dN. The beneficial effects of crack closure are minimized for small cracks resulting in rapid growth rates. Limited data suggest that the 'chemically small crack' effect, observed in other alloy system, is not pronounced in Al-Li alloys. Modeling of environmental fatigue in Al-Li-Cu alloys related accelerated fatigue crack growth in moist air and salt water to hydrogen embrittlement.

  15. Aqueous recovery of actinides from aluminum alloys

    SciTech Connect

    Gray, J.H.; Chostner, D.F.; Gray, L.W.

    1989-01-01

    Early in the 1980's, a joint Rocky Flats/Savannah River program was established to recover actinides from scraps and residues generated during Rocky Flats purification operations. The initial program involved pyrochemical treatment of Molten Salt Extraction (MSE) chloride salts and Electrorefining (ER) anode heel metal to form aluminum alloys suitable for aqueous processing at Savannah River. Recently Rocky Flats has expressed interest in expanding the aluminum alloy program to include treatment of chloride salt residues from a modified Molten Salt Extraction process and from the Electrorefining purification operations. Samples of the current aluminum alloy buttons were prepared at Rocky Flats and sent to Savannah River Laboratory for flowsheet development and characterization of the alloys. A summary of the scrub alloy-anode heel alloy program will be presented along with recent results from aqueous dissolution studies of the new aluminum alloys. 2 figs., 4 tabs.

  16. [Fatigue properties of dental alloys. 12% Au-Pd-Ag alloy and type III gold alloy].

    PubMed

    Kato, H

    1989-12-01

    Usually the mechanical properties of dental alloys are determined from the values obtained through static tests of their tensile strength, hardness, etc. Generally, high tensile strength and ductility are preferred. However, when small stresses within proportional limits are applied repeatedly (even though not amounting to destructive forces in static tests), they may cause rupture in the alloy or, at least, cause it to lose its original mechanical properties. This phenomenon is called metal fatigue. It is estimated that the intraoral stress loads received by dental restorations during mastication or during insertion and removal of appliances are repeated more than 3 x 10(5) times/year. From this standpoint, it may be more appropriate to estimate the fracture strength of such dental alloys based on the fatigue properties of the restorative materials used for clasps, bars, and fixed bridges. For this reason, it is necessary to obtain data through fatigue tests on the fatigue strength and the fatigue endurance limits of dental alloys, and it is important to find a correlation between these data and the static data on tensile strengths and ductility obtained by tensile tests. Two alloys are used in these experiments. Both wrought specimens and cast specimens of 12% Au-Pd-Ag and Type III gold alloy were prepared for the fatigue tests. The size of the rectangular wrought specimens was 3 x 4 x 110 mm. The 12% Au-Pd-Ag alloy was heated to 800 degrees C for 15 minutes, quenched, and reheated to 400 degrees C for 20 minutes and quenched again according to the manufacturer's instructions for heat treatment. The Type III gold alloy was heated to 700 degrees C for 10 minutes, quenched, and reheated to 350 degrees C for 20 minutes and quenched again. The cylindrical cast specimens were 60 mm long and 2 mm in diameter. They were invested by conventional methods and cast in a centrifugal casting machine, Thermotrol Model 2500. The four point bending test for the wrought specimen was performed with a Universal Fatigue testing machine, Shimazu UF-15 at a stress amplitude rate of 30 Hz. The cylindrical cast specimens were tested in cyclic tension in a Hydraulic IC Servo Machine, Instron Model 8501 at a gauge length of 25 mm and a stress amplitude of 10 Hz. The tensile tests for both wrought and cast specimens were performed with a Universal Testing Machine, Instron Model 1125 and measured at a cross-head speed of 1 mm/min.(ABSTRACT TRUNCATED AT 400 WORDS) PMID:2489466

  17. Alcoa: the alloy constraint analyzer

    Microsoft Academic Search

    Daniel Jackson; Ian Schechter; Hya Shlyahter

    2000-01-01

    Alcoa is a tool for analyzing object models. It has a range of uses. At one end, it can act as a support tool for object model diagrams, checking for consistency of multiplicities and generating sample snapshots. At the other end, it embodies a lightweight formal method in which subtle properties of behaviour can be investigated.Alcoa's input language, Alloy, is

  18. Alcoa: the Alloy constraint analyzer

    Microsoft Academic Search

    Daniel Jackson; Ian Schechter; Ilya Shlyakhter

    2000-01-01

    Alcoa is a tool for analyzing object models. It has a range of uses. At one end, it can act as a support tool for object model diagrams, checking for consistency of multiplicities and generating sample snapshots. At the other end, it embodies a lightweight formal method in which subtle properties of behaviour can be investigated. Alcoa's input language, Alloy,

  19. Introduction to hydrogen in alloys

    SciTech Connect

    Westlake, D.G.

    1980-01-01

    Substitutional alloys, both those that form hydrides and those that do not, are discussed, but with more emphasis on the former than the latter. This overview includes the following closely related subjects: (1) the significant effects of substitutional solutes on the pressure-composition-temperature (PCT) equilibria of metal-hydrogen systems, (2) the changes in thermodynamic properties resulting from differences in atom size and from modifications of electronic structure, (3) attractive and repulsive interactions between H and solute atoms and the effects of such interactions on the pressure dependent solubility for H, (4) H trapping in alloys of Group V metals and its effect on the terminal solubility for H (TSH), (5) some other mechanisms invoked to explain the enhancement (due to alloying) of the (TSH) in Group V metals, and (6) H-impurity complexes in alloys of the metals Ni, Co, and Fe. Some results showing that an enhanced TSH may ameliorate the resistance of a metal to hydrogen embrittlement are presented.

  20. Recent developments in light alloys

    NASA Technical Reports Server (NTRS)

    Woodward, R W

    1920-01-01

    This report is intended to cover the progress that has been made in both the manufacture and utility of light alloys in the United States since the first part of 1919. Duralumin is extensively discussed both as to manufacture and durability.

  1. SPR Effect in Nichrome Alloy

    NASA Astrophysics Data System (ADS)

    Leibs, Chris; Ross, Ian; Syed, Maarij; Siahmakoun, Azad

    2008-05-01

    We have performed surface plasmon resonance (SPR) experiments in the Kretchmann configuration on prisms coated with 500±10 nm single metal and alloy thin-films. The thin films are grown by magnetron sputtering and are binary alloy films (Nickel/Chrome with 80/20 concentration). In addition, for comparison we will also present results for pure metal films (Nickel and Chromium). We have observed a pronounce SPR signal at 41.24^o ±0.01at 633 nm for the Nichrome film while neither of the metal thin-films (Ni or Cr) yields an SPR effect. Aided by the surface morphology and the SPR signal observations, we modeled the effective dielectric constant of the metal alloy by comparing the SPR response of the alloy to that of the individual metal films. We will also show how SPR results can be better understood by analyzing the SPR data correlated with ellipsometric data obtained from these films as well as x-ray analysis (for composition and structure information), and AFM analysis (for surface topography).

  2. Structural Properties of Mismatched Alloys

    NASA Astrophysics Data System (ADS)

    Mousseau, Normand

    The problem of understanding the local structure of disordered alloys has been around for a long time. In this thesis, I look more specifically at the effect of size-mismatch disorder in binary alloys under many forms: metallic and semiconductor alloys, bulk and surfaces, two and three dimensional systems. I have studied the limitations of a central-force model (CFM) and an embedded-atom potential (EAM) in describing the local structure of binary metallic alloys composed of Ag, Au, Cu, Ni, Pd, or Pt. Although an analytical model developed using the CFM explains qualitatively well the experimental and numerical results, in many cases, it is important to add electronic density effects through a more sophisticated potential like EAM in order to agree quantitatively with experiment. I have also looked at amorphous and crystalline silicon-germanium alloys. It turns out that the effect of size-mismatch is the same on a crystalline and an amorphous lattice. In the latter case, it can be seen as a perturbation of the much larger disorder due to the amorphisation process. However, the analytical predictions differ, for both the crystalline and amorphous alloys, from the experimental results. If one is to believe the data, there is only one possible explanation for this inconsistency: large amounts of hydrogen are present in the samples used for the measurements. Since the data analysis of EXAFS results is not always straightforward, I have proposed some experiments that could shed light on this problem. One of these experiments would be to look at the (111) surface of a Si-Ge alloy with a scanning tunneling microscope. I also present in this thesis the theoretical predictions for the height distribution at the surface as well as some more general structural information about the relaxation in the network as one goes away from the surface. Finally, I have studied the effect of size -mismatch in a purely two dimensional lattice, looking for mismatch-driven phase transitions. Although it is possible to map size-mismatch on an effective temperature at low disorder, I have not been able to find any indication that a hexatic phase exists in these 2d systems. Since systems were studied with different potentials in very large unit cells, the conclusion is that the hexatic phase is not universal for two dimensional networks.

  3. Two-band superlinear electroluminescence in GaSb based nanoheterostructures with AlSb/InAs1-x Sbx/AlSb deep quantum well

    NASA Astrophysics Data System (ADS)

    Mikhailova, M. P.; Ivanov, E. V.; Danilov, L. V.; Petukhov, A. A.; Kalinina, K. V.; Slobozhanyuk, S. I.; Zegrya, G. G.; Stoyanov, N. D.; Yakovlev, Yu. P.; Hospodková, A.; Pangrác, J.; Oswald, J.; Zíková, M.; Hulicius, E.

    2014-06-01

    We report on superlinear electroluminescent structures based on AlSb/InAs1-xSbx/AlSb deep quantum wells grown by MOVPE on n-GaSb:Te substrates. Dependence of the electroluminescence (EL) spectra and optical power on the drive current in nanoheterostructures with AlSb/InAs1-xSbx/AlSb quantum well at 77-300 K temperature range was studied. Intensive two-band superlinear EL in the 0.5-0.8 eV photon energy range was observed. Optical power enhancement with the increasing drive current at room temperature is caused by the contribution of the additional electron-hole pairs due to the impact ionization by the electrons heated at the high energy difference between AlSb and the first electron level Ee1 in the InAsSb QW. Study of the EL temperature dependence at 90-300 K range enabled us to define the role of the first and second heavy hole levels in the radiative recombination process. It was shown that with the temperature decrease, the relation between the energies of the valence band offset and the second heavy hole energy level changes due to the temperature transformation of the energy band diagram. That is the reason why the EL spectrum revealed radiative transitions from the first electron level Ee1 to the first hole level Eh1 in the whole temperature range (90-300 K), while the emission band related with the transitions to the second hole level occurred only at T > 200 K. Comparative examination of the nanostructures with high band offsets and different interface types (AlAs-like and InSb-like) reveals more intense EL and optical power enhancement at room temperature in the case of AlAs-like interface that could be explained by the better quality of the heterointerface and more efficient hole localization.

  4. Organometallic vapor-phase epitaxial growth and characterization of the metastable alloy InP/sub 1-//sub x/Sb/sub x/

    SciTech Connect

    Jou, M.J.; Cherng, Y.T.; Stringfellow, G.B.

    1988-08-01

    The III-V metastable alloy InP/sub 1-//sub x/ Sb/sub x/ has been grown for the first time with compositions well inside the miscibility gap. Despite the large miscibility gap at the growth temperatures of 480--600 /sup 0/C, epilayers with compositions covering the entire range from x = 0 to 1.0 have been grown successfully by organometallic vapor-phase epitaxy at atmospheric pressure using the reactants trimethylindium, trimethylantimony, and phosphine. The 10-K energy band gap as a function of composition was determined from photoluminescence measurements combined with x-ray diffraction and electron microprobe analysis. The bowing parameter for the band-gap energy of the InP/sub 1-//sub x/ Sb/sub x/ was estimated to be 1.9 +- 0.1 eV. The lattice dynamics have been studied using Raman spectroscopy in the frequency range from 150 to 400 cm/sup -1/. Long wavelength optical phonons display a ''two-mode'' behavior throughout the entire composition range. The InP-like longitudinal-optical and transverse-optical modes shift to lower frequency with increasing Sb concentration.

  5. Method of producing superplastic alloys and superplastic alloys produced by the method

    NASA Technical Reports Server (NTRS)

    Troeger, Lillianne P. (Inventor); Starke, Jr., Edgar A. (Inventor); Crooks, Roy (Inventor)

    2002-01-01

    A method for producing new superplastic alloys by inducing in an alloy the formation of precipitates having a sufficient size and homogeneous distribution that a sufficiently refined grain structure to produce superplasticity is obtained after subsequent PSN processing. An age-hardenable alloy having at least one dispersoid phase is selected for processing. The alloy is solution heat-treated and cooled to form a supersaturated solid solution. The alloy is plastically deformed sufficiently to form a high-energy defect structure useful for the subsequent heterogeneous nucleation of precipitates. The alloy is then aged, preferably by a multi-stage low and high temperature process, and precipitates are formed at the defect sites. The alloy then is subjected to a PSN process comprising plastically deforming the alloy to provide sufficient strain energy in the alloy to ensure recrystallization, and statically recrystallizing the alloy. A grain structure exhibiting new, fine, equiaxed and uniform grains is produced in the alloy. An exemplary 6xxx alloy of the type capable of being produced by the present invention, and which is useful for aerospace, automotive and other applications, is disclosed and claimed. The process is also suitable for processing any age-hardenable aluminum or other alloy.

  6. INCOLOY alloy 803, a cost effective alloy for high temperature service

    SciTech Connect

    Ganesan, P.; Plyburn, J.A.; Tassen, C.S. [INCO Alloys International, Inc., Huntington, WV (United States)

    1995-12-31

    INCOLOY alloy 800 was the first of the 800 series of alloys invented by Inco Alloys International in the 1940`s. Because of its excellent oxidation and carburization resistance as well as high temperature creep strength, alloy 800 found uses for many applications such as heat treating hardware, petrochemical processing, home appliances, food processing, industrial heating, super-heater and re-heater tubing and soon became the workhorse material for the chemical processing industries. Alloy 803 has superior resistance to oxidation and carburization without sacrificing mechanical properties. In this paper the history of alloy 800 with introductions of alloys 800H and 800HT and the differences in properties and chemical compositions among them will be described. The development of alloy 803 for petrochemical applications is also covered. The performance of alloy 803 in cyclic oxidation, carburization and sulfidation tests will be presented and compared with several alloys including alloy HPM. The mechanical properties of alloy 803 including room temperature and high temperature tensile data and stress rupture and creep strengths up to 1,093 C (2,000 F) will be presented. The choice of available filler metals and welding electrodes to join alloy 803, using gas metal arc welding and shielded metal arc welding processes, will also be presented.

  7. Alloy substantially free of dendrites and method of forming the same

    DOEpatents

    de Figueredo, Anacleto M. (West Newton, MA); Apelian, Diran (West Boylston, MA); Findon, Matt M. (Monson, MA); Saddock, Nicholas (S. Windson, CT)

    2009-04-07

    Described herein are alloys substantially free of dendrites. A method includes forming an alloy substantially free of dendrites. A superheated alloy is cooled to form a nucleated alloy. The temperature of the nucleated alloy is controlled to prevent the nuclei from melting. The nucleated alloy is mixed to distribute the nuclei throughout the alloy. The nucleated alloy is cooled with nuclei distributed throughout.

  8. Status of Testing and Characterization of CMS Alloy 617 and Alloy 230

    SciTech Connect

    Ren, Weiju [ORNL; Santella, Michael L [ORNL; Battiste, Rick [ORNL; Terry, Totemeier [Idaho National Laboratory (INL); Denis, Clark [Idaho National Laboratory (INL)

    2006-08-01

    Status and progress in testing and characterizing CMS Alloy 617 and Alloy 230 tasks in FY06 at ORNL and INL are described. ORNL research has focused on CMS Alloy 617 development and creep and tensile properties of both alloys. In addition to refurbishing facilities to conduct tests, a significant amount of creep and tensile data on Alloy 230, worth several years of research funds and time, has been located and collected from private enterprise. INL research has focused on the creep-fatigue behavior of standard chemistry Alloy 617 base metal and fusion weldments. Creep-fatigue tests have been performed in air, vacuum, and purified Ar environments at 800 and 1000 C. Initial characterization and high-temperature joining work has also been performed on Alloy 230 and CCA Alloy 617 in preparation for creep-fatigue testing.

  9. Machinability of hypereutectic silicon-aluminum alloys

    NASA Astrophysics Data System (ADS)

    Tanaka, T.; Akasawa, T.

    1999-08-01

    The machinability of high-silicon aluminum alloys made by a P/M process and by casting was compared. The cutting test was conducted by turning on lathes with the use of cemented carbide tools. The tool wear by machining the P/M alloy was far smaller than the tool wear by machining the cast alloy. The roughness of the machined surface of the P/M alloy is far better than that of the cast alloy, and the turning speed did not affect it greatly at higher speeds. The P/M alloy produced long chips, so the disposal can cause trouble. The size effect of silicon grains on the machinability is discussed.

  10. Nickel aluminide alloy suitable for structural applications

    DOEpatents

    Liu, Chain T. (Oak Ridge, TN)

    1998-01-01

    Alloys for use in structural applications based upon NiAl to which are added selected elements to enhance room temperature ductility and high temperature strength. Specifically, small additions of molybdenum produce a beneficial alloy, while further additions of boron, carbon, iron, niobium, tantalum, zirconium and hafnium further improve performance of alloys at both room temperature and high temperatures. A preferred alloy system composition is Ni--(49.1.+-.0.8%)Al--(1.0.+-.0.8%)Mo--(0.7.+-.0.5%)Nb/Ta/Zr/Hf--(nearly zero to 0.03%)B/C, where the % is at. % in each of the concentrations. All alloys demonstrated good oxidation resistance at the elevated temperatures. The alloys can be fabricated into components using conventional techniques.

  11. Nickel aluminide alloy suitable for structural applications

    DOEpatents

    Liu, C.T.

    1998-03-10

    Alloys are disclosed for use in structural applications based upon NiAl to which are added selected elements to enhance room temperature ductility and high temperature strength. Specifically, small additions of molybdenum produce a beneficial alloy, while further additions of boron, carbon, iron, niobium, tantalum, zirconium and hafnium further improve performance of alloys at both room temperature and high temperatures. A preferred alloy system composition is Ni--(49.1{+-}0.8%)Al--(1.0{+-}0.8%)Mo--(0.7 + 0.5%)Nb/Ta/Zr/Hf--(nearly zero to 0.03%)B/C, where the % is at. % in each of the concentrations. All alloys demonstrated good oxidation resistance at the elevated temperatures. The alloys can be fabricated into components using conventional techniques. 4 figs.

  12. High-temperature property data: Ferrous alloys

    SciTech Connect

    Rothman, M.F.

    1987-01-01

    In this book over 250 alloys are organized by AISI number into 10 major sections: Irons, Carbon Steels, Alloy Steels, Low Alloy Constructional Steels, Ultra High Strength Steels, Tool Steels, Maraging Steels, Wrought Stainless Steels, Heat Resistnat Casting Alloys, and Iron Based Rought Superalloys. Each alloy record lists the designation, specifications, UNS number, composition, product forms and a comment on the high-temperature properties and applications. Referenced data is then given for physical properties such as density, specific heat, thermal conductivity, thermal expansion, electrical conductivity, Poisson's ratio, moduli of elasticity and rigidity, etc. Mechanical properties follow, and include tensile properties, shearing and bearing properties, impact properties, creep, stress rupture and stress relaxation and fatigue properties. The last part of the alloy record gives other effects of temperature, such as hot hardness, corrosion, and growth.

  13. Annealing behavior of high permeability amorphous alloys

    SciTech Connect

    Rabenberg, L.

    1980-06-01

    Effects of low temperature annealing on the magnetic properties of the amorphous alloy Co/sub 71/ /sub 4/Fe/sub 4/ /sub 6/Si/sub 9/ /sub 6/B/sub 14/ /sub 4/ were investigated. Annealing this alloy below 400/sup 0/C results in magnetic hardening; annealing above 400/sup 0/C but below the crystallization temperature results in magnetic softening. Above the crystallization temperature the alloy hardens drastically and irreversibly. Conventional and high resolution transmission electron microscopy were used to show that the magnetic property changes at low temperatures occur while the alloy is truly amorphous. By imaging the magnetic microstructures, Lorentz electron microscopy has been able to detect the presence of microscopic inhomogeneities in this alloy. The low temperature annealing behavior of this alloy has been explained in terms of atomic pair ordering in the presence of the internal molecular field. Lorentz electron microscopy has been used to confirm this explanation.

  14. 21 CFR 872.3060 - Noble metal alloy.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...2013-04-01 2013-04-01 false Noble metal alloy. 872.3060 Section 872.3060... Prosthetic Devices § 872.3060 Noble metal alloy. (a) Identification . A noble metal alloy is a device composed primarily of...

  15. 21 CFR 872.3710 - Base metal alloy.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...2012-04-01 2012-04-01 false Base metal alloy. 872.3710 Section 872.3710 ...DEVICES Prosthetic Devices § 872.3710 Base metal alloy. (a) Identification . A base metal alloy is a device composed primarily of...

  16. 21 CFR 872.3710 - Base metal alloy.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...2011-04-01 2011-04-01 false Base metal alloy. 872.3710 Section 872.3710 ...DEVICES Prosthetic Devices § 872.3710 Base metal alloy. (a) Identification . A base metal alloy is a device composed primarily of...

  17. 21 CFR 872.3710 - Base metal alloy.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...2014-04-01 2014-04-01 false Base metal alloy. 872.3710 Section 872.3710 ...DEVICES Prosthetic Devices § 872.3710 Base metal alloy. (a) Identification. A base metal alloy is a device composed primarily of...

  18. 21 CFR 872.3060 - Noble metal alloy.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...2012-04-01 2012-04-01 false Noble metal alloy. 872.3060 Section 872.3060... Prosthetic Devices § 872.3060 Noble metal alloy. (a) Identification . A noble metal alloy is a device composed primarily of...

  19. 21 CFR 872.3060 - Noble metal alloy.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...2011-04-01 2011-04-01 false Noble metal alloy. 872.3060 Section 872.3060... Prosthetic Devices § 872.3060 Noble metal alloy. (a) Identification . A noble metal alloy is a device composed primarily of...

  20. Copper and nickel adherently electroplated on titanium alloy

    NASA Technical Reports Server (NTRS)

    Brown, E. E.

    1967-01-01

    Anodic treatment of titanium alloy enables electroplating of tightly adherent coatings of copper and nickel on the alloy. The alloy is treated in a solution of hydrofluoric and acetic acids, followed by the electroplating process.

  1. 21 CFR 872.3080 - Mercury and alloy dispenser.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...2014-04-01 2014-04-01 false Mercury and alloy dispenser. 872.3080 Section...DEVICES Prosthetic Devices § 872.3080 Mercury and alloy dispenser. (a) Identification. A mercury and alloy dispenser is a device...

  2. 21 CFR 872.3080 - Mercury and alloy dispenser.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...2013-04-01 2013-04-01 false Mercury and alloy dispenser. 872.3080 Section...DEVICES Prosthetic Devices § 872.3080 Mercury and alloy dispenser. (a) Identification. A mercury and alloy dispenser is a device...

  3. 21 CFR 872.3080 - Mercury and alloy dispenser.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...2012-04-01 2012-04-01 false Mercury and alloy dispenser. 872.3080 Section...DEVICES Prosthetic Devices § 872.3080 Mercury and alloy dispenser. (a) Identification. A mercury and alloy dispenser is a device...

  4. 21 CFR 872.3710 - Base metal alloy.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...2010-04-01 2010-04-01 false Base metal alloy. 872.3710 Section 872.3710 ...DEVICES Prosthetic Devices § 872.3710 Base metal alloy. (a) Identification . A base metal alloy is a device composed primarily of...

  5. 21 CFR 872.3060 - Noble metal alloy.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...2010-04-01 2010-04-01 false Noble metal alloy. 872.3060 Section 872.3060... Prosthetic Devices § 872.3060 Noble metal alloy. (a) Identification . A noble metal alloy is a device composed primarily of...

  6. Machinability of hypereutectic silicon-aluminum alloys

    Microsoft Academic Search

    T. Tanaka; T. Akasawa

    1999-01-01

    The machinability of high-silicon aluminum alloys made by a P\\/M process and by casting was compared. The cutting test was\\u000a conducted by turning on lathes with the use of cemented carbide tools. The tool wear by machining the P\\/M alloy was far smaller\\u000a than the tool wear by machining the cast alloy. The roughness of the machined surface of the

  7. Nickel Aluminide Alloys Made By Rapid Solidification

    NASA Technical Reports Server (NTRS)

    Ray, Ranjan

    1995-01-01

    Collection of reports describes experimental metallurgical studies of nickel aluminide alloys made by rapid-solidification powder-metallurgy process. Process incorporates ultrafine dispersions of hard, stable refractory compounds and rare-earth oxides into alloys. Effects of dispersoids on high-temperature mechanical properties (flow stress, and compressive and tensile creep) of alloys investigated. Results indicate specific additives result in improved strength and ductility.

  8. Fabrication and magnetic properties of granular alloys

    Microsoft Academic Search

    A. Gavrin; C. L. Chien

    1990-01-01

    Granular alloys of iron with other transition metals have been fabricated in both Al2O3 and SiO2 matrices. Both stable (Fe-Ni, Fe-Co) and metastable (Fe-Cu) alloys have been achieved. Under appropriate deposition conditions, the grains are single-phase alloys ranging in size from 15 to 50 A?. Superparamagnetism and enhanced coercivity have been observed, and the effect of grain size on these

  9. Dispersion strengthened superalloys by mechanical alloying

    Microsoft Academic Search

    John S. Benjamin

    1970-01-01

    A new process called “mechanical alloying” has been developed which produces homogeneous composite particles with an intimately\\u000a dispersed, uniform internal structure. Materials formed by hot consolidation of this powder achieve the long-sought combination\\u000a of dispersion strengthening and age-hardening in a high temperature alloy. While the process is amenable to making a variety\\u000a of alloys, its first use has been to

  10. TITANIUM ALLOYS IN 600 F AMMONIATED WATER

    Microsoft Academic Search

    C. F. Cheng; S. F. Bubar; J. J. McCarthy

    1963-01-01

    Three high-strength titanium alloys, (Ti--6Al--4V), (Ti--6Al--6V--2Sn), ; and (Ti--13V--11Cr--3Al), were corrosion tested in 800 deg F ammoniated water at ; pH 10. There was no significant change in mechanical properties before and after ; exposure in test solution for two alloys, (Ti -- 6Al --4V) and (Ti-- 6Al --2Sn). ; The high vanadiumchromium alloy (Ti -- 13V -- 11Cr-- 3Al)

  11. Mechanism of copper-nickel alloy electrodeposition

    Microsoft Academic Search

    E. Chassaing; K. Vu Quang; R. Wiart

    1987-01-01

    The codeposition kinetics of copper and nickel alloys in complexing citrate ammonia electrolytes has been investigated by means of polarization and electrochemical impedance techniques. It is confirmed that the two-step discharge of the complexed cupric species Cu(II)Cit is diffusion-controlled during the alloy deposition, resulting in an increase in the nickel content of the alloy with electrode polarization. Impedance spectra are

  12. High toughness-high strength iron alloy

    NASA Technical Reports Server (NTRS)

    Stephens, J. R.; Witzke, W. R. (inventors)

    1980-01-01

    An iron alloy is provided which exhibits strength and toughness characteristics at cryogenic temperatures. The alloy consists essentially of about 10 to 16 percent by weight nickel, about 0.1 to 1.0 percent by weight aluminum, and 0 to about 3 percent by weight copper, with the balance being essentially iron. The iron alloy is produced by a process which includes cold rolling at room temperature and subsequent heat treatment.

  13. Alloy nanoparticle synthesis using ionizing radiation

    DOEpatents

    Nenoff, Tina M. (Sandia Park, NM); Powers, Dana A. (Albuquerque, NM); Zhang, Zhenyuan (Durham, NC)

    2011-08-16

    A method of forming stable nanoparticles comprising substantially uniform alloys of metals. A high dose of ionizing radiation is used to generate high concentrations of solvated electrons and optionally radical reducing species that rapidly reduce a mixture of metal ion source species to form alloy nanoparticles. The method can make uniform alloy nanoparticles from normally immiscible metals by overcoming the thermodynamic limitations that would preferentially produce core-shell nanoparticles.

  14. Tribochemical equilibrium in mechanical alloying of metals

    Microsoft Academic Search

    K. B. Gerasimov; A. A. Gusev; E. Y. Ivanov; V. V. Boldyrev

    1991-01-01

    The structure of the product in mechanical alloying depends both on the elemental composition and the milling conditions. An increase of ball energy led to more pronounced crystallinity of the product. Mechanical alloying at small ball energy leads to the formation of amorphous alloys for Zr-Co and Cu-Ti systems. Demixing of Ti3Cu4 into crystalline TiCu and TiCu4 and demixing of

  15. Controlling quality of ferroalloys and alloying additives in the manufacture of nickel alloys for nuclear applications

    Microsoft Academic Search

    Stryker

    1981-01-01

    Nickel alloys supplied to the nuclear industry must meet strict requirements for quality and traceability of constituents. Ensuring that end products meet those requirements involves careful control of the raw materials used in melting the alloys. Especially important is an effective system of quality control for purchasing and consuming ferroalloys and alloying additives. Development and operation of such a system

  16. Effects of Microstructure and Alloy Contents on the Lüders Line Formation in Al-Mg Alloys

    Microsoft Academic Search

    Ildong Choi; Sunhwa Jin; Sukbong Kang

    1998-01-01

    There have been several efforts to replace steel with aluminum for automobile weight reduction. Main efforts have been on the development of 5000 series Al alloys (Al-Mg alloys) because of their good formability. However, Al-Mg alloys suffer from the formation of various types of Lueders line. Particularly, type A Lueders lines formed under 1% elongation make a surface completely unacceptable

  17. Cr–Ni–Mo–Co surface alloying layer formed by plasma surface alloying in pure iron

    Microsoft Academic Search

    Xiaoping Liu; Yuan Gao; Zhonghou Li; Zhong Xu; Wenhuai Tian; Bin Tang

    2006-01-01

    Using double glow plasma alloying technique, a multi-elements alloyed layer containing elements of Cr, Ni, Mo and Co was formed on the surface of pure iron. After undergoing suitable aging treatment followed solid solution treatment, the formed alloying layer keeps a good combination of corrosion resistance and wear resistance. The relationship between the process parameters of heat treatments and the

  18. Properties and microstructures for dual alloy combinations of three superalloys with alloy 901

    NASA Technical Reports Server (NTRS)

    Harf, F. H.

    1985-01-01

    Dual alloy combinations have potential for use in aircraft engine components such as turbine disks where a wide range of stress and temperature regimes exists during operation. Such alloy combinations may directly result in the conservation of elements which are costly or not available domestically. Preferably, a uniform heat treatment yielding good properties for both alloys should be used. Dual alloy combinations of iron rich Alloy 901 with nickel base superalloys Rene 95, Astroloy, or MERL 76 were not isostatically pressed from prealloyed powders. Individual alloys, alloy mixtures, and layered alloy combinations were given the heat treatments specified for their use in turbine disks or appropriate for Alloy 901. Selected specimens were overaged for 1500 hr at 650 C. Metallographic examinations revealed the absence of phases not originally present in either alloy of a combination. Mechanical tests showed adequate properties in combinations of Rene 95 or Astroloy with Alloy 901 when given the Alloy 901 heat treatment. Combinations with MERL 76 had better properties when given the MERL 76 heat treatment. The results indicate that these combinations are promising candidates for use in turbine disks.

  19. Vacuum annealing of titanium alloys

    Microsoft Academic Search

    E. A. Borisova; I. I. Shashenkova; A. I. Krivko; T. V. Barasheva

    1975-01-01

    1.The optimal temperature range for hydrogen removal in vacuum annealing is 550–650°C. The holding time depends on the hydrogen concentration, the thickness of the section, and the hydrogen concentration desired.2.The presence of oxide films formed during annealing in air at temperatures up to 500°C has no effect on the properties of titanium alloys after subsequent vacuum annealing.3.During vacuum annealing of

  20. Lead, zinc, and their alloys

    SciTech Connect

    Goodwin, F.E. [International Lead Zinc Research Organization Inc., Research Triangle Park, NC (United States)

    1996-10-01

    Recent advances in the technology and applications of lead and its alloys include improved batteries for electric vehicles, and lead-containing dampers that impart earthquake resistance to buildings and highway structures. For zinc, notable accomplishments include further development of zinc-coated steels for automotive and construction applications, and development of an extrusion process for zinc over steel pipe in the oil production industry.

  1. Hard magnetic bulk amorphous alloys

    Microsoft Academic Search

    A. Inoue; T. Zhang; A. Takeuchi

    1997-01-01

    An amorphous phase in Ln-Fe-Al (Ln=Nd and Pr) systems is formed in wide composition ranges of 0 to 90 at% Fe and 0 to 93 at% Al by melt spinning. Ferromagnetic Ln90-xFexAl10 bulk amorphous alloys with high coercive force (iHc) at room temperature are obtained by copper mold casting. The maximum diameter of the cylindrical amorphous samples is 12 mm

  2. Molybdenum disilicide alloy matrix composite

    DOEpatents

    Petrovic, J.J.; Honnell, R.E.; Gibbs, W.S.

    1991-12-03

    Compositions of matter consisting of matrix materials having silicon carbide dispersed throughout them and methods of making the compositions are disclosed. A matrix material is an alloy of an intermetallic compound, molybdenum disilicide, and at least one secondary component which is a refractory silicide. The silicon carbide dispersant may be in the form of VLS whiskers, VS whiskers, or submicron powder or a mixture of these forms. 3 figures.

  3. Molybdenum disilicide alloy matrix composite

    DOEpatents

    Petrovic, John J. (Los Alamos, NM); Honnell, Richard E. (Los Alamos, NM); Gibbs, W. Scott (Los Alamos, NM)

    1991-01-01

    Compositions of matter consisting of matrix materials having silicon carbide dispersed throughout them and methods of making the compositions. A matrix material is an alloy of an intermetallic compound, molybdenum disilicide, and at least one secondary component which is a refractory silicide. The silicon carbide dispersant may be in the form of VLS whiskers, VS whiskers, or submicron powder or a mixture of these forms.

  4. Molybdenum disilicide alloy matrix composite

    DOEpatents

    Petrovic, John J. (Los Alamos, NM); Honnell, Richard E. (Los Alamos, NM); Gibbs, W. Scott (Los Alamos, NM)

    1990-01-01

    Compositions of matter consisting of matrix matrials having silicon carbide dispersed throughout them and methods of making the compositions. A matrix material is an alloy of an intermetallic compound, molybdenum disilicide, and at least one secondary component which is a refractory silicide. The silicon carbide dispersant may be in the form of VLS whiskers, VS whiskers, or submicron powder or a mixture of these forms.

  5. A high speed twin roll caster for aluminum alloy strip

    Microsoft Academic Search

    T Haga; S Suzuki

    2001-01-01

    A melt drag twin roll caster (MDTRC) was devised in order to cast aluminum alloy strips at a speed higher than 30m\\/min. A3003 alloy, A5182 alloy, Al–6mass%Si alloy and Al–12mass%Si alloy were cast into thin strips using the MDTRC. These alloys could be cast into strips at a speed of up to 60m\\/min. The thickness of the strips was about

  6. Magnetic Alloys in Nanoscale Biomaterials

    SciTech Connect

    Leventouri, T. H. [Florida Atlantic University; Melechko, Anatoli Vasilievich [ORNL; Sorge, Korey D. [Florida Atlantic University; Klein, Kate L [ORNL; Fowlkes, Jason Davidson [ORNL; Rack, P. D. [University of Tennessee, Knoxville (UTK); Anderson, Ian M [ORNL; Thompson, James R [ORNL; McKnight, Timothy E [ORNL; Simpson, Michael L [ORNL

    2006-01-01

    Fe-Co composition gradient and Fe-Pt multilayer alloy films were tested as catalysts for growing vertically aligned carbon nanofibers (VACNFs) by plasma-enhanced chemical vapor deposition (PECVD). The Fe-Co film yielded nanofibers with alloy tips in a wide compositional range varying from 8.15 pct Fe at the Co-rich end to 46.29 pct Fe in the middle of the wafer as determined by energy-dispersive X-ray analysis. Two Fe-Co cubic phases (SG Pm3m, Pm{bar 3}m) were identified by preliminary X-ray diffraction (XRD) measurements. Magnetic measurements showed a substantially greater hysteresis loop area and coercivity in Fe-Co catalyst nanoparticles as compared to the as deposited Fe-Co film. The Fe-Pt film did not break into FePt alloy nanoparticles under the applied processing parameters and thus the utility of FePt as a VACNF catalyst has been inconclusive.

  7. Alloy NASA-HR-1

    NASA Technical Reports Server (NTRS)

    Chen, Po-Shou; Mitchell, Michael

    2005-01-01

    NASA-HR-1 is a high-strength Fe-Ni-base superalloy that resists high-pressure hydrogen environment embrittlement (HEE), oxidation, and corrosion. Originally derived from JBK-75, NASA-HR-1 has exceptional HEE resistance that can be attributed to its gamma-matrix and eta-free (Ni3Ti) grain boundaries. The chemistry was formulated using a design approach capable of accounting for the simultaneous effects of several alloy additions. This approach included: (1) Systematically modifying gamma-matrix compositions based on JBK-75; (2) Increasing gamma (Ni3(Al,Ti)) volume fraction and adding gamma-matrix strengthening elements to obtain higher strength; and (3) Obtaining precipitate-free grain boundaries. The most outstanding attribute of NASA-HR-1 is its ability to resist HEE while showing much improved strength. NASA-HR-1 has approximately 25% higher yield strength than JXK-75 and exhibits tensile elongation of more than 20% with no ductility loss in a hydrogen environment at 5 ksi, an achievement unparalleled by any other commercially available alloy. Its Cr and Ni contents provide exceptional resistance to environments that promote oxidation and corrosion. Microstructural stability was maintained by improved solid solubility of the gamma-matrix, along with the addition of alloying elements to retard eta (Ni3Ti) precipitation. NASA-HR-1 represents a new system that greatly extends the compositional ranges of existing HEE-resistant Fe-Ni-base superalloys.

  8. Hydrogen separation using coated titanium alloys

    SciTech Connect

    Hill, E.F.

    1984-08-28

    This invention relates to the separation of hydrogen from other fluids by contacting said fluids with a titanium alloy comprising about 13% by weight vanadium, about 11% by weight chromium, about 3% by weight aluminum, balance titanium, stabilized in the body centered cubic crystalline form, said alloy having at least one clean surface coated with a metal or alloy based on a member of the class consisting of palladium, nickel, cobalt, iron, vanadium, niobium or tantalum, and allowing hydrogen to permeate the coated alloy at a temperature between about 100/sup 0/C and about 500/sup 0/C.

  9. Surface alloying of silicon into aluminum substrate.

    SciTech Connect

    Xu, Z.

    1998-10-28

    Aluminum alloys that are easily castable tend to have lower silicon content and hence lower wear resistance. The use of laser surface alloying to improve the surface wear resistance of 319 and 320 aluminum alloys was examined. A silicon layer was painted onto the surface to be treated. A high power pulsed Nd:YAG laser with fiberoptic beam delivery was used to carry out the laser surface treatment to enhance the silicon content. Process parameters were varied to minimize the surface roughness from overlap of the laser beam treatment. The surface-alloyed layer was characterized and the silicon content was determined.

  10. Synthesis of shape memory alloys using electrodeposition

    NASA Astrophysics Data System (ADS)

    Hymer, Timothy Roy

    Shape memory alloys are used in a variety of applications. The area of micro-electro-mechanical systems (MEMS) is a developing field for thin film shape memory alloys for making actuators, valves and pumps. Until recently thin film shape memory alloys could only be made by rapid solidification or sputtering techniques which have the disadvantage of being "line of sight". At the University of Missouri-Rolla, electrolytic techniques have been developed that allow the production of shape memory alloys in thin film form. The advantages of this techniques are in-situ, non "line of sight" and the ability to make differing properties of the shape memory alloys from one bath. This research focused on the electrodeposition of In-Cd shape memory alloys. The primary objective was to characterize the electrodeposited shape memory effect for an electrodeposited shape memory alloy. The effect of various operating parameters such as peak current density, temperature, pulsing, substrate and agitation were investigated and discussed. The electrodeposited alloys were characterized by relative shape memory effect, phase transformation, morphology and phases present. Further tests were performed to optimize the shape memory by the use of a statistically designed experiment. An optimized shape memory effect for an In-Cd alloy is reported for the conditions of the experiments.

  11. Formation of highly corrosion resistant stainless steel surface alloys for marine environments by laser surface alloying

    SciTech Connect

    Sridhar, K.; Deshmukh, M.B. [Naval Materials Research Lab., Bombay (India); Khanna, A.S. [Indian Inst. of Tech., Bombay (India); Wissenbach, K. [Fraunhofer Institut fuer Laser Technik, Aachen (Germany)

    1998-12-31

    Austenitic stainless steels (SS) such as UNS S30403 are being used for numerous industrial applications due to their goad mechanical properties and weldability. However in aggressive marine environments such as seawater, they suffer from localized corrosion. Even though newly developed highly alloyed SS`s possess very high pitting resistance, they are susceptible to the formation of secondary phases. In the present study, a laser surface alloying technique was employed for the formation of highly alloyed austenitic stainless steel surfaces on conventional 304 SS substrate. Microstructural characterization by optical and SEM revealed finer cells of austenitic phase in the laser alloyed zones with molybdenum contents in the range of 3 to 15 wt%. The pitting corrosion resistance of the surface alloys were ascertained by immersion and potentiodynamic polarization tests and the repassivation behavior by cyclic polarization tests. Also the influence of microstructural features on pitting behavior of highly alloyed and laser surface alloyed steels is studied.

  12. Role of alloying elements in adhesive transfer and friction of copper-base alloys

    NASA Technical Reports Server (NTRS)

    Buckley, D. H.

    1978-01-01

    Sliding friction experiments were conducted in a vacuum with binary-copper alloy riders sliding against a conventional bearing-steel surface with normal residual oxides present. The binary alloys contained 1 atomic percent of various alloying elements. Auger spectroscopy analysis was used to monitor the adhesive transfer of the copper alloys to the bearing-steel surface. A relation was found to exist between adhesive transfer and the reaction potential and free energy of formation of the alloying element in the copper. The more chemically active the element and the more stable its oxide, the greater was the adhesive transfer and wear of the copper alloy. Transfer occurred in all the alloys except copper-gold after relatively few (25) passes across the steel surface.

  13. Superconductivity in zirconium-rhodium alloys

    NASA Technical Reports Server (NTRS)

    Zegler, S. T.

    1969-01-01

    Metallographic studies and transition temperature measurements were made with isothermally annealed and water-quenched zirconium-rhodium alloys. The results clarify both the solid-state phase relations at the Zr-rich end of the Zr-Rh alloy system and the influence upon the superconducting transition temperature of structure and composition.

  14. The oxidation of iron-aluminum alloys

    SciTech Connect

    Prescott, R.; Graham, M.J. (National Research Council, Ottawa, Ontario (Canada))

    1992-08-01

    This paper briefly summarizes studies related to the oxidation of Fe-Al alloys. Emphasis is placed on oxide phase composition, morphology, and the development of protective [alpha]-Al[sub 2]O[sub 3] scales on oxidation-resistant Fe-Al alloys both with and without ternary additions. 63 references.

  15. HYDROGEN IN TITANIUM-ALUMINUM ALLOYS

    Microsoft Academic Search

    L. W. Berger; D. N. Williams; R. I. Jaffee

    1958-01-01

    The effects of hydrogen on the properties of binary Ti-Al alloys ; cortaining 2.5, 5, and 7% aluminum and arnary alloys of the same compositions ; with added interstitial elements oxygen, nitrogen, and carbon were studied. ; Aluminum increases the apparent hydrogen solubility of the alpha -phase, ; resulting in a mankind increase in resistance to impact embrittlement. In the

  16. Production of Aluminum Alloys: Status and Prospects

    Microsoft Academic Search

    G. S. Makarov

    2002-01-01

    Due to their physico-mechanical properties, aluminum alloys are one of the most important structural materials presently in use. Aluminum alloys are second only to steel in terms of volume of production and substantially outstrip other nonferrous metals in this regard. For example, the worldwide production of different types of metals at the end of the last century broke down as

  17. Castable nickel aluminide alloys for structural applications

    DOEpatents

    Liu, Chain T. (Oak Ridge, TN)

    1992-01-01

    The specification discloses nickel aluminide alloys which include as a component from about 0.5 to about 4 at. % of one or more of the elements selected from the group consisting of molybdenum or niobium to substantially improve the mechanical properties of the alloys in the cast condition.

  18. Heats of formation of bcc binary alloys

    NASA Technical Reports Server (NTRS)

    Bozzolo, Guillermo; Ferrante, John; Smith, John R.

    1991-01-01

    The method of Bozzolo, Ferrante and Smith is applied for the calculation of alloy energies for bcc elements. The heat of formation of several alloys is computed with the help of the Connolly-Williams method within the tetrahedron approximation. The dependence of the results on the choice of different sets of ordered structures is discussed.

  19. Heats of formation of bcc binary alloys

    NASA Technical Reports Server (NTRS)

    Bozzolo, Guillermo; Ferrante, John

    1992-01-01

    The method of Bozzolo, Ferrante and Smith is applied for the calculation of alloy energies for bcc elements. The heat of formation of several alloys is computed with the help of the Connolly-Williams method within the tetrahedron approximation. The dependence of the results on the choice of different sets of ordered structures is discussed.

  20. The rheology of a partially solid alloy

    Microsoft Academic Search

    P. A. Joly; R. Mehrabian

    1976-01-01

    The effect of various thermomechanical treatments on the structure and rheological behaviour of Sn-15% Pb alloy in its solidifcation range was investigated using a concentric cylinder viscometer. The apparatus was designed to permit wide ranges of cooling rates up to 25° C min-1 and shear rates up to 750 sec-1. Initially, the alloy was continuously sheared as it cooled from

  1. Materials data handbook: Aluminum alloy 2219

    NASA Technical Reports Server (NTRS)

    Muraca, R. F.; Whittick, J. S.

    1972-01-01

    A summary of the materials property information for aluminum 2219 alloy is presented. The scope of the information includes physical and mechanical properties at cryogenic, ambient, and elevated temperatures. Information on material procurement, metallurgy of the alloy, corrosion, environmental effects, fabrication, and joining techniques is developed.

  2. Iron titanium manganase alloy hydrogen storage

    DOEpatents

    Reilly, James J. (Bellport, NY); Wiswall, Jr., Richard H. (Brookhaven, NY)

    1979-01-01

    A three component alloy capable of reversible sorption of hydrogen having the chemical formula TiFe.sub.1-x Mn.sub.x where x is in the range of about 0.02 to 0.5 and the method of storing hydrogen using said alloy.

  3. Heat storage in alloy transformations. Final report

    SciTech Connect

    Birchenall, C E; Gueceri, S I; Farkas, D; Labdon, M B; Nagaswami, N; Pregger, B

    1981-03-01

    A study conducted to determine the feasibility of using metal alloys as thermal energy storage media is described. The study had the following major elements: (1) the identification of congruently transforming alloys and thermochemical property measurements, (2) the development of a precise and convenient method for measuring volume change during phase transformation and thermal expansion coefficients, (3) the development of a numerical modeling routine for calculating heat flow in cylindrical heat exchangers containing phase-change materials, and (4) the identification of materials that could be used to contain the metal alloys. The elements selected as candidate media were limited to aluminum, copper, magnesium, silicon, zinc, calcium, and phosphorus on the basis of low cost and latent heat of transformation. Several new eutectic alloys and ternary intermetallic phases have been determined. A new method employing x-ray absorption techniques was developed to determine the coefficients of thermal expansion of both the solid and liquid phases and the volume change during phase transformation from data that are obtained during one continuous experimental test. The method and apparatus are discussed and the experimental results are presented. The development of the numerical modeling method is presented and results are discussed for both salt and metal alloy phase-change media. Candidate materials were evaluated to determine suitable materials for containment of the metal alloys. Graphite was used to contain the alloys during the volume change measurements. Silicon carbide has been identified as a promising containment material and surface-coated iron alloys were considered.

  4. Laser Welding of Aluminum and Aluminum Alloys

    E-print Network

    Eagar, Thomas W.

    .. ) Laser Welding of Aluminum and Aluminum Alloys Welds made with sharp bevel-groove weld aluminum and by aluminum alloy 5456 have been studied. The results indicate that initial absorption varies of the most dramatic illustrations of the differences in beam characteristics occurs when welding aluminum

  5. Copper-nickel alloys for marine applications

    Microsoft Academic Search

    Carol A. Powell; James F. Jenkins

    2000-01-01

    Copper alloys have been used for many centuries for their ease of fabrication, and corrosion resistance. In marine applications, copper and some copper alloys also have the property of possessing a high resistance to the attachment and growth of marine organisms that foul most other materials exposed to the ocean. The addition of nickel to copper increases its strength and

  6. Modification of Sr on 4004 Aluminum Alloy

    NASA Astrophysics Data System (ADS)

    Guo, Erjun; Cao, Guojian; Feng, Yicheng; Wang, Liping; Wang, Guojun; Lv, Xinyu

    2013-05-01

    As a brazing foil, 4004 Al alloy has good welding performance. However, the high Si content decreases the plasticity of the alloy. To improve the plasticity of 4004 Al alloy and subsequently improve the productivity of 4004 Al foil or 434 composite foil, 4004 Al alloy was modified by Al-10%Sr master alloy. Modification effects of an additional amount of Sr, modification temperature, and holding time on 4004 aluminum alloy were studied by orthogonal design. The results showed that the greatest impact parameter of 4004 aluminum alloy modification was the additional amount of Sr, followed by holding time and modification temperature. The optimum modification parameters obtained by orthogonal design were as follows: Sr addition of 0.04%, holding time of 60 min, and modification temperature of 760°C. The effect of Sr addition on modification was analyzed in detail based on orthogonal results. With increasing of Sr addition, elongation of 4004 alloy increased at first, and decreased after reaching the maximum value.

  7. Bonding titanium to Rene 41 alloy

    NASA Technical Reports Server (NTRS)

    Scott, R. W.

    1972-01-01

    Pair of intermediate materials joined by electron beam welding method welds titanium to Rene 41 alloy. Bond is necessary for combining into one structure high strength-to-density ratio titanium fan blades and temperature resistant nickel-base alloy turbine-buckets in VTOL aircraft lift-fan rotor.

  8. Alloys of clathrate allotropes for rechargeable batteries

    DOEpatents

    Chan, Candace K; Miller, Michael A; Chan, Kwai S

    2014-12-09

    The present disclosure is directed at an electrode for a battery wherein the electrode comprises clathrate alloys of silicon, germanium or tin. In method form, the present disclosure is directed at methods of forming clathrate alloys of silicon, germanium or tin which methods lead to the formation of empty cage structures suitable for use as electrodes in rechargeable type batteries.

  9. Castable nickel aluminide alloys for structural applications

    DOEpatents

    Liu, C.T.

    1992-04-28

    The specification discloses nickel aluminide alloys which include as a component from about 0.5 to about 4 at. % of one or more of the elements selected from the group consisting of molybdenum or niobium to substantially improve the mechanical properties of the alloys in the cast condition. 4 figs.

  10. Friction stir welding of Inconel alloy 600

    Microsoft Academic Search

    Fuxing Ye; Hidetoshi Fujii; Takuya Tsumura; Kazuhiro Nakata

    2006-01-01

    is the relatively short tool life due to wear [7], therefore, good wear resistant tungsten carbide-based alloy tools and polycrystalline cubic boron nitride (PCBN) tools are commonly applied. A tungsten carbide-based alloy tool developed by our group [8] was used in this study and its appearance is given in Fig. 1. The diameter of the probe was 6 mm and

  11. Tantalum modified ferritic iron base alloys

    NASA Technical Reports Server (NTRS)

    Oldrieve, R. E.; Blankenship, C. P. (inventors)

    1977-01-01

    Strong ferritic alloys of the Fe-CR-Al type containing 0.4% to 2% tantalum were developed. These alloys have improved fabricability without sacrificing high temperature strength and oxidation resistance in the 800 C (1475 F) to 1040 C (1900 F) range.

  12. The interaction of hydrogen with metal alloys

    NASA Technical Reports Server (NTRS)

    Danford, M. D.; Montano, J. W.

    1991-01-01

    Hydrogen diffusion coefficients were measured for several alloys, and these were determined to be about the same at 25 C for all alloys investigated. The relation of structure, both metallurgical and crystallographic, to the observed hydrogen distribution on charging was investigated, as well as the role of hydride formation in the hydrogen resistance of metal alloys. An attempt was made to correlate the structures and compositions of metal alloys as well as other parameters with the ratios of their notched tensile strengths in hydrogen to that in helium, R(H2/He), which are believed to represent a measure of their hydrogen resistance. Evidence supports the belief that hydrogen permeability and hydrogen resistance are increased by smaller grain sizes for a given alloy composition.

  13. Recent advances and developments in refractory alloys

    SciTech Connect

    Nieh, T.G.; Wadsworth, J.

    1993-11-01

    Refractory metal alloys based on Mo, W, Re, Ta, and Nb (Cb) find applications in a wide range of aerospace applications because of their high melting points and high-temperature strength. This paper, presents recent progress in understanding and applications of these alloys. Recent studies to improve the oxidation and mechanical behavior of refractory metal alloys, and particularly Nb alloys, are also discussed. Some Re structures, for extremely high temperature applications (> 2000C), made by CVD and P/M processes, are also illustrated. Interesting work on the development of new W alloys (W-HfC-X) and the characterization of some commercial refractory metals, e.g., K-doped W, TZM, and Nb-1%Zr, continues. Finally, recent developments in high temperature composites reinforced with refractory metal filaments, and refractory metal-based intermetallics, e.g., Nb{sub 3}Al, Nb{sub 2}Be{sub 17}, and MoSi{sub 2}, are briefly described.

  14. A Study of Tungsten-Technetium Alloys

    NASA Technical Reports Server (NTRS)

    Maltz, J. W.

    1965-01-01

    Technetium is a sister element to rhenium and has many properties that are similar to rhenium. It is predicted that technetium will have about the same effects on tungsten as rhenium in regard to increase in workability, lowered ductile to brittle transition temperature, and improved ductility. The objectives of the current work are to recover technetium from fission product wastes at Hanford Atomic Products Operation and reduce to purified metal; prepare W-Tc alloys containing up to 50 atomic% Tc; fabricate the alloy ingots to sheet stock, assessing the effect of technetium on workability; and perform metallurgical and mechanical properties evaluation of the fabricated alloys. Previous reports have described the separation and purification of 800 g of technetium metal powder, melting of technetium and W-Tc alloys, and some initial observation of the alloy material.

  15. Enthalpies of a binary alloy during solidification

    NASA Technical Reports Server (NTRS)

    Poirier, D. R.; Nandapurkar, P.

    1988-01-01

    The purpose of the paper is to present a method of calculating the enthalpy of a dendritic alloy during solidification. The enthalpies of the dendritic solid and interdendritic liquid of alloys of the Pb-Sn system are evaluated, but the method could be applied to other binaries, as well. The enthalpies are consistent with a recent evaluation of the thermodynamics of Pb-Sn alloys and with the redistribution of solute in the same during dendritic solidification. Because of the heat of mixing in Pb-Sn alloys, the interdendritic liquid of hypoeutectic alloys (Pb-rich) of less than 50 wt pct Sn has enthalpies that increase as temperature decreases during solidification.

  16. Laser welding of aluminum alloys

    SciTech Connect

    Leong, K.H.; Sabo, K.R.; Sanders, P.G. [Argonne National Lab., IL (United States). Technology Development Div.; Spawr, W.J.

    1997-03-01

    Recent interest in reducing the weight of automobiles to increase fuel mileage has focused attention on the use of aluminum and associated joining technologies. Laser beam welding is one of the more promising methods for high speed welding of aluminum. Consequently, substantial effort has been expended in attempting to develop a robust laser beam welding process. Early results have not been very consistent in the process requirements but more definitive data has been produced recently. This paper reviews the process parameters needed to obtain consistent laser welds on 5,000 series aluminum alloys and discusses the research necessary to make laser processing of aluminum a reality for automotive applications.

  17. Hydrogen resistant alloy - NASA 23

    NASA Technical Reports Server (NTRS)

    Mcpherson, William B. (inventor); Kuruvilla, A. K. (inventor)

    1994-01-01

    The invention is a high-strength metal alloy that resists hydrogen embrittlement consisting essentially of thirty-seven (37) percent by weight of iron, thirty-two (32) percent by weight of nickel, fifteen (15) percent by weight of cobalt, ten (10) percent by weight of chromium, three (3) percent by weight of niobium, two-and-one-half (2.5) percent by weight of titanium, fifteen hundredths (0.15) percent by weight of aluminum, and an amount of carbon that does not exceed four hundredths (0.04) percent by weight.

  18. Ordering Phenomena in Undercooled Alloys

    SciTech Connect

    Fultz, Brent

    1997-07-17

    Much of the work performed under this grant was devoted to using modern ideas in kinetics to understand atom movements in metallic alloys far from thermodynamic equilibrium. Kinetics arguments were based explicitly on the vacancy mechanism for atom movements. The emphasis was on how individual atom movements are influenced by the local chemical environment of the moving atom, and how atom movements cause changes in the local chemical environments. The author formulated a kinetic master equation method to treat atom movements on a crystal lattice with a vacancy mechanism. Some of these analyses [3,10,16] are as detailed as any treatment of the statistical kinetics of atom movements in crystalline alloys. Three results came from this work. Chronologically they were (1) A recognition that tracking time dependencies is not necessarily the best way to study kinetic phenomena. If multiple order parameters can be measured in a material, the ''kinetic path'' through the space spanned by these order parameters maybe just as informative about the chemical factors that affect atom movements [2,3,5-7,9-11,14-16,18,19,21,23,24,26,36,37]. (2) Kinetic paths need not follow the steepest gradient of the free energy function (this should be well-known), and for alloys far from equilibrium the free energy function can be almost useless in describing kinetic behavior. This is why the third result surprised me. (3) In cluster approximations with multiple order parameters, saddle points are common features of free energy functions. Interestingly, kinetic processes stall or change time scale when the kinetic path approaches a state at a saddle point in the free energy function, even though these states exist far from thermodynamic equilibrium. The author calls such a state a ''pseudostable'' (falsely stable) state [6,21,26]. I have also studied these phenomena by more ''exact'' Monte Carlo simulations. The kinetic paths showed features similar to those found in analytical theories. The author found that a microstructure with interfaces arranged in space as a periodic minimal surface is a probably an alloy at a saddle point in its free energy function [21,26,37].

  19. Annealing studies of amorphous alloys

    SciTech Connect

    Wiley, J.D.; Perepezko, J.H.; Nordman, J.E.

    1983-04-01

    Amorphous films of the alloys Ni-Nb, Ni-Mo, Mo-Si, and W-Si were sputter deposited on single-crystal semiconductor substrates. One-hour crystallization temperatures of the films were determined to within +-25/sup 0/C by annealing and x-ray diffraction measurements. Interdiffusion between Au or Cu overlayers and the amorphous films were studied by annealing combined with Auger Electron Spectroscopy (AES) profiling, and by Rutherford Backscatter (RBS) analysis. Supplementary measurements used to study structural relaxation and crystallization included resistivity as a function of temperature; DTA and DSC; and electron microscopy.

  20. Properties of test metal ceramic titanium alloys.

    PubMed

    Akagi, K; Okamoto, Y; Matsuura, T; Horibe, T

    1992-09-01

    Four test alloys were prepared using a high frequency centrifugal casting machine and a ceramic crucible for the development of titanium bonding alloys that can be cast in the ordinary atmosphere. Of these alloys, 10.06% Ti, 78.79% Ni, 9.02% Pd, 1.77% Sn and 9.91% Ti, 78.56% Ni, 9.07% Pd, 1.86% Sn, 0.65% Ir could be cast by the conventional high frequency centrifugal method; however, 89.18% Ti, 8.75% Ni, 1.03% Pd, 0.28% Sn and 89.81% Ti, 8.15% Ni, 1.01% Pd, 0.18% Sn, 0.67% Ir could be cast only by the argon are melting method. The alloys 10.06% Ti, 78.95% Ni, 9.02% Pd, 1.77% Sn and 9.91% Ti, 78.56% Ni, 9.07% Pd, 1.86% Sn, 0.65% Ir showed excellent physical and mechanical properties and bonding strengths, surpassing those of the commercial alloys TPW and Unimetal. Concerning the elution of component elements, the amounts of titanium eluted from these alloys were far smaller than those from pure titanium or a Ti-6Al-4V alloy, and nickel elution, which has become an issue in relation to metal allergy, was almost nil in contrast to Unimetal (Ni-Cr alloy). The alloy 9.91% Ti, 78.56% Ni, 9.07% Pd, 1.86% Sn, 0.65% Ir showed properties that indicated its favorable use as an alloy for the bonding of dental porcelain. PMID:1432762

  1. Thermal stability of high temperature structural alloys

    SciTech Connect

    Jordan, C.E.; Rasefske, R.K.; Castagna, A. [Lockheed Martin Corp., Schenectady, NY (United States)

    1999-03-01

    High temperature structural alloys were evaluated for suitability for long term operation at elevated temperatures. The effect of elevated temperature exposure on the microstructure and mechanical properties of a number of alloys was characterized. Fe-based alloys (330 stainless steel, 800H, and mechanically alloyed MA 956), and Ni-based alloys (Hastelloy X, Haynes 230, Alloy 718, and mechanically alloyed MA 758) were evaluated for room temperature tensile and impact toughness properties after exposure at 750 C for 10,000 hours. Of the Fe-based alloys evaluated, 330 stainless steel and 800H showed secondary carbide (M{sub 23}C{sub 6}) precipitation and a corresponding reduction in ductility and toughness as compared to the as-received condition. Within the group of Ni-based alloys tested, Alloy 718 showed the most dramatic structure change as it formed delta phase during 10,000 hours of exposure at 750 C with significant reductions in strength, ductility, and toughness. Haynes 230 and Hastelloy X showed significant M{sub 23}C{sub 6} carbide precipitation and a resulting reduction in ductility and toughness. Haynes 230 was also evaluated after 10,000 hours of exposure at 850, 950, and 1050 C. For the 750--950 C exposures the M{sub 23}C{sub 6} carbides in Haynes 230 coarsened. This resulted in large reductions in impact strength and ductility for the 750, 850 and 950 C specimens. The 1050 C exposure specimens showed the resolution of M{sub 23}C{sub 6} secondary carbides, and mechanical properties similar to the as-received solution annealed condition.

  2. Comparison of Three Primary Surface Recuperator Alloys

    SciTech Connect

    Matthews, Wendy [Capstone Turbines; More, Karren Leslie [ORNL; Walker, Larry R [ORNL

    2010-01-01

    Extensive work performed by Capstone Turbine Corporation, Oak Ridge National Laboratory, and various others has shown that the traditional primary surface recuperator alloy, type 347 stainless steel, is unsuitable for applications above 650 C ({approx}1200 F). Numerous studies have shown that the presence of water vapor greatly accelerates the oxidation rate of type 347 stainless steel at temperatures above 650 C ({approx}1200 F). Water vapor is present as a product of combustion in the microturbine exhaust, making it necessary to find replacement alloys for type 347 stainless steel that will meet the long life requirements of microturbine primary surface recuperators. It has been well established over the past few years that alloys with higher chromium and nickel contents than type 347 stainless steel have much greater oxidation resistance in the microturbine environment. One such alloy that has replaced type 347 stainless steel in primary surface recuperators is Haynes Alloy HR-120 (Haynes and HR-120 are trademarks of Haynes International, Inc.), a solid-solution-strengthened alloy with nominally 33 wt % Fe, 37 wt % Ni and 25 wt % Cr. Unfortunately, while HR-120 is significantly more oxidation resistant in the microturbine environment, it is also a much more expensive alloy. In the interest of cost reduction, other candidate primary surface recuperator alloys are being investigated as possible alternatives to type 347 stainless steel. An initial rainbow recuperator test has been performed at Capstone to compare the oxidation resistance of type 347 stainless steel, HR-120, and the Allegheny Ludlum austenitic alloy AL 20-25+Nb (AL 20-25+Nb is a trademark of ATI Properties, Inc. and is licensed to Allegheny Ludlum Corporation). Evaluation of surface oxide scale formation and associated alloy depletion and other compositional changes has been carried out at Oak Ridge National Laboratory. The results of this initial rainbow test will be presented and discussed in this paper.

  3. Microstructural Development during Solidification of Stainless Steel Alloys

    E-print Network

    Eagar, Thomas W.

    ) Microstructural Development during Solidification of Stainless Steel Alloys J.W. ELMER, S alloys are related to the solidification conditions and the specific alloy composition and the chemical composition of the alloy both influence (I) the primary mode of solidification, (2) solute

  4. High-strength age hardening coppertitanium alloys: redivivus

    E-print Network

    Laughlin, David E.

    High-strength age hardening copper­titanium alloys: redivivus W.A. Soffaa , D.E. Laughlinb by an anticipated emergence of these alloys as technologi- cally significant high-strength, high-conductivity, precipitation hardened alloys over the next decade replacing conventional Cu­Be alloys in numerous applications

  5. "Exploring damage management of high performance metallic alloys in critical

    E-print Network

    Acton, Scott

    "Exploring damage management of high performance metallic alloys in critical systems to develop new crack resistant alloys as well as new prognosis methods to manage durability and safety." Richard Metallic Alloys Research Group Cracking in high performance metallic alloys; due to fatigue, stress

  6. Double glow plasma surface alloying and plasma nitriding

    Microsoft Academic Search

    Z. Xu; X. Liu; P. Zhang; Y. Zhang; G. Zhang; Z. He

    2007-01-01

    Based on plasma nitriding technique, Double Glow Plasma Surface Alloying Technology (DG Technique) was developed in 1980. This technique breaks the restriction of traditional plasma nitriding and successfully applies solid alloying elements, such as Ni, Cr, W, Mo, Ti, Al, Nb et al., to realize plasma surface alloying. Numerous experiment results concerning the DG technique have demonstrated that various alloys

  7. NiAl alloys for structural uses

    NASA Technical Reports Server (NTRS)

    Koss, D. A.

    1991-01-01

    Alloys based on the intermetallic compound NiAl are of technological interest as high temperature structural alloys. These alloys possess a relatively low density, high melting temperature, good thermal conductivity, and (usually) good oxidation resistance. However, NiAl and NiAl-base alloys suffer from poor fracture resistance at low temperatures as well as inadequate creep strength at elevated temperatures. This research program explored macroalloying additions to NiAl-base alloys in order to identify possible alloying and processing routes which promote both low temperature fracture toughness and high temperature strength. Initial results from the study examined the additions of Fe, Co, and Hf on the microstructure, deformation, and fracture resistance of NiAl-based alloys. Of significance were the observations that the presence of the gamma-prime phase, based on Ni3Al, could enhance the fracture resistance if the gamma-prime were present as a continuous grain boundary film or 'necklace'; and the Ni-35Al-20Fe alloy was ductile in ribbon form despite a microstructure consisting solely of the B2 beta phase based on NiAl. The ductility inherent in the Ni-35Al-20Fe alloy was explored further in subsequent studies. Those results confirm the presence of ductility in the Ni-35Al-20Fe alloy after rapid cooling from 750 - 1000 C. However exposure at 550 C caused embrittlement; this was associated with an age-hardening reaction caused by the formation of Fe-rich precipitates. In contrast, to the Ni-35Al-20Fe alloy, exploratory research indicated that compositions in the range of Ni-35Al-12Fe retain the ordered B2 structure of NiAl, are ductile, and do not age-harden or embrittle after thermal exposure. Thus, our recent efforts have focused on the behavior of the Ni-35Al-12Fe alloy. A second parallel effort initiated in this program was to use an alternate processing technique, mechanical alloying, to improve the properties of NiAl-alloys. Mechanical alloying in the conventional sense requires ductile powder particles which, through a cold welding and fracture process, can be dispersion strengthened by submicron-sized oxide particles. Using both the Ni-35Al-Fe alloys to contain approx. 1 v/o Y2O3. Preliminary results indicate that mechanically alloyed and extruded NiAl-Fe + Y2O3 alloys when heat treated to a grain-coarsened condition, exhibit improved creep resistance at 1000 C when compared to NiAl; oxidation resistance comparable to NiAl; and fracture toughness values a factor of three better than NiAl. As a result of the research initiated on this NASA program, a subsequent project with support from Inco Alloys International is underway.

  8. -Dispersed AA7075 Alloy Composites

    NASA Astrophysics Data System (ADS)

    Karunanithi, R.; Ghosh, K. S.; Bera, Supriya

    2014-08-01

    TiO2-dispersed AA7075 alloy composites were produced by mechanical milling followed by hot uniaxial compaction and sintering. The effects of volume fraction and dispersoid size on precipitation kinetics, densification, and hardness of the composites were studied in detail. While the sinterability of the composites decreases with increasing volume fraction of the particulate reinforcement (dispersoid), the same increases with decreasing particle size of the reinforcement. Microstructural analysis using X-ray diffraction and scanning electron microscopy shows an improvement in the distribution of reinforcement with decreasing particle size. The hardness of the composites increases with increasing volume fraction and decreasing TiO2 particle size. Further, the reinforced composites do not show age hardenability unlike unreinforced AA7075 alloy. Microstructural analysis reveals the formation of MgTiO3 and ZnO near the TiO2-AA7075 interface, which suppresses the formation of Guinier-Preston (GP) zone resulting in no age hardenability of the composites.

  9. Development of Metallic Sensory Alloys

    NASA Technical Reports Server (NTRS)

    Wallace Terryl A.; Newman, John A.; Horne, Michael R.; Messick, Peter L.

    2010-01-01

    Existing nondestructive evaluation (NDE) technologies are inherently limited by the physical response of the structural material being inspected and are therefore not generally effective at the identification of small discontinuities, making the detection of incipient damage extremely difficult. One innovative solution to this problem is to enhance or complement the NDE signature of structural materials to dramatically improve the ability of existing NDE tools to detect damage. To address this need, a multifunctional metallic material has been developed that can be used in structural applications. The material is processed to contain second phase sensory particles that significantly improve the NDE response, enhancing the ability of conventional NDE techniques to detect incipient damage both during and after flight. Ferromagnetic shape-memory alloys (FSMAs) are an ideal material for these sensory particles as they undergo a uniform and repeatable change in both magnetic properties and crystallographic structure (martensitic transformation) when subjected to strain and/or temperature changes which can be detected using conventional NDE techniques. In this study, the use of a ferromagnetic shape memory alloy (FSMA) as the sensory particles was investigated.

  10. The effect of alloy composition on the mechanism of stress corrosion cracking of titanium alloys in aqueous environments

    NASA Technical Reports Server (NTRS)

    Boyd, J. D.; Williams, D. N.; Wood, R. A.; Jaffee, R. I.

    1972-01-01

    The effects of alloy composition on the aqueous stress corrosion of titanium alloys were studied with emphasis on determining the interrelations among composition, phase structure, and deformation and fracture properties of the alpha phase in alpha-beta alloys. Accomplishments summarized include the effects of alloy composition on susceptibility, and metallurgical mechanisms of stress-corrosion cracking.

  11. Dynamic Characterization of Shape Memory Titanium Alloys

    NASA Astrophysics Data System (ADS)

    Joshi, V. S.; Imam, M. A.

    2004-07-01

    Evaluation of high strain rate behavior of materials at pre-fracture strains is very important where the materials are considered for ballistic applications. High compression strain rate response of shape memory titanium alloy including a typical titanium alloy are determined using the split Hopkinson pressure bar (SHPB). The conventional SHPB technique has been routinely used for measuring high strain rate properties of high strength materials. A split Hopkinson bar consisting of 10-mm diameter Maraging 350 alloy incident, transmitter, and striker bars was used to determine the compressive response of these alloys. Attempts are underway to use this technique to extract useful information required to design a material for improving its impact resistance. Initial test results performed on these different titanium alloys show an interesting trend with change of composition. Attempts were made to compare the stress-strain data of these alloys with the published data for titanium alloys. Stress-strain data and changes resulting in the microstructure from strain rates in the regime 1800-4000/s are presented.

  12. Precipitates in Biomedical Co-Cr Alloys

    NASA Astrophysics Data System (ADS)

    Narushima, Takayuki; Mineta, Shingo; Kurihara, Yuto; Ueda, Kyosuke

    2013-04-01

    Herein, precipitates in biomedical Co-Cr-Mo and Co-Cr-W-Ni alloys are reviewed with a focus on their phase, chemical composition, morphology, and formation/dissolution during heat treatment. The effects of the heat-treatment conditions and the addition of minor alloying elements such as carbon, nitrogen, Si, and Mn on the precipitates are also discussed. Mostly, the precipitates in the alloys are of the ?-phase, M23X6-type phase, ?-phase (M6X-M12X type), ?-phase (M2T3X type), ?-phase, M7X3-type phase, or M2X-type phase (M and T refer to metallic elements, and X refers to carbon and/or nitrogen); the ?- and ?-phases are intermetallic compounds, and the others are carbides, nitrides, and carbonitrides. The dissolution of the precipitates during solution treatment is delayed by the formation of the ?-phase at temperatures where partial melting occurs in the alloys. In addition, the stability of the precipitates depends on the content of minor alloying elements. For example, the addition of carbon enhances the formation of M23X6-type and M7X3-type precipitates. Nitrogen stabilizes the M2X-type, ?-phase, and ?-phase precipitates, and Si stabilizes the ?-phase and ?-phase precipitates. The balance between the minor alloying element abundances also affects the constitution of the precipitates in Co-Cr alloys.

  13. Radiation-induced segregation in complex alloys

    SciTech Connect

    Sethi, V.K.; Okamoto, P.R.

    1980-01-01

    Radiation-induced segregation (RIS) of alloying elements to the surface during 3 MeV /sup 58/Ni/sup +/ ion bombardment was investigated in alloys of Fe-200Cr-12Ni (at. %) containing controlled additions of Si and Mo. The segregation profiles, determined by Auger electron spectroscopy, show that Ni and Si are enriched, while Cr and Mo are depleted at the irradiated surfaces. The data indicates that the RIS of Ni and Cr are affected by the presence of Mo and Si in the alloy. However, no obvious trends are observed as a function of the minor solute element concentration. The temperature dependence of the RIS of the alloying elements was also investigated. A maximum of segregation at approx. 500/sup 0/C is observed for Si followed by a minimum and then a sharp increase in segregation at temperatures above 600/sup 0/C. The temperature dependence of segregation for Cr, Ni and Mo shows continous increase with temperature in the temperature regime investigated. The void swelling data on these alloys is also presented as a function of temperature and composition. Additions of Si reduce the swelling by affecting both the nucleation and the growth of the voids. The peak swelling temperature for all the alloys containing minor solutes are found to be lower (approx. 50/sup 0/C) than that of the base alloy (peak swelling temperature approx. 660/sup 0/C).

  14. Thermal aging effects in refractory metal alloys

    NASA Technical Reports Server (NTRS)

    Stephens, J. R.

    1986-01-01

    The alloys of niobium and tantalum are attractive from a strength and compatibility viewpoint for high operating temperatures required in materials for fuel cladding, liquid metal transfer, and heat pipe applications in space power systems that will supply from 100 kWe to multi-megawatts for advanced space systems. To meet the system requirements, operating temperatures ranging from 1100 to 1600 K have been proposed. Expected lives of these space power systems are from 7 to 10 yr. A program is conducted at NASA Lewis to determine the effects of long-term, high-temperature exposure on the microstructural stability of several commercial tantalum and niobium alloys. Variables studied in the investigation include alloy composition, pre-age annealing temperature, aging time, temperature, and environment (lithium or vacuum), welding, and hydrogen doping. Alloys are investigated by means of cryogenic bend tests and tensile tests. Results show that the combination of tungsten and hafnium or zirconium found in commercial alloys such as T-111 and Cb-752 can lead to aging embrittlement and increased susceptibility to hydrogen embrittlement of ternary and more complex alloys. Modification of alloy composition helps to eliminate the embrittlement problem.

  15. Vapor phase lubrication of high temperature alloys

    SciTech Connect

    Hanyaloglu, B.F.; Graham, E.E.; Oreskovic, T.; Hajj, C.G. [Cleveland State Univ., OH (United States)

    1995-06-01

    In a previous study, it was found that when a nickel-based superalloy IN750 was heated to high temperatures, a passive layer of aluminum oxide formed on the surface, preventing vapor phase lubrication. In this study, two nickel-chrome-iron alloys and a nickel-copper alloy were studied for high temperature lubrication to see if these alloys, which contained small amounts of aluminum, would exhibit similar behavior. It was found that under static conditions, all three alloys formed a lubricious nodular coating when exposed to a vapor of aryl phosphate. Under dynamic sliding conditions at 500{degrees}C, these alloys were successfully lubricated with a coefficient of friction of 0.1 and no detectable wear. In order to explain these results, a direct correlation between successful vapor phase lubrication and the composition of the alloys containing aluminum has been proposed. If the ratio of copper/aluminum or iron/aluminum is greater that 100 vapor phase, lubrication will be successful. If the ratio is less than 10, a passive aluminum oxide layer will prevent vapor phase lubrication. By selecting alloys with a high iron or copper content, vapor phase lubrication can provide excellent lubrication at high temperatures. 14 refs., 11 figs., 1 tab.

  16. Fracture characteristics of uranium alloys by scanning electron microscopy

    Microsoft Academic Search

    J. W. Koger; R. K. Jr. Bennett

    1976-01-01

    The fracture characteristics of uranium alloys were determined by scanning electron microscopy. The fracture mode of stress-corrosion cracking (SCC) of uranium-7.5 weight percent niobium-2.5 weight percent zirconium (Mulberry) alloy, uranium--niobium alloys, and uranium--molybdenum alloys in aqueous chloride solutions is intergranular. The SCC fracture surface of the Mulberry alloy is characterized by very clean and smooth grain facets. The tensile-overload fracture

  17. Impurity control and corrosion resistance of magnesium-aluminum alloy

    SciTech Connect

    Liu, M. [GM China Lab] [GM China Lab; Song, GuangLing [ORNL] [ORNL

    2013-01-01

    The corrosion resistance of magnesium alloys is very sensitive to the contents of impurity elements such as iron. In this study, a series of diecast AXJ530 magnesium alloy samples were prepared with additions of Mn and Fe. Through a comprehensive phase diagram calculation and corrosion evaluation, the mechanisms for the tolerance limit of Fe in magnesium alloy are discussed. This adds a new dimension to control the alloying impurity in terms of alloying composition design and casting conditions.

  18. General and localized corrosion of magnesium alloys: A critical review

    Microsoft Academic Search

    Edward Ghali; Wolfgang Dietzel; Karl-Ulrich Kainer

    2004-01-01

    Magnesium (Mg) alloys as well as experimental alloys are emerging as light structural materials for current, new, and innovative\\u000a applications. This paper describes the influence of the alloying elements and the different casting processes on the microstructure\\u000a and performance of these alloys and corrosion. It gives a comprehensible approach for the resistance of these alloys to general,\\u000a localized and metallurgically

  19. Microstructure and Deformability of Sn-Zn-Bi Alloys

    Microsoft Academic Search

    Jian Zhou; Peipei Li; Yingying Xiao; Xiaoqing Fu

    2006-01-01

    With addition of Bi, wettability of Sn-Zn alloys can be obviously improved. As a low melting point alloy, it is expected that Sn-Zn-Bi alloy come to being one of commercial solders. But, there is an unfavorable effect on plasticity of Sn-Zn-Bi alloys by adding Bi, so Bi concentration is usually required below 5mass% to maintain the alloys enough elongation. This

  20. The deformation mechanisms in the ?-metastable ?-Cez titanium alloy

    Microsoft Academic Search

    Thierry Grosdidier; Christophe Roubaud; Marie-Jeanne Philippe; Yves Combres

    1997-01-01

    β metastable alloys have, potentially, better cold formability and age-hardening response than α-β titanium alloys. In the β metastable alloys, the Ms temperature is below room temperature and the β phase can be retained in a metastable state. β-Cez is an alloy initially developed for turbine compressor applications. Most of the research on this alloy has concentrated on its structural