Kamil Motyka; Pavel Mikuška; Zbyn?k Ve?e?a
2011-01-01
The comparison of theoretical approaches describing the collection of analyte in the cylindrical wet effluent diffusion denuder (CWEDD) with experimental data is presented. Various absorption liquids were tested for the collection of formaldehyde (distilled-deionized water, H2SO4 solution), acetaldehyde (distilled-deionized water) and nitrous acid (distilled-deionized water, sodium carbonate and sodium bicarbonate solutions of various concentrations and sodium phosphate pH 6–8) in
Turbulent diffusion of chemically reacting gaseous admixtures.
Elperin, T; Kleeorin, N; Liberman, M; Rogachevskii, I
2014-11-01
We study turbulent diffusion of chemically reacting gaseous admixtures in a developed turbulence. In our previous study [Phys. Rev. Lett. 80, 69 (1998)PRLTAO0031-900710.1103/PhysRevLett.80.69] using a path-integral approach for a delta-correlated in a time random velocity field, we demonstrated a strong modification of turbulent transport in fluid flows with chemical reactions or phase transitions. In the present study we use the spectral ? approximation that is valid for large Reynolds and Peclet numbers and show that turbulent diffusion of the reacting species can be strongly depleted by a large factor that is the ratio of turbulent and chemical times (turbulent Damköhler number). We have demonstrated that the derived theoretical dependence of a turbulent diffusion coefficient versus the turbulent Damköhler number is in good agreement with that obtained previously in the numerical modeling of a reactive front propagating in a turbulent flow and described by the Kolmogorov-Petrovskii-Piskunov-Fisher equation. We have found that turbulent cross-effects, e.g., turbulent mutual diffusion of gaseous admixtures and turbulent Dufour effect of the chemically reacting gaseous admixtures, are less sensitive to the values of stoichiometric coefficients. The mechanisms of the turbulent cross-effects differ from the molecular cross-effects known in irreversible thermodynamics. In a fully developed turbulence and at large Peclet numbers the turbulent cross-effects are much larger than the molecular ones. The obtained results are applicable also to heterogeneous phase transitions. PMID:25493875
Studies of Gaseous Multiplication Coefficient in Isobutane
Lima, Iara B.; Vivaldini, Tulio C. [Instituto de Pesquisas Energeticas e Nucleares, 05508-000, Cidade Universitaria, Sao Paulo (Brazil); Goncalves, Josemary A. C.; Botelho, Suzana; Bueno Tobias, Carmen C. [Instituto de Pesquisas Energeticas e Nucleares, 05508-000, Cidade Universitaria, Sao Paulo (Brazil); Departamento de Fisica, Pontificia Universidade Catolica de Sao Paulo, 01303-050, Sao Paulo (Brazil); Ridenti, Marco A.; Pascholati, Paulo R. [Instituto de Fisica, Universidade de Sao Paulo, 05508-090, Cidade Universitaria, Sao Paulo (Brazil); Fonte, Paulo; Mangiarotti, Alessio [Laboratorio de Instrumentacao e Fisica Experimental de Particulas, Departamento de Fisica da Universidade de Coimbra, 3004-516, Coimbra (Portugal)
2010-05-21
This work presents the studies of gaseous multiplication coefficient behavior for isobutane, as function of the reduced electric field, by means of signal amplitude analysis. The experimental method used is based on the Pulsed Townsend technique, which follows from Townsend equation solution for a uniform electric field. In our configuration, the anode is made of a high resistivity (2.10{sup 12} OMEGA.cm) glass, while the cathode is of aluminium. In order to validate the technique and to analyze effects of non-uniformity, results for nitrogen, which has well-established data available in literature, are also presented.
Diffusion method of seperating gaseous mixtures
Rex B
1976-01-01
A method of effecting a relatively large change in the relative concentrations of the components of a gaseous mixture by diffusion which comprises separating the mixture into heavier and lighter portions according to major fraction mass recycle procedure, further separating the heavier portions into still heavier subportions according to a major fraction mass recycle procedure, and further separating the lighter
Depicting Fire and Other Gaseous Phenomena Using Diffusion Processes
Toronto, University of
Depicting Fire and Other Gaseous Phenomena Using Diffusion Processes Jos Stam Eugene Fiume significant innovation is the reformulation and solution of the advectiondiffusion equation for densities the evolution of gaseous phenomena. Keywords: fire, smoke, gaseous phenomena, diffusion, advec tion, warped
Uranium enrichment export control guide: Gaseous diffusion
Not Available
1989-09-01
This document was prepared to serve as a guide for export control officials in their interpretation, understanding, and implementation of export laws that relate to the Zangger International Trigger List for gaseous diffusion uranium enrichment process components, equipment, and materials. Particular emphasis is focused on items that are especially designed or prepared since export controls are required for these by States that are party to the International Nuclear Nonproliferation Treaty.
Portable vapor diffusion coefficient meter
Ho, Clifford K. (Albuquerque, NM)
2007-06-12
An apparatus for measuring the effective vapor diffusion coefficient of a test vapor diffusing through a sample of porous media contained within a test chamber. A chemical sensor measures the time-varying concentration of vapor that has diffused a known distance through the porous media. A data processor contained within the apparatus compares the measured sensor data with analytical predictions of the response curve based on the transient diffusion equation using Fick's Law, iterating on the choice of an effective vapor diffusion coefficient until the difference between the predicted and measured curves is minimized. Optionally, a purge fluid can forced through the porous media, permitting the apparatus to also measure a gas-phase permeability. The apparatus can be made lightweight, self-powered, and portable for use in the field.
Band Formation during Gaseous Diffusion in Aerogels
M. A. Einarsrud; F. A. Maao; A. Hansen; M. Kirkedelen; J. Samseth
1997-06-18
We study experimentally how gaseous HCl and NH_3 diffuse from opposite sides of and react in silica aerogel rods with porosity of 92 % and average pore size of about 50 nm. The reaction leads to solid NH_4Cl, which is deposited in thin sheet-like structures. We present a numerical study of the phenomenon. Due to the difference in boundary conditions between this system and those usually studied, we find the sheet-like structures in the aerogel to differ significantly from older studies. The influence of random nucleation centers and inhomogeneities in the aerogel is studied numerically.
Radiant Extinction Of Gaseous Diffusion Flames
NASA Technical Reports Server (NTRS)
Berhan, S.; Chernovsky, M.; Atreya, A.; Baum, Howard R.; Sacksteder, Kurt R.
2003-01-01
The absence of buoyancy-induced flows in microgravity (mu:g) and the resulting increase in the reactant residence time significantly alters the fundamentals of many combustion processes. Substantial differences between normal gravity (ng) and :g flames have been reported in experiments on candle flames [1, 2], flame spread over solids [3, 4], droplet combustion [5,6], and others. These differences are more basic than just in the visible flame shape. Longer residence times and higher concentration of combustion products in the flame zone create a thermochemical environment that changes the flame chemistry and the heat and mass transfer processes. Processes such as flame radiation, that are often ignored in ng, become very important and sometimes even controlling. Furthermore, microgravity conditions considerably enhance flame radiation by: (i) the build-up of combustion products in the high-temperature reaction zone which increases the gas radiation, and (ii) longer residence times make conditions appropriate for substantial amounts of soot to form which is also responsible for radiative heat loss. Thus, it is anticipated that radiative heat loss may eventually extinguish the Aweak@ (low burning rate per unit flame area) :g diffusion flame. Yet, space shuttle experiments on candle flames show that in an infinite ambient atmosphere, the hemispherical candle flame in :g will burn indefinitely [1]. This may be because of the coupling between the fuel production rate and the flame via the heat-feedback mechanism for candle flames, flames over solids and fuel droplet flames. Thus, to focus only on the gas-phase phenomena leading to radiative extinction, aerodynamically stabilized gaseous diffusion flames are examined. This enables independent control of the fuel flow rate to help identify conditions under which radiative extinction occurs. Also, spherical geometry is chosen for the :g experiments and modeling because: (i) It reduces the complexity by making the problem one-dimensional. (ii) The spherical diffusion flame completely encloses the soot which is formed on the fuel rich side of the reaction zone. This increases the importance of flame radiation because now both soot and gaseous combustion products co-exist inside the high temperature spherical diffusion flame. (iii) For small fuel injection velocities, as is usually the case for a pyrolyzing solid, the diffusion flame in :g around the solid naturally develops spherical symmetry. Thus, spherical diffusion flames are of interest to fires in :g and identifying conditions that lead to radiation-induced extinction is important for spacecraft fire safety.
Radiant Extinction of Gaseous Diffusion Flames
NASA Technical Reports Server (NTRS)
Berhan, Sean; Atreya, Arvind; Everest, David; Sacksteder, Kurt R.
1999-01-01
The absence of buoyancy-induced flows in microgravity (mu-g) and the resulting increase in the reactant residence time significantly alters the fundamentals of many combustion processes. Substantial differences between normal gravity (ng) and mu-g flames have been reported in experiments on candle flames, flame spread over solids, droplet combustion, and others. These differences are more basic than just in the visible flame shape. Longer residence times and higher concentration of combustion products in the flame zone create a thermochemical environment that changes the flame chemistry and the heat and mass transfer processes. Processes such as flame radiation, that are often ignored in ng, become very important and sometimes even controlling. Furthermore, microgravity conditions considerably enhance flame radiation by: (1) the build-up of combustion products in the high-temperature reaction zone which increases the gas radiation; and (2) longer residence times make conditions appropriate for substantial amounts of soot to form which is also responsible for radiative heat loss. Thus, it is anticipated that radiative heat loss may eventually extinguish the "weak" (low burning rate per unit flame area) mu-g diffusion flame. Yet, space shuttle experiments on candle flames show that in an infinite ambient atmosphere, the hemispherical candle flame in mu-g will burn indefinitely. This may be because of the coupling between the fuel production rate and the flame via the heat-feedback mechanism for candle flames, flames over solids and fuel droplet flames. Thus, to focus only on the gas-phase phenomena leading to radiative extinction, aerodynamically stabilized gaseous diffusion flames are examined. This enables independent control of the fuel flow rate to help identify conditions under which radiative extinction occurs. Also, spherical geometry is chosen for the mu-g experiments and modeling because: (1) It reduces the complexity by making the problem one-dimensional; (2) The spherical diffusion flame completely encloses the soot which is formed on the fuel rich side of the reaction zone. This increases the importance of flame radiation because now both soot and gaseous combustion products co-exist inside the high temperature spherical diffusion flame; (3) For small fuel injection velocities, as is usually the case for a pyrolyzing solid, the diffusion flame in mu-g around the solid naturally develops spherical symmetry. Thus, spherical diffusion flames are of interest to fires in mu-g and identifying conditions that lead to radiation-induced extinction is important for spacecraft fire safety.
Radon diffusion coefficients for residential concretes
Rogers, V.C.; Nielson, K.K.; Holt, R.B. [Rogers and Associates Engineering Corp., Salt Lake City, UT (United States); Snoddy, R. [Acurex Environmental Corp., Research Triangle Park, NC (United States)
1994-09-01
Radon gas diffusion through concrete can be a significant mechanism for radon entry into dwellings. Measurements of radon diffusion coefficients in the pores of residential concretes ranged from 2.1 x 10{sup {minus}8} m{sup 2} s{sup {minus}1} to 5.2 x 10{sup {minus}7} m{sup 2} s{sup {minus}1}. The pore diffusion coefficients generally increased with the water-cement ratio of the concrete and decreased with its density. A least-squares regression of the diffusion coefficients on concrete density gave an r value of -0.73. 16 refs., 2 figs., 3 tabs.
An introduction to technetium in the gaseous diffusion cascades
Simmons, D.W.
1996-09-01
The radioisotope technetium-99 ({sup 99}Tc) was introduced into the gaseous diffusion plants (GDP) as a contaminant in uranium that had been reprocessed from spent nuclear reactor fuel. {sup 99}Tc is a product of the nuclear fission of uranium-235 ({sup 235}U). The significantly higher emitted radioactivity of {sup 99}Tc generates concern in the enrichment complex and warrants increased attention (1) to the control of all site emissions, (2) to worker exposures and contamination control when process equipment requires disassembly and decontamination, and (3) to product purity when the enriched uranium hexafluoride (UF{sub 6}) product is marketed to the private sector. A total of 101,268 metric tons of RU ({approximately}96% of the total) was fed at the Paducah Gaseous Diffusion Plant (PGDP) between FY1953 and FY1976. An additional 5600 metric tons of RU from the government reactors were fed at the Oak Ridge Gaseous Diffusion Plant (ORGDP), plus an approximate 500 tons of foreign reactor returns. Only a small amount of RU was fed directly at the Portsmouth Gaseous Diffusion Plant (PORTS). The slightly enriched PGDP product was then fed to either the ORGDP or PORTS cascades for final enrichment. Bailey estimated in 1988 that of the 606 kg of Tc received at PGDP from RU, 121 kg was subsequently re-fed to ORGDP and 85 kg re-fed to PORTS.
The effective diffusion coefficient for porous rubble
Sadeghi, M.M.; Lee, W.W.-L.; Pigford, T.H.; Chambre, P.L.
1990-01-01
Each waste package in the proposed Yucca Mountain repository is to be separated from surrounded unsaturated rock by a 2-cm air gap annulus. However, if the annulus becomes filled with rock and rubble, there can exist pathways for diffusive release of radionuclides through pore liquid, even if the repository remains unsaturated. The effective diffusion coefficient for radionuclide release through pore liquid in a rubble bed depends on the porosity and moisture content of rubble material and on the geometry and contact area of individual pieces of rubble. Here we present a theoretical analysis of the effective diffusion coefficient for a bed of rubble spheres. The results give a rough indication of the magnitude of the effective diffusion coefficient, and the analysis identifies the parameters that will affect experimental measurements of mass transfer through unsaturated rubble. 3 refs., 1 fig.
Radiant extinction of gaseous diffusion flames
NASA Technical Reports Server (NTRS)
Atreya, Arvind; Agrawal, Sanjay; Shamim, Tariq; Pickett, Kent; Sacksteder, Kurt R.; Baum, Howard R.
1995-01-01
The absence of buoyancy-induced flows in microgravity significantly alters the fundamentals of many combustion processes. Substantial differences between normal-gravity and microgravity flames have been reported during droplet combustion, flame spread over solids, candle flames, and others. These differences are more basic than just in the visible flame shape. Longer residence time and higher concentration of combustion products create a thermochemical environment which changes the flame chemistry. Processes such as flame radiation, that are often ignored under normal gravity, become very important and sometimes even controlling. This is particularly true for conditions at extinction of a microgravity diffusion flame. Under normal-gravity, the buoyant flow, which may be characterized by the strain rate, assists the diffusion process to transport the fuel and oxidizer to the combustion zone and remove the hot combustion products from it. These are essential functions for the survival of the flame which needs fuel and oxidizer. Thus, as the strain rate is increased, the diffusion flame which is 'weak' (reduced burning rate per unit flame area) at low strain rates is initially 'strengthened' and eventually it may be 'blown-out'. Most of the previous research on diffusion flame extinction has been conducted at the high strain rate 'blow-off' limit. The literature substantially lacks information on low strain rate, radiation-induced, extinction of diffusion flames. At the low strain rates encountered in microgravity, flame radiation is enhanced due to: (1) build-up of combustion products in the flame zone which increases the gas radiation, and (2) low strain rates provide sufficient residence time for substantial amounts of soot to form which further increases the flame radiation. It is expected that this radiative heat loss will extinguish the already 'weak' diffusion flame under certain conditions. Identifying these conditions (ambient atmosphere, fuel flow rate, fuel type, etc.) is important for spacecraft fire safety. Thus, the objective is to experimentally and theoretically investigate the radiation-induced extinction of diffusion flames in microgravity and determine the effect of flame radiation on the 'weak' microgravity diffusion flame.
77 FR 3255 - Notice of 229 Boundary Revision at the Paducah Gaseous Diffusion Plant
Federal Register 2010, 2011, 2012, 2013, 2014
2012-01-23
...Boundary Revision at the Paducah Gaseous Diffusion Plant AGENCY: Department of Energy...other facilities of the Paducah Gaseous Diffusion Plant, located in McCracken County...real property of the Paducah Gaseous Diffusion Plant located in McCracken County,...
Fractal diffusion coefficient from dynamical zeta functions
G. Cristadoro
2005-09-28
Dynamical zeta functions provide a powerful method to analyze low dimensional dynamical systems when the underlying symbolic dynamics is under control. On the other hand even simple one dimensional maps can show an intricate structure of the grammar rules that may lead to a non smooth dependence of global observable on parameters changes. A paradigmatic example is the fractal diffusion coefficient arising in a simple piecewise linear one dimensional map of the real line. Using the Baladi-Ruelle generalization of the Milnor-Thurnston kneading determinant we provide the exact dynamical zeta function for such a map and compute the diffusion coefficient from its smallest zero.
Paducah Gaseous Diffusion Plant Environmental report for 1990
Counce-Brown, D. (ed.)
1991-09-01
This two-part report, Paducah Gaseous Diffusion Plant Site Environmental Report for 1990, is published annually. It reflects the results of a comprehensive, year-round program to monitor the impact of operations at Paducah Gaseous Diffusion Plant (PGDP) on the area's groundwater and surface waters, soil, air quality, vegetation, and wildlife. In addition, an assessment of the effect of PGDP effluents on the resident human population is made. PGDP's overall goal for environmental management is to protect the environment and PGDP's neighbors and to maintain full compliance with all current regulations. The current environmental strategy is to identify any deficiencies and to develop a system to resolve them. The long-range goal of environmental management is to minimize the source of pollutants, to reduce the formation of waste, and to minimize hazardous waste by substitution of materials.
Paducah Gaseous Diffusion Plant environmental report for 1992
Horak, C.M. [ed.] [Martin Marietta Energy Systems, Inc., Oak Ridge, TN (United States)
1993-09-01
This two-part report, Paducah Gaseous Diffusion Plant Environmental Report for 1992, is published annually. It reflects the results of an environmental monitoring program designed to quantify potential increases in the concentration of contaminants and potential doses to the resident human population. The Paducah Gaseous Diffusion Plant (PGDP) overall goal for environmental management is to protect the environment and PGDP`s neighbors and to maintain full compliance with all current regulations. The current environmental strategy is to identify any deficiencies and to develop a system to resolve them. The long-range goal of environmental management is to minimize the source of pollutants, reduce the generation of waste, and minimize hazardous waste by substitution of materials.
Ignition, Liftoff, and Extinction of Gaseous Diffusion Flames
NASA Astrophysics Data System (ADS)
Liñán, Amable; Vera, Marcos; Sánchez, Antonio L.
2015-01-01
This review uses as a vehicular example the jet-flame configuration to examine some phenomena that emerge in nonpremixed gaseous combustion as a result of the interaction between the temperature-sensitive chemical reaction, typical of combustion, and the convective and diffusive transport. These include diffusion-controlled flames, edge flames and their role in flame attachment, triple flames and their role as ignition fronts, and strain-induced extinction, including flame-vortex interactions. The aim is to give an overall view of the fluid dynamics of nonpremixed combustion and to review the most relevant contributions.
NASA Technical Reports Server (NTRS)
Chau, Jessica Furrer; Or, Dani; Sukop, Michael C.; Steinberg, S. L. (Principal Investigator)
2005-01-01
Liquid distributions in unsaturated porous media under different gravitational accelerations and corresponding macroscopic gaseous diffusion coefficients were investigated to enhance understanding of plant growth conditions in microgravity. We used a single-component, multiphase lattice Boltzmann code to simulate liquid configurations in two-dimensional porous media at varying water contents for different gravity conditions and measured gas diffusion through the media using a multicomponent lattice Boltzmann code. The relative diffusion coefficients (D rel) for simulations with and without gravity as functions of air-filled porosity were in good agreement with measured data and established models. We found significant differences in liquid configuration in porous media, leading to reductions in D rel of up to 25% under zero gravity. The study highlights potential applications of the lattice Boltzmann method for rapid and cost-effective evaluation of alternative plant growth media designs under variable gravity.
Radon diffusion coefficients for aged residential concretes
Rogers, V.C.; Nielson, K.K.; Holt, R.B. [Rogers & Associates Engineering Corp., Salt Lake City, UT (United States)
1995-06-01
This note reports radon gas pore diffusion coefficient measurements for residential concretes from Florida, ranging in age from 12 y to 45 y. The coefficients ranged from 1.5 x 10{sup -7} m{sup 2} s{sup -1} to 5.5 x 10{sup -7} m{sup 2} s{sup -1}. On the average, these values are about a factor of 1.6 higher than average values previously reported for new residential concretes in Florida. 5 refs., 2 figs., 1 tab.
Micro-Fluidic Diffusion Coefficient Measurement
Forster, F.K.; Galambos, P.
1998-10-06
A new method for diffusion coefficient measurement applicable to micro-fluidics is pre- sented. The method Iltilizes an analytical model describing laminar dispersion in rect- anglllar ~llicro_channe]s. The Illethod ~vas verified throllgh measllremen~ of fllloresceill diffusivity in water and aqueolls polymer solutions of differing concentration. The diffll- sivity of flllorescein was measlmed as 0.64 x 10-gm2/s in water, 0.49 x 10-gm2/s in the 4 gm/dl dextran solution and 0.38 x 10-9n12/s in the 8 gnl/dl dextran solution.
Paducah Gaseous Diffusion Plant Annual Site Environmental Report for 1993
Not Available
1994-10-01
The purpose of this document is to summarize effluent monitoring and environmental surveillance results and compliance with environmental laws, regulations, and orders at the Paducah Gaseous Diffusion Plant (PGDP). Environmental monitoring at PGDP consists of two major activities: effluent monitoring and environmental surveillance. Effluent monitoring is direct measurement or the collection and analysis of samples of liquid and gaseous discharges to the environment. Environmental surveillance is direct measurement or the collection and analysis of samples of air, water, soil, foodstuff, biota, and other media. Environmental monitoring is performed to characterize and quantify contaminants, assess radiation exposures of members of the public, demonstrate compliance with applicable standards and permit requirements, and detect and assess the effects (if any) on the local environment. Multiple samples are collected throughout the year and are analyzed for radioactivity, chemical content, and various physical attributes.
Portsmouth Gaseous Diffusion Plant Environmental report for 1990
Counce-Brown, D. (ed.)
1991-09-01
This calendar year 1990 annual report on environmental surveillance of the US Department of Energy's (DOE's) Portsmouth Gaseous Diffusion Plant (PORTS) and its environs consists of two parts: the summary, discussion, and conclusions (Part 1) and the data presentation (Part 2). The objectives of this report are as follows: report 1990 monitoring data for the installation and its environs that may have been affected by operations on the plant site, provide reasonably detailed information about the plant site and plant operations, provide detailed information on input and assumptions used in all calculations, provide trend analyses (when appropriate) to indicate increases and decreases in environmental impact, and provide general information on plant quality assurance.
Experimental Study of Thermal Diffusion in Multicomponent Gaseous Systems
NASA Astrophysics Data System (ADS)
Bogatyrev, Alexander Fyodorovich; Makeenkova, Olga Andreevna; Nezovitina, Maria Alexandrovna
2015-04-01
Thermal diffusion factor (TDF) measurements were performed for one quaternary, for four ternary, and for six binary gaseous systems, containing , and held under atmospheric pressure and at cold- and hot-chamber temperatures of = 280 K and = 800 K, respectively. For the multicomponent gas mixtures, measurements were made at different values of the mole fraction of the additive. Also, the dependence of the TDF values on the mole fraction of the additive for the multicomponent mixtures was analyzed. A semi-empirical formula to calculate TDF values was proposed; this formula gives results that are in good agreement with experimental data within the respective limits of error.
Gaseous contaminant dosimeter with diffusion device therefor and method
Kring, E.V.
1980-06-17
A personal dosimeter for measuring the average concentration of a gaseous contaminant over a given period of time is provided. The dosimeter comprises a sealed pouch having a reaction chamber, which contains a gas-collecting medium, and at least one compartment. Each compartment can be separately sealed and can contain a different reagent, the seals being individually breakable such that the reagents can be separately released into the reaction chamber. Into the pouch is sealed a gas diffusion device which consists of a formation of parallel, potted, hollow fibers or filaments. The diffusion device is oriented such that one end of the fibers is open to the atmosphere and the other end communicates with the interior of the reaction chamber.
Kwee, Thomas C.; Galbán, Craig J.; Tsien, Christina; Junck, Larry; Sundgren, Pia C.; Ivancevic, Marko K.; Johnson, Timothy D.; Meyer, Charles R.; Rehemtulla, Alnawaz; Ross, Brian D.; Chenevert, Thomas L.
2010-01-01
Purpose To compare apparent diffusion coefficients (ADCs) with distributed diffusion coefficients (DDCs) in high-grade gliomas. Materials and Methods Twenty patients with high-grade gliomas prospectively underwent diffusion-weighted magnetic resonance imaging. Traditional ADC maps were created using b-values of 0 and 1000 s/mm2. In addition, DDC maps were created by applying the stretched-exponential model using b-values of 0, 1000, 2000, and 4000 s/mm2. Whole-tumor ADCs and DDCs (in 10-3 mm2/s) were measured and analyzed with a paired t test, Pearson's correlation coefficient, and the Bland-Altman method. Results Tumor ADCs (1.14 ± 0.26) were significantly lower (P = 0.0001) than DDCs (1.64 ± 0.71). Tumor ADCs and DDCs were strongly correlated (R = 0.9716; P < 0.0001), but mean bias ± limits of agreement between tumor ADCs and DDCs was -0.50 ± 0.90. There was a clear trend toward greater discordance between ADC and DDC at high ADC values. Conclusion Under the assumption that the stretched-exponential model provides a more accurate estimate of the average diffusion rate than the mono-exponential model, our results suggest that for a little diffusion attenuation the mono-exponential fit works rather well for quantifying diffusion in high-grade gliomas, whereas it works less well for a greater degree of diffusion attenuation. PMID:20187193
Determination of effective water vapor diffusion coefficient in pemfc gas diffusion layers
Kandlikar, Satish
Determination of effective water vapor diffusion coefficient in pemfc gas diffusion layers Jacob M: Water vapor diffusion PEMFC Water management GDL Diffusivity MPL a b s t r a c t The primary removal, Determination of effective water vapor diffusion coefficient in pemfc gas diffusion layers, International
Tiger Team Assessment of the Paducah Gaseous Diffusion Plant
Not Available
1990-07-01
This document contains findings and concerns identified during the Tiger Team Assessment of the Department of Energy's (DOE) Paducah Gaseous Diffusion Plant (PGDP) in Paducah, Kentucky. The assessment was directed by the Department's Office of Environment, Safety and Health (ES H) and was conducted from June 18 to July 20, 1990. The PGDP Tiger Team Assessment is comprehensive in scope. It covers the Environmental, Safety and Health (including OSHA Compliance), and Management areas and determines the site's compliance with applicable federal (including DOE), state, and local regulations and requirements. The objective of the assessment program is to provide the Secretary with information on the current ES H compliance status of DOE facilities, root causation for noncompliance, adequacy of DOE and site contractor ES H management programs, response actions to address the identified problem areas, and DOE-wide ES H compliance trends and root causes.
Tiger Team Assessment of the Paducah Gaseous Diffusion Plant
Not Available
1990-07-01
This document contains findings and concerns identified during the Tiger Team Assessment of the Department of Energy's (DOE's) Paducah Gaseous Diffusion Plant (PGDP) in Paducah, Kentucky. The assessment was directed by the Department's Office of Environment, Safety and Health (ES H) and was conducted from June 18 to July 20, 1990. The PGDP Tiger Team Assessment is comprehensive in scope. It covers the Environmental, Safety and Health (including OSHA Compliance), and Management areas and determines the site's compliance with applicable federal (including DOE), state, and local regulations and requirements. The objective of the assessment program is to provide the Secretary with information on the current ES H compliance status of DOE facilities, root causation for noncompliance, adequacy of DOE and site contractor ES H management programs, response actions to address the identified problem areas, and DOE-wide ES H compliance trends and root causes. This volume contains appendices.
Paducah Gaseous Diffusion Plant environmental report for 1989
Turner, J.W. (ed.) (Martin Marietta Energy Systems, Inc., Oak Ridge, TN (USA))
1990-10-01
This two-part environmental report is published annually. It reflects the results of a comprehensive, year-round program to monitor the impact of operations at Paducah Gaseous Diffusion Plant (PGDP) on the area's groundwater and surface waters, soil, air quality, vegetation, and wildlife. In addition, an assessment of the effect of PGDP effluents on the resident human population is made. PGDP's overall goal for environmental management is to protect the environment and PGDP's neighbors and to maintain full compliance with all current regulations. The current environmental strategy is to identify any deficiencies and to develop a system to resolve them. The long-range goal of environmental management is to minimize the source of pollutants, to reduce the formation of waste, and to minimize hazardous waste by substitution of materials. 36 refs.
Portsmouth Gaseous Diffusion Plant annual site environmental report for 1993
Horak, C.M. [ed.
1994-11-01
This calendar year (CY) 1993 annual report on environmental monitoring of the US Department of Energy`s (DOE`s) Portsmouth Gaseous Diffusion Plant (Portsmouth) and its environs consists of three separate documents: a summary pamphlet for the general public; a more detail discussion and of compliance status, data, and environmental impacts (this document); and a volume of detailed data that is available on request. The objectives of this report are to report compliance status during 1993; provide information about the plant site and plant operations; report 1993 monitoring data for the installation and its environs that may have been affected by operations on the plant site; document information on input and assumptions used in calculations; provide trend analyses (where appropriate) to indicate increases and decreases in environmental impact, and provide general information on quality assurance for the environmental monitoring program.
Seismic issues at the Paducah Gaseous Diffusion Plant
Fricke, K.E. (Martin Marietta Energy Systems, Inc., Oak Ridge, TN (USA))
1989-11-01
A seismic expert workshop was held at the Paducah Gaseous Diffusion Plant (PGDP) on March 13--15, 1989. the PGDP is operated by Martin Marietta Energy Systems, Inc. for the United States Department of Energy (DOE). During the last twenty years the design criteria for natural phenomenon hazards has steadily become more demanding at all of the DOE Oak Ridge Operations (ORO) sites. The purpose of the two-day workshop was to review the seismic vulnerability issues of the PGDP facilities. Participants to the workshop included recognized experts in the fields of seismic engineering, seismology and geosciences, and probabilistic analysis, along with engineers and other personnel from Energy Systems. A complete list of the workshop participants is included in the front of this report. 29 refs.
Long-range global warming impact of gaseous diffusion plant operation
Trowbridge
1992-01-01
The DOE gaseous diffusion plant complex makes extensive use of CFC-114 as a primary coolant. As this material is on the Montreal Protocol list of materials scheduled for production curtailment, a substitute must be found. In addition to physical cooling properties, the gaseous diffusion application imposes the unique requirement of chemical inertness to fluorinating agents. This has narrowed the selection
Calculation and application of combined diffusion coefficients in thermal plasmas
Murphy, Anthony B.
2014-01-01
The combined diffusion coefficient method is widely used to treat the mixing and demixing of different plasma gases and vapours in thermal plasmas, such as welding arcs and plasma jets. It greatly simplifies the treatment of diffusion for many gas mixtures without sacrificing accuracy. Here, three subjects that are important in the implementation of the combined diffusion coefficient method are considered. First, it is shown that different expressions for the combined diffusion coefficients, arising from different definitions for the stoichiometric coefficients that assign the electrons to the two gases, are equivalent. Second, an approach is presented for calculating certain partial differential terms in the combined temperature and pressure diffusion coefficients that can cause difficulties. Finally, a method for applying the combined diffusion coefficients in computational models, which typically require diffusion to be expressed in terms of mass fraction gradients, is given. PMID:24603457
Analytic Forms of the Perpendicular Diffusion Coefficient in NRMHD Turbulence
NASA Astrophysics Data System (ADS)
Shalchi, A.
2015-02-01
In the past different analytic limits for the perpendicular diffusion coefficient of energetic particles interacting with magnetic turbulence were discussed. These different limits or cases correspond to different transport modes describing how the particles are diffusing across the large-scale magnetic field. In the current paper we describe a new transport regime by considering the model of noisy reduced magnetohydrodynamic turbulence. We derive different analytic forms of the perpendicular diffusion coefficient, and while we do this, we focus on the aforementioned new transport mode. We show that for this turbulence model a small perpendicular diffusion coefficient can be obtained so that the latter diffusion coefficient is more than hundred times smaller than the parallel diffusion coefficient. This result is relevant to explain observations in the solar system where such small perpendicular diffusion coefficients have been reported.
Decommissioning of the Gaseous Diffusion Plant at BNFL Capenhurst
Baxter, S.G. [BNFL, Chester (United Kingdom). Capenhurst Works; Bradbury, P. [BNFL Inc., Fairfax, VA (United States)
1993-12-31
The Capenhurst Gaseous Diffusion Plant was built in the early 1950s. It was originally built to produce highly enriched uranium for defense purposes but in the early 1960s the section of the plant which had been used for dealing with high U235 enrichments, the HSD section, was isolated, emptied of its process gas and put into a care and surveillance state. The rest of the plant, the LSD section, then underwent a modification program for low enrichment uranium production for civil use. The plant was shut down in 1982, by which time Urenco Centrifuge Enrichment Plants were built and operating successfully at Capenhurst and the Diffusion Plant was no longer economic. Since that time a program of decommissioning and dismantling has been in progress dealing with over 160,000 tons of surface contaminated metal, concrete and other, potentially hazardous, material. By the middle of 1994 less than 2% of the total volume of the whole project will have been consigned for burial as LLW. Over 98% will have been successfully treated and recycled as clean materials. This paper describes progress on the project, with specific examples of volume reduction and decontamination techniques. The paper demonstrates how BNFL is able to tackle dismantling, volume reduction and decontamination of a large scale nuclear processing plant safely and cost effectively.
An investigation of the eddy heat-diffusion coefficient
Gilchrist, Larry Kenneth
1973-01-01
Major Subjects Meteorology AN INVESTIGATION OF THE EDDY HEAT-DIFFUSION COEFFICIENT A Thesis by LARRY KENNETH GILCHRIST Approved as to style and content by& / Chairman of Cossaittee) Head of Doper 't Ilmsber Member 2" August 1973 ABSTRACT... An Investigation of the Eddy Heat-Diffusion Coefficient. (August 1973) Larry Kenneth Gilchrist, B. A. , Knox College Directed by& Dr. Kenneth C. Brundidge An investigation of the eddy heat-diffusion coefficient, Kh, was conducted that included the effects...
Diffusion coefficient of three-dimensional Yukawa liquids
Dzhumagulova, K. N.; Ramazanov, T. S.; Masheeva, R. U. [IETP, Al Farabi Kazakh National University, 71, al Farabi ave., Almaty 050040 (Kazakhstan)] [IETP, Al Farabi Kazakh National University, 71, al Farabi ave., Almaty 050040 (Kazakhstan)
2013-11-15
The purpose of this work is an investigation of the diffusion coefficient of the dust component in complex plasma. The computer simulation of the Yukawa liquids was made on the basis of the Langevin equation, which takes into account the influence of buffer plasma on the dust particles dynamics. The Green–Kubo relation was used to calculate the diffusion coefficient. Calculations of the diffusion coefficient for a wide range of the system parameters were performed. Using obtained numerical data, we constructed the interpolation formula for the diffusion coefficient. We also show that the interpolation formula correctly describes experimental data obtained under microgravity conditions.
Paducah Gaseous Diffusion Plant Northwest Plume interceptor system evaluation
Laase, A.D.; Clausen, J.L.
1998-07-01
The Paducah Gaseous Diffusion Plant (PGDP) recently installed an interceptor system consisting of four wells, evenly divided between two well fields, to contain the Northwest Plume. As stated in the Northwest Plume Record of Decision (ROD), groundwater will be pumped at a rate to reduce further contamination and initiate control of the northwest contaminant plume. The objective of this evaluation was to determine the optimum (minimal) well field pumping rates required for plume hotspot containment. Plume hotspot, as defined in the Northwest Plume ROD and throughout this report, is that portion of the plume with trichloroethene (TCE) concentrations greater than 1,000 {micro}g/L. An existing 3-dimensional groundwater model was modified and used to perform capture zone analyses of the north and south interceptor system well fields. Model results suggest that the plume hotspot is not contained at the system design pumping rate of 100 gallons per minute (gal/min) per well field. Rather, the modeling determined that north and south well field pumping rates of 400 and 150 gal/min, respectively, are necessary for plume hotspot containment. The difference between the design and optimal pumping rates required for containment can be attributed to the discovery of a highly transmissive zone in the vicinity of the two well fields.
Diffusion coefficient in hydrogel under high-frequency ultrasound
Akira Tsukamoto; Kei Tanaka; Tatsuya Kumata; Yoshiaki Watanabe; Shogo Miyata; Katsuko Furukawa; Takashi Ushida
2007-01-01
Modulating hydrogel properties by external stimuli can be applied for drug delivery system. For example, ultrasound can enhance drug release from hydrogel by the mechanism which is not fully understood. We measured diffusion coefficient in hydrogel under high-frequency ultrasound to understand mass transport property. To estimate diffusion coefficient, FRAP (fluorescence recovery after photobleaching) technique was applied with time-lapse fluorescence microscopy
Depicting fire and other gaseous phenomena using diffusion processes
Jos Stam; Eugene Fiume
1995-01-01
Developing a visually convincing model of fire, smoke, and othergaseousphenomenaisamongthemostdifficult andattractive problems in computer graphics. We have created new methods of animating a wide range of gaseous phenomena, including the particularlysubtleproblemofmodelling\\
Improved diffusion coefficients generated from Monte Carlo codes
Herman, B. R.; Forget, B.; Smith, K. [Massachusetts Institute of Technology, Department of Nuclear Science and Engineering, 77 Massachusetts Avenue, Cambridge, MA 02139 (United States); Aviles, B. N. [Knolls Atomic Power Laboratory, Bechtel Marine Propulsion Corporation, P.O. Box 1072, Schenectady, NY 12301-1072 (United States)
2013-07-01
Monte Carlo codes are becoming more widely used for reactor analysis. Some of these applications involve the generation of diffusion theory parameters including macroscopic cross sections and diffusion coefficients. Two approximations used to generate diffusion coefficients are assessed using the Monte Carlo code MC21. The first is the method of homogenization; whether to weight either fine-group transport cross sections or fine-group diffusion coefficients when collapsing to few-group diffusion coefficients. The second is a fundamental approximation made to the energy-dependent P1 equations to derive the energy-dependent diffusion equations. Standard Monte Carlo codes usually generate a flux-weighted transport cross section with no correction to the diffusion approximation. Results indicate that this causes noticeable tilting in reconstructed pin powers in simple test lattices with L2 norm error of 3.6%. This error is reduced significantly to 0.27% when weighting fine-group diffusion coefficients by the flux and applying a correction to the diffusion approximation. Noticeable tilting in reconstructed fluxes and pin powers was reduced when applying these corrections. (authors)
Apparent Diffusion Coefficients from High Angular Resolution Diffusion Imaging: Estimation and
Chen, Yiling
Apparent Diffusion Coefficients from High Angular Resolution Diffusion Imaging: Estimation resolution diffusion imaging has recently been of great interest in characterizing non-Gaussian diffusion pro- cesses. One important goal is to obtain more accurate fits of the apparent diffusion processes
Determination of diffusion coefficient for unsaturated soils
Sood, Eeshani
2005-08-29
. The laboratory procedure followed involves measuring the soil suction along the length of the sample and at different times using thermocouple psychrometers. The evaluation of the evaporation coefficient (he) has been made an integral part of the procedure...
Exploring non-linear cosmological matter diffusion coefficients
Hermano Velten; Simone Calogero
2014-07-16
Since microscopic velocity diffusion can be incorporated into general relativity in a consistent way, we study cosmological background solutions when the diffusion phenomena takes place in an expanding universe. Our focus here relies on the nature of the diffusion coefficient $\\sigma$ which measures the magnitude of such transport phenomena. We test dynamics where $\\sigma$ has a phenomenological dependence on the scale factor, the matter density, the dark energy and the expansion rate.
Calculation of self-diffusion coefficients in iron
Zhang, Baohua, E-mail: zhangbh148@qq.com [Laboratory for High Temperature and High Pressure Study of the Earth's Interior, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, Guizhou 550002, China and Institute for Study of the Earth's Interior, Okayama University, Misasa, Tottori-ken 682-0193 (Japan)] [Laboratory for High Temperature and High Pressure Study of the Earth's Interior, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, Guizhou 550002, China and Institute for Study of the Earth's Interior, Okayama University, Misasa, Tottori-ken 682-0193 (Japan)
2014-01-15
On the basis of available P-V-T equation of state of iron, the temperature and pressure dependence of self-diffusion coefficients in iron polymorphs (?, ?, ? and ? phases) have been successfully reproduced in terms of the bulk elastic and expansivity data by means of a thermodynamical model that interconnects point defects parameters with bulk properties. The calculated diffusion parameters, such as self-diffusion coefficient, activation energy and activation volume over a broad temperature range (500-2500 K) and pressure range (0-100 GPa), compare favorably well with experimental or theoretical ones when the uncertainties are considered.
Diffusion coefficients of tetrazolium blue in homogeneous and micellar solutions
NASA Astrophysics Data System (ADS)
Viseu, M. I.; de Castro, C. A. Nieto; Costa, S. M. B.
1991-03-01
Diffusion coefficients of the electron acceptor dye tetrazolium blue were measured by the Taylor dispersion method, with an accuracy better than 4%, in two solvents: (i) a homogeneous one-aqueous phosphate buffer, 0.1 M, pH=7.0 (medium I); and (ii) a heterogeneous one-nonionic micelles of Triton X-100, 2.0 mM (where M stands for mol·dm-3), in the same aqueous phosphate buffer (medium II). The values obtained were D {12/I}=3.64×10-10m2·s-1 and D {12/II}=3.01×10-10m2·s-1· D {12/II}has the meaning of a “macroscopird or “average” diffusion coefficient, in which the partition coefficient of tetrazolium blue between micelles and water, as well as the diffusion coefficients of this dye and of the micelles in the aqueous phase, are involved.
Diffusion coefficient and shear viscosity of rigid water models.
Tazi, Sami; Bo?an, Alexandru; Salanne, Mathieu; Marry, Virginie; Turq, Pierre; Rotenberg, Benjamin
2012-07-18
We report the diffusion coefficient and viscosity of popular rigid water models: two non-polarizable ones (SPC/E with three sites, and TIP4P/2005 with four sites) and a polarizable one (Dang-Chang, four sites). We exploit the dependence of the diffusion coefficient on the system size (Yeh and Hummer 2004 J. Phys. Chem. B 108 15873) to obtain the size-independent value. This also provides an estimate of the viscosity of all water models, which we compare to the Green-Kubo result. In all cases, a good agreement is found. The TIP4P/2005 model is in better agreement with the experimental data for both diffusion and viscosity. The SPC/E and Dang-Chang models overestimate the diffusion coefficient and underestimate the viscosity. PMID:22739097
Diffusion coefficient and shear viscosity of rigid water models
NASA Astrophysics Data System (ADS)
Tazi, Sami; Bo?an, Alexandru; Salanne, Mathieu; Marry, Virginie; Turq, Pierre; Rotenberg, Benjamin
2012-07-01
We report the diffusion coefficient and viscosity of popular rigid water models: two non-polarizable ones (SPC/E with three sites, and TIP4P/2005 with four sites) and a polarizable one (Dang-Chang, four sites). We exploit the dependence of the diffusion coefficient on the system size (Yeh and Hummer 2004 J. Phys. Chem. B 108 15873) to obtain the size-independent value. This also provides an estimate of the viscosity of all water models, which we compare to the Green-Kubo result. In all cases, a good agreement is found. The TIP4P/2005 model is in better agreement with the experimental data for both diffusion and viscosity. The SPC/E and Dang-Chang models overestimate the diffusion coefficient and underestimate the viscosity.
Transient model of an intermediate surge system for the Paducah Gaseous Diffusion Plant
Beard, B.; Blankenship, J.G.; McGrady, P.W.
1989-09-01
Engineering design work (Reference 1) is underway for intermediate surge systems to be added to the Paducah Gaseous Diffusion Plant (PGDP) cascade as part of the Process Inventory Control System (PICS) project. These systems would be located between 000 buildings and lower half 00 buildings and would remove or add inventory during cascade transients in order to protect cascade compressors from overload and surge. Similar systems were operated in the Oak Ridge Gaseous Diffusion Plant cascade and are operated in the Portsmouth Gaseous Diffusion Plant cascade. A steady state flow analysis of the system to be installed at the PGDP has been made. The flow analysis did not address response of the surge system to the cascade transients, nor did it address automatic control of the system. The need to address these issues prompted development of the transient model described in this report. 2 refs., 8 figs., 2 tabs.
Lateral diffusion in an archipelago. Distance dependence of the diffusion coefficient.
Saxton, M J
1989-01-01
An understanding of the distance dependence of the lateral diffusion coefficient is useful in comparing the results of diffusion measurements made over different length scales, and in analyzing the kinetics of mobile redox carriers in organelles. A distance-dependent, concentration-dependent diffusion coefficient is defined, and it is evaluated by Monte Carlo calculations of a random walk by mobile point tracers in the presence of immobile obstacles on a triangular lattice, representing the diffusion of a lipid or a small protein in the presence of immobile membrane proteins. This work confirms and extends the milling crowd model of Eisinger, J., J. Flores, and W. P. Petersen (1986. Biophys J. 49:987-1001). Similar calculations for diffusion of mobile particles interacting by a hard-core repulsion yield the distance dependence of the self-diffusion coefficient. An expression for the range of short-range diffusion is obtained, and the distance scales for various diffusion measurements are summarized. PMID:2790141
Mutual diffusion coefficients in systems containing the nickel ion
NASA Astrophysics Data System (ADS)
Ribeiro, Ana C. F.; Veríssimo, Luis V. M. M.; Gomes, Joselaine C. S.; Santos, Cecilia I. A. V.; Barros, Marisa C. F.; Lobo, Victor M. M.; Sobral, Abílio J. F. N.; Esteso, Miguel A.; Leaist, Derek G.
2013-04-01
Mutual diffusion coefficients of nickel chloride in water have been measured at 293.15 K and 303.15 K and at concentrations between 0.020 mol dm-3 and 0.100 mol dm-3, using a conductimetric cell. The experimental mutual diffusion coefficients are discussed on the basis of the Onsager-Fuoss model. The equivalent conductances at infinitesimal concentration of the nickel ion in these solutions at those temperatures have been estimated using these results. In addition, from these data, we have estimated some transport and structural parameters, such as limiting diffusion coefficient, ionic conductance at infinitesimal concentration, hydrodynamic radii and activation energy, contributing this way to a better understanding of the structure of these systems and of their thermodynamic behavior in aqueous solution at different concentrations.
Intrinsic Diffusion Coefficient of Interstitial Copper in Silicon
Istratov, A.A.; Flink, C.; Hieslmair, H.; Weber, E.R. [Department of Materials Science and Mineral Engineering, University of California, 577 Evans Hall, Berkeley, California 94720-1760 (United States)] [Department of Materials Science and Mineral Engineering, University of California, 577 Evans Hall, Berkeley, California 94720-1760 (United States); Heiser, T. [Laboratoire de Physique et Applications des Semiconducteurs, CNRS, Universite Louis Pasteur, BP 20, F67037 Strasbourg Cedex 02 (France)] [Laboratoire de Physique et Applications des Semiconducteurs, CNRS, Universite Louis Pasteur, BP 20, F67037 Strasbourg Cedex 02 (France)
1998-08-01
Transient ion drift experiments designed to obtain reliable values for the intrinsic copper diffusivity in silicon are reported. From these measurements, the diffusion barrier of Cu in Si is determined to be 0.18{plus_minus}0.01 eV . It is shown that the commonly used expression of Hall and Racette [J.thinspthinspAppl.thinspthinspPhys.thinspthinsp{bold 35}, 379 (1964)] actually gives an effective diffusion coefficient for heavily boron-doped silicon and can neither be used for other doping levels nor extrapolated to lower temperatures. A model is developed which predicts the effective diffusion coefficient as a function of temperature, doping level, and the type of dopant. {copyright} {ital 1998} {ital The American Physical Society}
Environmental Restoration Site-Specific Plan for the Portsmouth Gaseous Diffusion Plant, FY 93
Not Available
1993-01-15
The purpose of this Site-Specific Plan (SSP) is to describe past, present, and future activities undertaken to implement Environmental Restoration and Waste Management goals at the Portsmouth Gaseous Diffusion Plant (PORTS). The SSP is presented in sections emphasizing Environmental Restoration description of activities, resources, and milestones.
Not Available
1992-09-01
An aerial radiological survey was conducted from July 11--20, 1990, over an 83-square-kilometer (32-square-mile) area surrounding the Portsmouth Gaseous Diffusion Plant located near Portsmouth, Ohio. The survey was conducted at a nominal altitude of 91 meters (300 feet) with line spacings of 122 meters (400 feet). A contour map of the terrestrial gamma exposure rate extrapolated to 1 meter above ground level (AGL) was prepared and overlaid on an aerial photograph and a set of United States Geological Survey (USGS) topographic maps of the area. The terrestrial exposure rates varied from about 7 to 14 microroentgens per hour ([mu]R/h) at 1 meter above the ground. Analysis of the data for man-made sources and for the uranium decay product, protactinium-234m ([sup 234m]Pa), showed five sites within the boundaries of the Portsmouth Gaseous Diffusion Plant with elevated readings. Spectra obtained in the vicinity of the buildings at the Portsmouth Gaseous Diffusion Plant showed the presence of [sup 234m]Pa, a uranium-238 ([sup 238]U) decay product. In addition, spectral analysis of the data obtained over the processing plant facility showed gamma activity indicative of uranium-235 ([sup 234]U). No other man-made gamma ray emitting radioactive material was detected, either on or off the Portsmouth Gaseous Diffusion Plant property. Soil samples and pressurized ion chamber measurements were obtained at five different locations within the survey boundlaries to support the aerial data.
D&D of the French High Enrichment Gaseous Diffusion Plant
BEHAR, Christophe; GUIBERTEAU, Philippe; DUPERRET, Bernard; TAUZIN, Claude
2003-02-27
This paper describes the D&D program that is being implemented at France's High Enrichment Gaseous Diffusion Plant, which was designed to supply France's Military with Highly Enriched Uranium. This plant was definitively shut down in June 1996, following French President Jacques Chirac's decision to end production of Highly Enriched Uranium and dismantle the corresponding facilities.
Diffusion coefficients and particle transport in synthetic membrane channels
NASA Astrophysics Data System (ADS)
Pagliara, S.; Dettmer, S. L.; Misiunas, K.; Lea, L.; Tan, Y.; Keyser, U. F.
2014-12-01
Diffusion in constrained geometries is paramount to transport across biological membranes and in mesoporous materials. Although the transported species vary from system to system, the underlying physical mechanisms are universal. However, there is an imbalance between theory and quantitative experimental model systems. We have recently introduced a new synthetic approach to mimic molecular diffusion based on colloidal particles, digital video microscopy, particle tracking, microfluidics and holographic optical tweezers. In this paper we report useful guidelines for the fabrication, handling and characterisation of the microfluidic chips and a study of diffusion coefficients, particle attempt and translocation rates through microfluidic channels with cross sections of different dimensions.
Does the photon-diffusion coefficient depend on absorption?
Boas, David
Does the photon-diffusion coefficient depend on absorption? T. Durduran and A. G. Yodh Department independent of absorption, i.e., D0 v/3 s . After presentation of the general theoretical arguments underlying this assertion, Monte Carlo simulations are performed and explicitly reveal that the absorption- independent
Orejuela, Mauricio
1994-01-01
values for the diffusion coefficients in supercritical fluids results in nonreliable correlations. Diffusion coefficients are also needed for modeling of effective This thesis follows the style and format of the A. l. Ch. E. Journal. diffusivities... coefficient at infinite dilution can be written as lD?, sash usss =~?( ) us ( iz s Du, s ~ (2. 7) Enskog diffusion coefficient for dense gases is scaled from the hard sphere gas (HSG) diffusion coefficient for low density gases by Chapman and Cowling (1970...
Optimal estimation of diffusion coefficients from single-particle trajectories
NASA Astrophysics Data System (ADS)
Vestergaard, Christian L.; Blainey, Paul C.; Flyvbjerg, Henrik
2014-02-01
How does one optimally determine the diffusion coefficient of a diffusing particle from a single-time-lapse recorded trajectory of the particle? We answer this question with an explicit, unbiased, and practically optimal covariance-based estimator (CVE). This estimator is regression-free and is far superior to commonly used methods based on measured mean squared displacements. In experimentally relevant parameter ranges, it also outperforms the analytically intractable and computationally more demanding maximum likelihood estimator (MLE). For the case of diffusion on a flexible and fluctuating substrate, the CVE is biased by substrate motion. However, given some long time series and a substrate under some tension, an extended MLE can separate particle diffusion on the substrate from substrate motion in the laboratory frame. This provides benchmarks that allow removal of bias caused by substrate fluctuations in CVE. The resulting unbiased CVE is optimal also for short time series on a fluctuating substrate. We have applied our estimators to human 8-oxoguanine DNA glycolase proteins diffusing on flow-stretched DNA, a fluctuating substrate, and found that diffusion coefficients are severely overestimated if substrate fluctuations are not accounted for.
Long-range global warming impact of gaseous diffusion plant operation
Trowbridge, L.D.
1992-09-01
The DOE gaseous diffusion plant complex makes extensive use of CFC-114 as a primary coolant. As this material is on the Montreal Protocol list of materials scheduled for production curtailment, a substitute must be found. In addition to physical cooling properties, the gaseous diffusion application imposes the unique requirement of chemical inertness to fluorinating agents. This has narrowed the selection of a near-term substitute to two fully fluorinated material, FC-318 and FC-3110, which are likely to be strong, long-lived greenhouse gases. In this document, calculations are presented showing, for a number of plausible scenarios of diffusion plant operation and coolant replacement strategy, the future course of coolant use, greenhouse gas emissions (including coolant and power-related indirect CO{sub 2} emissions), and the consequent global temperature impacts of these scenarios.
Vertical eddy diffusion coefficient from the LANDSAT imagery
NASA Technical Reports Server (NTRS)
Viswanadham, Y. (principal investigator); Torsani, J. A.
1982-01-01
Analysis of five stable cases of the smoke plumes that originated in eastern Cabo Frio (22 deg 59'S; 42 deg 02'W), Brazil using LANDSAT imagery is presented for different months and years. From these images the lateral standard deviation (sigma sub y) and the lateral eddy diffusion coefficient (K sub y) are obtained from the formula based on Taylor's theory of diffusion by continuous moment. The rate of kinetic energy dissipation (e) is evaluated from the diffusion parameters sigma sub y and K sub y. Then, the vertical diffusion coefficient (K sub z) is estimated using Weinstock's formulation. These results agree well with the previous experimental values obtained over water surfaces by various workers. Values of e and K sub z show the weaker mixing processes in the marine stable boundary layer. The data sample is apparently to small to include representative active turbulent regions because such regions are so intermittent in time and in space. These results form a data base for use in the development and validation of mesoscale atmospheric diffusion models.
Radiative Extinction of Gaseous Spherical Diffusion Flames in Microgravity
NASA Technical Reports Server (NTRS)
Santa, K. J.; Chao, B. H.; Sunderland, P. B.; Urban, D. L.; Stocker, D. P.; Axelbaum, R. L.
2007-01-01
Radiative extinction of spherical diffusion flames was investigated experimentally and numerically. The experiments involved microgravity spherical diffusion flames burning ethylene and propane at 0.98 bar. Both normal (fuel flowing into oxidizer) and inverse (oxidizer flowing into fuel) flames were studied, with nitrogen supplied to either the fuel or the oxygen. Flame conditions were chosen to ensure that the flames extinguished within the 2.2 s of available test time; thus extinction occurred during unsteady flame conditions. Diagnostics included color video and thin-filament pyrometry. The computations, which simulated flow from a porous sphere into a quiescent environment, included detailed chemistry, transport and radiation, and yielded transient results. Radiative extinction was observed experimentally and simulated numerically. Extinction time, peak temperature, and radiative loss fraction were found to be independent of flow rate except at very low flow rates. Radiative heat loss was dominated by the combustion products downstream of the flame and was found to scale with flame surface area, not volume. For large transient flames the heat release rate also scaled with surface area and thus the radiative loss fraction was largely independent of flow rate. Peak temperatures at extinction onset were about 1100 K, which is significantly lower than for kinetic extinction. One observation of this work is that while radiative heat losses can drive transient extinction, this is not because radiative losses are increasing with time (flame size) but rather because the heat release rate is falling off as the temperature drops.
Generalized method calculating the effective diffusion coefficient in periodic channels
NASA Astrophysics Data System (ADS)
Kalinay, Pavol
2015-01-01
The method calculating the effective diffusion coefficient in an arbitrary periodic two-dimensional channel, presented in our previous paper [P. Kalinay, J. Chem. Phys. 141, 144101 (2014)], is generalized to 3D channels of cylindrical symmetry, as well as to 2D or 3D channels with particles driven by a constant longitudinal external driving force. The next possible extensions are also indicated. The former calculation was based on calculus in the complex plane, suitable for the stationary diffusion in 2D domains. The method is reformulated here using standard tools of functional analysis, enabling the generalization.
Continuum estimate of the heavy quark momentum diffusion coefficient ?
NASA Astrophysics Data System (ADS)
Kaczmarek, O.
2014-11-01
Among quantities playing a central role in the theoretical interpretation of heavy ion collision experiments at RHIC and LHC are so-called transport coefficients. Out of those heavy quark diffusion coefficients play an important role e.g. for the analysis of the quenching of jets containing c or b quarks (D or B mesons) as observed at RHIC and LHC [1]. We report on a lattice investigation of heavy quark momentum diffusion within pure SU(3) plasma above the deconfinement transition with the quarks treated to leading order in the heavy mass expansion. We measure the relevant 'colour-electric' Euclidean correlator and based on several lattice spacings perform the continuum extrapolation. This extends our previous studies [2,3] progressing towards a removal of lattice artifacts and a physical interpretation of the results. We find that the correlation function clearly exceeds its perturbative counterpart which suggests that at temperatures just above the critical one, non-perturbative interactions felt by the heavy quarks are stronger than within the weak-coupling expansion. Using an Ansatz for the spectral function which includes NNLO perturbative contributions we were able to determine, for the first time, a continuum estimate for the heavy quark momentum diffusion coefficient.
Continuum estimate of the heavy quark momentum diffusion coefficient $?$
Olaf Kaczmarek
2014-09-12
Among quantities playing a central role in the theoretical interpretation of heavy ion collision experiments at RHIC and LHC are so-called transport coefficients. Out of those heavy quark diffusion coefficients play an important role e.g. for the analysis of the quenching of jets containing c or b quarks (D or B mesons) as observed at RHIC and LHC. We report on a lattice investigation of heavy quark momentum diffusion within pure SU(3) plasma above the deconfinement transition with the quarks treated to leading order in the heavy mass expansion. We measure the relevant colour-electric Euclidean correlator and based on several lattice spacings perform the continuum extrapolation. This extends our previous studies progressing towards a removal of lattice artifacts and a physical interpretation of the results. We find that the correlation function clearly exceeds its perturbative counterpart which suggests that at temperatures just above the critical one, non-perturbative interactions felt by the heavy quarks are stronger than within the weak-coupling expansion. Using an Ansatz for the spectral function which includes NNLO perturbative contributions we were able to determine, for the first time, a continuum estimate for the heavy quark momentum diffusion coefficient.
Estimating historic exposures at the European Gaseous Diffusion plants.
Guseva Canu, Irina; Faust, Ségolène; Knieczak, Eric; Carles, Michel; Samson, Eric; Laurier, Dominique
2013-07-01
This paper describes the methods and results of an occupational exposure assessment covering 30 years of operation of the EURODIF establishment (1978-2008). The exposure assessment includes radiological, physical and chemical hazards, and takes into account of organizational changes at the establishment. Furthermore, it includes efforts to better quantify the levels of exposures using available industrial hygiene and health physics data. In total, 227 workers participated in the assessment of 26 different occupational exposures in 102 general workstations through 1978-2008. Only 7% of exposure levels were rectified by experts for internal consistency reasons. Noise, heat, trichloroethylene and soluble uranium compounds were the most prevalent exposures at the plant although their levels tended to decrease across time. Assessments of occupational exposure to noise based on JEM exposure levels were fairly well correlated with noise measurement data (Spearman's correlation coefficient, ?=0.43) while JEM-based assessments of uranium exposure were not well correlated with uranium atmospheric measurements. This study demonstrates the importance of non-radiological exposure in the nuclear fuel industry and highlights the difficulties in managing the risks arising from these exposures. Occupational exposures remain difficult to quantify due to the scarcity of reliable monitoring data and the absence of binding occupational exposure limits for some of considered hazards. PMID:22939882
Singhal, M.K.; Kincaid, J.H.; Hammond, C.R.; Stockdale, B.I.; Walls, J.C. [Oak Ridge National Lab., TN (United States). Technical Programs and Services; Brock, W.R.; Denton, D.R. [Lockheed Martin Energy Systems, Inc., Oak Ridge, TN (United States)
1995-12-31
In support of the Gaseous Diffusion Plant Safety Analysis Report Upgrade program (GDP SARUP), a natural phenomena hazards evaluation was performed for the main process equipment and piping in the uranium enrichment buildings at Paducah and Portsmouth gaseous diffusion plants. In order to reduce the cost of rigorous analyses, the evaluation methodology utilized a graded approach based on an experience data base collected by SQUG/EPRI that contains information on the performance of industrial equipment and piping during past earthquakes. This method consisted of a screening walkthrough of the facility in combination with the use of engineering judgment and simple calculations. By using these screenings combined with evaluations that contain decreasing conservatism, reductions in the time and cost of the analyses were significant. A team of experienced seismic engineers who were trained in the use of the DOE SQUG/EPRI Walkdown Screening Material was essential to the success of this natural phenomena hazards evaluation.
Takeda, M.; Hiratsuka, T.; Ito, K.; Finsterle, S.
2011-02-01
Diffusion anisotropy is a critical property in predicting migration of substances in sedimentary formations with very low permeability. The diffusion anisotropy of sedimentary rocks has been evaluated mainly from laboratory diffusion experiments, in which the directional diffusivities are separately estimated by through-diffusion experiments using different rock samples, or concurrently by in-diffusion experiments in which only the tracer profile in a rock block is measured. To estimate the diffusion anisotropy from a single rock sample, this study proposes an axisymmetric diffusion test, in which tracer diffuses between a cylindrical rock sample and a surrounding solution reservoir. The tracer diffusion between the sample and reservoir can be monitored from the reservoir tracer concentrations, and the tracer profile could also be obtained after dismantling the sample. Semi-analytical solutions are derived for tracer concentrations in both the reservoir and sample, accounting for an anisotropic diffusion tensor of rank two as well as the dilution effects from sampling and replacement of reservoir solution. The transient and steady-state analyses were examined experimentally and numerically for different experimental configurations, but without the need for tracer profiling. These experimental configurations are tested for in- and out-diffusion experiments using Koetoi and Wakkanai mudstones and Shirahama sandstone, and are scrutinized by a numerical approach to identify favorable conditions for parameter estimation. The analysis reveals the difficulty in estimating diffusion anisotropy; test configurations are proposed for enhanced identifiability of diffusion anisotropy. Moreover, it is demonstrated that the axisymmetric diffusion test is efficient in obtaining the sorption parameter from both steady-state and transient data, and in determining the effective diffusion coefficient if isotropic diffusion is assumed. Moreover, measuring reservoir concentrations in an axisymmetric diffusion experiment coupled with tracer profiling may be a promising approach to estimate of diffusion anisotropy of sedimentary rocks.
Takeda, M; Hiratsuka, T; Ito, K; Finsterle, S
2011-04-25
Diffusion anisotropy is a critical property in predicting migration of substances in sedimentary formations with very low permeability. The diffusion anisotropy of sedimentary rocks has been evaluated mainly from laboratory diffusion experiments, in which the directional diffusivities are separately estimated by through-diffusion experiments using different rock samples, or concurrently by in-diffusion experiments in which only the tracer profile in a rock block is measured. To estimate the diffusion anisotropy from a single rock sample, this study proposes an axisymmetric diffusion test, in which tracer diffuses between a cylindrical rock sample and a surrounding solution reservoir. The tracer diffusion between the sample and reservoir can be monitored from the reservoir tracer concentrations, and the tracer profile could also be obtained after dismantling the sample. Semi-analytical solutions are derived for tracer concentrations in both the reservoir and sample, accounting for an anisotropic diffusion tensor of rank two as well as the dilution effects from sampling and replacement of reservoir solution. The transient and steady-state analyses were examined experimentally and numerically for different experimental configurations, but without the need for tracer profiling. These experimental configurations are tested for in- and out-diffusion experiments using Koetoi and Wakkanai mudstones and Shirahama sandstone, and are scrutinized by a numerical approach to identify favorable conditions for parameter estimation. The analysis reveals the difficulty in estimating diffusion anisotropy; test configurations are proposed for enhanced identifiability of diffusion anisotropy. Moreover, it is demonstrated that the axisymmetric diffusion test is efficient in obtaining the sorption parameter from both steady-state and transient data, and in determining the effective diffusion coefficient if isotropic diffusion is assumed. Moreover, measuring reservoir concentrations in an axisymmetric diffusion experiment coupled with tracer profiling may be a promising approach to estimate of diffusion anisotropy of sedimentary rocks. PMID:21288593
Butenhoff, T.J.; Goemans, M.G.E.; Buelow, S.J. [Los Alamos National Lab., NM (United States)] [Los Alamos National Lab., NM (United States)
1996-04-04
Binary mass diffusion coefficients and thermal diffusivities for hydrothermal sodium nitrate solutions as a function of pressure (270 < P < 1000 bar), temperature (400 < T < 500{degree}C), and concentration (0.25 < C < 3.0 m) were measured by the laser-induced grating technique. In concentrated hydrothermal NaNO{sub 3} systems, the critical slowing down was significant as far as 300 bar from the phase-separation pressure, resulting in binary diffusion coefficients near the critical point that are comparable to values at ambient conditions. Further from the critical point the mass diffusion coefficients plateaued at their ordinary values. Ordinary binary mass diffusion was about 15 times faster than at 25{degree}C and atmospheric pressure. The Wilke-Chang correlation also yielded good predictions when the solute molar volume was defined as the volume of the hydrated contact ion pair. Predictions can be improved by about 10% if the degree of association can be calculated. Thermal diffusion coefficients (Soret effect) at 450{degree}C were also measured and are about 250 times faster than at ambient conditions. The laser-induced grating technique was found to be highly complementary to the Taylor dispersion technique for diffusion measurements in hydrothermal systems. 88 refs., 10 figs., 3 tabs.
Diffusion coefficients of fluorescent organic molecules in inert gases
NASA Astrophysics Data System (ADS)
Rolin, Cedric; Forrest, Stephen R.
2013-07-01
We use arrested-flow pulse broadening to measure the diffusion coefficients of four archetype organic semiconductors in two carrier gases, N2 and Ar, with a precision of 5%. The measurements are realized by the injection and transport of pulses of organic molecules in an organic vapor phase deposition chamber, followed by their detection using laser induced fluorescence that dynamically measures the organic concentration in the gas phase. Measurements show that the diffusivity of tris(8-hydroxyquinoline) aluminum (Alq3) in N2 and Ar varies as the square of the temperature and inversely with pressure over a large range of gas conditions. We show that classical Chapman-Enskog theory can be used to approximate the diffusivity with an accuracy that depends on the physical dimensions of the organic molecular species, with the most accurate predictions for spherical and rigid molecules such as Alq3.
Environmental Restoration Site-Specific Plan for the Paducah Gaseous Diffusion Plant, FY 93
Not Available
1993-01-15
This report provides an overview of the major Environmental Restoration (ER) concerns at Paducah Gaseous Diffusion Plant (PGDP). The identified solid waste management units at PGDP are listed. In the Department of Energy (DOE) Five Year Plan development process, one or more waste management units are addressed in a series of activity data sheets (ADSs) which identify planned scope, schedule, and cost objectives that are representative of the current state of planned technical development for individual or multiple sites.
NASA Technical Reports Server (NTRS)
Tenney, D. R.; Unnam, J.
1978-01-01
Diffusion calculations were performed to establish the conditions under which concentration dependence of the diffusion coefficient was important in single, two, and three phase binary alloy systems. Finite-difference solutions were obtained for each type of system using diffusion coefficient variations typical of those observed in real alloy systems. Solutions were also obtained using average diffusion coefficients determined by taking a logarithmic average of each diffusion coefficient variation considered. The constant diffusion coefficient solutions were used as reference in assessing diffusion coefficient variation effects. Calculations were performed for planar, cylindrical, and spherical geometries in order to compare the effect of diffusion coefficient variations with the effect of interface geometries. In most of the cases considered, the diffusion coefficient of the major-alloy phase was the key parameter that controlled the kinetics of interdiffusion.
Response of radiation belt simulations to different radial diffusion coefficients
NASA Astrophysics Data System (ADS)
Drozdov, A.; Shprits, Y.; Subbotin, D.; Kellerman, A. C.
2013-12-01
Resonant interactions between Ultra Low Frequency (ULF) waves and relativistic electrons may violate the third adiabatic invariant of motion, which produces radial diffusion in the electron radiation belts. This process plays an important role in the formation and structure of the outer electron radiation belt and is important for electron acceleration and losses in that region. Two parameterizations of the resonant wave-particle interaction of electrons with ULF waves in the magnetosphere by Brautigam and Albert [2000] and Ozeke et al. [2012] are evaluated using the Versatile Electron Radiation Belt (VERB) diffusion code to estimate their relative effect on the radiation belt simulation. The period of investigation includes quiet time and storm time geomagnetic activity and is compared to data based on satellite observations. Our calculations take into account wave-particle interactions represented by radial diffusion transport, local acceleration, losses due to pitch-angle diffusion, and mixed diffusion. We show that the results of the 3D diffusion simulations depend on the assumed parametrization of waves. The differences between the simulations and potential missing physical mechanisms are discussed. References Brautigam, D. H., and J. M. Albert (2000), Radial diffusion analysis of outer radiation belt electrons during the October 9, 1990, magnetic storm, J. Geophys. Res., 105(A1), 291-309, doi:10.1029/1999JA900344 Ozeke, L. G., I. R. Mann, K. R. Murphy, I. J. Rae, D. K. Milling, S. R. Elkington, A. A. Chan, and H. J. Singer (2012), ULF wave derived radiation belt radial diffusion coefficients, J. Geophys. Res., 117, A04222, doi:10.1029/2011JA017463.
Modeling Infinite Dilution and Fickian Diffusion Coefficients of Carbon Dioxide in Water
Firoozabadi, Abbas
Modeling Infinite Dilution and Fickian Diffusion Coefficients of Carbon Dioxide in Water J. Wambui infinite dilution diffusion coefficients for carbon dioxide and water mixtures. The model takes, carbon dioxide, classical thermodynamics Introduction The increase in atmospheric concentrations of CO2
NASA Technical Reports Server (NTRS)
Weinstein, H.; Lavan, Z.
1975-01-01
Analytical investigations of fluid dynamics problems of relevance to the gaseous core nuclear reactor program are presented. The vortex type flow which appears in the nuclear light bulb concept is analyzed along with the fluid flow in the fuel inlet region for the coaxial flow gaseous core nuclear reactor concept. The development of numerical methods for the solution of the Navier-Stokes equations for appropriate geometries is extended to the case of rotating flows and almost completes the gas core program requirements in this area. The investigations demonstrate that the conceptual design of the coaxial flow reactor needs further development.
Calculation of combined diffusion coefficients in SF{sub 6}-Cu mixtures
Zhong, Linlin; Wang, Xiaohua, E-mail: xhw@mail.xjtu.edu.cn; Rong, Mingzhe, E-mail: mzrong@mail.xjtu.edu.cn; Wu, Yi [State Key Laboratory of Electrical Insulation and Power Equipment, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049 (China); Murphy, Anthony B. [CSIRO Manufacturing Flagship, P.O. Box 218, Lindfield, NSW 2070 (Australia)
2014-10-15
Diffusion coefficients play an important role in the description of the transport of metal vapours in gas mixtures. This paper is devoted to the calculation of four combined diffusion coefficients, namely, the combined ordinary diffusion coefficient, combined electric field diffusion coefficient, combined temperature diffusion coefficient, and combined pressure diffusion coefficient in SF{sub 6}-Cu mixtures at temperatures up to 30?000?K. These four coefficients describe diffusion due to composition gradients, applied electric fields, temperature gradients, and pressure gradients, respectively. The influence of copper fluoride and sulfide species on the diffusion coefficients is shown to be negligible. The effect of copper proportion and gas pressures on these diffusion coefficients is investigated. It is shown that increasing the proportion of copper generally increases the magnitude of the four diffusion coefficients, except for copper mole fractions of 90% or more. It is further found that increasing the pressure reduces the magnitude of the coefficients, except for the combined temperature diffusion coefficient, and shifts the maximum of all four coefficients towards higher temperatures. The results presented in this paper can be applied to the simulation of high-voltage circuit breaker arcs.
A pumping system for measuring coastal diffusion coefficients
Bolen, Zane Kevin
1980-01-01
) Tsung om Su, Eng. Sc. D. , P. E, (Member) Thomas N. Spen e, P'n. D. ( Mer. . b e r) Donald McDonald, Ph. D. , P. E. (Head of Department) May 19SO ASST. RACT A Pumping System for Neasuring Coastal Diffusion Coefficients. (Nay 1980) Zane Kevin... Bolen B. S. , Texas A&N University Chairman of Advisory Committee: Dr. Robert E. Randall The design of a pumping system to deliver a continuous water sample onboard Texas A&N University's R/V EXCELLENCE and subsequent application to measure surface...
Conservation Laws of Variable Coefficient Diffusion-Convection Equations
N. M. Ivanova; R. O. Popovych; C. Sophocleous
2005-01-01
We study local conservation laws of variable coefficient diffusion-convection\\u000aequations of the form $f(x)u_t=(g(x)A(u)u_x)_x+h(x)B(u)u_x$. The main tool of\\u000aour investigation is the notion of equivalence of conservation laws with\\u000arespect to the equivalence groups. That is why, for the class under\\u000aconsideration we first construct the usual equivalence group $G^{\\\\sim}$ and the\\u000aextended one $\\\\hat G^{\\\\sim}$ including transformations which are
J. K. Platten; M. M. Bou-Ali; P. Costesèque; J. F. Dutrieux; W. Köhler; C. Leppla; S. Wiegand; G. Wittko
2003-01-01
With the aim of providing reliable benchmark values, we have measured the Soret, diffusion and thermal diffusion coefficients of the three binary mixtures of dodecane, isobutylbenzene and 1,2,3,4 tetrahydronaphthalene for a concentration of 50 wt% at a temperature of 25°C. The experimental techniques applied by the five participating laboratories are transient holographic gratings, annular and parallelepipedic thermogravitational columns, and vertical
Ca–Mg diffusion in diopside: tracer and chemical inter-diffusion coefficients
Xiaoyu Zhang; Jibamitra Ganguly; Motoo Ito
2010-01-01
We have experimentally determined the tracer diffusion coefficients (D*) of 44Ca and 26Mg in a natural diopside (~Di96) as function of crystallographic direction and temperature in the range of 950–1,150 °C at 1 bar and f(O2) corresponding to those of the WI buffer. The experimental data parallel to the a*, b, and c crystallographic directions show significant diffusion anisotropy in the
Paris-Sud XI, UniversitÃ© de
Chemical oxygen diffusion coefficient measurement by conductivity relaxation--correlation between J. P., Grenier J. C., Loup J. P. ABSTRACT Chemical oxygen diusion coecient Â¯(D)was measured the oxygen partial pressure in the surrounding atmosphere of the sample. The consequent evolution
Sykora, D.W.; Davis, J.J.
1993-08-01
The Paducah Gaseous Diffusion Plant (PGDP), owned by the US Department of Energy (DOE) and operated under contract by Martin Marietta Energy systems, Inc., is located southwest of Paducah, Kentucky. An aerial photograph and an oblique sketch of the plant are shown in Figures 1 and 2, respectively. The fenced portion of the plant consists of 748 acres. This plant was constructed in the 1950`s and is one of only two gaseous diffusion plants in operation in the United States; the other is located near Portsmouth, Ohio. The facilities at PGDP are currently being evaluated for safety in response to natural seismic hazards. Design and evaluation guidelines to evaluate the effects of earthquakes and other natural hazards on DOE facilities follow probabilistic hazard models that have been outlined by Kennedy et al. (1990). Criteria also established by Kennedy et al. (1990) classify diffusion plants as ``moderate hazard`` facilities. The US Army Engineer Waterways Experiment Station (WES) was tasked to calculate the site response using site-specific design earthquake records developed by others and the results of previous geotechnical investigations. In all, six earthquake records at three hazard levels and four individual and one average soil columns were used.
NONE
1995-10-01
The US Department of Energy (DOE), Office of Waste Management, proposes to construct and operate a solid waste landfill within the boundary of the Portsmouth Gaseous Diffusion Plant (PORTS), Piketon, Ohio. The purpose of the proposed action is to provide PORTS with additional landfill capacity for non-hazardous and asbestos wastes. The proposed action is needed to support continued operation of PORTS, which generates non-hazardous wastes on a daily basis and asbestos wastes intermittently. Three alternatives are evaluated in this environmental assessment (EA): the proposed action (construction and operation of the X-737 landfill), no-action, and offsite shipment of industrial solid wastes for disposal.
Sheaffer, M.K.; Keeton, S.C.; Lutz, H.F.
1995-06-01
This report evaluates nuclear criticality safety for large cylinder cleaning operations in the Decontamination and Recovery Facility, X-705, at the Portsmouth Gaseous Diffusion Plant. A general description of current cleaning procedures and required hardware/equipment is presented, and documentation for large cylinder cleaning operations is identified and described. Control parameters, design features, administrative controls, and safety systems relevant to nuclear criticality are discussed individually, followed by an overall assessment based on the Double Contingency Principle. Recommendations for enhanced safety are suggested, and issues for increased efficiency are presented.
Cleanup operations at the Oak Ridge Gaseous Diffusion Plant contaminated metal scrapyard
Williams, L.C.
1987-01-01
Cleanup operations at the contaminated metal storage yard located at the Oak Ridge, Tennessee, Gaseous Diffusion Plant have been completed. The storage yard, in existence since the early 1970s, contained an estimated 35,000 tons of mixed-type metals spread over an area of roughly 30 acres. The overall cleanup program required removing the metal from the storage yard, sorting by specific metal types, and size reduction of specific types for future processing. This paper explains the methods and procedures used to accomplish this task.
Socolof, M.L.; Saylor, R.E.; McCold, L.N.
1994-06-01
The US Department of Energy (DOE) formerly operated two gaseous diffusion plants (GDPs) for enriching uranium and maintained a third shutdown GDP. These plants maintain a large inventory of dichlorotetrafluorethane (CFC-114), a cholorofluorocarbon (CFC), as a coolant. The paper evaluates the global impacts of four alternatives to modify GDP coolant system operations for a three-year period beginning in 1996. Interim modification of GDP coolant system operations has the potential to reduce stratospheric ozone depletion from GDP coolant releases while a permanent solution is studied.
Howard Lundgren Brooks
1981-01-01
A comprehensive set of measurements of the electron drift velocities and apparent ion formation cross sections has been completed for gaseous mixtures containing mercuric bromide using electron swarm techniques. Results are presented for binary mixtures of HgBr(,2) and the rare gases neon, argon and xenon, with the concentration of HgBr(,2) varied from 0.01% to 0.2% of the total. None of
Sigaut, Lorena; Pearson, John E.; Colman-Lerner, Alejandro; Ponce Dawson, Silvina
2014-01-01
The gradient of Bicoid (Bcd) is key for the establishment of the anterior-posterior axis in Drosophila embryos. The gradient properties are compatible with the SDD model in which Bcd is synthesized at the anterior pole and then diffuses into the embryo and is degraded with a characteristic time. Within this model, the Bcd diffusion coefficient is critical to set the timescale of gradient formation. This coefficient has been measured using two optical techniques, Fluorescence Recovery After Photobleaching (FRAP) and Fluorescence Correlation Spectroscopy (FCS), obtaining estimates in which the FCS value is an order of magnitude larger than the FRAP one. This discrepancy raises the following questions: which estimate is "correct''; what is the reason for the disparity; and can the SDD model explain Bcd gradient formation within the experimentally observed times? In this paper, we use a simple biophysical model in which Bcd diffuses and interacts with binding sites to show that both the FRAP and the FCS estimates may be correct and compatible with the observed timescale of gradient formation. The discrepancy arises from the fact that FCS and FRAP report on different effective (concentration dependent) diffusion coefficients, one of which describes the spreading rate of the individual Bcd molecules (the messengers) and the other one that of their concentration (the message). The latter is the one that is more relevant for the gradient establishment and is compatible with its formation within the experimentally observed times. PMID:24901638
Engle, Mark A.; Olea, Ricardo A.; O'Keefe, Jennifer M. K.; Hower, James C.; Geboy, Nicholas J.
2013-01-01
Coal fires occur in nature spontaneously, contribute to increases in greenhouse gases, and emit atmospheric toxicants. Increasing interest in quantifying coal fire emissions has resulted in the adaptation and development of specialized approaches and adoption of numerical modeling techniques. Overview of these methods for direct estimation of diffuse gas emissions from coal fires is presented in this paper. Here we take advantage of stochastic Gaussian simulation to interpolate CO2 fluxes measured using a dynamic closed chamber at the Ruth Mullins coal fire in Perry County, Kentucky. This approach allows for preparing a map of diffuse gas emissions, one of the two primary ways that gases emanate from coal fires, and establishing the reliability of the study both locally and for the entire fire. Future research directions include continuous and automated sampling to improve quantification of gaseous coal fire emissions.
On the structure of gaseous confined laminar diffusion flames: Numerical investigation
NASA Astrophysics Data System (ADS)
Mawid, M. A.; Bulzan, D. L.; Aggarwal, S. K.
1993-02-01
The structure and characteristics of gaseous confined laminar diffusion flames are investigated by numerically solving the time-dependent two-dimensional axisymmetric conservation equations. The numerical model accounts for the important chemical and physical processes involved, including axial diffusion, viscous effects, radial convection, and finite-rate chemistry. The numerical results clearly show that the flame has a finite thickness and leakage of fuel vapor into the flame zone is possible. The effect of heat release is found to induce some radial flow. Predicted flame shape and dimensions are compared to the classical Burke-Schumann flame. The numerically calculated flame is observed to be about 15 percent taller and 5 percent narrower than that of the Burke-Schumann solution under the same conditions.
NASA Astrophysics Data System (ADS)
Kwan, Timothy
This work investigates the extinction limits of laminar diffusion counterflow flames for various gaseous (methane, syngas, biogas) fuels using a high flow rate counterflow burner designed and built for this work. Equal momenta of the fuel and oxidizer streams were not maintained to provide data to check the fidelity of the numerical schemes and their chemical mechanisms at "non-standard" conditions. Strain rate values at extinction were obtained as a function of fuel mole fraction. Preliminary work with the new burner found that the methane extinction limit results were consistent with results from literature. The results provide insight into the extinction limit conditions of the aforementioned fuels. The strain rate was found to increase with increasing fuel mole fraction. Extinction limit results indicated that fuels with the highest concentration of hydrogen have the greatest extinction limit, which is believed to be attributed to the high diffusivity and reactivity of hydrogen.
On the structure of gaseous confined laminar diffusion flames: Numerical investigation
NASA Technical Reports Server (NTRS)
Mawid, M. A.; Bulzan, D. L.; Aggarwal, S. K.
1993-01-01
The structure and characteristics of gaseous confined laminar diffusion flames are investigated by numerically solving the time-dependent two-dimensional axisymmetric conservation equations. The numerical model accounts for the important chemical and physical processes involved, including axial diffusion, viscous effects, radial convection, and finite-rate chemistry. The numerical results clearly show that the flame has a finite thickness and leakage of fuel vapor into the flame zone is possible. The effect of heat release is found to induce some radial flow. Predicted flame shape and dimensions are compared to the classical Burke-Schumann flame. The numerically calculated flame is observed to be about 15 percent taller and 5 percent narrower than that of the Burke-Schumann solution under the same conditions.
NONE
1995-09-01
The Background Soils Project for the Paducah Gaseous Diffusion Plant (BSPP) will determine the background concentration levels of selected naturally occurring metals, other inorganics, and radionuclides in soils from uncontaminated areas in proximity to the Paducah Gaseous Diffusion Plant (PGDP) in Paducah, Kentucky. The data will be used for comparison with characterization and compliance data for soils, with significant differences being indicative of contamination. All data collected as part of this project will be in addition to other background databases established for the PGDP. The BSPP will address the variability of surface and near-surface concentration levels with respect to (1) soil taxonomical types (series) and (2) soil sampling depths within a specific soil profile. The BSPP will also address the variability of concentration levels in deeper geologic formations by collecting samples of geologic materials. The BSPP will establish a database, with recommendations on how to use the data for contaminated site assessment, and provide data to estimate the potential human and health and ecological risk associated with background level concentrations of potentially hazardous constituents. BSPP data will be used or applied as follows.
Diffusion coefficient and radial gradient of galactic cosmic rays
Modzelewska, Renata
2015-01-01
We present the temporal changes of the diffusion coefficient K of galactic cosmic rays (GCRs) at the Earth orbit calculated based on the experimental data using two different methods. The first approach is based on the Parker convection-diffusion approximation of GCR modulation [1]: i.e. K~Vr=dI where dI is the variation of the GCR intensity measured by neutron monitors (NM),V is the solar wind velocity and r is the radial distance. The second approach is based on the interplanetary magnetic field (IMF) data. It was suggested that parallel mean free path can be expressed in terms of B as in [2]-[4]. Using data of the product of the parallel mean free path and radial gradient of GCR calculated based on the GCR anisotropy data (Ahluwalia et al., this conference ICRC 2013, poster ID: 487 [5]), we estimate the temporal changes of the radial gradient of GCR at the Earth orbit. We show that the radial gradient exhibits a strong solar cycle dependence (11-year variation) and a weak solar magnetic cycle dependence (2...
Paris-Sud XI, Université de
Diffusion coefficient of vegetation: measurements and simulation Y. Smyrnova, J. Kang, C. Blackford reports the initial results of an investigation of the diffuse sound reflection from two typical bedding at reducing noise from urban traffic. Directional diffusion coefficients of the plants have been measured
The solid-phase diffusion coefficient (Dm) and material-air partition coefficient (Kma) are key parameters for characterizing the sources and transport of semivolatile organic compounds (SVOCs) in the indoor environment. In this work, a new experimental method was developed to es...
Experimental study on flow and gaseous diffusion behind an isolated building.
Yassin, Mohamed F; Ohba, Masaake; Tanaka, Hideyuki
2008-12-01
To assist validation of numerical models of urban pollution dispersion, the effect of obstacles building on the gaseous diffusion in the wake region have been investigated experimentally in the boundary layer wind tunnel under neutral atmospheric conditions using a tracer gas technique from a point source without buoyancy. The flow and diffusion fields in the boundary layer in an urban environment were investigated in the downwind distance of the obstacle building using an isolated high-rise building model. The scale of the model experiment was assumed to be at 1:500. In the experiment, gaseous pollutant was discharged in the simulated boundary layer over the flat terrain. The effluent velocity of the pollutant was set to be negligible. The velocity field and the turbulence characteristics were analyzed and measured using a hot wire anemometer with a split-fibre probe. The experimental technique was involved the continuous release of tracer gas from a ground level source which was located in the downwind distance of the obstacle model and measured using a fast flame ionization detector (FID). Diffusion characteristics were studied and included both the vertical and lateral mean concentrations and concentration fluctuation intensity at various downwind distances. The results of study were demonstrated that the vertical profiles of the longitudinal mean velocity are very thick around the obstacle wake region due to the turbulence mixing and the smoothing of concentration differences was increased with downwind distance from the obstacle model. Furthermore, the experimental results can help to improve the understanding of mechanisms of pollutant dispersion in an urban environment and also use to validate the corresponding computational fluid dynamics (CFD) prediction. PMID:18193336
Sykora, D.W.; Yule, D.E.
1996-04-01
This report documents a reassessment of liquefaction potential and estimation of earthquake-induced settlements for the U.S. Department of Energy (DOE), Paducah Gaseous Diffusion Plant (PGDP), located southwest of Paducah, KY. The U.S. Army Engineer Waterways Experiment Station (WES) was authorized to conduct this study from FY91 to FY94 by the DOE, Oak Ridge Operations (ORO), Oak Ridge, TN, through Inter- Agency Agreement (IAG) No. DE-AI05-91OR21971. The study was conducted under the Gaseous Diffusion Plant Safety Analysis Report (GDP SAR) Program.
Shalchi, A., E-mail: andreasm4@yahoo.com [Department of Physics and Astronomy, University of Manitoba, Winnipeg, Manitoba R3T 2N2 (Canada)
2013-09-01
We explore perpendicular diffusion based on the unified nonlinear transport theory. We derive simple analytical forms for the perpendicular mean free path and investigate the influence of different model spectra. We show that for cases where the field line random walk is normal diffusive, the perpendicular diffusion coefficient consists of only two transport regimes. Details of the spectral shape are less important, especially those of the inertial range. Only the macroscopic properties of the turbulence spectrum control the perpendicular diffusion coefficient. Simple formulae for the perpendicular diffusion coefficient are derived which can easily be implemented in solar modulation or shock acceleration codes.
Study of technetium uptake in vegetation in the vicinity of the Portsmouth Gaseous Diffusion Plant
Acox, T.A.
1982-01-01
Technetium-99 was measured in vegetation and soil collected on and near the Portsmouth Gaseous Diffusion Plant to obtain an estimate of the soil-to-vegetation concentration factors. The concentration factors appear to be lognormally distributed with a geometric mean of 3.4 (Bq/kg dry wt. tissue per Bq/kg dry wt. soil) and a geometric standard deviation of 4.7. A dose commitment was calculated using a hypothetical 3.7 x 10/sup 10/ Bq Tc-99/year release and the actual CY-1981 concentration release of Tc-99. The radiological significance of Tc-99 in the terrestial food chain is substantially less than previously believed.
Health-physics survey report of Portsmouth Gaseous Diffusion Plant, Piketon, Ohio
Bloom, T.F.
1987-09-01
A surface alpha-activity industry-wide study was conducted at the Portsmouth Gaseous Diffusion Facility, Piketon, Ohio, as part of a response to a request from the Oil, Chemical, and Atomic Workers International Union for a cohort mortality study. The facility, operated under contract to the Department of Energy (DOE), was involved in enrichment of uranium-235 in uranium-hexafluoride gas for nuclear power and national defense purposes. A removable alpha surface-activity survey was conducted as a cross check of urinalysis data. Methodology involved comparing the numerical order in decreasing value of building geometric mean removable alpha-values with a numerical order of calculated urine alpha-value indices associated with departments in the buildings. For all surfaces measured, activity levels in the six buildings were well below the derived surface-contamination limit.
A probabilistic safety analysis of UF{sub 6} handling at the Portsmouth Gaseous Diffusion Plant
Boyd, G.J.; Lewis, S.R.; Summitt, R.L. [Safety and Reliability Optimization Services (SAROS), Inc., Knoxville, TN (United States)
1991-12-31
A probabilistic safety study of UF{sub 6} handling activities at the Portsmouth Gaseous Diffusion Plant has recently been completed. The analysis provides a unique perspective on the safety of UF{sub 6} handling activities. The estimated release frequencies provide an understanding of current risks, and the examination of individual contributors yields a ranking of important plant features and operations. Aside from the probabilistic results, however, there is an even more important benefit derived from a systematic modeling of all operations. The integrated approach employed in the analysis allows the interrelationships among the equipment and the required operations to be explored in depth. This paper summarizes the methods used in the study and provides an overview of some of the technical insights that were obtained. Specific areas of possible improvement in operations are described.
Kszos, L.A. [ed.
1994-03-01
On September 23, 1987, the Commonwealth of Kentucky Natural Resources and Environmental Protection Cabinet issued an Agreed Order that required the development of a Biological Monitoring Program (BMP) for the Paducah Gaseous Diffusion Plant (PGDP). Beginning in fall 1991, the Environmental Sciences Division (ESD) at Oak Ridge National Lab (ORNL) added data collection and report preparation to its responsibilities for the PGDP BMP. The BMP has been continued because it has proven to be extremely valuable in identifying those effluents with the potential for adversely affecting instream fauna, assessing the ecological health of receiving streams, guiding plans for remediation, and protecting human health. In September 1992, a renewed permit was issued which requires toxicity monitoring of continuous and intermittent outfalls on a quarterly basis. The BMP for PGDP consists of three major tasks: (1) effluent and ambient toxicity monitoring, (2) bioaccumulation studies, and (3) ecological surveys of stream communities. This report includes ESD/ORNL activities occurring from December 1990 to November 1992.
Kszos, L.A.; Hinzman, R.L.; Peterson, M.J.; Ryon, M.G.; Smith, J.G.; Southworth, G.R.
1995-06-01
On September 24, 1987, the Commonwealth of Kentucky Natural Resources and Environmental Protection Cabinet issued an Agreed Order that required the development of a Biological Monitoring Program (BMP) for the Paducah Gaseous Diffusion Plant (PGDP). The goals of BMP are to demonstrate that the effluent limitations established for PGDP protect and maintain the use of Little Bayou and Big Bayou creeks for growth and propagation of fish and other aquatic life, characterize potential health and environmental impacts, document the effects of pollution abatement facilities on stream biota, and recommend any program improvements that would increase effluent treatability. The BMP for PGDP consists of three major tasks: effluent and ambient toxicity monitoring, bioaccumulation studies, and ecological surveys of stream communities (i.e., benthic macroinvertebrates and fish). This report includes ESD activities occurring from December 1992 to December 1993, although activities conducted outside this time period are included as appropriate.
Seismically-induced soil amplification at the DOE Paducah Gaseous Diffusion Plant site
Sykora, D.W.; Haynes, M.E. (Army Engineer Waterways Experiment Station, Vicksburg, MS (United States). Geotechnical Lab.); Brock, W.R.; Hunt, R.J.; Shaffer, K.E. (Martin Marietta Energy Systems, Inc., Oak Ridge, TN (United States))
1991-01-01
A site-specific earthquake site response (soil amplification) study is being conducted for the Department of Energy (DOE), Paducah Gaseous Diffusion Plant (PGDP). This study is pursuant to an upgraded Final Safety Analysis Report in accordance with requirements specified by DOE. The seismic hazard at PGDP is dominated by the New Madrid Seismic Zone. Site-specific synthetic earthquake records developed by others were applied independently to four soil columns with heights above baserock of about 325 ft. The results for the 1000-year earthquake event indicate that the site period is between 1.0 and 1.5 sec. Incident shear waves are amplified at periods of motion greater than 0.15 sec. The peak free-field horizontal acceleration, occurring at very low periods, is 0.28 g. 13 refs., 13 figs.
Portsmouth Gaseous Diffusion Plant Annual Site Environmental Report summary for 1993
Not Available
1994-11-01
This report contains summaries of the environmental programs at Paducah Gaseous Diffusion Plant, environmental monitoring and the results, and the impact of operations on the environment and the public for 1993. The environmental monitoring program at Paducah includes effluent monitoring and environmental surveillance. Effluent monitoring is measurement of releases as they occur. Contaminants are released through either airborne emissions or liquids discharged from the plant. These releases occur as part of normal site operations, such as cooling water discharged from the uranium enrichment cascade operations or airborne releases from ventilation systems. In the event of system failure, this monitoring provides timely warning so that corrective action can be taken before releases reach an unsafe level. Environmental surveillance tracks the dispersion of materials into the environment after they have been released. This involves the collection of samples from various media, such as water, soil, vegetation, and food crops, and the analysis of these samples for certain radionuclides, chemicals, and metals.
Not Available
1991-09-25
The Portsmouth Gaseous Diffusion Plant Security and Police Operations Department is responsible for protecting the US Department of Energy interests at the Portsmouth Plant from theft, sabotage, and other hostile acts that may adversely affect national security, the public health and safety, or property at the Department of Energy facility. This audit's purpose was to evaluate Martin Marietta Energy Systems, Inc.'s staff management at the Portsmouth Plant Security Department. The Portsmouth Plant Security Department could reduce operating cost up to an estimated $4.4 million over 5 years by: (1) Eliminating up to 14 unnecessary staff positions, and (2) reducing the length of relief breaks. These economies could be realized through implementing written operating procedures and negotiating removal of certain labor union restrictions. 2 tabs.
Wendel, M.W.; Chen, N.C.J.; Kim, S.H.; Taleyarkhan, R.P.; Keith, K.D.; Schmidt, R.W.
1996-06-01
A three-dimensional (3-D) computational fluid dynamics (CFD) model has been developed using CFDS-FLOW3D Version 3.3 to model the transport of aerosol products formed during a release of uranium hexafluoride (UF{sub 6}) into a gaseous diffusion plant (GDP) process building. As part of a facility-wide safety evaluation, a one-dimensional (1-D) analysis of aerosol/vapor transport following such an hypothesized severe accident is being performed. The objective of this study is to supplement the 1-D analysis with more detailed 3-D results. Specifically, the goal is to quantify the distribution of aerosol passing out of the process building during the hypothetical accident. This work demonstrates a useful role for CFD in large 3-D problems, where some experimental data are available for calibrating key parameters and the desired results are global (total time-integrated aerosol flow rates across a few boundary surfaces) as opposed to local velocities, temperatures, or heat transfer coefficients.
NASA Technical Reports Server (NTRS)
Goldman, H.; Wolf, M.
1979-01-01
The manufacturing methods for photovoltaic solar energy utilization are assessed. Economic and technical data on the current front junction formation processes of gaseous diffusion and ion implantation are presented. Future proposals, including modifying gaseous diffusion and using ion implantation, to decrease the cost of junction formation are studied. Technology developments in current processes and an economic evaluation of the processes are included.
NITRIC ACID-AIR DIFFUSION COEFFICIENT: EXPERIMENTAL DETERMINATION
Trace gaseous HNO3 in air is removed in a laminar flow nylon tube. The HNO3 deposition pattern was obtained by sectioning the tube, extracting with an aqueous solution, and measuring the concentration by ion chromatography. Mass transport analysis of the deposition pattern demons...
J. B. A. Mitchell; D. J. M. Miller
1989-01-01
An examination of soot growth patterns on a charged probe in a fuel-rich ethylene diffusion flame, with both metallic salt and gaseous additives present, has been made. Alkali salts, which are effective soot inhibitors, cause neutralization of soot particles, leading to reduced particle size and subsequent enhanced oxidation. The addition of freon to the fuel led to greatly increased sooting,
Measurements of molecular and thermal diffusion coefficients in ternary mixtures
Firoozabadi, Abbas
coefficients in ternary nonelec- trolytes and higher mixtures; Leaist and Hui1 have measured the Soret technique, Gans et al.2 have measured the Soret coefficients of a polymer and a colloid in ternary mixtures al.3 and Kita et al.4 have measured the polymer Soret coefficient in ternary mixtures of the same
Chemical diffusion coefficient of lithium in carbon fiber
Uchida, Takashi; Morikawa, Yasuyuki; Ikuta, Hiromasa; Wakihara, Masataka [Tokyo Inst. of Technology (Japan). Dept. of Chemical Engineering; Suzuki, Kimihito [Nippon Steel Corp., Kawasaki (Japan). Advanced Materials and Technology Research Labs.
1996-08-01
In order to obtain safer and more reversible negative electrodes for lithium secondary batteries, intensive research on various carbon materials, such as pyrolytic carbon, polyacrylonitrile- (PAN) based carbon, petroleum coke-based carbon, pitch-based carbon, etc., has been carried out in recent years. Electrochemical investigations on coal pitch-based carbon fiber (heat-treated at 2,800 C) were carried out. The open-circuit voltages of the Li{vert_bar}Li{sub x}C{sub 6} cell were lower than 0.15 V vs. Li/Li{sup +} in the range of 0.15 < x < 0.65. The open-circuit voltage profile vs x showed no distinct two-phase region in the present Li-carbon system in 0 < x < 0.65. Almost constant capacity of 220 mAh/g was observed until the 140th cycle in the cycling tests of the Li{vert_bar}carbon fiber cell (current density 25 mA/g). The compositional variation of the chemical diffusion coefficient of lithium {tilde D}{sub Li} at ambient temperature was measured by two different methods, i.e., the current pulse relaxation method and the potential step chronoamperometric method. Excellent agreement within one order of magnitude was observed between the two sets of {tilde D}{sub Li} values obtained from these two methods. The values were around 10{sup {minus}9.5} cm{sup 2}/s at x = 0 and decreased with increasing x. The {tilde D}{sub Li} values lay between 10{sup {minus}11} and 10{sup {minus}12} c/{sup 2}/s in x > 0.2.
D. R. A. McMahon; K. Ness; B. Shizgal
1986-01-01
The transient behaviour of the longitudinal and transverse diffusion coefficients of electrons in rare-gas moderators is studied with solutions of the Boltzmann equation. The method of solution employed is the discrete ordinate method employed in an earlier study of the transient behaviour of the energy, transverse diffusion coefficient and mobility for both zero electric field and finite field conditions. The
Form of multicomponent Fickian diffusion coefficients matrix J. Wambui Mutoru, Abbas Firoozabadi
Firoozabadi, Abbas
Form of multicomponent Fickian diffusion coefficients matrix J. Wambui Mutoru, Abbas Firoozabadi University, New Haven, CT, USA a r t i c l e i n f o Article history: Received 22 December 2010 Received diffusion Phenomenological coefficients Thermodynamic factors a b s t r a c t The form of multicomponent
Abstract In this study, we measure effective diffusion coefficients for trichloroethene in undisturbed soil samples taken from Picatinny Arsenal, New Jersey. The measured effective diffusion coefficients ranged from 0.0053 to 0.0609 cm2/s over a range of air...
Bernard J. Dardzinski; Christopher H. Sotak; Marc Fisher; Yasuhiro Hasegawa; Lirnin Li; Kazuo Minematsu
1993-01-01
Diffusion-weighted, echo-planar imaging (EPI) was used to map regional changes in the apparent diffusion coefficient (ADC) during experimental focal ischemia in the rat brain following permanent middle cerebral arterial occlusion (MCAO). Sixteen 64 x 64 diffusion-weighted EPIs were acquired in 32 s with successively increasing amplitudes of the diffusion-sensitive gradient pulses. A linear least-squares regression algorithm was used to fit
Kazuhiko Seki; Sanoop Ramachandran; Shigeyuki Komura
2011-07-22
The diffusion coefficient of a circular shaped inclusion in a liquid membrane is investigated by taking into account the interaction between membranes and bulk solvents of arbitrary thickness. As illustrative examples, the diffusion coefficients of two types of inclusions - a circular domain composed of fluid with the same viscosity as the host membrane and that of a polymer chain embedded in the membrane are studied.The diffusion coefficients are expressed in terms of the hydrodynamic screening lengths which vary according to the solvent thickness. When the membrane fluid is dragged by the solvent of finite thickness, via stick boundary conditions, multiple hydrodynamic screening lengths together with the weight factors to the diffusion coefficients are obtained from the dispersion relation. The condition for which the diffusion coefficients can be approximated by the expression including only a single hydrodynamic screening length are also shown.
PITCH-ANGLE DIFFUSION COEFFICIENTS OF CHARGED PARTICLES FROM COMPUTER SIMULATIONS
Qin, G. [State Key Laboratory of Space Weather, Center for Space Science and Applied Research, Chinese Academy of Sciences, Beijing 100190 (China); Shalchi, A. [Permanent Address: Institut fuer Theoretische Physik, Lehrstuhl IV: Weltraum- und Astrophysik, Ruhr-Universitaet Bochum, D-44780 Bochum, Germany. (Germany)
2009-12-10
Pitch-angle diffusion is a key process in the theory of charged particle scattering by turbulent magnetic plasmas. This process is usually assumed to be diffusive and can, therefore, be described by a pitch-angle diffusion or Fokker-Planck coefficient. This parameter controls the parallel spatial diffusion coefficient as well as the parallel mean free path of charged particles. In the present paper, we determine pitch-angle diffusion coefficients from numerical computer simulations. These results are then compared with results from analytical theories. Especially, we compare the simulations with quasilinear, second-order, and weakly nonlinear diffusion coefficients. Such a comparison allows the test of previous theories and will lead to an improved understanding of the mechanism of particle scattering.
Dietrich, Olaf; Hubert, Alexander; Heiland, Sabine
2014-06-21
The purpose of this study was to analyze and evaluate a model of restricted water diffusion between equidistant permeable membranes for cell-size and permeability measurements in biological tissue. Based on the known probability distribution of diffusion distances after the diffusion time ? in a system of permeable membranes characterized by three parameters (membrane permeability P, membrane distance L, and free diffusivity D0), an equivalent dimensionless model was derived with a probability distribution characterized by only a single (dimensionless) tissue parameter [Formula: see text]. Evaluating this proposed model function, the dimensionless diffusion coefficient [Formula: see text] was numerically calculated for 60 values of the dimensionless diffusion time [Formula: see text] and 35 values of [Formula: see text]. Diffusion coefficients were measured in a carrot by diffusion-weighted magnetic resonance imaging (MRI) at 18 diffusion times between 9.9 and 1022.7 ms and fitted to the simulation results [Formula: see text] to determine L, P, and D0. The measured diffusivities followed the simulated dependence of [Formula: see text]. Determined cell sizes varied from 21 to 76 ?m, permeabilities from 0.007 to 0.039 ?m(-1), and the free diffusivities from 1354 to 1713 ?m(2)?s(-1). In conclusion, the proposed dimensionless tissue model can be used to determine tissue parameters (D0, L, P) based on diffusion MRI with multiple diffusion times. Measurements in a carrot showed a good agreement of the cell diameter, L, determined by diffusion MRI and by light microscopy. PMID:24839979
Diffusion in mixed solvents. III - The heat of mixing parameter and the Soret coefficient
NASA Technical Reports Server (NTRS)
Carapellucci, P. A.
1976-01-01
New evidence is presented that for aqueous glycerol solutions, the Soret coefficient of glycerol, sigma sub 1 = D sub 1 T/D sub 1 (where D sub 1 T and D sub 1 are the thermal and self-diffusion coefficients, respectively, of glycerol in aqueous solutions), is an integral part of the heat of mixing parameter. Expressions are presented indicating the importance of the Soret coefficients to correlations for diffusion processes in glycerol water solvents.
Xiaoju Pan; Richard C. Zimmerman
2010-01-01
The diffuse attenuation coefficient (Kd) is critical to understand the vertical distribution of underwater downwelling irradiance (Ed). Theoretically Ed is composed of the direct solar beam and the diffuse sky irradiance. Applying the statistical results from Hydrolight radiative transfer simulations, Kd is expressed into a mathematical equation (named as PZ06) integrated from the contribution of direct solar beam and diffuse
Technology Transfer Automated Retrieval System (TEKTRAN)
The diffusion coefficient of water in biobased hydrogels were measured utilizing a simple NMR method. This method tracks the migration of deuterium oxide through imaging data that is fit to a diffusion equation. The results show that a 5 wt% soybean oil based hydrogel gives aqueous diffusion of 1.37...
A comparison of ambipolar diffusion coefficients in meteor trains using VHF radar and UV lidar
Phillip B. Chilson; Peter Czechowsky; Gerhard Schmidt
1996-01-01
In this paper we present the first comparative estimations of ionic diffusion rates for sporadic meteor trains near the mesopause made using VHF radar and UV Rayleigh lidar observations. In both cases we initially assumed that the meteor trains dissipate primarily through ambipolar diffusion. For the radar data, the diffusion coefficient within the meteor train was determined from the decay
Directional diffusion coefficients of solar protons inside and outside the bow shock.
NASA Technical Reports Server (NTRS)
Verzariu, P.; Krimigis, S. M.
1973-01-01
The directional diffusion coefficients of low-energy (greater than or equal to 0.3 MeV) solar protons inside and outside the bow shock are examined during the solar flare event of Jan. 24, 1969. The data are derived from simultaneous observations obtained by Explorer 33 inside the magnetosheath and by Explorer 35 in the interplanetary medium. Although the gross properties of the spin-averaged intensities on a diffusion-type plot appear to be the same in both media, the directional intensities show significant variations. It is shown that directional intensities of low-energy protons can be described reasonably well by anisotropic diffusion with an associated diffusion coefficient. Directional diffusion coefficients are found to differ by a factor of as much as three among different directions in space, and from the spin-averaged diffusion coefficient. This suggests that anisotropic diffusion does indeed take place and that so called 'isotropic' diffusion coefficients derived in the past from spin-averaged intensities may actually be directional diffusion coefficients in cases where substantial anisotropies (greater than 50%) exist.
Impurity Diffusion Coefficients of Al and Zn in Mg Determined from Solid-to-Solid Diffusion Couples
Kammerer, Catherine [University of Central Florida, Orlando; Kulkarni, Nagraj S [ORNL; Warmack, Robert J Bruce [ORNL; Perry, Kelly A [ORNL; Belova, Irina [University of Newcastle, NSW, Australia; Murch, Prof. Graeme [University of Newcastle, NSW, Australia; Sohn, Yong Ho [University of Central Florida
2013-08-01
Increasing use and development of lightweight Mgalloys have led to the desire for more fundamental research in and understanding of Mg-based systems. As property enhancing components, Al and Zn are two of the most important and common alloying elements for Mg-alloys. We have investigated the concentration dependent interdiffusion of Al and Zn in Mg using diffusion couples of pure polycrystalline Mg mated to Mg solid solutions containing either <9 at.% Al or <3 at.% Zn. Concentration profiles were determined by electron micro-probe microanalysis of the diffusion zone. The interdiffusion coefficients were determined by the classical Boltzmann-Matano method within the Mg solid solution. As the concentration of Al or Zn approaches the dilute ends, we employ an analytical approach based on the Hall method to estimate the impurity diffusion coefficients. Results of Al and Zn impurity diffusion in Mg are reported and compared to published impurity diffusion coefficients typically determined by thin film techniques.
Nonlinearity Effects of Lateral Density Diffusion Coefficient on Gain-Guided VCSEL Performance
NASA Technical Reports Server (NTRS)
Li, Jian-Zhong; Cheung, Samson H.; Ning, C. Z.; Biegel, Bryan (Technical Monitor)
2001-01-01
Electron and hole diffusions in the plane of semiconductor quantum wells play an important part in the static and dynamic operations of semiconductor lasers. In this paper, we apply a hydrodynamic model developed from the semiconductor Bloch equations to numerically study the effects of nonlinearity in the diffusion coefficient on single mode operation and direct modulation of a gain-guided InGaAs/GaAs multiple quantum well laser, operating not too far from threshold. We found that a small diffusion coefficient is advantageous for lowering the threshold current and increasing the modulation bandwidth. Most importantly, the effects of nonlinearity in the coefficient can be approximately reproduced by replacing the coefficient with an effective constant diffusion coefficient, which corresponds roughly to the half height density of the density distribution.
Scale Dependence of Effective Matrix Diffusion Coefficient Evidence and Preliminary Interpertation
H.H. Liu; Y. Zhang
2006-06-20
The exchange of solute mass (through molecular diffusion) between fluid in fractures and fluid in the rock matrix is called matrix diffusion. Owing to the orders-of-magnitude slower flow velocity in the matrix compared to fractures, matrix diffusion can significantly retard solute transport in fractured rock, and therefore is an important process for a variety of problems, including remediation of subsurface contamination and geological disposal of nuclear waste. The effective matrix diffusion coefficient (molecular diffusion coefficient in free water multiplied by matrix tortuosity) is an important parameter for describing matrix diffusion, and in many cases largely determines overall solute transport behavior. While matrix diffusion coefficient values measured from small rock samples in the laboratory are generally used for modeling field-scale solute transport in fractured rock (Boving and Grathwohl, 2001), several research groups recently have independently found that effective matrix diffusion coefficients much larger than laboratory measurements are needed to match field-scale tracer-test data (Neretnieks, 2002; Becker and Shapiro, 2000; Shapiro, 2001; Liu et al., 2003,2004a). In addition to the observed enhancement, Liu et al. (2004b), based on a relatively small number of field-test results, reported that the effective matrix diffusion coefficient might be scale dependent, and, like permeability and dispersivity, it seems to increases with test scale. This scale-dependence has important implications for large-scale solute transport in fractured rock. Although a number of mechanisms have been proposed to explain the enhancement of the effective matrix diffusion coefficient, the potential scale dependence and its mechanisms are not fully investigated at this stage. The major objective of this study is to again demonstrate (based on more data published in the literature than those used in Liu et al. [2004b]) the potential scale dependence of the effective matrix-diffusion coefficient, and to -develop a preliminary explanation for this scale-dependent behavior.
Oak Ridge Gaseous Diffusion Plant Biological Monitoring and Abatement Program for Mitchell Branch
Loar, J.M.; Adams, S.M.; Kszos, L.A.; Ryon, M.G.; Smith, J.G.; Southworth, G.R.; Stewart, A.J.
1992-01-01
A proposed Biological Monitoring and Abatement Program (BMAP) for the Oak Ridge Gaseous Diffusion Plant (ORGDP; currently the Oak Ridge K-25 Site) was prepared in December 1986, as required by the modified National Pollutant Discharge Elimination System (NPDES) permit that was issued on September 11, 1986. The effluent discharges to Mitchell Branch are complex, consisting of trace elements, organic chemicals, and radionuclides in addition to various conventional pollutants. Moreover, the composition of these effluent streams will be changing over time as various pollution abatement measures are implemented over the next several years. Although contaminant inputs to the stream originate primarily as point sources from existing plant operations, area sources, such as the classified burial grounds and the K-1407-C holding pond, can not be eliminated as potential sources of contaminants. The proposed BMAP consists of four tasks. These tasks include (1) ambient toxicity testing, (2) bioaccumulation studies, (3) biological indicator studies, and (4) ecological surveys of the benthic invertebrate and fish communities. BMAP will determine whether the effluent limits established for ORGDP protect the designated use of the receiving stream (Mitchell Branch) for growth and propagation of fish and aquatic life. Another objective of the program is to document the ecological effects resulting from various pollution abatement projects, such as the Central Neutralization Facility.
Environmental Survey preliminary report, Oak Ridge Gaseous Diffusion Plant, Oak Ridge, Tennessee
Not Available
1989-02-01
This report presents the preliminary findings from the first phase of the Environmental Survey of the US Department of Energy's (DOE) Oak Ridge Gaseous Diffusion Plant (ORGDP) conducted March 14 through 25, 1988. The Survey is being conducted by an interdisciplinary team of environmental specialists, led and managed by the Office of Environment, Safety and Health's Office of Environmental Audit. Individual team components are being supplied by a private contractor. The objective of the Survey is to identify environmental risk associated with ORGDP. The Survey covers all environmental media and all areas of environmental regulation. It is being performed in accordance with the DOE Environmental Survey Manual. This phase of the Survey involves the review of existing site environmental data, observations of the operations carried on at ORGDP, and interviews with site personnel. The Survey team developed a Sampling and Analysis Plan to assist in further assessing certain of the environmental problems identified during is on-site activities. The Sampling and Analysis Plan will be executed by Idaho National Engineering Laboratory (INEL). When completed, the results will be incorporated into the ORGDP Survey findings for in inclusion into the Environmental Survey Summary Report. 120 refs., 41 figs., 74 tabs.
Namdoo Moon
2007-12-01
An aerial radiological survey was conducted over the 16 square-mile (~41 square-kilometer) area surrounding the Portsmouth Gaseous Diffusion Plant. The survey was performed in August 2007 utilizing a large array of helicopter mounted sodium iodide detectors. The purpose of the survey was to update the previous radiological survey levels of the environment and surrounding areas of the plant. A search for a missing radium-226 source was also performed. Implied exposure rates, man-made activity, and excess bismuth-214 activity, as calculated from the aerial data are presented in the form of isopleth maps superimposed on imagery of the surveyed area. Ground level and implied aerial exposure rates for nine specific locations are compared. Detected radioisotopes and their associated gamma ray exposure rates were consistent with those expected from normal background emitters. At specific plant locations described in the report, man-made activity was consistent with the operational histories of the location. There was no spectral activity that would indicate the presence of the lost source.
Operating limit study for the proposed solid waste landfill at Paducah Gaseous Diffusion Plant
Lee, D.W.; Wang, J.C.; Kocher, D.C.
1995-06-01
A proposed solid waste landfill at Paducah Gaseous Diffusion Plant (PGDP) would accept wastes generated during normal operations that are identified as non-radioactive. These wastes may include small amounts of radioactive material from incidental contamination during plant operations. A site-specific analysis of the new solid waste landfill is presented to determine a proposed operating limit that will allow for waste disposal operations to occur such that protection of public health and the environment from the presence of incidentally contaminated waste materials can be assured. Performance objectives for disposal were defined from existing regulatory guidance to establish reasonable dose limits for protection of public health and the environment. Waste concentration limits were determined consistent with these performance objectives for the protection of off-site individuals and inadvertent intruders who might be directly exposed to disposed wastes. Exposures of off-site individuals were estimated using a conservative, site-specific model of the groundwater transport of contamination from the wastes. Direct intrusion was analyzed using an agricultural homesteader scenario. The most limiting concentrations from direct intrusion or groundwater transport were used to establish the concentration limits for radionuclides likely to be present in PGDP wastes.
Kszos, L.A. [ed.; Konetsky, B.K.; Peterson, M.J.; Petrie, R.B.; Ryon, M.G.; Smith, J.G.; Southworth, G.R.
1997-06-01
On September 24, 1987, the Commonwealth of Kentucky Natural Resources and Environmental Protection Cabinet issued an Agreed Order that required the development of a Biological Monitoring Program (BMP) for the Paducah Gaseous diffusion Plant (PGDP). The PGDP BMP was conducted by the University of Kentucky Between 1987 and 1992 and by staff of the Environmental Sciences Division (ESD) at Oak Ridge National Laboratory (ORNL) from 1991 to present. The goals of BMP are to (1) demonstrate that the effluent limitations established for PGDP protect and maintain the use of Little Bayou and Big Bayou creeks for growth and propagation of fish and other aquatic life, (2) characterize potential environmental impacts, and (3) document the effects of pollution abatement facilities on stream. The BMP for PGDP consists of three major tasks: (1) effluent toxicity monitoring, (2) bioaccumulation studies, and (3) ecological surveys of stream communities (i.e., benthic macroinvertebrates and fish). This report focuses on ESD activities occurring from January 1996 to December 1996, although activities conducted outside this time period are included as appropriate.
Kszos, L.A.; Peterson, M.J.; Ryon, M.G.; Smith, J.G.; Southworth, G.R.
1998-03-01
On September 24, 1987, the Commonwealth of Kentucky Natural Resources and Environmental Protection Cabinet issued an Agreed Order that required the development of a Biological Monitoring Program (BMP) for the Paducah Gaseous Diffusion Plant (PGDP). A plan for the biological monitoring of the receiving streams was implemented in 1987 and consisted of ecological surveys, toxicity monitoring of effluents and receiving streams, evaluation of bioaccumulation of trace contaminants in biota, and supplemental chemical characterization of effluents. Beginning in fall 1991, the Environmental Sciences Division (ESD) at Oak Ridge National Laboratory added data collection and report preparation to its responsibilities for the PGDP BMP. The BMP has been continued because it has proven to be extremely valuable in (1) identifying those effluents with the potential for adversely affecting instream fauna, (2) assessing the ecological health of receiving streams, and (3) guiding plans for remediation and protecting human health. The BMP for PGDP consists of three major tasks: (1) effluent toxicity monitoring, (2) bioaccumulation studies, and (3) ecological surveys of benthic macroinvertebrate communities and fish. With the exception of the benthic macroinvertebrate community surveys, this report focuses on activities from January to December 1997.
Not Available
1992-11-01
An aerial radiological survey of the Paducah Gaseous Diffusion Plant (PGDP) and surrounding area in Paducah, Kentucky, was conducted during May 15--25, 1990. The purpose of the survey was to measure and document the terrestrial radiological environment at the PGDP and surrounding area for use in effective environmental management and emergency response planning. The aerial survey was flown at an altitude of 61 meters (200 feet) along a series of parallel lines 107 meters (350 feet) apart. The survey encompassed an area of 62 square kilometers (24 square miles), bordered on the north by the Ohio River. The results of the aerial survey are reported as inferred exposure rates at 1 meter above ground level in the form of a gamma radiation contour map. Typical background exposure rates were found to vary from 5 to 12 microroentgens per hour ([mu]R/h). Protactinium-234m, a radioisotope indicative of uranium-238, was detected at several facilities at the PGDR. In support of the aerial survey, ground-based exposure rate and soil sample measurements were obtained at several sites within the survey perimeter. The results of the aerial and ground-based measurements were found to agree within [plus minus]15%.
Kszos, L.A. [ed.
1996-05-01
On September 24, 1987, the Commonwealth of Kentucky Natural Resources and Environmental Protection Cabinet issued an Agreed Order that required the development of a Biological Monitoring Program (BMP) for the Paducah Gaseous Diffusion Plant (PGDP). The PGDP BMP was implemented in 1987 by the University of Kentucky. Research staff of the Environmental Sciences Division (ESD) at Oak Ridge National Laboratory (ORNL) served as reviewers and advisers to the University of Kentucky. Beginning in fall 1991, ESD added data collection and report preparation to its responsibilities for the PGDP BMP. The goals of BMP are to (1) demonstrate that the effluent limitations established for PGDP protect and maintain the use of Little Bayou and Big Bayou creeks for growth and propagation of fish and other aquatic life, (2) characterize potential environmental impacts, (3) document the effects of pollution abatement facilities on stream biota, and (4) recommend any program improvements that would increase effluent treatability. In September 1992, a renewed Kentucky Pollutant Discharge Elimination System (KPDES) permit was issued to PGDP. The BMP for PGDP consists of three major tasks: (1) effluent and ambient toxicity monitoring, (2) bioaccumulation studies, and (3) ecological surveys of stream communities (i.e., benthic macroinvertebrates and fish). This report includes ESD activities occurring from December 1993 to December 1994, although activities conducted outside this time period are included as appropriate.
Characteristics of Gaseous Diffusion Flames with High Temperature Combustion Air in Microgravity
NASA Technical Reports Server (NTRS)
Ghaderi, M.; Gupta, A. K.
2003-01-01
The characteristics of gaseous diffusion flames have been obtained using high temperature combustion air under microgravity conditions. The time resolved flame images under free fall microgravity conditions were obtained from the video images obtained. The tests results reported here were conducted using propane as the fuel and about 1000 C combustion air. The burner included a 0.686 mm diameter central fuel jet injected into the surrounding high temperature combustion air. The fuel jet exit Reynolds number was 63. Several measurements were taken at different air preheats and fuel jet exit Reynolds number. The resulting hybrid color flame was found to be blue at the base of the flame followed by a yellow color flame. The length and width of flame during the entire free fall conditions has been examined. Also the relative flame length and width for blue and yellow portion of the flame has been examined under microgravity conditions. The results show that the flame length decreases and width increases with high air preheats in microgravity condition. In microgravity conditions the flame length is larger with normal temperature combustion air than high temperature air.
Estimation of effective diffusion coefficients in porous catalysts
Kulkarni, Shrikant Ulhas
1991-01-01
diffusion of n- hexane in a type II crystalline titanate, and the intracrystalline diffusivities were found to be independent of the adsorbate concentration. sv ACKNOWLEDGEMENT I would like to acknowledge my research advisor, Dr. R. G. Anthony... Concentration Results Obtained for LaZSM-5, FeZSM-5 and BZSM-5 . Results Obtained for Zeolite HY . Analysis of the Two Phase Model . Results Obtained for Type II Crystalline Titanate. . . . . 40 53 53 61 63 63 70 83 CHAPTER VI CONCLUSION . 89...
Zhang, S.F.; Splendiani, A.; Freitas dos Santos, L.M.; Livingston, A.G. [Imperial College of Science, Technology and Medicine, London (United Kingdom). Dept. of Chemical Engineering and Chemical Technology] [Imperial College of Science, Technology and Medicine, London (United Kingdom). Dept. of Chemical Engineering and Chemical Technology
1998-07-05
A novel technique has been used to determine the effective diffusion coefficients for 1,1,2-trichloroethane (TCE), a nonreacting tracer, in biofilms growing on the external surface of a silicone rubber membrane tube during degradation of 1,2-dichloroethane (DCE) by Xanthobacter autotrophicus GJ10 and monochlorobenzene (MCB) by Pseudomonas JS150. Experiments were carried out in a single tube extractive membrane bioreactor (STEMB), whose configuration makes it possible to measure the transmembrane flux of substrates. A video imaging technique (VIT) was employed for in situ biofilm thickness measurement and recording. Diffusion coefficients of TCE in the biofilms and TCE mass transfer coefficients in the liquid films adjacent to the biofilms were determined simultaneously using a resistances-in-series diffusion model. It was found that the flux and overall mass transfer coefficient of TCE decrease with increasing biofilm thickness, showing the importance of biofilm diffusion on the mass transfer process. Similar fluxes were observed for the nonreacting tracer (TCE) and the reactive substrates (MCB or DCE), suggesting that membrane-attached biofilm systems can be rate controlled primarily by substrate diffusion. The TCE diffusion coefficient in the JS150 biofilm appeared to be dependent on biofilm thickness, decreasing markedly for biofilm thicknesses of >1 mm. The values of the TCE diffusion coefficients in the JS150 biofilms <1-mm thick are approximately twice those in water and fall to around 30% of the water value for biofilms >1-mm thick.
Parthasarathy, Ranganathan; Misra, Anil; Park, Jonggu; Ye, Qiang; Spencer, Paulette
2012-01-01
The diffusion of water into dentin adhesive polymers and leaching of unpolymerized monomer from the adhesive are linked to their mechanical softening and hydrolytic degradation. Therefore, diffusion coefficient data are critical for the mechanical design of these polymeric adhesives. In this study, diffusion coefficients of water and leachables were obtained for sixteen methacrylate-based crosslinked polymers using absorption experiments. The experimental mass change data was interpreted using numerical solution of the two-dimensional diffusion equations. The calculated diffusion coefficients varied from 1.05 × 10?8 cm2/sec (co-monomer TMTMA) to 3.15 × 10?8 cm2/sec (co-monomer T4EGDMA). Correlation of the diffusion coefficients with crosslink density and hydrophilicity showed an inverse trend (R2 = 0.41). The correlation of diffusion coefficient with crosslink density and hydrophilicity are closer for molecules differing by simple repeat units (R2 = 0.95). These differences in the trends reveal mechanisms of interaction of the diffusing water with the polymer structure. PMID:22430592
Lai, C.C.; Tan, C.S. (National Tsing Hua Univ., Hsinchu (Taiwan, Province of China). Dept. of Chemical Engineering)
1995-02-01
Molecular diffusion coefficients of ethyl acetate, toluene, phenol, and caffeine in supercritical carbon dioxide were measured by a chromatographic peak broadening technique in a coated capillary column at temperatures of 308, 318, and 328 K and pressures up to 145 bar. A linear adsorption in the polymer layer coated on the inner wall of the capillary column was observed. The experimentally determined diffusion coefficients showed substantial agreement with those reported in the literature. The diffusion coefficients were in the order of 10[sup [minus]4] cm[sup 2]/s and decreased with increasing carbon dioxide density. Based on the molecular diffusion coefficient data reported here and those published elsewhere, an empirically modified Wilke-Chang equation was proposed which was found to be more quantitative than some existing equations such as the Stokes-Einstein and Wilke-Chang equations.
Self-Diffusion Coefficients of Methane or Ethane Mixtures with Hydrocarbons at High Pressure by NMR
Dysthe, Dag Kristian
-diffusion coefficients were compared to the Sigmund correlation, which was found not to fit the experimental data hundred percent. The Sigmund correlation (Sigmund, 1976) has been used with some success in reservoir
On the determinatino of high-pressure mass-diffusion coefficients for binary mixtures
NASA Technical Reports Server (NTRS)
Bellan, J.; Harstad, K.
2003-01-01
A model for high-pressure binary diffusion coefficient calculation is proposed based on considerations originating from recasting both the low pressure kinetic theory and the Stokes-Einstein infinite dilution expressions into forms consistent with corresponding states theory.
A model of cefoperazone tissue penetration: diffusion coefficient and protein binding.
Meulemans, A
1992-01-01
The apparent diffusion coefficient of a bound drug, cefoperazone, was studied. The protein binding of cefoperazone was studied by voltammetry, a technique which permitted instant measurements. The apparent diffusion coefficients were similar in agar and fibrin and lower in rat brain tissue. The influence of protein on the value of the apparent diffusion coefficient was negligible. The hypothesis that only the free drug diffuses was supported. The percentage of binding determined by voltammetry corresponded to the true concentration of drug which diffuses and is much lower than the percentage of binding determined by the ultrafiltration centrifugation method. This discrepancy could be explained by the rate of dissociation of the protein-drug complex. PMID:1605594
Determination of the zincate diffusion coefficient and its application to alkaline battery problems
NASA Technical Reports Server (NTRS)
May, C. E.; Kautz, Harold E.
1978-01-01
The diffusion coefficient for the zincate ion at 24 C was found to be 9.9 X 10 to the minus 7th power squared cm per sec + or - 30 percent in 45 percent potassium hydroxide and 1.4 x 10 to the minus 7 squared cm per sec + or - 25 percent in 40 percent sodium hydroxide. Comparison of these values with literature values at different potassium hydroxide concentrations show that the Stokes-Einstein equation is obeyed. The diffusion coefficient is characteristic of the zincate ion (not the cation) and independent of its concentration. Calculations with the measured value of the diffusion coefficient show that the zinc concentration in an alkaline zincate half cell becomes uniform throughout in tens of hours by diffusion alone. Diffusion equations are derived which are applicable to finite size chambers. Details and discussion of the experimental method are also given.
Determination of the zincate diffusion coefficient and its application to alkaline battery problems
NASA Technical Reports Server (NTRS)
May, C. E.; Kautz, H. E.
1978-01-01
The diffusion coefficient for the zincate ion at 24 C was found to be 9.9 x 10 to the -7th power sq cm/sec + or - 30% in 45% potassium hydroxide and 1.4 x 10 to the -7th power sq cm/sec + or - 25% in 40% sodium hydroxide. Comparison of these values with literature values at different potassium hydroxide concentrations show that the Stokes-Einstein equation is obeyed. The diffusion coefficient is characteristic of the zincate ion (not the cation) and independent of its concentration. Calculations with the measured value of the diffusion coefficient show that the zinc concentration in an alkaline zincate half-cell becomes uniform throughout in tens of hours by diffusion alone. Diffusion equations are derived which are applicable to finite-size chambers. Details and discussion of the experimental method are also given.
Self-Diffusion Coefficients and Rotational Correlation Times in Polar Liquids. II
D. E. O'Reilly; E. M. Peterson
1971-01-01
Self-diffusion coefficients and rotational correlation times have been measured in several polar liquids by pulsed nuclear magnetic resonance techniques. Self-diffusion coefficients are reported for CH3OH, CH3NO2, (CH3)2CO, C6H5NO2, and C6H5Cl; proton, deuterium, and chlorine-35 relaxation times are given for these liquids. Deuteron quadrupolar coupling constants for the deuterated molecules were measured directly for the solids at low temperature. Methyl groups
Diffusion, Deexcitation, and Three-Body Collision Coefficients for Excited Neon Atoms
A. V. Phelps
1959-01-01
Diffusion coefficients, de-excitation cross sections, and three-body collision coefficients for neon atoms of the 1s22s22p53s configuration are obtained from optical absorption measurements of relative decay rates and relative densities of excited atoms following a pulsed discharge. Atoms in the lower metastable (3P2) and the lower radiating (3P1) states are destroyed by diffusion to the wall, three-body collisions involving two ground
Sándor Bodor; Justin M. Zook; Ern? Lindner; Klára Tóth; Róbert E. Gyurcsányi
2009-01-01
A chronopotentiometric method is proposed for the determination of the diffusion coefficients of free ionophores in solvent\\u000a polymeric membranes. For the pH sensitive chromoionophore ETH 5294, the method was shown to give diffusion coefficients that\\u000a correlate well with those assessed by both optical and chronoamperometric methods. The limit of applicability of the chronoamperometric\\u000a and chronopotentiometric methods in terms of membrane
Fan, Y.; Qian, R.; Shi, M.; Shi, J. [Nanjing Institute of Chemical Technology (China). Dept. of Chemical Engineering
1995-09-01
Diffusion coefficient measurements are required in a number of engineering applications and also in testing transport property theories. The diffusion coefficients of benzene, toluene, p-xylene, o-xylene, ethylbenzene, and mesitylene at infinite dilution in octane and in 2,2,4-trimethylpentane in the temperature range 303.2--333.2 K were determined by the Taylor dispersion technique. A correlation based on a free-volume-type expression represented the results to within experimental uncertainty.
Doru Constantin; Patrick Oswald
2015-04-09
We measure diffusion coefficients in the lamellar phase of the nonionic binary system C$_{12}$EO$_6$/H$_2$O using fluorescence recovery after photobleaching. The diffusion coefficient across the lamellae shows an abrupt increase upon approaching the lamellar-isotropic phase transition. We interpret this feature in terms of defects connecting the surfactant structure. An estimation of the defect density and of the variation in defect energy close to the transition is given in terms of a simple model.
Statistical description of slope-dependent soil transport and the diffusion-like coefficient
David Jon Furbish; Peter K. Haff; William E. Dietrich; Arjun M. Heimsath
2009-01-01
For hillslopes undergoing ``diffusive'' soil transport, it is often assumed that the soil flux is proportional to the local land-surface gradient, where the coefficient of proportionality is like a diffusion coefficient. Inasmuch as transport involves quasi-random soil particle motions related to biomechanical mixing and similar dilational processes, a slope-dependent relation arises from a balance between particle fluxes that tend to
Statistical description of slope-dependent soil transport and the diffusion-like coefficient
David Jon Furbish; Peter K. Haff; William E. Dietrich; Arjun M. Heimsath
2009-01-01
For hillslopes undergoing “diffusive” soil transport, it is often assumed that the soil flux is proportional to the local land-surface gradient, where the coefficient of proportionality is like a diffusion coefficient. Inasmuch as transport involves quasi-random soil particle motions related to biomechanical mixing and similar dilational processes, a slope-dependent relation arises from a balance between particle fluxes that tend to
EVALUATION OF SATELLITE DERIVED SPECTRAL DIFFUSE ATTENUATION COEFFICIENTS
T. Suresh; Madhubala Talaulikar; Elgar Desa; Antonio Mascaranhas; S. G. Prabhu
2007-01-01
Spectral diffuse attenuation Kd(?) is an important apparent optical property that provide information about the attenuation of the spectral downwelling solar irradiance with depth in water. Here we have compared the spectral Kd(?) at ?= 412, 443, 490, 510, 555 and 670 nm derived from the ocean color satellite sensor, SeaWiFS with the in-situ measured values from the Arabian Sea.
HARDI Denoising: Variational Regularization of the Spherical Apparent Diffusion Coefficient
Vese, Luminita A.
for voxels in which fiber pathways cross or mix together, and these are ubiquitous in the brain which of water diffusion at each point. This can be used to reconstruct fiber directions and pathways in the living brain, providing detailed maps of fiber in- tegrity and connectivity. HARDI is a powerful new
Sumit Chakraborty; Jibamitra Ganguly
1992-01-01
We present new experimental data on diffusion of divalent cations in almandine-spessartine diffusion couples in graphite capsules in the P-T range of 14–35 kb, 1100–1200° C. The tracer diffusion coefficients of the major divalent cations, viz. Fe, Mg and Mn, retrieved from the multicomponent diffusion profiles, have been combined with earlier data from our laboratory at 29–43 kb, 1300–1480° C
NASA Astrophysics Data System (ADS)
Dietrich, Olaf; Hubert, Alexander; Heiland, Sabine
2014-06-01
The purpose of this study was to analyze and evaluate a model of restricted water diffusion between equidistant permeable membranes for cell-size and permeability measurements in biological tissue. Based on the known probability distribution of diffusion distances after the diffusion time ? in a system of permeable membranes characterized by three parameters (membrane permeability P, membrane distance L, and free diffusivity D0), an equivalent dimensionless model was derived with a probability distribution characterized by only a single (dimensionless) tissue parameter \\tilde{P}. Evaluating this proposed model function, the dimensionless diffusion coefficient \\tilde{D}_{eff}(\\tilde{\\tau };\\,\\tilde{P}) was numerically calculated for 60 values of the dimensionless diffusion time \\tilde{\\tau } and 35 values of \\tilde{P}. Diffusion coefficients were measured in a carrot by diffusion-weighted magnetic resonance imaging (MRI) at 18 diffusion times between 9.9 and 1022.7 ms and fitted to the simulation results \\tilde{D}_{eff}(\\tilde{\\tau };\\,\\tilde{P}) to determine L, P, and D0. The measured diffusivities followed the simulated dependence of \\tilde{D}_{eff}(\\tilde{\\tau };\\tilde{P}). Determined cell sizes varied from 21 to 76 ?m, permeabilities from 0.007 to 0.039 ?m-1, and the free diffusivities from 1354 to 1713 ?m2?s-1. In conclusion, the proposed dimensionless tissue model can be used to determine tissue parameters (D0, L, P) based on diffusion MRI with multiple diffusion times. Measurements in a carrot showed a good agreement of the cell diameter, L, determined by diffusion MRI and by light microscopy.
NASA Astrophysics Data System (ADS)
G?siorowski, Dariusz
2014-09-01
In the study, the averaging technique of diffusion coefficients in the two-dimensional nonlinear diffusive wave equation applied to the floodplain inundation is presented. As a method of solution, the splitting technique and the modified finite element method with linear shape functions are used. On the stage of spatial integration, it is often assumed that diffusion coefficient is constant over element and equal to its average value. However, the numerical experiments indicate that in the case of the flow over the dry floodplain with sudden changes in depths an inadequate averaging of these coefficients can lead to a non-physical solution or even to its instability. In the paper, the averaging techniques for estimation of diffusion coefficients were examined using the arithmetic, geometric, harmonic and the direction dependent means. The numerical tests were carried out for the flows over initially dry floodplain with varied elevation of bottom. It was shown that the averaging method based on the arithmetic mean with respect to the diffusion coefficients provides the satisfactory results in comparison to other techniques.
Effective Diffusion Coefficients for Methanol in Sulfuric Acid Solutions Measured by Raman % sulfuric acid solutions was followed using Raman spectroscopy. Because methanol reacts to form protonated that the speciation of both methanol and sulfuric acid may be important in determining these transport coefficients
Modeling spectral diffuse attenuation, absorption, and scattering coefficients in a turbid estuary
CHARLES L. GALLEGOS; DAVID L. CORRELL; J. W. PIERCE
1990-01-01
Spectral diffuse attenuation coefficients were measured in the Rhode River and Chesapeake Bay, Maryland, on 28 occasions in 1988 and 1989. The model of Kirk was used to extract scattering and absorption coefficients from the measurements in waters considerably more turbid than those in which the model was previously applied. Estimated scattering coefftcients were linearly related to mineral suspended solids.
Inorganic soil and groundwater chemistry near Paducah Gaseous Diffusion Plant, Paducah, Kentucky
Moore, G.K. [Tennessee Univ., Knoxville, TN (United States)
1995-03-01
Near-surface soils, boreholes, and sediments near the Paducah Gaseous Diffusion Plant (PGDP) were sampled in 1989-91 as were monitoring wells, TVA wells, and privately-owned wells. Most wells were sampled two or three times. The resulting chemical analyses have been published in previous reports and have been previously described (CH2M HILL 1991, 1992; Clausen et al. 1992). The two reports by CH2M HILL are controversial, however, because, the concentrations of some constituents were reported to exceed background levels or drinking water standards and because both on-site (within the perimeter fence at PGDP) and off-site pollution was reported to have occurred. The groundwater samples upon which these interpretations were based may not be representative, however. The CH2M HILL findings are discussed in the report. The purpose of this report is to characterize the inorganic chemistry of groundwater and soils near PGDP, using data from the CH2M HILL reports (1991, 1992), and to determine whether or not any contamination has occurred. The scope is limited to analysis and interpretation of data in the CH2M HILL reports because previous interpretations of these data may not be valid, because samples were collected in a relatively short period of time at several hundred locations, and because the chemical analyses are nearly complete. Recent water samples from the same wells were not considered because the characterization of inorganic chemistry for groundwater and soil requirements only one representative sample and an accurate analysis from each location.
Carpenter, P.J. [Northern Illinois Univ., DeKalb, IL (United States). Dept. of Geology]|[Oak Ridge National Lab., TN (United States); Doll, W.E. [Oak Ridge National Lab., TN (United States); Phillips, B.E. [Paducah Gaseous Diffusion Plant, KY (United States)
1994-09-01
Ground penetrating radar (GPR) surveys were used to map shallow sands and gravels which are DNAPL migration pathways at the Paducah Gaseous Diffusion Plant in western Kentucky. The sands and gravels occur as paleochannel deposits, at depths of 17-25 ft, embedded in Pleistocene lacustrine clays. More than 30 GPR profiles were completed over the Drop Test Area (DTA) to map the top and base of the paleochannel deposits, and to assess their lateral continuity. A bistatic radar system was used with antenna frequencies of 25 and 50 MHz. An average velocity of 0.25 ft/ns for silty and clayey materials above the paleochannel deposits was established from radar walkaway tests, profiles over culverts of known depth, and comparison of radar sections with borings. In the south portion of the DTA, strong reflections corresponded to the water table at approximately 9-10 ft, the top of the paleochannel deposits at approximately 18 ft, and to gravel horizons within these deposits. The base of these deposits was not visible on the radar sections. Depth estimates for the top of the paleochannel deposits (from 50 records) were accurate to within 2 ft across the southern portion of the DTA. Continuity of these sands and gravels could not be assessed due to interference from air-wave reflections and lateral changes in signal penetration depth. However, the sands and gravels appear to extend across the entire southern portion of the DTA, at depths as shallow as 17 ft. Ringing, air-wave reflections and diffractions from powerlines, vehicles, well casings, and metal equipment severly degraded GPR profiles in the northern portion of the DTA; depths computed from reflection times (where visible) were accurate to within 4 ft in this area. The paleochannel deposits are deeper to the north and northeast where DNAPL has apparently pooled (DNAPL was not directly imaged by the GPR, however). Existing hydrogeological models of the DTA will be revised.
Becker, D.L.; Green, D.J.; Lindquist, M.R.
1993-07-01
The Portsmouth Gaseous Diffusion Plant (PORTS) in Piketon, Ohio, is operated by Martin Marietta Energy Systems, Inc., through the US Department of Energy-Oak Ridge Operations Office (DOE-ORO) for the US Department of Energy-Headquarters, Office of Nuclear Energy. The PORTS conducts those operations that are necessary for the production, packaging, and shipment of uranium hexafluoride (UF{sub 6}). Uranium hexafluoride enriched uranium than 1.0 wt percent {sup 235}U shall be packaged in accordance with the US Department of Transportation (DOT) regulations of Title 49 CFR Parts 173 (Reference 1) and 178 (Reference 2), or in US Nuclear Regulatory Commission (NRC) or US Department of Energy (DOE) certified package designs. Concerns have been expressed regarding the various tiedown methods and condition of the trailers being used by some shippers/carriers for international transport of the UF{sub 6} cylinders/overpacks. Because of the concerns about international shipments, the US Department of Energy-Headquarters (DOE-HQ) Office of Nuclear Energy, through DOE-HQ Transportation Management Division, requested Westinghouse Hanford Company (Westinghouse Hanford) to review UF{sub 6} packaging tiedown and shipping practices used by PORTS, and where possible and appropriate, provide recommendations for enhancing these practices. Consequently, a team of two individuals from Westinghouse Hanford visited PORTS on March 5 and 6, 1990, for the purpose of conducting this review. The paper provides a brief discussion of the review activities and a summary of the resulting findings and recommendations. A detailed reporting of the is documented in Reference 4.
Modeling and analyses of postulated UF{sub 6} release accidents in gaseous diffusion plant
Kim, S.H.; Taleyarkhan, R.P.; Keith, K.D.; Schmidt, R.W. [Oak Ridge National Lab., TN (United States); Carter, J.C. [J.C. Carter Associates, Inc., Oak Ridge, TN (United States); Dyer, R.H. [Dyer Enterprises, Oak Ridge, TN (United States)
1995-10-01
Computer models have been developed to simulate the transient behavior of aerosols and vapors as a result of a postulated accident involving the release of uranium hexafluoride (UF{sub 6}) into the process building of a gaseous diffusion plant. UF{sub 6} undergoes an exothermic chemical reaction with moisture (H{sub 2}O) in the air to form hydrogen fluoride (HF) and radioactive uranyl fluoride (UO{sub 2}F{sub 2}). As part of a facility-wide safety evaluation, this study evaluated source terms consisting of UO{sub 2}F{sub 2} as well as HF during a postulated UF{sub 6} release accident in a process building. In the postulated accident scenario, {approximately}7900 kg (17,500 lb) of hot UF{sub 6} vapor is released over a 5 min period from the process piping into the atmosphere of a large process building. UO{sub 2}F{sub 2} mainly remains as airborne-solid particles (aerosols), and HF is in a vapor form. Some UO{sub 2}F{sub 2} aerosols are removed from the air flow due to gravitational settling. The HF and the remaining UO{sub 2}F{sub 2} are mixed with air and exhausted through the building ventilation system. The MELCOR computer code was selected for simulating aerosols and vapor transport in the process building. MELCOR model was first used to develop a single volume representation of a process building and its results were compared with those from past lumped parameter models specifically developed for studying UF{sub 6} release accidents. Preliminary results indicate that MELCOR predicted results (using a lumped formulation) are comparable with those from previously developed models.
Prioritizing and scheduling Portsmouth Gaseous Diffusion Plant safeguards upgrades. Final report
Edmunds, T.; Saleh, R.; Zevanove, S.
1992-02-01
As part of the Site Safeguards and Security Plan (SSSP), facilities are required to develop a Resource Plan (RP). The Resource Plan provides documentation and justification for the facility`s planned upgrades, including the schedule, priority, and cost estimates for the safeguards and security upgrades. Portsmouth Gaseous Diffusion Plant (PORTS) management has identified and obtained funding approval for a number of safeguards and security upgrades, including line-item construction projects. These upgrade projects were selected to address a variety of concerns identified in the PORTS vulnerability assessments and other reviews performed in support of the SSSP process. However, budgeting and scheduling constraints do not make it possible to simultaneously begin implementation of all of the upgrade projects. A formal methodology and analysis are needed to explicitly address the trade-offs between competing safeguards objectives, and to prioritize and schedule the upgrade projects to ensure that the maximum benefit can be realized in the shortest possible time frame. The purpose of this report is to describe the methodology developed to support these upgrade project scheduling decisions. The report also presents the results obtained from applying the methodology to a set of the upgrade projects selected by PORTS S&S management. Data for the analysis are based on discussions with personnel familiar with the PORTS safeguards and security needs, the requirements for implementing these upgrades, and upgrade funding limitations. The analysis results presented here assume continued highly enriched uranium (HEU) operations at PORTS. However, the methodology developed is readily adaptable for the evaluation of other operational scenarios and other resource allocation issues relevant to PORTS.
Diffusion coefficient in a semi-dilute solution measured by concentration gradient technique
Boyer, Edmond
L-435 Diffusion coefficient in a semi-dilute solution measured by concentration gradient technique greater than TR [3]. However, when the constraint is a concentration gradient we find that the relaxation as the ratio of the rate of transfer of a diffusion substance, per unit area, to the concentration gradient
C. de Mauro; R. Calabrese; L. Corradi; A. Dainelli; A. Khanbekyan; E. Mariotti; P. Minguzzi; L. Moi; S. Sanguinetti; G. Stancari; L. Tomassetti; S. Veronesi
2008-01-01
We report the measurement of the diffusion coefficients of francium and rubidium ions implanted in a yttrium foil. We developed a methodology, based on laser spectroscopy, which can be applied to radioactive and stable species, and allows us to directly take record of the diffusion time. Francium isotopes are produced via fusion-evaporation nuclear reaction of a O18 beam on a
Dispersion of passive tracers in closed basins: Beyond the diffusion coefficient
Cencini, Massimo
of diffusion and transport of passive tracers in a given velocity field has both theoretical and prac- ticalDispersion of passive tracers in closed basins: Beyond the diffusion coefficient V. Artale ENEA, 00185 Roma, Italy Received 25 April 1997; accepted 10 July 1997 We investigate the spreading of passive
NASA Astrophysics Data System (ADS)
Wu, Qiong; Li, Shu-Suo; Ma, Yue; Gong, Sheng-Kai
2012-10-01
The diffusion coefficients of several alloying elements (Al, Mo, Co, Ta, Ru, W, Cr, Re) in Ni are directly calculated using the five-frequency model and the first principles density functional theory. The correlation factors provided by the five-frequency model are explicitly calculated. The calculated diffusion coefficients show their excellent agreement with the available experimental data. Both the diffusion pre-factor (D0) and the activation energy (Q) of impurity diffusion are obtained. The diffusion coefficients above 700 K are sorted in the following order: DAl > DCr > DCo > DTa > DMo > DRu > DW > DRe. It is found that there is a positive correlation between the atomic radius of the solute and the jump energy of Ni that results in the rotation of the solute-vacancy pair (E1). The value of E2-E1 (E2 is the solute diffusion energy) and the correlation factor each also show a positive correlation. The larger atoms in the same series have lower diffusion activation energies and faster diffusion coefficients.
Statistical description of slope-dependent soil transport and the diffusion-like coefficient
Heimsath, Arjun M.
. The analysis is consistent with published profiles of soil creep displacement and with published estimatesStatistical description of slope-dependent soil transport and the diffusion-like coefficient David ``diffusive'' soil transport, it is often assumed that the soil flux is proportional to the local land
Christodoulos Sophocleous
2005-01-01
We consider the variable coefficient inhomogeneous nonlinear diffusion equations of the form xput=[xqunux]x. We present further transformation properties for this nonlinear class of equations that do not appear in the literature. In particular, we map this class of variable-coefficient into constant-coefficient evolution equations. We also introduce hodograph and generalised hodograph transformation. For a specific form of this class we derive
Temperature-Dependent Diffusion Coefficients from ab initio Computations: Hydrogen in Nickel
E Wimmer; W Wolf; J Sticht; P Saxe; C Geller; R Najafabadi; G Young
2006-03-16
The temperature-dependent mass diffusion coefficient is computed using transition state theory. Ab initio supercell phonon calculations of the entire system provide the attempt frequency, the activation enthalpy, and the activation entropy as a function of temperature. Effects due to thermal lattice expansion are included and found to be significant. Numerical results for the case of hydrogen in nickel demonstrate a strong temperature dependence of the migration enthalpy and entropy. Trapping in local minima along the diffusion path has a pronounced effect especially at low temperatures. The computed diffusion coefficients with and without trapping bracket the available experimental values over the entire temperature range between 0 and 1400 K.
Liu, Xin; Schnell, Sondre K; Simon, Jean-Marc; Bedeaux, Dick; Kjelstrup, Signe; Bardow, André; Vlugt, Thijs J H
2011-11-10
A methodology for computing Fick diffusivities directly from equilibrium molecular dynamics (MD) simulations is presented and validated for acetone-methanol and acetone-tetrachloromethane liquid mixtures. Fick diffusivities are obtained from Maxwell-Stefan (MS) diffusivities and the so-called thermodynamic factor. MS diffusivities describe the friction between different components, while the thermodynamic factor is the concentration derivative of the activity describing the deviation from ideal mixing behavior. It is important to note that all mutual diffusion experiments measure Fick diffusion coefficients, while molecular simulation provides MS diffusivities. The required thermodynamic factor to convert MS into Fick diffusivities and vice versa, however, is usually difficult to extract from both simulations and experiments leaving a gap between theory and application. Here, we employ our novel method to compute the thermodynamic factor from small-scale density fluctuations in equilibrium MD simulations [Chem. Phys. Lett.2011, 504, 199-201]. Previously, this method was developed and validated for molecules with single interaction sites only. In this work, we applied this method to acetone-methanol and acetone-tetrachloromethane liquid mixtures and show that the method also works well in these more complex systems. This provides the missing step to extract Fick diffusion coefficients directly from equilibrium MD simulations. The computed Fick diffusivities of acetone-methanol and acetone-tetrachloromethane mixtures are in excellent agreement with experimental values. The suggested framework thus provides an efficient route to model diffusion in liquids on the basis of a consistent molecular picture. PMID:21954841
Temperature dependence of diffusion coefficient of nitrogen gas in water: A molecular dynamics study
NASA Astrophysics Data System (ADS)
Sharma, Keshav; Adhikari, Narayan P.
2014-04-01
We have carried out the molecular dynamics (MD) simulation to study the structural properties and to estimate the diffusivity of molecular nitrogen (N2) gas (solute) in extended simple point charge model (SPC/E) water (solvent) with N2 mole fraction of 0.018 at different temperatures. For the structural properties of the system, we have determined radial distribution function (RDF). The solute-solute, solute-solvent and solvent-solvent RDF have been evaluated. Self-diffusion coefficient of N2 was estimated by evaluating mean-squared displacement (MSD) and velocity autocorrelation function (VACF) separately. The diffusion coefficients obtained from the two methods agree within 3%. The results are in agreement with the experimentally determined values within 10%. The self-diffusion coefficient of water (H2O) was also estimated by evaluating MSD. Mutual diffusion coefficient of the system have also been estimated invoking Darken's relation. The temperature dependance of the diffusion coefficients were found to follow Arrhenius relation.
NASA Astrophysics Data System (ADS)
Yang, Linlin; Sun, Hai; Fu, Xudong; Wang, Suli; Jiang, Luhua; Sun, Gongquan
2014-07-01
A novel method for measuring effective diffusion coefficient of porous materials is developed. The oxygen concentration gradient is established by an air-breathing proton exchange membrane fuel cell (PEMFC). The porous sample is set in a sample holder located in the cathode plate of the PEMFC. At a given oxygen flux, the effective diffusion coefficients are related to the difference of oxygen concentration across the samples, which can be correlated with the differences of the output voltage of the PEMFC with and without inserting the sample in the cathode plate. Compared to the conventional electrical conductivity method, this method is more reliable for measuring non-wetting samples.
Maarten G. Lansberg; Vincent N. Thijs; Michael W. O'Brien; Juan O. Ali; Alex J. de Crespigny; David C. Tong; Michael E. Moseley; Gregory W. Albers
2001-01-01
BACKGROUND AND PURPOSE:Serial study of such MR parameters as diffusion-weighted imaging (DWI), apparent diffusion coefficient (ADC), ADC with fluid-attenuated inversion re- covery (ADCFLAIR), and T2-weighted imaging may provide information on the pathophysio- logical mechanisms of acute ischemic stroke. Our goals were to establish the natural evolution of MR signal intensity characteristics of acute ischemic lesions and to assess the potential
Balch, J; Guéguen, C
2015-01-01
In situ measurements of labile metal species using diffusive gradients in thin films (DGT) passive samplers are based on the diffusion rates of individual species. Although most studies have dealt with chemically isolated humic substances, the diffusion of dissolved organic matter (DOM) across the hydrogel is not well understood. In this study, the diffusion coefficient (D) and molecular weight (MW) of 11 aquatic DOM and 4 humic substances (HS) were determined. Natural, unaltered aquatic DOM was capable of diffusing across the diffusive gel membrane with D values ranging from 2.48×10(-6) to 5.31×10(-6) cm(2) s(-1). Humic substances had diffusion coefficient values ranging from 3.48×10(-6) to 6.05×10(-6) cm(2) s(-1), congruent with previous studies. Molecular weight of aquatic DOM and HS samples (?500-1750 Da) measured using asymmetrical flow field-flow fractionation (AF4) strongly influenced D, with larger molecular weight DOM having lower D values. No noticeable changes in DOM size properties were observed during the diffusion process, suggesting that DOM remains intact following diffusion across the diffusive gel. The influence of molecular weight on DOM mobility will assist in further understanding and development of the DGT technique and the uptake and mobility of contaminants associated with DOM in aquatic environments. PMID:25112575
NASA Astrophysics Data System (ADS)
Song, Yongchen; Hao, Min; Zhao, Yuechao; Zhang, Liang
2014-12-01
In this study, the dual-chamber pressure decay method and magnetic resonance imaging (MRI) were used to dynamically visualize the gas diffusion process in liquid-saturated porous media, and the relationship of concentration-distance for gas diffusing into liquid-saturated porous media at different times were obtained by MR images quantitative analysis. A non-iterative finite volume method was successfully applied to calculate the local gas diffusion coefficient in liquid-saturated porous media. The results agreed very well with the conventional pressure decay method, thus it demonstrates that the method was feasible of determining the local diffusion coefficient of gas in liquid-saturated porous media at different times during diffusion process.
Radon diffusion coefficients in 360 waterproof materials of different chemical composition.
Jiránek, M; Kotrbatá, M
2011-05-01
This paper summarises the results of radon diffusion coefficient measurements in 360 common waterproof materials available throughout Europe. The materials were grouped into 26 categories according to their chemical composition. It was found that the diffusion coefficients of materials used for protecting houses against radon vary within eight orders from 10(-15) to 10(-8) m(2) s(-1). The lowest values were obtained for bitumen membranes with an Al carrier film and for ethylene vinyl acetate membranes. The highest radon diffusion coefficient values were discovered for sodium bentonite membranes, rubber membranes made of ethylene propylene diene monomer and polymer cement coatings. The radon diffusion coefficients for waterproofings widely used for protecting houses, i.e. flexible polyvinyl chloride, high-, low-density polyethylene, polypropylene and bitumen membranes, vary in the range from 3 × 10(-12) to 3 × 10(-11) m(2) s(-1). Tests were performed which confirmed that the radon diffusion coefficient is also an effective tool for verifying the air-tightness of joints. PMID:21450700
2014-01-01
Background Support vector regression (SVR) and Gaussian process regression (GPR) were used for the analysis of electroanalytical experimental data to estimate diffusion coefficients. Results For simulated cyclic voltammograms based on the EC, Eqr, and EqrC mechanisms these regression algorithms in combination with nonlinear kernel/covariance functions yielded diffusion coefficients with higher accuracy as compared to the standard approach of calculating diffusion coefficients relying on the Nicholson-Shain equation. The level of accuracy achieved by SVR and GPR is virtually independent of the rate constants governing the respective reaction steps. Further, the reduction of high-dimensional voltammetric signals by manual selection of typical voltammetric peak features decreased the performance of both regression algorithms compared to a reduction by downsampling or principal component analysis. After training on simulated data sets, diffusion coefficients were estimated by the regression algorithms for experimental data comprising voltammetric signals for three organometallic complexes. Conclusions Estimated diffusion coefficients closely matched the values determined by the parameter fitting method, but reduced the required computational time considerably for one of the reaction mechanisms. The automated processing of voltammograms according to the regression algorithms yields better results than the conventional analysis of peak-related data. PMID:24987463
NASA Astrophysics Data System (ADS)
van Berkel, M.; Zwart, H. J.; Hogeweij, G. M. D.; Vandersteen, G.; van den Brand, H.; de Baar, M. R.; the ASDEX Upgrade Team
2014-10-01
In this paper, the estimation of the thermal diffusivity from perturbative experiments in fusion plasmas is discussed. The measurements used to estimate the thermal diffusivity suffer from stochastic noise. Accurate estimation of the thermal diffusivity should take this into account. It will be shown that formulas found in the literature often result in a thermal diffusivity that has a bias (a difference between the estimated value and the actual value that remains even if more measurements are added) or have an unnecessarily large uncertainty. This will be shown by modeling a plasma using only diffusion as heat transport mechanism and measurement noise based on ASDEX Upgrade measurements. The Fourier coefficients of a temperature perturbation will exhibit noise from the circular complex normal distribution (CCND). Based on Fourier coefficients distributed according to a CCND, it is shown that the resulting probability density function of the thermal diffusivity is an inverse non-central chi-squared distribution. The thermal diffusivity that is found by sampling this distribution will always be biased, and averaging of multiple estimated diffusivities will not necessarily improve the estimation. Confidence bounds are constructed to illustrate the uncertainty in the diffusivity using several formulas that are equivalent in the noiseless case. Finally, a different method of averaging, that reduces the uncertainty significantly, is suggested. The methodology is also extended to the case where damping is included, and it is explained how to include the cylindrical geometry.
NASA Astrophysics Data System (ADS)
Morgan, Benjamin J.; Madden, Paul A.
2014-04-01
Ionic transport in conventional ionic solids is generally considered to proceed via independent diffusion events or "hops." This assumption leads to well-known Arrhenius expressions for transport coefficients, and is equivalent to assuming diffusion is a Poisson process. Using molecular dynamics simulations of the low-temperature B1, B3, and B4 AgI polymorphs, we have compared rates of ion hopping with corresponding Poisson distributions to test the assumption of independent hopping in these common structure types. In all cases diffusion is a non-Poisson process, and hopping is strongly correlated in time. In B1 the diffusion coefficient can be approximated by an Arrhenius expression, though the physical significance of the parameters differs from that commonly assumed. In low temperature B3 and B4, diffusion is characterized by concerted motion of multiple ions in short closed loops. Diffusion coefficients cannot be expressed in a simple Arrhenius form dependent on single-ion free energies, and intrinsic diffusion must be considered a many-body process.
Morgan, Benjamin J; Madden, Paul A
2014-04-11
Ionic transport in conventional ionic solids is generally considered to proceed via independent diffusion events or "hops." This assumption leads to well-known Arrhenius expressions for transport coefficients, and is equivalent to assuming diffusion is a Poisson process. Using molecular dynamics simulations of the low-temperature B1, B3, and B4 AgI polymorphs, we have compared rates of ion hopping with corresponding Poisson distributions to test the assumption of independent hopping in these common structure types. In all cases diffusion is a non-Poisson process, and hopping is strongly correlated in time. In B1 the diffusion coefficient can be approximated by an Arrhenius expression, though the physical significance of the parameters differs from that commonly assumed. In low temperature B3 and B4, diffusion is characterized by concerted motion of multiple ions in short closed loops. Diffusion coefficients cannot be expressed in a simple Arrhenius form dependent on single-ion free energies, and intrinsic diffusion must be considered a many-body process. PMID:24765989
NASA Astrophysics Data System (ADS)
Marquardt, Katharina; Dohmen, Ralf; Wagner, Johannes
2014-05-01
Diffusion along interface and grain boundaries provides an efficient pathway and may control chemical transport in rocks as well as their mechanical strength. Besides the significant relevance of these diffusion processes for various geologic processes, experimental data are still very limited (e.g., Dohmen & Milke, 2010). Most of these data were measured using polycrystalline materials and the formalism of LeClaire (1951) to fit integrated concentration depth profiles. To correctly apply this formalism, certain boundary conditions of the diffusion problem need to be fulfilled, e.g., surface diffusion is ignored, and furthermore the lattice diffusion coefficient has to be known from other studies or is an additional fitting parameter, which produces some ambiguity in the derived grain boundary diffusion coefficients. We developed an experimental setup where we can measure the lattice and grain boundary diffusion coefficients simultaneously but independent and demonstrate the relevance of surface diffusion for typical grain boundary diffusion experiments. We performed Mg2SiO4 bicrystal diffusion experiments, where a single grain boundary is covered by a thin-film of pure Ni2SiO4 acting as diffusant source, produced by pulsed laser deposition. The investigated grain boundary is a 60° (011)/[100]. This specific grain boundary configuration was modeled using molecular dynamics for comparison with the experimental observations in the transmission electron microscope (TEM). Both, experiment and model are in good agreement regarding the misorientation, whereas there are still some disagreements regarding the strain fields along the grain boundary that are of outmost importance for the strengths of the material. The subsequent diffusion experiments were carried out in the temperature range between 800° and 1450° C. The inter diffusion profiles were measured using the TEMs energy dispersive x-ray spectrometer standardized using the Cliff-Lorimer equation and EMPA measurements. To evaluate the obtained diffusion profiles we adapted the isolated grain boundary model, first proposed by Fisher (1951) to match several observations: (i) Anisotropic diffusion in forsterite, (ii) fast diffusion along the grain boundary, (iii) fast diffusion on the surface of the sample. The latter process is needed to explain an additional flux of material from the surface into the grain boundary. Surface and grain boundary diffusion coefficients are on the order of 10000 times faster than diffusion in the lattice. Another observation was that in some regions the diffusion profiles in the lattice were greatly extended. TEM observations suggest here that surface defects (nano-cracks, ect.) have been present, which apparently enhanced the diffusion through the bulk lattice. Dohmen, R., & Milke, R. (2010). Diffusion in Polycrystalline Materials: Grain Boundaries, Mathematical Models, and Experimental Data. Reviews in Mineralogy and Geochemistry, 72(1), 921-970. Fisher, J. C. (1951). Calculations of Diffusion Penetration Curves for Surface and Grain Boundary Diffusion. Journal of Applied Physics, 22(1), 74-77. Le Claire, A. D. (1951). Grain boundary diffusion in metals. Philosophical Magazine A, 42(328), 468-474.
Crack diffusion coefficient - A candidate fracture toughness parameter for short fiber composites
NASA Technical Reports Server (NTRS)
Mull, M. A.; Chudnovsky, A.; Moet, A.
1987-01-01
In brittle matrix composites, crack propagation occurs along random trajectories reflecting the heterogeneous nature of the strength field. Considering the crack trajectory as a diffusive process, the 'crack diffusion coefficient' is introduced. From fatigue crack propagation experiments on a set of identical SEN polyester composite specimens, the variance of the crack tip position along the loading axis is found to be a linear function of the effective 'time'. The latter is taken as the effective crack length. The coefficient of proportionality between variance of the crack trajectory and the effective crack length defines the crack diffusion coefficient D which is found in the present study to be 0.165 mm. This parameter reflects the ability of the composite to deviate the crack from the energetically most efficient path and thus links fracture toughness to the microstructure.
Ion diffusion coefficients model and molar conductivities of ionic salts in aprotic solvents.
Garrido, Leoncio; Mejía, Alberto; García, Nuria; Tiemblo, Pilar; Guzmán, Julio
2015-02-19
In the study of the electric properties of electrolytes, the determination of the diffusion coefficients of the species that intervene in the charge transport process is of great importance, particularly that of the free ions (D(+) and D(-)), the only species that contribute to the conductivity. In this work we propose a model that allows, with reasonable assumptions, determination of D(+) and D(-), and the degree of dissociation of the salt, ?, at different concentrations, using the diffusion coefficients experimentally obtained with NMR. Also, it is shown that the NMR data suffice to estimate the conductivity of the electrolytes. The model was checked by means of experimental results of conductivity and NMR diffusion coefficients obtained with solutions of lithium triflate in ethylene and propylene carbonates, as well as with other results taken from the literature. PMID:25603311
NASA Astrophysics Data System (ADS)
Ito, Syoji; Itoh, Kou; Pramanik, Smritimoy; Kusumi, Takatsugu; Takei, Satoshi; Miyasaka, Hiroshi
2009-07-01
The translational diffusion coefficient of a perylenediimide (PDI) derivative in a dextrin-based photo-curable material was evaluated by single molecule tracking. Irradiation by UV light for 1.0 s led to a sudden decrease in the diffusion coefficients of ca. 70% of dye molecules, while that of the remaining 30% diffused as fast as in the uncured sample. The number of fast diffusing molecules decreased with increasing UV irradiation time. The diffusion coefficient decreased due to photoinduced network formation and reached a steady value after UV irradiation >8.0 s. This slow diffusion did not cease even after UV irradiation for 32 s.
Field-Scale Effective Matrix Diffusion Coefficient for FracturedRock: Results From Literature Survey
Zhou, Quanlin; Liu, Hui Hai; Molz, Fred J.; Zhang, Yingqi; Bodvarsson, Gudmundur S.
2005-03-28
Matrix diffusion is an important mechanism for solutetransport in fractured rock. We recently conducted a literature survey onthe effective matrix diffusion coefficient, Dem, a key parameter fordescribing matrix diffusion processes at the field scale. Forty fieldtracer tests at 15 fractured geologic sites were surveyed and selectedfor study, based on data availability and quality. Field-scale Dem valueswere calculated, either directly using data reported in the literature orby reanalyzing the corresponding field tracer tests. Surveyed dataindicate that the effective-matrix-diffusion-coefficient factor FD(defined as the ratio of Dem to the lab-scale matrix diffusioncoefficient [Dem]of the same tracer) is generally larger than one,indicating that the effective matrix diffusion coefficient in the fieldis comparatively larger than the matrix diffusion coefficient at therock-core scale. This larger value could be attributed to the manymass-transfer processes at different scales in naturally heterogeneous,fractured rock systems. Furthermore, we observed a moderate trend towardsystematic increase in the emDFmDDF value with observation scale,indicating that the effective matrix diffusion coefficient is likely tobe statistically scale dependent. The FD value ranges from 1 to 10,000for observation scales from 5 to 2,000 m. At a given scale, the FD valuevaries by two orders of magnitude, reflecting the influence of differingdegrees of fractured rock heterogeneity at different sites. In addition,the surveyed data indicate that field-scale longitudinal dispersivitygenerally increases with observation scale, which is consistent withprevious studies. The scale-dependent field-scale matrix diffusioncoefficient (and dispersivity) may have significant implications forassessing long-term, large-scale radionuclide and contaminant transportevents in fractured rock, both for nuclear waste disposal and contaminantremediation.
NASA Astrophysics Data System (ADS)
Nagai, Shingo
2013-11-01
We report estimation of the effective diffusion coefficient of moisture through a barrier coating to develop an encapsulation technology for the thin-film electronics industry. This investigation targeted a silicon oxide (SiOx) film that was deposited on a plastic substrate by a large-process-area web coater. Using the finite difference method based on diffusion theory, our estimation of the effective diffusion coefficient of a SiOx film corresponded to that of bulk glass that was previously reported. This result suggested that the low diffusivities of barrier films can be obtained on a mass-production level in the factory. In this investigation, experimental observations and mathematical confirmation revealed the limit of the water vapor transmission rate on the single barrier coating.
Measurement of the local particle diffusion coefficient in a magnetized plasma
Meyerhofer, D.D.; Levinton, F.M.
1987-02-01
Local impurity particle diffusion coefficients have been measured in a low temperature plasma by the injection of test particles at the center of the plasma. The injection is accomplished by a high voltage discharge between two small graphite electrodes on a probe. The probe can be located anywhere in the plasma. The diffusion is observed spectroscopically. An analysis of the spatial and temporal evolution of the CII radiation from the carbon discharge can determine the parallel and perpendicular diffusion of the impurity ions. Results with the diagnostic have been obtained in the Proto S-1/C spheromak. The measured value of the diffusion coefficient in the afterglow plasma is in good agreement with classical predictions.
NASA Technical Reports Server (NTRS)
Penner, Reginald M.; Vandyke, Leon S.; Martin, Charles R.
1987-01-01
The current pulse E sub oc relaxation method and its application to the determination of diffusion coefficients in electrochemically synthesized polypyrrole thin films is described. Diffusion coefficients for such films in Et4NBF4 and MeCN are determined for a series of submicron film thicknesses. Measurement of the double-layer capacitance, C sub dl, and the resistance, R sub u, of polypyrrole thin films as a function of potential obtained with the galvanostatic pulse method is reported. Measurements of the electrolyte concentration in reduced polypyrrole films are also presented to aid in the interpretation of the data.
LETTER TO THE EDITOR: Fractal diffusion coefficient from dynamical zeta functions
NASA Astrophysics Data System (ADS)
Cristadoro, Giampaolo
2006-03-01
Dynamical zeta functions provide a powerful method to analyse low-dimensional dynamical systems when the underlying symbolic dynamics is under control. On the other hand, even simple one-dimensional maps can show an intricate structure of the grammar rules that may lead to a non-smooth dependence of global observables on parameters changes. A paradigmatic example is the fractal diffusion coefficient arising in a simple piecewise linear one-dimensional map of the real line. Using the Baladi-Ruelle generalization of the Milnor-Thurnston kneading determinant, we provide the exact dynamical zeta function for such a map and compute the diffusion coefficient from its smallest zero.
NASA Astrophysics Data System (ADS)
Hahne, Susanne; Ikonomov, Julian; Sokolowski, Moritz; Maass, Philipp
2013-02-01
Methods of determining surface diffusion coefficients of molecules from signal fluctuations of a locally fixed probe are revisited and refined. Particular emphasis is put on the influence of the molecule's extent. In addition to the formerly introduced autocorrelation method and residence time method, we develop a further method based on the distribution of intervals between successive peaks in the signal. The theoretical findings are applied to scanning tunneling microscopy measurements of copper phthalocyanine (CuPc) molecules on the Ag(100) surface. We discuss advantages and disadvantages of each method and suggest a combination to obtain accurate results for diffusion coefficients.
On the group classification of variable-coefficient nonlinear diffusion–convection equations
N. M. Ivanova; C. Sophocleous
2006-01-01
We consider the variable coefficient diffusion–convection equation of the form f(x)ut=[g(x)D(u)ux]x+h(x)K(u)ux which has considerable interest in mathematical physics, biology and chemistry. We present a complete group classification for this class of equations. Also we derive equivalence transformations between equations that admit Lie symmetries. Furthermore, we obtain mappings that connect variable and constant coefficient equations. Exact solutions of special forms of
Non-Fermi liquid behavior of the drag and diffusion coefficients in QED plasma
Sarkar, Sreemoyee; Dutt-Mazumder, Abhee K. [High Energy Nuclear and Particle Physics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata-700 064 (India)
2011-11-01
We calculate the drag and diffusion coefficients in low temperature QED plasma and go beyond the leading order approximation. The non-Fermi-liquid behavior of these coefficients are clearly revealed. We observe that the subleading contributions due to the exchange of soft transverse photon in both cases are larger than the leading order terms coming from the longitudinal sector. The results are presented in closed form at zero and low temperature.
Diffusion and virial coefficient in a mercury-argon gas mixture
NASA Astrophysics Data System (ADS)
Popov, V. N.; Fokin, L. R.
2013-04-01
Theoretical and experimental data on molecular beams and the mutual diffusion coefficient (MDC) and second virial coefficient (SVC) for an Hg-Ar gas mixture as a representative of the mercuryinert gas family are matched on basis of the Morse potential and the relations of the molecular kinetic theory of rarefied gases. Tables of the MDC and SVC values in the temperature range of 200-2000 K are calculated, and estimates of their accuracy are presented.
Kruk, D; Meier, R; Rachocki, A; Korpa?a, A; Singh, R K; Rössler, E A
2014-06-28
Field Cycling Nuclear Magnetic Resonance (FC NMR) relaxation studies are reported for three ionic liquids: 1-ethyl-3- methylimidazolium thiocyanate (EMIM-SCN, 220-258 K), 1-butyl-3-methylimidazolium tetrafluoroborate (BMIM-BF4, 243-318 K), and 1-butyl-3-methylimidazolium hexafluorophosphate (BMIM-PF6, 258-323 K). The dispersion of (1)H spin-lattice relaxation rate R1(?) is measured in the frequency range of 10 kHz-20 MHz, and the studies are complemented by (19)F spin-lattice relaxation measurements on BMIM-PF6 in the corresponding frequency range. From the (1)H relaxation results self-diffusion coefficients for the cation in EMIM-SCN, BMIM-BF4, and BMIM-PF6 are determined. This is done by performing an analysis considering all relevant intra- and intermolecular relaxation contributions to the (1)H spin-lattice relaxation as well as by benefiting from the universal low-frequency dispersion law characteristic of Fickian diffusion which yields, at low frequencies, a linear dependence of R1 on square root of frequency. From the (19)F relaxation both anion and cation diffusion coefficients are determined for BMIM-PF6. The diffusion coefficients obtained from FC NMR relaxometry are in good agreement with results reported from pulsed- field-gradient NMR. This shows that NMR relaxometry can be considered as an alternative route of determining diffusion coefficients of both cations and anions in ionic liquids. PMID:24985656
Blackwell, M F; Gounaris, K; Zara, S J; Barber, J
1987-01-01
The Stern-Volmer theory, in which the quantum yield ratio (Io/I) depends linearly on the quencher concentration, will typically be inapplicable to fluorescence quenching in membranes. Numerical analysis shows that diffusion-controlled quenching results in a nonlinear concentration dependence for diffusion coefficients less than or of the order of 10(-6) cm2 s-1 and probe fluorescence lifetimes in the region of 10-100 ns. Lateral diffusion coefficients in membranes are typically overestimated an order of magnitude or more by the Stern-Volmer theory. An alternative empirical method is presented, which represents nonlinear concentration curves by a single parameter linear approximation determined by a least-squares analysis. The fitting parameter, P, depends on the interaction distance, the membrane thickness, the maximum extent of quenching and, in the case of biexponential probe fluorescence decay, the fluorescence kinetic parameters. P is presented in tabular form for a useful range of these parameters. The method is used to estimate diffusion coefficients for plastoquinone and plastoquinol from pyrene fluorescence quenching in soya bean phosphatidylcholine liposomes. It is found that the diffusion coefficients are nearly equal and in the region of 1.3-3.5 X 10(-7) cm2 s-1 for interaction radii of 1.5-0.5 nm, respectively. PMID:3593871
NASA Astrophysics Data System (ADS)
Homma, Ryoei; Hasegawa, Yasuhiro; Terakado, Hiroki; Morita, Hiroyuki; Komine, Takashi
2015-02-01
We simultaneously measured the Seebeck coefficient and thermal diffusivity of a rectangular parallelepiped bulk thermoelectric material. We used one-dimensional heat conduction equation to show that a periodic heat cycle produces not only the thermoelectromotive force but also a certain phase shift angle between the edge and intermediate points of a sample along the length of the material. Based on the equation of the modified Angström method, an experiment at 300 K was performed using NIST standard material (SRM 3451, Bi2Te3 material) to measure the Seebeck coefficient and thermal diffusivity. The measured Seebeck coefficient was ?231 ± 3 µV/K, which corresponds to the published value. Using the same experimental setup as that for the thermal diffusivity measurement, the dependence of the phase shift angle on frequency was measured from 5 mHz to 10 Hz for the phase shift angle from ?8.2 to ?450°. The estimated thermal diffusivity was (1.53 ± 0.05) × 10?6 m2/s. We conclude that the modified Angström method can be used to measure the Seebeck coefficient and thermal diffusivity simultaneously.
FIELD-SCALE EFFECTIVE MATRIX DIFFUSION COEFFICIENT FOR FRACTURED ROCK:RESULTS FROM LITERATURE SURVEY
Q. Zhou; Hui-Hai Liu; F.J. Molz; Y. Zhang; G.S. Bodvarsson
2005-04-08
Matrix diffusion is an important mechanism for solute transport in fractured rock. We recently conducted a literature survey on the effective matrix diffusion coefficient, D{sub m}{sup e}, a key parameter for describing matrix diffusion processes at the field scale. Forty field tracer tests at 15 fractured geologic sites were surveyed and selected for the study, based on data availability and quality. Field-scale D{sub m}{sup e} values were calculated, either directly using data reported in the literature or by reanalyzing the corresponding field tracer tests. Surveyed data indicate that the effective-matrix-diffusion-coefficient factor F{sub D} (defined as the ratio of D{sub m}{sup e} to the lab-scale matrix diffusion coefficient [D{sub m}] of the same tracer) is generally larger than one, indicating that the effective matrix diffusion coefficient in the field is comparatively larger than the matrix diffusion coefficient at the rock-core scale. This larger value can be attributed to the many mass-transfer processes at different scales in naturally heterogeneous, fractured rock systems. Furthermore, we observed a moderate trend toward systematic increase in the F{sub D} value with observation scale, indicating that the effective matrix diffusion coefficient is likely to be statistically scale dependent. The F{sub D} value ranges from 1 to 10,000 for observation scales from 5 to 2,000 m. At a given scale, the F{sub D} value varies by two orders of magnitude, reflecting the influence of differing degrees of fractured rock heterogeneity at different sites. In addition, the surveyed data indicate that field-scale longitudinal dispersivity generally increases with observation scale, which is consistent with previous studies. The scale-dependent field-scale matrix diffusion coefficient (and dispersivity) may have significant implications for assessing long-term, large-scale radionuclide and contaminant transport events in fractured rock, both for nuclear waste disposal and contaminant remediation.
Vybornov, O. Yu.; Snegirev, N.N.; Statsenko, I.V.; Dovbysh, N.G.
1986-10-10
Short-circuiting of the electrodes and failure of the cells may occur during charging of storage batteries. This undesirable effect is caused by growth of filamentary dendrites within the separator channels and not by mechanical puncture. Dendrite growth is proportional to the solubility and rate of ion diffusion within the separators. The purpose of the present work was to study these processes. The diffusion coefficients of potassium hydroxide and zincate in separators made of polyethylene with grafted acrylic acid were measured.
H. J. M. Hanley; R. D. McCarty; W. M. Haynes
1974-01-01
Data for the viscosity and thermal conductivity coefficients of argon, nitrogen, and oxygen have been critically evaluated. A functional form to represent the data has been proposed. The function is basically the same for both coefficients. The critical point enhancement in the thermal conductivity coefficient is included. Transport properties of krypton and xenon are calculated by means of the principle
NASA Astrophysics Data System (ADS)
Novakowski, K. S.; van der Kamp, G.
A model for interpreting diffusional transport in porous geological materials is developed. The model is based on a laboratory method described in a companion paper [van der Kamp et al., this issue] by which radial diffusion from or into a cylindrical reservoir in a core-sized sample is measured. The model accounts for radial diffusion, mass balance in the reservoir, linear adsorption, decay or transformation, and periodic abstraction of samples. The model is derived using the Laplace transform method for both finite and semi-infinite domains. For conditions where solute concentrations equilibrate (i.e., in finite diameter samples), a simple expression is derived that can be used to interpret the results for effective porosity and a retardation factor. It is demonstrated that the method can provide independent measures of the effective diffusion coefficient, adsorption, and effective porosity when the results are interpreted using the model. Several real and hypothetical diffusion experiments are presented to illustrate the use of the model.
Swift, Barry D.; Tarantino, Joseph J., P. E.
2003-02-27
The Paducah Gaseous Diffusion Plant (PGDP), owned by the Department of Energy (DOE), has been enriching uranium since the early 1950s. The enrichment process involves electrical and mechanical components that require periodic cleaning. The primary cleaning agent was trichloroethene (TCE) until the late 1980s. Historical documentation indicates that a mixture of TCE and dry ice were used at PGDP for testing the integrity of steel cylinders, which stored depleted uranium. TCE and dry ice were contained in a below-ground pit and used during the integrity testing. TCE seeped from the pit and contaminated the surrounding soil. The Lasagna{trademark} technology was identified in the Record of Decision (ROD) as the selected alternative for remediation of the cylinder testing site. A public-private consortium formed in 1992 (including DOE, the U.S. Environmental Protection Agency, and the Kentucky Department for Environmental Protection, Monsanto, DuPont, and General Electric) developed the Lasagna{trademark} technology. This innovative technology employs electrokinetics to remediate soil contaminated with organics and is especially suited to sites with low permeability soils. This technology uses direct current to move water through the soil faster and more uniformly than hydraulic methods. Electrokinetics moves contaminants in soil pore water through treatment zones comprised of iron filings, where the contaminants are decomposed to basic chemical compounds such as ethane. After three years of development in the laboratory, the consortium field tested the Lasagna{trademark} process in several phases. CDM installed and operated Phase I, the trial installation and field test of a 150-square-foot area selected for a 120-day run in 1995. Approximately 98 percent of the TCE was removed. CDM then installed and operated the next phase (IIa), a year-long test on a 600-square-foot site. Completed in July 1997, this test removed 75 percent of the total volume of TCE down to a depth of 45 feet. TCE in the test sites. Based on the successful field tests (Phases I and IIa), the ROD was prepared and the Lasagna{trademark} alternative was selected for remediation of TCE contaminated soils at the cylinder testing site Solid Waste Management Unit 91(SWMU 91). Bechtel Jacobs Company LLC contracted CDM to construct and operate a full-scale Lasagna{trademark} remediation system at the site (Phase IIb). Construction began in August 1999 and the operational phase was initiated in December 1999. The Lasagna{trademark} system was operated for two years and reduced the average concentration of TCE in SWMU 91 soil from 84 ppm to less than 5.6 ppm. Verification sampling was conducted during May, 2002. Results of the verification sampling indicated the average concentration of TCE in SWMU 91 soil was 0.38 ppm with a high concentration of 4.5 ppm.
Measurement and modeling of CO2 diffusion coefficient in Saline Aquifer at reservoir conditions
NASA Astrophysics Data System (ADS)
Azin, Reza; Mahmoudy, Mohamad; Raad, Seyed Mostafa Jafari; Osfouri, Shahriar
2013-12-01
Storage of CO2 in deep saline aquifers is a promising techniques to mitigate global warming and reduce greenhouse gases (GHG). Correct measurement of diffusivity is essential for predicting rate of transfer and cumulative amount of trapped gas. Little information is available on diffusion of GHG in saline aquifers. In this study, diffusivity of CO2 into a saline aquifer taken from oil field was measured and modeled. Equilibrium concentration of CO2 at gas-liquid interface was determined using Henry's law. Experimental measurements were reported at temperature and pressure ranges of 32-50°C and 5900-6900 kPa, respectively. Results show that diffusivity of CO2 varies between 3.52-5.98×10-9 m2/s for 5900 kPa and 5.33-6.16×10-9 m2/s for 6900 kPa initial pressure. Also, it was found that both pressure and temperature have a positive impact on the measures of diffusion coefficient. Liquid swelling due to gas dissolution and variations in gas compressibility factor as a result of pressure decay was found negligible. Measured diffusivities were used model the physical model and develop concentration profile of dissolved gas in the liquid phase. Results of this study provide unique measures of CO2 diffusion coefficient in saline aquifer at high pressure and temperature conditions, which can be applied in full-field studies of carbon capture and sequestration projects.
Self-diffusion coefficients of methane or ethane mixtures with hydrocarbons at high pressure by NMR
Helbaek, M. [Nord-Troendelag Coll., Levanger (Norway). Dept. of Engineering] [Nord-Troendelag Coll., Levanger (Norway). Dept. of Engineering; Hafskjold, B.; Dysthe, D.K.; Soerland, G.H. [Norwegian Univ. of Science and Technology, Trondheim (Norway). Dept. of Physical Chemistry] [Norwegian Univ. of Science and Technology, Trondheim (Norway). Dept. of Physical Chemistry
1996-05-01
Self-diffusion coefficients have been measured in homogeneous mixtures of methane + hexane, ethane + hexane, methane + octane, ethane + octan, methane + decane, ethane + decane, and methane + hexane + benzene over the whole concentration range, at 303.2 K and 333.2 K and 30 MPa, 40 MPa, and 50 MPa. The experiments were performed in a glass cell by application of the NMR-PGSE technique. The estimated accuracy of the measurements is {+-}5%. Experimental self-diffusion coefficients were compared to the Sigmund correlation, which was found not to fit the experimental data. The main motivation for this work was the need for diffusion data in reservoir studies. Gas injection in heterogeneous or fractured reservoirs and gas diffusion through cap rock are processes where diffusion may play a significant role. Although these processes occur in porous oil- and water-saturated rock, diffusion data pertaining to bulk liquids are useful because the effect of the tortuosity of the rock can be represented by formation resistivity data. Moreover, a diffusion model at the molecular level can include rock-fluid interactions.
Perko, Janez; Patel, Ravi A
2014-05-01
The paper presents an approach that extends the flexibility of the standard lattice Boltzmann single relaxation time scheme in terms of spatial variation of dissipative terms (e.g., diffusion coefficient) and stability for high Péclet mass transfer problems. Spatial variability of diffusion coefficient in SRT is typically accommodated through the variation of relaxation time during the collision step. This method is effective but cannot deal with large diffusion coefficient variations, which can span over several orders of magnitude in some natural systems. The approach explores an alternative way of dealing with large diffusion coefficient variations in advection-diffusion transport systems by introducing so-called diffusion velocity. The diffusion velocity is essentially an additional convective term that replaces variations in diffusion coefficients vis-à-vis a chosen reference diffusion coefficient which defines the simulation time step. Special attention is paid to the main idea behind the diffusion velocity formulation and its implementation into the lattice Boltzmann framework. Finally, the performance, stability, and accuracy of the diffusion velocity formulation are discussed via several advection-diffusion transport benchmark examples. These examples demonstrate improved stability and flexibility of the proposed scheme with marginal consequences on the numerical performance. PMID:25353916
VARYING COEFFICIENT MODEL FOR MODELING DIFFUSION TENSORS ALONG WHITE MATTER TRACTS
Yuan, Ying; Zhu, Hongtu; Styner, Martin; Gilmore, John H.; Marron, J. S.
2012-01-01
Diffusion tensor imaging provides important information on tissue structure and orientation of fiber tracts in brain white matter in vivo. It results in diffusion tensors, which are 3×3 symmetric positive definite (SPD) matrices, along fiber bundles. This paper develops a functional data analysis framework to model diffusion tensors along fiber tracts as functional data in a Riemannian manifold with a set of covariates of interest, such as age and gender. We propose a statistical model with varying coefficient functions to characterize the dynamic association between functional SPD matrix-valued responses and covariates. We calculate weighted least squares estimators of the varying coefficient functions for the Log-Euclidean metric in the space of SPD matrices. We also develop a global test statistic to test specific hypotheses about these coefficient functions and construct their simultaneous confidence bands. Simulated data are further used to examine the finite sample performance of the estimated varying co-efficient functions. We apply our model to study potential gender differences and find a statistically significant aspect of the development of diffusion tensors along the right internal capsule tract in a clinical study of neurodevelopment. PMID:24533040
-Diffusion-Coefficient and Blood-Oxygenation Functional Magnetic Resonance Imaging Allen W. Song, Marty G. Woldorff, StaceyMRI) can detect blood oxygen- ation level dependent (BOLD) hemodynamic re- sponses secondary to local based on the differences in the mobility of the blood within them, thereby revealing the contributions
Noel, James Michael
1994-01-01
dispersion technique to measure the limiting mutual diffusion coefficients of some FTS products, namely 1-octene and 1-tetradecene, in subcritical and supercritical ethane and propane in the temperature range 293.2-338.25 K and the pressure range 55...
Modeling the sequence-dependent diffusion coefficients of short DNA molecules
Gonzalez, Oscar
Modeling the sequence-dependent diffusion coefficients of short DNA molecules O. Gonzalez1,a and J of sequence-dependent hydrodynamic properties of short DNA molecules is introduced. The hydrated surface for families of random and periodic DNA sequences are computed and compared with theories for straight tubes
Kovalishin, A. A., E-mail: kaa@adis.vver.kiae.ru; Laletin, N. I. [Russian Research Centre Kurchatov Institute (Russian Federation)
2011-12-15
The preference of even approximations of the surface pseudo source method for calculation of the diffusion coefficient is substantiated. The homogenization limit for the G{sub 0} approximation in the case of the cell size tending to zero is analytically proved.
Behaviour of the self-diffusion coefficient of Kr at low densities
P. Codastefano; M. A. Ricci; V. Zanza
1978-01-01
We report high precision measurements of the self-diffusion coefficient of Kr performed along the isotherm T = 293 K, in the density range 0.03-0.12 g\\/cm3. The first correction term of the expansion of varrhoD in powers of density is obtained and compared with the result for a hard-sphere fluid.
Although detailed thermodynamic analyses of the 2-pK diffuse layer surface complexation model generally specify bound site activity coefficients for the purpose of accounting for those non-ideal excess free energies contributing to bound site electrochemical potentials, in applic...
An analytic approximation to the Diffusion Coefficient for the periodic Lorentz Gas
C. Angstmann; G. P. Morriss
2012-02-14
An approximate stochastic model for the topological dynamics of the periodic triangular Lorentz gas is constructed. The model, together with an extremum principle, is used to find a closed form approximation to the diffusion coefficient as a function of the lattice spacing. This approximation is superior to the popular Machta and Zwanzig result and agrees well with a range of numerical estimates.
The effects of deionization processes on meteor radar diffusion coefficients below 90 km
NASA Astrophysics Data System (ADS)
Younger, J. P.; Lee, C. S.; Reid, I. M.; Vincent, R. A.; Kim, Y. H.; Murphy, D. J.
2014-08-01
The decay times of VHF radar echoes from underdense meteor trails are reduced in the lower portions of the meteor region. This is a result of plasma neutralization initiated by the attachment of positive trail ions to neutral atmospheric molecules. Decreased echo decay times cause meteor radars to produce erroneously high estimates of the ambipolar diffusion coefficient at heights below 90 km, which affects temperature estimation techniques. Comparisons between colocated radars and satellite observations show that meteor radar estimates of diffusion coefficients are not consistent with estimates from the Aura Microwave Limb Sounder satellite instrument and that colocated radars operating at different frequencies estimate different values of the ambipolar diffusion coefficient for simultaneous detections of the same meteors. Loss of free electrons from meteor trails due to attachment to aerosols and chemical processes were numerically simulated and compared with observations to determine the specific mechanism responsible for low-altitude meteor trail plasma neutralization. It is shown that three-body attachment of positive metal ions significantly reduces meteor radar echo decay times at low altitudes compared to the case of diffusion only that atmospheric ozone plays little part in the evolution of low-altitude underdense meteor trails and that the effect of three-body attachment begins to exceed diffusion in echo decay times at a constant density surface.
Belova, Irina [University of Newcastle, NSW, Australia; Kulkarni, Nagraj S [ORNL; Sohn, Yong Ho [University of Central Florida; Murch, Prof. Graeme [University of Newcastle, NSW, Australia
2013-01-01
In this paper, a new development of the classic Onsager phenomenological formalism is derived using relations based on linear response theory. The development concerns the correct description of the fluxes of the atomic isotopes. The resulting expressions in the laboratory frame are surprisingly simple and consist of terms coming from the standard interdiffusion expressions and from Fick s first law where the tracer diffusion coefficient is involved thus providing a better understanding of the relationship between the two approaches - Fick s first law and the Onsager phenomenological formalism. From an experimental application perspective, the new development is applied to the binary alloy case. The formalism provides the means to obtain the interdiffusion coefficient and tracer diffusion coefficients simultaneously from analysis of the interdiffusion concentration profiles in a single experiment.
NASA Astrophysics Data System (ADS)
Tang, M. J.; Cox, R. A.; Kalberer, M.
2014-06-01
Diffusion of gas molecules to the surface is the first step for all gas-surface reactions. Gas phase diffusion can influence and sometimes even limit the overall rates of these reactions; however, there is no database of the gas phase diffusion coefficients of atmospheric reactive trace gases. Here we compile and evaluate, for the first time, the diffusivities (pressure-independent diffusion coefficients) of atmospheric inorganic reactive trace gases reported in the literature. The measured diffusivities are then compared with estimated values using a semi-empirical method developed by Fuller et al. (1966). The diffusivities estimated using Fuller's method are typically found to be in good agreement with the measured values within ±30%, and therefore Fuller's method can be used to estimate the diffusivities of trace gases for which experimental data are not available. The two experimental methods used in the atmospheric chemistry community to measure the gas phase diffusion coefficients are also discussed.
Effect of computed horizontal diffusion coefficients on two-dimensional N2O model distributions
NASA Technical Reports Server (NTRS)
Jackman, Charles H.; Guthrie, Paul D.; Schoeberl, Mark R.; Newman, Paul A.
1988-01-01
The effects of horizontal diffusion coefficients K(yy) and K(yz), computed directly from the residual circulation, on the N2O distribution in a photochemical model were investigated, using a modified version of the two-dimensional model of Guthrie et al. (1984). The residual circulation was computed using the NMC's temperature data and the heating rates reported by Rosenfield et al. (1987). As compared with the effect of the residual circulation alone, the use of horizontal diffusion coefficients produced substantial changes in the N2O distribution and increased the N2O's lifetime values by a few percent. It is suggested that trace gases, such as CH4, CFCl3, CF2Cl2, CH3Cl, and CCl4, which impact the NO(x), HO(x), and Cl(x) radical distributions and therefore ozone, will be influenced in a similar manner by the addition of more realistic diffusion fields.
NASA Technical Reports Server (NTRS)
Kundrot, Craig; Barnes, Cindy L.; Snell, Edward H.; Stinson, Thomas N. (Technical Monitor)
2002-01-01
This paper reports results from the first biological crystal growth experiment on the International Space Station (ISS). Crystals of thaumatin were grown using liquid-liquid diffusion in Tygon tubing transported in the Enhanced Gaseous Nitrogen Dewar (EGN). Different Volume ratios and concentrations of protein and precipitant were used to test different adaptations of the vapor diffusion crystallization recipe to the liquid-liquid diffusion method. The EGN warmed up from -196 C to 0 C in about four days, about the same time it took to warm from 0 C to 20 C. The temperature within the EGN was 20 - 24 C for the majority of the experiment. Air gaps that blocked liquid-liquid diffusion formed in the tubes. Nonetheless, crystals were grown. Synchrotron diffraction data collected from the best space grown crystal extended to 1.28 Angstroms, comparable to previous studies of space-grown thaumatin crystals. The resolution of the best ground control crystal was only 1.47 Angstroms. It is not clear if the difference in diffraction limit is due to factors other than crystal size. Improvements in temperature control and the elimination of air gaps are needed, but the results show that EGN on the ISS can be used to produce space grown crystals that diffract to high resolution.
Kagan, Gerald; Li, Weibin; Hopson, Russell; Williard, Paul G
2009-11-01
The development of (31)P DOSY NMR with diffusion coefficient-formula weight (D-FW) analysis is reported. Commercially available trialkyl phosphine internal references were used in a model system to establish the molecular weight of a phosphorous containing organolithium compound. The feasibility of (31)P DOSY D-FW studies is established. This extension of DOSY D-FW analysis expands its applicability to solution structure studies of a wide variety of compounds. PMID:19788266
Estimating diffusion coefficients in low-permeability porous media using a macropore column
Young, D.F.; Ball, W.P. [Johns Hopkins Univ., Baltimore, MD (United States). Dept. of Geography and Environmental Engineering] [Johns Hopkins Univ., Baltimore, MD (United States). Dept. of Geography and Environmental Engineering
1998-09-01
Diffusion coefficients in an aquitard material were measured by conducting miscible solute transport experiments through a specially constructed macropore column. Stainless steel HPLC columns were prepared in a manner that created an annular region of repacked aquitard material and a central core of medium-grained quartz sand. The column transport approach minimizes volatilization and sorption losses that can be problematic when measuring hydrophobic organic chemical diffusion with diffusion-cell methods or column-sectioning techniques. In the transport experiments, solutes (triated water, 1,2,4-trichlorobenzene, and tetrachloroethene) were transported through the central core by convection and hydrodynamic dispersion and through the low-permeability annulus by radial diffusion. All transport parameters were independently measured except for the effective diffusion coefficient in the aquitard material, which was obtained by model fitting. Batch-determined retardation factors agreed very closely with moment-derived retardation factors determined from the column experiments, and no evidence of pore exclusion was found. A model with retarded diffusion was found to apply, and the effective tortuosity factor of the aquitard material was estimated at an average value of 5.1.
Substrate concentration influences effective radial diffusion coefficient in canine cortical bone.
Farrell, Kurt; O'Conor, Daniel; Gonzalez, Mariela; Androjna, Caroline; Midura, Ronald J; Tewari, Surendra N; Belovich, Joanne
2014-12-01
Transport of nutrients and waste across osseous tissue is dependent on the dynamic micro and macrostructure of the tissue; however little quantitative data exists examining how this transport occurs across the entire tissue. Here we investigate in vitro radial diffusion across a section of canine tissue, at dimensions of several hundred microns to millimeters, specifically between several osteons connected through a porous microstructure of Volkmann's canals and canaliculi. The effective diffusion coefficient is measured by a "sample immersion" technique presented here, in which the tissue sample was immersed in solution for 18-30 h, image analysis software was used to quantify the solute concentration profile in the tissue, and the data were fit to a mathematical model of diffusion in the tissue. Measurements of the effective diffusivity of sodium fluorescein using this technique were confirmed using a standard two-chamber diffusion system. As the solute concentration increased, the effective diffusivity decreased, ranging from 1.6 × 10(-7) ± 3.2 × 10(-8) cm(2)/s at 0.3 ?M to 1.4 × 10(-8) ± 1.9 × 10(-9) cm(2)/s at 300 ?M. The results show that there is no significant difference in mean diffusivity obtained using the two measurement techniques on the same sample, 3.3 × 10(-8) ± 3.3 × 10(-9) cm(2)/s (sample immersion), compared to 4.4 × 10(-8) ± 1.1 × 10(-8) cm(2)/s (diffusion chamber). PMID:25234132
Smyre, J.L.; Moll, B.W.; King, A.L.
1996-06-01
Three gamma radiological surveys have been conducted under auspices of the ER Remote Sensing Program: (1) Oak Ridge Reservation (ORR) (1992), (2) Clinch River (1992), and (3) Portsmouth Gaseous Diffusion Plant (PORTS) (1993). In addition, the Remote Sensing Program has acquired the results of earlier surveys at Paducah Gaseous Diffusion Plant (PGDP) (1990) and PORTS (1990). These radiological surveys provide data for characterization and long-term monitoring of U.S. Department of Energy (DOE) contamination areas since many of the radioactive materials processed or handled on the ORR, PGDP, and PORTS are direct gamma radiation emitters or have gamma emitting daughter radionuclides. High resolution airborne gamma radiation surveys require a helicopter outfitted with one or two detector pods, a computer-based data acquisition system, and an accurate navigational positioning system for relating collected data to ground location. Sensors measure the ground-level gamma energy spectrum in the 38 to 3,026 KeV range. Analysis can provide gamma emission strength in counts per second for either gross or total man-made gamma emissions. Gross count gamma radiation includes natural background radiation from terrestrial sources (radionuclides present in small amounts in the earth`s soil and bedrock), from radon gas, and from cosmic rays from outer space as well as radiation from man-made radionuclides. Man-made count gamma data include only the portion of the gross count that can be directly attributed to gamma rays from man-made radionuclides. Interpretation of the gamma energy spectra can make possible the determination of which specific radioisotopes contribute to the observed man-made gamma radiation, either as direct or as indirect (i.e., daughter) gamma energy from specific radionuclides (e.g., cesium-137, cobalt-60, uranium-238).
Tripathi, A. K.; Singhal, R. P. [Department of Applied Physics, Institute of Technology, Banaras Hindu University, Varanasi U.P. 221005 (India)
2009-11-15
Pitch-angle diffusion coefficients have been calculated for resonant interaction with electrostatic electron cyclotron harmonic (ECH) waves using quasilinear diffusion theory. Unlike previous calculations, the parallel group velocity has been included in this study. Further, ECH wave intensity is expressed as a function of wave frequency and wave normal angle with respect to ambient magnetic field. It is found that observed wave electric field amplitudes in Earth's magnetosphere are sufficient to set electrons on strong diffusion in the energy ranges of a few hundred eV. However, the required amplitudes are larger than the observed values for keV electrons and higher by about a factor of 3 compared to past calculations. Required electric field amplitudes are smaller at larger radial distances. It is concluded that ECH waves are responsible for diffuse auroral precipitation of electrons with energies less than about 500 eV.
Sundaram, P.A.; Wessel, E.; Clemens, H.; Kestler, H.; Ennis, P.J.; Quadakkers, W.J.; Singheiser, L.
2000-03-14
The diffusion coefficient of hydrogen in some gamma based titanium aluminide alloys was determined at room temperature using an electrochemical techniques. A cast Ti-48Al-2Cr alloy as well as Ti-46.5Al-4(Cr,Nb,Ta,B) sheet material with primary annealed and designed fully lamellar microstructures were subjected to cathodic hydrogen charging at room temperature in the galvanostatic mode. The potential variation with time was monitored form which data the values of the diffusion coefficient of hydrogen, D were calculated form well known error function/infinite series solutions to Fick's second law. Very good correlation was obtained with respect to theoretical calculations. The diffusion coefficients appear to be in close agreement with those for the cast alloy calculated from microhardness measurements. The value of D can be overestimated for thick specimens. Results show that neither the microstructure in terms of grain/lamellar colony size, nor the charging current density, appear to have a significant effect on the value of D. Lattice diffusion appears to be rate controlling.
Measurement and correlation of diffusion coefficients for CO/sub 2/ and rich-gas applications
Renner, T.A.
1988-05-01
A novel in-situ method for measuring molecular diffusion coefficients of CO/sub 2/ and other solvent gases in consolidated porous media at high pressure has been developed and is described. This technique is unique because visual observations and measurements of composition are not required. Experimental diffusion coefficients are reported for CO/sub 2/ in decane up to 850 psia (5.86 MPa), for CO/sub 2/ in 0.25 N NaCl brine up to 850 psia (5.86 MPa), and for ethane in decane up to 600 psia (4.14 MPa). All tests were conducted in Berea cores saturated with liquid phase at 100/sup 0/F (311 K). Cores were oriented both vertically and horizontally to assess the effects of gravity-induced convection on the observed mass transfer. The experimental diffusion coefficients obtained from this study have also been correlated, together with literature data for methane, ethane, and propane, as a function of liquid viscosity and thermophysical properties of the diffusing gases.
Kruk, D. [Faculty of Mathematics and Computer Science, University of Warmia and Mazury in Olsztyn, S?oneczna 54, PL-10710 Olsztyn (Poland); Universität Bayreuth, Experimentalphysik II, 95440 Bayreuth (Germany); Meier, R.; Rössler, E. A. [Universität Bayreuth, Experimentalphysik II, 95440 Bayreuth (Germany); Rachocki, A. [Institute of Molecular Physics, Polish Academy of Sciences, Smoluchowskiego 17, 60-179 Pozna? (Poland); Korpa?a, A. [Department of Biophysics, Jagiellonian University Medical College, ?azarza 16, 31-530 Kraków, Poland and Institute of Physics, Jagiellonian University, Reymonta 4, 30-059 Kraków (Poland); Singh, R. K. [Ionic Liquid and Solid State Ionics Laboratory, Department of Physics, Banaras Hindu University, Varanasi 221 005 (India)
2014-06-28
Field Cycling Nuclear Magnetic Resonance (FC NMR) relaxation studies are reported for three ionic liquids: 1-ethyl-3- methylimidazolium thiocyanate (EMIM-SCN, 220–258 K), 1-butyl-3-methylimidazolium tetrafluoroborate (BMIM-BF{sub 4}, 243–318 K), and 1-butyl-3-methylimidazolium hexafluorophosphate (BMIM-PF{sub 6}, 258–323 K). The dispersion of {sup 1}H spin-lattice relaxation rate R{sub 1}(?) is measured in the frequency range of 10 kHz–20 MHz, and the studies are complemented by {sup 19}F spin-lattice relaxation measurements on BMIM-PF{sub 6} in the corresponding frequency range. From the {sup 1}H relaxation results self-diffusion coefficients for the cation in EMIM-SCN, BMIM-BF{sub 4}, and BMIM-PF{sub 6} are determined. This is done by performing an analysis considering all relevant intra- and intermolecular relaxation contributions to the {sup 1}H spin-lattice relaxation as well as by benefiting from the universal low-frequency dispersion law characteristic of Fickian diffusion which yields, at low frequencies, a linear dependence of R{sub 1} on square root of frequency. From the {sup 19}F relaxation both anion and cation diffusion coefficients are determined for BMIM-PF{sub 6}. The diffusion coefficients obtained from FC NMR relaxometry are in good agreement with results reported from pulsed- field-gradient NMR. This shows that NMR relaxometry can be considered as an alternative route of determining diffusion coefficients of both cations and anions in ionic liquids.
Saripall, K Prasad; Serne, R Jeffery; Meyer, Philip D; McGrail, B Peter
2002-01-01
Determination of aqueous phase diffusion coefficients of solutes through porous media is essential for understanding and modeling contaminant transport. Prediction of diffusion coefficients in both saturated and unsaturated zones requires knowledge of tortuosity and constrictivity factors. No methods are available for the direct measurement of these factors, which are empirical in their definition. In this paper, a new definition for the tortuosity factor is proposed, as the real to ideal interfacial area ratio. We define the tortuosity factor for saturated porous media (tau5) as the ratio S/S(o) (specific surface of real porous medium to that of an idealized capillary bundle). For unsaturated media, tortuosity factor (tau(a)) is defined as a(aw)/a(aw),o (ratio of the specific air-water interfacial area of real and the corresponding idealized porous medium). This tortuosity factor is suitably measured using sorptive tracers (e.g., nitrogen adsorption method) for saturated media and interfacial tracers for unsaturated media. A model based on this new definition of tortuosity factors, termed the interfacial area ratio (IAR) model, is presented for the prediction of diffusion coefficients as a function of the degree of water saturation. Diffusion coefficients and diffusive resistances measured in a number of saturated and unsaturated granular porous media, for solutes in dilute aqueous solutions, agree well with the predictions of the IAR model. A comparison of permeability of saturated sands estimated based on tau(s) and the same based on the Kozeny-Carman equation confirm the usefulness of the tau(s) parameter as a measure of tortuosity. PMID:12113352
Torquato, Salvatore
Effective conductivity, dielectric constant, and diffusion coefficient of digitized composite media, dielectric constant and diffusion coefficient of digitized composite media. This is accomplished by first then develop the appropriate first-passage-time equations for digitized media: first-passage squares in two
Search for a logarithmic term in the density expansion of the diffusion coefficient of Kr in Xe
P. Codastefano; D. Rocca; V. Zanza
1979-01-01
Measurements of the diffusion coefficient of Kr in Xe at T = 298 K and in the density range 0-200 amagat are reported. The data are analyzed in order to investigate whether a logarithmic divergence appears in the density expansion of the diffusion coefficient. This analysis shows that a power series expansion is more consistent with our data though the
3D DOSY-TROSY to determine the translational diffusion coefficient of large protein complexes.
Didenko, Tatiana; Boelens, Rolf; Rüdiger, Stefan G D
2011-01-01
The translational diffusion coefficient is a sensitive parameter to probe conformational changes in proteins and protein-protein interactions. Pulsed-field gradient NMR spectroscopy allows one to measure the translational diffusion with high accuracy. Two-dimensional (2D) heteronuclear NMR spectroscopy combined with diffusion-ordered spectroscopy (DOSY) provides improved resolution and therefore selectivity when compared with a conventional 1D readout. Here, we show that a combination of selective isotope labelling, 2D ¹H-¹³C methyl-TROSY (transverse relaxation-optimised spectroscopy) and DOSY allows one to study diffusion properties of large protein complexes. We propose that a 3D DOSY-heteronuclear multiple quantum coherence (HMQC) pulse sequence, that uses the TROSY effect of the HMQC sequence for ¹³C methyl-labelled proteins, is highly suitable for measuring the diffusion coefficient of large proteins. We used the 20 kDa co-chaperone p23 as model system to test this 3D DOSY-TROSY technique under various conditions. We determined the diffusion coefficient of p23 in viscous solutions, mimicking large complexes of up to 200 kDa. We found the experimental data to be in excellent agreement with theoretical predictions. To demonstrate the use for complex formation, we applied this technique to record the formation of a complex of p23 with the molecular chaperone Hsp90, which is around 200 kDa. We anticipate that 3D DOSY-TROSY will be a useful tool to study conformational changes in large protein complexes. PMID:21062757
Jackson, G.D.
1987-10-01
The Paducah Environmental Advisory Committee was formed as: (1) an outgrowth of other Environmental Advisory Committees already in existence at Oak Ridge and other Martin Marietta Energy Systems plants; (2) a result of public concern following significant nuclear incidents at Bhopal and Chernobyl; (3) a result of the new direction and commitment of the management of the Paducah Gaseous Diffusion Plant following contract acquisition by Martin Marietta Energy Systems; and (4) a means of reducing and/or preventing local and/or public concern regarding the activities of and potential risks created by PGDP. This report discusses the following issues and concerns of the Committee arrived at through a series of meetings: (1) groundwater monitoring; (2) long-range tails storage; C-404, scrap yrads, and PCB and TCE cleanup; nuclear criticality plan and alarm systems; documentation of historical data regarding hazardous waste burial grounds; dosimeter badges; and asbestos handling and removal.
Yu, Shuangying; Halbrook, Richard S; Sparling, Donald W
2013-10-01
Reptiles are declining globally, and environmental contamination has been suggested as a contributing factor; however, few studies have investigated the relationship between contamination and reptile populations. We performed a mark-recapture study at ponds near the Paducah Gaseous Diffusion Plant (PGDP), Kentucky, to determine if heavy metals had an impact on turtle populations. We measured concentrations of cadmium, chromium, copper, lead, and mercury in red-eared slider turtle (Trachemys scripta elegans) tissues and pond sediment and determined the correlation between metal concentrations and red-eared slider density. Metal concentrations measured in the current study were low, and turtle density was not significantly correlated with metal concentrations in tissues or sediment. However, we observed a trend of decreasing turtle density in ponds that had greater metal concentrations. Sex ratio and proportion of juveniles were significantly different among ponds, but it is unclear if these differences are related to contamination associated with the PGDP. PMID:23644581
Robin, Olivier; Berry, Alain; Doutres, Olivier; Atalla, Noureddine
2014-07-01
This letter proposes an experimental method to estimate the absorption coefficient of sound absorbing materials under a synthesized diffuse acoustic field in free-field conditions. Comparisons are made between experiments conducted with this approach, the standard reverberant room method, and numerical simulations using the transfer matrix method. With a simple experimental setup and smaller samples than those required by standards, the results obtained with the proposed approach do not exhibit non-physical trends of the reverberant room method and provide absorption coefficients in good agreement with those obtained by simulations for a laterally infinite material. PMID:24993232
Thermal Expansion and Diffusion Coefficients of Carbon Nanotube-Polymer Composites
NASA Technical Reports Server (NTRS)
Wei, Chengyu; Srivastava, Deepak; Cho, Kyeongjae; Biegel, Bryan (Technical Monitor)
2001-01-01
Classical molecular dynamics (MD) simulations employing Brenner potential for intra-nanotube interactions and van der Waals forces for polymer-nanotube interface have been used to investigate thermal expansion and diffusion characteristics of carbon nanotube-polyethylene composites. Addition of carbon nanotubes to polymer matrix is found to significantly increase the glass transition temperature Tg, and thermal expansion and diffusion coefficients in the composite above Tg. The increase has been attributed to the temperature dependent increase of the excluded volume for the polymer chains, and the findings could have implications in the composite processing, coating and painting applications.
Helium3 MRI diffusion coefficient: correlation to morphometry in a model of mild emphysema
G. Peces-Barba; J. Ruiz-Cabello; Y. Cremillieux; I. Rodriguez; D. Dupuich; V. Callot; M. Ortega; M. L. Rubio Arbo; M. Cortijo; N. Gonzalez-Mangado
2003-01-01
ABSTRACT: Hyperpolarised,gases,have,been,most,recently,used,in magnetic resonance,imaging,to demonstrate,new,image-derived,pulmonary,function,para- meters. One of these parameters is the apparent diffusion coefficient, which reflects the sizes of the structures that compartmentalise,gas within the lung (i.e. alveolar space). In the present study, noninvasive parameters were compared to microscopic measurements,(mean linear intercept and mean,alveolar internal area). Nonselective helium-3 gas density coronal ex vivo images,and apparent,diffusion maps,were acquired in control
NASA Astrophysics Data System (ADS)
Weng, Yun-Jie; Cheng, Yu-Min
2013-09-01
The complex variable reproducing kernel particle method (CVRKPM) of solving two-dimensional variable coefficient advection—diffusion problems is presented in this paper. The advantage of the CVRKPM is that the shape function of a two-dimensional problem is formed with a one-dimensional basis function. The Galerkin weak form is employed to obtain the discretized system equation, and the penalty method is used to apply the essential boundary conditions. Then the corresponding formulae of the CVRKPM for two-dimensional variable coefficient advection—diffusion problems are obtained. Two numerical examples are given to show that the method in this paper has greater accuracy and computational efficiency than the conventional meshless method such as reproducing the kernel particle method (RKPM) and the elementfree Galerkin (EFG) method.
Diffusion coefficients of energetic water group ions near Comet Giacobini-Zinner
NASA Astrophysics Data System (ADS)
Tan, L. C.; Mason, G. M.; Richardson, I. G.; Ipavich, F. M.
1993-03-01
Data from the ultralow-energy charge analyzer and energetic particle anisotropy spectrometer sensors, acquired when the ICE spacecraft flew past Comet Giacobini-Zinner on September 11, 1985, are combined, and a single, self-consistent analysis technique is applied to derive a single-particle spectrum from about 200 to 1600 km/s. This information, together with the deduced bulk flow speed of the ions, is used to calculate a parallel diffusion coefficient in the transition region downstream of the bow wave (2.3 +/- 0.5) x 10 exp 17 sq cm/s; the corresponding scattering mean free path is (6 +/- 1) x 10 exp 4 km. The parallel diffusion coefficient is found to depend on the collision frequency of water group ions with Alfven waves, which are assumed to be propagating parallel (antiparallel) to the magnetic field.
Oxygen diffusion coefficient and solubility in a new proton exchange membrane
Haug, A.T.; White, R.E.
2000-03-01
The electrochemical monitoring technique is used to measure the solubility and the diffusion coefficient of oxygen in a new proton exchange membrane that is being developed by Cape Cod Research, Inc., Using the method of least squares, the data were fit to an analytical solution of Fick's second law to determine D and c{sub 0}. Values of 0.40 x 10{sup {minus}6}cm{sup 2}/s and 4.98 x 10{sup {minus}6} mol/cm{sup 3} were obtained for the diffusion coefficient and solubility, respectively, of the Cape Cod membrane. These values are significantly less than those of Nafion 117 tested under identical conditions.
Thermal diffusivity coefficient of glycerin determined on an acoustically levitated drop.
Ohsaka, K; Rednikov, A; Sadhal, S S
2002-10-01
We present a technique that can be used to determine the thermal diffusivity coefficient of undercooled liquids that exist at temperatures below their freezing points. The technique involves levitation of a small amount of liquid in the shape of a flattened drop using an acoustic levitator and heating it with a CO2 laser. The heated drop is then allowed to cool naturally by heat loss from the surface. Due to acoustic streaming, heat loss is highly non-uniform and appears to mainly occur at the drop circumference (equatorial region). This fact allows us to relate the heat loss rate with a heat transfer model to determine the thermal diffusion coefficient. We demonstrate the feasibility of the technique using glycerin drops as a model liquid. PMID:12446319
A Monte Carlo model for determination of binary diffusion coefficients in gases
Panarese, A. [Department Physics, University of Bari, Bari (Italy); Bruno, D.; Colonna, G. [CNR IMIP Bari (Italy); Diomede, P. [Department Chemistry, University of Bari, Bari (Italy); Laricchiuta, A. [CNR IMIP Bari (Italy); Longo, S., E-mail: savino.longo@ba.imip.cnr.i [Department Chemistry, University of Bari, Bari (Italy); CNR IMIP Bari (Italy); Capitelli, M. [Department Chemistry, University of Bari, Bari (Italy); CNR IMIP Bari (Italy)
2011-06-20
A Monte Carlo method has been developed for the calculation of binary diffusion coefficients in gas mixtures. The method is based on the stochastic solution of the linear Boltzmann equation obtained for the transport of one component in a thermal bath of the second one. Anisotropic scattering is included by calculating the classical deflection angle in binary collisions under isotropic potential. Model results are compared to accurate solutions of the Chapman-Enskog equation in the first and higher orders. We have selected two different cases, H{sub 2} in H{sub 2} and O in O{sub 2}, assuming rigid spheres or using a model phenomenological potential. Diffusion coefficients, calculated in the proposed approach, are found in close agreement with Chapman-Enskog results in all the cases considered, the deviations being reduced using higher order approximations.
Mialdun, A; Yasnou, V; Shevtsova, V; Königer, A; Köhler, W; Alonso de Mezquia, D; Bou-Ali, M M
2012-06-28
We report on the measurement of diffusion (D), thermodiffusion (D(T)), and Soret (S(T)) coefficients in water-isopropanol mixtures by three different instrumental techniques: thermogravitational column in combination with sliding symmetric tubes, optical beam deflection, and optical digital interferometry. All the coefficients have been measured over the full concentration range. Results from different instruments are in excellent agreement over a broad overlapping composition (water mass fraction) range 0.2 < c < 0.7, providing new reliable benchmark data. Comparison with microgravity measurements (SODI/IVIDIL (Selected Optical Diagnostic Instrument/Influence of VIbration on DIffusion in Liquids)) onboard the International Space Station and with literature data (where available) generally gives a good agreement. Contrary to theoretical predictions and previous experimental expectations we have not observed a second sign change of S(T) at low water concentrations. PMID:22755592
Dissolved and gas-phase concentrations of nine polycyclic aromatic hydrocarbons and 46 polychlorinated biphenyl congeners were measured at eight sites on the Chesapeake Bay at four different times of the year to estimate net diffusive air-water gas exchange rates. Gaseous PAHs ar...
Suresh Thayapurath; Madhubala Talaulikar; Elgar Desa; S. G. P. Matondkar; Antonio Mascarenhas
2011-01-01
We present here the results of our study comparing the spectral diffuse attenuation coefficients Kd(?) measured in the Arabian Sea with those derived from the Sea-Viewing Wide Field-of-View Sensor (SeaWiFS) using three algorithms, of which two are empirical-data-driven and one is semi-analytical. The measurements were carried out in all water types and the mean values of the measured spectral Kd(?)
THE PARALLEL DIFFUSION COEFFICIENT AND ADIABATIC FOCUSING OF COSMIC-RAY PARTICLES
Litvinenko, Yuri E. [Department of Mathematics, University of Waikato, P.B. 3105, Hamilton (New Zealand)
2012-01-20
In this paper, the problem of focused particle transport is revisited. A description in terms of a system of stochastic differential equations, completely equivalent to the Fokker-Planck equation, is suggested. The coefficient for spatial diffusion parallel to the mean magnetic field is calculated. The case of isotropic pitch angle scattering and weak focusing is analyzed in detail. The disagreement between a recent analysis by Shalchi and other treatments of the same problem is discussed.
Coefficients of Diffusion of Certain Alkali Salt Vapors in the Bunsen Flame
George E. Davis
1924-01-01
The method used is a modification of one suggested by H. A. Wilson. The ellipsoidal streak of luminous vapor from a salt bead held in the flame, was photographed; then the coefficient of diffusion K was obtained from the equation Ke12rv(dxdr-1), where r is the radial distance from the bead to a point on the boundary of the streak, x
Sandra Eisele; Markus Schwarz; Bernd Speiser; Carsten Tittel
2006-01-01
The ionic liquid l-butyl-3-methylimidazolium tetrafluoroborate is used as electrolyte in the electrochemical determination of the diffusion coefficient of ferrocene as a function of concentration by cyclic voltammetry and chronoamperometry. An improved synthesis of the room temperature ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate is described, which yields a product of high purity suitable for electrochemical purposes. A qualitative color test is discussed which
Diffuse attenuation coefficient of downwelling irradiance: An evaluation of remote sensing methods
Zhong-Ping Lee; Miroslaw Darecki; Kendall L. Carder; Curtiss O. Davis; Dariusz Stramski; W. Joseph Rhea
2005-01-01
The propagation of downwelling irradiance at wavelength ? from surface to a depth (z) in the ocean is governed by the diffuse attenuation coefficient, $\\\\bar{K}_{d}$(?). There are two standard methods for the derivation of $\\\\bar{K}_{d}$(?) in remote sensing, which both are based on empirical relationships involving the blue-to-green ratio of ocean color. Recently, a semianalytical method to derive $\\\\bar{K}_{d}$(?) from
O. O. Vaneeva; A. G. Johnpillai; R. O. Popovych; C. Sophocleous
2007-01-01
A class of variable coefficient (1+1)-dimensional nonlinear reaction–diffusion equations of the general form f(x)ut=(g(x)unux)x+h(x)um is investigated. Different kinds of equivalence groups are constructed including ones with transformations which are nonlocal with respect to arbitrary elements. For the class under consideration the complete group classification is performed with respect to convenient equivalence groups (generalized extended and conditional ones) and with respect
Karsten, A E; Singh, A; Karsten, P A; Braun, M W H
2013-02-01
An individualised laser skin treatment may enhance the treatment and reduces risks and side-effects. The optical properties (absorption and scattering coefficients) are important parameters in the propagation of laser light in skin tissue. The differences in the melanin content of different skin phototypes influence the absorption of the light. The absorption coefficient at the treatment wavelength for an individual can be determined by diffuse reflectance spectroscopy, using a probe containing seven fibres. Six of the fibres deliver the light to the measurement site and the central fibre collects the diffused reflected light. This is an in vivo technique, offering benefits for near-real-time results. Such a probe, with an effective wavelength band from 450 to 800 nm, was used to calibrate skin-simulating phantoms consisting of intralipid and ink. The calibration constants were used to calculate the absorption coefficients from the diffuse reflectance measurements of three volunteers (skin phototypes, II, IV and V) for sun-exposed and non-exposed areas on the arm. PMID:22410734
Diffusion coefficients in CO2/n-alkane binary liquid mixtures by molecular simulation.
Zabala, Damelys; Nieto-Draghi, Carlos; de Hemptinne, Jean Charles; López de Ramos, Aura L
2008-12-25
The objective of this work was to determine Fick diffusion coefficients in CO2/n-alkane binary mixtures without experimental test. For doing so, Maxwell-Stefan (MS) diffusivity was calculated by molecular simulation. Simultaneously, a thermodynamic factor was estimated using the PC-SAFT (perturbed chain statistical associating fluid theory) equation of state (eos). The binary Fick diffusivities are calculated as the product of both quantities. The binary mixtures investigated contain CO2 and various n-alkanes (nC10, nC16, nC22, nC28, nC44), at their bubble pressure at varying temperatures between 298 and 373 K. The calculated values of Fick diffusivities were compared against the experimental ones for the systems where literature data exist. An average deviation of 26% was found for the CO2/n-decane and 15% for CO2/n-hexadecane mixtures. These results support that molecular simulation can be employed as a tool for the determination of Fick diffusivities in high pressure systems, like in oil reservoirs, without the need to construct a complicated and expensive experimental setup. This method only requires the phase behavior of the desired system, and it can be used for multicomponent mixtures. As an example, predictions of Fick diffusivities were done for CO2 binary mixtures with heavy n-alkanes (nC22, nC28, nC44). PMID:19367942
Influence Of Scattering On The Diffuse Attenuation Coefficient In The Asymptotic Region
NASA Astrophysics Data System (ADS)
Tanis, Fred J.; Kattawar, George W.; Hickman, G. Daniel
1986-08-01
In a homogeneous ocean that both scatters and absorbs the radiance decreases with depth and the angular dependence of the radiance becomes independent of depth and of the incident distribution at the surface. In the diffusion region the asymptotic radiance distribution is only dependent on the inherent properties of the medium including the scattering phase function. Under these conditions an exact integral equation can be derived for the asymptotic radiance. A numerical calculation of the asymptotic radiance was made with Lobatto quadrature resulting in a precise estimate of the diffuse attenuation coefficient for selected values of the single scattering albedo. Calculations were made using estimated single scattering phase functions derived from scattering measurements made for a wide variety of marine and freshwater water types. A two parameter empirical expression was derived from these model calculations relating the diffuse attenuation coefficient and the single scattering albedo. Predictions are made over the entire range of single scattering albedos and are compared to those given by other investigators. The predictability of this relationship and the influence of the scattering phase function are evaluated for each of the scattering phase functions examined. Individual derived relationships are able to predict the diffusion exponent with RMS errors of less than one percent. The overall variation in determining the two parameters is approximately 3 and 18 percent using samples which varied optically from very clear waters of Sargasso Sea to the turbid waters of Lake Erie.
Mass dependence of the Soret coefficient for atomic diffusion in condensed matter
NASA Astrophysics Data System (ADS)
Yu, Wei-Feng; Lin, Zheng-Zhe; Ning, Xi-Jing
2013-06-01
Particle diffusion in condensed matters driven by thermal gradient, the so-called Ludwig-Soret effect, has been investigated for about 160 years, but up to the present, seldom do theories on atomic level understand a series of puzzles in relevant experiments. In this work, we derived an expression of Soret coefficient for atomic diffusion in condensed matter from a single atom statistic model with relevant parameters expressed in terms of atomic mass and the potential profile felt by the guest atom without empirical parameters. The reality of the model was strictly tested by molecular dynamics simulations, especially the result for He atom diffusing on graphene sheet, which suggests the Soret effect may be used to separate 3He from 4He.
Tortuosity, Diffusivity, and Permeability in the Soil Liquid and Gaseous Phases
P. Moldrup; T. Olesen; T. Komatsu; P. Schjønning; D. E. Rolston
2001-01-01
diffusive) and pressure-driven (convective-dispersive) transport of solutes and gases in variably saturated soils. Tortuosity phenomena of pore space influence the transport of Much emphasis has been put on describing the soil water water, solutes, and gases in soil. This study presents three analyses permeability (soil hydraulic conductivity) as a function linking tortuosity and transport in unsaturated soil. The first is
Dynamic properties and third order diffusion coefficients of ions in electrostatic fields
NASA Astrophysics Data System (ADS)
Koutselos, Andreas D.
1997-05-01
Velocity correlation functions and third order diffusion coefficients of ions moving in a buffer gas under the influence of an electrostatic field are determined via molecular dynamics simulation. For the closed shell system of K+ in Ar using a universal interaction model potential, the general form of the third order correlation functions is found to be monotonically decaying in time except in the cases of , , and , with ?v(t)=v(t) -
NASA Astrophysics Data System (ADS)
Deb Nath, S. K.
2014-05-01
Diffusion of perfluoropolyethers (PFPEs) lubricants on a hard disk surface is an important self healing characteristic to replenish PFPEs lubricants on their uncovered surface. In the present paper, we study the diffusion coefficients of non-functional PFPE Z and PFPE Zdol with functional end groups as a function of lubricant film thickness on a thin DLC (diamond-like) film. Diffusion coefficients of PFPE Z and PFPE Zdol molecules on a DLC film are calculated using the equation of Einstein's law of diffusion (Guo et al. J. Appl. Phys 93:8707, 2003; Guo Ph.D. thesis, 2006; Chung et al. IEEE Trans. Magn. 45:3644, 2009) considering the movement of their center of mass to reach their equilibrium positions from their original configurations. And it is averaged with the film thickness to show the thickness dependence on the diffusion of PFPEs lubricants on a DLC substrate. Firstly diffusion coefficients of sub-monolayer of partially coverage PFPE Z and PFPE Zdol on a DLC substrate are studied briefly and secondly the diffusion coefficient of monolayer PFPE Zdol on a DLC substrate is also studied elaborately. To support our results, we compare our thickness-dependent diffusion coefficients of PFPE Z and PFPE Zdol with those of published theoretical (Guo Ph.D. thesis, 2006; Chung et al. IEEE Trans. Magn. 45:3644, 2009) and experimental results (Chung et al. Tribol. Lett. 32:35, 2008; Ma et al. Tribol. Lett. 10:203, 2001). Here we study how lubricant film thickness plays an important role on its diffusion. Effects of polar end bead functionality, lubricant film thickness enhance the anisotropic behavior of diffusion coefficients of PFPE Zdol on the DLC substrate. But in the present analysis we consider hard disk carbon overcoat as a thin DLC film and we include all of their atoms within the force cut-off distance with PFPEs lubricant molecules for the interactions to study the thickness dependence on their diffusion coefficients.
Sun, Jia; Zhang, Xiao-Peng; Li, Xiao-Ting; Tang, Lei; Cui, Yong; Zhang, Xiao-Yan; Sun, Ying-Shi
2014-01-01
In vivo imaging studies in animal models are hindered by variables that contribute to poor image quality and measurement reliability. As such we sought to improve the diffusion coefficient (ADC) of an orthotopic mouse model of gastric cancer in diffusion-weighted images (DWI) using alginate moulding and Ultrasonic coupling medium. BGC-823 human gastric cancer cells were subcutaneously injected into the abdomen of nude mice and 1?mm3 primary tumour was orthotopically transplanted. Alginate and coupling medium were applied to the mice and MRI (T2 and DWI) was performed for 6 weeks. Regions of interest (ROI) were drawn and liver and tumour ADC were evaluated. Using alginate moulding, the mean quality total score of DW imaging was 8.53; however, in control animals this value was 5.20 (p < 0.001). The coefficient of variation of ADC of liver in experimental and control groups were 0.071 and 0.270 (p < 0.001), respectively, suggesting this method may be helpful for DWI studies of important human diseases such as gastric cancer. PMID:25123166
Observations of the vertical structure of the diffuse attenuation coefficient spectrum
NASA Astrophysics Data System (ADS)
Siegel, D. A.; Dickey, T. D.
1987-04-01
Profiles of the diffuse attenuation coefficient spectrum for downwelling spectral irradiance ( Kd( z, ?)) were determined using data taken during the autumn of 1982 in the eastern North Pacific Ocean as part of the Optical Dynamics Experiment (ODEX). The near-surface Kd(5 m, ?) was consistent with Jerlov water types IA or IB and did not show any significant variations with sun altitude angle or cloud amount, supporting the notion that Kd( z, ?) is a "quasi-inherent" optical property. Vertical profiles of Kd( z, ?) showed significant structures with amplitudes that decrease with increasing wavelength. The observed depth-wavelength distribution may be divided into a blue-green group (400-500 nm) with a vertical structure similar to the vertical distribution of chlorophyll pigments and a green-yellow group (500-575 nm) with little vertical variation. For wavelengths >575 nm, the values of Kd( z, ?) decreased with depth apparently because of limitations of the irradiance sensors. The mean vertical distribution of Kd( z, ?) for the blue-green group was well-correlated with the mean in situ fluorescence (correlation coefficient r ˜ 0.94-0.99) and with the mean total pigment concentration ( r ˜ 0.90-0.95). The correlation coefficients relating Kd( z, ?) with the phaeopigment concentration ( r ˜ 0.84-0.92) were higher than those relating the chlorophyll a concentration ( r ˜ 0.63-0.90), indicating the contributions of detrital materials. The mean beam attenuation coefficient at 660 nm was not significantly correlated with Kd( z, ?). The total pigment specific diffuse attenuation coefficient spectrum was similar to spectra determined from previous studies, with departures only in the blue region of the spectrum ( ? < 440 nm). The differences may be attributed to detrital effects.
Navarro, Juan M; Escolano, José; Cobos, Maximo; López, José J
2013-03-01
The diffusion equation model was used for room acoustic simulations to predict the sound pressure level and the reverberation time. The technical literature states that the diffusion equation method accurately models the late portion of the room impulse response if the energy is sufficiently scattered. This work provides conclusions on the validity of the diffusion equation model for rooms with homogeneous dimensions in relation to the scattering coefficients of the boundaries. A systematic evaluation was conducted out to determine the ranges of the absorption and scattering coefficient values that result in low noticeable differences between the predictions from a geometrical acoustic model and those from the diffusion equation model. PMID:23463993
The measurement of self-diffusion coefficients in liquid metals with quasielastic neutron scattering
NASA Astrophysics Data System (ADS)
Meyer, Andreas
2015-01-01
Quasielastic incoherent neutron scattering (QENS) has proven to be a versatile tool to study self diffusion of atoms in liquid metals. Here it is shown, that coherent contributions to the signal in the small q limit appear as a flat and energy independent constant to the QENS signal in single-component liquid metals even for systems with a small incoherent scattering cross section, like aluminum. Container-less processing via electromagnetic or electrostatic levitation devices, especially designed for QENS, enables the in-situ measurement on liquid metallic droplets of sizes between 5 mm to 10 mm in diameter. This gives access to the study of chemically reactive, refractory metallic melts and extends the accessible temperature range to undercoolings of several hundred Kelvin below the respective melting point. Compared to experiments using a thin-walled crucible giving hollow-cylindrical sample geometry it is shown that multiple scattering on levitated droplets is negligible for the analysis of the self-diffusion coefficient. QENS results of liquid germanium and 73germanium isotope mixtures, titanium, nickel, copper and aluminum are reviewed. The self-diffusion coefficients of these systems are best described by an Arrhenius-type temperature dependence around their respective melting points.
Measurement of Retinalamin diffusion coefficient in human sclera by optical spectroscopy
NASA Astrophysics Data System (ADS)
Genina, Elina A.; Bashkatov, Alexey N.; Zubkova, Elena A.; Kamenskikh, Tatiana G.; Tuchin, Valery V.
2008-12-01
The use of cytomedines (such as Retinalamin) in clinical practice has shown high effectiveness of the medicaments in ophthalmology. The study of diffusion of Retinalamin in scleral tissue is important for estimation of a drug dose delivered into inner tissue of eye, time of drug action, etc. In vitro measurements of spectral reflectance of sclera interacting with aqueous solution of Retinalamin have been carried out. Ten human sclera samples were included in the study. The results of the experiments have shown that penetration of Retinalamin into scleral tissue leads to the decrease of scleral reflectance due to optical immersion. Estimation of diffusion coefficient of studied solution has been made on the basis of analysis of optical reflectance dynamics of the sclera samples. The diffusion coefficient of Retinalamin in human scleral tissue was evaluated as (1.82±0.14)×10 -6 cm 2/s. The results are important for treatment of partial optic atrophy observed at primary open-angle glaucoma and others eye diseases.
Measuring diffusion coefficients via two-photon fluorescence recovery after photobleaching.
Sullivan, Kelley D; Brown, Edward B
2010-01-01
Multi-fluorescence recovery after photobleaching is a microscopy technique used to measure the diffusion coefficient (or analogous transport parameters) of macromolecules, and can be applied to both in vitro and in vivo biological systems. Multi-fluorescence recovery after photobleaching is performed by photobleaching a region of interest within a fluorescent sample using an intense laser flash, then attenuating the beam and monitoring the fluorescence as still-fluorescent molecules from outside the region of interest diffuse in to replace the photobleached molecules. We will begin our demonstration by aligning the laser beam through the Pockels Cell (laser modulator) and along the optical path through the laser scan box and objective lens to the sample. For simplicity, we will use a sample of aqueous fluorescent dye. We will then determine the proper experimental parameters for our sample including, monitor and bleaching powers, bleach duration, bin widths (for photon counting), and fluorescence recovery time. Next, we will describe the procedure for taking recovery curves, a process that can be largely automated via LabVIEW (National Instruments, Austin, TX) for enhanced throughput. Finally, the diffusion coefficient is determined by fitting the recovery data to the appropriate mathematical model using a least-squares fitting algorithm, readily programmable using software such as MATLAB (The Mathworks, Natick, MA). PMID:20190730
Sanford, R.F.
1982-01-01
Geological examples of binary diffusion are numerous. They are potential indicators of the duration and rates of geological processes. Analytical solutions to the diffusion equations generally do not allow for variable diffusion coefficients, changing boundary conditions, and impingement of diffusion fields. The three programs presented here are based on Crank-Nicholson finite-difference approximations, which can take into account these complicating factors. Program 1 describes the diffusion of a component into an initially homogeneous phase that has a constant surface composition. Specifically it is written for Fe-Mg exchange in olivine at oxygen fugacities appropriate for the lunar crust, but other components, phases, or fugacities may be substituted by changing the values of the diffusion coefficient. Program 2 simulates the growth of exsolution lamellae. Program 3 describes the growth of reaction rims. These two programs are written for pseudobinary Ca-(Mg, Fe) exchange in pyroxenes. In all three programs, the diffusion coefficients and boundary conditions can be varied systematically with time. To enable users to employ widely different numerical values for diffusion coefficients and diffusion distance, the grid spacing in the space dimension and the increment by which the grid spacing in the time dimension is increased at each time step are input constants that can be varied each time the programs are run to yield a solution of the desired accuracy. ?? 1982.
NASA Astrophysics Data System (ADS)
Tang, M. J.; Cox, R. A.; Kalberer, M.
2014-09-01
Diffusion of gas molecules to the surface is the first step for all gas-surface reactions. Gas phase diffusion can influence and sometimes even limit the overall rates of these reactions; however, there is no database of the gas phase diffusion coefficients of atmospheric reactive trace gases. Here we compile and evaluate, for the first time, the diffusivities (pressure-independent diffusion coefficients) of atmospheric inorganic reactive trace gases reported in the literature. The measured diffusivities are then compared with estimated values using a semi-empirical method developed by Fuller et al. (1966). The diffusivities estimated using Fuller's method are typically found to be in good agreement with the measured values within ±30%, and therefore Fuller's method can be used to estimate the diffusivities of trace gases for which experimental data are not available. The two experimental methods used in the atmospheric chemistry community to measure the gas phase diffusion coefficients are also discussed. A different version of this compilation/evaluation, which will be updated when new data become available, is uploaded online (diffusion"target="_blank">https://sites.google.com/site/mingjintang/home/diffusion).
Alonso de Mezquia, David; Wang, Zilin; Lapeira, Estela; Klein, Michael; Wiegand, Simone; Mounir Bou-Ali, M
2014-11-01
In this study, the thermodiffusion, molecular diffusion, and Soret coefficients of 12 binary mixtures composed of toluene, n-hexane and n-dodecane in the whole range of concentrations at atmospheric pressure and temperatures of 298.15 K and 308.15 K have been determined. The experimental measurements have been carried out using the Thermogravitational Column, the Sliding Symmetric Tubes and the Thermal Diffusion Forced Rayleigh Scattering techniques. The results obtained using the different techniques show a maximum deviation of 9% for the thermodiffusion coefficient, 8% for the molecular diffusion coefficient and 2% for the Soret coefficient. For the first time we report a decrease of the thermodiffusion coefficient with increasing ratio of the thermal expansion coefficient and viscosity for a binary mixture of an organic ring compound with a short n-alkane. This observation is discussed in terms of interactions between the different components. Additionally, the thermogravitational technique has been used to measure the thermodiffusion coefficients of four ternary mixtures consisting of toluene, n-hexane and n-dodecane at 298.15 K. In order to complete the study, the values obtained for the molecular diffusion coefficient in binary mixtures, and the thermodiffusion coefficient of binary and ternary mixtures have been compared with recently derived correlations. PMID:25376978
The partition and effective diffusion coefficients of formaldehyde were measured for three materials (conventional gypsum wallboard, "green" gypsum wallboard, and "green" carpet) under three relative humidity (RH) conditions (20%, 50% and 70% RH). A dynamic dual-chamber test meth...
The partition and effective diffusion coefficients of formaldehyde were measured for three materials (conventional gypsum wallboard, "green" gypsum wallboard, and "green" carpet) under three relative humidity (RH) conditions (20%, 50% and 70% RH). A dynamic dual-chamber test meth...
NASA Astrophysics Data System (ADS)
Hickey, Owen; Slater, Gary
2007-03-01
Many studies have found that the diffusion coefficient of a polymer in a disordered array of obstacles is much lower when compared to polymers in an ordered array of obstacles. We present simulation results based on the Bond-Fluctuation Monte Carlo algorithm where we determine the layout of the obstacles using a local harmonic potential well. When the potential is very strong the obstacles take on a periodic structure and the resulting dynamics obey the scaling laws of reptation. As we reduce the strength of the potential the obstacles are able to move small distances and we see an increase in their diffusion coefficient. Eventually, as the strength of the potential goes to zero and the array becomes completely disordered, strong entropic traps form trapping the polymers for long periods of time which dramatically reduces the diffusion coefficient. The surprising increase of the diffusion coefficient for intermediate amounts of disorder appears to be related to reptation inside wider channels
2014-01-01
Background Diffusion tensor cardiac magnetic resonance (DT-CMR) enables probing of the microarchitecture of the myocardium, but the apparent diffusion coefficient (ADC) and fractional anisotropy (FA) reported in healthy volunteers have been inconsistent. The aim of this study was to validate a stimulated-echo diffusion sequence using phantoms, and to assess the intercentre reproducibility of in-vivo diffusion measures using the sequence. Methods and results A stimulated-echo, cardiac-gated DT-CMR sequence with a reduced-field-of-view, single-shot EPI readout was used at two centres with 3 T MRI scanners. Four alkane phantoms with known diffusivities were scanned at a single centre using a stimulated echo sequence and a spin-echo Stejskal-Tanner diffusion sequence. The median (maximum, minimum) difference between the DT-CMR sequence and Stejskal-Tanner sequence was 0.01 (0.04, 0.0006) × 10-3 mm2/s (2%), and between the DT-CMR sequence and literature diffusivities was 0.02 (0.05, 0.006) × 10-3 mm2/s (4%). The same ten healthy volunteers were scanned using the DT-CMR sequence at the two centres less than seven days apart. Average ADC and FA were calculated in a single mid-ventricular, short axis slice. Intercentre differences were tested for statistical significance at the p??0.05), and only the diastolic ADC showed a statistically significant, but numerically small, difference of 0.07 × 10-3 mm2/s (p?=?0.047). The intercentre, intrasubject coefficients of variance were: systolic ADC 7%, FA 6%; diastolic ADC 7%, FA 3%. Conclusions This is the first study to demonstrate the accuracy of a stimulated-echo DT-CMR sequence in phantoms, and demonstrates the feasibility of obtaining reproducible ADC and FA in healthy volunteers at separate centres with well-matched sequences and processing. PMID:24886285
Calculating diffusion and permeability coefficients with the oscillating forward-reverse method
NASA Astrophysics Data System (ADS)
Holland, Bryan W.; Gray, Chris G.; Tomberli, Bruno
2012-09-01
The forward-reverse or FR method is an efficient bidirectional work method for determining the potential of mean force w(z) and also supposedly gives in principle the position-dependent diffusion coefficient D(z). Results from a variation called the OFR (oscillating FR) method suggest inconsistencies in the D(z) values when calculated as prescribed by the FR method. A new steering protocol has thus been developed and applied to the OFR method for the accurate determination of D(z) and also provides greater convergence for w(z) in molecular dynamics simulations. The bulk diffusion coefficient for water was found to be (6.03±0.16)×10-5 cm2/s at 350 K with system size dependence within the statistical error bars. Using this steering protocol, D(z) and w(z) for water permeating a dipalmitoylphosphatidylcholine (DPPC) bilayer were determined. The potential of mean force is shown to have a barrier of peak height, wmax/(kBT)=8.4, with a width of about 10 Å on either side from the membrane center. The diffusion constant is shown to be highest in the core region of the membrane [peak value ˜(8.0±0.8)×10-5 cm2/s], lowest in the head-group region [minimum value ˜(2.0±0.3)×10-5 cm2/s], and to tend toward the bulk value as the water molecule leaves the membrane. The permeability coefficient P for H2O in DPPC was determined using the simulated D(z) and w(z) to give values of (0.129±0.075) cm/s at 323 K and (0.141±0.043) cm/s at 350 K. The results show more spatial detail than results presented in previous work while reducing the computational and user effort.
Miyoshi, Hirofumi [Osaka Prefecture Univ., Sakai, Osaka (Japan). Research Inst. for Advanced Science and Technology] [Osaka Prefecture Univ., Sakai, Osaka (Japan). Research Inst. for Advanced Science and Technology
1999-01-01
Donnan dialysis with ion-exchange membranes was studied under various kinds of experimental conditions using ions of different valences. The diffusion coefficients (D{sub d}) of various kinds of ions in the ion-exchange membrane were obtained by curve fitting an equation derived from the mass balance to three kinds of Donnan dialytic experiments. It was found that the value of D{sub d}/D{sub s} using D{sub d} of monovalent ions in Donnan dialysis with a set of monovalent feed ions and bivalent driving ions was 1/175, where D{sub s} represents a diffusion coefficient in solution. D{sub s} was calculated from the Nernst-Einstein equation substituted by the ionic conductance of ions at infinite dilution in water. Using D{sub d} of bivalent ions in Donnan dialysis with the same set led to a D{sub d}/D{sub s} value of 1/438. Moreover, using D{sub d} in Donnan dialysis with the same set, the value of D{sub d}/D{sub e} was kept constant at 0.4 (D{sub e} expresses the diffusion coefficient in the membrane when the valences of the feed and driving ions are equal). On the other hand, both D{sub d}/D{sub s} and D{sub d}/D{sub e} using D{sub d} in Donnan dialysis with a set of bivalent feed ions and monovalent driving ions were not constant.
Evaluation of the diffusion coefficient of fluorine during the electropolishing of niobium
Hui Tian, Charles E. Reece
2010-08-01
Future accelerators require unprecedented cavity performance, which is strongly influenced by interior surface nano-smoothness. Electropolishing (EP) is the technique of choice being developed for high–field SRF cavities. Previous study has shown that the mechanism of Nb electropolishing proceeds by formation and dissolution of a compact salt film under fluorine diffusion-limited mass transport control. We pursue an improved understanding of the microscopic conditions required for optimum surface finishing. The viscosity of the standard electrolyte has been measured using a commercial viscometer, and the diffusion coefficient of fluorine was derived at a variety of temperatures from 0ºC to 50ºC using an Nb rotating disk electrode. In addition, data indicate that electrode kinetics becomes competitive with the mass transfer current limitation and increases dramatically with temperature. These findings are expected to guide the optimization of EP process parameters for achieving controlled, reproducible and uniform nano-smooth surface finishing of SRF cavities.
Evaluation of the diffusion coefficient of fluorine during the electropolishing of niobium
NASA Astrophysics Data System (ADS)
Tian, Hui; Reece, Charles E.
2010-08-01
Future accelerators require unprecedented cavity performance, which is strongly influenced by interior surface nanosmoothness. Electropolishing (EP) is the technique of choice being developed for high-field superconducting radio frequency (SRF) cavities. Previous study has shown that the mechanism of Nb electropolishing proceeds by formation and dissolution of a compact salt film under fluorine diffusion-limited mass transport control. We pursue an improved understanding of the microscopic conditions required for optimum surface finishing. The viscosity of the standard electrolyte has been measured using a commercial viscometer, and the diffusion coefficient of fluorine was derived at a variety of temperatures from 0 to 50°C using a Nb rotating disk electrode. In addition, data indicate that electrode kinetics becomes competitive with the mass transfer current limitation and increases dramatically with temperature. These findings are expected to guide the optimization of EP process parameters for achieving controlled, reproducible, and uniform nanosmooth surface finishing of SRF cavities.
Menghua Wang; SeungHyun Son; Lawrence W. Harding Jr
2009-01-01
There are several empirical and semianalytical models for the satellite-based estimation of the diffuse attenuation coefficient for the downwelling spectral irradiance at the wavelength 490 nm, Kd(490), or the diffuse attenuation coefficient for the downwelling photosynthetically available radiation (PAR), Kd(PAR). An empirical algorithm has been used to routinely produce NASA standard Kd(490) product from the Moderate Resolution Imaging Spectroradiometer (MODIS).
Shalchi, A.; Danos, R. J., E-mail: andreasm4@yahoo.com [Department of Physics and Astronomy, University of Manitoba, Winnipeg, Manitoba R3T 2N2 (Canada)
2013-03-10
A spatially varying mean magnetic field gives rise to so-called adiabatic focusing of energetic particles propagating through the universe. In the past, different analytical approaches have been proposed to calculate the particle diffusion coefficient along the mean field with focusing. In the present paper, we show how these different results are related to each other. New results for the parallel diffusion coefficient that are more general than previous results are also presented.
Sterling, Sarah M.; Allgeyer, Edward S.; Fick, Jörg; Prudovsky, Igor; Mason, Michael D.; Neivandt, David J.
2013-01-01
Model cellular membranes enable the study of biological processes in a controlled environment and reduce the traditional challenges associated with live or fixed cell studies. However, model membrane systems based on the air/water or oil/solution interface do not allow for incorporation of transmembrane proteins, or for the study of protein transport mechanisms. Conversely, a phospholipid bilayer deposited via the Langmuir-Blodgett/Langmuir Schaefer method on a hydrogel layer is potentially an effective mimic of the cross-section of a biological membrane, and facilitates both protein incorporation and transport studies. Prior to application, however, such membranes must be fully characterized, particularly with respect to the phospholipid bilayer phase transition temperature. Here we present a detailed characterization of the phase transition temperature of the inner and outer leaflets of a chitosan supported model membrane system. Specifically, the lateral diffusion coefficient of each individual leaflet has been determined as a function of temperature. Measurements were performed utilizing z-scan fluorescence correlation spectroscopy (FCS), a technique that yields calibration-free diffusion information. Analysis via the method of Wawrezinieck and coworkers, revealed that phospholipid diffusion changes from raft-like to free diffusion as the temperature is increased; an insight into the dynamic behavior of hydrogel supported membranes not previously reported. PMID:23705855
Drag and diffusion coefficients of a spherical particle attached to a fluid interface
Dörr, Aaron
2015-01-01
Explicit analytical expressions for the drag and diffusion coefficients of a spherical particle attached to the interface between two immiscible fluids are constructed for the case of a small viscosity ratio between the fluid phases. The model is designed to explicitly account for the dependence on the contact angle between the two fluids and the solid surface. The Lorentz reciprocal theorem is applied in the context of a geometric perturbation approach, which is based on the deviation of the contact angle from a 90{\\deg}-value. By testing the model against experimental and numerical data from the literature, good agreement is found within the entire range of contact angles below 90{\\deg}. As an advantage of the method reported, the drag and diffusion coefficients can be calculated up to second order in the perturbation parameter, while it is sufficient to know the velocity and pressure fields only up to first order. Extensions to other particle shapes with known velocity and pressure fields are straightforwa...
Effect of cation on diffusion coefficient of ionic liquids at onion-like carbon electrodes
NASA Astrophysics Data System (ADS)
Van Aken, Katherine L.; McDonough, John K.; Li, Song; Feng, Guang; Chathoth, Suresh M.; Mamontov, Eugene; Fulvio, Pasquale F.; Cummings, Peter T.; Dai, Sheng; Gogotsi, Yury
2014-07-01
While most supercapacitors are limited in their performance by the stability of the electrolyte, using neat ionic liquids (ILs) as the electrolyte can expand the voltage window and temperature range of operation. In this study, ILs with bis(trifluoromethylsulfonyl)imide (Tf2N) as the anion were investigated as the electrolyte in onion-like carbon-based electrochemical capacitors. To probe the influence of cations on the electrochemical performance of supercapacitors, three different cations were used: 1-ethyl-3-methylimidazolium, 1-hexyl-3-methylimidazolium and 1,6-bis(3-methylimidazolium-1-yl). A series of electrochemical characterization tests was performed using cyclic voltammetry (CV), galvanostatic cycling and electrochemical impedance spectroscopy (EIS). Diffusion coefficients were measured using EIS and correlated with quasielastic neutron scattering and molecular dynamics simulation. These three techniques were used in parallel to confirm a consistent trend between the three ILs. It was found that the IL with the smaller sized cation had a larger diffusion coefficient, leading to a higher capacitance at faster charge-discharge rates. Furthermore, the IL electrolyte performance was correlated with increasing temperature, which limited the voltage stability window and led to the formation of a solid electrolyte interphase on the carbon electrode surface, evident in both the CV and EIS experiments.
Effect of cation on diffusion coefficient of ionic liquids at onion-like carbon electrodes.
Van Aken, Katherine L; McDonough, John K; Li, Song; Feng, Guang; Chathoth, Suresh M; Mamontov, Eugene; Fulvio, Pasquale F; Cummings, Peter T; Dai, Sheng; Gogotsi, Yury
2014-07-16
While most supercapacitors are limited in their performance by the stability of the electrolyte, using neat ionic liquids (ILs) as the electrolyte can expand the voltage window and temperature range of operation. In this study, ILs with bis(trifluoromethylsulfonyl)imide (Tf2N) as the anion were investigated as the electrolyte in onion-like carbon-based electrochemical capacitors. To probe the influence of cations on the electrochemical performance of supercapacitors, three different cations were used: 1-ethyl-3-methylimidazolium, 1-hexyl-3-methylimidazolium and 1,6-bis(3-methylimidazolium-1-yl). A series of electrochemical characterization tests was performed using cyclic voltammetry (CV), galvanostatic cycling and electrochemical impedance spectroscopy (EIS). Diffusion coefficients were measured using EIS and correlated with quasielastic neutron scattering and molecular dynamics simulation. These three techniques were used in parallel to confirm a consistent trend between the three ILs. It was found that the IL with the smaller sized cation had a larger diffusion coefficient, leading to a higher capacitance at faster charge-discharge rates. Furthermore, the IL electrolyte performance was correlated with increasing temperature, which limited the voltage stability window and led to the formation of a solid electrolyte interphase on the carbon electrode surface, evident in both the CV and EIS experiments. PMID:24920163
Klose, Uwe; Batra, Marion; Nägele, Thomas
2013-01-01
The aim of this study was to develop a fast method for estimating whether a brain volume loss is within the normal range for the respective age of the patient. A readout-segmented diffusion-weighted echo-planar imaging sequence was performed as part of the routine examination at a 3-T scanner. Data without (b0-image) and with diffusion weighting (1000?s/mm(2)) from 492 patients were examined (in the age from 3 to 89?years). One hundred and seventy-three data-sets had to be excluded due to brain lesions or to pathological enlarged cerebrospinal fluid spaces. In the remaining 319 data-sets, apparent diffusion coefficients (ADCs) values were calculated for all pixels exceeding a combined threshold in the diffusion-weighted data and in the non-diffusion-weighted data. The first part of the histogram represents pixels containing mostly brain tissue. The percentage of number of pixels in this part of the ADC histograms was evaluated for all patients and was correlated with the age of the patients. In all the areas examined, a monotone change of relative pixel numbers with the age of the patients was found. The reduction of the contribution of pixels containing mostly brain tissue accelerated with age and was found to be 0.18%/year in the age of 20, 0.34%/year in the age of 50, and 0.50%/year in the age of 80. The observed decrease of the relative number of pixels from the brain tissue with increasing age corresponds to previously published results based on more time-consuming 3-D measurements. The presented technique uses a conventional clinical sequence and might be helpful in deciding whether an observed brain volume loss in a patient is within the normal range for the age of the patient. PMID:24312050
In-situ estimate of submesoscale horizontal eddy diffusion coefficients across a front
NASA Astrophysics Data System (ADS)
Nencioli, Francesco; d'Ovidio, Francesco; Doglioli, Andrea; Petrenko, Anne
2013-04-01
Fronts, jets and eddies are ubiquitous features of the world oceans, and play a key role in regulating energy budget, heat transfer, horizontal and vertical transport, and biogeochemical processes. Although recent advances in computational power have favored the analysis of mesoscale and submesoscale dynamics from high-resolution numerical simulations, studies from in-situ observations are still relatively scarce. The small dimensions and short duration of such structures still pose major challenges for fine-scale dedicated field experiments. As a consequence, in-situ quantitative estimates of key physical parameters for high-resolution numerical models, such as horizontal eddy diffusion coefficients, are still lacking. The Latex10 campaign (September 1-24, 2010), within the LAgrangian Transport EXperiment (LATEX), adopted an adaptive sampling strategy that included satellite data, ship-based current measurements, and iterative Lagrangian drifter releases to successfully map coherent transport structures in the western Gulf of Lion. Comparisons with AVHRR imagery evidenced that the detected structures were associated with an intense frontal feature, originated by the convergence and subsequent stirring of colder coastal waters with warmer open-sea waters. We present a method for computing horizontal eddy diffusion coefficients by combining the stirring rates estimated from the Lagrangian drifter trajectories with the shapes of the surface temperature and salinity gradient (assumed to be at the equilibrium) from the ship thermosalinograph. The average value we obtained from various sections across the front is 2.5 m2s-1, with horizontal scales (width of the front) ranging between 0.5 and 2.5 km. This is in line with the values commonly used for high-resolution numerical simulations. Further field experiment will be required to extend the results to different ocean regions and regimes, and to thoroughly test the robustness of the equilibrium hypothesis. Remote sensed measurements of sea surface temperature and elevation could also be used to compute fine-scale horizontal eddy diffusion coefficients over larger areas and for different ocean regions. However, the coarse resolution of current sea surface topography observations, and their unreliability over coastal regions, represent important limitations for this type of application. The velocity fields provided by the SWOT mission will allow to retrieve accurate high-resolution stirring rates across the ocean. Combining these rates with remote-sensed SST gradients will make possible to extend our analysis and investigate patterns and variability of submesoscale horizontal eddy diffusion at the global scale.
Zhao, Yanwei; Wu, Gang; Shi, Haiming; Xia, Zhijie; Sun, Tao
2014-01-01
Background The purpose of this study was to determine a new method for the early diagnosis and assessment of mild cognitive impairment in elderly individuals with hypertension. Elderly hypertensive patients with cognitive impairment were assessed by the Montreal Cognitive Assessment (MoCA) and Clinical Dementia Rating Assessment (CDR). Cognitive results were compared to apparent diffusion coefficient (ADC) values from magnetic resonance-diffusion weighted imaging. Methods A total of 191 patients were categorized into four groups: a control group (normal cognition and no hypertension; n=20); a normal group (hypertension and normal cognition; n=33); an mild cognitive impairment group (n=80); and a vascular dementia group (n=58). The MoCA and CDR tests were used to determine cognition. ADC values in eight brain regions were calculated with magnetic resonance-diffusion weighted imaging. Other characteristics were evaluated, eg, blood pressure, MoCA, and CDR scores, and the comparisons of the four groups were made. Results The MoCA and CDR scores differed among the four groups (P<0.001). Systolic and diastolic blood pressure values increased as cognitive function declined (P<0.001). Cognitive function declined as ADC values increased, and they differed between elderly people with and without hypertension (P<0.001). Among elderly hypertensive participants, ADC values were significantly increased in the cortex and hippocampus. Conclusion The MoCA and CDR tests were sufficiently sensitive to evaluate cognition. Blood pressure was closely related to cognition, as well as to functional and structural changes in the brain. These alterations were evidenced through changes in the ADC values and were most obvious in the cortex and hippocampus. Greater cognitive decline was observed in elderly participants with hypertension compared to those without. As hypertensive stage increased, greater ADC values were observed. PMID:25114516
Method qualification and application of diffusion interaction parameter and virial coefficient.
Shi, Shuai; Uchida, Makiko; Cheung, Jason; Antochshuk, Valentyn; Shameem, Mohammed
2013-11-01
This research focused on evaluation and application of two methods in studying weak protein-protein interactions, i.e. diffusion interaction parameter (KD) and second virial coefficient (B22), both of which are first-order coefficients of protein interactions. Although the plate-based KD method successfully distinguished KD values with relatively large difference in a pH ranging study, it failed to make a consistent statistical decision to determine close interactions as shown by the comprehensive ANOVA analysis. We also validated the DLS-based B22 method by using a model protein lysozyme. The dramatic change of solution appearance for lysozyme as a function of NaCl concentration highlighted the importance of B22 in understanding protein interactions. Moreover, B22 measurement for a MAb fragment suggested a more repulsive protein interaction in histidine buffer than in citrate buffer. The coefficient of variation was <10% when B22 was on an order of magnitude of 10(-4) L mmol/g(2) in contrast to >30% when it approached 10(-5) L mmol/g(2). In this research, we also made an attempt to study protein-protein interactions in concentrated MAb fragment solutions (e.g. >50 mg/mL). Our data suggested that such interactions could be empirically modeled by high-order virial expansions. PMID:24095715
Goemans, M.G.E.; Gloyna, E.F. [Univ. of Texas, Austin, TX (United States). Dept. of Civil Engineering; Buelow, S.J. [Los Alamos National Lab., NM (United States)
1996-04-01
Molecular diffusion coefficients of lithium-, sodium-, potassium-, cesium-, calcium-, and strontium nitrate in subcritical water were determined by analysis of Taylor dispersion profiles. Pressures ranged from 300 to 500 bar at temperatures ranging from 25{degrees}C to 300{degrees}C. The reported diffusion values were determined at infinite dilution. Molecular diffusion coefficients were 10 to 20 times faster in near-critical subcritical water than in water at ambient temperature and pressure (ATP). These findings implied that the diffusion rates were more liquid like than they were gas like, hence experimental results were correlated with diffusion models for liquids. The subcritical diffusion data presented in this work, and supercritical diffusion results published elsewhere were correlated with hydrodynamic diffusion equations. Both the Wilke-Chang correlation and the Stokes-Einstein equation yielded predictions within 10% of the experimental results if the structure of the diffusing species could be estimated. The effect of the increased diffusion rates on mass transfer rates in supercritical water oxidation applications was quantified, with emphasis on heterogeneous oxidation processes. This study and results published elsewhere showed that diffusion limited conditions are much more likely to be encountered in SCWO processes than commonly acknowledged.
Diffusion Coefficients of Endogenous Cytosolic Proteins from Rabbit Skinned Muscle Fibers
Carlson, Brian E.; Vigoreaux, Jim O.; Maughan, David W.
2014-01-01
Efflux time courses of endogenous cytosolic proteins were obtained from rabbit psoas muscle fibers skinned in oil and transferred to physiological salt solution. Proteins were separated by gel electrophoresis and compared to load-matched standards for quantitative analysis. A radial diffusion model incorporating the dissociation and dissipation of supramolecular complexes accounts for an initial lag and subsequent efflux of glycolytic and glycogenolytic enzymes. The model includes terms representing protein crowding, myofilament lattice hindrance, and binding to the cytomatrix. Optimization algorithms returned estimates of the apparent diffusion coefficients, D(r,t), that were very low at the onset of diffusion (?10?10 cm2 s?1) but increased with time as cytosolic protein density, which was initially high, decreased. D(r,t) at later times ranged from 2.11 × 10?7 cm2 s?1 (parvalbumin) to 0.20 × 10?7 cm2 s?1 (phosphofructose kinase), values that are 3.6- to 12.3-fold lower than those predicted in bulk water. The low initial values are consistent with the presence of complexes in situ; the higher later values are consistent with molecular sieving and transient binding of dissociated proteins. Channeling of metabolic intermediates via enzyme complexes may enhance production of adenosine triphosphate at rates beyond that possible with randomly and/or sparsely distributed enzymes, thereby matching supply with demand. PMID:24559981
Blackness coefficients, effective diffusion parameters, and control rod worths for thermal reactors
Bretscher, M.M.
1984-09-01
Simple diffusion theory cannot be used to evaluate control rod worths in thermal reactors because of the strongly absorbing character of the control material. However, good results can be obtained from a diffusion calculation by representing the absorber slab by means of a suitable pair of internal boundary conditions, ..cap alpha.. and ..beta.., which are ratios of neutron flux to neutron current. Methods for calculating ..cap alpha.. and ..beta.. in the P/sub 1/, P/sub 3/, and P/sub 5/ approximations, with and without scattering, are presented. By appropriately weighting the fine-group blackness coefficients, broad group values, <..cap alpha..> and <..beta..>, are obtained. The technique is applied to the calculation of control rod worths of Cd, Ag-In-Cd, and Hf control elements. Results are found to compare very favorably with detailed Monte Carlo calculations. For control elements whose geometry does not permit a thin slab treatment, other methods are needed for determining the effective diffusion parameters. One such method is briefly discussed and applied to the calculation of control rod worths in the Ford Nuclear Reactor at the University of Michigan. Calculated and measured worths are found to be in good agreement.
de Mauro, C; Corradi, L; Dainelli, A; Khanbekyan, A; Mariotti, E; Minguzzi, P; Moi, L; Sanguinetti, S; Stancari, G; Tomassetti, L; Veronesi, S
2008-01-01
We report the first measurement of the diffusion coefficients of francium and rubidium ions implanted in a yttrium foil. We developed a methodology, based on laser spectroscopy, which can be applied to radioactive and stable species, and allows us to directly take record of the diffusion time. Francium isotopes are produced via fusion-evaporation nuclear reaction of a 100 MeV 18-O beam on a Au target at the Tandem XTU accelerator facility in Legnaro, Italy. Francium is ionized at the gold-vacuum interface and Fr+ ions are then transported with a 3 keV electrostatic beamline to a cell for neutralization and capture in a magneto-optical trap (MOT). A Rb+ beam is also available, which follows the same path as Fr+ ions. The accelerated ions are focused and implanted in a 25 um thick yttrium foil for neutralization: after diffusion to the surface, they are released as neutrals, since the Y work function is lower than the alkali ionization energies. The time evolution of the MOT and the vapor fluorescence signals a...
Hadjiev, Nicholas A; Amsden, Brian G
2015-02-10
The ability to estimate the diffusion coefficient of a solute within hydrogels has important application in the design and analysis of hydrogels used in drug delivery, tissue engineering, and regenerative medicine. A number of mathematical models have been derived for this purpose; however, they often rely on fitted parameters and so have limited predictive capability. Herein we assess the ability of the obstruction-scaling model to provide reasonable estimates of solute diffusion coefficients within hydrogels, as well as the assumption that a hydrogel can be represented as an entangled polymer solution of an equivalent concentration. Fluorescein isothiocyanate dextran solutes were loaded into sodium alginate solutions as well as hydrogels of different polymer volume fractions formed from photoinitiated cross-linking of methacrylate sodium alginate. The tracer diffusion coefficients of these solutes were measured using fluorescence recovery after photobleaching (FRAP). The measured diffusion coefficients were then compared to the values predicted by the obstruction-scaling model. The model predictions were within ±15% of the measured values, suggesting that the model can provide useful estimates of solute diffusion coefficients within hydrogels and solutions. Moreover, solutes diffusing in both sodium alginate solutions and hydrogels were demonstrated to experience the same degree of solute mobility restriction given the same effective polymer concentration, supporting the assumption that a hydrogel can be represented as an entangled polymer solution of equivalent concentration. PMID:25499554
NASA Astrophysics Data System (ADS)
Kikugawa, Gota; Ando, Shotaro; Suzuki, Jo; Naruke, Yoichi; Nakano, Takeo; Ohara, Taku
2015-01-01
In the present study, molecular dynamics (MD) simulations on the monatomic Lennard-Jones liquid in a periodic boundary system were performed in order to elucidate the effect of the computational domain size and shape on the self-diffusion coefficient measured by the system. So far, the system size dependence in cubic computational domains has been intensively investigated and these studies showed that the diffusion coefficient depends linearly on the inverse of the system size, which is theoretically predicted based on the hydrodynamic interaction. We examined the system size effect not only in the cubic cell systems but also in rectangular cell systems which were created by changing one side length of the cubic cell with the system density kept constant. As a result, the diffusion coefficient in the direction perpendicular to the long side of the rectangular cell significantly increases more or less linearly with the side length. On the other hand, the diffusion coefficient in the direction along the long side is almost constant or slightly decreases. Consequently, anisotropy of the diffusion coefficient emerges in a rectangular cell with periodic boundary conditions even in a bulk liquid simulation. This unexpected result is of critical importance because rectangular fluid systems confined in nanospace, which are present in realistic nanoscale technologies, have been widely studied in recent MD simulations. In order to elucidate the underlying mechanism for this serious system shape effect on the diffusion property, the correlation structures of particle velocities were examined.
Elperin, Tov; Krasovitov, Boris; Vikhansky, Alexander
2010-01-01
We suggest a model of rain scavenging of soluble gaseous pollutants in the atmosphere. It is shown that below-cloud gas scavenging is determined by non-stationary convective diffusion equation with the effective Peclet number. The obtained equation was analyzed numerically in the case of log-normal droplet size distribution. Calculations of scavenging coefficient and the rates of precipitation scavenging are performed for wet removal of ammonia (NH3) and sulfur dioxide (SO2) from the atmosphere. It is shown that scavenging coefficient is non-stationary and height-dependent. It is found also that the scavenging coefficient strongly depends on initial concentration distribution of soluble gaseous pollutants in the atmosphere. It is shown that in the case of linear distribution of the initial concentration of gaseous pollutants whereby the initial concentration of gaseous pollutants decreases with altitude, the scavenging coefficient increases with height in the beginning of rainfall. At the later stage of the r...
Amjad, M. Wahab; Mohd Amin, Mohd Cairul I.; Mahali, Shalela M.; Katas, Haliza; Ismail, Ismanizan; Hassan, M. Naeem ul; Chuang, Victor T. Giam
2014-01-01
Biomolecules have been widely investigated as potential therapeutics for various diseases. However their use is limited due to rapid degradation and poor cellular uptake in vitro and in vivo. To address this issue, we synthesized a new nano-carrier system comprising of cholic acid-polyethylenimine (CA-PEI) copolymer micelles, via carbodiimide-mediated coupling for the efficient delivery of small interfering ribonucleic acid (siRNA) and bovine serum albumin (BSA) as model protein. The mean particle size of siRNA- or BSA-loaded CA-PEI micelles ranged from 100–150 nm, with zeta potentials of +3-+11 mV, respectively. Atomic force, transmission electron and field emission scanning electron microscopy demonstrated that the micelles exhibited excellent spherical morphology. No significant morphology or size changes were observed in the CA-PEI micelles after siRNA and BSA loading. CA-PEI micelles exhibited sustained release profile, the effective diffusion coefficients were successfully estimated using a mathematically-derived cylindrical diffusion model and the release data of siRNA and BSA closely fitted into this model. High siRNA and BSA binding and loading efficiencies (95% and 70%, respectively) were observed for CA-PEI micelles. Stability studies demonstrated that siRNA and BSA integrity was maintained after loading and release. The CA-PEI micelles were non cytotoxic to V79 and DLD-1 cells, as shown by alamarBlue and LIVE/DEAD cell viability assays. RT-PCR study revealed that siRNA-loaded CA-PEI micelles suppressed the mRNA for ABCB1 gene. These results revealed the promising potential of CA-PEI micelles as a stable, safe, and versatile nano-carrier for siRNA and the model protein delivery. PMID:25133390
Galons, J P; Trouard, T; Gmitro, A F; Lien, Y H
1996-01-01
The nature of brain edema in dialysis disequilibrium syndrome (DDS) was investigated by diffusion-weighted magnetic resonance imaging (DWI). DWI was performed on normal or bilaterally nephrectomized rats before, and immediately after, hemodialysis. Hemodialysis was performed with a custom-made dialyzer (surface area 150 cm2) against a bicarbonate-buffered bath for 90 min with or without 70 mM urea. Hemodialysis with non-urea bath decreased plasma urea by 21 mM, and plasma osmolality by 22 mosmol/kg H2O, and increased brain water content by 8.0% (all < 0.05), while hemodialysis with urea bath did not affect plasma urea, osmolality, or brain water content. Three sets of axial DWI images of the brain were obtained at different gradient weighing factors with an in-plane resolution of 0.39 mm2. The apparent diffusion coefficient (Dapp) of the brain water was not affected by bilateral nephrectomy, or by hemodialysis in normal rats. In nephrectomized rats, brain Dapp was significantly increased after dialysis with non-urea bath (1.15 +/- 0.08 vs 0.89 +/- 0.07 x 10(-9)m2/sec, P < 0.01). No significant changes of brain water Dapp could be observed after dialysis with urea bath. The increased Dapp associated with DDS indicates that brain extracellular water increases and/or intracellular water decreases after hemodialysis. Our results strongly suggest that the brain edema induced by hemodialysis in uremic rats is due to interstitial edema rather than cytotoxic edema. Furthermore, our results support a primary role for the "reverse urea effect" in the pathogenesis of brain edema in DDS.DWI may be a useful diagnostic tool for DDS in patients with end-stage renal disease. PMID:8698867
Rautiainen, Suvi; Könönen, Mervi; Sironen, Reijo; Masarwah, Amro; Sudah, Mazen; Hakumäki, Juhana; Vanninen, Ritva; Sutela, Anna
2015-01-01
The axillary staging in newly diagnosed breast cancer is under major evolution. The aims of this study were to define the diagnostic performance of 3.0-T diffusion-weighted imaging (DWI) in the detection of axillary metastases in newly diagnosed breast cancer, to assess apparent diffusion coefficients (ADCs) for histopathologically confirmed metastatic lymph nodes in a clinical setting. Altogether 52 consecutive breast cancer patients underwent magnetic resonance imaging and DWI in addition to axillary ultrasound. ADCs of axillary lymph nodes were analysed by two breast radiologists and ultrasound-guided core biopsies were taken. In a separate reading by one radiologist two types of region of interests were used for a smaller group of patients. Altogether 56 axillae (121 lymph nodes) were included in the statistical analysis. Metastatic axillae (51.8%) had significantly lower ADCs (p<0.001). Mean ADCs were 0.663–0.676 x 10-3 mm2/s for the histologically confirmed metastatic LNs and 1.100–1.225 x 10-3 mm2/s for the benign. The sensitivity, specificity, and accuracy of DWI were 72.4%, 79.6%, and 75.9%, respectively with threshold ADC 0.812 x 10-3 mm2/s. Region of interest with information on the minimum value increased the diagnostic performance (area under the curve 0.794 vs. 0.619). Even though ADCs are significantly associated with histopathologically confirmed axillary metastases the diagnostic performance of axillary DWI remains moderate and ultrasound-guided core biopsies or sentinel lymph node biopsies cannot be omitted. PMID:25823016
A comparative study on temperature dependent diffusion coefficient of liquid Fe
NASA Astrophysics Data System (ADS)
Gosh, R. C.; Syed, Ishtiaque M.; Amin, Zahurul; Bhuiyan, G. M.
2013-10-01
The self-diffusion coefficients, D, of liquid Fe at different temperatures have been investigated using hard sphere (HS) theory and universal scaling laws (USLs). Inter-ionic interaction is derived from both pseudopotential proposed by Brettonet-Silbert (BS) and many body potential obtained from embedded atom method (EAM). Temperature dependent effective HS diameter, ?(T), and excess entropy, Sex, are the premier ingredients of the study. The former ingredient is calculated using both variational modified hypernetted chain, VMHNC, integral equation theory and Linearized Weeks-Chandler-Andersen, LWCA, thermodynamic perturbation theory together with an empirical relation of Protopapas et al. (1973) [2] whereas the later one is calculated using VMHNC theory alone, with BS and EAM potentials. We observe that D increases with increasing temperatures. The obtained results are compared with those predicted by Protopapas et al. The comparison suggests that USL of Dzugutov and HS theory with BS potential are better choices to predict D(T) of liquid Fe.
Surface diffusion coefficient of Au atoms on single layer graphene grown on Cu
Ruffino, F., E-mail: francesco.ruffino@ct.infn.it; Cacciato, G.; Grimaldi, M. G. [Dipartimento di Fisica ed Astronomia-Universitá di Catania, via S. Sofia 64, 95123 Catania, Italy and MATIS IMM-CNR, via S. Sofia 64, 95123 Catania (Italy)
2014-02-28
A 5?nm thick Au film was deposited on single layer graphene sheets grown on Cu. By thermal processes, the dewetting phenomenon of the Au film on the graphene was induced so to form Au nanoparticles. The mean radius, surface-to-surface distance, and surface density evolution of the nanoparticles on the graphene sheets as a function of the annealing temperature were quantified by scanning electron microscopy analyses. These quantitative data were analyzed within the classical mean-field nucleation theory so to obtain the temperature-dependent Au atoms surface diffusion coefficient on graphene: D{sub S}(T)=[(8.2±0.6)×10{sup ?8}]exp[?(0.31±0.02(eV)/(at) )/kT]?cm{sup 2}/s.
Arnspang, Eva C; Koffman, Jennifer S; Marlar, Saw; Wiseman, Paul W; Nejsum, Lene N
2014-01-01
Lateral diffusion and compartmentalization of plasma membrane proteins are tightly regulated in cells and thus, studying these processes will reveal new insights to plasma membrane protein function and regulation. Recently, k-Space Image Correlation Spectroscopy (kICS)(1) was developed to enable routine measurements of diffusion coefficients directly from images of fluorescently tagged plasma membrane proteins, that avoided systematic biases introduced by probe photophysics. Although the theoretical basis for the analysis is complex, the method can be implemented by nonexperts using a freely available code to measure diffusion coefficients of proteins. kICS calculates a time correlation function from a fluorescence microscopy image stack after Fourier transformation of each image to reciprocal (k-) space. Subsequently, circular averaging, natural logarithm transform and linear fits to the correlation function yields the diffusion coefficient. This paper provides a step-by-step guide to the image analysis and measurement of diffusion coefficients via kICS. First, a high frame rate image sequence of a fluorescently labeled plasma membrane protein is acquired using a fluorescence microscope. Then, a region of interest (ROI) avoiding intracellular organelles, moving vesicles or protruding membrane regions is selected. The ROI stack is imported into a freely available code and several defined parameters (see Method section) are set for kICS analysis. The program then generates a "slope of slopes" plot from the k-space time correlation functions, and the diffusion coefficient is calculated from the slope of the plot. Below is a step-by-step kICS procedure to measure the diffusion coefficient of a membrane protein using the renal water channel aquaporin-3 tagged with EGFP as a canonical example. PMID:24893770
A uniqueness result for the identification of a time-dependent diffusion coefficient
NASA Astrophysics Data System (ADS)
Fraguela, A.; Infante, J. A.; Ramos, A. M.; Rey, J. M.
2013-12-01
This paper deals with the problem of determining the time-dependent thermal diffusivity coefficient of a medium, when the evolution of the temperature in a part of it is known. Such situations arise in the context of food technology, when thermal processes at high pressures are used for extending the shelf life of the food, in order to preserve its nutritional and organoleptic properties (Infante et al 2009 On the Modelling and Simulation of High Pressure Processes and Inactivation of Enzymes in Food Engineering pp 2203-29 and Otero et al 2007 J. Food Eng. 78 1463-70). The phenomenon is modeled by the heat equation involving a term which depends on the source temperature and pressure increase, and appropriate initial and boundary conditions. We study the inverse problem of determining time-dependent thermal diffusivities k, when some temperature measurements at the border and inside the medium are known. We prove the uniqueness of the inverse problem solution under suitable a priori assumptions on regularity, size and growth of k.
On the parametrization of the energetic-particle pitch-angle diffusion coefficient
NASA Astrophysics Data System (ADS)
Agueda, Neus; Vainio, Rami
2013-03-01
Context: Solar energetic particle (SEP) events are one of the key ingredients of the near-Earth radiation environment. Pitch-angle scattering by fluctuations imposed on the large-scale magnetic field is assumed to be the basic physical process behind diffusive propagation of SEPs in the heliosphere. Various pitch-angle diffusion models have been suggested to parametrize the wave-particle interactions, based on the original results of the classical quasi-linear theory of particle scattering and improved new approaches. Aims: We investigate under which circumstances the different functional forms of the pitch-angle diffusion coefficient can lead to equivalent results. In particular, we use two forms that are commonly used in two types of numerical methods to solve the particle transport equation, i.e., finite difference methods and Monte Carlo simulations. Methods: We estimate the corresponding values of the parameters of the two scattering models by performing a least-square fitting of the functional form of one of the scattering-frequency models to the other. We also perform Monte Carlo simulations of near-relativistic solar electrons to investigate the similarity of the models in terms of observables at 1 AU. Results: Our study shows that the two forms of pitch-angle scattering frequency lead to nearly equivalent results for electron transport from the Sun to 1 AU. We give the equivalent scattering parameters of the two models as curves that can be easily used when comparing the results of the two models. Conclusions: By providing the equivalent parametrizations of two commonly used scattering models, we provide key information on how to relate the results from the two parametrizations to each other and to the theory of particle transport.
The Course of Apparent Diffusion Coefficient Values following Perinatal Arterial Ischemic Stroke
van der Aa, Niek E.; Benders, Manon J. N. L.; Vincken, Koen L.; Groenendaal, Floris; de Vries, Linda S.
2013-01-01
Background Diffusion weighted MR imaging (DWI) plays an important role in the diagnosis of perinatal arterial ischemic stroke (PAIS) during the acute phase. Its derived apparent diffusion coefficient (ADC) can be used to quantify the diffusion restriction. Aim of the current study was to identify the changes in ADC values in the acute phase following PAIS. Methods A cohort of 36 infants with a confirmed PAIS who were examined once during the first ten days of life was studied. ADC values in the core of the ischemic tissue (iADC) were determined and correlated with postnatal age. ADC ratios (rADC) were calculated by dividing the iADC value by the ADC value of the corresponding area in the contralateral ‘healthy’ hemisphere. Results Infants were scanned between days two and ten. A non-linear increase in iADC and rADC values was observed over time and large middle cerebral artery strokes resulted in lower iADC and rADC values. Normalisation of rADC values was observed after day seven. rADC values were lower when compared to previously published rADC values of infants with hypoxic ischemic encephalopathy, suggesting more severe injury. Conclusions Following PAIS, DWI showed decreased ADC values with a non-linear increase during the first week, and pseudonormalization after day 7, which limits the use of DWI to assess PAIS to the first week. Compared to previous studies, ADC values were lower when compared to infants with hypoxic ischemic encephalopathy, most likely due to more severe injury. PMID:23457613
Small effect of water on upper-mantle rheology based on silicon self-diffusion coefficients.
Fei, Hongzhan; Wiedenbeck, Michael; Yamazaki, Daisuke; Katsura, Tomoo
2013-06-13
Water has been thought to affect the dynamical processes in the Earth's interior to a great extent. In particular, experimental deformation results suggest that even only a few tens of parts per million of water by weight enhances the creep rates in olivine by orders of magnitude. However, those deformation studies have limitations, such as considering only a limited range of water concentrations and very high stresses, which might affect the results. Rock deformation can also be understood as an effect of silicon self-diffusion, because the creep rates of minerals at temperatures as high as those in the Earth's interior are limited by self-diffusion of the slowest species. Here we experimentally determine the silicon self-diffusion coefficient DSi in forsterite at 8?GPa and 1,600?K to 1,800?K as a function of water content CH2O from less than 1 to about 800 parts per million of water by weight, yielding the relationship, DSi???(CH2O)(1/3). This exponent is strikingly lower than that obtained by deformation experiments (1.2; ref. 7). The high nominal creep rates in the deformation studies under wet conditions may be caused by excess grain boundary water. We conclude that the effect of water on upper-mantle rheology is very small. Hence, the smooth motion of the Earth's tectonic plates cannot be caused by mineral hydration in the asthenosphere. Also, water cannot cause the viscosity minimum zone in the upper mantle. And finally, the dominant mechanism responsible for hotspot immobility cannot be water content differences between their source and surrounding regions. PMID:23765497
Marmer, G.J.; Dunn, C.P.; Filley, T.H.; Moeller, K.L.; Pfingston, J.M.; Policastro, A.J.; Cleland, J.H.
1991-09-01
Uranium enrichment in the United States has utilized a diffusion process to preferentially enrich the U-235 isotope in the uranium product. In the 1970s, the US Department of Energy (DOE) began investigating more efficient and cost-effective enrichment technologies. In January 1990, the Secretary of Energy approved a plan for the demonstration and deployment of the Uranium Atomic Vapor Laser isotope Separation (U-AVLIS) technology with the near-term goal to provide the necessary information to make a deployment decision by November 1992. Initial facility operation is anticipated for 1999. A programmatic document for use in screening DOE sites to locate a U-AVLIS production plant was developed and implemented in two parts. The first part consisted of a series of screening analyses, based on exclusionary and other criteria, that identified a reasonable number of candidate sites. The final evaluation, which included sensitivity studies, identified the Oak Ridge Gaseous Diffusion Plant (ORGDP) site, the Paducah Gaseous Diffusion Plant (PGDP) site, and the Portsmouth Gaseous Diffusion Plant (PORTS) site as having significant advantages over the other sites considered. This environmental site description (ESD) provides a detailed description of the PORTS site and vicinity suitable for use in an environmental impact statement (EIS). This report is based on existing literature, data collected at the site, and information collected by Argonne National Laboratory (ANL) staff during site visits. The organization of the ESD is as follows. Topics addressed in Sec. 2 include a general site description and the disciplines of geology, water resources, biotic resources, air resources, noise, cultural resources, land use. Socioeconomics, and waste management. Identification of any additional data that would be required for an EIS is presented in Sec. 3.
Hasnain, Sabeeha; McClendon, Christopher L.; Hsu, Monica T.; Jacobson, Matthew P.; Bandyopadhyay, Pradipta
2014-01-01
A new coarse-grained model of the E. coli cytoplasm is developed by describing the proteins of the cytoplasm as flexible units consisting of one or more spheres that follow Brownian dynamics (BD), with hydrodynamic interactions (HI) accounted for by a mean-field approach. Extensive BD simulations were performed to calculate the diffusion coefficients of three different proteins in the cellular environment. The results are in close agreement with experimental or previously simulated values, where available. Control simulations without HI showed that use of HI is essential to obtain accurate diffusion coefficients. Anomalous diffusion inside the crowded cellular medium was investigated with Fractional Brownian motion analysis, and found to be present in this model. By running a series of control simulations in which various forces were removed systematically, it was found that repulsive interactions (volume exclusion) are the main cause for anomalous diffusion, with a secondary contribution from HI. PMID:25180859
First-principles binary diffusion coefficients for H, H2, and four normal alkanes + N2
NASA Astrophysics Data System (ADS)
Jasper, Ahren W.; Kamarchik, Eugene; Miller, James A.; Klippenstein, Stephen J.
2014-09-01
Collision integrals related to binary (dilute gas) diffusion are calculated classically for six species colliding with N2. The most detailed calculations make no assumptions regarding the complexity of the potential energy surface, and the resulting classical collision integrals are in excellent agreement with previous semiclassical results for H + N2 and H2 + N2 and with recent experimental results for CnH2n+2 + N2, n = 2-4. The detailed classical results are used to test the accuracy of three simplifying assumptions typically made when calculating collision integrals: (1) approximating the intermolecular potential as isotropic, (2) neglecting the internal structure of the colliders (i.e., neglecting inelasticity), and (3) employing unphysical R-12 repulsive interactions. The effect of anisotropy is found to be negligible for H + N2 and H2 + N2 (in agreement with previous quantum mechanical and semiclassical results for systems involving atomic and diatomic species) but is more significant for larger species at low temperatures. For example, the neglect of anisotropy decreases the diffusion coefficient for butane + N2 by 15% at 300 K. The neglect of inelasticity, in contrast, introduces only very small errors. Approximating the repulsive wall as an unphysical R-12 interaction is a significant source of error at all temperatures for the weakly interacting systems H + N2 and H2 + N2, with errors as large as 40%. For the normal alkanes in N2, which feature stronger interactions, the 12/6 Lennard-Jones approximation is found to be accurate, particularly at temperatures above ˜700 K where it predicts the full-dimensional result to within 5% (although with somewhat different temperature dependence). Overall, the typical practical approach of assuming isotropic 12/6 Lennard-Jones interactions is confirmed to be suitable for combustion applications except for weakly interacting systems, such as H + N2. For these systems, anisotropy and inelasticity can safely be neglected but a more detailed description of the repulsive wall is required for quantitative predictions. A straightforward approach for calculating effective isotropic potentials with realistic repulsive walls is described. An analytic expression for the calculated diffusion coefficient for H + N2 is presented and is estimated to have a 2-sigma error bar of only 0.7%.
First-principles binary diffusion coefficients for H, H?, and four normal alkanes + N?.
Jasper, Ahren W; Kamarchik, Eugene; Miller, James A; Klippenstein, Stephen J
2014-09-28
Collision integrals related to binary (dilute gas) diffusion are calculated classically for six species colliding with N2. The most detailed calculations make no assumptions regarding the complexity of the potential energy surface, and the resulting classical collision integrals are in excellent agreement with previous semiclassical results for H + N2 and H2 + N2 and with recent experimental results for CnH(2n+2) + N2, n = 2-4. The detailed classical results are used to test the accuracy of three simplifying assumptions typically made when calculating collision integrals: (1) approximating the intermolecular potential as isotropic, (2) neglecting the internal structure of the colliders (i.e., neglecting inelasticity), and (3) employing unphysical R(-12) repulsive interactions. The effect of anisotropy is found to be negligible for H + N2 and H2 + N2 (in agreement with previous quantum mechanical and semiclassical results for systems involving atomic and diatomic species) but is more significant for larger species at low temperatures. For example, the neglect of anisotropy decreases the diffusion coefficient for butane + N2 by 15% at 300 K. The neglect of inelasticity, in contrast, introduces only very small errors. Approximating the repulsive wall as an unphysical R(-12) interaction is a significant source of error at all temperatures for the weakly interacting systems H + N2 and H2 + N2, with errors as large as 40%. For the normal alkanes in N2, which feature stronger interactions, the 12/6 Lennard-Jones approximation is found to be accurate, particularly at temperatures above ?700 K where it predicts the full-dimensional result to within 5% (although with somewhat different temperature dependence). Overall, the typical practical approach of assuming isotropic 12/6 Lennard-Jones interactions is confirmed to be suitable for combustion applications except for weakly interacting systems, such as H + N2. For these systems, anisotropy and inelasticity can safely be neglected but a more detailed description of the repulsive wall is required for quantitative predictions. A straightforward approach for calculating effective isotropic potentials with realistic repulsive walls is described. An analytic expression for the calculated diffusion coefficient for H + N2 is presented and is estimated to have a 2-sigma error bar of only 0.7%. PMID:25273443
Danel, J-F; Kazandjian, L; Zérah, G
2012-06-01
Computations of the self-diffusion coefficient and viscosity in warm dense matter are presented with an emphasis on obtaining numerical convergence and a careful evaluation of the standard deviation. The transport coefficients are computed with the Green-Kubo relation and orbital-free molecular dynamics at the Thomas-Fermi-Dirac level. The numerical parameters are varied until the Green-Kubo integral is equal to a constant in the t?+? limit; the transport coefficients are deduced from this constant and not by extrapolation of the Green-Kubo integral. The latter method, which gives rise to an unknown error, is tested for the computation of viscosity; it appears that it should be used with caution. In the large domain of coupling constant considered, both the self-diffusion coefficient and viscosity turn out to be well approximated by simple analytical laws using a single effective atomic number calculated in the average-atom model. PMID:23005237
Yuan, Yi; Wang, Lei; Amemiya, Shigeru
2004-09-15
Chronoamperometry was carried out at liquid/liquid interfaces supported at the tip of micropipet electrodes for direct determination of the diffusion coefficient of a species in the outer solution. The diffusion coefficient was used for subsequent determination of the transferred charges per species from the diffusion-limited steady-state current. A large tip resistance of the micropipets causes prolonged charging current so that the faradic current can be measured accurately only at a long-time regime (typically t > 5 ms). At the same time, the long-time current response at the interfaces surrounded by a thin glass wall of the pipets is enhanced by diffusion of the species from behind the pipet tip. Therefore, numerical simulations of the long-time chronoamperometric response were carried out using the finite element method for accurate determination of diffusion coefficients. Validity of the simulation results was confirmed by studying simple transfer of tetraethylammonium ion. The technique was applied for transfer/adsorption reactions of the natural polypeptide protamine and also for Ca2+ and Mg2+ transfers facilitated by ionophore ETH 129. With the diffusion coefficient of protamine determined to be (1.2 +/- 0.1) x 10(-6) cm(2)/s, the ionic charge transferred by each protamine molecule was obtained as +20 +/- 1, which is close to the excess positive charge of protamine. Also, the diffusion coefficient of ETH 129 was determined to demonstrate that each ionophore molecule transfers +0.67 and +1 charge per Ca2+ and Mg2+ transfer, respectively, which corresponds to formation of 1:3 and 1:2 complexes with the respective ions. PMID:15362923
Tamimi, A.; Rinker, E.B.; Sandall, O.C. (Univ. of California, Santa Barbara, CA (United States). Chemical and Nuclear Engineering Dept.)
1994-04-01
Acid gases such as H[sub 2]S and CO[sub 2] are generally removed from natural gas, biogas, synthetic natural gas, and other process gas streams by means of absorption into aqueous alkanolamine solutions. A key parameter needed to model this diffusion with chemical reaction process in the liquid phase is the diffusion coefficient. A wetted-sphere absorption apparatus was used to measure the liquid-phase diffusion coefficients for hydrogen sulfide, carbon dioxide, and nitrous oxide over the temperature range 293--368 K. The experimental results obtained in this work are compared with values in the literature and with predictions from the Wilke-Chang equation. The data presented here extend the temperature range of reported diffusivities for these gases in water.
Jiránek, Martin; Rovenská, Kate?ina
2012-04-01
Paper presents the principles for unified test methods for determining the radon diffusion coefficient in waterproof materials in order to increase the accuracy, repeatability and reproducibility of the results. We consider this very important, because an assessment of the radon diffusion coefficient is required by several national technical standards when waterproofing acts as a radon-proof membrane. The requirements for key parameters for one test method performed under non-stationary conditions and for two methods performed under stationary conditions are described in this paper. PMID:22245288
The role of surface energy coefficients and nuclear surface diffuseness in the fusion of heavy-ions
Ishwar Dutt; Rajeev K. Puri
2010-05-06
We discuss the effect of surface energy coefficients as well as nuclear surface diffuseness in the proximity potential and ultimately in the fusion of heavy-ions. Here we employ different versions of surface energy coefficients. Our analysis reveals that these technical parameters can influence the fusion barriers by a significant amount. A best set of these parameters is also given that explains the experimental data nicely.
NASA Astrophysics Data System (ADS)
Ahadi, Amirhossein; Saghir, M. Ziad
2014-08-01
In this study, a Mach-Zehnder interferometer that is equipped with two lasers of different wavelengths was used to conduct high resolution measurements of concentration profiles of a ternary mixture inside a diffusion cell. Windowed Fourier transform along with an advanced unwrapping procedure was employed to extract the phase image from fringe images. Then the phase difference was obtained for a spatial resolution of 1920×1240. According to the measured refractive index profile, concentration contours of two components (out of three) were measured. Consequently, the concentration profile of the third components was calculated. Previously, the analytical solution for binary mixtures was used to estimate only the pure diffusion coefficients. In this study, for the first time, the refractive indices measured by two lasers along with the analytical solution for the ternary system, based on Fick's law, and an evolutionary algorithm (EA) known as a genetic algorithm (GA) were employed to measure the pure and cross diffusion coefficients of a transparent ternary mixture simultaneously. The optimization method to estimate diffusion coefficients was tested against various objective functions, and the best approach was that which was proposed herein. In order to validate the proposed measurement method, the experimental results of the Selectable Optical Diagnostics Instrument-Diffusion Coefficients in Mixtures (SODI-DCMIX1 project) on board the International Space Station (ISS) were analyzed using this technique and the obtained results were compared with previous techniques.
Small effect of water on upper mantle rheology based on silicon self-diffusion coefficients
NASA Astrophysics Data System (ADS)
Fei, H.; Wiedenbeck, M.; Yamazaki, D.; Katsura, T.
2012-12-01
Water has been considered to significantly affect the mantle dynamics. In particular, experimental deformation studies [1-4] claimed that even small amount of water enhanced the creep in olivine by orders of magnitude. However, we note that their results are experimental artifact due to a number of limitations: e.g., unavoidable grain boundary sliding when polycrystalline samples were used; limited ranges of water contents due to the limited pressures; several orders higher stress and strain rate than those in nature. High temperature creep of silicate minerals is controlled by silicon self-diffusion. Therefore, measurement of silicon self-diffusion coefficients (DSi) in minerals, which can be performed without these limitations, is an independent way to study the mantle rheology. In this study, we measured DSi in Mg end-member of olivine, namely, forsterite, as a function of water content (CH2O) across a wide range, and concluded that effect of water on upper mantle rheology is very small. Forsterite single crystals were doped with <1 to ~800 ?g/g of water at 1600 K, 8 GPa using talc+brucite water sources and graphite buffer. The CH2O in the samples were controlled by the ratio of water sources to graphite. The water doped samples were polished, deposited with 500 nm 29Si enriched Mg2SiO4 thin films, and annealed at 8 GPa, 1600 or 1800 K for diffusion with the same proportion of water sources, which successfully made constant values of CH2O during diffusion annealing. The diffusion profiles were obtained by SIMS. CH2O in the samples were determined by FT-IR before and after diffusion, and also examined by SIMS. Our results yield a relationship: DSi ? (CH2O)1/3. This is explained by defect chemistry, where DSi?[VSi????]×[VO??]?(CH2O)2/3×(CH2O)-1/3=(CH2O)1/3 under the charge neutrality condition of [(OH)O?]=2[VMg??] because both Si and O vacancies are needed for Si ions to diffuse. The water contents exponent (1/3) determined in this study is much smaller than 1.2 [5], which was estimated based on deformation experiments. The small water content exponent demonstrates that effect of water on upper mantle rheology is very small in comparing with other factors like temperature, or shear stress. The difference in viscosity of olivine between dry (e.g., ~1 ?g/g of water) and 1000 ?g/g (maximum in upper mantle [6]) is only by a factor of 10. The softening of oceanic lithosphere, which is required to explain the plate motion, cannot be caused by hydration. [1] Karato et al. (1986), JGR 91, 8151-8176. [2] Mei and Kohlstedt (2000a), JGR 105(B9), 21471-21481. [3] Mei and Kohlstedt (2000b), JGR 105(B9), 21457-21469. [4] Jung and Karato (2001), Science 293, 1460-1463. [5] Hirth and Kohlstedt (2003), Geophys. Monogr. Am. Geophys. Union. 138, 83-106. [6] Hirschmann (2006), An. Rev. Earth Planet. Sci. 34, 629-653.
A. Tamimi; Edward B. Rinker; Orville C. Sandall
1994-01-01
Acid gases such as H[sub 2]S and CO[sub 2] are generally removed from natural gas, biogas, synthetic natural gas, and other process gas streams by means of absorption into aqueous alkanolamine solutions. A key parameter needed to model this diffusion with chemical reaction process in the liquid phase is the diffusion coefficient. A wetted-sphere absorption apparatus was used to measure
Park, Sung Yoon [Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of); Kim, Chan Kyo, E-mail: chankyokim@skku.edu [Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of); Park, Byung Kwan [Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of); Park, Won; Park, Hee Chul [Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of); Han, Deok Hyun [Department of Urology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of); Kim, Bohyun [Department of Radiology, Mayo Clinic College of Medicine, Rochester, MN (United States)
2012-06-01
Purpose: To investigate the feasibility of diffusion-weighted MRI (DWI) as an early and reproducible change indicator in patients receiving radiotherapy for prostate cancer (PC). Methods and Materials: Eight consecutive patients with biopsy-proven PC underwent DWI at 3T. All patients who received external-beam radiotherapy had four serial MR scans, as follows: before therapy (PreTx); after 1 week of therapy (PostT1); after 3 weeks of therapy (PostT2); and 1 month after the completion of therapy (PostT3). At each time, the apparent diffusion coefficient (ADC) was measured in tumors and normal tissues. For reproducibility of the ADC measurement, five patients also had two separate pretreatment DWI scans at an interval of <2 weeks. Serum prostate-specific antigen (PSA) levels were evaluated at the same time as MR scans. Results: Thirteen tumors (peripheral zone = 10; transition zone = 3) were found. The mean ADC values for the tumors from PreTx to PostT3 were 0.86, 1.03, 1.15, and 1.26 Multiplication-Sign 10{sup -3} mm{sup 2}/s in sequence, respectively. Compared with PreTx, PostT1 (p = 0.005), PostT2 (p = 0.003), and PostT3 (p < 0.001) showed a significant increase in ADC values. The mean ADC values of the benign tissues from PreTx to PostT3 were 1.60, 1.58, 1.47, and 1.46 Multiplication-Sign 10{sup -3} mm{sup 2}/s in sequence, respectively. Reproducibility of ADC measurements was confirmed with a mean difference in ADC of -0.04 in peripheral zone and -0.017 in transition zone between two separate pretreatment MR scans. The mean PSA levels from PreTx to PostT3 were 9.05, 9.18, 9.25, and 4.11 ng/mL in sequence, respectively. Conclusions: DWI, as a reproducible biomarker, has the potential to evaluate the early therapeutic changes of PC to radiotherapy.
Li, Yang-Kang; Liu, Guo-Rui; Zhou, Xiu-Guo; Cai, Ai-Qun
2010-05-01
This study aims to compare the apparent diffusion coefficients (ADCs) and proton magnetic resonance spectroscopy ((1)H-MRS) in the first 24 h of acute hypoxic-ischemic brain damage (HIBD) in piglets. Twenty-five 7-day-old piglets were subjected to transient bilateral common carotid artery occlusion followed by ventilation with 4% oxygen for 1 h. Diffusion-weighted imaging (DWI) and (1)H-MRS were performed on cessation of the insult or at 3, 6, 12 or 24 h after resuscitation (all n=5). ADCs, N-acetylaspartate/choline (NAA/Cho), NAA/creatine (NAA/Cr), lactate/NAA (Lac/NAA), Lac/Cho and Lac/Cr were calculated. Cerebral injury was evaluated by pathological study and Hsp70 immunohistochemical analysis. On cessation of the insult, ADCs, NAA/Cho and NAA/Cr reduced, Lac/NAA, Lac/Cho and Lac/Cr increased. From 3 to 12 h after resuscitation, ADCs, Lac/NAA, Lac/Cho and Lac/Cr recovered, NAA/Cho and NAA/Cr reduced. Twenty-four hours after resuscitation, ADCs reduced once more, Lac/NAA, Lac/Cho and Lac/Cr increased again, whereas NAA/Cho and NAA/Cr decreased continuously. Pathological study revealed mild cerebral edema on cessation of the insult and more and more severe cerebral injury after resuscitation. No Hsp70-positive cells were detected on cessation of the insult. From 3 to 12 hours after resuscitation, Hsp70-positive cells gradually increased. Twenty-four hours after resuscitation, Hsp70-positive cells decreased. Throughout the experiment, changes in NAA/Cho and pathology had the best correlation (R=-0.729). In conclusion, NAA/Cho is the most precise ratio to reflect the pathological changes of early HIBD. Transient ADCs and Lac ratios recovery do not predict the reversal of histological damage of early HIBD. Reducing astrocytic swelling is of great clinical significance. PMID:20071123
Diffusion length damage coefficient and annealing studies in proton-irradiated InP
NASA Technical Reports Server (NTRS)
Hakimzadeh, Roshanak; Vargas-Aburto, Carlos; Bailey, Sheila G.; Williams, Wendell
1993-01-01
We report on the measurement of the diffusion length damage coefficient (K(sub L)) and the annealing characteristics of the minority carrier diffusion length (L(sub n)) in Czochralski-grown zinc-doped indium phosphide (InP), with a carrier concentration of 1 x 10(exp l8) cm(exp -3). In measuring K(sub L) irradiations were made with 0.5 MeV protons with fluences ranging from 1 x 10(exp 11) to 3 x 10(exp 13) cm(exp -2). Pre- and post-irradiation electron-beam induced current (EBIC) measurements allowed for the extraction of L(sub n) from which K(sub L) was determined. In studying the annealing characteristics of L(sub n) irradiations were made with 2 MeV protons with fluence of 5 x 10(exp 13) cm(exp -2). Post-irradiation studies of L(sub n) with time at room temperature, and with minority carrier photoinjection and forward-bias injection were carried out. The results showed that recovery under Air Mass Zero (AMO) photoinjection was complete. L(sub n) was also found to recover under forward-bias injection, where recovery was found to depend on the value of the injection current. However, no recovery of L(sub n) after proton irradiation was observed with time at room temperature, in contrast to the behavior of 1 MeV electron-irradiated InP solar cells reported previously.
Resorlu, Mustafa; Gokmen, Ferhat; Resorlu, Hatice; Adam, Gurhan; Akbal, Ayla; Cevizci, Sibel; Sariyildirim, Abdullah; Savas, Yilmaz; Guven, Mustafa; Aras, Adem Bozkurt
2015-01-01
Purpose: To assess the relation between ankylosing spondylitis (AS) and degenerative disc disease emerging in association with various intrinsic and extrinsic factors and to evaluate the correlation between degree of degeneration in intervertebral discs and apparent diffusion coefficient (ADC) values. Methods: Thirty-five patients with AS and a control group of 35 patients were included in the study. Three hundred fifty intervertebral discs were assessed in terms of degeneration by analyzing signal intensities and morphologies on T2 weighted series of a 1.5 Tesla magnetic resonance scanner. ADC values were determined in diffusion weighted images (DWI) using a “b value of 500 s/mm2”. Patients in the AS and control groups were compared in terms of intervertebral disc degeneration, and association between degree of degeneration and ADC values was analyzed. Results: The mean of total degeneration degrees for five lumbar intervertebral discs was significantly higher in the patients with AS compared to the control group (16.77±4.67 vs 13.00±4.08, respectively; P=0.001). When intervertebral discs were analyzed separately, disc degeneration was again significantly higher in patients with AS compared to the control group, with the exception of L5-S1. Age, cholesterol level, triglyceride level, duration of disease and BASFI index were significantly associated with degree of degeneration in patients with AS. A negative correlation was determined between disc degeneration and ADC value. Conclusion: AS is a risk factor for degenerative disc disease due to its systemic effects, the fact it leads to posture impairment and its inflammatory effects on the vertebrae. A decrease in ADC values is observed as degeneration worsens in degenerative disc disease. PMID:25785119
NASA Astrophysics Data System (ADS)
Drozdov, Alexander; Mann, Ian; Baker, Daniel N.; Subbotin, Dmitriy; Ozeke, Louis; Shprits, Yuri; Kellerman, Adam
Two parameterizations of the resonant wave-particle interactions of electrons with ULF waves in the magnetosphere by Brautigam and Albert [2000] and Ozeke et al. [2012] are evaluated using the Versatile Electron Radiation Belt (VERB) diffusion code to estimate the effect of changing a diffusion coefficient on the radiation belt simulation. The period of investigation includes geomagnetically quiet and active time. The simulations take into account wave-particle interactions represented by radial diffusion transport, local acceleration, losses due to pitch-angle diffusion, and mixed diffusion. 1. Brautigam, D. H., and J. M. Albert (2000), Radial diffusion analysis of outer radiation belt electrons during the October 9, 1990, magnetic storm, J. Geophys. Res., 105(A1), 291-309, doi:10.1029/1999JA900344 2. Ozeke, L. G., I. R. Mann, K. R. Murphy, I. J. Rae, D. K. Milling, S. R. Elkington, A. A. Chan, and H. J. Singer (2012), ULF wave derived radiation belt radial diffusion coefficients, J. Geophys. Res., 117, A04222, doi:10.1029/2011JA017463.
Zhang, Youxue
). In this technique, the hydrogen fugac- ity (fH2) in the vapour phase of an H2O-containing sample system (ss), and (b) the container of the sample needs to be a good osmotic mem- brane for hydrogen (Chou, 1986Determination of diffusion coefficients of hydrogen in fused silica between 296 and 523 K by Raman
I. G. Hwang; D. K. Schroder; J. H. Wohlgemuth
1993-01-01
The surface photovoltage (SPV) technique is an attractive method for measuring the minority carrier diffusion length of solar cells. It has the advantage of not requiring permanent sample contacts. It does require, however, an accurate knowledge of the absorption coefficient-wavelength (?-?) relationship. This relationship is well known for single-crystal silicon and SPV plots are linear for such materials. However, for
Author's personal copy Quaternary diffusion coefficients for the sucroseNaClKClwater system at 25 C
Annunziata, Onofrio
precision. Â© 2010 Elsevier B.V. All rights reserved. 1. Introduction Carbohydrates are essential components of biological systems. They are not only the main energy source for living organisms but they are essential of component i. We write the volume-fixed diffusion coefficients as: (Dij)V [5]. It is common practice
G Petot-Ervas; C Petot
1999-01-01
This paper concerns an analysis of the behavior of ionic conducting oxides brought into a chemical potential gradient, and the development of an experimental procedure for the determination of the diffusion coefficients of the most mobile species, in these materials as well as in mixed conducting compounds. The principle of the method is to place the sample between short-circuited reversible
Electronic/ionic conductivity and oxygen diffusion coefficient of Sr-Fe-Co-O system
Ma, B.; Park, J.H.; Balachandran, U. [Argonne National Lab., IL (United States); Segre, C.U. [Illinois Inst. of Tech., Chicago, IL (United States). Dept. of Physics
1995-03-01
Oxides in the system Sr-Fe-Co-O exhibit both electronic and ionic conductivities. Recently, Sr-Fe-Co-O system attracted great attention because of the potential to be used for oxygen permeable membranes that can operate without the electrodes or external electrical circuitry. Electronic and ionic conductivities at various temperatures have been measured on two compositions in Sr-Fe-Co-O system named SFC-1 and SFC-2. The electronic transference number is much greater than the ionic transference number in SFC-1 sample, while the electronic and ionic transference numbers are very close in SFC-2 sample. At 800{degrees}C, the electronic conductivity and ionic conductivity are {approx}76 S{center_dot}cm-1 and =4 S-cm-1, respectively, for SFC-1. While, for SFC-2, the electronic and ionic conductivities are =10 S-cm-1 and {approx}7 S-cm-1, respectively. By a local fitting to {sigma}{center_dot}T = A exp(-E{sub {alpha}}/{kappa}{Tau}), we found that the oxide ion activation energies are 0.92 eV and 0.37 eV respectively for SFC-1 and SFC-2 samples. Oxygen diffusion coefficient of SFC-2 is {approx}{times}10{sup {minus}7} cm{sup 2}/sec at 900C.
Determination of dendrigraft poly-L-lysine diffusion coefficients by taylor dispersion analysis.
Cottet, Hervé; Martin, Michel; Papillaud, Alain; Souaïd, Eddy; Collet, Hélène; Commeyras, Auguste
2007-10-01
This work focuses on the physicochemical characterization of dendrigraft poly-L-lysines (DGLs) obtained by polymerization of N-carboxyanhydride in buffered water (pH 6.5). Diffusion coefficients (D) and hydrodynamic radii (Rh) of five successive DGL generations were determined by Taylor dispersion analysis (TDA). To our knowledge, this is the first experimental work using TDA for the characterization of dendrimer-like structures. Experimental Rh values obtained by TDA were compared to those derived from dynamic light scattering and size exclusion chromatography coupled to a triple detection (refractive index, viscosimetry, and static light scattering). Significant differences were obtained, especially for the highest generations, as a result of the inherent contribution of aggregates to the light scattering intensity. For that reason, TDA was found to be the most appropriate technique for determining the D values of these hyperbranched macromolecules. Regarding their physicochemical behavior, the experimental results confirm that DGLs are very similar to trifunctional dendrimers (exponential growth of the molar mass, almost linear variation of the hydrodynamic radius, high branching density, and maximum of the intrinsic viscosity or of the free volume fraction for generation 4). PMID:17803275
Isotopic mass-dependence of metal cation diffusion coefficients in liquid water
Bourg, I.C.; Richter, F.M.; Christensen, J.N.; Sposito, G.
2009-01-11
Isotope distributions in natural systems can be highly sensitive to the mass (m) dependence of solute diffusion coefficients (D) in liquid water. Isotope geochemistry studies routinely have assumed that this mass dependence either is negligible (as predicted by hydrodynamic theories) or follows a kinetic-theory-like inverse square root relationship (D {proportional_to} m{sup -0.5}). However, our recent experimental results and molecular dynamics (MD) simulations showed that the mass dependence of D is intermediate between hydrodynamic and kinetic theory predictions (D {proportional_to} m{sup -{beta}} with 0 {<=} {beta} < 0.2 for Li{sup +}, Cl{sup -}, Mg{sup 2+}, and the noble gases). In this paper, we present new MD simulations and experimental results for Na{sup +}, K{sup +}, Cs{sup +}, and Ca{sup 2+} that confirm the generality of the inverse power-law relation D {proportional_to} m{sup -{beta}}. Our new findings allow us to develop a general description of the influence of solute valence and radius on the mass dependence of D for monatomic solutes in liquid water. This mass dependence decreases with solute radius and with the magnitude of solute valence. Molecular-scale analysis of our MD simulation results reveals that these trends derive from the exponent {beta} being smallest for those solutes whose motions are most strongly coupled to solvent hydrodynamic modes.
Gebrekristos, R.A.; Shapiro, A.M.; Usher, B.H.
2008-01-01
An in situ method of estimating the effective diffusion coefficient for a chemical constituent that diffuses into the primary porosity of a rock is developed by abruptly changing the concentration of the dissolved constituent in a borehole in contact with the rock matrix and monitoring the time-varying concentration. The experiment was conducted in a borehole completed in mudstone on the campus of the University of the Free State in Bloemfontein, South Africa. Numerous tracer tests were conducted at this site, which left a residual concentration of sodium chloride in boreholes that diffused into the rock matrix over a period of years. Fresh water was introduced into a borehole in contact with the mudstone, and the time-varying increase of chloride was observed by monitoring the electrical conductivity (EC) at various depths in the borehole. Estimates of the effective diffusion coefficient were obtained by interpreting measurements of EC over 34 d. The effective diffusion coefficient at a depth of 36 m was approximately 7.8??10-6 m2/d, but was sensitive to the assumed matrix porosity. The formation factor and mass flux for the mudstone were also estimated from the experiment. ?? Springer-Verlag 2007.
Majer, G., E-mail: majer@is.mpg.de [Max Planck Institute for Intelligent Systems, Heisenbergstr. 3, 70569 Stuttgart (Germany); Melchior, J. P. [Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569 Stuttgart (Germany)] [Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569 Stuttgart (Germany)
2014-03-07
Precise diffusion measurements of rhodamine 6G (Rh6G) dissolved in D{sub 2}O at concentrations between 50 and 200 ?M were carried out in the temperature range from 280 to 320 K using pulsed field gradient nuclear magnetic resonance (PFG-NMR). The obtained diffusion coefficients can be used as a calibration reference in fluorescence correlation spectroscopy (FCS). Besides measuring the diffusivity of Rh6G, the diffusion coefficient of the solvent in the same system could be determined in parallel by PFG-NMR as the resonances of water and Rh6G are well separated in the {sup 1}H NMR spectrum. To analyze the differences due to the isotope effect of the solvent (D{sub 2}O vs. H{sub 2}O), the correlation time ?{sub D} of Rh6G was measured by FCS in both D{sub 2}O and H{sub 2}O. The obtained isotopic correction factor, ?{sub D}(D{sub 2}O)/?{sub D}(H{sub 2}O) = 1.24, reflects the isotope effect of the solvent´s self-diffusion coefficients as determined previously by PFG-NMR.
Miller, Peter T.; Starmer, R. John
2003-02-27
The primary objective of the investigation was to confirm the presence and determine the location of a cache of 30 to 60 buried 55-gallon drums that were allegedly dumped along the course of the pre-existing, northsouth diversion ditch (NSDD) adjacent to permitted landfills at the Paducah Gaseous Diffusion Plant, Kentucky. The ditch had been rerouted and was being filled and re-graded at the time of the alleged dumping. Historic information and interviews with individuals associated with alleged dumping activities indicated that the drums were dumped prior to the addition of other fill materials. In addition, materials alleged to have been dumped in the ditch, such as buried roofing materials, roof flashing, metal pins, tar substances, fly ash, and concrete rubble complicated data interpretation. Some clean fill materials have been placed over the site and graded. This is an environment that is extremely complicated in terms of past waste dumping activities, construction practices and miscellaneous landfill operations. The combination of site knowledge gained from interviews and research of existing site maps, variable frequency EM data, classical total magnetic field data and optimized GPR lead to success where a simpler less focused approach by other investigators using EM-31 and EM-61 electromagnetic methods and unfocused ground penetrating radar (GPR)did not produce results and defined no real anomalies. A variable frequency electromagnetic conductivity unit was used to collect the EM data at 3,030 Hz, 5,070 Hz, 8,430 Hz, and 14,010 Hz. Both in-phase and quadrature components were recorded at each station point. These results provided depth estimates for targets and some information on the subsurface conditions. A standard magnetometer was used to conduct the magnetic survey that showed the locations and extent of buried metal, the approximate volume of ferrous metal present within a particular area, and allowed estimation of approximate target depths. The GPR survey used a 200 megahertz (MHz) antenna to provide the maximum depth penetration and subsurface detail yielding usable signals to a depth of about 6 to 10 feet in this environment and allowed discrimination of objects that were deeper, particularly useful in the southern area of the site where shallow depth metallic debris (primarily roof flashing) complicated interpretation of the EM and magnetic data. Several geophysical anomalies were defined on the contour plots that indicated the presence of buried metal. During the first phase of the project, nine anomalies or anomalous areas were detected. The sizes, shapes, and magnitudes of the anomalies varied considerably, but given the anticipated size of the primary target of the investigation, only the most prominent anomalies were considered as potential caches of 30 to 60 buried drums. After completion of a second phase investigation, only two of the anomalies were of sufficient magnitude, not identifiable with existing known metallic objects such as monitoring wells, and in positions that corresponded to the location of alleged dumping activities and were recommended for further, intrusive investigation. Other important findings, based on the variable frequency EM method and its combination with total field magnetic and GPR data, included the confirmation of the position of the old NSDD, the ability to differentiate between ferrous and non-ferrous anomalies, and the detection of what may be plumes emanating from the landfill cell.
Lewis, A.C.; Baird, D.R. [CDM Federal Services, P.O. Box 789, Piketon, OH 45661 (United States)
2006-07-01
This paper describes applications of phyto-remediation at the Portsmouth Gaseous Diffusion Plant (PORTS), a Department of Energy (DOE) Facility that enriched uranium from the early 1950's until 2000. Phyto-remediation has been implemented to assist in the removal of TCE (trichloroethylene) in the groundwater at two locations at the PORTS facility: the X-740 area and the X-749/X-120 area. Phyto-remediation technology is based on the ability of certain plants species (in this case hybrid poplar trees) and their associated rhizo-spheric microorganisms to remove, degrade, or contain chemical contaminants located in the soil, sediment, surface water, groundwater, and possibly even the atmosphere. Phyto-remediation technology is a promising clean-up solution for a wide variety of pollutants and sites. Mature trees, such as the hybrid poplar, can consume up to 3,000 gallons of groundwater per acre per day. Organic compounds are captured in the trees' root systems. These organic compounds are degraded by ultraviolet light as they are transpired along with the water vapor through the leaves of the trees. The phyto-remediation system at the X-740 area encompasses 766 one-year old hybrid poplar trees (Populus nigra x nigra, Populus nigra x maximowiczii, and Populus deltoides x nigra) that were planted 10 feet apart in rows 10 feet to 20 feet apart, over an area of 2.6 acres. The system was installed to manage the VOC contaminant plume. At the X749/X-120 area, a phyto-remediation system of 2,640 hybrid poplar trees (Populus nigra x maximowiczii) was planted in seven areas/zones to manage the VOC contaminant plume. The objectives of these systems are to remove contamination from the groundwater and to prevent further migration of contaminants. The goal of these remediation procedures is to achieve completely mature and functional phyto-remediation systems within two years of the initial planting of the hybrid poplar trees at each planting location. There is a direct relationship between plant transpiration, soil moisture, and groundwater flow in a phyto-remediation system. The existing monitoring program was expanded in 2004 in order to evaluate the interactions among these processes. The purpose of this monitoring program was to determine the rate of contaminant removal and to more accurately predict the amount of time needed to remediate the contaminated groundwater. Initial planting occurred in 1999 at the X-740 area, with additional replanting in 2001 and 2002. In 2003, coring of selected trees and chemical analyses illustrated the presence of TCE; however, little impact was observed in groundwater levels, analytical monitoring, and periodic tree diameter monitoring at the X-740 area. To provide better understanding of how these phyto-remediation systems work, a portable weather station was installed at the X-740 area to provide data for estimating transpiration and two different systems for measuring sap flow and sap velocity were outfitted to numerous trees. After evaluating and refining the groundwater flow and contaminant transport models, the data gathered by these two inventive methods can be used to establish a rate of contaminant removal and to better predict the time required in order to meet remediation goals for the phyto-remediation systems located at the PORTS site. (authors)
Looney, B.; Eddy-Dilek, C.
2012-08-28
Evaluation of disposal records, soil data, and spatial/temporal groundwater data from the Paducah Gaseous Diffusion Plant (PGDP) Solid Waste Management Unit (SWMU) 7 indicate that the peak contaminant concentrations measured in monitoring well (MW) 66 result from the influence of the regional PGDP NW Plume, and does not support the presence of significant vertical transport from local contaminant sources in SWMU 7. This updated evaluation supports the 2006 conceptualization which suggested the high and low concentrations in MW66 represent different flow conditions (i.e., local versus regional influences). Incorporation of the additional lines of evidence from data collected since 2006 provide the basis to link high contaminant concentrations in MW66 (peaks) to the regional 'Northwest Plume' and to the upgradient source, specifically, the C400 Building Area. The conceptual model was further refined to demonstrate that groundwater and the various contaminant plumes respond to complex site conditions in predictable ways. This type of conceptualization bounds the expected system behavior and supports development of environmental cleanup strategies, providing a basis to support decisions even if it is not feasible to completely characterize all of the 'complexities' present in the system. We recommend that the site carefully consider the potential impacts to groundwater and contaminant plume migration as they plan and implement onsite production operations, remediation efforts, and reconfiguration activities. For example, this conceptual model suggests that rerouting drainage water, constructing ponds or basin, reconfiguring cooling water systems, capping sites, decommissioning buildings, fixing (or not fixing) water leaks, and other similar actions will potentially have a 'direct' impact on the groundwater contaminant plumes. Our conclusion that the peak concentrations in MW66 are linked to the regional PGDP NW Plume does not imply that there TCE is not present in SWMU 7. The available soil and groundwater data indicate that the some of the waste disposed in this facility contacted and/or were contaminated by TCE. In our assessment, the relatively small amount of TCE associated with SWMU 7 is not contributing detectable TCE to the groundwater and does not represent a significant threat to the environment, particularly in an area where remediation and/or management of TCE in the NW plume will be required for an extended timeframe. If determined to be necessary by the PGDP team and regulators, additional TCE characterization or cleanup activities could be performed. Consistent with the limited quantity of TCE in SWMU 7, we identify a range of low cost approaches for such activities (e.g., soil gas surveys for characterization or SVE for remediation). We hope that this information is useful to the Paducah team and to their regulators and stakeholders to develop a robust environmental management path to address the groundwater and soil contamination associated with the burial ground areas.
Kim, S.H.; Chen, N.C.J.; Taleyarkhan, R.P.; Wendel, M.W.; Keith, K.D.; Schmidt, R.W. [Oak Ridge National Lab., TN (United States); Carter, J.C. [J.C. Carter Associates, Inc., Knoxville, TN (United States); Dyer, R.H. [Dyer Enterprises, Harriman, TN (United States)
1996-12-30
Computer models have been developed to simulate the transient behavior of aerosols and vapors as a result of a postulated accident involving the release of uranium hexafluoride (UF{sub 6}) into the process building of a gaseous diffusion plant. For the current study, gaseous UF{sub 6} is assumed to get released in the cell housing atmosphere through B-line break at 58.97 kg/s for 10 min and 30 min duration at the Paducah and Portsmouth Gaseous Diffusion Plants. The released UF{sub 6} undergoes an exothermic chemical reaction with moisture (H{sub 2}O) in the air to form hydrogen fluoride (HF) and radioactive uranyl fluoride (UO{sub 2}F{sub 2}) while it disperses throughout the process building. As part of a facility-wide safety evaluation, this study evaluated source terms consisting of UO{sub 2}F{sub 2} as well as HF during a postulated UF{sub 6} release accident in a process building. UO{sub 2}F{sub 2} mainly remains as airborne-solid particles (aerosols), and HF is in a vapor form. Some UO{sub 2}F{sub 2} aerosols are removed from the air flow due to gravitational settling. The HF and the remaining UO{sub 2}F{sub 2} are mixed with air and exhausted through the building ventilation system. The MELCOR computer code was selected for simulating aerosols and vapor transport in the process building. To characterize leakage flow through the cell housing wall, 3-D CFD tool (CFDS-FLOW3D) was used. About 57% of UO{sub 2}F{sub 2} was predicted to be released into the environment. Since HF was treated as vapor, close to 100% was estimated to get released into the environment.
Lee, Cheng-Kuang; Tsai, Meng-Tsan; Chang, Feng-Yu; Yang, Chih-Hsun; Shen, Su-Chin; Yuan, Ouyang; Yang, Chih-He
2013-01-01
In this study, time-resolved optical coherence tomography (OCT) scanning images of the process of water diffusion in the skin that illustrate the enhancement in the backscattered intensities due to the increased water concentration are presented. In our experiments, the water concentration in the skin was increased by soaking the hand in water, and the same region of the skin was scanned and measured with the OCT system and a commercial moisture monitor every three minutes. To quantitatively analyze the moisture-related optical properties and the velocity of water diffusion in human skin, the attenuation coefficients of the skin, including the epidermis and dermis layers, were evaluated. Furthermore, the evaluated attenuation coefficients were compared with the measurements made using the commercial moisture monitor. The results demonstrate that the attenuation coefficient increases as the water concentration increases. Furthermore, by evaluating the positions of center-of mass of the backscattered intensities from OCT images, the diffusion velocity can be estimated. In contrast to the commercial moisture monitor, OCT can provide three-dimensional structural images of the skin and characterize its optical property, which together can be used to observe morphological changes and quantitatively evaluate the moisture-related attenuation coefficients in different skin layers. PMID:23529149
NASA Astrophysics Data System (ADS)
Radhi, M. M.; Amir, Y. K. A.; Alwan, S. H.; Tee, T. W.
2013-04-01
Glassy carbon electrode (GCE) was modified with carbon nanotubes (CNT), C60 and activated carbon (AC) by mechanical attachment method and solution evaporation technique to preparation CNT/GCE, C60/GCE and AC/GCE, these electrodes were modified in Li+ solution via cyclic voltammetry (CV) potential cycling to preparing CNT/Li+/GCE, C60/Li+/GCE and AC/Li+/GCE. The sensing characteristics of the modified film electrodes, demonstrated in the application study for different heavy metal ions such as Hg2+, Cd2+, and Mn2+. Cyclic voltammetric effect by chronoamperometry (CA) technique was investigated to determination the diffusion coefficient (Df) values from Cottrell equation at these ions. Based on Cottrell equation (diffusion coefficient) of the redox current peaks of different heavy metal ions at different modified electrodes were studied to evaluate the sensing of these electrodes by the diffusion coefficient values. The modification of GCE with nano materials and Li+ act an enhancement for the redox current peaks to observe that the diffusion process are high at CNT/Li+/GCE, C60/Li+/GCE and AC/Li+/GCE, but it has low values at unmodified GCE.
Diffuse Attenuation Coefficient of Downwelling Irradiance: An Evaluation of Remote Sensing Methods
NASA Technical Reports Server (NTRS)
Lee, Zhong-Ping; Darecki, Miroslaw; Carder, Kendall L.; Davis, Curtiss O.; Stramski, Dariusz; Rhea, W. Joseph
2005-01-01
The propagation of downwelling irradiance at wavelength lambda from surface to a depth (z) in the ocean is governed by the diffuse attenuation coefficient, K(sup -)(sub d)(lambda). There are two standard methods for the derivation of K(sup -)(sub d)(lambda) in remote sensing, which both are based on empirical relationships involving the blue-to-green ratio of ocean color. Recently, a semianalytical method to derive K(sup -)(sub d)(lambda) from reflectance has also been developed. In this study, using K(sup -)(sub d)(490) and K(sup -)(sub d)(443) as examples, we compare the K(sup -)(sub d)(lambda) values derived from the three methods using data collected in three different regions that cover oceanic and coastal waters, with K(sup -)(sub d)(490) ranging from approximately 0.04 to 4.0 per meter. The derived values are compared with the data calculated from in situ measurements of the vertical profiles of downwelling irradiance. The comparisons show that the two standard methods produced satisfactory estimates of K(sup -)(sub d)(lambda) in oceanic waters where attenuation is relatively low but resulted in significant errors in coastal waters. The newly developed semianalytical method appears to have no such limitation as it performed well for both oceanic and coastal waters. For all data in this study the average of absolute percentage difference between the in situ measured and the semianalytically derived K(sup -)(sub d) is approximately 14% for lambda = 490 nm and approximately 11% for lambda = 443 nm.
P. Y. Pennarun; P. Dole; A. Feigenbaum
2004-01-01
SUMMARY This paper defines parameters which can be used to predict worst case migration from recycled PET bottles, with and without a functional barrier. Starting with a set of diffusion coefficients determined in well defined experimental conditions (temperature, presence or not of a solvent, with and without swelling effect), empirical equations for the diffusion coefficient of a migrant or a
Thomas B Boving; Peter Grathwohl
2001-01-01
Matrix diffusion is an important transport process in geologic materials of low hydraulic conductivity. For predicting the fate and transport of contaminants, a detailed understanding of the diffusion processes in natural porous media is essential. In this study, diffusive tracer transport (iodide) was investigated in a variety of geologically different limestone and sandstone rocks. Porosity, structural and mineralogical composition, hydraulic
Torgersen, T.; Mathieu, G.; Hesslein, R.H.; Broecker, W.S.
1982-01-20
A direct field comparison was conducted to determine the dependency of gas exchange coefficient (k/sub x/) on the diffusion coefficient (D/sub x/). The study also sought to confirm the enhanced vertical exchange properties of limnocorrals and similar enclosures. Gas exchange coefficients for /sup 222/Rn and /sup 3/He were determined in a small northern Ontario lake, using a /sup 226/Ra and /sup 3/H spike to gain the necessary precision. The results indicate that the gas exchange coefficient is functionally dependent on the diffusion coefficient raised to the 1.22/sub -35//sup + > 12/ power (k/sub x/ = f(D/sub x//sup 1.22)), clearly supporting the stagnant film model of gas exchange. Limnocorrals were found to have gas exchange rates up to 1.7 times higher than the whole lake in spite of the observation of more calm surface conditions in the corral than in the open lake. 33 references, 6 figures, 8 tables.
C. S. Lakshminarasimha; J. Lucas
1977-01-01
The ratio of the radial diffusion coefficient to mobility Dr\\/ mu exp has been measured for the first time in five gases at high E\\/N (ratio of electric field to gas number density). The range of E\\/N was as follows: helium 3
Annunziata, Onofrio
Mutual Diffusion Coefficients and Densities at 298.15 K of Aqueous Mixtures of NaCl and Na2SO4 of California, Livermore, California 94550 Isothermal mutual diffusion coefficients (interdiffusion coefficients coefficients of systems of mutual interest. Felmy and Weare2 have described a method of estimat- ing diffusion
Jacobsen, M K; Liu, W; Li, B
2012-09-01
In this paper, a high pressure setup is presented for performing simultaneous measurements of Seebeck coefficient and thermal diffusivity in multianvil apparatus for the purpose of enhancing the study of transport phenomena. Procedures for the derivation of Seebeck coefficient and thermal diffusivity/conductivity, as well as their associated sources of errors, are presented in detail, using results obtained on the filled skutterudite, Ce(0.8)Fe(3)CoSb(12,) up to 12 GPa at ambient temperature. Together with recent resistivity and sound velocity measurements in the same apparatus, these developments not only provide the necessary data for a self-consistent and complete characterization of the figure of merit of thermoelectric materials under pressure, but also serve as an important tool for furthering our knowledge of the dynamics and interplay between these transport phenomena. PMID:23020390
Navrátilová Rovenská, Katerina
2014-07-01
Waterproofing, usually made of bitumen or polymers with various additives, is used to protect buildings mainly against dampness, but also against radon transported from the soil beneath the building. The radon diffusion coefficient is a material property which is considered to be strongly influenced by the inner structure (chemical composition, crystallinity) of a measured sample. We have used this parameter together with measurements of mechanical properties (hardness, tensile strength, elongation at break, etc.) and FTIR spectroscopy has been used in order to describe the changes in material properties induced by long-term degradation. This paper summarizes the results of radon diffusion coefficient measurements of waterproof materials exposed to radon, soil bacteria, high temperature and combinations of these factors. We have discovered changes as high as 83 % have been discovered compared to virgin samples. PMID:24748486
Lin, Binhua; Cui, Bianxiao; Xu, Xinliang; Zangi, Ronen; Diamant, Haim; Rice, Stuart A
2014-02-01
We report the results of experimental studies of the short-time-long-wavelength behavior of collective particle displacements in quasi-one-dimensional (q1D) and quasi-two-dimensional (q2D) colloid suspensions. Our results are reported via the q ? 0 behavior of the hydrodynamic function H(q) that relates the effective collective diffusion coefficient D(e)(q), with the static structure factor S(q) and the self-diffusion coefficient of isolated particles D(0): H(q) ? D(e)(q)S(q)/D(0). We find an apparent divergence of H(q) as q ? 0 with the form H(q) ? q(-?) (1.7 < ? < 1.9) for both q1D and q2D colloid suspensions. Given that S(q) does not diverge as q ? 0 we infer that D(e)(q) does. This behavior is qualitatively different from that of the three-dimensional H(q) and D(e)(q) as q ? 0, and the divergence is of a different functional form from that predicted for the diffusion coefficient in one-component one-dimensional and two-dimensional fluids not subject to boundary conditions that define the dimensionality of the system. We provide support for the contention that the boundary conditions that define a confined system play a very important role in determining the long-wavelength behavior of the collective diffusion coefficient from two sources: (i) the results of simulations of H(q) and D(e)(q) in quasi-1D and quasi-2D systems and (ii) verification, using data from the work of Lin, Rice and Weitz [Phys. Rev. E 51, 423 (1995)], of the prediction by Bleibel et al., arXiv:1305.3715, that D(e)(q) for a monolayer of colloid particles constrained to lie in the interface between two fluids diverges as q(-1) as q ? 0. PMID:25353468
Sri Adiyanti; Jörg Imberger
2007-01-01
The total diffuse attenuation coefficient of Photosynthetically Available Radiation (Kd(PAR)) is derived by optimising the solution of a surface layer model to match temperature profiles measured with a precision thermistor chain; a non?linear least?squares Levenberg?Marquardt scheme is applied to optimize Kd(PAR). The method was validated in Lake Kinneret (Israel) over 10 days in summer to early winter 2001, Valle de
Binhua Lin; Bianxiao Cui; Xinliang Xu; Ronen Zangi; Haim Diamant; Stuart A. Rice
2013-08-29
We report the results of experimental studies of the short time-long wavelength behavior of collective particle displacements in quasi-one-dimensional and quasi-two-dimensional colloid suspensions. Our results are represented by the behavior of the hydrodynamic function H(q) that relates the effective collective diffusion coefficient, D_e(q) with the static structure factor S(q) and the self-diffusion coefficient of isolated particles D_0: H(q)=D_e(q)S(q)/D_0. We find an apparent divergence of H(q) as q->0 with the form H(q) proportional to q^-gamma, 1.70 we infer that D_e(q) does. We provide evidence that this divergence arises from the interplay of boundary conditions on the flow of the carrier liquid and many-body hydrodynamic interactions between colloid particles that affect the long wavelength behavior of the particle collective diffusion coefficient in the suspension. We speculate that in the q1D and q2D systems studied the divergence of H(q) might be associated with a q-dependent partial slip boundary condition, specifically an effective slip length that increases with decreasing q. We also verify, using data from the work of Lin, Rice and Weitz (J. Chem. Phys. 99, 9585 (1993)), the prediction by Bleibel et al (arXiv:1305.3715), that D_e(q) for a monolayer of colloid particles constrained to lie in the interface between two fluids diverges as 1/q as q->0. The verification of that prediction, which is based on an analysis that allows two-dimensional colloid motion embedded in three-dimensional suspending fluid motion, supports the contention that the boundary conditions that define a q2D system play a very important role in determining the long wavelength behavior of the collective diffusion coefficient.
NASA Astrophysics Data System (ADS)
He, H.-Q.; Schlickeiser, R.
2015-02-01
The solar wind is observed to display high speeds in high heliolatitude coronal holes and low speeds near the ecliptic plane. The heliospheric magnetic field associated with the solar wind plays a very important role in the transport and modulation of charged energetic particles, including galactic cosmic rays (GCRs) and solar energetic particles (SEPs), in the three-dimensional heliosphere. In previous studies, a constant solar wind speed, which is independent of heliolatitude, was assumed and commonly used in modulation modeling of cosmic rays. In this work, we investigate the realistic latitudinally dependent solar wind speed and utilize the theoretical models in hyperbolic and piecewise polynomial forms to explore the important effects on the heliospheric magnetic field and the diffusion coefficients (parallel, perpendicular, and drift scale) of cosmic rays in the presence of adiabatic focusing. Comparisons of the diffusion coefficients derived from standard Parker field and modified magnetic fields are presented. Since the structures and properties of different solar wind sources (coronal streamer belt, polar coronal hole, and transition region between them) differ from each other in essence, we suggest that the latitudinally dependent solar wind speed and the corresponding heliospheric magnetic field and diffusion coefficients with adiabatic focusing should be employed in the global modeling studies of GCRs and SEPs in the heliosphere.
Diffusion coefficients of actinide and lanthanide ions in molten Li[sub 2]BeF[sub 4
Moriyama, Hirotake; Moritani, Kimikazu; Ito, Yasuhiko (Kyoto Univ. (Japan). Dept. of Nuclear Engineering)
1994-01-01
In the conceptual design of molten salt breeder reactors (MSBR) developed at ORNL, molten fluoride mixtures are used as the fuel carrier and coolant. The fuel salt must be reprocessed continuously in order to meet a high breeding ratio. The main function of the reprocessing are to isolate [sup 233]Pa from the neutron flux and to remove the fission product lanthanides having high neutron absorption cross sections. The processing method involves the reductive extraction of these components from the fuel salt into liquid bismuth solutions in a two phase contacting system. Diffusion coefficients of actinide and lanthanide ions in molten Li[sub 2]BeF[sub 4] were measured in the temperature range from 813 to 1,023 K by a capillary method. The diffusion coefficients of both ions are unusually high, considering the high viscosity of the liquids. The dependence of the diffusion coefficients on temperature and ionic charge are discussed in terms of the theories of Stokes and Einstein.
NASA Astrophysics Data System (ADS)
Amaya, Masaki; Grismanovs, Viktors; Tverberg, Terje
2010-07-01
Short-lived fission gas release from fuel pellets during irradiation was investigated based on the experimental results of the gas-flow rigs irradiated in the Halden Heavy Water Reactor (HBWR). The release-to-birth ( R/ B) rates of short-lived fission gas were measured by means of gas-flow measurement during the irradiation experiments. Surface-to-volume ( S/ V) ratios of fuel pellets and diffusion coefficients of short-lived fission gas release were evaluated from the obtained ( R/ B) values. The increase of ( S/ V) ratio agreed well with the point where the fuel temperature exceeded the threshold of 1% fission gas release. This indicates that the interlinkage of fission gas bubbles occurred there. The evaluated diffusion coefficients scattered in the range between 10 -23 and 10 -17 m 2/s, and the effects of fuel type (UO 2 or MOX) were not clearly observed. In addition, it is likely that the restructuring effect of fuel pellet on the diffusion coefficients of short-lived fission gas at least in the fuel pellet matrix is negligible in high burnup region where the rim structure forms in the fuel pellet.
NASA Technical Reports Server (NTRS)
Cao, Fang; Fichot, Cedric G.; Hooker, Stanford B.; Miller, William L.
2014-01-01
Photochemical processes driven by high-energy ultraviolet radiation (UVR) in inshore, estuarine, and coastal waters play an important role in global bio geochemical cycles and biological systems. A key to modeling photochemical processes in these optically complex waters is an accurate description of the vertical distribution of UVR in the water column which can be obtained using the diffuse attenuation coefficients of down welling irradiance (Kd()). The Sea UV Sea UVc algorithms (Fichot et al., 2008) can accurately retrieve Kd ( 320, 340, 380,412, 443 and 490 nm) in oceanic and coastal waters using multispectral remote sensing reflectances (Rrs(), Sea WiFS bands). However, SeaUVSeaUVc algorithms are currently not optimized for use in optically complex, inshore waters, where they tend to severely underestimate Kd(). Here, a new training data set of optical properties collected in optically complex, inshore waters was used to re-parameterize the published SeaUVSeaUVc algorithms, resulting in improved Kd() retrievals for turbid, estuarine waters. Although the updated SeaUVSeaUVc algorithms perform best in optically complex waters, the published SeaUVSeaUVc models still perform well in most coastal and oceanic waters. Therefore, we propose a composite set of SeaUVSeaUVc algorithms, optimized for Kd() retrieval in almost all marine systems, ranging from oceanic to inshore waters. The composite algorithm set can retrieve Kd from ocean color with good accuracy across this wide range of water types (e.g., within 13 mean relative error for Kd(340)). A validation step using three independent, in situ data sets indicates that the composite SeaUVSeaUVc can generate accurate Kd values from 320 490 nm using satellite imagery on a global scale. Taking advantage of the inherent benefits of our statistical methods, we pooled the validation data with the training set, obtaining an optimized composite model for estimating Kd() in UV wavelengths for almost all marine waters. This optimized composite set of SeaUVSeaUVc algorithms will provide the optical community with improved ability to quantify the role of solar UV radiation in photochemical and photobiological processes in the ocean.
Yao, Shenggen; Weber, Daniel K; Separovic, Frances; Keizer, David W
2014-07-01
Molecular translational self-diffusion, a measure of diffusive motion, provides information on the effective molecular hydrodynamic radius, as well as information on the properties of media or solution through which the molecule diffuses. Protein translational diffusion measured by pulsed-field gradient nuclear magnetic resonance (PFG-NMR) has seen increased application in structure and interaction studies, as structural changes or protein-protein interactions are often accompanied by alteration of their effective hydrodynamic radii. Unlike the analysis of complex mixtures by PFG-NMR, for monitoring changes of protein translational diffusion under various conditions, such as different stages of folding/unfolding, a partial region of the spectrum or even a single resonance is sufficient. We report translational diffusion coefficients measured by PFG-NMR with a modified stimulated echo (STE) sequence where band-selective pulses are employed for all three (1)H RF pulses. Compared with conventional non-selective sequence, e.g. the BPP-LED sequence, the advantage of this modified band-selective excitation short transient (BEST) version of STE (BEST-STE) sequence is multi-fold, namely: (1) potential sensitivity gain as in generalized BEST-based sequences, (2) water suppression is no longer required as the magnetization of solvent water is not perturbed during the measurement, and (3) dynamic range problems due to the presence of intense resonances from molecules other than the protein or peptide of interest, such as non-deuterated detergent micelles, are avoided. PMID:24824112
Malyarenko, Dariya; Galbán, Craig J.; Londy, Frank J.; Meyer, Charles R.; Johnson, Timothy D.; Rehemtulla, Alnawaz; Ross, Brian D.; Chenevert, Thomas L.
2012-01-01
Purpose Quantitative quality control procedures were sought to evaluate technical variability in multi-center measurements of the diffusion coefficient of water as a prerequisite to use of the biomarker apparent diffusion coefficient (ADC) in multi-center clinical trials. Materials and Methods A uniform data acquisition protocol was developed and shared with 18 participating test sites along with a temperature-controlled diffusion phantom delivered to each site. Usable diffusion weighted imaging data of ice water at 5 b-values were collected on 35 clinical MRI systems from 3 vendors at 2 field strengths (1.5 and 3T) and analyzed at a central processing site. Results Standard deviation of bore-center ADCs measured across 35 scanners was <2%; error range: ?2% to +5% from literature value. Day-to-day repeatability of the measurements was within 4.5%. Intra-exam repeatability at the phantom center was within 1%. Excluding one outlier, inter-site reproducibility of ADC at magnet isocenter was within 3%, though variability increased for off-center measurements. Significant (>10%) vendor-specific and system-specific spatial non-uniformity ADC bias was detected for the off-center measurement that was consistent with gradient non-linearity. Conclusion Standardization of DWI protocol has improved reproducibility of ADC measurements and allowed identifying spatial ADC non-uniformity as a source of error in multi-site clinical studies. PMID:23023785
Annunziata, Onofrio
that a protein concentration gradient induces salt diffusion from high to low protein concentration. This effect concentration gradients occur.7,8 Furthermore, applications in which convection is minimized with respect, Dii, links the flux of solute i to its own concentration gradient, while each cross-term diffusion
Use of NMR Imaging to Determine the Diffusion Coefficient of Water in Bio-based Hydrogels
Technology Transfer Automated Retrieval System (TEKTRAN)
The diffusion of liquid in a hydrogel material is a fundamental property which must be controlled in order to create effective delivery systems for the agricultural and pharmaceutical industries. NMR spectroscopy has been used to determine the diffusion of water and deuterium oxide in a bio-based h...
Muck, M.T.; Kearl, P.M.; Siegrist, R.L. [and others] [and others
1998-08-01
This report presents the results of field testing a horizontal well recirculation system at the Portsmouth Gaseous Diffusion Plant (PORTS). The recirculation system uses a pair of horizontal wells, one for groundwater extraction and treatment and the other for reinjection of treated groundwater, to set up a recirculation flow field. The induced flow field from the injection well to the extraction well establishes a sweeping action for the removal and treatment of groundwater contaminants. The overall purpose of this project is to study treatment of mixed groundwater contaminants that occur in a thin water-bearing zone not easily targeted by traditional vertical wells. The project involves several research elements, including treatment-process evaluation, hydrodynamic flow and transport modeling, pilot testing at an uncontaminated site, and pilot testing at a contaminated site. The results of the pilot test at an uncontaminated site, the Clean Test Site (CTS), are presented in this report.
Protein Diffusion Coefficients Determined by Macroscopic-Gradient Rayleigh Interferometry and
Annunziata, Onofrio
coefficients. Contrary to classical techniques based on macroscopic concentration gradients, DLS probes microscopic fluctuations in concentration. DLS accuracy and its concordance with macroscopic-gradient of concentration gradients. Forabinarysolution,thediffusioncoefficient, D,isdefined by Fick's first law where J
Hendry, M Jim; Barbour, S Lee; Boldt-Leppin, Brigitte E J; Reifferscheid, Laura J; Wassenaar, Leonard I
2009-09-01
Molecular diffusion is the dominant transport mechanism for contaminants in many saturated clay-rich aquitards. The effective coefficient of diffusion (Da) is traditionally determined by conducting laboratory tests on cm-scale core samples that may not be representative of the bulk geologic formation. Here we conducted the first long-term field based in situ diffusion experimentto compare the effect of experimental scale (5 x 10(-5) m3 in the diffusion cells and (5-20) x 10(-2) m3 in the in situ experiments) on De values for clay-rich aquitards. Using a conservative tracer (deuterium), our testing shows De values estimated from in situ testing ((2.5-3.5) x 10(-10) m2 s(-1)) are similar but lower than the average De values measured in the laboratory (4 x 10(-10) m2 s(-1)). The difference was attributed to greater porosity values in the laboratory samples resulting from core barrel extrusion and sample swelling. With representative core sampling and care, laboratory-based diffusion testing remains a viable method to assess solute transport mechanisms in clay aquitards. PMID:19764242
James A. Horton; Hayden Jr. Howard W
1995-01-01
An uranium enrichment process capable of producing an enriched uranium, having a .sup.235 U content greater than about 4 wt. %, is disclosed which will consume less energy and produce metallic uranium tails having a lower .sup.235 U content than the tails normally produced in a gaseous diffusion separation process and, therefore, eliminate UF.sub.6 tails storage and sharply reduce fluorine
Hyk, Wojciech; Stojek, Zbigniew
2002-09-15
A generalized theory of the steady-state voltammetric response of a microelectrode in the absence of supporting electrolyte and for any values of diffusion coefficients of the substrate and the product of an electrode process is presented. The treatment applies to any reasonable combination of the charge numbers of the substrate, its counterion, and the product. A way to incorporate the activation polarization into the model is also demonstrated. It has been shown that the height, position, and shape of the migrational voltammogram are affected by the ratio of the product to substrate diffusivity (theta). In particular, for the electrode processes with sign retention, unequal diffusivities of electroactive species influence both characteristic points of the voltammogram (the limiting current and the half-wave potential). For charge neutralization processes (uncharged product), the changes in theta parameter are accompanied only by a shift in the half-wave potential. The most dramatic changes in the I-E relation can be observed for the charge reversal processes. In this case, a consecutive increase in theta results in the transition of the voltammogram shape from rapid exponential growth (theta < 1), through ramp shape (theta = 1), to common wave shape (theta > 1). On the basis of the expressions derived for the limiting current (exact and linearized), a possibility of the determination of the diffusion coefficient of the electrode reaction product is demonstrated. In addition, the ranges of theta where the assumption of equal diffusivities of the substrate and the product is obeyed within an insignificant error have been determined quantitatively. The theory has been experimentally verified using voltammetric oxidation of hexacyanoferrate(II). PMID:12349987
NASA Astrophysics Data System (ADS)
Torres, Juan F.; Komiya, Atsuki; Henry, Daniel; Maruyama, Shigenao
2013-08-01
We have developed a method to measure thermodiffusion and Fickian diffusion in transparent binary solutions. The measuring instrument consists of two orthogonally aligned phase-shifting interferometers coupled with a single rotating polarizer. This high-resolution interferometer, initially developed to measure isothermal diffusion coefficients in liquid systems [J. F. Torres, A. Komiya, E. Shoji, J. Okajima, and S. Maruyama, Opt. Lasers Eng. 50, 1287 (2012)], was modified to measure transient concentration profiles in binary solutions subject to a linear temperature gradient. A convectionless thermodiffusion field was created in a binary solution sample that is placed inside a Soret cell. This cell consists of a parallelepiped cavity with a horizontal cross-section area of 10 × 20 mm2, a variable height of 1-2 mm, and transparent lateral walls. The small height of the cell reduces the volume of the sample, shortens the measurement time, and increases the hydrodynamic stability of the system. An additional free diffusion experiment with the same optical apparatus provides the so-called contrast factors that relate the unwrapped phase and concentration gradients, i.e., the measurement technique is independent and robust. The Soret coefficient is determined from the concentration and temperature differences between the upper and lower boundaries measured by the interferometer and thermocouples, respectively. The Fickian diffusion coefficient is obtained by fitting a numerical solution to the experimental concentration profile. The method is validated through the measurement of thermodiffusion in the well-known liquid pairs of ethanol-water (ethanol 39.12 wt.%) and isobutylbenzene-dodecane (50.0 wt.%). The obtained coefficients agree with the literature values within 5.0%. Finally, the developed technique is applied to visualize biomolecular thermophoresis. Two protein aqueous solutions at 3 mg/ml were used as samples: aprotinin (6.5 kDa)-water and lysozyme (14.3 kDa)-water. It was found that the former protein molecules are thermophilic and the latter thermophobic. In contrast to previously reported methods, this technique is suitable for both short time and negative Soret coefficient measurements.
Torres, Juan F; Komiya, Atsuki; Henry, Daniel; Maruyama, Shigenao
2013-08-21
We have developed a method to measure thermodiffusion and Fickian diffusion in transparent binary solutions. The measuring instrument consists of two orthogonally aligned phase-shifting interferometers coupled with a single rotating polarizer. This high-resolution interferometer, initially developed to measure isothermal diffusion coefficients in liquid systems [J. F. Torres, A. Komiya, E. Shoji, J. Okajima, and S. Maruyama, Opt. Lasers Eng. 50, 1287 (2012)], was modified to measure transient concentration profiles in binary solutions subject to a linear temperature gradient. A convectionless thermodiffusion field was created in a binary solution sample that is placed inside a Soret cell. This cell consists of a parallelepiped cavity with a horizontal cross-section area of 10 × 20 mm(2), a variable height of 1-2 mm, and transparent lateral walls. The small height of the cell reduces the volume of the sample, shortens the measurement time, and increases the hydrodynamic stability of the system. An additional free diffusion experiment with the same optical apparatus provides the so-called contrast factors that relate the unwrapped phase and concentration gradients, i.e., the measurement technique is independent and robust. The Soret coefficient is determined from the concentration and temperature differences between the upper and lower boundaries measured by the interferometer and thermocouples, respectively. The Fickian diffusion coefficient is obtained by fitting a numerical solution to the experimental concentration profile. The method is validated through the measurement of thermodiffusion in the well-known liquid pairs of ethanol-water (ethanol 39.12 wt.%) and isobutylbenzene-dodecane (50.0 wt.%). The obtained coefficients agree with the literature values within 5.0%. Finally, the developed technique is applied to visualize biomolecular thermophoresis. Two protein aqueous solutions at 3 mg?ml were used as samples: aprotinin (6.5 kDa)-water and lysozyme (14.3 kDa)-water. It was found that the former protein molecules are thermophilic and the latter thermophobic. In contrast to previously reported methods, this technique is suitable for both short time and negative Soret coefficient measurements. PMID:23968083
NASA Astrophysics Data System (ADS)
Leite, Rosiley A.; Lino, Antonio C. S.; Takahata, Yuji
2003-01-01
The inclusion compounds between iron II lactate and three different cyclodextrins (CDs) were studied by means of experimental and theoretical data. The importance of iron II in the human metabolism effort the necessity of a minimum concentration to the human life. Malnutrition is one great problem in social politics of many countries on the world. The possibility to the development of novel medicines with the iron II species stable look for an increase on the efficiency for this kind of aid. Kinetics measurements confirm the possibility to stop the oxidation reaction. It was the first indication of efficient molecular encapsulation. Diffusion coefficient measurements were carried out by Taylor-Aris diffusion technique. The decrease of diffusion coefficients measured for iron II lactate when alone and forming the inclusion complexes was obtained for all hosts molecules used. Molecular Mechanics calculations were performed to elucidate the perfect arrange of iron II lactate inside CDs cavity. No great differences were obtained to the binding energy for the different hosts. Using the software HyperChem6.03v MM+, AMBER94 and OPLS Forced Fields for iron atom in two chemical environments (a) vacuum and (b) with addition of 250 water molecules (MM+). The solvent treatment was decisive to the order of stability. This order was ?-CD>?-CD>?-CD, the same order of solubility in water. The results contained in this work confirm the possibility to protect iron II lactate against oxidation.
Saâdi, Zakaria
2014-05-01
The radon exhalation rate at the earth's surface from soil or rock with radium as its source is the main mechanism behind the radon activity concentrations observed in both indoor and outdoor environments. During the last two decades, many subsurface radon transport models have used Rogers and Nielson's formula for modeling the unsaturated soil bulk radon diffusion coefficient. This formula uses an "air-filled effective porosity" to account for radon adsorption and radon dissolution in the groundwater. This formula is reviewed here, and its hypotheses are examined for accuracy in dealing with subsurface radon transport problems. The author shows its limitations by comparing one dimensional steady-state analytical solutions of the two-phase (air/water) transport equation (Fick's law) with Rogers and Nielson's formula. For radon diffusion-dominated transport, the calculated Rogers and Nielson's radon exhalation rate is shown to be unrealistic as it is independent of the values of the radon adsorption and groundwater dissolution coefficients. For convective and diffusive transport, radon exhalation rates calculated using Fick's law and this formula agree only for high values of gas-phase velocity and groundwater saturation. However, these conditions are not usually met in most shallow subsurface environments where radon migration takes place under low gas phase velocities and low water saturation. PMID:24670909
Tsai, Jang-Zern; Chen, Yu-Wei; Wang, Kuo-Wei; Wu, Hsiao-Kuang; Lin, Yun-Yu; Lee, Ying-Ying; Chen, Chi-Jen; Lin, Huey-Juan; Smith, Eric Edward; Hsin, Yue-Loong
2014-01-01
Determination of the volumes of acute cerebral infarct in the magnetic resonance imaging harbors prognostic values. However, semiautomatic method of segmentation is time-consuming and with high interrater variability. Using diffusion weighted imaging and apparent diffusion coefficient map from patients with acute infarction in 10 days, we aimed to develop a fully automatic algorithm to measure infarct volume. It includes an unsupervised classification with fuzzy C-means clustering determination of the histographic distribution, defining self-adjusted intensity thresholds. The proposed method attained high agreement with the semiautomatic method, with similarity index 89.9 ± 6.5%, in detecting cerebral infarct lesions from 22 acute stroke patients. We demonstrated the accuracy of the proposed computer-assisted prompt segmentation method, which appeared promising to replace the laborious, time-consuming, and operator-dependent semiautomatic segmentation. PMID:24738080
Li, Weibin; Kagan, Gerald; Yang, Huan; Cai, Chen; Hopson, Russell; Sweigart, Dwight A; Williard, Paul G
2010-06-18
Development and application of physically separated references for aqueous (1)H DOSY diffusion coefficient-formula weight (D-FW) correlation analysis is reported. Commercially available biological buffers (Tris and HEPES) and a water-soluble alcohol (tert-butanol) were used as physically separated references for a Ru and a Mn complex in D(2)O. This extension of DOSY D-FW analysis expands its applicability to a wide variety of water-soluble molecules or metal complexes, with particular application to green chemistry. PMID:20481557
MODELING OF DIFFUSION OF PLUTONIUM IN OTHER METALS AND OF GASEOUS SPECIES IN PLUTONIUM-BASED SYSTEMS
The research is aimed at developing and utilizing computational-modeling-based methodology to treat two major problems. The first of these is to be able to predict the diffusion of plutonium from the surface into the interior of another metal such as uranium or stainless steel (f...
Zhang, Chun-Yun; Chai, Xin-Sheng
2015-03-13
A novel method for the determination of the diffusion coefficient (D) of methanol in water and olive oil has been developed. Based on multiple headspace extraction gas chromatography (MHE-GC), the methanol released from the liquid sample of interest in a closed sample vial was determined in a stepwise fashion. A theoretical model was derived to establish the relationship between the diffusion coefficient and the GC signals from MHE-GC measurements. The results showed that the present method has an excellent precision (RSD<1%) in the linear fitting procedure and good accuracy for the diffusion coefficients of methanol in both water and olive oil, when compared with data reported in the literature. The present method is simple and practical and can be a valuable tool for the determination of the diffusion coefficient of volatile analyte(s) into food simulants from food and beverage packaging material, both in research studies and in actual applications. PMID:25678320
Bini, Fabiano; Marinozzi, Andrea
2014-01-01
We firstly measured the swelling of single trabeculae from human femur heads during water imbibition. Since the swelling is caused by water diffusing from external surfaces to the core of the sample, by measuring the sample swelling over time, we obtained direct information about the transport of fluids through the intimate constituents of bone, where the mineralization process takes place. We developed an apparatus to measure the free expansion of the tissue during the imbibition. In particular, we measured the swelling along three natural axes (length L, width W, and thickness T) of plate-like trabeculae. For this aim, we developed a 3D analytical model of the water uptake by the sample that was performed according to Fickian transport mechanism. The results were then utilized to predict the swelling over time along the three sample directions (L, W, T) and the apparent diffusion coefficients DT, DW, and DL. PMID:24967405
Castillo, R.; Garza, C.; Orozco, J. [Instituto de Fisica (Mexico)
1992-02-06
Mutual diffusion coefficients in the one-phase water-rich region of the phase diagram of the phenol/water system (0-10 wt% phenol) were measured using the Taylor dispersion technique, at several temperatures and mole fractions. The values range from 0.71 to 1.88 x 10{sup -9} m{sup 2}/s. In order to obtain evidence about the formation of aggregates of pseudomicelles in this system, as it is invoked in the interpretation of bulk and surface properties, correlation lengths of the concentration fluctuations have been calculated at 328 K using the diffusion data and measured viscosities. They agree with the assumption of aggregate formation in the bulk of the solution at a phenol weight fraction about 7-8 wt%. 16 refs., 2 figs., 1 tab.
Elsa Uribe; Margarita Miranda; Antonio Vega-Gálvez; Issis Quispe; Rodrigo Clavería; Karina Di Scala
2011-01-01
Mathematical modelling was used to study the effect of process temperature on moisture and salt mass transfer during osmotic\\u000a dehydration (OD) of jumbo squid with 6% (w v\\u000a ?1) NaCl at 75, 85 and 95?°C. The diffusion coefficients for moisture and salt increased with temperature. Based on an Arrhenius-type\\u000a equation, activation energy values of 62.45 kJ mol?1 and 52.14 kJ mol?1 for moisture and
NASA Astrophysics Data System (ADS)
Petrishcheva, E.; Abart, R.
2012-04-01
We address mathematical modeling and computer simulations of phase decomposition in a multicomponent system. As opposed to binary alloys with one common diffusion parameter, our main concern is phase decomposition in real geological systems under influence of strongly different interdiffusion coefficients, as it is frequently encountered in mineral solid solutions with coupled diffusion on different sub-lattices. Our goal is to explain deviations from equilibrium element partitioning which are often observed in nature, e.g., in a cooled ternary feldspar. To this end we first adopt the standard Cahn-Hilliard model to the multicomponent diffusion problem and account for arbitrary diffusion coefficients. This is done by using Onsager's approach such that flux of each component results from the combined action of chemical potentials of all components. In a second step the generalized Cahn-Hilliard equation is solved numerically using finite-elements approach. We introduce and investigate several decomposition scenarios that may produce systematic deviations from the equilibrium element partitioning. Both ideal solutions and ternary feldspar are considered. Typically, the slowest component is initially "frozen" and the decomposition effectively takes place only for two "fast" components. At this stage the deviations from the equilibrium element partitioning are indeed observed. These deviations may became "frozen" under conditions of cooling. The final equilibration of the system occurs on a considerably slower time scale. Therefore the system may indeed remain unaccomplished at the observation point. Our approach reveals the intrinsic reasons for the specific phase separation path and rigorously describes it by direct numerical solution of the generalized Cahn-Hilliard equation.
O. Yu. Vybornov; N. N. Snegirev; I. V. Statsenko; N. G. Dovbysh
1986-01-01
Short-circuiting of the electrodes and failure of the cells may occur during charging of storage batteries. This undesirable effect is caused by growth of filamentary dendrites within the separator channels and not by mechanical puncture. Dendrite growth is proportional to the solubility and rate of ion diffusion within the separators. The purpose of the present work was to study these
Varying Coefficient Models for Modeling Diffusion Tensors Along White Matter Bundles
Paris-Sud XI, Université de
disorders, and the joint effects of environmental and genetic factors on white matter fiber bundles the finite sample performance of VCTF . We apply our VCTF to study potential gender differences and find the effective diffusion of water in the human brain in vivo, has been widely used to map the microstructure
NASA Astrophysics Data System (ADS)
Reimus, Paul W.; Callahan, Timothy J.; Ware, S. Doug; Haga, Marc J.; Counce, Dale A.
2007-08-01
Diffusion cell experiments were conducted to measure nonsorbing solute matrix diffusion coefficients in forty-seven different volcanic rock matrix samples from eight different locations (with multiple depth intervals represented at several locations) at the Nevada Test Site. The solutes used in the experiments included bromide, iodide, pentafluorobenzoate (PFBA), and tritiated water ( 3HHO). The porosity and saturated permeability of most of the diffusion cell samples were measured to evaluate the correlation of these two variables with tracer matrix diffusion coefficients divided by the free-water diffusion coefficient ( Dm/ D*). To investigate the influence of fracture coating minerals on matrix diffusion, ten of the diffusion cells represented paired samples from the same depth interval in which one sample contained a fracture surface with mineral coatings and the other sample consisted of only pure matrix. The log of ( Dm/ D*) was found to be positively correlated with both the matrix porosity and the log of matrix permeability. A multiple linear regression analysis indicated that both parameters contributed significantly to the regression at the 95% confidence level. However, the log of the matrix diffusion coefficient was more highly-correlated with the log of matrix permeability than with matrix porosity, which suggests that matrix diffusion coefficients, like matrix permeabilities, have a greater dependence on the interconnectedness of matrix porosity than on the matrix porosity itself. The regression equation for the volcanic rocks was found to provide satisfactory predictions of log( Dm/ D*) for other types of rocks with similar ranges of matrix porosity and permeability as the volcanic rocks, but it did a poorer job predicting log( Dm/ D*) for rocks with lower porosities and/or permeabilities. The presence of mineral coatings on fracture walls did not appear to have a significant effect on matrix diffusion in the ten paired diffusion cell experiments.
Tuula Kaukola; Marja Perhomaa; Leena Vainionpää; Uolevi Tolonen; Jukka Jauhiainen; Eija Pääkkö; Mikko Hallman
2010-01-01
Background: New imaging techniques allow a detailed visualization of the brain and the findings possibly correlate with neurophysiologic measurements and neurosensory and motor outcomes. Postnatal clinical factors known to associate with neurologic disabilities may contribute to brain abnormalities not visible to the naked eye. Objectives: We evaluated whether quantitative measurement of organized water diffusion on MR imaging, apparent diffusion coefficient
Optimal estimates of the diffusion coefficient of a single Brownian trajectory
Denis Boyer; David S. Dean; Carlos Mejía-Monasterio; Gleb Oshanin
2012-03-22
Modern developments in microscopy and image processing are revolutionizing areas of physics, chemistry and biology as nanoscale objects can be tracked with unprecedented accuracy. The goal of single particle tracking is to determine the interaction between the particle and its environment. The price paid for having a direct visualization of a single particle is a consequent lack of statistics. Here we address the optimal way of extracting diffusion constants from single trajectories for pure Brownian motion. It is shown that the maximum likelihood estimator is much more efficient than the commonly used least squares estimate. Furthermore we investigate the effect of disorder on the distribution of estimated diffusion constants and show that it increases the probability of observing estimates much smaller than the true (average) value.
NASA Astrophysics Data System (ADS)
Lei, Ning; Wang, Zhipeng; Fulbright, Jon; Xiong, Xiaoxiong
2013-09-01
The Visible/Infrared Imager Radiometer Suite (VIIRS) instrument aboard the Suomi National Polarorbiting Partnership (SNPP) satellite performs its radiometric calibration in the reflective solar bands (RSB) wavelength region primarily through observing the sunlight scattered from the onboard Solar Diffuser (SD). The degradation (over time) of the SD reflectance is determined by the onboard Solar Diffuser Stability Monitor (SDSM). The SDSM detector relative spectral response (RSR) over the out-ofband (OOB) wavelength region leads to a non-negligible bias to the originally determined SD degradation coefficient over wavelengths from 412 nm to 488 nm. In this Proceeding, we consider the out-of-band contribution to determine the bias. Our computation shows that the bias to the degradation coefficient is larger at a shorter wavelength and increases with time. On the 564th day after launch (~ orbit 8000), at a wavelength of 412 nm, the bias (OOB-corrected - not-OOB-corrected) has a mean of -0.021, and at a wavelength of 445 nm, the bias has a mean of -0.009.
Quinn, John G
2012-02-15
In label-free biomolecular interaction analysis, a standard injection provides an injection of uniform analyte concentration. An alternative approach exploiting Taylor dispersion produces a continuous analyte titration allowing a full analyte dose response to be recorded in a single injection. The enhanced biophysical characterization that is possible with this new technique is demonstrated using a commercially available surface plasmon resonance-based biosensor. A kinetic interaction model was fitted locally to Taylor dispersion curves for estimation of the analyte diffusion coefficient in addition to affinity/kinetic constants. Statistical confidence in the measured parameters from a single Taylor dispersion injection was comparable to that obtained for global analysis of multiple standard injections. The affinity constants for multisite interactions were resolved with acceptable confidence limits. Importantly, a single analyte injection could be treated as a high-resolution real-time affinity isotherm and was demonstrated using the complex two-site interaction of warfarin with human serum albumin. In all three model interactions tested, the kinetic/affinity constants compared favorably with those obtained from standard kinetic analysis and the estimates of analyte diffusion coefficients were in good agreement with the expected values. PMID:22197422
NASA Astrophysics Data System (ADS)
Nasrabad, Afshin Eskandari
2009-01-01
A comprehensive investigation is conducted to study the thermodynamics, structure, and mean free volume of rigid two-center Lennard-Jones fluids through Monte Carlo simulations. For a large number of states, the self-diffusion coefficient is computed using the following two different approaches: the equilibrium molecular dynamics simulation method and the modified Cohen-Turnbull theory. The effects of the bond elongation on different thermophysical properties are studied. The generic van der Waals theory, which has recently been extended to rigid polyatomic fluids [A. Eskandari Nasrabad and R. Laghaei, J. Chem. Phys. 125, 154505 (2006)], is used to compute the mean free volume needed in the modified Cohen-Turnbull theory. The effective site diameter is computed using the virial minimization method and the results are applied within the generic van der Waals theory. The Gibbs ensemble Monte Carlo simulation technique is applied to determine the location of the fluid phase envelope. The NVT Monte Carlo simulation method is then utilized to compute the equation of state and the correlation functions appearing in the generic van der Waals theory. It appears that the logarithm of the mean free volume versus density is almost linear at ? >?c independent of the bond length, which suggests a universal behavior. The self diffusion coefficient results of the modified Cohen-Turnbull theory are analyzed in detail.
Entropy-driven phase transitions with influence of the field-dependent diffusion coefficient
NASA Astrophysics Data System (ADS)
Kharchenko, V. O.
2009-02-01
We present a comprehensive study of phase transitions in a single-field reaction-diffusion stochastic systems with a field-dependent mobility of a power-law form and internal fluctuations. Using variational principles and mean-field theory we have shown that the noise can sustain spatial patterns and leads to phase transitions type of “order-disorder”. These phase transitions can be critical and non-critical in character. Our theoretical results are verified by computer simulations.
J. Bottcher; A. Kunze; C. Kurrat; P. Schmidt; G. Hagemann; O. W. Witte; W. A. Kaiser
2005-01-01
Background and Purpose—The pathophysiology of hypoglycemia shares a common mechanism with cerebral ischemia, but so far, little is known regarding MRI of humans with hypoglycemia. Methods—We report a patient with left hemiparesis and dysarthria associated with a blood glucose level of 1.7 mmol\\/L. The patient recovered completely after glucose infusion. Results—The initial diffusion-weighted imaging (DWI) showed increased signal intensities and
Wang, Jinyang; Zhong, Haimin; Qiu, Wenda; Chen, Liuping, E-mail: cesclp@mail.sysu.edu.cn [KLGHEI of Environment and Energy Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275 (China)] [KLGHEI of Environment and Energy Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275 (China); Feng, Huajie [School of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158 (China)] [School of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158 (China)
2014-03-14
The binary infinite dilute diffusion coefficients, D{sub 12}{sup ?}, of some alkylbenzenes (Ph-C{sub n}, from Ph-H to Ph-C{sub 12}) from 313 K to 333 K at 15 MPa in supercritical carbon dioxide (scCO{sub 2}) have been studied by molecular dynamics (MD) simulation. The MD values agree well with the experimental ones, which indicate MD simulation technique is a powerful way to predict and obtain diffusion coefficients of solutes in supercritical fluids. Besides, the local structures of Ph-C{sub n}/CO{sub 2} fluids are further investigated by calculating radial distribution functions and coordination numbers. It qualitatively convinces that the first solvation shell of Ph-C{sub n} in scCO{sub 2} is significantly influenced by the structure of Ph-C{sub n} solute. Meanwhile, the mean end-to-end distance, the mean radius of gyration and dihedral angle distribution are calculated to gain an insight into the structural properties of Ph-C{sub n} in scCO{sub 2}. The abnormal trends of radial distribution functions and coordination numbers can be reasonably explained in term of molecular flexibility. Moreover, the computed results of dihedral angle clarify that flexibility of long-chain Ph-C{sub n} is the result of internal rotation of C-C single bond (?{sub c-c}) in alkyl chain. It is interesting that compared with n-alkane, because of the existence of benzene ring, the flexibility of alkyl chain in Ph-C{sub n} with same carbon atom number is significantly reduced, as a result, the carbon chain dependence of diffusion behaviors for long-chain n-alkane (n ? 5) and long-chain Ph-C{sub n} (n ? 4) in scCO{sub 2} are different.
Xiong, Jianyin; Huang, Shaodan; Zhang, Yinping
2012-01-01
The diffusion coefficient (Dm) and material/air partition coefficient (K) are two key parameters characterizing the formaldehyde and volatile organic compounds (VOC) sorption behavior in building materials. By virtue of the sorption process in airtight chamber, this paper proposes a novel method to measure the two key parameters, as well as the convective mass transfer coefficient (hm). Compared to traditional methods, it has the following merits: (1) the K, Dm and hm can be simultaneously obtained, thus is convenient to use; (2) it is time-saving, just one sorption process in airtight chamber is required; (3) the determination of hm is based on the formaldehyde and VOC concentration data in the test chamber rather than the generally used empirical correlations obtained from the heat and mass transfer analogy, thus is more accurate and can be regarded as a significant improvement. The present method is applied to measure the three parameters by treating the experimental data in the literature, and good results are obtained, which validates the effectiveness of the method. Our new method also provides a potential pathway for measuring hm of semi-volatile organic compounds (SVOC) by using that of VOC. PMID:23145156
NASA Astrophysics Data System (ADS)
Xiang, Jiang; Li, Ding; Cai, Huishan
2008-12-01
In this paper, a new method to derive the Fokker-Planck coefficients defined by a non-Maxwellian velocity distribution function for the field particles is presented. The threefold integral and the new Debye cutoff parameter, which were introduced by CHANG and LI, are applied. Therefore, divergence difficulties and the customary replacement of relative velocity g by thermal velocity vth are naturally avoided. The probability function P(v,?v) for non-Maxwellian scattering is derived by the method of choosing velocity transfer ?v, which is a true measure of collision intensity, as an independent variable. The method enables the difference between small-angle scattering and small-momentum-transfer collisions of the inverse-square force to be well clarified. With the help of the probability function, the Fokker-Planck coefficients are obtained by a normal original Fokker-Planck approach. The friction and diffusion coefficients of the Fokker-Planck equation are modified for non-Maxwellian scattering and are used to investigate the relaxation processes for the weakly coupled plasma. The profiles of the relaxation rates show that the slowing down and deflection processes are weakened in the conditions of non-Maxwellian scattering.
NASA Astrophysics Data System (ADS)
Egger, Herbert; Pietschmann, Jan-Frederik; Schlottbom, Matthias
2014-03-01
In this work, we consider the identifiability of two coefficients a(u) and c(x) in a quasilinear elliptic partial differential equation from the observation of the Dirichlet-to-Neumann map. We use a linearization procedure due to Isakov (1993 Arch. Ration. Mech. Anal. 124 1-12) and special singular solutions to first determine a(0) and c(x) for x ? ?. Based on this partial result, we are then able to determine a(u) for u \\in {R} by an adjoint approach.
Yin, Ziying
2014-01-01
The primary goal of this paper is to describe a combined MR relaxation (T(2) and T(1?)), diffusion (apparent diffusion coefficient [ADC]), and elastography (shear stiffness) method of fully characterizing the development of tissue-engineered cartilage in terms of the changes in its composition, structure, and mechanical properties during tissue growth. Then, we may better use MR-based methodologies to noninvasively monitor and optimize the cartilage tissue engineering process without sacrificing the constructs. This process begins by demonstrating the potential capability of T(2), T(1?), ADC, and shear stiffness in characterizing a scaffold-free engineered cartilage. The results show that, in addition to the conventional T(2) and ADC, T(1?) and MRE can be used as potential biomarkers to assess the specific changes in proteoglycan content and mechanical properties of engineered cartilage during culture. Moreover, to increase the efficiency of MR characterization, two new methodologies for simultaneous acquisition of diffusion and MRE (dMRE), and T(1?) and MRE (T(1?)-MRE) are introduced that allow the simultaneous characterization of both biochemical and mechanical properties of engineered cartilage tissue. The feasibilities of dMRE and T(1?)-MRE approaches are validated on tissue-mimicking phantoms. The results show good correspondence between simultaneous acquisitions and conventional separate acquisition methods. PMID:25403876
Lu, Wanjun; Guo, Huirong; Chou, I.-Ming; Burruss, R.C.; Li, Lanlan
2013-01-01
Accurate values of diffusion coefficients for carbon dioxide in water and brine at reservoir conditions are essential to our understanding of transport behavior of carbon dioxide in subsurface pore space. However, the experimental data are limited to conditions at low temperatures and pressures. In this study, diffusive transfer of carbon dioxide in water at pressures up to 45 MPa and temperatures from 268 to 473 K was observed within an optical capillary cell via time-dependent Raman spectroscopy. Diffusion coefficients were estimated by the least-squares method for the measured variations in carbon dioxide concentration in the cell at various sample positions and time. At the constant pressure of 20 MPa, the measured diffusion coefficients of carbon dioxide in water increase with increasing temperature from 268 to 473 K. The relationship between diffusion coefficient of carbon dioxide in water [D(CO2) in m2/s] and temperature (T in K) was derived with Speedy–Angell power-law approach as: D(CO2)=D0[T/Ts-1]m where D0 = 13.942 × 10?9 m2/s, Ts = 227.0 K, and m = 1.7094. At constant temperature, diffusion coefficients of carbon dioxide in water decrease with pressure increase. However, this pressure effect is rather small (within a few percent).
Roy, Arindam; Ramasubramaniam, Rajagopal; Gaonkar, Harshavardhan A
2012-11-01
Kubelka–Munk (K-M) theory is a phenomenological light transport theory that provides analytical expressions for reflectance and transmittance of diffusive substrates such as tissues. Many authors have derived relations between coefficients of K-M theory and that of the more fundamental radiative transfer equations. These relations are valid only in diffusive light transport regime where scattering dominates over absorption. They also fail near boundaries where incident beams are not diffusive. By measuring total transmittance and total reflectance of tissue phantoms with varying optical parameters, we have obtained empirical relations between K-M coefficients and the radiative transport coefficients for integrating sphere-based spectrophotometers that use uniform, nondiffusive incident beams. Our empirical relations show that the K-M scattering coefficients depend only on reduced scattering coefficient (?'s), whereas the K-M absorption coefficient depends on both absorption (?a ) and reduced scattering (?s' ) coefficients of radiative transfer theory. We have shown that these empirical relations are valid in both the diffusive and nondiffusive regimes and can predict total reflectance within an error of 10%. They also can be used to solve the inverse problem of obtaining multiple optical parameters such as chromophore concentration and tissue thickness from the measured reflectance spectra with a maximum accuracy of 90% to 95%. PMID:23214177
Young, S.C.; Julian, S.C.; Neton, M.J.
1993-01-01
Multi-well pumping tests have been concluded at wells MW79, MW108, and PW1 at the Paducah Gaseous Diffusion Plant (PGDP) to determine the hydraulic properties of the Regional Gravel Aquifer (RGA). Soil cores suggest that the RGA consists of a thin sandy facies (2 to 6 feet) at the top of a thicker (> 10 feet) gravelly facies. Previous analyses have not considered any permeability contrast between the two facies. To assess the accuracy of this assumption, TVA personnel conducted borehole flowmeter tests at wells MW108 and PW1. Well MW79 could not be tested. The high K sand unit is probably 10 times more permeable than comparable zone in the gravelly portion of the RGA. Previous analyses of the three multi-well aquifer tests do not use the same conceptual aquifer model. Data analysis for one pumping test assumed that leakance was significant. Data analysis for another pumping test assumed that a geologic boundary was significant. By collectively analyzing all three tests with the borehole flowmeter results, the inconsistency among the three pumping tests can be explained. Disparity exists because each pumping test had a different placement of observation wells relative to the high K zone delineating by flowmeter testing.
Etnier, E.L.; Eaton, L.A. (Oak Ridge National Lab., TN (United States))
1992-03-01
Section 121 of the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) of 1980 specifies that remedial actions for cleanup of hazardous substances found at sites placed on the National Priorities List (NPL) by the US Environmental Protection Agency (EPA) must comply with applicable or relevant and appropriate requirements (ARARs) or standards under federal and state environmental laws. To date, the US Department of Energy (DOE) Paducah Gaseous Diffusion Plant (PGDP) has not been on the NPL. Although DOE and EPA have entered into an Administrative Consent Order (ACO), the prime regulatory authority for cleanup at PGDP will be the Resource Conservation and Recovery Act (RCRA). This report supplies a preliminary list of available federal and state ARARs that might be considered for remedial response at PGDP in the event that the plant becomes included on the NPL or the ACO is modified to include CERCLA cleanup. A description of the terms applicable'' and relevant and appropriate'' is provided, as well as definitions of chemical-, location-, and action-specific ARARS. ARARs promulgated by the federal government and by the state of Kentucky are listed in tables. In addition, the major provisions of RCRA, the Safe Drinking Water Act, the Clean Water Act, the Clean Air Act, and other acts, as they apply to hazardous and radioactive waste cleanup, are discussed.
Etnier, E.L.; Eaton, L.A. [Oak Ridge National Lab., TN (United States)
1992-03-01
Section 121 of the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) of 1980 specifies that remedial actions for cleanup of hazardous substances found at sites placed on the National Priorities List (NPL) by the US Environmental Protection Agency (EPA) must comply with applicable or relevant and appropriate requirements (ARARs) or standards under federal and state environmental laws. To date, the US Department of Energy (DOE) Paducah Gaseous Diffusion Plant (PGDP) has not been on the NPL. Although DOE and EPA have entered into an Administrative Consent Order (ACO), the prime regulatory authority for cleanup at PGDP will be the Resource Conservation and Recovery Act (RCRA). This report supplies a preliminary list of available federal and state ARARs that might be considered for remedial response at PGDP in the event that the plant becomes included on the NPL or the ACO is modified to include CERCLA cleanup. A description of the terms ``applicable`` and ``relevant and appropriate`` is provided, as well as definitions of chemical-, location-, and action-specific ARARS. ARARs promulgated by the federal government and by the state of Kentucky are listed in tables. In addition, the major provisions of RCRA, the Safe Drinking Water Act, the Clean Water Act, the Clean Air Act, and other acts, as they apply to hazardous and radioactive waste cleanup, are discussed.
NONE
1995-11-01
The US Department of Energy (DOE) must manage wastes containing polychlorinated biphenyls (PCBs) in accordance with Toxic Substances Control Act (TSCA) requirements and as prescribed in a Federal Facilities Compliance Agreement (FFCA) between DOE and the U.S. Environmental Protection Agency (EPA). PCB-containing wastes are currently stored in the PORTS process buildings where they are generated. DOE proposes to modify and expand the Waste Accountability facility (X-7725A) at the Portsmouth Gaseous Diffusion Plant (PORTS), Piketon, Ohio, to provide a central storage location for these wastes. The proposed action is needed to eliminate the fire and safety hazards presented by the wastes. In this EA, DOE considers four alternatives: (1) no action, which requires storing wastes in limited storage areas in existing facilities; (2) modifying and expanding the X-7725A waste accountability facility; (3) constructing a new PCB waste storage building; and (4) shipping PCB wastes to the K-25 TSCA incinerator. If no action is taken, PCB-contaminated would continue to be stored in Bldgs X-326, X-330, and X-333. As TSCA cleanup activities continue, the quantity of stored waste would increase, which would subsequently cause congestion in the three process buildings and increase fire and safety hazards. The preferred alternative is to modify and expand Bldg. X-7725A to store wastes generated by TSCA compliance activities. Construction, which could begin as early as April 1996, would last approximately five to seven months, with a total peak work force of 70.
Trowbridge, L.D.
1999-03-01
As part of a program intended to replace the present evaporative coolant at the gaseous diffusion plants (GDPs) with a non-ozone-depleting alternate, a series of investigations of the suitability of candidate substitutes in under way. One issue concerning a primary candidate, c-C4F8, is the possibility that it might produce the highly toxic perfluoroisobutylene (PFIB) in high temperature environments. This study was commissioned to determine the likelihood and severity of decomposition under two specific high temperature thermal environments, namely the use of a flame test for the presence of coolant vapors and welding in the presence of coolant vapors. The purpose of the study was to develop and evaluate available data to provide information that will allow the technical and industrial hygiene staff at the GDPs to perform appropriate safety evaluations and to determine the need for field testing or experimental work. The scope of this study included a literature search and an evaluation of the information developed therefrom. Part of that evaluation consists of chemical kinetics modeling of coolant decomposition in the two operational environments. The general conclusions are that PFIB formation is unlikely in either situation but that it cannot be ruled out completely under extreme conditions. The presence of oxygen, moisture, and combustion products will tend to lead to formation of oxidation products (COF2, CO, CO2, and HF) rather than PFIB.
Roy, W.K.; Ryon, M.G.; Hinzman, R.L. [Oak Ridge National Lab., TN (United States). Computer Science and Mathematics Div.
1996-03-01
The development of a biological monitoring plan for the receiving streams of the Paducah Gaseous Diffusion Plant (PGDP) began in the late 1980s, because of an Agreed Order (AO) issued in September 1987 by the Kentucky Division of Water (KDOW). Five years later, in September 1992, more stringent effluent limitations were imposed upon the PGDP operations when the KDOW reissued Kentucky Pollutant Discharge Elimination System permit No. KY 0004049. This action prompted the US Department of Energy (DOE) to request a stay of certain limits contained in the permit. An AO is being negotiated between KDOW, the US Enrichment Corporation (USEC), and DOE that will require that several studies be conducted, including this stream temperature evaluation study, in an effort to establish permit limitations. All issues associated with this AO have been resolved, and the AO is currently being signed by all parties involved. The proposed effluent temperature limit is 89 F (31.7 C) as a mean monthly temperature. In the interim, temperatures are not to exceed 95 F (35 C) as a monthly mean or 100 F (37.8 C) as a daily maximum. This study includes detailed monitoring of instream temperatures, benthic macroinvertebrate communities, fish communities, and a laboratory study of thermal tolerances.
Korte, N.; Muck, M.; Kearl, P.; Siegrist, R.; Schlosser, R.; Zutman, J. [Oak Ridge National Lab., TN (United States)] [Oak Ridge National Lab., TN (United States); Houk, T. [Lockheed Martin Energy Systems, Piketon, OH (United States). Portsmouth Gaseous Diffusion Plant] [Lockheed Martin Energy Systems, Piketon, OH (United States). Portsmouth Gaseous Diffusion Plant
1998-08-01
This report describes the field-scale demonstration performed as part of the project, In Situ Treatment of Mixed Contaminants in Groundwater. This project was a 3{1/2} year effort comprised of laboratory work performed at Oak Ridge National Laboratory and fieldwork performed at the US Department of Energy (DOE) Portsmouth Gaseous Diffusion Plant (PORTS). The overall goal of the project was to evaluate in situ treatment of groundwater using horizontal recirculation coupled with treatment modules. Specifically, horizontal recirculation was tested because of its application to thin, interbedded aquifer zones. Mixed contaminants were targeted because of their prominence at DOE sites and because they cannot be treated with conventional methods. The project involved several research elements, including treatment process evaluation, hydrodynamic flow and transport modeling, pilot testing at an uncontaminated site, and full-scale testing at a contaminated site. This report presents the results of the work at the contaminated site, X-701B at PORTS. Groundwater contamination at X-701B consists of trichloroethene (TCE) (concentrations up to 1800 mg/L) and technetium-998 (Tc{sup 99}) (activities up to 926 pCi/L).
Martinez, R.L.; Tolk, K. [Sandia National Labs., Albuquerque, NM (United States); Whiting, N. [International Atomic Energy Agency, Vienna (Austria); Castleberry, K.; Lenarduzzi, R. [Oak Ridge National Lab., TN (United States)
1998-08-01
As part of a Safeguards Agreement between the US and the International Atomic Energy Agency (IAEA), the Portsmouth Gaseous Diffusion Plant, Piketon, Ohio, was added to the list of facilities eligible for the application of IAEA safeguards. Currently, the facility is in the process of downblending excess inventory of HEU to low enriched uranium (LEU) from US defense related programs for commercial use. An agreement was reached between the US and the IAEA that would allow the IAEA to conduct an independent verification experiment at the Portsmouth facility, resulting in the confirmation that the HEU was in fact downblended. The experiment provided an opportunity for the DOE laboratories to recommend solutions/measures for new IAEA safeguards applications. One of the measures recommended by Sandia National Laboratories (SNL), and selected by the IAEA, was a digital video surveillance system for monitoring activity at the HEU feed stations. This paper describes the SNL implementation of the digital video system and its integration with the Load Cell Based Weighing System (LCBWS) from Oak Ridge National Laboratory (ORNL). The implementation was based on commercially available technology that also satisfied IAEA criteria for tamper protection and data authentication. The core of the Portsmouth digital video surveillance system was based on two Digital Camera Modules (DMC-14) from Neumann Consultants, Germany.
J. A. Horton; H. W. Jr. Hayden
1995-01-01
An uranium enrichment process capable of producing an enriched uranium, having a Â²Â³âµU content greater than about 4 wt. %, is disclosed which will consume less energy and produce metallic uranium tails having a lower Â²Â³âµU content than the tails normally produced in a gaseous diffusion separation process and, therefore, eliminate UFâ tails storage and sharply reduce fluorine use. The
NASA Technical Reports Server (NTRS)
James, W. P.
1971-01-01
A simplified procedure is presented for determining water current velocities and diffusion coefficients. Dye drops which form dye patches in the receiving water are made from an aircraft. The changes in position and size of the patches are recorded from two flights over the area. The simplified data processing procedure requires only that the ground coordinates about the dye patches be determined at the time of each flight. With an automatic recording coordinatograph for measuring coordinates and a computer for processing the data, this technique provides a practical method of determining circulation patterns and mixing characteristics of large aquatic systems. This information is useful in assessing the environmental impact of waste water discharges and for industrial plant siting.
O. O. Vaneeva; R. O. Popovych; C. Sophocleous
2009-01-01
A new approach to group classification problems and more general investigations on transformational properties of classes\\u000a of differential equations is proposed. It is based on mappings between classes of differential equations, generated by families\\u000a of point transformations. A class of variable coefficient (1+1)-dimensional semilinear reaction–diffusion equations of the\\u000a general form f(x)u\\u000a \\u000a t\\u000a =(g(x)u\\u000a \\u000a x\\u000a )\\u000a x\\u000a +h(x)u\\u000a \\u000a m\\u000a (m?0,1) is studied
NASA Astrophysics Data System (ADS)
Gebhardt, M.; Köhler, W.; Mialdun, A.; Yasnou, V.; Shevtsova, V.
2013-03-01
We have measured the Soret (ST), diffusion (D), and thermal diffusion (DT) coefficients of the three binary benchmark mixtures of dodecane (C12), isobutylbenzene, and 1,2,3,4-tetrahydronaphthalene at T = 25°C for at least five different concentrations each, covering the entire binary composition range. The two different optical techniques employed, optical beam deflection and optical digital interferometry, are in good to excellent agreement. Additionally, we have carefully measured the optical contrast factors (?n/?c)p, T and (?n/?T)p, c. If the temperature and composition dependence of the mixture density is taken into account, both the Lorentz-Lorenz (LL) and the Looyenga (LO) equations give reasonable predictions of (?n/?c)p, T. In case of (?n/?T)p, c, only the LO equation yields good predictions in case of constant molecular polarizabilities ?i of the pure compounds. If the apparent temperature dependence of ?i is explicitly taken into account, excellent predictions are obtained both from the LL and the LO equations.
NASA Astrophysics Data System (ADS)
Sokoletsky, Leonid; Yang, Xianping; Shen, Fang
2014-11-01
Radiative transfer modelling in atmosphere, water, and on the air-water surface was used to create an algorithm and computer code for satellite monitoring Chinese estuarine and coastal waters. The atmospheric part of the algorithm is based on the Reference Evaluation of Solar Transmittance (REST) model for calculation of optical properties of the atmosphere from the top of the atmosphere to the target; for modelling optical properties from target towards satellite's sensor, an optical reciprocity principle has been used. An algorithm uses estimates derived from three different sources: 1) the MODIS-based software; 2) radiative transfer equations, and 3) well-known empirical relationships between measured parameters and optical depths and transmittances for such atmospheric components as molecules, aerosols, ozone, nitrogen dioxide, precipitable water vapor and uniformly mixed gases. Using this model allowed us to derive a reliable relationship relating an important parameter, the diffuse-to-global solar incoming irradiance ratio, to the aerosol optical thickness, solar zenith angle and wavelength. The surface and underwater parts of the algorithm contained theoretical and semi-empirical relationships between inherent (such as absorption, scattering and backscattering coefficients) and apparent (remote-sensing reflectance and diffuse attenuation coefficient, Kd) optical properties, and suspended sediment concentration (SSC) measured in the Yangtze River Estuary and its adjacent coastal area. The first false colour maps of SSC and Kd demonstrated a well accordance with the multi-year field observations in the region, and suggest promise for use of this algorithm for the regular monitoring of Chinese and worldwide natural waters.
NASA Astrophysics Data System (ADS)
Ali, Ashar F.; Elkington, Scot R.; Tu, Weichao; Ozeke, Louis G.; Chan, Anthony A.; Friedel, Reiner H. W.
2015-02-01
We used the fluxgate magnetometer data from Combined Release and Radiation Effects Satellite (CRRES) to estimate the power spectral density (PSD) of the compressional component of the geomagnetic field in the ˜1 mHz to ˜8 mHz range. We conclude that magnetic wave power is generally higher in the noon sector for quiet times with no significant difference between the dawn, dusk, and the midnight sectors. However, during high Kp activity, the noon sector is not necessarily dominant anymore. The magnetic PSDs have a very distinct dependence on Kp. In addition, the PSDs appear to have a weak dependence on McIlwain parameter L with power slightly increasing as L increases. The magnetic wave PSDs are used along with the Fei et al. (2006) formulation to compute DLLB[CRRES] as a function of L and Kp. The L dependence of DLLB[CRRES] is systematically studied and is shown to depend on Kp. More significantly, we conclude that DLLEis the dominant term driving radial diffusion, typically exceeding DLLB by 1-2 orders of magnitude.
Srivastava, Ajai K; Mehrotra, Gopesh; Bhargava, Satish K; Agarwal, Sunil; Tripathi, Rajendra P
2008-10-01
The time course of changes in apparent diffusion coefficient (ADC) and signal intensity on diffusion-weighted magnetic resonance imaging (DW MR) imaging in acute ischemic stroke is a very dynamic event. There is an initial reduction in ADCs with no change on T2-W imaging but signal intensity increase on T2-weighted takes place about 6-12 hours after onset of stroke. As necrosis begins to set in, there is a gradual reversal of ADC change, and around 3-10 days post-onset, ADC pseudonormalizes. Twenty-four patients of acute stroke underwent diffusion MR imaging in addition to conventional T1W, T2W, and Fluid Attenuated Inversion Recovery (FLAIR) sequence performed within 12 hours, at 30 days, and at 90 days. The mean signal intensity at b = 0 s/mm2 and at b = 1000 s/mm2 were significantly higher than control values for all time periods. The ratio of signal intensity at b = 0 (rSI b=0) significantly increased from 1.63 +/- 0.20 in the acute stage to 2.19 +/- 0.24 in the chronic stage (P < 0.001). The ratio of signal intensity on DWI (r SIDWI) decreased from 2.54 +/- 0.46 to 1.54 +/- 0.22. The mean ADC in the lesion was found to be 41% lower than the mean ADC in the contralateral hemisphere .Linear regression analysis between rADC and log hours showed that pseudonormalization occurred at 6.61 days (P < 0.001). We conclude that the above information could be useful in the management of very early stroke. PMID:19893711
Saluja, Atul; Fesinmeyer, R. Matthew; Hogan, Sabine; Brems, David N.; Gokarn, Yatin R.
2010-01-01
The concentration-dependence of the diffusion and sedimentation coefficients (kD and ks, respectively) of a protein can be used to determine the second virial coefficient (B2), a parameter valuable in predicting protein-protein interactions. Accurate measurement of B2 under physiologically and pharmaceutically relevant conditions, however, requires independent measurement of kD and ks via orthogonal techniques. We demonstrate this by utilizing sedimentation velocity (SV) and dynamic light scattering (DLS) to analyze solutions of hen-egg white lysozyme (HEWL) and a monoclonal antibody (mAb1) in different salt solutions. The accuracy of the SV-DLS method was established by comparing measured and literature B2 values for HEWL. In contrast to the assumptions necessary for determining kD and ks via SV alone, kD and ks were of comparable magnitudes, and solution conditions were noted for both HEWL and mAb1 under which 1), kD and ks assumed opposite signs; and 2), kD ? ks. Further, we demonstrate the utility of kD and ks as qualitative predictors of protein aggregation through agitation and accelerated stability studies. Aggregation of mAb1 correlated well with B2, kD, and ks, thus establishing the potential for kD to serve as a high-throughput predictor of protein aggregation. PMID:20959107
NASA Technical Reports Server (NTRS)
Goldstein, M. L.
1976-01-01
The propagation of charged particles through interstellar and interplanetary space has often been described as a random process in which the particles are scattered by ambient electromagnetic turbulence. In general, this changes both the magnitude and direction of the particles' momentum. Some situations for which scattering in direction (pitch angle) is of primary interest were studied. A perturbed orbit, resonant scattering theory for pitch-angle diffusion in magnetostatic turbulence was slightly generalized and then utilized to compute the diffusion coefficient for spatial propagation parallel to the mean magnetic field, Kappa. All divergences inherent in the quasilinear formalism when the power spectrum of the fluctuation field falls off as K to the minus Q power (Q less than 2) were removed. Various methods of computing Kappa were compared and limits on the validity of the theory discussed. For Q less than 1 or 2, the various methods give roughly comparable values of Kappa, but use of perturbed orbits systematically results in a somewhat smaller Kappa than can be obtained from quasilinear theory.
First-principles binary diffusion coefficients for H, H{sub 2}, and four normal alkanes + N{sub 2}
Jasper, Ahren W., E-mail: ajasper@sandia.gov; Kamarchik, Eugene [Combustion Research Facility, Sandia National Laboratories, Livermore, California 94551 (United States); Miller, James A.; Klippenstein, Stephen J. [Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne, Illinois 60439 (United States)
2014-09-28
Collision integrals related to binary (dilute gas) diffusion are calculated classically for six species colliding with N{sub 2}. The most detailed calculations make no assumptions regarding the complexity of the potential energy surface, and the resulting classical collision integrals are in excellent agreement with previous semiclassical results for H + N{sub 2} and H{sub 2} + N{sub 2} and with recent experimental results for C{sub n}H{sub 2n+2} + N{sub 2}, n = 2–4. The detailed classical results are used to test the accuracy of three simplifying assumptions typically made when calculating collision integrals: (1) approximating the intermolecular potential as isotropic, (2) neglecting the internal structure of the colliders (i.e., neglecting inelasticity), and (3) employing unphysical R{sup ?12} repulsive interactions. The effect of anisotropy is found to be negligible for H + N{sub 2} and H{sub 2} + N{sub 2} (in agreement with previous quantum mechanical and semiclassical results for systems involving atomic and diatomic species) but is more significant for larger species at low temperatures. For example, the neglect of anisotropy decreases the diffusion coefficient for butane + N{sub 2} by 15% at 300 K. The neglect of inelasticity, in contrast, introduces only very small errors. Approximating the repulsive wall as an unphysical R{sup ?12} interaction is a significant source of error at all temperatures for the weakly interacting systems H + N{sub 2} and H{sub 2} + N{sub 2}, with errors as large as 40%. For the normal alkanes in N{sub 2}, which feature stronger interactions, the 12/6 Lennard–Jones approximation is found to be accurate, particularly at temperatures above ?700 K where it predicts the full-dimensional result to within 5% (although with somewhat different temperature dependence). Overall, the typical practical approach of assuming isotropic 12/6 Lennard–Jones interactions is confirmed to be suitable for combustion applications except for weakly interacting systems, such as H + N{sub 2}. For these systems, anisotropy and inelasticity can safely be neglected but a more detailed description of the repulsive wall is required for quantitative predictions. A straightforward approach for calculating effective isotropic potentials with realistic repulsive walls is described. An analytic expression for the calculated diffusion coefficient for H + N{sub 2} is presented and is estimated to have a 2-sigma error bar of only 0.7%.
NASA Astrophysics Data System (ADS)
Fang, Tilden T.; Fang, Wingra T. C.; Griffin, Peter B.; Plummer, James D.
1996-02-01
Investigation of boron diffusion in strained silicon germanium buried layers reveals a fractional interstitial component of boron diffusion (fBI) in Se0.8Ge0.2 approximately equal to the fBI value in silicon. In conjunction with computer-simulated boron profiles, the results yield an absolute lower-bound of fBI in Si0.8Ge0.2 of ˜0.8. In addition, the experimental methodology provides a unique vehicle for measuring the segregation coefficient; oxidation-enhanced diffusion is used instead of an extended, inert anneal to rapidly diffuse the dopant to equilibrium levels across the interface, allowing the segregation coefficient to be measured more quickly.
Kruse, Natalie A; Bowman, Jennifer; Lopez, Dina; Migliore, Elizabeth; Jackson, Glen P
2014-11-01
The U.S. Department of Energy Portsmouth Gaseous Diffusion Plant is in the early stages of decommissioning and decontamination. During operations, the site drew a large amount of electric power and had multiple large switchyards on site. These are a source of polychlorinated biphenyls (PCB) contamination to both on-site and off-site streams. Some soil remediation has been completed in the main switchyard. During 2011 and 2012, fifteen sites were sampled at the surface (<10 cm) and subsurface (20-30 cm) to characterize the extent of PCB contamination, to identify weathering and migration of PCB contamination and to explore potential polychlorinated dibenzo-p-dioxins (PCDD) and polychlorinated dibenzofurans (PCDF) contamination due to transformer fires and explosions in the 1950s and 1960s. Stagnant sites tended to exhibit more migration of contamination to deeper sediments than sites with fast-moving waters, and the highest concentrations were found at the bottom of a settling pond. A signature set of five dioxin-like PCBs were consistently found across the site with higher concentrations in carbon rich surface sediments. PCB concentrations had a significant inverse correlation with clay content, suggesting that PCBs did not bind to clays at this site. Remediation has reduced PCB concentrations throughout the site compared to levels found in previous studies and long-term upkeep of sediment lagoons is necessary to retain PCB and dioxin-rich sediments. The flow regimen, organic carbon and clay content play a very important role in the fate of PCBs in the environment at the surface as well as downward migration. PMID:25113188
ORGDP, Martin Marietta Energy Systems Inc.
1988-12-01
Within the confines of the Oak Ridge Gaseous Diffusion Plant (ORGDP) are hazardous waste treatment, storage, and disposal facilities; some are in operation while others are no longer in use. these solid waste management units (SWMUs) are subject to assessment by the US Environmental Protection Agency (EPA). The RCRA Facility Investigation (RFI) Plans are scheduled to be submitted for all units during calendar years 1987 and 1988. The RFI Plan - General Document (K/HS-132) includes information applicable to all the ORGDP SMWUs and serves as a reference document for the site-specific RFI plans. This document is the site-specific RFI Plan for the K-1004 Area Lab Drain (ALD) and the K-1007-B Pond. This plan is based upon requirements described in the draft document, RFI Guidance, Vols. I-IV, December 1987 (EPA 530/SW-87-001). This unit is regulated by Section 3004(u) of the 1984 Hazardous and Solid Waste Amendments (HSWA) to the Resource Conservation Recovery Act (RCRA). Contained within this document are geographical, historical, operational, geological, and hydrological data specific to the K-1004 ALD and the K-1007-B Pond. The potential for release of contamination through the various media to receptors is addressed. A sampling plan is proposed to further determine the extent (if any) of release of contamination to the surrounding environment. Included are health and safety procedures to be followed when implementing the sampling plan. Quality control (QC) procedures for remedial action occurring on the Oak Ridge Reservation (ORR) are presented in 'The Environmental Surveillance Procedures Quality Control Program, Martin Marietta Energy Systems, Inc., (ESH/Sub/87-21706/1), and quality assurance (QA) guidelines for ORGDP investigations are contained in The K-25 Remedial Actions Program Quality Assurance Plan, K/HS-231.
NASA Astrophysics Data System (ADS)
Tanaka, Masato; Takahashi, Yoshio; Yamaguchi, Noriko; Kim, Kyoung-Woong; Zheng, Guodong; Sakamitsu, Mika
2013-03-01
Toxicity of arsenic is significantly variable depending on its speciation and it is important to understand the migration behaviors of this speciation, where diffusion can control the transport mechanism in impermeable layers, such as in the pore waters of sediments and rocks. Diffusion coefficients of arsenious acid (arsenite species), arsenic acid (arsenate species), methylarsonic acid (MMA), and phenylarsonic acid (PAA) as a function of pH were determined in this study for the first time. The results would contribute to better understanding of the transport of various arsenic speciations in the environment. By aid of ab initio molecular orbital calculations and Monte Carlo simulations, this study sheds light on the origin of pH dependence on the diffusion coefficients for the arsenic compounds. For the neutral speciation at low pH, the diffusion is dominated not only by the molecular size but also by charge distribution in the molecule (degree of polarization). On the other hand, for the dissociated speciation at high pH, the diffusion is dominated by charged oxyanion because of the high association of water molecules regardless of their functional groups. This effect is common for all the arsenic species, which causes that the differences in their diffusion coefficients become smaller as the pH increases, especially for arsenate, MMA, and PAA.
NASA Astrophysics Data System (ADS)
Wang, Hong; Zhang, Xuhao
2015-01-01
Fractional diffusion equations were shown to provide an adequate and accurate description of transport processes exhibiting anomalous diffusion behavior. Recently, spectral Galerkin methods were developed for space-fractional diffusion equations aiming at achieving exponential convergence. An optimal order error estimate in the fractional energy norm was proved under the assumption that the true solution to the fractional diffusion equation has the desired regularity. An optimal order error estimate in the L2 norm was proved via the well known Nitsche lifting technique under the assumption that the true solution to the corresponding boundary-value problem of the fractional diffusion equation has the required regularity for each right-hand side. In this paper we show that the true solution to the Dirichlet boundary-value problem of a conservative fractional diffusion equation of order 2 - ? with 0 < ? < 1 as well as a constant diffusivity coefficient and a constant source term is not in the fractional Sobolev space H 3 / 2 - ? in general, but is still in the Besov space B?3/ 2 - ? (L2). Hence, the provable convergence rate of a spectral Galerkin method in the L2 norm is at most of the order O (N - (3 / 2 - ?)), where N is the degree of the polynomial space in the numerical method. Numerical experiments show that the spectral Galerkin method exhibits a subquadratic convergence in the L2 norm for any 0 < ? < 1. We develop a high-accuracy preserving spectral Galerkin method for the Dirichlet boundary-value problem of one-sided variable-coefficient conservative fractional diffusion equations. The method has a proved high-order convergence rate of arbitrary order (i) without requiring the smoothness of the true solution u to the given boundary-value problem, but only assuming that the diffusivity coefficient and the right-hand source term have the desired regularity; (ii) for a variable diffusivity coefficient; and (iii) for an inhomogeneous Dirichlet boundary condition. Numerical experiments substantiate the theoretical analysis and show that the method exhibits exponential convergence provided the diffusivity coefficient and the right-hand source term have the desired regularity.
Jin, Guangwei; An, Ningyu; Jacobs, Michael A.; Li, Kuncheng
2010-01-01
OBJECTIVE To evaluate the feasibility of using diffusion-weighted imaging (DWI) with an array spatial sensitivity encoding technique (ASSET) and apparent diffusion coefficient (ADC) map values with different b values to distinguish benign and malignant breast lesions. MATERIALS AND METHODS Fifty-six female patients with 60 histologically proven breast lesions and 20 healthy volunteers underwent MRI. A subset of normal volunteers (n = 7) and patients (n = 16) underwent both conventional DWI and ASSET-DWI, and the image quality between the two methods was compared. Finally, ASSET-DWI with b = 0, 600 s/mm2 and b = 0, 1000 s/mm2 were compared for their ability to distinguish benign and malignant breast lesions. RESULTS The ASSET-DWI method had less distortion, fewer artifacts, and a lower acquisition time than other methods. No significant difference (P > 0.05) was detected in ADC map values between ASSET-DWI and conventional DWI. For ASSET-DWI, the sensitivity of ADC values for malignant lesions with a threshold of less than 1.44 × 10?3 mm2/s (b = 600 s/mm2) and 1.18 × 10?3 mm2/s (b = 1000s/mm2) was 80% and 77.5% respectively. The specificity of both groups was 95%. CONCLUSION ASSET-DWI evaluation of breast tissue offers decreased distortion, susceptibility to artifacts, and acquisition time relative to other methods. The use of ASSET-DWI is feasible with b values ranging from 600 to 1000 s/mm2 and provides increased specificity compared to other techniques. Thus, the ADC value of a breast lesion can be used to further characterize malignant lesions from benign ones. PMID:20207316
Windschuh, Johannes; Meissner, Jan-Eric; Zaiss, Moritz; Eidel, Oliver; Kickingereder, Philipp; Nowosielski, Martha; Wiestler, Benedikt; Sahm, Felix; Floca, Ralf Omar; Neumann, Jan-Oliver; Wick, Wolfgang; Heiland, Sabine; Bendszus, Martin; Schlemmer, Heinz-Peter; Ladd, Mark Edward; Bachert, Peter; Radbruch, Alexander
2015-01-01
Objective To explore the correlation between Nuclear Overhauser Enhancement (NOE)-mediated signals and tumor cellularity in glioblastoma utilizing the apparent diffusion coefficient (ADC) and cell density from histologic specimens. NOE is one type of chemical exchange saturation transfer (CEST) that originates from mobile macromolecules such as proteins and might be associated with tumor cellularity via altered protein synthesis in proliferating cells. Patients and Methods For 15 patients with newly diagnosed glioblastoma, NOE-mediated CEST-contrast was acquired at 7 Tesla (asymmetric magnetization transfer ratio (MTRasym) at 3.3ppm, B1 = 0.7 ?T). Contrast enhanced T1 (CE-T1), T2 and diffusion-weighted MRI (DWI) were acquired at 3 Tesla and coregistered. The T2 edema and the CE-T1 tumor were segmented. ADC and MTRasym values within both regions of interest were correlated voxelwise yielding the correlation coefficient rSpearman (rSp). In three patients who underwent stereotactic biopsy, cell density of 12 specimens per patient was correlated with corresponding MTRasym and ADC values of the biopsy site. Results Eight of 15 patients showed a weak or moderate positive correlation of MTRasym and ADC within the T2 edema (0.16?rSp?0.53, p<0.05). Seven correlations were statistically insignificant (p>0.05, n = 4) or yielded rSp?0 (p<0.05, n = 3). No trend towards a correlation between MTRasym and ADC was found in CE-T1 tumor (-0.31
Sun, Yiqun; Tong, Tong; Cai, Sanjun; Bi, Rui; Xin, Chao; Gu, Yajia
2014-01-01
Objective We elected to analyze the correlation between the pre-treatment apparent diffusion coefficient (ADC) and the clinical, histological, and immunohistochemical status of rectal cancers. Materials and Methods Forty-nine rectal cancer patients who received surgical resection without neoadjuvant therapy were selected that underwent primary MRI and diffusion-weighted imaging (DWI). Tumor ADC values were determined and analyzed to identify any correlations between these values and pre-treatment CEA or CA19-9 levels, and/or the histological and immunohistochemical properties of the tumor. Results Inter-observer agreement of confidence levels from two separate observers was suitable for ADC measurement (k ?=? 0.775). The pre-treatment ADC values of different T stage tumors were not equal (p ?=? 0.003). The overall trend was that higher T stage values correlated with lower ADC values. ADC values were also significantly lower for the following conditions: tumors with the presence of extranodal tumor deposits (p ?=? 0.006) and tumors with CA19-9 levels ? 35 g/ml (p ?=? 0.006). There was a negative correlation between Ki-67 LI and the ADC value (r ?=? ?0.318, p ?=? 0.026) and between the AgNOR count and the ADC value (r ?=? ?0.310, p ?=? 0.030). Conclusion Significant correlations were found between the pre-treatment ADC values and T stage, extranodal tumor deposits, CA19-9 levels, Ki-67 LI, and AgNOR counts in our study. Lower ADC values were associated with more aggressive tumor behavior. Therefore, the ADC value may represent a useful biomarker for assessing the biological features and possible relationship to the status of identified rectal cancers. PMID:25303288
2014-01-01
Background We tested the feasibility of a simple method for assessment of prostate cancer (PCa) aggressiveness using diffusion-weighted magnetic resonance imaging (MRI) to calculate apparent diffusion coefficient (ADC) ratios between prostate cancer and healthy prostatic tissue. Methods The requirement for institutional review board approval was waived. A set of 20 standardized core transperineal saturation biopsy specimens served as the reference standard for placement of regions of interest on ADC maps in tumorous and normal prostatic tissue of 22 men with PCa (median Gleason score: 7; range, 6–9). A total of 128 positive sectors were included for evaluation. Two diagnostic ratios were computed between tumor ADCs and normal sector ADCs: the ADC peripheral ratio (the ratio between tumor ADC and normal peripheral zone tissue, ADC-PR), and the ADC central ratio (the ratio between tumor ADC and normal central zone tissue, ADC-CR). The performance of the two ratios in detecting high-risk tumor foci (Gleason 8 and 9) was assessed using the area under the receiver operating characteristic curve (AUC). Results Both ADC ratios presented significantly lower values in high-risk tumors (0.48?±?0.13 for ADC-CR and 0.40?±?0.09 for ADC-PR) compared with low-risk tumors (0.66?±?0.17 for ADC-CR and 0.54?±?0.09 for ADC-PR) (p?
E. D. Salmon; W. M. SAXTON; R. J. LESLIE; M. L. KAROW; J. R. MclNTOSH
1984-01-01
The diffusion coefficient of tubulin has been measured in the cytoplasm of eggs and embryos of the sea urchin Lytechinus variegatus. We have used brain tubulin, conjugated to dichlorotriazinyl-aminofluorescein, to inject eggs and embryos. The resulting distributions of fluorescence were perturbed by bleaching with a microbeam of light from the 488-nm line of an argon ion laser. Fluorescence redistribution after
Yannick Huot; Catherine A. Brown; John J. Cullen
2007-01-01
A model has been developed to retrieve phytoplankton absorption, a proxy for phytoplankton biomass, from observations of reflectance (R) and the diffuse attenuation coefficient (K d) collected by moored radiometers in coastal waters, where high concentrations of chromophoric dissolved organic matter (CDOM) confound conventional ocean color algorithms. The inversion uses simultaneously two forward models: (1) a look-up table (LUT) that
Yannick Huot; Catherine A. Brown; John J. Cullen
2007-01-01
A model has been developed to retrieve phytoplankton absorption, a proxy for phytoplankton biomass, from observations of reflectance (R) and the diffuse attenuation coefficient (Kd) collected by moored radiometers in coastal waters, where high concentrations of chromophoric dissolved organic matter (CDOM) confound conventional ocean color algorithms. The inversion uses simultaneously two forward models: (1) a look-up table (LUT) that accounts
Laszlo Olah; Stefan Wecker; Mathias Hoehn
2001-01-01
Changes in apparent diffusion coefficients (ADC) were compared with alterations of adenosine triphosphate (ATP) concentration and pH in different phases of transient focal cerebral ischemia to study the ADC threshold for breakdown of energy metabolism and tissue acidosis during ischemia and reperfusion. Male Wistar rats underwent 1 hour of middle cerebral artery occlusion without recirculation (n = 3) or with
NASA Astrophysics Data System (ADS)
Spandler, Carl; O'Neill, Hugh St. C.
2009-11-01
Lattice diffusion coefficients have been determined for 19 elements (Li, Be, Na, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Zn, Y, Zr, Eu, Gd, Lu and Hf) in a single crystal of San Carlos olivine as a function of crystallographic orientation, at 1,300°C, 1 bar and fO2 = 10-8.3 bars, by equilibration with a synthetic silicate melt. Results for Li, Na, V, Cr, Fe and Zn are from diffusion of these elements out of the olivine, starting from their indigenous concentrations; those for all other elements are from diffusion into the olivine, from the silicate melt reservoir. Our 25-day experiment produced diffusion profiles 50 to > 700 ?m in length, which are sufficiently long that precise analyses could be achieved by scanning laser ablation inductively coupled plasma mass spectrometry, even at concentration levels well below 1 ?g g-1. For the divalent cations Ca, Mn, Fe and Ni, profiles were also obtained by electron microprobe analysis. The results of the two methods agree well with each other, and are consistent with divalent cation diffusion coefficients previously determined using different experimental methodologies. Olivine/melt partition coefficients retrieved from the data are also consistent with other published partitioning data, indicating that element incorporation and transport in olivine in our experiment occurred via mechanisms appropriate to natural conditions. Most of the examined trace elements diffuse through olivine at similar rates to the major octahedral cations Fe and Mg, showing that cation charge and radius have little direct influence on diffusion rates. Aluminium and P remain low and constant in the olivine, implying negligible transport at our analytical scale, hence Al and P diffusion rates that are at least two orders of magnitude slower than the other cations studied here. All determined element diffusivities are anisotropic, with diffusion fastest along the [001] axis, except Y and the REEs, which diffuse isotropically. The results suggest that element diffusivity in olivine is largely controlled by cation site preference, charge balance mechanisms and point-defect concentrations. Elements that are present on multiple cation sites in olivine (e.g. Be and Ti) and trivalent elements that are charge-balanced by octahedral site vacancies tend to diffuse at relatively fast rates.
Ahn, Sung Jun; Shin, Hyun Joo; Chang, Jong-Hee; Lee, Seung-Koo
2014-01-01
Objective Apparent diffusion coefficients (ADC) can help differentiate between central nervous system (CNS) lymphoma and Glioblastoma (GBM). However, overlap between ADCs for GBM and lymphoma have been reported because of various region of interest (ROI) methods. Our aim is to explore ROI method to provide the most reproducible results for differentiation. Materials and Methods We studied 25 CNS lymphomas and 62 GBMs with three ROI methods: (1) ROI1, whole tumor volume; (2) ROI2, multiple ROIs; and (3) ROI3, a single ROI. Interobserver variability of two readers for each method was analyzed by intraclass correlation(ICC). ADCs were compared between GBM and lymphoma, using two-sample t-test. The discriminative ability was determined by ROC analysis. Results ADCs from ROI1 showed most reproducible results (ICC >0.9). For ROI1, ADCmean for lymphoma showed significantly lower values than GBM (p?=?0.03). The optimal cut-off value was 0.98×10?3 mm2/s with 85% sensitivity and 90% specificity. For ROI2, ADCmin for lymphoma was significantly lower than GBM (p?=?0.02). The cut-off value was 0.69×10?3 mm2/s with 87% sensitivity and 88% specificity. Conclusion ADC values were significantly dependent on ROI method. ADCs from the whole tumor volume had the most reproducible results. ADCmean from the whole tumor volume may aid in differentiating between lymphoma and GBM. However, multi-modal imaging approaches are recommended than ADC alone for differentiation. PMID:25393543
Quinn, John G
2012-02-15
A new method based on Taylor dispersion has been developed that enables an analyte gradient to be titrated over a ligand-coated surface for kinetic/affinity analysis of interactions from a minimal number of injections. Taylor dispersion injections generate concentration ranges in excess of four orders of magnitude and enable the analyte diffusion coefficient to be reliably estimated as a fitted parameter when fitting binding interaction models. A numerical model based on finite element analysis, Monte Carlo simulations, and statistical profiling were used to compare the Taylor dispersion method with standard fixed concentration injections in terms of parameter correlation, linearity of parameter error space, and global versus local model fitting. A dramatic decrease in parameter correlations was observed for TDi curves relative to curves from standard fixed concentration injections when surface saturation was achieved. In FCI the binding progress is recorded with respect to injection time, whereas in TDi the second time dependency encoded in the analyte gradient increases resolving power. This greatly lowers the dependence of all parameters on each other and on experimental interferences. When model parameters were fitted locally, the performance of TDis remained comparable to global model fitting, whereas fixed concentration binding response curves yielded unreliable parameter estimates. PMID:22197421
NASA Astrophysics Data System (ADS)
Tokuyama, Michio; Yamazaki, Hiroyuki; Terada, Yayoi
2003-10-01
We investigate how universal the collective behavior, due to the many-body interactions in polydisperse hard-sphere systems, is at higher volume fractions. We perform two types of computer simulations, a Brownian-dynamics simulation on colloidal suspensions of hard spheres, where the hydrodynamic interactions between particles are neglected, and a molecular-dynamic simulation on atomic systems of hard spheres. Thus, we show that the long-time self-diffusion coefficients DSL in both systems become singular as DSL( ?)?(1- ?/ ?c) 2 because of the collective interactions due to the many-body collision processes, where ? is a particle volume fraction and ?c?0.586 for 6% polydispersity. Although DSL exhibits the same singular behavior as that obtained theoretically for the monodisperse suspension with the hydrodynamic interactions, no liquid-glass transition is found because even the polydisperse hard-sphere systems crystallize without the hydrodynamic interactions for all ? above the melting volume fraction, which is lower than ?c.
NASA Astrophysics Data System (ADS)
Lejosne, SolèNe; Boscher, Daniel; Maget, Vincent; Rolland, Guy
2013-06-01
In this paper, we show that the correlation that exists between magnetic variations and induced electric fields through Faraday's law is of prime importance for adequately characterizing electromagnetic radial diffusion. Accordingly, we present an approach to derive electromagnetic radial diffusion coefficients based on magnetic field measurements at geostationary orbit. It consists of setting a very simple theoretical electromagnetic field model, considering the magnetic field as a background dipolar field on which two small time disturbances are superimposed: a symmetric disturbance and an asymmetric disturbance. Within this framework, electromagnetic radial diffusion is quantified analytically, taking into account both induced electric and magnetic contributions. The role played by the time variations of the field asymmetry is highlighted. From this, we deduce instantaneous field asymmetries from measurements of the magnetic field at the same time in two different places of the geostationary orbit. Then, we perform a statistical analysis of the time variations of this signal based on more than 7 years of data from the NOAA-GOES 8, NOAA-GOES 10, and NOAA-GOES 12 spacecraft, working with time resolutions of 1 and 5 min. We show that the asymmetry signal is not stationary, having time-dependent statistical properties, and we question accordingly the standard formulation of the electromagnetic radial diffusion coefficient and the role of drift-resonant interactions. Finally, we provide new electromagnetic radial diffusion coefficients at geostationary orbit as a function of electron kinetic energy and Kp index from 0 to 4.
Harris, Kenneth R; Makino, Takashi; Kanakubo, Mitsuhiro
2014-05-21
Ion self-diffusion coefficients have been measured for ionic liquids based on the cations N-acetoxyethyl-N,N-dimethyl-N-ethylammonium ([N(112,2OCO1)](+)) and its non-functionalised analogue, N,N-dimethyl-N-ethyl-N-pentylammonium ([N1125](+)), and N,N-dimethyl-N-ethyl-N-methoxyethoxyethylammonium ([N(112,2O2O1)](+)), and its analogue, N,N-dimethyl-N-ethyl-N-heptylammonium ([N1127](+)) and the bis(trifluoromethanesulfonyl)amide anion. The functionalised chain on an ammonium cation has the same length, in terms of the number of atoms, as the non-functionalised chain of the corresponding analogue. For [N(112,2OCO1)][Tf2N] and [N1127][Tf2N], the cation and anion self-diffusion coefficients are equal, within experimental error, whereas for [N1125][Tf2N], the cation diffuses more quickly, and for [N(112,2O2O1)][Tf2N], it is the anion that diffuses more quickly than the ether-functionalised cation. But these differences are relatively small, just beyond experimental error. The data are used to calculate velocity cross-correlation coefficients (VCC or f(ij)) and distinct diffusion coefficients (D(ij)(d)). Both the self-diffusion and distinct diffusion coefficients are analysed in terms of (fractional) Stokes-Einstein-Sutherland equations. Though the self-diffusion coefficients, as with the conductivity and viscosity, show marked differences in absolute terms between the functionalised and non-functionalised forms, being higher for the ethoxy-substituted IL and lower for the acetoxy-substituted IL, these are largely removed by scaling with the viscosity. Thus the transport properties are better understood as functions of the viscosity rather than the temperature and density, per se. The presence of the alkoxy-substituted side chains is known to change the local mesoscopic liquid structure, but it appears once this is done, the transport properties scale correspondingly. In the case of the acetoxy-substituted IL, this is also largely the case, but the Nernst-Einstein deviation parameter, ?, which depends on the difference between the anion-cation VCC and the mean of the cation-cation and anion-anion VCCs, is smaller than that of its analogue salt, and also temperature dependent. PMID:24709921
NASA Astrophysics Data System (ADS)
Govers, K.; Lemehov, S.; Verwerft, M.
2008-03-01
Intragranular bubbles grow in the nuclear fuel by diffusion and precipitation of fission gases, mainly xenon; and are ultimately destroyed, under irradiation, by fission fragments. This article will attempt to determine the in-pile bubble distributions taking into account the evolution of the concentration profile around a bubble during its growth and the destruction process by fission fragments. From these distributions a relation between the bubble mean radius and the diffusion coefficient of xenon can be established, allowing the determination, from experimental measurements of intragranular bubble sizes, of the in-pile Xe diffusion coefficient in UO 2. The estimated activation energy (0.9 eV) is about one order of magnitude lower than the widely used value of 3.9 eV determined from out-of-pile experiments. This effect can be attributed to the presence of point defects created by the irradiation.
Garrido, Leoncio; Pozuelo, Javier; López-González, Mar; Yan, Gengwei; Fang, Jianhua; Riande, Evaristo
2012-09-27
The transport of lithium ions in cation-exchange membranes based on sulfonated copolyimide membranes is reported. Diffusion coefficients of lithium are estimated as a function of the water content in membranes by using pulsed field gradient (PFG) NMR and electrical conductivity techniques. It is found that the lithium transport slightly decreases with the diminution of water for membranes with water content lying in the range 14 < ? < 26.5, where ? is the number of molecules of water per fixed sulfonate group. For ? < 14, the value of the diffusion coefficient of lithium experiences a sharp decay with the reduction of water in the membranes. The dependence of the diffusion of lithium on the humidity of the membranes calculated from conductivity data using Nernst-Planck type equations follows a trend similar to that observed by NMR. The possible explanation of the fact that the Haven ratio is higher than the unit is discussed. The diffusion of water estimated by (1)H PFG-NMR in membranes neutralized with lithium decreases as ? decreases, but the drop is sharper in the region where the decrease of the diffusion of protons of water also undergoes considerable reduction. The diffusion of lithium ions computed by full molecular dynamics is similar to that estimated by NMR. However, for membranes with medium and low concentration of water, steady state conditions are not reached in the computations and the diffusion coefficients obtained by MD simulation techniques are overestimated. The curves depicting the variation of the diffusion coefficient of water estimated by NMR and full dynamics follow parallel trends, though the values of the diffusion coefficient in the latter case are somewhat higher. The WAXS diffractograms of fully hydrated membranes exhibit the ionomer peak at q = 2.8 nm(-1), the peak being shifted to higher q as the water content of the membranes decreases. The diffractograms present additional peaks at higher q, common to wet and dry membranes, but the peaks are better resolved in the wet membranes. The ionomer peak is not detected in the diffractograms of dry membranes. PMID:22957828
Hannon, T.F.; Mihalczo, J.T.; Mullens, J.A.; Uckan, T.; Valentine, T.E.; Wyatt, M.S.
1998-05-01
The Deposit Removal Project was undertaken with the support of the U. S. Department of Energy at the East Tennessee Technology Park (ETTP) formerly the Oak Ridge K-25 Site. The project team performed the safe removal of the hydrated uranyl fluoride (UO{sub 2}F{sub 2}) deposits from the K-29 Building of the former Oak Ridge Gaseous Diffusion Plant. The deposits had developed as a result of air leakage into UF{sub 6} gas process pipes; UO{sub 2}F{sub 2} became hydrated by moisture from the air and deposited inside the pipes. The mass, its distribution, and the hydrogen content [that is, the ratio of H to U (H/U)], were the key parameters that controlled the nuclear criticality safety of the deposits. Earlier gamma-ray spectrometry measurements in K-29 had identified the largest deposits in the building. The first and third largest deposits in the building were measured in this program. The first deposit, found in the Unit 2, Cell 7, B-Line Outlet process pipe (called the ''Hockey Stick'') was about 1,300 kg ({+-} 50% uncertainty) at 3.34 wt% {sup 235}U enrichment ({+-}50% uncertainty) and according to the gamma-ray spectroscopy was uniformly distributed. The second deposit (the third-largest deposit in the building), found in the Unit 2, Cell 6, A-Line Outlet process pipe (called the ''Tee-Pipe''), had a uranium deposit estimated to be about 240 kg ({+-} 50% uncertainty) at 3.4 wt % {sup 235}U enrichment ({+-} 20% uncertainty). Before deposit removal activities began, the Deposit Removal Project team needed to survey the inside of the pipes intrusively to assess the nuclear criticality safety of the deposits. Therefore, the spatial distribution of the deposits, the total uranium deposit mass, and the moderation level resulting from hydration of the deposits, all of which affect nuclear criticality safety were required. To perform the task safely and effectively, the Deposit Removal Project team requested that Oak Ridge National Laboratory (ORNL) characterize the two largest deposits with the {sup 252}Cf-source-driven transmission (CFSDT) technique, an active neutron interrogation method developed for use at the Oak Ridge Y-12 Plant to identify nuclear weapons components in containers. The active CFSDT measurement technique uses CFSDT time-of-flight measurements of prompt neutrons and gamma rays from an externally introduced {sup 252}Cf source.
Boerner, A. J. [Oak Ridge Institute for Science and Education (ORISE), Oak Ridge, TN (United States). Independent Environmental Assessment and Verification Program; Maldonado, D. G. [Oak Ridge Institute for Science and Education (ORISE), Oak Ridge, TN (United States). Independent Environmental Assessment and Verification Program; Hansen, Tom [Ameriphysics, LLC (United States)
2012-09-01
Environmental assessments and remediation activities are being conducted by the U.S. Department of Energy (DOE) at the Paducah Gaseous Diffusion Plant (PGDP), Paducah, Kentucky. The Oak Ridge Institute for Science and Education (ORISE), a DOE prime contractor, was contracted by the DOE Portsmouth/Paducah Project Office (DOE-PPPO) to conduct radiation dose modeling analyses and derive single radionuclide soil guidelines (soil guidelines) in support of the derivation of Authorized Limits (ALs) for 'DOE-Owned Property Outside the Limited Area' ('Property') at the PGDP. The ORISE evaluation specifically included the area identified by DOE restricted area postings (public use access restrictions) and areas licensed by DOE to the West Kentucky Wildlife Management Area (WKWMA). The licensed areas are available without restriction to the general public for a variety of (primarily) recreational uses. Relevant receptors impacting current and reasonably anticipated future use activities were evaluated. In support of soil guideline derivation, a Conceptual Site Model (CSM) was developed. The CSM listed radiation and contamination sources, release mechanisms, transport media, representative exposure pathways from residual radioactivity, and a total of three receptors (under present and future use scenarios). Plausible receptors included a Resident Farmer, Recreational User, and Wildlife Worker. single radionuclide soil guidelines (outputs specified by the software modeling code) were generated for three receptors and thirteen targeted radionuclides. These soil guidelines were based on satisfying the project dose constraints. For comparison, soil guidelines applicable to the basic radiation public dose limit of 100 mrem/yr were generated. Single radionuclide soil guidelines from the most limiting (restrictive) receptor based on a target dose constraint of 25 mrem/yr were then rounded and identified as the derived soil guidelines. An additional evaluation using the derived soil guidelines as inputs into the code was also performed to determine the maximum (peak) dose for all receptors. This report contains the technical basis in support of the DOE?s derivation of ALs for the 'Property.' A complete description of the methodology, including an assessment of the input parameters, model inputs, and results is provided in this report. This report also provides initial recommendations on applying the derived soil guidelines.
None
2012-12-13
In 1988, groundwater contaminated with trichloroethene (TCE) and technetium-99 (Tc-99) was identified in samples collected from residential water wells withdrawing groundwater from the Regional Gravel Aquifer (RGA) north of the Paducah Gaseous Diffusion Plant (PGDP) facility. In response, the U.S. Department of Energy (DOE) provided temporary drinking water supplies to approximately 100 potentially affected residents by initially supplying bottled water, water tanks, and water-treatment systems, and then by extending municipal water lines, all at no cost, to those persons whose wells could be affected by contaminated groundwater. The Water Policy boundary was established in 1993. In the Policy, DOE agreed to pay the reasonable monthly cost of water for homes and businesses and, in exchange, many of the land owners signed license agreements committing to cease using the groundwater via rural water wells. In 2012, DOE requested that Oak Ridge Associated Universities (ORAU), managing contractor of Oak Ridge Institute for Science and Education (ORISE), provide an independent assessment of the quality and quantity of the existing groundwater monitoring data and determine if there is sufficient information to support a modification to the boundary of the current Water Policy. As a result of the assessment, ORAU concludes that sufficient groundwater monitoring data exists to determine that a shrinkage and/or shift of the plume(s) responsible for the initial development of this policy has occurred. Specifically, there is compelling evidence that the TCE plume is undergoing shrinkage due to natural attenuation and associated degradation. The plume shrinkage (and migration) has also been augmented in local areas where large volumes of groundwater were recovered by pump-and treat remedial systems along the eastern and western boundaries of the Northwest Plume, and in other areas where pump-and-treat systems have been deployed by DOE to remove source contaminants. The available evidence supports adjusting the western and northwestern Water Policy boundary. Based on the historical and modeled hydrogeological data reflecting past flow and plume attenuation, along with associated plume migration toward the northeast, the establishment of a new boundary along the westernmost margin of the earliest indication of the TCE plume is proposed and justified on hydrogeological grounds. Approximately 30% of the original area would remain within the adjusted Water Policy area west and northwest of the PGDP facility. This modification would release about 70% of the area, although individual properties would overlap the new boundary.
Looney, B; M. Hope Lee, M; S. K. Hampson, S
2008-06-27
The overarching objective of the Paducah Gaseous Diffusion Plant (PGDP) enzyme activity probe (EAP) effort is to determine if aerobic cometabolism is contributing to the attenuation of trichloroethene (TCE) and other chlorinated solvents in the contaminated groundwater beneath PGDP. The site-specific objective for the EAP assessment is to identify if key metabolic pathways are present and expressed in the microbial community--namely the pathways that are responsible for degradation of methane and aromatic (e.g. toluene, benzene, phenol) substrates. The enzymes produced to degrade methane and aromatic compounds also break down TCE through a process known as cometabolism. EAPs directly measure if methane and/or aromatic enzyme production pathways are operating and, for the aromatic pathways, provide an estimate of the number of active organisms in the sampled groundwater. This study in the groundwater plumes at PGDP is a major part of a larger scientific effort being conducted by Interstate Technology and Regulatory Council (ITRC), U.S. Department of Energy (DOE) Office of Environmental Management (EM), Savannah River National Laboratory (SRNL), and North Wind Inc. in which EAPs are being applied to contaminated groundwater from diverse hydrogeologic and plume settings throughout the U.S. to help standardize their application as well as their interpretation. While EAP data provide key information to support the site specific objective for PGDP, several additional lines of evidence are being evaluated to increase confidence in the determination of the occurrence of biodegradation and the rate and sustainability of aerobic cometabolism. These complementary efforts include: (1) Examination of plume flowpaths and comparison of TCE behavior to 'conservative' tracers in the plume (e.g., {sup 99}Tc); (2) Evaluation of geochemical conditions throughout the plume; and (3) Evaluation of stable isotopes in the contaminants and their daughter products throughout the plume. If the multiple lines of evidence support the occurrence of cometabolism and the potential for the process to contribute to temporal and spatial attenuation of TCE in PGDP groundwater, then a follow-up enzyme probe microcosm study to better estimate biological degradation rate(s) is warranted.
Diffusion coefficients for Tl, Pb, Cd, In, Zn, Bi, As, Mo and Sb in hydrous rhyolite at 100-200 MPa
NASA Astrophysics Data System (ADS)
Berlo, Kim; Brooker, Richard; Wilke, Max
2014-05-01
A series of experiments have been conducted to determine the diffusivities of Tl, Pb, Cd, In, Zn, Bi, As, Mo and Sb in hydrous rhyolitic melt. Diffusion experiments used two adjoining glass cylinder of the same hydrous composition, one doped with the elements of interest at ~ 100 ppm. These couples were rapidly heated to 850, 1000 and 1150°C at 100-200 MPa for a few hours. After quenching the sectioned charges were analyzed by both synchrotron XRF (The Diamond Light Source) and LA-ICP-MS (University of Oxford). The data shows excellent correlation between these two techniques. The diffusion profiles were fitted to a 1-D diffusion couple equation to determine the diffusivities and fitting to the different temperature runs defined the Arrhenius parameters. We find that for 850°C the diffusion coefficients follow the trend Tl>Pb>Cd>Zn>In>Bi>As>Sb>Mo. Additional experiments were performed with either S or Cl added (to both sides of the diffusion couple). In general S increases the diffusion rate of all metals except Mo and Sb, which diffuse slower in the presence of S. Chlorine also speeds up the diffusion of metals with the exception of In, Mo and Sb. The systematic change in diffusivities of these metals and their different behaviour in the presence of the ligands that are also observed to be significant in volcanic gases, are important in determining the distribution of these metals during degassing (e.g. MacKenzie and Canil, 2008). This is particularly important in a dynamic environment such as a volcanic conduit. There are also implications for economic exploration and well as hazard mitigation.
Liu, Min-Kuang; Giddings, J.C. (Univ. of Utah, Salt Lake City, UT (United States). Field-Flow Fractionation Research Center)
1993-07-05
In this paper flow field-flow fractionation (flow FFF), an elution separation method, is utilized to separate and to measure the translational diffusion coefficients D of a variety of linear and both single- and double-stranded circular DNA chains in the molecular weight range M=(0.4-4.8) x 10[sup 6] Da. Equations for component retention times, band broadening, and resolution are given and compared with experimental results. The tradeoff between resolution and separation speed is discussed and experimentally realized. Overloading studies show that [approximately]1 [mu]g of individual DNAs can be isolated per 10-20 min run; the procedure can be readily automated for repetitive runs. Values of D obtained from retention time measurements are tabulated, and these as well as literature D values (for M=(0.0580-38) x 10[sup 6] Da) are compared with expressions of Kirkwood-Riseman (KR), Mandelkern-Flory (MF), Tirado-Garcia de la Torre (TG), and Yamakawa-Fujii (YF). The predicted Ds of MF agree well with data over the high M range ((0.4-38) x 10[sup 6] Da), while the rigid-rod equation of TG fits data quite well up to M=2 x 10[sup 6] Da, an M for which the DNA chains is [approximately]70 times longer than that displaying rigid-rod behavior. The authors find also that D is reasonably described by the simple form D=AM[sup [minus]b] over the 3-decade M range examined. Factors involved in the application of FFF to DNAs with M>10[sup 7] Da are discussed including shear degradation, transition to a steric mechanism of FFF, and use of condensed DNA. Severe overloading effects induced by chain entanglement rendered preliminary attempts unsuccessful, but future prospects for applying FFF to high-M DNA are found favorable.
Srinivasan, A.; Galbán, C.J.; Johnson, T.D.; Chenevert, T.L.; Ross, B.D.; Mukherji, S.K.
2014-01-01
Purpose The objective of our study was to analyze the differences between apparent diffusion coefficient (ADC) partitions (created using the K-Means algorithm) between benign and malignant neck lesions and evaluate its benefit in distinguishing these entities. Material and methods MRI studies of 10 benign and 10 malignant proven neck pathologies were post-processed on a PC using in-house software developed in MATLAB (The MathWorks, Inc., Natick, MA). Lesions were manually contoured by two neuroradiologists with the ADC values within each lesion clustered into two (low ADC-ADCL, high ADC-ADCH) and three partitions (ADCL, intermediate ADC-ADCI, ADCH) using the K-Means clustering algorithm. An unpaired two-tailed Student’s t-test was performed for all metrics to determine statistical differences in the means between the benign and malignant pathologies. Results Statistically significant difference between the mean ADCL clusters in benign and malignant pathologies was seen in the 3 cluster models of both readers (p=0.03, 0.022 respectively) and the 2 cluster model of reader 2 (p=0.04) with the other metrics (ADCH, ADCI, whole lesion mean ADC) not revealing any significant differences. Receiver operating characteristics curves demonstrated the quantitative difference in mean ADCH and ADCL in both the 2 and 3 cluster models to be predictive of malignancy (2 clusters: p=0.008, area under curve=0.850, 3 clusters: p=0.01, area under curve=0.825). Conclusion The K-Means clustering algorithm that generates partitions of large datasets may provide a better characterization of neck pathologies and may be of additional benefit in distinguishing benign and malignant neck pathologies compared to whole lesion mean ADC alone. PMID:20007723
Tudela, Raúl; Soria, Guadalupe; Pérez-De-Puig, Isabel; Ros, Domènec; Pavía, Javier; Planas, Anna M
2014-10-01
Middle cerebral artery occlusion (MCAO) in rodents causes brain infarctions of variable sizes that depend on multiple factors, particularly in models of ischemia/reperfusion. This is a major problem for infarct volume comparisons between different experimental groups since unavoidable variability can induce biases in the results and imposes the use of large number of subjects. MRI can help to minimize these difficulties by ensuring that the severity of ischemia is comparable between groups. Furthermore, several studies showed that infarct volumes can be predicted with MRI data obtained soon after ischemia onset. However, such predictive studies require multiparametric MRI acquisitions that cannot be routinely performed, and data processing using complex algorithms that are often not available. The aim here was to provide a simplified method for infarct volume prediction using apparent diffusion coefficient (ADC) data in a model of transient MCAO in rats. ADC images were obtained before, during MCAO and after 60 min of reperfusion. Probability histograms were generated using ADC data obtained either during MCAO, after reperfusion, or both combined. The results were compared to real infarct volumes, i.e.T2 maps obtained at day 7. Assessment of the performance of the estimations showed better results combining ADC data obtained during occlusion and at reperfusion. Therefore, ADC data alone can provide sufficient information for a reasonable prediction of infarct volume if the MRI information is obtained both during the occlusion and soon after reperfusion. This approach can be used to check whether drug administration after MRI acquisition can change infarct volume prediction. PMID:25128601
NASA Astrophysics Data System (ADS)
Négyesi, M.; Chmela, T.; Veselský, T.; Krej?í, J.; Novotný, L.; P?ibyl, A.; Bláhová, O.; Burda, J.; Siegl, J.; Vrtílková, V.
2015-01-01
The paper deals with high-temperature steam oxidation behaviour of Zr1Nb fuel cladding. First of all, comprehensive experimental program was conducted to provide sufficient experimental data, such as the thicknesses of evolved phase layers and the overall weight gain kinetics, as well as the oxygen concentration and nanohardness values at phase boundaries. Afterwards, oxygen diffusion coefficients in the oxide, in the ?-Zr(O) layer, in the double-phase (? + ?)-Zr region, and in the ?-phase region have been estimated based on the experimental data employing analytical solution of the multiphase moving boundary problem, assuming the equilibrium conditions being fulfilled at the interface boundaries. Eventually, the determined oxygen diffusion coefficients served as input into the in-house numerical code, which was designed to predict the high-temperature oxidation behaviour of Zr1Nb fuel cladding. Very good agreement has been achieved between the numerical calculations and the experimental data.
NASA Astrophysics Data System (ADS)
Chen, Liang-Yih; Yin, Yu-Tung
2013-02-01
In this study, ZnO nanoparticles (ZnO NPs) were conformally covered on the surfaces of ZnO nanowires (ZnO NWs) with high diffusion coefficient (1.2 × 10-2 cm2 s-1) to make a composite photoanode. By using N719 to sensitize the composite photoanode, the conversion efficiency can reach 7.14%.In this study, ZnO nanoparticles (ZnO NPs) were conformally covered on the surfaces of ZnO nanowires (ZnO NWs) with high diffusion coefficient (1.2 × 10-2 cm2 s-1) to make a composite photoanode. By using N719 to sensitize the composite photoanode, the conversion efficiency can reach 7.14%. Electronic supplementary information (ESI) available: Experimental, schematic diagram of CFI process, PL, Raman, EIS spectra, high magnification SEM and TEM images. See DOI: 10.1039/c2nr33249c
Rieske, D. E.; Baird, D. R.; Lawson, N. E. [CDM Federal Programs, P.O. Box 789, Piketon, OH 45661 (United States)
2006-07-01
Reductive dechlorination is being implemented at the X-749/X-120 trichloroethene (TCE) plume South Barrier Wall containment site at the Department of Energy (DOE) Portsmouth Gaseous Diffusion Plant (PORTS). The purpose of this paper is to present the effectiveness of the reductive dechlorination at PORTS. Reductive dechlorination is an in situ remediation technology that utilizes existing subsurface microbes to biologically degrade volatile organic compounds in groundwater. Monitoring in the barrier wall area reveals the presence of Hydrogen Release Compound (HRC) injected in the spring of 2004 in two groundwater monitoring wells closest to the injection points. Oxidation/reduction potential in these two wells has decreased steadily since injection, but has not yet reached optimal reducing levels for TCE degradation. Monitoring the effectiveness of the injection is hampered by near-stagnant groundwater flow due in part to the South Barrier Wall. The X-749/X-120 TCE groundwater plume lies beneath approximately 91 acres in the southern portion of PORTS, and extends southward threatening to cross the DOE property boundary. A 1,077-foot long subsurface bentonite barrier wall was installed in 1993 at the southern DOE property boundary to restrict movement of contaminated groundwater from traveling off-site until other remedial technologies could be implemented. In 2003, TCE was detected on the south side of the barrier wall (but still within DOE property) above drinking water standards of 5 micrograms per liter. Monitoring has also detected TCE in groundwater beyond the western edge of the barrier wall. In the spring of 2004, DOE initiated the injection of a reductive dechlorination compound known as Hydrogen Release Compound-extended release formula (HRC-X) into the subsurface using direct push technology (DPT). The HRC-X was injected within the saturated zone from the top of bedrock to 10 feet above bedrock as the probe was withdrawn from the push. A total of 180 DPT points were completed within three treatment zones: north, west, and south of the X-749 South Barrier Wall. The HRC-X (glycerol tripoly-lactate) degrades chlorinated organic compounds, such as TCE, into non-toxic compounds such as ethene and ethane. Upon being injected into the subsurface, HRC-X slowly reacts with groundwater and releases lactic acid. As the anaerobic microbes (which are naturally present in the subsurface) metabolize the lactic acid, low concentrations of dissolved hydrogen are produced. These hydrogen molecules strip the chlorinated (TCE) molecules of their chlorine atoms. During the chemical process of this reductive dechlorination, the lactic acid degrades to pyruvic acid and finally to acetic acid. As the subsurface environment becomes more anaerobic, the TCE degrades. Lactic acid and acetic acid were detected in two wells immediately down-gradient from the HRC-X injection areas. The oxidation/reduction potential has dropped in these two monitoring wells, but did not reach ideal levels for reductive dechlorination of the TCE until after June 2005. The methane concentration in the two wells has increased since the injection of HRC-X, but has not likely reached extreme methano-genesis levels that may restrict the dechlorination process. Through June 2005, concentrations of TCE and TCE degradation products had not yet changed significantly in response to reductive dechlorination. However, by November 2005 the concentration of TCE at monitoring well X749-45G had decreased from a high of 59 {mu}g/L (April 2005) to 9.6 {mu}g/L. At well X749-97G TCE had decreased from a high of 6.3 {mu}g/L (June 2005) to 2.6 {mu}g/L in November 2005. Groundwater monitoring of the wells for reductive dechlorination effectiveness will continue on a semiannual basis in order to track the chemical and biochemical changes in the groundwater. (authors)
Horton, James A. (Livermore, CA); Hayden, Jr., Howard W. (Oakridge, TN)
1995-01-01
An uranium enrichment process capable of producing an enriched uranium, having a .sup.235 U content greater than about 4 wt. %, is disclosed which will consume less energy and produce metallic uranium tails having a lower .sup.235 U content than the tails normally produced in a gaseous diffusion separation process and, therefore, eliminate UF.sub.6 tails storage and sharply reduce fluorine use. The uranium enrichment process comprises feeding metallic uranium into an atomic vapor laser isotope separation process to produce an enriched metallic uranium isotopic mixture having a .sup.235 U content of at least about 2 wt. % and a metallic uranium residue containing from about 0.1 wt. % to about 0.2 wt. % .sup.235 U; fluorinating this enriched metallic uranium isotopic mixture to form UF.sub.6 ; processing the resultant isotopic mixture of UF.sub.6 in a gaseous diffusion process to produce a final enriched uranium product having a .sup.235 U content of at least 4 wt. %, and up to 93.5 wt. % or higher, of the total uranium content of the product, and a low .sup.235 U content UF.sub.6 having a .sup.235 U content of about 0.71 wt. % of the total uranium content of the low .sup.235 U content UF.sub.6 ; and converting this low .sup.235 U content UF.sub.6 to metallic uranium for recycle to the atomic vapor laser isotope separation process.
Horton, J.A.; Hayden, H.W. Jr.
1995-05-30
An uranium enrichment process capable of producing an enriched uranium, having a {sup 235}U content greater than about 4 wt. %, is disclosed which will consume less energy and produce metallic uranium tails having a lower {sup 235}U content than the tails normally produced in a gaseous diffusion separation process and, therefore, eliminate UF{sub 6} tails storage and sharply reduce fluorine use. The uranium enrichment process comprises feeding metallic uranium into an atomic vapor laser isotope separation process to produce an enriched metallic uranium isotopic mixture having a {sup 235} U content of at least about 2 wt. % and a metallic uranium residue containing from about 0.1 wt. % to about 0.2 wt. % {sup 235} U; fluorinating this enriched metallic uranium isotopic mixture to form UF{sub 6}; processing the resultant isotopic mixture of UF{sub 6} in a gaseous diffusion process to produce a final enriched uranium product having a {sup 235}U content of at least 4 wt. %, and up to 93.5 wt. % or higher, of the total uranium content of the product, and a low {sup 235}U content UF{sub 6} having a {sup 235}U content of about 0.71 wt. % of the total uranium content of the low {sup 235}U content UF{sub 6}; and converting this low {sup 235}U content UF{sub 6} to metallic uranium for recycle to the atomic vapor laser isotope separation process. 4 figs.
J. T. K. Wan; T. S. Duffy; S. Scandolo; R. Car
2007-01-01
Constant-pressure constant-temperature ab initio molecular dynamics simulations at high temperatures have been used to study MgSiO3, the major constituent of the Earth's lower mantle to conditions of the Earth's core-mantle boundary. The calculated equilibrium volumes and densities are compared with simulations using an orthorhombic perovskite configuration under the same conditions. For molten MgSiO3, we have determined the diffusion coefficients and
Diffusion and solubility of HCl in ice: Preliminary results
Domine, F.; Thibert, E.; Van Landeghem, F.; Silvente, E.; Wagnon, P. [CNRS, St. Martin (France)] [CNRS, St. Martin (France)
1994-04-01
The authors have measured the diffusion and solubility of gaseous HCl into ice in the temperature range from {minus}5 to {minus}15{degree}C. This information is of relevance since the question of the incorporation of HCl into the nucleation crystals which grow during the formation of polar stratospheric clouds is important due to the impact on this active chlorine compound in the atmosphere. The solubility and diffusion coefficient are both found to be quite small.
Evaluating the Diffusion Coefficient of Sulfur in Low-Silica CaO-SiO2-Al2O3 Slag
NASA Astrophysics Data System (ADS)
Muhmood, Luckman; Viswanathan, Nurni Neelakandan; Iwase, Masanori; Seetharaman, Seshadri
2011-04-01
The chemical diffusion coefficient of sulfur in the ternary slag of composition 51.5 pct CaO-9.6 pct SiO2-38.9 pct Al2O3 slag was measured at 1680 K, 1700 K, and 1723 K (1403 °C, 1427 °C, and 1450 °C) using the experimental method proposed earlier by the authors. The P_{{{{S}}2 }} and P_{{{{O}}2 }} pressures were calculated from the Gibbs energy of the equilibrium reaction between CaO in the slag and solid CaS. The density of the slag was obtained from earlier experiments. Initially, the order of magnitude for the diffusion coefficient was taken from the works of Saito and Kawai but later was modified so that the concentration curve for sulfur obtained from the program was in good fit with the experimental results. The diffusion coefficient of sulfur in 51.5 pct CaO-9.6 pct SiO2-38.9 pct Al2O3 slag was estimated to be in the range 3.98 to 4.14 × 10-6 cm2/s for the temperature range 1680 K to 1723 K (1403 °C to 1450 °C), which is in good agreement with the results available in literature
Zhang Xianmei; Wang Yanhui; Yu Limin; Shen Xin; Wang Jianbin [Department of Physics, East China University of Science and Technology, P.O. Box 385, Shanghai 200237 (China)
2012-07-15
The lower hybrid current drive (LHCD) is one of the promising methods not only for driving the non-inductive current required for steady-state tokamak operation, but also for controlling the plasma current profile to improve confinement in tokamak experiments. A direct consequence of experimental imperfection is difficult to obtain reliable estimate of the radial diffusion coefficient (D{sub st}) of the lower hybrid driven current. In this paper, the radial profile of D{sub st} is estimated to investigate its effect on the current driven by lower hybrid wave (LHW) in Experimental Advanced Superconducting Tokamak. Compared with the case of the constant radial diffusion coefficient, the efficiency of LHW driven current with the radial dependent diffusion coefficient D{sub st} ({rho}) becomes either higher or lower with respect to the plasma parameters, such as the density and the magnetic fluctuation. It is also found that the profiles of the LHW driven current are different. Therefore, it is necessary to consider the radial dependence of D{sub st} in order to get an accurate and reliable result in the numerical simulation of LHCD.
NASA Astrophysics Data System (ADS)
Chamssedine, F.; Sauvage, T.; Peuget, S.; Fares, T.; Martin, G.
2010-05-01
The immobilization of fission products and minor actinides by vitrification is the reference process for industrial management of high-level radioactive wastes generated by spent fuel reprocessing. Radiation damage and radiogenic helium accumulation must be specifically studied to evaluate the effects of minor actinide alpha decay on the glass long-term behavior under repository conditions. A specific experimental study was conducted for a comprehensive evaluation of the behavior of helium and its diffusion mechanisms in borosilicate nuclear waste glass. Helium production was simulated by external implantation with 3He ions at a concentration (?1 at.%) 30 times higher than obtained after 10,000 years of storage. Helium diffusion coefficients as a function of temperature were extracted from the depth profiles after annealing. The 3He(d,?) 1H nuclear reaction analysis (NRA) technique was successfully adopted for low-temperature in situ measurements of depth profiles. Its high depth resolution revealed helium mobility at temperatures as low as 253 K and the presence of a trapped helium fraction. The diffusion coefficients of un-trapped helium atoms follow an Arrhenius law between 253 K and 323 K. An activation energy of 0.55 ± 0.03 eV was determined, which is consistent with a process controlled by diffusion in the glass free volume.
NASA Technical Reports Server (NTRS)
Cain, Judith B.; Baird, James K.
1992-01-01
An integral of the form, t = B0 + BL ln(Delta-c) + B1(Delta-c) + B2(Delta-c)-squared + ..., where t is the time and Delta-c is the concentration difference across the frit, is derived in the case of the diaphragm cell transport equation where the interdiffusion coefficient is a function of concentration. The coefficient, B0, is a constant of the integration, while the coefficients, BL, B1, B2,..., depend in general upon the constant, the compartment volumes, and the interdiffusion coefficient and various of its concentration derivatives evaluated at the mean concentration for the cell. Explicit formulas for BL, B1, B2,... are given.
Satoru Suzuki; Haruo Sato; Takamitsu Ishidera; Naoki Fujii
2004-01-01
To quantify the effects of temperature on the diffusivity of deuterated water (HDO) in compacted sodium bentonite, through-diffusion experiments were conducted at elevated temperatures ranging from 298 to 333 K. Kunipia F (Na-montmorillonite content>98 wt.%; Kunimine Industries) was compacted to a dry density of 0.9 or 1.35 Mg\\/m3. As montmorillonite particles were oriented perpendicular to the direction of compaction, the
Marlar, Saw; Arnspang, Eva C; Pedersen, Gitte A; Koffman, Jennifer S; Nejsum, Lene N
2014-10-01
Micropatterning enabled semiquantitation of basolateral proteins in lateral and basal membranes of the same cell. Lateral diffusion coefficients of basolateral aquaporin-3 (AQP3-EGFP) and EGFP-AQP4 were extracted from "lateral" and "basal" membranes using identical live-cell imaging and k-space Image Correlation Spectroscopy (kICS). To simultaneously image proteins in "lateral" and "basal" membranes, micropatterning with the extracellular domain of E-cadherin and collagen, to mimic cell-cell and cell-extracellular matrix (ECM) adhesion, respectively, was used. In kidney collecting duct principal cells AQP3 localizes lateral and basal whereas AQP4 localizes mainly basal. On alternating stripes of E-cadherin and collagen, AQP3-EGFP was predominantly localized to "lateral" compared to "basal" membranes, whereas Orange-AQP4 was evenly distributed. Average diffusion coefficients were extracted via kICS analysis of rapid time-lapse sequences of AQP3-EGFP and EGFP-AQP4 on uniform substrates of either E-cadherin or collagen. AQP3-EGFP was measured to 0.022±0.010?m(2)/s on E-cadherin and 0.019±0.004?m(2)/s on collagen, whereas EGFP-AQP4 was measured to 0.044±0.009?m(2)/s on E-cadherin and 0.037±0.009?m(2)/s on collagen, thus, diffusion did not differ between substrates. Cholesterol depletion by methyl-beta-cyclodextrin (MBCD) reduced the AQP3-EGFP diffusion coefficient by 43% from 0.024±0.007?m(2)/s (water) to 0.014±0.003?m(2)/s (MBCD) (p<0.05) on collagen surfaces, and by 41% from 0.023±0.011?m(2)/s (water) to 0.014±0.005?m(2)/s (MBCD) (p<0.05) on E-cadherin surfaces. Thus, protein patterning enables the semiquantitation of protein distribution between the "lateral" and "basal" membranes as well as measurements of lateral diffusion coefficients. PMID:24950246
N /A
2002-08-06
The US Department of Energy (DOE) has completed an environmental assessment (DOE/EA-1414) for the proposed implementation of the authorized limits process for waste acceptance at the C-746-U Landfill at the Paducah Gaseous Diffusion Plant (PGDP) in Paducah, Kentucky. Based on the results of the impact analysis reported in the EA, which is incorporated herein by this reference, DOE has determined that the proposed action is not a major Federal action that would significantly affect the quality of the human environment within the context of the ''National Environmental Policy Act of 1969'' (NEPA). Therefore preparation of an environmental impact statement is not necessary, and DOE is issuing this Finding of No Significant Impact (FONSI).
NSDL National Science Digital Library
2012-07-19
Diffusion is the net movement of particles from areas of high concentration (number of particles per unit area) to low concentration. In this activity, students use a molecular dynamics model to view the behavior of diffusion in gases and liquids.
NASA Astrophysics Data System (ADS)
Gopala Rao, R. V.; Venkatesh, R.
1989-02-01
Hg-In alloy consisting of Hg, which shows several anomalous features in its properties and In, has been studied with a square-well attractive tail as an interaction potential between the atoms in the amalgam. The partial and the total interference functions have been computed with the Lebowitz hard-sphere mixture solution for the Percus-Yevick equation with an attractive square-well potential over a hard-sphere mixture. In addition, the Bhatia-Thoronton correlation functions have also been calculated. From the partial structure factors the number of nearest neighbors has been calculated. All the computed results have been found to be in very good agreement with the x-ray diffraction results obtained by Halder and Wagner [Z. Naturforsch. 22a, 1489 (1967)] except at 62% atomic fraction of indium. All these results were computed purely from the potential parameters of the pure metals. The alloy is found to show a shoulder in the SNC(K) cross correlation function. This may be due to either compound formation or internal segregation, even though the metals mix freely at all concentrations. The compressibilities at various concentrations of In have been computed from the Kirkwood-Buff formula. The diffusion coefficients have been calculated from Helfand's linear-trajectory principle. The self-diffusion coefficients as evaluated correctly predict them for both metals because of the attractive wells associated with these metals. Thus Hg, in spite of its heavy mass, has a comparatively higher diffusion coefficient than In, which has a lower mass. The melt appears to form a regular solution, as predicted by Bearman and Jones.
Gopala Rao, R.V.; Venkatesh, R.
1989-02-15
Hg-In alloy consisting of Hg, which shows several anomalous features in its properties and In, has been studied with a square-well attractive tail as an interaction potential between the atoms in the amalgam. The partial and the total interference functions have been computed with the Lebowitz hard-sphere mixture solution for the Percus-Yevick equation with an attractive square-well potential over a hard-sphere mixture. In addition, the Bhatia-Thoronton correlation functions have also been calculated. From the partial structure factors the number of nearest neighbors has been calculated. All the computed results have been found to be in very good agreement with the x-ray diffraction results obtained by Halder and Wagner (Z. Naturforsch. 22a, 1489 (1967)) except at 62% atomic fraction of indium. All these results were computed purely from the potential parameters of the pure metals. The alloy is found to show a shoulder in the S/sub N//sub C/(K) cross correlation function. This may be due to either compound formation or internal segregation, even though the metals mix freely at all concentrations. The compressibilities at various concentrations of In have been computed from the Kirkwood-Buff formula. The diffusion coefficients have been calculated from Helfand's linear-trajectory principle. The self-diffusion coefficients as evaluated correctly predict them for both metals because of the attractive wells associated with these metals. Thus Hg, in spite of its heavy mass, has a comparatively higher diffusion coefficient than In, which has a lower mass. The melt appears to form a regular solution, as predicted by Bearman and Jones.
Iu. N. Beliaev; V. A. Polianskii; E. G. Shapiro
1979-01-01
In the present paper, diffusive mass-transfer phenomena occurring in partially ionized multicomponent gas mixtures are analyzed in the case where the action of the electric field predominates in the electromagnetic effect on the medium. The temperatures of the gas mixture components are assumed to differ. The analysis is based on kinetic equations for independent-particle distribution functions of the components with
1984-01-01
The diffusion coefficient of tubulin has been measured in the cytoplasm of eggs and embryos of the sea urchin Lytechinus variegatus. We have used brain tubulin, conjugated to dichlorotriazinyl-aminofluorescein, to inject eggs and embryos. The resulting distributions of fluorescence were perturbed by bleaching with a microbeam of light from the 488-nm line of an argon ion laser. Fluorescence redistribution after photobleaching was monitored with a sensitive video camera and photography of the television-generated image. With standard photometric methods, we have calibrated this recording system and measured the rates of fluorescence redistribution for tubulin, conjugated to dichlorotriazinyl-aminofluorescein, not incorporated into the mitotic spindle. The diffusion coefficient (D) was calculated from these data using Fick's second law of diffusion and a digital method for analysis of the photometric curves. We have tested our method by determining D for bovine serum albumin (BSA) under conditions where the value is already known and by measuring D for fluorescein-labeled BSA in sea urchin eggs with a standard apparatus for monitoring fluorescence redistribution after photobleaching. The values agree to within experimental error. Dcytoplasmtubulin = 5.9 +/- 2.2 X 10(-8) cm2/s; DcytoplasmBSA = 8.6 +/- 2.0 X 10(-8) cm2/s. Because DH2OBSA = 68 X 10(-8) cm2/s, these data suggest that the viscosity of sea urchin cytoplasm for protein is about eight times that of water and that most of the tubulin of the sea urchin cytoplasm exists as a dimer or small oligomer, which is unbound to structures that would impede its diffusion. Values and limitations of our method are discussed, and we draw attention to both the variations in D for single proteins in different cells and the importance of D for the upper limit to the rates of polymerization reactions. PMID:6501417
Kaganovich, Igor
of the total electron population. In atomic gases, as a rule, it holds for the energies , too, where exceeding are usually practically absent. In this energy range, the elastic collisions cross section 1728 IEEE TRANSACTIONS ON PLASMA SCIENCE, VOL. 34, NO. 3, JUNE 2006 The Electron Diffusion
Young
1984-01-01
In a gaseous fuel carburetion system in which air and gaseous fuel are mixed in a mixer prior to induction into an internal combustion engine, and in which the rate of flow of the induction air is controlled by throttling the intake of the air\\/fuel mixture, and in which gaseous fuel is supplied to the system from a pressurized source,
J. K. Platten; M. M. Bou-Ali; J. F. Dutrieux
2003-01-01
Within the framework of an international benchmark test, the Soret coefficient S T , the thermodiffusion coefficient D T , and the isothermal mass diffusion coefficient D of the three binary systems formed with dodecane, isobutylbenzene and 1,2,3,4-tetrahydronaphthalene (with a mass fraction of 0.5 in each component at a temperature of 25°C) have been measured. Convective coupling in thermogravitational columns
NASA Astrophysics Data System (ADS)
Guevara-Carrion, Gabriela; Vrabec, Jadran; Hasse, Hans
2011-02-01
Density, self-diffusion coefficient, and shear viscosity of pure liquid water are predicted for temperatures between 280 and 373 K by molecular dynamics simulation and the Green-Kubo method. Four different rigid nonpolarizable water models are assessed: SPC, SPC/E, TIP4P, and TIP4P/2005. The pressure dependence of the self-diffusion coefficient and the shear viscosity for pure liquid water is also calculated and the anomalous behavior of these properties is qualitatively well predicted. Furthermore, transport properties as well as excess volume and excess enthalpy of aqueous binary mixtures containing methanol or ethanol, based on the SPC/E and TIP4P/2005 water models, are calculated. Under the tested conditions, the TIP4P/2005 model gives the best quantitative and qualitative agreement with experiments for the regarded transport properties. The deviations from experimental data are of 5% to 15% for pure liquid water and 5% to 20% for the water + alcohol mixtures. Moreover, the center of mass power spectrum of water as well as the investigated mixtures are analyzed and the hydrogen-bonding structure is discussed for different states.
Guevara-Carrion, Gabriela; Vrabec, Jadran; Hasse, Hans
2011-02-21
Density, self-diffusion coefficient, and shear viscosity of pure liquid water are predicted for temperatures between 280 and 373 K by molecular dynamics simulation and the Green-Kubo method. Four different rigid nonpolarizable water models are assessed: SPC, SPC/E, TIP4P, and TIP4P/2005. The pressure dependence of the self-diffusion coefficient and the shear viscosity for pure liquid water is also calculated and the anomalous behavior of these properties is qualitatively well predicted. Furthermore, transport properties as well as excess volume and excess enthalpy of aqueous binary mixtures containing methanol or ethanol, based on the SPC/E and TIP4P/2005 water models, are calculated. Under the tested conditions, the TIP4P/2005 model gives the best quantitative and qualitative agreement with experiments for the regarded transport properties. The deviations from experimental data are of 5% to 15% for pure liquid water and 5% to 20% for the water + alcohol mixtures. Moreover, the center of mass power spectrum of water as well as the investigated mixtures are analyzed and the hydrogen-bonding structure is discussed for different states. PMID:21341860
NASA Astrophysics Data System (ADS)
Raabe, Gabriele; Todd, B. D.; Sadus, Richard J.
2005-07-01
In earlier work [G. Raabe and R. J. Sadus, J. Chem. Phys. 119, 6691 (2003)] we reported that the combination of an accurate two-body ab initio potential with an empirically determined multibody contribution enables the prediction of the phase coexistence properties, the heats of vaporization, and the pair distribution functions of mercury with reasonable accuracy. In this work we present molecular dynamics simulation results for the shear viscosity and self-diffusion coefficient of mercury along the vapor-liquid coexistence curve using our empirical effective potential. The comparison with experiment and calculations based on a modified Enskog theory shows that our multibody contribution yields reliable predictions of the self-diffusion coefficient at all densities. Good results are also obtained for the shear viscosity of mercury at low to moderate densities. Increasing deviations between the simulation and experimental viscosity data at high densities suggest that not only a temperature-dependent but also a density-dependent multibody contribution is necessary to account for the effect of intermolecular interactions in liquid metals. An analysis of our simulation data near the critical point yields a critical exponent of ? =0.39, which is identical to the value obtained from the analysis of the experimental saturation densities.
Takao Moteki; Hiroshi Ishizaka
1999-01-01
Reordered snapshot fast low-angle shot images with, and without, diffusion-perfusion gradients were used for the evaluation of contents of cystic ovarian lesions. Sonographically detected 51 cystic ovarian lesions (13 endometrial cysts, 17 ovarian cysts, 7 serous cystadenomas, 6 mucinous cystadenomas, 8 malignant cystic ovarian tumors) were studied. T1- and T2-weighted images, reordered snapshot fast low-angle shot images with and without
G. J. Marmer; C. P. Dunn; T. H. Filley; K. L. Moeller; J. M. Pfingston; A. J. Policastro; J. H. Cleland
1991-01-01
Uranium enrichment in the United States has utilized a diffusion process to preferentially enrich the U-235 isotope in the uranium product. In the 1970s, the US Department of Energy (DOE) began investigating more efficient and cost-effective enrichment technologies. In January 1990, the Secretary of Energy approved a plan for the demonstration and deployment of the Uranium Atomic Vapor Laser isotope
G. J. Marmer; C. P. Dunn; K. L. Moeller; J. M. Pfingston; A. J. Policastro; C. R. Yuen; J. H. Cleland
1991-01-01
Uranium enrichment in the United States has utilized a diffusion process to preferentially enrich the U-235 isotope in the uranium product. The U-AVLIS process is based on electrostatic extraction of photoionized U-235 atoms from an atomic vapor stream created by electron-beam vaporization of uranium metal alloy. The U-235 atoms are ionized when precisely tuned laser light -- of appropriate power,
Samet Y. Kadioglu; Robert R. Nourgaliev; Vincent A. Mousseau
2008-03-01
We perform a comparative study for the harmonic versus arithmetic averaging of the heat conduction coefficient when solving non-linear heat transfer problems. In literature, the harmonic average is the method of choice, because it is widely believed that the harmonic average is more accurate model. However, our analysis reveals that this is not necessarily true. For instance, we show a case in which the harmonic average is less accurate when a coarser mesh is used. More importantly, we demonstrated that if the boundary layers are finely resolved, then the harmonic and arithmetic averaging techniques are identical in the truncation error sense. Our analysis further reveals that the accuracy of these two techniques depends on how the physical problem is modeled.
Price, Helen L; Teasdale, Peter R; Jolley, Dianne F
2013-11-25
This study investigated several knowledge gaps with respect to the diffusive gradients in thin films (DGT) technique for measurement of oxyanions (As(III), As(V), Se(IV), Se(VI), PO4(3-), and V(V)) using the ferrihydrite and Metsorb™ binding layers. Elution efficiencies for each binding layer were higher with 1:20 dilutions, as analytical interferences for ICP-MS were minimised. Diffusion coefficients measured by diffusion cell and by DGT time-series experiments were found to agree well and generally agreed with previously reported values, although a range of diffusion coefficients have been reported for inorganic As and Se species. The relative binding affinity for both ferrihydrite and Metsorb™ was PO4(3-) ? As(V)>V(V) ? As(III)>Se(IV) > Se(VI) and effective binding capacities were measured in single ion solutions, and spiked synthetic freshwater and seawater, advising practical decisions about DGT monitoring. Under the conditions tested the performance of both ferrihydrite and Metsorb™ binding layers was directly comparable for As(V), As(III) Se(IV), V(V) and PO4(3-) over a deployment spanning ? 2 days for both freshwater and seawater. In order to return quantitative data for several analytes we recommend that the DGT method using either ferrihydrite or Metsorb™ be deployed for a maximum of 2 days in marine waters likely to contain high levels of the most strongly adsorbing oxyanions contaminants. The high pH, the competitive ions present in seawater and the identity of co-adsorbing ions affect the capacity of each binding layer for the analytes of interest. In freshwaters, longer deployment times can be considered but the concentration and identity of co-adsorbing ions may impact on quantitative uptake of Se(IV). This study found ferrihydrite-DGT outperformed Metsorb-DGT while previous studies have found the opposite, with variation in binding materials masses used being a likely reason. Clearly, preparation of both binding layers should always be optimised to produce the highest capacity possible, especially for seawater deployments. PMID:24216197
Diffusion of ammonia gas in PDMS characterized by ATR spectroscopy
NASA Astrophysics Data System (ADS)
Levinský, Petr; Kalvoda, Ladislav; Aubrecht, Jan; Fojtíková, Jaroslava
2015-01-01
The kinetic parameters of a chemo-optical transducer layer sensitive to gaseous ammonia are characterized by means of attenuation total reflection method. The tested layer consists of cross-linked polydimethylsiloxane matrix sensitized by quinoline-based organometallic dye showing the selective chemical reaction with ammonia. Upper and lower limits of the ammonia diffusion coefficient and the ammonia-dye reaction constant are derived from the obtained experimental data and compared with other data available in literature and obtained from computer simulations.
Pierre-Henri Chavanis; Clément Sire
2000-01-19
This paper is devoted to a statistical analysis of the fluctuations of velocity and acceleration produced by a random distribution of point vortices in two-dimensional turbulence. We show that the velocity probability density function (p.d.f.) behaves in a manner which is intermediate between Gaussian and L\\'evy laws while the distribution of accelerations is governed by a Cauchy law. Our study accounts properly for a spectrum of circulations among the vortices. In the case of real vortices (with a finite core) we show analytically that the distribution of accelerations makes a smooth transition from Cauchy (for small fluctuations) to Gaussian (for large fluctuations) passing probably through an exponential tail. We introduce a function $T(V)$ which gives the typical duration of a velocity fluctuation $V$; we show that $T(V)$ behaves like $V$ and $V^{-1}$ for weak and large velocities respectively. These results have a simple physical interpretation in the nearest neighbor approximation and in Smoluchowski theory concerning the persistence of fluctuations. We discuss the analogies with respect to the fluctuations of the gravitational field in stellar systems. As an application of these results, we determine an approximate expression for the diffusion coefficient of point vortices. When applied to the context of freely decaying two-dimensional turbulence, the diffusion becomes anomalous and we establish a relationship $\
NASA Astrophysics Data System (ADS)
Backholm, Jonas; Georén, Peter; Niklasson, Gunnar A.
2008-01-01
Potentiostatic intermittent titration technique (PITT) and electrochemical impedance spectroscopy (EIS) were investigated as methods to determine solid phase chemical diffusion coefficient (D) and electronic density of states (DOS). These techniques were then applied to iridium oxide (IrOx) and iridium-tantalum oxide (IrTaOx) thin films prepared by sputter deposition. The experiments, performed in 1M propionic acid between -0.2 and 0.8V vs Ag /AgCl, showed effects of interfacial side reactions, whose contribution to the electrochemical response could be identified and corrected for in the case of PITT as well as EIS. It was found that D is strongly underestimated when using PITT with the common Cottrell formalism, which follows from non-negligible interfacial charge transfer and Ohmic resistances. EIS indicated an anomalous diffusion mechanism, and D was determined to be in the 10-11-10-10cm2/s range for IrOx and IrTaOx. Both PITT and EIS showed that the intercalated charge as a function of potential exhibits a shape that resembles the theoretical DOS of crystalline iridium oxide, especially for IrTaOx.
Kopotic, James D. [United States Department of Energy, Oak Ridge Office, P.O. Box 2001, Oak Ridge, TN 37831 (United States)] [United States Department of Energy, Oak Ridge Office, P.O. Box 2001, Oak Ridge, TN 37831 (United States); Ferri, Mark S.; Buttram, Claude [URS - CH2M Oak Ridge LLC, East Tennessee Technology Park, P. O. Box 4699, Oak Ridge, TN 37831 (United States)] [URS - CH2M Oak Ridge LLC, East Tennessee Technology Park, P. O. Box 4699, Oak Ridge, TN 37831 (United States)
2013-07-01
The East Tennessee Technology Park (ETTP) is the site of five former gaseous diffusion plant (GDP) process buildings that were used to enrich uranium from 1945 to 1985. The process equipment in the original two buildings (K-25 and K-27) was used for the production of highly enriched uranium (HEU), while that in the three later buildings (K-29, K-31 and K-33) produced low enriched uranium (LEU). Equipment was contaminated primarily with uranium and to a lesser extent technetium (Tc). Decommissioning of the GDP process buildings has presented several unique challenges and produced many lessons-learned. Among these is the importance of good, up-front characterization in developing the best demolition approach. Also, chemical cleaning of process gas equipment and piping (PGE) prior to shutdown should be considered to minimize the amount of hold-up material that must be removed by demolition crews. Another lesson learned is to maintain shutdown buildings in a dry state to minimize structural degradation which can significantly complicate characterization, deactivation and demolition efforts. Perhaps the most important lesson learned is that decommissioning GDP process buildings is first and foremost a waste logistics challenge. Innovative solutions are required to effectively manage the sheer volume of waste generated from decontamination and demolition (D and D) of these enormous facilities. Finally, close coordination with Security is mandatory to effectively manage Special Nuclear Material (SNM) and classified equipment issues. (authors)
NONE
1996-07-01
The Paducah Gaseous Diffusion Plant (PGDP) is a uranium enrichment facility owned by the US Department of Energy (DOE). A residual of the uranium enrichment process is depleted uranium hexafluoride (UF6). Depleted UF6, a solid at ambient temperature, is stored in 32,200 steel cylinders that hold a maximum of 14 tons each. Storage conditions are suboptimal and have resulted in accelerated corrosion of cylinders, increasing the potential for a release of hazardous substances. Consequently, the DOE is proposing refurbishment of certain existing yards and construction of a new storage yard. This environmental assessment (EA) evaluates the impacts of the proposed action and no action and considers alternate sites for the proposed new storage yard. The proposed action includes (1) renovating five existing cylinder yards; (2) constructing a new UF6 storage yard; handling and onsite transport of cylinders among existing yards to accommodate construction; and (4) after refurbishment and construction, restacking of cylinders to meet spacing and inspection requirements. Based on the results of the analysis reported in the EA, DOE has determined that the proposed action is not a major Federal action that would significantly affect the quality of the human environment within the context of the National Environmental Policy Act of 1969. Therefore, DOE is issuing a Finding of No Significant Impact. Additionally, it is reported in this EA that the loss of less than one acre of wetlands at the proposed project site would not be a significant adverse impact.
NASA Astrophysics Data System (ADS)
Kreamer, David K.; Weeks, Edwin P.; Thompson, Glenn M.
1988-03-01
A tracer experiment was conducted at the commercial low-level nuclear waste disposal site near Barnwell, South Carolina, to test a new method for determining the tortuosity and sorption-affected porosity for gaseous diffusion transport of materials in the Unsaturated zone. Two tracers, CBrClF2 and SF6, were released at constant rates of 105 and 3.3 ng/s, respectively, from permeation devices, which were placed in short screened sections in access holes. Soil gas was sampled from 15 piezometers located at various distances from the sources by sequentially pumping 60-160 mL of gas from the piezometers into a dual-column gas chromatograph located at the test site. The CBrClF2 concentration data obtained from several of the piezometers were analyzed by use of type curves for a continuous point source in an areally extensive medium bounded above and below by planar no-flow boundaries. The tortuosity of the geologic unit tested, an eolian sand, was determined to be about 0.4, and the sorption-affected porosity to be 0.22. The tortuosity value is plausible, but the sorption-affected porosity value is substantially less than that computed from the drained porosity, particularly if adjustments are made for retardation due to solution of the tracer in the liquid phase and sorption on the solid phase. The SF6 data could not be reliably analyzed.
NSDL National Science Digital Library
Christopher Thomas (None; )
2006-11-09
Diffusion is the movement of particles from an area of high concentration to an area of low concentration. The molecules move until equilibrium is reached. If a perfume is sprayed on one side of the room, the perfume molecules will eventually spread out all over the room until there are equal concentrations of the molecules throughout the space.
Oelkers, E.H.; Helgeson, H.C.
1988-01-01
Accurate values of diffusion coefficients for aqueous species are a requisite for predicting mass transfer in many geochemical processes. Tracer diffusion coefficients can be calculated from the limiting equivalent conductances of ions using the Nernst-Einstein equation. A corresponding states approach yields an isothermal/isobaric correlation between the limiting equivalent conductances and the standard partial molal entropies of aqueous species and electrolytes. These correlations, together with an equation of state for the standard partial molal entropies of aqueous species and a modified Arrhenius representation of the limiting equivalent conductances of aqueous electrolytes, can be used to predict as a function of temperature and pressure the limiting equivalent conductances of many electrolytes of geologic interest for which no high pressure/temperature experimental data are available. Combining these estimates with the linear dependence of the logarithm of the ratio of the anion to cation transference number for NaCl on reciprocal temperature observed by Smith and Dismukes permits prediction of the limiting equivalent conductances of ions, and therefore tracer diffusion coefficients at temperatures and pressures to 1000/sup 0/C and 5 kb. Values of these coefficients are given in tables for 30 monovalent anions, monovalent cations, and divalent cations of geologic interest at high temperatures and pressures. The diffusion coefficients increase with increasing temperature by approx. two orders of magnitude from 0/sup 0/ to 1000/sup 0/C. In contrast, they decrease slightly with increasing pressure.
Marmer, G.J.; Dunn, C.P.; Moeller, K.L.; Pfingston, J.M.; Policastro, A.J.; Yuen, C.R.; Cleland, J.H. (ed.)
1991-09-01
Uranium enrichment in the United States has utilized a diffusion process to preferentially enrich the U-235 isotope in the uranium product. The U-AVLIS process is based on electrostatic extraction of photoionized U-235 atoms from an atomic vapor stream created by electron-beam vaporization of uranium metal alloy. The U-235 atoms are ionized when precisely tuned laser light -- of appropriate power, spectral, and temporal characteristics -- illuminates the uranium vapor and selectively photoionizes the U-235 isotope. A programmatic document for use in screening DOE site to locate a U-AVLIS production plant was developed and implemented in two parts. The first part consisted of a series of screening analyses, based on exclusionary and other criteria, that identified a reasonable number of candidate sites. These sites were subjected to a more rigorous and detailed comparative analysis for the purpose of developing a short list of reasonable alternative sites for later environmental examination. This environmental site description (ESD) provides a detailed description of the PGDP site and vicinity suitable for use in an environmental impact statement (EIS). The report is based on existing literature, data collected at the site, and information collected by Argonne National Laboratory (ANL) staff during a site visit. 65 refs., 15 tabs.
Self-Diffusion in gallium arsenide
NASA Astrophysics Data System (ADS)
Palfrey, H. D.; Brown, M.; Willoughby, A. F. W.
1983-09-01
The self-diffusion of arsenic in gallium arsenide has been studied over the temperature range 1000 to 1075?C using radiotracer techniques.76As was diffused into GaAs samples at known arsenic pressures in sealed capsules. After diffusion, layers were removed from the surface using anodic oxidation followed by oxide dissolution. Diffusion profiles were obtained by measuring the76As concentration in each sectioned layer by ?-radiation counting. Diffusion coefficients at PAs 2 = 0.75 atm and over the temperature range 1000 to 1050?C were found to be 5.2 × 10-16cm2s-1 to 1.5 × 10-15 cm2s-1, leading to an activation energy of the order of 3.0± 0.04 eV and a pre-exponential factor of 5.5 × l0-4 ± 2.4 × 10-4 cm2s-1. Diffusion coefficients at PAs 2 =3.0 atm were found to be 5.5 × 10-15 and 9.8 × 10-16 cm2 s-1 at 1050 and 1075?C, respectively. Results are discussed in terms of native point defect equilibria with the arsenic gaseous phase, and with respect to other work. It is deduced from our observed arsenic pressure dependence of the arsenic diffusivity that the most likely diffusion mechanism
NSDL National Science Digital Library
Since the advent of the internet, a number of artists and related organizations have become interested in utilizing the web to promulgate new forms of artistic creation and their subsequent dissemination. Supported by the Arts Council of England, these Diffusion eBooks are essentially pdf files that readers can download, print out and make into booklets. As the site suggests, "the Diffusion format challenges conventions of interactivity-blending the physical and the virtual and breaking the dominance of mouse and screen as the primary forms of human computer interaction...the format's aim is to take the reader away from the screen and computer and engage them in the process of production." There are a number of creative booklets available here for visitors, complete with instruction on how to assemble them for the desired effect. For anyone with even a remote interest in the possibilities afforded by this rather curious new form of expression, this website is worth a look.
Grueneisen, Johannes; Beiderwellen, Karsten; Heusch, Philipp; Buderath, Paul; Aktas, Bahriye; Gratz, Marcel; Forsting, Michael; Lauenstein, Thomas; Ruhlmann, Verena; Umutlu, Lale
2014-01-01
Background To evaluate a potential correlation of the maximum standard uptake value (SUVmax) and the minimum apparent diffusion coefficient (ADCmin) in primary and recurrent cervical cancer based on integrated PET/MRI examinations. Methods 19 consecutive patients (mean age 51.6 years; range 30–72 years) with histopathologically confirmed primary cervical cancer (n?=?9) or suspected tumor recurrence (n?=?10) were prospectively enrolled for an integrated PET/MRI examination. Two radiologists performed a consensus reading in random order, using a dedicated post-processing software. Polygonal regions of interest (ROI) covering the entire tumor lesions were drawn into PET/MR images to assess SUVmax and into ADC parameter maps to determine ADCmin values. Pearson’s correlation coefficients were calculated to assess a potential correlation between the mean values of ADCmin and SUVmax. Results In 15 out of 19 patients cervical cancer lesions (n?=?12) or lymph node metastases (n?=?42) were detected. Mean SUVmax (12.5±6.5) and ADCmin (644.5±179.7×10?5 mm2/s) values for all assessed tumor lesions showed a significant but weak inverse correlation (R?=??0.342, p<0.05). When subdivided in primary and recurrent tumors, primary tumors and associated primary lymph node metastases revealed a significant and strong inverse correlation between SUVmax and ADCmin (R?=??0.692, p<0.001), whereas recurrent cancer lesions did not show a significant correlation. Conclusions These initial results of this emerging hybrid imaging technique demonstrate the high diagnostic potential of simultaneous PET/MR imaging for the assessment of functional biomarkers, revealing a significant and strong correlation of tumor metabolism and higher cellularity in cervical cancer lesions. PMID:24804676
Hatakenaka, Masamitsu, E-mail: mhatake@radiol.med.kyushu-u.ac.jp [Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka City (Japan); Nakamura, Katsumasa; Yabuuchi, Hidetake; Shioyama, Yoshiyuki; Matsuo, Yoshio; Ohnishi, Kayoko; Sunami, Shunya; Kamitani, Takeshi; Setoguchi, Taro; Yoshiura, Takashi [Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka City (Japan); Nakashima, Torahiko [Department of Otorhinolaryngology, Graduate School of Medical Sciences, Kyushu University, Fukuoka City (Japan); Nishikawa, Kei [Radiology Center, Kyushu University Hospital, Kyushu University, Fukuoka City (Japan); Honda, Hiroshi [Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka City (Japan)
2011-10-01
Purpose: This study was performed to evaluate whether the apparent diffusion coefficient (ADC) of a primary lesion correlates with local failure in primary head-and-neck squamous cell carcinoma (HNSCC) treated with chemoradiotherapy or radiotherapy. Methods and Materials: We retrospectively studied 38 patients with primary HNSCC (12 oropharynx, 20 hypopharynx, 4 larynx, 2 oral cavity) treated with chemoradiotherapy or radiotherapy with radiation dose to gross tumor volume equal to or over 60 Gy and who underwent pretreatment magnetic resonance imaging, including diffusion-weighted imaging. Ten patients developed local failure during follow-up periods of 2.0 to 9.3 months, and the remaining 28 showed local control during follow-up periods of 10.5 to 31.7 months. The variables that could affect local failure (age, tumor volume, ADC, T stage, N stage, dose, treatment method, tumor location, and overall treatment time) were analyzed using logistic regression analyses for all 38 patients and for 17 patients with Stage T3 or T4 disease. Results: In univariate logistic analysis for all 38 cases, tumor volume, ADC, T stage, and treatment method showed significant (p < 0.05) associations with local failure. In multivariate analysis, ADC and T stage revealed significance (p < 0.01). In univariate logistic analysis for the 17 patients with Stage T3 or T4 disease, ADC and dose showed significant (p < 0.01) associations with local failure. In multivariate analysis, ADC alone showed significance (p < 0.05). Conclusions: The results suggest that pretreatment ADC, along with T stage, is a potential indicator of local failure in HNSCC treated with chemoradiotherapy or radiotherapy.
Shang, L.; Chou, I.-Ming; Lu, W.; Burruss, R.C.; Zhang, Y.
2009-01-01
Diffusion coefficients (D) of hydrogen in fused silica capillaries (FSC) were determined between 296 and 523 K by Raman spectroscopy using CO2 as an internal standard. FSC capsules (3.25 ?? 10-4 m OD, 9.9 ?? 10-5 m ID, and ???0.01 m long) containing CO2 and H2 were prepared and the initial relative concentrations of hydrogen in these capsules were derived from the Raman peak-height ratios between H2 (near 587 cm-1) and CO2 (near 1387 cm-1). The sample capsules were then heated at a fixed temperature (T) at one atmosphere to let H2 diffuse out of the capsule, and the changes of hydrogen concentration were monitored by Raman spectroscopy after quench. This process was repeated using different heating durations at 296 (room T), 323, 375, 430, 473, and 523 K; the same sample capsule was used repeatedly at each temperature. The values of D (in m2 s-1) in FSC were obtained by fitting the observed changes of hydrogen concentration in the FSC capsule to an equation based on Fick's law. Our D values are in good agreement with the more recent of the two previously reported experimental data sets, and both can be represented by: ln D = - (16.471 ?? 0.035) - frac(44589 ?? 139, RT) (R2 = 0.99991) where R is the gas constant (8.3145 J/mol K), T in Kelvin, and errors at 1?? level. The slope corresponds to an activation energy of 44.59 ?? 0.14 kJ/mol. The D in FSC determined at 296 K is about an order of magnitude higher than that in platinum at 723 K, indicating that FSC is a suitable membrane for hydrogen at temperature between 673 K and room temperature, and has a great potential for studying redox reactions at these temperatures, especially for systems containing organic material and/or sulphur. ?? 2009 Elsevier Ltd.
Newly developed gaseous photomultiplier
NASA Astrophysics Data System (ADS)
Tokanai, Fuyuki; Moriya, Toru; Takeyama, Mirei; Sakurai, Hirohisa; Gunji, Shuichi; Sumiyoshi, Takayuki; Ito, Takayuki; Sugiyama, Hirioyuki; Okada, Teruyuki; Ohishi, Noboru; Kishimoto, Syunji
2014-12-01
A new micromesh gas (Micromegas) detector has been developed for a gaseous photomultiplier tube (PMT) with a bialkali photocathode. A basic performance test of the Micromegas detector was carried out for a Ne (90%) + CF4 (10%) gas mixture using an X-ray beam. We constructed gaseous PMTs with a bialkali photocathode and Micromegas detectors. The photoelectron collection efficiencies in several gases and the suppression of ion feedback were investigated.
NASA Astrophysics Data System (ADS)
Combes, F.; Charmandaris, V.
HI observations have revealed in several shell galaxies the presence of gaseous shells slightly displaced from the stellar shells radially, in the outward direction. We propose a mechanism to form this gaseous shells, based on the well-known phase-wrapping process of the companion matter in a merger, with nearly radial orbits. The mechanism relies on the existence of a clumpy interstellar matter, and on dynamical friction experienced by the companion core.
Janik, Leslie J; Forrester, Sean T; Soriano-Disla, José M; Kirby, Jason K; McLaughlin, Michael J; Reimann, Clemens
2015-02-01
Partial least squares regression (PLSR) models, using mid-infrared (MIR) diffuse reflectance Fourier-transformed (DRIFT) spectra, were used to predict distribution coefficient (Kd) values for selected added soluble metal cations (Ag(+), Co(2+), Cu(2+), Mn(2+), Ni(2+), Pb(2+), Sn(4+), and Zn(2+)) in 4813 soils of the Geochemical Mapping of Agricultural Soils (GEMAS) program. For the development of the PLSR models, approximately 500 representative soils were selected based on the spectra, and Kd values were determined using a single-point soluble metal or radioactive isotope spike. The optimum models, using a combination of MIR-DRIFT spectra and soil pH, resulted in good predictions for log Kd+1 for Co, Mn, Ni, Pb, and Zn (R(2) ? 0.83) but poor predictions for Ag, Cu, and Sn (R(2) ?
Rochoux, M; Guo, Y; Schuurman, Y; Farrusseng, D
2015-01-14
A novel, powerful method based on a microkinetic approach is described for the estimation of the oxygen transport parameters of mixed electronic conducting materials (MIECs). This method is validated on the perovskite La0.6Sr0.4Co0.2Fe0.8O3-? and has been applied on Ba0.5Sr0.5Co0.8Fe0.2O3-?. This approach is original and relevant in that the surface kinetic rate constants are measured using a sample in powder form. In contrast to methods previously used, such as isotope exchange depth profiling (IEDP) and electrical conductivity relaxation (ECR), which determine the global exchange kinetic parameter, our microkinetic modelling approach allows the estimation of the forward and reverse kinetic rates accounting for the oxygen vacancy concentration. Also, the self-diffusion rate coefficient has been estimated at different oxygen partial pressures. This microkinetic approach, which combines SSITKA (steady-state isotopic transient kinetic analysis) and thermogravimetric measurements at controlled oxygen partial pressure, has the potential to significantly accelerate the characterization of oxygen transport in perovskites and related materials in the future. In this study, the kinetic parameters were measured in a temperature window between 873 K and 1173 K, and at two oxygen pressure conditions (21 kPa and 1 kPa) that are appropriate for simulating the semi-permeability of oxygen in a membrane in a process of oxygen separation from air. PMID:25429893
Looney, B.; Eddy-Dilek, C.; Amidon, M.; Rossabi, J.; Stewart, L.
2011-05-31
The U. S. Department of Energy (DOE) is currently developing a Proposed Plan (PP) for remediation of designated sources of chlorinated solvents that contribute contamination to the Southwest (SW) Groundwater Plume at the Paducah Gaseous Diffusion Plant (PGDP), in Paducah, KY. The principal contaminants in the SW Plume are trichloroethene (TCE) and other volatile organic compounds (VOCs); these industrial solvents were used and disposed in various facilities and locations at PGDP. In the SW plume area, residual TCE sources are primarily in the fine-grained sediments of the Upper Continental Recharge System (UCRS), a partially saturated zone that delivers contaminants downward into the coarse-grained Regional Gravel Aquifer (RGA). The RGA serves as the significant lateral groundwater transport pathway for the plume. In the SW Plume area, the four main contributing TCE source units are: (1) Solid Waste Management Unit (SWMU) 1 / Oil Landfarm; (2) C-720 Building TCE Northeast Spill Site (SWMU 211A); (3) C-720 Building TCE Southeast Spill Site (SWMU 211B); and (4) C-747 Contaminated Burial Yard (SWMU 4). The PP presents the Preferred Alternatives for remediation of VOCs in the UCRS at the Oil Landfarm and the C-720 Building spill sites. The basis for the PP is documented in a Focused Feasibility Study (FFS) (DOE, 2011) and a Site Investigation Report (SI) (DOE, 2007). The SW plume is currently within the boundaries of PGDP (i.e., does not extend off-site). Nonetheless, reasonable mitigation of the multiple contaminant sources contributing to the SW plume is one of the necessary components identified in the PGDP End State Vision (DOE, 2005). Because of the importance of the proposed actions DOE assembled an Independent Technical Review (ITR) team to provide input and assistance in finalizing the PP.
Kirby, Miranda; Ouriadov, Alexei; Svenningsen, Sarah; Owrangi, Amir; Wheatley, Andrew; Etemad?Rezai, Roya; Santyr, Giles E.; McCormack, David G.; Parraga, Grace
2014-01-01
Abstract Noble gas pulmonary magnetic resonance imaging (MRI) is transitioning away from 3He to 129Xe gas, but the physiological/clinical relevance of 129Xe apparent diffusion coefficient (ADC) parenchyma measurements is not well understood. Therefore, our objective was to generate 129Xe MRI ADC for comparison with 3He ADC and with well?established measurements of alveolar structure and function in older never?smokers and ex?smokers with chronic obstructive pulmonary disease (COPD). In four never?smokers and 10 COPD ex?smokers, 3He (b = 1.6 sec/cm2) and 129Xe (b = 12, 20, and 30 sec/cm2) ADC, computed tomography (CT) density?threshold measurements, and the diffusing capacity for carbon monoxide (DLCO) were measured. To understand regional differences, the anterior–posterior (APG) and superior–inferior (?SI) ADC differences were evaluated. Compared to never?smokers, COPD ex?smokers showed greater 3He ADC (P = 0.006), 129Xe ADCb12 (P = 0.006), and ADCb20 (P = 0.006), but not for ADCb30 (P > 0.05). Never?smokers and COPD ex?smokers had significantly different APG for 3He ADC (P = 0.02), 129Xe ADCb12 (P = 0.006), and ADCb20 (P = 0.01), but not for ADCb30 (P > 0.05). ?SI for never? and ex?smokers was significantly different for 3He ADC (P = 0.046), but not for 129Xe ADC (P > 0.05). There were strong correlations for DLCO with 3He ADC and 129Xe ADCb12 (both r = ?0.95, P < 0.05); in a multivariate model 129Xe ADCb12 was the only significant predictor of DLCO (P = 0.049). For COPD ex?smokers, CT relative area
Global Optimization by Adapted Diffusion
Poliannikov, Oleg V.
In this paper, we study a diffusion stochastic dynamics with a general diffusion coefficient. The main result is that adapting the diffusion coefficient to the Hamiltonian allows to escape local wide minima and to speed ...
Yoshinori Sawae; Joich Sugimura
2010-01-01
Hydrogen is expected as a clean and renewable energy carrier for future environment-friendly society. Many machine elements in hydrogen energy systems should be operating within hydrogen gas and tribological behavior, such as friction and wear, of bearings and seals are affected by the hydrogen environment through some interactions between material surfaces and gaseous hydrogen, i.e., physisorption of hydrogen molecules and
Separating gaseous isotope mixtures
Rosenberger
1977-01-01
A process is described for separating gaseous isotope mixtures having the general molecular composition X\\/sub n1\\/\\/sup (1)\\/ X\\/sub n2\\/\\/sup (2)\\/...X\\/sub ni\\/\\/sup (i)\\/, where a constituent X\\/sup (k)\\/ can be replaced by an isotope anti X--\\/sup (k)\\/ by irradiation with laser light.
NASA Astrophysics Data System (ADS)
Díaz, R.
2012-06-01
Diffusion coefficients of two mobile ions are computed from the conductivity variation with time of three In-rich chalcopyrite single crystals of the ABn-3Inn+1VI2n system (AB=Cu and Ag and VI=Se or Te). The coefficients have similar values in the three compounds, higher than in chalcopyrite compounds (ABInSe2) due to a higher number of (2VCu+InCu) defect pairs in the lattice. In each compound, the potential across the sample or the current intensity, Vm and I, can increase or decrease within time due to a change in the interface potential by the ion arrival, where the decrease could be explained by a charge decrease. Mobile ions arrive while others, with higher charge, should leave related to the formation or disappearance of (2VCu+InCu) defect pairs. Compositional measurements confirm the motion of Cu ions and In antisites, InCu, in the Cu sublattice. Therefore, these compounds are mixed ionic and electronic conductors, MIECs, with two mobile ions, where the electronic and ionic conductions are non-blocked and blocked in the metal/semiconductor interface respectively. An equivalent electrical circuit is proposed, extensible at MIECs with j mobile ions, where the interface potential is similar to the potential drop in the charge or discharge in the capacitor. The analysis of the total flux of ions due to diffusion, jdiff, and to the action of electrical field, jdrift, permits compute the number of ions, their diffusion coefficients and the change of the potential drop within time in the interface in compounds with several mobile ions. This electrical model is checked using the experimental data in the three single crystals in a computer program. To know different mobile ions in In-rich chalcopyrites and their diffusion coefficients will permit to understand and have mechanisms of control in solar cell fabrication based in chalcopyrite thin films.
Janik, Leslie J; Forrester, Sean T; Soriano-Disla, José M; Kirby, Jason K; McLaughlin, Michael J; Reimann, Clemens
2015-02-01
The authors' aim was to develop rapid and inexpensive regression models for the prediction of partitioning coefficients (Kd), defined as the ratio of the total or surface-bound metal/metalloid concentration of the solid phase to the total concentration in the solution phase. Values of Kd were measured for boric acid (B[OH]3(0)) and selected added soluble oxoanions: molybdate (MoO4(2-)), antimonate (Sb[OH](6-)), selenate (SeO4(2-)), tellurate (TeO4(2-)) and vanadate (VO4(3-)). Models were developed using approximately 500 spectrally representative soils of the Geochemical Mapping of Agricultural Soils of Europe (GEMAS) program. These calibration soils represented the major properties of the entire 4813 soils of the GEMAS project. Multiple linear regression (MLR) from soil properties, partial least-squares regression (PLSR) using mid-infrared diffuse reflectance Fourier-transformed (DRIFT) spectra, and models using DRIFT spectra plus analytical pH values (DRIFT?+?pH), were compared with predicted log K(d?+?1) values. Apart from selenate (R(2) ?=?0.43), the DRIFT?+?pH calibrations resulted in marginally better models to predict log K(d?+?1) values (R(2) ?=?0.62-0.79), compared with those from PSLR-DRIFT (R(2) ?=?0.61-0.72) and MLR (R(2) ?=?0.54-0.79). The DRIFT?+?pH calibrations were applied to the prediction of log K(d?+?1) values in the remaining 4313 soils. An example map of predicted log K(d?+?1) values for added soluble MoO4(2-) in soils across Europe is presented. The DRIFT?+?pH PLSR models provided a rapid and inexpensive tool to assess the risk of mobility and potential availability of boric acid and selected oxoanions in European soils. For these models to be used in the prediction of log K(d?+?1) values in soils globally, additional research will be needed to determine if soil variability is accounted on the calibration. PMID:25476926
Shi Run [Polar Research Institute of China, Shanghai (China); Ni, Binbin [Department of Atmospheric and Oceanic Sciences, UCLA, Los Angeles, California 90095-1565 (United States); Gu Xudong [Institute of Geophysics and Planetary Physics, UCLA, Los Angeles, California 90095-1567 (United States); Zhao Zhengyu; Zhou Chen [Department of Space Physics, Wuhan University, Wuhan, Hubei (China)
2012-07-15
The resonance regions for resonant interactions of radiation belt electrons with obliquely propagating whistler-mode chorus waves are investigated in detail in the Dungey magnetic fields that are parameterized by the intensity of uniform southward interplanetary magnetic field (IMF) Bz or, equivalently, by the values of D=(M/B{sub z,0}){sup 1/3} (where M is the magnetic moment of the dipole and B{sub z,0} is the uniform southward IMF normal to the dipole's equatorial plane). Adoption of background magnetic field model can considerably modify the determination of resonance regions. Compared to the results for the case of D = 50 (very close to the dipole field), the latitudinal coverage of resonance regions for 200 keV electrons interacting with chorus waves tends to become narrower for smaller D-values, regardless of equatorial pitch angle, resonance harmonics, and wave normal angle. In contrast, resonance regions for 1 MeV electrons tend to have very similar spatial lengths along the field line for various Dungey magnetic field models but cover different magnetic field intervals, indicative of a strong dependence on electron energy. For any given magnetic field line, the resonance regions where chorus-electron resonant interactions can take place rely closely on equatorial pitch angle, resonance harmonics, and kinetic energy. The resonance regions tend to cover broader latitudinal ranges for smaller equatorial pitch angles, higher resonance harmonics, and lower electron energies, consistent with the results in Ni and Summers [Phys. Plasmas 17, 042902, 042903 (2010)]. Calculations of quasi-linear bounce-averaged diffusion coefficients for radiation belt electrons due to nightside chorus waves indicate that the resultant scattering rates differ from using different Dungey magnetic field models, demonstrating a strong dependence of wave-induced electron scattering effect on the adoption of magnetic field model. Our results suggest that resonant wave-particle interaction processes should be implemented into a sophisticated, accurate global magnetic field model to pursue comprehensive and complete models of radiation belt electron dynamics.
Lu, W.J.; Chou, I.-Ming; Burruss, R.C.; Yang, M.Z.
2006-01-01
A new method was developed for in situ study of the diffusive transfer of methane in aqueous solution under high pressures near hydrate formation conditions within an optical capillary cell. Time-dependent Raman spectra of the solution at several different spots along the one-dimensional diffusion path were collected and thus the varying composition profile of the solution was monitored. Diffusion coefficients were estimated by the least squares method based on the variations in methane concentration data in space and time in the cell. The measured diffusion coefficients of methane in water at the liquid (L)-vapor (V) stable region and L-V metastable region are close to previously reported values determined at lower pressure and similar temperature. This in situ monitoring method was demonstrated to be suitable for the study of mass transfer in aqueous solution under high pressure and at various temperature conditions and will be applied to the study of nucleation and dissolution kinetics of methane hydrate in a hydrate-water system where the interaction of methane and water would be more complicated than that presented here for the L-V metastable condition. ?? 2006 Society for Applied Spectroscopy.
Musser, Joseph Alan
2007-04-25
to be independent of the flow rate and turbulence in the medium. In addition we report the development of a diffuse reflector which, to our best knowledge, has the highest measured diffuse reflectivity of 0.998 at 532 nm and 0.996 at 266 nm. We also show...
NetLogo Diffusion Simulation Java Applet
NSDL National Science Digital Library
Johannes Kottonau
Java applet of an agent-based simulation built in NetLogo. This applet simulates the gaseous diffusion of perfume molecules. The interface provides various means of measuring and tracking the diffusion process.
Argon+carbon dioxide gaseous mixture viscosities and anisotropic pair potential energy functions
NASA Astrophysics Data System (ADS)
Hunter, I. N.; Marsh, G.; Matthews, G. P.; Smith, E. B.
1993-07-01
The viscosities of pure gaseous carbon dioxide and argon+carbon dioxide mixtures have been measured with a capillary flow viscometer. The viscosities are relative to those of argon, in the temperature range 213 to 353 K, and considered accurate to ±0.7%. The pure-component viscosities agree closely with previous measurements. The mixture viscosities are used to calculate interaction viscosities and binary diffusion coefficients, which are compared with previous measurements. Interaction viscosities have been calculated, by use of the Mason-Monchick approximation, from the anisotropic pair potential energy functions for the unlike interaction proposed by Pack and his co-workers and by Hough and Howard. Comparison of these calculated interaction viscosities with those derived from our experiments and the higher-temperature measurements of Hobley, Matthews, and Townsend proves to be a powerful discriminant for the proposed anisotropic potential functions.
Gaseous Fuel Injection Modeling using a Gaseous Sphere Injection Methodology
Hessel, R P; Aceves, S M; Flowers, D L
2006-03-06
The growing interest in gaseous fuels (hydrogen and natural gas) for internal combustion engines calls for the development of computer models for simulation of gaseous fuel injection, air entrainment and the ensuing combustion. This paper introduces a new method for modeling the injection and air entrainment processes for gaseous fuels. The model uses a gaseous sphere injection methodology, similar to liquid droplet in injection techniques used for liquid fuel injection. In this paper, the model concept is introduced and model results are compared with correctly- and under-expanded experimental data.
Gaseous transportation fuels: a study
R. D. Fleming; R. L. Bechfold
1982-01-01
This paper stresses that gaseous fuels, though not yet wholly practical as mobile sources of energy, can be used in internal combustion engines as alternatives to present petroleum products. It points out that gaseous fuels can increase spark ignition internal combustion engine efficiency during warmup operation and can benefit engine efficiency generally, but at the cost of a heavier fuel
Najita, Joan R; Glassgold, Alfred E; Valenti, Jeff
2007-01-01
As the likely birthplaces of planets and an essential conduit for the buildup of stellar masses, inner disks are of fundamental interest in star and planet formation. Studies of the gaseous component of inner disks are of interest because of their ability to probe the dynamics, physical and chemical structure, and gas content of this region. We review the observational and theoretical developments in this field, highlighting the potential of such studies to, e.g., measure inner disk truncation radii, probe the nature of the disk accretion process, and chart the evolution in the gas content of disks. Measurements of this kind have the potential to provide unique insights on the physical processes governing star and planet formation.
Joan R. Najita; John S. Carr; Alfred E. Glassgold; Jeff Valenti
2007-04-13
As the likely birthplaces of planets and an essential conduit for the buildup of stellar masses, inner disks are of fundamental interest in star and planet formation. Studies of the gaseous component of inner disks are of interest because of their ability to probe the dynamics, physical and chemical structure, and gas content of this region. We review the observational and theoretical developments in this field, highlighting the potential of such studies to, e.g., measure inner disk truncation radii, probe the nature of the disk accretion process, and chart the evolution in the gas content of disks. Measurements of this kind have the potential to provide unique insights on the physical processes governing star and planet formation.