Science.gov

Sample records for gaseous diffusion coefficients

  1. Correlation and prediction of gaseous diffusion coefficients.

    NASA Technical Reports Server (NTRS)

    Marrero, T. R.; Mason, E. A.

    1973-01-01

    A new correlation method for binary gaseous diffusion coefficients from very low temperatures to 10,000 K is proposed based on an extended principle of corresponding states, and having greater range and accuracy than previous correlations. There are two correlation parameters that are related to other physical quantities and that are predictable in the absence of diffusion measurements. Quantum effects and composition dependence are included, but high-pressure effects are not. The results are directly applicable to multicomponent mixtures.

  2. Solubility and diffusion coefficients of gaseous formaldehyde in polymers.

    PubMed

    Hennebert, P

    1988-03-01

    The solubility and diffusion (desorption) coefficients of gaseous formaldehyde in 14 materials have been measured at different temperatures. Cellulose, paper, polyamide (Nylon 6), polyester and natural rubber (latex) show very high values of formaldehyde solubility and very low diffusion coefficients, with a weak or inversed influence of the temperature, leading to the conclusion that a chemical reaction occurs with the formaldehyde. The behaviour of the other polymers follows the classical laws of solubility and diffusion of gases except for silicone rubber which shows two-phase desorption curves. PMID:3370284

  3. In situ estimation of the gaseous nitrous oxide diffusion coefficient in a sandy loam soil

    SciTech Connect

    Bochove, E. van; Bertrand, N.; Caron, J.

    1998-09-01

    The estimation of gas exchanges with the soil is important when assessing gas emission to the atmospheric environment or gas consumption by the soil. This estimation often requires the measurement of the diffusion coefficient of the investigated gas. The aim of this study was to develop an experimental method creating limited soil disturbance and based on simple calculation procedures to determine the diffusion coefficient, D{sub s}, for N{sub 2}O in soils. This objective was achieved using a N{sub 2}O mass flow meter that supplied a continuous and constant flow of gas from below the soil surface until a steady-state N{sub 2}O concentration gradient with depth was obtained. The coefficients of diffusion were calculated daily for 6d, under steady-state concentration gradient, using Fick`s first law. The mean value of the diffusion coefficient for N{sub 2}O was 1.26 {times} 10{sup {minus}6} m{sup 2} s{sup {minus}1} (CV = 25%) at 0.16 m{sup 3} m{sup {minus}3} of air-filled porosity. This value was validated by a transient-state laboratory method using soil cores and compared with empirical estimations of D{sub s} from air-filled porosity determinations. The two experimental methods produced similar values for D{sub s} and both provided more accurate estimates than the empirical models. The proposed method can be applied to other gases provided an empirical model relating to D{sub s} to D{sub o} (gas diffusivity in free air) is first established. A theoretical study identified the threshold air-filled porosity values below which the flux density must be adjusted to maintain the validity of the D{sub s} calculations.

  4. Turbulent diffusion of chemically reacting gaseous admixtures.

    PubMed

    Elperin, T; Kleeorin, N; Liberman, M; Rogachevskii, I

    2014-11-01

    We study turbulent diffusion of chemically reacting gaseous admixtures in a developed turbulence. In our previous study [Phys. Rev. Lett. 80, 69 (1998)PRLTAO0031-900710.1103/PhysRevLett.80.69] using a path-integral approach for a delta-correlated in a time random velocity field, we demonstrated a strong modification of turbulent transport in fluid flows with chemical reactions or phase transitions. In the present study we use the spectral ? approximation that is valid for large Reynolds and Peclet numbers and show that turbulent diffusion of the reacting species can be strongly depleted by a large factor that is the ratio of turbulent and chemical times (turbulent Damköhler number). We have demonstrated that the derived theoretical dependence of a turbulent diffusion coefficient versus the turbulent Damköhler number is in good agreement with that obtained previously in the numerical modeling of a reactive front propagating in a turbulent flow and described by the Kolmogorov-Petrovskii-Piskunov-Fisher equation. We have found that turbulent cross-effects, e.g., turbulent mutual diffusion of gaseous admixtures and turbulent Dufour effect of the chemically reacting gaseous admixtures, are less sensitive to the values of stoichiometric coefficients. The mechanisms of the turbulent cross-effects differ from the molecular cross-effects known in irreversible thermodynamics. In a fully developed turbulence and at large Peclet numbers the turbulent cross-effects are much larger than the molecular ones. The obtained results are applicable also to heterogeneous phase transitions. PMID:25493875

  5. Turbulent diffusion of chemically reacting gaseous admixtures

    NASA Astrophysics Data System (ADS)

    Elperin, T.; Kleeorin, N.; Liberman, M.; Rogachevskii, I.

    2014-11-01

    We study turbulent diffusion of chemically reacting gaseous admixtures in a developed turbulence. In our previous study [Phys. Rev. Lett. 80, 69 (1998), 10.1103/PhysRevLett.80.69] using a path-integral approach for a delta-correlated in a time random velocity field, we demonstrated a strong modification of turbulent transport in fluid flows with chemical reactions or phase transitions. In the present study we use the spectral ? approximation that is valid for large Reynolds and Peclet numbers and show that turbulent diffusion of the reacting species can be strongly depleted by a large factor that is the ratio of turbulent and chemical times (turbulent Damköhler number). We have demonstrated that the derived theoretical dependence of a turbulent diffusion coefficient versus the turbulent Damköhler number is in good agreement with that obtained previously in the numerical modeling of a reactive front propagating in a turbulent flow and described by the Kolmogorov-Petrovskii-Piskunov-Fisher equation. We have found that turbulent cross-effects, e.g., turbulent mutual diffusion of gaseous admixtures and turbulent Dufour effect of the chemically reacting gaseous admixtures, are less sensitive to the values of stoichiometric coefficients. The mechanisms of the turbulent cross-effects differ from the molecular cross-effects known in irreversible thermodynamics. In a fully developed turbulence and at large Peclet numbers the turbulent cross-effects are much larger than the molecular ones. The obtained results are applicable also to heterogeneous phase transitions.

  6. Studies of Gaseous Multiplication Coefficient in Isobutane

    SciTech Connect

    Lima, Iara B.; Vivaldini, Tulio C.; Goncalves, Josemary A. C.; Botelho, Suzana; Bueno Tobias, Carmen C.; Ridenti, Marco A.; Pascholati, Paulo R.; Fonte, Paulo; Mangiarotti, Alessio

    2010-05-21

    This work presents the studies of gaseous multiplication coefficient behavior for isobutane, as function of the reduced electric field, by means of signal amplitude analysis. The experimental method used is based on the Pulsed Townsend technique, which follows from Townsend equation solution for a uniform electric field. In our configuration, the anode is made of a high resistivity (2.10{sup 12} OMEGA.cm) glass, while the cathode is of aluminium. In order to validate the technique and to analyze effects of non-uniformity, results for nitrogen, which has well-established data available in literature, are also presented.

  7. Cytoplasmic hydrogen ion diffusion coefficient.

    PubMed Central

    al-Baldawi, N F; Abercrombie, R F

    1992-01-01

    The apparent cytoplasmic proton diffusion coefficient was measured using pH electrodes and samples of cytoplasm extracted from the giant neuron of a marine invertebrate. By suddenly changing the pH at one surface of the sample and recording the relaxation of pH within the sample, an apparent diffusion coefficient of 1.4 +/- 0.5 x 10(-6) cm2/s (N = 7) was measured in the acidic or neutral range of pH (6.0-7.2). This value is approximately 5x lower than the diffusion coefficient of the mobile pH buffers (approximately 8 x 10(-6) cm2/s) and approximately 68x lower than the diffusion coefficient of the hydronium ion (93 x 10(-6) cm2/s). A mobile pH buffer (approximately 15% of the buffering power) and an immobile buffer (approximately 85% of the buffering power) could quantitatively account for the results at acidic or neutral pH. At alkaline pH (8.2-8.6), the apparent proton diffusion coefficient increased to 4.1 +/- 0.8 x 10(-6) cm2/s (N = 7). This larger diffusion coefficient at alkaline pH could be explained quantitatively by the enhanced buffering power of the mobile amino acids. Under the conditions of these experiments, it is unlikely that hydroxide movement influences the apparent hydrogen ion diffusion coefficient. PMID:1617134

  8. Portable vapor diffusion coefficient meter

    DOEpatents

    Ho, Clifford K. (Albuquerque, NM)

    2007-06-12

    An apparatus for measuring the effective vapor diffusion coefficient of a test vapor diffusing through a sample of porous media contained within a test chamber. A chemical sensor measures the time-varying concentration of vapor that has diffused a known distance through the porous media. A data processor contained within the apparatus compares the measured sensor data with analytical predictions of the response curve based on the transient diffusion equation using Fick's Law, iterating on the choice of an effective vapor diffusion coefficient until the difference between the predicted and measured curves is minimized. Optionally, a purge fluid can forced through the porous media, permitting the apparatus to also measure a gas-phase permeability. The apparatus can be made lightweight, self-powered, and portable for use in the field.

  9. Uranium enrichment export control guide: Gaseous diffusion

    SciTech Connect

    Not Available

    1989-09-01

    This document was prepared to serve as a guide for export control officials in their interpretation, understanding, and implementation of export laws that relate to the Zangger International Trigger List for gaseous diffusion uranium enrichment process components, equipment, and materials. Particular emphasis is focused on items that are especially designed or prepared since export controls are required for these by States that are party to the International Nuclear Nonproliferation Treaty.

  10. Radiant Extinction Of Gaseous Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Berhan, S.; Chernovsky, M.; Atreya, A.; Baum, Howard R.; Sacksteder, Kurt R.

    2003-01-01

    The absence of buoyancy-induced flows in microgravity (mu:g) and the resulting increase in the reactant residence time significantly alters the fundamentals of many combustion processes. Substantial differences between normal gravity (ng) and :g flames have been reported in experiments on candle flames [1, 2], flame spread over solids [3, 4], droplet combustion [5,6], and others. These differences are more basic than just in the visible flame shape. Longer residence times and higher concentration of combustion products in the flame zone create a thermochemical environment that changes the flame chemistry and the heat and mass transfer processes. Processes such as flame radiation, that are often ignored in ng, become very important and sometimes even controlling. Furthermore, microgravity conditions considerably enhance flame radiation by: (i) the build-up of combustion products in the high-temperature reaction zone which increases the gas radiation, and (ii) longer residence times make conditions appropriate for substantial amounts of soot to form which is also responsible for radiative heat loss. Thus, it is anticipated that radiative heat loss may eventually extinguish the Aweak@ (low burning rate per unit flame area) :g diffusion flame. Yet, space shuttle experiments on candle flames show that in an infinite ambient atmosphere, the hemispherical candle flame in :g will burn indefinitely [1]. This may be because of the coupling between the fuel production rate and the flame via the heat-feedback mechanism for candle flames, flames over solids and fuel droplet flames. Thus, to focus only on the gas-phase phenomena leading to radiative extinction, aerodynamically stabilized gaseous diffusion flames are examined. This enables independent control of the fuel flow rate to help identify conditions under which radiative extinction occurs. Also, spherical geometry is chosen for the :g experiments and modeling because: (i) It reduces the complexity by making the problem one-dimensional. (ii) The spherical diffusion flame completely encloses the soot which is formed on the fuel rich side of the reaction zone. This increases the importance of flame radiation because now both soot and gaseous combustion products co-exist inside the high temperature spherical diffusion flame. (iii) For small fuel injection velocities, as is usually the case for a pyrolyzing solid, the diffusion flame in :g around the solid naturally develops spherical symmetry. Thus, spherical diffusion flames are of interest to fires in :g and identifying conditions that lead to radiation-induced extinction is important for spacecraft fire safety.

  11. Viscosity and thermal conductivity coefficients of gaseous and liquid oxygen

    NASA Technical Reports Server (NTRS)

    Hanley, H. J. M.; Mccarty, R. D.; Sengers, J. V.

    1974-01-01

    Equations and tables are presented for the viscosity and thermal conductivity coefficients of gaseous and liquid oxygen at temperatures between 80 K and 400 K for pressures up to 200 atm. and at temperatures between 80 K and 2000 K for the dilute gas. A description of the anomalous behavior of the thermal conductivity in the critical region is included. The tabulated coefficients are reliable to within about 15% except for a region in the immediate vicinity of the critical point. Some possibilities for future improvements of this reliability are discussed.

  12. 78 FR 66779 - United States Enrichment Corporation, Paducah Gaseous Diffusion Plant, Including On-Site Leased...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-06

    ...Enrichment Corporation, Paducah Gaseous Diffusion Plant, Including On-Site Leased Workers...Enrichment Corporation, Paducah Gaseous Diffusion Plant, including on-site leased workers...Enrichment Corporation, Paducah Gaseous Diffusion Plant, including on-site leased...

  13. Diffusion coefficients of several aqueous alkanolamine solutions

    SciTech Connect

    Snijder, E.D.; Riele, M.J.M. te; Versteeg, G.F.; Swaaij, W.P.M. van . Dept. of Chemical Engineering)

    1993-07-01

    In absorption processes of acid gases (H[sub 2]S, CO[sub 2], COS) in alkanolamine solutions, diffusion coefficients are used for the calculation of the mass transfer rate. The Taylor dispersion technique was applied for the determination of diffusion coefficients of various systems. Experiments with the system KCl in water showed that the experimental setup provides accurate data. For the alkanolamines monoethanolamine (MEA), diethanolamine (DEA), methyldiethanolamine (MDEA), and di-2-propanolamine (DIPA), correlations for the diffusion coefficient as a function of temperature at different concentrations are given. A single relation for every amine has been derived which correlates the diffusion coefficients as a function of temperature and concentration. The temperature was varied between 298 and 348 K, and the concentration between 0 and 4000-5000 mol/m[sup 3]. Furthermore, a modified Stokes-Einstein relation is presented for the prediction of the diffusion coefficients in the alkanolamines in relation to the viscosity of the solvent and the diffusion coefficient at infinite dilution. The diffusion coefficients at low concentrations are compared with some available relations for the estimation of diffusion coefficients at infinite dilution, and it appears that the agreement is fairly good.

  14. Favorite Demonstrations: Gaseous Diffusion: A Demonstration of Graham's Law.

    ERIC Educational Resources Information Center

    Kauffman, George B.; Ebner, Ronald D.

    1985-01-01

    Describes a demonstration in which gaseous ammonia and hydrochloric acid are used to illustrate rates of diffusion (Graham's Law). Simple equipment needed for the demonstration include a long tube, rubber stoppes, and cotton. Two related demonstrations are also explained. (DH)

  15. 78 FR 65389 - United States Enrichment Corporation, Paducah Gaseous Diffusion Plant

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-31

    ...Enrichment Corporation, Paducah Gaseous Diffusion Plant AGENCY: Nuclear Regulatory Commission...Compliance (CoC) for the Paducah Gaseous Diffusion Plant (PGDP). The current CoC for...using the gaseous [[Page 65390

  16. Molecular Diffusion Coefficients: Experimental Determination and Demonstration.

    ERIC Educational Resources Information Center

    Fate, Gwendolyn; Lynn, David G.

    1990-01-01

    Presented are laboratory methods which allow the demonstration and determination of the diffusion coefficients of compounds ranging in size from water to small proteins. Included are the procedures involving the use of a spectrometer, UV cell, triterated agar, and oxygen diffusion. Results including quantification are described. (CW)

  17. Diffusion and transport coefficients in synthetic opals

    SciTech Connect

    Sofo, J. O.; Mahan, G. D.; Department of Physics and Astronomy, The University of Tennessee, Knoxville, Tennessee 37996-1200

    2000-07-15

    Opals are structures composed of close-packed spheres in the size range of nano to micrometers. They are sintered to create small necks at the points of contact. We have solved the diffusion problem in such structures. The relation between the diffusion coefficient and the thermal and electrical conductivity is used to estimate the transport coefficients of opal structures as a function of the neck size and the mean free path of the carriers. The theory presented is also applicable to the diffusion problem in other periodic structures. (c) 2000 The American Physical Society.

  18. Diffusion coefficients in leaflets of bilayer membranes.

    PubMed

    Seki, Kazuhiko; Mogre, Saurabh; Komura, Shigeyuki

    2014-02-01

    We study diffusion coefficients of liquid domains by explicitly taking into account the two-layered structure called leaflets of the bilayer membrane. In general, the velocity fields associated with each leaflet are different and the layers sliding past each other cause frictional coupling. We obtain analytical results of diffusion coefficients for a circular liquid domain in a leaflet, and quantitatively study their dependence on the interleaflet friction. We also show that the diffusion coefficients diverge in the absence of coupling between the bilayer and solvents, even when the interleaflet friction is taken into account. In order to corroborate our theory, the effect of the interleaflet friction on the correlated diffusion is examined. PMID:25353515

  19. 78 FR 66779 - United States Enrichment Corporation, Paducah Gaseous Diffusion Plant, Including On-Site Leased...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-06

    ... (78 FR 47780). At the request of the company official, the Department reviewed the certification for... and Training Administration United States Enrichment Corporation, Paducah Gaseous Diffusion Plant... Corporation, Paducah Gaseous Diffusion Plant, including on-site leased workers from Diversified...

  20. 77 FR 3255 - Notice of 229 Boundary Revision at the Paducah Gaseous Diffusion Plant

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-23

    ...Boundary Revision at the Paducah Gaseous Diffusion Plant AGENCY: Department of Energy...other facilities of the Paducah Gaseous Diffusion Plant, located in McCracken County...real property of the Paducah Gaseous Diffusion Plant located in McCracken County,...

  1. Paducah Gaseous Diffusion Plant environmental report for 1992

    SciTech Connect

    Horak, C.M.

    1993-09-01

    This two-part report, Paducah Gaseous Diffusion Plant Environmental Report for 1992, is published annually. It reflects the results of an environmental monitoring program designed to quantify potential increases in the concentration of contaminants and potential doses to the resident human population. The Paducah Gaseous Diffusion Plant (PGDP) overall goal for environmental management is to protect the environment and PGDP`s neighbors and to maintain full compliance with all current regulations. The current environmental strategy is to identify any deficiencies and to develop a system to resolve them. The long-range goal of environmental management is to minimize the source of pollutants, reduce the generation of waste, and minimize hazardous waste by substitution of materials.

  2. Paducah Gaseous Diffusion Plant Environmental report for 1990

    SciTech Connect

    Counce-Brown, D.

    1991-09-01

    This two-part report, Paducah Gaseous Diffusion Plant Site Environmental Report for 1990, is published annually. It reflects the results of a comprehensive, year-round program to monitor the impact of operations at Paducah Gaseous Diffusion Plant (PGDP) on the area's groundwater and surface waters, soil, air quality, vegetation, and wildlife. In addition, an assessment of the effect of PGDP effluents on the resident human population is made. PGDP's overall goal for environmental management is to protect the environment and PGDP's neighbors and to maintain full compliance with all current regulations. The current environmental strategy is to identify any deficiencies and to develop a system to resolve them. The long-range goal of environmental management is to minimize the source of pollutants, to reduce the formation of waste, and to minimize hazardous waste by substitution of materials.

  3. Simulation of gaseous diffusion in partially saturated porous media under variable gravity with lattice Boltzmann methods.

    PubMed

    Chau, Jessica Furrer; Or, Dani; Sukop, Michael C

    2005-08-01

    Liquid distributions in unsaturated porous media under different gravitational accelerations and corresponding macroscopic gaseous diffusion coefficients were investigated to enhance understanding of plant growth conditions in microgravity. We used a single-component, multiphase lattice Boltzmann code to simulate liquid configurations in two-dimensional porous media at varying water contents for different gravity conditions and measured gas diffusion through the media using a multicomponent lattice Boltzmann code. The relative diffusion coefficients (D rel) for simulations with and without gravity as functions of air-filled porosity were in good agreement with measured data and established models. We found significant differences in liquid configuration in porous media, leading to reductions in D rel of up to 25% under zero gravity. The study highlights potential applications of the lattice Boltzmann method for rapid and cost-effective evaluation of alternative plant growth media designs under variable gravity. PMID:16173154

  4. Simulation of gaseous diffusion in partially saturated porous media under variable gravity with lattice Boltzmann methods

    NASA Technical Reports Server (NTRS)

    Chau, Jessica Furrer; Or, Dani; Sukop, Michael C.; Steinberg, S. L. (Principal Investigator)

    2005-01-01

    Liquid distributions in unsaturated porous media under different gravitational accelerations and corresponding macroscopic gaseous diffusion coefficients were investigated to enhance understanding of plant growth conditions in microgravity. We used a single-component, multiphase lattice Boltzmann code to simulate liquid configurations in two-dimensional porous media at varying water contents for different gravity conditions and measured gas diffusion through the media using a multicomponent lattice Boltzmann code. The relative diffusion coefficients (D rel) for simulations with and without gravity as functions of air-filled porosity were in good agreement with measured data and established models. We found significant differences in liquid configuration in porous media, leading to reductions in D rel of up to 25% under zero gravity. The study highlights potential applications of the lattice Boltzmann method for rapid and cost-effective evaluation of alternative plant growth media designs under variable gravity.

  5. Paducah Gaseous Diffusion Plant Annual Site Environmental Report for 1993

    SciTech Connect

    Not Available

    1994-10-01

    The purpose of this document is to summarize effluent monitoring and environmental surveillance results and compliance with environmental laws, regulations, and orders at the Paducah Gaseous Diffusion Plant (PGDP). Environmental monitoring at PGDP consists of two major activities: effluent monitoring and environmental surveillance. Effluent monitoring is direct measurement or the collection and analysis of samples of liquid and gaseous discharges to the environment. Environmental surveillance is direct measurement or the collection and analysis of samples of air, water, soil, foodstuff, biota, and other media. Environmental monitoring is performed to characterize and quantify contaminants, assess radiation exposures of members of the public, demonstrate compliance with applicable standards and permit requirements, and detect and assess the effects (if any) on the local environment. Multiple samples are collected throughout the year and are analyzed for radioactivity, chemical content, and various physical attributes.

  6. Laminar and Turbulent Gaseous Diffusion Flames. Appendix C

    NASA Technical Reports Server (NTRS)

    Faeth, G. M.; Urban, D. L. (Technical Monitor); Yuan, Z.-G. (Technical Monitor)

    2001-01-01

    Recent measurements and predictions of the properties of homogeneous (gaseous) laminar and turbulent non-premixed (diffusion) flames are discussed, emphasizing results from both ground- and space-based studies at microgravity conditions. Initial considerations show that effects of buoyancy not only complicate the interpretation of observations of diffusion flames but at times mislead when such results are applied to the non-buoyant diffusion flame conditions of greatest practical interest. This behavior motivates consideration of experiments where effects of buoyancy are minimized; therefore, methods of controlling the intrusion of buoyancy during observations of non-premixed flames are described, considering approaches suitable for both normal laboratory conditions as well as classical microgravity techniques. Studies of laminar flames at low-gravity and microgravity conditions are emphasized in view of the computational tractability of such flames for developing methods of predicting flame structure as well as the relevance of such flames to more practical turbulent flames by exploiting laminar flamelet concepts.

  7. Portsmouth Gaseous Diffusion Plant Environmental report for 1990

    SciTech Connect

    Counce-Brown, D.

    1991-09-01

    This calendar year 1990 annual report on environmental surveillance of the US Department of Energy's (DOE's) Portsmouth Gaseous Diffusion Plant (PORTS) and its environs consists of two parts: the summary, discussion, and conclusions (Part 1) and the data presentation (Part 2). The objectives of this report are as follows: report 1990 monitoring data for the installation and its environs that may have been affected by operations on the plant site, provide reasonably detailed information about the plant site and plant operations, provide detailed information on input and assumptions used in all calculations, provide trend analyses (when appropriate) to indicate increases and decreases in environmental impact, and provide general information on plant quality assurance.

  8. Universal Properties of the Langevin Diffusion Coefficients

    E-print Network

    Dimitrios Giataganas; Hesam Soltanpanahi

    2014-03-21

    We show that in generic isotropic holographic theories the longitudinal Langevin diffusion coefficient along the string motion is larger compared to that of the transverse direction. We argue that this is a universal relation and we derive the generic conditions in order to be satisfied. A way to violate the relation is to consider anisotropic gauge/gravity dualities. We give an explicit example of this violation where the noise along the transverse direction is larger than the noise occurring along the quark motion. Moreover, we derive the effective world-sheet temperature for any generic theory and then the conditions for negative excess noise. We argue that isotropic theories can not have negative excess noise and we additionally remark that these conditions are difficult to get satisfied, indicating positivity of the excess noise, even in a large class of anisotropic holographic theories.

  9. Diffusion coefficient of three-dimensional Yukawa liquids

    SciTech Connect

    Dzhumagulova, K. N.; Ramazanov, T. S.; Masheeva, R. U.

    2013-11-15

    The purpose of this work is an investigation of the diffusion coefficient of the dust component in complex plasma. The computer simulation of the Yukawa liquids was made on the basis of the Langevin equation, which takes into account the influence of buffer plasma on the dust particles dynamics. The Green–Kubo relation was used to calculate the diffusion coefficient. Calculations of the diffusion coefficient for a wide range of the system parameters were performed. Using obtained numerical data, we constructed the interpolation formula for the diffusion coefficient. We also show that the interpolation formula correctly describes experimental data obtained under microgravity conditions.

  10. Portsmouth Gaseous Diffusion Plant annual site environmental report for 1993

    SciTech Connect

    Horak, C.M.

    1994-11-01

    This calendar year (CY) 1993 annual report on environmental monitoring of the US Department of Energy`s (DOE`s) Portsmouth Gaseous Diffusion Plant (Portsmouth) and its environs consists of three separate documents: a summary pamphlet for the general public; a more detail discussion and of compliance status, data, and environmental impacts (this document); and a volume of detailed data that is available on request. The objectives of this report are to report compliance status during 1993; provide information about the plant site and plant operations; report 1993 monitoring data for the installation and its environs that may have been affected by operations on the plant site; document information on input and assumptions used in calculations; provide trend analyses (where appropriate) to indicate increases and decreases in environmental impact, and provide general information on quality assurance for the environmental monitoring program.

  11. Paducah Gaseous Diffusion Plant environmental report for 1989

    SciTech Connect

    Turner, J.W. )

    1990-10-01

    This two-part environmental report is published annually. It reflects the results of a comprehensive, year-round program to monitor the impact of operations at Paducah Gaseous Diffusion Plant (PGDP) on the area's groundwater and surface waters, soil, air quality, vegetation, and wildlife. In addition, an assessment of the effect of PGDP effluents on the resident human population is made. PGDP's overall goal for environmental management is to protect the environment and PGDP's neighbors and to maintain full compliance with all current regulations. The current environmental strategy is to identify any deficiencies and to develop a system to resolve them. The long-range goal of environmental management is to minimize the source of pollutants, to reduce the formation of waste, and to minimize hazardous waste by substitution of materials. 36 refs.

  12. Seismic issues at the Paducah Gaseous Diffusion Plant

    SciTech Connect

    Fricke, K.E. )

    1989-11-01

    A seismic expert workshop was held at the Paducah Gaseous Diffusion Plant (PGDP) on March 13--15, 1989. the PGDP is operated by Martin Marietta Energy Systems, Inc. for the United States Department of Energy (DOE). During the last twenty years the design criteria for natural phenomenon hazards has steadily become more demanding at all of the DOE Oak Ridge Operations (ORO) sites. The purpose of the two-day workshop was to review the seismic vulnerability issues of the PGDP facilities. Participants to the workshop included recognized experts in the fields of seismic engineering, seismology and geosciences, and probabilistic analysis, along with engineers and other personnel from Energy Systems. A complete list of the workshop participants is included in the front of this report. 29 refs.

  13. Tiger Team Assessment of the Paducah Gaseous Diffusion Plant

    SciTech Connect

    Not Available

    1990-07-01

    This document contains findings and concerns identified during the Tiger Team Assessment of the Department of Energy's (DOE's) Paducah Gaseous Diffusion Plant (PGDP) in Paducah, Kentucky. The assessment was directed by the Department's Office of Environment, Safety and Health (ES H) and was conducted from June 18 to July 20, 1990. The PGDP Tiger Team Assessment is comprehensive in scope. It covers the Environmental, Safety and Health (including OSHA Compliance), and Management areas and determines the site's compliance with applicable federal (including DOE), state, and local regulations and requirements. The objective of the assessment program is to provide the Secretary with information on the current ES H compliance status of DOE facilities, root causation for noncompliance, adequacy of DOE and site contractor ES H management programs, response actions to address the identified problem areas, and DOE-wide ES H compliance trends and root causes. This volume contains appendices.

  14. Tiger Team Assessment of the Paducah Gaseous Diffusion Plant

    SciTech Connect

    Not Available

    1990-07-01

    This document contains findings and concerns identified during the Tiger Team Assessment of the Department of Energy's (DOE) Paducah Gaseous Diffusion Plant (PGDP) in Paducah, Kentucky. The assessment was directed by the Department's Office of Environment, Safety and Health (ES H) and was conducted from June 18 to July 20, 1990. The PGDP Tiger Team Assessment is comprehensive in scope. It covers the Environmental, Safety and Health (including OSHA Compliance), and Management areas and determines the site's compliance with applicable federal (including DOE), state, and local regulations and requirements. The objective of the assessment program is to provide the Secretary with information on the current ES H compliance status of DOE facilities, root causation for noncompliance, adequacy of DOE and site contractor ES H management programs, response actions to address the identified problem areas, and DOE-wide ES H compliance trends and root causes.

  15. Measurement of the Portsmouth Gaseous Diffusion Plant criticality accident alarm

    SciTech Connect

    Tayloe, R.W. Jr. ); McGinnis, B. )

    1990-08-31

    Measurements of the Portsmouth Gaseous Diffusion Plant's nuclear criticality accident radiation alarm signal response time, sound wave frequency, and sound volume levels were made to demonstrate compliance with ANSI/ANS-8.3-1986. A steady-state alarm signal is produced within one-half second of obtaining a two-out-of-three detector trip. The fundamental alarm sound wave frequency is 440 hertz. The sound volume levels are greater than 10 decibels above background and ranged from 100 to 125 A-weighted decibels. The requirements of the standard were met; however the recommended maximum sound volume level of 115 dBA was exceeded. Emergency procedures require immediate evacuation upon initiation of a facility's radiation alarm. Comparison with standards for allowable time of exposure at different noise levels indicate that the elevated noise level at this location does not represent an occupational injury hazard. 8 refs., 5 figs.

  16. 78 FR 30342 - United States Enrichment Corporation, Paducah Gaseous Diffusion Plant

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-22

    ... COMMISSION United States Enrichment Corporation, Paducah Gaseous Diffusion Plant AGENCY: Nuclear Regulatory... Renewal of its Certificate of Compliance (CoC) for the Paducah Gaseous Diffusion Plant (PGDP). The... compliance for PGDP on November 26, 1996, and assumed regulatory oversight for the plant on March 3,...

  17. 78 FR 65389 - United States Enrichment Corporation, Paducah Gaseous Diffusion Plant

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-31

    ... for a 5-year period with an expiration date of December 31, 2018. On May 22, 2013 (78 FR 30342), the... United States Enrichment Corporation, Paducah Gaseous Diffusion Plant AGENCY: Nuclear Regulatory...) for the Paducah Gaseous Diffusion Plant (PGDP). The current CoC for PGDP is set to expire on...

  18. 77 FR 3255 - Notice of 229 Boundary Revision at the Paducah Gaseous Diffusion Plant

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-23

    ... other facilities of the Paducah Gaseous Diffusion Plant, located in McCracken County, KY, published at (30 FR 13287, October 19, 1965 and at 45 FR 30106, May 7, 1980) are amended by substitution of the... 229 Boundary Revision at the Paducah Gaseous Diffusion Plant AGENCY: Department of Energy...

  19. Surface diffusion coefficients for room acoustics: free-field measures.

    PubMed

    Hargreaves, T J; Cox, T J; Lam, Y W; D'Antonio, P

    2000-10-01

    A surface diffusion coefficient is needed in room acoustics to enable the quality of diffusing surfaces to be evaluated. It may also facilitate more accurate geometric room acoustic models. This paper concentrates on diffusion coefficients derived from free-field polar responses. An extensive set of two- and three-dimensional measurements and predictions was used to test the worth of different diffusion coefficient definitions. The merits and problems associated with these types of coefficients are discussed, and past parameters reviewed. Two new coefficients are described. The new measure based on the autocorrelation function is forwarded as the best free-field coefficient. The strengths and weaknesses of the coefficient are defined. PMID:11051498

  20. Decommissioning of the Gaseous Diffusion Plant at BNFL Capenhurst

    SciTech Connect

    Baxter, S.G.; Bradbury, P.

    1993-12-31

    The Capenhurst Gaseous Diffusion Plant was built in the early 1950s. It was originally built to produce highly enriched uranium for defense purposes but in the early 1960s the section of the plant which had been used for dealing with high U235 enrichments, the HSD section, was isolated, emptied of its process gas and put into a care and surveillance state. The rest of the plant, the LSD section, then underwent a modification program for low enrichment uranium production for civil use. The plant was shut down in 1982, by which time Urenco Centrifuge Enrichment Plants were built and operating successfully at Capenhurst and the Diffusion Plant was no longer economic. Since that time a program of decommissioning and dismantling has been in progress dealing with over 160,000 tons of surface contaminated metal, concrete and other, potentially hazardous, material. By the middle of 1994 less than 2% of the total volume of the whole project will have been consigned for burial as LLW. Over 98% will have been successfully treated and recycled as clean materials. This paper describes progress on the project, with specific examples of volume reduction and decontamination techniques. The paper demonstrates how BNFL is able to tackle dismantling, volume reduction and decontamination of a large scale nuclear processing plant safely and cost effectively.

  1. 10 CFR Appendix C to Part 110 - Illustrative List of Gaseous Diffusion Enrichment Plant Assemblies and Components Under NRC...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Illustrative List of Gaseous Diffusion Enrichment Plant... Appendix C to Part 110—Illustrative List of Gaseous Diffusion Enrichment Plant Assemblies and Components... for gaseous diffusion enrichment plants are the systems of plant needed to feed UF6 to the...

  2. Innovative Decontamination Technology for Use in Gaseous Diffusion Plant Decommissioning

    SciTech Connect

    Peters, M.J.; Norton, C.J.; Fraikor, G.B.; Potter, G.L.; Chang, K.C.

    2006-07-01

    The results of bench scale tests demonstrated that TechXtract{sup R} RadPro{sup TM} technology (hereinafter referred to as RadPro{sup R}) can provide 100% coverage of complex mockup gaseous diffusion plant (GDP) equipment and can decontaminate uranium (U) deposits with 98% to 99.99% efficiency. Deployment tests demonstrated RadPro{sup R} can be applied as foam, mist/fog, or steam, and fully cover the internal surfaces of complex mockup equipment, including large piping. Decontamination tests demonstrated that two formulations of RadPro{sup R}, one with neutron attenuators and one without neutron attenuators, could remove up to 99.99% of uranyl fluoride deposits, one of the most difficult to remove deposits in GDP equipment. These results were supplemented by results from previous tests conducted in 1994 that showed RadPro{sup R} could remove >97% of U and Tc-99 contamination from actual GDP components. Operational use of RadPro{sup R} at other DOE and commercial facilities also support these data. (authors)

  3. Portsmouth Gaseous Diffusion Plant environmental report for 1989

    SciTech Connect

    Turner, J.W. )

    1990-10-01

    This calendar year 1989 annual report on environmental surveillance of the US Department of Energy's (DOE) Portsmouth Gaseous Diffusion Plant (PORTS) and its environs consists of two parts: the Summary, Discussion, and Conclusions (Part 1) and the Data Presentation (Part 2). The objectives of this report are the following: report 1989 monitoring data for the installation and its environs that may have been affected by operations on the plant site, provide reasonably detailed information about the plant site and plant operations, provide detailed information on input and assumptions used in all calculations, provide trend analyses (where appropriate) to indicate increases and decreases in environmental impact, and provide general information on plant quality assurance. Routine monitoring and sampling for radiation, radioactive materials, and chemical substances on and off the DOE site are used to document compliance with appropriate standards, to identify trends, to provide information for the public, and to contribute to general environmental knowledge. The surveillance program assists in fulfilling the DOE policy of protecting the public, employees, and environment from harm that could be caused by its activities and reducing negative environmental impacts to the greatest degree practicable. Environmental-monitoring information complements data on specific releases, trends, and summaries. 26 refs.

  4. Analytic expressions for ULF wave radiation belt radial diffusion coefficients

    PubMed Central

    Ozeke, Louis G; Mann, Ian R; Murphy, Kyle R; Jonathan Rae, I; Milling, David K

    2014-01-01

    We present analytic expressions for ULF wave-derived radiation belt radial diffusion coefficients, as a function of L and Kp, which can easily be incorporated into global radiation belt transport models. The diffusion coefficients are derived from statistical representations of ULF wave power, electric field power mapped from ground magnetometer data, and compressional magnetic field power from in situ measurements. We show that the overall electric and magnetic diffusion coefficients are to a good approximation both independent of energy. We present example 1-D radial diffusion results from simulations driven by CRRES-observed time-dependent energy spectra at the outer boundary, under the action of radial diffusion driven by the new ULF wave radial diffusion coefficients and with empirical chorus wave loss terms (as a function of energy, Kp and L). There is excellent agreement between the differential flux produced by the 1-D, Kp-driven, radial diffusion model and CRRES observations of differential electron flux at 0.976 MeV—even though the model does not include the effects of local internal acceleration sources. Our results highlight not only the importance of correct specification of radial diffusion coefficients for developing accurate models but also show significant promise for belt specification based on relatively simple models driven by solar wind parameters such as solar wind speed or geomagnetic indices such as Kp. Key Points Analytic expressions for the radial diffusion coefficients are presented The coefficients do not dependent on energy or wave m value The electric field diffusion coefficient dominates over the magnetic PMID:26167440

  5. Improved diffusion coefficients generated from Monte Carlo codes

    SciTech Connect

    Herman, B. R.; Forget, B.; Smith, K.; Aviles, B. N.

    2013-07-01

    Monte Carlo codes are becoming more widely used for reactor analysis. Some of these applications involve the generation of diffusion theory parameters including macroscopic cross sections and diffusion coefficients. Two approximations used to generate diffusion coefficients are assessed using the Monte Carlo code MC21. The first is the method of homogenization; whether to weight either fine-group transport cross sections or fine-group diffusion coefficients when collapsing to few-group diffusion coefficients. The second is a fundamental approximation made to the energy-dependent P1 equations to derive the energy-dependent diffusion equations. Standard Monte Carlo codes usually generate a flux-weighted transport cross section with no correction to the diffusion approximation. Results indicate that this causes noticeable tilting in reconstructed pin powers in simple test lattices with L2 norm error of 3.6%. This error is reduced significantly to 0.27% when weighting fine-group diffusion coefficients by the flux and applying a correction to the diffusion approximation. Noticeable tilting in reconstructed fluxes and pin powers was reduced when applying these corrections. (authors)

  6. Local carbon diffusion coefficient measurement in the S-1 spheromak

    SciTech Connect

    Mayo, R.M.; Levinton, F.M.; Meyerhofer, D.D.; Chu, T.K.; Paul, S.F.; Yamada, M.

    1988-10-01

    The local carbon diffusion coefficient was measured in the S - 1 spheromak by detecting the radial spread of injected carbon impurity. The radial impurity density profile is determined by the balance of ionization and diffusion. Using measured local electron temperature T/sub e/ and density n/sub e/, the ionization rate is determined from which the particle diffusion coefficient is inferred. The results found in this work are consistent with Bohm diffusion. The absolute magnitude of D/sub /perpendicular// was determined to be (4/approximately/6) /times/ D/sub Bohm/. 25 refs., 13 figs., 2 tabs.

  7. Determination of diffusion coefficient for unsaturated soils 

    E-print Network

    Sood, Eeshani

    2005-08-29

    ...... 53 Table 5. Summary of Atterberg Limit and Hydrometer Test for Fort Worthf District ..................................................................................................... 55 Table 6. Summary of Diffusion and Filter Paper Test... for Atlanta District ............ 58 Table 7. Summary of Atterberg Limit and Hydrometer Test for Atlanta District ..................................................................................................... 59 Table 8. Summary...

  8. HOW DUAL-SCALE DIFFUSIVE PROPERTY HETEROGENEITY AFFECTS EFFECTIVE MATRIX DIFFUSION COEFFICIENT IN FRACTURED ROCK

    SciTech Connect

    Y. Zhang; H. Liu; Q. Zhou; S. Finsterle

    2005-09-07

    Matrix diffusion can significantly retard solute transport in fractured formations. Understanding matrix diffusion is crucial for predicting the arrival time, peak concentration, and tail of a contaminant breakthrough curve. Previous studies show that the effective matrix diffusion coefficient may be scale dependent. This study examines how heterogeneities of diffusion properties affect the effective matrix diffusion coefficient. Two types of heterogeneity in a channelized flow system are considered in the study: (1) interchannel heterogeneity, and (2) intrachannel heterogeneity. The objectives of this study are (1) to examine if it is appropriate to use a single, effective matrix diffusion coefficient in a standard solution model to predict breakthrough curves (BTC) in a fractured formation, (2) if so, how this effective value is related to the degree of the matrix diffusion coefficient variability; and (3) to examine if the observed scale dependence of the effective matrix-diffusion coefficient is caused by heterogeneity in diffusion properties. The results show that the use of a single effective matrix diffusion coefficient is appropriate only if the inter- and intrachannel variability of diffusion properties is small. The scale dependence of the effective matrix diffusion coefficient is not caused by either type of the studied heterogeneity.

  9. Calculation of self-diffusion coefficients in iron

    SciTech Connect

    Zhang, Baohua

    2014-01-15

    On the basis of available P-V-T equation of state of iron, the temperature and pressure dependence of self-diffusion coefficients in iron polymorphs (?, ?, ? and ? phases) have been successfully reproduced in terms of the bulk elastic and expansivity data by means of a thermodynamical model that interconnects point defects parameters with bulk properties. The calculated diffusion parameters, such as self-diffusion coefficient, activation energy and activation volume over a broad temperature range (500-2500 K) and pressure range (0-100 GPa), compare favorably well with experimental or theoretical ones when the uncertainties are considered.

  10. Effects of Diffusive Property Heterogeneity on Effective MatrixDiffusion Coefficient for Fractured Rock

    SciTech Connect

    Zhang, Yingqi; Liu, Hui-hai; Zhou, Quanlin; Finsterle, Stefan

    2005-08-16

    Heterogeneities of diffusion properties are likely toinfluence the effective matrix diffusion coefficient determined fromtracer breakthrough curves. The objectives of this study are (1) toexamine if it is appropriate to use a single, effective matrix diffusioncoefficient to predict breakthrough curves in a fractured formation, (2)to examine if a postulated scale dependence of the effective matrixdiffusion coefficient is caused by heterogeneity in diffusion properties,and (3) to examine whether multirate diffusion results in the previouslyobserved time dependence of the effective matrix diffusion coefficient.The results show that the use of a single effective matrix diffusioncoefficient is appropriate only if the interchannel and intrachannelvariability of diffusion properties is small. The scale dependence of theeffective matrix diffusion coefficient is not caused by the studied typesof heterogeneity. Finally, the multirate diffusion process does notresult in the time dependence of the effective matrix diffusioncoefficient. oefficient is appropriate only if the inter- andintrachannel variability of diffusion properties is small. The scaledependence of the effective matrix diffusion coefficient is not caused byeither type of the studied heterogeneity. Finally, the multi-ratediffusion process does not result in the time dependence of the effectivematrix diffusion coefficient.

  11. Lateral diffusion in an archipelago. Distance dependence of the diffusion coefficient.

    PubMed Central

    Saxton, M J

    1989-01-01

    An understanding of the distance dependence of the lateral diffusion coefficient is useful in comparing the results of diffusion measurements made over different length scales, and in analyzing the kinetics of mobile redox carriers in organelles. A distance-dependent, concentration-dependent diffusion coefficient is defined, and it is evaluated by Monte Carlo calculations of a random walk by mobile point tracers in the presence of immobile obstacles on a triangular lattice, representing the diffusion of a lipid or a small protein in the presence of immobile membrane proteins. This work confirms and extends the milling crowd model of Eisinger, J., J. Flores, and W. P. Petersen (1986. Biophys J. 49:987-1001). Similar calculations for diffusion of mobile particles interacting by a hard-core repulsion yield the distance dependence of the self-diffusion coefficient. An expression for the range of short-range diffusion is obtained, and the distance scales for various diffusion measurements are summarized. PMID:2790141

  12. Binary Diffusion Coefficient Data of Various Gas Systems Determined Using a Loschmidt Cell and Holographic Interferometry

    NASA Astrophysics Data System (ADS)

    Kugler, T.; Rausch, M. H.; Fröba, A. P.

    2015-10-01

    The paper reports on binary diffusion coefficient data for the gaseous systems argon-neon, krypton-helium, ammonia-helium, nitrous oxide-nitrogen, and propane-helium measured using a Loschmidt cell combined with holographic interferometry between (293.15 and 353.15) K as well as between (1 and 10) bar. The investigations on the noble gas systems aimed to validate the measurement apparatus by comparing the binary diffusion coefficients measured as a function of temperature and pressure with theoretical data. In previous studies, it was already shown that the raw concentration-dependent data measured with the applied setup are affected by systematic effects if pure gases are used prior to the diffusion process. Hence, the concentration-dependent measurement data were processed to obtain averaged binary diffusion coefficients at a mean mole fraction of 0.5. The data for the molecular gas systems complete literature data on little investigated systems of technical interest and point out the capabilities of the applied measurement apparatus. Further experimental data are reported for the systems argon-helium, krypton-argon, krypton-neon, xenon-helium, xenon-krypton, nitrous oxide-carbon dioxide, and propane-carbon dioxide at 293.15 K, 2 bar, and a mean mole fraction of 0.5.

  13. POTENTIAL SCALE DEPENDENCE OF EFFECTIVE MATRIX DIFFUSION COEFFICIENT

    SciTech Connect

    H. Liu; Q. Zhou; Y. Zhang

    2006-03-13

    It is well known that matrix diffusion (mass transfer between fractures and the rock matrix through molecular diffusion) can significantly retard solute transport processes in fractured rock, and therefore is important for analyzing a variety of problems, including geological disposal of nuclear waste. Matrix-diffusion-coefficient values measured from small rock samples in the laboratory are generally used for modeling field-scale solute transport in fractured rock. However, by compiling results from a number of field tracer tests corresponding to different geological settings, this study demonstrates that the effective matrix diffusion coefficient at field scale is generally larger than that at lab scale and tends to increase with testing scale. Preliminary interpretations of this observation are also investigated. We found that this interesting scale dependence may be related to the complexity of flow-path geometry in fractured rock.

  14. Intrinsic Diffusion Coefficient of Interstitial Copper in Silicon

    SciTech Connect

    Istratov, A.A.; Flink, C.; Hieslmair, H.; Weber, E.R.; Heiser, T.

    1998-08-01

    Transient ion drift experiments designed to obtain reliable values for the intrinsic copper diffusivity in silicon are reported. From these measurements, the diffusion barrier of Cu in Si is determined to be 0.18{plus_minus}0.01 eV . It is shown that the commonly used expression of Hall and Racette [J.thinspthinspAppl.thinspthinspPhys.thinspthinsp{bold 35}, 379 (1964)] actually gives an effective diffusion coefficient for heavily boron-doped silicon and can neither be used for other doping levels nor extrapolated to lower temperatures. A model is developed which predicts the effective diffusion coefficient as a function of temperature, doping level, and the type of dopant. {copyright} {ital 1998} {ital The American Physical Society}

  15. Nuclear criticality safety aspects of gaseous uranium hexafluoride (UF{sub 6}) in the diffusion cascade

    SciTech Connect

    Huffer, J.E.

    1997-04-01

    This paper determines the nuclear safety of gaseous UF{sub 6} in the current Gaseous Diffusion Cascade and auxiliary systems. The actual plant safety system settings for pressure trip points are used to determine the maximum amount of HF moderation in the process gas, as well as the corresponding atomic number densities. These inputs are used in KENO V.a criticality safety models which are sized to the actual plant equipment. The ENO V.a calculation results confirm nuclear safety of gaseous UF{sub 6} in plant operations..

  16. Exact curvilinear diffusion coefficients in the repton model.

    PubMed

    Buhot, A

    2005-10-01

    The Rubinstein-Duke or repton model is one of the simplest lattice model of reptation for the diffusion of a polymer in a gel or a melt. Recently, a slightly modified model with hardcore interactions between the reptons has been introduced. The curvilinear diffusion coefficients of both models are exactly determined for all chain lengths. The case of periodic boundary conditions is also considered. PMID:16235000

  17. A local composition model for the prediction of mutual diffusion coefficients in binary liquid mixtures from tracer diffusion coefficients

    E-print Network

    Zhu, Qingyu; Moggridge, Geoff D.; D’Agostino, Carmine

    2015-04-29

    fractions which are determined from the vapour-liquid equilibria using the Wilson model. Thus, the mutual diffusion coefficient becomes: ( ) [ ] (8) The same idea was later adopted by Zhou et al. (2013) incorporating... integration is used to extract the values of activity coefficients as a function of composition. Using the Gibbs-Duhem equation and assuming the vapour phase to be ideal, the vapour phase mole fraction ( ) can be calculated from...

  18. Experimental system to evaluate the effective diffusion coefficient of radon

    NASA Astrophysics Data System (ADS)

    Hosoda, Masahiro; Tokonami, Shinji; Sorimachi, Atsuyuki; Janik, Miroslaw; Ishikawa, Tetsuo; Yatabe, Yoshinori; Yamada, Junya; Uchida, Shigeo

    2009-01-01

    The effective diffusion coefficient of radon is a very important factor in estimating the rate of radon exhalation from the ground surface. In this study, we developed an experimental system that overcomes technical problems in previous studies to accurately evaluate the effective diffusion coefficient. The radon source used for this system was the National Institute of Radiological Sciences radon chamber. This chamber is a calibrated international standard facility that can produce stable radon concentrations for long periods of time. Our tests showed that leakage of radon from the system was negligible. After the leakage test, we evaluated the effective diffusion coefficient in free-space and in dry porous materials at porosities of 35% and 45%. To ensure that the porous material in the column was as homogeneous as possible, we filled the column with an artificial soil with controlled grain size and grain composition. The measured values and theoretical calculations agreed well, which indicate that the proposed system can be used to accurately and quickly evaluate the effective diffusion coefficient.

  19. Evaluation of the vertical turbulent diffusion coefficient of industrial emissions

    NASA Astrophysics Data System (ADS)

    Ryzhakova, N. K.; Pokrovskaya, E. A.; Babicheva, V. O.

    2015-07-01

    A method for determining the vertical turbulent diffusion coefficients of industrial emissions in complex terrain and with long exposure times has been considered. The method is based on the usage of the distribution of the polluting impurity measured along a certain direction from a point source. The measurements are carried out with moss-biomonitors for a CHP in Novosibirsk.

  20. Diffusion of solvents in coals: 2. Measurement of diffusion coefficients of pyridine in Cayirhan lignite

    SciTech Connect

    Meryem Seferinolu; Yuda Yurum

    2006-05-15

    The aim of this study is to measure the diffusion coefficients of pyridine in Turkish Cayirhan lignite (C: 57.1 wt%, dmmf) at temperatures about 20-27{sup o}C and determine the type of transport mechanism of diffusion. The raw coal sample was demineralized with HCl and HF by standard methods, and the raw and demineralized coal samples were extracted with pyridine. To investigate the diffusion of pyridine vapor in coal samples, the mass of pyridine uptake per mass of coal sample (M{sub t}/M{sub {infinity}}) was calculated as a function of time. The diffusion coefficients were measured from the slope of graphs of M{sub t}/M{sub {infinity}} versus t{sup 1/2}. The diffusion coefficient of pyridine in the raw coal increased from 10.0 x 10{sup -15} to 11.9 x 10{sup -15} m{sup 2}/s when the temperature was elevated from 21.1 to 26.9{sup o}C, respectively. The diffusion coefficients of pyridine raw coal and of those treated with HCl and HF were 11.9 x 10{sup -15}, 4.3 x 10{sup -15}, and 4.8 x 10{sup -15} m{sup 2}/s at 26.9{sup o}C, respectively. The studies in the present work on pyridine vapor diffusion in raw coals have generally indicated that the diffusion obeyed the Fickian diffusion mechanism the temperatures 20.0-27.0{sup o}C. Generally, the diffusion exponent values increased when the temperature elevated from 20.0 to 27.0{sup o}C, but this rise placed the diffusion of pyridine between the Fickian diffusion and Case II diffusion mechanisms. 29 refs., 6 figs., 4 tabs.

  1. Vertical eddy diffusion coefficient from the LANDSAT imagery

    NASA Technical Reports Server (NTRS)

    Viswanadham, Y. (principal investigator); Torsani, J. A.

    1982-01-01

    Analysis of five stable cases of the smoke plumes that originated in eastern Cabo Frio (22 deg 59'S; 42 deg 02'W), Brazil using LANDSAT imagery is presented for different months and years. From these images the lateral standard deviation (sigma sub y) and the lateral eddy diffusion coefficient (K sub y) are obtained from the formula based on Taylor's theory of diffusion by continuous moment. The rate of kinetic energy dissipation (e) is evaluated from the diffusion parameters sigma sub y and K sub y. Then, the vertical diffusion coefficient (K sub z) is estimated using Weinstock's formulation. These results agree well with the previous experimental values obtained over water surfaces by various workers. Values of e and K sub z show the weaker mixing processes in the marine stable boundary layer. The data sample is apparently to small to include representative active turbulent regions because such regions are so intermittent in time and in space. These results form a data base for use in the development and validation of mesoscale atmospheric diffusion models.

  2. D&D of the French High Enrichment Gaseous Diffusion Plant

    SciTech Connect

    BEHAR, Christophe; GUIBERTEAU, Philippe; DUPERRET, Bernard; TAUZIN, Claude

    2003-02-27

    This paper describes the D&D program that is being implemented at France's High Enrichment Gaseous Diffusion Plant, which was designed to supply France's Military with Highly Enriched Uranium. This plant was definitively shut down in June 1996, following French President Jacques Chirac's decision to end production of Highly Enriched Uranium and dismantle the corresponding facilities.

  3. 78 FR 30342 - United States Enrichment Corporation, Paducah Gaseous Diffusion Plant

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-22

    ...Paducah Gaseous Diffusion Plant (PGDP). The existing CoC (No. GDP-1) authorizes operation of a uranium enrichment facility in...Code of Federal Regulations (10 CFR). The existing CoC (No. GDP-1) authorizes operation of a uranium enrichment facility...

  4. An aerial radiological survey of the Portsmouth Gaseous Diffusion Plant and surrounding area, Portsmouth, Ohio

    SciTech Connect

    Not Available

    1992-09-01

    An aerial radiological survey was conducted from July 11--20, 1990, over an 83-square-kilometer (32-square-mile) area surrounding the Portsmouth Gaseous Diffusion Plant located near Portsmouth, Ohio. The survey was conducted at a nominal altitude of 91 meters (300 feet) with line spacings of 122 meters (400 feet). A contour map of the terrestrial gamma exposure rate extrapolated to 1 meter above ground level (AGL) was prepared and overlaid on an aerial photograph and a set of United States Geological Survey (USGS) topographic maps of the area. The terrestrial exposure rates varied from about 7 to 14 microroentgens per hour ([mu]R/h) at 1 meter above the ground. Analysis of the data for man-made sources and for the uranium decay product, protactinium-234m ([sup 234m]Pa), showed five sites within the boundaries of the Portsmouth Gaseous Diffusion Plant with elevated readings. Spectra obtained in the vicinity of the buildings at the Portsmouth Gaseous Diffusion Plant showed the presence of [sup 234m]Pa, a uranium-238 ([sup 238]U) decay product. In addition, spectral analysis of the data obtained over the processing plant facility showed gamma activity indicative of uranium-235 ([sup 234]U). No other man-made gamma ray emitting radioactive material was detected, either on or off the Portsmouth Gaseous Diffusion Plant property. Soil samples and pressurized ion chamber measurements were obtained at five different locations within the survey boundlaries to support the aerial data.

  5. Effects of diffusive property heterogeneity on effective matrix diffusion coefficient for fractured rock

    E-print Network

    Zhou, Quanlin

    rock Yingqi Zhang,1 Hui-hai Liu,1 Quanlin Zhou,1 and Stefan Finsterle1 Received 16 August 2005; revised diffusion coefficient for fractured rock, Water Resour. Res., 42, W04405, doi:10.1029/2005WR004513. 1 in fractured rock. Understand- ing the diffusion of contaminants from fractures into the matrix is essential

  6. Diffusion coefficients of two-dimensional viral DNA walks

    NASA Astrophysics Data System (ADS)

    Hsu, Tai-Hsin; Nyeo, Su-Long

    2003-05-01

    DNA sequences are represented as two-dimensional walkers based on groups of mapping rules for the nucleotides in the DNA sequences. Digital sequences from irrational and random numbers in base 4 are generated and their diffusion properties are then compared with those of 21 nucleotide sequences of animal and plant viruses. By defining the diffusion coefficient as a function of the number of steps taken in a walk, we show that the coefficients for the viral DNA sequences generally have maximum values considerably larger than those for the random-number sequences of same lengths. Moreover, using the walker diagrams generated by different mapping groups, we can study the dominance of any of the nucleotide pairs (AG or CT), (AC or GT), or (AT or CG) in a DNA sequence. Other possible studies of this approach are mentioned.

  7. An asixymmetric diffusion experiment for the determination of diffusion and sorption coefficients of rock samples

    SciTech Connect

    Takeda, M.; Hiratsuka, T.; Ito, K.; Finsterle, S.

    2011-02-01

    Diffusion anisotropy is a critical property in predicting migration of substances in sedimentary formations with very low permeability. The diffusion anisotropy of sedimentary rocks has been evaluated mainly from laboratory diffusion experiments, in which the directional diffusivities are separately estimated by through-diffusion experiments using different rock samples, or concurrently by in-diffusion experiments in which only the tracer profile in a rock block is measured. To estimate the diffusion anisotropy from a single rock sample, this study proposes an axisymmetric diffusion test, in which tracer diffuses between a cylindrical rock sample and a surrounding solution reservoir. The tracer diffusion between the sample and reservoir can be monitored from the reservoir tracer concentrations, and the tracer profile could also be obtained after dismantling the sample. Semi-analytical solutions are derived for tracer concentrations in both the reservoir and sample, accounting for an anisotropic diffusion tensor of rank two as well as the dilution effects from sampling and replacement of reservoir solution. The transient and steady-state analyses were examined experimentally and numerically for different experimental configurations, but without the need for tracer profiling. These experimental configurations are tested for in- and out-diffusion experiments using Koetoi and Wakkanai mudstones and Shirahama sandstone, and are scrutinized by a numerical approach to identify favorable conditions for parameter estimation. The analysis reveals the difficulty in estimating diffusion anisotropy; test configurations are proposed for enhanced identifiability of diffusion anisotropy. Moreover, it is demonstrated that the axisymmetric diffusion test is efficient in obtaining the sorption parameter from both steady-state and transient data, and in determining the effective diffusion coefficient if isotropic diffusion is assumed. Moreover, measuring reservoir concentrations in an axisymmetric diffusion experiment coupled with tracer profiling may be a promising approach to estimate of diffusion anisotropy of sedimentary rocks.

  8. Effect of concentration dependence of the diffusion coefficient on homogenization kinetics in multiphase binary alloy systems

    NASA Technical Reports Server (NTRS)

    Tenney, D. R.; Unnam, J.

    1978-01-01

    Diffusion calculations were performed to establish the conditions under which concentration dependence of the diffusion coefficient was important in single, two, and three phase binary alloy systems. Finite-difference solutions were obtained for each type of system using diffusion coefficient variations typical of those observed in real alloy systems. Solutions were also obtained using average diffusion coefficients determined by taking a logarithmic average of each diffusion coefficient variation considered. The constant diffusion coefficient solutions were used as reference in assessing diffusion coefficient variation effects. Calculations were performed for planar, cylindrical, and spherical geometries in order to compare the effect of diffusion coefficient variations with the effect of interface geometries. In most of the cases considered, the diffusion coefficient of the major-alloy phase was the key parameter that controlled the kinetics of interdiffusion.

  9. Radiative Extinction of Gaseous Spherical Diffusion Flames in Microgravity

    NASA Technical Reports Server (NTRS)

    Santa, K. J.; Chao, B. H.; Sunderland, P. B.; Urban, D. L.; Stocker, D. P.; Axelbaum, R. L.

    2007-01-01

    Radiative extinction of spherical diffusion flames was investigated experimentally and numerically. The experiments involved microgravity spherical diffusion flames burning ethylene and propane at 0.98 bar. Both normal (fuel flowing into oxidizer) and inverse (oxidizer flowing into fuel) flames were studied, with nitrogen supplied to either the fuel or the oxygen. Flame conditions were chosen to ensure that the flames extinguished within the 2.2 s of available test time; thus extinction occurred during unsteady flame conditions. Diagnostics included color video and thin-filament pyrometry. The computations, which simulated flow from a porous sphere into a quiescent environment, included detailed chemistry, transport and radiation, and yielded transient results. Radiative extinction was observed experimentally and simulated numerically. Extinction time, peak temperature, and radiative loss fraction were found to be independent of flow rate except at very low flow rates. Radiative heat loss was dominated by the combustion products downstream of the flame and was found to scale with flame surface area, not volume. For large transient flames the heat release rate also scaled with surface area and thus the radiative loss fraction was largely independent of flow rate. Peak temperatures at extinction onset were about 1100 K, which is significantly lower than for kinetic extinction. One observation of this work is that while radiative heat losses can drive transient extinction, this is not because radiative losses are increasing with time (flame size) but rather because the heat release rate is falling off as the temperature drops.

  10. Radon diffusion coefficients in soils of varying moisture content

    NASA Astrophysics Data System (ADS)

    Papachristodoulou, C.; Ioannides, K.; Pavlides, S.

    2009-04-01

    Radon is a naturally occurring radioactive gas that is generated in the Earth's crust and is free to migrate through soil and be released to the atmosphere. Due to its unique properties, soil gas radon has been established as a powerful tracer used for a variety of purposes, such as exploring uranium ores, locating geothermal resources and hydrocarbon deposits, mapping geological faults, predicting seismic activity or volcanic eruptions and testing atmospheric transport models. Much attention has also been given to the radiological health hazard posed by increased radon concentrations in the living and working environment. In order to exploit radon profiles for geophysical purposes and also to predict its entry indoors, it is necessary to study its transport through soils. Among other factors, the importance of soil moisture in such studies has been largely highlighted and it is widely accepted that any measurement of radon transport parameters should be accompanied by a measurement of the soil moisture content. In principle, validation of transport models in the field is encountered by a large number of uncontrollable and varying parameters; laboratory methods are therefore preferred, allowing for experiments to be conducted under well-specified and uniform conditions. In this work, a laboratory technique has been applied for studying the effect of soil moisture content on radon diffusion. A vertical diffusion chamber was employed, in which radon was produced from a 226Ra source, was allowed to diffuse through a soil column and was finally monitored using a silicon surface barrier detector. By solving the steady-state radon diffusion equation, diffusion coefficients (D) were determined for soil samples of varying moisture content (m), from null (m=0) to saturation (m=1). For dry soil, a D value of 4.1×10-7 m2s-1 was determined, which increased moderately by a factor of ~3 for soil with low moisture content, i.e. up to m ~0.2. At higher water fractions, a decrease in D was initiated and became particularly pronounced approaching complete saturation; at m =0.9, D was as low as 2×10-9 m2s-1. A series of field experiments has also been conducted using alpha-track CR-39 detectors to follow the moisture-dependence of radon diffusion through soil under natural conditions. Diffusion coefficients were determined as a function of surface soil moisture assuming a one-dimensional diffusive radon transport model. Comparison between results obtained by the two methods showed that laboratory studies may provide a good indication of radon diffusion coefficients to be expected in the field. However, values determined in the field were systematically lower than those assessed in the laboratory. This finding could be attributed to soil-dependent parameters, such as differences in pore space geometry between the soil used in laboratory experiments and the undisturbed soil. In the latter case, the higher degree of compaction imposes a more tortuous pathway to soil gas, while at the same time the diffusive gas flux is hindered by local-scale zones of higher bulk density or water content.

  11. Calculation of combined diffusion coefficients in SF{sub 6}-Cu mixtures

    SciTech Connect

    Zhong, Linlin; Wang, Xiaohua Rong, Mingzhe Wu, Yi; Murphy, Anthony B.

    2014-10-15

    Diffusion coefficients play an important role in the description of the transport of metal vapours in gas mixtures. This paper is devoted to the calculation of four combined diffusion coefficients, namely, the combined ordinary diffusion coefficient, combined electric field diffusion coefficient, combined temperature diffusion coefficient, and combined pressure diffusion coefficient in SF{sub 6}-Cu mixtures at temperatures up to 30?000?K. These four coefficients describe diffusion due to composition gradients, applied electric fields, temperature gradients, and pressure gradients, respectively. The influence of copper fluoride and sulfide species on the diffusion coefficients is shown to be negligible. The effect of copper proportion and gas pressures on these diffusion coefficients is investigated. It is shown that increasing the proportion of copper generally increases the magnitude of the four diffusion coefficients, except for copper mole fractions of 90% or more. It is further found that increasing the pressure reduces the magnitude of the coefficients, except for the combined temperature diffusion coefficient, and shifts the maximum of all four coefficients towards higher temperatures. The results presented in this paper can be applied to the simulation of high-voltage circuit breaker arcs.

  12. Measurements of uranium holdup in an operating gaseous diffusion enrichment plant

    SciTech Connect

    Augustson, R.H.; Walton, R.B.; Harris, R.; Harbarger, W.; Hicks, J.; Timmons, G.; Shissler, D.; Tayloe, R.; Jones, S.; Fields, L.

    1983-01-01

    Holdup of nuclear material in process equipment is one of the major sources of uncertainty in materials balances, particularly for high-throughput facilities with large equipment and extensive piping, such as gaseous diffusion uranium-enrichment plants. Locating and measuring the holdup while the plant is operating is a challenging problem because of background from the process material and the neighboring equipment. This paper reports NDA measurements performed at the Goodyear Atomic Gaseous Diffusion Plant, Portsmouth, Ohio, on enrichment equipment at the higher enrichment and (>10% /sup 235/U isotopic abundance) of the cascade. Both neutron and gamma-ray measurements were made to locate anomalously large deposits in converters and compressors and, within the limitations of the techniques, to quantify the amount of the deposit.

  13. Natural phenomena hazards evaluation of equipment and piping of Gaseous Diffusion Plant Uranium Enrichment Facility

    SciTech Connect

    Singhal, M.K.; Kincaid, J.H.; Hammond, C.R.; Stockdale, B.I.; Walls, J.C.; Brock, W.R.; Denton, D.R.

    1995-12-31

    In support of the Gaseous Diffusion Plant Safety Analysis Report Upgrade program (GDP SARUP), a natural phenomena hazards evaluation was performed for the main process equipment and piping in the uranium enrichment buildings at Paducah and Portsmouth gaseous diffusion plants. In order to reduce the cost of rigorous analyses, the evaluation methodology utilized a graded approach based on an experience data base collected by SQUG/EPRI that contains information on the performance of industrial equipment and piping during past earthquakes. This method consisted of a screening walkthrough of the facility in combination with the use of engineering judgment and simple calculations. By using these screenings combined with evaluations that contain decreasing conservatism, reductions in the time and cost of the analyses were significant. A team of experienced seismic engineers who were trained in the use of the DOE SQUG/EPRI Walkdown Screening Material was essential to the success of this natural phenomena hazards evaluation.

  14. Introduction to the nuclear criticality safety evaluation of facility X-705, Portsmouth Gaseous Diffusion Plant

    SciTech Connect

    Sheaffer, M.K.; Keeton, S.C.

    1993-08-16

    This report is the first in a series of documents that will evaluate nuclear criticality safety in the Decontamination and Recovery Facility, X-705, Portsmouth Gaseous Diffusion Plant. It provides an overview of the facility, categorizes its functions for future analysis, reviews existing NCS documentation, and explains the follow-on effort planned for X-705. A detailed breakdown of systems, subsystems, and operational areas is presented and cross-referenced to existing NCS documentation.

  15. Nuclear criticality safety evaluation of Spray Booth Operations in X-705, Portsmouth Gaseous Diffusion Plant

    SciTech Connect

    Sheaffer, M.K.; Keeton, S.C.

    1993-09-20

    This report evaluates nuclear criticality safety for Spray Booth Operations in the Decontamination and Recovery Facility, X-705, at the Portsmouth Gaseous Diffusion Plant. A general description of current procedures and related hardware/equipment is presented. Control parameters relevant to nuclear criticality safety are explained, and a consolidated listing of administrative controls and safety systems is developed. Based on compliance with DOE Orders and MMES practices, the overall operation is evaluated, and recommendations for enhanced safety are suggested.

  16. C-Depth Method to Determine Diffusion Coefficient and Partition Coefficient of PCB in Building Materials.

    PubMed

    Liu, Cong; Kolarik, Barbara; Gunnarsen, Lars; Zhang, Yinping

    2015-10-20

    Polychlorinated biphenyls (PCBs) have been found to be persistent in the environment and possibly harmful. Many buildings are characterized with high PCB concentrations. Knowledge about partitioning between primary sources and building materials is critical for exposure assessment and practical remediation of PCB contamination. This study develops a C-depth method to determine diffusion coefficient (D) and partition coefficient (K), two key parameters governing the partitioning process. For concrete, a primary material studied here, relative standard deviations of results among five data sets are 5%-22% for K and 42-66% for D. Compared with existing methods, C-depth method overcomes the inability to obtain unique estimation for nonlinear regression and does not require assumed correlations for D and K among congeners. Comparison with a more sophisticated two-term approach implies significant uncertainty for D, and smaller uncertainty for K. However, considering uncertainties associated with sampling and chemical analysis, and impact of environmental factors, the results are acceptable for engineering applications. This was supported by good agreement between model prediction and measurement. Sensitivity analysis indicated that effective diffusion distance, contacting time of materials with primary sources, and depth of measured concentrations are critical for determining D, and PCB concentration in primary sources is critical for K. PMID:26347992

  17. Turbulence coefficients and stability studies for the coaxial flow or dissimiliar fluids. [gaseous core nuclear reactors

    NASA Technical Reports Server (NTRS)

    Weinstein, H.; Lavan, Z.

    1975-01-01

    Analytical investigations of fluid dynamics problems of relevance to the gaseous core nuclear reactor program are presented. The vortex type flow which appears in the nuclear light bulb concept is analyzed along with the fluid flow in the fuel inlet region for the coaxial flow gaseous core nuclear reactor concept. The development of numerical methods for the solution of the Navier-Stokes equations for appropriate geometries is extended to the case of rotating flows and almost completes the gas core program requirements in this area. The investigations demonstrate that the conceptual design of the coaxial flow reactor needs further development.

  18. Evaluation of ligand-selector interaction from effective diffusion coefficient.

    PubMed

    Bielejewska, Anna; Bylina, Andrzej; Duszczyk, Kazimiera; Fia?kowski, Marcin; Ho?yst, Robert

    2010-07-01

    We present an analytical technique for determination of ligand-selector equilibrium binding constants. The method is based on the measurements of effective molecular diffusion coefficient of the ligand during Poiseuille flow through a long (approximately 25 m), thin (0.254 mm +/- 0.05 mm ID) capillary with and without the selector. The data are analyzed using the Taylor dispersion theory. Bovine Serum Albumin (BSA) and cyclodextrin (CD) were taken as model selectors. We have tested our method on the following selector-ligand complexes: BSA with warfarin, propranolol, noscapine, salicylic acid, and riboflavin, and cyclodextrin with 4-nitrophenol. The results are in good agreement with data from the literature and with our own results obtained within classical chromatography. This method works equally well for uncharged and charged compounds. PMID:20536185

  19. How to measure pitch-angle diffusion coefficient at ? ~ 90°

    NASA Astrophysics Data System (ADS)

    Ostryakov, V. M.

    2015-12-01

    It is well known that the quasilinear theory of particle pitch-angle (?) scattering by magnetohydrodynamic turbulence results in the peculiarities at ? = 90°. We propose a simple method of measuring of the pitch-angle diffusion coefficient in this range. It is based on the anisotropy detection of the back-scattered flare particles. This possibility relies on the mutual geometrical location of the particle source (flare site), part of the Archemedean spiral where the particles propagate and the measuring device. The most reliably this scheme must work for the neutron-decay protons originated from the behind-limb flares. In this case only the protons scattered at ? = 90° must reach the probe while the direct proton flux will be significantly depressed. The time profile of the particle anisotropy in such a geometry (at known source properties) allows one to choose an adequate model of the particle scattering at the pitch-angle domain ? = 90°.

  20. Measurement of diffusion coefficient of propylene glycol in skin tissue

    NASA Astrophysics Data System (ADS)

    Genin, Vadim D.; Bashkatov, Alexey N.; Genina, Elina A.; Tuchin, Valery V.

    2015-03-01

    Optical clearing of the rat skin under the action of propylene glycol was studied ex vivo. It was found that collimated transmittance of skin samples increased, whereas weight and thickness of the samples decreased during propylene glycol penetration in skin tissue. A mechanism of the optical clearing under the action of propylene glycol is discussed. Diffusion coefficient of propylene glycol in skin tissue ex vivo has been estimated as (1.35±0.95)×10-7 cm2/s with the taking into account of kinetics of both weight and thickness of skin samples. The presented results can be useful for enhancement of many methods of laser therapy and optical diagnostics of skin diseases and localization of subcutaneous neoplasms.

  1. Diffusion coefficient and radial gradient of galactic cosmic rays

    E-print Network

    Modzelewska, Renata

    2015-01-01

    We present the temporal changes of the diffusion coefficient K of galactic cosmic rays (GCRs) at the Earth orbit calculated based on the experimental data using two different methods. The first approach is based on the Parker convection-diffusion approximation of GCR modulation [1]: i.e. K~Vr=dI where dI is the variation of the GCR intensity measured by neutron monitors (NM),V is the solar wind velocity and r is the radial distance. The second approach is based on the interplanetary magnetic field (IMF) data. It was suggested that parallel mean free path can be expressed in terms of B as in [2]-[4]. Using data of the product of the parallel mean free path and radial gradient of GCR calculated based on the GCR anisotropy data (Ahluwalia et al., this conference ICRC 2013, poster ID: 487 [5]), we estimate the temporal changes of the radial gradient of GCR at the Earth orbit. We show that the radial gradient exhibits a strong solar cycle dependence (11-year variation) and a weak solar magnetic cycle dependence (2...

  2. Experimental Method Development for Estimating Solid-phase Diffusion Coefficients and Material/Air Partition Coefficients of SVOCs

    EPA Science Inventory

    The solid-phase diffusion coefficient (Dm) and material-air partition coefficient (Kma) are key parameters for characterizing the sources and transport of semivolatile organic compounds (SVOCs) in the indoor environment. In this work, a new experimental method was developed to es...

  3. Construction and operation of an industrial solid waste landfill at Portsmouth Gaseous Diffusion Plant, Piketon, Ohio

    SciTech Connect

    1995-10-01

    The US Department of Energy (DOE), Office of Waste Management, proposes to construct and operate a solid waste landfill within the boundary of the Portsmouth Gaseous Diffusion Plant (PORTS), Piketon, Ohio. The purpose of the proposed action is to provide PORTS with additional landfill capacity for non-hazardous and asbestos wastes. The proposed action is needed to support continued operation of PORTS, which generates non-hazardous wastes on a daily basis and asbestos wastes intermittently. Three alternatives are evaluated in this environmental assessment (EA): the proposed action (construction and operation of the X-737 landfill), no-action, and offsite shipment of industrial solid wastes for disposal.

  4. Cleanup operations at the Oak Ridge Gaseous Diffusion Plant contaminated metal scrapyard

    SciTech Connect

    Williams, L.C.

    1987-01-01

    Cleanup operations at the contaminated metal storage yard located at the Oak Ridge, Tennessee, Gaseous Diffusion Plant have been completed. The storage yard, in existence since the early 1970s, contained an estimated 35,000 tons of mixed-type metals spread over an area of roughly 30 acres. The overall cleanup program required removing the metal from the storage yard, sorting by specific metal types, and size reduction of specific types for future processing. This paper explains the methods and procedures used to accomplish this task.

  5. Nuclear criticality safety evaluation of large cylinder cleaning operations in X-705, Portsmouth Gaseous diffusion Plant

    SciTech Connect

    Sheaffer, M.K.; Keeton, S.C.; Lutz, H.F.

    1995-06-01

    This report evaluates nuclear criticality safety for large cylinder cleaning operations in the Decontamination and Recovery Facility, X-705, at the Portsmouth Gaseous Diffusion Plant. A general description of current cleaning procedures and required hardware/equipment is presented, and documentation for large cylinder cleaning operations is identified and described. Control parameters, design features, administrative controls, and safety systems relevant to nuclear criticality are discussed individually, followed by an overall assessment based on the Double Contingency Principle. Recommendations for enhanced safety are suggested, and issues for increased efficiency are presented.

  6. Replacement of chlorofluorocarbons (CFCs) at the DOE gaseous diffusion plants: An assessment of global impacts

    SciTech Connect

    Socolof, M.L.; Saylor, R.E.; McCold, L.N.

    1994-06-01

    The US Department of Energy (DOE) formerly operated two gaseous diffusion plants (GDPs) for enriching uranium and maintained a third shutdown GDP. These plants maintain a large inventory of dichlorotetrafluorethane (CFC-114), a cholorofluorocarbon (CFC), as a coolant. The paper evaluates the global impacts of four alternatives to modify GDP coolant system operations for a three-year period beginning in 1996. Interim modification of GDP coolant system operations has the potential to reduce stratospheric ozone depletion from GDP coolant releases while a permanent solution is studied.

  7. Critical assessment of diffusion coefficients in semidilute to concentrated solutions of polystyrene in toluene

    NASA Astrophysics Data System (ADS)

    Pollak, T.; Köhler, W.

    2009-03-01

    We have measured collective diffusion coefficients of dilute, semidilute, and concentrated solutions of polystyrene in toluene up to a polymer concentration of 0.832 mass fractions at T =25 °C. The three employed experimental techniques of photon correlation spectroscopy, thermal diffusion forced Rayleigh scattering, and optical beam deflection cover four orders of magnitude with respect to their characteristic diffusion lengths (200 nm-2.9 mm), corresponding to more than 8 decades of the diffusion time constants. Contrary to existing literature data, which suggest a length scale dependent anomalous diffusion at high concentrations, all our techniques yield identical diffusion coefficients and purely Fickian diffusion, irrespective of their characteristic length scale.

  8. Study of diffusion coefficient of anhydrous trehalose glasses by using PFG-NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Kwon, Hyun-Joung; Takekawa, Reiji; Kawamura, Junichi; Tokuyama, Michio

    2013-02-01

    We investigated the temperature dependent long time self-diffusion coefficient of the anhydrous trehalose supercooled liquids by using pulsed field gradient nuclear magnetic resonance (PFG-NMR) spectroscopy. At the same temperature ranges, the diffusion coefficient convoluted from the ?-relaxation time as Einstein-Smoluchowski relaxation, measured by using the dielectric loss spectroscopy are well overlapped with diffusion coefficients within experimental error. The temperature dependent diffusion coefficients obtained from different methods are normalized by fictive temperature and well satisfied the single master curve, proposed by Tokuyama.

  9. Direct estimation of diffuse gaseous emissions from coal fires: current methods and future directions

    USGS Publications Warehouse

    Engle, Mark A.; Olea, Ricardo A.; O'Keefe, Jennifer M. K.; Hower, James C.; Geboy, Nicholas J.

    2013-01-01

    Coal fires occur in nature spontaneously, contribute to increases in greenhouse gases, and emit atmospheric toxicants. Increasing interest in quantifying coal fire emissions has resulted in the adaptation and development of specialized approaches and adoption of numerical modeling techniques. Overview of these methods for direct estimation of diffuse gas emissions from coal fires is presented in this paper. Here we take advantage of stochastic Gaussian simulation to interpolate CO2 fluxes measured using a dynamic closed chamber at the Ruth Mullins coal fire in Perry County, Kentucky. This approach allows for preparing a map of diffuse gas emissions, one of the two primary ways that gases emanate from coal fires, and establishing the reliability of the study both locally and for the entire fire. Future research directions include continuous and automated sampling to improve quantification of gaseous coal fire emissions.

  10. On the structure of gaseous confined laminar diffusion flames: Numerical investigation

    NASA Technical Reports Server (NTRS)

    Mawid, M. A.; Bulzan, D. L.; Aggarwal, S. K.

    1993-01-01

    The structure and characteristics of gaseous confined laminar diffusion flames are investigated by numerically solving the time-dependent two-dimensional axisymmetric conservation equations. The numerical model accounts for the important chemical and physical processes involved, including axial diffusion, viscous effects, radial convection, and finite-rate chemistry. The numerical results clearly show that the flame has a finite thickness and leakage of fuel vapor into the flame zone is possible. The effect of heat release is found to induce some radial flow. Predicted flame shape and dimensions are compared to the classical Burke-Schumann flame. The numerically calculated flame is observed to be about 15 percent taller and 5 percent narrower than that of the Burke-Schumann solution under the same conditions.

  11. High silicon self-diffusion coefficient in dry forsterite

    NASA Astrophysics Data System (ADS)

    Katsura, T.; Fei, H.; Hegoda, C.; Yamazaki, D.; Wiedenbeck, M.; Yurimoto, H.; Shcheka, S.

    2012-12-01

    Plastic deformation of mantle minerals is believed to be controlled by self-diffusion of the slowest species, which is silicon in silicate minerals. Olivine is the main constituent of upper mantle. Therefore, silicon self-diffusion coefficient (DSi) in olivine provides the basic information of upper mantle rheology. Dohmen et al. [1] and Jaoul et al. [2] measured the DSi at ambient pressure under dry conditions in natural olivine and iron-free forsterite, respectively. However, their results were ~2-3 orders of magnitude lower than that estimated from deformation experiments [3]. In this study, we revisited DSi in forsterite and resolved this discrepancy [4]. Forsterite single crystals were polished in colloidal silica solution, deposited with 300-500 nm of 29Si enriched Mg2SiO4 films, covered by 100 nm of ZrO2 films, and annealed at 1600-1800 K from ambient pressure up to 13 GPa using an ambient pressure furnace and multi-anvil apparatus. The surface roughness after diffusion were reduced to <50 nm by polishing again in colloidal silica solution. Diffusion profiles were obtained by SIMS. Water contents in the samples were <1 ?g/g by FT-IR [4]. logDSi were determined to be -19.7±0.4 and -18.1±0.3 log[m2/s] under ambient pressure at 1600 and 1800 K, respectively. These values were 2.4 orders of magnitude higher than that determined by Jaoul et al. [2] in forsterite, as well as that reprted by Dohmen et al. [1] in natural olivine. Their low DSi could be obtained due to the bad contact of the coated films with the substrate. Our results well explain the high dislocation climb rates in deformation experiments [4]. We also determined a small negative pressure dependence of DSi with an activation volume of 1.7±0.4 cm3/mol, and an activation energy of ~410 kJ/mol. Calibratied to the same temperature, the nearly linear relationship of DSi against pressure in dry forsterite in this study, iron and water bearing wadsleyite and ringwoodite by Shimojuku et al. [5] demostrates that effects of iron, water, and structural difference of (Mg,Fe)2SiO4 polymorphs on silicon diffusion are small. Viscosity in upper mantle should be almost constant with depth by assuming it inversely proportional to DSi [4]. [1] Dohmen et al. (2002), GRL 29 (21), 2030. [2] Jaoul et al. (1981), Anelasticity in the Earth, Geodyn. 4, 95-100. [3] Goetze and Kohlstedt (1973), JGR 78 (26), 5961-5971. [4] Fei et al. (2012), EPSL 345-348, 95-103. [5] Shimojuku et al. (2009), EPSL 284, 103-112.

  12. A multispectral scanner survey of the United States Department of Energy's Paducah Gaseous Diffusion Plant

    SciTech Connect

    Not Available

    1991-06-01

    Airborne multispectral scanner data of the Paducah Gaseous Diffusion Plant (PGDP) and surrounding area were acquired during late spring 1990. This survey was conducted by the Remote Sensing Laboratory (RSL) which is operated by EG G Energy Measurements (EG G/EM) for the US Department of Energy (DOE) Nevada Operations Office. It was requested by the US Department of Energy (DOE) Environmental Audit Team which was reviewing environmental conditions at the facility. The objectives of this survey were to: (1) Acquire 12-channel, multispectral scanner data of the PGDP from an altitude of 3000 feet above ground level (AGL); (2) Acquire predawn, digital thermal infrared (TIR) data of the site from the same altitude; (3) Collect color and color-infrared (CIR) aerial photographs over the facilities; and (4) Illustrate how the analyses of these data could benefit environmental monitoring at the PGDP. This report summarizes the two multispectral scanner and aerial photographic missions at the Paducah Gaseous Diffusion Plant. Selected examples of the multispectral data are presented to illustrate its potential for aiding environmental management at the site. 4 refs., 1 fig., 2 tabs.

  13. Project plan for the background soils project for the Paducah Gaseous Diffusion Plant, Paducah, Kentucky

    SciTech Connect

    1995-09-01

    The Background Soils Project for the Paducah Gaseous Diffusion Plant (BSPP) will determine the background concentration levels of selected naturally occurring metals, other inorganics, and radionuclides in soils from uncontaminated areas in proximity to the Paducah Gaseous Diffusion Plant (PGDP) in Paducah, Kentucky. The data will be used for comparison with characterization and compliance data for soils, with significant differences being indicative of contamination. All data collected as part of this project will be in addition to other background databases established for the PGDP. The BSPP will address the variability of surface and near-surface concentration levels with respect to (1) soil taxonomical types (series) and (2) soil sampling depths within a specific soil profile. The BSPP will also address the variability of concentration levels in deeper geologic formations by collecting samples of geologic materials. The BSPP will establish a database, with recommendations on how to use the data for contaminated site assessment, and provide data to estimate the potential human and health and ecological risk associated with background level concentrations of potentially hazardous constituents. BSPP data will be used or applied as follows.

  14. Reproducibility of Apparent Diffusion Coefficient Measurements in Malignant Breast Masses

    PubMed Central

    Jang, Mijung; Yun, Bo La; Ahn, Hye Shin; Kim, Soo Yeon; Kang, Eunyoung; Kim, Sung-Won

    2015-01-01

    This study aimed to evaluate the reproducibility of apparent diffusion coefficient (ADC) measurements in malignant breast masses, and to determine the influence of mammographic parenchymal density on this reproducibility. Sixty-six patients with magnetic resonance findings of the mass were included. Two breast radiologists measured the ADC of the malignant breast mass and the same area on the contralateral normal breast in each patient twice. The effects of mammographic parenchymal density, histology, and lesion size on reproducibility were also assessed. There was no significant difference in the mean ADC between repeated measurements in malignant breast masses and normal breast tissue. The overall reproducibility of ADC measurements was good in both. The 95% limits of agreement for repeated ADCs were approximately 30.2%-33.4% of the mean. ADC measurements in malignant breast masses were highly reproducible irrespective of mass size, histologic subtype, or coexistence of microcalcifications; however, the measurements tended to be less reproducible in malignant breast masses with extremely dense parenchymal backgrounds. ADC measurements in malignant breast masses are highly reproducible; however, mammographic parenchymal density can potentially influence this reproducibility. PMID:26539016

  15. Diffusion in the system K2O-SrO-SiO2. II - Cation self-diffusion coefficients.

    NASA Technical Reports Server (NTRS)

    Varshneya, A. K.; Cooper, A. R.

    1972-01-01

    The self-diffusion coefficients were measured by introducing a slab of glass previously irradiated in a reactor between two slabs of unirradiated glass. By heating the specimens, etching them sequentially and determining the radioactivity, self-diffusion coefficients for K and Sr were measured. It is pointed out that the results obtained in the investigations appear to support the proposal that the network of the base glass predominantly controls the activation energy for the diffusion of ions.

  16. Gas phase diffusion coefficients of reactive trace gases in the atmosphere

    NASA Astrophysics Data System (ADS)

    Tang, Mingjin; Shiraiwa, Manabu; Cox, Tony; Pöschl, Ulrich; Kalberer, Markus

    2015-04-01

    Diffusion of gas molecules to the surface is the first step for all gas-surface reactions. Gas phase diffusion can influence and sometimes even limit the overall rates of these reactions. However, there is no database of the gas phase diffusion coefficients of atmospheric reactive trace gases. We have compiled and evaluated, for the first time, the diffusivities (pressure independent diffusion coefficients) of atmospheric inorganic (Tang et al., 2014) and organic reactive trace gases reported in the literature. The measured diffusivities are then compared with estimated values using a semi-empirical method developed by Fuller et al. (1966). The diffusivities estimated using Fuller's method are typically found to be in good agreement with the measured values within ±30%, and therefore Fuller's method can be used to estimate the diffusivities of trace gases for which experimental data are not available. The two experimental methods used in the atmospheric chemistry community to measure the gas phase diffusion coefficients are also discussed.

  17. NITRIC ACID-AIR DIFFUSION COEFFICIENT: EXPERIMENTAL DETERMINATION

    EPA Science Inventory

    Trace gaseous HNO3 in air is removed in a laminar flow nylon tube. The HNO3 deposition pattern was obtained by sectioning the tube, extracting with an aqueous solution, and measuring the concentration by ion chromatography. Mass transport analysis of the deposition pattern demons...

  18. Experimental study on flow and gaseous diffusion behind an isolated building.

    PubMed

    Yassin, Mohamed F; Ohba, Masaake; Tanaka, Hideyuki

    2008-12-01

    To assist validation of numerical models of urban pollution dispersion, the effect of obstacles building on the gaseous diffusion in the wake region have been investigated experimentally in the boundary layer wind tunnel under neutral atmospheric conditions using a tracer gas technique from a point source without buoyancy. The flow and diffusion fields in the boundary layer in an urban environment were investigated in the downwind distance of the obstacle building using an isolated high-rise building model. The scale of the model experiment was assumed to be at 1:500. In the experiment, gaseous pollutant was discharged in the simulated boundary layer over the flat terrain. The effluent velocity of the pollutant was set to be negligible. The velocity field and the turbulence characteristics were analyzed and measured using a hot wire anemometer with a split-fibre probe. The experimental technique was involved the continuous release of tracer gas from a ground level source which was located in the downwind distance of the obstacle model and measured using a fast flame ionization detector (FID). Diffusion characteristics were studied and included both the vertical and lateral mean concentrations and concentration fluctuation intensity at various downwind distances. The results of study were demonstrated that the vertical profiles of the longitudinal mean velocity are very thick around the obstacle wake region due to the turbulence mixing and the smoothing of concentration differences was increased with downwind distance from the obstacle model. Furthermore, the experimental results can help to improve the understanding of mechanisms of pollutant dispersion in an urban environment and also use to validate the corresponding computational fluid dynamics (CFD) prediction. PMID:18193336

  19. Reassessment of liquefaction potential and estimation of earthquake- induced settlements at Paducah Gaseous Diffusion Plant, Paducah, Kentucky. Final report

    SciTech Connect

    Sykora, D.W.; Yule, D.E.

    1996-04-01

    This report documents a reassessment of liquefaction potential and estimation of earthquake-induced settlements for the U.S. Department of Energy (DOE), Paducah Gaseous Diffusion Plant (PGDP), located southwest of Paducah, KY. The U.S. Army Engineer Waterways Experiment Station (WES) was authorized to conduct this study from FY91 to FY94 by the DOE, Oak Ridge Operations (ORO), Oak Ridge, TN, through Inter- Agency Agreement (IAG) No. DE-AI05-91OR21971. The study was conducted under the Gaseous Diffusion Plant Safety Analysis Report (GDP SAR) Program.

  20. MEASUREMENT OF EFFECTIVE AIR DIFFUSION COEFFICIENTS FOR TRICHLOROETHENE IN UNDISTURBED SOIL CORES. (R826162)

    EPA Science Inventory

    Abstract

    In this study, we measure effective diffusion coefficients for trichloroethene in undisturbed soil samples taken from Picatinny Arsenal, New Jersey. The measured effective diffusion coefficients ranged from 0.0053 to 0.0609 cm2/s over a range of air...

  1. Simulating the Gas Diffusion Coefficient in Macropore Network Images: Influences of Soil Pore Morphology

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Knowledge of the diffusion coefficient is necessary for modeling gas transport in soils and other porous media. This study was conducted to determine the relationship between the diffusion coefficient and pore structure parameters, such as the fractal dimension of pores (Dmp), the shortest path leng...

  2. HARDI Denoising: Variational Regularization of the Spherical Apparent Diffusion Coefficient

    E-print Network

    Vese, Luminita A.

    data. 1 Introduction to the HARDI Data Currently, HARDI data is used to map cerebral connectivity of the diffusion tensor can be used to recover the dominant fiber pathway at that voxel. The diffusion tensor model

  3. Study of diffusion coefficients of glasses under zero-G

    NASA Technical Reports Server (NTRS)

    Kinser, D. L.

    1975-01-01

    Diffusion studies of the glass forming ion are examined in zero-g environments and diffusion data obtained from these experiments are unique because of earth based experimental problems. The choice of system for diffusion studies is discussed along with the lab processing. The space processing is described consisting of a heating cycle designed to maximize time exposed to the diffusion temperature without exposing the low viscosity melt to gravitational forces.

  4. Data set for diffusion coefficients of alloying elements in dilute Mg alloys from first-principles

    PubMed Central

    Zhou, Bi-Cheng; Shang, Shun-Li; Wang, Yi; Liu, Zi-Kui

    2015-01-01

    Diffusion coefficients of alloying elements in Mg are critical for the development of new Mg alloys for lightweight applications. Here we present the data set of the temperature-dependent dilute tracer diffusion coefficients for 47 substitutional alloying elements in hexagonal closed packed (hcp) Mg calculated from first-principles calculations based on density functional theory (DFT) by combining transition state theory and an 8-frequency model. Benchmark for the DFT calculations and systematic comparison with experimental diffusion data are also presented. The data set refers to “Diffusion coefficients of alloying elements in dilute Mg alloys: A comprehensive first-principles study” by Zhou et al. [1]. PMID:26702419

  5. Temperature effects on diffusion coefficient for 6-gingerol and 6-shogaol in subcritical water extraction

    NASA Astrophysics Data System (ADS)

    Ilia Anisa, Nor; Azian, Noor; Sharizan, Mohd; Iwai, Yoshio

    2014-04-01

    6-gingerol and 6-shogaol are the main constituents as anti-inflammatory or bioactive compounds from zingiber officinale Roscoe. These bioactive compounds have been proven for inflammatory disease, antioxidatives and anticancer. The effect of temperature on diffusion coefficient for 6-gingerol and 6-shogaol were studied in subcritical water extraction. The diffusion coefficient was determined by Fick's second law. By neglecting external mass transfer and solid particle in spherical form, a linear portion of Ln (1-(Ct/Co)) versus time was plotted in determining the diffusion coefficient. 6-gingerol obtained the higher yield at 130°C with diffusion coefficient of 8.582x10-11 m2/s whilst for 6-shogaol, the higher yield and diffusion coefficient at 170°C and 19.417 × 10-11 m2/s.

  6. Diffusion coefficient of an inclusion in a liquid membrane supported by a solvent of arbitrary thickness

    NASA Astrophysics Data System (ADS)

    Seki, Kazuhiko; Ramachandran, Sanoop; Komura, Shigeyuki

    2011-08-01

    The diffusion coefficient of an inclusion in a liquid membrane is investigated by taking into account the interaction between membranes and bulk solvents of arbitrary thickness. As illustrative examples, the diffusion coefficients of two types of inclusions, a circular domain composed of fluid with the same viscosity as the host membrane and that of a polymer chain embedded in the membrane, are studied. The diffusion coefficients are expressed in terms of the hydrodynamic screening lengths, which vary according to the solvent thickness. When the membrane fluid is dragged by the solvent of finite thickness, via stick boundary conditions, multiple hydrodynamic screening lengths together with the weight factors to the diffusion coefficients are obtained from the characteristic equation. The conditions for which the diffusion coefficients can be approximated by the expression including only a single hydrodynamic screening length are also shown.

  7. Diffusion coefficient of an inclusion in a liquid membrane supported by a solvent of arbitrary thickness

    E-print Network

    Kazuhiko Seki; Sanoop Ramachandran; Shigeyuki Komura

    2011-07-22

    The diffusion coefficient of a circular shaped inclusion in a liquid membrane is investigated by taking into account the interaction between membranes and bulk solvents of arbitrary thickness. As illustrative examples, the diffusion coefficients of two types of inclusions - a circular domain composed of fluid with the same viscosity as the host membrane and that of a polymer chain embedded in the membrane are studied.The diffusion coefficients are expressed in terms of the hydrodynamic screening lengths which vary according to the solvent thickness. When the membrane fluid is dragged by the solvent of finite thickness, via stick boundary conditions, multiple hydrodynamic screening lengths together with the weight factors to the diffusion coefficients are obtained from the dispersion relation. The condition for which the diffusion coefficients can be approximated by the expression including only a single hydrodynamic screening length are also shown.

  8. High-pressure soot formation and diffusion flame extinction characteristics of gaseous and liquid fuels

    NASA Astrophysics Data System (ADS)

    Karatas, Ahmet Emre

    High-pressure soot formation and flame stability characteristics were studied experimentally in laminar diffusion flames. For the former, radially resolved soot volume fraction and temperature profiles were measured in axisymmetric co-flow laminar diffusion flames of pre-vaporized n-heptane-air, undiluted ethylene-air, and nitrogen and carbon dioxide diluted ethylene-air at elevated pressures. Abel inversion was used to re-construct radially resolved data from the line-of-sight spectral soot emission measurements. For the latter, flame extinction strain rate was measured in counterflow laminar diffusion flames of C1-4 alcohols and hydrocarbon fuels of n-heptane, n-octane, iso-octane, toluene, Jet-A, and biodiesel. The luminous flame height, as marked by visible soot radiation, of the nitrogen- and helium-diluted n-heptane and nitrogen- and carbon dioxide-diluted ethylene flames stayed constant at all pressures. In pure ethylene flames, flame heights initially increased with pressure, but changed little above 5 atm. The maximum soot yield as a function of pressure in nitrogen-diluted n-heptane diffusion flames indicate that n-heptane flames are slightly more sensitive to pressure than gaseous alkane hydrocarbon flames at least up to 7 atm. Ethylene's maximum soot volume fractions were much higher than those of ethane and n-heptane diluted with nitrogen (fuel to nitrogen mass flow ratio is about 0.5). Pressure dependence of the peak carbon conversion to soot, defined as the percentage of fuel's carbon content converted to soot, was assessed and compared to previous measurements with other gaseous fuels. Maximum soot volume fractions were consistently lower in carbon dioxide-diluted flames between 5 and 15 atm but approached similar values to those in nitrogen-diluted flames at 20 atm. This observation implies that the chemical soot suppression effect of carbon dioxide, previously demonstrated at atmospheric pressure, is also present at elevated pressures up to 15 atm, but fades off beyond 15 atm. In flame stability experiments, the extinction strain rates increased with decreasing dilution. In general, the fuels with higher carbon number and fuels with more compact structures were found to be more prone to extinction. Counterflow laminar diffusion flames established at the impingement of reactants with a top-hat (axially uniform) velocity profile were found to be more resistant to extinction than those with a parabolic exit velocity profile. Multiple solutions to the flame stability were observed for certain hydrocarbons.

  9. Development of NF3 Deposit Removal Technology for the Portsmouth Gaseous Diffusion Plant

    SciTech Connect

    Scheele, R.D.; McNamara, B.K.; Rapko, B.M.; Edwards, M.K.; Kozelisky, A.E.; Daniel, R.C.; McSweeney, T.I.; Maharas, S.J.; Weaver, P.J.; Iwamasa, K.J.; Kefgen, R.B.

    2006-07-01

    This paper summarizes the Battelle, Stoller, and WASTREN (BSW) team's efforts, to date, in support of the United States Department of Energy's plans to remove uranium and technetium deposits before decommissioning the Portsmouth Gaseous Diffusion Plant. The BSW team investigated nitrogen trifluoride (NF{sub 3}) as a safer yet effective alternative gaseous treatment to the chlorine trifluoride (ClF{sub 3})-elemental fluorine (F{sub 2}) treatment currently used to remove uranium and technetium deposits from the uranium enrichment cascade. Both ClF{sub 3} and F{sub 2} are highly reactive, toxic, and hazardous gases, while NF{sub 3}, although toxic [1], is no more harmful than moth balls [2]. BSW's laboratory thermo-analytical and laboratory-scale prototype studies with NF{sub 3} established that thermal NF{sub 3} can effectively remove likely and potential uranium (UO{sub 2}F{sub 2} and UF{sub 4}) and technetium deposits (a surrogate deposit material, TcO{sub 2}, and pertechnetates) by conversion to volatile compounds. Our engineering evaluations suggest that NF{sub 3}'s effectiveness could be enhanced by combining with a lesser concentration of ClF{sub 3}. BSW's and other's studies indicate compatibility with Portsmouth materials of construction (aluminum, copper, and nickel). (authors)

  10. Diffusion coefficients of vacancies and interstitials along tilt grain boundaries in molybdenum

    NASA Astrophysics Data System (ADS)

    Novoselov, I. I.; Kuksin, A. Yu.; Yanilkin, A. V.

    2014-05-01

    The diffusion coefficients of vacancies and interstitials along symmetrical tilt grain boundaries in molybdenum have been calculated using the molecular dynamics method. The migration energies of defects have been obtained. The activation energy and coefficients of grain boundary self-diffusion have been deter-mined. A comparison of the obtained results with the studies of other authors indicates that boundaries formed between particles in the powder in sintering experiments have a higher diffusion activity as compared to stable grain boundaries in polycrystals.

  11. Report on the biological monitoring program at Paducah Gaseous Diffusion Plant December 1990 to November 1992

    SciTech Connect

    Kszos, L.A.

    1994-03-01

    On September 23, 1987, the Commonwealth of Kentucky Natural Resources and Environmental Protection Cabinet issued an Agreed Order that required the development of a Biological Monitoring Program (BMP) for the Paducah Gaseous Diffusion Plant (PGDP). Beginning in fall 1991, the Environmental Sciences Division (ESD) at Oak Ridge National Lab (ORNL) added data collection and report preparation to its responsibilities for the PGDP BMP. The BMP has been continued because it has proven to be extremely valuable in identifying those effluents with the potential for adversely affecting instream fauna, assessing the ecological health of receiving streams, guiding plans for remediation, and protecting human health. In September 1992, a renewed permit was issued which requires toxicity monitoring of continuous and intermittent outfalls on a quarterly basis. The BMP for PGDP consists of three major tasks: (1) effluent and ambient toxicity monitoring, (2) bioaccumulation studies, and (3) ecological surveys of stream communities. This report includes ESD/ORNL activities occurring from December 1990 to November 1992.

  12. Health-physics survey report of Portsmouth Gaseous Diffusion Plant, Piketon, Ohio

    SciTech Connect

    Bloom, T.F.

    1987-09-01

    A surface alpha-activity industry-wide study was conducted at the Portsmouth Gaseous Diffusion Facility, Piketon, Ohio, as part of a response to a request from the Oil, Chemical, and Atomic Workers International Union for a cohort mortality study. The facility, operated under contract to the Department of Energy (DOE), was involved in enrichment of uranium-235 in uranium-hexafluoride gas for nuclear power and national defense purposes. A removable alpha surface-activity survey was conducted as a cross check of urinalysis data. Methodology involved comparing the numerical order in decreasing value of building geometric mean removable alpha-values with a numerical order of calculated urine alpha-value indices associated with departments in the buildings. For all surfaces measured, activity levels in the six buildings were well below the derived surface-contamination limit.

  13. Report on the Biological Monitoring Program at Paducah Gaseous Diffusion Plant December 1992--December 1993

    SciTech Connect

    Kszos, L.A.; Hinzman, R.L.; Peterson, M.J.; Ryon, M.G.; Smith, J.G.; Southworth, G.R.

    1995-06-01

    On September 24, 1987, the Commonwealth of Kentucky Natural Resources and Environmental Protection Cabinet issued an Agreed Order that required the development of a Biological Monitoring Program (BMP) for the Paducah Gaseous Diffusion Plant (PGDP). The goals of BMP are to demonstrate that the effluent limitations established for PGDP protect and maintain the use of Little Bayou and Big Bayou creeks for growth and propagation of fish and other aquatic life, characterize potential health and environmental impacts, document the effects of pollution abatement facilities on stream biota, and recommend any program improvements that would increase effluent treatability. The BMP for PGDP consists of three major tasks: effluent and ambient toxicity monitoring, bioaccumulation studies, and ecological surveys of stream communities (i.e., benthic macroinvertebrates and fish). This report includes ESD activities occurring from December 1992 to December 1993, although activities conducted outside this time period are included as appropriate.

  14. Study of technetium uptake in vegetation in the vicinity of the Portsmouth Gaseous Diffusion Plant

    SciTech Connect

    Acox, T.A.

    1982-01-01

    Technetium-99 was measured in vegetation and soil collected on and near the Portsmouth Gaseous Diffusion Plant to obtain an estimate of the soil-to-vegetation concentration factors. The concentration factors appear to be lognormally distributed with a geometric mean of 3.4 (Bq/kg dry wt. tissue per Bq/kg dry wt. soil) and a geometric standard deviation of 4.7. A dose commitment was calculated using a hypothetical 3.7 x 10/sup 10/ Bq Tc-99/year release and the actual CY-1981 concentration release of Tc-99. The radiological significance of Tc-99 in the terrestial food chain is substantially less than previously believed.

  15. Portsmouth Gaseous Diffusion Plant Annual Site Environmental Report summary for 1993

    SciTech Connect

    Not Available

    1994-11-01

    This report contains summaries of the environmental programs at Paducah Gaseous Diffusion Plant, environmental monitoring and the results, and the impact of operations on the environment and the public for 1993. The environmental monitoring program at Paducah includes effluent monitoring and environmental surveillance. Effluent monitoring is measurement of releases as they occur. Contaminants are released through either airborne emissions or liquids discharged from the plant. These releases occur as part of normal site operations, such as cooling water discharged from the uranium enrichment cascade operations or airborne releases from ventilation systems. In the event of system failure, this monitoring provides timely warning so that corrective action can be taken before releases reach an unsafe level. Environmental surveillance tracks the dispersion of materials into the environment after they have been released. This involves the collection of samples from various media, such as water, soil, vegetation, and food crops, and the analysis of these samples for certain radionuclides, chemicals, and metals.

  16. Seismically-induced soil amplification at the DOE Paducah Gaseous Diffusion Plant site

    SciTech Connect

    Sykora, D.W.; Haynes, M.E. . Geotechnical Lab.); Brock, W.R.; Hunt, R.J.; Shaffer, K.E. )

    1991-01-01

    A site-specific earthquake site response (soil amplification) study is being conducted for the Department of Energy (DOE), Paducah Gaseous Diffusion Plant (PGDP). This study is pursuant to an upgraded Final Safety Analysis Report in accordance with requirements specified by DOE. The seismic hazard at PGDP is dominated by the New Madrid Seismic Zone. Site-specific synthetic earthquake records developed by others were applied independently to four soil columns with heights above baserock of about 325 ft. The results for the 1000-year earthquake event indicate that the site period is between 1.0 and 1.5 sec. Incident shear waves are amplified at periods of motion greater than 0.15 sec. The peak free-field horizontal acceleration, occurring at very low periods, is 0.28 g. 13 refs., 13 figs.

  17. Paducah Gaseous Diffusion Plant Annual Site Environmental Report summary for 1993

    SciTech Connect

    Not Available

    1994-11-01

    This report contains summaries of the environmental programs at Paducah Gaseous Diffusion Plant, environmental monitoring and the results, and the impact of operations on the environment and the public for 1993. The environmental monitoring program at Paducah includes effluent monitoring and environmental surveillance. Effluent monitoring is measurement of releases as they occur. Contaminants are released through either airborne emissions or liquids discharged from the plant. These releases occur as part of normal site operations, such as cooling water discharged from the uranium enrichment cascade operations or airborne releases from ventilation systems. In the event of system failure, this monitoring provides timely warning so that corrective action can be taken before releases reach an unsafe level. Environmental surveillance tracks the dispersion of materials into the environment after they have been released. This involves the collection of samples from various media, such as water, soil, vegetation, and food crops, and the analysis of these samples for certain radionuclides, chemicals, and metals.

  18. A probabilistic safety analysis of UF{sub 6} handling at the Portsmouth Gaseous Diffusion Plant

    SciTech Connect

    Boyd, G.J.; Lewis, S.R.; Summitt, R.L.

    1991-12-31

    A probabilistic safety study of UF{sub 6} handling activities at the Portsmouth Gaseous Diffusion Plant has recently been completed. The analysis provides a unique perspective on the safety of UF{sub 6} handling activities. The estimated release frequencies provide an understanding of current risks, and the examination of individual contributors yields a ranking of important plant features and operations. Aside from the probabilistic results, however, there is an even more important benefit derived from a systematic modeling of all operations. The integrated approach employed in the analysis allows the interrelationships among the equipment and the required operations to be explored in depth. This paper summarizes the methods used in the study and provides an overview of some of the technical insights that were obtained. Specific areas of possible improvement in operations are described.

  19. Analysis and evalaution in the production process and equipment area of the low-cost solar array project. [including modifying gaseous diffusion and using ion implantation

    NASA Technical Reports Server (NTRS)

    Goldman, H.; Wolf, M.

    1979-01-01

    The manufacturing methods for photovoltaic solar energy utilization are assessed. Economic and technical data on the current front junction formation processes of gaseous diffusion and ion implantation are presented. Future proposals, including modifying gaseous diffusion and using ion implantation, to decrease the cost of junction formation are studied. Technology developments in current processes and an economic evaluation of the processes are included.

  20. Diffusion coefficients of water in biobased hydrogel polymer matrices by nuclear magnetic resonance imaging

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The diffusion coefficient of water in biobased hydrogels were measured utilizing a simple NMR method. This method tracks the migration of deuterium oxide through imaging data that is fit to a diffusion equation. The results show that a 5 wt% soybean oil based hydrogel gives aqueous diffusion of 1.37...

  1. Study of diffusion coefficients of glasses under Zero-G

    NASA Technical Reports Server (NTRS)

    Kinser, D. L.

    1977-01-01

    A diffusion experiment for glasses was formulated, such theoretical and earth bound results as were available were outlined, and the preliminary earth based experimental work in preparation for a weightless experiment was done. The fundamental premise of the work was that diffusion studies of the glass forming ion can be conducted in zero-g environments, and diffusion data obtained from these experiments are unique and valuable because of earth based experimental difficulties.

  2. Impurity Diffusion Coefficients of Al and Zn in Mg Determined from Solid-to-Solid Diffusion Couples

    SciTech Connect

    Kammerer, Catherine; Kulkarni, Nagraj S; Warmack, Robert J Bruce; Perry, Kelly A; Belova, Irina; Murch, Prof. Graeme; Sohn, Yong Ho

    2013-08-01

    Increasing use and development of lightweight Mgalloys have led to the desire for more fundamental research in and understanding of Mg-based systems. As property enhancing components, Al and Zn are two of the most important and common alloying elements for Mg-alloys. We have investigated the concentration dependent interdiffusion of Al and Zn in Mg using diffusion couples of pure polycrystalline Mg mated to Mg solid solutions containing either <9 at.% Al or <3 at.% Zn. Concentration profiles were determined by electron micro-probe microanalysis of the diffusion zone. The interdiffusion coefficients were determined by the classical Boltzmann-Matano method within the Mg solid solution. As the concentration of Al or Zn approaches the dilute ends, we employ an analytical approach based on the Hall method to estimate the impurity diffusion coefficients. Results of Al and Zn impurity diffusion in Mg are reported and compared to published impurity diffusion coefficients typically determined by thin film techniques.

  3. 10 CFR Appendix C to Part 110 - Illustrative List of Gaseous Diffusion Enrichment Plant Assemblies and Components Under NRC...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... of air into the inner chamber of the compressor or gas blower which is filled with UF6. Such seals... Under NRC Export Licensing Authority Note—In the gaseous diffusion method of uranium isotope separation... cooling the gas (which is heated by the process of compression), seal valves and control valves,...

  4. 10 CFR Appendix C to Part 110 - Illustrative List of Gaseous Diffusion Enrichment Plant Assemblies and Components Under NRC...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Assemblies and Components Under NRC Export Licensing Authority C Appendix C to Part 110 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) EXPORT AND IMPORT OF NUCLEAR EQUIPMENT AND MATERIAL Pt. 110, App. C Appendix C to Part 110—Illustrative List of Gaseous Diffusion Enrichment Plant Assemblies and...

  5. 10 CFR Appendix C to Part 110 - Illustrative List of Gaseous Diffusion Enrichment Plant Assemblies and Components Under NRC...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ..., the main technological assembly is a special porous gaseous diffusion barrier, heat exchanger for... are normally designed for a buffer gas in-leakage rate of less than 1000 cm3/min. 1.5 Heat Exchangers for Cooling UF6 Especially designed or prepared heat exchangers made of or lined with UF6...

  6. 10 CFR Appendix C to Part 110 - Illustrative List of Gaseous Diffusion Enrichment Plant Assemblies and Components Under NRC...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ..., the main technological assembly is a special porous gaseous diffusion barrier, heat exchanger for... are normally designed for a buffer gas in-leakage rate of less than 1000 cm3/min. 1.5 Heat Exchangers for Cooling UF6 Especially designed or prepared heat exchangers made of or lined with UF6...

  7. Nonlinearity Effects of Lateral Density Diffusion Coefficient on Gain-Guided VCSEL Performance

    NASA Technical Reports Server (NTRS)

    Li, Jian-Zhong; Cheung, Samson H.; Ning, C. Z.; Biegel, Bryan (Technical Monitor)

    2001-01-01

    Electron and hole diffusions in the plane of semiconductor quantum wells play an important part in the static and dynamic operations of semiconductor lasers. In this paper, we apply a hydrodynamic model developed from the semiconductor Bloch equations to numerically study the effects of nonlinearity in the diffusion coefficient on single mode operation and direct modulation of a gain-guided InGaAs/GaAs multiple quantum well laser, operating not too far from threshold. We found that a small diffusion coefficient is advantageous for lowering the threshold current and increasing the modulation bandwidth. Most importantly, the effects of nonlinearity in the coefficient can be approximately reproduced by replacing the coefficient with an effective constant diffusion coefficient, which corresponds roughly to the half height density of the density distribution.

  8. Migration of particles on heterogeneous bivariate lattices: The universal analytical expressions for the diffusion coefficients

    NASA Astrophysics Data System (ADS)

    Tarasenko, Alexander; Bohá?, Petr; Jastrabík, Lubomír

    2015-11-01

    We have derived the analytical expressions for the diffusion coefficients describing the particle diffusion on different heterogeneous lattices. It occurs that these expressions can be used for description of the particle diffusion on the patchwise lattices. The coverage dependencies of the center-of-mass and Fickian diffusion coefficients obtained for some patchwise lattices by the Monte Carlo simulation can be perfectly fitted by these expressions. The good coincidence of the numerical data with the theoretical results demonstrates the applicability of the analytical expressions for the wide class of heterogeneous lattices.

  9. Determination of the diffusion coefficient between corn syrup and distilled water using a digital camera

    NASA Astrophysics Data System (ADS)

    Ray, E.; Bunton, P.; Pojman, J. A.

    2007-10-01

    A simple technique for determining the diffusion coefficient between two miscible liquids is presented based on observing concentration-dependent ultraviolet-excited fluorescence using a digital camera. The ultraviolet-excited visible fluorescence of corn syrup is proportional to the concentration of the syrup. The variation of fluorescence with distance from the transition zone between the fluids is fit by the Fick's law solution to the diffusion equation. By monitoring the concentration at successive times, the diffusion coefficient can be determined in otherwise transparent materials. The technique is quantitative and makes measurement of diffusion accessible in the advanced undergraduate physics laboratory.

  10. Irregular parameter dependence of generalized diffusion coefficients based on large deviation statistical analysis.

    PubMed

    Yoshida, Masaomi; Miyazaki, Syuji; Fujisaka, Hirokazu

    2006-08-01

    The nonperturbative non-Gaussian characteristics of diffusive motion are examined in the framework of the large deviation statistical theory, where simple extended mapping models showing chaotic diffusion are taken as an example. Furthermore, by rigorously solving the large deviation statistical quantities, it is found that the same type of anomalous, complex control parameter dependence as that for the diffusion coefficient reported by Klages and Dorfman is also observed in the large deviation statistical quantities such as the weighted average, the generalized diffusion coefficient, and the generalized power spectrum densities. PMID:17025522

  11. Irregular parameter dependence of generalized diffusion coefficients based on large deviation statistical analysis

    NASA Astrophysics Data System (ADS)

    Yoshida, Masaomi; Miyazaki, Syuji; Fujisaka, Hirokazu

    2006-08-01

    The nonperturbative non-Gaussian characteristics of diffusive motion are examined in the framework of the large deviation statistical theory, where simple extended mapping models showing chaotic diffusion are taken as an example. Furthermore, by rigorously solving the large deviation statistical quantities, it is found that the same type of anomalous, complex control parameter dependence as that for the diffusion coefficient reported by Klages and Dorfman is also observed in the large deviation statistical quantities such as the weighted average, the generalized diffusion coefficient, and the generalized power spectrum densities.

  12. Determination of pollutant diffusion coefficients in naturally formed biofilms using a single tube extractive membrane bioreactor

    SciTech Connect

    Zhang, S.F.; Splendiani, A.; Freitas dos Santos, L.M.; Livingston, A.G.

    1998-07-05

    A novel technique has been used to determine the effective diffusion coefficients for 1,1,2-trichloroethane (TCE), a nonreacting tracer, in biofilms growing on the external surface of a silicone rubber membrane tube during degradation of 1,2-dichloroethane (DCE) by Xanthobacter autotrophicus GJ10 and monochlorobenzene (MCB) by Pseudomonas JS150. Experiments were carried out in a single tube extractive membrane bioreactor (STEMB), whose configuration makes it possible to measure the transmembrane flux of substrates. A video imaging technique (VIT) was employed for in situ biofilm thickness measurement and recording. Diffusion coefficients of TCE in the biofilms and TCE mass transfer coefficients in the liquid films adjacent to the biofilms were determined simultaneously using a resistances-in-series diffusion model. It was found that the flux and overall mass transfer coefficient of TCE decrease with increasing biofilm thickness, showing the importance of biofilm diffusion on the mass transfer process. Similar fluxes were observed for the nonreacting tracer (TCE) and the reactive substrates (MCB or DCE), suggesting that membrane-attached biofilm systems can be rate controlled primarily by substrate diffusion. The TCE diffusion coefficient in the JS150 biofilm appeared to be dependent on biofilm thickness, decreasing markedly for biofilm thicknesses of >1 mm. The values of the TCE diffusion coefficients in the JS150 biofilms <1-mm thick are approximately twice those in water and fall to around 30% of the water value for biofilms >1-mm thick.

  13. Some exact results for the diffusion coefficients of maps with pruning cycles

    NASA Astrophysics Data System (ADS)

    Tseng, Hsen-Chen; Chen, Hung-Jung; Li, Ping-Cheng; Lai, Wuu-Yih; Chou, Chien Ho; Chen, Hung-Wei

    1994-11-01

    For a family of piecewise linear maps, we consider several interesting cases in which the symbolic dynamics is described in terms of a restricted grammar. However, their diffusion coefficients can be determined analytically through appropriate cycle expansions.

  14. Measurement of molecular diffusion coefficients in supercritical carbon dioxide using a coated capillary column

    SciTech Connect

    Lai, C.C.; Tan, C.S. . Dept. of Chemical Engineering)

    1995-02-01

    Molecular diffusion coefficients of ethyl acetate, toluene, phenol, and caffeine in supercritical carbon dioxide were measured by a chromatographic peak broadening technique in a coated capillary column at temperatures of 308, 318, and 328 K and pressures up to 145 bar. A linear adsorption in the polymer layer coated on the inner wall of the capillary column was observed. The experimentally determined diffusion coefficients showed substantial agreement with those reported in the literature. The diffusion coefficients were in the order of 10[sup [minus]4] cm[sup 2]/s and decreased with increasing carbon dioxide density. Based on the molecular diffusion coefficient data reported here and those published elsewhere, an empirically modified Wilke-Chang equation was proposed which was found to be more quantitative than some existing equations such as the Stokes-Einstein and Wilke-Chang equations.

  15. Numerical results using the conforming VEM for the convection-diffusion-reaction equation with variable coefficients.

    SciTech Connect

    Manzini, Gianmarco; Cangiani, Andrea; Sutton, Oliver

    2014-10-02

    This document presents the results of a set of preliminary numerical experiments using several possible conforming virtual element approximations of the convection-reaction-diffusion equation with variable coefficients.

  16. On the determinatino of high-pressure mass-diffusion coefficients for binary mixtures

    NASA Technical Reports Server (NTRS)

    Bellan, J.; Harstad, K.

    2003-01-01

    A model for high-pressure binary diffusion coefficient calculation is proposed based on considerations originating from recasting both the low pressure kinetic theory and the Stokes-Einstein infinite dilution expressions into forms consistent with corresponding states theory.

  17. Effect of particle size on the diffuse reflection coefficient of titanium dioxide powder

    NASA Astrophysics Data System (ADS)

    Vlasov, V. A.; Astafyev, A. L.; Zarubin, A. N.

    2015-04-01

    In the present work a model of light scattering is shown which explains the result about effect of particle size on the diffuse reflection coefficient of initial titanium dioxide powders. The diffuse reflection coefficient depending on particle size for TiO2 pigment varies on the curve with maximum. The experimental results and the model can be used for technology development of manufacturing pigment for light-reflecting temperature-control coatings of spacecraft

  18. Infinite dilution diffusion coefficients of several aromatic hydrocarbons in octane and 2,2,4-trimethylpentane

    SciTech Connect

    Fan, Y.; Qian, R.; Shi, M.; Shi, J.

    1995-09-01

    Diffusion coefficient measurements are required in a number of engineering applications and also in testing transport property theories. The diffusion coefficients of benzene, toluene, p-xylene, o-xylene, ethylbenzene, and mesitylene at infinite dilution in octane and in 2,2,4-trimethylpentane in the temperature range 303.2--333.2 K were determined by the Taylor dispersion technique. A correlation based on a free-volume-type expression represented the results to within experimental uncertainty.

  19. FITTING OF THE DATA FOR DIFFUSION COEFFICIENTS IN UNSATURATED POROUS MEDIA

    SciTech Connect

    B. Bullard

    1999-05-01

    The purpose of this calculation is to evaluate diffusion coefficients in unsaturated porous media for use in the TSPA-VA analyses. Using experimental data, regression techniques were used to curve fit the diffusion coefficient in unsaturated porous media as a function of volumetric water content. This calculation substantiates the model fit used in Total System Performance Assessment-1995 An Evaluation of the Potential Yucca Mountain Repository (TSPA-1995), Section 6.5.4.

  20. Diffusion Coefficients in a Lamellar Lyotropic Phase: Evidence for Defects Connecting the Surfactant Structure

    E-print Network

    Doru Constantin; Patrick Oswald

    2015-04-09

    We measure diffusion coefficients in the lamellar phase of the nonionic binary system C$_{12}$EO$_6$/H$_2$O using fluorescence recovery after photobleaching. The diffusion coefficient across the lamellae shows an abrupt increase upon approaching the lamellar-isotropic phase transition. We interpret this feature in terms of defects connecting the surfactant structure. An estimation of the defect density and of the variation in defect energy close to the transition is given in terms of a simple model.

  1. Investigation of the Variation of Measured Particle Diffusion Coefficient

    E-print Network

    University Support Inserted Support Withdrawn Superconducting Dipole Magnet Glow from Plasma !(pV") = 0 (with where: p V and n V -1 . 5 2 m Inductive Charging Levitation Coil 2.45 GHz 6.4 GHz 1 m FIG. 1 of the plasma density profile with a levitated dipole in LDX determine the radial particle diffusivity, provided

  2. Imaging cell size and permeability in biological tissue using the diffusion-time dependence of the apparent diffusion coefficient

    NASA Astrophysics Data System (ADS)

    Dietrich, Olaf; Hubert, Alexander; Heiland, Sabine

    2014-06-01

    The purpose of this study was to analyze and evaluate a model of restricted water diffusion between equidistant permeable membranes for cell-size and permeability measurements in biological tissue. Based on the known probability distribution of diffusion distances after the diffusion time ? in a system of permeable membranes characterized by three parameters (membrane permeability P, membrane distance L, and free diffusivity D0), an equivalent dimensionless model was derived with a probability distribution characterized by only a single (dimensionless) tissue parameter \\tilde{P}. Evaluating this proposed model function, the dimensionless diffusion coefficient \\tilde{D}_{eff}(\\tilde{\\tau };\\,\\tilde{P}) was numerically calculated for 60 values of the dimensionless diffusion time \\tilde{\\tau } and 35 values of \\tilde{P}. Diffusion coefficients were measured in a carrot by diffusion-weighted magnetic resonance imaging (MRI) at 18 diffusion times between 9.9 and 1022.7 ms and fitted to the simulation results \\tilde{D}_{eff}(\\tilde{\\tau };\\,\\tilde{P}) to determine L, P, and D0. The measured diffusivities followed the simulated dependence of \\tilde{D}_{eff}(\\tilde{\\tau };\\tilde{P}). Determined cell sizes varied from 21 to 76 ?m, permeabilities from 0.007 to 0.039 ?m-1, and the free diffusivities from 1354 to 1713 ?m2?s-1. In conclusion, the proposed dimensionless tissue model can be used to determine tissue parameters (D0, L, P) based on diffusion MRI with multiple diffusion times. Measurements in a carrot showed a good agreement of the cell diameter, L, determined by diffusion MRI and by light microscopy.

  3. Effect of dynamic diffusion of air, nitrogen, and helium gaseous media on the microhardness of ionic crystals with juvenile surfaces

    NASA Astrophysics Data System (ADS)

    Klyavin, O. V.; Fedorov, V. Yu.; Chernov, Yu. M.; Shpeizman, V. V.

    2015-09-01

    The load dependences of the microhardness of surface layers of NaCl and LiF ionic single crystals with juvenile surfaces and surfaces exposed to air for a long time measured in the air, nitrogen, and helium gaseous media have been investigated. It has been found that there is a change in the sign of the derivative of the microhardness as a function of the load for LiF crystals indented in helium and after their aging in air, as well as a weaker effect of the nitrogen and air gaseous media on the studied dependences as compared to NaCl crystals. It has also been found that, after the aging of the surface of NaCl crystals in air, there is a change in the sign of the derivative of the microhardness in the nitrogen and air gaseous media, as well as a pronounced change in the microhardness as a function of the time of aging the samples in air as compared to the weaker effect of the gaseous medium for LiF crystals. The obtained data have been analyzed in terms of the phenomenon of dislocation-dynamic diffusion of particles from the external medium into crystalline materials during their plastic deformation along the nucleating and moving dislocations. It has been shown that this phenomenon affects the microhardness through changes in the intensity of dislocation multiplication upon the formation of indentation rosettes in different gaseous media. The performed investigation of the microhardness of the juvenile surface of NaCl and LiF crystals in different gaseous media has revealed for the first time a different character of dislocation-dynamic diffusion of these media in a "pure" form.

  4. Effective Diffusion Coefficients for Methanol in Sulfuric Acid Solutions Measured by Raman Spectroscopy

    E-print Network

    Effective Diffusion Coefficients for Methanol in Sulfuric Acid Solutions Measured by Raman % sulfuric acid solutions was followed using Raman spectroscopy. Because methanol reacts to form protonated that the speciation of both methanol and sulfuric acid may be important in determining these transport coefficients

  5. First principles calculations of alloying element diffusion coefficients in Ni using the five-frequency model

    NASA Astrophysics Data System (ADS)

    Wu, Qiong; Li, Shu-Suo; Ma, Yue; Gong, Sheng-Kai

    2012-10-01

    The diffusion coefficients of several alloying elements (Al, Mo, Co, Ta, Ru, W, Cr, Re) in Ni are directly calculated using the five-frequency model and the first principles density functional theory. The correlation factors provided by the five-frequency model are explicitly calculated. The calculated diffusion coefficients show their excellent agreement with the available experimental data. Both the diffusion pre-factor (D0) and the activation energy (Q) of impurity diffusion are obtained. The diffusion coefficients above 700 K are sorted in the following order: DAl > DCr > DCo > DTa > DMo > DRu > DW > DRe. It is found that there is a positive correlation between the atomic radius of the solute and the jump energy of Ni that results in the rotation of the solute-vacancy pair (E1). The value of E2-E1 (E2 is the solute diffusion energy) and the correlation factor each also show a positive correlation. The larger atoms in the same series have lower diffusion activation energies and faster diffusion coefficients.

  6. An alternative model for estimating liquid diffusion coefficients requiring no viscosity data

    NASA Technical Reports Server (NTRS)

    Morales, Wilfredo

    1993-01-01

    An equation, based on the free volume of a liquid solvent, was derived via dimensional analysis, to predict binary diffusion coefficients. The equation assumed that interaction between the solute and liquid solvent molecules followed a Lennard-Jones potential. The equation was compared to other diffusivity equations and was found to give good results over the temperature range examined.

  7. Evaluation of Fourier Transform Coefficients for The Diagnosis of Rheumatoid Arthritis From Diffuse Optical Tomography Images

    E-print Network

    Hielscher, Andreas

    Evaluation of Fourier Transform Coefficients for The Diagnosis of Rheumatoid Arthritis From Diffuse: Diffuse Optical Tomography, Computer-Aided Diagnosis, Rheumatoid Arthritis 1. INTRODUCTION Rheumatoid arthritis (RA) is an autoimmune disorder that affects 0.5-1.0% of adults in industrialized countries

  8. Ischemic lesion volume determination on diffusion weighted images vs. apparent diffusion coefficient maps.

    PubMed

    Bråtane, Bernt Tore; Bastan, Birgul; Fisher, Marc; Bouley, James; Henninger, Nils

    2009-07-01

    Though diffusion weighted imaging (DWI) is frequently used for identifying the ischemic lesion in focal cerebral ischemia, the understanding of spatiotemporal evolution patterns observed with different analysis methods remains imprecise. DWI and calculated apparent diffusion coefficient (ADC) maps were serially obtained in rat stroke models (MCAO): permanent, 90 min, and 180 min temporary MCAO. Lesion volumes were analyzed in a blinded and randomized manner by 2 investigators using (i) a previously validated ADC threshold, (ii) visual determination of hypointense regions on ADC maps, and (iii) visual determination of hyperintense regions on DWI. Lesion volumes were correlated with 24 hour 2,3,5-triphenyltetrazoliumchloride (TTC)-derived infarct volumes. TTC-derived infarct volumes were not significantly different from the ADC and DWI-derived lesion volumes at the last imaging time points except for significantly smaller DWI lesions in the pMCAO model (p=0.02). Volumetric calculation based on TTC-derived infarct also correlated significantly stronger to volumetric calculation based on last imaging time point derived lesions on ADC maps than DWI (p<0.05). Following reperfusion, lesion volumes on the ADC maps significantly reduced but no change was observed on DWI. Visually determined lesion volumes on ADC maps and DWI by both investigators correlated significantly with threshold-derived lesion volumes on ADC maps with the former method demonstrating a stronger correlation. There was also a better interrater agreement for ADC map analysis than for DWI analysis. Ischemic lesion determination by ADC was more accurate in final infarct prediction, rater independent, and provided exclusive information on ischemic lesion reversibility. PMID:19427841

  9. Replacement of chlorofluorocarbons at the DOE gaseous diffusion plants: An assessment of global impacts

    SciTech Connect

    Socolof, M.L.; McCold, L.N.; Saylor, R.E.

    1997-01-01

    Three gaseous diffusion plants (GDPs) for enriching uranium maintain a large inventory of chlorofluorocarbon-114 (CFC-114) as a coolant. To address the continued use of CFC-114, an ozone-depleting substance, the US Department of Energy (DOE) considered introducing perfluorocarbons (PFCs) by the end of 1995. These PFCs would not contribute to stratospheric ozone depletion but would be larger contributors to global warming than would CFC-114. The paper reports the results of an assessment of the global impacts of four alternatives for modifying GDP coolant system operations over a three-year period beginning in 1996. The overall contribution of GDP coolant releases to impacts on ozone depletion and global warming were quantified by parameters referred to as ozone-depletion impact and global-warming impact. The analysis showed that these parameters could be used as surrogates for predicting global impacts to all resources and could provide a framework for assessing environmental impacts of a permanent coolant replacement, eliminating the need for subsequent resource-specific analyses.

  10. Assessment and interpretation of cross- and down-hole seismograms at the Paducah Gaseous Diffusion Plant

    SciTech Connect

    Staub, W.P.; Wang, J.C. ); Selfridge, R.J. )

    1991-09-01

    This paper is an assessment and interpretation of cross-and down-hole seismograms recorded at four sites in the vicinity of the Paducah Gaseous Diffusion Plant (PGDP). Arrival times of shear (S-) and compressional (P-) waves are recorded on these seismograms in milliseconds. Together with known distances between energy sources and seismometers lowered into boreholes, these arrival times are used to calculate S- and P-wave velocities in unconsolidated soils and sediments that overlie bedrock approximately 320 ft beneath PGDP. The soil columns are modified after an earlier draft by ERC Environmental and Energy Services Company (ERCE), 1990. In addition to S- and P- wave velocity estimates from this paper, the soil columns contain ERCE's lithologic and other geotechnical data for unconsolidated soils and sediments from the surface to bedrock. Soil columns for Sites 1 through 4 and a site location map are in Plates 1 through 5 of Appendix 6. The velocities in the four columns are input parameters for the SHAKE computer program, a nationally recognized computer model that simulates ground response of unconsolidated materials to earthquake generated seismic waves. The results of the SHAKE simulation are combined with predicted ground responses on rock foundations (caused by a given design earthquake) to predict ground responses of facilities with foundations placed on unconsolidated materials. 3 refs.

  11. An Aerial Radiological Survey of the Portsmouth Gaseous Diffusion Plant and Surrounding Area, Portsmouth, Ohio

    SciTech Connect

    Namdoo Moon

    2007-12-01

    An aerial radiological survey was conducted over the 16 square-mile (~41 square-kilometer) area surrounding the Portsmouth Gaseous Diffusion Plant. The survey was performed in August 2007 utilizing a large array of helicopter mounted sodium iodide detectors. The purpose of the survey was to update the previous radiological survey levels of the environment and surrounding areas of the plant. A search for a missing radium-226 source was also performed. Implied exposure rates, man-made activity, and excess bismuth-214 activity, as calculated from the aerial data are presented in the form of isopleth maps superimposed on imagery of the surveyed area. Ground level and implied aerial exposure rates for nine specific locations are compared. Detected radioisotopes and their associated gamma ray exposure rates were consistent with those expected from normal background emitters. At specific plant locations described in the report, man-made activity was consistent with the operational histories of the location. There was no spectral activity that would indicate the presence of the lost source.

  12. Operating limit study for the proposed solid waste landfill at Paducah Gaseous Diffusion Plant

    SciTech Connect

    Lee, D.W.; Wang, J.C.; Kocher, D.C.

    1995-06-01

    A proposed solid waste landfill at Paducah Gaseous Diffusion Plant (PGDP) would accept wastes generated during normal operations that are identified as non-radioactive. These wastes may include small amounts of radioactive material from incidental contamination during plant operations. A site-specific analysis of the new solid waste landfill is presented to determine a proposed operating limit that will allow for waste disposal operations to occur such that protection of public health and the environment from the presence of incidentally contaminated waste materials can be assured. Performance objectives for disposal were defined from existing regulatory guidance to establish reasonable dose limits for protection of public health and the environment. Waste concentration limits were determined consistent with these performance objectives for the protection of off-site individuals and inadvertent intruders who might be directly exposed to disposed wastes. Exposures of off-site individuals were estimated using a conservative, site-specific model of the groundwater transport of contamination from the wastes. Direct intrusion was analyzed using an agricultural homesteader scenario. The most limiting concentrations from direct intrusion or groundwater transport were used to establish the concentration limits for radionuclides likely to be present in PGDP wastes.

  13. Report on the biological monitoring program at Paducah Gaseous Diffusion Plant December 1993 to December 1994

    SciTech Connect

    Kszos, L.A.

    1996-05-01

    On September 24, 1987, the Commonwealth of Kentucky Natural Resources and Environmental Protection Cabinet issued an Agreed Order that required the development of a Biological Monitoring Program (BMP) for the Paducah Gaseous Diffusion Plant (PGDP). The PGDP BMP was implemented in 1987 by the University of Kentucky. Research staff of the Environmental Sciences Division (ESD) at Oak Ridge National Laboratory (ORNL) served as reviewers and advisers to the University of Kentucky. Beginning in fall 1991, ESD added data collection and report preparation to its responsibilities for the PGDP BMP. The goals of BMP are to (1) demonstrate that the effluent limitations established for PGDP protect and maintain the use of Little Bayou and Big Bayou creeks for growth and propagation of fish and other aquatic life, (2) characterize potential environmental impacts, (3) document the effects of pollution abatement facilities on stream biota, and (4) recommend any program improvements that would increase effluent treatability. In September 1992, a renewed Kentucky Pollutant Discharge Elimination System (KPDES) permit was issued to PGDP. The BMP for PGDP consists of three major tasks: (1) effluent and ambient toxicity monitoring, (2) bioaccumulation studies, and (3) ecological surveys of stream communities (i.e., benthic macroinvertebrates and fish). This report includes ESD activities occurring from December 1993 to December 1994, although activities conducted outside this time period are included as appropriate.

  14. Report on the biological monitoring program at Paducah Gaseous Diffusion Plant, January--December 1996

    SciTech Connect

    Kszos, L.A.; Konetsky, B.K.; Peterson, M.J.; Petrie, R.B.; Ryon, M.G.; Smith, J.G.; Southworth, G.R.

    1997-06-01

    On September 24, 1987, the Commonwealth of Kentucky Natural Resources and Environmental Protection Cabinet issued an Agreed Order that required the development of a Biological Monitoring Program (BMP) for the Paducah Gaseous diffusion Plant (PGDP). The PGDP BMP was conducted by the University of Kentucky Between 1987 and 1992 and by staff of the Environmental Sciences Division (ESD) at Oak Ridge National Laboratory (ORNL) from 1991 to present. The goals of BMP are to (1) demonstrate that the effluent limitations established for PGDP protect and maintain the use of Little Bayou and Big Bayou creeks for growth and propagation of fish and other aquatic life, (2) characterize potential environmental impacts, and (3) document the effects of pollution abatement facilities on stream. The BMP for PGDP consists of three major tasks: (1) effluent toxicity monitoring, (2) bioaccumulation studies, and (3) ecological surveys of stream communities (i.e., benthic macroinvertebrates and fish). This report focuses on ESD activities occurring from January 1996 to December 1996, although activities conducted outside this time period are included as appropriate.

  15. IAEA Verification Experiment at the Portsmouth Gaseous Diffusion Plant: Report on the Cascade Header Enrichment Monitor

    SciTech Connect

    P. L. Kerr; D. A. Close; W. S. Johnson; R. M. Kandarian; C. E. Moss; C. D. Romero

    1999-03-01

    The authors describe the Cascade Header Enrichment Monitor (CHEM) for the Portsmouth Gaseous Diffusion Plant at Piketon, Ohio, and present the calibration and measurement results. The US government has offered excess fissile material that is no longer needed for defense purposes for International Atomic Energy Agency (IAEA) inspection. Measurement results provided by the CHEM were used by the IAEA in a verification experiment to provide confidence that the US successfully blended excess highly enriched uranium (HEU) down to low enriched uranium (LEU). The CHEM measured the uranium enrichment in two cascade header pipes, a 20.32-cm HEU pipe and a 7.62-cm product LEU pipe. The CHEM determines the amount of {sup 235}U from the 185.7-keV gamma-ray photopeak and the amount of total uranium by x-ray fluorescence (XRF) of the 98.4-keV x-ray from uranium with a {sup 57}Co XRF source. The ratio yields the enrichment. The CHEM consists of a collimator assembly, an electromechanically cooled germanium detector, and a rack-mounted personal computer running commercial and custom software. The CHEM was installed in December 1997 and was used by the IAEA inspectors for announced and unannounced inspections on the HEU and LEU header pipes through October 1998. The equipment was sealed with tamper-indicating enclosures when the inspectors were not present.

  16. Report on the biological monitoring program at Paducah Gaseous Diffusion Plant, January--December 1997

    SciTech Connect

    Kszos, L.A.; Peterson, M.J.; Ryon, M.G.; Smith, J.G.; Southworth, G.R.

    1998-03-01

    On September 24, 1987, the Commonwealth of Kentucky Natural Resources and Environmental Protection Cabinet issued an Agreed Order that required the development of a Biological Monitoring Program (BMP) for the Paducah Gaseous Diffusion Plant (PGDP). A plan for the biological monitoring of the receiving streams was implemented in 1987 and consisted of ecological surveys, toxicity monitoring of effluents and receiving streams, evaluation of bioaccumulation of trace contaminants in biota, and supplemental chemical characterization of effluents. Beginning in fall 1991, the Environmental Sciences Division (ESD) at Oak Ridge National Laboratory added data collection and report preparation to its responsibilities for the PGDP BMP. The BMP has been continued because it has proven to be extremely valuable in (1) identifying those effluents with the potential for adversely affecting instream fauna, (2) assessing the ecological health of receiving streams, and (3) guiding plans for remediation and protecting human health. The BMP for PGDP consists of three major tasks: (1) effluent toxicity monitoring, (2) bioaccumulation studies, and (3) ecological surveys of benthic macroinvertebrate communities and fish. With the exception of the benthic macroinvertebrate community surveys, this report focuses on activities from January to December 1997.

  17. Characteristics of Gaseous Diffusion Flames with High Temperature Combustion Air in Microgravity

    NASA Technical Reports Server (NTRS)

    Ghaderi, M.; Gupta, A. K.

    2003-01-01

    The characteristics of gaseous diffusion flames have been obtained using high temperature combustion air under microgravity conditions. The time resolved flame images under free fall microgravity conditions were obtained from the video images obtained. The tests results reported here were conducted using propane as the fuel and about 1000 C combustion air. The burner included a 0.686 mm diameter central fuel jet injected into the surrounding high temperature combustion air. The fuel jet exit Reynolds number was 63. Several measurements were taken at different air preheats and fuel jet exit Reynolds number. The resulting hybrid color flame was found to be blue at the base of the flame followed by a yellow color flame. The length and width of flame during the entire free fall conditions has been examined. Also the relative flame length and width for blue and yellow portion of the flame has been examined under microgravity conditions. The results show that the flame length decreases and width increases with high air preheats in microgravity condition. In microgravity conditions the flame length is larger with normal temperature combustion air than high temperature air.

  18. Martin Marietta Paducah Gaseous Diffusion Plant comprehensive earthquake emergency management program

    SciTech Connect

    Not Available

    1990-02-28

    Recognizing the value of a proactive, integrated approach to earthquake preparedness planning, Martin Marietta Energy Systems, Inc. initiated a contract in June 1989 with Murray State University, Murray, Kentucky, to develop a comprehensive earthquake management program for their Gaseous Diffusion Plant in Paducah, Kentucky (PGDP -- Subcontract No. 19P-JV649V). The overall purpose of the program is to mitigate the loss of life and property in the event of a major destructive earthquake. The program includes four distinct (yet integrated) components: an emergency management plan, with emphasis on the catastrophic earthquake; an Emergency Operations Center Duty Roster Manual; an Integrated Automated Emergency Management Information System (IAEMIS); and a series of five training program modules. The PLAN itself is comprised of four separate volumes: Volume I -- Chapters 1--3; Volume II -- Chapters 4--6, Volume III -- Chapter 7, and Volume IV -- 23 Appendices. The EOC Manual (which includes 15 mutual aid agreements) is designated as Chapter 7 in the PLAN and is a stand alone'' document numbered as Volume III. This document, Volume II, discusses methodology, engineering and environmental analyses, and operational procedures.

  19. Martin Marietta Paducah Gaseous Diffusion Plant comprehensive earthquake emergency management program

    SciTech Connect

    Not Available

    1990-02-28

    Recognizing the value of a proactive, integrated approach to earthquake preparedness planning, Martin Marietta Energy Systems, Inc. initiated a contract in June 1989 with Murray State University, Murray, Kentucky, to develop a comprehensive earthquake management program for their Gaseous Diffusion Plant in Paducah, Kentucky (PGDP -- Subcontract No. 19P-JV649V). The overall purpose of the program is to mitigate the loss of life and property in the event of a major destructive earthquake. The program includes four distinct (yet integrated) components: (1) an emergency management plan with emphasis on the catas trophic earthquake; (2) an Emergency Operations Center Duty Roster Manual; (3) an Integrated Automated Emergency Management Information System (IAEMIS); and (4) a series of five training program modules. The PLAN itself is comprised of four separate volumes: Volume I -- Chapters 1--3; Volume II -- Chapters 4--6; Volume III -- Chapter 7; and Volume IV -- 23 Appendices. The EOC Manual (which includes 15 mutual aid agreements) is designated as Chapter 7 in the PLAN and is this document numbered as Volume III.

  20. Martin Marietta Paducah Gaseous Diffusion Plant comprehensive earthquake emergency management program

    SciTech Connect

    Not Available

    1990-02-28

    Recognizing the value of a proactive, integrated approach to earthquake preparedness planning, Martin Marietta Energy Systems, Inc. initiated a contract in June 1989 with Murray State University, Murray, Kentucky, to develop a comprehensive earthquake management program for their Gaseous Diffusion Plant in Paducah, Kentucky. The overall purpose of the program is to mitigate the loss of life and property in the event of a major destructive earthquake. The program includes four distinct (yet integrated) components: an emergency management plan, with emphasis on the catastrophic earthquake; an Emergency Operations Center Duty Roster Manual; an Integrated Automated Emergency Management Information System (IAEMIS); and a series of five training program modules. The PLAN itself is comprised of four separate volumes: Volume I -- Chapters 1--3; Volume II -- Chapters 4--6, Volume III -- Chapter 7, and Volume IV -- 23 Appendices. The EOC Manual (which includes 15 mutual aid agreements) is designated as Chapter 7 in the PLAN and is a stand alone'' document numbered as Volume III. This document, Volume I, provides an introduction, summary and recommendations, and the emergency operations center direction and control.

  1. Martin Marietta Paducah Gaseous Diffusion Plant comprehensive earthquake emergency management program

    SciTech Connect

    Not Available

    1990-02-28

    Recognizing the value of a proactive, integrated approach to earthquake preparedness planning, Martin Marietta Energy Systems, Inc, initiated a contract in June 1989 with Murray State University, Murray, Kentucky, to develop a comprehensive earthquake management program for their Gaseous Diffusion Plant in Paducah, Kentucky (PGDP--Subcontract No. 19P-JV649V). The overall purpose of the program is to mitigate the loss of life and property in the event of a major destructive earthquake. The program includes four distinct (yet integrated) components: (1) an emergency management plan, with emphasis on the catas trophic earthquake, (2) an Emergency Operations Center Duty Roster Manual, (3) an Integrated Automated Emergency Management Information System (IAEMIS), and (4) a series of five training program modules. The PLAN itself is comprised of four separate volumes: Volume I--Chapters 1--3; Volume II--Chapters 4--6, Volume III--Chapter 7, and Volume IV--23 Appendices. The EOC Manual (which includes 15 mutual aid agreements) is designated as Chapter 7 in the PLAN and is a stand alone'' document numbered as Volume III. This document, Volume IV contains the appendices to this report.

  2. Oak Ridge Gaseous Diffusion Plant Biological Monitoring and Abatement Program for Mitchell Branch

    SciTech Connect

    Loar, J.M.; Adams, S.M.; Kszos, L.A.; Ryon, M.G.; Smith, J.G.; Southworth, G.R.; Stewart, A.J.

    1992-01-01

    A proposed Biological Monitoring and Abatement Program (BMAP) for the Oak Ridge Gaseous Diffusion Plant (ORGDP; currently the Oak Ridge K-25 Site) was prepared in December 1986, as required by the modified National Pollutant Discharge Elimination System (NPDES) permit that was issued on September 11, 1986. The effluent discharges to Mitchell Branch are complex, consisting of trace elements, organic chemicals, and radionuclides in addition to various conventional pollutants. Moreover, the composition of these effluent streams will be changing over time as various pollution abatement measures are implemented over the next several years. Although contaminant inputs to the stream originate primarily as point sources from existing plant operations, area sources, such as the classified burial grounds and the K-1407-C holding pond, can not be eliminated as potential sources of contaminants. The proposed BMAP consists of four tasks. These tasks include (1) ambient toxicity testing, (2) bioaccumulation studies, (3) biological indicator studies, and (4) ecological surveys of the benthic invertebrate and fish communities. BMAP will determine whether the effluent limits established for ORGDP protect the designated use of the receiving stream (Mitchell Branch) for growth and propagation of fish and aquatic life. Another objective of the program is to document the ecological effects resulting from various pollution abatement projects, such as the Central Neutralization Facility.

  3. An aerial radiological survey of the Paducah Gaseous Diffusion Plant and surrounding area, Paducah, Kentucky

    SciTech Connect

    Not Available

    1992-11-01

    An aerial radiological survey of the Paducah Gaseous Diffusion Plant (PGDP) and surrounding area in Paducah, Kentucky, was conducted during May 15--25, 1990. The purpose of the survey was to measure and document the terrestrial radiological environment at the PGDP and surrounding area for use in effective environmental management and emergency response planning. The aerial survey was flown at an altitude of 61 meters (200 feet) along a series of parallel lines 107 meters (350 feet) apart. The survey encompassed an area of 62 square kilometers (24 square miles), bordered on the north by the Ohio River. The results of the aerial survey are reported as inferred exposure rates at 1 meter above ground level in the form of a gamma radiation contour map. Typical background exposure rates were found to vary from 5 to 12 microroentgens per hour ([mu]R/h). Protactinium-234m, a radioisotope indicative of uranium-238, was detected at several facilities at the PGDR. In support of the aerial survey, ground-based exposure rate and soil sample measurements were obtained at several sites within the survey perimeter. The results of the aerial and ground-based measurements were found to agree within [plus minus]15%.

  4. Environmental Survey preliminary report, Oak Ridge Gaseous Diffusion Plant, Oak Ridge, Tennessee

    SciTech Connect

    Not Available

    1989-02-01

    This report presents the preliminary findings from the first phase of the Environmental Survey of the US Department of Energy's (DOE) Oak Ridge Gaseous Diffusion Plant (ORGDP) conducted March 14 through 25, 1988. The Survey is being conducted by an interdisciplinary team of environmental specialists, led and managed by the Office of Environment, Safety and Health's Office of Environmental Audit. Individual team components are being supplied by a private contractor. The objective of the Survey is to identify environmental risk associated with ORGDP. The Survey covers all environmental media and all areas of environmental regulation. It is being performed in accordance with the DOE Environmental Survey Manual. This phase of the Survey involves the review of existing site environmental data, observations of the operations carried on at ORGDP, and interviews with site personnel. The Survey team developed a Sampling and Analysis Plan to assist in further assessing certain of the environmental problems identified during is on-site activities. The Sampling and Analysis Plan will be executed by Idaho National Engineering Laboratory (INEL). When completed, the results will be incorporated into the ORGDP Survey findings for in inclusion into the Environmental Survey Summary Report. 120 refs., 41 figs., 74 tabs.

  5. Entropy-scaling laws for diffusion coefficients in liquid metals under high pressures

    NASA Astrophysics Data System (ADS)

    Cao, Qi-Long; Shao, Ju-Xiang; Wang, Pan-Pan; Wang, Fan-Hou

    2015-04-01

    Molecular dynamic simulations on the liquid copper and tungsten are used to investigate the empirical entropy-scaling laws D*=A exp(B Se x) , proposed independently by Rosenfeld and Dzugutov for diffusion coefficient, under high pressure conditions. We show that the scaling laws hold rather well for them under high pressure conditions. Furthermore, both the original diffusion coefficients and the reduced diffusion coefficients exhibit an Arrhenius relationship DM=DM0 exp(-EM/KBT ) , ( M =u n ,R ,D ) and the activation energy EM increases with increasing pressure, the diffusion pre-exponential factors ( DR0 and DD0 ) are nearly independent of the pressure and element. The pair correlation entropy, S2, depends linearly on the reciprocal temperature S2=-ES/T , and the activation energy, ES, increases with increasing pressure. In particular, the ratios of the activation energies (Eun, ER, and ED) obtained from diffusion coefficients to the activation energy, ES, obtained from the entropy keep constants in the whole pressure range. Therefore, the entropy-scaling laws for the diffusion coefficients and the Arrhenius law are linked via the temperature dependence of entropy.

  6. Entropy-scaling laws for diffusion coefficients in liquid metals under high pressures

    SciTech Connect

    Cao, Qi-Long Shao, Ju-Xiang; Wang, Fan-Hou; Wang, Pan-Pan

    2015-04-07

    Molecular dynamic simulations on the liquid copper and tungsten are used to investigate the empirical entropy-scaling laws D{sup *}=A?exp(BS{sub ex}), proposed independently by Rosenfeld and Dzugutov for diffusion coefficient, under high pressure conditions. We show that the scaling laws hold rather well for them under high pressure conditions. Furthermore, both the original diffusion coefficients and the reduced diffusion coefficients exhibit an Arrhenius relationship D{sub M}=D{sub M}{sup 0}?exp(?E{sub M}/K{sub B}T), (M=un,R,D) and the activation energy E{sub M} increases with increasing pressure, the diffusion pre-exponential factors (D{sub R}{sup 0} and D{sub D}{sup 0}) are nearly independent of the pressure and element. The pair correlation entropy, S{sub 2}, depends linearly on the reciprocal temperature S{sub 2}=?E{sub S}/T, and the activation energy, E{sub S}, increases with increasing pressure. In particular, the ratios of the activation energies (E{sub un}, E{sub R}, and E{sub D}) obtained from diffusion coefficients to the activation energy, E{sub S}, obtained from the entropy keep constants in the whole pressure range. Therefore, the entropy-scaling laws for the diffusion coefficients and the Arrhenius law are linked via the temperature dependence of entropy.

  7. Quantifying radial diffusion coefficients of radiation belt electrons based on global MHD simulation and spacecraft measurements

    NASA Astrophysics Data System (ADS)

    Tu, Weichao; Elkington, Scot R.; Li, Xinlin; Liu, Wenlong; Bonnell, J.

    2012-10-01

    Radial diffusion is one of the most important acceleration mechanisms for radiation belt electrons, which can be enhanced from drift-resonant interactions with large-scale fluctuations of the magnetosphere's magnetic and electric fields (Pc5 range of ULF waves). In order to physically quantify the radial diffusion coefficient, DLL, we run the global Lyon-Fedder-Mobarry (LFM) MHD simulations to obtain the mode structure and power spectrum of the ULF waves and validate the simulation results with available satellite measurements. The calculated diffusion coefficients, directly from the MHD fields over a Corotating Interaction Region (CIR) storm in March 2008, are generally higher when solar wind dynamic pressure is enhanced or AE index is high. In contrary to the conventional understanding, our results show that inside geosynchronous orbit the total diffusion coefficient from MHD fields is dominated by the contribution from electric field perturbations, rather than the magnetic field perturbations. The calculated diffusion coefficient has a physical dependence on ? (or electron energy) and L, which is missing in the empirical diffusion coefficient, DLLKp as a function of Kp index, and DLLKp are generally greater than our calculated DLL during the storm event. Validation of the MHD ULF waves by spacecraft field data shows that for this event the LFM code reasonably well-reproduces the Bz wave power observed by GOES and THEMIS satellites, while the E? power observed by THEMIS probes are generally underestimated by LFM fields, on average by about a factor of ten.

  8. [Measurement of diffusion coefficients of polar solvent and nonpolar solvent at infinite dilution in polyethylene].

    PubMed

    Bian, Yu; Li, Ji-Ding; Chen, Cui-Xian; Lü, Shao-Hua; Zhang, Shu-Hua

    2002-09-01

    Gas chromatography is a new, fast, accurate and convenient technique to study the correlation of small molecule solvents and polymer membrane materials. It can measure many parameters of dissolution and diffusing characters of a small molecule in a polymer. The retention times and the peak widths at half-height of five small molecule solvents (n-hexane, n-heptane, n-decane, ethanol and water) in the stationary phase of polyethylene were measured. The diffusion coefficients of the small molecule solvents at infinite dilution were calculated with van Deemter equation. The graph plotted according to the results of the diffusion coefficients of n-decane at infinite dilution vs temperatures agreed with the Arrhenius equation. The variance in the diffusion coefficients at infinite dilution of five small molecule solvents was analyzed according to the differences in molecular mass and polarity. PMID:16358690

  9. Eddy diffusion coefficients and their upper limits based on application of the similarity theory

    NASA Astrophysics Data System (ADS)

    Vlasov, M. N.; Kelley, M. C.

    2015-07-01

    The equation for the diffusion velocity in the mesosphere and the lower thermosphere (MLT) includes the terms for molecular and eddy diffusion. These terms are very similar. For the first time, we show that, by using the similarity theory, the same formula can be obtained for the eddy diffusion coefficient as the commonly used formula derived by Weinstock (1981). The latter was obtained by taking, as a basis, the integral function for diffusion derived by Taylor (1921) and the three-dimensional Kolmogorov kinetic energy spectrum. The exact identity of both formulas means that the eddy diffusion and heat transport coefficients used in the equations, both for diffusion and thermal conductivity, must meet a criterion that restricts the outer eddy scale to being much less than the scale height of the atmosphere. This requirement is the same as the requirement that the free path of molecules must be much smaller than the scale height of the atmosphere. A further result of this criterion is that the eddy diffusion coefficients Ked, inferred from measurements of energy dissipation rates, cannot exceed the maximum value of 3.2 × 106 cm2 s-1 for the maximum value of the energy dissipation rate of 2 W kg-1 measured in the mesosphere and the lower thermosphere (MLT). This means that eddy diffusion coefficients larger than the maximum value correspond to eddies with outer scales so large that it is impossible to use these coefficients in eddy diffusion and eddy heat transport equations. The application of this criterion to the different experimental data shows that some reported eddy diffusion coefficients do not meet this criterion. For example, the large values of these coefficients (1 × 107 cm2 s-1) estimated in the Turbulent Oxygen Mixing Experiment (TOMEX) do not correspond to this criterion. The Ked values inferred at high latitudes by Lübken (1997) meet this criterion for summer and winter polar data, but the Ked values for summer at low latitudes are larger than the Ked maximum value corresponding to the criterion. Analysis of the experimental data on meteor train observations shows that energy dissipation with a small rate of about 0.2 W kg-1 sometimes can induce turbulence with eddy scales very close to the scale height of the atmosphere. Our results also explain the discrepancy between the large cooling rates calculated by Vlasov and Kelley (2014) and the temperatures given by the MSIS-E-90 model because, in these cases, the measured eddy diffusion coefficients used in calculating the cooling rates are larger than the maximum value presented above.

  10. Effects of molecular weight on the diffusion coefficient of aquatic dissolved organic matter and humic substances.

    PubMed

    Balch, J; Guéguen, C

    2015-01-01

    In situ measurements of labile metal species using diffusive gradients in thin films (DGT) passive samplers are based on the diffusion rates of individual species. Although most studies have dealt with chemically isolated humic substances, the diffusion of dissolved organic matter (DOM) across the hydrogel is not well understood. In this study, the diffusion coefficient (D) and molecular weight (MW) of 11 aquatic DOM and 4 humic substances (HS) were determined. Natural, unaltered aquatic DOM was capable of diffusing across the diffusive gel membrane with D values ranging from 2.48×10(-6) to 5.31×10(-6) cm(2) s(-1). Humic substances had diffusion coefficient values ranging from 3.48×10(-6) to 6.05×10(-6) cm(2) s(-1), congruent with previous studies. Molecular weight of aquatic DOM and HS samples (?500-1750 Da) measured using asymmetrical flow field-flow fractionation (AF4) strongly influenced D, with larger molecular weight DOM having lower D values. No noticeable changes in DOM size properties were observed during the diffusion process, suggesting that DOM remains intact following diffusion across the diffusive gel. The influence of molecular weight on DOM mobility will assist in further understanding and development of the DGT technique and the uptake and mobility of contaminants associated with DOM in aquatic environments. PMID:25112575

  11. Kinetic theory of point vortices: diffusion coefficient and systematic drift

    E-print Network

    P. H. Chavanis

    2001-07-11

    We develop a kinetic theory for point vortices in two-dimensional hydrodynamics. Using standard projection operator technics, we derive a Fokker-Planck equation describing the relaxation of a ``test'' vortex in a bath of ``field'' vortices at statistical equilibrium. The relaxation is due to the combined effect of a diffusion and a drift. The drift is shown to be responsible for the organization of point vortices at negative temperatures. A description that goes beyond the thermal bath approximation is attempted. A new kinetic equation is obtained which respects all conservation laws of the point vortex system and satisfies a H-theorem. Close to equilibrium this equation reduces to the ordinary Fokker-Planck equation.

  12. Experimental method development for estimating solid-phase diffusion coefficients and material/air partition coefficients of SVOCs

    NASA Astrophysics Data System (ADS)

    Liu, Xiaoyu; Guo, Zhishi; Roache, Nancy F.

    2014-06-01

    The solid-phase diffusion coefficient (Dm) and material/air partition coefficient (Kma) are key parameters for characterizing the sources and transport of semivolatile organic compounds (SVOCs) in the indoor environment. In this work, a new experimental method was developed to estimate parameters Dm and Kma. The SVOCs chosen for study were polychlorinated biphenyl (PCB) congeners, including PCB-52, PCB-66, PCB-101, PCB-110, and PCB-118. The test materials included polypropylene, high density polyethylene, low density polyethylene, polytetrafluoroethylene, polyether ether ketone, glass, stainless steel and concrete. Two 53-L environmental chambers were connected in series, with the relatively stable SVOCs source in the source chamber and the test materials, made as small “buttons”, in the test chamber. Prior to loading the test chamber with the test materials, the test chamber had been dosed with SVOCs for 12 days to “coat” the chamber walls. During the tests, the material buttons were removed from the test chamber at different exposure times to determine the amount of SVOC absorbed by the buttons. SVOC concentrations at the inlet and outlet of the test chamber were also monitored. The data were used to estimate the partition and diffusion coefficients by fitting a sink model to the experimental data. The parameters obtained were employed to predict the accumulation of SVOCs in the sink materials using an existing mass transfer model. The model prediction agreed reasonably well with the experimental data.

  13. Development of measuring diffusion coefficients by digital holographic interferometry in transparent liquid mixtures.

    PubMed

    He, M G; Zhang, S; Zhang, Y; Peng, S G

    2015-05-01

    As for the measurement of diffusion coefficient in transparent liquids by digital holographic interferometry, there are many kinds depending on the mathematical model and experimental setup. The method of using the distance of the peaks in concentration difference profile to determine diffusion coefficient by Mach-Zehnder interferometric experimental setup, is easy to handle. In order to improve the accuracy and convenience of measurement in this method, we combine procedures of hologram analysis used by Mialdun et al (2011) and those by He et al (2009). By using polynomial to fit the continuous phase difference (interference phase) of object beam, it can be more convenient and accurate to determine the distance between the two peaks. Besides, the shift of initial time has been discussed as a separated topic at the first time and two functions for minimization have been given for determination of the initial time in this paper. With the development, diffusion coefficient of KCl in water at 0.33mol/L and 25 °C has been measured. The diffusion coefficient is 1.844 × 10(-9) m2/s with the uncertainty of ± 0.012 × 10(-9) m2/s. Our measurement has more similar result with other methods than holographic interferometry. The relative uncertainty of diffusion coefficient in our experiment is less than 1% and total uncertainty of temperature is within ± 0.04 K. PMID:25969184

  14. Sublimation kinetics and diffusion coefficients of TNT, PETN, and RDX in air by thermogravimetry.

    PubMed

    Hikal, Walid M; Weeks, Brandon L

    2014-07-01

    The diffusion coefficients of explosives are crucial in their trace detection and lifetime estimation. We report on the experimental values of diffusion coefficients of three of the most important explosives in both military and industry: TNT, PETN, and RDX. Thermogravimetric analysis (TGA) was used to determine the sublimation rates of TNT, PETN, and RDX powders in the form of cylindrical billets. The TGA was calibrated using ferrocene as a standard material of well-characterized sublimation rates and vapor pressures to determine the vapor pressures of TNT, PETN, and RDX. The determined sublimation rates and vapor pressures were used to indirectly determine the diffusion coefficients of TNT, PETN, and RDX for the first time. A linear log-log dependence of the diffusion coefficients on temperature is observed for the three materials. The diffusion coefficients of TNT, PETN, and RDX at 273 K were determined to be 5.76×10(-6)m(2)/sec, 4.94×10(-6)m(2)/s, and 5.89×10(-6)m(2)/s, respectively. Values are in excellent agreement with the theoretical values in literature. PMID:24840410

  15. Prioritizing and scheduling Portsmouth Gaseous Diffusion Plant safeguards upgrades. Final report

    SciTech Connect

    Edmunds, T.; Saleh, R.; Zevanove, S.

    1992-02-01

    As part of the Site Safeguards and Security Plan (SSSP), facilities are required to develop a Resource Plan (RP). The Resource Plan provides documentation and justification for the facility`s planned upgrades, including the schedule, priority, and cost estimates for the safeguards and security upgrades. Portsmouth Gaseous Diffusion Plant (PORTS) management has identified and obtained funding approval for a number of safeguards and security upgrades, including line-item construction projects. These upgrade projects were selected to address a variety of concerns identified in the PORTS vulnerability assessments and other reviews performed in support of the SSSP process. However, budgeting and scheduling constraints do not make it possible to simultaneously begin implementation of all of the upgrade projects. A formal methodology and analysis are needed to explicitly address the trade-offs between competing safeguards objectives, and to prioritize and schedule the upgrade projects to ensure that the maximum benefit can be realized in the shortest possible time frame. The purpose of this report is to describe the methodology developed to support these upgrade project scheduling decisions. The report also presents the results obtained from applying the methodology to a set of the upgrade projects selected by PORTS S&S management. Data for the analysis are based on discussions with personnel familiar with the PORTS safeguards and security needs, the requirements for implementing these upgrades, and upgrade funding limitations. The analysis results presented here assume continued highly enriched uranium (HEU) operations at PORTS. However, the methodology developed is readily adaptable for the evaluation of other operational scenarios and other resource allocation issues relevant to PORTS.

  16. Proposed sale of radioactively contaminated nickel ingots located at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky

    SciTech Connect

    1995-10-01

    The U.S. Department of Energy (DOE) proposes to sell 8,500 radioactively contaminated nickel ingots (9.350 short tons), currently in open storage at the Paducah Gaseous Diffusion Plant (PGDP), to Scientific Ecology Group, Inc. (SEG) for decontamination and resale on the international market. SEG would take ownership of the ingots when they are loaded for transport by truck to its facility in Oak Ridge, Tennessee. SEG would receive approximately 200 short tons per month over approximately 48 months (an average of 180 ingots per month). The nickel decontamination process specified in SEG`s technical proposal is considered the best available technology and has been demonstrated in prototype at SEG. The resultant metal for resale would have contamination levels between 0.3 and 20 becquerel per gram (Bq/g). The health hazards associated with release of the decontaminated nickel are minimal. The activity concentration of the end product would be further reduced when the nickel is combined with other metals to make stainless steel. Low-level radioactive waste from the SEG decontamination process, estimated to be approximately 382 m{sup 3} (12,730 ft), would be shipped to a licensed commercial or DOE disposal facility. If the waste were packaged in 0.23 m{sup 3}-(7.5 ft{sup 3}-) capacity drums, approximately 1,500 to 1,900 drums would be transported over the 48-month contract period. Impacts from the construction of decontamination facilities and the selected site are minimal.

  17. Modeling and analyses of postulated UF{sub 6} release accidents in gaseous diffusion plant

    SciTech Connect

    Kim, S.H.; Taleyarkhan, R.P.; Keith, K.D.; Schmidt, R.W.; Carter, J.C.; Dyer, R.H.

    1995-10-01

    Computer models have been developed to simulate the transient behavior of aerosols and vapors as a result of a postulated accident involving the release of uranium hexafluoride (UF{sub 6}) into the process building of a gaseous diffusion plant. UF{sub 6} undergoes an exothermic chemical reaction with moisture (H{sub 2}O) in the air to form hydrogen fluoride (HF) and radioactive uranyl fluoride (UO{sub 2}F{sub 2}). As part of a facility-wide safety evaluation, this study evaluated source terms consisting of UO{sub 2}F{sub 2} as well as HF during a postulated UF{sub 6} release accident in a process building. In the postulated accident scenario, {approximately}7900 kg (17,500 lb) of hot UF{sub 6} vapor is released over a 5 min period from the process piping into the atmosphere of a large process building. UO{sub 2}F{sub 2} mainly remains as airborne-solid particles (aerosols), and HF is in a vapor form. Some UO{sub 2}F{sub 2} aerosols are removed from the air flow due to gravitational settling. The HF and the remaining UO{sub 2}F{sub 2} are mixed with air and exhausted through the building ventilation system. The MELCOR computer code was selected for simulating aerosols and vapor transport in the process building. MELCOR model was first used to develop a single volume representation of a process building and its results were compared with those from past lumped parameter models specifically developed for studying UF{sub 6} release accidents. Preliminary results indicate that MELCOR predicted results (using a lumped formulation) are comparable with those from previously developed models.

  18. Inorganic soil and groundwater chemistry near Paducah Gaseous Diffusion Plant, Paducah, Kentucky

    SciTech Connect

    Moore, G.K.

    1995-03-01

    Near-surface soils, boreholes, and sediments near the Paducah Gaseous Diffusion Plant (PGDP) were sampled in 1989-91 as were monitoring wells, TVA wells, and privately-owned wells. Most wells were sampled two or three times. The resulting chemical analyses have been published in previous reports and have been previously described (CH2M HILL 1991, 1992; Clausen et al. 1992). The two reports by CH2M HILL are controversial, however, because, the concentrations of some constituents were reported to exceed background levels or drinking water standards and because both on-site (within the perimeter fence at PGDP) and off-site pollution was reported to have occurred. The groundwater samples upon which these interpretations were based may not be representative, however. The CH2M HILL findings are discussed in the report. The purpose of this report is to characterize the inorganic chemistry of groundwater and soils near PGDP, using data from the CH2M HILL reports (1991, 1992), and to determine whether or not any contamination has occurred. The scope is limited to analysis and interpretation of data in the CH2M HILL reports because previous interpretations of these data may not be valid, because samples were collected in a relatively short period of time at several hundred locations, and because the chemical analyses are nearly complete. Recent water samples from the same wells were not considered because the characterization of inorganic chemistry for groundwater and soil requirements only one representative sample and an accurate analysis from each location.

  19. Uranium hexafluoride packaging tiedown systems overview at Portsmouth Gaseous Diffusion Plant, Piketon, Ohio. Revision 1

    SciTech Connect

    Becker, D.L.; Green, D.J.; Lindquist, M.R.

    1993-07-01

    The Portsmouth Gaseous Diffusion Plant (PORTS) in Piketon, Ohio, is operated by Martin Marietta Energy Systems, Inc., through the US Department of Energy-Oak Ridge Operations Office (DOE-ORO) for the US Department of Energy-Headquarters, Office of Nuclear Energy. The PORTS conducts those operations that are necessary for the production, packaging, and shipment of uranium hexafluoride (UF{sub 6}). Uranium hexafluoride enriched uranium than 1.0 wt percent {sup 235}U shall be packaged in accordance with the US Department of Transportation (DOT) regulations of Title 49 CFR Parts 173 (Reference 1) and 178 (Reference 2), or in US Nuclear Regulatory Commission (NRC) or US Department of Energy (DOE) certified package designs. Concerns have been expressed regarding the various tiedown methods and condition of the trailers being used by some shippers/carriers for international transport of the UF{sub 6} cylinders/overpacks. Because of the concerns about international shipments, the US Department of Energy-Headquarters (DOE-HQ) Office of Nuclear Energy, through DOE-HQ Transportation Management Division, requested Westinghouse Hanford Company (Westinghouse Hanford) to review UF{sub 6} packaging tiedown and shipping practices used by PORTS, and where possible and appropriate, provide recommendations for enhancing these practices. Consequently, a team of two individuals from Westinghouse Hanford visited PORTS on March 5 and 6, 1990, for the purpose of conducting this review. The paper provides a brief discussion of the review activities and a summary of the resulting findings and recommendations. A detailed reporting of the is documented in Reference 4.

  20. Relationships between Atomic Diffusion Mechanisms and Ensemble Transport Coefficients in Crystalline Polymorphs

    NASA Astrophysics Data System (ADS)

    Morgan, Benjamin J.; Madden, Paul A.

    2014-04-01

    Ionic transport in conventional ionic solids is generally considered to proceed via independent diffusion events or "hops." This assumption leads to well-known Arrhenius expressions for transport coefficients, and is equivalent to assuming diffusion is a Poisson process. Using molecular dynamics simulations of the low-temperature B1, B3, and B4 AgI polymorphs, we have compared rates of ion hopping with corresponding Poisson distributions to test the assumption of independent hopping in these common structure types. In all cases diffusion is a non-Poisson process, and hopping is strongly correlated in time. In B1 the diffusion coefficient can be approximated by an Arrhenius expression, though the physical significance of the parameters differs from that commonly assumed. In low temperature B3 and B4, diffusion is characterized by concerted motion of multiple ions in short closed loops. Diffusion coefficients cannot be expressed in a simple Arrhenius form dependent on single-ion free energies, and intrinsic diffusion must be considered a many-body process.

  1. Combined measurement of surface, grain boundary and lattice diffusion coefficients on olivine bi-crystals

    NASA Astrophysics Data System (ADS)

    Marquardt, Katharina; Dohmen, Ralf; Wagner, Johannes

    2014-05-01

    Diffusion along interface and grain boundaries provides an efficient pathway and may control chemical transport in rocks as well as their mechanical strength. Besides the significant relevance of these diffusion processes for various geologic processes, experimental data are still very limited (e.g., Dohmen & Milke, 2010). Most of these data were measured using polycrystalline materials and the formalism of LeClaire (1951) to fit integrated concentration depth profiles. To correctly apply this formalism, certain boundary conditions of the diffusion problem need to be fulfilled, e.g., surface diffusion is ignored, and furthermore the lattice diffusion coefficient has to be known from other studies or is an additional fitting parameter, which produces some ambiguity in the derived grain boundary diffusion coefficients. We developed an experimental setup where we can measure the lattice and grain boundary diffusion coefficients simultaneously but independent and demonstrate the relevance of surface diffusion for typical grain boundary diffusion experiments. We performed Mg2SiO4 bicrystal diffusion experiments, where a single grain boundary is covered by a thin-film of pure Ni2SiO4 acting as diffusant source, produced by pulsed laser deposition. The investigated grain boundary is a 60° (011)/[100]. This specific grain boundary configuration was modeled using molecular dynamics for comparison with the experimental observations in the transmission electron microscope (TEM). Both, experiment and model are in good agreement regarding the misorientation, whereas there are still some disagreements regarding the strain fields along the grain boundary that are of outmost importance for the strengths of the material. The subsequent diffusion experiments were carried out in the temperature range between 800° and 1450° C. The inter diffusion profiles were measured using the TEMs energy dispersive x-ray spectrometer standardized using the Cliff-Lorimer equation and EMPA measurements. To evaluate the obtained diffusion profiles we adapted the isolated grain boundary model, first proposed by Fisher (1951) to match several observations: (i) Anisotropic diffusion in forsterite, (ii) fast diffusion along the grain boundary, (iii) fast diffusion on the surface of the sample. The latter process is needed to explain an additional flux of material from the surface into the grain boundary. Surface and grain boundary diffusion coefficients are on the order of 10000 times faster than diffusion in the lattice. Another observation was that in some regions the diffusion profiles in the lattice were greatly extended. TEM observations suggest here that surface defects (nano-cracks, ect.) have been present, which apparently enhanced the diffusion through the bulk lattice. Dohmen, R., & Milke, R. (2010). Diffusion in Polycrystalline Materials: Grain Boundaries, Mathematical Models, and Experimental Data. Reviews in Mineralogy and Geochemistry, 72(1), 921-970. Fisher, J. C. (1951). Calculations of Diffusion Penetration Curves for Surface and Grain Boundary Diffusion. Journal of Applied Physics, 22(1), 74-77. Le Claire, A. D. (1951). Grain boundary diffusion in metals. Philosophical Magazine A, 42(328), 468-474.

  2. Knudsen diffusion - The effect of small pore size and low gas pressure on gaseous transport in soil

    NASA Technical Reports Server (NTRS)

    Clifford, S. M.; Hillel, D.

    1986-01-01

    The analytical principles and applications of the theory of Knudsen diffusion are reviewed, with emphasis on gas transport in the soils of planetary bodies. Knudsen diffusion occurs when the mean free path of diffusing gas molecules surpasses the size of the pores through which diffusion proceeds. The process is then dominated by collisions with the pore walls. Computational techniques for deriving the Knudsen coefficient for soils with a nonreentrant cross-section shape are reviewed, along with methods of deriving a coefficient for soils which permit both Knudsen and bulk diffusion. Sample calculations for three pore-size distributions are provided to illustrate the decrease in transport efficiency with increasingly smaller soil pore sizes.

  3. Field-Scale Effective Matrix Diffusion Coefficient for FracturedRock: Results From Literature Survey

    SciTech Connect

    Zhou, Quanlin; Liu, Hui Hai; Molz, Fred J.; Zhang, Yingqi; Bodvarsson, Gudmundur S.

    2005-03-28

    Matrix diffusion is an important mechanism for solutetransport in fractured rock. We recently conducted a literature survey onthe effective matrix diffusion coefficient, Dem, a key parameter fordescribing matrix diffusion processes at the field scale. Forty fieldtracer tests at 15 fractured geologic sites were surveyed and selectedfor study, based on data availability and quality. Field-scale Dem valueswere calculated, either directly using data reported in the literature orby reanalyzing the corresponding field tracer tests. Surveyed dataindicate that the effective-matrix-diffusion-coefficient factor FD(defined as the ratio of Dem to the lab-scale matrix diffusioncoefficient [Dem]of the same tracer) is generally larger than one,indicating that the effective matrix diffusion coefficient in the fieldis comparatively larger than the matrix diffusion coefficient at therock-core scale. This larger value could be attributed to the manymass-transfer processes at different scales in naturally heterogeneous,fractured rock systems. Furthermore, we observed a moderate trend towardsystematic increase in the emDFmDDF value with observation scale,indicating that the effective matrix diffusion coefficient is likely tobe statistically scale dependent. The FD value ranges from 1 to 10,000for observation scales from 5 to 2,000 m. At a given scale, the FD valuevaries by two orders of magnitude, reflecting the influence of differingdegrees of fractured rock heterogeneity at different sites. In addition,the surveyed data indicate that field-scale longitudinal dispersivitygenerally increases with observation scale, which is consistent withprevious studies. The scale-dependent field-scale matrix diffusioncoefficient (and dispersivity) may have significant implications forassessing long-term, large-scale radionuclide and contaminant transportevents in fractured rock, both for nuclear waste disposal and contaminantremediation.

  4. Approximation of effective moisture-diffusion coefficient to characterize performance of a barrier coating

    NASA Astrophysics Data System (ADS)

    Nagai, Shingo

    2013-11-01

    We report estimation of the effective diffusion coefficient of moisture through a barrier coating to develop an encapsulation technology for the thin-film electronics industry. This investigation targeted a silicon oxide (SiOx) film that was deposited on a plastic substrate by a large-process-area web coater. Using the finite difference method based on diffusion theory, our estimation of the effective diffusion coefficient of a SiOx film corresponded to that of bulk glass that was previously reported. This result suggested that the low diffusivities of barrier films can be obtained on a mass-production level in the factory. In this investigation, experimental observations and mathematical confirmation revealed the limit of the water vapor transmission rate on the single barrier coating.

  5. ICP-MS measurement of diffusion coefficients of Cs in NBG-18 graphite

    NASA Astrophysics Data System (ADS)

    Carter, L. M.; Brockman, J. D.; Robertson, J. D.; Loyalka, S. K.

    2015-11-01

    Graphite is used in the HGTR/VHTR as moderator and it also functions as a barrier to fission product release. Therefore, an elucidation of transport of fission products in reactor-grade graphite is required. We have measured diffusion coefficients of Cs in graphite NBG-18 using the release method, wherein we infused spheres of NBG-18 with Cs and measured the release rates in the temperature range of 1090-1395 K. We have obtained: These seem to be the first reported values of Cs diffusion coefficients in NBG-18. The values are lower than those reported for other graphites in the literature.

  6. Non-Fermi liquid behavior of the drag and diffusion coefficients in QED plasma

    SciTech Connect

    Sarkar, Sreemoyee; Dutt-Mazumder, Abhee K.

    2011-11-01

    We calculate the drag and diffusion coefficients in low temperature QED plasma and go beyond the leading order approximation. The non-Fermi-liquid behavior of these coefficients are clearly revealed. We observe that the subleading contributions due to the exchange of soft transverse photon in both cases are larger than the leading order terms coming from the longitudinal sector. The results are presented in closed form at zero and low temperature.

  7. Simultaneous measurement of the Seebeck coefficient and thermal diffusivity for bulk thermoelectric materials

    NASA Astrophysics Data System (ADS)

    Homma, Ryoei; Hasegawa, Yasuhiro; Terakado, Hiroki; Morita, Hiroyuki; Komine, Takashi

    2015-02-01

    We simultaneously measured the Seebeck coefficient and thermal diffusivity of a rectangular parallelepiped bulk thermoelectric material. We used one-dimensional heat conduction equation to show that a periodic heat cycle produces not only the thermoelectromotive force but also a certain phase shift angle between the edge and intermediate points of a sample along the length of the material. Based on the equation of the modified Angström method, an experiment at 300 K was performed using NIST standard material (SRM 3451, Bi2Te3 material) to measure the Seebeck coefficient and thermal diffusivity. The measured Seebeck coefficient was -231 ± 3 µV/K, which corresponds to the published value. Using the same experimental setup as that for the thermal diffusivity measurement, the dependence of the phase shift angle on frequency was measured from 5 mHz to 10 Hz for the phase shift angle from -8.2 to -450°. The estimated thermal diffusivity was (1.53 ± 0.05) × 10-6 m2/s. We conclude that the modified Angström method can be used to measure the Seebeck coefficient and thermal diffusivity simultaneously.

  8. Field-scale effective matrix diffusion coefficient for fractured rock: Results from literature survey

    NASA Astrophysics Data System (ADS)

    Zhou, Quanlin; Liu, Hui-Hai; Molz, Fred J.; Zhang, Yingqi; Bodvarsson, Gudmundur S.

    2007-08-01

    Matrix diffusion is an important mechanism for solute transport in fractured rock. We recently conducted a literature survey on the effective matrix diffusion coefficient, Dme, a key parameter for describing matrix diffusion processes at the field scale. Forty field tracer tests at 15 fractured geologic sites were surveyed and selected for the study, based on data availability and quality. Field-scale Dme values were calculated, either directly using data reported in the literature, or by reanalyzing the corresponding field tracer tests. The reanalysis was conducted for the selected tracer tests using analytic or semi-analytic solutions for tracer transport in linear, radial, or interwell flow fields. Surveyed data show that the scale factor of the effective matrix diffusion coefficient (defined as the ratio of Dme to the lab-scale matrix diffusion coefficient, Dm, of the same tracer) is generally larger than one, indicating that the effective matrix diffusion coefficient in the field is comparatively larger than the matrix diffusion coefficient at the rock-core scale. This larger value can be attributed to the many mass-transfer processes at different scales in naturally heterogeneous, fractured rock systems. Furthermore, we observed a moderate, on average trend toward systematic increase in the scale factor with observation scale. This trend suggests that the effective matrix diffusion coefficient is likely to be statistically scale-dependent. The scale-factor value ranges from 0.5 to 884 for observation scales from 5 to 2000 m. At a given scale, the scale factor varies by two orders of magnitude, reflecting the influence of differing degrees of fractured rock heterogeneity at different geologic sites. In addition, the surveyed data indicate that field-scale longitudinal dispersivity generally increases with observation scale, which is consistent with previous studies. The scale-dependent field-scale matrix diffusion coefficient (and dispersivity) may have significant implications for assessing long-term, large-scale radionuclide and contaminant transport events in fractured rock, both for nuclear waste disposal and contaminant remediation.

  9. FIELD-SCALE EFFECTIVE MATRIX DIFFUSION COEFFICIENT FOR FRACTURED ROCK:RESULTS FROM LITERATURE SURVEY

    SciTech Connect

    Q. Zhou; Hui-Hai Liu; F.J. Molz; Y. Zhang; G.S. Bodvarsson

    2005-04-08

    Matrix diffusion is an important mechanism for solute transport in fractured rock. We recently conducted a literature survey on the effective matrix diffusion coefficient, D{sub m}{sup e}, a key parameter for describing matrix diffusion processes at the field scale. Forty field tracer tests at 15 fractured geologic sites were surveyed and selected for the study, based on data availability and quality. Field-scale D{sub m}{sup e} values were calculated, either directly using data reported in the literature or by reanalyzing the corresponding field tracer tests. Surveyed data indicate that the effective-matrix-diffusion-coefficient factor F{sub D} (defined as the ratio of D{sub m}{sup e} to the lab-scale matrix diffusion coefficient [D{sub m}] of the same tracer) is generally larger than one, indicating that the effective matrix diffusion coefficient in the field is comparatively larger than the matrix diffusion coefficient at the rock-core scale. This larger value can be attributed to the many mass-transfer processes at different scales in naturally heterogeneous, fractured rock systems. Furthermore, we observed a moderate trend toward systematic increase in the F{sub D} value with observation scale, indicating that the effective matrix diffusion coefficient is likely to be statistically scale dependent. The F{sub D} value ranges from 1 to 10,000 for observation scales from 5 to 2,000 m. At a given scale, the F{sub D} value varies by two orders of magnitude, reflecting the influence of differing degrees of fractured rock heterogeneity at different sites. In addition, the surveyed data indicate that field-scale longitudinal dispersivity generally increases with observation scale, which is consistent with previous studies. The scale-dependent field-scale matrix diffusion coefficient (and dispersivity) may have significant implications for assessing long-term, large-scale radionuclide and contaminant transport events in fractured rock, both for nuclear waste disposal and contaminant remediation.

  10. Effect of surface modification, microstructure, and trapping on hydrogen diffusion coefficients in high strength alloys

    NASA Astrophysics Data System (ADS)

    Jebaraj Johnley Muthuraj, Josiah

    Cathodic protection is widely used for corrosion prevention. However, this process generates hydrogen at the protected metal surface, and diffusion of hydrogen through the metal may cause hydrogen embrittlement or hydrogen induced stress corrosion cracking. Thus the choice of a metal for use as fasteners depends upon its hydrogen uptake, permeation, diffusivity and trapping. The diffusivity of hydrogen through four high strength alloys (AISI 4340, alloy 718, alloy 686, and alloy 59) was analyzed by an electrochemical method developed by Devanathan and Stachurski. The effect of plasma nitriding and microstructure on hydrogen permeation through AISI 4340 was studied on six different specimens: as-received (AR) AISI 4340, nitrided samples with and without compound layer, samples quenched and tempered (Q&T) at 320° and 520°C, and nitrided samples Q&T 520°C. Studies on various nitrided specimens demonstrate that both the gamma'-Fe 4N rich compound surface layer and the deeper N diffusion layer that forms during plasma nitriding reduce the effective hydrogen diffusion coefficient, although the gamma'-Fe4N rich compound layer has a larger effect. Multiple permeation transients yield evidence for the presence of only reversible trap sites in as-received, Q&T 320 and 520 AISI 4340 specimens, and the presence of both reversible and irreversible trap sites in nitrided specimens. Moreover, the changes in microstructure during the quenching and tempering process result in a significant decrease in the diffusion coefficient of hydrogen compared to as-received specimens. In addition, density functional theory-based molecular dynamics simulations yield hydrogen diffusion coefficients through gamma'- Fe4N one order of magnitude lower than through ?-Fe, which supports the experimental measurements of hydrogen permeation. The effect of microstructure and trapping was also studied in cold rolled, solutionized, and precipitation hardened Inconel 718 foils. The effective hydrogen diffusion coefficient is considerably higher for the solutionized Inconel 718 than for either the cold rolled or precipitation hardened specimens. Microstructural studies indicate that the reduced hydrogen diffusion coefficients in the latter specimens arise from hydrogen trapping at dislocations and precipitates that are present at much lower concentrations in the solutionized specimens. Repeated permeation transients provide evidence for irreversible hydrogen trapping in the cold rolled and precipitation hardened specimens, but such effects are insignificant in the solutionized specimens. The effect of trapping in determining the hydrogen diffusion coefficients was also studied in alloy 686 and 59 specimens. Microstructural studies indicate the presence of bcc-Mo rich inclusions concentrated along the grain boundaries in alloy 686 specimens, but randomly distributed in alloy 59 specimens. Multiple permeation transients show an increase in diffusion coefficient values for the decay transients compared to rise transients in alloy 686 specimens. On the other hand, the first rise transient had a lower diffusion coefficient compared to successive rise and decay transients in alloy 59 specimens. Effective diffusion coefficient (Deff) values of hydrogen in multiple permeation transients suggest that hydrogen trapping sites are predominantly reversible in alloy 686, but mixed reversible and irreversible in alloy 59.

  11. Drag and diffusion co-efficients of heavy quarks in hard thermal loop approximations

    E-print Network

    Surasree Mazumder; Trambak Bhattacharyya; Jan-e Alam

    2013-01-24

    The drag and diffusion coefficients of heavy quarks propagating through quark gluon plasma (QGP) have been evaluated using Hard Thermal Loop (HTL) approximations. The HTL corrections to the relevant propagators and vertices have been considered. It is observed that the magnitudes of both the transport coefficients are changed significantly from values obtained by earlier approaches where either (i) the $t$ channel divergence in T=0 pQCD matrix element is shielded simply by Debye mass. or (ii) only HTL resummed propagator is used ignoring the HTL corrections at the interaction vertices. The implications of these changes in the transport coefficients on the heavy ion phenomenology have been discussed.

  12. Molecular dynamics simulation of imidazolium-based ionic liquids. I. Dynamics and diffusion coefficient

    NASA Astrophysics Data System (ADS)

    Kowsari, M. H.; Alavi, Saman; Ashrafizaadeh, Mahmud; Najafi, Bijan

    2008-12-01

    Molecular dynamics simulations are used to study the dynamics and transport properties of 12 room-temperature ionic liquids of the 1-alkyl-3-methylimidazolium [amim]+ (alkyl=methyl, ethyl, propyl, and butyl) family with PF6-, NO3-, and Cl- counterions. The explicit atom transferable force field of Canongia Lopes et al. [J. Phys. Chem. B 108, 2038 (2004)] is used in the simulations. In this first part, the dynamics of the ionic liquids are characterized by studying the mean-square displacement (MSD) and the velocity autocorrelation function (VACF) for the centers of mass of the ions at 400 K. Trajectory averaging was employed to evaluate the diffusion coefficients at two temperatures from the linear slope of MSD(t) functions in the range of 150-300 ps and from the integration of the VACF(t) functions at 400 K. Detailed comparisons are made between the diffusion results from the MSD and VACF methods. The diffusion coefficients from the integration of the VACFs are closer to experimental values than the diffusion coefficients calculated from the slope of MSDs. Both methods can show good agreement with experiment in predicting relative trends in the diffusion coefficients and determining the role of the cation and anion structures on the dynamical behavior of this family of ionic liquids. The MSD and self-diffusion of relatively heavier imidazolium cations are larger than those of the lighter anions from the Einstein results, except for the case of [bmim][Cl]. The cationic transference number generally decreases with temperature, in good agreement with experiments. For the same anion, the cationic transference numbers decrease with increasing length of the alkyl chain, and for the same cation, the trends in the cationic transference numbers are [NO3]-<[Cl]-<[PF6]-. The trends in the diffusion coefficient in the series of cations with identical anions are [emim]+>[pmim]+>[bmim]+ and those for anions with identical cations are [NO3]->[PF6]->[Cl]-. The [dmim]+ has a relatively low diffusion coefficient due to its symmetric structure and good packing in the liquid phase. The major factor for determining the magnitude of the self-diffusion is the geometric shape of the anion of the ionic liquid. Other important factors are the ion size and the charge delocalization in the anion.

  13. Single-relaxation-time lattice Boltzmann scheme for advection-diffusion problems with large diffusion-coefficient heterogeneities and high-advection transport.

    PubMed

    Perko, Janez; Patel, Ravi A

    2014-05-01

    The paper presents an approach that extends the flexibility of the standard lattice Boltzmann single relaxation time scheme in terms of spatial variation of dissipative terms (e.g., diffusion coefficient) and stability for high Péclet mass transfer problems. Spatial variability of diffusion coefficient in SRT is typically accommodated through the variation of relaxation time during the collision step. This method is effective but cannot deal with large diffusion coefficient variations, which can span over several orders of magnitude in some natural systems. The approach explores an alternative way of dealing with large diffusion coefficient variations in advection-diffusion transport systems by introducing so-called diffusion velocity. The diffusion velocity is essentially an additional convective term that replaces variations in diffusion coefficients vis-à-vis a chosen reference diffusion coefficient which defines the simulation time step. Special attention is paid to the main idea behind the diffusion velocity formulation and its implementation into the lattice Boltzmann framework. Finally, the performance, stability, and accuracy of the diffusion velocity formulation are discussed via several advection-diffusion transport benchmark examples. These examples demonstrate improved stability and flexibility of the proposed scheme with marginal consequences on the numerical performance. PMID:25353916

  14. Drag and Diffusion coefficients in extreme scenarios of temperature and chemical potential

    E-print Network

    Sreemoyee Sarkar; Abhee K. Dutt-Mazumder

    2013-03-14

    A comparative study of high and zero temperature plasma for the case of damping rate, drag and diffusion coefficients have been presented. In each of these quantities, it is revealed how the magnetic interaction dominates over the electric one at zero temperature unlike what happens at high temperature.

  15. Scaling of the diffusion coefficient on the normal form remainder in doubly resonant domains

    E-print Network

    C. Efthymiopoulos

    2008-12-04

    An outline of theoretical estimates is given regarding the dependence of the value of the diffusion coefficient $D$ on the size $R$ of the remainder of the normal form in doubly or simply resonant domains of the action space of 3dof Hamiltonian systems.

  16. Relaxation Time Constants and Apparent Diffusion Coefficients of Rat Retina at 7 Tesla

    E-print Network

    Duong, Timothy Q.

    Relaxation Time Constants and Apparent Diffusion Coefficients of Rat Retina at 7 Tesla Govind Nair* and ADC of the rat eyes were measured at 50 3 50 3 800 lm at 7 Tesla. Profiles of T1, T2, T2* and ADC

  17. Estimation of Diffusion Coefficient of Lithium in Carbon Using AC Impedance Technique

    E-print Network

    fraction of inert material, and thickness of the porous carbon intercalation electrode, the solution phaseEstimation of Diffusion Coefficient of Lithium in Carbon Using AC Impedance Technique Qingzhi Guo. A macroscopic porous electrode model and concentrated electrolyte theory are used to simulate the synthetic

  18. Extending the Diffuse Layer Model of Surface Acidity Behavior: III. Estimating Bound Site Activity Coefficients

    EPA Science Inventory

    Although detailed thermodynamic analyses of the 2-pK diffuse layer surface complexation model generally specify bound site activity coefficients for the purpose of accounting for those non-ideal excess free energies contributing to bound site electrochemical potentials, in applic...

  19. Water diffusion coefficients during copper electropolishing and IAN IVAR SUNI2*

    E-print Network

    Suni, Ian Ivar

    Water diffusion coefficients during copper electropolishing BING DU1 and IAN IVAR SUNI2* 1, including several with ethanol and other species added as diluents. Diluents allow a wider range of water in the mass transfer limited regime are shown to depend on both the number of water acceptor molecules

  20. Calculation of effective diffusion coefficient in even approximations of the surface pseudo source method

    SciTech Connect

    Kovalishin, A. A. Laletin, N. I.

    2011-12-15

    The preference of even approximations of the surface pseudo source method for calculation of the diffusion coefficient is substantiated. The homogenization limit for the G{sub 0} approximation in the case of the cell size tending to zero is analytically proved.

  1. Measuring arbitrary diffusion coefficient distributions of nano-objects by taylor dispersion analysis.

    PubMed

    Cipelletti, Luca; Biron, Jean-Philippe; Martin, Michel; Cottet, Hervé

    2015-08-18

    Taylor dispersion analysis is an absolute and straightforward characterization method that allows determining the diffusion coefficient, or equivalently the hydrodynamic radius, from angstroms to submicron size range. In this work, we investigated the use of the Constrained Regularized Linear Inversion approach as a new data processing method to extract the probability density functions of the diffusion coefficient (or hydrodynamic radius) from experimental taylorgrams. This new approach can be applied to arbitrary polydisperse samples and gives access to the whole diffusion coefficient distributions, thereby significantly enhancing the potentiality of Taylor dispersion analysis. The method was successfully applied to both simulated and real experimental data for solutions of moderately polydisperse polymers and their binary and ternary mixtures. Distributions of diffusion coefficients obtained by this method were favorably compared with those derived from size exclusion chromatography. The influence of the noise of the simulated taylorgrams on the data processing is discussed. Finally, we discuss the ability of the method to correctly resolve bimodal distributions as a function of the relative separation between the two constituent species. PMID:26243023

  2. Transport diffusion coefficient for a Knudsen gas in a random tube

    E-print Network

    Francis Comets; Serguei Popov; Gunter M. Schütz; Marina Vachkovskaia

    2010-04-10

    We consider transport diffusion in a stochastic billiard in a random tube which is elongated in the direction of the first coordinate (the tube axis). Inside the random tube, which is stationary and ergodic, non-interacting particles move straight with constant speed. Upon hitting the tube walls, they are reflected randomly, according to the cosine law: the density of the outgoing direction is proportional to the cosine of the angle between this direction and the normal vector. Steady state transport is studied by introducing an open tube segment as follows: We cut out a large finite segment of the tube with segment boundaries perpendicular to the tube axis. Particles which leave this piece through the segment boundaries disappear from the system. Through stationary injection of particles at one boundary of the segment a steady state with non-vanishing stationary particle current is maintained. We prove (i) that in the thermodynamic limit of an infinite open piece the coarse-grained density profile inside the segment is linear, and (ii) that the transport diffusion coefficient obtained from the ratio of stationary current and effective boundary density gradient equals the diffusion coefficient of a tagged particle in an infinite tube. Thus we prove Fick's law and equality of transport diffusion and self-diffusion coefficients for quite generic rough (random) tubes.

  3. Effect of computed horizontal diffusion coefficients on two-dimensional N2O model distributions

    NASA Technical Reports Server (NTRS)

    Jackman, Charles H.; Guthrie, Paul D.; Schoeberl, Mark R.; Newman, Paul A.

    1988-01-01

    The effects of horizontal diffusion coefficients K(yy) and K(yz), computed directly from the residual circulation, on the N2O distribution in a photochemical model were investigated, using a modified version of the two-dimensional model of Guthrie et al. (1984). The residual circulation was computed using the NMC's temperature data and the heating rates reported by Rosenfield et al. (1987). As compared with the effect of the residual circulation alone, the use of horizontal diffusion coefficients produced substantial changes in the N2O distribution and increased the N2O's lifetime values by a few percent. It is suggested that trace gases, such as CH4, CFCl3, CF2Cl2, CH3Cl, and CCl4, which impact the NO(x), HO(x), and Cl(x) radical distributions and therefore ozone, will be influenced in a similar manner by the addition of more realistic diffusion fields.

  4. Kinks in experimental diffusion profiles of a dissolving semi-crystalline polymer explained by a concentration-dependent diffusion coefficient.

    PubMed

    Hermes, Helen E; Sitta, Christoph E; Schillinger, Burkhard; Löwen, Hartmut; Egelhaaf, Stefan U

    2015-06-28

    The dissolution of polyethylene oxide (PEO) tablets in water has been followed in situ by neutron radiography. When in contact with water, the crystalline phase of semi-crystalline PEO melts once a certain water content is attained. Polymer concentration profiles obtained from the neutron transmission images exhibited a pronounced kink which corresponds to a sharp front in the images and which is related to the melting transition. Sharp diffusion fronts and phase transitions are often linked to non-Fickian behaviour. However, by considering the time evolution of the complete concentration profiles in detail it is shown that the dissolution process can be explained using Fickian diffusion equations with a concentration-dependent diffusion coefficient. PMID:26018995

  5. Bond lifetime and diffusion coefficient in colloids with short-range interactions.

    PubMed

    Ndong Mintsa, E; Germain, Ph; Amokrane, S

    2015-03-01

    We use molecular dynamics simulations to study the influence of short-range structures in the interaction potential between hard-sphere-like colloidal particles. Starting from model potentials and effective potentials in binary mixtures computed from the Ornstein-Zernike equations, we investigate the influence of the range and strength of a possible tail beyond the usual core repulsion or the presence of repulsive barriers. The diffusion coefficient and mean "bond" lifetimes are used as indicators of the effect of this structure on the dynamics. The existence of correlations between the variations of these quantities with the physical parameters is discussed to assess the interpretation of dynamics slowing down in terms of long-lived bonds. We also discuss the question of a universal behaviour determined by the second virial coefficient B ((2)) and the interplay of attraction and repulsion. While the diffusion coefficient follows the B ((2)) law for purely attractive tails, this is no longer true in the presence of repulsive barriers. Furthermore, the bond lifetime shows a dependence on the physical parameters that differs from that of the diffusion coefficient. This raises the question of the precise role of bonds on the dynamics slowing down in colloidal gels. PMID:25813606

  6. Diffusion coefficients from resonant interactions with electrostatic electron cyclotron harmonic waves

    SciTech Connect

    Tripathi, A. K.; Singhal, R. P.

    2009-11-15

    Pitch-angle diffusion coefficients have been calculated for resonant interaction with electrostatic electron cyclotron harmonic (ECH) waves using quasilinear diffusion theory. Unlike previous calculations, the parallel group velocity has been included in this study. Further, ECH wave intensity is expressed as a function of wave frequency and wave normal angle with respect to ambient magnetic field. It is found that observed wave electric field amplitudes in Earth's magnetosphere are sufficient to set electrons on strong diffusion in the energy ranges of a few hundred eV. However, the required amplitudes are larger than the observed values for keV electrons and higher by about a factor of 3 compared to past calculations. Required electric field amplitudes are smaller at larger radial distances. It is concluded that ECH waves are responsible for diffuse auroral precipitation of electrons with energies less than about 500 eV.

  7. Study of the measurement for the diffusion coefficient by digital holographic interferometry.

    PubMed

    Zhang, Shi; He, Maogang; Zhang, Ying; Peng, Sanguo; He, Xinxin

    2015-11-01

    In the measurement of the diffusion coefficient by digital holographic interferometry, the conformity between the experiment and the ideal physical model is lacking analysis. Two data processing methods are put forward to overcome this problem. By these methods, it is found that there is obvious asymmetry in the experiment and the asymmetry is becoming smaller with time. Besides, the initial time for diffusion cannot be treated as a constant throughout the whole experiment. This means that there is a difference between the experiment and the physical model. With these methods, the diffusion coefficient of KCl in water at 0.33??mol/L and 25°C is measured. When the asymmetry is ignored, the result is 1.839×10-9??m2/s, which is in good agreement with the data in the literature. Because the asymmetry is becoming smaller with time, the experimental data in the latter time period conforms to the ideal physical model. With this idea, a more accurate diffusion coefficient is 2.003×10-9??m2/s, which is about 10% larger than the data in the literature. PMID:26560564

  8. Optical techniques provide information on various effective diffusion coefficients in the presence of traps.

    PubMed

    Sigaut, Lorena; Ponce, María Laura; Colman-Lerner, Alejandro; Dawson, Silvina Ponce

    2010-11-01

    In many cell-signaling pathways information is transmitted via the diffusion of messenger molecules. In most cases, messengers react with other substances and diffuse at the same time. Effective diffusion coefficients may be introduced to characterize the net transport rate that results from the combined effect of these two processes. It was shown in [B. Pando, Proc. Natl. Acad. Sci. U.S.A. 103, 5338 (2006)] that even in the simplest scenario in which one bimolecular reaction is involved, two different effective coefficients are relevant. One gives the rate at which small perturbations spread out with time while the other relates the mean square displacement of a single particle to the time elapsed. They coincide in the absence of reactions but may be very different in other cases. Optical techniques provide a relatively noninvasive means by which transport rates can be estimated. In the above mentioned paper it was discussed why, under certain conditions, fluorescence recovery after photobleaching (FRAP), a technique commonly used to estimate diffusion rates in cells, provides information on one of the two effective coefficients. In the present paper we show that, under the same conditions, another commonly used optical technique, fluorescence correlation spectroscopy (FCS), gives information on the other one. This opens up the possibility of combining experiments to obtain information that goes beyond effective transport rates. In the present paper we discuss different ways to do so. PMID:21230505

  9. An interpretation of potential scale dependence of the effectivematrix diffusion coefficient

    SciTech Connect

    Liu, H.H.; Zhang, Y.Q.; Zhou, Q.; Molz, F.J.

    2005-11-30

    Matrix diffusion is an important process for solutetransport in fractured rock, and the matrix diffusion coefficient is akey parameter for describing this process. Previous studies indicatedthat the effective matrix diffusion coefficient values, obtained from alarge number of field tracer tests, are enhanced in comparison with localvalues and may increase with test scale. In this study, we have performednumerical experiments to investigate potential mechanisms behind possiblescale-dependent behavior. The focus of the experiments is on solutetransport in flow paths having geometries consistent with percolationtheories and characterized by local flow loops formed mainly bysmall-scale fractures. The water velocity distribution through a flowpath was determined using discrete fracture network flow simulations, andsolute transport was calculated using a previously derivedimpulse-response function and a particle-tracking scheme. Values foreffective (or up-scaled) transport parameters were obtained by matchingbreakthrough curves from numerical experiments with an analyticalsolution for solute transport along a single fracture. Results indicatethat a combination of local flow loops and the associated matrixdiffusion process, together with scaling properties in flow pathgeometry, seems to be the dominant mechanism causing the observed scaledependence of theeffective matrix diffusion coefficient (at a range ofscales).

  10. APPLICATION OF THE LASAGNA{trademark} SOIL REMEDIATION TECHNOLOGY AT THE DOE PADUCAH GASEOUS DIFFUSION PLANT

    SciTech Connect

    Swift, Barry D.; Tarantino, Joseph J., P. E.

    2003-02-27

    The Paducah Gaseous Diffusion Plant (PGDP), owned by the Department of Energy (DOE), has been enriching uranium since the early 1950s. The enrichment process involves electrical and mechanical components that require periodic cleaning. The primary cleaning agent was trichloroethene (TCE) until the late 1980s. Historical documentation indicates that a mixture of TCE and dry ice were used at PGDP for testing the integrity of steel cylinders, which stored depleted uranium. TCE and dry ice were contained in a below-ground pit and used during the integrity testing. TCE seeped from the pit and contaminated the surrounding soil. The Lasagna{trademark} technology was identified in the Record of Decision (ROD) as the selected alternative for remediation of the cylinder testing site. A public-private consortium formed in 1992 (including DOE, the U.S. Environmental Protection Agency, and the Kentucky Department for Environmental Protection, Monsanto, DuPont, and General Electric) developed the Lasagna{trademark} technology. This innovative technology employs electrokinetics to remediate soil contaminated with organics and is especially suited to sites with low permeability soils. This technology uses direct current to move water through the soil faster and more uniformly than hydraulic methods. Electrokinetics moves contaminants in soil pore water through treatment zones comprised of iron filings, where the contaminants are decomposed to basic chemical compounds such as ethane. After three years of development in the laboratory, the consortium field tested the Lasagna{trademark} process in several phases. CDM installed and operated Phase I, the trial installation and field test of a 150-square-foot area selected for a 120-day run in 1995. Approximately 98 percent of the TCE was removed. CDM then installed and operated the next phase (IIa), a year-long test on a 600-square-foot site. Completed in July 1997, this test removed 75 percent of the total volume of TCE down to a depth of 45 feet. TCE in the test sites. Based on the successful field tests (Phases I and IIa), the ROD was prepared and the Lasagna{trademark} alternative was selected for remediation of TCE contaminated soils at the cylinder testing site Solid Waste Management Unit 91(SWMU 91). Bechtel Jacobs Company LLC contracted CDM to construct and operate a full-scale Lasagna{trademark} remediation system at the site (Phase IIb). Construction began in August 1999 and the operational phase was initiated in December 1999. The Lasagna{trademark} system was operated for two years and reduced the average concentration of TCE in SWMU 91 soil from 84 ppm to less than 5.6 ppm. Verification sampling was conducted during May, 2002. Results of the verification sampling indicated the average concentration of TCE in SWMU 91 soil was 0.38 ppm with a high concentration of 4.5 ppm.

  11. Determining diffusion coefficients of ionic liquids by means of field cycling nuclear magnetic resonance relaxometry

    SciTech Connect

    Kruk, D.; Meier, R.; Rössler, E. A.; Rachocki, A.; Korpa?a, A.; Singh, R. K.

    2014-06-28

    Field Cycling Nuclear Magnetic Resonance (FC NMR) relaxation studies are reported for three ionic liquids: 1-ethyl-3- methylimidazolium thiocyanate (EMIM-SCN, 220–258 K), 1-butyl-3-methylimidazolium tetrafluoroborate (BMIM-BF{sub 4}, 243–318 K), and 1-butyl-3-methylimidazolium hexafluorophosphate (BMIM-PF{sub 6}, 258–323 K). The dispersion of {sup 1}H spin-lattice relaxation rate R{sub 1}(?) is measured in the frequency range of 10 kHz–20 MHz, and the studies are complemented by {sup 19}F spin-lattice relaxation measurements on BMIM-PF{sub 6} in the corresponding frequency range. From the {sup 1}H relaxation results self-diffusion coefficients for the cation in EMIM-SCN, BMIM-BF{sub 4}, and BMIM-PF{sub 6} are determined. This is done by performing an analysis considering all relevant intra- and intermolecular relaxation contributions to the {sup 1}H spin-lattice relaxation as well as by benefiting from the universal low-frequency dispersion law characteristic of Fickian diffusion which yields, at low frequencies, a linear dependence of R{sub 1} on square root of frequency. From the {sup 19}F relaxation both anion and cation diffusion coefficients are determined for BMIM-PF{sub 6}. The diffusion coefficients obtained from FC NMR relaxometry are in good agreement with results reported from pulsed- field-gradient NMR. This shows that NMR relaxometry can be considered as an alternative route of determining diffusion coefficients of both cations and anions in ionic liquids.

  12. A new in-situ method to determine the apparent gas diffusion coefficient of soils

    NASA Astrophysics Data System (ADS)

    Laemmel, Thomas; Paulus, Sinikka; Schack-Kirchner, Helmer; Maier, Martin

    2015-04-01

    Soil aeration is an important factor for the biological activity in the soil and soil respiration. Generally, gas exchange between soil and atmosphere is assumed to be governed by diffusion and Fick's Law is used to describe the fluxes in the soil. The "apparent soil gas diffusion coefficient" represents the proportional factor between the flux and the gas concentration gradient in the soil and reflects the ability of the soil to "transport passively" gases through the soil. One common way to determine this coefficient is to take core samples in the field and determine it in the lab. Unfortunately this method is destructive and needs laborious field work and can only reflect a small fraction of the whole soil. As a consequence insecurity about the resulting effective diffusivity on the profile scale must remain. We developed a new in-situ method using new gas sampling device, tracer gas and inverse soil gas modelling. The gas sampling device contains several sampling depths and can be easily installed into vertical holes of an auger, which allows for fast installation of the system. At the lower end of the device inert tracer gas is injected continuously. The tracer gas diffuses into the surrounding soil. The resulting distribution of the tracer gas concentrations is used to deduce the diffusivity profile of the soil. For Finite Element Modeling of the gas sampling device/soil system the program COMSOL is used. We will present the results of a field campaign comparing the new in-situ method with lab measurements on soil cores. The new sampling pole has several interesting advantages: it can be used in-situ and over a long time; so it allows following modifications of diffusion coefficients in interaction with rain but also vegetation cycle and wind.

  13. Drag and diffusion coefficients of $B$ mesons in hot hadronic matter

    E-print Network

    Santosh K Das; Sabyasachi Ghosh; Sourav Sarkar; Jan-e Alam

    2012-04-27

    The drag and diffusion coefficients of a hot hadronic medium consisting of pions, kaons and eta using open beauty mesons as a probe have been evaluated. The interaction of the probe with the hadronic matter has been treated in the framework of chiral perturbation theory. It is observed that the magnitude of both the transport coefficients are significant, indicating substantial amount of interaction of the heavy mesons with the thermal bath. The results may have significant impact on the experimental observables like the suppression of single electron spectra originating from the decays of heavy mesons produced in nuclear collisions at RHIC and LHC energies

  14. Diffusion coefficients of Fokker-Planck equation for rotating dust grains in a fusion plasma

    NASA Astrophysics Data System (ADS)

    Bakhtiyari-Ramezani, M.; Mahmoodi, J.; Alinejad, N.

    2015-11-01

    In the fusion devices, ions, H atoms, and H2 molecules collide with dust grains and exert stochastic torques which lead to small variations in angular momentum of the grain. By considering adsorption of the colliding particles, thermal desorption of H atoms and normal H2 molecules, and desorption of the recombined H2 molecules from the surface of an oblate spheroidal grain, we obtain diffusion coefficients of the Fokker-Planck equation for the distribution function of fluctuating angular momentum. Torque coefficients corresponding to the recombination mechanism show that the nonspherical dust grains may rotate with a suprathermal angular velocity.

  15. Thermal Expansion and Diffusion Coefficients of Carbon Nanotube-Polymer Composites

    NASA Technical Reports Server (NTRS)

    Wei, Chengyu; Srivastava, Deepak; Cho, Kyeongjae; Biegel, Bryan (Technical Monitor)

    2001-01-01

    Classical molecular dynamics (MD) simulations employing Brenner potential for intra-nanotube interactions and van der Waals forces for polymer-nanotube interface have been used to investigate thermal expansion and diffusion characteristics of carbon nanotube-polyethylene composites. Addition of carbon nanotubes to polymer matrix is found to significantly increase the glass transition temperature Tg, and thermal expansion and diffusion coefficients in the composite above Tg. The increase has been attributed to the temperature dependent increase of the excluded volume for the polymer chains, and the findings could have implications in the composite processing, coating and painting applications.

  16. In Situ Effective Diffusion Coefficient Profiles in Live Biofilms Using Pulsed-Field Gradient Nuclear Magnetic Resonance

    SciTech Connect

    Renslow, Ryan S.; Majors, Paul D.; McLean, Jeffrey S.; Fredrickson, Jim K.; Ahmed, B.; Beyenal, Haluk

    2010-08-15

    Diffusive mass transfer in biofilms is characterized by the effective diffusion coefficient. It is well-documented that the effective diffusion coefficient can vary by location in a biofilm. The current literature is dominated by effective diffusion coefficient measurements for distinct cell clusters and stratified biofilms showing this spatial variation. Regardless of whether distinct cell clusters or surface-averaging methods are used, position-dependent measurements of the effective diffusion coefficient are currently: 1) invasive to the biofilm, 2) performed under unnatural conditions, 3) lethal to cells, and/or 4) spatially restricted to only certain regions of the biofilm. Invasive measurements can lead to inaccurate results and prohibit further (time dependent) measurements which are important for the mathematical modeling of biofilms. In this study our goals were to: 1) measure the effective diffusion coefficient for water in live biofilms, 2) monitor how the effective diffusion coefficient changes over time under growth conditions, and 3) correlate the effective diffusion coefficient with depth in the biofilm. We measured in situ two-dimensional effective diffusion coefficient maps within Shewanella oneidensis MR-1biofilms using pulsed-field gradient nuclear magnetic resonance methods, and used them to calculate surface-averaged relative effective diffusion coefficient (Drs) profiles. We found that 1) Drs decreased from the top of the biofilm to the bottom, 2) Drs profiles differed for biofilms of different ages, 3) Drs profiles changed over time and generally decreased with time, 4) all the biofilms showed very similar Drs profiles near the top of the biofilm, and 5) the Drs profile near the bottom of the biofilm was different for each biofilm. Practically, our results demonstrate that advanced biofilm models should use a variable effective diffusivity which changes with time and location in the biofilm.

  17. Thaumatin crystallization aboard the International Space Station using liquid-liquid diffusion in the Enhanced Gaseous Nitrogen Dewar (EGN).

    PubMed

    Barnes, Cindy L; Snell, Edward H; Kundrot, Craig E

    2002-05-01

    This paper reports results from the first biological crystal-growth experiment on the International Space Station (ISS). Crystals of thaumatin were grown using liquid-liquid diffusion in Tygon tubing transported in the Enhanced Gaseous Nitrogen Dewar (EGN). Different volume ratios and concentrations of protein and precipitant were used to test different adaptations of the vapor-diffusion crystallization recipe to the liquid-liquid diffusion method. The EGN warmed up from 77 to 273 K in about 4 d, about the same time it took to warm from 273 to 293 K. The temperature within the EGN was 293-297 K for the majority of the experiment. Air gaps that blocked liquid-liquid diffusion formed in the tubes. Nonetheless, crystals were grown. Synchrotron diffraction data collected from the best space-grown crystal extended to 1.28 A, comparable to previous studies of space-grown thaumatin crystals. The resolution of the best ground-control crystal was only 1.47 A. It is not clear if the difference in diffraction limit arises from factors other than crystal size. Improvements in temperature control and the elimination of air gaps are needed, but the results show that the EGN on the ISS can be used to produce space-grown crystals that diffract to high resolution. PMID:11976485

  18. Temperature dependence of Soret and diffusion coefficients for toluene-cyclohexane mixture measured in convection-free environment.

    PubMed

    Mialdun, A; Shevtsova, V

    2015-12-14

    We report on the measurement of diffusion (D), Soret (ST), and thermodiffusion (DT) coefficients in toluene-cyclohexane mixture with mass fraction of toluene 0.40 onboard of the International Space Station. The coefficients were measured in the range of the mean temperatures between 20?°C and 34?°C. The Soret coefficient is negative within the investigated temperature range and its absolute value |ST| decreases with increasing temperature. The diffusion coefficient for this system increases with temperature rising. For comparison, the temperature dependence of diffusion coefficient was measured in ground laboratory using counter-flow cell technique and revealed a good agreement with microgravity results. A non-direct comparison of the measured onboard Soret coefficients with different systems indicated a similar trend for the temperature dependent behavior. Unexpected experimental finding is that for this system the thermodiffusion coefficient DT does not depend on temperature. PMID:26671399

  19. Determination of the Solute Diffusion Coefficient by the Droplet Migration Method

    SciTech Connect

    Shan Liu; Jing Teng; Jeongyun Choi

    2007-07-01

    Further analysis of droplet migration in a temperature gradient field indicates that different terms can be used to evaluate the solute diffusion coefficient in liquid (D{sub L}) and that there exists a characteristic curve that can describe the motion of all the droplets for a given composition and temperature gradient. Critical experiments are subsequently conducted in succinonitrile (SCN)-salol and SCN-camphor transparent alloys in order to observe dynamic migration processes of a number of droplets. The derived diffusion coefficients from different terms are the same within experimental error. For SCN-salol alloys, D{sub L} = (0.69 {+-} 0.05) x 10{sup -3} mm{sup 2}/s, and for SCN-camphor alloys, D{sub L} = (0.24 {+-} 0.02) x 10{sup -3} mm{sup 2}/s.

  20. Oxygen diffusion coefficient and solubility in a new proton exchange membrane

    SciTech Connect

    Haug, A.T.; White, R.E.

    2000-03-01

    The electrochemical monitoring technique is used to measure the solubility and the diffusion coefficient of oxygen in a new proton exchange membrane that is being developed by Cape Cod Research, Inc., Using the method of least squares, the data were fit to an analytical solution of Fick's second law to determine D and c{sub 0}. Values of 0.40 x 10{sup {minus}6}cm{sup 2}/s and 4.98 x 10{sup {minus}6} mol/cm{sup 3} were obtained for the diffusion coefficient and solubility, respectively, of the Cape Cod membrane. These values are significantly less than those of Nafion 117 tested under identical conditions.

  1. Diffusion coefficients of energetic water group ions near Comet Giacobini-Zinner

    NASA Technical Reports Server (NTRS)

    Tan, L. C.; Mason, G. M.; Richardson, I. G.; Ipavich, F. M.

    1993-01-01

    Data from the ultralow-energy charge analyzer and energetic particle anisotropy spectrometer sensors, acquired when the ICE spacecraft flew past Comet Giacobini-Zinner on September 11, 1985, are combined, and a single, self-consistent analysis technique is applied to derive a single-particle spectrum from about 200 to 1600 km/s. This information, together with the deduced bulk flow speed of the ions, is used to calculate a parallel diffusion coefficient in the transition region downstream of the bow wave (2.3 +/- 0.5) x 10 exp 17 sq cm/s; the corresponding scattering mean free path is (6 +/- 1) x 10 exp 4 km. The parallel diffusion coefficient is found to depend on the collision frequency of water group ions with Alfven waves, which are assumed to be propagating parallel (antiparallel) to the magnetic field.

  2. Newton Equations May be Treated as Diffusion Equations in the Real Time and Space Fields of Multifractal Universe (Masses are Diffusion Coefficients of Diffusion-like Equations)

    E-print Network

    L. Ya. Kobelev

    2001-04-11

    In thirties years of last century Dirac proposed to treat Schrodinger equation as the equation of diffusion with imaginary diffusion coefficient. In the frame of multifractal theory of time and space (in this model our the multifractal universe is consisting of real time and space fields) in the works [1]-[16] was analyzed how the fractional dimensions of real fields of time and space influence on behavior of different physical phenomena. In this paper the Newton equations of the multifractal universe (considered for the first time in [1]-[3]) are generalized and is treated as the equations of diffusion with mass of bodies (depending of fractional dimension of place, where these bodies located) as a coefficient of diffusion. The realization of this point of view for inhomogeneous time equations (the analogies of Newton equations) is carried out too. The last leads to introducing of new sort of masses: the masses that characterize the inertia of inhomogeneous time flows with space coordinates changing. CONTENTS: 1. Introduction;2. Newton Equations in the Multifractal Universe; 3. Generalized Newton Equations and Its Diffusion Interpretation; 4. Generalized Inhomogeneous Time Equation and Its Diffusion Interpretation; 5. Conclusions

  3. Bounce-averaged diffusion coefficients in the Tsyganenko field model for oblique chorus waves

    NASA Astrophysics Data System (ADS)

    Orlova, Ksenia; Shprits, Yuri

    2010-05-01

    The assessment of the importance of various acceleration and loss mechanisms of relativistic electrons is crucially important for predicting and understanding the dynamics of the radiation belts. It is commonly accepted that resonant wave-particle interactions play a major role in these processes. Bounce-averaged momentum, pitch-angle, and mixed diffusion coefficients, calculated using various models of spectral properties of waves and spatial distributions of plasma waves, are used in modern radiation belt codes as inputs. The diffusion coefficients for radiation belt models are usually computed using the quasi-linear theory and are bounce-averaged in the dipole magnetic field. During magnetic storms, however, the configuration and the value of the magnetic field are significantly changed, which may potentially influence the scattering rates. The purpose of this work is to estimate the role of a realistic magnetic field model on the bounce-averaged diffusion coefficients. We present the results of computations of bounce-averaged quasi-linear momentum Dpp, pitch-angle D?? and mixed pitch angle-momentum D?p diffusion coefficients in the Tsyganenko magnetic field model. We assume that electrons are scattered by oblique whistler mode chorus waves of Gaussian spread of wave power spectral density and wave normal angle outside the plasmasphere. The scattering rates are computed using the full electromagnetic dispersion relation and up to ±5-order resonance condition including Landau resonance. The diffusion coefficients are calculated for quiet conditions (Kp=2) and storm-time conditions (Kp=6) for the day and night sides. We compare scattering rates bounce-averaged in the Tsyganenko field model with those in the dipole field and discuss the differences. The results are followed by a physical explanation of how the magnetic field model can change the bounce-averaged scattering rates. The calculations show that, during active conditions, the pitch-angle scattering by chorus waves in the realistic magnetic field can diffuse relativistic electrons to the loss cone not only on the day side, as was previously shown, but also on the night side. This explains the often observed microburst precipitation on the night side. Our study shows that while there are still a number of unknown parameters that determine scattering rates, inclusion of bounce-averaging in the realistic field will be crucially important for future radiation belt modeling.

  4. Measurement of the diffusion coefficient of acetone in succinonitrile at its melting point

    NASA Technical Reports Server (NTRS)

    Chopra, M. A.; Glicksman, M. E.; Singh, N. B.

    1988-01-01

    The diffusion coefficient of acetone in liquid succinonitrile at 331.1 K was determined using the method of McBain and Dawson (1935). Only dilute mixtures of SCN-acetone were studied. The interdiffusion constant was determined to be 0.0000127 sq cm/s and was essentially independent of the acetone concentration over the range investigated (0.5 to 18 mol pct acetone).

  5. Comparison between the spectral diffuse attenuation coefficients and the IOP parameters

    NASA Astrophysics Data System (ADS)

    Mao, Zhihua; Zhou, Yan; Huang, Haiqing; Bai, Yan

    2008-12-01

    The spectral diffuse attenuation coefficients of downward irradiance (Kd) and upward radiance (Ku) are calculated from a profiler spectrometer measured data. Both Kd and Ku are the parameters of apparent optical properties (AOP) and need to be normalized according to the position of the Sun and sky conditions. Three kinds of sky indices are used to indicate the atmospheric conditions of clear, overcast and partly cloudy at the time of measurements. The values of normalized Kd can be compared with the sums of total absorption and backscattering coefficients. The total values from both measured data and the models fit the normalized Kd with the correlation coefficients of 0.85 and 0.81, respectively. The accuracy of Kd is also evaluated by the spectral root mean square error (RMSE) less than 0.15 m-1 in the spectral range from 450 to 700 nm.

  6. Measurements of diffusion coefficients in 1-D micro- and nanochannels using shear-driven flows.

    PubMed

    Pappaert, Kris; Biesemans, Jurgen; Clicq, David; Vankrunkelsven, Sarah; Desmet, Gert

    2005-10-01

    The present paper describes a method for measuring the molecular diffusion coefficient of fluorescent molecules in microfluidic systems. The proposed static shear-driven flow method allows one to perform diffusion measurements in a fast and accurate manner. The method also allows one to work in very thin (i.e. submicron) channels, hence allowing the investigation of diffusion in highly confined spaces. In the deepest investigated channels, the obtained results were comparable to the existing literature values, but when the channel size dropped below the micrometer range, a significant decrease (more than 30%) in molecular diffusivity was observed. The reduction of the diffusivity was most significant for the largest considered molecules (ssDNA oligomers with a size ranging between 25 to 100 bases), but the decrease was also observed for smaller tracer molecules (FITC). This decrease can be attributed to the interactions of the analyte molecules with the channel walls, which can no longer be neglected when the depth of the channel reaches a critical value. The change in diffusivity seems to become more explicit as the molecular weight of the analytes increases. PMID:16175267

  7. Empirical correlations between the arrhenius' parameters of impurities' diffusion coefficients in CdTe crystals

    SciTech Connect

    Shcherbak, L.; Kopach, O.; Fochuk, P.; James, R. B.; Bolotnikov, A. E.

    2015-01-21

    Understanding of self- and dopant-diffusion in semiconductor devices is essential to our being able to assure the formation of well-defined doped regions. In this paper, we compare obtained in the literature up to date the Arrhenius’ parameters (D=D0exp(–?Ea/kT)) of point-defect diffusion coefficients and the I-VII groups impurities in CdTe crystals and films. We found that in the diffusion process there was a linear dependence between the pre-exponential factor, D0, and the activation energy, ?Ea, of different species: This was evident in the self-diffusivity and isovalent impurity Hg diffusivity as well as for the dominant IIIA and IVA groups impurities and Chlorine, except for the fast diffusing elements (e.g., Cu and Ag), chalcogens O, S, and Se, halogens I and Br as well as the transit impurities Mn, Co, Fe. As a result, reasons of the lack of correspondence of the data to compensative dependence are discussed.

  8. Empirical correlations between the arrhenius' parameters of impurities' diffusion coefficients in CdTe crystals

    DOE PAGESBeta

    Shcherbak, L.; Kopach, O.; Fochuk, P.; James, R. B.; Bolotnikov, A. E.

    2015-01-21

    Understanding of self- and dopant-diffusion in semiconductor devices is essential to our being able to assure the formation of well-defined doped regions. In this paper, we compare obtained in the literature up to date the Arrhenius’ parameters (D=D0exp(–?Ea/kT)) of point-defect diffusion coefficients and the I-VII groups impurities in CdTe crystals and films. We found that in the diffusion process there was a linear dependence between the pre-exponential factor, D0, and the activation energy, ?Ea, of different species: This was evident in the self-diffusivity and isovalent impurity Hg diffusivity as well as for the dominant IIIA and IVA groups impurities andmore »Chlorine, except for the fast diffusing elements (e.g., Cu and Ag), chalcogens O, S, and Se, halogens I and Br as well as the transit impurities Mn, Co, Fe. As a result, reasons of the lack of correspondence of the data to compensative dependence are discussed.« less

  9. Quantification of sampling uncertainty for molecular dynamics simulation: Time-dependent diffusion coefficient in simple fluids

    NASA Astrophysics Data System (ADS)

    Kim, Changho; Borodin, Oleg; Karniadakis, George Em

    2015-12-01

    We analyze two standard methods to compute the diffusion coefficient of a tracer particle in a medium from molecular dynamics (MD) simulation, the velocity autocorrelation function (VACF) method, and the mean-squared displacement (MSD) method. We show that they are equivalent in the sense that they provide the same mean values with the same level of statistical errors. We obtain analytic expressions for the level of the statistical errors present in the time-dependent diffusion coefficient as well as the VACF and the MSD. Under the assumption that the velocity of the tracer particle is a Gaussian process, all results are expressed in terms of the VACF. Hence, the standard errors of all relevant quantities are computable once the VACF is obtained from MD simulation. By using analytic models described by the Langevin equations driven by Gaussian white noise and Poissonian white shot noise, we verify our theoretical error estimates and discuss the non-Gaussianity effect in the error estimates when the Gaussian process approximation does not hold exactly. For validation, we perform MD simulations for the self-diffusion of a Lennard-Jones fluid and the diffusion of a large and massive colloid particle suspended in the fluid. Our theoretical framework is also applicable to mesoscopic simulations, e.g., Langevin dynamics and dissipative particle dynamics.

  10. Single master curve for self-diffusion coefficients in distinctly different glass-forming liquids

    NASA Astrophysics Data System (ADS)

    Tokuyama, Michio

    2010-10-01

    An existence of a single master curve for the long-time self-diffusion coefficients DSL(T) in diversely different glass-forming liquids is predicted over wide temperature T ranges above the glass transition point Tg by analyzing various experimental and simulation data consistently from a unified point of view based on the mean-field theory recently developed. In order to scale those data appropriately, the power-law dependence of the ? - and the ? -relaxation times on DSL is used. Then, it is shown that any equilibrium data for self-diffusion of atom in different systems are all collapsed onto a singular function f(Tf(?)/T) , where Tf(?) is a fictive singular temperature of atom ? . Thus, we emphasize that any equilibrium self-diffusion data can be described by a single master curve f(x) above Tg(>Tf) , while the data out of equilibrium start to deviate from f(x) around Tg .

  11. Gamma radiological surveys of the Oak Ridge Reservation, Paducah Gaseous Diffusion Plant, and Portsmouth Gaseous Diffusion Plant, 1990-1993, and overview of data processing and analysis by the Environmental Restoration Remote Sensing Program, Fiscal Year 1995

    SciTech Connect

    Smyre, J.L.; Moll, B.W.; King, A.L.

    1996-06-01

    Three gamma radiological surveys have been conducted under auspices of the ER Remote Sensing Program: (1) Oak Ridge Reservation (ORR) (1992), (2) Clinch River (1992), and (3) Portsmouth Gaseous Diffusion Plant (PORTS) (1993). In addition, the Remote Sensing Program has acquired the results of earlier surveys at Paducah Gaseous Diffusion Plant (PGDP) (1990) and PORTS (1990). These radiological surveys provide data for characterization and long-term monitoring of U.S. Department of Energy (DOE) contamination areas since many of the radioactive materials processed or handled on the ORR, PGDP, and PORTS are direct gamma radiation emitters or have gamma emitting daughter radionuclides. High resolution airborne gamma radiation surveys require a helicopter outfitted with one or two detector pods, a computer-based data acquisition system, and an accurate navigational positioning system for relating collected data to ground location. Sensors measure the ground-level gamma energy spectrum in the 38 to 3,026 KeV range. Analysis can provide gamma emission strength in counts per second for either gross or total man-made gamma emissions. Gross count gamma radiation includes natural background radiation from terrestrial sources (radionuclides present in small amounts in the earth`s soil and bedrock), from radon gas, and from cosmic rays from outer space as well as radiation from man-made radionuclides. Man-made count gamma data include only the portion of the gross count that can be directly attributed to gamma rays from man-made radionuclides. Interpretation of the gamma energy spectra can make possible the determination of which specific radioisotopes contribute to the observed man-made gamma radiation, either as direct or as indirect (i.e., daughter) gamma energy from specific radionuclides (e.g., cesium-137, cobalt-60, uranium-238).

  12. An interim report to the manager of the Paducah Gaseous Diffusion Plant from the Paducah Environmental Advisory Committee

    SciTech Connect

    Jackson, G.D.

    1987-10-01

    The Paducah Environmental Advisory Committee was formed as: (1) an outgrowth of other Environmental Advisory Committees already in existence at Oak Ridge and other Martin Marietta Energy Systems plants; (2) a result of public concern following significant nuclear incidents at Bhopal and Chernobyl; (3) a result of the new direction and commitment of the management of the Paducah Gaseous Diffusion Plant following contract acquisition by Martin Marietta Energy Systems; and (4) a means of reducing and/or preventing local and/or public concern regarding the activities of and potential risks created by PGDP. This report discusses the following issues and concerns of the Committee arrived at through a series of meetings: (1) groundwater monitoring; (2) long-range tails storage; C-404, scrap yrads, and PCB and TCE cleanup; nuclear criticality plan and alarm systems; documentation of historical data regarding hazardous waste burial grounds; dosimeter badges; and asbestos handling and removal.

  13. Comparison of Diffusion Coefficients of Aryl Carbonyls and Aryl Alcohols in Hydroxylic Solvents. Evidence that the Diffusion of Ketyl Radicals in Hydrogen-Bonding Solvents is Not Anomalous?

    SciTech Connect

    Autrey, S Thomas ); Camaioni, Donald M. ); Kandanarachchi, Pramod H.; Franz, James A. )

    2000-12-01

    The diffusion coefficients of a benzyl-, sec-phenethyl-, and diphenylmethyl alcohol and the corresponding aryl carbonyls (benzaldehyde, acetophenone and benzophenone) were measured by Taylor's dispersion method in both ethyl and isopropyl alcohol. The experimental values are compared to published transient grating measurements of the corresponding aryl ketyl radicals (benzyl-, sec-phenethyl-, and diphenylmethyl-ketyl radical). In general, the diffusion coefficient of the aryl alcohols and the corresponding aryl ketyl radicals are equivalent within experimental error. This work shows that the diffusion of ketyl radicals is not anomalously slow and that aryl alcohols are significantly better models than the corresponding aryl ketones for analyzing the diffusion of aryl ketyl radicals in both ethyl and isopropyl alcohol. Empirical estimates of the diffusion coefficients of aryl alcohols using the Spernol-Wirtz and Wilke-Chang modifications to the Stokes-Einstein diffusion equation do not adequately account for the interactions between the aryl ketyl radicals or aryl alcohols with the hydroxylic solvents ethyl and isopropyl alcohol. The excellent agreement between the experimental diffusion coefficients of the aryl alcohols and the corresponding ketyl radicals show that the transient grating method can provide accurate estimates for the diffusion coefficients of transient species. This is especially important when a stable model is not available, for example the pyranyl radical.

  14. Consequences of using nonlinear particle trajectories to compute spatial diffusion coefficients. [for cosmic ray propagation in interstellar and interplanetary space

    NASA Technical Reports Server (NTRS)

    Goldstein, M. L.

    1977-01-01

    In a study of cosmic ray propagation in interstellar and interplanetary space, a perturbed orbit resonant scattering theory for pitch angle diffusion in a slab model of magnetostatic turbulence is slightly generalized and used to compute the diffusion coefficient for spatial propagation parallel to the mean magnetic field. This diffusion coefficient has been useful for describing the solar modulation of the galactic cosmic rays, and for explaining the diffusive phase in solar flares in which the initial anisotropy of the particle distribution decays to isotropy.

  15. Mass- and temperature-dependent diffusion coefficients for lightnoble gases for the TOUGH2-EOSN Model

    SciTech Connect

    Andrews, J.L.; Finsterle, S.; Saar, M.O.

    2007-04-13

    This report describes modifications made to the EOSN module(Shan and Pruess, 2003) of the nonisothermal multiphase flow simulatorTOUGH2 (Pruess, et al., 1999). The EOSN fluid property module simulatestransport of water, brine, air, and noble gases or CO2 in the subsurface.In the standard version of the EOSN module, diffusion coefficients can bespecified by the user, but there is no allowance for liquid-phasediffusion coefficients to change with temperature. Furthermore, usersmust specify radiogenic sources of heat and helium for each element indata block GENER, which can be a time-consuming task for models withlarge numbers of elements. Our modifications seek to increase thefunctionality and efficiency of using TOUGH2-EOSN by allowing for mass-and temperature-dependent liquid-phase diffusion coefficients for heliumand neon and specification of radiogenic heat and helium production as aproperty of a material. The modified version is based on TOUGH2-EOSN andthus requires familiarity with the capabilities and input formats of theTOUGH2 code (Pruess, et al., 1999) and the EOSN module (Shan and Pruess,2003). This report only details our modifications and how to properlyutilize them.

  16. The measurement of self-diffusion coefficients in liquid metals with quasielastic neutron scattering

    NASA Astrophysics Data System (ADS)

    Meyer, Andreas

    2015-01-01

    Quasielastic incoherent neutron scattering (QENS) has proven to be a versatile tool to study self diffusion of atoms in liquid metals. Here it is shown, that coherent contributions to the signal in the small q limit appear as a flat and energy independent constant to the QENS signal in single-component liquid metals even for systems with a small incoherent scattering cross section, like aluminum. Container-less processing via electromagnetic or electrostatic levitation devices, especially designed for QENS, enables the in-situ measurement on liquid metallic droplets of sizes between 5 mm to 10 mm in diameter. This gives access to the study of chemically reactive, refractory metallic melts and extends the accessible temperature range to undercoolings of several hundred Kelvin below the respective melting point. Compared to experiments using a thin-walled crucible giving hollow-cylindrical sample geometry it is shown that multiple scattering on levitated droplets is negligible for the analysis of the self-diffusion coefficient. QENS results of liquid germanium and 73germanium isotope mixtures, titanium, nickel, copper and aluminum are reviewed. The self-diffusion coefficients of these systems are best described by an Arrhenius-type temperature dependence around their respective melting points.

  17. DIFFUSIVE EXCHANGE OF GASEOUS POLYCYCLIC AROMATIC HYDROCARBONS AND POLYCHLORINATED BIPHENYLS ACROSS THE AIR-WATER INTERFACE OF THE CHESAPEAKE BAY. (R825245)

    EPA Science Inventory

    Dissolved and gas-phase concentrations of nine polycyclic aromatic hydrocarbons and 46 polychlorinated biphenyl congeners were measured at eight sites on the Chesapeake Bay at four different times of the year to estimate net diffusive air-water gas exchange rates. Gaseous PAHs ar...

  18. Determination of partition and diffusion coefficients of formaldehyde in selected building materials and impact of relative humidity.

    PubMed

    Xu, Jing; Zhang, Jianshun S; Liu, Xiaoyu; Gao, Zhi

    2012-06-01

    The partition and effective diffusion coefficients of formaldehyde were measured for three materials (conventional gypsum wallboard, "green" gypsum wallboard, and "green" carpet) under three relative humidity (RH) conditions (20%, 50%, and 70% RH). The "green" materials contained recycled materials and were friendly to environment. A dynamic dual-chamber test method was used. Results showed that a higher relative humidity led to a larger effective diffusion coefficient for two kinds of wallboards and carpet. The carpet was also found to be very permeable resulting in an effective diffusion coefficient at the same order of magnitude with the formaldehyde diffusion coefficient in air. The partition coefficient (K(ma)) of formaldehyde in conventional wallboard was 1.52 times larger at 50% RH than at 20% RH, whereas it decreased slightly from 50% to 70% RH, presumably due to the combined effects of water solubility of formaldehyde and micro-pore blocking by condensed moisture at the high RH level. The partition coefficient of formaldehyde increased slightly with the increase of relative humidity in "green" wallboard and "green" carpet. At the same relative humidity level, the "green" wallboard had larger partition coefficient and effective diffusion coefficient than the conventional wallboard, presumably due to the micro-pore structure differences between the two materials. The data generated could be used to assess the sorption effects of formaldehyde on building materials and to evaluate its impact on the formaldehyde concentration in buildings. PMID:22788105

  19. Three FORTRAN programs for finite-difference solutions to binary diffusion in one and two phases with composition-and time-dependent diffusion coefficients

    USGS Publications Warehouse

    Sanford, R.F.

    1982-01-01

    Geological examples of binary diffusion are numerous. They are potential indicators of the duration and rates of geological processes. Analytical solutions to the diffusion equations generally do not allow for variable diffusion coefficients, changing boundary conditions, and impingement of diffusion fields. The three programs presented here are based on Crank-Nicholson finite-difference approximations, which can take into account these complicating factors. Program 1 describes the diffusion of a component into an initially homogeneous phase that has a constant surface composition. Specifically it is written for Fe-Mg exchange in olivine at oxygen fugacities appropriate for the lunar crust, but other components, phases, or fugacities may be substituted by changing the values of the diffusion coefficient. Program 2 simulates the growth of exsolution lamellae. Program 3 describes the growth of reaction rims. These two programs are written for pseudobinary Ca-(Mg, Fe) exchange in pyroxenes. In all three programs, the diffusion coefficients and boundary conditions can be varied systematically with time. To enable users to employ widely different numerical values for diffusion coefficients and diffusion distance, the grid spacing in the space dimension and the increment by which the grid spacing in the time dimension is increased at each time step are input constants that can be varied each time the programs are run to yield a solution of the desired accuracy. ?? 1982.

  20. Compilation and evaluation of gas phase diffusion coefficients of reactive trace gases in the atmosphere: volume 1. Inorganic compounds

    NASA Astrophysics Data System (ADS)

    Tang, M. J.; Cox, R. A.; Kalberer, M.

    2014-09-01

    Diffusion of gas molecules to the surface is the first step for all gas-surface reactions. Gas phase diffusion can influence and sometimes even limit the overall rates of these reactions; however, there is no database of the gas phase diffusion coefficients of atmospheric reactive trace gases. Here we compile and evaluate, for the first time, the diffusivities (pressure-independent diffusion coefficients) of atmospheric inorganic reactive trace gases reported in the literature. The measured diffusivities are then compared with estimated values using a semi-empirical method developed by Fuller et al. (1966). The diffusivities estimated using Fuller's method are typically found to be in good agreement with the measured values within ±30%, and therefore Fuller's method can be used to estimate the diffusivities of trace gases for which experimental data are not available. The two experimental methods used in the atmospheric chemistry community to measure the gas phase diffusion coefficients are also discussed. A different version of this compilation/evaluation, which will be updated when new data become available, is uploaded online (diffusion"target="_blank">https://sites.google.com/site/mingjintang/home/diffusion).

  1. Determination of partition and diffusion coefficients of formaldehyde in selected building materials and impact of relative humidity (journal)

    EPA Science Inventory

    The partition and effective diffusion coefficients of formaldehyde were measured for three materials (conventional gypsum wallboard, "green" gypsum wallboard, and "green" carpet) under three relative humidity (RH) conditions (20%, 50% and 70% RH). A dynamic dual-chamber test meth...

  2. Determination of partition and diffusion coefficient of formaldehyde in selected building materials and impact of relative humidity

    EPA Science Inventory

    The partition and effective diffusion coefficients of formaldehyde were measured for three materials (conventional gypsum wallboard, "green" gypsum wallboard, and "green" carpet) under three relative humidity (RH) conditions (20%, 50% and 70% RH). A dynamic dual-chamber test meth...

  3. Donnan dialysis with ion-exchange membranes. 3: Diffusion coefficients using ions of different valence

    SciTech Connect

    Miyoshi, Hirofumi

    1999-01-01

    Donnan dialysis with ion-exchange membranes was studied under various kinds of experimental conditions using ions of different valences. The diffusion coefficients (D{sub d}) of various kinds of ions in the ion-exchange membrane were obtained by curve fitting an equation derived from the mass balance to three kinds of Donnan dialytic experiments. It was found that the value of D{sub d}/D{sub s} using D{sub d} of monovalent ions in Donnan dialysis with a set of monovalent feed ions and bivalent driving ions was 1/175, where D{sub s} represents a diffusion coefficient in solution. D{sub s} was calculated from the Nernst-Einstein equation substituted by the ionic conductance of ions at infinite dilution in water. Using D{sub d} of bivalent ions in Donnan dialysis with the same set led to a D{sub d}/D{sub s} value of 1/438. Moreover, using D{sub d} in Donnan dialysis with the same set, the value of D{sub d}/D{sub e} was kept constant at 0.4 (D{sub e} expresses the diffusion coefficient in the membrane when the valences of the feed and driving ions are equal). On the other hand, both D{sub d}/D{sub s} and D{sub d}/D{sub e} using D{sub d} in Donnan dialysis with a set of bivalent feed ions and monovalent driving ions were not constant.

  4. Calculating diffusion and permeability coefficients with the oscillating forward-reverse method

    NASA Astrophysics Data System (ADS)

    Holland, Bryan W.; Gray, Chris G.; Tomberli, Bruno

    2012-09-01

    The forward-reverse or FR method is an efficient bidirectional work method for determining the potential of mean force w(z) and also supposedly gives in principle the position-dependent diffusion coefficient D(z). Results from a variation called the OFR (oscillating FR) method suggest inconsistencies in the D(z) values when calculated as prescribed by the FR method. A new steering protocol has thus been developed and applied to the OFR method for the accurate determination of D(z) and also provides greater convergence for w(z) in molecular dynamics simulations. The bulk diffusion coefficient for water was found to be (6.03±0.16)×10-5 cm2/s at 350 K with system size dependence within the statistical error bars. Using this steering protocol, D(z) and w(z) for water permeating a dipalmitoylphosphatidylcholine (DPPC) bilayer were determined. The potential of mean force is shown to have a barrier of peak height, wmax/(kBT)=8.4, with a width of about 10 Å on either side from the membrane center. The diffusion constant is shown to be highest in the core region of the membrane [peak value ˜(8.0±0.8)×10-5 cm2/s], lowest in the head-group region [minimum value ˜(2.0±0.3)×10-5 cm2/s], and to tend toward the bulk value as the water molecule leaves the membrane. The permeability coefficient P for H2O in DPPC was determined using the simulated D(z) and w(z) to give values of (0.129±0.075) cm/s at 323 K and (0.141±0.043) cm/s at 350 K. The results show more spatial detail than results presented in previous work while reducing the computational and user effort.

  5. Time-dependent diffusion coefficient as a probe of the permeability of the pore wall

    NASA Astrophysics Data System (ADS)

    Sen, Pabitra N.

    2003-11-01

    The time dependence of the mean-square displacement (or equivalently of the diffusion coefficient) in the presence of a permeable barrier can be used as a probe of the surface-to-volume ratio and permeability of a membrane. An exact, universal, short-time asymptotics in a pack of cells, assuming that the surfaces are locally smooth, shows that the effects of nonzero permeability appear as a correction to the diffusion coefficient that is linear in time, whereas the surface-to-volume ratio enters as a square root in time. With ? as the permeability of the membrane, we find, for the particles released inside the cells, DR,eff(t)=DR[1-(SR/VR){4?DR t/(9?? )-?t?DL (?DL +?DR )/(6DR)}]+⋯ . Here DR and DL are free (i.e., bulk) diffusion coefficients inside and outside of the cell, respectively, and SR/VR is the total internal surface divided by the total internal cell volume. The other terms linear in t that add to the right side of above equation are DR(SR/VR)[(1/6)?t-(1/12)DRt<(1/R1+1/R2)>R], where ? is a surface relaxation, which is generally negligible in biological samples, and <(1/R1+1/R2)>R is the average of the principal radii of curvatures over the interior surface. An equivalent expression for the particles starting outside the cell is obtained by swapping L?R. The NMR data on erthrocytes show that the effect of permeability can be significant within the time scales of measurement and hence ? is deducible from the data. The long-time behavior given previously [Proc. Natl. Acad. Sci. USA 92, 1229 (1994)] is augmented by giving a nonuniversal form that includes the rate of approach to this limit.

  6. Diffusion coefficients and dissociation constants of enhanced green fluorescent protein binding to free standing membranes

    PubMed Central

    Thomas, Franziska A.; Visco, Ilaria; Petrášek, Zden?k; Heinemann, Fabian; Schwille, Petra

    2015-01-01

    Recently, a new and versatile assay to determine the partitioning coefficient KP as a measure for the affinity of peripheral membrane proteins for lipid bilayers was presented in the research article entitled, “Introducing a fluorescence-based standard to quantify protein partitioning into membranes” [1]. Here, the well-characterized binding of hexahistidine-tag (His6) to NTA(Ni) was utilized. Complementarily, this data article reports the average diffusion coefficient D of His6-tagged enhanced green fluorescent protein (eGFP-His6) and the fluorescent lipid analog ATTO?647N?DOPE in giant unilamellar vesicles (GUVs) containing different amounts of NTA(Ni) lipids. In addition, dissociation constants Kd of the NTA(Ni)/eGFP-His6 system are reported. Further, a conversion between Kd and KP is provided. PMID:26587560

  7. Evaluation of the diffusion coefficient of fluorine during the electropolishing of niobium

    SciTech Connect

    Hui Tian, Charles E. Reece

    2010-08-01

    Future accelerators require unprecedented cavity performance, which is strongly influenced by interior surface nano-smoothness. Electropolishing (EP) is the technique of choice being developed for high–field SRF cavities. Previous study has shown that the mechanism of Nb electropolishing proceeds by formation and dissolution of a compact salt film under fluorine diffusion-limited mass transport control. We pursue an improved understanding of the microscopic conditions required for optimum surface finishing. The viscosity of the standard electrolyte has been measured using a commercial viscometer, and the diffusion coefficient of fluorine was derived at a variety of temperatures from 0ºC to 50ºC using an Nb rotating disk electrode. In addition, data indicate that electrode kinetics becomes competitive with the mass transfer current limitation and increases dramatically with temperature. These findings are expected to guide the optimization of EP process parameters for achieving controlled, reproducible and uniform nano-smooth surface finishing of SRF cavities.

  8. Diffraction gratings and diffusion coefficient determination of acrylamide and polyacrylamide in sol-gel glass

    NASA Astrophysics Data System (ADS)

    Blaya, S.; Murciano, A.; Acebal, P.; Carretero, L.; Ulibarrena, M.; Fimia, A.

    2004-06-01

    We describe the recording of holographic gratings in a photopolymerizable sol-gel glass based on acrylamide as monomer, triethanolamine as coinitiator, and yellowish eosin as photoinitiator. Although acrylic monomers have been introduced in silica glass by Cheben and Calvo [Appl. Phys. Lett. 78, 1490 (2001)], the well-known acrylamide based composition has not yet been produced by this method. Diffraction efficiencies close to 55% were obtained with an exposure of 8 mJ/cm2. The holographic gratings were not stable and we made use of this instability to determine the diffusion coefficients of acrylamide and polyacrylamide inside this glass.

  9. In Situ Raman Spectroscopic Study of the Diffusion Coefficients and Solubility:Indicates to Carbon Dioxide Injection into Hexadecane

    NASA Astrophysics Data System (ADS)

    Wu, Dan; Lu, Wanjun

    2015-04-01

    Injecting CO2 into lean-oil reservoirs is not only a way to geological storage but also enhanced oil recovery. In the secondary displacements of oil reservoir by CO2-injection, diffusion coefficients and solubility of CO2 are key parameters to calculate the volume of CO2 injected and the time to achieve the desired viscosity in the numerical simulation. Unfortunately, the experimental data on the CO2 diffusion coefficient and solubility in liquid hydrocarbons under high pressure conditions are scarce. Hexadecane has properties similar to the average properties of Brazilian heavy oil. Experimental data on the diffusion coefficients and solubility of CO2 in hexadecane were reviewed by Nieuwoudt and Rand (2002), Rincon and Trejo (2001) and Breman et al (1994), indicating that the data in the literature were limited at relatively low temperatures and/or low pressures. In this paper, the diffusion coefficients of carbon dioxide in hexadecane at different temperature and pressure were determined with in situ Raman spectroscopy. A model was established to describe relationship among diffusion coefficients, temperature, and pressure. The solubility of CO2 in hexadecane was obtained from 298.15 to 473.15 K and 10 to 45 MPa. The experimental results show that:(1) Solubility of CO2 decreases with increasing temperature.(2) Increasing pressure increases the CO2 solubility. in terms of the degree of influence,100K is similar with 10MPa.(3) Diffusion coefficients of CO2 increases with increasing temperature. (4) Increasing pressure decreases the CO2 diffusion coefficients, whereas the pressure effect on CO2 diffusion coefficients is very weak. Compared with traditional sampling and analytical methods, the advantages of our method include: (1) the use of in situ Raman signals for solubility measurements eliminates possible uncertainty caused by sampling and ex situ analysis. (2) it is simple and efficient, and (3) high-pressure data can be obtained safely.

  10. Phospholipid Diffusion Coefficients of Cushioned Model Membranes determined via Z-Scan Fluorescence Correlation Spectroscopy

    PubMed Central

    Sterling, Sarah M.; Allgeyer, Edward S.; Fick, Jörg; Prudovsky, Igor; Mason, Michael D.; Neivandt, David J.

    2013-01-01

    Model cellular membranes enable the study of biological processes in a controlled environment and reduce the traditional challenges associated with live or fixed cell studies. However, model membrane systems based on the air/water or oil/solution interface do not allow for incorporation of transmembrane proteins, or for the study of protein transport mechanisms. Conversely, a phospholipid bilayer deposited via the Langmuir-Blodgett/Langmuir Schaefer method on a hydrogel layer is potentially an effective mimic of the cross-section of a biological membrane, and facilitates both protein incorporation and transport studies. Prior to application, however, such membranes must be fully characterized, particularly with respect to the phospholipid bilayer phase transition temperature. Here we present a detailed characterization of the phase transition temperature of the inner and outer leaflets of a chitosan supported model membrane system. Specifically, the lateral diffusion coefficient of each individual leaflet has been determined as a function of temperature. Measurements were performed utilizing z-scan fluorescence correlation spectroscopy (FCS), a technique that yields calibration-free diffusion information. Analysis via the method of Wawrezinieck and coworkers, revealed that phospholipid diffusion changes from raft-like to free diffusion as the temperature is increased; an insight into the dynamic behavior of hydrogel supported membranes not previously reported. PMID:23705855

  11. Scaling invariance of the diffusion coefficient in a family of two-dimensional Hamiltonian mappings

    NASA Astrophysics Data System (ADS)

    de Oliveira, Juliano A.; Dettmann, Carl P.; da Costa, Diogo R.; Leonel, Edson D.

    2013-06-01

    We consider a family of two-dimensional nonlinear area-preserving mappings that generalize the Chirikov standard map and model a variety of periodically forced systems. The action variable diffuses in increments whose phase is controlled by a negative power of the action and hence effectively uncorrelated for small actions, leading to a chaotic sea in phase space. For larger values of the action the phase space is mixed and contains a family of elliptic islands centered on periodic orbits and invariant Kolmogorov-Arnold-Moser (KAM) curves. The transport of particles along the phase space is considered by starting an ensemble of particles with a very low action and letting them evolve in the phase until they reach a certain height h. For chaotic orbits below the periodic islands, the survival probability for the particles to reach h is characterized by an exponential function, well modeled by the solution of the diffusion equation. On the other hand, when h reaches the position of periodic islands, the diffusion slows markedly. We show that the diffusion coefficient is scaling invariant with respect to the control parameter of the mapping when h reaches the position of the lowest KAM island.

  12. Retrieval of diffuse attenuation coefficient in the China seas from surface reflectance.

    PubMed

    Qiu, Zhongfeng; Wu, Tingting; Su, Yuanyuan

    2013-07-01

    Accurate estimation of the diffuse attenuation coefficient is important for our understanding the availability of light to underwater communities, which provide critical information for the China seas ecosystem. However, algorithm developments and validations of the diffuse attenuation coefficient in the China seas have been seldom performed before and therefore our knowledge on the quality of retrieval of the diffuse attenuate coefficient is poor. In this paper optical data at 306 sites collected in coastal waters of the China seas between July 2000 and February 2004 are used to evaluate three typical existing Kd(490) models. The in situ Kd(490) varied greatly among different sites from 0.029 m(-1) to 10.3 m(-1), with a mean of 0.92 ± 1.59 m(-1). Results show that the empirical model and the semi-analytical model significantly underestimate the Kd(490) value, with estimated mean values of 0.24 m(-1) and 0.5 m(-1), respectively. The combined model also shows significant differences when the in situ Kd(490) range from 0.2 m(-1) to 1 m(-1). Thus, the present study proposes that the three algorithms cannot be directly used to appropriately estimate Kd(490) in the turbid coastal waters of the China seas without a fine tuning for regional applications. In this paper, new Kd(490) algorithms are developed based on the semi-analytical retrieval of the absorption coefficient a(m(-1)) and the backscattering coefficient bb(m(-1)) from the reflectance at two wavelengths, 488 and 667 nm for the Moderate Resolution Imaging Spectroradiometer (MODIS) and 490 and 705 nm for the Medium Resolution Imaging Spectrometer (MERIS) applications, respectively. With the new approaches, the mean ratio and the relative percentage difference are 1.05 and 4.6%, respectively, based on an independent in situ data set. Furthermore, the estimates are reliable within a factor of 1.9 (95% confidence interval). Comparisons also show that the Kd(490) derived with the new algorithms are well correlated with the in situ measurements. Our results showed a good improvement in the estimation for Kd(490) using the new approaches, contrasting with existing empirical, semi-analytical and combined models. Therefore, we propose the new approaches for accurate retrieval of Kd(490) in the China seas. PMID:23842315

  13. Lateral diffusivity coefficients from the dynamics of a SF6 patch in a coastal environment

    NASA Astrophysics Data System (ADS)

    Kersalé, M.; Petrenko, A. A.; Doglioli, A. M.; Nencioli, F.; Bouffard, J.; Blain, S.; Diaz, F.; Labasque, T.; Quéguiner, B.; Dekeyser, I.

    2016-01-01

    The dispersion of a patch of the tracer sulfur hexafluoride (SF6) is used to assess the lateral diffusivity in the coastal waters of the western part of the Gulf of Lion (GoL), northwestern Mediterranean Sea, during the Latex10 experiment (September 2010). Immediately after the release, the spreading of the patch is associated with a strong decrease of the SF6 concentrations due to the gas exchange from the ocean to the atmosphere. This has been accurately quantified, evidencing the impact of the strong wind conditions during the first days of this campaign. Few days after the release, as the atmospheric loss of SF6 decreased, lateral diffusivity coefficient at spatial scales of 10 km has been computed using two approaches. First, the evolution of the patch with time was combined with a diffusion-strain model to obtain estimates of the strain rate (? = 2.5 10- 6 s- 1) and of the lateral diffusivity coefficient (Kh = 23.2 m2 s- 1). Second, a steady state model was applied, showing Kh values similar to the previous method after a period of adjustment between 2 and 4.5 days. This implies that after such period, our computation of Kh becomes insensitive to the inclusion of further straining of the patch. Analysis of sea surface temperature satellite imagery shows the presence of a strong front in the study area. The front clearly affected the dynamics within the region and thus the temporal evolution of the patch. Our results are consistent with previous studies in open ocean and demonstrate the success and feasibility of those methods also under small-scale, rapidly-evolving dynamics typical of coastal environments.

  14. Effect of elemental diffusion on temperature coefficient of piezoelectric properties in KNN-based lead-free composites

    E-print Network

    Hong, Soon Hyung

    candidate owing to their excellent piezoelectric properties and high Curie temperature (TC) [1­14]. HoweverLETTER Effect of elemental diffusion on temperature coefficient of piezoelectric properties in KNN of temperature in KNN- based ceramics. As seen in Fig. 1a, high temperature coefficient of piezoelectric

  15. 728 IEEE TRANSACTIONS ON PLASMA SCIENCE, VOL. 34, NO. 3, JUNE 2006 The Electron Diffusion Coefficient in Energy

    E-print Network

    Kaganovich, Igor

    Coefficient in Energy in Bounded Collisional Plasmas Lev D. Tsendin Abstract--The electron energies in typical, the momentum relaxation in collisions with neutrals is sig- nificantly faster than the energy relaxation due be de- scribed by a diffusion coefficient in energy . Both collisional and stochastic heating mechanisms

  16. Effective Diffusion Coefficient and Controlling Process of P Diffusion in Si Based on the Pair Diffusion Models of Vacancy and Interstitial Mechanisms

    NASA Astrophysics Data System (ADS)

    Yoshida, Masayuki; Morooka, Masami; Takahashi, Manabu; Tomokage, Hajime

    2000-05-01

    Based on the pair diffusion models of vacancy and interstitial (V and I) mechanisms, the V and I components of effective P diffusion coefficient, DP^+,Veff and DP^+,Ieff, and the controlling process of P diffusion in Si are obtained. Assuming that the I mechanism is dominant, not only the I- concentration, CI^-, but also its gradient, d CI^-/d ? , is effective on DP^+,Ieff at high CP^+. DP^+,Ieff is large at d CI^-/d ? <0 and small at d CI^-/d ? >0. P+ and I- are generated by the dissociation of P-I pair. When excess I- thus generated is removed, d CI^-/d ? <0 is obtained. d CI^-/d ? <0 is also obtained by the decrease in quasi self-interstitial formation energy. Several diffusion models simulate the P diffusion profile well under an inert atmosphere. Applying the controlling process to them, the reason why they simulate the P profile well is investigated. Because all of them simulate the P profile well, it is difficult to conclude which model is correct. It is suggested that it is possible to conclude which model is correct from the P profile under oxidation at CP^+s >1× 1020 cm-3 (s: surface).

  17. Comparison of [corrected] actin- and glass-supported phospholipid bilayer diffusion coefficients.

    PubMed

    Sterling, Sarah M; Dawes, Ryan; Allgeyer, Edward S; Ashworth, Sharon L; Neivandt, David J

    2015-04-21

    The formation of biomimetic lipid membranes has the potential to provide insights into cellular lipid membrane dynamics. The construction of such membranes necessitates not only the utilization of appropriate lipids, but also physiologically relevant substrate/support materials. The substrate materials employed have been shown to have demonstrable effects on the behavior of the overlying lipid membrane, and thus must be studied before use as a model cushion support. To our knowledge, we report the formation and investigation of a novel actin protein-supported lipid membrane. Specifically, inner leaflet lateral mobility of globular actin-supported DMPC (1,2-dimyristoyl-sn-glycero-3-phosphocholine) bilayers, deposited via the Langmuir-Blodgett/Langmuir Schaefer methodology, was investigated by z-scan fluorescence correlation spectroscopy across a temperature range of 20-44°C. The actin substrate was found to decrease the diffusion coefficient when compared to an identical membrane supported on glass. The depression of the diffusion coefficient occurred across all measured temperatures. These results indicated that the actin substrate exerted a direct effect on the fluidity of the lipid membrane and highlighted the fact that the choice of substrate/support is critical in studies of model lipid membranes. PMID:25902434

  18. Microscopic calculations of local lipid membrane permittivities and diffusion coefficients for application to electroporation analyses.

    PubMed

    Joshi, R P; Sridhara, V; Schoenbach, K H

    2006-09-22

    Interaction of electric fields with biological systems has begun to receive considerable attention for applications that include field-assisted drug delivery, medical interventions, and genetic engineering. External fields induce the strongest effects at membranes with electroporation being a common feature. Membrane transport in this context of poration is often based on continuum approaches utilizing macroscopic parameters such as the permittivity, diffusion coefficients, and mobilities. In such modeling, field dependences, local inhomogeneities, and microscopic details are usually ignored. Here, a molecular dynamics (MD) scheme is used for a more rigorous and physically realistic evaluation of such parameters for potential application to electroporative transport model development. A suitable membrane structure containing a nanopore derived from MD analysis is used as the initial geometric configuration. Both static and frequency dependent diffusion coefficients have been evaluated. Permittivities are also calculated and shown to be dramatically non-uniform in the vicinity of membranes under high external fields. A positive feedback mechanism leading to enhanced membrane fields is discussed. PMID:16890913

  19. A comparison study of linear reconstruction techniques for diffuse optical tomographic imaging of absorption coefficient.

    PubMed

    Gaudette, R J; Brooks, D H; DiMarzio, C A; Kilmer, M E; Miller, E L; Gaudette, T; Boas, D A

    2000-04-01

    We compare, through simulations, the performance of four linear algorithms for diffuse optical tomographic reconstruction of the three-dimensional distribution of absorption coefficient within a highly scattering medium using the diffuse photon density wave approximation. The simulation geometry consisted of a coplanar array of sources and detectors at the boundary of a half-space medium. The forward solution matrix is both underdetermined, because we estimate many more absorption coefficient voxels than we have measurements, and ill-conditioned, due to the ill-posedness of the inverse problem. We compare two algebraic techniques, ART and SIRT, and two subspace techniques, the truncated SVD and CG algorithms. We compare three-dimensional reconstructions with two-dimensional reconstructions which assume all inhomogeneities are confined to a known horizontal slab, and we consider two 'object-based' error metrics in addition to mean square reconstruction error. We include a comparison using simulated data generated using a different FDFD method with the same inversion algorithms to indicate how our conclusions are affected in a somewhat more realistic scenario. Our results show that the subspace techniques are superior to the algebraic techniques in localization of inhomogeneities and estimation of their amplitude, that two-dimensional reconstructions are sensitive to underestimation of the object depth, and that an error measure based on a location parameter can be a useful complement to mean squared error. PMID:10795991

  20. Group Analysis of Variable Coefficient Diffusion--Convection Equations. III. Conservation Laws

    E-print Network

    N. M. Ivanova; R. O. Popovych; C. Sophocleous

    2007-10-16

    The notions of generating sets of conservation laws of systems of differential equations with respect to symmetry groups and equivalence groups are introduced and applied. This allows us to generalize essentially the procedure of finding potential symmetries for the systems with multidimensional spaces of conservation laws. A class of variable coefficient (1+1)-dimensional nonlinear diffusion-convection equations of general form $f(x)u_t=(g(x)A(u)u_x)_x+h(x)B(u)u_x$ is investigated. Using the most direct method, we carry out two classifications of local conservation laws up to equivalence relations generated by both usual and enhanced equivalence groups. Equivalence with respect to $\\hat G^{\\sim}$ and correct choice of gauge coefficients of equations play the major role for simple and clear formulation of the final results. The notion of contractions of conservation laws and one of characteristics of conservation laws are introduced and contractions of conservation laws of diffusion-convection equations are found.

  1. Effect of cation on diffusion coefficient of ionic liquids at onion-like carbon electrodes

    NASA Astrophysics Data System (ADS)

    Van Aken, Katherine L.; McDonough, John K.; Li, Song; Feng, Guang; Chathoth, Suresh M.; Mamontov, Eugene; Fulvio, Pasquale F.; Cummings, Peter T.; Dai, Sheng; Gogotsi, Yury

    2014-07-01

    While most supercapacitors are limited in their performance by the stability of the electrolyte, using neat ionic liquids (ILs) as the electrolyte can expand the voltage window and temperature range of operation. In this study, ILs with bis(trifluoromethylsulfonyl)imide (Tf2N) as the anion were investigated as the electrolyte in onion-like carbon-based electrochemical capacitors. To probe the influence of cations on the electrochemical performance of supercapacitors, three different cations were used: 1-ethyl-3-methylimidazolium, 1-hexyl-3-methylimidazolium and 1,6-bis(3-methylimidazolium-1-yl). A series of electrochemical characterization tests was performed using cyclic voltammetry (CV), galvanostatic cycling and electrochemical impedance spectroscopy (EIS). Diffusion coefficients were measured using EIS and correlated with quasielastic neutron scattering and molecular dynamics simulation. These three techniques were used in parallel to confirm a consistent trend between the three ILs. It was found that the IL with the smaller sized cation had a larger diffusion coefficient, leading to a higher capacitance at faster charge-discharge rates. Furthermore, the IL electrolyte performance was correlated with increasing temperature, which limited the voltage stability window and led to the formation of a solid electrolyte interphase on the carbon electrode surface, evident in both the CV and EIS experiments.

  2. Quantification of diffusion-weighted images (DWI) and apparent diffusion coefficient maps (ADC) in the detection of acute stroke

    NASA Astrophysics Data System (ADS)

    Tulipano, P. Karina; Millar, William S.; Imielinska, Celina; Liu, Xin; Rosiene, Joel; D'Ambrosio, Anthony L.

    2006-03-01

    Magnetic resonance (MR) imaging is an imaging modality that is used in the management and diagnosis of acute stroke. Common MR imaging techniques such as diffusion weighted imaging (DWI) and apparent diffusion coefficient maps (ADC) are used routinely in the diagnosis of acute infarcts. However, advances in radiology information systems and imaging protocols have led to an overload of image information that can be difficult to manage and time consuming. Automated techniques to assist in the identification of acute ischemic stroke can prove beneficial to 1) the physician by providing a mechanism for early detection and 2) the patient by providing effective stroke therapy at an early stage. We have processed DW images and ADC maps using a novel automated Relative Difference Map (RDM) method that was tailored to the identification and delineation of the stroke region. Results indicate that the technique can delineate regions of acute infarctions on DW images and ADC maps. A formal evaluation of the RDM algorithm was performed by comparing accuracy measurements between 1) expert generated ground truths with the RDM delineated DWI infarcts and 2) RDM delineated DWI infarcts with RDM delineated ADC infarcts. The accuracy measurements indicate that the RDM delineated DWI infarcts are comparable to the expert generated ground truths. The true positive volume fraction value (TPVF), between RDM delineated DWI and ADC infarcts, is nonzero for all cases with an acute infarct while the value for non-acute cases remains zero.

  3. In-situ estimate of submesoscale horizontal eddy diffusion coefficients across a front

    NASA Astrophysics Data System (ADS)

    Nencioli, Francesco; d'Ovidio, Francesco; Doglioli, Andrea; Petrenko, Anne

    2013-04-01

    Fronts, jets and eddies are ubiquitous features of the world oceans, and play a key role in regulating energy budget, heat transfer, horizontal and vertical transport, and biogeochemical processes. Although recent advances in computational power have favored the analysis of mesoscale and submesoscale dynamics from high-resolution numerical simulations, studies from in-situ observations are still relatively scarce. The small dimensions and short duration of such structures still pose major challenges for fine-scale dedicated field experiments. As a consequence, in-situ quantitative estimates of key physical parameters for high-resolution numerical models, such as horizontal eddy diffusion coefficients, are still lacking. The Latex10 campaign (September 1-24, 2010), within the LAgrangian Transport EXperiment (LATEX), adopted an adaptive sampling strategy that included satellite data, ship-based current measurements, and iterative Lagrangian drifter releases to successfully map coherent transport structures in the western Gulf of Lion. Comparisons with AVHRR imagery evidenced that the detected structures were associated with an intense frontal feature, originated by the convergence and subsequent stirring of colder coastal waters with warmer open-sea waters. We present a method for computing horizontal eddy diffusion coefficients by combining the stirring rates estimated from the Lagrangian drifter trajectories with the shapes of the surface temperature and salinity gradient (assumed to be at the equilibrium) from the ship thermosalinograph. The average value we obtained from various sections across the front is 2.5 m2s-1, with horizontal scales (width of the front) ranging between 0.5 and 2.5 km. This is in line with the values commonly used for high-resolution numerical simulations. Further field experiment will be required to extend the results to different ocean regions and regimes, and to thoroughly test the robustness of the equilibrium hypothesis. Remote sensed measurements of sea surface temperature and elevation could also be used to compute fine-scale horizontal eddy diffusion coefficients over larger areas and for different ocean regions. However, the coarse resolution of current sea surface topography observations, and their unreliability over coastal regions, represent important limitations for this type of application. The velocity fields provided by the SWOT mission will allow to retrieve accurate high-resolution stirring rates across the ocean. Combining these rates with remote-sensed SST gradients will make possible to extend our analysis and investigate patterns and variability of submesoscale horizontal eddy diffusion at the global scale.

  4. Measurement of the dimensionless extinction coefficient of soot within laminar diffusion flames.

    SciTech Connect

    Suo-Anttila, Jill Marie; Williams, Timothy C.; Shaddix, Christopher R.; Jensen, Kirk A.

    2005-01-01

    The dimensionless extinction coefficient (K{sub e}) of soot must be known to quantify laser extinction measurements of soot concentration and to predict optical attenuation through smoke clouds. Previous investigations have measured K{sub e} for post-flame soot emitted from laminar and turbulent diffusion flames and smoking laminar premixed flames. This paper presents the first measurements of soot K{sub e} from within laminar diffusion flames, using a small extractive probe to withdraw the soot from the flame. To measure K{sub e}, two laser sources (635 nm and 1310 nm) were coupled to a transmission cell, followed by gravimetric sampling. Coannular diffusion flames of methane, ethylene and nitrogen-diluted kerosene burning in air were studied, together with slot flames of methane and ethylene. K{sub e} was measured at the radial location of maximum soot volume fraction at several heights for each flame. Results for K{sub e} at both 635 nm and 1310 nm for ethylene and kerosene coannular flames were in the range of 9-10, consistent with the results from previous studies of post-flame soot. The ethylene slot flame and the methane flames have lower K{sub e} values, in some cases as low as 2.0. These lower values of K{sub e} are found to result from the contributions of (a) the condensation of PAH species during the sampling of soot, (b) the wavelength-dependent absorptivity of soot precursor particles, and, in the case of methane, (c) the negligible contribution of soot scattering to the extinction coefficient. RDG calculations of soot scattering, in combination with the measured K{sub e} values, imply that the soot refractive index is in the vicinity of 1.75-1.03i at 635 nm.

  5. Self-diffusion coefficients for water and organic solvents at high temperatures along the coexistence curve

    NASA Astrophysics Data System (ADS)

    Yoshida, Ken; Matubayasi, Nobuyuki; Nakahara, Masaru

    2008-12-01

    The self-diffusion coefficients D for water, benzene, and cyclohexane are determined by using the pulsed-field-gradient spin echo method in high-temperature conditions along the liquid branch of the coexistence curve: 30-350 °C (1.0-0.58 g cm-3), 30-250 °C (0.87-0.56 g cm-3), and 30-250 °C (0.77-0.48 g cm-3) for water, benzene, and cyclohexane, respectively. The temperature and density effects are separated and their origins are discussed by examining the diffusion data over a wide range of thermodynamic states. The temperature dependence of the self-diffusion coefficient for water is larger than that for organic solvents due to the large contribution of the attractive hydrogen-bonding interaction in water. The density dependence is larger for organic solvents than for water. The difference is explained in terms of the van der Waals picture that the structure of nonpolar organic solvents is determined by the packing effect due to the repulsion or exclusion volumes. The dynamic solvation shell scheme [K. Yoshida et al., J. Chem. Phys. 127, 174509 (2007)] is applied for the molecular interpretation of the translational dynamics with the aid of molecular dynamics simulation. In water at high temperatures, the velocity relaxation is not completed before the relaxation of the solvation shell (mobile-shell type) as a result of the breakdown of the hydrogen-bonding network. In contrast, the velocity relaxation of benzene is rather confined within the solvation shell (in-shell type).

  6. A non-perturbative estimate of the heavy quark momentum diffusion coefficient

    E-print Network

    A. Francis; O. Kaczmarek; M. Laine; T. Neuhaus; H. Ohno

    2015-08-19

    We estimate the momentum diffusion coefficient of a heavy quark within a pure SU(3) plasma at a temperature of about 1.5Tc. Large-scale Monte Carlo simulations on a series of lattices extending up to 192^3*48 permit us to carry out a continuum extrapolation of the so-called colour-electric imaginary-time correlator. The extrapolated correlator is analyzed with the help of theoretically motivated models for the corresponding spectral function. Evidence for a non-zero transport coefficient is found and, incorporating systematic uncertainties reflecting model assumptions, we obtain kappa = (1.8 - 3.4)T^3. This implies that the "drag coefficient", characterizing the time scale at which heavy quarks adjust to hydrodynamic flow, is (1.8 - 3.4) (Tc/T)^2 (M/1.5GeV) fm/c, where M is the heavy quark kinetic mass. The results apply to bottom and, with somewhat larger systematic uncertainties, to charm quarks.

  7. Measurement of diffusion coefficients of francium and rubidium in yttrium based on laser spectroscopy

    E-print Network

    de Mauro, C; Corradi, L; Dainelli, A; Khanbekyan, A; Mariotti, E; Minguzzi, P; Moi, L; Sanguinetti, S; Stancari, G; Tomassetti, L; Veronesi, S

    2008-01-01

    We report the first measurement of the diffusion coefficients of francium and rubidium ions implanted in a yttrium foil. We developed a methodology, based on laser spectroscopy, which can be applied to radioactive and stable species, and allows us to directly take record of the diffusion time. Francium isotopes are produced via fusion-evaporation nuclear reaction of a 100 MeV 18-O beam on a Au target at the Tandem XTU accelerator facility in Legnaro, Italy. Francium is ionized at the gold-vacuum interface and Fr+ ions are then transported with a 3 keV electrostatic beamline to a cell for neutralization and capture in a magneto-optical trap (MOT). A Rb+ beam is also available, which follows the same path as Fr+ ions. The accelerated ions are focused and implanted in a 25 um thick yttrium foil for neutralization: after diffusion to the surface, they are released as neutrals, since the Y work function is lower than the alkali ionization energies. The time evolution of the MOT and the vapor fluorescence signals a...

  8. Atmospheric Escape by Magnetically Driven Wind from Gaseous Planets II --Effects of Magnetic Diffusion--

    E-print Network

    Tanaka, Yuki A; Inutsuka, Shu-ichiro

    2015-01-01

    We investigate roles of Alfvenic waves in the weakly-ionized atmosphere of hot Jupiters by carrying out non-ideal magnetohydrodynamic (MHD) simulations with Ohmic diffusion in one-dimensional magnetic flux tubes. Turbulence at the surface excites Alfven waves and they propagate upward to drive hot (~ 10^4 K) outflows. The magnetic diffusion plays an important role in the dissipation of the Alfvenic waves in the weakly ionized atmosphere of hot Jupiters. The mass-loss rate of the spontaneously driven planetary wind is considerably reduced, in comparison with that obtained from ideal MHD simulations because the Alfvenic waves are severely damped at low altitudes in the atmosphere, whereas the wave heating is still important in the heating of the upper atmosphere. Dependence on the surface temperature, planetary radius, and velocity dispersion at the surface is also investigated. We find an inversion phenomenon of the transmitted wave energy flux; the energy flux carried by Alfven waves in the upper atmosphere h...

  9. Diffusion-weighted imaging in the head and neck region: usefulness of apparent diffusion coefficient values for characterization of lesions

    PubMed Central

    ?erifo?lu, ?smail; Oz, ?brahim ?lker; Damar, Murat; Tokgöz, Özlem; Yazgan, Ömer; Erdem, Zuhal

    2015-01-01

    PURPOSE We aimed to evaluate the role of apparent diffusion coefficient (ADC) values calculated from diffusion-weighted imaging for head and neck lesion characterization in daily routine, in comparison with histopathological results. METHODS Ninety consecutive patients who underwent magnetic resonance imaging (MRI) at a university hospital for diagnosis of neck lesions were included in this prospective study. Diffusion-weighted echo-planar MRI was performed on a 1.5 T unit with b factor of 0 and 1000 s/mm2 and ADC maps were generated. ADC values were measured for benign and malignant whole lesions seen in daily practice. RESULTS The median ADC value of the malignant tumors and benign lesions were 0.72×10?3 mm2/s, (range, 0.39–1.51×10?3 mm2/s) and 1.17×10?3 mm2/s, (range, 0.52–2.38×10?3 mm2/s), respectively, with a significant difference between them (P < 0.001). A cutoff ADC value of 0.98×10?3 mm2/s was used to distinguish between benign and malignant lesions, yielding 85.3% sensitivity and 78.6% specificity. The median ADC value of lymphomas (0.44×10?3 mm2/s; range, 0.39–0.58×10?3 mm2/s) was significantly smaller (P < 0.001) than that of squamous cell carcinomas (median ADC value 0.72×10?3 mm2/s; range, 0.65–1.06×10?3 mm2/s). There was no significant difference between median ADC values of inflammatory (1.13×10?3 mm2/s; range, 0.85–2.38×10?3 mm2/s) and noninflammatory benign lesions (1.26×10?3 mm2/s; range, 0.52–2.33×10?3 mm2/s). CONCLUSION Diffusion-weighted imaging and the ADC values can be used to differentiate and characterize benign and malignant head and neck lesions. PMID:25910284

  10. Source term evaluation for UF{sub 6} release event in feed facility at gaseous diffusion plants

    SciTech Connect

    Kim, S.H.; Taleyarkhan, R.P.

    1997-01-30

    An assessment of UF{sub 6} release accidents was conducted for the feed facility of a gaseous diffusion plant (GDP). Release rates from pig-tail connections were estimated from CYLIND code predictions, whereas, MELCOR was utilized for simulating reactions of UF{sub 6} with moisture and consequent transport of UO{sub 2}F{sub 2} aerosols and HF vapor through the building and to the environment. Two wind speeds were utilized. At the high end (Case 1) a wind speed of {approximately} 1 m/s (200 fpm) was assumed to flow parallel to the building length. At the low end (Case 2) to represent stagnant conditions a corresponding wind speed of 1 cm/s (2 fpm) was utilized. A further conservative assumption was made to specify no closure of crane and train doors at either end of the building. Relaxation of this assumption should provide for additional margins. Results indicated that, for the high (200 fpm) wind speed, close to 66% of the UO{sub 2}F{sub 2} aerosols and 100% of the HF gas get released to the environment over a 10-minute period. However, for the low (2 fpm) wind speed, negligible amount ({approximately} 1% UO{sub 2}F{sub 2}) of aerosols get released even over a 2 hour period.

  11. Determination of the response function for the Portsmouth Gaseous Diffusion Plant criticality accident alarm system neutron detectors

    SciTech Connect

    Tayloe, R.W. Jr.; Brown, A.S.; Dobelbower, M.C.; Woollard, J.E.

    1997-03-01

    Neutron-sensitive radiation detectors are used in the Portsmouth Gaseous Diffusion Plant`s (PORTS) criticality accident alarm system (CAAS). The CAAS is composed of numerous detectors, electronics, and logic units. It uses a telemetry system to sound building evacuation horns and to provide remote alarm status in a central control facility. The ANSI Standard for a CAAS uses a free-in-air dose rate to define the detection criteria for a minimum accident-of-concern. Previously, the free-in-air absorbed dose rate from neutrons was used for determining the areal coverge of criticality detection within PORTS buildings handling fissile materials. However, the free-in-air dose rate does not accurately reflect the response of the neutron detectors in use at PORTS. Because the cost of placing additional CAAS detectors in areas of questionable coverage (based on a free-in-air absorbed dose rate) is high, the actual response function for the CAAS neutron detectors was determined. This report, which is organized into three major sections, discusses how the actual response function for the PORTS CAAS neutron detectors was determined. The CAAS neutron detectors are described in Section 2. The model of the detector system developed to facilitate calculation of the response function is discussed in Section 3. The results of the calculations, including confirmatory measurements with neutron sources, are given in Section 4.

  12. Prediction of external corrosion for steel cylinders at the Paducah Gaseous Diffusion Plant: Application of an empirical method

    SciTech Connect

    Lyon, B.F.

    1996-02-01

    During the summer of 1995, ultrasonic wall thickness data were collected for 100 steel cylinders containing depleted uranium (DU) hexafluoride located at Paducah Gaseous Diffusion Plant (PGDP) in Paducah, Kentucky. The cylinders were selected for measurement to assess the condition of the more vulnerable portion of the cylinder inventory at PGDP. The purpose of this report is to apply the method used in Lyon to estimate the effects of corrosion for larger unsampled populations as a function of time. The scope of this report is limited and is not intended to represent the final analyses of available data. Future efforts will include continuing analyses of available data to investigate defensible deviations from the conservative assumptions made to date. For each cylinder population considered, two basic types of analyses were conducted: (1) estimates were made of the number of cylinders as a function of time that will have a minimum wall thickness of either 0 mils (1 mil = 0.00 1 in.) or 250 mils and (2) the current minimum wall thickness distributions across cylinders were estimated for each cylinder population considered. Additional analyses were also performed investigating comparisons of the results for F and G yards with the results presented in Lyon (1995).

  13. Nanoscale Diblock Copolymer Micelles: Characterizations and Estimation of the Effective Diffusion Coefficients of Biomolecules Release through Cylindrical Diffusion Model

    PubMed Central

    Amjad, M. Wahab; Mohd Amin, Mohd Cairul I.; Mahali, Shalela M.; Katas, Haliza; Ismail, Ismanizan; Hassan, M. Naeem ul; Chuang, Victor T. Giam

    2014-01-01

    Biomolecules have been widely investigated as potential therapeutics for various diseases. However their use is limited due to rapid degradation and poor cellular uptake in vitro and in vivo. To address this issue, we synthesized a new nano-carrier system comprising of cholic acid-polyethylenimine (CA-PEI) copolymer micelles, via carbodiimide-mediated coupling for the efficient delivery of small interfering ribonucleic acid (siRNA) and bovine serum albumin (BSA) as model protein. The mean particle size of siRNA- or BSA-loaded CA-PEI micelles ranged from 100–150 nm, with zeta potentials of +3-+11 mV, respectively. Atomic force, transmission electron and field emission scanning electron microscopy demonstrated that the micelles exhibited excellent spherical morphology. No significant morphology or size changes were observed in the CA-PEI micelles after siRNA and BSA loading. CA-PEI micelles exhibited sustained release profile, the effective diffusion coefficients were successfully estimated using a mathematically-derived cylindrical diffusion model and the release data of siRNA and BSA closely fitted into this model. High siRNA and BSA binding and loading efficiencies (95% and 70%, respectively) were observed for CA-PEI micelles. Stability studies demonstrated that siRNA and BSA integrity was maintained after loading and release. The CA-PEI micelles were non cytotoxic to V79 and DLD-1 cells, as shown by alamarBlue and LIVE/DEAD cell viability assays. RT-PCR study revealed that siRNA-loaded CA-PEI micelles suppressed the mRNA for ABCB1 gene. These results revealed the promising potential of CA-PEI micelles as a stable, safe, and versatile nano-carrier for siRNA and the model protein delivery. PMID:25133390

  14. Universality of Viscosity Dependence of Translational Diffusion Coefficients of Carbon Monoxide, Diphenylacetylene, and Diphenylcyclopropenone in Ionic Liquids under Various Conditions.

    PubMed

    Kimura, Y; Kida, Y; Matsushita, Y; Yasaka, Y; Ueno, M; Takahashi, K

    2015-06-25

    Translational diffusion coefficients of diphenylcyclopropenone (DPCP), diphenylacetylene (DPA), and carbon monoxide (CO) in 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide ([BMIm][NTf2]) and 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide ([EMIm][NTf2]) were determined by the transient grating (TG) spectroscopy under pressure from 0.1 to 200 MPa at 298 K and from 298 to 373 K under 0.1 MPa. Diffusion coefficients of these molecules at high temperatures in tributylmethylphosphonium bis(trifluoromethanesulfonyl)imide ([P4441][NTf2]), and tetraoctylphosphonium bis(trifluoromethanesulfonyl)imide ([P8888][NTf2]), and also in the mixtures of [BMIm][NTf2], N-methyl-N-propylpiperidinium bis(trifluoromethanesulfonyl)imide ([Pp13][NTf2]), and trihexyltetradecylphosphonium bis(trifluoromethanesulfonyl)imide ([P66614][NTf2]) with ethanol or chloroform have been determined. Diffusion coefficients except in ILs of phosphonium cations were well scaled by the power law of T/?, i.e., (T/?)(P), where T and ? are the absolute temperature and the viscosity, irrespective of the solvent species, pressure and temperature, and the compositions of mixtures. The values of the exponent P were smaller for the smaller size of the molecules. On the other hand, the diffusion coefficients in ILs of phosphonium cations with longer alkyl chains were larger than the values expected from the correlation obtained by other ILs and conventional liquids. The deviation becomes larger with increasing the number of carbon atoms of alkyl-chain of cation, and with decreasing the molecular size of diffusing molecules. The molecular size dependence of the diffusion coefficient was correlated by the ratio of the volume of the solute to that of the solvent as demonstrated by the preceding work (Kaintz et al., J. Phys. Chem. B 2013 , 117 , 11697 ). Diffusion coefficients have been well correlated with the power laws of both T/? and the relative volume of the solute to the solvent. PMID:26061826

  15. Proton Diffusion Coefficient in Electrospun Hybrid Membranes by Electrochemical Impedance Spectroscopy.

    PubMed

    Dos Santos, Leslie; Laberty-Robert, Christel; Maréchal, Manuel; Perrot, Hubert; Sel, Ozlem

    2015-09-15

    Electrochemical Impedance Spectroscopy (EIS) was, for the first time, used to estimate the global transverse proton diffusion coefficient, D(H+)(EHM), in electrospun hybrid conducting membranes (EHMs). In contrast to conventional impedance spectroscopy, EIS measurements were performed at room temperature with a liquid interface. In this configuration, the measure of the bulk proton transport is influenced by the kinetics of the transfer of proton at the solid/liquid interface. We demonstrated that the use of additives in the process of the membrane impacts the organization of the hydrophilic domains and also the proton transport. The D(H+)(EHM) is close to 1.10(-7) cm(2) s(-1) (± 0.1.10(-7) cm(2) s(-1)) for the EHMs without additive, whereas it is 4.10(-6) cm(2) s(-1) (± 0.4.10(-6) cm(2) s(-1)) for EHMs with additives. PMID:26322533

  16. Gamma convolution models for self-diffusion coefficient distributions in PGSE NMR

    NASA Astrophysics Data System (ADS)

    Röding, Magnus; Williamson, Nathan H.; Nydén, Magnus

    2015-12-01

    We introduce a closed-form signal attenuation model for pulsed-field gradient spin echo (PGSE) NMR based on self-diffusion coefficient distributions that are convolutions of n gamma distributions, n ? 1 . Gamma convolutions provide a general class of uni-modal distributions that includes the gamma distribution as a special case for n = 1 and the lognormal distribution among others as limit cases when n approaches infinity. We demonstrate the usefulness of the gamma convolution model by simulations and experimental data from samples of poly(vinyl alcohol) and polystyrene, showing that this model provides goodness of fit superior to both the gamma and lognormal distributions and comparable to the common inverse Laplace transform.

  17. Surface diffusion coefficient of Au atoms on single layer graphene grown on Cu

    SciTech Connect

    Ruffino, F. Cacciato, G.; Grimaldi, M. G.

    2014-02-28

    A 5?nm thick Au film was deposited on single layer graphene sheets grown on Cu. By thermal processes, the dewetting phenomenon of the Au film on the graphene was induced so to form Au nanoparticles. The mean radius, surface-to-surface distance, and surface density evolution of the nanoparticles on the graphene sheets as a function of the annealing temperature were quantified by scanning electron microscopy analyses. These quantitative data were analyzed within the classical mean-field nucleation theory so to obtain the temperature-dependent Au atoms surface diffusion coefficient on graphene: D{sub S}(T)=[(8.2±0.6)×10{sup ?8}]exp[?(0.31±0.02(eV)/(at) )/kT]?cm{sup 2}/s.

  18. A uniqueness result for the identification of a time-dependent diffusion coefficient

    NASA Astrophysics Data System (ADS)

    Fraguela, A.; Infante, J. A.; Ramos, A. M.; Rey, J. M.

    2013-12-01

    This paper deals with the problem of determining the time-dependent thermal diffusivity coefficient of a medium, when the evolution of the temperature in a part of it is known. Such situations arise in the context of food technology, when thermal processes at high pressures are used for extending the shelf life of the food, in order to preserve its nutritional and organoleptic properties (Infante et al 2009 On the Modelling and Simulation of High Pressure Processes and Inactivation of Enzymes in Food Engineering pp 2203-29 and Otero et al 2007 J. Food Eng. 78 1463-70). The phenomenon is modeled by the heat equation involving a term which depends on the source temperature and pressure increase, and appropriate initial and boundary conditions. We study the inverse problem of determining time-dependent thermal diffusivities k, when some temperature measurements at the border and inside the medium are known. We prove the uniqueness of the inverse problem solution under suitable a priori assumptions on regularity, size and growth of k.

  19. Small effect of water on upper-mantle rheology based on silicon self-diffusion coefficients.

    PubMed

    Fei, Hongzhan; Wiedenbeck, Michael; Yamazaki, Daisuke; Katsura, Tomoo

    2013-06-13

    Water has been thought to affect the dynamical processes in the Earth's interior to a great extent. In particular, experimental deformation results suggest that even only a few tens of parts per million of water by weight enhances the creep rates in olivine by orders of magnitude. However, those deformation studies have limitations, such as considering only a limited range of water concentrations and very high stresses, which might affect the results. Rock deformation can also be understood as an effect of silicon self-diffusion, because the creep rates of minerals at temperatures as high as those in the Earth's interior are limited by self-diffusion of the slowest species. Here we experimentally determine the silicon self-diffusion coefficient DSi in forsterite at 8?GPa and 1,600?K to 1,800?K as a function of water content CH2O from less than 1 to about 800 parts per million of water by weight, yielding the relationship, DSi???(CH2O)(1/3). This exponent is strikingly lower than that obtained by deformation experiments (1.2; ref. 7). The high nominal creep rates in the deformation studies under wet conditions may be caused by excess grain boundary water. We conclude that the effect of water on upper-mantle rheology is very small. Hence, the smooth motion of the Earth's tectonic plates cannot be caused by mineral hydration in the asthenosphere. Also, water cannot cause the viscosity minimum zone in the upper mantle. And finally, the dominant mechanism responsible for hotspot immobility cannot be water content differences between their source and surrounding regions. PMID:23765497

  20. Diffusion coefficient of cyclic GMP in salamander rod outer segments estimated with two fluorescent probes.

    PubMed Central

    Olson, A; Pugh, E N

    1993-01-01

    Experiments have demonstrated that single photoisomerizations in amphibian and primate rods can cause the suppression of 3-5% of the dark circulating current at the response peak (Baylor, D. A., T. D. Lamb, and K. W. Yau. 1979. J. Physiol. (Lond.). 288:613-634; Baylor, D. A., B. J. Nunn, and J. L. Schnapf. 1984. J. Physiol. (Lond.). 357:575-607). These results indicate that the change in [cGMP] effected by a single isomerization must spread longitudinally over at least the corresponding fractional length of the outer segment. The effective longitudinal diffusion coefficient, Dx, of cGMP is thus an important determinant of rod sensitivity. We report here measurements of the effective longitudinal diffusion coefficients, Dx, of two fluorescently labeled molecules: 5/6-carboxyfluorescein and 8-(fluoresceinyl)thioguanosine 3',5'-cyclic monophosphate, introduced into detached outer segments via whole-cell patch electrodes. For these compounds, the average time for equilibration of the entire outer segment with the patch pipette was approximately 6 min. Fluorescence images of rods were analyzed with a one-dimensional diffusion model that included limitations on transfer between the electrode and outer segment and the effects of intracellular binding of the dyes. The analyses yielded estimates of Dx of 1.9 and 1.0 microns 2.s-1 for the two dyes. It is shown that these results place an upper limit on Dx for cGMP of 11 microns2.s-1. The actual value of Dx for cGMP in the rod will depend on the degree of intracellular binding of cGMP. Estimates of the effective buffering power for cGMP in the rod at rest range from two to six (Lamb and Pugh, 1992; Cote and Brunnock, 1993). When combined with these estimates, our results predict that for cGMP itself, Dx falls within the range of 1.4-5.5 microns 2.s-1. Images FIGURE 5 FIGURE 6 PMID:8241412

  1. Source term evaluation during seismic events in the Paducah Gaseous Diffusion Plant

    SciTech Connect

    Kim, S.H.; Chen, N.C.J.; Schmidt, R.W.; Taleyarkhan, R.P.

    1996-12-30

    The 00 buildings are expected to collapse (per guidance from structure evaluation) during a seismic event in which acceleration level exceeds 0.15g. All roof beams may slip off supports, and collapse. Equipment may slip off from supports and fall onto the floor. The cell floor is also supposed to collapse due to structural instability and distortion due to excessive acceleration forces. Following structure collapse, expansion joints in the process piping and joints between the piping and equipment are expected to fail. Preliminary analysis showed that converters are likely to remain intact. The UF{sub 6} gas released from the break will rapidly interact with moisture in the air to produce UO{sub 2}F{sub 2} and HF with exothermic energy released of {approximately}0.32 MJ/kg of UF{sub 6} reacted. Depending on the degree of mixing between UF{sub 6} gas, its reaction products, air and freon (R-114), there may occur a strong buoyancy force to disperse UO{sub 2}F{sub 2} aerosol particles that are subjected to the gravitational force for settling. Such a chemical reaction will also occur inside the converters. A substantial amount of UF{sub 6} must be stagnated at the bottom of the converters. At the interface between this stagnated UF{sub 6} and air, UF{sub 6} gas will diffuse into the air, undergo the chemical reaction with moisture there, and eventually be released through the break. Furthermore, lubricant oil fire in the building, if it occurs, will enhance the UF{sub 6} release into the atmosphere. The purpose of this study is to evaluate source term (UO{sub 2}F{sub 2} and HF) during such a seismic event. This study takes an approach using multiple steps as follows: (1) Source term evaluation at the break due to mixing between UF{sub 6} and air along with thermal buoyancy induced by chemical reaction energy, (2) Evaluation of additional source term from the converters in which a substantial UF{sub 6} vapor remains, and (3) Source term evaluation with lubricant oil fire.

  2. A new approach to evaluating the effects of pharmacologic vitreolysis on vitreous diffusion coefficients using dynamic light scattering

    NASA Astrophysics Data System (ADS)

    Ansari, Rafat R.; Suh, Kwang I.; Sebag, J.

    2006-02-01

    PURPOSE: Pharmacologic vitreolysis is a new approach to improve vitreo-retinal surgery. Ultimately, the development of drugs to liquefy and detach vitreous from retina should prevent disease by mitigating the contribution of vitreous to retinopathy and eliminate the need for surgery. However, the mechanism of action of pharmacologic vitreolysis remains unclear. The technique of Dynamic light scattering (DLS) was used to evaluate the effects of microplasmin by following the diffusion coefficients of spherical polystyrene nano-particles injected with microplasmin into the vitreous. METHODS: Diffusion coefficients in dissected (n=9) porcine eyes were measured in vitro. DLS was performed on all specimens at 37°C as often as every 10 minutes for up to 6 hours following injections of human recombinant microplasmin at doses ranging from 0.125 mg to 0.8 mg, with 20 nm diameter tracer nanospheres. RESULTS: DLS findings in untreated porcine vitreous were similar to the previously described findings in bovine and human vitreous, demonstrating a fast (early) component, resulting from the flexible hyaluronan molecules, and a slow (late) component, resulting form the stiff collagen molecules. Microplasmin increased porcine vitreous diffusion coefficients. A new approach was developed to use DLS measurements of vitreous diffusion coefficients to evaluate the effects of microplasmin in intact eyes. CONCLUSIONS: Pharmacologic vitreolysis with human recombinant microplasmin increases vitreous diffusion coefficients in vitro. The results of these studies indicate that this new approach using DLS to measure vitreous diffusion coefficients can be used to study the effects of pharmacologic vitreolysis using microplasmin and other agents in intact eyes and ultimately in vivo.

  3. Effect of Rain Scavenging on Altitudinal Distribution of Soluble Gaseous Pollutants in the Atmosphere

    E-print Network

    Elperin, Tov; Krasovitov, Boris; Vikhansky, Alexander

    2010-01-01

    We suggest a model of rain scavenging of soluble gaseous pollutants in the atmosphere. It is shown that below-cloud gas scavenging is determined by non-stationary convective diffusion equation with the effective Peclet number. The obtained equation was analyzed numerically in the case of log-normal droplet size distribution. Calculations of scavenging coefficient and the rates of precipitation scavenging are performed for wet removal of ammonia (NH3) and sulfur dioxide (SO2) from the atmosphere. It is shown that scavenging coefficient is non-stationary and height-dependent. It is found also that the scavenging coefficient strongly depends on initial concentration distribution of soluble gaseous pollutants in the atmosphere. It is shown that in the case of linear distribution of the initial concentration of gaseous pollutants whereby the initial concentration of gaseous pollutants decreases with altitude, the scavenging coefficient increases with height in the beginning of rainfall. At the later stage of the r...

  4. Basic principles for the development of a common standardised method for determining the radon diffusion coefficient in waterproofing materials.

    PubMed

    Jiránek, Martin; Rovenská, Kate?ina

    2012-04-01

    Paper presents the principles for unified test methods for determining the radon diffusion coefficient in waterproof materials in order to increase the accuracy, repeatability and reproducibility of the results. We consider this very important, because an assessment of the radon diffusion coefficient is required by several national technical standards when waterproofing acts as a radon-proof membrane. The requirements for key parameters for one test method performed under non-stationary conditions and for two methods performed under stationary conditions are described in this paper. PMID:22245288

  5. The role of surface energy coefficients and nuclear surface diffuseness in the fusion of heavy-ions

    E-print Network

    Ishwar Dutt; Rajeev K. Puri

    2010-05-06

    We discuss the effect of surface energy coefficients as well as nuclear surface diffuseness in the proximity potential and ultimately in the fusion of heavy-ions. Here we employ different versions of surface energy coefficients. Our analysis reveals that these technical parameters can influence the fusion barriers by a significant amount. A best set of these parameters is also given that explains the experimental data nicely.

  6. Spatially resolved absolute diffuse reflectance measurements for noninvasive determination of the optical scattering and absorption coefficients of biological tissue

    NASA Astrophysics Data System (ADS)

    Kienle, Alwin; Lilge, Lothar; Patterson, Michael S.; Hibst, Raimund; Steiner, Rudolf; Wilson, Brian C.

    1996-05-01

    The absorption and transport scattering coefficients of biological tissues determine the radial dependence of the diffuse reflectance that is due to a point source. A system is described for making remote measurements of spatially resolved absolute diffuse reflectance and hence noninvasive, noncontact estimates of the tissue optical properties. The system incorporated a laser source and a CCD camera. Deflection of the incident beam into the camera allowed characterization of the source for absolute reflectance measurements. It is shown that an often used solution of the diffusion equation cannot be applied for these measurements. Instead, a neural network, trained on the results of Monte Carlo simulations, was used to estimate the absorption and scattering coefficients from the reflectance data. Tests on tissue-simulating phantoms with transport scattering coefficients between 0.5 and 2.0 mm-1 and absorption coefficients between 0.002 and 0.1 mm -1 showed the rms errors of this technique to be 2.6% for the transport scattering coefficient and 14% for the absorption coefficients. The optical properties of bovine muscle, adipose, and liver tissue, as well as chicken muscle (breast), were also measured ex vivo at 633 and 751 nm. For muscle tissue it was found that the Monte Carlo simulation did not agree with experimental measurements of reflectance at distances less than 2 mm from the incident beam. Carlo, neural network.

  7. Role of diffusion-weighted magnetic resonance imaging and apparent diffusion coefficient values in the detection of gastric carcinoma

    PubMed Central

    Liang, Jianxiao; Lv, Hailian; Liu, Qingwei; Li, Hongfu; Wang, Jiangquan; Cui, Engang

    2015-01-01

    Objective: The study evaluated the applicability of diffusion-weighted magnetic resonance imaging (DW-MRI) and apparent diffusion coefficient (ADC) values in the diagnosis and staging of gastric carcinoma (GC). Methods: From December, 2013 to December, 2014, 35 GC patients were selected from the Department of Oncology. Carcinomatous gastric tissues were collected as the case group, and normal gastric tissues were collected as the control group. The DW-MRI examination was performed on a 3.0-T GE Signa Excite MRI scanner. The ADC values of carcinomatous and normal gastric tissues were measured. A statistical meta-analysis was further performed. Results: DW-MRI identified 75.0% (3/4) patients with T1, 75.0% (6/8) patients with T2, 86.4% (19/22) patients with T3, and 100.0% (1/1) patient with T4, showing an accuracy for T staging of 82.9% (29/35); identified 92.9% (13/14) patients of N0, 58.3% (7/12) patents of N1, 62.5% (5/8) patents of N2, and 100.0% (1/1) patients of N3, showing an accuracy for N staging of 74.3% (26/35). The average ADC value in the case group was apparently lower than the control group (P < 0.001); in the poorly differentiated group was lower than the moderately and well differentiated groups (F = 111.1, P < 0.001). Pairwise comparison of the average ADC value between the poorly, moderately and well differentiated groups showed statistical significance (all P < 0.05). Meta-analysis further confirmed a higher average ADC value in the case group than the control group (SMD = -4.136, 95% CI = -5.344~-2.928, P < 0.001). Conclusion: DW-MRI is proved to be an attractive, noninvasive, quantitative and useful technique in the diagnosis and staging of GC. PMID:26629058

  8. Early Changes in Apparent Diffusion Coefficient From Diffusion-Weighted MR Imaging During Radiotherapy for Prostate Cancer

    SciTech Connect

    Park, Sung Yoon; Kim, Chan Kyo; Park, Byung Kwan; Park, Won; Park, Hee Chul; Han, Deok Hyun; Kim, Bohyun

    2012-06-01

    Purpose: To investigate the feasibility of diffusion-weighted MRI (DWI) as an early and reproducible change indicator in patients receiving radiotherapy for prostate cancer (PC). Methods and Materials: Eight consecutive patients with biopsy-proven PC underwent DWI at 3T. All patients who received external-beam radiotherapy had four serial MR scans, as follows: before therapy (PreTx); after 1 week of therapy (PostT1); after 3 weeks of therapy (PostT2); and 1 month after the completion of therapy (PostT3). At each time, the apparent diffusion coefficient (ADC) was measured in tumors and normal tissues. For reproducibility of the ADC measurement, five patients also had two separate pretreatment DWI scans at an interval of <2 weeks. Serum prostate-specific antigen (PSA) levels were evaluated at the same time as MR scans. Results: Thirteen tumors (peripheral zone = 10; transition zone = 3) were found. The mean ADC values for the tumors from PreTx to PostT3 were 0.86, 1.03, 1.15, and 1.26 Multiplication-Sign 10{sup -3} mm{sup 2}/s in sequence, respectively. Compared with PreTx, PostT1 (p = 0.005), PostT2 (p = 0.003), and PostT3 (p < 0.001) showed a significant increase in ADC values. The mean ADC values of the benign tissues from PreTx to PostT3 were 1.60, 1.58, 1.47, and 1.46 Multiplication-Sign 10{sup -3} mm{sup 2}/s in sequence, respectively. Reproducibility of ADC measurements was confirmed with a mean difference in ADC of -0.04 in peripheral zone and -0.017 in transition zone between two separate pretreatment MR scans. The mean PSA levels from PreTx to PostT3 were 9.05, 9.18, 9.25, and 4.11 ng/mL in sequence, respectively. Conclusions: DWI, as a reproducible biomarker, has the potential to evaluate the early therapeutic changes of PC to radiotherapy.

  9. Diffusion Coefficient Calculations With Low Order Legendre Polynomial and Chebyshev Polynomial Approximation for the Transport Equation in Spherical Geometry

    SciTech Connect

    Yasa, F.; Anli, F.; Guengoer, S.

    2007-04-23

    We present analytical calculations of spherically symmetric radioactive transfer and neutron transport using a hypothesis of P1 and T1 low order polynomial approximation for diffusion coefficient D. Transport equation in spherical geometry is considered as the pseudo slab equation. The validity of polynomial expansionion in transport theory is investigated through a comparison with classic diffusion theory. It is found that for causes when the fluctuation of the scattering cross section dominates, the quantitative difference between the polynomial approximation and diffusion results was physically acceptable in general.

  10. Apparent diffusion coefficient measurement covering complete tumor area better predicts rectal cancer response to neoadjuvant chemoradiotherapy

    PubMed Central

    Blaži?, Ivana; Maksimovi?, Ružica; Gaji?, Milan; Šaranovi?, ?or?ije

    2015-01-01

    Aim To determine the impact of two apparent diffusion coefficient (ADC) measurement techniques on diffusion-weighted magnetic resonance images (DW MRI) on the assessment of rectal cancer response to neoadjuvant chemoradiotherapy (CRT). Methods ADC values were measured prospectively with two different techniques – the first, which measures ADCs in the most cellular tumor parts, and the second, which measures the entire tumor area, in 58 patients with locally advanced rectal cancer on pre-CRT and post-CRT image sets. Areas under the receiver operating characteristic curves (AUCs) and parameters of diagnostic accuracy were calculated for pre- and post-CRT ADC values and numeric and percent ADC change for each technique to determine their performance in tumor response evaluation using histopathological tumor-regression grade as the reference standard. Results The second technique yielded higher AUCs (0.935 vs 0.704, P?

  11. Diffusion length damage coefficient and annealing studies in proton-irradiated InP

    NASA Technical Reports Server (NTRS)

    Hakimzadeh, Roshanak; Vargas-Aburto, Carlos; Bailey, Sheila G.; Williams, Wendell

    1993-01-01

    We report on the measurement of the diffusion length damage coefficient (K(sub L)) and the annealing characteristics of the minority carrier diffusion length (L(sub n)) in Czochralski-grown zinc-doped indium phosphide (InP), with a carrier concentration of 1 x 10(exp l8) cm(exp -3). In measuring K(sub L) irradiations were made with 0.5 MeV protons with fluences ranging from 1 x 10(exp 11) to 3 x 10(exp 13) cm(exp -2). Pre- and post-irradiation electron-beam induced current (EBIC) measurements allowed for the extraction of L(sub n) from which K(sub L) was determined. In studying the annealing characteristics of L(sub n) irradiations were made with 2 MeV protons with fluence of 5 x 10(exp 13) cm(exp -2). Post-irradiation studies of L(sub n) with time at room temperature, and with minority carrier photoinjection and forward-bias injection were carried out. The results showed that recovery under Air Mass Zero (AMO) photoinjection was complete. L(sub n) was also found to recover under forward-bias injection, where recovery was found to depend on the value of the injection current. However, no recovery of L(sub n) after proton irradiation was observed with time at room temperature, in contrast to the behavior of 1 MeV electron-irradiated InP solar cells reported previously.

  12. A feasibility study on monitoring the evolution of apparent diffusion coefficient decrease during thermal ablation

    PubMed Central

    Plata, Juan C.; Holbrook, Andrew B.; Marx, Michael; Salgaonkar, Vasant; Jones, Peter; Pascal-Tenorio, Aurea; Bouley, Donna; Diederich, Chris; Sommer, Graham; Pauly, Kim Butts

    2015-01-01

    Purpose: Evaluate whether a decrease in apparent diffusion coefficient (ADC), associated with loss of tissue viability (LOTV), can be observed during the course of thermal ablation of the prostate. Methods: Thermal ablation was performed in a healthy in vivo canine prostate model (N = 2, ages: 5 yr healthy, mixed breed, weights: 13–14 kg) using a transurethral high-intensity ultrasound catheter and was monitored using a strategy that interleaves diffusion weighted images and gradient-echo images. The two sequences were used to measure ADC and changes in temperature during the treatment. Changes in temperature were used to compute expected changes in ADC. The difference between expected and measured ADC, ADCDIFF, was analyzed in regions ranging from moderate hyperthermia to heat fixation. A receiver operator characteristic (ROC) curve analysis was used to select a threshold of detection of LOTV. Time of threshold activation, tLOTV, was compared with time to reach CEM43 = 240, tDOSE. Results: The observed relationship between temperature and ADC in vivo (2.2%/?°C, 1.94%–2.47%/?°C 95% confidence interval) was not significantly different than the previously reported value of 2.4%/?°C in phantom. ADCDIFF changes after correction for temperature showed a mean decrease of 25% in ADC 60 min post-treatment in regions where sufficient thermal dose (CEM43 > 240) was achieved. Following our ROC analysis, a threshold of 2.25% decrease in ADCDIFF for three consecutive time points was chosen as an indicator of LOTV. The ADCDIFF was found to decrease quickly (1–2 min) after reaching CEM43 = 240 in regions associated with heat fixation and more slowly (10–20 min) in regions that received slower heating. Conclusions: Simultaneous monitoring of ADC and temperature during treatment might allow for a more complete tissue viability assessment of ablative thermal treatments in the prostate. ADCDIFF decreases during the course of treatment may be interpreted as loss of tissue viability. PMID:26328964

  13. Accurate Diffusion Coefficients of Organosoluble Reference Dyes in Organic Media Measured by Dual-Focus Fluorescence Correlation Spectroscopy.

    PubMed

    Goossens, Karel; Prior, Mira; Pacheco, Victor; Willbold, Dieter; Müllen, Klaus; Enderlein, Jörg; Hofkens, Johan; Gregor, Ingo

    2015-07-28

    Dual-focus fluorescence correlation spectroscopy (2fFCS) is a versatile method to determine accurate diffusion coefficients of fluorescent species in an absolute, reference-free manner. Whereas (either classical or dual-focus) FCS has been employed primarily in the life sciences and thus in aqueous environments, it is increasingly being used in materials chemistry, as well. These measurements are often performed in nonaqueous media such as organic solvents. However, the diffusion coefficients of reference dyes in organic solvents are not readily available. For this reason we determined the translational diffusion coefficients of several commercially available organosoluble fluorescent dyes by means of 2fFCS. The selected dyes and organic solvents span the visible spectrum and a broad range of refractive indices, respectively. The diffusion coefficients can be used as absolute reference values for the calibration of experimental FCS setups, allowing quantitative measurements to be performed. We show that reliable information about the hydrodynamic dimensions of the fluorescent species (including noncommercial compounds) within organic media can be extracted from the 2fFCS data. PMID:26144863

  14. Estimation of CO2 diffusion coefficient at 0-10 cm depth in undisturbed and tilled soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Diffusion coefficients (D) of CO2 at 0 – 10 cm layers in undisturbed and tilled soil conditions were estimated using Penman, Millington-Quirk, Ridgwell et al. (1999), Troeh et al., and Moldrup et al. models. Soil bulk density and volumetric soil water content ('v) at 0 – 10 cm were measured on April...

  15. Environmental site description for a Uranium Atomic Vapor Laser Isotope Separation (U-AVLIS) production plant at the Portsmouth Gaseous Diffusion Plant site

    SciTech Connect

    Marmer, G.J.; Dunn, C.P.; Filley, T.H.; Moeller, K.L.; Pfingston, J.M.; Policastro, A.J.; Cleland, J.H.

    1991-09-01

    Uranium enrichment in the United States has utilized a diffusion process to preferentially enrich the U-235 isotope in the uranium product. In the 1970s, the US Department of Energy (DOE) began investigating more efficient and cost-effective enrichment technologies. In January 1990, the Secretary of Energy approved a plan for the demonstration and deployment of the Uranium Atomic Vapor Laser isotope Separation (U-AVLIS) technology with the near-term goal to provide the necessary information to make a deployment decision by November 1992. Initial facility operation is anticipated for 1999. A programmatic document for use in screening DOE sites to locate a U-AVLIS production plant was developed and implemented in two parts. The first part consisted of a series of screening analyses, based on exclusionary and other criteria, that identified a reasonable number of candidate sites. The final evaluation, which included sensitivity studies, identified the Oak Ridge Gaseous Diffusion Plant (ORGDP) site, the Paducah Gaseous Diffusion Plant (PGDP) site, and the Portsmouth Gaseous Diffusion Plant (PORTS) site as having significant advantages over the other sites considered. This environmental site description (ESD) provides a detailed description of the PORTS site and vicinity suitable for use in an environmental impact statement (EIS). This report is based on existing literature, data collected at the site, and information collected by Argonne National Laboratory (ANL) staff during site visits. The organization of the ESD is as follows. Topics addressed in Sec. 2 include a general site description and the disciplines of geology, water resources, biotic resources, air resources, noise, cultural resources, land use. Socioeconomics, and waste management. Identification of any additional data that would be required for an EIS is presented in Sec. 3.

  16. Characterization of the fluorescence correlation spectroscopy (FCS) standard Rhodamine 6G and calibration of its diffusion coefficient in aqueous solutions

    SciTech Connect

    Majer, G.; Melchior, J. P.

    2014-03-07

    Precise diffusion measurements of rhodamine 6G (Rh6G) dissolved in D{sub 2}O at concentrations between 50 and 200 ?M were carried out in the temperature range from 280 to 320 K using pulsed field gradient nuclear magnetic resonance (PFG-NMR). The obtained diffusion coefficients can be used as a calibration reference in fluorescence correlation spectroscopy (FCS). Besides measuring the diffusivity of Rh6G, the diffusion coefficient of the solvent in the same system could be determined in parallel by PFG-NMR as the resonances of water and Rh6G are well separated in the {sup 1}H NMR spectrum. To analyze the differences due to the isotope effect of the solvent (D{sub 2}O vs. H{sub 2}O), the correlation time ?{sub D} of Rh6G was measured by FCS in both D{sub 2}O and H{sub 2}O. The obtained isotopic correction factor, ?{sub D}(D{sub 2}O)/?{sub D}(H{sub 2}O) = 1.24, reflects the isotope effect of the solvent´s self-diffusion coefficients as determined previously by PFG-NMR.

  17. In situ estimation of the effective chemical diffusion coefficient of a rock matrix in a fractured aquifer

    USGS Publications Warehouse

    Gebrekristos, R.A.; Shapiro, A.M.; Usher, B.H.

    2008-01-01

    An in situ method of estimating the effective diffusion coefficient for a chemical constituent that diffuses into the primary porosity of a rock is developed by abruptly changing the concentration of the dissolved constituent in a borehole in contact with the rock matrix and monitoring the time-varying concentration. The experiment was conducted in a borehole completed in mudstone on the campus of the University of the Free State in Bloemfontein, South Africa. Numerous tracer tests were conducted at this site, which left a residual concentration of sodium chloride in boreholes that diffused into the rock matrix over a period of years. Fresh water was introduced into a borehole in contact with the mudstone, and the time-varying increase of chloride was observed by monitoring the electrical conductivity (EC) at various depths in the borehole. Estimates of the effective diffusion coefficient were obtained by interpreting measurements of EC over 34 d. The effective diffusion coefficient at a depth of 36 m was approximately 7.8??10-6 m2/d, but was sensitive to the assumed matrix porosity. The formation factor and mass flux for the mudstone were also estimated from the experiment. ?? Springer-Verlag 2007.

  18. Glioma grading using apparent diffusion coefficient map: application of histogram analysis based on automatic segmentation.

    PubMed

    Lee, Jeongwon; Choi, Seung Hong; Kim, Ji-Hoon; Sohn, Chul-Ho; Lee, Sooyeul; Jeong, Jaeseung

    2014-09-01

    The accurate diagnosis of glioma subtypes is critical for appropriate treatment, but conventional histopathologic diagnosis often exhibits significant intra-observer variability and sampling error. The aim of this study was to investigate whether histogram analysis using an automatically segmented region of interest (ROI), excluding cystic or necrotic portions, could improve the differentiation between low-grade and high-grade gliomas. Thirty-two patients (nine low-grade and 23 high-grade gliomas) were included in this retrospective investigation. The outer boundaries of the entire tumors were manually drawn in each section of the contrast-enhanced T1 -weighted MR images. We excluded cystic or necrotic portions from the entire tumor volume. The histogram analyses were performed within the ROI on normalized apparent diffusion coefficient (ADC) maps. To evaluate the contribution of the proposed method to glioma grading, we compared the area under the receiver operating characteristic (ROC) curves. We found that an ROI excluding cystic or necrotic portions was more useful for glioma grading than was an entire tumor ROI. In the case of the fifth percentile values of the normalized ADC histogram, the area under the ROC curve for the tumor ROIs excluding cystic or necrotic portions was significantly higher than that for the entire tumor ROIs (p?

  19. Isotopic mass-dependence of metal cation diffusion coefficients in liquid water

    SciTech Connect

    Bourg, I.C.; Richter, F.M.; Christensen, J.N.; Sposito, G.

    2009-01-11

    Isotope distributions in natural systems can be highly sensitive to the mass (m) dependence of solute diffusion coefficients (D) in liquid water. Isotope geochemistry studies routinely have assumed that this mass dependence either is negligible (as predicted by hydrodynamic theories) or follows a kinetic-theory-like inverse square root relationship (D {proportional_to} m{sup -0.5}). However, our recent experimental results and molecular dynamics (MD) simulations showed that the mass dependence of D is intermediate between hydrodynamic and kinetic theory predictions (D {proportional_to} m{sup -{beta}} with 0 {<=} {beta} < 0.2 for Li{sup +}, Cl{sup -}, Mg{sup 2+}, and the noble gases). In this paper, we present new MD simulations and experimental results for Na{sup +}, K{sup +}, Cs{sup +}, and Ca{sup 2+} that confirm the generality of the inverse power-law relation D {proportional_to} m{sup -{beta}}. Our new findings allow us to develop a general description of the influence of solute valence and radius on the mass dependence of D for monatomic solutes in liquid water. This mass dependence decreases with solute radius and with the magnitude of solute valence. Molecular-scale analysis of our MD simulation results reveals that these trends derive from the exponent {beta} being smallest for those solutes whose motions are most strongly coupled to solvent hydrodynamic modes.

  20. Electron state density and electron diffusion coefficient in energy space in nonideal nonequilibrium plasmas

    SciTech Connect

    Bobrov, A. A.; Bronin, S. Ya.; Zelener, B. B. Zelener, B. V.; Manykin, E. A.

    2008-07-15

    We suggest a model for a hydrogenic low-temperature nonequilibrium nonideal plasma that allows the kinetic parameters of the plasma to be calculated by the method of molecular dynamics by taking into account the interparticle interaction. The charges interact according to Coulomb's law; for unlike charges, the interaction is assumed to be equal to a constant at a distance smaller than several Bohr radii. For a system of particles, we solve the classical equations of motion under periodic boundary conditions. The initial conditions are specified in such a way that the electrons have a positive total energy. We consider the temperatures 1-50 K and densities n = 10{sup 9}-10{sup 10} cm{sup -3} produced in an experiment through laser cooling and resonant excitation. We calculate the electron state density as a function of the plasma coupling parameter and the electron diffusion coefficient in energy space for highly excited (Rydberg) electron states close to the boundary of the discrete and continuum spectra.

  1. Electronic/ionic conductivity and oxygen diffusion coefficient of Sr-Fe-Co-O system

    SciTech Connect

    Ma, B.; Park, J.H.; Balachandran, U.; Segre, C.U.

    1995-03-01

    Oxides in the system Sr-Fe-Co-O exhibit both electronic and ionic conductivities. Recently, Sr-Fe-Co-O system attracted great attention because of the potential to be used for oxygen permeable membranes that can operate without the electrodes or external electrical circuitry. Electronic and ionic conductivities at various temperatures have been measured on two compositions in Sr-Fe-Co-O system named SFC-1 and SFC-2. The electronic transference number is much greater than the ionic transference number in SFC-1 sample, while the electronic and ionic transference numbers are very close in SFC-2 sample. At 800{degrees}C, the electronic conductivity and ionic conductivity are {approx}76 S{center_dot}cm-1 and =4 S-cm-1, respectively, for SFC-1. While, for SFC-2, the electronic and ionic conductivities are =10 S-cm-1 and {approx}7 S-cm-1, respectively. By a local fitting to {sigma}{center_dot}T = A exp(-E{sub {alpha}}/{kappa}{Tau}), we found that the oxide ion activation energies are 0.92 eV and 0.37 eV respectively for SFC-1 and SFC-2 samples. Oxygen diffusion coefficient of SFC-2 is {approx}{times}10{sup {minus}7} cm{sup 2}/sec at 900C.

  2. Parameterization of the Age-Dependent Whole Brain Apparent Diffusion Coefficient Histogram

    PubMed Central

    Klose, Uwe; Batra, Marion; Nägele, Thomas

    2015-01-01

    Purpose. The distribution of apparent diffusion coefficient (ADC) values in the brain can be used to characterize age effects and pathological changes of the brain tissue. The aim of this study was the parameterization of the whole brain ADC histogram by an advanced model with influence of age considered. Methods. Whole brain ADC histograms were calculated for all data and for seven age groups between 10 and 80 years. Modeling of the histograms was performed for two parts of the histogram separately: the brain tissue part was modeled by two Gaussian curves, while the remaining part was fitted by the sum of a Gaussian curve, a biexponential decay, and a straight line. Results. A consistent fitting of the histograms of all age groups was possible with the proposed model. Conclusions. This study confirms the strong dependence of the whole brain ADC histograms on the age of the examined subjects. The proposed model can be used to characterize changes of the whole brain ADC histogram in certain diseases under consideration of age effects. PMID:26609526

  3. The mimetic finite difference method for elliptic and parabolic problems with a staggered discretization of diffusion coefficient

    NASA Astrophysics Data System (ADS)

    Lipnikov, Konstantin; Manzini, Gianmarco; Moulton, J. David; Shashkov, Mikhail

    2016-01-01

    Numerical schemes for nonlinear parabolic equations based on the harmonic averaging of cell-centered diffusion coefficients break down when some of these coefficients go to zero or their ratio grows. To tackle this problem, we propose new mimetic finite difference schemes that use a staggered discretization of the diffusion coefficient. The primary mimetic operator approximates div (k ?); the derived (dual) mimetic operator approximates - ? (?). The new mimetic schemes preserve symmetry and positive-definiteness of the continuum problem which allows us to use algebraic solvers with optimal complexity. We perform detailed numerical analysis of the new schemes for linear elliptic problems and a specially designed linear parabolic problem that has solution dynamics typical for nonlinear problems. We show that the new schemes are competitive with the state-of-the-art schemes for steady-state problems but provide much more accurate solution dynamics for the transient problem.

  4. Diffusion in heterogeneous media: An iterative scheme for finding approximate solutions to fractional differential equations with time-dependent coefficients

    NASA Astrophysics Data System (ADS)

    Bologna, Mauro; Svenkeson, Adam; West, Bruce J.; Grigolini, Paolo

    2015-07-01

    Diffusion processes in heterogeneous media, and biological systems in particular, are riddled with the difficult theoretical issue of whether the true origin of anomalous behavior is renewal or memory, or a special combination of the two. Accounting for the possible mixture of renewal and memory sources of subdiffusion is challenging from a computational point of view as well. This problem is exacerbated by the limited number of techniques available for solving fractional diffusion equations with time-dependent coefficients. We propose an iterative scheme for solving fractional differential equations with time-dependent coefficients that is based on a parametric expansion in the fractional index. We demonstrate how this method can be used to predict the long-time behavior of nonautonomous fractional differential equations by studying the anomalous diffusion process arising from a mixture of renewal and memory sources.

  5. Cyclic voltammetric technique for the determination of the critical micelle concentration of surfactants, self-diffusion coefficient of micelles, and partition coefficient of an electrochemical probe

    SciTech Connect

    Mandal, A.B.; Nair, B.U. )

    1991-10-31

    Critical micelle concentrations (cmc) of cetyltrimethylammonium bromide (CTAB) and cetylpyridinium chloride (CPC) surfactants in aqueous solution have been determined by using the cyclic voltammetric technique. (Co(en){sub 3})(ClO{sub 4}){sub 3} has been used as the redox-active electrochemical probe. The cmc values so obtained for the surfactants were found to be in good agreement with the literature values. The partition coefficient, K, of the electrochemical probe between water and surfactants in nonmicellar and micellar states was estimated using the peak current, i{sub p} and half-wave potential, E{sub 1/2} values. The self-diffusion coefficient, D{sub m}, interaction parameter, k{sub f}, and hydrodynamic radius of the micelles were also estimated. The results suggest that the probe is sensitive to the nature of surfactant as well as surfactant concentration.

  6. Analysis of ligand-protein exchange by Clustering of Ligand Diffusion Coefficient Pairs (CoLD-CoP)

    NASA Astrophysics Data System (ADS)

    Snyder, David A.; Chantova, Mihaela; Chaudhry, Saadia

    2015-06-01

    NMR spectroscopy is a powerful tool in describing protein structures and protein activity for pharmaceutical and biochemical development. This study describes a method to determine weak binding ligands in biological systems by using hierarchic diffusion coefficient clustering of multidimensional data obtained with a 400 MHz Bruker NMR. Comparison of DOSY spectrums of ligands of the chemical library in the presence and absence of target proteins show translational diffusion rates for small molecules upon interaction with macromolecules. For weak binders such as compounds found in fragment libraries, changes in diffusion rates upon macromolecular binding are on the order of the precision of DOSY diffusion measurements, and identifying such subtle shifts in diffusion requires careful statistical analysis. The "CoLD-CoP" (Clustering of Ligand Diffusion Coefficient Pairs) method presented here uses SAHN clustering to identify protein-binders in a chemical library or even a not fully characterized metabolite mixture. We will show how DOSY NMR and the "CoLD-CoP" method complement each other in identifying the most suitable candidates for lysozyme and wheat germ acid phosphatase.

  7. Analysis of ligand-protein exchange by Clustering of Ligand Diffusion Coefficient Pairs (CoLD-CoP).

    PubMed

    Snyder, David A; Chantova, Mihaela; Chaudhry, Saadia

    2015-06-01

    NMR spectroscopy is a powerful tool in describing protein structures and protein activity for pharmaceutical and biochemical development. This study describes a method to determine weak binding ligands in biological systems by using hierarchic diffusion coefficient clustering of multidimensional data obtained with a 400 MHz Bruker NMR. Comparison of DOSY spectrums of ligands of the chemical library in the presence and absence of target proteins show translational diffusion rates for small molecules upon interaction with macromolecules. For weak binders such as compounds found in fragment libraries, changes in diffusion rates upon macromolecular binding are on the order of the precision of DOSY diffusion measurements, and identifying such subtle shifts in diffusion requires careful statistical analysis. The "CoLD-CoP" (Clustering of Ligand Diffusion Coefficient Pairs) method presented here uses SAHN clustering to identify protein-binders in a chemical library or even a not fully characterized metabolite mixture. We will show how DOSY NMR and the "CoLD-CoP" method complement each other in identifying the most suitable candidates for lysozyme and wheat germ acid phosphatase. PMID:25909645

  8. Low temperature diffusion coefficients in the Fe-Ni and FeNiP systems: Application to meteorite cooling rates

    NASA Technical Reports Server (NTRS)

    Dean, D. C.; Goldstein, J. I.

    1984-01-01

    The interdiffusion coefficient of FeNi in fcc taenite (gamma) of Fe-Ni and Fe-Ni-0.2 P alloys was measured as a function of temperature between 600 and 900 C. This temperature range is directly applicable to the nucleation and growth of the Widmanstatten pattern in iron meteorites and metal regions of stony and stony-iron meteorites. Diffusion couples were made from FeNi or FeNiP alloys which ensured that the couples were in the taenite phase at the diffusion temperature. The presence or absence of grain boundary diffusion was determined by measuring the Ni profile normal to the existing grain boundaries with the AEM. Ignoring any variation of interdiffusion coefficient with composition, the measured data was plotted versus the reciprocal of the diffusion temperature. The FeNi data generally follow the extrapolated Goldstein, et al. (1965) data from high temperatures. The FeNiP data indicates that small additions of P (0.2 wt%) cause a 3 to 10 fold increase in the FeNi interdifussion coefficient increasing with decreasing temperature. This increase is about the same as that predicted by Narayan and Goldstein (1983) at the Widmanstatten growth temperature.

  9. A method for estimating the diffuse attenuation coefficient (KdPAR)from paired temperature sensors

    USGS Publications Warehouse

    Read, Jordan S.; Rose, Kevin C.; Winslow, Luke A.; Read, Emily Kara

    2015-01-01

    A new method for estimating the diffuse attenuation coefficient for photosynthetically active radiation (KdPAR) from paired temperature sensors was derived. We show that during cases where the attenuation of penetrating shortwave solar radiation is the dominant source of temperature changes, time series measurements of water temperatures at multiple depths (z1 and z2) are related to one another by a linear scaling factor (a). KdPAR can then be estimated by the simple equation KdPAR ln(a)/(z2/z1). A suggested workflow is presented that outlines procedures for calculating KdPAR according to this paired temperature sensor (PTS) method. This method is best suited for conditions when radiative temperature gains are large relative to physical noise. These conditions occur frequently on water bodies with low wind and/or high KdPARs but can be used for other types of lakes during time periods of low wind and/or where spatially redundant measurements of temperatures are available. The optimal vertical placement of temperature sensors according to a priori knowledge of KdPAR is also described. This information can be used to inform the design of future sensor deployments using the PTS method or for campaigns where characterizing sub-daily changes in temperatures is important. The PTS method provides a novel method to characterize light attenuation in aquatic ecosystems without expensive radiometric equipment or the user subjectivity inherent in Secchi depth measurements. This method also can enable the estimation of KdPAR at higher frequencies than many manual monitoring programs allow.

  10. Mobilities and longitudinal diffusion coefficients for K+ ions in nitrogen and argon

    NASA Astrophysics Data System (ADS)

    Takebe, M.; Satoh, Y.; Iinuma, K.; Seto, K.

    1980-10-01

    We have constructed a drift tube with a movable ion source and measured the mobilities and longitudinal diffusion coefficients for K+ ions at 303 °K in N2 and at 305 °K in Ar in the pressure range 0.3-5.0 Torr, over the E/N range 4-346 Td in N2 and 3-320 Td in Ar. The zero-field reduced mobilities for K+ ions in N2 and Ar were determined to be 2.50±0.03 and 2.63±0.03 cm2/V sec, respectively. Both values are in excellent agreement with the values reported by Elford and Milloy. When our data are compared with the values obtained by Thomson et al. in N2 and the values obtained by James et al. in Ar over the entire E/N range, we find that the mean deviations are about 1.7%, independent of gas species and E/N. Our zero-field reduced mobilities are about 1.2% lower in both cases than the values compiled by Ellis et al. It is concluded that the discrepancy is due to a systematic error and is not caused by clustering reactions. The mean values of NDL over the E/N range 4-7 Td in N2 and 5-10 Td in Ar were found to be 1.96×1018 and 2.09×1018 cm-1 sec-1, respectively. Both values are about 7% higher than the values calculated from our mobility data by the generalized Einstein relation and from the same parameters reported by Pai et al.

  11. Gas exchange dependency on diffusion coefficient: direct /sup 222/Rn and /sup 3/He comparisons in a small lake

    SciTech Connect

    Torgersen, T.; Mathieu, G.; Hesslein, R.H.; Broecker, W.S.

    1982-01-20

    A direct field comparison was conducted to determine the dependency of gas exchange coefficient (k/sub x/) on the diffusion coefficient (D/sub x/). The study also sought to confirm the enhanced vertical exchange properties of limnocorrals and similar enclosures. Gas exchange coefficients for /sup 222/Rn and /sup 3/He were determined in a small northern Ontario lake, using a /sup 226/Ra and /sup 3/H spike to gain the necessary precision. The results indicate that the gas exchange coefficient is functionally dependent on the diffusion coefficient raised to the 1.22/sub -35//sup + > 12/ power (k/sub x/ = f(D/sub x//sup 1.22)), clearly supporting the stagnant film model of gas exchange. Limnocorrals were found to have gas exchange rates up to 1.7 times higher than the whole lake in spite of the observation of more calm surface conditions in the corral than in the open lake. 33 references, 6 figures, 8 tables.

  12. Relationships of radon diffusion coefficient with saturated hydraulic conductivity, fines content and moisture saturation of radon/infiltration barriers for the UMTRA Project

    SciTech Connect

    Li, P.Y.; Chen, P.K.

    1994-01-24

    The release of {sup 222}Radon to the atmosphere is controlled by the rate of its gas transport through earthen materials. Of the many soil-related parameters, radon diffusion coefficient is the key parameter that characterizes this transport. We compared the radon diffusion coefficients measured at the laboratories for the UMTRA Project with simple empirical correlations developed by others. The empirical correlations predict the radon diffusion coefficient based on the fraction of moisture saturation and porosity. One of the more recent correlations agrees reasonably well with the measurements. In addition, by using a series of correlation curves, we studied the empirical relationships of the. radon diffusion coefficient with the saturated hydraulic conductivity, the fines content, and the moisture saturation in soil. The results reveal that a reliable determination of the long-term moisture and porosity is essential in the design of an adequate radon barrier with respect to the radon diffusion coefficient.

  13. An analytical estimate of the coefficient for radial charged particle diffusion in Jupiter's magnetosphere using plasma radial distribution

    NASA Astrophysics Data System (ADS)

    Gubar, Yu. I.

    2015-11-01

    A radial profile of the plasma mass distribution in Jupiter's magnetosphere in the region beyond Io's orbit up to ˜15 Jupiter radii R J constructed according to the results of measurements on the Voyager 1 and Galileo spacecraft is used to determine the radial dependence and radial diffusion coefficient D LL . The initial profile is approximated by a function decreasing as L -5 ± 1. For this radial mass distribution, radial ion diffusion outside of Io's orbit caused by centrifugal forces is possible. An estimate of (1.2-6.7)10-11 L 6 ± 1 for D LL was obtained.

  14. Influence of the counterion and co-ion diffusion coefficient values on some dielectric and electrokinetic properties of colloidal suspensions.

    PubMed

    López-García, J J; Grosse, C; Horno, J

    2005-06-23

    The dependences of the conductivity increment, the electrophoretic mobility, and the permittivity increment on the counterion diffusion coefficient value were numerically determined. The use of the network simulation method made it possible to solve the governing equations for the whole range of counterion and co-ion diffusion coefficients and for very low frequencies, despite the far-reaching field-induced charge density outside the double layer. Calculations performed for different zeta potential and electrolyte concentration values show that increasing the counterion mobility, while keeping constant the electrolyte solution conductivity and the kappa a values, strongly increases the conductivity increment, barely affects the electrophoretic mobility, and strongly decreases the permittivity increment. The numerical results are discussed and compared to analytical predictions derived from the Shilov-Dukhin model, which generally leads to a good agreement, at least for high kappa a and moderate zeta. PMID:16852466

  15. The effect on the radon diffusion coefficient of long-term exposure of waterproof membranes to various degradation agents.

    PubMed

    Navrátilová Rovenská, Katerina

    2014-07-01

    Waterproofing, usually made of bitumen or polymers with various additives, is used to protect buildings mainly against dampness, but also against radon transported from the soil beneath the building. The radon diffusion coefficient is a material property which is considered to be strongly influenced by the inner structure (chemical composition, crystallinity) of a measured sample. We have used this parameter together with measurements of mechanical properties (hardness, tensile strength, elongation at break, etc.) and FTIR spectroscopy has been used in order to describe the changes in material properties induced by long-term degradation. This paper summarizes the results of radon diffusion coefficient measurements of waterproof materials exposed to radon, soil bacteria, high temperature and combinations of these factors. We have discovered changes as high as 83 % have been discovered compared to virgin samples. PMID:24748486

  16. Evaluation of Fourier transform coefficients for the diagnosis of rheumatoid arthritis from diffuse optical tomography images

    NASA Astrophysics Data System (ADS)

    Montejo, Ludguier D.; Jia, Jingfei; Kim, Hyun K.; Hielscher, Andreas H.

    2013-03-01

    We apply the Fourier Transform to absorption and scattering coefficient images of proximal interphalangeal (PIP) joints and evaluate the performance of these coefficients as classifiers using receiver operator characteristic (ROC) curve analysis. We find 25 features that yield a Youden index over 0.7, 3 features that yield a Youden index over 0.8, and 1 feature that yields a Youden index over 0.9 (90.0% sensitivity and 100% specificity). In general, scattering coefficient images yield better one-dimensional classifiers compared to absorption coefficient images. Using features derived from scattering coefficient images we obtain an average Youden index of 0.58 +/- 0.16, and an average Youden index of 0.45 +/- 0.15 when using features from absorption coefficient images.

  17. Radon diffusion coefficient measurement in waterproofings--a review of methods and an analysis of differences in results.

    PubMed

    Rovenská, Kate?ina; Jiránek, Martin

    2012-04-01

    This paper summarizes information about 16 measuring methods for determining the radon diffusion coefficient of waterproofing materials. We have found that the differences in results for identical membranes, which can be as high as two orders of magnitude, can mainly be attributed to insufficient duration of the tests, insufficient radon concentration to which the samples are exposed, and the use of steady state calculation procedures for data measured under non-steady state conditions. PMID:22285061

  18. Nonlinear Diffusions and Stable-Like Processes with Coefficients Depending on the Median or VaR

    SciTech Connect

    Kolokoltsov, Vassili N.

    2013-08-01

    The paper is devoted to the well-posedness for nonlinear McKean-Vlasov type diffusions with coefficients depending on the median or, more generally, on the {alpha}-quantile of the underlying distribution. The median is not a continuous function on the space of probability measures equipped with the weak convergence. This is one reason why well-posedness of the SDE considered in the paper does not follow by standard arguments.

  19. Source term evaluation for postulated UF{sub 6} release accidents in gaseous diffusion plants -- Summer ventilation mode (non-seismic cases)

    SciTech Connect

    Kim, S.H.; Chen, N.C.J.; Taleyarkhan, R.P.; Wendel, M.W.; Keith, K.D.; Schmidt, R.W.; Carter, J.C.; Dyer, R.H.

    1996-12-30

    Computer models have been developed to simulate the transient behavior of aerosols and vapors as a result of a postulated accident involving the release of uranium hexafluoride (UF{sub 6}) into the process building of a gaseous diffusion plant. For the current study, gaseous UF{sub 6} is assumed to get released in the cell housing atmosphere through B-line break at 58.97 kg/s for 10 min and 30 min duration at the Paducah and Portsmouth Gaseous Diffusion Plants. The released UF{sub 6} undergoes an exothermic chemical reaction with moisture (H{sub 2}O) in the air to form hydrogen fluoride (HF) and radioactive uranyl fluoride (UO{sub 2}F{sub 2}) while it disperses throughout the process building. As part of a facility-wide safety evaluation, this study evaluated source terms consisting of UO{sub 2}F{sub 2} as well as HF during a postulated UF{sub 6} release accident in a process building. UO{sub 2}F{sub 2} mainly remains as airborne-solid particles (aerosols), and HF is in a vapor form. Some UO{sub 2}F{sub 2} aerosols are removed from the air flow due to gravitational settling. The HF and the remaining UO{sub 2}F{sub 2} are mixed with air and exhausted through the building ventilation system. The MELCOR computer code was selected for simulating aerosols and vapor transport in the process building. To characterize leakage flow through the cell housing wall, 3-D CFD tool (CFDS-FLOW3D) was used. About 57% of UO{sub 2}F{sub 2} was predicted to be released into the environment. Since HF was treated as vapor, close to 100% was estimated to get released into the environment.

  20. Physics of Fresh Produce Safety: Role of Diffusion and Tissue Reaction in Sanitization of Leafy Green Vegetables with Liquid and Gaseous Ozone-Based Sanitizers.

    PubMed

    Shynkaryk, Mykola V; Pyatkovskyy, Taras; Mohamed, Hussein M; Yousef, Ahmed E; Sastry, Sudhir K

    2015-12-01

    Produce safety has received much recent attention, with the emphasis being largely on discovery of how microbes invade produce. However, the sanitization operation deserves more attention than it has received. The ability of a sanitizer to reach the site of pathogens is a fundamental prerequisite for efficacy. This work addresses the transport processes of ozone (gaseous and liquid) sanitizer for decontamination of leafy greens. The liquid sanitizer was ineffective against Escherichia coli K-12 in situations where air bubbles may be trapped within cavities. A model was developed for diffusion of sanitizer into the interior of produce. The reaction rate of ozone with the surface of a lettuce leaf was determined experimentally and was used in a numerical simulation to evaluate ozone concentrations within the produce and to determine the time required to reach different locations. For aqueous ozone, the penetration depth was limited to several millimeters by ozone self-decomposition due to the significant time required for diffusion. In contrast, gaseous sanitizer was able to reach a depth of 100 mm in several minutes without depletion in the absence of reaction with surfaces. However, when the ozone gas reacted with the produce surface, gas concentration was significantly affected. Simulation data were validated experimentally by measuring ozone concentrations at the bottom of a cylinder made of lettuce leaf. The microbiological test confirmed the relationship between ozone transport, its self-decomposition, reaction with surrounding materials, and the degree of inactivation of E. coli K-12. Our study shows that decontamination of fresh produce, through direct contact with the sanitizer, is more feasible with gaseous than with aqueous sanitizers. Therefore, sanitization during a high-speed washing process is effective only for decontaminating the wash water. PMID:26613904

  1. Rate of Contamination Removal of Two Phyto-remediation Sites at the DOE Portsmouth Gaseous Diffusion Plant

    SciTech Connect

    Lewis, A.C.; Baird, D.R.

    2006-07-01

    This paper describes applications of phyto-remediation at the Portsmouth Gaseous Diffusion Plant (PORTS), a Department of Energy (DOE) Facility that enriched uranium from the early 1950's until 2000. Phyto-remediation has been implemented to assist in the removal of TCE (trichloroethylene) in the groundwater at two locations at the PORTS facility: the X-740 area and the X-749/X-120 area. Phyto-remediation technology is based on the ability of certain plants species (in this case hybrid poplar trees) and their associated rhizo-spheric microorganisms to remove, degrade, or contain chemical contaminants located in the soil, sediment, surface water, groundwater, and possibly even the atmosphere. Phyto-remediation technology is a promising clean-up solution for a wide variety of pollutants and sites. Mature trees, such as the hybrid poplar, can consume up to 3,000 gallons of groundwater per acre per day. Organic compounds are captured in the trees' root systems. These organic compounds are degraded by ultraviolet light as they are transpired along with the water vapor through the leaves of the trees. The phyto-remediation system at the X-740 area encompasses 766 one-year old hybrid poplar trees (Populus nigra x nigra, Populus nigra x maximowiczii, and Populus deltoides x nigra) that were planted 10 feet apart in rows 10 feet to 20 feet apart, over an area of 2.6 acres. The system was installed to manage the VOC contaminant plume. At the X749/X-120 area, a phyto-remediation system of 2,640 hybrid poplar trees (Populus nigra x maximowiczii) was planted in seven areas/zones to manage the VOC contaminant plume. The objectives of these systems are to remove contamination from the groundwater and to prevent further migration of contaminants. The goal of these remediation procedures is to achieve completely mature and functional phyto-remediation systems within two years of the initial planting of the hybrid poplar trees at each planting location. There is a direct relationship between plant transpiration, soil moisture, and groundwater flow in a phyto-remediation system. The existing monitoring program was expanded in 2004 in order to evaluate the interactions among these processes. The purpose of this monitoring program was to determine the rate of contaminant removal and to more accurately predict the amount of time needed to remediate the contaminated groundwater. Initial planting occurred in 1999 at the X-740 area, with additional replanting in 2001 and 2002. In 2003, coring of selected trees and chemical analyses illustrated the presence of TCE; however, little impact was observed in groundwater levels, analytical monitoring, and periodic tree diameter monitoring at the X-740 area. To provide better understanding of how these phyto-remediation systems work, a portable weather station was installed at the X-740 area to provide data for estimating transpiration and two different systems for measuring sap flow and sap velocity were outfitted to numerous trees. After evaluating and refining the groundwater flow and contaminant transport models, the data gathered by these two inventive methods can be used to establish a rate of contaminant removal and to better predict the time required in order to meet remediation goals for the phyto-remediation systems located at the PORTS site. (authors)

  2. COMBINED GEOPHYSICAL INVESTIGATION TECHNIQUES TO IDENTIFY BURIED WASTE IN AN UNCONTROLLED LANDFILL AT THE PADUCAH GASEOUS DIFFUSION PLANT, KENTUCKY

    SciTech Connect

    Miller, Peter T.; Starmer, R. John

    2003-02-27

    The primary objective of the investigation was to confirm the presence and determine the location of a cache of 30 to 60 buried 55-gallon drums that were allegedly dumped along the course of the pre-existing, northsouth diversion ditch (NSDD) adjacent to permitted landfills at the Paducah Gaseous Diffusion Plant, Kentucky. The ditch had been rerouted and was being filled and re-graded at the time of the alleged dumping. Historic information and interviews with individuals associated with alleged dumping activities indicated that the drums were dumped prior to the addition of other fill materials. In addition, materials alleged to have been dumped in the ditch, such as buried roofing materials, roof flashing, metal pins, tar substances, fly ash, and concrete rubble complicated data interpretation. Some clean fill materials have been placed over the site and graded. This is an environment that is extremely complicated in terms of past waste dumping activities, construction practices and miscellaneous landfill operations. The combination of site knowledge gained from interviews and research of existing site maps, variable frequency EM data, classical total magnetic field data and optimized GPR lead to success where a simpler less focused approach by other investigators using EM-31 and EM-61 electromagnetic methods and unfocused ground penetrating radar (GPR)did not produce results and defined no real anomalies. A variable frequency electromagnetic conductivity unit was used to collect the EM data at 3,030 Hz, 5,070 Hz, 8,430 Hz, and 14,010 Hz. Both in-phase and quadrature components were recorded at each station point. These results provided depth estimates for targets and some information on the subsurface conditions. A standard magnetometer was used to conduct the magnetic survey that showed the locations and extent of buried metal, the approximate volume of ferrous metal present within a particular area, and allowed estimation of approximate target depths. The GPR survey used a 200 megahertz (MHz) antenna to provide the maximum depth penetration and subsurface detail yielding usable signals to a depth of about 6 to 10 feet in this environment and allowed discrimination of objects that were deeper, particularly useful in the southern area of the site where shallow depth metallic debris (primarily roof flashing) complicated interpretation of the EM and magnetic data. Several geophysical anomalies were defined on the contour plots that indicated the presence of buried metal. During the first phase of the project, nine anomalies or anomalous areas were detected. The sizes, shapes, and magnitudes of the anomalies varied considerably, but given the anticipated size of the primary target of the investigation, only the most prominent anomalies were considered as potential caches of 30 to 60 buried drums. After completion of a second phase investigation, only two of the anomalies were of sufficient magnitude, not identifiable with existing known metallic objects such as monitoring wells, and in positions that corresponded to the location of alleged dumping activities and were recommended for further, intrusive investigation. Other important findings, based on the variable frequency EM method and its combination with total field magnetic and GPR data, included the confirmation of the position of the old NSDD, the ability to differentiate between ferrous and non-ferrous anomalies, and the detection of what may be plumes emanating from the landfill cell.

  3. TECHNICAL EVALUATION OF TEMPORAL GROUNDWATER MONITORING VARIABILITY IN MW66 AND NEARBY WELLS, PADUCAH GASEOUS DIFFUSION PLANT

    SciTech Connect

    Looney, B.; Eddy-Dilek, C.

    2012-08-28

    Evaluation of disposal records, soil data, and spatial/temporal groundwater data from the Paducah Gaseous Diffusion Plant (PGDP) Solid Waste Management Unit (SWMU) 7 indicate that the peak contaminant concentrations measured in monitoring well (MW) 66 result from the influence of the regional PGDP NW Plume, and does not support the presence of significant vertical transport from local contaminant sources in SWMU 7. This updated evaluation supports the 2006 conceptualization which suggested the high and low concentrations in MW66 represent different flow conditions (i.e., local versus regional influences). Incorporation of the additional lines of evidence from data collected since 2006 provide the basis to link high contaminant concentrations in MW66 (peaks) to the regional 'Northwest Plume' and to the upgradient source, specifically, the C400 Building Area. The conceptual model was further refined to demonstrate that groundwater and the various contaminant plumes respond to complex site conditions in predictable ways. This type of conceptualization bounds the expected system behavior and supports development of environmental cleanup strategies, providing a basis to support decisions even if it is not feasible to completely characterize all of the 'complexities' present in the system. We recommend that the site carefully consider the potential impacts to groundwater and contaminant plume migration as they plan and implement onsite production operations, remediation efforts, and reconfiguration activities. For example, this conceptual model suggests that rerouting drainage water, constructing ponds or basin, reconfiguring cooling water systems, capping sites, decommissioning buildings, fixing (or not fixing) water leaks, and other similar actions will potentially have a 'direct' impact on the groundwater contaminant plumes. Our conclusion that the peak concentrations in MW66 are linked to the regional PGDP NW Plume does not imply that there TCE is not present in SWMU 7. The available soil and groundwater data indicate that the some of the waste disposed in this facility contacted and/or were contaminated by TCE. In our assessment, the relatively small amount of TCE associated with SWMU 7 is not contributing detectable TCE to the groundwater and does not represent a significant threat to the environment, particularly in an area where remediation and/or management of TCE in the NW plume will be required for an extended timeframe. If determined to be necessary by the PGDP team and regulators, additional TCE characterization or cleanup activities could be performed. Consistent with the limited quantity of TCE in SWMU 7, we identify a range of low cost approaches for such activities (e.g., soil gas surveys for characterization or SVE for remediation). We hope that this information is useful to the Paducah team and to their regulators and stakeholders to develop a robust environmental management path to address the groundwater and soil contamination associated with the burial ground areas.

  4. Self-diffusion Coefficient and Structure of Binary n-Alkane Mixtures at the Liquid-Vapor Interfaces.

    PubMed

    Chilukoti, Hari Krishna; Kikugawa, Gota; Ohara, Taku

    2015-10-15

    The self-diffusion coefficient and molecular-scale structure of several binary n-alkane liquid mixtures in the liquid-vapor interface regions have been examined using molecular dynamics simulations. It was observed that in hexane-tetracosane mixture hexane molecules are accumulated in the liquid-vapor interface region and the accumulation intensity decreases with increase in a molar fraction of hexane in the examined range. Molecular alignment and configuration in the interface region of the liquid mixture change with a molar fraction of hexane. The self-diffusion coefficient in the direction parallel to the interface of both tetracosane and hexane in their binary mixture increases in the interface region. It was found that the self-diffusion coefficient of both tetracosane and hexane in their binary mixture is considerably higher in the vapor side of the interface region as the molar fraction of hexane goes lower, which is mostly due to the increase in local free volume caused by the local structure of the liquid in the interface region. PMID:26406156

  5. A new family of implicit fourth order compact schemes for unsteady convection-diffusion equation with variable convection coefficient

    E-print Network

    Shuvam Sen

    2012-01-16

    In this paper, a new family of implicit compact finite difference schemes for computation of unsteady convection-diffusion equation with variable convection coefficient is proposed. The schemes are fourth order accurate in space and second or lower order accurate in time depending on the choice of weighted time average parameter. The proposed schemes, where transport variable and its first derivatives are carried as the unknowns, combine virtues of compact discretization and Pad\\'{e} scheme for spatial derivative. These schemes which are based on five point stencil with constant coefficients, named as \\emph{(5,5) Constant Coefficient 4th Order Compact} [(5,5)CC-4OC], give rise to a diagonally dominant system of equations and shows higher accuracy and better phase and amplitude error characteristics than some of the standard methods. These schemes are capable of using a grid aspect ratio other than unity and are unconditionally stable. They efficiently capture both transient and steady solutions of linear and nonlinear convection-diffusion equations with Dirichlet as well as Neumann boundary condition. The proposed schemes can be easily implemented and are applied to problems governed by incompressible Navier-Stokes equations apart from linear convection-diffusion equation. Results obtained are in excellent agreement with analytical and available numerical results in all cases, establishing efficiency and accuracy of the proposed scheme.

  6. Divergence of the Long Wavelength Collective Diffusion Coefficient in Quasi-one and Quasi-two Dimensional Colloid Suspensions

    NASA Astrophysics Data System (ADS)

    Lin, Binhua; Cui, Bianxiao; Xu, Xinliang; Zangi, Ronen; Diamant, Haim; Rice, Stuart A.

    2015-03-01

    We report the results of experimental studies of the short time-long wavelength behavior of collective particle displacements in q1D and q2D colloid suspensions. Our results are reported via the q->0 behavior of the hydrodynamic function H (q) that relates the effective collective diffusion coefficient, De (q) , with the static structure factor S (q) and the self-diffusion coefficient of isolated particles Do: H (q) De (q) S (q) /Do. We find an apparent divergence of H (q) as q->0 with the form H(q)q-(1.7 < ?<1.9), for both q1D and q2D colloid suspensions. Given that S (q) does not diverge as we infer that De (q) does. This behavior is qualitatively different from that of the three-dimensional H (q) and De (q) as q->0, and the divergence is of a different functional form from that predicted for the diffusion coefficient in one component 1D and 2D fluids not subject to boundary conditions that define the dimensionality of the system. The research was supported by the NSF MRSEC at the U of Chicago (NSF/DMR-MRSEC 0820054), NSF/CHE 0822838 (ChemMatCARS), and Israel Science Foundation (Grant No. 8/10).

  7. Soret, thermodiffusion, and mean diffusion coefficients of the ternary mixture n-dodecane+isobutylbenzene+1,2,3,4-tetrahydronaphthalene

    NASA Astrophysics Data System (ADS)

    Gebhardt, M.; Köhler, W.

    2015-10-01

    We have investigated thermodiffusion in ternary mixtures of dodecane (nC12), isobutylbenzene (IBB), and 1,2,3,4-tetrahydronaphthalene (THN) by means of two-color optical beam deflection over the entire ternary composition space. The Soret and the thermodiffusion coefficients ST , i ' ( c 1 , c 2 ) and DT , i ' ( c 1 , c 2 ) , respectively, have been determined for all three components i and fitted by smooth approximating polynomials in the independent concentrations c1 (nC12) and c2 (THN). Both the Soret and the thermodiffusion coefficient are negative for nC12 and positive for THN over all compositions. In case of IBB, they change sign, being negative for THN-rich and positive for nC12-rich mixtures. Both the positive and negative signs and the sign change are in agreement with qualitative predictions based on the recently introduced thermophobicity concept [S. Hartmann et al., Phys. Rev. Lett. 109, 065901 (2012); J. Chem. Phys. 141, 134503 (2014)]. For isothermal diffusion, a mean diffusion coefficient D ¯ but neither the diffusion matrix nor its eigenvalues could be determined.

  8. Diffusion coefficients of actinide and lanthanide ions in molten Li[sub 2]BeF[sub 4

    SciTech Connect

    Moriyama, Hirotake; Moritani, Kimikazu; Ito, Yasuhiko . Dept. of Nuclear Engineering)

    1994-01-01

    In the conceptual design of molten salt breeder reactors (MSBR) developed at ORNL, molten fluoride mixtures are used as the fuel carrier and coolant. The fuel salt must be reprocessed continuously in order to meet a high breeding ratio. The main function of the reprocessing are to isolate [sup 233]Pa from the neutron flux and to remove the fission product lanthanides having high neutron absorption cross sections. The processing method involves the reductive extraction of these components from the fuel salt into liquid bismuth solutions in a two phase contacting system. Diffusion coefficients of actinide and lanthanide ions in molten Li[sub 2]BeF[sub 4] were measured in the temperature range from 813 to 1,023 K by a capillary method. The diffusion coefficients of both ions are unusually high, considering the high viscosity of the liquids. The dependence of the diffusion coefficients on temperature and ionic charge are discussed in terms of the theories of Stokes and Einstein.

  9. Improved Algorithms for Accurate Retrieval of UV - Visible Diffuse Attenuation Coefficients in Optically Complex, Inshore Waters

    NASA Technical Reports Server (NTRS)

    Cao, Fang; Fichot, Cedric G.; Hooker, Stanford B.; Miller, William L.

    2014-01-01

    Photochemical processes driven by high-energy ultraviolet radiation (UVR) in inshore, estuarine, and coastal waters play an important role in global bio geochemical cycles and biological systems. A key to modeling photochemical processes in these optically complex waters is an accurate description of the vertical distribution of UVR in the water column which can be obtained using the diffuse attenuation coefficients of down welling irradiance (Kd()). The Sea UV Sea UVc algorithms (Fichot et al., 2008) can accurately retrieve Kd ( 320, 340, 380,412, 443 and 490 nm) in oceanic and coastal waters using multispectral remote sensing reflectances (Rrs(), Sea WiFS bands). However, SeaUVSeaUVc algorithms are currently not optimized for use in optically complex, inshore waters, where they tend to severely underestimate Kd(). Here, a new training data set of optical properties collected in optically complex, inshore waters was used to re-parameterize the published SeaUVSeaUVc algorithms, resulting in improved Kd() retrievals for turbid, estuarine waters. Although the updated SeaUVSeaUVc algorithms perform best in optically complex waters, the published SeaUVSeaUVc models still perform well in most coastal and oceanic waters. Therefore, we propose a composite set of SeaUVSeaUVc algorithms, optimized for Kd() retrieval in almost all marine systems, ranging from oceanic to inshore waters. The composite algorithm set can retrieve Kd from ocean color with good accuracy across this wide range of water types (e.g., within 13 mean relative error for Kd(340)). A validation step using three independent, in situ data sets indicates that the composite SeaUVSeaUVc can generate accurate Kd values from 320 490 nm using satellite imagery on a global scale. Taking advantage of the inherent benefits of our statistical methods, we pooled the validation data with the training set, obtaining an optimized composite model for estimating Kd() in UV wavelengths for almost all marine waters. This optimized composite set of SeaUVSeaUVc algorithms will provide the optical community with improved ability to quantify the role of solar UV radiation in photochemical and photobiological processes in the ocean.

  10. The temperature-dependent diffusion coefficient of helium in zirconium carbide studied with first-principles calculations

    SciTech Connect

    Yang, Xiao-Yong; Lu, Yong; Zhang, Ping

    2015-04-28

    The temperature-dependent diffusion coefficient of interstitial helium in zirconium carbide (ZrC) matrix is calculated based on the transition state theory. The microscopic parameters in the activation energy and prefactor are obtained from first-principles total energy and phonon frequency calculations including the all atoms. The obtained activation energy is 0.78?eV, consistent with experimental value. Besides, we evaluated the influence of C and Zr vacancies as the perturbation on helium diffusion, and found the C vacancy seems to confine the mobility of helium and the Zr vacancy promotes helium diffusion in some extent. These results provide a good reference to understand the behavior of helium in ZrC matrix.

  11. Use of NMR Imaging to Determine the Diffusion Coefficient of Water in Bio-based Hydrogels

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The diffusion of liquid in a hydrogel material is a fundamental property which must be controlled in order to create effective delivery systems for the agricultural and pharmaceutical industries. NMR spectroscopy has been used to determine the diffusion of water and deuterium oxide in a bio-based h...

  12. Evaluation of diffusion coefficients by means of an approximate steady-state condition in sedimentation velocity distributions.

    PubMed

    Scott, David J; Harding, Stephen E; Winzor, Donald J

    2015-12-01

    This investigation examined the feasibility of manipulating the rotor speed in sedimentation velocity experiments to spontaneously generate an approximate steady-state condition where the extent of diffusional spreading is matched exactly by the boundary sharpening arising from negative s-c dependence. Simulated sedimentation velocity distributions based on the sedimentation characteristics for a purified mucin preparation were used to illustrate a simple procedure for determining the diffusion coefficient from such steady-state distributions in situations where the concentration dependence of the sedimentation coefficient, s = s(0)/(1 + Kc), was quantified in terms of the limiting sedimentation coefficient as c ? 0 (s(0)) and the concentration coefficient (K). Those simulations established that spontaneous generation of the approximate steady state could well be a feature of sedimentation velocity distributions for many unstructured polymer systems because the requirement that Kco?(2)s(0)/D be between 46 and 183 cm(-2) is not unduly restrictive. Although spontaneous generation of the approximate steady state is also a theoretical prediction for structured macromolecular solutes exhibiting linear concentration dependence of the sedimentation coefficient, s = s(0)(1 - kc), the required value of k is far too large for any practical advantage to be taken of this approach with globular proteins. PMID:26321223

  13. On parameter estimation in a diffusion process with piecewise constant coefficients

    E-print Network

    . It is used in pharmaceutical research to estimate the rate by which certain drugs travel through thin with piecewise constant coefficients modelling the penetration process of drugs through thin membranes. Its

  14. Measuring the ratio of aqueous diffusion coefficients between [sup 6]Li[sup +]Cl[sup [minus

    SciTech Connect

    Fritz, S.J. )

    1992-10-01

    Osmotic equilibrium is a singular occurrence in the evolution of an osmotic cell because at this event the net solution flux is zero such that [minus]J[sub w] [center dot] [bar V][sub w] = J[sub s] [center dot] [bar V][sub s]. At this juncture, the diffusion coefficient of the solute through the membrane ([omega]) equals the solute flux (J[sub s]) divided by the osmotic pressure ([delta]II). Because the solute permeability coefficient ([omega]) is related to the Fickian diffusion coefficient (D) through the gas constant, temperature, and the membrane's thickness and tortuosity, the ratio of [omega] values for individual isotopic species equals the ratio of D values for the same isotopic components. A 0.9450 molal LiCl solution was placed within sealed dialysis tubing and osmoted against a kilogram of deionized water at 22C. Osmotic equilibrium occurred at 164 [plus minus] 10 min. The ratio of [omega][sub [sup 6]Li[sup +]Cl[sup [minus

  15. Inclusion compounds between ?-, ?- and ?-cyclodextrins: iron II lactate: a theoretical and experimental study using diffusion coefficients and molecular mechanics

    NASA Astrophysics Data System (ADS)

    Leite, Rosiley A.; Lino, Antonio C. S.; Takahata, Yuji

    2003-01-01

    The inclusion compounds between iron II lactate and three different cyclodextrins (CDs) were studied by means of experimental and theoretical data. The importance of iron II in the human metabolism effort the necessity of a minimum concentration to the human life. Malnutrition is one great problem in social politics of many countries on the world. The possibility to the development of novel medicines with the iron II species stable look for an increase on the efficiency for this kind of aid. Kinetics measurements confirm the possibility to stop the oxidation reaction. It was the first indication of efficient molecular encapsulation. Diffusion coefficient measurements were carried out by Taylor-Aris diffusion technique. The decrease of diffusion coefficients measured for iron II lactate when alone and forming the inclusion complexes was obtained for all hosts molecules used. Molecular Mechanics calculations were performed to elucidate the perfect arrange of iron II lactate inside CDs cavity. No great differences were obtained to the binding energy for the different hosts. Using the software HyperChem6.03v MM+, AMBER94 and OPLS Forced Fields for iron atom in two chemical environments (a) vacuum and (b) with addition of 250 water molecules (MM+). The solvent treatment was decisive to the order of stability. This order was ?-CD>?-CD>?-CD, the same order of solubility in water. The results contained in this work confirm the possibility to protect iron II lactate against oxidation.

  16. Physically separated references for diffusion coefficient-formula weight (D-FW) analysis of diffusion-ordered NMR spectroscopy (DOSY) in water.

    PubMed

    Li, Weibin; Kagan, Gerald; Yang, Huan; Cai, Chen; Hopson, Russell; Sweigart, Dwight A; Williard, Paul G

    2010-06-18

    Development and application of physically separated references for aqueous (1)H DOSY diffusion coefficient-formula weight (D-FW) correlation analysis is reported. Commercially available biological buffers (Tris and HEPES) and a water-soluble alcohol (tert-butanol) were used as physically separated references for a Ru and a Mn complex in D(2)O. This extension of DOSY D-FW analysis expands its applicability to a wide variety of water-soluble molecules or metal complexes, with particular application to green chemistry. PMID:20481557

  17. Experimental Study of Diffusion Coefficients of Water through the Collagen: Apatite Porosity in Human Trabecular Bone Tissue

    PubMed Central

    Bini, Fabiano; Marinozzi, Andrea

    2014-01-01

    We firstly measured the swelling of single trabeculae from human femur heads during water imbibition. Since the swelling is caused by water diffusing from external surfaces to the core of the sample, by measuring the sample swelling over time, we obtained direct information about the transport of fluids through the intimate constituents of bone, where the mineralization process takes place. We developed an apparatus to measure the free expansion of the tissue during the imbibition. In particular, we measured the swelling along three natural axes (length L, width W, and thickness T) of plate-like trabeculae. For this aim, we developed a 3D analytical model of the water uptake by the sample that was performed according to Fickian transport mechanism. The results were then utilized to predict the swelling over time along the three sample directions (L, W, T) and the apparent diffusion coefficients DT, DW, and DL. PMID:24967405

  18. Field evaluation of a horizontal well recirculation system for groundwater treatment: Pilot test at the Clean Test Site Portsmouth Gaseous Diffusion Plant, Piketon, Ohio

    SciTech Connect

    Muck, M.T.; Kearl, P.M.; Siegrist, R.L.

    1998-08-01

    This report presents the results of field testing a horizontal well recirculation system at the Portsmouth Gaseous Diffusion Plant (PORTS). The recirculation system uses a pair of horizontal wells, one for groundwater extraction and treatment and the other for reinjection of treated groundwater, to set up a recirculation flow field. The induced flow field from the injection well to the extraction well establishes a sweeping action for the removal and treatment of groundwater contaminants. The overall purpose of this project is to study treatment of mixed groundwater contaminants that occur in a thin water-bearing zone not easily targeted by traditional vertical wells. The project involves several research elements, including treatment-process evaluation, hydrodynamic flow and transport modeling, pilot testing at an uncontaminated site, and pilot testing at a contaminated site. The results of the pilot test at an uncontaminated site, the Clean Test Site (CTS), are presented in this report.

  19. Environmental investigations at the Paducah Gaseous Diffusion Plant and surrounding area, McCracken County, Kentucky: Volume 1 -- Executive summary. Final report

    SciTech Connect

    1994-05-01

    This report details the results of four studies into environmental and cultural resources on and near the Department of Energy`s (DOE) Paducah Gaseous Diffusion Plant (PGDP) located in Western Kentucky in McCracken County, approximately 10 miles west of Paducah, KY. The area investigated includes the PGDP facility proper, additional area owned by DOE under use permit to the Western Kentucky Wildlife Management Area (WKWMA), area owned by the Commonwealth of Kentucky that is administered by the WKWMA, area owned by the Tennessee Valley Authority (TVA), the Metropolis Lake State Nature preserve and some privately held land. DOE requested the assistance and support of the US Army Engineer District, Nashville (CEORN) in conducting various environmental investigations of the area. The US Army Engineer Waterways Experiment Station (WES) provided technical support to the CEORN for environmental investigations of (1) wetland resources, (2) threatened or endangered species and habitats, and (3) cultural resources. A floodplain investigation was conducted by CEORN.

  20. Measurement of convective cell spectra and the resultant calculated vortex diffusion coefficient

    SciTech Connect

    Ehrhardt, A. B.; Post, R. S.

    1980-10-01

    The presence of convective cells in a purely poloidal field Levitated Octupole has been associated with diffusion that scales as D/sub v/ (T* proportional to T/n) /sup 1/2/, independent of B, where T* is an effective temperature, T* proportional to T. The electric field spectrum of the convective cells can be used to estimate the magnitude of T* and D/sub v/. The results are in reasonable agreement with previous measurements of cross-field transport, and agree qualitatively with theoretical models of vortex diffusion.

  1. Pulsed field gradient spin-echo NMR measurement of water diffusion coefficient in thickening and gelling agents: guar galactomannan solutions and pectin gels.

    PubMed

    Brosio, E; D'Ubaldo, A; Verzegnassi, B

    1994-06-01

    The Pulsed Field Gradient Spin-Echo (PFG-SE) method was used to study the diffusional properties of water in guar galactomannan solutions and in highly methyl-esterified (HDE) pectin solutions and gels. The diffusion coefficient of water in the non-gelling galactomannan system was the same than that of pure water and independent on polymer concentration, despite of a strong increase in viscosity. In the two-component gelling system, pectin-sucrose, the diffusion coefficient of water was lower than in the pure state, and decreasing as a function of the concentration of both constituents. A normalized diffusion coefficient, Dgel/Dsuc, was defined to discriminate the effect of the gelation process on water diffusion, and it showed a clear dependence on the extent of network formation. Unrestricted diffusion was evidenced in all cases. PMID:8061574

  2. Comparison of Apparent Diffusion Coefficient and Intravoxel Incoherent Motion for Differentiating among Glioblastoma, Metastasis, and Lymphoma Focusing on Diffusion-Related Parameter

    PubMed Central

    Shim, Woo Hyun; Kim, Ho Sung; Choi, Choong-Gon; Kim, Sang Joon

    2015-01-01

    Background and Purpose Brain tumor cellularity has been assessed by using apparent diffusion coefficient (ADC). However, the ADC value might be influenced by both perfusion and true molecular diffusion, and the perfusion effect on ADC can limit the reliability of ADC in the characterization of tumor cellularity, especially, in hypervascular brain tumors. In contrast, the IVIM technique estimates parameter values for diffusion and perfusion effects separately. The purpose of our study was to compare ADC and IVIM for differentiating among glioblastoma, metastatic tumor, and primary CNS lymphoma (PCNSL) focusing on diffusion-related parameter. Materials and Methods We retrospectively reviewed the data of 128 patients with pathologically confirmed glioblastoma (n = 55), metastasis (n = 31), and PCNSL (n = 42) prior to any treatment. Two neuroradiologists independently calculated the maximum IVIM-f (fmax) and minimum IVIM-D (Dmin) by using 16 different b-values with a bi-exponential fitting of diffusion signal decay, minimum ADC (ADCmin) by using 0 and 1000 b-values with a mono-exponential fitting and maximum normalized cerebral blood volume (nCBVmax). The differences in fmax, Dmin, nCBVmax, and ADCmin among the three tumor pathologies were determined by one-way ANOVA with multiple comparisons. The fmax and Dmin were correlated to the corresponding nCBV and ADC using partial correlation analysis, respectively. Results Using a mono-exponential fitting of diffusion signal decay, the mean ADCmin was significantly lower in PCNSL than in glioblastoma and metastasis. However, using a bi-exponential fitting, the mean Dmin did not significantly differ in the three groups. The mean fmax significantly increased in the glioblastomas (reader 1, 0.103; reader 2, 0.109) and the metastasis (reader 1, 0.105; reader 2, 0.107), compared to the primary CNS lymphomas (reader 1, 0.025; reader 2, 0.023) (P < .001 for each). The correlation between fmax and the corresponding nCBV was highest in glioblastoma group, and the correlation between Dmin and the corresponding ADC was highest in primary CNS lymphomas group. Conclusion Unlike ADC value derived from a mono-exponential fitting of diffusion signal, diffusion-related parametric value derived from a bi-exponential fitting with separation of perfusion effect doesn’t differ among glioblastoma, metastasis, and PCNSL. PMID:26225937

  3. Matrix diffusion coefficients in volcanic rocks at the Nevada test site: influence of matrix porosity, matrix permeability, and fracture coating minerals.

    PubMed

    Reimus, Paul W; Callahan, Timothy J; Ware, S Doug; Haga, Marc J; Counce, Dale A

    2007-08-15

    Diffusion cell experiments were conducted to measure nonsorbing solute matrix diffusion coefficients in forty-seven different volcanic rock matrix samples from eight different locations (with multiple depth intervals represented at several locations) at the Nevada Test Site. The solutes used in the experiments included bromide, iodide, pentafluorobenzoate (PFBA), and tritiated water ((3)HHO). The porosity and saturated permeability of most of the diffusion cell samples were measured to evaluate the correlation of these two variables with tracer matrix diffusion coefficients divided by the free-water diffusion coefficient (D(m)/D*). To investigate the influence of fracture coating minerals on matrix diffusion, ten of the diffusion cells represented paired samples from the same depth interval in which one sample contained a fracture surface with mineral coatings and the other sample consisted of only pure matrix. The log of (D(m)/D*) was found to be positively correlated with both the matrix porosity and the log of matrix permeability. A multiple linear regression analysis indicated that both parameters contributed significantly to the regression at the 95% confidence level. However, the log of the matrix diffusion coefficient was more highly-correlated with the log of matrix permeability than with matrix porosity, which suggests that matrix diffusion coefficients, like matrix permeabilities, have a greater dependence on the interconnectedness of matrix porosity than on the matrix porosity itself. The regression equation for the volcanic rocks was found to provide satisfactory predictions of log(D(m)/D*) for other types of rocks with similar ranges of matrix porosity and permeability as the volcanic rocks, but it did a poorer job predicting log(D(m)/D*) for rocks with lower porosities and/or permeabilities. The presence of mineral coatings on fracture walls did not appear to have a significant effect on matrix diffusion in the ten paired diffusion cell experiments. PMID:17350718

  4. Matrix diffusion coefficients in volcanic rocks at the Nevada test site: Influence of matrix porosity, matrix permeability, and fracture coating minerals

    NASA Astrophysics Data System (ADS)

    Reimus, Paul W.; Callahan, Timothy J.; Ware, S. Doug; Haga, Marc J.; Counce, Dale A.

    2007-08-01

    Diffusion cell experiments were conducted to measure nonsorbing solute matrix diffusion coefficients in forty-seven different volcanic rock matrix samples from eight different locations (with multiple depth intervals represented at several locations) at the Nevada Test Site. The solutes used in the experiments included bromide, iodide, pentafluorobenzoate (PFBA), and tritiated water ( 3HHO). The porosity and saturated permeability of most of the diffusion cell samples were measured to evaluate the correlation of these two variables with tracer matrix diffusion coefficients divided by the free-water diffusion coefficient ( Dm/ D*). To investigate the influence of fracture coating minerals on matrix diffusion, ten of the diffusion cells represented paired samples from the same depth interval in which one sample contained a fracture surface with mineral coatings and the other sample consisted of only pure matrix. The log of ( Dm/ D*) was found to be positively correlated with both the matrix porosity and the log of matrix permeability. A multiple linear regression analysis indicated that both parameters contributed significantly to the regression at the 95% confidence level. However, the log of the matrix diffusion coefficient was more highly-correlated with the log of matrix permeability than with matrix porosity, which suggests that matrix diffusion coefficients, like matrix permeabilities, have a greater dependence on the interconnectedness of matrix porosity than on the matrix porosity itself. The regression equation for the volcanic rocks was found to provide satisfactory predictions of log( Dm/ D*) for other types of rocks with similar ranges of matrix porosity and permeability as the volcanic rocks, but it did a poorer job predicting log( Dm/ D*) for rocks with lower porosities and/or permeabilities. The presence of mineral coatings on fracture walls did not appear to have a significant effect on matrix diffusion in the ten paired diffusion cell experiments.

  5. Quantitative full-colour transmitted light microscopy and dyes for concentration mapping and measurement of diffusion coefficients in microfluidic architectures.

    PubMed

    Werts, Martinus H V; Raimbault, Vincent; Texier-Picard, Rozenn; Poizat, Rémi; Français, Olivier; Griscom, Laurent; Navarro, Julien R G

    2012-02-21

    A simple and versatile methodology has been developed for the simultaneous measurement of multiple concentration profiles of colourants in transparent microfluidic systems, using a conventional transmitted light microscope, a digital colour (RGB) camera and numerical image processing combined with multicomponent analysis. Rigorous application of the Beer-Lambert law would require monochromatic probe conditions, but in spite of the broad spectral bandwidths of the three colour channels of the camera, a linear relation between the measured optical density and dye concentration is established under certain conditions. An optimised collection of dye solutions for the quantitative optical microscopic characterisation of microfluidic devices is proposed. Using the methodology for optical concentration measurement we then implement and validate a simplified and robust method for the microfluidic measurement of diffusion coefficients using an H-filter architecture. It consists of measuring the ratio of the concentrations of the two output channels of the H-filter. It enables facile determination of the diffusion coefficient, even for non-fluorescent molecules and nanoparticles, and is compatible with non-optical detection of the analyte. PMID:22228225

  6. Ternary Isothermal Diffusion Coefficients of NaCl-MgCl2-H2O at 25 C. 7. Seawater Composition

    SciTech Connect

    Miller, D G; Lee, C M; Rard, J A

    2007-02-12

    The four diffusion coefficients D{sub ij} of the ternary system NaCl-MgCl{sub 2}-H{sub 2}O at the simplified seawater composition 0.48877 mol {center_dot} dm{sup -3} NaCl and 0.05110 mol {center_dot} dm{sup -3} MgCl{sub 2} have been remeasured at 25 C. The diffusion coefficients were obtained using both Gouy and Rayleigh interferometry with the highly precise Gosting diffusiometer. The results, which should be identical in principle, are essentially the same within or very close to their combined 'realistic' errors. This system has a cross-term D{sub 12} that is larger than the D{sub 22} main-term, where subscript 1 denotes NaCl and 2 denotes MgCl{sub 2}. The results are compared with earlier, less-precise measurements. Recommended values for this system are (D{sub 11}){sub V} = 1.432 x 10{sup -9} m{sup 2} {center_dot} sec{sup -1}, (D{sub 12}){sub V} = 0.750 x 10{sup -9} m{sup 2} {center_dot} sec{sup -1}, (D{sub 21}){sub V} = 0.0185 x 10{sup -9} m{sup 2} {center_dot} sec{sup -1}, and (D{sub 22}){sub V} = 0.728 x 10{sup -9} m{sup 2} {center_dot} sec{sup -1}.

  7. Optimal estimates of the diffusion coefficient of a single Brownian trajectory

    E-print Network

    Denis Boyer; David S. Dean; Carlos Mejía-Monasterio; Gleb Oshanin

    2012-03-22

    Modern developments in microscopy and image processing are revolutionizing areas of physics, chemistry and biology as nanoscale objects can be tracked with unprecedented accuracy. The goal of single particle tracking is to determine the interaction between the particle and its environment. The price paid for having a direct visualization of a single particle is a consequent lack of statistics. Here we address the optimal way of extracting diffusion constants from single trajectories for pure Brownian motion. It is shown that the maximum likelihood estimator is much more efficient than the commonly used least squares estimate. Furthermore we investigate the effect of disorder on the distribution of estimated diffusion constants and show that it increases the probability of observing estimates much smaller than the true (average) value.

  8. Dynamics of supercooled water in nanotubes: Cage correlation function and diffusion coefficient

    NASA Astrophysics Data System (ADS)

    Khademi, Mahdi; Kalia, Rajiv K.; Sahimi, Muhammad

    2015-09-01

    Dynamics of low-temperature water in nanostructured materials is important to a variety of phenomena, ranging from transport in cement and asphaltene, to conformational dynamics of proteins in "crowded" cellular environments, survival of microorganisms at very low temperatures, and diffusion in nanogeoscience. Using silicon-carbide nanotubes as a prototype of nanostructured materials, extensive molecular dynamics simulations were carried out to study the cage correlation function C (t ) and self-diffusivity D of supercooled water in the nanotubes. C (t ) , which measures changes in the atomic surroundings inside the nanotube, follows the Kohlrausch-Williams-Watts law, C (t ) ˜exp[-(t/? ) ?] , where ? is a relaxation time and ? is a topological exponent. For the temperature range 220 Kdiffusivity manifests a transition around 230 K, very close to 228 K, the temperature at which a fragile-to-strong dynamic crossover is supposed to happen. Thus the results indicate that water does not freeze in the nanotube over the studied temperature range, and that the Stokes-Einstein relation breaks down.

  9. Dynamics of supercooled water in nanotubes: Cage correlation function and diffusion coefficient.

    PubMed

    Khademi, Mahdi; Kalia, Rajiv K; Sahimi, Muhammad

    2015-09-01

    Dynamics of low-temperature water in nanostructured materials is important to a variety of phenomena, ranging from transport in cement and asphaltene, to conformational dynamics of proteins in "crowded" cellular environments, survival of microorganisms at very low temperatures, and diffusion in nanogeoscience. Using silicon-carbide nanotubes as a prototype of nanostructured materials, extensive molecular dynamics simulations were carried out to study the cage correlation function C(t) and self-diffusivity D of supercooled water in the nanotubes. C(t), which measures changes in the atomic surroundings inside the nanotube, follows the Kohlrausch-Williams-Watts law, C(t)?exp[-(t/?)^{?}], where ? is a relaxation time and ? is a topological exponent. For the temperature range 220Kdiffusivity manifests a transition around 230 K, very close to 228 K, the temperature at which a fragile-to-strong dynamic crossover is supposed to happen. Thus the results indicate that water does not freeze in the nanotube over the studied temperature range, and that the Stokes-Einstein relation breaks down. PMID:26465407

  10. Comparison of apparent diffusion coefficient maps to T2-weighted images for target delineation in cervix cancer brachytherapy

    PubMed Central

    Esthappan, Jacqueline; Ma, Daniel J.; Narra, Vamsidhar R.; Raptis, Constantine A.

    2011-01-01

    Purpose T2-weighted (T2W) magnetic resonance imaging (MRI) has been used for target delineation in cervix cancer brachytherapy. The objective of this study was to examine the feasibility of using diffusion-weighted magnetic resonance imaging (DWI) for target delineation as compared against T2W imaging. Material and methods Fifteen cervix cancer patients, implanted with tandem and ovoid applicators, underwent T2W turbo-spin echo imaging and DWI with a maximum diffusion factor of 800 sec/mm2 on a 1.5-T MR scanner. Apparent diffusion coefficient (ADC) maps were derived from the DWI. The gross tumor volume was manually delineated on the T2W and ADC datasets for each patient. The agreement between T2W- and ADC-delineated volumes was assessed using the Dice similarity coefficient (DSC). An algorithm was developed to compare the edge contrast of the delineated volumes on T2W images and ADC maps by calculating the percentage difference in the intensity values of selected regions of pixels inside versus outside the target contour. Results ADC-delineated volumes were generally smaller than T2W-delineated volumes, yielding a low DSC of 0.54 ± 0.22. ADC maps were found to display superior definition of the target volume edge relative to T2W images, yielding a statistically significant difference between the mean edge contrast on ADC (12.7 ± 7.7%) versus that on T2W images (4.6 ± 3.2%; p = 0.0010). Conclusions These results suggest that incorporating the use of DWI for cervix cancer brachytherapy may yield gross tumor volumes that are different from those based on T2W images alone. PMID:23346128

  11. Molecular dynamics simulation of diffusion coefficients and structural properties of some alkylbenzenes in supercritical carbon dioxide at infinite dilution

    SciTech Connect

    Wang, Jinyang; Zhong, Haimin; Qiu, Wenda; Chen, Liuping; Feng, Huajie

    2014-03-14

    The binary infinite dilute diffusion coefficients, D{sub 12}{sup ?}, of some alkylbenzenes (Ph-C{sub n}, from Ph-H to Ph-C{sub 12}) from 313 K to 333 K at 15 MPa in supercritical carbon dioxide (scCO{sub 2}) have been studied by molecular dynamics (MD) simulation. The MD values agree well with the experimental ones, which indicate MD simulation technique is a powerful way to predict and obtain diffusion coefficients of solutes in supercritical fluids. Besides, the local structures of Ph-C{sub n}/CO{sub 2} fluids are further investigated by calculating radial distribution functions and coordination numbers. It qualitatively convinces that the first solvation shell of Ph-C{sub n} in scCO{sub 2} is significantly influenced by the structure of Ph-C{sub n} solute. Meanwhile, the mean end-to-end distance, the mean radius of gyration and dihedral angle distribution are calculated to gain an insight into the structural properties of Ph-C{sub n} in scCO{sub 2}. The abnormal trends of radial distribution functions and coordination numbers can be reasonably explained in term of molecular flexibility. Moreover, the computed results of dihedral angle clarify that flexibility of long-chain Ph-C{sub n} is the result of internal rotation of C-C single bond (?{sub c-c}) in alkyl chain. It is interesting that compared with n-alkane, because of the existence of benzene ring, the flexibility of alkyl chain in Ph-C{sub n} with same carbon atom number is significantly reduced, as a result, the carbon chain dependence of diffusion behaviors for long-chain n-alkane (n ? 5) and long-chain Ph-C{sub n} (n ? 4) in scCO{sub 2} are different.

  12. A Novel Method for Measuring the Diffusion, Partition and Convective Mass Transfer Coefficients of Formaldehyde and VOC in Building Materials

    PubMed Central

    Xiong, Jianyin; Huang, Shaodan; Zhang, Yinping

    2012-01-01

    The diffusion coefficient (Dm) and material/air partition coefficient (K) are two key parameters characterizing the formaldehyde and volatile organic compounds (VOC) sorption behavior in building materials. By virtue of the sorption process in airtight chamber, this paper proposes a novel method to measure the two key parameters, as well as the convective mass transfer coefficient (hm). Compared to traditional methods, it has the following merits: (1) the K, Dm and hm can be simultaneously obtained, thus is convenient to use; (2) it is time-saving, just one sorption process in airtight chamber is required; (3) the determination of hm is based on the formaldehyde and VOC concentration data in the test chamber rather than the generally used empirical correlations obtained from the heat and mass transfer analogy, thus is more accurate and can be regarded as a significant improvement. The present method is applied to measure the three parameters by treating the experimental data in the literature, and good results are obtained, which validates the effectiveness of the method. Our new method also provides a potential pathway for measuring hm of semi-volatile organic compounds (SVOC) by using that of VOC. PMID:23145156

  13. Determination of diffusion coefficients of carbon dioxide in water between 268 and 473 K in a high-pressure capillary optical cell with in situ Raman spectroscopic measurements

    USGS Publications Warehouse

    Lu, Wanjun; Guo, Huirong; Chou, I.-Ming; Burruss, R.C.; Li, Lanlan

    2013-01-01

    Accurate values of diffusion coefficients for carbon dioxide in water and brine at reservoir conditions are essential to our understanding of transport behavior of carbon dioxide in subsurface pore space. However, the experimental data are limited to conditions at low temperatures and pressures. In this study, diffusive transfer of carbon dioxide in water at pressures up to 45 MPa and temperatures from 268 to 473 K was observed within an optical capillary cell via time-dependent Raman spectroscopy. Diffusion coefficients were estimated by the least-squares method for the measured variations in carbon dioxide concentration in the cell at various sample positions and time. At the constant pressure of 20 MPa, the measured diffusion coefficients of carbon dioxide in water increase with increasing temperature from 268 to 473 K. The relationship between diffusion coefficient of carbon dioxide in water [D(CO2) in m2/s] and temperature (T in K) was derived with Speedy–Angell power-law approach as: D(CO2)=D0[T/Ts-1]m where D0 = 13.942 × 10?9 m2/s, Ts = 227.0 K, and m = 1.7094. At constant temperature, diffusion coefficients of carbon dioxide in water decrease with pressure increase. However, this pressure effect is rather small (within a few percent).

  14. Assessment of apparent diffusion coefficient values as predictor of aggressiveness in peripheral zone prostate cancer: comparison with Gleason score.

    PubMed

    Anwar, Shayan Sirat Maheen; Anwar Khan, Zahid; Shoaib Hamid, Rana; Haroon, Fahd; Sayani, Raza; Beg, Madiha; Khattak, Yasir Jamil

    2014-01-01

    Purpose. To determine association between apparent diffusion coefficient value on diffusion-weighted imaging and Gleason score in patients with prostate cancer. Methods. This retrospective case series was conducted at Radiology Department of Aga Khan University between June 2009 and June 2011. 28 patients with biopsy-proven prostate cancer were included who underwent ultrasound guided sextant prostate biopsy and MRI. MRI images were analyzed on diagnostic console and regions of interest were drawn. Data were entered and analyzed on SPSS 20.0. ADC values were compared with Gleason score using one-way ANOVA test. Results. In 28 patients, 168 quadrants were biopsied and 106 quadrants were positive for malignancy. 89 lesions with proven malignancy showed diffusion restriction. The mean ADC value for disease with a Gleason score of 6 was 935?mm(2)/s (SD = 248.4?mm(2)/s); Gleason score of 7 was 837?mm(2)/s (SD = 208.5?mm(2)/s); Gleason score of 8 was 614?mm(2)/s (SD = 108?mm(2)/s); and Gleason score of 9 was 571?mm(2)/s (SD = 82?mm(2)/s). Inverse relationship was observed between Gleason score and mean ADC values. Conclusion. DWI and specifically quantitative ADC values may help differentiate between low-risk (Gleason score, 6), intermediate-risk (Gleason score, 7), and high-risk (Gleason score 8 and 9) prostate cancers, indirectly determining the aggressiveness of the disease. PMID:24967293

  15. Simultaneous identification of diffusion and absorption coefficients in a quasilinear elliptic problem

    NASA Astrophysics Data System (ADS)

    Egger, Herbert; Pietschmann, Jan-Frederik; Schlottbom, Matthias

    2014-03-01

    In this work, we consider the identifiability of two coefficients a(u) and c(x) in a quasilinear elliptic partial differential equation from the observation of the Dirichlet-to-Neumann map. We use a linearization procedure due to Isakov (1993 Arch. Ration. Mech. Anal. 124 1-12) and special singular solutions to first determine a(0) and c(x) for x ? ?. Based on this partial result, we are then able to determine a(u) for u \\in {R} by an adjoint approach.

  16. MODELING OF DIFFUSION OF PLUTONIUM IN OTHER METALS AND OF GASEOUS SPECIES IN PLUTONIUM-BASED SYSTEMS

    EPA Science Inventory

    The research is aimed at developing and utilizing computational-modeling-based methodology to treat two major problems. The first of these is to be able to predict the diffusion of plutonium from the surface into the interior of another metal such as uranium or stainless steel (f...

  17. Assessment of treatment response by total tumor volume and global apparent diffusion coefficient using diffusion-weighted MRI in patients with metastatic bone disease: a feasibility study.

    PubMed

    Blackledge, Matthew D; Collins, David J; Tunariu, Nina; Orton, Matthew R; Padhani, Anwar R; Leach, Martin O; Koh, Dow-Mu

    2014-01-01

    We describe our semi-automatic segmentation of whole-body diffusion-weighted MRI (WBDWI) using a Markov random field (MRF) model to derive tumor total diffusion volume (tDV) and associated global apparent diffusion coefficient (gADC); and demonstrate the feasibility of using these indices for assessing tumor burden and response to treatment in patients with bone metastases. WBDWI was performed on eleven patients diagnosed with bone metastases from breast and prostate cancers before and after anti-cancer therapies. Semi-automatic segmentation incorporating a MRF model was performed in all patients below the C4 vertebra by an experienced radiologist with over eight years of clinical experience in body DWI. Changes in tDV and gADC distributions were compared with overall response determined by all imaging, tumor markers and clinical findings at serial follow up. The segmentation technique was possible in all patients although erroneous volumes of interest were generated in one patient because of poor fat suppression in the pelvis, requiring manual correction. Responding patients showed a larger increase in gADC (median change = +0.18, range = -0.07 to +0.78 × 10(-3) mm2/s) after treatment compared to non-responding patients (median change = -0.02, range = -0.10 to +0.05 × 10(-3) mm2/s, p = 0.05, Mann-Whitney test), whereas non-responding patients showed a significantly larger increase in tDV (median change = +26%, range = +3 to +284%) compared to responding patients (median change = -50%, range = -85 to +27%, p = 0.02, Mann-Whitney test). Semi-automatic segmentation of WBDWI is feasible for metastatic bone disease in this pilot cohort of 11 patients, and could be used to quantify tumor total diffusion volume and median global ADC for assessing response to treatment. PMID:24710083

  18. Assessment of Treatment Response by Total Tumor Volume and Global Apparent Diffusion Coefficient Using Diffusion-Weighted MRI in Patients with Metastatic Bone Disease: A Feasibility Study

    PubMed Central

    Blackledge, Matthew D.; Collins, David J.; Tunariu, Nina; Orton, Matthew R.; Padhani, Anwar R.; Leach, Martin O.; Koh, Dow-Mu

    2014-01-01

    We describe our semi-automatic segmentation of whole-body diffusion-weighted MRI (WBDWI) using a Markov random field (MRF) model to derive tumor total diffusion volume (tDV) and associated global apparent diffusion coefficient (gADC); and demonstrate the feasibility of using these indices for assessing tumor burden and response to treatment in patients with bone metastases. WBDWI was performed on eleven patients diagnosed with bone metastases from breast and prostate cancers before and after anti-cancer therapies. Semi-automatic segmentation incorporating a MRF model was performed in all patients below the C4 vertebra by an experienced radiologist with over eight years of clinical experience in body DWI. Changes in tDV and gADC distributions were compared with overall response determined by all imaging, tumor markers and clinical findings at serial follow up. The segmentation technique was possible in all patients although erroneous volumes of interest were generated in one patient because of poor fat suppression in the pelvis, requiring manual correction. Responding patients showed a larger increase in gADC (median change?=?+0.18, range?=??0.07 to +0.78×10?3 mm2/s) after treatment compared to non-responding patients (median change?=??0.02, range?=??0.10 to +0.05×10?3 mm2/s, p?=?0.05, Mann-Whitney test), whereas non-responding patients showed a significantly larger increase in tDV (median change?=?+26%, range?=?+3 to +284%) compared to responding patients (median change?=??50%, range?=??85 to +27%, p?=?0.02, Mann-Whitney test). Semi-automatic segmentation of WBDWI is feasible for metastatic bone disease in this pilot cohort of 11 patients, and could be used to quantify tumor total diffusion volume and median global ADC for assessing response to treatment. PMID:24710083

  19. A least-squares error minimization approach in the determination of ferric ion diffusion coefficient of Fricke-infused dosimeter gels

    SciTech Connect

    Tseng, Y.J.; Huang, S.-C.; Chu, W.C.

    2005-04-01

    A least-squares error minimization approach was adopted to assess ferric ion diffusion coefficient of Fricke-agarose gels. Ferric ion diffusion process was modeled as a Gaussian-shaped degradation kernel operating on an initial concentration distribution. Diffusion coefficient was iteratively determined by minimizing the error function defined as the difference between the theoretically calculated and the experimentally measured dose distributions. A rapid MR image-based differential gel dosimetry technique that time resolves the evolution of the ferric ion diffusion process minimizes smearing of the dose distribution. Our results showed that for a Fricke-agarose gel contained 1 mM ammonium ferrous sulfate, 1% agarose, 1 mM sodium chloride, and 50 mM sulfuric acid, its ferric ion diffusion coefficient is (1.59{+-}0.28)x10{sup -2} cm{sup 2} h{sup -1} at room temperature. This value falls within the 1.00-2.00x10{sup -2} cm{sup 2} h{sup -1} range previously reported under varying gelling ingredients and concentrations. This method allows a quick, nondestructive evaluation of the ferric ion diffusion coefficient that can be used in conjunction with the in situ gel dosimetry experiment to provide a practical diffusion characterization of the dosimeter gel.

  20. The dependence of the surface diffusion coefficients of gold atoms on the potential: its influence on reconstruction of metal lattices

    NASA Astrophysics Data System (ADS)

    Doña, J. M.; González-Velasco, J.

    1992-08-01

    By using a method based on the time dependence of the surface roughness factor of electrodispersed gold electrodes it was possible to estimate values of the surface diffusion coefficients (Ds) of gold atoms in contact with an 1M HClO4 electrolytic solution at room temperature and as a function of the potential. The exponential growth of Ds with E at potentials positive with respect to the zero charge potential (Ez), is interpreted as a consequence of the increase in the surface mobility of gold atoms, associated with their growing interactions with species in the electrolyte (water molecules), and the consequent decrease of their interactions with bulk gold atoms, i.e. with the loss in metallic character inherent in the use of individual orbitais in the formation of covalent bonds with hydroxyls arising from water molecules.

  1. Dialectical multispectral classification of diffusion-weighted magnetic resonance images as an alternative to apparent diffusion coefficients maps to perform anatomical analysis.

    PubMed

    Santos, W P; Assis, F M; Souza, R E; Santos Filho, P B; Lima Neto, F B

    2009-09-01

    Multispectral image analysis is a relatively promising field of research with applications in several areas, such as medical imaging and satellite monitoring. A considerable number of current methods of analysis are based on parametric statistics. Alternatively, some methods in computational intelligence are inspired by biology and other sciences. Here we claim that philosophy can be also considered as a source of inspiration. This work proposes the objective dialectical method (ODM): a method for classification based on the philosophy of praxis. ODM is instrumental in assembling evolvable mathematical tools to analyze multispectral images. In the case study described in this paper, multispectral images are composed of diffusion-weighted (DW) magnetic resonance (MR) images. The results are compared to ground-truth images produced by polynomial networks using a morphological similarity index. The classification results are used to improve the usual analysis of the apparent diffusion coefficient map. Such results proved that gray and white matter can be distinguished in DW-MR multispectral analysis and, consequently, DW-MR images can also be used to furnish anatomical information. PMID:19446434

  2. A speckle-photometry method of measurement of thermal diffusion coefficient of porous anodic alumina structures intended for optical sensing

    NASA Astrophysics Data System (ADS)

    Mukhurov, N.; Maschenko, A.; Khilo, N.; Ropot, P.

    2011-05-01

    A highly ordered structure and a relatively simple method of obtaining porous anodic alumina (PAA) have been attracting the attention of researchers to the potentialities of using such material in various fields of science and technology. The PAA- technology is oriented to mass production, does not require the use of expensive modern lithography and evaporation equipment. The technology makes it possible to produce PAA layers in a wide thickness range (0.1 - 800 ?m) and with a spatially ordered system of pores whose diameter and periodicity can be changed within the range from tens to hundreds of nanometers. By filling nanopores with conductive, semiconductive and dielectric materials or their combinations, possibilities arise of making micro-sensors based on various physical, chemical and biological effects. For numerous applications, there is a promising development direction associated with modification of PAA structures with nano-diamonds. To control the modification process and for subsequent use of films in energyabsorbing sensor systems, a real-time measurement is required of their thermal and physical parameters, and, in particular, the coefficient of thermal diffusion (CTD). In this report an optical method for determining CTD is developed which is based on an analysis of the spatialtemporal dynamics of the speckle field. The proposed method for measuring the coefficient of thermal diffusion is based on the measurement of an average speed of the speckle-field movement along the specimen surface. Due to statistical nature of speckles, their movement must be also described statistically. Our approach consists in the use of correlation functions describing the degree of change in a speckle-image of some element of the surface in the process of heating or cooling. The proposed method is fully optical, fast, non-invasive and can be customized for specific applications. Optical measurement of CTD has been carried out for PAA structures both modified and not modified with nano-diamonds. High resolution allows one to measure spatial inhomogeneities of thermophysical properties of PAA- films.

  3. Calculation of the convective heat transfer coefficient and thermal diffusivity of cucumbers using numerical simulation and the inverse method.

    PubMed

    da Silva, Wilton Pereira; E Silva, Cleide M D P S

    2014-09-01

    Cooling of fruits and vegetables, immediately after the harvest, has been a widely used method for maximizing post-harvest life. In this paper, an optimization algorithm and a numerical solution are used to determine simultaneously the convective heat transfer coefficient, hH, and the thermal diffusivity, ?, for an individual solid with cylindrical shape, using experimental data obtained during its cooling. To this end, the one-dimensional diffusion equation in cylindrical coordinates is discretized and numerically solved through the finite volume method, with a fully implicit formulation. This solution is coupled to an optimizer based on the inverse method, in which the chi-square referring to the fit of the numerical simulation to the experimental data is used as objective function. The optimizer coupled to the numerical solution was applied to experimental data relative to the cooling of a cucumber. The obtained results for ? and hH were coherent with the values available in the literature. With the results obtained in the optimization process, the cooling kinetics of cucumbers was described in details. PMID:25190830

  4. The Role of Apparent Diffusion Coefficient Quantification in Differentiating Benign and Malignant Renal Masses by 3 Tesla Magnetic Resonance Imaging

    PubMed Central

    Göya, Cemil; Hamidi, Cihad; Bozkurt, Ya?ar; Yavuz, Alpaslan; Kuday, Suzan; Gümü?, Hatice; Türkçü, Gül; Hattapo?lu, Salih; Bilici, Aslan

    2015-01-01

    Background: Diffusion-weighted magnetic resonance imaging (DWI) is a widely-accepted diagnostic modality whose efficacy has been investigated by numerous past studies in the differentiation of malignant lesions from benign entities. Aims: The aim of this study was to evaluate the efficiency of diffusion-weighted magnetic resonance imaging in the characterization of renal lesions. Study Design: Diagnostic accuracy study. Methods: A total of 137 patients with renal lesions were included in this study. The median apparent diffusion coefficient (ADC) values as well as the b 800 and b 1600 signal intensities of normal kidneys, solid components of mixed renal masses, and total cystic lesions were evaluated. Results: There were significant differences between the ADC values of lesions and normal renal parenchyma, and between the ADC values of benign and malignant renal lesions on DWIs at b values of 800 and 1600 s/mm2 (p<0.001 and p<0.001, respectively). There were significant differences between the ADC values of Bosniak Category 1 and 2 cysts and the ADC values of Bosniak Category 1 and 3 cysts on DWIs at b values of 800 s/mm2 (p<0.001) and 1600 s/mm2 (p<0.001). A cutoff value of 1.902 × 10?3 mm2/s for the ADC with a b value of 800 s/mm2 provided 88% sensitivity and 96% specificity for differentiation between benign and malignant renal lesions. A cutoff value of 1.623 × 10?3 mm2/s for the ADC with a b value of 1600 s/mm2 provided 79% sensitivity and 96% specificity (p<0.001) for the differentiation between benign and malignant renal lesions. Conclusion: Accurate assessment of renal masses is important for determining the necessity for surgical intervention. DWI provides additional value by differentiating benign from malignant renal tumors and can be added to routine kidney MRI protocols. PMID:26185715

  5. First-principles binary diffusion coefficients for H, H{sub 2}, and four normal alkanes + N{sub 2}

    SciTech Connect

    Jasper, Ahren W. Kamarchik, Eugene; Miller, James A.; Klippenstein, Stephen J.

    2014-09-28

    Collision integrals related to binary (dilute gas) diffusion are calculated classically for six species colliding with N{sub 2}. The most detailed calculations make no assumptions regarding the complexity of the potential energy surface, and the resulting classical collision integrals are in excellent agreement with previous semiclassical results for H + N{sub 2} and H{sub 2} + N{sub 2} and with recent experimental results for C{sub n}H{sub 2n+2} + N{sub 2}, n = 2–4. The detailed classical results are used to test the accuracy of three simplifying assumptions typically made when calculating collision integrals: (1) approximating the intermolecular potential as isotropic, (2) neglecting the internal structure of the colliders (i.e., neglecting inelasticity), and (3) employing unphysical R{sup ?12} repulsive interactions. The effect of anisotropy is found to be negligible for H + N{sub 2} and H{sub 2} + N{sub 2} (in agreement with previous quantum mechanical and semiclassical results for systems involving atomic and diatomic species) but is more significant for larger species at low temperatures. For example, the neglect of anisotropy decreases the diffusion coefficient for butane + N{sub 2} by 15% at 300 K. The neglect of inelasticity, in contrast, introduces only very small errors. Approximating the repulsive wall as an unphysical R{sup ?12} interaction is a significant source of error at all temperatures for the weakly interacting systems H + N{sub 2} and H{sub 2} + N{sub 2}, with errors as large as 40%. For the normal alkanes in N{sub 2}, which feature stronger interactions, the 12/6 Lennard–Jones approximation is found to be accurate, particularly at temperatures above ?700 K where it predicts the full-dimensional result to within 5% (although with somewhat different temperature dependence). Overall, the typical practical approach of assuming isotropic 12/6 Lennard–Jones interactions is confirmed to be suitable for combustion applications except for weakly interacting systems, such as H + N{sub 2}. For these systems, anisotropy and inelasticity can safely be neglected but a more detailed description of the repulsive wall is required for quantitative predictions. A straightforward approach for calculating effective isotropic potentials with realistic repulsive walls is described. An analytic expression for the calculated diffusion coefficient for H + N{sub 2} is presented and is estimated to have a 2-sigma error bar of only 0.7%.

  6. Applicable or relevant and appropriate requirements (ARARs) for remedial actions at the Paducah Gaseous Diffusion Plant: A compendium of environmental laws and guidance. Environmental Restoration Program

    SciTech Connect

    Etnier, E.L.; Eaton, L.A.

    1992-03-01

    Section 121 of the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) of 1980 specifies that remedial actions for cleanup of hazardous substances found at sites placed on the National Priorities List (NPL) by the US Environmental Protection Agency (EPA) must comply with applicable or relevant and appropriate requirements (ARARs) or standards under federal and state environmental laws. To date, the US Department of Energy (DOE) Paducah Gaseous Diffusion Plant (PGDP) has not been on the NPL. Although DOE and EPA have entered into an Administrative Consent Order (ACO), the prime regulatory authority for cleanup at PGDP will be the Resource Conservation and Recovery Act (RCRA). This report supplies a preliminary list of available federal and state ARARs that might be considered for remedial response at PGDP in the event that the plant becomes included on the NPL or the ACO is modified to include CERCLA cleanup. A description of the terms ``applicable`` and ``relevant and appropriate`` is provided, as well as definitions of chemical-, location-, and action-specific ARARS. ARARs promulgated by the federal government and by the state of Kentucky are listed in tables. In addition, the major provisions of RCRA, the Safe Drinking Water Act, the Clean Water Act, the Clean Air Act, and other acts, as they apply to hazardous and radioactive waste cleanup, are discussed.

  7. Applicable or relevant and appropriate requirements (ARARs) for remedial actions at the Paducah Gaseous Diffusion Plant: A compendium of environmental laws and guidance

    SciTech Connect

    Etnier, E.L.; Eaton, L.A. )

    1992-03-01

    Section 121 of the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) of 1980 specifies that remedial actions for cleanup of hazardous substances found at sites placed on the National Priorities List (NPL) by the US Environmental Protection Agency (EPA) must comply with applicable or relevant and appropriate requirements (ARARs) or standards under federal and state environmental laws. To date, the US Department of Energy (DOE) Paducah Gaseous Diffusion Plant (PGDP) has not been on the NPL. Although DOE and EPA have entered into an Administrative Consent Order (ACO), the prime regulatory authority for cleanup at PGDP will be the Resource Conservation and Recovery Act (RCRA). This report supplies a preliminary list of available federal and state ARARs that might be considered for remedial response at PGDP in the event that the plant becomes included on the NPL or the ACO is modified to include CERCLA cleanup. A description of the terms applicable'' and relevant and appropriate'' is provided, as well as definitions of chemical-, location-, and action-specific ARARS. ARARs promulgated by the federal government and by the state of Kentucky are listed in tables. In addition, the major provisions of RCRA, the Safe Drinking Water Act, the Clean Water Act, the Clean Air Act, and other acts, as they apply to hazardous and radioactive waste cleanup, are discussed.

  8. Field evaluation of a horizontal well recirculation system for groundwater treatment: Field demonstration at X-701B Portsmouth Gaseous Diffusion Plant, Piketon, Ohio

    SciTech Connect

    Korte, N.; Muck, M.; Kearl, P.; Siegrist, R.; Schlosser, R.; Zutman, J.; Houk, T.

    1998-08-01

    This report describes the field-scale demonstration performed as part of the project, In Situ Treatment of Mixed Contaminants in Groundwater. This project was a 3{1/2} year effort comprised of laboratory work performed at Oak Ridge National Laboratory and fieldwork performed at the US Department of Energy (DOE) Portsmouth Gaseous Diffusion Plant (PORTS). The overall goal of the project was to evaluate in situ treatment of groundwater using horizontal recirculation coupled with treatment modules. Specifically, horizontal recirculation was tested because of its application to thin, interbedded aquifer zones. Mixed contaminants were targeted because of their prominence at DOE sites and because they cannot be treated with conventional methods. The project involved several research elements, including treatment process evaluation, hydrodynamic flow and transport modeling, pilot testing at an uncontaminated site, and full-scale testing at a contaminated site. This report presents the results of the work at the contaminated site, X-701B at PORTS. Groundwater contamination at X-701B consists of trichloroethene (TCE) (concentrations up to 1800 mg/L) and technetium-998 (Tc{sup 99}) (activities up to 926 pCi/L).

  9. Modification and expansion of X-7725A Waste Accountability Facility for storage of polychlorinated biphenyl wastes at Portsmouth Gaseous Diffusion Plant, Piketon, Ohio

    SciTech Connect

    1995-11-01

    The US Department of Energy (DOE) must manage wastes containing polychlorinated biphenyls (PCBs) in accordance with Toxic Substances Control Act (TSCA) requirements and as prescribed in a Federal Facilities Compliance Agreement (FFCA) between DOE and the U.S. Environmental Protection Agency (EPA). PCB-containing wastes are currently stored in the PORTS process buildings where they are generated. DOE proposes to modify and expand the Waste Accountability facility (X-7725A) at the Portsmouth Gaseous Diffusion Plant (PORTS), Piketon, Ohio, to provide a central storage location for these wastes. The proposed action is needed to eliminate the fire and safety hazards presented by the wastes. In this EA, DOE considers four alternatives: (1) no action, which requires storing wastes in limited storage areas in existing facilities; (2) modifying and expanding the X-7725A waste accountability facility; (3) constructing a new PCB waste storage building; and (4) shipping PCB wastes to the K-25 TSCA incinerator. If no action is taken, PCB-contaminated would continue to be stored in Bldgs X-326, X-330, and X-333. As TSCA cleanup activities continue, the quantity of stored waste would increase, which would subsequently cause congestion in the three process buildings and increase fire and safety hazards. The preferred alternative is to modify and expand Bldg. X-7725A to store wastes generated by TSCA compliance activities. Construction, which could begin as early as April 1996, would last approximately five to seven months, with a total peak work force of 70.

  10. Thermal discharges from Paducah Gaseous Diffusion Plant outfalls: Impacts on stream temperatures and fauna of Little Bayou and Big Bayou Creeks

    SciTech Connect

    Roy, W.K.; Ryon, M.G.; Hinzman, R.L.

    1996-03-01

    The development of a biological monitoring plan for the receiving streams of the Paducah Gaseous Diffusion Plant (PGDP) began in the late 1980s, because of an Agreed Order (AO) issued in September 1987 by the Kentucky Division of Water (KDOW). Five years later, in September 1992, more stringent effluent limitations were imposed upon the PGDP operations when the KDOW reissued Kentucky Pollutant Discharge Elimination System permit No. KY 0004049. This action prompted the US Department of Energy (DOE) to request a stay of certain limits contained in the permit. An AO is being negotiated between KDOW, the US Enrichment Corporation (USEC), and DOE that will require that several studies be conducted, including this stream temperature evaluation study, in an effort to establish permit limitations. All issues associated with this AO have been resolved, and the AO is currently being signed by all parties involved. The proposed effluent temperature limit is 89 F (31.7 C) as a mean monthly temperature. In the interim, temperatures are not to exceed 95 F (35 C) as a monthly mean or 100 F (37.8 C) as a daily maximum. This study includes detailed monitoring of instream temperatures, benthic macroinvertebrate communities, fish communities, and a laboratory study of thermal tolerances.

  11. Potential Hazards Relating to Pyrolysis of c-C{sub 4}F{sub 8} in Selected Gaseous Diffusion Plant Operations

    SciTech Connect

    Trowbridge, L.D.

    1999-03-01

    As part of a program intended to replace the present evaporative coolant at the gaseous diffusion plants (GDPs) with a non-ozone-depleting alternate, a series of investigations of the suitability of candidate substitutes in under way. One issue concerning a primary candidate, c-C4F8, is the possibility that it might produce the highly toxic perfluoroisobutylene (PFIB) in high temperature environments. This study was commissioned to determine the likelihood and severity of decomposition under two specific high temperature thermal environments, namely the use of a flame test for the presence of coolant vapors and welding in the presence of coolant vapors. The purpose of the study was to develop and evaluate available data to provide information that will allow the technical and industrial hygiene staff at the GDPs to perform appropriate safety evaluations and to determine the need for field testing or experimental work. The scope of this study included a literature search and an evaluation of the information developed therefrom. Part of that evaluation consists of chemical kinetics modeling of coolant decomposition in the two operational environments. The general conclusions are that PFIB formation is unlikely in either situation but that it cannot be ruled out completely under extreme conditions. The presence of oxygen, moisture, and combustion products will tend to lead to formation of oxidation products (COF2, CO, CO2, and HF) rather than PFIB.

  12. Application of the electromagnetic borehole flowmeter and evaluation of previous pumping tests at Paducah Gaseous Diffusion Plant. Final report, June 15, 1992--August 31, 1992

    SciTech Connect

    Young, S.C.; Julian, S.C.; Neton, M.J.

    1993-01-01

    Multi-well pumping tests have been concluded at wells MW79, MW108, and PW1 at the Paducah Gaseous Diffusion Plant (PGDP) to determine the hydraulic properties of the Regional Gravel Aquifer (RGA). Soil cores suggest that the RGA consists of a thin sandy facies (2 to 6 feet) at the top of a thicker (> 10 feet) gravelly facies. Previous analyses have not considered any permeability contrast between the two facies. To assess the accuracy of this assumption, TVA personnel conducted borehole flowmeter tests at wells MW108 and PW1. Well MW79 could not be tested. The high K sand unit is probably 10 times more permeable than comparable zone in the gravelly portion of the RGA. Previous analyses of the three multi-well aquifer tests do not use the same conceptual aquifer model. Data analysis for one pumping test assumed that leakance was significant. Data analysis for another pumping test assumed that a geologic boundary was significant. By collectively analyzing all three tests with the borehole flowmeter results, the inconsistency among the three pumping tests can be explained. Disparity exists because each pumping test had a different placement of observation wells relative to the high K zone delineating by flowmeter testing.

  13. Thermal Discharges from Paducah Gaseous Diffusion Plant Outfalls: Impacts on Stream Temperatures and Fauna of Little Bayou and Big Bayou Creeks

    SciTech Connect

    Roy, W.K.

    1999-01-01

    The development of a biological monitoring plan for the receiving streams of the Paducah Gaseous Diffusion Plant (PGDP) began in the late 1980s, because of an Agreed Order (AO) issued in September 1987 by the Kentucky Division of Water (KDOW). Five years later, in September 1992, more stringent effluent limitations were imposed upon the PGDP operations when the KDOW reissued Kentucky Pollutant Discharge Elimination System permit No. KY 0004049. This action prompted the US Department of Energy (DOE) to request a stay of certain limits contained in the permit. An AO is being negotiated between KDOW, the United States Enrichment Corporation (USEC), and DOE that will require that several studies be conducted, including this stream temperature evaluation study, in an effort to establish permit limitations. All issues associated with this AO have been resolved, and the AO is currently being signed by all parties involved. The proposed effluent temperature limit is 89 F (31.7C) as a mean monthly temperature. In the interim, temperatures are not to exceed 95 F (35 C) as a monthly mean or 100 F (37.8 C) as a daily maximum. This study includes detailed monitoring of instream temperatures, benthic macroinvertebrate communities, fish communities, and a laboratory study of thermal tolerances.

  14. Dual wall reverse circulation drilling with multi-level groundwater sampling for groundwater contaminant plume delineation at Paducah Gaseous Diffusion Plant, Paducah, Kentucky

    SciTech Connect

    Smuin, D.R.; Morti, E.E.; Zutman, J.L.; Pickering, D.A.

    1995-08-01

    Dual wall reverse circulation (DWRC) drilling was used to drill 48 borings during a groundwater contaminant investigation at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky. This method was selected as an alternative to conventional hollow stem auger drilling for a number of reasons, including the expectation of minimizing waste, increasing the drilling rate, and reducing the potential for cross contamination of aquifers. Groundwater samples were collected from several water-bearing zones during drilling of each borehole. The samples were analyzed for volatile organic compounds using a field gas chromatograph. This approach allowed the investigation to be directed using near-real-time data. Use of downhole geophysical logging, in conjunction with lithologic descriptions of borehole cuttings, resulted in excellent correlation of the geology in the vicinity of the contaminant plume. The total volume of cuttings generated using the DWRC drilling method was less than half of what would have been produced by hollow stem augering; however, the cuttings were recovered in slurry form and had to be dewatered prior to disposal. The drilling rate was very rapid, often approaching 10 ft/min; however, frequent breaks to perform groundwater sampling resulted in an average drilling rate of < 1 ft/min. The time required for groundwater sampling could be shortened by changing the sampling methodology. Analytical results indicated that the drilling method successfully isolated the various water bearing zones and no cross contamination resulted from the investigation.

  15. Verification experiment on the downblending of high enriched uranium (HEU) at the Portsmouth Gaseous Diffusion Plant. Digital video surveillance of the HEU feed stations

    SciTech Connect

    Martinez, R.L.; Tolk, K.; Whiting, N.; Castleberry, K.; Lenarduzzi, R.

    1998-08-01

    As part of a Safeguards Agreement between the US and the International Atomic Energy Agency (IAEA), the Portsmouth Gaseous Diffusion Plant, Piketon, Ohio, was added to the list of facilities eligible for the application of IAEA safeguards. Currently, the facility is in the process of downblending excess inventory of HEU to low enriched uranium (LEU) from US defense related programs for commercial use. An agreement was reached between the US and the IAEA that would allow the IAEA to conduct an independent verification experiment at the Portsmouth facility, resulting in the confirmation that the HEU was in fact downblended. The experiment provided an opportunity for the DOE laboratories to recommend solutions/measures for new IAEA safeguards applications. One of the measures recommended by Sandia National Laboratories (SNL), and selected by the IAEA, was a digital video surveillance system for monitoring activity at the HEU feed stations. This paper describes the SNL implementation of the digital video system and its integration with the Load Cell Based Weighing System (LCBWS) from Oak Ridge National Laboratory (ORNL). The implementation was based on commercially available technology that also satisfied IAEA criteria for tamper protection and data authentication. The core of the Portsmouth digital video surveillance system was based on two Digital Camera Modules (DMC-14) from Neumann Consultants, Germany.

  16. Calculation of the fractional interstitial component of boron diffusion and segregation coefficient of boron in Si0.8Ge0.2

    NASA Astrophysics Data System (ADS)

    Fang, Tilden T.; Fang, Wingra T. C.; Griffin, Peter B.; Plummer, James D.

    1996-02-01

    Investigation of boron diffusion in strained silicon germanium buried layers reveals a fractional interstitial component of boron diffusion (fBI) in Se0.8Ge0.2 approximately equal to the fBI value in silicon. In conjunction with computer-simulated boron profiles, the results yield an absolute lower-bound of fBI in Si0.8Ge0.2 of ˜0.8. In addition, the experimental methodology provides a unique vehicle for measuring the segregation coefficient; oxidation-enhanced diffusion is used instead of an extended, inert anneal to rapidly diffuse the dopant to equilibrium levels across the interface, allowing the segregation coefficient to be measured more quickly.

  17. Contribution to the benchmark for ternary mixtures: Measurement of diffusion and Soret coefficients in 1,2,3,4-tetrahydronaphthalene, isobutylbenzene, and dodecane onboard the ISS.

    PubMed

    Khlybov, Oleg A; Ryzhkov, Ilya I; Lyubimova, Tatyana P

    2015-04-01

    The paper is devoted to processing the data of DCMIX 1 space experiment. In this experiment, the Optical digital interferometry was used to measure the diffusion and Soret coefficients in the ternary mixture of 1,2,3,4-tetrahydronaphthalene, isobutylbenzene and n-dodecane at mass fractions of 0.8/0.1/0.1 and at 25°C. The raw interferometric images were processed to obtain the temporal and spatial evolution of refractive indices for two laser beams of different wavelengths. The method for extracting the diffusion and thermal diffusion coefficients originally developed for optical beam deflection was extended to optical digital interferometry allowing for the spatial variation of refractive index along the diffusion path. The method was validated and applied to processing the data for Soret and diffusion steps in 5 experimental runs. The obtained results for the Soret coefficients and one of the eigenvalues of diffusion matrix showed acceptable agreement within each step. The second eigenvalue was not determined with sufficient accuracy. PMID:25916235

  18. Using the apparent diffusion coefficient to identifying MGMT promoter methylation status early in glioblastoma: importance of analytical method

    SciTech Connect

    Rundle-Thiele, Dayle; Day, Bryan; Stringer, Brett; Fay, Michael; Martin, Jennifer; Jeffree, Rosalind L; Thomas, Paul; Bell, Christopher; Salvado, Olivier; Gal, Yaniv; Coulthard, Alan; Crozier, Stuart; Rose, Stephen

    2015-06-15

    Accurate knowledge of O{sup 6}-methylguanine methyltransferase (MGMT) gene promoter subtype in patients with glioblastoma (GBM) is important for treatment. However, this test is not always available. Pre-operative diffusion MRI (dMRI) can be used to probe tumour biology using the apparent diffusion coefficient (ADC); however, its ability to act as a surrogate to predict MGMT status has shown mixed results. We investigated whether this was due to variations in the method used to analyse ADC. We undertook a retrospective study of 32 patients with GBM who had MGMT status measured. Matching pre-operative MRI data were used to calculate the ADC within contrast enhancing regions of tumour. The relationship between ADC and MGMT was examined using two published ADC methods. A strong trend between a measure of ‘minimum ADC’ and methylation status was seen. An elevated minimum ADC was more likely in the methylated compared to the unmethylated MGMT group (U = 56, P = 0.0561). In contrast, utilising a two-mixture model histogram approach, a significant reduction in mean measure of the ‘low ADC’ component within the histogram was associated with an MGMT promoter methylation subtype (P < 0.0246). This study shows that within the same patient cohort, the method selected to analyse ADC measures has a significant bearing on the use of that metric as a surrogate marker of MGMT status. Thus for dMRI data to be clinically useful, consistent methods of data analysis need to be established prior to establishing any relationship with genetic or epigenetic profiling.

  19. Investigation of Relationships Between Transverse Relaxation Rate, Diffusion Coefficient, and Labeled Cell Concentration in Ischemic Rat Brain Using MRI

    PubMed Central

    Athiraman, Hemanthkumar; Jiang, Quan; Ding, Guang Liang; Zhang, Li; Zhang, Zheng Gang; Wang, Lei; Arbab, Ali S.; Li, Qingjiang; Panda, Swayam; Ledbetter, Karen; Rad, Ali M.; Chopp, Michael

    2009-01-01

    MRI has been used to evaluate labeled cell migration and distribution. However, quantitative determination of labeled cell concentration using MRI has not been systematically investigated. In the current study, we investigated the relationships between labeled cell concentration and MRI parameters of transverse relaxation rate, R2, and apparent diffusion coefficient (ADC), in vitro in phantoms and in vivo in rats after stroke. Significant correlations were detected between iron concentration or labeled cell concentration and MRI measurements of R2, ADC, and ADC×R2 in vitro. In contrast, in vivo labeled cell concentration did not significantly correlate with R2, ADC, and ADC×R2. A major factor for the absence of a significant correlation between labeled cell concentration and MRI measurements in vivo may be attributed to background effects of ischemic tissue. By correcting the background effects caused by ischemic damage, ?R2 (difference in R2 values in the ischemic tissue with and without labeled cells) exhibited a significant correlation to labeled cell concentration. Our study suggests that MRI parameters have the potential to quantitatively determine labeled cell concentration in vivo. PMID:19107898

  20. Characterization and fate of polychlorinated biphenyls, polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans in soils and sediments at the Portsmouth Gaseous Diffusion Plant, Ohio.

    PubMed

    Kruse, Natalie A; Bowman, Jennifer; Lopez, Dina; Migliore, Elizabeth; Jackson, Glen P

    2014-11-01

    The U.S. Department of Energy Portsmouth Gaseous Diffusion Plant is in the early stages of decommissioning and decontamination. During operations, the site drew a large amount of electric power and had multiple large switchyards on site. These are a source of polychlorinated biphenyls (PCB) contamination to both on-site and off-site streams. Some soil remediation has been completed in the main switchyard. During 2011 and 2012, fifteen sites were sampled at the surface (<10 cm) and subsurface (20-30 cm) to characterize the extent of PCB contamination, to identify weathering and migration of PCB contamination and to explore potential polychlorinated dibenzo-p-dioxins (PCDD) and polychlorinated dibenzofurans (PCDF) contamination due to transformer fires and explosions in the 1950s and 1960s. Stagnant sites tended to exhibit more migration of contamination to deeper sediments than sites with fast-moving waters, and the highest concentrations were found at the bottom of a settling pond. A signature set of five dioxin-like PCBs were consistently found across the site with higher concentrations in carbon rich surface sediments. PCB concentrations had a significant inverse correlation with clay content, suggesting that PCBs did not bind to clays at this site. Remediation has reduced PCB concentrations throughout the site compared to levels found in previous studies and long-term upkeep of sediment lagoons is necessary to retain PCB and dioxin-rich sediments. The flow regimen, organic carbon and clay content play a very important role in the fate of PCBs in the environment at the surface as well as downward migration. PMID:25113188

  1. RCRA Facility Investigation Plan K-1004 Area Lab Drain and the K-1007-B Pond - Oak Ridge Gaseous Diffusion Plant - Oak Ridge, Tennessee

    SciTech Connect

    ORGDP, Martin Marietta Energy Systems Inc.

    1988-12-01

    Within the confines of the Oak Ridge Gaseous Diffusion Plant (ORGDP) are hazardous waste treatment, storage, and disposal facilities; some are in operation while others are no longer in use. these solid waste management units (SWMUs) are subject to assessment by the US Environmental Protection Agency (EPA). The RCRA Facility Investigation (RFI) Plans are scheduled to be submitted for all units during calendar years 1987 and 1988. The RFI Plan - General Document (K/HS-132) includes information applicable to all the ORGDP SMWUs and serves as a reference document for the site-specific RFI plans. This document is the site-specific RFI Plan for the K-1004 Area Lab Drain (ALD) and the K-1007-B Pond. This plan is based upon requirements described in the draft document, RFI Guidance, Vols. I-IV, December 1987 (EPA 530/SW-87-001). This unit is regulated by Section 3004(u) of the 1984 Hazardous and Solid Waste Amendments (HSWA) to the Resource Conservation Recovery Act (RCRA). Contained within this document are geographical, historical, operational, geological, and hydrological data specific to the K-1004 ALD and the K-1007-B Pond. The potential for release of contamination through the various media to receptors is addressed. A sampling plan is proposed to further determine the extent (if any) of release of contamination to the surrounding environment. Included are health and safety procedures to be followed when implementing the sampling plan. Quality control (QC) procedures for remedial action occurring on the Oak Ridge Reservation (ORR) are presented in 'The Environmental Surveillance Procedures Quality Control Program, Martin Marietta Energy Systems, Inc., (ESH/Sub/87-21706/1), and quality assurance (QA) guidelines for ORGDP investigations are contained in The K-25 Remedial Actions Program Quality Assurance Plan, K/HS-231.

  2. Evaluation of normal appearing spinal cord by diffusion tensor imaging, fiber tracking, fractional anisotropy, and apparent diffusion coefficient measurement in 13 dogs

    PubMed Central

    2013-01-01

    Background Functional magnetic resonance (fMR) imaging offers plenty of new opportunities in the diagnosis of central nervous system diseases. Diffusion tensor imaging (DTI) is a technique sensitive to the random motion of water providing information about tissue architecture. We applied DTI to normal appearing spinal cords of 13 dogs of different breeds and body weights in a 3.0 T magnetic resonance (MR) scanner. The aim was to study fiber tracking (FT) patterns by tractography and the variations of the fractional anisotropy (FA) and the apparent diffusion coefficient (ADC) observed in the spinal cords of dogs with different sizes and at different locations (cervical and thoracolumbar). For that reason we added a DTI sequence to the standard clinical MR protocol. The values of FA and ADC were calculated by means of three regions of interest defined on the cervical or the thoracolumbar spinal cord (ROI 1, 2, and 3). Results The shape of the spinal cord fiber tracts was well illustrated following tractography and the exiting nerve roots could be differentiated from the spinal cord fiber tracts. Routine MR scanning times were extended for 8 to 12 min, depending on the size of the field of view (FOV), the slice thickness, and the size of the interslice gaps. In small breed dogs (?25 kg body weight) the traceable fiber length was about 5 vertebral bodies which took 10 to 12 min scanning time. FA and ADC values showed mean values of 0.447 (FA), and 0.560?×?10-3 mm2/s (ADC), respectively without any differences detected with regard to different dog sizes and spinal cord 45 segments examined. Conclusion FT is suitable for the graphical depiction of the canine spinal cord and the exiting nerve roots. The FA and ADC values offer an objective measure for evaluation of the spinal cord fiber integrity in dogs. PMID:23618404

  3. Bounce- and MLT-averaged diffusion coefficients in a physics-based magnetic field geometry obtained from RAM-SCB for the 17 March 2013 storm

    NASA Astrophysics Data System (ADS)

    Zhao, Lei; Yu, Yiqun; Delzanno, Gian Luca; Jordanova, Vania K.

    2015-04-01

    Local acceleration via whistler wave and particle interaction plays a significant role in particle dynamics in the radiation belt. In this work we explore gyroresonant wave-particle interaction and quasi-linear diffusion in different magnetic field configurations related to the 17 March 2013 storm. We consider the Earth's magnetic dipole field as a reference and compare the results against nondipole field configurations corresponding to quiet and stormy conditions. The latter are obtained with the ring current-atmosphere interactions model with a self-consistent magnetic field (RAM-SCB), a code that models the Earth's ring current and provides a realistic modeling of the Earth's magnetic field. By applying quasi-linear theory, the bounce- and Magnetic Local Time (MLT)-averaged electron pitch angle, mixed-term, and energy diffusion coefficients are calculated for each magnetic field configuration. For radiation belt (˜1 MeV) and ring current (˜100 keV) electrons, it is shown that at some MLTs the bounce-averaged diffusion coefficients become rather insensitive to the details of the magnetic field configuration, while at other MLTs storm conditions can expand the range of equatorial pitch angles where gyroresonant diffusion occurs and significantly enhance the diffusion rates. When MLT average is performed at drift shell L=4.25 (a good approximation to drift average), the diffusion coefficients become quite independent of the magnetic field configuration for relativistic electrons, while the opposite is true for lower energy electrons. These results suggest that, at least for the 17 March 2013 storm and for L?4.25, the commonly adopted dipole approximation of the Earth's magnetic field can be safely used for radiation belt electrons, while a realistic modeling of the magnetic field configuration is necessary to describe adequately the diffusion rates of ring current electrons.

  4. Bounce- and MLT-averaged diffusion coefficients in a physics-based magnetic field geometry obtained from RAM-SCB for the March 17 2013 storm

    DOE PAGESBeta

    Zhao, Lei; Yu, Yiqun; Delzanno, Gian Luca; Jordanova, Vania K.

    2015-04-01

    Local acceleration via whistler wave and particle interaction plays a significant role in particle dynamics in the radiation belt. In this work we explore gyro-resonant wave-particle interaction and quasi-linear diffusion in different magnetic field configurations related to the March 17 2013 storm. We consider the Earth's magnetic dipole field as a reference and compare the results against non-dipole field configurations corresponding to quiet and stormy conditions. The latter are obtained with the ring current-atmosphere interactions model with a self-consistent magnetic field RAM-SCB, a code that models the Earth's ring current and provides a realistic modeling of the Earth's magnetic field.more »By applying quasi-linear theory, the bounce- and MLT-averaged electron pitch angle, mixed term, and energy diffusion coefficients are calculated for each magnetic field configuration. For radiation belt (~1 MeV) and ring current (~100 keV) electrons, it is shown that at some MLTs the bounce-averaged diffusion coefficients become rather insensitive to the details of the magnetic field configuration, while at other MLTs storm conditions can expand the range of equatorial pitch angles where gyro-resonant diffusion occurs and significantly enhance the diffusion rates. When MLT average is performed at drift shell L = 4.25 (a good approximation to drift average), the diffusion coefficients become quite independent of the magnetic field configuration for relativistic electrons, while the opposite is true for lower energy electrons. These results suggest that, at least for the March 17 2013 storm and for L ? 4.25, the commonly adopted dipole approximation of the Earth's magnetic field can be safely used for radiation belt electrons, while a realistic modeling of the magnetic field configuration is necessary to describe adequately the diffusion rates of ring current electrons.« less

  5. Bounce- and MLT-averaged diffusion coefficients in a physics-based magnetic field geometry obtained from RAM-SCB for the March 17 2013 storm

    SciTech Connect

    Zhao, Lei; Yu, Yiqun; Delzanno, Gian Luca; Jordanova, Vania K.

    2015-04-01

    Local acceleration via whistler wave and particle interaction plays a significant role in particle dynamics in the radiation belt. In this work we explore gyro-resonant wave-particle interaction and quasi-linear diffusion in different magnetic field configurations related to the March 17 2013 storm. We consider the Earth's magnetic dipole field as a reference and compare the results against non-dipole field configurations corresponding to quiet and stormy conditions. The latter are obtained with the ring current-atmosphere interactions model with a self-consistent magnetic field RAM-SCB, a code that models the Earth's ring current and provides a realistic modeling of the Earth's magnetic field. By applying quasi-linear theory, the bounce- and MLT-averaged electron pitch angle, mixed term, and energy diffusion coefficients are calculated for each magnetic field configuration. For radiation belt (~1 MeV) and ring current (~100 keV) electrons, it is shown that at some MLTs the bounce-averaged diffusion coefficients become rather insensitive to the details of the magnetic field configuration, while at other MLTs storm conditions can expand the range of equatorial pitch angles where gyro-resonant diffusion occurs and significantly enhance the diffusion rates. When MLT average is performed at drift shell L = 4.25 (a good approximation to drift average), the diffusion coefficients become quite independent of the magnetic field configuration for relativistic electrons, while the opposite is true for lower energy electrons. These results suggest that, at least for the March 17 2013 storm and for L ? 4.25, the commonly adopted dipole approximation of the Earth's magnetic field can be safely used for radiation belt electrons, while a realistic modeling of the magnetic field configuration is necessary to describe adequately the diffusion rates of ring current electrons.

  6. On the Magnitude and Variability of Subgrid-Scale Eddy-Diffusion Coefficients in the Atmospheric Surface Layer.

    NASA Astrophysics Data System (ADS)

    Kleissl, Jan; Meneveau, Charles; Parlange, Marc B.

    2003-10-01

    Eddy-viscosity closures for large eddy simulations (LES) of atmospheric boundary layer dynamics include a parameter (Smagorinsky constant cs), which depends upon physical parameters, such as distance to the ground, atmospheric stability, and strain. A field study [Horizontal Arrays Turbulence Study (HATS)] specifically designed to measure turbulence quantities of interest in LES, such as the parameter cs, is conducted. The instrumentation consists of two vertically separated horizontal arrays of 3D sonic anemometers, placed in the atmospheric surface layer. From 2D filtering and differentiating the velocity fields, subgrid-scale (SGS) and resolved quantities are computed. The parameter cs is obtained from the data by matching measured and modeled SGS dissipations under various flow conditions. Results indicate that cs is reduced near the ground, and also decreases rapidly with increasing stability in stable atmospheric conditions. A simple fit that parameterizes the data is proposed. The variability from one sample to another is studied by means of the probability density function (pdf) of cs. The pdfs show a most preferred value, which is essentially independent of the timescale used for statistical averaging. The width of the pdfs decreases with increasing averaging time, for unstable and neutral stability conditions. For stable conditions, the relative variability of the coefficient remains strong even for long averaging times, indicative of strong intermittency. In unstable conditions, cs is fairly independent of local strain-rate magnitude, supporting the basic scaling of the Smagorinsky eddy viscosity. For stable conditions, a transition occurs between small local strain-rate magnitudes, where cs is nearly constant, and high local strain-rate magnitudes, where cs decreases appreciably. The results suggest that when the filter scale approaches the local integral scale of turbulence (height above the ground or Obukhov length), one needs to include the friction velocity as relevant velocity to scale the eddy viscosity, in addition to the standard velocity scale of the Smagorinsky model based on filtered strain-rate magnitude. The analysis is repeated for the SGS heat flux, and for the associated eddy-diffusion coefficient (PrT-1cs2) and Prandtl number (PrT). The latter is found to depend only very weakly on stability, but it increases with decreasing distance from the ground.

  7. Interrelationship between Number of Mobile Protons, Diffusion Coefficient, and AC Conductivity in Superprotonic Conductors, CsHSO4 and Rb3H(SeO4)2

    NASA Astrophysics Data System (ADS)

    Kamazawa, Kazuya; Harada, Masashi; Araki, Toru; Matsuo, Yasumitsu; Tyagi, Madhusudan; Sugiyama, Jun

    2014-07-01

    Using quasielastic neutron scattering (QENS), we investigated the proton dynamics for two superprotonic conductors, CsHSO4 and Rb3H(SeO4)2. To evaluate the self-diffusion coefficients and the number of mobile protons on both superprotonic and normal phases, we focused on proton dynamics not only in the phase above Tc, but also in the phase below Tc. In Rb3H(SeO4)2, the self-diffusion of protons was observed even below the Tc phase. In contrast to popular belief, no large changes in the self-diffusion coefficients were observed across Tc. Nevertheless, the increase in the number of mobile protons across Tc was about 14.5 times, which was estimated from the integrated intensity of QENS spectra, and this change could not account for the increased magnitude of proton conductivity, which is about 500 times. As a large translational self-diffusion coefficient has not been reported in previous works by QENS experiments, there are still unknown factors that contribute to the Nernst-Einstein relation that need to be discovered.

  8. Measurement of temperature-dependent diffusion coefficients using a confocal Raman microscope with microfluidic chips considering laser-induced heating effect.

    PubMed

    Lin, Ying; Yu, Xinhai; Wang, Zhenyu; Tu, Shan-Tung; Wang, Zhengdong

    2010-05-14

    Conventional methods for measuring diffusion coefficients (D) are complex and time consuming. This study presents a method for the continuous measurement of temperature-dependent diffusion coefficients using a confocal Raman microscope with microfluidic chips. Concentration information was collected by a Raman microscope to extract D values. An isothermal diffusion process at various temperatures was ensured by coupling the silicon-based microfluidic chip with an isothermal plate. In the simple silicon/glass chip, the heating effect induced by a Raman laser was observed to contribute to abnormally high D values. To eliminate the heating effect, a 200nm-thick aluminum (Al) reflection film was used to coat the channel bottom. The Al film substantially reduced absorption of laser power, thus ensuring precise D values in excellent agreement with literature data. Other potential methods to eliminate the heating effect were also evaluated by computational fluid dynamics (CFD) simulations and were found impractical for implementation. Consequently, this method for the continuous measurement of temperature-dependent diffusion coefficients is proven to be accurate, efficient, and reliable. PMID:20441873

  9. Prostate Cancer: Utility of Whole-Lesion Apparent Diffusion Coefficient Metrics for Prediction of Biochemical Recurrence After Radical Prostatectomy

    PubMed Central

    Rosenkrantz, Andrew B.; Ream, Justin M.; Nolan, Paul; Rusinek, Henry; Deng, Fang-Ming; Taneja, Samir S.

    2015-01-01

    OBJECTIVE The purpose of this study was to investigate the additional value of whole-lesion histogram apparent diffusion coefficient (ADC) metrics, when combined with standard pathologic features, in prediction of biochemical recurrence (BCR) after radical prostatectomy for prostate cancer. MATERIALS AND METHODS The study included 193 patients (mean age, 61 ± 7 years) who underwent 3-T MRI with DWI (b values, 50 and 1000 s/mm2) before prostatectomy. Histogram metrics were derived from 3D volumes of interest encompassing the entire lesion on ADC maps. Pathologic features from radical prostatectomy and subsequent BCR were recorded for each patient. The Fisher exact test and Mann-Whitney test were used to compare ADC-based metrics and pathologic features between patients with and patients without BCR. Stepwise logistic regression analysis was used to construct multivariable models for prediction of BCR, which were assessed by ROC analysis. RESULTS BCR occurred in 16.6% (32/193) of patients. Variables significantly associated with BCR included primary Gleason grade, Gleason score, extraprostatic extension, seminal vesicle invasion, positive surgical margin, preoperative prostate-specific antigen level, MRI tumor volume, mean whole-lesion ADC, entropy ADC, and mean ADC of the bottom 10th, 10–25th, and 25–50th percentiles (p ? 0.019). Significant independent predictors of BCR at multivariable analysis were primary Gleason grade, extraprostatic extension, mean of the bottom 10th percentile ADC, and entropy ADC (p = 0.002–0.037). The AUC of this multivariable model was 0.94 for prediction of BCR; the AUC of pathologic features alone was 0.89 (p = 0.001). CONCLUSION A model integrating whole-lesion ADC metrics had significantly higher performance for prediction of BCR than did standard pathologic features alone and may help guide postoperative prognostic assessments and decisions regarding adjuvant therapy. PMID:26587927

  10. Fissible Deposit Characterization at the Former Oak Ridge K-25 Gaseous Diffusion Plant by {sup 252}CF-Source-Driven Measurements

    SciTech Connect

    Hannon, T.F.; Mihalczo, J.T.; Mullens, J.A.; Uckan, T.; Valentine, T.E.; Wyatt, M.S.

    1998-05-01

    The Deposit Removal Project was undertaken with the support of the U. S. Department of Energy at the East Tennessee Technology Park (ETTP) formerly the Oak Ridge K-25 Site. The project team performed the safe removal of the hydrated uranyl fluoride (UO{sub 2}F{sub 2}) deposits from the K-29 Building of the former Oak Ridge Gaseous Diffusion Plant. The deposits had developed as a result of air leakage into UF{sub 6} gas process pipes; UO{sub 2}F{sub 2} became hydrated by moisture from the air and deposited inside the pipes. The mass, its distribution, and the hydrogen content [that is, the ratio of H to U (H/U)], were the key parameters that controlled the nuclear criticality safety of the deposits. Earlier gamma-ray spectrometry measurements in K-29 had identified the largest deposits in the building. The first and third largest deposits in the building were measured in this program. The first deposit, found in the Unit 2, Cell 7, B-Line Outlet process pipe (called the ''Hockey Stick'') was about 1,300 kg ({+-} 50% uncertainty) at 3.34 wt% {sup 235}U enrichment ({+-}50% uncertainty) and according to the gamma-ray spectroscopy was uniformly distributed. The second deposit (the third-largest deposit in the building), found in the Unit 2, Cell 6, A-Line Outlet process pipe (called the ''Tee-Pipe''), had a uranium deposit estimated to be about 240 kg ({+-} 50% uncertainty) at 3.4 wt % {sup 235}U enrichment ({+-} 20% uncertainty). Before deposit removal activities began, the Deposit Removal Project team needed to survey the inside of the pipes intrusively to assess the nuclear criticality safety of the deposits. Therefore, the spatial distribution of the deposits, the total uranium deposit mass, and the moderation level resulting from hydration of the deposits, all of which affect nuclear criticality safety were required. To perform the task safely and effectively, the Deposit Removal Project team requested that Oak Ridge National Laboratory (ORNL) characterize the two largest deposits with the {sup 252}Cf-source-driven transmission (CFSDT) technique, an active neutron interrogation method developed for use at the Oak Ridge Y-12 Plant to identify nuclear weapons components in containers. The active CFSDT measurement technique uses CFSDT time-of-flight measurements of prompt neutrons and gamma rays from an externally introduced {sup 252}Cf source.

  11. Dose Modeling Evaluations and Technical Support Document For the Authorized Limits Request for the DOE-Owned Property Outside the Limited Area, Paducah Gaseous Diffusion Plant Paducah, Kentucky

    SciTech Connect

    Boerner, A. J.; Maldonado, D. G.; Hansen, Tom

    2012-09-01

    Environmental assessments and remediation activities are being conducted by the U.S. Department of Energy (DOE) at the Paducah Gaseous Diffusion Plant (PGDP), Paducah, Kentucky. The Oak Ridge Institute for Science and Education (ORISE), a DOE prime contractor, was contracted by the DOE Portsmouth/Paducah Project Office (DOE-PPPO) to conduct radiation dose modeling analyses and derive single radionuclide soil guidelines (soil guidelines) in support of the derivation of Authorized Limits (ALs) for 'DOE-Owned Property Outside the Limited Area' ('Property') at the PGDP. The ORISE evaluation specifically included the area identified by DOE restricted area postings (public use access restrictions) and areas licensed by DOE to the West Kentucky Wildlife Management Area (WKWMA). The licensed areas are available without restriction to the general public for a variety of (primarily) recreational uses. Relevant receptors impacting current and reasonably anticipated future use activities were evaluated. In support of soil guideline derivation, a Conceptual Site Model (CSM) was developed. The CSM listed radiation and contamination sources, release mechanisms, transport media, representative exposure pathways from residual radioactivity, and a total of three receptors (under present and future use scenarios). Plausible receptors included a Resident Farmer, Recreational User, and Wildlife Worker. single radionuclide soil guidelines (outputs specified by the software modeling code) were generated for three receptors and thirteen targeted radionuclides. These soil guidelines were based on satisfying the project dose constraints. For comparison, soil guidelines applicable to the basic radiation public dose limit of 100 mrem/yr were generated. Single radionuclide soil guidelines from the most limiting (restrictive) receptor based on a target dose constraint of 25 mrem/yr were then rounded and identified as the derived soil guidelines. An additional evaluation using the derived soil guidelines as inputs into the code was also performed to determine the maximum (peak) dose for all receptors. This report contains the technical basis in support of the DOE?s derivation of ALs for the 'Property.' A complete description of the methodology, including an assessment of the input parameters, model inputs, and results is provided in this report. This report also provides initial recommendations on applying the derived soil guidelines.

  12. ENZYME ACTIVITY PROBE AND GEOCHEMICAL ASSESSMENT FOR POTENTIAL AEROBIC COMETABOLISM OF TRICHLOROETHENE IN GROUNDWATER OF THE NORTHWEST PLUME, PADUCAH GASEOUS DIFFUSION PLANT, KENTUCKY

    SciTech Connect

    Looney, B; M. Hope Lee, M; S. K. Hampson, S

    2008-06-27

    The overarching objective of the Paducah Gaseous Diffusion Plant (PGDP) enzyme activity probe (EAP) effort is to determine if aerobic cometabolism is contributing to the attenuation of trichloroethene (TCE) and other chlorinated solvents in the contaminated groundwater beneath PGDP. The site-specific objective for the EAP assessment is to identify if key metabolic pathways are present and expressed in the microbial community--namely the pathways that are responsible for degradation of methane and aromatic (e.g. toluene, benzene, phenol) substrates. The enzymes produced to degrade methane and aromatic compounds also break down TCE through a process known as cometabolism. EAPs directly measure if methane and/or aromatic enzyme production pathways are operating and, for the aromatic pathways, provide an estimate of the number of active organisms in the sampled groundwater. This study in the groundwater plumes at PGDP is a major part of a larger scientific effort being conducted by Interstate Technology and Regulatory Council (ITRC), U.S. Department of Energy (DOE) Office of Environmental Management (EM), Savannah River National Laboratory (SRNL), and North Wind Inc. in which EAPs are being applied to contaminated groundwater from diverse hydrogeologic and plume settings throughout the U.S. to help standardize their application as well as their interpretation. While EAP data provide key information to support the site specific objective for PGDP, several additional lines of evidence are being evaluated to increase confidence in the determination of the occurrence of biodegradation and the rate and sustainability of aerobic cometabolism. These complementary efforts include: (1) Examination of plume flowpaths and comparison of TCE behavior to 'conservative' tracers in the plume (e.g., {sup 99}Tc); (2) Evaluation of geochemical conditions throughout the plume; and (3) Evaluation of stable isotopes in the contaminants and their daughter products throughout the plume. If the multiple lines of evidence support the occurrence of cometabolism and the potential for the process to contribute to temporal and spatial attenuation of TCE in PGDP groundwater, then a follow-up enzyme probe microcosm study to better estimate biological degradation rate(s) is warranted.

  13. A TECHNICAL ASSESSMENT OF THE CURRENT WATER POLICY BOUNDARY AT U.S. DEPARTMENT OF ENERGY, PADUCAH GASEOUS DIFFUSION PLANT, PADUCAH, KENTUCKY

    SciTech Connect

    2012-12-13

    In 1988, groundwater contaminated with trichloroethene (TCE) and technetium-99 (Tc-99) was identified in samples collected from residential water wells withdrawing groundwater from the Regional Gravel Aquifer (RGA) north of the Paducah Gaseous Diffusion Plant (PGDP) facility. In response, the U.S. Department of Energy (DOE) provided temporary drinking water supplies to approximately 100 potentially affected residents by initially supplying bottled water, water tanks, and water-treatment systems, and then by extending municipal water lines, all at no cost, to those persons whose wells could be affected by contaminated groundwater. The Water Policy boundary was established in 1993. In the Policy, DOE agreed to pay the reasonable monthly cost of water for homes and businesses and, in exchange, many of the land owners signed license agreements committing to cease using the groundwater via rural water wells. In 2012, DOE requested that Oak Ridge Associated Universities (ORAU), managing contractor of Oak Ridge Institute for Science and Education (ORISE), provide an independent assessment of the quality and quantity of the existing groundwater monitoring data and determine if there is sufficient information to support a modification to the boundary of the current Water Policy. As a result of the assessment, ORAU concludes that sufficient groundwater monitoring data exists to determine that a shrinkage and/or shift of the plume(s) responsible for the initial development of this policy has occurred. Specifically, there is compelling evidence that the TCE plume is undergoing shrinkage due to natural attenuation and associated degradation. The plume shrinkage (and migration) has also been augmented in local areas where large volumes of groundwater were recovered by pump-and treat remedial systems along the eastern and western boundaries of the Northwest Plume, and in other areas where pump-and-treat systems have been deployed by DOE to remove source contaminants. The available evidence supports adjusting the western and northwestern Water Policy boundary. Based on the historical and modeled hydrogeological data reflecting past flow and plume attenuation, along with associated plume migration toward the northeast, the establishment of a new boundary along the westernmost margin of the earliest indication of the TCE plume is proposed and justified on hydrogeological grounds. Approximately 30% of the original area would remain within the adjusted Water Policy area west and northwest of the PGDP facility. This modification would release about 70% of the area, although individual properties would overlap the new boundary.

  14. Assessment of oxygen diffusion coefficients by studying high-temperature oxidation behaviour of Zr1Nb fuel cladding in the temperature range of 1100-1300 °C

    NASA Astrophysics Data System (ADS)

    Négyesi, M.; Chmela, T.; Veselský, T.; Krej?í, J.; Novotný, L.; P?ibyl, A.; Bláhová, O.; Burda, J.; Siegl, J.; Vrtílková, V.

    2015-01-01

    The paper deals with high-temperature steam oxidation behaviour of Zr1Nb fuel cladding. First of all, comprehensive experimental program was conducted to provide sufficient experimental data, such as the thicknesses of evolved phase layers and the overall weight gain kinetics, as well as the oxygen concentration and nanohardness values at phase boundaries. Afterwards, oxygen diffusion coefficients in the oxide, in the ?-Zr(O) layer, in the double-phase (? + ?)-Zr region, and in the ?-phase region have been estimated based on the experimental data employing analytical solution of the multiphase moving boundary problem, assuming the equilibrium conditions being fulfilled at the interface boundaries. Eventually, the determined oxygen diffusion coefficients served as input into the in-house numerical code, which was designed to predict the high-temperature oxidation behaviour of Zr1Nb fuel cladding. Very good agreement has been achieved between the numerical calculations and the experimental data.

  15. Effects of the radial dependence of the fast electron diffusion coefficient on the current driven by lower-hybrid waves in tokamak

    SciTech Connect

    Zhang Xianmei; Wang Yanhui; Yu Limin; Shen Xin; Wang Jianbin

    2012-07-15

    The lower hybrid current drive (LHCD) is one of the promising methods not only for driving the non-inductive current required for steady-state tokamak operation, but also for controlling the plasma current profile to improve confinement in tokamak experiments. A direct consequence of experimental imperfection is difficult to obtain reliable estimate of the radial diffusion coefficient (D{sub st}) of the lower hybrid driven current. In this paper, the radial profile of D{sub st} is estimated to investigate its effect on the current driven by lower hybrid wave (LHW) in Experimental Advanced Superconducting Tokamak. Compared with the case of the constant radial diffusion coefficient, the efficiency of LHW driven current with the radial dependent diffusion coefficient D{sub st} ({rho}) becomes either higher or lower with respect to the plasma parameters, such as the density and the magnetic fluctuation. It is also found that the profiles of the LHW driven current are different. Therefore, it is necessary to consider the radial dependence of D{sub st} in order to get an accurate and reliable result in the numerical simulation of LHCD.

  16. Concentration-dependent self-diffusion coefficients in amorphous Si{sub 1?x}Ge{sub x} solid solutions: An interdiffusion study

    SciTech Connect

    Noah, Martin A. Flötotto, David; Wang, Zumin; Mittemeijer, Eric J.

    2015-04-28

    Self-diffusion coefficients of Si and Ge in amorphous Si{sub 1?x}Ge{sub x} (a-Si{sub 1?x}Ge{sub x}) solid solutions were determined quantitatively in the temperature range of 440?°C – 460?°C by the investigation of interdiffusion in amorphous Si/Si{sub 0.52}Ge{sub 0.48} multilayers using Auger electron spectroscopy sputter-depth profiling. The determined concentration dependent self-diffusion coefficients of Si and Ge in a-Si{sub 1?x}Ge{sub x} with 0???x???0.48 at.?% Ge are about ten orders of magnitude larger than in the corresponding crystalline phases, due to the inherent, excess free volume in the amorphous phase. The self-diffusion coefficient of Si (or Ge) in a-Si{sub 1?x}Ge{sub x} increases in association with a decreasing activation enthalpy with increasing Ge concentration. This concentration dependence has been related to an overall decrease of the average bond strength with increasing Ge concentration.

  17. Performance of Apparent Diffusion Coefficient Values and Conventional MRI Features in Differentiating Tumefactive Demyelinating Lesions From Primary Brain Neoplasms

    PubMed Central

    Mabray, Marc C.; Cohen, Benjamin A.; Villanueva-Meyer, Javier E.; Valles, Francisco E.; Barajas, Ramon F.; Rubenstein, James L.; Cha, Soonmee

    2015-01-01

    OBJECTIVE Tumefactive demyelinating lesions (TDLs) remain one of the most common brain lesions to mimic a brain tumor, particularly primary CNS lymphoma (PCNSL) and high-grade gliomas. The purpose of our study was to evaluate the ability of apparent diffusion coefficient (ADC) values and conventional MRI features to differentiate TDLs from PCNSLs and high-grade gliomas. MATERIALS AND METHODS Seventy-five patients (24 patients with TDLs, 28 with PCNSLs, and 23 with high-grade gliomas) with 168 brain lesions (70 TDLs, 68 PCNSLs, and 30 high-grade gliomas) who underwent DWI before surgery or therapy were included in the study. Minimum ADC (ADCmin) and average ADC (ADCavg) values were calculated for each lesion. ANOVA and ROC analyses were performed. ROC analyses were also performed for the presence of incomplete rim enhancement and for the number of lesions. Multiple-variable logistic regression with ROC analysis was then performed to evaluate performance in multiple-variable models. RESULTS ADCmin was statistically significantly higher (p < 0.01) in TDLs (mean, 0.886; 95% CI, 0.802–0.931) than in PCNSLs (0.547; 95% CI, 0.496–0.598) and high-grade gliomas (0.470; 95% CI, 0.385–0.555). (All ADC values in this article are reported in units of × 10?3 mm2/s.) ADCavg was statistically significantly higher (p < 0.01) in TDLs (mean, 1.362; 95% CI, 1.268–1.456) than in PCNSLs (0.990; 95% CI, 0.919–1.061) but not in high-grade gliomas (1.216; 95% CI, 1.074–1.356). Multiple-variable models showed statistically significant individual effects and superior diagnostic performance on ROC analysis. CONCLUSION TDLs can be diagnosed on preoperative MRI with a high degree of specificity; MRI features of incomplete rim enhancement, high ADC values, and a large number of lesions individually increase the probability and diagnostic confidence that a lesion is a TDL. PMID:26496556

  18. Helium diffusion coefficient measurements in R7T7 nuclear glass by 3He(d,?) 1H nuclear reaction analysis

    NASA Astrophysics Data System (ADS)

    Chamssedine, F.; Sauvage, T.; Peuget, S.; Fares, T.; Martin, G.

    2010-05-01

    The immobilization of fission products and minor actinides by vitrification is the reference process for industrial management of high-level radioactive wastes generated by spent fuel reprocessing. Radiation damage and radiogenic helium accumulation must be specifically studied to evaluate the effects of minor actinide alpha decay on the glass long-term behavior under repository conditions. A specific experimental study was conducted for a comprehensive evaluation of the behavior of helium and its diffusion mechanisms in borosilicate nuclear waste glass. Helium production was simulated by external implantation with 3He ions at a concentration (?1 at.%) 30 times higher than obtained after 10,000 years of storage. Helium diffusion coefficients as a function of temperature were extracted from the depth profiles after annealing. The 3He(d,?) 1H nuclear reaction analysis (NRA) technique was successfully adopted for low-temperature in situ measurements of depth profiles. Its high depth resolution revealed helium mobility at temperatures as low as 253 K and the presence of a trapped helium fraction. The diffusion coefficients of un-trapped helium atoms follow an Arrhenius law between 253 K and 323 K. An activation energy of 0.55 ± 0.03 eV was determined, which is consistent with a process controlled by diffusion in the glass free volume.

  19. Using Sulfur Hexafluoride to Quantify the Gas Leakage Rate within the Landscape Evolution Observatory (LEO) and the Diffusion Coefficient of the Crushed Basalt

    NASA Astrophysics Data System (ADS)

    Barta, J.; Costa, M.; Van Haren, J. L. M.; Pangle, L. A.; Troch, P. A. A.

    2014-12-01

    In order to understand the biological processes taking place on an experimental hillslope with vegetation, it is important to know the amount of gasses such as oxygen and carbon dioxide being produced and consumed. When studying the gas exchange rates in a closed system like the Landscape Evolution Observatory (LEO), one must take into account gas that is being lost or gained from other sources. Aside from biogeochemical processes, gas concentrations in the LEO atmosphere may change due to leakage to the outside environment and diffusion into the soil. To quantify these fluxes, two constants must be determined experimentally: the gas leakage constant L and the coefficient of diffusion for the hillslope soil. To accomplish this, a tracer gas, sulfur hexafluoride, was injected into the sealed east bay chamber and syringes were used to take samples periodically from the airspace and from the hillslope soil. The relative sulfur hexafluoride concentrations were then analyzed with a SRI 8610c gas chromatograph. By analyzing both the the airspace concentration decay as well as the concentration in the soil, the chamber's leakage constant was determined to be and the soil diffusion coefficient was also determined. Once these values are experimentally quantified, they can be used in equations to quantify the rate of gas leakage and soil diffusion of more important gases such as carbon dioxide and oxygen.

  20. The determination of solubility and diffusion coefficient for solids in liquids by an inverse measurement technique using cylinders of amorphous glucose as a model compound

    NASA Astrophysics Data System (ADS)

    Hu, Chengyao; Huang, Pei

    2011-05-01

    The importance of sugar and sugar-containing materials is well recognized nowadays, owing to their application in industrial processes, particularly in the food, pharmaceutical and cosmetic industries. Because of the large numbers of those compounds involved and the relatively small number of solubility and/or diffusion coefficient data for each compound available, it is highly desirable to measure the solubility and/or diffusion coefficient as efficiently as possible and to be able to improve the accuracy of the methods used. In this work, a new technique was developed for the measurement of the diffusion coefficient of a stationary solid solute in a stagnant solvent which simultaneously measures solubility based on an inverse measurement problem algorithm with the real-time dissolved amount profile as a function of time. This study differs from established techniques in both the experimental method and the data analysis. The experimental method was developed in which the dissolved amount of solid solute in quiescent solvent was investigated using a continuous weighing technique. In the data analysis, the hybrid genetic algorithm is used to minimize an objective function containing a calculated and a measured dissolved amount with time. This is measured on a cylindrical sample of amorphous glucose in methanol or ethanol. The calculated dissolved amount, that is a function of the unknown physical properties of the solid solute in the solvent, is calculated by the solution of the two-dimensional nonlinear inverse natural convection problem. The estimated values of the solubility of amorphous glucose in methanol and ethanol at 293 K were respectively 32.1 g/100 g methanol and 1.48 g/100 g ethanol, in agreement with the literature values, and support the validity of the simultaneously measured diffusion coefficient. These results show the efficiency and the stability of the developed technique to simultaneously estimate the solubility and diffusion coefficient. Also the influence of the solution density change and the initial concentration conditions on the dissolved amount was investigated by the numerical results using the estimated parameters. It is found that the theoretical assumption to simplify the inverse measurement problem algorithm is reasonable for low solubility.

  1. Series integration of the diaphragm cell transport equation when the diffusion coefficient is a function of concentration

    NASA Technical Reports Server (NTRS)

    Cain, Judith B.; Baird, James K.

    1992-01-01

    An integral of the form, t = B0 + BL ln(Delta-c) + B1(Delta-c) + B2(Delta-c)-squared + ..., where t is the time and Delta-c is the concentration difference across the frit, is derived in the case of the diaphragm cell transport equation where the interdiffusion coefficient is a function of concentration. The coefficient, B0, is a constant of the integration, while the coefficients, BL, B1, B2,..., depend in general upon the constant, the compartment volumes, and the interdiffusion coefficient and various of its concentration derivatives evaluated at the mean concentration for the cell. Explicit formulas for BL, B1, B2,... are given.

  2. Process for producing enriched uranium having a {sup 235}U content of at least 4 wt. % via combination of a gaseous diffusion process and an atomic vapor laser isotope separation process to eliminate uranium hexafluoride tails storage

    DOEpatents

    Horton, J.A.; Hayden, H.W. Jr.

    1995-05-30

    An uranium enrichment process capable of producing an enriched uranium, having a {sup 235}U content greater than about 4 wt. %, is disclosed which will consume less energy and produce metallic uranium tails having a lower {sup 235}U content than the tails normally produced in a gaseous diffusion separation process and, therefore, eliminate UF{sub 6} tails storage and sharply reduce fluorine use. The uranium enrichment process comprises feeding metallic uranium into an atomic vapor laser isotope separation process to produce an enriched metallic uranium isotopic mixture having a {sup 235} U content of at least about 2 wt. % and a metallic uranium residue containing from about 0.1 wt. % to about 0.2 wt. % {sup 235} U; fluorinating this enriched metallic uranium isotopic mixture to form UF{sub 6}; processing the resultant isotopic mixture of UF{sub 6} in a gaseous diffusion process to produce a final enriched uranium product having a {sup 235}U content of at least 4 wt. %, and up to 93.5 wt. % or higher, of the total uranium content of the product, and a low {sup 235}U content UF{sub 6} having a {sup 235}U content of about 0.71 wt. % of the total uranium content of the low {sup 235}U content UF{sub 6}; and converting this low {sup 235}U content UF{sub 6} to metallic uranium for recycle to the atomic vapor laser isotope separation process. 4 figs.

  3. Process for producing enriched uranium having a .sup.235 U content of at least 4 wt. % via combination of a gaseous diffusion process and an atomic vapor laser isotope separation process to eliminate uranium hexafluoride tails storage

    DOEpatents

    Horton, James A. (Livermore, CA); Hayden, Jr., Howard W. (Oakridge, TN)

    1995-01-01

    An uranium enrichment process capable of producing an enriched uranium, having a .sup.235 U content greater than about 4 wt. %, is disclosed which will consume less energy and produce metallic uranium tails having a lower .sup.235 U content than the tails normally produced in a gaseous diffusion separation process and, therefore, eliminate UF.sub.6 tails storage and sharply reduce fluorine use. The uranium enrichment process comprises feeding metallic uranium into an atomic vapor laser isotope separation process to produce an enriched metallic uranium isotopic mixture having a .sup.235 U content of at least about 2 wt. % and a metallic uranium residue containing from about 0.1 wt. % to about 0.2 wt. % .sup.235 U; fluorinating this enriched metallic uranium isotopic mixture to form UF.sub.6 ; processing the resultant isotopic mixture of UF.sub.6 in a gaseous diffusion process to produce a final enriched uranium product having a .sup.235 U content of at least 4 wt. %, and up to 93.5 wt. % or higher, of the total uranium content of the product, and a low .sup.235 U content UF.sub.6 having a .sup.235 U content of about 0.71 wt. % of the total uranium content of the low .sup.235 U content UF.sub.6 ; and converting this low .sup.235 U content UF.sub.6 to metallic uranium for recycle to the atomic vapor laser isotope separation process.

  4. Measurement of Defect-Mediated Diffusion: The Case of Silicon Self-Diffusion

    E-print Network

    -time diffusion, Fick's Second Law with a constant- diffusion coefficient often offers a satisfactory framework composite diffusion coefficient, thereby offering more insight into diffusion mech- anisms. For sufficiently

  5. Prediction of self-diffusion coefficient and shear viscosity of water and its binary mixtures with methanol and ethanol by molecular simulation

    NASA Astrophysics Data System (ADS)

    Guevara-Carrion, Gabriela; Vrabec, Jadran; Hasse, Hans

    2011-02-01

    Density, self-diffusion coefficient, and shear viscosity of pure liquid water are predicted for temperatures between 280 and 373 K by molecular dynamics simulation and the Green-Kubo method. Four different rigid nonpolarizable water models are assessed: SPC, SPC/E, TIP4P, and TIP4P/2005. The pressure dependence of the self-diffusion coefficient and the shear viscosity for pure liquid water is also calculated and the anomalous behavior of these properties is qualitatively well predicted. Furthermore, transport properties as well as excess volume and excess enthalpy of aqueous binary mixtures containing methanol or ethanol, based on the SPC/E and TIP4P/2005 water models, are calculated. Under the tested conditions, the TIP4P/2005 model gives the best quantitative and qualitative agreement with experiments for the regarded transport properties. The deviations from experimental data are of 5% to 15% for pure liquid water and 5% to 20% for the water + alcohol mixtures. Moreover, the center of mass power spectrum of water as well as the investigated mixtures are analyzed and the hydrogen-bonding structure is discussed for different states.

  6. Symmetry of the gradient profile as second experimental dimension in the short-time expansion of the apparent diffusion coefficient as measured with NMR diffusometry

    NASA Astrophysics Data System (ADS)

    Laun, Frederik Bernd; Kuder, Tristan Anselm; Zong, Fangrong; Hertel, Stefan; Galvosas, Petrik

    2015-10-01

    The time-dependent apparent diffusion coefficient as measured by pulsed gradient NMR can be used to estimate parameters of porous structures including the surface-to-volume ratio and the mean curvature of pores. In this work, the short-time diffusion limit and in particular the influence of the temporal profile of diffusion gradients on the expansion as proposed by Mitra et al. (1993) is investigated. It is shown that flow-compensated waveforms, i.e. those whose first moment is zero, are blind to the term linear in observation time, which is the term that is proportional to mean curvature and surface permeability. A gradient waveform that smoothly interpolates between flow-compensated and bipolar waveform is proposed and the degree of flow-compensation is used as a second experimental dimension. This two-dimensional ansatz is shown to yield an improved precision when characterizing the confining domain. This technique is demonstrated with simulations and in experiments performed with cylindrical capillaries of 100 ?m radius.

  7. Evolution of Apparent Diffusion Coefficient and Fractional Anisotropy in the Cerebrum of Asphyxiated Newborns Treated with Hypothermia over the First Month of Life.

    PubMed

    Kwan, Saskia; Boudes, Elodie; Benseler, Anouk; Gilbert, Guillaume; Saint-Martin, Christine; Shevell, Michael; Wintermark, Pia

    2015-01-01

    The objective of this study was to assess the evolution of diffusion-weighted imaging (DWI) and diffusion-tensor imaging (DTI) over the first month of life in asphyxiated newborns treated with hypothermia and to compare it with that of healthy newborns. Asphyxiated newborns treated with hypothermia were enrolled prospectively; and the presence and extent of brain injury were scored on each MRI. Apparent diffusion coefficient (ADC) and fractional anisotropy (FA) values were measured in the basal ganglia, in the white matter and in the cortical grey matter. Sixty-one asphyxiated newborns treated with hypothermia had a total of 126 ADC and FA maps. Asphyxiated newborns developing brain injury eventually had significantly decreased ADC values on days 2-3 of life and decreased FA values around day 10 and 1 month of life compared with those not developing brain injury. Despite hypothermia treatment, asphyxiated newborns may develop brain injury that still can be detected with advanced neuroimaging techniques such as DWI and DTI as early as days 2-3 of life. A study of ADC and FA values over time may aid in the understanding of how brain injury develops in these newborns despite hypothermia treatment. PMID:26229690

  8. Evolution of Apparent Diffusion Coefficient and Fractional Anisotropy in the Cerebrum of Asphyxiated Newborns Treated with Hypothermia over the First Month of Life

    PubMed Central

    Kwan, Saskia; Boudes, Elodie; Benseler, Anouk; Gilbert, Guillaume; Saint-Martin, Christine; Shevell, Michael; Wintermark, Pia

    2015-01-01

    The objective of this study was to assess the evolution of diffusion-weighted imaging (DWI) and diffusion-tensor imaging (DTI) over the first month of life in asphyxiated newborns treated with hypothermia and to compare it with that of healthy newborns. Asphyxiated newborns treated with hypothermia were enrolled prospectively; and the presence and extent of brain injury were scored on each MRI. Apparent diffusion coefficient (ADC) and fractional anisotropy (FA) values were measured in the basal ganglia, in the white matter and in the cortical grey matter. Sixty-one asphyxiated newborns treated with hypothermia had a total of 126 ADC and FA maps. Asphyxiated newborns developing brain injury eventually had significantly decreased ADC values on days 2-3 of life and decreased FA values around day 10 and 1 month of life compared with those not developing brain injury. Despite hypothermia treatment, asphyxiated newborns may develop brain injury that still can be detected with advanced neuroimaging techniques such as DWI and DTI as early as days 2-3 of life. A study of ADC and FA values over time may aid in the understanding of how brain injury develops in these newborns despite hypothermia treatment. PMID:26229690

  9. On the magnitude and variability of subgrid-scale eddy-diffusion coefficients in the atmospheric surface layer

    NASA Astrophysics Data System (ADS)

    Kleissl, J.; Meneveau, C.; Parlange, M. B.

    2003-04-01

    A field study (Horizontal Array Turbulence Study - HATS) was performed during the summer of 2000 in collaboration with NCAR (ATD and MMM Divisions). The instrumentation consists of two vertically separated horizontal arrays of 3d-sonic anemometers, placed in the atmospheric surface layer. Here we present analysis of the data to address open problems in turbulence modelling for LES of atmospheric boundary layers. From 2d-filtering and differentiating the velocity fields, subgrid-scale (SGS) and resolved quantities are computed. The Smagorinsky coefficient c_s is obtained from the data by matching time-averaged measured and modelled SGS dissipations under various flow conditions. Results indicate that c_s is reduced near the ground, and also decreases rapidly with increasing stability in stable atmospheric conditions. A simple fit to the data is given that can be used in simulations. Pdfs of c_s conditioned on stability are computed to study the median and variability of c_s when different averaging time-scales are used to compute the coefficient. It can be concluded that the mode and median of the pdfs are essentially independent of the time-scale used for statistical averaging, which is an encouraging result for applications of the lagrangian dynamic SGS model. The width of the pdfs decreases with increasing averaging time, for unstable and neutral stability conditions. For stable conditions, the relative variability of the coefficient remains strong even for long averaging times, indicative of strong intermittency. In unstable conditions, c_s is fairly independent of local strain-rate magnitude, supporting the basic scaling of the Smagorinsky eddy viscosity. For stable conditions, a transition occurs between small local strain rate magnitudes, where c_s is nearly constant, and high local strain-rate magnitudes, where c_s decreases appreciably. The results suggest that when the filter scale approaches the local integral scale of turbulence (height above the ground or Monin-Obukhov length), one needs to include the friction velocity as relevant velocity to scale the eddy viscosity, in addition to the standard velocity scale of the Smagorinsky model based on filtered strain-rate magnitude.

  10. A Comparative Study of the Harmonic and Arithmetic Averaging of Diffusion Coefficients for Non-linear Heat Conduction Problems

    SciTech Connect

    Samet Y. Kadioglu; Robert R. Nourgaliev; Vincent A. Mousseau

    2008-03-01

    We perform a comparative study for the harmonic versus arithmetic averaging of the heat conduction coefficient when solving non-linear heat transfer problems. In literature, the harmonic average is the method of choice, because it is widely believed that the harmonic average is more accurate model. However, our analysis reveals that this is not necessarily true. For instance, we show a case in which the harmonic average is less accurate when a coarser mesh is used. More importantly, we demonstrated that if the boundary layers are finely resolved, then the harmonic and arithmetic averaging techniques are identical in the truncation error sense. Our analysis further reveals that the accuracy of these two techniques depends on how the physical problem is modeled.

  11. The Effect of Temperature on Kinetics and Diffusion Coefficients of Metallocene Derivatives in Polyol-Based Deep Eutectic Solvents

    PubMed Central

    Bahadori, Laleh; Chakrabarti, Mohammed Harun; Manan, Ninie Suhana Abdul; Hashim, Mohd Ali; Mjalli, Farouq Sabri; AlNashef, Inas Muen; Brandon, Nigel

    2015-01-01

    The temperature dependence of the density, dynamic viscosity and ionic conductivity of several deep eutectic solvents (DESs) containing ammonium-based salts and hydrogen bond donvnors (polyol type) are investigated. The temperature-dependent electrolyte viscosity as a function of molar conductivity is correlated by means of Walden’s rule. The oxidation of ferrocene (Fc/Fc+) and reduction of cobaltocenium (Cc+/Cc) at different temperatures are studied by cyclic voltammetry and potential-step chronoamperometry in DESs. For most DESs, chronoamperometric transients are demonstrated to fit an Arrhenius-type relation to give activation energies for the diffusion of redox couples at different temperatures. The temperature dependence of the measured conductivities of DES1 and DES2 are better correlated with the Vogel-Tamman-Fulcher equation. The kinetics of the Fc/Fc+ and Cc+/Cc electrochemical systems have been investigated over a temperature range from 298 to 338 K. The heterogeneous electron transfer rate constant is then calculated at different temperatures by means of a logarithmic analysis. The glycerol-based DES (DES5) appears suitable for further testing in electrochemical energy storage devices. PMID:26642045

  12. Transport Properties of Liquid and Gaseous D2O over a Wide Range of Temperature and Pressure

    NASA Astrophysics Data System (ADS)

    Matsunaga, N.; Nagashima, A.

    1983-10-01

    Data for the viscosity and thermal conductivity of dense gaseous and liquid heavy water (D2O) have been reviewed and critically evaluated. Selected data were fitted to equations, from which tables of values were generated from temperatures up to 500 °C and for pressures up to 100 MPa for the viscosity and up to 550 °C and 100 MPa for the thermal conductivity. The uncertainties of the tabular values were estimated. The present paper is intended to explain the background of the International Representations of the Viscosity and Thermal Conductivity of Heavy Water Substance of the International Association for the Properties of Steam. With the aid of the present correlations, the kinematic viscosity, thermal diffusivity, and Prandtl number have been calculated. The present status of the gaseous diffusion coefficient is also briefly reviewed.

  13. SOIL-DIFFUSIVE GRADIENT IN THIN FILMS PARTITION COEFFICIENTS ESTIMATE METAL BIOAVAILABILITY TO CROPS AT FERTILIZED FIELD SITES

    PubMed Central

    PEREZ, ANGELA L.

    2014-01-01

    Field trials in four distinct agricultural soils were conducted to examine changes to total recoverable and labile soil Cd and Ni concentrations with applications of commercial phosphate fertilizers. The edible portion of wheat and potato crops grown at the field plots were analyzed for recoverable Cd and Ni. Total recoverable Ni and Cd concentrations in agricultural soils increased by 10 and 22%, respectively, each year of the study at recommended application rates. Labile Cd and Ni were measured using diffusive gradients in thin films (DGT), a passive sampling device reported to estimate the plant bioavailable metal fraction. Nickel concentrations measured with DGT did not significantly change with treatment nor did they change over time. Cadmium concentrations measured with DGT increased with application rate and over time from 2003 to 2005, then decreased in 2006. Wheat grain Cd concentrations and Cd and Ni levels in tubers increased significantly with fertilizer treatment level. Grain and tuber Cd values exceeded the minimal risk levels for chronic oral exposure. At agronomical P-fertilizer application rates, 25% of plant samples deviated from the Cd minimal risk levels. The present study reports the use of Kd-BIO, defined as the ratio of total recoverable metal to GT measured metal, as a significant indicator of crop metal accumulation in the edible portion. The Kd-BIO values were well correlated with both grain and tuber concentrations over multiple growing seasons. Results from long-term field trials emphasize Kd-BIO as a dynamic term that provides risk characterization information about the fate of Cd and Ni in aged, fertilized agricultural soils and crops. PMID:19432507

  14. The mobile lidar system ARGOS for spatial resolution remote measuring of gaseous air pollutants

    NASA Astrophysics Data System (ADS)

    Weitkamp, Claus; Goers, Uta-Barbara; Glauer, Juergen; Lahmann, Wilhelm; Bisling, Peter; Koehler, Sundolf; Michaelis, Walfried

    1992-08-01

    A remote measuring system, which is based on the principle of differential absorption and diffusion lidar, is developed for detection of nitrogen dioxide, sulfur dioxide, and ozone. The ARGOS (Advanced Remote Gaseous Oxides Sensor) system uses differential absorption of light with different wavelengths; for that two short light pulses from pumped dye lasers are simultaneously sent in the atmosphere. A three component Doppler sodar is used for measuring wind direction and velocity. The system allows atmosphere backscattering coefficient to be estimated as a measure for spray and dust concentration in the air. Curves of SO2 distribution in an industrial area and horizontal profile of ozone concentration are presented as examples.

  15. Technical aspects of gaseous formaldehyde as a sterilant.

    PubMed

    Handlos, V

    1984-03-01

    The design of a sterilizer for sterilization of heat sensitive items using gaseous formaldehyde and steam is described. The sterilizer is able to create a constant formaldehyde-steam concentration over a period of at least one hour. It is further able to operate at formaldehyde concentrations close to saturation with only small residues on sterilized plastic materials. The autoclave is used for measurement of formaldehyde solubility in polyolefines and poly(vinyl chloride) being approx. 15 and 250 ppm, respectively, at 70 degrees C and 30 mg HCHO I-1. The diffusion coefficient of formaldehyde in poly(vinyl chloride) is measured and is in the same order of magnitude as for ethylene oxide in poly(methyl methacrylate) i.e. 10(-10) cm2 s-1. Measurements of airborne formaldehyde in front of different sterilizers show that it is possible to design facilities meeting occupational exposure limits. PMID:6722252

  16. Pretreatment Apparent Diffusion Coefficient of the Primary Lesion Correlates With Local Failure in Head-and-Neck Cancer Treated With Chemoradiotherapy or Radiotherapy

    SciTech Connect

    Hatakenaka, Masamitsu; Nakamura, Katsumasa; Yabuuchi, Hidetake; Shioyama, Yoshiyuki; Matsuo, Yoshio; Ohnishi, Kayoko; Sunami, Shunya; Kamitani, Takeshi; Setoguchi, Taro; Yoshiura, Takashi; Nakashima, Torahiko; Nishikawa, Kei; Honda, Hiroshi

    2011-10-01

    Purpose: This study was performed to evaluate whether the apparent diffusion coefficient (ADC) of a primary lesion correlates with local failure in primary head-and-neck squamous cell carcinoma (HNSCC) treated with chemoradiotherapy or radiotherapy. Methods and Materials: We retrospectively studied 38 patients with primary HNSCC (12 oropharynx, 20 hypopharynx, 4 larynx, 2 oral cavity) treated with chemoradiotherapy or radiotherapy with radiation dose to gross tumor volume equal to or over 60 Gy and who underwent pretreatment magnetic resonance imaging, including diffusion-weighted imaging. Ten patients developed local failure during follow-up periods of 2.0 to 9.3 months, and the remaining 28 showed local control during follow-up periods of 10.5 to 31.7 months. The variables that could affect local failure (age, tumor volume, ADC, T stage, N stage, dose, treatment method, tumor location, and overall treatment time) were analyzed using logistic regression analyses for all 38 patients and for 17 patients with Stage T3 or T4 disease. Results: In univariate logistic analysis for all 38 cases, tumor volume, ADC, T stage, and treatment method showed significant (p < 0.05) associations with local failure. In multivariate analysis, ADC and T stage revealed significance (p < 0.01). In univariate logistic analysis for the 17 patients with Stage T3 or T4 disease, ADC and dose showed significant (p < 0.01) associations with local failure. In multivariate analysis, ADC alone showed significance (p < 0.05). Conclusions: The results suggest that pretreatment ADC, along with T stage, is a potential indicator of local failure in HNSCC treated with chemoradiotherapy or radiotherapy.

  17. Determination of diffusion coefficients of hydrogen in fused silica between 296 and 523 K by Raman spectroscopy and application of fused silica capillaries in studying redox reactions

    USGS Publications Warehouse

    Shang, L.; Chou, I.-Ming; Lu, W.; Burruss, R.C.; Zhang, Y.

    2009-01-01

    Diffusion coefficients (D) of hydrogen in fused silica capillaries (FSC) were determined between 296 and 523 K by Raman spectroscopy using CO2 as an internal standard. FSC capsules (3.25 ?? 10-4 m OD, 9.9 ?? 10-5 m ID, and ???0.01 m long) containing CO2 and H2 were prepared and the initial relative concentrations of hydrogen in these capsules were derived from the Raman peak-height ratios between H2 (near 587 cm-1) and CO2 (near 1387 cm-1). The sample capsules were then heated at a fixed temperature (T) at one atmosphere to let H2 diffuse out of the capsule, and the changes of hydrogen concentration were monitored by Raman spectroscopy after quench. This process was repeated using different heating durations at 296 (room T), 323, 375, 430, 473, and 523 K; the same sample capsule was used repeatedly at each temperature. The values of D (in m2 s-1) in FSC were obtained by fitting the observed changes of hydrogen concentration in the FSC capsule to an equation based on Fick's law. Our D values are in good agreement with the more recent of the two previously reported experimental data sets, and both can be represented by: ln D = - (16.471 ?? 0.035) - frac(44589 ?? 139, RT) (R2 = 0.99991) where R is the gas constant (8.3145 J/mol K), T in Kelvin, and errors at 1?? level. The slope corresponds to an activation energy of 44.59 ?? 0.14 kJ/mol. The D in FSC determined at 296 K is about an order of magnitude higher than that in platinum at 723 K, indicating that FSC is a suitable membrane for hydrogen at temperature between 673 K and room temperature, and has a great potential for studying redox reactions at these temperatures, especially for systems containing organic material and/or sulphur. ?? 2009 Elsevier Ltd.

  18. Issues and recommendations related to replacement of CFC-114 at the uranium enrichment gaseous diffusion plant. Task title: Chlorofluorocarbon (CFC) Program Review, Final report, August 1, 1991--October 1, 1992

    SciTech Connect

    Anderson, B.L.; Banaghan, E.

    1993-03-31

    The operating uranium enrichment gaseous diffusion plants (GDPs) in Portsmouth, Ohio and Paducah, Kentucky, which are operated for the United States Department for Energy by Martin Marietta Energy Systems (MMES), currently use a chlorofluorocarbon (CFC-114) as the primary process stream coolant. Due to recent legislation embodied in the Clean Air Act, the production of this and other related chlorofluorocarbons (CFCS) are to be phased out with no production occurring after 1995. Since the plants lose approximately 500,000 pounds per year of this process stream coolant through various leaks, the GDPs are faced with the challenge of identifying a replacement coolant that will allow continued operation of the plants. MMES formed the CFC Task Team to identify and solve the various problems associated with identifying and implementing a replacement coolant. This report includes a review of the work performed by the CFC Task Team, and recommendations that were formulated based on this review and upon original work. The topics covered include; identifying a replacement coolant, coolant leak detection and repair efforts, coolant safety concerns, coolant level sensors, regulatory issues, and an analytical decision analysis.

  19. Lessons-Learned from D and D Activities at the Five Gaseous Diffusion Buildings (K-25, K- 27, K-29, K-31 and K-33) East Tennessee Technology Park, Oak Ridge, TN - 13574

    SciTech Connect

    Kopotic, James D.; Ferri, Mark S.; Buttram, Claude

    2013-07-01

    The East Tennessee Technology Park (ETTP) is the site of five former gaseous diffusion plant (GDP) process buildings that were used to enrich uranium from 1945 to 1985. The process equipment in the original two buildings (K-25 and K-27) was used for the production of highly enriched uranium (HEU), while that in the three later buildings (K-29, K-31 and K-33) produced low enriched uranium (LEU). Equipment was contaminated primarily with uranium and to a lesser extent technetium (Tc). Decommissioning of the GDP process buildings has presented several unique challenges and produced many lessons-learned. Among these is the importance of good, up-front characterization in developing the best demolition approach. Also, chemical cleaning of process gas equipment and piping (PGE) prior to shutdown should be considered to minimize the amount of hold-up material that must be removed by demolition crews. Another lesson learned is to maintain shutdown buildings in a dry state to minimize structural degradation which can significantly complicate characterization, deactivation and demolition efforts. Perhaps the most important lesson learned is that decommissioning GDP process buildings is first and foremost a waste logistics challenge. Innovative solutions are required to effectively manage the sheer volume of waste generated from decontamination and demolition (D and D) of these enormous facilities. Finally, close coordination with Security is mandatory to effectively manage Special Nuclear Material (SNM) and classified equipment issues. (authors)

  20. Refurbishment of uranium hexafluoride cylinder storage yards C-745-K, L, M, N, and P and construction of a new uranium hexafluoride cylinder storage yard (C-745-T) at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky

    SciTech Connect

    1996-07-01

    The Paducah Gaseous Diffusion Plant (PGDP) is a uranium enrichment facility owned by the US Department of Energy (DOE). A residual of the uranium enrichment process is depleted uranium hexafluoride (UF6). Depleted UF6, a solid at ambient temperature, is stored in 32,200 steel cylinders that hold a maximum of 14 tons each. Storage conditions are suboptimal and have resulted in accelerated corrosion of cylinders, increasing the potential for a release of hazardous substances. Consequently, the DOE is proposing refurbishment of certain existing yards and construction of a new storage yard. This environmental assessment (EA) evaluates the impacts of the proposed action and no action and considers alternate sites for the proposed new storage yard. The proposed action includes (1) renovating five existing cylinder yards; (2) constructing a new UF6 storage yard; handling and onsite transport of cylinders among existing yards to accommodate construction; and (4) after refurbishment and construction, restacking of cylinders to meet spacing and inspection requirements. Based on the results of the analysis reported in the EA, DOE has determined that the proposed action is not a major Federal action that would significantly affect the quality of the human environment within the context of the National Environmental Policy Act of 1969. Therefore, DOE is issuing a Finding of No Significant Impact. Additionally, it is reported in this EA that the loss of less than one acre of wetlands at the proposed project site would not be a significant adverse impact.

  1. Determination of oxygen adsorption-desorption rates and diffusion rate coefficients in perovskites at different oxygen partial pressures by a microkinetic approach.

    PubMed

    Rochoux, M; Guo, Y; Schuurman, Y; Farrusseng, D

    2015-01-14

    A novel, powerful method based on a microkinetic approach is described for the estimation of the oxygen transport parameters of mixed electronic conducting materials (MIECs). This method is validated on the perovskite La0.6Sr0.4Co0.2Fe0.8O3-? and has been applied on Ba0.5Sr0.5Co0.8Fe0.2O3-?. This approach is original and relevant in that the surface kinetic rate constants are measured using a sample in powder form. In contrast to methods previously used, such as isotope exchange depth profiling (IEDP) and electrical conductivity relaxation (ECR), which determine the global exchange kinetic parameter, our microkinetic modelling approach allows the estimation of the forward and reverse kinetic rates accounting for the oxygen vacancy concentration. Also, the self-diffusion rate coefficient has been estimated at different oxygen partial pressures. This microkinetic approach, which combines SSITKA (steady-state isotopic transient kinetic analysis) and thermogravimetric measurements at controlled oxygen partial pressure, has the potential to significantly accelerate the characterization of oxygen transport in perovskites and related materials in the future. In this study, the kinetic parameters were measured in a temperature window between 873 K and 1173 K, and at two oxygen pressure conditions (21 kPa and 1 kPa) that are appropriate for simulating the semi-permeability of oxygen in a membrane in a process of oxygen separation from air. PMID:25429893

  2. The Diagnostic Ability of Follow-Up Imaging Biomarkers after Treatment of Glioblastoma in the Temozolomide Era: Implications from Proton MR Spectroscopy and Apparent Diffusion Coefficient Mapping

    PubMed Central

    Bulik, Martin; Kazda, Tomas; Slampa, Pavel; Jancalek, Radim

    2015-01-01

    Objective. To prospectively determine institutional cut-off values of apparent diffusion coefficients (ADCs) and concentration of tissue metabolites measured by MR spectroscopy (MRS) for early differentiation between glioblastoma (GBM) relapse and treatment-related changes after standard treatment. Materials and Methods. Twenty-four GBM patients who received gross total resection and standard adjuvant therapy underwent MRI examination focusing on the enhancing region suspected of tumor recurrence. ADC maps, concentrations of N-acetylaspartate, choline, creatine, lipids, and lactate, and metabolite ratios were determined. Final diagnosis as determined by biopsy or follow-up imaging was correlated to the results of advanced MRI findings. Results. Eighteen (75%) and 6 (25%) patients developed tumor recurrence and pseudoprogression, respectively. Mean time to radiographic progression from the end of chemoradiotherapy was 5.8 ± 5.6 months. Significant differences in ADC and MRS data were observed between those with progression and pseudoprogression. Recurrence was characterized by N-acetylaspartate ? 1.5?mM, choline/N-acetylaspartate ? 1.4 (sensitivity 100%, specificity 91.7%), N-acetylaspartate/creatine ? 0.7, and ADC ? 1300 × 10?6?mm2/s (sensitivity 100%, specificity 100%). Conclusion. Institutional validation of cut-off values obtained from advanced MRI methods is warranted not only for diagnosis of GBM recurrence, but also as enrollment criteria in salvage clinical trials and for reporting of outcomes of initial treatment. PMID:26448943

  3. Environmental site description for a Uranium Atomic Vapor Laser Isotope Separation (U-AVLIS) production plant at the Paducah Gaseous Diffusion Plant site

    SciTech Connect

    Marmer, G.J.; Dunn, C.P.; Moeller, K.L.; Pfingston, J.M.; Policastro, A.J.; Yuen, C.R.; Cleland, J.H.

    1991-09-01

    Uranium enrichment in the United States has utilized a diffusion process to preferentially enrich the U-235 isotope in the uranium product. The U-AVLIS process is based on electrostatic extraction of photoionized U-235 atoms from an atomic vapor stream created by electron-beam vaporization of uranium metal alloy. The U-235 atoms are ionized when precisely tuned laser light -- of appropriate power, spectral, and temporal characteristics -- illuminates the uranium vapor and selectively photoionizes the U-235 isotope. A programmatic document for use in screening DOE site to locate a U-AVLIS production plant was developed and implemented in two parts. The first part consisted of a series of screening analyses, based on exclusionary and other criteria, that identified a reasonable number of candidate sites. These sites were subjected to a more rigorous and detailed comparative analysis for the purpose of developing a short list of reasonable alternative sites for later environmental examination. This environmental site description (ESD) provides a detailed description of the PGDP site and vicinity suitable for use in an environmental impact statement (EIS). The report is based on existing literature, data collected at the site, and information collected by Argonne National Laboratory (ANL) staff during a site visit. 65 refs., 15 tabs.

  4. Evaluation of natural attenuation processes for trichloroethylene and technetium-99 in the Northeast and Northwest plumes at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky

    SciTech Connect

    Clausen, J.L.; Sturchio, N.C.; Heraty, L.J.; Huang, L.; Abrajano,T.

    1997-11-25

    NA processes such as biodegradation, sorption, dilution dispersion, advection, and possibly sorption and diffusion are occurring in the Northeast and Northwest plumes. However, the overall biological attenuation rate for TCE within the plumes is not sufficiently rapid to utilize as remedial option. The mobility and toxicity of {sup 99}Tc is not being reduced by attenuating processes within the Northwest Plume. The current EPA position is that NA is not a viable remedial approach unless destructive processes are present or processes are active which reduce the toxicity and mobility of a contaminant. Therefore, active remediation of the dissolved phase plumes will be necessary to reduce contaminant concentrations before an NA approach could be justified at PGDP for either plume. Possible treatment methods for the reduction of dissolved phase concentrations within the plumes are pump-and-treat bioaugmentation, biostimulation, or multiple reactive barriers. Another possibility is the use of a regulatory instrument such as an Alternate Concentration Limit (ACL) petition. Biodegradation of TCE is occurring in both plumes and several hypothesis are possible to explain the apparent conflicts with some of the geochemical data. The first hypothesis is active intrinsic bioremediation is negligible or so slow to be nonmeasurable. In this scenario, the D.O., chloride, TCE, and isotopic results are indicative of past microbiological reactions. It is surmised in this scenario, that when the initial TCE release occurred, sufficient energy sources were available for microorganisms to drive aerobic reduction of TCE, but these energy sources were rapidly depleted. The initial degraded TCE has since migrated to downgradient locations. In the second scenario, TCE anaerobic degradation occurs in organic-rich micro-environments within a generally aerobic aquifer. TCE maybe strongly absorbed to organic-rich materials in the aquifer matrix and degraded by local Immunities of microbes, perhaps even under anaerobic conditions. Chloride, generated by degradation in such microenvironment is released rapidly into the water, as is CO{sub 2}, from respiration of the microorganisms. TCE and its organic degradation products are retained on the aquifer matrix by sorption, and released more slowly into the groundwater. In this process, chloride produced from the microbial reaction may become separated in the plume from the residual TCE. This may explain why the chloride isotope ratio and dissolved TCE do not correlate with the DIC isotope ratio. The relationship between the {delta}{sup 37}Cl values of TCE and dissolved inorganic chloride is consistent with what would be expected from the degradation of TCE, but is complicated by the elevated levels of background chloride, presumably due to agriculture practice, and complex behavior of TCE in the aquifer.

  5. Global Optimization by Adapted Diffusion

    E-print Network

    Poliannikov, Oleg V.

    In this paper, we study a diffusion stochastic dynamics with a general diffusion coefficient. The main result is that adapting the diffusion coefficient to the Hamiltonian allows to escape local wide minima and to speed ...

  6. Computational Modeling of Li Diffusion Using Molecular Dynamics

    E-print Network

    Holzwarth, Natalie

    D. Diffusion and Activation Energy Calculations...................................................................16 3) Diffusion Coefficients and Activation Energies ..........................................18 C ..........................................................................22 2) Diffusion Coefficients and Activation Energies ..........................................27 IV

  7. Estimation of optimal b-value sets for obtaining apparent diffusion coefficient free from perfusion in non-small cell lung cancer

    NASA Astrophysics Data System (ADS)

    Karki, Kishor; Hugo, Geoffrey D.; Ford, John C.; Olsen, Kathryn M.; Saraiya, Siddharth; Groves, Robert; Weiss, Elisabeth

    2015-10-01

    The purpose of this study was to determine optimal sets of b-values in diffusion-weighted MRI (DW-MRI) for obtaining monoexponential apparent diffusion coefficient (ADC) close to perfusion-insensitive intravoxel incoherent motion (IVIM) model ADC (ADCIVIM) in non-small cell lung cancer. Ten subjects had 40 DW-MRI scans before and during radiotherapy in a 1.5 T MRI scanner. Respiratory triggering was applied to the echo-planar DW-MRI with \\text{TR}? 4500 ms, TE??=??74?ms, eight b-values of 0-1000 ?s ?m-2, pixel size??=??1.98× 1.98 mm2, slice thickness??=??6?mm, interslice gap??=??1.2?mm, 7 axial slices and total acquisition time ?6?min. One or more DW-MRI scans together covered the whole tumour volume. Monoexponential model ADC values using various b-value sets were compared to reference-standard ADCIVIM values using all eight b-values. Intra-scan coefficient of variation (CV) of active tumour volumes was computed to compare the relative noise in ADC maps. ADC values for one pre-treatment DW-MRI scan of each of the 10 subjects were computed using b-value pairs from DW-MRI images synthesized for b-values of 0-2000 ?s ?m-2 from the estimated IVIM parametric maps and corrupted by various Rician noise levels. The square root of mean of squared error percentage (RMSE) of the ADC value relative to the corresponding ADCIVIM for the tumour volume of the scan was computed. Monoexponential ADC values for the b-value sets of 250 and 1000; 250, 500 and 1000; 250, 650 and 1000; 250, 800 and 1000; and 250-1000 ?s ?m-2 were not significantly different from ADCIVIM values (p>0.05 , paired t-test). Mean error in ADC values for these sets relative to ADCIVIM were within 3.5%. Intra-scan CVs for these sets were comparable to that for ADCIVIM. The monoexponential ADC values for other sets—0-1000 50-1000 100-1000 500-1000 and 250 and 800 ?s ?m-2 were significantly different from the ADCIVIM values. From Rician noise simulation using b-value pairs, there was a wide range of acceptable b-value pairs giving small RMSE of ADC values relative to ADCIVIM. The pairs for small RMSE had lower b-values as the noise level increased. ADC values of a two b-value set—250 and 1000 ?s ?m-2, and all three b-value sets with 250, 1000 ?s ?m-2 and an intermediate value approached ADCIVIM, with relative noise comparable to that of ADCIVIM. These sets may be used in lung tumours using comparatively short scan and post-processing times. Rician noise simulation suggested that the b-values in the vicinity of these experimental best b-values can be used with error within an acceptable limit. It also suggested that the optimal sets will have lower b-values as the noise level becomes higher.

  8. Simultaneous [18F]FDG-PET/MRI: Correlation of Apparent Diffusion Coefficient (ADC) and Standardized Uptake Value (SUV) in Primary and Recurrent Cervical Cancer

    PubMed Central

    Bremicker, K.; Höckel, M.; Barthel, H.; Kluge, R.; Kahn, T.; Sabri, O.; Stumpp, P.

    2015-01-01

    Objectives Previous non–simultaneous PET/MR studies have shown heterogeneous results about the correlation between standardized uptake values (SUVs) and apparent diffusion coefficients (ADCs). The aim of this study was to investigate correlations in patients with primary and recurrent tumors using a simultaneous PET/MRI system which could lead to a better understanding of tumor biology and might play a role in early response assessment. Methods We included 31 patients with histologically confirmed primary (n = 14) or recurrent cervical cancer (n = 17) who underwent simultaneous whole-body 18F-FDG-PET/MRI comprising DWI. Image analysis was performed by a radiologist and a nuclear physician who identified tumor margins and quantified ADC and SUV. Pearson correlations were calculated to investigate the association between ADC and SUV. Results 92 lesions were detected. We found a significant inverse correlation between SUVmax and ADCmin (r = -0.532, p = 0.05) in primary tumors as well as in primary metastases (r = -0.362, p = 0.05) and between SUVmean and ADCmin (r = -0.403, p = 0.03). In recurrent local tumors we found correlations for SUVmax and ADCmin (r = -0.747, p = 0.002) and SUVmean and ADCmin (r = -0.773, p = 0.001). Associations for recurrent metastases were not significant (p>0.05). Conclusions Our study demonstrates the feasibility of fast and reliable measurement of SUV and ADC with simultaneous PET/MRI. In patients with cervical cancer we found significant inverse correlations for SUV and ADC which could play a major role for further tumor characterization and therapy decisions. PMID:26551527

  9. Explicit expressions of self-diffusion coefficient, shear viscosity, and the Stokes-Einstein relation for binary mixtures of Lennard-Jones liquids

    NASA Astrophysics Data System (ADS)

    Ohtori, Norikazu; Ishii, Yoshiki

    2015-10-01

    Explicit expressions of the self-diffusion coefficient, Di, and shear viscosity, ?sv, are presented for Lennard-Jones (LJ) binary mixtures in the liquid states along the saturated vapor line. The variables necessary for the expressions were derived from dimensional analysis of the properties: atomic mass, number density, packing fraction, temperature, and the size and energy parameters used in the LJ potential. The unknown dependence of the properties on each variable was determined by molecular dynamics (MD) calculations for an equimolar mixture of Ar and Kr at the temperature of 140 K and density of 1676 kg m-3. The scaling equations obtained by multiplying all the single-variable dependences can well express Di and ?sv evaluated by the MD simulation for a whole range of compositions and temperatures without any significant coupling between the variables. The equation for Di can also explain the dual atomic-mass dependence, i.e., the average-mass and the individual-mass dependence; the latter accounts for the "isotope effect" on Di. The Stokes-Einstein (SE) relation obtained from these equations is fully consistent with the SE relation for pure LJ liquids and that for infinitely dilute solutions. The main differences from the original SE relation are the presence of dependence on the individual mass and on the individual energy parameter. In addition, the packing-fraction dependence turned out to bridge another gap between the present and original SE relations as well as unifying the SE relation between pure liquids and infinitely dilute solutions.

  10. Stratospheric hydroxyl radical concentrations - New limitations suggested by observations of gaseous and particulate sulfur

    NASA Technical Reports Server (NTRS)

    Turco, R. P.; Whitten, R. C.; Toon, O. B.; Inn, E. C. Y.; Hamill, P.

    1981-01-01

    A one-dimensional aerosol model is employed in investigating the sensitivity of the stratospheric distributions of gaseous sulfur compounds and sulfate aerosol particles to changes in OH and CS2 concentrations, in eddy diffusion coefficients, and in important chemical rate constants. By comparing model predictions with recent observational data for SO2, OCS, and particulates, it is found that, with regard to atmospheric sulfur, CS2 is only a secondary source of sulfur for the stratosphere relative to OCS and that background tropospheric CS2 concentrations by volume are likely to be less than 70 parts per trillion. It is also established that under stratospheric conditions the rate coefficients for the reactions of OH with OCS and CS2 may be substantially smaller than the room temperature laboratory values of Kurylo (1978).

  11. INDEPENDENT TECHNICAL REVIEW OF THE FOCUSED FEASIBILITY STUDY AND PROPOSED PLAN FOR DESIGNATED SOLID WASTE MANAGEMENT UNITS CONTRIBUTING TO THE SOUTHWEST GROUNDWATER PLUME AT THE PADUCAH GASEOUS DIFFUSION PLANT

    SciTech Connect

    Looney, B.; Eddy-Dilek, C.; Amidon, M.; Rossabi, J.; Stewart, L.

    2011-05-31

    The U. S. Department of Energy (DOE) is currently developing a Proposed Plan (PP) for remediation of designated sources of chlorinated solvents that contribute contamination to the Southwest (SW) Groundwater Plume at the Paducah Gaseous Diffusion Plant (PGDP), in Paducah, KY. The principal contaminants in the SW Plume are trichloroethene (TCE) and other volatile organic compounds (VOCs); these industrial solvents were used and disposed in various facilities and locations at PGDP. In the SW plume area, residual TCE sources are primarily in the fine-grained sediments of the Upper Continental Recharge System (UCRS), a partially saturated zone that delivers contaminants downward into the coarse-grained Regional Gravel Aquifer (RGA). The RGA serves as the significant lateral groundwater transport pathway for the plume. In the SW Plume area, the four main contributing TCE source units are: (1) Solid Waste Management Unit (SWMU) 1 / Oil Landfarm; (2) C-720 Building TCE Northeast Spill Site (SWMU 211A); (3) C-720 Building TCE Southeast Spill Site (SWMU 211B); and (4) C-747 Contaminated Burial Yard (SWMU 4). The PP presents the Preferred Alternatives for remediation of VOCs in the UCRS at the Oil Landfarm and the C-720 Building spill sites. The basis for the PP is documented in a Focused Feasibility Study (FFS) (DOE, 2011) and a Site Investigation Report (SI) (DOE, 2007). The SW plume is currently within the boundaries of PGDP (i.e., does not extend off-site). Nonetheless, reasonable mitigation of the multiple contaminant sources contributing to the SW plume is one of the necessary components identified in the PGDP End State Vision (DOE, 2005). Because of the importance of the proposed actions DOE assembled an Independent Technical Review (ITR) team to provide input and assistance in finalizing the PP.

  12. Contribution to the benchmark for ternary mixtures: Measurement of the Soret, diffusion and thermodiffusion coefficients in the ternary mixture THN/IBB/nC12 with 0.8/0.1/0.1 mass fractions in ground and orbital laboratories.

    PubMed

    Mialdun, A; Legros, J-C; Yasnou, V; Sechenyh, V; Shevtsova, V

    2015-04-01

    We have determined the Soret (ST), diffusion (D, and thermodiffusion (DT) coefficients in a ternary mixture of tetralin-isobutylbenzene-n-dodecane with a composition of 0.80/0.10/0.10 by mass fraction at a temperature of 298K. The Soret coefficients were measured in the microgravity experiment DCMIX1 and on the ground by optical digital interferometry (ODI) using two lasers with different wavelengths. The values of the Soret coefficients were determined from the stationary separation of the components using two- and six-parameter fits. The diffusion coefficients were independently measured using the Taylor Dispersion Technique in the ground laboratory, and the thermodiffusion coefficients were derived from known ST and matrix D. The processing of the data from the DCMIX experiment conducted on the International Space Station is discussed in detail. The multi-user design of the on-board instrument causes perturbations in the component separation. Several recommendations are suggested for improving the quality of the microgravity results. For example, we demonstrated that the tomography reconstruction of the 3-D concentration field allows to restore the underestimated component separation resulting from the spatial non-linearity of the temperature field. Furthermore, to avoid errors in component separation due to mass exchange between the working liquid volume and the expansion volume at the top of the cell, we suggest considering the evolution of the separation only in the lower half of the cell. The results of this study displayed reasonable quantitative agreement between the microgravity and ground experiments. PMID:25916232

  13. Solid and Gaseous Fuels.

    ERIC Educational Resources Information Center

    Schultz, Hyman; And Others

    1989-01-01

    This review covers methods of sampling, analyzing, and testing coal, coke, and coal-derived solids and methods for the chemical, physical, and instrumental analyses of gaseous fuels. The review covers from October 1986, to September 1988. (MVL)

  14. Whole-Lesion Apparent Diffusion Coefficient Metrics as a Marker of Percentage Gleason 4 Component Within Gleason 7 Prostate Cancer at Radical Prostatectomy

    PubMed Central

    Rosenkrantz, Andrew B.; Triolo, Michael J.; Melamed, Jonathan; Rusinek, Henry; Taneja, Samir S.; Deng, Fang-Ming

    2015-01-01

    Purpose To retrospectively assess the utility of whole-lesion apparent diffusion coefficient (ADC) metrics in characterizing the Gleason 4 component of Gleason 7 prostate cancer (PCa) at radical prostatectomy. Materials and Methods Seventy patients underwent phased-array coil 3T-magnetic resonance imaging (MRI) before prostatectomy. A uropathologist mapped locations and Gleason 4 percentage (G4%) of Gleason 7 tumors. Two radiologists independently reviewed ADC maps, aware of tumor locations but not G4%, and placed a volume-of-interest (VOI) on all slices including each lesion on the ADC map to obtain whole-lesion mean ADC and ADC entropy. Entropy reflects textural variation and increases with greater macroscopic heterogeneity. Performance for characterizing Gleason 7 tumors was assessed with mixed-model analysis of variance (ANOVA) and logistic regression. Results Among 84 Gleason 7 tumors (G4% 5%–85%, median 30%; 59 Gleason 3+4, 25 Gleason 4+3), ADC entropy was significantly higher in Gleason 4+3 than Gleason 3+4 tumors (R1: 5.27 ± 0.61 vs. 4.62 ± 0.78, P =0.001; R2: 5.91 ± 0.32 vs. 5.57 ± 0.56, P =0.004); mean ADC was not significantly different between these groups (R1: 0.90 ± 0.15*10?3cm2/s vs. 0.98 ± 0.21 *10?3cm2/s, P =0.075; R2: 1.06 ± 0.19*10?3cm2/s vs. 1.14 ± 0.16*10?3cm2/s, P =0.083). The area under the receiver operating characteristic (ROC) curve (AUC) for differentiating groups was significantly higher with ADC entropy than mean ADC for one observer (R1: 0.74 vs. 0.57, P =0.027; R2: 0.69 vs. 0.61, P =0.329). For R1, correlation with G4% was moderate for ADC entropy (r =0.45) and weak for mean ADC (r =?0.25). For R2, correlation with G4% was moderate for ADC entropy (r =0.41) and mean ADC (r =?0.32). For both readers, ADC entropy (P =0.028–0.003), but not mean ADC (P =0.384–0.854), was a significant independent predictor of G4%. Conclusion Whole-lesion ADC entropy outperformed mean ADC in characterizing Gleason 7 tumors and may help refine prognosis for this heterogeneous PCa subset. PMID:24616064

  15. GEMAS: prediction of solid-solution phase partitioning coefficients (Kd) for oxoanions and boric acid in soils using mid-infrared diffuse reflectance spectroscopy.

    PubMed

    Janik, Leslie J; Forrester, Sean T; Soriano-Disla, José M; Kirby, Jason K; McLaughlin, Michael J; Reimann, Clemens

    2015-02-01

    The authors' aim was to develop rapid and inexpensive regression models for the prediction of partitioning coefficients (Kd), defined as the ratio of the total or surface-bound metal/metalloid concentration of the solid phase to the total concentration in the solution phase. Values of Kd were measured for boric acid (B[OH]3(0)) and selected added soluble oxoanions: molybdate (MoO4(2-)), antimonate (Sb[OH](6-)), selenate (SeO4(2-)), tellurate (TeO4(2-)) and vanadate (VO4(3-)). Models were developed using approximately 500 spectrally representative soils of the Geochemical Mapping of Agricultural Soils of Europe (GEMAS) program. These calibration soils represented the major properties of the entire 4813 soils of the GEMAS project. Multiple linear regression (MLR) from soil properties, partial least-squares regression (PLSR) using mid-infrared diffuse reflectance Fourier-transformed (DRIFT) spectra, and models using DRIFT spectra plus analytical pH values (DRIFT?+?pH), were compared with predicted log K(d?+?1) values. Apart from selenate (R(2) ?=?0.43), the DRIFT?+?pH calibrations resulted in marginally better models to predict log K(d?+?1) values (R(2) ?=?0.62-0.79), compared with those from PSLR-DRIFT (R(2) ?=?0.61-0.72) and MLR (R(2) ?=?0.54-0.79). The DRIFT?+?pH calibrations were applied to the prediction of log K(d?+?1) values in the remaining 4313 soils. An example map of predicted log K(d?+?1) values for added soluble MoO4(2-) in soils across Europe is presented. The DRIFT?+?pH PLSR models provided a rapid and inexpensive tool to assess the risk of mobility and potential availability of boric acid and selected oxoanions in European soils. For these models to be used in the prediction of log K(d?+?1) values in soils globally, additional research will be needed to determine if soil variability is accounted on the calibration. PMID:25476926

  16. Histogram Analysis of Apparent Diffusion Coefficients for Occult Tonsil Cancer in Patients with Cervical Nodal Metastasis from an Unknown Primary Site at Presentation.

    PubMed

    Choi, Young Jun; Lee, Jeong Hyun; Kim, Hye Ok; Kim, Dae Yoon; Yoon, Ra Gyoung; Cho, So Hyun; Koh, Myeong Ju; Kim, Namkug; Kim, Sang Yoon; Baek, Jung Hwan

    2016-01-01

    Purpose To explore the added value of histogram analysis of apparent diffusion coefficient (ADC) values over magnetic resonance (MR) imaging and fluorine 18 ((18)F) fluorodeoxyglucose (FDG) positron emission tomography (PET)/computed tomography (CT) for the detection of occult palatine tonsil squamous cell carcinoma (SCC) in patients with cervical nodal metastasis from a cancer of an unknown primary site. Materials and Methods The institutional review board approved this retrospective study, and the requirement for informed consent was waived. Differences in the bimodal histogram parameters of the ADC values were assessed among occult palatine tonsil SCC (n = 19), overt palatine tonsil SCC (n = 20), and normal palatine tonsils (n = 20). One-way analysis of variance was used to analyze differences among the three groups. Receiver operating characteristic curve analysis was used to determine the best differentiating parameters. The increased sensitivity of histogram analysis over MR imaging and (18)F-FDG PET/CT for the detection of occult palatine tonsil SCC was evaluated as added value. Results Histogram analysis showed statistically significant differences in the mean, standard deviation, and 50th and 90th percentile ADC values among the three groups (P < .0045). Occult palatine tonsil SCC had a significantly higher standard deviation for the overall curves, mean and standard deviation of the higher curves, and 90th percentile ADC value, compared with normal palatine tonsils (P < .0167). Receiver operating characteristic curve analysis showed that the standard deviation of the overall curve best delineated occult palatine tonsil SCC from normal palatine tonsils, with a sensitivity of 78.9% (15 of 19 patients) and a specificity of 60% (12 of 20 patients). The added value of ADC histogram analysis was 52.6% over MR imaging alone and 15.8% over combined conventional MR imaging and (18)F-FDG PET/CT. Conclusion Adding ADC histogram analysis to conventional MR imaging can improve the detection sensitivity for occult palatine tonsil SCC in patients with a cervical nodal metastasis originating from a cancer of an unknown primary site. (©) RSNA, 2015. PMID:26115452

  17. Resonance zones and quasi-linear diffusion coefficients for radiation belt energetic electron interaction with oblique chorus waves in the Dungey magnetosphere

    SciTech Connect

    Shi Run; Ni, Binbin; Gu Xudong; Zhao Zhengyu; Zhou Chen

    2012-07-15

    The resonance regions for resonant interactions of radiation belt electrons with obliquely propagating whistler-mode chorus waves are investigated in detail in the Dungey magnetic fields that are parameterized by the intensity of uniform southward interplanetary magnetic field (IMF) Bz or, equivalently, by the values of D=(M/B{sub z,0}){sup 1/3} (where M is the magnetic moment of the dipole and B{sub z,0} is the uniform southward IMF normal to the dipole's equatorial plane). Adoption of background magnetic field model can considerably modify the determination of resonance regions. Compared to the results for the case of D = 50 (very close to the dipole field), the latitudinal coverage of resonance regions for 200 keV electrons interacting with chorus waves tends to become narrower for smaller D-values, regardless of equatorial pitch angle, resonance harmonics, and wave normal angle. In contrast, resonance regions for 1 MeV electrons tend to have very similar spatial lengths along the field line for various Dungey magnetic field models but cover different magnetic field intervals, indicative of a strong dependence on electron energy. For any given magnetic field line, the resonance regions where chorus-electron resonant interactions can take place rely closely on equatorial pitch angle, resonance harmonics, and kinetic energy. The resonance regions tend to cover broader latitudinal ranges for smaller equatorial pitch angles, higher resonance harmonics, and lower electron energies, consistent with the results in Ni and Summers [Phys. Plasmas 17, 042902, 042903 (2010)]. Calculations of quasi-linear bounce-averaged diffusion coefficients for radiation belt electrons due to nightside chorus waves indicate that the resultant scattering rates differ from using different Dungey magnetic field models, demonstrating a strong dependence of wave-induced electron scattering effect on the adoption of magnetic field model. Our results suggest that resonant wave-particle interaction processes should be implemented into a sophisticated, accurate global magnetic field model to pursue comprehensive and complete models of radiation belt electron dynamics.

  18. In situ study of mass transfer in aqueous solutions under high pressures via Raman spectroscopy: A new method for the determination of diffusion coefficients of methane in water near hydrate formation conditions

    USGS Publications Warehouse

    Lu, W.J.; Chou, I.-Ming; Burruss, R.C.; Yang, M.Z.

    2006-01-01

    A new method was developed for in situ study of the diffusive transfer of methane in aqueous solution under high pressures near hydrate formation conditions within an optical capillary cell. Time-dependent Raman spectra of the solution at several different spots along the one-dimensional diffusion path were collected and thus the varying composition profile of the solution was monitored. Diffusion coefficients were estimated by the least squares method based on the variations in methane concentration data in space and time in the cell. The measured diffusion coefficients of methane in water at the liquid (L)-vapor (V) stable region and L-V metastable region are close to previously reported values determined at lower pressure and similar temperature. This in situ monitoring method was demonstrated to be suitable for the study of mass transfer in aqueous solution under high pressure and at various temperature conditions and will be applied to the study of nucleation and dissolution kinetics of methane hydrate in a hydrate-water system where the interaction of methane and water would be more complicated than that presented here for the L-V metastable condition. ?? 2006 Society for Applied Spectroscopy.

  19. Temporal Evolution of Parotid Volume and Parotid Apparent Diffusion Coefficient in Nasopharyngeal Carcinoma Patients Treated by Intensity-Modulated Radiotherapy Investigated by Magnetic Resonance Imaging: A Pilot Study

    PubMed Central

    Juan, Chun-Jung; Cheng, Cheng-Chieh; Chiu, Su-Chin; Jen, Yee-Min; Liu, Yi-Jui; Chiu, Hui-Chu; Kao, Hung-Wen; Wang, Chih-Wei; Chung, Hsiao-Wen; Huang, Guo-Shu; Hsu, Hsian-He

    2015-01-01

    Purpose To concurrently quantify the radiation-induced changes and temporal evolutions of parotid volume and parotid apparent diffusion coefficient (ADC) in nasopharyngeal carcinoma (NPC) patients treated by intensity-modulated radiotherapy by using magnetic resonance imaging (MRI). Materials and Methods A total of 11 NPC patients (9 men and 2 women; 48.7 ± 11.7 years, 22 parotid glands) were enrolled. Radiation dose, parotid sparing volume, severity of xerostomia, and radiation-to-MR interval (RMI) was recorded. MRI studies were acquired four times, including one before and three after radiotherapy. The parotid volume and the parotid ADC were measured. Statistical analysis was performed using SPSS and MedCalc. Bonferroni correction was applied for multiple comparisons. A P value less than 0.05 was considered as statistically significant. Results The parotid volume was 26.2 ± 8.0 cm3 before radiotherapy. The parotid ADC was 0.8 ± 0.15 × 10?3 mm2/sec before radiotherapy. The parotid glands received a radiation dose of 28.7 ± 4.1 Gy and a PSV of 44.1 ± 12.6%. The parotid volume was significantly smaller at MR stage 1 and stage 2 as compared to pre-RT stage (P < .005). The volume reduction ratio was 31.2 ± 13.0%, 26.1 ± 13.5%, and 17.1 ± 16.6% at stage 1, 2, and 3, respectively. The parotid ADC was significantly higher at all post-RT stages as compared to pre-RT stage reciprocally (P < .005 at stage 1 and 2, P < .05 at stage 3). The ADC increase ratio was 35.7 ± 17.4%, 27.0 ± 12.8%, and 20.2 ± 16.6% at stage 1, 2, and 3, respectively. The parotid ADC was negatively correlated to the parotid volume (R = -0.509; P < .001). The parotid ADC was positively associated with the radiation dose significantly (R2 = 0.212; P = .0001) and was negatively associated with RMI significantly (R2 = 0.203; P = .00096) significantly. Multiple regression analysis further showed that the post-RT parotid ADC was related to the radiation dose and RMI significantly (R2 = 0.3580; P < .0001). At MR stage 3, the parotid volume was negatively associated with the dry mouth grade significantly (R2 = 0.473; P < .0001), while the parotid ADC was positively associated with the dry mouth grade significantly (R2 = 0.288; P = .015). Conclusion Our pilot study successfully demonstrates the concurrent changes and temporal evolution of parotid volume and parotid ADC quantitatively in NPC patients treated by IMRT. Our results suggest that the reduction of parotid volume and increase of parotid ADC are dominated by the effect of acinar loss rather than edema at early to intermediate phases and the following recovery of parotid volume and ADC toward the baseline values might reflect the acinar regeneration of parotid glands. PMID:26323091

  20. Computed tomography measurement of gaseous fuel concentration by infrared laser light absorption

    NASA Astrophysics Data System (ADS)

    Kawazoe, Hiromitsu; Inagaki, Kazuhisa; Emi, Y.; Yoshino, Fumio

    1997-11-01

    A system to measure gaseous hydrocarbon distributions was devised, which is based on IR light absorption by C-H stretch mode of vibration and computed tomography method. It is called IR-CT method in the paper. Affection of laser light power fluctuation was diminished by monitoring source light intensity by the second IR light detector. Calibration test for methane fuel was carried out to convert spatial data of line absorption coefficient into quantitative methane concentration. This system was applied to three flow fields. The first is methane flow with lifted flame which is generated by a gourd-shaped fuel nozzle. Feasibility of the IR-CT method was confirmed through the measurement. The second application is combustion field with diffusion flame. Calibration to determine absorptivity was undertaken, and measured line absorption coefficient was converted spatial fuel concentration using corresponding temperature data. The last case is modeled in cylinder gas flow of internal combustion engine, where gaseous methane was led to the intake valve in steady flow state. The fuel gas flow simulates behavior of gaseous gasoline which is evaporated at intake valve tulip. Computed tomography measurement of inner flow is essentially difficult because of existence of surrounding wall. In this experiment, IR laser beam was led to planed portion by IR light fiber. It is found that fuel convection by airflow takes great part in air-fuel mixture formation and the developed IR-CT system to measure fuel concentration is useful to analyze air-fuel mixture formation process and to develop new combustors.

  1. Quantum diffusion

    E-print Network

    Roumen Tsekov

    2011-04-20

    Quantum diffusion is studied via dissipative Madelung hydrodynamics. Initially the wave packet spreads ballistically, than passes for an instant through normal diffusion and later tends asymptotically to a sub-diffusive law. It is shown that the apparent quantum diffusion coefficient is not a universal physical parameter since it depends on the initial wave packet preparation. The overdamped quantum diffusion of an electron in the field of a periodic potential is also investigated; in this case the wave packet spreads logarithmically in time. Thermo-quantum diffusion of heavier particles as hydrogen, deuterium and tritium atoms in periodic potentials is studied and a simple estimate of the tunneling effect is obtained in the frames of a quasi-equilibrium semiclassical approach. The effective thermo-quantum temperature is also discussed in relation to the known temperature dependence of muon diffusivity in solids.

  2. The Gaseous Trail of the Sagittarius Dwarf Galaxy

    E-print Network

    M. E. Putman; C. Thom; B. K. Gibson; L. Staveley-Smith

    2004-01-22

    A possible gaseous component to the stream of debris from the Sagittarius dwarf galaxy is presented. We identify 4 - 10 x 10^6 Msun of neutral hydrogen along the orbit of the Sgr dwarf in the direction of the Galactic anticenter (at 36 kpc, the distance to the stellar debris in this region). This is 1-2% of the estimated total mass of the Sgr dwarf. Both the stellar and gaseous components have negative velocities, but the gaseous component extends to higher negative velocities. If associated, this gaseous stream was most likely stripped from the main body of the dwarf 0.2 - 0.3 Gyr ago during its current orbit after a passage through a diffuse edge of the Galactic disk with a density > 10^{-4} cm^{-3}. This gas represents the dwarf's last source of star formation fuel and explains how the galaxy was forming stars 0.5-2 Gyr ago.

  3. Combustion mechanism of liquid fuel spray in a gaseous flame

    NASA Astrophysics Data System (ADS)

    Nakamura, Mariko; Akamatsu, Fumiteru; Kurose, Ryoichi; Katsuki, Masashi

    2005-12-01

    Two-dimensional direct numerical simulation is applied to spray flames stabilized in a laminar counterflow, and the detailed behavior is studied in terms of the droplet group combustion. The stretch ratio of the laminar counterflow is 40 l/s. (C10H22) is used as a liquid spray fuel, and a one-step global reaction is employed for the combustion reaction model. The results show that with increasing the issued liquid fuel mass fraction, two types of spray combustion appear in front of and inside the high gaseous temperature region, i.e., "premixed-like combustion" and "diffusion-like combustion," respectively. A droplet group combustion behavior is observed in the diffusion-like combustion region. This diffusion-like combustion, however, disappears when the issued droplet size becomes small, because the droplets complete their evaporation before entering into the high gaseous temperature region. The droplet group combustion tends to reduce the gaseous temperature. This is caused mainly by the suppression of combustion reaction due to the lack of oxygen and partially by the energy exchange through the convective heat transfer between droplets and gaseous phase. The gaseous temperature reduction is promoted by the latent heat of vaporization of the droplets. The use of the parcel approach has a risk of causing a delay of combustion reaction, since the partial fuel vapor pressure increases at limited locations, which suppresses the global droplet evaporation rate.

  4. Effect of Structure on Transport Properties (Viscosity, Ionic Conductivity, and Self-Diffusion Coefficient) of Aprotic Heterocyclic Anion (AHA) Room-Temperature Ionic Liquids. 1. Variation of Anionic Species.

    PubMed

    Sun, Liyuan; Morales-Collazo, Oscar; Xia, Han; Brennecke, Joan F

    2015-12-01

    A series of room temperature ionic liquids (RTILs) based on 1-ethyl-3-methylimidazolium ([emim](+)) with different aprotic heterocyclic anions (AHAs) were synthesized and characterized as potential electrolyte candidates for lithium ion batteries. The density and transport properties of these ILs were measured over the temperature range between 283.15 and 343.15 K at ambient pressure. The temperature dependence of the transport properties (viscosity, ionic conductivity, self-diffusion coefficient, and molar conductivity) is fit well by the Vogel-Fulcher-Tamman (VFT) equation. The best-fit VFT parameters, as well as linear fits to the density, are reported. The ionicity of these ILs was quantified by the ratio of the molar conductivity obtained from the ionic conductivity and molar concentration to that calculated from the self-diffusion coefficients using the Nernst-Einstein equation. The results of this study, which is based on ILs composed of both a planar cation and planar anions, show that many of the [emim][AHA] ILs exhibit very good conductivity for their viscosities and provide insight into the design of ILs with enhanced dynamics that may be suitable for electrolyte applications. PMID:26505641

  5. FRACTIONAL PEARSON DIFFUSIONS

    PubMed Central

    Leonenko, Nikolai N.; Meerschaert, Mark M.

    2013-01-01

    Pearson diffusions are governed by diffusion equations with polynomial coefficients. Fractional Pearson diffusions are governed by the corresponding time-fractional diffusion equation. They are useful for modeling sub-diffusive phenomena, caused by particle sticking and trapping. This paper provides explicit strong solutions for fractional Pearson diffusions, using spectral methods. It also presents stochastic solutions, using a non-Markovian inverse stable time change. PMID:23626377

  6. Gaseous Fuel Injection Modeling using a Gaseous Sphere Injection Methodology

    SciTech Connect

    Hessel, R P; Aceves, S M; Flowers, D L

    2006-03-06

    The growing interest in gaseous fuels (hydrogen and natural gas) for internal combustion engines calls for the development of computer models for simulation of gaseous fuel injection, air entrainment and the ensuing combustion. This paper introduces a new method for modeling the injection and air entrainment processes for gaseous fuels. The model uses a gaseous sphere injection methodology, similar to liquid droplet in injection techniques used for liquid fuel injection. In this paper, the model concept is introduced and model results are compared with correctly- and under-expanded experimental data.

  7. Modeling study of gaseous Rn-222, Xe-133, and He-4 for uranium exploration

    SciTech Connect

    Jeter, H.W.

    1980-01-01

    This work presents one-dimensional mathematical models to simulate the transport of gaseous radon-222 (Rn-222), xenon-133 (Xe-133), and helium-4 (He-4) away from uranium ore deposits. The resulting concentrations of indicator nuclides in the overburden are used to infer the detectability of ore deposits by emanation methods. In the case of homogeneous, non-radioactive formations, Rn-222 and some of its daughter products are calculated to be detectable at distances of several tens of meters from a planar uranium ore deposit (1 m tickness, 0.6% U/sub 3/O/sub 8/, 20% emanation). Models of He-4 diffuson in rock yield highly uncertain results because measurements of diffusion coefficients in actual rock types are lacking and because the flux of helium from deep within the earth is generally unknown. Comparisons of model results to field data suggest that He-4 diffusion coefficients of 10/sup -4/ to 10/sup -5/ cm/sup 2//sec are appropriate. It is speculated that moisture in the rock column could reduce the coefficient significantly compared to the dry-soil case. Inhomogeneity in rock formations is simulated by a multiple-layer model. A comparison of fluorometric uranium data to gamma spectra measurements suggests the migration and deposition of Ra-226 near the water table. Modeling results are improved when this process is taken into account. A constant soil gas velocity of 1 x 10/sup -4/ cm/sec causes indicator concentrations to change by several orders of magnitude. If steady upward soil gas motion exists in nature, the detectability of uranium ore by emanation methods will be significantly different from that indicated by pure diffusion models. Barometric influences on gas transport are simulated by time-dependent numerical models.

  8. Japan's research on gaseous flames

    NASA Technical Reports Server (NTRS)

    Niioka, Takashi

    1995-01-01

    Although research studies on gaseous flames in microgravity in Japan have not been one-sided, they have been limited, for the most part, to comparatively fundamental studies. At present it is only possible to achieve a microgravity field by the use of drop towers, as far as gaseous flames are concerned. Compared with experiments on droplets, including droplet arrays, which have been vigorously performed in Japan, studies on gaseous flames have just begun. Experiments on ignition of gaseous fuel, flammability limits, flame stability, effect of magnetic field on flames, and carbon formation from gaseous flames are currently being carried out in microgravity. Seven subjects related to these topics are introduced and discussed herein.

  9. Ethylene Oxide Gaseous Sterilization

    PubMed Central

    Ernst, Robert R.; Shull, James J.

    1962-01-01

    The duration of the equilibration period between admission of water vapor and subsequent introduction of gaseous ethylene oxide to an evacuated sterilizer chamber was studied with respect to its effect on the inactivation of spores of Bacillus subtilis var. niger under simulated practical conditions. Introduction of a water-adsorbing cotton barrier between the spores and an incoming gas mixture of water vapor and ethylene oxide caused a marked increase in the observed thermochemical death time of the spore populations. This effect was negated by admission of water vapor one or more minutes prior to introduction of ethylene oxide gas. Increases in temperature and relative humidity of the system promoted passage of water vapor through the cotton barriers and diminished their effect. PMID:13890660

  10. Gaseous Inner Disks

    E-print Network

    Joan R. Najita; John S. Carr; Alfred E. Glassgold; Jeff Valenti

    2007-04-13

    As the likely birthplaces of planets and an essential conduit for the buildup of stellar masses, inner disks are of fundamental interest in star and planet formation. Studies of the gaseous component of inner disks are of interest because of their ability to probe the dynamics, physical and chemical structure, and gas content of this region. We review the observational and theoretical developments in this field, highlighting the potential of such studies to, e.g., measure inner disk truncation radii, probe the nature of the disk accretion process, and chart the evolution in the gas content of disks. Measurements of this kind have the potential to provide unique insights on the physical processes governing star and planet formation.

  11. Prediction of stream volatilization coefficients

    USGS Publications Warehouse

    Rathbun, Ronald E.

    1990-01-01

    Equations are developed for predicting the liquid-film and gas-film reference-substance parameters for quantifying volatilization of organic solutes from streams. Molecular weight and molecular-diffusion coefficients of the solute are used as correlating parameters. Equations for predicting molecular-diffusion coefficients of organic solutes in water and air are developed, with molecular weight and molal volume as parameters. Mean absolute errors of prediction for diffusion coefficients in water are 9.97% for the molecular-weight equation, 6.45% for the molal-volume equation. The mean absolute error for the diffusion coefficient in air is 5.79% for the molal-volume equation. Molecular weight is not a satisfactory correlating parameter for diffusion in air because two equations are necessary to describe the values in the data set. The best predictive equation for the liquid-film reference-substance parameter has a mean absolute error of 5.74%, with molal volume as the correlating parameter. The best equation for the gas-film parameter has a mean absolute error of 7.80%, with molecular weight as the correlating parameter.

  12. Generation of sub-part-per-billion gaseous volatile organic compounds at ambient temperature by headspace diffusion of aqueous standards through decoupling between ideal and nonideal Henry's law behavior.

    PubMed

    Kim, Yong-Hyun; Kim, Ki-Hyun

    2013-05-21

    In the analysis of volatile organic compounds in air, the preparation of their gaseous standards at low (sub-ppb) concentration levels with high reliability is quite difficult. In this study, a simple dynamic headspace-based approach was evaluated as a means of generating vapor-phase volatile organic compounds from a liquid standard in an impinger at ambient temperature (25 °C). For a given sampling time, volatile organic compound vapor formed in the headspace was swept by bypassing the sweep gas through the impinger and collected four times in quick succession in separate sorbent tubes. In each experiment, a fresh liquid sample was used for each of the four sampling times (5, 10, 20, and 30 min) at a steady flow rate of 50 mL min(-1). The air-water partitioning at the most dynamic (earliest) sweeping stage was established initially in accord with ideal Henry's law, which was then followed by considerably reduced partitioning in a steady-state equilibrium (non-ideal Henry's law). The concentrations of gaseous volatile organic compounds, collected after the steady-state equilibrium, reached fairly constant values: for instance, the mole fraction of toluene measured at a sweeping interval of 10 and 30 min averaged 1.10 and 0.99 nmol mol(-1), respectively (after the initial 10 min sampling). In the second stage of our experiment, the effect of increasing the concentrations of liquid spiking standard was also examined by collecting sweep gas samples from two consecutive 10 min runs. The volatile organic compounds, collected in the first and second 10 min sweep gas samples, exhibited ideal and nonideal Henry's law behavior, respectively. From this observation, we established numerical relationships to predict the mole fraction (or mixing ratio) of each volatile organic compound in steady-state equilibrium in relation to the concentration of standard spiked into the system. This experimental approach can thus be used to produce sub-ppb levels of gaseous volatile organic compounds in a constant and predictable manner. PMID:23570285

  13. Gas-film coefficients for streams

    USGS Publications Warehouse

    Rathbun, R.E.; Tai, D.Y.

    1983-01-01

    Equations for predicting the gas-film coefficient for the volatilization of organic solutes from streams are developed. The film coefficient is a function of windspeed and water temperature. The dependence of the coefficient on windspeed is determined from published information on the evaporation of water from a canal. The dependence of the coefficient on temperature is determined from laboratory studies on the evaporation of water. Procedures for adjusting the coefficients for different organic solutes are based on the molecular diffusion coefficient and the molecular weight. The molecular weight procedure is easiest to use because of the availability of molecular weights. However, the theoretical basis of the procedure is questionable. The diffusion coefficient procedure is supported by considerable data. Questions, however, remain regarding the exact dependence of the film coefficint on the diffusion coefficient. It is suggested that the diffusion coefficient procedure with a 0.68-power dependence be used when precise estimate of the gas-film coefficient are needed and that the molecular weight procedure be used when only approximate estimates are needed.

  14. Flamelet Characteristics of Gaseous and Spray Lifted Flames on Two-Dimensional Direct Numerical Simulations

    NASA Astrophysics Data System (ADS)

    Baba, Yuya; Kurose, Ryoichi

    The detailed behaviors of gaseous and spray lifted flames are studied by two- dimensional direct numerical simulations (DNS), and the characteristics of the flamelets are investigated in terms of two key variables for flamelet modeling, namely mixture fraction and scalar G. The results show that both the gaseous and spray lifted flames are partially premixed flames, in which premixed and diffusion flames co-exist and the premixed flame stabilizing the flames precedes to the diffusion flame. The non-combusting and combusting regions can be generally discriminated by the scalar G, and the premixed and diffusion flames in the combusting region can be predicted by flame index, respectively. Although the flamelets in the diffusion flame of the gaseous lifted flame are characterized by the mixture fraction and scalar dissipation rate, those on the spray lifted flame are not. To account for the flamelet characteristics of the spray lifted flame, flamelet/progress-variable approach needs to be introduced.

  15. A GENERAL CIRCULATION MODEL FOR GASEOUS EXOPLANETS WITH DOUBLE-GRAY RADIATIVE TRANSFER

    SciTech Connect

    Rauscher, Emily; Menou, Kristen

    2012-05-10

    We present a new version of our code for modeling the atmospheric circulation on gaseous exoplanets, now employing a 'double-gray' radiative transfer scheme, which self-consistently solves for fluxes and heating throughout the atmosphere, including the emerging (observable) infrared flux. We separate the radiation into infrared and optical components, each with its own absorption coefficient, and solve standard two-stream radiative transfer equations. We use a constant optical absorption coefficient, while the infrared coefficient can scale as a power law with pressure; however, for simplicity, the results shown in this paper use a constant infrared coefficient. Here we describe our new code in detail and demonstrate its utility by presenting a generic hot Jupiter model. We discuss issues related to modeling the deepest pressures of the atmosphere and describe our use of the diffusion approximation for radiative fluxes at high optical depths. In addition, we present new models using a simple form for magnetic drag on the atmosphere. We calculate emitted thermal phase curves and find that our drag-free model has the brightest region of the atmosphere offset by {approx}12 Degree-Sign from the substellar point and a minimum flux that is 17% of the maximum, while the model with the strongest magnetic drag has an offset of only {approx}2 Degree-Sign and a ratio of 13%. Finally, we calculate rates of numerical loss of kinetic energy at {approx}15% for every model except for our strong-drag model, where there is no measurable loss; we speculate that this is due to the much decreased wind speeds in that model.

  16. Infrared radiative energy transfer in gaseous systems

    NASA Technical Reports Server (NTRS)

    Tiwari, Surendra N.

    1991-01-01

    Analyses and numerical procedures are presented to investigate the radiative interactions in various energy transfer processes in gaseous systems. Both gray and non-gray radiative formulations for absorption and emission by molecular gases are presented. The gray gas formulations are based on the Planck mean absorption coefficient and the non-gray formulations are based on the wide band model correlations for molecular absorption. Various relations for the radiative flux and divergence of radiative flux are developed. These are useful for different flow conditions and physical problems. Specific plans for obtaining extensive results for different cases are presented. The procedure developed was applied to several realistic problems. Results of selected studies are presented.

  17. Flow dynamics within a bioreactor for tissue engineering by residence time distribution analysis combined with fluorescence and magnetic resonance imaging to investigate forced permeability and apparent diffusion coefficient in a perfusion cell culture chamber.

    PubMed

    Dubois, Justin; Tremblay, Luc; Lepage, Martin; Vermette, Patrick

    2011-10-01

    This study reveals that residence time distribution (RTD) analysis with pH monitoring after acid bolus injection can be used to globally study the flow dynamics of a perfusion bioreactor, while fluorescence microscopy and magnetic resonance imaging (MRI) were used to locally investigate mass transport within a hydrogel scaffold seeded or not with cells. The bioreactor used in this study is a close-loop tubular reactor. A dispersion model in one dimension has been used to describe the non-ideal behavior of the reactor. From open-loop experiments (single-cycle analysis), the presence of stagnant zones and back mixing were observed. The impact of the flow rate, the compliance chamber volume and mixing were investigated. Intermediate flows (30, 45, 60, and 90 mL?min(-1)) had no effect over RTD function expressed in reduced time (?). Lower flow rates (5 and 15 mL?min(-1)) were associated to smaller extent of dispersion. The compliance chamber volume greatly affected the dynamics of the RTD function, while the effects of mixing and flow were small to non-significant. An empirical equation has been proposed to localize minima of the RTD function and to predict Per . Finally, cells seeded in a gelatin gel at a density of 800,000 cells?mL(-1) had no effect over the permeability and the apparent diffusion coefficient, as revealed by fluorescent microscopy and MRI experiments. PMID:21557203

  18. DIFFUSION COEFFICIENTS FROM METRAC SYSTEM TURBULENCE MEASUREMENTS

    EPA Science Inventory

    The results from 34 'constant level' tetroon flights made near St. Cloud, Minnesota, and tracked with the METRAC positioning system are presented. These flights were made throughout the year and primarily at heights between 700 and 1400 meters above the surface. Flight times rang...

  19. Solute diffusion in liquid metals

    NASA Technical Reports Server (NTRS)

    Bhat, B. N.

    1973-01-01

    A gas model of diffusion in liquid metals is presented. In this model, ions of liquid metals are assumed to behave like the molecules in a dense gas. Diffusion coefficient of solute is discussed with reference to its mass, ionic size, and pair potential. The model is applied to the case of solute diffusion in liquid silver. An attempt was made to predict diffusion coefficients of solutes with reasonable accuracy.

  20. DIffusion of Plasma in Magnetic Fields APAM Research Conference

    E-print Network

    Mauel, Michael E.

    DIffusion of Plasma in Magnetic Fields APAM Research Conference September 11, 2009 Butterfly NebulaV T ~ 100 eV 2 #12;"Plasma Diffusion in Magnetic Fields" Outline · Gaseous diffusion vs. magnetized plasma;Magnetized Plasma Diffusion 5 Boris Kadomstev Boris Borisovich Kadomtsev (09.11.1928 ± 19.08.1998) [Early on

  1. Description of gas/particle sorption kinetics with an intraparticle diffusion model: Desorption experiments

    USGS Publications Warehouse

    Rounds, S.A.; Tiffany, B.A.; Pankow, J.F.

    1993-01-01

    Aerosol particles from a highway tunnel were collected on a Teflon membrane filter (TMF) using standard techniques. Sorbed organic compounds were then desorbed for 28 days by passing clean nitrogen through the filter. Volatile n-alkanes and polycyclic aromatic hydrocarbons (PAHs) were liberated from the filter quickly; only a small fraction of the less volatile ra-alkanes and PAHs were desorbed. A nonlinear least-squares method was used to fit an intraparticle diffusion model to the experimental data. Two fitting parameters were used: the gas/particle partition coefficient (Kp and an effective intraparticle diffusion coefficient (Oeff). Optimized values of Kp are in agreement with previously reported values. The slope of a correlation between the fitted values of Deff and Kp agrees well with theory, but the absolute values of Deff are a factor of ???106 smaller than predicted for sorption-retarded, gaseous diffusion. Slow transport through an organic or solid phase within the particles or preferential flow through the bed of particulate matter on the filter might be the cause of these very small effective diffusion coefficients. ?? 1993 American Chemical Society.

  2. Erbium diffusion in silicon dioxide

    SciTech Connect

    Lu Yingwei; Julsgaard, B.; Petersen, M. Christian; Jensen, R. V. Skougaard; Pedersen, T. Garm; Pedersen, K.; Larsen, A. Nylandsted

    2010-10-04

    Erbium diffusion in silicon dioxide layers prepared by magnetron sputtering, chemical vapor deposition, and thermal growth has been investigated by secondary ion mass spectrometry, and diffusion coefficients have been extracted from simulations based on Fick's second law of diffusion. Erbium diffusion in magnetron sputtered silicon dioxide from buried erbium distributions has in particular been studied, and in this case a simple Arrhenius law can describe the diffusivity with an activation energy of 5.3{+-}0.1 eV. Within a factor of two, the erbium diffusion coefficients at a given temperature are identical for all investigated matrices.

  3. Fractal model of anomalous diffusion.

    PubMed

    Gmachowski, Lech

    2015-12-01

    An equation of motion is derived from fractal analysis of the Brownian particle trajectory in which the asymptotic fractal dimension of the trajectory has a required value. The formula makes it possible to calculate the time dependence of the mean square displacement for both short and long periods when the molecule diffuses anomalously. The anomalous diffusion which occurs after long periods is characterized by two variables, the transport coefficient and the anomalous diffusion exponent. An explicit formula is derived for the transport coefficient, which is related to the diffusion constant, as dependent on the Brownian step time, and the anomalous diffusion exponent. The model makes it possible to deduce anomalous diffusion properties from experimental data obtained even for short time periods and to estimate the transport coefficient in systems for which the diffusion behavior has been investigated. The results were confirmed for both sub and super-diffusion. PMID:26129728

  4. Particle Diffusion in Dust Grains

    NASA Astrophysics Data System (ADS)

    Pavlu, Jiri; Richterova, Ivana; Nemecek, Zdenek; Safrankova, Jana; Pechal, Radim

    Energetic ions/neutrals interacting with dust grains are implanted into dust grains and, consequently, the density gradient induces their diffusion back towards the grain surface. The diffusion coefficient strongly depends on temperature, thus, neutrals can be transported over large distances or across boundaries. In our laboratory experiment, measurements of the diffusion coefficient of the particles implanted into the dust grain are carried out in an electrodynamic quadrupole trap. The experimental setup is not capable of an assessment of the dust grain temperature, however, the temperature can be modified via a change of the ambient radiation. We present measurements of diffusion coefficients and discuss several implications for the space dust.

  5. Gaseous fuel nuclear reactor research

    NASA Technical Reports Server (NTRS)

    Schwenk, F. C.; Thom, K.

    1975-01-01

    Gaseous-fuel nuclear reactors are described; their distinguishing feature is the use of fissile fuels in a gaseous or plasma state, thereby breaking the barrier of temperature imposed by solid-fuel elements. This property creates a reactor heat source that may be able to heat the propellant of a rocket engine to 10,000 or 20,000 K. At this temperature level, gas-core reactors would provide the breakthrough in propulsion needed to open the entire solar system to manned and unmanned spacecraft. The possibility of fuel recycling makes possible efficiencies of up to 65% and nuclear safety at reduced cost, as well as high-thrust propulsion capabilities with specific impulse up to 5000 sec.

  6. Photon detectors with gaseous amplification

    SciTech Connect

    Va`vra, J.

    1996-08-01

    Gaseous photon detectors, including very large 4{pi}-devices such as those incorporated in SLD and DELPHI, are finally delivering physics after many years of hard work. Photon detectors are among the most difficult devices used in physics experiments, because they must achieve high efficiency for photon transport and for the detection of single photoelectrons. Among detector builders, there is hardly anybody who did not make mistakes in this area, and who does not have a healthy respect for the problems involved. This point is stressed in this paper, and it is suggested that only a very small operating phase space is available for running gaseous photon detectors in a very large system with good efficiency and few problems. In this paper the authors discuss what was done correctly or incorrectly in first generation photon detectors, and what would be their recommendations for second generation detectors. 56 refs., 11 figs.

  7. Planar Reflection of Gaseous Detonations

    NASA Astrophysics Data System (ADS)

    Damazo, Jason Scott

    Pipes containing flammable gaseous mixtures may be subjected to internal detonation. When the detonation normally impinges on a closed end, a reflected shock wave is created to bring the flow back to rest. This study built on the work of Karnesky (2010) and examined deformation of thin-walled stainless steel tubes subjected to internal reflected gaseous detonations. A ripple pattern was observed in the tube wall for certain fill pressures, and a criterion was developed that predicted when the ripple pattern would form. A two-dimensional finite element analysis was performed using Johnson-Cook material properties; the pressure loading created by reflected gaseous detonations was accounted for with a previously developed pressure model. The residual plastic strain between experiments and computations was in good agreement. During the examination of detonation-driven deformation, discrepancies were discovered in our understanding of reflected gaseous detonation behavior. Previous models did not accurately describe the nature of the reflected shock wave, which motivated further experiments in a detonation tube with optical access. Pressure sensors and schlieren images were used to examine reflected shock behavior, and it was determined that the discrepancies were related to the reaction zone thickness extant behind the detonation front. During these experiments reflected shock bifurcation did not appear to occur, but the unfocused visualization system made certainty impossible. This prompted construction of a focused schlieren system that investigated possible shock wave-boundary layer interaction, and heat-flux gauges analyzed the boundary layer behind the detonation front. Using these data with an analytical boundary layer solution, it was determined that the strong thermal boundary layer present behind the detonation front inhibits the development of reflected shock wave bifurcation.

  8. Recent work on gaseous detonations

    NASA Astrophysics Data System (ADS)

    Nettleton, M. A.

    The paper reviews recent progress in the field of gaseous detonations, with sections on shock diffraction and reflection, the transition to detonation, hybrid, spherically-imploding, and galloping and stuttering fronts, their structure, their transmission and quenching by additives, the critical energy for initiation and detonation of more unusual fuels. The final section points out areas where our understanding is still far from being complete and contains some suggestions of ways in which progress might be made.

  9. Multispecies diffusion models: A study of uranyl species diffusion

    SciTech Connect

    Liu, Chongxuan; Shang, Jianying; Zachara, John M.

    2011-12-14

    Rigorous numerical description of multi-species diffusion requires coupling of species, charge, and aqueous and surface complexation reactions that collectively affect diffusive fluxes. The applicability of a fully coupled diffusion model is, however, often constrained by the availability of species self-diffusion coefficients, as well as by computational complication for imposing charge conservation. In this study, several diffusion models with variable complexity in charge and species coupling were formulated and compared to describe reactive multi-species diffusion in groundwater. Diffusion of uranyl [U(VI)] species was used as an example in demonstrating the effectiveness of the models in describing multi-species diffusion. Numerical simulations found that a diffusion model with a single, common diffusion coefficient for all species was sufficient to describe multi-species U(VI) diffusion under steady-state condition of major chemical composition, but not under transient chemical conditions. Simulations revealed that a fully coupled diffusion model can be well approximated by a component-based diffusion model, which considers difference in diffusion coefficients between chemical components, but not between the species within each chemical component. This treatment significantly enhanced computational efficiency at the expense of minor charge conservation. The charge balance in the component-based diffusion model can be rigorously enforced, if necessary, by adding an artificial kinetic reaction term induced by the charge separation. The diffusion models were applied to describe U(VI) diffusive mass transfer in intragranular domains in two sediments collected from US Department of Energy's Hanford 300A where intragrain diffusion is a rate-limiting process controlling U(VI) adsorption and desorption. The grain-scale reactive diffusion model was able to describe U(VI) adsorption/desorption kinetics that has been described using a semi-empirical, multi-rate model. Compared with the multi-rate model, the diffusion models have the advantage to provide spatiotemporal speciation evolution within the diffusion domains.

  10. Diffusion Geometry Diffusion Geometry

    E-print Network

    Hirn, Matthew

    Diffusion Geometry Diffusion Geometry for High Dimensional Data Matthew J. Hirn July 3, 2013 #12;Diffusion Geometry Introduction Embedding of closed curve Figure: Left: A closed, non-self-intersecting curve in 3 dimensions. Right: Its embedding as a circle. #12;Diffusion Geometry Introduction Cartoon

  11. Multispecies diffusion models: A study of uranyl species diffusion

    NASA Astrophysics Data System (ADS)

    Liu, Chongxuan; Shang, Jianying; Zachara, John M.

    2011-12-01

    Rigorous numerical description of multispecies diffusion requires coupling of species, charge, and aqueous and surface complexation reactions that collectively affect diffusive fluxes. The applicability of a fully coupled diffusion model is, however, often constrained by the availability of species self-diffusion coefficients, as well as by computational complication in imposing charge conservation. In this study, several diffusion models with variable complexity in charge and species coupling were formulated and compared to describe reactive multispecies diffusion in groundwater. Diffusion of uranyl [U(VI)] species was used as an example in demonstrating the effectiveness of the models in describing multispecies diffusion. Numerical simulations found that a diffusion model with a single, common diffusion coefficient for all species was sufficient to describe multispecies U(VI) diffusion under a steady state condition of major chemical composition, but not under transient chemical conditions. Simulations revealed that for multispecies U(VI) diffusion under transient chemical conditions, a fully coupled diffusion model could be well approximated by a component-based diffusion model when the diffusion coefficient for each chemical component was properly selected. The component-based diffusion model considers the difference in diffusion coefficients between chemical components, but not between the species within each chemical component. This treatment significantly enhanced computational efficiency at the expense of minor charge conservation. The charge balance in the component-based diffusion model can be enforced, if necessary, by adding a secondary migration term resulting from model simplification. The effect of ion activity coefficient gradients on multispecies diffusion is also discussed. The diffusion models were applied to describe U(VI) diffusive mass transfer in intragranular domains in two sediments collected from U.S. Department of Energy's Hanford 300A, where intragranular diffusion is a rate-limiting process controlling U(VI) adsorption and desorption. The grain-scale reactive diffusion model was able to describe U(VI) adsorption/desorption kinetics that had been previously described using a semiempirical, multirate model. Compared with the multirate model, the diffusion models have the advantage to provide spatiotemporal speciation evolution within the diffusion domains.

  12. Gaseous Nitrogen Orifice Mass Flow Calculator

    NASA Technical Reports Server (NTRS)

    Ritrivi, Charles

    2013-01-01

    The Gaseous Nitrogen (GN2) Orifice Mass Flow Calculator was used to determine Space Shuttle Orbiter Water Spray Boiler (WSB) GN2 high-pressure tank source depletion rates for various leak scenarios, and the ability of the GN2 consumables to support cooling of Auxiliary Power Unit (APU) lubrication during entry. The data was used to support flight rationale concerning loss of an orbiter APU/hydraulic system and mission work-arounds. The GN2 mass flow-rate calculator standardizes a method for rapid assessment of GN2 mass flow through various orifice sizes for various discharge coefficients, delta pressures, and temperatures. The calculator utilizes a 0.9-lb (0.4 kg) GN2 source regulated to 40 psia (.276 kPa). These parameters correspond to the Space Shuttle WSB GN2 Source and Water Tank Bellows, but can be changed in the spreadsheet to accommodate any system parameters. The calculator can be used to analyze a leak source, leak rate, gas consumables depletion time, and puncture diameter that simulates the measured GN2 system pressure drop.

  13. Universal relations of transport coefficients from holography

    SciTech Connect

    Cherman, Aleksey; Nellore, Abhinav

    2009-09-15

    We show that there are universal high-temperature relations for transport coefficients of plasmas described by a wide class of field theories with gravity duals. These theories can be viewed as strongly coupled large-N{sub c} conformal field theories deformed by one or more relevant operators. The transport coefficients we study are the speed of sound and bulk viscosity, as well as the conductivity, diffusion coefficient, and charge susceptibility of probe U(1) charges. We show that the sound bound v{sub s}{sup 2}{<=}1/3 is satisfied at high temperatures in these theories and also discuss bounds on the diffusion coefficient, the conductivity, and the bulk viscosity.

  14. Factor Scores, Structure Coefficients, and Communality Coefficients

    ERIC Educational Resources Information Center

    Goodwyn, Fara

    2012-01-01

    This paper presents heuristic explanations of factor scores, structure coefficients, and communality coefficients. Common misconceptions regarding these topics are clarified. In addition, (a) the regression (b) Bartlett, (c) Anderson-Rubin, and (d) Thompson methods for calculating factor scores are reviewed. Syntax necessary to execute all four…

  15. Hydrogen and Gaseous Fuel Safety and Toxicity

    SciTech Connect

    Lee C. Cadwallader; J. Sephen Herring

    2007-06-01

    Non-traditional motor fuels are receiving increased attention and use. This paper examines the safety of three alternative gaseous fuels plus gasoline and the advantages and disadvantages of each. The gaseous fuels are hydrogen, methane (natural gas), and propane. Qualitatively, the overall risks of the four fuels should be close. Gasoline is the most toxic. For small leaks, hydrogen has the highest ignition probability and the gaseous fuels have the highest risk of a burning jet or cloud.

  16. Strain-Rate-Free Diffusion Flames: Initiation, Properties, and Quenching

    NASA Technical Reports Server (NTRS)

    Fendell, Francis; Rungaldier, Harald; Gokoglu, Suleyman; Schultz, Donald

    1997-01-01

    For about a half century, the stabilization of a steady planar deflagration on a heat-sink-type flat-flame burner has been of extraordinary service for the theoretical modeling and diagnostic probing of combusting gaseous mixtures. However, most engineering devices and most unwanted fire involve the burning of initially unmixed reactants. The most vigorous burning of initially separated gaseous fuel and oxidizer is the diffusion flame. In this useful idealization (limiting case), the reactants are converted to product at a mathematically thin interface, so no interpenetration of fuel and oxidizer occurs. This limit is of practical importance because it often characterizes the condition of optimal performance (and sometimes environmentally objectionable operation) of a combustor. A steady planar diffusion flame is most closely approached in the laboratory in the counterflow apparatus. The utility of this simple-strain-rate flow for the modeling and probing of diffusion flames was noted by Pandya and Weinberg 35 years ago, though only in the last decade or so has its use become internationally common place. However, typically, as the strain rate a is reduced below about 20 cm(exp -1), and the diffusion-flame limit (reaction rate much faster than the flow rate) is approached, the burning is observed to become unstable in earth gravity. The advantageous steady planar flow is not available in the diffusion-flame limit in earth gravity. This is unfortunate because the typical spatial scale in a counterflow is (k/a)(sup 1/2), where k denotes a characteristic diffusion coefficient; thus, the length scale becomes large, and the reacting flow is particularly amenable to diagnostic probing, as the diffusion-flame limit is approached. The disruption of planar symmetry is owing the fact that, as the strain rate a decreases, the residence time (l/a) of the throughput in the counterflow burner increases. Observationally, when the residence time exceeds about 50 msec, the inevitably present convective (Rayleigh-Benard) instabilities, associated with hot-under-cold (flame-under-fresh-reactant) stratification of fluid in a gravitational field, have time to grow to finite amplitude during transit of the burner.

  17. Detector for flow abnormalities in gaseous diffusion plant compressors

    DOEpatents

    Smith, S.F.; Castleberry, K.N.

    1998-06-16

    A detector detects a flow abnormality in a plant compressor which outputs a motor current signal. The detector includes a demodulator/lowpass filter demodulating and filtering the motor current signal producing a demodulated signal, and first, second, third and fourth bandpass filters connected to the demodulator/lowpass filter, and filtering the demodulated signal in accordance with first, second, third and fourth bandpass frequencies generating first, second, third and fourth filtered signals having first, second, third and fourth amplitudes. The detector also includes first, second, third and fourth amplitude detectors connected to the first, second, third and fourth bandpass filters respectively, and detecting the first, second, third and fourth amplitudes, and first and second adders connected to the first and fourth amplitude detectors and the second and third amplitude detectors respectively, and adding the first and fourth amplitudes and the second and third amplitudes respectively generating first and second added signals. Finally, the detector includes a comparator, connected to the first and second adders, and comparing the first and second added signals and detecting the abnormal condition in the plant compressor when the second added signal exceeds the first added signal by a predetermined value. 6 figs.

  18. Breached cylinder incident at the Portsmouth gaseous diffusion plant

    SciTech Connect

    Boelens, R.A.

    1991-12-31

    On June 16, 1990, during an inspection of valves on partially depleted product storage cylinders, a 14-ton partially depleted product cylinder was discovered breached. The cylinder had been placed in long-term storage in 1977 on the top row of Portsmouth`s (two rows high) storage area. The breach was observed when an inspector noticed a pile of green material along side of the cylinder. The breach was estimated to be approximately 8- inches wide and 16-inches long, and ran under the first stiffening ring of the cylinder. During the continuing inspection of the storage area, a second 14-ton product cylinder was discovered breached. This cylinder was stacked on the bottom row in the storage area in 1986. This breach was also located adjacent to a stiffening ring. This paper will discuss the contributing factors of the breaching of the cylinders, the immediate response, subsequent actions in support of the investigation, and corrective actions.

  19. Detector for flow abnormalities in gaseous diffusion plant compressors

    DOEpatents

    Smith, Stephen F. (Loudon, TN); Castleberry, Kim N. (Harriman, TN)

    1998-01-01

    A detector detects a flow abnormality in a plant compressor which outputs a motor current signal. The detector includes a demodulator/lowpass filter demodulating and filtering the motor current signal producing a demodulated signal, and first, second, third and fourth bandpass filters connected to the demodulator/lowpass filter, and filtering the demodulated signal in accordance with first, second, third and fourth bandpass frequencies generating first, second, third and fourth filtered signals having first, second, third and fourth amplitudes. The detector also includes first, second, third and fourth amplitude detectors connected to the first, second, third and fourth bandpass filters respectively, and detecting the first, second, third and fourth amplitudes, and first and second adders connected to the first and fourth amplitude detectors and the second and third amplitude detectors respectively, and adding the first and fourth amplitudes and the second and third amplitudes respectively generating first and second added signals. Finally, the detector includes a comparator, connected to the first and second adders, and comparing the first and second added signals and detecting the abnormal condition in the plant compressor when the second added signal exceeds the first added signal by a predetermined value.

  20. Gaseous protein cations are amphoteric

    SciTech Connect

    Stephenson, J.L. Jr.; McLuckey, S.A.

    1997-02-19

    Singly- and multiply-protonated ubiquitin molecules are found to react with iodide anions, and certain other anions, by attachment of the anion, in competition with proton transfer to the anion. The resulting adduct ions are relatively weakly bound and dissociate upon collisional activation by loss of the neutral acid derived from the anion. Adduct ions that behave similarly can also be formed via ion/molecule reactions involving the neutral acid. The ion/molecule reaction phenomenology, however, stands in contrast with that expected based on the reaction site(s) being charged. Reaction rates increase inversely with charge state and the total number of neutral molecules that add to the protein cations increases inversely with cation charge. These observations are inconsistent with the formation of proton-bound clusters but are fully consistent with the formation of ion pairs or dipole/dipole bonding involving the neutral acid and neutral basic sites in the protein. The ion/ion reactions can be interpreted on the basis of conjugate acid/base chemistry in which the anion, which is a strong gaseous base, reacts with a protonated site, which is a strong gaseous acid. Adduct ions can also be formed via ion/molecule reaction which, on the basis of microscopic reversibility, implies that the neutral acid interacts with neutral basic sites on the protein cation. 26 refs., 10 figs., 1 tab.

  1. 40 CFR 87.71 - Compliance with gaseous emission standards.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...POLLUTION FROM AIRCRAFT AND AIRCRAFT ENGINES Test Procedures for Engine Exhaust Gaseous Emissions (Aircraft and Aircraft Gas Turbine Engines) § 87.71 Compliance with gaseous emission standards. Compliance with each gaseous...

  2. Gaseous emissions from waste combustion.

    PubMed

    Werther, Joachim

    2007-06-18

    An overview is given on methods and technologies for limiting the gaseous emissions from waste combustion. With the guideline 2000/76/EC recent European legislation has set stringent limits not only for the mono-combustion of waste in specialized incineration plants but also for co-combustion in coal-fired power plants. With increased awareness of environmental issues and stepwise decrease of emission limits and inclusion of more and more substances into the network of regulations a multitude of emission abatement methods and technologies have been developed over the last decades. The result is the state-of-the-art waste incinerator with a number of specialized process steps for the individual components in the flue gas. The present work highlights some new developments which can be summarized under the common goal of reducing the costs of flue gas treatment by applying systems which combine the treatment of several noxious substances in one reactor or by taking new, simpler routes instead of the previously used complicated ones or - in the case of flue gas desulphurisation - by reducing the amount of limestone consumption. Cost reduction is also the driving force for new processes of conditioning of nonhomogenous waste before combustion. Pyrolysis or gasification is used for chemical conditioning whereas physical conditioning means comminution, classification and sorting processes. Conditioning yields a fuel which can be used in power plants either as a co-fuel or a mono-fuel and which will burn there under much better controlled conditions and therefore with less emissions than the nonhomogeneous waste in a conventional waste incinerator. Also for cost reasons, co-combustion of wastes in coal-fired power stations is strongly pressing into the market. Recent investigations reveal that the co-firing of waste can also have beneficial effects on the operating behavior of the boiler and on the gaseous emissions. PMID:17339077

  3. Nodal Diffusion & Transport Theory

    Energy Science and Technology Software Center (ESTSC)

    1992-02-19

    DIF3D solves multigroup diffusion theory eigenvalue, adjoint, fixed source, and criticality (concentration, buckling, and dimension search) problems in 1, 2, and 3-space dimensions for orthogonal (rectangular or cylindrical), triangular, and hexagonal geometries. Anisotropic diffusion theory coefficients are permitted. Flux and power density maps by mesh cell and regionwise balance integrals are provided. Although primarily designed for fast reactor problems, upscattering and internal black boundary conditions are also treated.

  4. Diffusion Imaging of Brain Tumors

    PubMed Central

    Maier, Stephan E.; Sun, Yanping; Mulkern, Robert V.

    2010-01-01

    MR imaging offers a tremendous armamentarium of different methods that can be employed in brain tumor characterization. MR diffusion imaging has become a widely accepted method for probing the presence of fluid pools and molecular tissue water mobility. For most clinical applications of diffusion imaging, it is assumed that the diffusion signal vs diffusion weighting factor b decays monoexponentially. Within this framework, measurement of a single diffusion coefficient in brain tumors permits an approximate categorization of tumor type and for some tumors definitive diagnosis. In most brain tumors, when compared to normal brain tissue, the diffusion coefficient is elevated. The presence of peritumoral edema, which also exhibits an elevated diffusion coefficient, often precludes delineation of the tumor based on diffusion information alone. Serially obtained diffusion data is useful to document and even predict cellular response to drug or radiation therapy. Diffusion measurements in tissues over an extended range of b-factors have clearly shown that the mono-parametric description of the MR diffusion signal decay is incomplete. Very high diffusion weighting on clinical systems requires substantial compromise in spatial resolution. But after suitable analysis, superior separation of malignant brain tumors, peritumoral edema, and normal brain tissue can be achieved. These findings are also discussed in light of tissue-specific differences in membrane structure and the restrictions membranes exert on diffusion. Finally, measurement of the directional dependence of diffusion permits assessment of white matter integrity and dislocation. Such information, particularly in conjunction with advanced post-processing, is considered immensely useful for therapy planning. Diffusion imaging, which permits monoexponential analysis and provides directional diffusion information, is performed routinely in brain tumor patients. More advanced methods require improvement in acquisition speed and spatial resolution to gain clinical acceptance. PMID:20886568

  5. Diffusion Flame Stabilization

    NASA Technical Reports Server (NTRS)

    Takahashi, Fumiaki; Katta, Viswanath R.

    2007-01-01

    Diffusion flames are commonly used for industrial burners in furnaces and flares. Oxygen/fuel burners are usually diffusion burners, primarily for safety reasons, to prevent flashback and explosion in a potentially dangerous system. Furthermore, in most fires, condensed materials pyrolyze, vaporize, and burn in air as diffusion flames. As a result of the interaction of a diffusion flame with burner or condensed-fuel surfaces, a quenched space is formed, thus leaving a diffusion flame edge, which plays an important role in flame holding in combustion systems and fire spread through condensed fuels. Despite a long history of jet diffusion flame studies, lifting/blowoff mechanisms have not yet been fully understood, compared to those of premixed flames. In this study, the structure and stability of diffusion flames of gaseous hydrocarbon fuels in coflowing air at normal earth gravity have been investigated experimentally and computationally. Measurements of the critical mean jet velocity (U(sub jc)) of methane, ethane, or propane at lifting or blowoff were made as a function of the coflowing air velocity (U(sub a)) using a tube burner (i.d.: 2.87 mm) (Fig. 1, left). By using a computational fluid dynamics code with 33 species and 112 elementary reaction steps, the internal chemical-kinetic structures of the stabilizing region of methane and propane flames were investigated (Fig. 1, right). A peak reactivity spot, i.e., reaction kernel, is formed in the flame stabilizing region due to back-diffusion of heat and radical species against an oxygen-rich incoming flow, thus holding the trailing diffusion flame. The simulated flame base moved downstream under flow conditions close to the measured stability limit.

  6. Diffusion Flame Stabilization

    NASA Technical Reports Server (NTRS)

    Takahashi, Fumiaki; Katta, V. R.

    2006-01-01

    Diffusion flames are commonly used for industrial burners in furnaces and flares. Oxygen/fuel burners are usually diffusion burners, primarily for safety reasons, to prevent flashback and explosion in a potentially dangerous system. Furthermore, in most fires, condensed materials pyrolyze, vaporize, and burn in air as diffusion flames. As a result of the interaction of a diffusion flame with burner or condensed-fuel surfaces, a quenched space is formed, thus leaving a diffusion flame edge, which plays an important role in flame holding in combustion systems and fire spread through condensed fuels. Despite a long history of jet diffusion flame studies, lifting/blowoff mechanisms have not yet been fully understood, compared to those of premixed flames. In this study, the structure and stability of diffusion flames of gaseous hydrocarbon fuels in coflowing air at normal earth gravity have been investigated experimentally and computationally. Measurements of the critical mean jet velocity (U(sub jc)) of methane, ethane, or propane at lifting or blowoff were made as a function of the coflowing air velocity (U(sub a)) using a tube burner (i.d.: 2.87 mm). By using a computational fluid dynamics code with 33 species and 112 elementary reaction steps, the internal chemical-kinetic structures of the stabilizing region of methane and propane flames were investigated. A peak reactivity spot, i.e., reaction kernel, is formed in the flame stabilizing region due to back-diffusion of heat and radical species against an oxygen-rich incoming flow, thus holding the trailing diffusion flame. The simulated flame base moved downstream under flow conditions close to the measured stability limit.

  7. Combination free electron and gaseous laser

    DOEpatents

    Brau, Charles A. (Los Alamos, NM); Rockwood, Stephen D. (Los Alamos, NM); Stein, William E. (Los Alamos, NM)

    1980-01-01

    A multiple laser having one or more gaseous laser stages and one or more free electron stages. Each of the free electron laser stages is sequentially pumped by a microwave linear accelerator. Subsequently, the electron beam is directed through a gaseous laser, in the preferred embodiment, and in an alternative embodiment, through a microwave accelerator to lower the energy level of the electron beam to pump one or more gaseous lasers. The combination laser provides high pulse repetition frequencies, on the order of 1 kHz or greater, high power capability, high efficiency, and tunability in the synchronous production of multiple beams of coherent optical radiation.

  8. Orthopositronium: Annihilation of positron in gaseous neon

    E-print Network

    B. M. Levin

    2003-04-08

    On the basis of phenomenological model of the orthopositronium annihilation "isotope anomaly" in gaseous neon (lifetime spectra, positrons source Na-22) the realistic estimation of an additinal mode ~0.2%) of the orthopositronium annihilation is received.

  9. Helioseismic tests of diffusion theory

    E-print Network

    G. Fiorentini; M. Lissia; B. Ricci

    1998-08-03

    We present a quantitative estimate of the accuracy of the calculated diffusion coefficients, by comparing predictions of solar models with observational data provided by helioseismology. By taking into account the major uncertainties in building solar models we conclude that helioseismology confirms the diffusion efficiency adopted in SSM calculations, to the 10% level.

  10. Precipitation scavenging of gaseous pollutants having arbitrary solubility in inhomogeneous atmosphere

    NASA Astrophysics Data System (ADS)

    Elperin, Tov; Fominykh, Andrew; Krasovitov, Boris

    2015-04-01

    We investigate scavenging of gaseous pollutants in the atmosphere under the combined influence of rain and varying temperature distribution that affects the rate of soluble gas scavenging. We employ a one-dimensional model of precipitation scavenging of gaseous pollutants having arbitrary solubility that is valid for small gradients and for non-uniform initial vertical distributions of temperature and soluble trace gases concentration in the atmosphere. It is showed that transient altitudinal distributions of temperature and concentration under the influence of rain are determined by linear wave equations that describe propagation of temperature and scavenging wave fronts. Scavenging coefficient and the rates of precipitation scavenging are calculated for wet removal of methanol () using measured initial distribution of methanol and temperature in the atmosphere. Theoretical predictions of the dependence of the magnitude of the scavenging coefficient on rain intensity for tritium oxide and sulfur dioxide are in good agreement with the available atmospheric measurements.

  11. Resonant enhanced diffusion in time dependent flow

    E-print Network

    P. Castiglione; A. Crisanti; A. Mazzino; M. Vergassola; A. Vulpiani

    1998-03-27

    Explicit examples of scalar enhanced diffusion due to resonances between different transport mechanisms are presented. Their signature is provided by the sharp and narrow peaks observed in the effective diffusivity coefficients and, in the absence of molecular diffusion, by anomalous transport. For the time-dependent flow considered here, resonances arise between their oscillations in time and either molecular diffusion or a mean flow. The effective diffusivities are calculated using multiscale techniques.

  12. Diffusion Modeling in BrainSuite13 Justin P. Haldar

    E-print Network

    Leahy, Richard M.

    Diffusion Modeling in BrainSuite13 Justin P. Haldar #12;Outline Introduction Diffusion in BrainSuite13 Diffusion Modeling Tracking Analysis Other Resources Conclusion 2 #12;Apparent Diffusion Coefficient Fractional Anisotropy Anomalous Exponent Kurtosis Motivation 3 Diffusion MRI provides unique

  13. Self diffusion of reversibly aggregating spheres

    E-print Network

    Sujin Babu; Jean Christophe Gimel; Taco Nicolai

    2007-05-10

    Reversible diffusion limited cluster aggregation of hard spheres with rigid bonds was simulated and the self diffusion coefficient was determined for equilibrated systems. The effect of increasing attraction strength was determined for systems at different volume fractions and different interaction ranges. It was found that the slowing down of the diffusion coefficient due to crowding is decoupled from that due to cluster formation. The diffusion coefficient could be calculated from the cluster size distribution and became zero only at infinite attraction strength when permanent gels are formed. It is concluded that so-called attractive glasses are not formed at finite interaction strength.

  14. Global existence of weak solution for the compressible Navier-Stokes-Poisson system for gaseous stars

    NASA Astrophysics Data System (ADS)

    Duan, Qin; Li, Hai-Liang

    2015-11-01

    We study the multi-dimensional compressible Navier-Stokes-Poisson system with ?-law pressure and density-dependent viscosity coefficients in the simulation of the motion of gaseous stars. The global existence of spherically symmetric weak solutions to the free boundary value problem for the Navier-Stokes-Poisson system for ? ? (6/5, 4/3 ] is shown for arbitrarily large initial data with compact support.

  15. Diffusion and plasticity at high temperature

    NASA Astrophysics Data System (ADS)

    Philibert, J.

    1991-06-01

    High temperature plastic deformation requires atomic migration whatever the mechanism of deformation. The constitutive equations contain a diffusion coefficient and the deformation rate follows an Arrhenius law. This paper will only discuss the case of viscous creep in order to elucidate the nature of the diffusion processes and the expression of the diffusion coefficient involved in alloys or compounds. La déformation plastique à haute température met en jeu des migrations atomiques, quel que soit le mécanisme de déformation. Les lois de comportement contiennent donc un coefficient de diffusion et la vitesse de déformation obéit à une loi d'Arrhenius. Dans cet article, qui ne conceme qu'un seul type de déformation, lefluage visqueux, on s'efforce de préciser la nature des processus de diffusion et du coefficient de diffusion mis en jeu dans le cas des alliages et des composés.

  16. Gaseous chemical compounds in indoor and outdoor air of 602 houses throughout Japan in winter and summer.

    PubMed

    Uchiyama, Shigehisa; Tomizawa, Takuya; Tokoro, Asumo; Aoki, Manami; Hishiki, Mayu; Yamada, Tomomi; Tanaka, Reiko; Sakamoto, Hironari; Yoshida, Tsutomu; Bekki, Kanae; Inaba, Yohei; Nakagome, Hideki; Kunugita, Naoki

    2015-02-01

    A nationwide survey of indoor air quality in Japan was conducted using four types of diffusive samplers. Gaseous chemical compounds such as carbonyls, volatile organic compounds (VOC), acid gases, basic gases, and ozone were measured in indoor and outdoor air of 602 houses throughout Japan in winter and summer. Four kinds of diffusive samplers were used in this study: DSD-BPE/DNPH packed with 2,4-dinitrophenyl hydrazine and trans-1,2-bis(2-pyridyl)ethylene coated silica for ozone and carbonyls; VOC-SD packed with Carboxen 564 particles for volatile organic compounds; DSD-TEA packed with triethanolamine impregnated silica for acid gases; and DSD-NH3 packed with phosphoric acid impregnated silica for basic gases. These samplers are small and lightweight and do not require a power source, hence, it was possible to obtain a large number of air samples via mail from throughout Japan. Almost all compounds in indoor air were present at higher levels in summer than in winter. In particular, formaldehyde, toluene, and ammonia were strongly dependent on temperature, and their levels increased with temperature. The nitrogen dioxide concentration in indoor air particularly increased only during winter and was well correlated with the formic acid concentration (correlation coefficient=0.959). Ozone concentrations in indoor air were extremely low compared with the outdoor concentrations. Ozone flowing from outdoor air may be decomposed quickly by chemical compounds in indoor air; therefore, it is suggested that the indoor/outdoor ratio of ozone represents the ventilation of the indoor environment. PMID:25601740

  17. Surface diffusion of dimers: I repulsive interactions

    NASA Astrophysics Data System (ADS)

    Ramirez-Pastor, A. J.; Nazzarro, M.; Riccardo, J. L.; Pereyra, V.

    1997-11-01

    We analyze the diffusion process of rigid homonuclear dimers (AA) adsorbed on a simple cubic (sc(100)) surface. The coverage dependence of the collective diffusion coefficient is obtained by means of Monte Carlo simulations in the framework of the Kubo-Green formalism. Different microscopic diffusion mechanisms are introduced and their influence in the collective motion have been investigated. Repulsive adsorbate-adsorbate interaction, JAA, is considered in order to analyze the influence of such parameter on the diffusion process. The behavior of the diffusion coefficient in the critical region is studied, where several ordered adsorbate structures appear depending on the values of JAA.

  18. Effect of internal pressure and gas/liquid interface area on the CO mass transfer coefficient using hollow fibre membranes as a high mass transfer gas diffusing system for microbial syngas fermentation.

    PubMed

    Yasin, Muhammad; Park, Shinyoung; Jeong, Yeseul; Lee, Eun Yeol; Lee, Jinwon; Chang, In Seop

    2014-10-01

    This study proposed a submerged hollow fibre membrane bioreactor (HFMBR) system capable of achieving high carbon monoxide (CO) mass transfer for applications in microbial synthesis gas conversion systems. Hydrophobic polyvinylidene fluoride (PVDF) membrane fibres were used to fabricate a membrane module, which was used for pressurising CO in water phase. Pressure through the hollow fibre lumen (P) and membrane surface area per unit working volume of the liquid (A(S)/V(L)) were used as controllable parameters to determine gas-liquid volumetric mass transfer coefficient (k(L)a) values. We found a k(L)a of 135.72 h(-1) when P was 93.76 kPa and AS/VL was fixed at 27.5m(-1). A higher k(L)a of 155.16 h(-1) was achieved by increasing AS/VL to 62.5m(-1) at a lower P of 37.23 kPa. Practicality of HFMBR to support microbial growth and organic product formation was assessed by CO/CO2 fermentation using Eubacterium limosum KIST612. PMID:25105269

  19. Gaseous fuel reactors for power systems

    NASA Technical Reports Server (NTRS)

    Kendall, J. S.; Rodgers, R. J.

    1977-01-01

    Gaseous-fuel nuclear reactors have significant advantages as energy sources for closed-cycle power systems. The advantages arise from the removal of temperature limits associated with conventional reactor fuel elements, the wide variety of methods of extracting energy from fissioning gases, and inherent low fissile and fission product in-core inventory due to continuous fuel reprocessing. Example power cycles and their general performance characteristics are discussed. Efficiencies of gaseous fuel reactor systems are shown to be high with resulting minimal environmental effects. A technical overview of the NASA-funded research program in gaseous fuel reactors is described and results of recent tests of uranium hexafluoride (UF6)-fueled critical assemblies are presented.

  20. Gaseous insulators for high voltage electrical equipment

    DOEpatents

    Christophorou, Loucas G. (Oak Ridge, TN); James, David R. (Knoxville, TN); Pace, Marshall O. (Knoxville, TN); Pai, Robert Y. (Concord, TN)

    1981-01-01

    Gaseous insulators comprise compounds having high attachment cross sections for electrons having energies in the 0-1.3 electron volt range. Multi-component gaseous insulators comprise compounds and mixtures having overall high electron attachment cross sections in the 0-1.3 electron volt range and moderating gases having high cross sections for inelastic interactions with electrons of energies 1-4 electron volts. Suitable electron attachment components include hexafluorobutyne, perfluorobutene-2, perfluorocyclobutane, perfluorodimethylcyclobutane, perfluorocyclohexene, perfluoromethylcyclohexane, hexafluorobutadiene, perfluoroheptene-1 and hexafluoroazomethane. Suitable moderating gases include N.sub.2, CO, CO.sub.2 and H.sub.2. The gaseous insulating mixture can also contain SF.sub.6, perfluoropropane and perfluorobenzene.