Sample records for gases so2 no2

  1. Changes in SO2 and NO2 Pollution over the Past Decade Observed by Aura OMI

    NASA Astrophysics Data System (ADS)

    Krotkov, N. A.; Li, C.; Lamsal, L. N.; Celarier, E. A.; Marchenko, S. V.; Swartz, W.; Bucsela, E. J.; Fioletov, V.; McLinden, C. A.; Joiner, J.; Bhartia, P. K.; Duncan, B. N.; Dickerson, R. R.

    2014-12-01

    The Ozone Monitoring Instrument (OMI), a NASA partnership with the Netherlands and Finland, flies on the EOS Aura satellite and uses reflected sunlight to measure two critical atmospheric trace gases, nitrogen dioxide (NO2) and sulfur dioxide (SO2), characterizing daily air quality. Both gases and the secondary pollutants they produce (particulate matter, PM2.5, and tropospheric ozone) are among USEPA designated criteria pollutants, posing serious threats to human health and the environment (e.g., acid rain, plant damage, and reduced visibility). A new generation of the OMI standard SO2 and NO2 products (based on critically improved DOAS spectral fitting for NO2 and innovative Principal Component Analysis method for SO2) provides a valuable dataset for studying anthropogenic pollution on local to global scales. Here we highlight some of the OMI observed long-term changes in air quality over several regions. Over the US, average NO2 and SO2 pollution levels have decreased dramatically as a result of both technological improvements (e.g., catalytic converters on cars) and stricter regulations of emissions. We see continued decline in NO2 and SO2 pollution over Europe. Over China OMI observed a ~ 60% increase in NO2 pollution between 2005 and 2013, despite a temporary reversal of the growing trend due to both 2008 Olympic Games and the economic recession in 2009. Chinese SO2 pollution seems to have stabilized since peaking in 2007, probably due to government efforts to curb SO2 emissions from the power sector. We have also observed large increases in both SO2 and NO2 pollution particularly in Eastern India where a number of new large coal power plants have been built in recent years. We expect that further improvements in the OMI NO2 and SO2 products will allow more robust quantification of long-term trends in local to global air quality.

  2. Electron beam process for SO 2 removal from flue gases with high SO 2 content

    NASA Astrophysics Data System (ADS)

    Licki, J.; Chmielewski, A. G.; Zimek, Z.; Tymiñski, B.; Bu?ka, S.

    2002-03-01

    Flue gases with high SO 2 concentration are emitted from different industrial processes, e.g. combustion of coal with high sulfur content, copper smelting and sintering plant. The application of the electron beam process for SO 2 removal from such flue gases was investigated. A parametric study was carried out to determine the removal efficiency as a function of temperature and humidity of irradiated gases, dose and ammonia stoichiometry. At the dose 11.5 kGy 95% SO 2 removal efficiency was obtained when the temperature and humidity of irradiated flue gases and ammonia stoichiometry were properly adjusted. The synergistic effect of high SO 2 concentration on NO x removal was observed. The collected by-product was the mixture of (NH 4) 2 SO 4 and NH 4NO 3. The content of heavy metals in the by-product was many times lower than the values acceptable for commercial fertilizer.

  3. Variations in PM2.5, TSP, BC, and trace gases (NO2, SO2, and O3) between haze and non-haze episodes in winter over Xi'an, China

    NASA Astrophysics Data System (ADS)

    Zhang, Qian; Shen, Zhenxing; Cao, Junji; Zhang, Renjian; Zhang, Leiming; Huang, R.-J.; Zheng, Chenjia; Wang, Linqing; Liu, Suixin; Xu, Hongmei; Zheng, Chunli; Liu, Pingping

    2015-07-01

    To investigate chemical profiles and formation mechanisms of aerosol particles in winter haze events, daily PM2.5 and TSP, 5-min BC, and 15-min trace gases (SO2, NO2, and O3) were measured continuously during Dec. 1-31, 2012 in Xi'an. Chemical analysis was also conducted for nine water-soluble inorganic ions (Na+, NH4+, K+, Mg2+, Ca2+, F-, Cl-, NO3-, and SO42-), organic carbon (OC), elemental carbon (EC), and eight carbon fractions (OC1, OC2, OC3, OC4, EC1, EC2, EC3, and OP) in both PM2.5 and TSP samples. Higher levels of TSP, PM2.5, BC, SO2, and NO2, and lower levels of O3 were observed during haze periods in comparison with non-haze days. The sum of the major secondary ionic species (NH4+, NO3-, and SO42-) in PM2.5 or TSP during haze periods was about 3 times of that during non-haze days. Ion balance calculations showed that PM2.5 samples were acidic during haze periods and were close to neutral during non-haze days. The mean carbon levels were 52.9 ?g m-3 and 82.1 ?g m-3 in PM2.5 and TSP, respectively, during haze events, which were ?1.5 times of those during non-haze days. The diurnal variations of BC during non-haze days showed a bimodal distribution with two peaks coincided with traffic rush hours. This was not the case during haze periods, which exhibited a relatively smooth pattern but with high concentration levels, providing evidence of particle accumulation. The ratios of SO42 - /EC, NO3-/EC, and NH4+/EC sharply increased during haze periods, indicating the important pathway of secondary inorganic species formation through aqueous-phase transformation under high relative humidity condition. This study also highlights that wintertime secondary organic carbon (SOC) formation can be an important contributor to carbonaceous aerosol, especially during haze periods.

  4. [Investigations on the influence of NO2 and SO2 as well a combination of the two gases on the production of precipitating antibodies in guinea-pigs (author's transl)].

    PubMed

    Antweiler, H; Kompch, K H; Brockhaus, A

    1975-05-01

    The influence of NO2 and SO2 or their combination on the production of precipitating antibodies was studied in guinea pigs. The gas concentration has been 10 mg/m3; the continuous exposure began 3 days before sensitization and lasted up to the testing date. Sensitization was done s.c. and i.m. with fresh chicken albumen plus complete Freund's adjuvans. Production of precipitating antibodies was tested by the double diffusion method of Ouchterlony. Moreover total protein content was measured and an immunelectrophoretic separation of the protein fractions was performed with polyvalent antiguinea pig serum. The statistical evaluation of the results has yielded no support in favour of an interaction of NO2 and SO2 or their combination in the concentration used on the formation of precipitating antibodies. PMID:808054

  5. Next-Generation Aura/OMI NO2 and SO2 Products

    NASA Technical Reports Server (NTRS)

    Krotkov, Nickolay; Yang, Kai; Bucsela, Eric; Lamsal, Lok; Celarier, Edward; Swartz, William; Carn, Simon; Bhartia, Pawan; Gleason, James; Pickering, Ken; Dickerson, Russ

    2011-01-01

    The measurement of both SO2 and NO2 gases are recognized as an essential component of atmospheric composition missions. We describe current capabilities and limitations of the operational Aura/OMI NO2 and SO2 data that have been used by a large number of researchers. Analyses of the data and validation studies have brought to light a number of areas in which these products can be expanded and improved. Major improvements for new NASA standard (SP) NO2 product include more accurate tropospheric and stratospheric column amounts, along with much improved error estimates and diagnostics. Our approach uses a monthly NO2 climatology based on the NASA Global Modeling Initiative (GMI) chemistry-transport model and takes advantage of OMI data from cloudy scenes to find clean areas where the contribution from the trap NO2 column is relatively small. We then use a new filtering, interpolation and smoothing techniques for separating the stratospheric and tropospheric components of NO2, minimizing the influence of a priori information. The new algorithm greatly improves the structure of stratospheric features relative to the original SP. For the next-generation OMI SO2 product we plan to implement operationally the offline iterative spectral fitting (ISF) algorithm and re-process the OMI Level-2 SO2 dataset using a priori SO2 and aerosol profiles, clouds, and surface reflectivity appropriate for observation conditions. This will improve the ability to detect and quantify weak tropospheric SO2 loadings. The new algorithm is validated using aircraft in-situ data during field campaigns in China (2005 and 2008) and in Maryland (Frostburg, 2010 and DISCOVER-AQ in July 2011). The height of the SO2 plumes will also be estimated for high SO2 loading cases (e.g., volcanic eruptions). The same SO2 algorithm will be applied to the data from OMPS sensor to be launched on NPP satellite later this year. The next-generation NO2 and SO2 products will provide critical information (e.g., averaging kernels) for evaluation of chemistry-transport models, for data assimilation, and to impose top-down constraints on the SO2 and NO2 emission sources.

  6. Effects of exposure to NO2 or SO2 on bronchopulmonary reaction induced by Candida albicans in guinea pigs.

    PubMed

    Kitabatake, M; Yamamoto, H; Yuan, P F; Manjurul, H; Murase, S; Yamauchi, T

    1995-05-01

    The effects of NO2 or SO2 on the bronchopulmonary reactions induced by Candida albicans in guinea pigs were evaluated. Thirty-six guinea pigs (3 groups of 12 animals each) were sensitized with intraperitoneal injection of 10 mg of C. albicans, given twice. Two groups of animals were exposed to about 5 ppm of NO2 or SO2 for 4 h/d, 5 d/wk; this exposure was conducted a total of 30 times during the study. The third group served as the control and was not exposed to these pollutants. Two weeks after the second sensitization, all the animals were subjected to inhalation exposure to C. albicans. For 42 h after the antigen challenge, the respiratory rates and expiration/inspiration ratios of the animals were automatically monitored. The number of animals showing tachypnea was significantly higher in the NO2 exposure group than in the control from 15 h after antigen challenge. In the SO2 exposure group, the number of animals showing prolonged expiration or prolonged inspiration, or both, was significantly higher than that in the control group, and the symptoms were observed from approximately 15 h after antigen challenge. These findings showed that delayed-type dyspneic symptoms in guinea pigs were increased by exposure to NO2 or SO2, although the symptoms and degree of dyspnea were different for the two gases. PMID:7752290

  7. Two years of MAXDOAS measurements of NO2, HONO, SO2 and HCHO at SORPES station in Nanjing, China

    NASA Astrophysics Data System (ADS)

    Hao, Nan; Ding, Aijun; Van Roozendael, Michel; Hendrick, Francois; Shen, Yicheng; Valks, Pieter

    2015-04-01

    The Yangtze River Delta (YRD) region includes the mega-city Shanghai and the well-industrialized and urbanized areas of Zhejiang Province and Jiangsu Province, with over ten large cities, such as Hangzhou, Suzhou and Nanjing. Covering only 2% land area, this region produces over 20% of China's Gross Domestic Product (GDP) which makes it the most densely populated region and one of the most polluted regions in China. In the YRD region, knowledge gaps still exist in the understanding of the source and transport of air pollutants because only few measurement studies have been conducted. This work presents two years measurements of air pollutants including NO2, HONO, SO2, HCHO and CHOCHO at a regional back-ground site, the Station for Observing Regional Processes of the Earth System (SORPES), in the western part of the Yangtze River Delta (YRD) in eastern China. A retrieval algorithm, based on an on-line implementation of the radiative transfer code LIDORT and the optimal estimation technique, has been used to provide information on trace gases vertical profiles and vertical column densities (VCDs). The seasonal and diurnal cycles of trace gases have been studies and compared with in situ measurements. The retrieved tropospheric NO2, HCHO and SO2 VCDs were compared to satellite measurements, while the NO2 and SO2 near surface concentrations (0-200 m layer) were compared to measurements from in situ instruments at SORPES.

  8. Measurements of O3, SO2, NO2 and HCHO column amounts using a Brewer spectrometer

    Microsoft Academic Search

    Alexander Cede; Jay Herman

    2005-01-01

    O3, SO2 and NO2 vertical column amounts and aerosol optical depths at 18 wavelengths from 303 to 363nm were measured daily for the past two years by using a Brewer MK3 double spectrometer in direct-sun mode. The algorithms used are described and compared to the standard algorithm. For O3 and SO2 the standard algorithm was modified by using all 6

  9. GROWTH RESPONSE IN RADISH TO SEQUENTIAL AND SIMULTANEOUS EXPOSURES OF NO2 AND SO2

    EPA Science Inventory

    Sequential and simultaneous exposures of radish Raphanus sativus L. cv. Cherry Belle to 0.8 microliters per liter nitrogen dioxide (NO2) and 0.8 microliters per liter sulphur dioxide (SO2) were conducted under both day- and night-time conditions to examine the effects on growth a...

  10. SO2 REMOVAL FROM FLUE GASES USING UTILITY SYNTHESIZED ZEOLITES

    SciTech Connect

    MICHAEL GRUTZECK

    1998-10-31

    It is well known that natural and synthetic zeolites (molecular sieves) can adsorb gaseous SO2 from flue gas and do it more efficiently than lime based scrubbing materials. Unfortunately their cost ($500-$800 per ton) has deterred their use in this capacity. It is also known that zeolites are easy to synthesize from a variety of natural and man-made materials. The overall objective of the current work has been to evaluate the feasibility of having a utility synthesize its own zeolites, on-site, from fly ash and other recycled materials and then use these zeolites to adsorb SO2 from their flue gases. Work to date has shown that the efficiency of the capture process is related to the degree of crystallinity and the type of zeolite that forms in the samples. Normally, those samples cured at 150°C contained a greater proportion of zeolite and as such were more SO2 adsorptive than their low-temperature counterparts. However, in order for the project to be successful, on site synthesis must remain an option, i.e. _100°C synthesis. In light of this, the experimental focus now has two aspects. First, compositions of the starting materials are being altered by blending the current suite of fly ashes with other fly ashes, ground glass cullet and silica fume to promote the formation and growth of well crystallized and highly adsorptive zeolites. Second, greater degrees of reaction at significantly lower temperatures are being promote by ball milling the fly ash prior to use, by the use of more concentrated caustic solutions, and by the addition of zeolite seeds to the reactants. In all cases studies will focus on the effect of structure type and degree of conversion on SO2 adsorption. Future work will concentrate on the study of the effect of weathering on the suitability of converting fly ash into zeolites. This is an especially important study, considering the acres of fly ash now in storage throughout the country.

  11. SO2 REMOVAL FROM FLUE GASES USING UTILITY SYNTHESIZED ZEOLITES

    SciTech Connect

    Michael Grutzeck

    1999-04-30

    It is well known that natural and synthetic zeolites (molecular sieves) can adsorb gaseous SO{sub 2} from flue gas and do it more efficiently than lime based scrubbing materials. Unfortunately their cost ($500-$800 per ton) has deterred their use in this capacity. It is also known that zeolites are easy to synthesize from a variety of natural and man-made materials. The overall objective of the current work has been to evaluate the feasibility of having a utility synthesize its own zeolites, on-site, from fly ash and other recycled materials and then use these zeolites to adsorb SO{sub 2} from their flue gases. Work to date has shown that the efficiency of the capture process is related to the degree of crystallinity and the type of zeolite that forms in the samples. Normally, those samples cured at 150 C contained a greater proportion of zeolite and as such were more SO{sub 2} adsorptive than their low-temperature counterparts. However, in order for the project to be successful, on site synthesis must remain an option, i.e. 100 C synthesis. In light of this, the experimental focus now has two aspects. First, compositions of the starting materials are being altered by blending the current suite of fly ashes with ground glass cullet and silica fume to promote the formation and growth of well crystallized and highly adsorptive zeolites. Second, greater degrees of reaction at significantly lower temperatures are being promote by ball milling the fly ash prior to use, by the use of more concentrated caustic solutions, and by the addition of zeolite seeds to the reactants. In all cases studies will focus on the effect of structure type and degree of conversion on SO{sub 2} adsorption. Future work will concentrate on the study of the effect of weathering on the suitability of converting fly ash into zeolites. This is an especially important study, considering the acres of fly ash now in storage throughout the US.

  12. MAX-DOAS measurements of tropospheric NO2 and SO2 during the AROMAT-campaign in Rumania in September 2014

    NASA Astrophysics Data System (ADS)

    Shaiganfar, Reza; Wagner, Thomas; Riffel, Katharina; Donner, Sebastian

    2015-04-01

    The Airborne Romanian Measurements of Aerosols and Trace gases (AROMAT) campaigh took place in Rumania during September 2014. The aim of the AROMAT campaign was to measure the spatial distribution of trace gases (mainly NO2 and SO2) and aerosols. We carried out car-borne Multi-AXis Differential Optical Absorption Spectroscopy (MAX-DOAS) measurements using two Mini-MAX-DOAS instruments covering the UV and visible spectral range. During the first week car-MAX-DOAS measurements were carried-out on circles around Bucharest. From these observations, together with information on the wind fields, we derive the total NOx emissions from the city. We also provide estimates on the SO2 emissions, but these estimates have rather large uncertainties because the SO2 measurements are close or below the detection limit. We also made measurements within the city to quantify the spatial gradients. This information is especially important for the validation of satellite observations. In the second week, the car-MAX-DOAS measurements were carried-out around large power plants at Turceni. During these measurements, very strong SO2 absorptions were observed downwind of the power plants. From these observations, we estimate the SO2 emissions. We also determine the NO2 / SO2 ratio and investigate its dependence on the distance from the power plant.

  13. The influence of SO2 and NO2 impurities on CO2 gas hydrate formation and stability.

    PubMed

    Beeskow-Strauch, Bettina; Schicks, Judith M; Spangenberg, Erik; Erzinger, Jörg

    2011-04-11

    The sequestration of industrially emitted CO(2) in gas hydrate reservoirs has been recently discussed as an option to reduce atmospheric greenhouse gas. This CO(2) contains, despite much effort to clean it, traces of impurities such as SO(2) and NO(2) . Here, we present results of a pilot study on CO(2) hydrates contaminated with 1% SO(2) or 1% NO(2) and show the impact on hydrate formation and stability. Microscopic observations show similar hydrate formation rates, but an increase in hydrate stability in the presence of SO(2). Laser Raman spectroscopy indicates a strong enrichment of SO(2) in the liquid and hydrate phase and its incorporation in both large and small cages of the hydrate lattice. NO(2) is not verifiable by laser Raman spectroscopy, only the presence of nitrate ions could be confirmed. Differential scanning calorimetry analyses show that hydrate stability and dissociation enthalpy of mixed CO(2)-SO(2) hydrates increase, but that only negligible changes arise in the presence of NO(2) impurities. X-ray diffraction data reveal the formation of sI hydrate in all experiments. The conversion rates of ice+gas to hydrate increase in the presence of SO(2), but decrease in the presence of NO(2). After hydrate dissociation, SO(2) and NO(2) dissolved in water and form strong acids. PMID:21433127

  14. Synergistic effect between NO2 and SO2 in their adsorption and reaction on gamma-alumina.

    PubMed

    Ma, Qingxin; Liu, Yongchun; He, Hong

    2008-07-24

    Field measurements showed that there exists a correlation between nitrate and sulfate on mineral dust. In this work, the synergistic mechanism of adsorption and reaction between SO2 and NO2 on gamma-alumina was studied using in situ diffusion reflectance infrared Fourier spectroscopy (in situ DRIFTS) and temperature programmed desorption (TPD). The results revealed that the reaction pathway of NO2 adsorbed on alumina was altered in the presence of SO2. In the absence of SO2, nitrite was found to be an intermediate in the oxidation of NO2 to surface nitrate species. However, in the presence of SO2, the formation of nitrite was inhibited and a new intermediate, dinitrogen tetraoxide (N2O4), was observed. On the other hand, surface tetravalent sulfur species S(IV), including bisulfite and sulfite, were oxidized to sulfate in air condition when NO2 was present. The atmospheric implication of this synergistic effect was also discussed. PMID:18578482

  15. New Retrieval Techniques Enables Sensitive Measurements of Tropospheric NO2 and SO2 from Suomi NPP OMPS

    NASA Astrophysics Data System (ADS)

    Yang, K.; Carn, S. A.; Ge, C.; Wang, J.; Dickerson, R. R.

    2014-12-01

    We describe recent advances in retrieval techniques that improve the measurements of tropospheric NO2 and SO2 from space. We apply these new techniques to the observations of OMPS Nadir Mapper, flying on the Suomi NPP spacecraft since October 2011. The results demonstrate the unexpected capabilities of OMPS, which are enabled by the algorithmic advances. OMPS is providing sensitive measurements of air pollutants over the globe, with sensitivities similar to those achieved with Aura/OMI. The NO2 and SO2 data from SNPP/OMPS have sufficient quality to continue and extend NASA's long-term EOS NO2 and SO2 data records, and can be used to monitor daily air pollution and identify anthropogenic sources of NO2 and SO2.

  16. Identification of gaseous SO2 and new upper limits for other gases on Io

    NASA Technical Reports Server (NTRS)

    Pearl, J.; Hanel, R.; Kunde, V.; Maguire, W.; Fox, K.; Gupta, S.; Ponnamperuma, C.; Raulin, F.

    1979-01-01

    The identification of gaseous sulfur dioxide on Io by Voyager 1 is reported, and preliminary upper limits for other atmospheric gases are presented. Averaged spectra taken by the Voyager IRIS experiment in the range of 1,000 to 1,200/cm are interpreted as containing three fundamental sulfur dioxide bands, with intensities most nearly corresponding to an atmospheric model with a sulfur dioxide abundance of 0.2 cm atm. Upper limits for COS, CS2, SO3, H2S, CO2, O3, N2O, H2O, CH4, NH3 and HC1, not detected in the spectra, were calculated on the basis of the radiative transfer equation for temperatures of 130 and 250 K; a depletion of hydrogen, carbon and nitrogen is noted. It is suggested that a SO2 outgassing from a cooling sulfur extrusion is the major source of the observed atmospheric SO2.

  17. MOF stability and gas adsorption as a function of exposure to water, humid air, SO2, and NO2

    E-print Network

    Nair, Sankar

    MOF stability and gas adsorption as a function of exposure to water, humid air, SO2, and NO2 Sangil Separation High-throughput Acid gas a b s t r a c t Gas adsorption and stability to liquid water, humid air, and acid gasses on metal organic frameworks have been studied using a high-throughput adsorption

  18. SUMMARY OF AUDIT PERFORMANCE: MEASUREMENT OF SO2, NO2, SULFATE, NITRATE, LEAD, HI-VOL FLOW RATE, 1978

    EPA Science Inventory

    The report summarizes the results of the quality assurance audits for the period from January, 1978 through December, 1978. Pollutants for which audits were conducted and results reported are SO2, NO2, sulfate, nitrate, lead, and hi-vol flow rate. The operation of the EPA audit p...

  19. SUMMARY OF AUDIT PERFORMANCE: MEASUREMENT OF SO2, NO2, CO, SULFATE, NITRATE, LEAD, HI-VOL FLOW RATE

    EPA Science Inventory

    The report summarizes the results of the quality assurance audits for the period from October 1976 through December 1977. Pollutants for which audits were conducted and results reported are SO2, NO2, sulfate, nitrate, lead, and hi vol flow rate. The operation of the EPA audit pro...

  20. Modifications of Phleum pratense grass pollen allergens following artificial exposure to gaseous air pollutants (O3, NO2, SO2)

    E-print Network

    Paris-Sud XI, Université de

    to gaseous air pollutants (O3, NO2, SO2) Rogerieux F.1 , Godfrin D.2,4,* , Sénéchal H.2,3,* , Motta A.C.5: Air pollution and pollen allergens. Key words: traffic-related pollution, grass pollen, allergen, two - Abstract Background: Air pollution is frequently proposed as a potential cause for the increased incidence

  1. State-of-the art Differential Absorption and Scattering (DAS) lidar for SO2 and NO2

    NASA Technical Reports Server (NTRS)

    Lahmann, W.; Staehr, W.; Weitkamp, C.; Michaelis, W.

    1984-01-01

    A ground-based laser remote sensing system for the range-resolved detection of sulfur dioxide and nitrogen dioxide is described. The measurement is based on the differential absorption and scattering lidar technique. Both lasers are fired with a fixed time delay of 50 microsec to probe an atmosphere with unchanged optical properties. The NO2 is detected with two dye lasers emitting arouns 450 nm; SO2 is measured at 300 nm with the frequency-doubled output of two dye lasers. Field measurements in a city are presented. Determinations of SO2 emission rates from a smokestack agree well with operator data.

  2. Improved satellite retrievals of NO2 and SO2 over the Canadian oil sands and comparisons with surface measurements

    NASA Astrophysics Data System (ADS)

    McLinden, C. A.; Fioletov, V.; Boersma, K. F.; Kharol, S. K.; Krotkov, N.; Lamsal, L.; Makar, P. A.; Martin, R. V.; Veefkind, J. P.; Yang, K.

    2013-08-01

    Satellite remote sensing is increasingly being used to monitor air quality over localized sources such as the Canadian oil sands. Following an initial study, significant low biases have been identified in current NO2 and SO2 retrieval products from the Ozone Monitoring instrument (OMI) satellite sensor over this location resulting from a combination of its rapid development and small spatial scale. Air mass factors (AMFs) used to convert line-of-sight "slant" columns to vertical columns were re-calculated for this region based on updated and higher resolution input information including absorber profiles from a regional scale (15 km × 15 km resolution) air quality (AQ) model, higher spatial and temporal resolution surface reflectivity, and an improved treatment of snow. The overall impact of these new Environment Canada (EC) AMFs led to substantial increases in the peak NO2 and SO2 average vertical column density (VCD), occurring over an area of intensive surface mining, by factors of 2 and 1.4, respectively, relative to estimates made with previous AMFs. Comparisons are made with long-term averages of NO2 and SO2 from in-situ surface monitors by using the AQ model to map the OMI VCDs to surface concentrations. This new OMI-EC product is able to capture the spatial distribution of the in-situ instruments (slopes of 0.7 to 1.0; correlation coefficients of 0.9). The concentration absolute values from surface network observations were in reasonable agreement, with OMI-EC NO2 and SO2 biased low by roughly 30%. Several complications were addressed including correction for the interference effect in the surface NO2 instruments and smoothing and clear-sky biases in the OMI measurements. Overall these results highlight the importance of using input information that accounts for the spatial and temporal variability of the location of interest when performing retrievals.

  3. Improved satellite retrievals of NO2 and SO2 over the Canadian oil sands and comparisons with surface measurements

    NASA Astrophysics Data System (ADS)

    McLinden, C. A.; Fioletov, V.; Boersma, K. F.; Kharol, S. K.; Krotkov, N.; Lamsal, L.; Makar, P. A.; Martin, R. V.; Veefkind, J. P.; Yang, K.

    2014-04-01

    Satellite remote sensing is increasingly being used to monitor air quality over localized sources such as the Canadian oil sands. Following an initial study, significantly low biases have been identified in current NO2 and SO2 retrieval products from the Ozone Monitoring Instrument (OMI) satellite sensor over this location resulting from a combination of its rapid development and small spatial scale. Air mass factors (AMFs) used to convert line-of-sight "slant" columns to vertical columns were re-calculated for this region based on updated and higher resolution input information including absorber profiles from a regional-scale (15 km × 15 km resolution) air quality model, higher spatial and temporal resolution surface reflectivity, and an improved treatment of snow. The overall impact of these new Environment Canada (EC) AMFs led to substantial increases in the peak NO2 and SO2 average vertical column density (VCD), occurring over an area of intensive surface mining, by factors of 2 and 1.4, respectively, relative to estimates made with previous AMFs. Comparisons are made with long-term averages of NO2 and SO2 (2005-2011) from in situ surface monitors by using the air quality model to map the OMI VCDs to surface concentrations. This new OMI-EC product is able to capture the spatial distribution of the in situ instruments (slopes of 0.65 to 1.0, correlation coefficients of >0.9). The concentration absolute values from surface network observations were in reasonable agreement, with OMI-EC NO2 and SO2 biased low by roughly 30%. Several complications were addressed including correction for the interference effect in the surface NO2 instruments and smoothing and clear-sky biases in the OMI measurements. Overall these results highlight the importance of using input information that accounts for the spatial and temporal variability of the location of interest when performing retrievals.

  4. Reactions of acetone oxide stabilized Criegee intermediate with SO2, NO2, H2O and O3

    NASA Astrophysics Data System (ADS)

    Kukui, Alexandre; Chen, Hui; Xiao, Shan; Mellouki, Wahid; Daële, Veronique

    2015-04-01

    Atmospheric aerosol particles represent a critical component of the atmosphere, impacting global climate, regional air pollution, and human health. The formation of new atmospheric particles and their subsequent growth to larger sizes are the key processes for understanding of the aerosol effects. Sulphuric acid, H2SO4, has been identified to play the major role in formation of new atmospheric particles and in subsequent particle growth. Until recently the reaction of OH with SO2 has been considered as the only important source of H2SO4 in the atmosphere. However, recently it has been suggested that the oxidation of SO2 by Criegee biradicals can be a significant additional atmospheric source of H2SO4 comparable with the reaction of SO2 with OH. Here we present some results about the reactions of the acetone oxide stabilized Criegee intermediate, (CH3)2=OO, produced in the reaction of 2,3-dimethyl-butene (TME) with O3. The formation of the H2SO4 in the reaction of acetone oxide with SO2 was investigated in the specially constructed atmospheric pressure laminar flow reactor. The Criegee intermediate was generated by ozonolysis of TME. The H2SO4, generated by addition of SO2, was directly monitored with Chemical Ionization Mass Spectrometer (SAMU, LPC2E). Relative rates of reactions of acetone oxide with SO2, NO2, H2O and ozone were determined from the dependencies of the H2SO4 yield at different concentrations of the reactants. Atmospheric applications of the obtained results are discussed in relation to the importance of this additional H2SO4 formation pathway compared to the reaction of OH with SO2.

  5. NO2 and SO2 dispersion modeling and relative roles of emission sources over Map Ta Phut industrial area, Thailand.

    PubMed

    Chusai, Chatinai; Manomaiphiboon, Kasemsan; Saiyasitpanich, Phirun; Thepanondh, Sarawut

    2012-08-01

    Map Ta Phut industrial area (MA) is the largest industrial complex in Thailand. There has been concern about many air pollutants over this area. Air quality management for the area is known to be difficult, due to lack of understanding of how emissions from different sources or sectors (e.g., industrial, power plant, transportation, and residential) contribute to air quality degradation in the area. In this study, a dispersion study of NO2 and SO2 was conducted using the AERMOD model. The area-specific emission inventories of NOx and SO2 were prepared, including both stack and nonstack sources, and divided into 11 emission groups. Annual simulations were performed for the year 2006. Modeled concentrations were evaluated with observations. Underestimation of both pollutants was Jbund, and stack emission estimates were scaled to improve the modeled results before quantifying relative roles of individual emission groups to ambient concentration overfour selected impacted areas (two are residential and the others are highly industrialized). Two concentration measures (i.e., annual average area-wide concentration or AC, and area-wide robust highest concentration or AR) were used to aggregately represent mean and high-end concentrations Jbfor each individual area, respectively. For AC-NO2, on-road mobile emissions were found to be the largest contributor in the two residential areas (36-38% of total AC-NO2), while petrochemical-industry emissions play the most important role in the two industrialized areas (34-51%). For AR-NO2, biomass burning has the most influence in all impacted areas (>90%) exceptJor one residential area where on-road mobile is the largest (75%). For AC-SO2, the petrochemical industry contributes most in all impacted areas (38-56%). For AR-SO2, the results vary. Since the petrochemical industry was often identified as the major contributor despite not being the largest emitter, air quality workers should pay special attention to this emission group when managing air quality for the MA. PMID:22916441

  6. 40 CFR Figure C-1 to Subpart C of... - Suggested Format for Reporting Test Results for Methods for SO 2, CO, O 3, NO 2

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...Suggested Format for Reporting Test Results for Methods for SO 2, CO, O 3, NO 2 C Figure C-1 to Subpart C of Part 53 Protection...Suggested Format for Reporting Test Results for Methods for SO 2 , CO, O 3 , NO 2 Candidate Method Reference Method...

  7. 40 CFR Figure C-1 to Subpart C of... - Suggested Format for Reporting Test Results for Methods for SO 2, CO, O 3, NO 2

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...Suggested Format for Reporting Test Results for Methods for SO 2, CO, O 3, NO 2 C Figure C-1 to Subpart C of Part 53 Protection...Suggested Format for Reporting Test Results for Methods for SO 2 , CO, O 3 , NO 2 Candidate Method Reference Method...

  8. Interconversion of chromium species during air sampling: effects of O3, NO2, SO2, particle matrices, temperature, and humidity.

    PubMed

    Huang, Lihui; Fan, Zhihua Tina; Yu, Chang Ho; Hopke, Philip K; Lioy, Paul J; Buckley, Brian T; Lin, Lin; Ma, Yingjun

    2013-05-01

    The interconversion between Cr(VI), a pulmonary carcinogen, and Cr(III), an essential human nutrient, poses challenges to the measurement of Cr(VI) in airborne particles. Chamber and field tests were conducted to identify the factors affecting Cr(VI)-Cr(III) interconversion in the basic filter medium under typical sampling conditions. In the chamber tests, isotopically enriched (53)Cr(VI) and (50)Cr(III) were spiked on diesel particulate matter (DPM) and secondary organic aerosol (SOA) that were precollected on a basic MCE filter. The filter samples were then exposed to clean air or the air containing SO2 (50 and 160 ppb), 100 ppb O3, or 150 ppb NO2 for 24 h at 16.7 LPM flow rate at designated temperature (20 and 31 °C) and RH (40% and 70%) conditions. Exposure to 160 ppb SO2 had the greatest effect on (53)Cr(VI) reduction, with (53)Cr(VI) recovery of 31.7 ± 15.8% (DPM) and 42.0 ± 7.9% (SOA). DPM and SOA matrix induced (53)Cr(VI) reduction when exposed to clean air while reactive oxygen species in SOA could promote (50)Cr(III) oxidation. Deliquescence when RH increased from 40% to 70% led to conversion of Cr(III) in SOA, whereas oxidized organics in DPM and SOA enhanced hygroscopicity and thus facilitated Cr(VI) reduction. Field tests showed seasonal variation of Cr(VI)-Cr(III) interconversion during sampling. Correction of the interconversion using USEPA method 6800 is recommended to improve accuracy of ambient Cr(VI) measurements. PMID:23550818

  9. Detection of urban O3, NO2, H2CO, and SO2 using Fourier transform spectroscopy

    NASA Astrophysics Data System (ADS)

    Vandaele, Ann Carine; Carleer, M.; Colin, R.; Simon, Paul C.

    1993-02-01

    Concentrations of SO2, NO2, H2CO, and O3 have been measured regularly since October 1990 at the urban site of the Campus of the Universite Libre de Bruxelles, using the differential optical absorption spectroscopy (DOAS) technique associated with a Fourier Transform Spectrometer. The experimental set up has already been described elsewhere (Vandaele et al., 1992). It consists of a source (either a high pressure xenon lamp or a tungsten filament) and an 800 m long path system. The spectra are recorded in the 26,000 - 38,000 cm-1 and 14,000 - 30,000 cm-1 spectral regions, at the dispersion of 7.7 cm-1. The analytical method of the DOAS technique is based on the fact that in atmospheric measurements, it is impossible to obtain an experimental blank spectrum. Therefore, the Beer-Lambert law has to be rewritten as: I equals I'oen(Delta (sigma) d) where I is the measured intensity, Io the measured intensity from which all absorption structures have been removed, n the concentration, d the optical path length, and (Delta) (sigma) the differential absorption cross section of the molecule. Numerous methods for determining I'o exist. Fourier transform filtering has been used in this work. This method defines I'o as the inverse Fourier transform of the lower frequencies portion of the power spectrum of the experimental data. A least squares procedure is then applied in order to determine the concentration of the desired molecules.

  10. From SO2 to Greenhouse Gases: Trends and Events Shaping Future Emissions Trading Programs in the United States

    Microsoft Academic Search

    Joseph Kruger

    2005-01-01

    Cap-and-trade programs have become widely accepted for the control of conventional air pollution in the United States. However, there is still no political consensus to use these programs to address greenhouse gases. Meanwhile, in the wake of the success of the U.S. SO2 and NOx trading programs, private companies, state governments, and the European Union are developing new trading programs

  11. Structural and magnetic study of N2, NO, NO2, and SO2 adsorbed within a flexible single-crystal adsorbent of [Rh2(bza)4(pyz)]n.

    PubMed

    Kachi-Terajima, Chihiro; Akatsuka, Takamasa; Kohbara, Masa-aki; Takamizawa, Satoshi

    2007-01-01

    The crystalline one-dimensional compound, [Rh(II)2(bza)4(pyz)]n (1) (bza = benzoate, pyz = pyrazine) demonstrates gas adsorbency for N2, NO, NO2, and SO2. These gas-inclusion crystal structures were characterized by single-crystal X-ray crystallography as 1 x 1.5 N2 (298 K), 1 x 2.5 N2 (90 K), and 1 x 1.95 NO (90 K) under forcible adsorption conditions and 1 x 2 NO2 (90 K) and 1 x 3 SO2 (90 K) under ambient pressure. Crystal-phase transition to the P1 space group that correlates with gas adsorption was observed under N2, NO, and SO2 conditions. The C2/c space group was observed under NO2 conditions without phase transition. All adsorbed gases were stabilized by the host lattice. In the N2, NO, and SO2 inclusion crystals at 90 K, short interatomic distances within van der Waals contacts were found among the neighboring guest molecules along the channel. The adsorbed NO molecules generated the trans-NO...NO associated dimer with short intermolecular contacts but without the conventional chemical bond. The magnetic susceptibility of the NO inclusion crystal indicated antiferromagnetic interaction between the NO molecules and paramagnetism arising from the NO monomer. The NO2 inclusion crystal structure revealed that the gas molecules were adsorbed in the crystal in dimeric form, N2O4. PMID:17441137

  12. Fourier Transform Infrared (FT-IR) Spectroscopy of Atmospheric Trace Gases HCl, NO and SO2

    NASA Technical Reports Server (NTRS)

    Haridass, C.; Aw-Musse, A.; Dowdye, E.; Bandyopadhyay, C.; Misra, P.; Okabe, H.

    1998-01-01

    Fourier Transform Infrared (FT-IR) spectral data have been recorded in the spectral region 400-4000/cm of hydrogen chloride and sulfur dioxide with I/cm resolution and of nitric oxide with 0.25 cm-i resolution, under quasi-static conditions, when the sample gas was passed through tubings of aluminum, copper, stainless steel and teflon. The absorbance was measured for the rotational lines of the fundamental bands of (1)H(35)Cl and (1)H(37)Cl for pressures in the range 100-1000 Torr and for the (14)N(16)O molecule in the range 100-300 Torr. The absorbance was also measured for individual rotational lines corresponding to the three modes of vibrations (upsilon(sub 1) - symmetric stretch, upsilon(sub 2) - symmetric bend, upsilon(sub 3) - anti-symmetric stretch) of the SO2 molecule in the pressure range 25-150 Torr. A graph of absorbance versus pressure was plotted for the observed rotational transitions of the three atmospherically significant molecules, and it was found that the absorbance was linearly proportional to the pressure range chosen, thereby validating Beer's law. The absorption cross-sections were determined from the graphical slopes for each rotational transition recorded for the HCl, NO and SO2 species. Qualitative and quantitative spectral changes in the FT-IR data will be discussed to identify and characterize various tubing materials with respect to their absorption features.

  13. Effect of the greenhouse gases (CO2, H2O, SO2) on Martian paleoclimate

    NASA Technical Reports Server (NTRS)

    Postawko, S. E.; Kuhn, W. R.

    1986-01-01

    There is general agreement that certain surface features on Mars are indicative of the presence of liquid water at various times in the geologic past. In particular, the valley networks are difficult to explain by a mechanism other than the flow of liquid water. It has been suggested in several studies that a thick CO2 atmosphere on Mars early in its history could have provided a greenhouse warming that would have allowed the flow of water either on the surface or just below the surface. However, this effect was examined with a detailed radiation model, and it was found that if reduced solar luminosity early in the history of the solar system is taken into account, even three bars of CO2 will not provide sufficient greeenhouse warming. The addition of water vapor and sulflur dioxide (both plausible gases that may have been emitted by Martian volcanoes) to the atmosphere also fail to warm the surface above 273 K for reduced solar luminosity conditions. The increase in temperature may be large enough, however, for the formation of these features by brines.

  14. In-situ characterisation of aerosol and gases (SO2, HCl, ozone) in Mt Etna volcano plume

    NASA Astrophysics Data System (ADS)

    Roberts, Tjarda; Vignelles, Damien; Giudice, Gaetano; Liuzzo, Marco; Aiuppa, Alessandro; Chartier, Michel; Coute, Benoit; Lurton, Thibaut; Renard, Jean-Baptiste

    2014-05-01

    We present findings from a measurement campaign that deployed a range of in-situ real-time atmospheric measurement techniques to characterise aerosols and gases in Mt Etna plume in October 2013. The LOAC (Light Optical Aerosol Counter) instrument for size-resolved particle measurements was deployed alongside two Multi-Gas instruments (measuring SO2, H2S, HCl, CO2) and an ozone sensor. Measurements were performed at the summit craters (in cloudy- and non-cloudy conditions) and in grounding downwind plume on the volcano flank. These high frequency measurements (acid gases: 1 to 0.1 Hz, aerosol: 0.1 Hz) provide a detailed in-situ dataset for time-resolved plume characterisation and volcano monitoring. The LOAC measurement of sized-resolved aerosol (over a 0.2 to 50 µm particle diameter range) alongside SO2 (10's ppbv to 10's ppmv) provides a valuable dataset for determining the volcanic aerosol volume and surface area to SO2 ratios. These parameters are presently poorly defined but are important for atmospheric models of the reactive halogen chemistry that occurs on volcanic aerosol surfaces to convert volcanic HBr into reactive bromine, including BrO. The LOAC's patented optical design can also provide insights into particle properties. The two Multi-Gas SO2 time-series show good agreement, detecting co-varying plume fluctuations in the downwind plume, which also correlate with the LOAC total aerosol volume time-series. An estimate of HCl/SO2 in Etna emissions was made by Multi-Gas electrochemical sensor, using a novel design to limit absorption/desorption effects and low-noise electronics for improved resolution. The detection of volcanic HCl by electrochemical sensor brings new possibilities for Multi-Gas monitoring of volcanic halogen emissions. Electrochemical sensor response times are not instantaneous, particularly for sticky gases such as HCl (T90 ~min), but also even for "fast" response (T90 ~ 10 to 30 s) sensors such as SO2 and H2S. However, in a volcanic plume environment, Multi-Gas instruments are exposed to very rapidly fluctuating gas concentrations due to turbulent plume eddies. The combination of these effects can introduce measurement errors, emphasizing a need for sensor response modelling approaches for accurate determination of gas ratios from Multi-Gas instruments. Measurement of ozone in volcanic plume is of interest to quantify the atmospheric impact of rapid reactive halogen chemistry cycles that occur in the dispersing plume, depleting ozone. The UV-based ozone sensor we deployed exhibited a positive cross-sensitivity to SO2 (as expected) that dominated the signal in strong plume. In the dilute (few ppmv SO2) grounding plume, near-ambient ozone concentrations were observed. However the instrument was also occasionally subject to an interference (under evaluation, but potentially from mercury). Nevertheless, the data provide some constraints on BrO-mediated ozone loss in near-source volcanic plumes, towards improved initialisation of atmospheric chemistry models that aim to simulate this process.

  15. The roles of diesel exhaust particle extracts and the promotive effects of NO2 and/or SO2 exposure on rat lung tumorigenesis.

    PubMed

    Ohyama, K; Ito, T; Kanisawa, M

    1999-05-24

    This experiment was carried out to clarify the roles of diesel exhaust particle (DEP) extracts and the promotive effects of nitrogen dioxide (NO2) and/or sulfur dioxide (SO2) exposure on rat lung tumorigenesis. F344 male rats were intratracheally administered DEP extract-coated carbon black particles (DEcCBP) and exposed to 6 ppm NO2 and/or 4 ppm SO2 for 10 months. At 18 months after starting the experiment, lung lesions were histopathologically investigated and DNA in rat lungs was analyzed for the presence of adducts using the 32P-postlabeling assay. Infiltration of alveolar macrophages, which was significant in the lungs of rats administered carbon black particles, was not prominent in those administered DEcCBP. DEcCBP occasionally formed small hyaline masses in the alveolar ducts and alveolar bronchiolization developed in the epithelium of alveolar ducts near the masses. Lung tumorigenesis and DNA aduct formation were observed in the animals administered DEcCBP with exposure to NO2 and/or SO2, but not in those administered DEcCBP alone. The results of the present study suggested that DEP extracts eluting from the small masses cause DNA damage in alveolar epithelial cells and alveolar epithelial cell proliferation, and that NO2 and/or SO2 exposure promote lung tumor induction by DEP extracts. PMID:10395178

  16. Reactive uptake and hydration experiments on amorphous carbon treated with NO2, SO2, O3, HNO3, and H2SO4

    Microsoft Academic Search

    C. A. Rogaski; D. M. Golden; L. R. Williams

    1997-01-01

    The reactivity and hydration properties of amorphous carbon were studied in a low-pressure Knudsen cell reactor at room temperature (298 K). Reactions of NO2 (?=0.11±0.04) and HNO3 (?=0.038±0.008) were observed and may be important for nitrogen partitioning in the atmosphere. Water uptake was measured before and after exposure to various gases. Treating the amorphous carbon with NO2 and O3 does

  17. Reactive uptake and hydration experiments on amorphous carbon treated with NO2, SO2, O3, HNO3, and H2SO4

    Microsoft Academic Search

    C. A. Rogaski; D. M. Golden; L. R. Williams

    1997-01-01

    The reactivity and hydration properties of amorphous carbon were studied in a low-pressure Knudsen cell reactor at room temperature (298 K). Reactions of NO2 (gamma=0.11+\\/-0.04) and HNO3 (gamma=0.038+\\/-0.008) were observed and may be important for nitrogen partitioning in the atmosphere. Water uptake was measured before and after exposure to various gases. Treating the amorphous carbon with NO2 and O3 does

  18. Operational O3M-SAF trace gas column products: GOME-2 ozone, NO2, BrO, SO2 and CH2O

    NASA Astrophysics Data System (ADS)

    Hao, Nan; Valks, Pieter; Loyola, Diego; de Smedt, Isabelle; van Roozendael, Michel; Theys, Nicolas; Rix, Meike; Koukouli, Mariliza; Balis, Dimitris; Lambert, Jean-Christopher; Pinardi, Gaia; Zimmer, Walter; Emmadi, Sunil

    This contribution focuses on the operational GOME-2 trace gas column products developed at the German Aerospace Centre, in the framework of EUMETSAT's Satellite Application Facility on Ozone and Atmospheric Chemistry Monitoring (O3M-SAF). We present an overview of the retrieval algorithms and exemplary results for ozone, NO2, BrO, SO2 and CH2O. These trace gas column products are retrieved with the GOME Data Processor (GDP) version 4.x algorithm and the UPAS system. Total ozone and NO2 are retrieved with the Differential Optical Absorption Spectroscopy (DOAS) method using the UV wavelength region around 330 nm and 435 nm respectively. An additional algorithm is applied to retrieve the tropospheric NO2 column for polluted con-ditions. The operational ozone and NO2 products are available for the users in near real time, i.e. within two hours after sensing. SO2 emissions from volcanic and anthropogenic sources can be measured by GOME-2 around 320 nm. For BrO and CH2O, optimal DOAS fitting windows have been determined for GOME-2 in the UV wavelength region. The GOME-2 ozone, total and tropospheric NO2, SO2, BrO, CH2O and cloud products from DLR have reached the operational EUMETSAT O3M-SAF status. All these products are routinely available to the users via EUMETCast, WMO/GTS and FTP in HDF5 and BUFR format. We present initial validation results for GOME-2 products using ground-based measurements, as well as comparisons with other satellite products, such as those from SCIAMACHY and OMI. The use of tropospheric NO2, SO2 and CH2O columns for air quality applications will be presented, including temporal evolution analyses for China. Furthermore, we will show examples of BrO under polar winter conditions.

  19. Tula industrial complex (Mexico) emissions of SO2 and NO2 during the MCMA 2006 field campaign using a Mini-DOAS system

    NASA Astrophysics Data System (ADS)

    Rivera, C.; Sosa-Iglesias, G.; Wöhrnschimmel, H.; de Foy, B.; Johansson, M.; Galle, B.

    2009-04-01

    The Mexico City Metropolitan Area (MCMA) has presented severe pollution problems for many years. There are several point and mobile emission sources inside and outside the MCMA which are known to affect air quality in the area. In particular, speculation has risen as to whether the Tula industrial complex, located 60 km northwest of the MCMA has any influence on high SO2 levels occurring on the northern part of the city, in the winter season mainly. As part of the MILAGRO Field Campaign, from 24 March to 17 April 2006, the total columns of sulfur dioxide (SO2) and nitrogen dioxide (NO2) were measured during plume transects in the neighborhood of the Tula industrial complex using mini-DOAS instruments. Vertical profiles of wind speed and direction obtained from pilot balloons and radiosondes were used to calculate SO2 and NO2 fluxes in the plume. According to our measurements, calculated average flux emission for SO2 and NO2 were 155 ± 120 and 9 ± 8 ktons per year, respectively. The standard deviation of these estimations is due to actual variations in the observed emissions from the refinery and power plant, as well as to the uncertainty in the wind fields at the exact time of the measurements. These values are in good agreement with available datasets and with simulated plumes.

  20. Tula industrial complex (Mexico) emissions of SO2 and NO2 during the MCMA 2006 field campaign using a Mini-DOAS system

    NASA Astrophysics Data System (ADS)

    Rivera, C.; Sosa, G.; Wöhrnschimmel, H.; de Foy, B.; Johansson, M.; Galle, B.

    2009-02-01

    The Mexico City Metropolitan Area (MCMA) has presented severe pollution problems for many years. There are several point and mobile emission sources inside and outside the MCMA which are known to affect air quality in the area. In particular, speculation has risen as to whether the Tula industrial complex, located 60 km northwest of the MCMA has any influence on high SO2 levels occurring on the northern part of the city, in the winter season mainly. As part of the MILAGRO Field Campaign, from 24 March to 17 April 2006, the total columns of sulfur dioxide (SO2) and nitrogen dioxide (NO2) were measured during plume transects in the neighborhood of the Tula industrial complex using mini-DOAS instruments. Vertical profiles of wind speed and direction obtained from pilot balloons and radiosondes were used to calculate SO2 and NO2 fluxes in the plume. According to our measurements, calculated average flux emission for SO2 and NO2 were 155±120 and 9±8 ktons per year, respectively. The standard deviation of these estimations is due to actual variations in the observed emissions from the refinery and power plant, as well as to the uncertainty in the wind fields at the exact time of the measurements. These values are in good agreement with available datasets and with simulated plumes.

  1. Tula industrial complex (Mexico) emissions of SO2 and NO2 during the MCMA 2006 field campaign using a mobile mini-DOAS system

    NASA Astrophysics Data System (ADS)

    Rivera, C.; Sosa, G.; Wöhrnschimmel, H.; de Foy, B.; Johansson, M.; Galle, B.

    2009-09-01

    The Mexico City Metropolitan Area (MCMA) has presented severe pollution problems for many years. There are several point and mobile emission sources inside and outside the MCMA which are known to affect air quality in the area. In particular, speculation has risen as to whether the Tula industrial complex, located 60 km northwest of the MCMA has any influence on high SO2 levels occurring on the northern part of the city, in the winter season mainly. As part of the MILAGRO Field Campaign, from 24 March to 17 April 2006, the differential vertical columns of sulfur dioxide (SO2) and nitrogen dioxide (NO2) were measured during plume transects in the neighborhood of the Tula industrial complex using mobile mini-DOAS instruments. Vertical profiles of wind speed and direction obtained from pilot balloons and radiosondes were used to calculate SO2 and NO2 emissions. According to our measurements, calculated average emissions of SO2 and NO2 during the field campaign were 384±103 and 24±7 tons day-1, respectively. The standard deviation of these estimations is due to actual variations in the observed emissions from the refinery and power plant, as well as to the uncertainty in the wind fields at the exact time of the measurements. Reported values in recent inventories were found to be in good agreement with calculated emissions during the field campaign. Our measurements were also found to be in good agreement with simulated plumes.

  2. Operational O3M-SAF trace gas column products: GOME-2 NO2, BrO, SO2 and CH2O

    NASA Astrophysics Data System (ADS)

    Hao, Nan; Valks, P.; de Smedt, I.; Emmadi, S.; Lambert, J.-C.; Loyola, D.; Pinardi, G.; Rix, M.; van Roozendael, M.; They, N.

    2010-05-01

    This contribution focuses on the operational GOME-2 trace gas column products developed at the German Aerospace Centre, in the framework of EUMETSAT's Satellite Application Facility on Ozone and Atmospheric Chemistry Monitoring (O3M-SAF). We present an overview of the retrieval algorithms and exemplary results for NO2, BrO, SO2 and CH2O. These trace gas column products are retrieved with the GOME Data Processor (GDP) version 4.4 using the Differential Optical Absorption Spectroscopy (DOAS) method in the UV and VIS wavelength regions. Total NO2 is retrieved in the 425-450 nm and an additional algorithm is applied to retrieve the tropospheric NO2 column for polluted conditions. The operational GOME-2 NO2 product is available for the users in near real time, i.e. within two hours after sensing. SO2 emissions from volcanic and anthropogenic sources can be measured by GOME-2 using the UV wavelength region around 320 nm. For BrO and CH2O, optimal DOAS fitting windows have been determined for GOME-2 in the UV wavelength region. The GOME-2 SO2, BrO and CH2O products have reached the operational O3M-SAF status, and are routinely available to the users. More than three years of operational trace gas column measurements are now available from GOME-2. We present initial validation results using ground-based measurements, as well as comparisons with other satellite products, such as those from SCIAMACHY and OMI. The use of tropospheric NO2, SO2 and CH2O columns for air quality applications will be presented, including temporal evolution analyses for China. Furthermore, we will show examples of BrO under polar winter conditions.

  3. Scanning and mobile multi-axis DOAS measurements of SO2 and NO2 emissions from an electric power plant in Montevideo, Uruguay

    NASA Astrophysics Data System (ADS)

    Frins, E.; Bobrowski, N.; Osorio, M.; Casaballe, N.; Belsterli, G.; Wagner, T.; Platt, U.

    2014-12-01

    In March 2012 the emissions of NO2 and SO2 from a power station located on the east side of Montevideo Bay (34° 53? 10? S, 56° 11? 49? W) were quantified by simultaneously using mobile and scanning multi-axis differential optical absorption spectroscopy (in the following mobile DOAS and scanning DOAS, respectively). The facility produces electricity by means of two technologies: internal combustion motors and steam generators. The motors are powered with centrifuged heavy oil and produce a maximum power of 80 MW approximately. The steam generators produce approximately 305 MW and are powered with heavy fuel oil. We compare the emissions obtained from the measured slant column densities (mobile DOAS and scanning DOAS) with the emissions estimated from fuel mass balance. On one occasion it was possible to distinguish between the two types of sources, observing two plumes with different SO2 and NO2 emission rates. During the period of the campaign the mean SO2 emission flux was determined to be 0.36 (±0.12) kg s-1 and 0.26 (±0.09) kg s-1 retrieved from mobile and scanning DOAS respectively, while the calculated SO2 flux from the sulphur content of the fuel was 0.34 (±0.03) kg s-1. The average NO2 flux calculated from mobile DOAS was determined to be 11 (±3) × 10-3 kg s-1. Using the scanning DOAS approach a mean NO2 flux of 5.4 (±1.7) × 10-3 kg s-1 was obtained, which is significantly lower than by the mobile measurements. The differences between the results of mobile MAX-DOAS measurements and scanning DOAS measurements are most probably caused by the variability and the limited knowledge of the wind speed and direction.

  4. A laboratory study on the NO, NO 2, SO 2, CO and CO 2 emissions from the combustion of pulverized coal, municipal waste plastics and tires

    Microsoft Academic Search

    Bonnie Courtemanche; Yiannis A. Levendis

    1998-01-01

    This is a laboratory study on the combustion emissions from pulverized solid fuels: NOx (NO and NO2), SO2, CO and CO2. Coal, waste tire crumb and waste plastics, such as poly(styrene), poly(ethylene), poly(methyl methacrylate), poly(propylene) and poly(vinyl chloride) (PVC), were burned in an electrically heated drop-tube furnace at high particle heating rates (104-105 K s?1) and elevated gas temperatures (1300–1600

  5. Case studies on summertime measurements of O3, NO2, and SO2 with a DOAS system in an urban semi-industrial region in Athens, Greece.

    PubMed

    Psiloglou, Betaasil E; Larissi, Ioanna K; Petrakis, Muichael; Paliatsos, Athanasios G; Antoniou, Alphantonis; Viras, Loisos G

    2013-09-01

    The objective of this study is to analyze the concentrations of SO2, NO2, and O3 measured by a Differential Optical Absorption Spectroscopy (DOAS) system that was operating at the campus of Technological Education Institute of Piraeus during 2008 and 2009 warm periods (July to September) in relation to the prevailing meteorological conditions. The DOAS system was operating in a particularly polluted area of the West part of Attica basin on a continuous basis, measuring the concentration levels of the main pollutants (O3, NO2, and SO2) as well as aromatic hydrocarbon substances (benzene, toluene, and xylene). According to the analysis, the SO2 concentration levels at this measuring site are rather high and this may be attributed to the characteristics of this measuring site. Proximity of roadways and local circulation are just some of the factors that can affect the concentration levels of monitoring of pollutant concentrations such as NO2 and surface ozone. The results provide evidence for the occurrence of an atmospheric phenomenon that produces higher ozone concentrations during weekends despite lower concentrations of ozone precursors. This phenomenon is known as the weekend effect. PMID:23430070

  6. Ship-based MAX-DOAS measurements of tropospheric NO2 and SO2 in the South China and Sulu Sea

    NASA Astrophysics Data System (ADS)

    Schreier, S. F.; Peters, E.; Richter, A.; Lampel, J.; Wittrock, F.; Burrows, J. P.

    2015-02-01

    In November 2011, ship-based Multi-Axis Differential Optical Absorption Spectroscopy (MAX-DOAS) measurements were performed within the SHIVA campaign on board RV Sonne in the South China and Sulu Sea. Spectral measurements for a total of eleven days could be used to retrieve tropospheric slant column densities (SCDs) of nitrogen dioxide (NO2) and sulfur dioxide (SO2) in the marine environment. The NO2 fit was performed following recommendations developed during the CINDI campaign and adapted for the ship-based measurements. We found that the inclusion of a cross section for liquid water and an empirical correction spectrum accounting for the effects of liquid water and vibrational Raman scattering (VRS) slightly improved the NO2 fit quality, especially at lower elevation angles and for lower NO2 levels. The conversion of SCDs into tropospheric NO2 vertical columns (TVC NO2) has been achieved using both a simple geometric approach and the Bremian advanced MAX-DOAS Retrieval Algorithm (BREAM), which is based on the optimal estimation method and accounts for atmospheric radiative transfer. We found good agreement between the geometric approach using the 15° measurements and BREAM, revealing that measurements at 15° elevation angle can be used for retrieving TVC NO2 in tropical marine environments when SZA is smaller than 75°. As expected, the values of TVC NO2 were generally low (<0.5 × 1015 molec cm-2) when no sources of NOx were in proximity to the RV Sonne. However, we found increased values of TVC NO2 (>2 × 1015 molec cm-2) in the morning when the RV Sonne was heading along the coast of Borneo. This is in good agreement with satellite measurements. The results of the profile retrieval show that the boundary layer values of NO2 are <30 pptv in the open and clean tropical marine environment. Interestingly, we also found elevated tropospheric SO2 amounts for measurements taken in a busy shipping lane, consistent with the time series of tropospheric NO2.

  7. Vertical Profiles of SO2 and NO2 in the Alberta Oil Sands: MAX-DOAS Measurements and Comparison to in-situ Instrumentation

    NASA Astrophysics Data System (ADS)

    Davis, Zoe; Lobo, Akshay; McLaren, Robert

    2015-04-01

    Understanding the levels of industrially emitted gas pollutants in the Alberta oil sands is essential to making quality environmental management decisions but is currently limited due to scarcity of top-down quantification studies. Multi-Axis Differential Optical Absorption Spectroscopy (MAX-DOAS) measurements of nitrogen dioxide (NO2) and sulfur dioxide (SO2) , important tropospheric trace gas pollutants, contributes to improved knowledge of these pollutants' levels, vertical distributions and chemical transformations. A mini-MAX-DOAS instrument measured spectra at multiple viewing elevation angles in order to retrieve NO2 and SO2 differential slant column densities (dSCDs) at an Environment Canada research site north of Fort McMurray, Alberta in the fall of 2013. For the first time in the oil sands, tropospheric vertical profiles of NO2 and SO2 were retrieved by applying the optimal estimation technique to the MAX-DOAS measurements. The DOAS fit retrievals of SO2 dSCDs were validated by comparison with retrievals obtained with a quartz calibration cell with known SO2 SCD placed in front of the MAX-DOAS telescope at multiple elevation angles on a clean day. Retrieved SO2 dSCDs varied significantly from the true value depending on the chosen wavelength fitting interval. At the lowest wavelength intervals, interference by stray light and O3 differential structures significantly reduced dSCDs and caused an elevation angle dependence. These results indicate that MAX-DOAS dSCD retrieval settings, particularly for weak absorbers with differential absorption structures in low-intensity spectral regions, must be chosen carefully in order to achieve the most accurate results. Tropospheric vertical column densities (VCDs) and vertical profile retrievals of NO2, SO2 and aerosol extinction during significant pollution events will be illustrated. Trace gas vertical profiles exhibited significant variability between days and at different times of day and were often spatially complex (e.g. elevated layers). Retrieved trace gas vertical profiles were compared with aircraft composite profiles from flights over the site. Trace gas surface retrievals were compared with results from a co-located active-DOAS instrument. The degree of agreement between the DOAS instruments appear to be related to pollution levels and meteorological conditions. Significant observed pollution events were associated with particular meteorological conditions such as South-Westerly winds. Maximum observed SO2 and NO2 retrieved mixing ratios were 250ppb and 60ppb, respectively, at approximately 300m above the surface while maximum surface concentrations measured by the active-DOAS were 77ppb and 20 ppb, respectively. The observed spatial complexity in the trace gas profiles indicates that comprehensive air quality monitoring in the oil sands requires instruments with boundary layer spatial profiling capabilities.

  8. Spatiotemporal variations of air pollutants (O3, NO2, SO2, CO, PM10, and VOCs) with land-use types

    NASA Astrophysics Data System (ADS)

    Yoo, J.-M.; Jeong, M.-J.; Kim, D.; Stockwell, W. R.; Yang, J.-H.; Shin, H.-W.; Lee, M.-I.; Song, C.-K.; Lee, S.-D.

    2015-06-01

    The spatiotemporal variations of surface air pollutants (O3, NO2, SO2, CO, and PM10) with four land-use types: residence (R), commerce (C), industry (I) and greenbelt (G) have been investigated at 283 stations in South Korea during 2002-2013, using routinely observed data. The VOCs data at 9 photochemical pollutant monitoring stations available since 2007 were utilized in order to examine their effect on the ozone chemistry. The land-use types, set by the Korean government, were generally consistent with the satellite-derived land covers and with the previous result showing anti-correlation between O3 and NO2 in diverse urban areas. The relationship between the two pollutants in the Seoul Metropolitan Area (SMA) residence land-use areas was substantially different from that outside of the SMA, probably due to the local differences in vehicle emissions. The highest concentrations of air pollutants in the diurnal, weekly, and annual cycles were found in industry for SO2 and PM10, in commerce for NO2 and CO, and in greenbelt for O3, respectively. The concentrations of air pollutants, except for O3, were generally higher in big cities during weekdays while O3 showed its peak in suburban areas or small cities during weekends. The weekly cycle and trends of O3 were significantly out of phase with those of NO2, particularly in the residential and commercial areas, suggesting that vehicle emission was a major source in those areas. The ratios of VOCs to NO2 for each of the land-use types were in the order of I (10.2) > C (8.7) > G (3.9) > R (3.6), suggesting that most areas in South Korea were likely to be VOCs-limited for ozone chemistry. The pollutants (NO2, SO2, CO, and PM10) except for O3 have decreased most likely due to the effective government control. The total oxidant values (OX = O3 + NO2) with the land-use types were analyzed for the local and regional (or background) contributions of O3, respectively, and the order of OX (ppb) was C (57.4) > R (53.6) > I (50.7) > G (45.4), indicating the greenbelt observation was close to the background.

  9. Kinetics of CH2OO reactions with SO2, NO2, NO, H2O and CH3CHO as a function of pressure.

    PubMed

    Stone, Daniel; Blitz, Mark; Daubney, Laura; Howes, Neil U M; Seakins, Paul

    2014-01-21

    Kinetics of CH2OO Criegee intermediate reactions with SO2, NO2, NO, H2O and CH3CHO and CH2I radical reactions with NO2 are reported as a function of pressure at 295 K. Measurements were made under pseudo-first-order conditions using flash photolysis of CH2I2-O2-N2 gas mixtures in the presence of excess co-reagent combined with monitoring of HCHO reaction products by laser-induced fluorescence (LIF) spectroscopy and, for the reaction with SO2, direct detection of CH2OO by photoionisation mass spectrometry (PIMS). Rate coefficients for CH2OO + SO2 and CH2OO + NO2 are independent of pressure in the ranges studied and are (3.42 ± 0.42) × 10(-11) cm(3) s(-1) (measured between 1.5 and 450 Torr) and (1.5 ± 0.5) × 10(-12) cm(3) s(-1) (measured between 25 and 300 Torr), respectively. The rate coefficient for CH2OO + CH3CHO is pressure dependent, with the yield of HCHO decreasing with increasing pressure. Upper limits of 2 × 10(-13) cm(3) s(-1) and 9 × 10(-17) cm(3) s(-1) are placed on the rate coefficients for CH2OO + NO and CH2OO + H2O, respectively. The upper limit for the rate coefficient for CH2OO + H2O is significantly lower than has been reported previously, with consequences for modelling of atmospheric impacts of CH2OO chemistry. PMID:24287566

  10. Hydrothermal buffering of the SO2\\/H2S ratio in volcanic gases: Evidence from La Fossa Crater fumarolic field, Vulcano Island

    Microsoft Academic Search

    A. Aiuppa; C. Federico; G. Giudice; S. Gurrieri; M. Valenza

    2006-01-01

    Sulfur speciation in volcanic gases is a potentially valuable tracer of degassing processes at volcanoes. Hitherto, observations of sulfur speciation in volcanic gas plumes have however been limited both in number and quality. Here, we report on periodic measurements of SO2 to H2S proportions in the volcanic gases from La Fossa volcano (Vulcano Island) performed during 2004–2006, a period which

  11. A longitudinal study of sick building syndrome (SBS) among pupils in relation to SO2, NO2, O3 and PM10 in schools in China.

    PubMed

    Zhang, Xin; Li, Fan; Zhang, Li; Zhao, Zhuohui; Norback, Dan

    2014-01-01

    There are fewer longitudinal studies from China on symptoms as described for the sick building syndrome (SBS). Here, we performed a two-year prospective study and investigated associations between environmental parameters such as room temperature, relative air humidity (RH), carbon dioxide (CO2), nitrogen dioxide (NO2), sulphur dioxide (SO2), ozone (O3), particulate matter (PM10), and health outcomes including prevalence, incidence and remission of SBS symptoms in junior high schools in Taiyuan, China. Totally 2134 pupils participated at baseline, and 1325 stayed in the same classrooms during the study period (2010-2012). The prevalence of mucosal symptoms, general symptoms and symptoms improved when away from school (school-related symptoms) was 22.7%, 20.4% and 39.2%, respectively, at baseline, and the prevalence increased during follow-up (P<0.001). At baseline, both indoor and outdoor SO2 were found positively associated with prevalence of school-related symptoms. Indoor O3 was shown to be positively associated with prevalence of skin symptoms. At follow-up, indoor PM10 was found to be positively associated with new onset of skin, mucosal and general symptoms. CO2 and RH were positively associated with new onset of mucosal, general and school-related symptoms. Outdoor SO2 was positively associated with new onset of skin symptoms, while outdoor NO2 was positively associated with new onset of skin, general and mucosal symptoms. Outdoor PM10 was found to be positively associated with new onset of skin, general and mucosal symptoms as well as school-related symptoms. In conclusion, symptoms as described for SBS were commonly found in school children in Taiyuan City, China, and increased during the two-year follow-up period. Environmental pollution, including PM10, SO2 and NO2, could increase the prevalence and incidence of SBS and decrease the remission rate. Moreover, parental asthma and allergy (heredity) and pollen or pet allergy (atopy) can be risk factors for SBS. PMID:25398002

  12. A Longitudinal Study of Sick Building Syndrome (SBS) among Pupils in Relation to SO2, NO2, O3 and PM10 in Schools in China

    PubMed Central

    Zhang, Xin; Li, Fan; Zhang, Li; Zhao, Zhuohui; Norback, Dan

    2014-01-01

    There are fewer longitudinal studies from China on symptoms as described for the sick building syndrome (SBS). Here, we performed a two-year prospective study and investigated associations between environmental parameters such as room temperature, relative air humidity (RH), carbon dioxide (CO2), nitrogen dioxide (NO2), sulphur dioxide (SO2), ozone (O3), particulate matter (PM10), and health outcomes including prevalence, incidence and remission of SBS symptoms in junior high schools in Taiyuan, China. Totally 2134 pupils participated at baseline, and 1325 stayed in the same classrooms during the study period (2010–2012). The prevalence of mucosal symptoms, general symptoms and symptoms improved when away from school (school-related symptoms) was 22.7%, 20.4% and 39.2%, respectively, at baseline, and the prevalence increased during follow-up (P<0.001). At baseline, both indoor and outdoor SO2 were found positively associated with prevalence of school-related symptoms. Indoor O3 was shown to be positively associated with prevalence of skin symptoms. At follow-up, indoor PM10 was found to be positively associated with new onset of skin, mucosal and general symptoms. CO2 and RH were positively associated with new onset of mucosal, general and school-related symptoms. Outdoor SO2 was positively associated with new onset of skin symptoms, while outdoor NO2 was positively associated with new onset of skin, general and mucosal symptoms. Outdoor PM10 was found to be positively associated with new onset of skin, general and mucosal symptoms as well as school-related symptoms. In conclusion, symptoms as described for SBS were commonly found in school children in Taiyuan City, China, and increased during the two-year follow-up period. Environmental pollution, including PM10, SO2 and NO2, could increase the prevalence and incidence of SBS and decrease the remission rate. Moreover, parental asthma and allergy (heredity) and pollen or pet allergy (atopy) can be risk factors for SBS. PMID:25398002

  13. Flux Emissions of SO2 and NO2 Measured at the Tula Industrial Complex (Mexico) during MCMA 2006 Field Campaign using a Mini-DOAS System

    NASA Astrophysics Data System (ADS)

    Sosa, G.; Rivera, C.; Wöhrnschimmel, H.; de Foy, B.; Johansson, M.; Molina, L. T.

    2007-05-01

    The Tula industrial zone is located 60 km northeast from the Mexico City Metropolitan Area (MCMA), in the Hidalgo State in México. This region is known as the Tula-Vito-Apasco industrial corridor, where a number of industries are located. According to the latest information from the environmental authority, about 313,000 ton/year of SO2 and 40,000 ton/year of NOx are released in this region. The Miguel Hidalgo refinery (MHR) and the Francisco Pérez Ríos power plant (FPRPP) are the main emitters, contributing almost 90% of SO2 and 80% of NOx from the total emission inside the Hidalgo State. Other industries such as cement plants, open-sky mines and agricultural activities are also responsible for important emissions of particulat matter (PM) into the atmosphere and soil erosion. This highly industrialized region is thought to influence the air quality in the MCMA, where in some occasions SO2 concentrations in the north part of the city have exceeded the Mexican air quality standard (130 ppb as a 24 hour average), which could not be attributed to irregular operations of industries located in the surrounding area. To address the question of emissions from the refinery and the power plant, the total fluxes of SO2 and NO2 were determined by measurements of their respective integrated vertical column in the neighborhood of the Tula industrial zone, using a Mini-DOAS system. These measurements were carried out as part of the MCMA-2006/MILAGRO Field Campaign, from March 24th to April 18th 2006. Meteorological measurements at the height of the plume dispersion were also determined using pilot balloons and radiosondes techniques. The experimental data were complemented by model simulations. Forward Lagrangian stochastic trajectories were calculated to simulate the plume using FLEXPART in combination with meso-scale meteorological simulations with MM5. The experimental data set was used to evaluate model performance. The simulations were used as an additional estimate of plume transport speeds. Potential air quality impacts on the MCMA were simulated. These were verified by combining surface SO2 measurements in the basin with backward trajectories, thereby providing a means of discriminating the urban impacts of different potential source regions.

  14. Emission measurements of alkenes, alkanes, SO2, and NO2 from stationary sources in Southeast Texas over a 5 year period using SOF and mobile DOAS

    NASA Astrophysics Data System (ADS)

    Johansson, John K. E.; Mellqvist, Johan; Samuelsson, Jerker; Offerle, Brian; Lefer, Barry; Rappenglück, Bernhard; Flynn, James; Yarwood, Greg

    2014-02-01

    A mobile platform for flux measurements of VOCs (alkanes and alkenes), SO2, and NO2 emissions using the Solar Occultation Flux (SOF) method and mobile differential optical absorption spectroscopy (DOAS) was used in four different studies to measure industrial emissions. The studies were carried out in several large conglomerates of oil refineries and petrochemical industries in Southeast and East Texas in 2006, 2009, 2011, and 2012. The measured alkane emissions from the Houston Ship Channel (HSC) have been fairly stable between 2006 and 2011, averaging about 11,500 kg/h, while the alkene emissions have shown greater variations. The ethene and propene emissions measured from the HSC were 1511 kg/h and 878 kg/h, respectively, in 2006, while dropping to roughly 600 kg/h for both species in 2009 and 2011. The results were compared to annual inventory emissions, showing that measured VOC emissions were typically 5-15 times higher, while for SO2 and NO2 the ratio was typically 0.5-2. AP-42 emission factors were used to estimate meteorological effects on alkane emissions from tanks, showing that these emissions may have been up to 35-45% higher during the studies than the annual average. A more focused study of alkene emissions from a petrochemical complex in Longview in 2012 identified two upset episodes, and the elevation of the total emissions during the measurement period due to the upsets was estimated to be approximately 20%. Both meteorological and upset effects were small compared to the factor of 5-15, suggesting that VOC emissions are systematically and substantially underestimated in current emission inventories.

  15. Aerosol optical depth, backscattering profiles and column NO2 and SO2 measurements during March 2006 in Tenango del Aire, Mexico.

    NASA Astrophysics Data System (ADS)

    Hernandez, A.; Basaldud, R.; Grutter, M.; Baumgardner, D.; Slusser, J.; Steinbrecher, R.; Ruiz-Suarez, L. G.

    2007-05-01

    The Tenango del Aire site (19.16°N, 98.86°W, 2380 masl) is located some 40 km SE from Mexico City in the Chalco Valley, where some pollution otflow has been predicted by air quality models. Direct and diffuse ground-based irradiance measurements have been made at this site during the MILAGRO field campaign by a UV-MultiFilter Rotating ShadowBand Radiometer (UV-MFRSR) at seven channels (300-, 305-, 311-, 317-, 325-, 332- and 368-nm with 2-nm nominal bandpass) from which several parameters could be calculated, including the aerosol optical depths (AOD), total ozone column (TOC), asymmetry factor (g) and aerosol single scattering albedo (SSA) via an optimal estimation algorithm. NO2 and SO2 column concentrations were measured with the zenith-sky DOAS (differential absorption spectrometer) technique. LIDAR (light detection and ranging) remote sensing of aerosols was done with a Vaisala Ceilometer Model LD40 from which mixing layer heights were estimated. The results of these measurements and a preliminary analysis of the possible sources of the aerosols are presented.

  16. Measurements of industrial emissions of VOCs, NH3, NO2 and SO2 in Texas using the Solar Occultation Flux method and mobile DOAS

    NASA Astrophysics Data System (ADS)

    Mellqvist, J.; Samuelsson, J.; Rivera, C.; Lefer, B.; Patel, M.

    2007-12-01

    Solar Occultation Flux (SOF) measurements of olefines and alkanes have been conducted to pin-point and quantify the largest sources of olefines and alkanes in the vicinity of Houston and in south eastern Texas during September 2006. The SOF measurements were part of the extensive summer campaign TexAQS 2006, included in the Second Texas Air Quality Study (TexAQS II). The SOF technique is an optical method utilizing the absorption of direct solar infrared radiation in the 1.8-14 micrometer range for retrieval of total columns of various species such as ethylene, propylene, ammonia and alkanes. The instrument is carried on a mobile platform, making it possible to conduct transects of the emission plume downwind an industry, and thus integrate all the molecules of the plume cross section in real time. By multiplying with the plume wind speed, the total flux emerging from the source is obtained. Flux estimates with SOF were obtained for the large petrochemical and refining complexes around the Houston area. This was done in parallell with airborne plume studies by other parties. The primary research goal was to supply a data set for emission inventory comparisons and for input to models looking at the strong ozone production in Texas. The SOF measurements show that the hourly gas emissions from the Houston Ship channel area correspond to about 1 metric ton of ethylene, 1.5 tons of propylene, 12 tons of alkanes, 1/4 ton of NH3 and about 5 tons of SO2 and NO2. For the VOCs this is an order of magnitude or greater than reported VOC emissions in the 2004 inventory.

  17. Comparison of an open path differential optical absorption spectroscopy system and a conventional in situ monitoring system on the basis of long-term measurements of SO 2, NO 2, and O 3

    NASA Astrophysics Data System (ADS)

    Kim, Ki-Hyun; Kim, Min-Young

    A field-based intercomparison study was conducted to evaluate the performance of a line-integrating monitoring technique (a commercial differential optical absorption spectroscopy, DOAS, system by Opsis AB, Sweden) in concert with a conventional in situ monitoring technique (MACSAM-2 (or MS2) system, Japan). In the course of our study, the mixing ratios of three trace gases including SO 2, NO 2, and O 3 were measured routinely from the Ban Po district of Seoul during a 13 month period (June 1999-August 2000). The data obtained from two different systems were used to evaluate various aspects of DOAS performance. The differences in the observed mixing ratios between two techniques, if assessed in terms of the percent difference (PD) values between different data sets, were in general rather compatible not only among different species but also as a function of varying time scale. The differences in the measured mixing ratio between the two systems were also examined statistically using linear regression analysis. Results of the regression analysis indicated the existence of significant correlations among all trace gases monitored, confirming the strong compatibility between the two systems. The effects of meteorological factors on the DOAS performance were also examined through investigation of the mixing ratio differences between two systems and the concurrently determined environmental parameters. According to our analysis, it is concluded that the level of agreement between the two systems can be affected by the variations in the spatial mixing conditions. Although some uncertainties remain to be resolved, our preliminary attempts to evaluate an open path monitoring technique clearly demonstrated that consideration of meteorological conditions may be required to properly assess the DOAS performance due to its capacity to cover spatial scale over the open path length.

  18. Variation of H2O/CO2 and CO2/SO2 ratios of volcanic gases discharged by continuous degassing of Mount Etna volcano, Italy

    NASA Astrophysics Data System (ADS)

    Shinohara, H.; Aiuppa, A.; Giudice, G.; Gurrieri, S.; Liuzzo, M.

    2008-09-01

    We applied the Multi-GAS technique to measure compositions of the volcanic plumes continuously discharged from summit craters of Voragine, Northeast and Bocca Nuova at Mount Etna, in an attempt to estimate compositions of the source volcanic gases. The estimated CO2/SO2 and H2O/CO2 ratios of the volcanic gases show a large variation ranging from 0.6 to 30 and from 1 to 18, respectively. This variability overlaps with the compositional range of dissolved volatiles in melt inclusions and their coexisting bubbles in a magma chamber and can be caused by the low-pressure degassing of a magma with variable bubble content ranging from 0.3 to 15 wt.%. The variable bubble content in the magma is likely a result of supply of deep-derived CO2-rich gas phase to the chamber and subsequent bubble-magma differentiation by bubble ascent in the magma chamber. In contrast, the variation of volcanic gas composition can also be caused by changes of degassing pressure (gas-magma separation pressure), ranging from 0 to 100 MPa, as a result of changes in the depth of the top of the convecting magma in volcanic conduits. Both mechanisms can cause similar compositional variations. However, the two mechanisms will result in contrasting correlations between the SO2 emission rates and the gas compositions that can be examined by parallel observations of the emission rates and compositions in the future.

  19. [Research on in-situ monitoring of SO2 concentration in the flue gases with DOAS method based on algorithm fusion].

    PubMed

    Tang, Guang-hua; Xu, Chuan-long; Shao, Li-tang; Yang, Dao-ye; Zhou, Bin; Wang, Shi-min

    2009-04-01

    Valuable achievements on differential optical absorption spectroscopy (DOAS) for monitoring atmospheric pollutants gas have been made in the past decades. Based on the idea of setting the threshold according to the maximum value, symbolized as OD'm, of differential optical density, the algorithm of traditional DOAS was combined with the DOAS algorithm based on the kalman filtering to improve the detection limit without losing measurement accuracy in the present article. Two algorithms have different inversion accuracy at the same ratio of signal to noise and the problem of inversion accuracy was well resolved by combining two algorithms at short light path length. Theoretical and experimental research on the concentration measurement of SO2 in the flue gases was carried out at the normal temperature and atmospheric pressure. The research results show that with the OD'm less than 0.0481, the measurement precision is very high for SO2 with the improved DOAS algorithm. The measurement lower limit of SO2 is less than 28.6 mg x m(-3) and the zero drift of the system is less than 2.9 mg x m(-3). If the OD'm is between 0.0481 and 0.9272, the measurement precision is high with the traditional DOAS algorithm. However, if the OD'm is more than 0.922, the errors of measurement results for both two DOAS algorithms are very large and the linearity correction must be performed. PMID:19626898

  20. Evaluation of gases, condensates, and SO2 emissions from Augustine volcano, Alaska: the degassing of a Cl-rich volcanic system

    USGS Publications Warehouse

    Symonds, R.B.; Rose, William I., Jr.; Gerlach, T.M.; Briggs, P.H.; Harmon, R.S.

    1990-01-01

    After the March-April 1986 explosive eruption a comprehensive gas study at Augustine was undertaken in the summers of 1986 and 1987. Airborne COSPEC measurements indicate that passive SO2 emission rates declined exponentially during this period from 380??45 metric tons/day (T/D) on 7/24/86 to 27??6 T/D on 8/24/87. These data are consistent with the hypothesis that the Augustine magma reservoir has become more degassed as volcanic activity decreased after the spring 1986 eruption. Gas samples collected in 1987 from an 870??C fumarole on the andesitic lava dome show various degrees of disequilibrium due to oxidation of reduced gas species and condensation (and loss) of H2O in the intake tube of the sampling apparatus. Thermochemical restoration of the data permits removal of these effects to infer an equilibrium composition of the gases. Although not conclusive, this restoration is consistent with the idea that the gases were in equilibrium at 870??C with an oxygen fugacity near the Ni-NiO buffer. These restored gas compositions show that, relative to other convergent plate volcanoes, the Augustine gases are very HCl rich (5.3-6.0 mol% HCl), S rich (7.1 mol% total S), and H2O poor (83.9-84.8 mol% H2O). Values of ??D and ??18O suggest that the H2O in the dome gases is a mixture of primary magmatic water (PMW) and local seawater. Part of the Cl in the Augustine volcanic gases probably comes from this shallow seawater source. Additional Cl may come from subducted oceanic crust because data by Johnston (1978) show that Cl-rich glass inclusions in olivine crystals contain hornblende, which is evidence for a deep source (>25km) for part of the Cl. Gas samples collected in 1986 from 390??-642??C fumaroles on a ramp surrounding the inner summit crater have been oxidized so severely that restoration to an equilibrium composition is not possible. H and O isotope data suggest that these gases are variable mixtures of seawater, FMW, and meteoric steam. These samples are much more H2O-rich (92%-97% H2O) than the dome gases, possibly due to a larger meteoric steam component. The 1986 samples also have higher Cl/S, S/C, and F/Cl ratios, which imply that the magmatic component in these gases is from the more degassed 1976 magma. Thus, the 1987 samples from the lava dome are better indicators than the 1986 samples of degassing within the Augustine magma reservoir, even though they were collected a year later and contain a significant seawater component. Future gas studies at Augustine should emphasize fumaroles on active lava domes. Condensates collected from the same lava-dome fumarole have enrichments ot 107-102 in Cl, Br, F, B, Cd, As, S, Bi, Pb, Sb, Mo, Zn, Cu, K, Li, Na, Si, and Ni. Lower-temperature (200??-650??C) fumaroles around the volcano are generally less enriched in highly volatile elements. However, these lower-termperature fumaroles have higher concentration of rock-forming elements, probably derived from the wall rock. ?? 1990 Springer-Verlag.

  1. Estimating Surface NO2 and SO2 Mixing Ratios from Fast-Response Total Column Observations and Potential Application to Geostationary Missions

    EPA Science Inventory

    Total-column nitrogen dioxide (NO2) data collected by a ground-based sun-tracking spectrometer system 21 (Pandora) and an photolytic-converter-based in-situ instrument collocated at NASA?s Langley Research Center in 22 Hampton, Virginia were analyzed to study the relationship bet...

  2. Reactive and nonreactive quenching of O(1D) by the potent greenhouse gases SO2F2, NF3, and SF5CF3.

    PubMed

    Zhao, Zhijun; Laine, Patrick L; Nicovich, J Michael; Wine, Paul H

    2010-04-13

    A laser flash photolysis-resonance fluorescence technique has been employed to measure rate coefficients and physical vs. reactive quenching branching ratios for O((1)D) deactivation by three potent greenhouse gases, SO(2)F(2)(k(1)), NF(3)(k(2)), and SF(5)CF(3)(k(3)). In excellent agreement with one published study, we find that k(1)(T) = 9.0 x 10(-11) exp(+98/T) cm(3) molecule(-1) s(-1) and that the reactive quenching rate coefficient is k(1b) = (5.8 +/- 2.3) x 10(-11) cm(3) molecule(-1) s(-1) independent of temperature. We find that k(2)(T) = 2.0 x 10(-11) exp(+52/T) cm(3) molecule(-1) s(-1) with reaction proceeding almost entirely (approximately 99%) by reactive quenching. Reactive quenching of O((1)D) by NF(3) is more than a factor of two faster than reported in one published study, a result that will significantly lower the model-derived atmospheric lifetime and global warming potential of NF(3). Deactivation of O((1)D) by SF(5)CF(3) is slow enough (k(3) < 2.0 x 10(-13) cm(3) molecule(-1) s(-1) at 298 K) that reaction with O((1)D) is unimportant as an atmospheric removal mechanism for SF(5)CF(3). The kinetics of O((1)D) reactions with SO(2) (k(4)) and CS(2) (k(5)) have also been investigated at 298 K. We find that k(4) = (2.2 +/- 0.3) x 10(-10) and k(5) = (4.6 +/- 0.6) x 10(-10) cm(3) molecule(-1) s(-1); branching ratios for reactive quenching are 0.76 +/- 0.12 and 0.94 +/- 0.06 for the SO(2) and CS(2) reactions, respectively. All uncertainties reported above are estimates of accuracy (2sigma) and rate coefficients k(i)(T) (i = 1,2) calculated from the above Arrhenius expressions have estimated accuracies of +/- 15% (2sigma). PMID:20133693

  3. Application of a long-path differential optical absorption spectrometer (LP-DOAS) on the measurements of NO(2), SO(2), O(3), and HNO(2) in Gwangju, Korea.

    PubMed

    Lee, Jeongsoon; Kim, Ki-Hyun; Kim, Young J; Lee, Jaihoon

    2008-03-01

    A differential optical absorption spectrometer (DOAS) technique has been applied to monitor airborne trace pollutants including NO(2), SO(2), O(3), and HNO(2) in the ultraviolet (UV) region (290-350 nm) over a 1.5 km beam path (two ways) during an intensive measurement campaign held at Gwangju, Korea (March 2002). Their mean mixing ratios (and standard deviations) were computed as 11.3 (8.8), 1.9 (1.7), 17.1 (19.3), and 0.5 (0.4)ppbv, respectively. As a means to evaluate the performance of the long-path DOAS (LP-DOAS) system with conventional point monitoring systems (PMS), correlation analysis was conducted between the two data sets. These data sets were then inspected to account for the influence of the environmental conditions on the correlation strength between the two systems, especially with respect to light level and wind speed. To facilitate the comparison, correlation analyses were conducted after dividing the data sets for those parameters into several classes. The strength of the correlations between DOAS and meteorological parameters was also examined to evaluate their effects on the DOAS performance. It was found that, among the four pollutant species, O(3) is the most sensitive to changes in meteorological conditions in relation with atmospheric mixing conditions. The overall results of our study indicate that open-path monitoring techniques can be used to effectively diagnose air quality and be substituted for the conventional point monitoring methods with the proper consideration of those parameters affecting the DOAS sensitivity (e.g., light level and wind speed). PMID:17335958

  4. Mineral dust and NOx promote the conversion of SO2 to sulfate in heavy pollution days

    NASA Astrophysics Data System (ADS)

    He, Hong; Wang, Yuesi; Ma, Qingxin; Ma, Jinzhu; Chu, Biwu; Ji, Dongsheng; Tang, Guiqian; Liu, Chang; Zhang, Hongxing; Hao, Jiming

    2014-02-01

    Haze in China has been increasing in frequency of occurrence as well as the area of the affected region. Here, we report on a new mechanism of haze formation, in which coexistence with NOx can reduce the environmental capacity for SO2, leading to rapid conversion of SO2 to sulfate because NO2 and SO2 have a synergistic effect when they react on the surface of mineral dust. Monitoring data from five severe haze episodes in January of 2013 in the Beijing-Tianjin-Hebei regions agreed very well with the laboratory simulation. The combined air pollution of motor vehicle exhaust and coal-fired flue gases greatly reduced the atmospheric environmental capacity for SO2, and the formation of sulfate was found to be a main reason for the growth of fine particles, which led to the occurrence of haze. These results indicate that the impact of motor vehicle exhaust on the atmospheric environment might be underestimated.

  5. Mineral dust and NOx promote the conversion of SO2 to sulfate in heavy pollution days.

    PubMed

    He, Hong; Wang, Yuesi; Ma, Qingxin; Ma, Jinzhu; Chu, Biwu; Ji, Dongsheng; Tang, Guiqian; Liu, Chang; Zhang, Hongxing; Hao, Jiming

    2014-01-01

    Haze in China has been increasing in frequency of occurrence as well as the area of the affected region. Here, we report on a new mechanism of haze formation, in which coexistence with NOx can reduce the environmental capacity for SO2, leading to rapid conversion of SO2 to sulfate because NO2 and SO2 have a synergistic effect when they react on the surface of mineral dust. Monitoring data from five severe haze episodes in January of 2013 in the Beijing-Tianjin-Hebei regions agreed very well with the laboratory simulation. The combined air pollution of motor vehicle exhaust and coal-fired flue gases greatly reduced the atmospheric environmental capacity for SO2, and the formation of sulfate was found to be a main reason for the growth of fine particles, which led to the occurrence of haze. These results indicate that the impact of motor vehicle exhaust on the atmospheric environment might be underestimated. PMID:24566871

  6. Flux Calculation Using CARIBIC DOAS Aircraft Measurements: SO2 Emission of Norilsk

    NASA Technical Reports Server (NTRS)

    Walter, D.; Heue, K.-P.; Rauthe-Schoech, A.; Brenninkmeijer, C. A. M.; Lamsal, L. N.; Krotkov, N. A.; Platt, U.

    2012-01-01

    Based on a case-study of the nickel smelter in Norilsk (Siberia), the retrieval of trace gas fluxes using airborne remote sensing is discussed. A DOAS system onboard an Airbus 340 detected large amounts of SO2 and NO2 near Norilsk during a regular passenger flight within the CARIBIC project. The remote sensing data were combined with ECMWF wind data to estimate the SO2 output of the Norilsk industrial complex to be around 1 Mt per year, which is in agreement with independent estimates. This value is compared to results using data from satellite remote sensing (GOME, OMI). The validity of the assumptions underlying our estimate is discussed, including the adaptation of this method to other gases and sources like the NO2 emissions of large industries or cities.

  7. Long-range transport of volcanic SO2 over Northern India

    NASA Astrophysics Data System (ADS)

    Mallik, Chinmay; Joshi, Hema; Chand, D.; Lal, Shyam; Naja, Manish; Venkataramani, S.; Pant, P.

    2012-07-01

    Anthropogenic activities contribute to more than 70% of global sulfur dioxide (SO2) emissions. Among the natural sources of SO2, volcanic emissions can be significant but sporadic contributors. Apart from releasing a plethora of pollutant gases, volcanoes can also impact atmospheric temperatures and radiation balance as was observed after El Chichon (1982) and Mt. Pinatubo (1991) eruptions. The present study deals with episodes of long-range transport of SO2 from Africa to Northern India using multiple satellite observations. Monthly averaged SO2 from OMI were of the order of 0.6-0.9 DU during November, 2008 over the Indo-Gangetic Plain (IGP). In contrast, SO2 monthly averages retrieved from observations across different locations over North India had never exceeded 0.3 DU during the six year period of 2005-2010. The columnar SO2 loadings were a factor of 10 higher than background levels over most of the IGP on the day of impact. These enhanced SO2 levels were, however, not reciprocated in satellite derived NO2 or CO columns, indicating transport from a non-anthropogenic source of SO2. Back-trajectory analysis revealed strong winds in the free troposphere, which originated from a volcanic eruption over Ethiopia. Wind streams and stable atmospheric conditions were conducive to the long-range transport of volcanic plume over the IGP. Increase in aerosol optical depths were observed both from ground-based measurements as well as satellite observations. A well separated layer of aerosols above the boundary layer was observed from CALIPSO, most likely as a result of this transport. Apart from known anthropogenic sources, the additional transport of volcanic SO2 over the IGP region would have implications to air quality and radiation balance over this region. Details of this episode of transport in terms of meteorology and dynamics will be presented during the assembly.

  8. Real-time measurement of reactive gases (NO, NO2, O3, CO) at ERSA, Cape Corsica, a long term Observatory.

    NASA Astrophysics Data System (ADS)

    Pichon, Jean-Marc; Colomb, Aurelie; Gheusi, Francois; Sauvage, Stephane; Pont, Veronique; Tison, Emmanuel; Bordier, Florent; Grignion, Guillaume; Savelli, Jean-Luc; Dulac, Francois; Sciare, Jean; Nicolas, Jose; Bourrianne, Thierry; Bouvier, Laetitia

    2013-04-01

    Important efforts have been put in 2012 in order to implement the infrastructure and instrumentation for a fully equipped background monitoring station at Ersa, Cape Corsica, key location at the crossroads of dusty southerly airmasses and polluted outflows from the European continent. The ERSA observatory is a french initiative within the framework of CHARMEX (Chemistry-Aerosol Mediterranean Experiment (ChArMEx, http://charmex.lsce.ipsl.fr/) and CORSICA (Centre d'Observation Régional pour la Surveillance du Climat et de l'environnement Atmosphérique et océanographique en Méditerranée occidentale (http://www2.obs-mip.fr/corsica) . The measurements of the station include real-time measurement of reactive gases (O3, CO, NO, NO2), off-line VOC measurements (cylinders, cartridges), a broad spectrum of aerosol properties (chemical composition, ground optical properties, integrated and space-resolved optical properties , size distribution properties, mass, hygroscopicity as well as dry/wet depositions). Among all the parameters, reactive gases are recognized as precursors of ozone and aerosol. The primarily emitted nitrogen oxides (NOx=NO+NO2) have a substantial impact on radical chemistry, ozone (O3) formation and aerosol by their atmospheric oxidation to aerosol nitrate. Carbon monoxide (CO) is mostly primarily emitted from combustion processes, but it is also formed in substantial amounts from the oxidation of methane (CH4) and volatile organic compounds (VOCs). Due to its high global turn-over rates CO is a major O3 precursor, and it has a strong impact on the oxidizing capacity and thus indirectly on the concentration of the climate gas CH4. O3 is a climate gas itself, however, also strongly involved in NO/NO2 partitioning and oxidizing capacity, thus coupling back on several photochemical processes. Accordingly, impacts on climate are multiple and rather complex. The understanding requires high quality, long-term observations of these reactive species. We present here the first measurement of reactive gases (O3, CO, NO, NO2) obtained at ERSA, the new monitoring station at Cape Corsica.

  9. Dissociative photodetachment of SO2 SO 2 : evidence for the

    E-print Network

    Continetti, Robert E.

    conditions, Berthe-Gaujac et al. have carried out ab initio calculations on isomeric forms of the SO2 dimer frequently form a variety of isomeric species [1]. Particularly when third row elements such as sulfur±photofragment coincidence (PPC) spectroscopy to examine the dissociative photo- detachment (DPD) of the sulfur dioxide dimer

  10. Fiber Optic SO2 Analyzer

    NASA Astrophysics Data System (ADS)

    Jeffers, L. A.

    1986-01-01

    We have developed an analyzer capable of measuring +25 ppm SO2 in a dense slurry spray. The analyzer is based on nondispersive ultraviolet spectroscopy. Absorption is measured over a 10 cm path at the tip of an air-purged fiber optic probe. The analyzer has been used to provide spatially resolved concentration measurements to guide the development of a numerical model of a dry-scrubber process.

  11. SO(2) Removal from Flue Gases Using Uutility Synthesized Zeolites

    SciTech Connect

    Grutzeck, M.

    1997-03-31

    Historically, sulfur dioxide (SO{sub 2}) emissions were unregulated. As the environmental consequences of such emissions began to surface, increasingly stringent, federal and state government mandated pollution control requirements were imposed on the electric power generating industry. Coal burning utilities were forced to make one of two dioices. They could install flue gas scrubbing equipment or start to burn lower sulfur containing coal. The proposed research is directed at those utilities that have made the second choice, or utilities desiring to undertake new plant construction.

  12. MODELING OF SO2 OXIDATION IN SMOG

    EPA Science Inventory

    Smog chamber experiments were conducted to investigate the (1) kinetics of free radical reactions of SO2 in smog and (2) SO2 transformation to sulfate for atmospheric simulations. Rate constants were derived for the following reactions: SO2+HO+M yields sulfate (60), SO2+HO2 yield...

  13. STATUS OF SO2 SCRUBBING TECHNOLOGIES

    EPA Science Inventory

    The paper presents the extent of current sulfur dioxide (SO2) scrubber applications on electricity generating units in the U.S. and abroad. The technical performance of recent SO2 scrubber installations is discussed. Recently reported technical innovations to SO2 scrubbing tech...

  14. Mechanism of SO2 removal by carbon

    USGS Publications Warehouse

    Lizzio, A.A.; DeBarr, J.A.

    1997-01-01

    The reaction of SO2 with carbon (C) in the presence of O2 and H2O involves a series of reactions that leads to the formation of sulfuric acid as the final product. The rate-determining step in the overall process is the oxidation of SO2 to SO3. Three SO2 oxidation reactions are possible. Adsorbed SO2 (C-SO2) can react either with gas phase O2 or with adsorbed oxygen (C-O complex) to form sulfur trioxide (SO3), or gas phase SO2 can react directly with the C-O complex. In optimizing the SO2 removal capabilities of carbon, most studies only assume a given mechanism for SO2 adsorption and conversion to H2SO4 to be operable. The appropriate SO2 oxidation step and role of the C-O complex in this mechanism remain to be determined. The ultimate goal of this study was to prepare activated char from Illinois coal with optimal properties for low-temperature (80-150 ??C) removal of sulfur dioxide from coal combustion flue gas. The SO2 adsorption capacity of activated char was found to be inversely proportional to the amount of oxygen adsorbed on its surface. A temperature-programmed desorption technique was developed to titrate those sites responsible for adsorption of SO2 and conversion to H2SO4. On the basis of these results, a mechanism for SO2 removal by carbon was proposed. The derived rate expression showed SO2 adsorption to be dependent only on the fundamental rate constant and concentration of carbon atoms designated as free sites. Recent studies indicate a similar relationship exists between the rate of carbon gasification (in CO2 or H2O) and the number of reactive sites as determined by transient kinetics experiments. Utilizing the concept of active or free sites, it was possible to produce a char from Illinois coal having an SO2 adsorption capacity surpassing that of a commercial catalytic activated carbon.

  15. MERCURY SPECIATION IN COMBUSTION SYSTEMS: STUDIES WITH SIMULATED FLUE GASES AND MODEL FLY ASHES

    EPA Science Inventory

    The paper gives results of a bench-scale study of the effects of flue gas and fly ash parameters on the oxidation of elemental mercury in simulated flue gases containing hydrogen chloride (HCl), nitric oxide (NO), nitrogen dioxide (NO2), sulfur dioxide (SO2), and water vapor (H2O...

  16. Water independent SO2 oxidation by Stabilised Criegee Intermediates from Biogenic Alkenes

    NASA Astrophysics Data System (ADS)

    Newland, Mike; Rickard, Andrew; Vereecken, Luc; Evans, Mat; Muñoz, Amalia; Ródenas, Milagros; Bloss, William

    2015-04-01

    Biogenic VOCs account for about 90% of global VOC emissions and these are dominated by the unsaturated hydrocarbons: isoprene (600 Tg yr-1) and monoterpenes (100 Tg yr-1). Stabilized Criegee Intermediates (SCI) are thought to be formed in the atmosphere mainly from reactions of unsaturated hydrocarbons with ozone. SCI have been shown in laboratory experiments to rapidly oxidise SO2 (k > 2x10-11 cm3 s-1) and NO2 (k = 7x10-12 cm3 s-1), providing a potentially important gas phase oxidation route for these species in the atmosphere. The importance of the SCI reaction with traces gases has been shown in modelling work to be critically dependent on the ratio of the rate constants for the reaction of the SCI with these trace gases and with H2O. Such modelling work has suggested that the SCI + SO2 reaction is only likely to be important in regions with high alkene emissions, e.g. forests, and that elsewhere SCI are likely to be almost entirely quenched by reaction with water, thus negating their importance as trace gas oxidants. However, it has been shown in laboratory experiments with small SCI that the reaction rate of SCI with water is structure dependent, with anti-CH3CHOO reacting fast with H2O (k > 1x10-14 cm3 s-1), and syn-CH3CHOO reacting orders of magnitude slower (k < 2x10-16 cm3 s-1). Here we present results from a series of ozonolysis experiments performed at the EUPHORE atmospheric simulation chamber in Valencia. These experiments measure the loss of SO2, in the presence of various biogenic alkenes (isoprene and three monoterpenes: ?-pinene, ?-pinene and limonene), as a function of water vapour. The SO2 loss shows a dependence on relative humidity for all systems studied, decreasing with increasing relative humidity. However, for all species, there also appears to be a fraction of the SO2 loss that shows a much lower sensitivity to relative humidity. We quantify the relative rates of reaction of the SCI produced in the ozonolysis of these biogenics with water and SO2, and their decomposition rates. The results suggest that the alkenes studied produce a mixture of SCIs with widely varying reactivity towards H2O under atmospheric conditions. This behaviour is likely dependent on structure, in agreement with direct observations of the small SCI CH3CHOO, and suggests that different SCIs have different fates in the atmosphere. The impact of these observations for the identity, abundance and behaviour of SCIs expected to predominate in regions dominated by biogenic emissions, and their scope to act as atmospheric oxidants for other trace gases, is discussed.

  17. A study of the adsorption of NH 3 and SO 2 on leaf surfaces

    NASA Astrophysics Data System (ADS)

    Van Hove, L. W. A.; Adema, E. H.; Vredenberg, W. J.; Pieters, G. A.

    The adsorption of NH 3 and SO 2 on the external leaf surface of bean ( Phaseolus vulgaris L.) and poplar ( Populus euramericana L.) was studied. The adsorbed quantities increased strongly with increasing air humidity, indicating that water on the leaf surface plays a major role in the interaction of these gases with the leaf surface. On the other hand temperature in the range between 15 and 26°C had no significant influence. The adsorbed quantities of NH 3 at a specific air humidity appeared to be proportional to NH 3 concentration. This proportionality was less clear for SO 2. The affinity of SO 2 for the leaf surface was found to be approximately twice that of NH 3. A mixture of these gases in the air mutually stimulated their adsorption on the leaf. No significant desorption or uptake of these gases through the cuticle could be detected, indicating that the bulk of the adsorbed gases remains associated with the cuticle.

  18. SO2 EMISSIONS AND TIME SERIES MODELS

    EPA Science Inventory

    The paper describes a time series model that permits the estimation of the statistical properties of pounds of SO2 per million Btu in stack emissions. It uses measured values for this quantity provided by coal sampling and analysis (CSA), by a continuous emissions monitor (CEM), ...

  19. Reduction of SO2 and Particulate Emissions

    NSDL National Science Digital Library

    1998-01-01

    The Sofia Institute on Local Air Quality is part of the Regional Environmental Center (REC) for Central and Eastern Europe. Its report, Reduction of SO2 and Particulate Emissions, provides both emission data and the legal framework surrounding the reduction of emissions. The report is available either online or as a [.pdf] file.

  20. SO2 SCRUBBING TECHNOLOGIES: A REVIEW

    EPA Science Inventory

    Electricity generating units may use sulfur dioxide (SO2) scrubbers to meet the requirements of Phase II of the Acid Rain S02 Reduction Program. Additionally, the use of scrubbers can result in reduction of mercury emissions. It is timely, therefore, to review the commercially av...

  1. Fabry-Perot interferometer-based remote sensing of SO2

    NASA Astrophysics Data System (ADS)

    Kuhn, Jonas; Bobrowski, Nicole; Lübcke, Peter; Pöhler, Denis; Tirpitz, Jan-Lukas; Vogel, Leif; Platt, Ulrich

    2015-04-01

    We studied SO2 degassing from volcanoes and monitored the corresponding SO2 fluxes. Besides the effect on climate and the hazardous effects at a local scale, the absolute magnitude of SO2 fluxes or ratios of SO2 with other volcanic gases can be an indicator for volcanic activity and even help to understand and model processes in the interior of volcanoes. Due to its characteristic absorption structure, high abundance in the volcanic plume and low atmospheric background, SO2 can be easily identified and quantified by remote sensing techniques. DOAS and FTIR became standard techniques for volcanic SO2 measurements. Along with the development of portable devices they offer the advantage of simultaneous measurements of multiple gas species. However, both techniques often need complex data evaluation and observations are usually limited to a single viewing direction. Spatially resolved measurements, which are for instance required to determine gas fluxes, frequently have to be obtained sequentially leading to a relatively low time resolution. A further, today nearly established method to determine SO2 emission fluxes is the "SO2 camera". The SO2 camera has the advantage of a high spatial and temporal resolution, but is very limited in spectral information using only two wavelength channels and thus being less selective. Cross-interferences with volcanic plume aerosol, the ozone background, and other trace gases frequently cause problems in SO2 camera measurements. Here we introduce a novel passive remote sensing method for SO2 measurements in the atmosphere using a Fabry-Perot interferometer (FPI) setup. The transmission profile of this FPI consists of periodic transmission peaks that match the periodic SO2 absorption bands in the UV. In principle, this method allows imaging of two-dimensional SO2 distributions similarly to SO2 cameras. Interferences of standard SO2 cameras are greatly reduced with the FPI method. In addition, this technique can also be applied to other trace gases (like BrO, OClO, or HCl) and allows the construction of small, robust devices, delivering accurate measurements without intricate data evaluation. We present calculations on the FPI system and first laboratory measurements with a one pixel prototype of a FPI SO2 device. These findings demonstrate the advantages of our novel approach.

  2. Factors affecting the association between ambient concentrations and personal exposures to particles and gases.

    PubMed

    Sarnat, Stefanie Ebelt; Coull, Brent A; Schwartz, Joel; Gold, Diane R; Suh, Helen H

    2006-05-01

    Results from air pollution exposure assessment studies suggest that ambient fine particles [particulate matter with aerodynamic diametergases, are strong proxies of corresponding personal exposures. For particles, the strength of the personal-ambient association can differ by particle component and level of home ventilation. For gases, however, such as ozone (O3), nitrogen dioxide (NO2), and sulfur dioxide (SO2), the impact of home ventilation on personal-ambient associations is untested. We measured 24-hr personal exposures and corresponding ambient concentrations to PM2.5, sulfate (SO2-(4)), elemental carbon, O3, NO2, and SO2 for 10 nonsmoking older adults in Steubenville, Ohio. We found strong associations between ambient particle concentrations and corresponding personal exposures. In contrast, although significant, most associations between ambient gases and their corresponding exposures had low slopes and R2 values; the personal-ambient NO2 association in the fall season was moderate. For both particles and gases, personal-ambient associations were highest for individuals spending most of their time in high- compared with low-ventilated environments. Cross-pollutant models indicated that ambient particle concentrations were much better surrogates for exposure to particles than to gases. With the exception of ambient NO2 in the fall, which showed moderate associations with personal exposures, ambient gases were poor proxies for both gas and particle exposures. In combination, our results suggest that a) ventilation may be an important modifier of the magnitude of effect in time-series health studies, and b) results from time-series health studies based on 24-hr ambient concentrations are more readily interpretable for particles than for gases. PMID:16675415

  3. Improved determination of volcanic SO2 emission rates from SO2 camera images

    NASA Astrophysics Data System (ADS)

    Klein, Angelika; Lübcke, Peter; Bobrowski, Nicole; Platt, Ulrich

    2015-04-01

    SO2 cameras determine the SO2 emissions of volcanoes with a high temporal and spatial resolution. They thus visualize the plume morphology and give information about turbulence and plume dispersion. Moreover, from SO2 camera image series emission rates can be determined with high time resolution (as will be explained below), these data can help to improve our understanding of variations in the degassing regime of volcanoes. The first step to obtain emission rates is to integrate the column amount of SO2 along two different plume cross sections (ideally perpendicular to the direction of plume propagation); combined with wind speed information this allows the determination of SO2 fluxes. A popular method to determine the mean wind speed relies on estimating the time lag of the SO2 signal derived for two cross sections of the plume at different distances downwind of the source. This can be done by searching the maximum cross-correlation coefficient of the two signals. Another, more sophisticated method to obtain the wind speed is to use the optical flow technique to obtain a more detailed wind field in the plume from a series of SO2 camera images. While the cross correlation method only gives the mean wind speed between the two cross sections of the plume, the optical flow technique allows to determine the wind speed and direction for each pixel individually (in other words, a two-dimensional projection of the entire wind field in the plume is obtained). While optical flow algorithms in general give a more detailed information about the wind velocities in the volcanic plume, they may fail to determine wind speeds in homogeneous regions (i.e. regions with no spatial variation in SO2 column densities) of the plume. Usually the wind speed is automatically set to zero in those regions, which leads to an underestimation of the total SO2 emission flux. This behavior was observed more than once on a data set of SO2 camera images taken at Etna, Italy in July, 2014. For those data the cross-correlation method leads to a more realistic result, which was close to simultaneously measured SO2 fluxes calculated from spectra taken by a zenith looking differential optical absorption spectroscopy (DOAS) instrument traversing underneath the plume. In the analyzed data the flux determined with the cross-correlation method was twice the flux determined with the optical flow algorithm. We further investigated the potential error in the SO2 flux determination caused by a slant view on the plume. This is a situation commonly encountered when observing volcanic SO2-fluxes by remote sensing techniques. Frequently it is difficult to determine the precise angle between wind direction (i.e. plume propagation direction) and observation direction. We find that in volcanic plumes with an inclination that differs more than 20 degree from the assumed wind direction, can cause an error in the determined SO2 flux can deviate from the true value by more than 10 percent.

  4. High SO2 Removal Efficiency Testing

    SciTech Connect

    Gary Blythe

    1997-07-29

    This document provides a discussion of the technical progress on DOE/PETC project number DE-AC22-92PC91338, "High Efficiency SO2 Removal Testing", for the time period 1 April through 30 June 1997. The project involves testing at six full-scale utility flue gas desulfurization (FGD) systems to evaluate low capital cost upgrades that may allow these systems to achieve up to 98% SO2 removal efficiency. The upgrades being evaluated mostly involve using performance additives in the FGD systems. The "base" project involved testing at the Tampa Electric Company?s Big Bend Station. All five potential options to the base program have been exercised by DOE, involving testing at Hoosier Energy?s Merom Station (Option I), Southwestern Electric Power Company?s Pirkey Station (Option II), PSI Energy?s Gibson Station (Option III), Duquesne Light?s Elrama Station (Option IV), and New York State Electric and Gas Corporation?s Kintigh Station (Option V). The originally planned testing has been completed for all six sites. However, additional testing is being conducted at the Big Bend Station. The remainder of this document is divided into four sections. Section 2, Project Summary, provides a brief overview of the status of technical efforts on this project. Section 3, Results, summarizes the outcome from technical efforts during the quarter, or results from prior quarters that have not been previously reported. In Section 4, Plans for the Next Reporting Period, an overview is provided of the technical efforts that are anticipated for the third quarter of calendar year 1997. Section 5 contains a brief acknowledgment.

  5. High SO2 Removal Efficiency Testing

    SciTech Connect

    Gary Blythe

    1997-04-23

    This document provides a discussion of the technical progress on DOE/PETC project number DE-AC22-92PC91338, "High Efficiency SO2 Removal Testing", for the time period 1 January through 31 March 1997. The project involves testing at six full-scale utility flue gas desulfurization (FGD) systems, to evaluate low capital cost upgrades that may allow these systems to achieve up to 98% SO2 removal efficiency. The upgrades being evaluated mostly involve using performance additives in the FGD systems. The "base" project involved testing at the Tampa Electric Company?s Big Bend Station. All five potential options to the base program have been exercised by DOE, involving testing at Hoosier Energy?s Merom Station (Option I), Southwestern Electric Power Company?s Pirkey Station (Option II), PSI Energy?s Gibson Station (Option III), Duquesne Light?s Elrama Station (Option IV), and New York State Electric and Gas Corporation?s (NYSEG) Kintigh Station (Option V). The originally planned testing has been completed for all six sites. However, additional testing is planned at the Big Bend Station. The remainder of this document is divided into four sections. Section 2, Project Summary, provides a brief overview of the status of technical efforts on this project. Section 3, Results, summarizes the outcome from technical efforts during the quarter, or results from prior quarters that have not been previously reported. In Section 4, Plans for the Next Reporting Period, an overview is provided of the technical efforts that are anticipated for the second quarter of calendar year 1997. Section 5 contains a brief acknowledgement.

  6. 40 CFR 97.288 - CAIR SO2 allowance allocations to CAIR SO2 opt-in units.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...allowance allocations to CAIR SO2 opt-in units. 97.288 Section 97.288 Protection...SO2 TRADING PROGRAMS CAIR SO2 Opt-in Units § 97.288 CAIR SO2 allowance allocations to CAIR SO2 opt-in units. (a) Timing requirements...

  7. SO2:HCl ratios in the plumes from Mt. Etna and Vulcano determined by Fourier transform spectroscopy

    Microsoft Academic Search

    Peter Francis; Adam Maciejewski; Clive Oppenheimer; Charles Chaffin; Tommaso Caltabiano

    1995-01-01

    Volcanic gases have important climate and environmental effects, and provide insights into magmatic processes. Direct sampling of volcanic gases is inherently difficult and often hazardous. Here, we report the results of long path measurements of SO2 and HCl from Mt. Etna and Vulcano (Italy) obtained by active mode Fourier Transform Infrared (FTIR) spectroscopy. Spectra recorded in September 1994 over paths

  8. Electron attachment to sulfur oxyhalides: SOF2, SOCl2, SO2F2, SO2Cl2, and SO2FCl attachment rate coefficients, 300-900 K

    NASA Astrophysics Data System (ADS)

    Miller, Thomas M.; Friedman, Jeffrey F.; Caples, Connor M.; Shuman, Nicholas S.; Van Doren, Jane M.; Bardaro, Michael F.; Nguyen, Pho; Zweiben, Cindy; Campbell, Matthew J.; Viggiano, A. A.

    2010-06-01

    Electron attachment to SOF2, SOCl2, SO2F2, SO2FCl, and SO2Cl2 was studied with two flowing-afterglow Langmuir-probe apparatuses over the temperature range 300-900 K. Attachment rate coefficients at 300 K are ka=2.6±0.8×10-10(SOF2), 1.8±0.5×10-8(SOCl2), 4.8±0.7×10-10(SO2F2), 2.4±0.7×10-9(SO2Cl2), and 2.0±0.6×10-7 cm3 s-1(SO2FCl). Arrhenius plots of the data imply activation energies of 56±22 meV(SOF2), 92±40(SO2F2), 44±22 meV(SOCl2), and 29±15 meV(SO2Cl2). The rate coefficients for SO2FCl decrease slightly with temperature, commensurate with the decrease in the capture rate coefficient. Electron attachment to SOF2 and SO2F2 is nondissociative, while reaction with SOCl2, SO2FCl, and SO2Cl2 is dissociative. Dissociative attachment is dominated by channels arising from S-Cl bond cleavage but also includes a minor channel forming a dihalide product ion. Branching fraction data are reported for the dissociative attachment channels.

  9. High frequency SO2 flux measurements at Semeru volcano, Indonesia, using the SO2 camera

    NASA Astrophysics Data System (ADS)

    Smekens, J.; Burton, M. R.; Clarke, A. B.; Harijoko, A.; Wibowo, H.; Sawyer, G.

    2013-12-01

    SO2 monitoring is a common technique at many volcanic centers. Recently, automated networks of scanning spectrometers have led to great improvement in frequency and accuracy of measurements. Simultaneously a new instrument has been proposed to acquire 2D images of volcanic plumes in the UV spectrum. This imaging technique (hereafter referred to as the SO2 camera) provides additional contextual information, as well as a quantitative way of determining plume velocity from a single remote location, without relying on weather reports. These advantages are to be balanced against a loss of spectroscopic information associated with using band-pass filters that reduce precision in the measurements. We have developed a custom-built acquisition and processing software to be used with the SO2 camera developed by INGV-Pisa for monitoring of Etna and Stromboli, which consists of two Quantum Scientific Imaging CCD cameras equipped with UV filters and a USB2000+ spectrometer. We have tested the instrument at two power plants in Arizona, USA. We were able to successfully measure SO2 fluxes as low as 1-2 tons/day. We also validated our method by comparing the SO2 camera measurements against high-frequency in-situ measurements (1 data point every minute) obtained from chemical sensors within the stacks. We have also used the SO2 camera during a field campaign at Semeru volcano, Indonesia, in May and June of 2013. Semeru is a persistently active explosive volcano, whose latest eruption began in 1967. Its eruptive behavior can be characterized by cyclic dome growth and collapse in the active crater and frequent small magnitude explosions occurring at periods of minutes to hours. We found that the majority of SO2 at Semeru is released during the explosive phases (instantaneous peaks of up to 40 kg/s), with passive emission levels between explosions fluctuating from 0-5 kg/s. After the initial explosive release, emission returns to background levels following an exponential decline over a period of 10-15 mins, often punctuated by several secondary gas-release pulses. Based on the eruptive freqeuency we observed at the time of measurement (1 explosion every 30-60 mins), we estimate the average SO2 flux from Semeru to be 300-400 tons/day, depending on the magnitude of individual explosions. To interpret the data in terms of magma ascent we also used DOMEFLOW, a 1.5D transient isothermal numerical model. Petrologic observations from tephra and ballistic samples collected at the summit help us constrain the initial conditions of the system, including the volatile content. Preliminary model runs produced periodic lava extrusion and pulses of gas release at the vent, with a cycle period on the order of hours, even though a steady magma supply rate was prescribed at the bottom of the conduit. Enhanced shallow permeability creates a dense plug in the shallow subsurface, which in turn plays a critical role in creating and controlling the observed periodic behavior.

  10. 40 CFR 97.288 - CAIR SO 2 allowance allocations to CAIR SO 2 opt-in units.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...allowance allocations to CAIR SO 2 opt-in units. 97.288 Section 97.288 Protection...TRADING PROGRAMS CAIR SO2 Opt-in Units § 97.288 CAIR SO 2 allowance allocations to CAIR SO 2 opt-in units. (a) Timing requirements....

  11. 40 CFR 97.288 - CAIR SO 2 allowance allocations to CAIR SO 2 opt-in units.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...allowance allocations to CAIR SO 2 opt-in units. 97.288 Section 97.288 Protection...TRADING PROGRAMS CAIR SO2 Opt-in Units § 97.288 CAIR SO 2 allowance allocations to CAIR SO 2 opt-in units. (a) Timing requirements...

  12. 40 CFR 96.288 - CAIR SO 2 allowance allocations to CAIR SO 2 opt-in units.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...allowance allocations to CAIR SO 2 opt-in units. 96.288 Section 96.288 Protection...IMPLEMENTATION PLANS CAIR SO 2 Opt-in Units § 96.288 CAIR SO 2 allowance allocations to CAIR SO 2 opt-in units. (a) Timing requirements....

  13. 40 CFR 96.288 - CAIR SO2 allowance allocations to CAIR SO2 opt-in units.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...allowance allocations to CAIR SO2 opt-in units. 96.288 Section 96.288 Protection...IMPLEMENTATION PLANS CAIR SO2 Opt-in Units § 96.288 CAIR SO2 allowance allocations to CAIR SO2 opt-in units. (a) Timing requirements....

  14. 40 CFR 96.288 - CAIR SO 2 allowance allocations to CAIR SO 2 opt-in units.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...allowance allocations to CAIR SO 2 opt-in units. 96.288 Section 96.288 Protection...IMPLEMENTATION PLANS CAIR SO 2 Opt-in Units § 96.288 CAIR SO 2 allowance allocations to CAIR SO 2 opt-in units. (a) Timing requirements....

  15. Satellite-based constraints on tropospheric volcanic emissions of SO2 and CO2

    NASA Astrophysics Data System (ADS)

    Carn, S. A.; Schwandner, F. M.

    2012-12-01

    There is considerable motivation to improve constraints on global volcanic CO2 emissions, and their partitioning between summit plumes and diffuse flank degassing; both for volcano monitoring and to better understand the role of volcanism in the global carbon cycle. One approach to refining plume CO2 degassing budgets for persistently degassing volcanoes is to obtain more accurate constraints on SO2 emissions and SO2/CO2 ratios in volcanic gases. The current generation of space-borne, hyperspectral ultraviolet (UV) nadir mapping instruments have afforded tremendous insights into the spatial and temporal variability of global, subaerial volcanic degassing of SO2. We use ~8 years of daily SO2 measurements by the Ozone Monitoring Instrument (OMI) on NASA's Aura satellite to identify and rank the strongest volcanic SO2 sources of the past decade, and compare the results to existing emissions inventories. Major SO2 sources include Ambrym (Vanuatu), Nyiragongo (DR Congo) and several volcanoes in Indonesia and Kamchatka that are largely absent from existing inventories. Typical SO2 emission rates are estimated based on the SO2 column amounts measured in the volcanic plumes. Based on this improved satellite-derived SO2 emissions inventory and existing data on SO2/CO2 ratios, we can refine estimates of plume CO2 emissions for the most prominent volcanic gas emitters. We have also used the OMI SO2 measurements to select volcanic targets for special 'stare-mode' observations of the Japanese Greenhouse Gases Observing Satellite (GOSAT) since summer 2010, to assess the potential of GOSAT shortwave-infrared (SWIR) reflectance data for detection of volcanic CO2 emissions. GOSAT measures the column-average CO2 mixing ratio (or CO2 total column) with a spatial resolution of 10 km, and hence the signal is dominated by ambient atmospheric CO2 and any seasonal cycle thereof. Further complications for volcano monitoring are that GOSAT SWIR measurements are subject to interference by clouds and aerosol (ubiquitous at most active volcanoes) and mostly collected over land under clear sky conditions. By repeatedly pointing the GOSAT FOV at known, strong point sources of volcanic degassing, we are accumulating a statistically significant dataset to evaluate whether space-based detection of volcanic CO2 is feasible using current assets, to provide data for further, detailed spectral analysis, and to assess the potential of future satellite missions such as the Orbiting Carbon Observatory-2 (OCO-2) for volcanic CO2 detection.

  16. SO2 camera measurements at Lastarria volcano and Lascar volcano in Chile

    NASA Astrophysics Data System (ADS)

    Lübcke, Peter; Bobrowski, Nicole; Dinger, Florian; Klein, Angelika; Kuhn, Jonas; Platt, Ulrich

    2015-04-01

    The SO2 camera is a remote-sensing technique that measures volcanic SO2 emissions via the strong SO2 absorption structures in the UV using scattered solar radiation as a light source. The 2D-imagery (usually recorded with a frame rate of up to 1 Hz) allows new insights into degassing processes of volcanoes. Besides the large advantage of high frequency sampling the spatial resolution allows to investigate SO2 emissions from individual fumaroles and not only the total SO2 emission flux of a volcano, which is often dominated by the volcanic plume. Here we present SO2 camera measurements that were made during the CCVG workshop in Chile in November 2014. Measurements were performed at Lastarria volcano, a 5700 m high stratovolcano and Lascar volcano, a 5600 m high stratovolcano both in northern Chile on 21 - 22 November, 2014 and on 26 - 27 November, 2014, respectively. At both volcanoes measurements were conducted from a distance of roughly 6-7 km under close to ideal conditions (low solar zenith angle, a very dry and cloudless atmosphere and an only slightly condensed plume). However, determination of absolute SO2 emission rates proves challenging as part of the volcanic plume hovered close to the ground. The volcanic plume therefore is in front of the mountain in our camera images. An SO2 camera system consisting of a UV sensitive CCD and two UV band-pass filters (centered at 315 nm and 330 nm) was used. The two band-pass filters are installed in a rotating wheel and images are taken with both filter sequentially. The instrument used a CCD with 1024 x 1024 pixels and an imaging area of 13.3 mm x 13.3 mm. In combination with the focal length of 32 mm this results in a field-of-view of 25° x 25°. The calibration of the instrument was performed with help of a DOAS instrument that is co-aligned with the SO2 camera. We will present images and SO2 emission rates from both volcanoes. At Lastarria gases are emitted from three different fumarole fields and we will attempt to investigate the degassing behavior of the individual fumaroles. Lascar volcano only had a very weak plume originating from the active central crater with maximum SO2 column densities of only up to 5 × 1017[molecules/cm2] during our measurements. These low SO2 column densities in combination with the almost ideal measurements conditions will be used to assess the detection limit of our current SO2 camera system.

  17. Observations of atmospheric trace gases by MAX-DOAS in the coastal boundary layer over Jiaozhou Bay

    NASA Astrophysics Data System (ADS)

    Li, Xianxin; Wang, Zhangjun; Meng, Xiangqian; Zhou, Haijin; Du, Libin; Qu, Junle; Chen, Chao; An, Quan; Wu, Chengxuan; Wang, Xiufen

    2014-11-01

    Atmospheric trace gases exist in the atmosphere of the earth rarely. But the atmospheric trace gases play an important role in the global atmospheric environment and ecological balance by participating in the global atmospheric cycle. And many environmental problems are caused by the atmospheric trace gases such as photochemical smog, acid rain, greenhouse effect, ozone depletion, etc. So observations of atmospheric trace gases become very important. Multi Axis Differential Optical Absorption Spectroscopy (MAX-DOAS) developed recently is a kind of promising passive remote sensing technology which can utilize scattered sunlight received from multiple viewing directions to derive vertical column density of lower tropospheric trace gases like ozone, sulfur dioxide and nitrogen dioxide. It has advantages of simple structure, stable running, passive remote sensing and real-time online monitoring automatically. A MAX-DOAS has been developed at Shandong Academy of Sciences Institute of Oceanographic Instrumentation (SDIOI) for remote measurements of lower tropospheric trace gases (NO2, SO2, and O3). In this paper, we mainly introduce the stucture of the instrument, calibration and results. Detailed performance analysis and calibration of the instrument were made at Qingdao. We present the results of NO2, SO2 and O3 vertical column density measured in the coastal boundary layer over Jiaozhou Bay. The diurnal variation and the daily average value comparison of vertical column density during a long-trem observation are presented. The vertical column density of NO2 and SO2 measured during Qingdao oil pipeline explosion on November 22, 2013 by MAX-DOAS is also presented. The vertical column density of NO2 reached to a high value after the explosion. Finally, the following job and the outlook for future possible improvements are given. Experimental calibration and results show that the developed MAX-DOAS system is reliable and credible.

  18. Influence of O2 and H2O on carbothermal reduction of SO2 by oil-sand fluid coke.

    PubMed

    Feng, Wenguo; Jia, Charles Q

    2005-12-15

    To develop a new process for removing high-concentration SO2 from industrial flue gases, the carbothermal reduction of SO2 by oil-sand fluid coke at 700 degrees C was investigated by varying the inlet concentration of either O2 or H2O. Concentrations of O2 and H2O ranged from 0 to 20% and from 0 to 30%, respectively, in a stream of SO2 (18%) with the balance helium. Addition of O2 and H2O was found to enhance SO2 reduction. The enhancement was attributed to the reducing gases, CO and H2, produced by solid-gas reactions between carbon and O2 or H2O. The effects of O2 and H2O on sulfur yield, however, were bifacial: adding O2 and/or H2O increased the sulfur yield when SO2 conversion was incomplete, otherwise, it decreased the sulfur yield through the formation of sulfides such as H2S. The results of a thermodynamic analysis were in a good agreementwith the experimental results, suggesting that gas-solid reactions were slow enough to allow gas-phase equilibrium. This study indicates that carbon, such as oil-sand fluid coke, can be utilized to remove SO2 in flue gases containing O2/H2O and to convert it to elemental sulfur. PMID:16475356

  19. Effect of SO2 and Photolysis on Photooxidized Diesel Fuel Secondary Organic Aerosol Composition

    NASA Astrophysics Data System (ADS)

    MacMillan, A. C.; Blair, S. L.; Lin, P.; Laskin, A.; Laskin, J.; Nizkorodov, S.

    2014-12-01

    Diesel fuel (DSL) and sulfur dioxide (SO2) are important precursors to secondary organic aerosol (SOA) formation. DSL is often co-emitted with SO2 and NO2, thus it is important to understand the possible effects of SO2 on DSL SOA composition. Additionally, DSL SOA composition can be affected by photochemical aging processes such as photolysis. In this study, DSL SOA was first prepared under dry, high-NOx conditions with various concentrations of SO2 by photooxidation in a smog chamber. The SOA was then stripped of excess oxidants and gaseous organics with a denuder train and the resulting particles were photolyzed at various photolysis times in a quartz flow tube. The SOA composition, photochemical aging, properties, and mass concentration, before and after direct photolysis in the flow tube, were examined using several techniques. High-resolution mass spectrometry (HR-MS) was performed on DSL SOA samples to investigate the effect of SO2 on molecular level composition. SOA composition as a function of photolysis time was measured with an aerosol mass spectrometer (AMS). HR-MS results show that organosulfates are produced in DSL SOA. Both AMS and HR-MS results show that photolysis also has an effect on composition; though, this is more apparent in the HR-MS results than in the AMS results. In summary, both the presence of SO2 and solar radiation has an effect on DSL SOA composition.

  20. Space-borne constraints on SO2 fluxes for recent volcanic eruptions in 2011

    NASA Astrophysics Data System (ADS)

    Theys, N.; Campion, R.; Clarisse, L.; Brenot, H.; van Gent, J.; Coheur, P.; Van Roozendael, M.; Tait, S.; Ferrucci, F.

    2012-04-01

    Magmatic gases (H2O, CO2, sulphur and halogenated species) are the driving forces of volcanic eruptions. These emissions can strongly impact the local biosphere (through acid deposition) and also affect significantly the chemical composition of the atmosphere and climate. Sulphur dioxide (SO2) measurements have been used to characterize and monitor volcanic activity for decades. However, remote-sensing methods based on absorption spectroscopy generally provide integrated concentration of already dispersed plumes of SO2. In the last years, consolidated measurements of total emission fluxes of SO2 have been made possible for active degassing volcanoes using ground-based measurements. For non-monitored volcanoes or explosive volcanic eruptions, space-based measurements of SO2 are more adequate but unfortunately fluxes estimates are sparse. The motivation for this study is an effort to constrain volcanic SO2 fluxes using satellite measurements of dispersed and large-scale plumes of SO2. We combine different approaches and investigate the temporal evolution of the total emissions of SO2 for a number of recent volcanic events in 2011: Nyamuragira (Congo), Nabro (Eritrea) and Puyehue (Chili). High spectral resolution satellite instruments operating both in the UV-visible (OMI/Aura and GOME-2/MetOp-A) and thermal Infrared (IASI/MetOp-A) spectral ranges are used in a synergistic way. Although the primary objective of this study is the calculation of SO2 fluxes, it also enables to assess the consistency of the SO2 products from the different sensors used. Moreover, our estimates of SO2 fluxes are confronted to magma fluxes constraints obtained from independent thermal measurements. This work is performed in the frame of the European Volcano Observatory Space Services (EVOSS) EU FP7 project whose aim is to develop and demonstrate a portfolio of GMES Downstream Services, based on Earth Observation data products, to monitor volcanic activity and relevant hazards at a global scale. The region of interest of EVOSS (EU and Africa) is monitored for ground-deformations, thermal, SO2 and ash detection using state-of-the-art remote sensing techniques.

  1. Multi-decadal satellite measurements of passive and eruptive volcanic SO2 emissions

    NASA Astrophysics Data System (ADS)

    Carn, Simon; Yang, Kai; Krotkov, Nickolay; Prata, Fred; Telling, Jennifer

    2015-04-01

    Periodic injections of sulfur gas species (SO2, H2S) into the stratosphere by volcanic eruptions are among the most important, and yet unpredictable, drivers of natural climate variability. However, passive (lower tropospheric) volcanic degassing is the major component of total volcanic emissions to the atmosphere on a time-averaged basis, but is poorly constrained, impacting estimates of global emissions of other volcanic gases (e.g., CO2). Stratospheric volcanic emissions are very well quantified by satellite remote sensing techniques, and we report ongoing efforts to catalog all significant volcanic SO2 emissions into the stratosphere and troposphere since 1978 using measurements from the ultraviolet (UV) Total Ozone Mapping Spectrometer (TOMS; 1978-2005), Ozone Monitoring Instrument (OMI; 2004 - present) and Ozone Mapping and Profiler Suite (OMPS; 2012 - present) instruments, supplemented by infrared (IR) data from HIRS, MODIS and AIRS. The database, intended for use as a volcanic forcing dataset in climate models, currently includes over 600 eruptions releasing a total of ~100 Tg SO2, with a mean eruption discharge of ~0.2 Tg SO2. Sensitivity to SO2 emissions from smaller eruptions greatly increased following the launch of OMI in 2004, but uncertainties remain on the volcanic flux of other sulfur species other than SO2 (H2S, OCS) due to difficulty of measurement. Although the post-Pinatubo 1991 era is often classified as volcanically quiescent, many smaller eruptions (Volcanic Explosivity Index [VEI] 3-4) since 2000 have injected significant amounts of SO2 into the upper troposphere - lower stratosphere (UTLS), peaking in 2008-2011. We also show how even smaller (VEI 2) tropical eruptions can impact the UTLS and sustain above-background stratospheric aerosol optical depth, thus playing a role in climate forcing on short timescales. To better quantify tropospheric volcanic degassing, we use ~10 years of operational SO2 measurements by OMI to identify the strongest volcanic SO2 sources between 2004 and 2015. OMI measurements are most sensitive to SO2 emission rates on the order of ~1000 tons/day or more, and thus the satellite data provide new constraints on the location and persistence of major volcanic SO2 sources. We find that OMI has detected non-eruptive SO2 emissions from at least ~60 volcanoes since 2004. Results of our analysis reveal the emergence of several major tropospheric SO2 sources that are not prominent in existing inventories (Ambrym, Nyiragongo, Turrialba, Ubinas), the persistence of some well-known sources (Etna, Kilauea) and a possible decline in emissions at others (e.g., Lascar). The OMI measurements provide particularly valuable information in regions lacking regular ground-based monitoring such as Indonesia, Melanesia and Kamchatka. We describe how the OMI measurements of SO2 total column, and their probability density function, can be used to infer SO2 emission rates for compatibility with existing emissions data and assimilation into chemical transport models. The satellite-derived SO2 emission rates are in good agreement with ground-based measurements from frequently monitored volcanoes (e.g., from the NOVAC network), but differ for other volcanoes. We conclude that some ground-based SO2 measurements may be biased high if collected during periods of elevated unrest, and hence may not be representative of long-term average emissions.

  2. SO2 and CO2 removal from flue gas

    Microsoft Academic Search

    J. M. Alberts; J. H. C. Braber; H. C. A. Van Gastel; C. H. Tange; L. F. Zubeir

    2006-01-01

    The emission of green house gases is becoming of ever increasing worries to the international community. The fossil fuel consumption is still increasing and therefore the emission of the green house gases. Many uncertainties exist around the negative effects arising from large concentrations of green house gases in the atmosphere. To prevent possible negative effects in the future many countries

  3. Studies on potential emission of hazardous gases due to uncontrolled open-air burning of waste vehicle tyres and their possible impacts on the environment

    NASA Astrophysics Data System (ADS)

    Shakya, Pawan R.; Shrestha, Pratima; Tamrakar, Chirika S.; Bhattarai, Pradeep K.

    Uncontrolled open-air burning of waste vehicle tyres causing environmental pollution has become a popular practice in Nepal despite official ban considering the environment and public health hazards. In this study, an experimental model was set up in a laboratory scale in an attempt to understand the potential emission of hazardous gases such as CO, SO 2 and NO 2 due to such activities in Kathmandu Valley and their possible impacts on the environment. For this purpose, four types of tyre were collected representing two from passenger car and two from motorbike category. The emission level of CO in the tyre smoke was measured with a CO gas detector tube while SO 2 and NO 2 were determined by UV-visible spectrophotometer. Among the three types of the gases analyzed, SO 2 was emitted in significantly high levels by all the representative tyre samples. The emission levels of CO, SO 2 and NO 2 ranged from 21to 49, 102to 820 and 3to 9 ?g g -1, respectively. Results revealed that the emission levels also varied with the tyre types and qualities. The potential emission of the hazardous gases per representative scrap tyre mass was also estimated. Results indicate that the gaseous pollutants due to the tyre fires could make a significant contribution for deterioration of the environmental condition of the Valley or elsewhere.

  4. Adsorption of SO 2 from Wet Mixtures on Hydrophobic Zeolites

    Microsoft Academic Search

    Sabina A. Rouf; Mladen Ei?

    1998-01-01

    Breakthrough curve measurements of SO2 and water vapor were carried out on a number of selected mordenite and pentasil zeolites from their binary and ternary mixtures with CO2 at 50 and 100°C. SO2 capacities of these samples were found to be significantly reduced by the presence of water. Competitive adsorption led to unusually high overshoot peaks of SO2 breakthrough curves.

  5. Effects of prolonged exposure of Oryzopsis hymenoides to SO 2

    Microsoft Academic Search

    Roger W. Ferenbaugh

    1978-01-01

    Oryzopsis hymenoides, a desert grass, was exposed to low concentrationsof SO2 ranging from 0.03 to 1.00 ppm for six week fumigation periods. Deleterious effects were noted only at atmospheric SO2 concentrations of 0.13 ppm and above. These effects included necrotic lesions and reduced net primary productivity. At concentrations below 0.13 ppm, the SO2 appeared to have a beneficial effect on

  6. Vertical distribution of volcanic SO2 retrieved from IASI.

    NASA Astrophysics Data System (ADS)

    Carboni, Elisa; Grainger, Roy; Mather, Tamsin; Payle, David; Birch, Charlotte; Dudhia, Anu; Ventress, Lucy; Smith, Andy; Hayer, Caterine

    2014-05-01

    Sulphur dioxide (SO2) is an important atmospheric constituent that plays a rucial role in many atmospheric processes and its effect and lifetime are dependent on the SO2 injection altitude. In the troposphere SO2 production leads to the acidification of rainfall while in the stratosphere it oxidises to form a stratospheric H2SO4 haze that can affect climate for several years. We report applications of IASI high resolution infrared spectra to study volcanic emission of sulphur dioxide (SO2). IASI is a Fourier transform spectrometer that covers the spectral range 645 to 2760 cm-1 (3.62-15.5 um). The IASI field of view consists of four circles of 12 km inside a square of 50 x 50 km, and nominally it can achieve global coverage in 12 hours. From 2013 there were 2 IASI instruments on board both METOP A and B giving up to 4 overpasses a day. The SO2 retrieval algorithm uses measurements from 1000 to 1200 cm-1 and from 1300 to 1410 cm-1 (the 7.3 and 8.7 um SO2 bands) made by IASI on the MetOp satellite. The SO2 retrieval follows the method of Carboni et al. (2012) and retrieves SO2 amount and altitude together with a pixel by pixel comprehensive error budget analysis. It permits the quantification of SO2 amount and estimation of plume altitude, even for small eruptions in the lower troposphere (e.g. Etna lava fountains in 2011 and 2013). We present the SO2 amount described as a function of altitude, and the time evolution of SO2 burden for recent volcanic eruptions. Quantification of the total amount of SO2 over several days allows estimation of daily emission rates, and decay factors.

  7. SO2\\/NOx control compliance with environmental regulations

    Microsoft Academic Search

    WALTER L. GREER

    1989-01-01

    The sources of SO2 and NOx in a Portland cement kiln system are identified. A brief discussion of several known and theoretical control methods for cement-plant SO2 and NO x emissions is presented. The US Portland cement industry is shown to be a minor contributor of SO2 and NOx to atmospheric contamination. The anticipated need and\\/or requirement for continuous monitoring

  8. SO2\\/NOx control: compliance with environmental regulations

    Microsoft Academic Search

    W. L. Greer

    1988-01-01

    The sources of SO2 and NOx in a portland cement kiln system are identified. A brief discussion of several known and theoretical control methods for cement plants for SO2 and NOx are presented. The US portland cement industry is shown to be a minor contributor to atmospheric contamination by SO2 and NOx. The anticipated need and\\/or requirement for continuous monitoring

  9. Photochemistry of SO2 in Venus' upper cloud layers

    NASA Technical Reports Server (NTRS)

    Winick, J. R.; Stewart, A. I. F.

    1980-01-01

    The photochemical and transport processes that occur in the Venusian atmosphere in and above the upper cloud region are characterized with attention to the correlation with the Pioneer Venus spectrometer results for the cloud top SO2 distribution. The model uses upward-flowing SO2 and H2O to replace the sulfur and hydrogen lost through the lower boundary by the settling of sulfuric acid aerosols. Oxygen for the oxidation of SO2 to SO3 prior to hydration to H2SO4 is supplied by the photolysis of CO2. A model with SO2 as the major sulfur-bearing gas is consistent with the Pioneer data.

  10. First Global Maps of Stratospheric and Tropospheric NO2 from OMI

    NASA Technical Reports Server (NTRS)

    Bucsela, Eric J.; Celarier, Edward A.; Wenig, Mark O.; Gleason, James F.; Veefkind, J. Pepijn

    2004-01-01

    The Ozone Monitoring Instrument (OMI) was launched successfully in July 2004, as one of four instruments on the EOS Aura satellite. OMI makes hyperspectral measurements that are used to retrieve column densities of critical trace gases, including formaldehyde, BrO, SO2 and NO2 . We present the first results from the OM1 operational NO2 algorithm and demonstrate its ability to retrieve the tropospheric and stratospheric components of NO2. The DOAS method is used to determine slant column densities, and initial air mass factors (AMFs) are used. to give initial estimates of the vertical column densities (VCDs). VCDs from up to 15 consecutive orbits are collected, and a spatial filtering technique is applied to extract the synoptic-scale features characteristic of the stratospheric, field. features to be evidence of tropospheric excess NO2 , and apply an AMF appropriate to polluted conditions, to obtain an improved retrieval of the NO2 total VCD. We describe the assumptions underlying the algorithm in detail, and show global maps of NO2 VCDs, based on the first operational data from OMI.

  11. AN ADVANCED FLUE GAS MONITOR FOR SO2 - PHASE I

    EPA Science Inventory

    The development of an instrument for continuously monitoring SO2 levels in flue gas is proposed. The SO2 will be detected by means of an electrochemical sensor cell, which operates in a three-electrode potentiostatic mode. The proposed innovation is develop-ment of an advan...

  12. LOW NOX COMBUSTION SYSTEMS WITH SO2 CONTROL USING LIMESTONE

    EPA Science Inventory

    The paper describes EPA work on low NOx combustion systems with SO2 control using limestone. Although SO2 control in low NOx systems for both stoker and pulverized-coal-fired furnaces is under investigation at EPA, most of the current work is with pulverized coal. EPA's Limestone...

  13. SO2 ABATEMENT FOR COAL-FIRED BOILERS IN JAPAN

    EPA Science Inventory

    The report is a compilation of information on the current status of SO2 abatement technologies for coal-fired boilers in Japan, where strict ambient air quality standards for SO2 and NOx mandate the use of various air pollution control technologies. It focuses on flue gas desulfu...

  14. Reversible capture of SO2 through functionalized ionic liquids.

    PubMed

    Yang, Dezhong; Hou, Minqiang; Ning, Hui; Ma, Jun; Kang, Xinchen; Zhang, Jianling; Han, Buxing

    2013-07-01

    Emission of SO2 in flue gas from the combustion of fossil fuels leads to severe environmental problems. Exploration of green and efficient methods to capture SO2 is an interesting topic, especially at lower SO2 partial pressures. In this work, ionic liquids (ILs) 1-(2-diethylaminoethyl)-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([Et2 NEMim][Tf2 N]) and 1-(2-diethylaminoethyl)-3-methylimidazolium tetrazolate ([Et2 NEMim][Tetz]) were synthesized. The performances of the two ILs to capture SO2 were studied under different conditions. It was demonstrated that the ILs were very efficient for SO2 absorption. The [Et2 NEMim][Tetz] IL designed in this work could absorb 0.47 g(SO2)g(IL)(-1) at 0.0101 MPa SO2 partial pressure, which is the highest capacity reported to date under the same conditions. The main reason for the large capacity was that both the cation and the anion could capture SO2 chemically. In addition, the IL could easily be regenerated, and the very high absorption capacity and rapid absorption/desorption rates were not changed over five repeated cycles. PMID:23681974

  15. JAPANESE ACTIVITIES IN SO2 AND NOX CONTROL

    EPA Science Inventory

    The paper reviews Japanese activities in SO2 and NOx control. From 1970 to 1985, energy use in Japan increased by 25%, and annual coal consumption rose from virtually nothing to 20 million tons, yet emissions of SO2 declined by 75% and NOx by 40%. While increases in hydroelectric...

  16. Photochemistry in Terrestrial Exoplanet Atmospheres II: H2S and SO2 Photochemistry in Anoxic Atmospheres

    E-print Network

    Hu, Renyu; Bains, William

    2013-01-01

    Sulfur gases are common components in the volcanic and biological emission on Earth, and are expected to be important input gases for atmospheres on terrestrial exoplanets. We study the atmospheric composition and the spectra of terrestrial exoplanets with sulfur compounds (i.e., H2S and SO2) emitted from their surfaces. We use a comprehensive one-dimensional photochemistry model and radiative transfer model to investigate the sulfur chemistry in atmospheres ranging from reducing to oxidizing. The most important finding is that both H2S and SO2 are chemically short-lived in virtually all types of atmospheres on terrestrial exoplanets, based on models of H2, N2, and CO2 atmospheres. This implies that direct detection of surface sulfur emission is unlikely, as their surface emission rates need to be extremely high (>1000 times Earth's volcanic sulfur emission) for these gases to build up to a detectable level. We also find that sulfur compounds emitted from the surface lead to photochemical formation of element...

  17. Measurement of SO2 and BrO at Lastarria, Lascar, and Salar de Atacama

    NASA Astrophysics Data System (ADS)

    Dinger, Florian; Osorio, Matias; Gliß, Jonas; Lübcke, Peter; Bobrowski, Nicole; Platt, Ulich; Frins, Erna; Wagner, Thomas

    2015-04-01

    In November 2014 the 12th CCVG (Commission of the Chemistry of Volcanic Gases) gas workshop took place in Northern Chile. Subject of the field trips were Lastarria (25°10' S, 68°30' W) and Lascar (23°22' S, 67°43' W), both stratovolcanoes with a height of 5700 and 5600 a.s.l., respectively. One of the goals was to investigate the SO2 and BrO emissions of these volcanoes by remote-sensing using Multi-AXial Differential Optical Absorption Spectroscopy (MAX-DOAS). The used 'mini MAX-DOAS' instrument measures scattered solar UV radiation recording spectra within a wavelength range of 294-437 nm and with a spectral resolution of 0.9 nm. The instrument took spectra sequentially at various elevation angles scanning the sky from horizon to zenith. The scanning geometry was adapted to each measurement location. At Lastarria volcano we observed SO2 slant column densities (SCDs) in the order of 1018 molecules/cm2 and BrO SCDs up to 5 - 1013 molecules/cm2. At Lascar volcano we observed SO2 SCDs up to 4 - 1017 molecules/cm2 but no significant BrO absorption features (in a preliminary evaluation). We will present SO2 fluxes and upper detection limits of BrO, and present maxima BrO/SO2 ratios of Lastarria and Lascar. Those ratios will be compared to BrO/SO2 ratios of other - previously studied - Andean volcanoes (e.g. Villarica). Furthermore, we measured the SO2 and BrO SCDs above the Salar de Atacama (23°30' S, 68°15' W), a salt pan with an area of 3000 km2. Spectra were taken in a direction where the Salar de Atacama has an extension of about 50 km and no other obvious emission sources were contributing to the SO2 and BrO absorption signals. At the Salar de Atacama we observed SO2 SCDs up to 2 - 1017 molecules/cm2 and BrO SCDs of up to 7 - 1013 molecules/cm2.

  18. SO2 passivating chemistry for silicon cryogenic deep etching

    NASA Astrophysics Data System (ADS)

    Duluard, C. Y.; Dussart, R.; Tillocher, T.; Pichon, L. E.; Lefaucheux, P.; Puech, M.; Ranson, P.

    2008-11-01

    Cryogenic deep etching of silicon is investigated using SO2 for passivating the sidewalls of the etched features. The passivating efficiency of SO2 in a SF6/SO2 inductively coupled plasma is assessed comparatively with the traditional SF6/O2 chemistry by means of mass spectrometry and optical emission spectroscopy diagnostics. Emphasis is placed on the evolution of the density of various neutral species (e.g. SiF4, F, O, SOxFy, SFx). These measurements allow us to determine the SO2/SF6 and O2/SF6 gas flow ratios above which a passivation layer forms and inhibits silicon etching. Furthermore, different reaction schemes are proposed to explain the variations in relative densities measured for the two plasma chemistries. In SF6/SO2 plasmas, surface reactions involving SOF and SO2 species with F radicals are favoured, providing a greater number of SOF2 and SO2F2 molecules in the gas phase. In SF6/O2 plasmas, a higher rate of O radicals available for reacting with SFx species can account for the greater concentration in SOF4 molecules. However, these trends are significant for high passivating gas concentrations only. This is consistent with the similar etch results obtained for both chemistries when etching silicon at cryogenic temperatures with a low percentage of passivating gas.

  19. Thermodynamic state of SO2 on Io's surface

    NASA Technical Reports Server (NTRS)

    Zent, Aaron P.; Fanale, Fraser P.

    1987-01-01

    It has been suggested that surface conditions on Io might be conducive to significant SO2 adsorption on sulfur or alkali sulfides. A number of spectroscopic arguments for and against the high abundance of a SO2 adsorbate (versus frost) on Io have been made. SO2 absorption isotherms on particulate sulfur are measured, and the question of SO2 adsorbate/ice is approached from a thermodynamic perspective. Because of formidable experimental difficulties, data were not obtained at the very low temperatures and P(SO2) characteristics of Io; however, data were obtained over a wide range of pressures and temperatures somewhat higher than Io's and extrapolated to Io surface conditions. Errors in estimating adsorptive capacity accrue through extrapolation of the adsorption isotherms; however, more significant is the addition of the solid SO2 equilibrium vapor pressure curve to the phase diagram. The formation of ice places a strict upper limit on adsorptive coverage at any temperature. The limit for Io based upon the data is calculated, and it is shown that no more than 0.014 monolayers of SO2 can adsorb on sulfur at Io temperatures. Given the assumption that sulfur forms the primary adsorbent on Io's surface, or the assumption that the adsorptive capacity of the other adsorbents is not substantially greater than that of sulfur, this explains the fact that the nu(1) + nu(3) band center position is in better agreement with that of frost than adsorbate.

  20. Measurements of SO2 in the Mount St. Helens debris

    NASA Technical Reports Server (NTRS)

    Kerr, J. B.; Evans, F. J.; Mateer, C. L.

    1982-01-01

    Routine measurements of ozone and SO2 are made with the Dobson and Brewer spectrophotometers at the Atmospheric Environment Service in Downsview Ontario. On May 20 and 21, 1980, large values of column SO2 were observed with both spectrophotometers at the time of passage of the Mount St. Helens debris. Enhanced SO2 values were first observed at 1800Z on May 20. The maximum column amount of SO2 measured was 0.06 cm at 2200 Z. On May 21, SO2 values slowly decreased from 0.03 cm at 1100 Z cm to 0.01 cm at 2000Z. Typical SO2 amounts due to pollution at the Downsview site are approximately 0.003 to 0.005 cm. At the same time of maximum SO2 enhancement, both Dobson and Brewer spectrophotometers measured a 0.040 cm decrease of total ozone. It is not clear whether the decrease of total ozone was caused by the volcanic cloud or natural ozone variability. Air mass trajectories indicate that the altitude of the debris cloud, which passed over Downsview at the time, was between 10 km and 12 km.

  1. Surface Hydrophobicity Causes SO2 Tolerance in Lichens

    PubMed Central

    Hauck, Markus; Jürgens, Sascha-René; Brinkmann, Martin; Herminghaus, Stephan

    2008-01-01

    Background and Aims The superhydrophobicity of the thallus surface in one of the most SO2-tolerant lichen species, Lecanora conizaeoides, suggests that surface hydrophobicity could be a general feature of lichen symbioses controlling their tolerance to SO2. The study described here tests this hypothesis. Methods Water droplets of the size of a raindrop were placed on the surface of air-dry thalli in 50 lichen species of known SO2 tolerance and contact angles were measured to quantify hydrophobicity. Key Results The wettability of lichen thalli ranges from strongly hydrophobic to strongly hydrophilic. SO2 tolerance of the studied lichen species increased with increasing hydrophobicity of the thallus surface. Extraction of extracellular lichen secondary metabolites with acetone reduced, but did not abolish the hydrophobicity of lichen thalli. Conclusions Surface hydrophobicity is the main factor controlling SO2 tolerance in lichens. It presumably originally evolved as an adaptation to wet habitats preventing the depression of net photosynthesis due to supersaturation of the thallus with water. Hydrophilicity of lichen thalli is an adaptation to dry or humid, but not directly rain-exposed habitats. The crucial role of surface hydrophobicity in SO2 also explains why many markedly SO2-tolerant species are additionally tolerant to other (chemically unrelated) toxic substances including heavy metals. PMID:18077467

  2. Thermodynamic state of SO2 on Io's surface

    NASA Astrophysics Data System (ADS)

    Zent, A. P.; Fanale, F. P.

    1987-05-01

    It has been suggested that surface conditions on Io might be conducive to significant SO2 adsorption on sulfur or alkali sulfides. A number of spectroscopic arguments for and against the high abundance of a SO2 adsorbate (versus frost) on Io have been made. SO2 absorption isotherms on particulate sulfur are measured, and the question of SO2 adsorbate/ice is approached from a thermodynamic perspective. Because of formidable experimental difficulties, data were not obtained at the very low temperatures and P(SO2) characteristics of Io; however, data were obtained over a wide range of pressures and temperatures somewhat higher than Io's and extrapolated to Io surface conditions. Errors in estimating adsorptive capacity accrue through extrapolation of the adsorption isotherms; however, more significant is the addition of the solid SO2 equilibrium vapor pressure curve to the phase diagram. The formation of ice places a strict upper limit on adsorptive coverage at any temperature. The limit for Io based upon the data is calculated, and it is shown that no more than 0.014 monolayers of SO2 can adsorb on sulfur at Io temperatures. Given the assumption that sulfur forms the primary adsorbent on Io's surface, or the assumption that the adsorptive capacity of the other adsorbents is not substantially greater than that of sulfur, this explains the fact that the nu(1) + nu(3) band center position is in better agreement with that of frost than adsorbate.

  3. Simultaneous control of Hg0, SO2, and NOx by novel oxidized calcium-based sorbents.

    PubMed

    Ghorishi, S Behrooz; Singer, Carl F; Jozewicz, Wojciech S; Sedman, Charles B; Srivastava, Ravi K

    2002-03-01

    Efforts to develop multipollutant control strategies have demonstrated that adding certain oxidants to different classes of Ca-based sorbents leads to a significant improvement in elemental Hg vapor (Hg0), SO2, and NOx removal from simulated flue gases. In the study presented here, two classes of Ca-based sorbents (hydrated limes and silicate compounds) were investigated. A number of oxidizing additives at different concentrations were used in the Ca-based sorbent production process. The Hg0, SO2, and NOx capture capacities of these oxidant-enriched sorbents were evaluated and compared to those of a commercially available activated carbon in bench-scale, fixed-bed, and fluid-bed systems. Calcium-based sorbents prepared with two oxidants, designated C and M, exhibited Hg0 sorption capacities (approximately 100 microg/g) comparable to that of the activated carbon; they showed far superior SO2 and NOx sorption capacities. Preliminary cost estimates for the process utilizing these novel sorbents indicate potential for substantial lowering of control costs, as compared with other processes currently used or considered for control of Hg0, SO2, and NOx emissions from coal-fired boilers. The implications of these findings toward development of multipollutant control technologies and planned pilot and field evaluations of more promising multipollutant sorbents are summarily discussed. PMID:11924858

  4. Effects of SO2 and NO on growth of Chlorella sp. KR-1.

    PubMed

    Lee, Jin-Suk; Kim, Deog-Keun; Lee, Jun-Pyo; Park, Soon-Chul; Koh, Jong-Ho; Cho, Hye-Sung; Kim, Seung-Wook

    2002-03-01

    Effects of the toxic compounds in flue gas, SOx and NOx, on growth of Chlorella sp. KR-1 have been determined. Although growth of KR-1 was suppressed by the toxic compounds, KR-1 exhibited excellent tolerances to SOx compared to other algal strains. When Chlorella KR-1 was cultured with the model gas containing 60 ppm SO2, the linear growth rate was 1.24 g/l day which is about 25% lower than that of the control culture aerated with the gas mixture containing no toxic compounds, SO2 and NO. KR-1 could grow even with the model gas containing 100 ppm SO2 and the linear growth rate of KR-1 in the culture was 0.78 g/l day. The period for lag phase was increased with increasing of SO2 concentration that also resulted in the decrease of the linear growth rate and the maximum cell concentration. Direct CO2 fixation by Chlorella KR-1 has been successfully done using actual flue gases from a liquified natural gas (LNG)- or diesel-fueled boiler. These results indicated that Chlorella KR-1 may be applied for direct CO2 fixation from actual flue gas. PMID:11848373

  5. Evolution of CO2, SO2, HCl, and HNO3 in the volcanic plumes from Etna

    NASA Astrophysics Data System (ADS)

    Voigt, C.; Jessberger, P.; Jurkat, T.; Kaufmann, S.; Baumann, R.; Schlager, H.; Bobrowski, N.; Giuffrida, G.; Salerno, G.

    2014-03-01

    The volcanic plumes from degassing Etna (Italy) were extensively probed with instruments onboard the Deutsches Zentrum für Luft- und Raumfahrt research aircraft Falcon during the contrail, volcano, and cirrus experiment CONCERT on 29/30 September 2011. Up to 10.4 ppmv SO2and 0.3 ppmv HCl were detected with the atmospheric chemical ionization mass spectrometer AIMS at 3.1 km altitude and 20 km distance to the summit. HNO3 is the dominant reactive nitrogen component in the plumes. Linking aircraft and ground-based observations by Hybrid Single-Particle Lagrangian Integrated Trajectory dispersion modeling, we identify two crater plumes with different compositions primarily injected by the Bocca Nuova and North East craters. Uniquely, we follow their chemical evolution up to 5 h plume age. Our results show that CO2/SO2and SO2/HCl molar ratios are stable in the ageing plumes. Hence, conversion of SO2 to H2SO4 and partitioning of HCl in acidic plume particles play a minor role at dry tropospheric conditions. Thus, these trace gases allow monitoring volcanic activity far from the crater.

  6. The effect of SO2 on mineral carbonation in batch tests

    SciTech Connect

    Summers, Cathy A.; Dahlin, David C.; Ochs, Thomas L.

    2004-01-01

    CO2 sequestration is a key element of future emission-free fossil-fueled power plants. Other constituents of flue gas must also be captured and rendered innocuous. Contemporary power plants remove SOx from exit gases, but next-generation plants may simultaneously treat CO2, SOx, and other pollutants. Pioneering tests at the U.S. Department of Energy's Albany Research Center investigated the combined treatment of CO2 and SO2 in a mineral-carbonation process. SO2 was removed from the gas stream, and as a small fraction of the total volume of mineralizing gas, it did not inhibit the carbonation reaction. The results indicate that this approach to CO2 sequestration could be used to treat multiple pollutants.

  7. SO2-flux measurements and BrO/SO2 ratios at Guallatiri volcano, Altiplano, northern Chile

    NASA Astrophysics Data System (ADS)

    Gliss, Jonas; Stebel, Kerstin; Thomas, Helen

    2015-04-01

    Sulphur dioxide (SO2) fluxes were measured recently at Guallatiri volcano using two UV SO2-cameras and one IR SO2-camera. Furthermore, measurements of reactive halogens (e.g. BrO, OClO) were investigated using a high performance DOAS (Differential Optical Absorption Spectroscopy) instrument. Guallatiri (18° 25' 00? S, 69° 5' 30? W, 6.071 m a.s.l.) is situated in the Altiplano in northern Chile, close to the Bolivian border. The last known eruption of Guallatiri was in 1960. The measurements were performed during a short-term field trip on three days in November 2014 (20.11.-22.11.2014). During that time, the volcano showed a quiescent degassing behaviour from the summit crater and from a fumarolic field on the southern flank. A preliminary evaluation of the spectra recorded with the DOAS instruments showed SO2 column amounts (SCDs) up to 3 - 1017 molec/cm2 and BrO-SCDs of the order of several 1013 molec/cm2. This corresponds to BrO/SO2-ratios of the order of 10-4 which is a typical order of magnitude for volcanic emissions. We will present SO2-flux estimates for Guallatiri volcano during these three days as well as BrO/SO2-ratio estimates in dependence of different plume ages. Furthermore, we will compare the results retrieved with the two UV-cameras with the data recorded simultaneously with the IR-camera.

  8. Supply of SO2 for the atmosphere of Io

    NASA Astrophysics Data System (ADS)

    Lanzerotti, L. J.; Brown, W. L.

    1983-02-01

    The authors point out that in addition to a vapor pressure equilibrium source of SO2 in an atmosphere of Io, recent laboratory sputtering results, combined with Voyager-measured particle fluxes, indicate that SO2 could also result from charged particle erosion of frost deposits on the satellite's surface. On the nightside, and for dayside frost patches where the temperature may be ?100K, such erosion will be a dominant mechanism.

  9. Fluctuations in SO2 emission during recent eruptions of Etna

    Microsoft Academic Search

    Lawrence L. Malinconico

    1979-01-01

    THE eruptive activity of July-August 1977 of Mt Etna consisted of four separate, short eruptive episodes: 16-22 July; 5-6 August; 14 August; 24 August. The rate of SO2 emission during these eruptions was monitored using a remote-sensing correlation spectrometer. These data suggest that fluctuations in the SO2 emission rate provide a means for predicting eruptions of Etna.

  10. Manure Gases

    MedlinePLUS

    ... The gases of most concern are ammonia and hydrogen sulfide. Other gases of concern include methane and ... present? Since most of these gases in particular hydrogen sulfide are heavier-than-air, they tend to ...

  11. Satellite SO2 retrievals from ash rich volcanic plumes: Comparison between different correction procedures

    NASA Astrophysics Data System (ADS)

    Corradini, S.; Pugnaghi, S.; Campion, R.; Arvani, B.; Guerrieri, L.; Merucci, L.

    2012-04-01

    Observations of volcanic degassing yield insights into the magmatic processes which control volcanic activity during both quiescent and eruptive phases. SO2 is an important volcanic gas because of its effects on the environment (e.g. acid rain, effects on plants and public health) and also because once it has reached high altitudes it can be transported over long distances, has a great residence time and can be oxidized to form sulphates. The sulphates are capable of reflecting solar radiation and causing surface cooling. For these reasons there is great interest in improving the quality and frequency of volcanic SO2 retrievals. Satellite observations have been used for a long time to monitor globally distributed volcanic activity because they offer a practical and safe source of valuable data. While no satellite sensor has been developed explicitly for volcanic observations, continuous technological improvement has achieved spatial resolutions and acquisition frequencies that allow increasingly detailed volcanological studies at local scales. Monitoring of volcanic SO2 is one of the key facilities offered by satellite remote sensing techniques both in the UV and in the TIR spectral range. During volcanic eruptions ash and gases can be emitted simultaneously. The plume ash particles (from 1 to 10 micron) tend to reduce the top of atmosphere radiance in the entire Thermal InfraRed spectral range (7-14 micron), including the channels used for the SO2 retrieval. The net effect is a significant SO2 column abundance overestimation. In this work three different ash correction procedures for SO2 volcanic plume retrieval are compared. These procedures, applied to MODIS and ASTER TIR measurements, has been used to retrieve the SO2 emission from the 2010 Eyjafjallajokull (Iceland) and the 2011 Mt. Etna (Italy) eruptions. The first procedure (P1), based on Corradini et al. 2009, needs the simultaneous presence of the 8.7 micron SO2 absorption bands, as well as the split window bands centered around 11 and 12 micron used for ash retrieval. This implies the possibility of a simultaneous retrieval of both volcanic SO2 and ash in the same data set. The procedure is based on computing the plume atmospheric terms, taking into account the ash content of the different pixels, by using MODTRAN 4 radiative transfer model. The second procedure (P2), based on Campion et al. 2010, consists of adjusting the SO2 column amount until the ratios of radiance simulated on several ASTER bands match the observations. The selected band ratios depend much less on atmospheric humidity, sulfate aerosols, surface altitude and emissivity than the raw radiances. The third (P3) is a novel procedure which determines the radiance at the sensor if no plume was in the scene and then the plume transmittance at each band. A relationship, of the ash transmittance at 8.7 versus 11 micron transmittance, is used to retrieve the SO2 abundance. The P1 procedure has been considered as a reference. Its main drawback is the time required to compute the simulated atmospheric terms Look-Up Tables. The P2 procedure, valid for ASTER images, gives a very good spatial resolution but, because of that, the plume is generally not completely observed. The P3 procedure is very fast and can be used for a volcanic early warning, but seems too sensitive to the plume temperature. Even if the P1 procedure tends to overestimate the SO2 amounts with respect to the P2 and P3 procedures, the results show a good agreement in both the the SO2 flux trends and total mass for all the different eruptive events considered.

  12. Special Polymer/Carbon Composite Films for Detecting SO2

    NASA Technical Reports Server (NTRS)

    Homer, Margie; Ryan, Margaret; Yen, Shiao-Pin; Kisor, Adam; Jewell, April; Shevade, Abhijit; Manatt, Kenneth; Taylor, Charles; Blanco, Mario; Goddard, William

    2008-01-01

    A family of polymer/carbon films has been developed for use as sensory films in electronic noses for detecting SO2 gas at concentrations as low as 1 part per million (ppm). Most previously reported SO2 sensors cannot detect SO2 at concentrations below tens of ppm; only a few can detect SO2 at 1 ppm. Most of the sensory materials used in those sensors (especially inorganic ones that include solid oxide electrolytes, metal oxides, and cadmium sulfide) must be used under relatively harsh conditions that include operation and regeneration at temperatures greater than 100 C. In contrast, the present films can be used to detect 1 ppm of SO2 at typical opening temperatures between 28 and 32 C and can be regenerated at temperatures between 36 and 40 C. The basic concept of making sensing films from polymer/carbon composites is not new. The novelty of the present family of polymer/carbon composites lies in formulating the polymer components of these composites specifically to optimize their properties for detecting SO2. First-principles quantum-mechanical calculations of the energies of binding of SO2 molecules to various polymer functionalities are used as a guide for selecting polymers and understanding the role of polymer functionalities in sensing. The polymer used in the polymer-carbon composite is a copolymer of styrene derivative units with vinyl pyridine or substituted vinyl pyridine derivative units. To make a substituted vinyl pyridine for use in synthesizing such a polymer, poly(2-vinyl pyridine) that has been dissolved in methanol is reacted with 3-chloropropylamine that has been dissolved in a solution of methanol. The methanol is then removed to obtain the copolymer. Later, the copolymer can be dissolved in an appropriate solvent with a suspension of carbon black to obtain a mixture that can be cast and then dried to obtain a sensory film.

  13. Contribution of SO2 to antioxidant potential of white wine.

    PubMed

    Abramovi?, Helena; Košmerl, Tatjana; Poklar Ulrih, Nataša; Cigi?, Blaž

    2015-05-01

    The reactivity of SO2 with the 2,2-diphenyl-1-picrylhydrazyl radical (DPPH) and in Folin Ciocalteu (FC) assays was analysed under different experimental conditions. There was significantly higher reactivity between SO2 and DPPH in buffered methanol than in methanol alone. When DPPH and FC assays were performed in a mixture of caftaric acid and SO2, there were synergistic effects that were more pronounced with the FC assay. Phenolics are an important parameter of wine quality, and their accurate characterisation in wine is essential. Analysis of white wines with DPPH and FC assays overestimates the contribution of phenolics to the antioxidant potential (AOP). SO2 contributes (from 20% to 45%) to the AOP of the white wines analysed. As SO2 reactivity depends highly on buffer composition, pH, time of incubation and other compounds, e.g. phenolics and aldehydes, different experimental protocols can produce large variations in AOPs, and therefore control of experimental conditions is extremely important. PMID:25529664

  14. Detection and Tracking of Volcanic Ash and SO2 and its Impact to Aviation

    NASA Astrophysics Data System (ADS)

    Osiensky, J.; Hall, T.

    2008-12-01

    The eruptions of Okmok and Kasatochi Volcanoes in August 2008 produced a combination of volcanic ash and SO2 (sulfur dioxide) that impacted aviation across Alaska and the North Pacific Region. The Anchorage Volcanic Ash Advisory Center (A-VAAC) worked closely with the Alaska Volcano Observatory (AVO) and Federal Aviation Administration (FAA) Air Route Traffic Control Center (ARTCC) to ensure that accurate and timely detection and forecast of the ash plume occurred. Volcanic ash poses a hazard to all forms of transportation, but has been shown to be especially dangerous to aviation. Even a small eruption with limited vertical extent to the ash cloud impacts aviation traffic. A significant eruption where the ash cloud penetrates the jet airways (greater than 20,000 feet) requires major re-routing of air traffic, or even the cancellation of flights to ensure the safety of the airways. The AAWU and the AVO have demonstrated substantial experience successfully tracking volcanic ash clouds during the past 15 years. The AAWU issues special aviation warnings for volcanic ash (Volcanic Ash SIGMETs (Significant Meteorological Information)) to warn aircraft of impending ash hazards. However, an additional potential hazard to aviation associated with volcanic eruptions is being examined. A Sulfur Dioxide (SO2) cloud was identified and tracked across the Aleutians, Gulf of Alaska, and eventually into the Lower 48 states. The size and coverage of the SO2 clouds from the Okmok and Kasatochi eruptions may be unprecedented. There are currently no requirements to advise, or warn for SO2 as a hazard to aviation. However, SO2 has been demonstrated as a marker for potential areas of lower concentration volcanic ash. Dispersion models, such as NOAAs HYSPLIT, that are used to track volcanic ash are currently not tuned to track gases such as SO2. SO2 may not be a direct hazard to aviation per se; However, SO2 mixed with water produces H2SO4 (sulfuric acid), and long term exposure to even low concentrations of sulfuric acid may lead to deterioration of airframe paint and acrylic aircraft windows as well as sulfate deposits in the engines. Airlines typically avoid SO2 clouds because these clouds often contain small amounts of ash as well. Relatively new OMI (Ozone Monitoring Instrument) data from the EOS-Aura satellite provides a much higher resolution depiction of the SO2 cloud; However, a major drawback to this capability is that the OMI sensor is located on a Polar Orbiter satellite (where the frequency of this data is sparse). Forecasters in Alaska typically receive only one pass per day from the OMI due to its orbital path. Additional research is needed to better define thresholds and impacts of volcanic ash and SO2 as it relates to aviation. More importantly this research must be transferred rapidly from the research community into forecast operations.

  15. Evaluation of reactive gases simulations using updated emission inventories in the framework of the MACC project

    NASA Astrophysics Data System (ADS)

    Fahim Khokhar, Muhammad; Granier, C.; Law, K.; Stein, O.; Schultz, M.; Peuch, V. H.; Huijen, V.

    2010-05-01

    The goal of this study is to assess the simulations of the distribution of the reactive gases using satellite observations. It will further help to assess the emission inventories used in simulations. This work is the part of the European 7th framework project MACC (Monitoring Atmopsheric Composition and Climate). Within MACC, several anthropogenic emission inventories have been updated, however, we will focus only on CO, NO2, HCHO and SO2 emission distributions. We will evaluate the distribution of these reactive and precursor gases as calculated by three chemistry transport models involved in MACC project i.e. MOZART, TM5 and MOCAGE. These simulation outputs are evaluated by comparing with ground based and satellite observations. We will present a case study focusing mainly on SO2 emissions from non-ferrous metal smelting industry located in Peru ( Ilo and La Oroya smelters) and in Siberia (Norilsk smelter). We will discuss the methodology we have used to improve the emissions from these smelters by using satellite observations of SO2 from SCIAMACHY instrument onboard ENVISAT-1. We will show that a significant improvement has been obtained in the MOZART simulation outputs when the updated SO2 emission fields are used by the model.

  16. Dual SAW oscillator for low SO2 concentrations measurement

    Microsoft Academic Search

    E. Bodea; I. Blaga; R. Apostolescu; P. Schiopu

    1996-01-01

    A device for surface acoustic wave (SAW) measurements, based on an organic sensitive film, that is triethanolamine (TEA), has been realized. A dual SAW oscillator was used to measure the frequency shift due to gas adsorption in the TEA film. A linear response was obtained in the range 0-100 ppm SO2 and the sensibility was about 80 Hz\\/ppm

  17. Effects of SO2 exposure on canine pulmonary epithelial functions.

    PubMed

    Man, S F; Hulbert, W C; Man, G; Mok, K; Williams, D J

    1989-03-01

    We examined the effects of a single exposure of high concentrations of sulfur dioxide (SO2) on the pulmonary epithelium in adult dogs over a period of several weeks. Mucociliary tracheal transport rates and alveolar clearance of 99mTc-labeled diethylene triamine pentacetate (99mTcO4-) were measured in vivo, before and immediately after inhalation of 100 ppm or 500 ppm SO2, and then weekly for 3-5 weeks. At the completion of the in vivo studies, tracheal epithelium was studied in Ussing chambers for bioelectric properties (short-circuited current, transepithelial potential difference), nonelectrolyte permeability for calculation of pore sizes, and changes in bioelectric properties following pharmacological manipulations. These tissues were then fixed for scanning electron microscopy studies. Additional dogs were sacrificed for microscopy studies at several time intervals to provide a histological basis for the altered mucociliary transport. We found that despite marked derangement of mucociliary transport caused by damage to the ciliated cells, recovery occurred over a period of several weeks, and alveolar permeability as assessed by the radioaerosol technique did not change. We concluded that the solubility of SO2 and perhaps a more severe damaging effect of SO2 specific on the ciliated cells might be the explanation for the observations. PMID:2651101

  18. SO2 AND NOX CONTROL TECHNOLOGY RESEARCH, DEVELOPMENT, AND DEMONSTRATION

    EPA Science Inventory

    The paper describes EPA work in several areas relating to reducing SO2 and NOx emissions from coal-fired utility boilers, and provides an overview of objectives, approach, current status, and plans for each. In addition, it describes plans for a small-scale selective catalytic re...

  19. BOILER SIMULATOR STUDIES ON SORBENT UTILIZATION FOR SO2 CONTROL

    EPA Science Inventory

    The report gives results of a program to provide process design information for sorbent utilization as applied to EPA's LIMB process. Specifically, the program was designed to investigate the role of boiler thermal history, sorbent injection location, Ca/S molar ratio, and SO2 pa...

  20. COMBUSTION ENGINEERING'S FURNACE SORBENT INJECTION PROGRAMS FOR SO2 CONTROL

    EPA Science Inventory

    The paper discusses three Combustion Engineering programs relating to the furnace sorbent injection process, a low-cost method for controlling sulfur dioxide (SO2) emissions from tangentially fired, coal burning boilers. The programs are: (1) pilot-scale investigations in the lab...

  1. COMPARISON OF CURRENT INDUSTRIAL SO2 EMISSION INVENTORIES

    EPA Science Inventory

    The paper gives results of analyses of 1985 industrial sulfur dioxide (SO2) emissions from two available data sources: the National Acid Precipitation Assessment Program (NAPAP) inventory and the EPA Trends report. hese analyses conclude that the two data sources estimate compara...

  2. STATUS OF DRY SO2 CONTROL SYSTEMS: FALL 1982

    EPA Science Inventory

    The report, updating the status of dry SO2 control systems for coal-fired utility and industrial boilers in the U.S. through the Fall of 1982, is based on current and recent research, research and development, and commercial activities. Systems addressed include: (1) spray dryer/...

  3. Historical analysis of SO2 pollution control policies in China.

    PubMed

    Gao, Cailing; Yin, Huaqiang; Ai, Nanshan; Huang, Zhengwen

    2009-03-01

    Coal is not only an important energy source in China but also a major source of air pollution. Because of this, China's national sulfur dioxide (SO(2)) emissions have been the highest in the world for many years, and since the 1990s, the territory of China's south and southwest has become the third largest acid-rain-prone region in the world. In order to control SO(2) emissions, the Chinese government has formulated and promulgated a series of policies and regulations, but it faces great difficulties in putting them into practice. In this retrospective look at the history of SO(2) control in China, we found that Chinese SO(2) control policies have become increasingly strict and rigid. We also found that the environmental policies and regulations are more effective when central officials consistently give environmental protection top priority. Achieving China's environmental goals, however, has been made difficult by China's economic growth. Part of this is due to the practice of environmental protection appearing in the form of an ideological "campaign" or "storm" that lacks effective economic measures. More recently, better enforcement of environmental laws and regulations has been achieved by adding environmental quality to the performance assessment metrics for leaders at all levels. To continue making advances, China needs to reinforce the economic and environmental assessments for pollution control projects and work harder to integrate economic measures into environmental protection. Nonetheless, China has a long way to go before economic growth and environmental protection are balanced. PMID:19159968

  4. PROCEEDINGS: 1991 SO2 CONTROL SYMPOSIUM - VOLUME 4. SESSION 7

    EPA Science Inventory

    The proceedings document the 1991 SO2 Control Symposium, held December 3-6, 1991, in Washington, DC, and jointly sponsored by the Electric Power Research Institute (EPRI), the U. S. Environmental Protection Agency (EPA), and the U.S. Department of Energy (DOE). he symposium focus...

  5. PROCEEDINGS: 1991 SO2 CONTROL SYMPOSIUM - VOLUME 5. SESSION 8

    EPA Science Inventory

    The proceedings document the 1991 SO2 Control Symposium, held December 3-6, 1991, in Washington, DC, and jointly sponsored by the Electric Power Research Institute (EPRI), the U. S. Environmental Protection Agency (EPA), and the U.S. Department of Energy (DOE). he symposium focus...

  6. A review of available LC/50/ data. [on toxic gases encountered in fires

    NASA Technical Reports Server (NTRS)

    Hilado, C. J.; Cumming, H. J.

    1977-01-01

    Several gaseous products of pyrolysis and combustion have been evaluated for LC/50/, defined as the concentration of toxic gas in the atmosphere being inhaled by test animals that will produce death in 50% of the animals within a given time period. The products tested included CO, HCl, HF, HCN, NO2, and SO2. It was found that HCN and NO2 were consistently the most toxic of the gases reviewed, and that mice were more susceptible than rats to HCl and HF, although less susceptible than rats to NO2. Extrapolation of LC/50/ data to humans indicates that metabolic rate may be a valid basis for extrapolation when the toxicity mechanism is interference with oxygen transport and utilization, or pulmonary edema, but not when it is irritation and damage to the upper respiratory tract.

  7. 40 CFR 53.32 - Test procedures for methods for SO2, CO, O3, and NO2.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (4) A 1-hour measurement consists of the integral...such as chemical, electronic, mechanical, visual... (5) A 24-hour measurement consists of the integral...such as chemical, electronic, mechanical, or by...sequential 1-hour measurements. (6) For O3...

  8. 40 CFR 53.32 - Test procedures for methods for SO2, CO, O3, and NO2.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (4) A 1-hour measurement consists of the integral...such as chemical, electronic, mechanical, visual... (5) A 24-hour measurement consists of the integral...such as chemical, electronic, mechanical, or by...sequential 1-hour measurements. (6) For O3...

  9. 40 CFR 53.32 - Test procedures for methods for SO2, CO, O3, and NO2.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (4) A 1-hour measurement consists of the integral...such as chemical, electronic, mechanical, visual... (5) A 24-hour measurement consists of the integral...such as chemical, electronic, mechanical, or by...sequential 1-hour measurements. (6) For O3...

  10. 40 CFR 53.32 - Test procedures for methods for SO2, CO, O3, and NO2.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (4) A 1-hour measurement consists of the integral...such as chemical, electronic, mechanical, visual... (5) A 24-hour measurement consists of the integral...such as chemical, electronic, mechanical, or by...sequential 1-hour measurements. (6) For O3...

  11. 40 CFR 53.32 - Test procedures for methods for SO2, CO, O3, and NO2.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (4) A 1-hour measurement consists of the integral...such as chemical, electronic, mechanical, visual... (5) A 24-hour measurement consists of the integral...such as chemical, electronic, mechanical, or by...sequential 1-hour measurements. (6) For O3...

  12. Statistical persistence of air pollutants (O3,SO2,NO2 and PM10) in Mexico City

    NASA Astrophysics Data System (ADS)

    Meraz, M.; Rodriguez, E.; Femat, R.; Echeverria, J. C.; Alvarez-Ramirez, J.

    2015-06-01

    The rescaled range (R / S) analysis was used for analyzing the statistical persistence of air pollutants in Mexico City. The air-pollution time series consisted of hourly observations of ozone, nitrogen dioxide, sulfur dioxide and particulate matter obtained at the Mexico City downtown monitoring station during 1999-2014. The results showed that long-range persistence is not a uniform property over a wide range of time scales, from days to months. In fact, although the air pollutant concentrations exhibit an average persistent behavior, environmental (e.g., daily and yearly) and socio-economic (e.g., daily and weekly) cycles are reflected in the dependence of the persistence strength as quantified in terms of the Hurst exponent. It was also found that the Hurst exponent exhibits time variations, with the ozone and nitrate oxide concentrations presenting some regularity, such as annual cycles. The persistence dynamics of the pollutant concentrations increased during the rainy season and decreased during the dry season. The time and scale dependences of the persistence properties provide some insights in the mechanisms involved in the internal dynamics of the Mexico City atmosphere for accumulating and dissipating dangerous air pollutants. While in the short-term individual pollutants dynamics seems to be governed by specific mechanisms, in the long-term (for monthly and higher scales) meteorological and seasonal mechanisms involved in atmospheric recirculation seem to dominate the dynamics of all air pollutant concentrations.

  13. NO2 and SO2dispersion modeling and relative roles of emission sources over Map Ta Phut industrial area, Thailand

    Microsoft Academic Search

    Chatinai Chusai; Kasemsan Manomaiphiboon; Phirun Saiyasitpanich; Sarawut Thepanondh

    2012-01-01

    Map Ta Phut industrial area (MA) is the largest industrial complex in Thailand. There has been concern about many air pollutants over this area. Air quality management for the area is known to be difficult, due to lack of understanding of how emissions from different sources or sectors (e.g., industrial, power plant, transportation, and residential) contribute to air quality degradation

  14. NO2 and SO2 Dispersion Modeling and Relative Roles of Emission Sources over Map Ta Phut Industrial Area, Thailand

    Microsoft Academic Search

    Chatinai Chusai; Kasemsan Manomaiphiboon; Phirun Saiyasitpanich; Sarawut Thepanondh

    2012-01-01

    Map Ta Phut Industrial Area (MA) is the largest industrial complex in Thailand. There has been a concern for many air pollutants over this area. Air quality management for the area is known to be difficult due to lack of understanding of how emissions from different sources or sectors (e.g., industrial, power plant transportation, and residential) contribute to air quality

  15. Adsorption and oxidation of SO2 by graphene oxides: A van der Waals density functional theory study

    NASA Astrophysics Data System (ADS)

    Zhang, Huijuan; Cen, Wanglai; Liu, Jie; Guo, Jiaxiu; Yin, Huaqiang; Ning, Ping

    2015-01-01

    Carbon materials have been used for low temperature (20-150 °C) catalytic removal of SO2 from the coal-burned flue gases for a long time, but the mechanism at atomic level is still controversial. Density functional theory was used to investigate the adsorption and oxidation of SO2 on elaborated graphene oxides (GOs) to discover the insights. It is found that the hydroxyl groups on GO surface possess bi-functional effects: both enhancing the adsorption of SO2 through H-bonding interaction and reducing the reaction barrier for its oxidation to SO3. The promotion of oxidation is related to a pre-activation of the surface epoxy group. Based on Bader population, charge difference and electron localization function analysis, a charge transfer channel is proposed to explain the pre-activation.

  16. An Examination of NOx, SO2, and CO Emissions from East Texas Power Plants

    NASA Astrophysics Data System (ADS)

    Peischl, J.; Ryerson, T. B.; Holloway, J. S.; Aikin, K. C.; Frost, G. J.; Fehsenfeld, F. C.

    2007-12-01

    Emissions from several East Texas power plants were measured from aircraft during the 2000 and 2006 Texas Air Quality Studies. One-second measurements were made of NOy, SO2, CO, and CO2 during these flights. NOy (total reactive nitrogen) is used as a proxy for power plant NOx (NO + NO2) emissions to account for any reactions that may have occurred between emission and measurement. Emission ratios of NOy, SO2, and CO to CO2 were calculated from the closest down-wind transects of plumes from seven power plants. Emission ratios were also calculated with hourly data from the Continuous Emission Monitoring System (CEMS). The aircraft data show substantial (25-80 percent) reductions in NOx emissions from four of the power plants between 2000 and 2006, whereas SO2 and CO emissions from all plants appear to be largely unchanged during this time. Emission ratios calculated from the aircraft and from hourly CEMS data in 2006 agree to within an average of approximately 10 percent, which suggests the CEMS data are a fair representation of power plant emissions.

  17. NOBLE GASES

    EPA Science Inventory

    The Noble Gases symposium, on which this report is based, provided comprehensive coverage of the noble gases. The coverage included, but was not limited to, the properties, biokinetics, bioeffects, production and release to the environment, detection techniques, standards, and ap...

  18. Evaluation Of Dry Sorbent Injection For Induct SO2 Removal

    Microsoft Academic Search

    W. J. O'Dowd; H. W. Pennline; J. I. Joubert; S. W. Lani

    1990-01-01

    An investigation of injection of dry. calcium-based sorbents into flue as for SO2 emissions control was conducted. festing was performed in a nominal 10-inch-diameter duct using flue gas produced from the combustion of a mediumsulfur coal. The process variables of interest included the approach to adiabatic saturation temperature, the calcium-to-sulfur molar ratio, and interactions of water droplets and sorbent particles.

  19. Transport of SO 2 and aerosol over the Yellow sea

    Microsoft Academic Search

    Byung-Gon Kim; Jin-Seok Han; Soon-Ung Park

    2001-01-01

    Aircraft measurements of air pollutants were made to investigate the characteristic features of long-range transport of sulfur compounds over the Yellow Sea for the periods of 26–27 April and 7–10 November in 1998, and 9–11 April and 19 June in 1999, together with aerosol measurements at the Taean background station in Korea. The overall mean concentrations of SO2, O3 and

  20. Measurement of Total Electron Scattering Cross Sections for SO2

    Microsoft Academic Search

    M. E. Johnston; J. A. Berger; J. P. Heggemeier; T. M. Klein

    1999-01-01

    In space sulphur dioxide (SO2) plays an important role in the atmospheres of Jupiter and Venus and interstellar clouds. On Earth it is responsible for acid rain and climate effects. In modeling these systems, electron impact data is needed. In this poster we present absolute total electron impact cross sections from 2 eV to 200 eV. The measurements were made

  1. Soil acidification in China: is controlling SO2 emissions enough?

    PubMed

    Zhao, Yu; Duan, Lei; Xing, Jia; Larssen, Thorjorn; Nielsen, Chris P; Hao, Jiming

    2009-11-01

    Facing challenges of increased energy consumption and related regional air pollution, China has been aggressively implementing flue gas desulfurization (FGD) and phasing out small inefficient units in the power sector in order to achieve the national goal of 10% reduction in sulfur dioxide (SO(2)) emissions from 2005 to 2010. In this paper, the effect of these measures on soil acidification is explored. An integrated methodology is used, combining emission inventory data, emission forecasts, air quality modeling, and ecological sensitivities indicated by critical load. National emissions of SO(2), oxides of nitrogen (NO(X)), particulate matter (PM), and ammonia (NH(3)) in 2005 were estimated to be 30.7, 19.6, 31.3, and 16.6 Mt, respectively. Implementation of existing policy will lead to reductions in SO(2) and PM emissions, while those of NO(X) and NH(3) will continue to rise, even under tentatively proposed control measures. In 2005, the critical load for soil acidification caused by sulfur (S) deposition was exceeded in 28% of the country's territory, mainly in eastern and south-central China. The area in exceedance will decrease to 26% and 20% in 2010 and 2020, respectively, given implementation of current plans for emission reductions. However, the exceedance of the critical load for nitrogen (N, combining effects of eutrophication and acidification) will double from 2005 to 2020 due to increased NO(X) and NH(3) emissions. Combining the acidification effects of S and N, the benefits of SO(2) reductions during 2005-2010 will almost be negated by increased N emissions. Therefore abatement of N emissions (NO(X) and NH(3)) and deposition will be a major challenge to China, requiring policy development and technology investments. To mitigate acidification in the future, China needs a multipollutant control strategy that integrates measures to reduce S, N, and PM. PMID:19924917

  2. On the absolute calibration of SO2 cameras

    USGS Publications Warehouse

    Lubcke, Peter; Bobrowski, Nicole; Illing, Sebastian; Kern, Christoph; Alvarez Nieves, Jose Manuel; Vogel, Leif; Zielcke, Johannes; Delgados Granados, Hugo; Platt, Ulrich

    2013-01-01

    This work investigates the uncertainty of results gained through the two commonly used, but quite different, calibration methods (DOAS and calibration cells). Measurements with three different instruments, an SO2 camera, a NFOVDOAS system and an Imaging DOAS (I-DOAS), are presented. We compare the calibration-cell approach with the calibration from the NFOV-DOAS system. The respective results are compared with measurements from an I-DOAS to verify the calibration curve over the spatial extent of the image. The results show that calibration cells, while working fine in some cases, can lead to an overestimation of the SO2 CD by up to 60% compared with CDs from the DOAS measurements. Besides these errors of calibration, radiative transfer effects (e.g. light dilution, multiple scattering) can significantly influence the results of both instrument types. The measurements presented in this work were taken at Popocatepetl, Mexico, between 1 March 2011 and 4 March 2011. Average SO2 emission rates between 4.00 and 14.34 kg s?1 were observed.

  3. Towards AN Accurate Infrared Linelist for SO{_2}

    NASA Astrophysics Data System (ADS)

    Huang, Xinchuan; Schwenke, David W.; Lee, Timothy J.

    2012-06-01

    The "Best Theory + High-resolution Expt Data" strategy now extends from NH{_3}, CO{_2} to SO{_2} which is considered a "weed" in high resolution astronomical data analysis (such as for Herschel, SOFIA, and JWST). Refining a high quality ab initio potential energy surface (PES) with selected HITRAN data, we have made significant progress toward an accurate IR line list for SO{_2}. Similar to the situation for CO{_2}, we have achieved 0.01-0.02 cm-1 accuracy for reliable line positions. Outliers in existing HITRAN models have been identified. Compared to CO{_2}, the SO{_2} rovibrational energy levels are more difficult to converge. A pure, experimentally measured dataset (instead of HITRAN models) would greatly enhance the reliabilty of higher J/K and higher energy levels computed on the refined PES. An initial IR line list has been generated to test an ab initio dipole moment surface (DMS). Limitations, deficiencies, and future developments for both line positions and IR intensities will be discussed.

  4. Precursor gases of aerosols in the Mount St. Helens eruption plumes at stratospheric altitudes

    NASA Technical Reports Server (NTRS)

    Inn, E. C. Y.; Vedder, J. F.; Condon, E. P.; Ohara, D.

    1982-01-01

    Nineteen stratospheric samples from the eruption plumes of Mount St. Helens were collected in five flight experiments. The plume samples were collected at various altitudes from 13.1 to 20.7 km by using the Ames cryogenic sampling system on board the NASA U-2 aircraft. The enriched, cryogenically collected samples were analyzed by chromatography. The concentrations of aerosols precursor gases (OCS, SO2, and CS2), CH3Cl, N2O, CF2Cl2, and CFCl3 were measured by gas chromatography. Large enhancement of the mixing ratio of SO2 and moderate enhancement of CS2 and OCS were found in the plume samples compared with similar measurement under pre-volcanic conditions. A fast decay rate of the SO2 mixing ratio in the plume was observed. Measurement of Cl(-), SO2(2-), and NO3(-) by ion chromatography was also carried out on water solutions prepared from the plume samples. The results obtained with this technique imply large mixing ratios of HCl, (NO + NO2 + HNO3), and SO2, in which these constituents are the respective sources of the anions. Measurement of the Rn222 concentration in the plume was made. Other stratospheric constituents in the plume samples, such as H2O, CO2, CH4, and CO, were also observed.

  5. Sulfide catalysts for reducing SO2 to elemental sulfur

    DOEpatents

    Jin, Yun (Peking, CN); Yu, Qiquan (Peking, CN); Chang, Shih-Ger (El Cerrito, CA)

    2001-01-01

    A highly efficient sulfide catalyst for reducing sulfur dioxide to elemental sulfur, which maximizes the selectivity of elemental sulfur over byproducts and has a high conversion efficiency. Various feed stream contaminants, such as water vapor are well tolerated. Additionally, hydrogen, carbon monoxide, or hydrogen sulfides can be employed as the reducing gases while maintaining high conversion efficiency. This allows a much wider range of uses and higher level of feed stream contaminants than prior art catalysts.

  6. The SO2 camera: A simple, fast and cheap method for ground-based imaging of SO2 in volcanic plumes

    Microsoft Academic Search

    Toshiya Mori; Mike Burton

    2006-01-01

    SO2 flux is widely monitored on active volcanoes as it gives a window into the hidden, subsurface magma dynamics. We present here a new approach to SO2 flux monitoring using ultraviolet imaging of the volcanic plume through carefully chosen filters to produce images of SO2 column amount. The SO2 camera heralds a breakthrough in both our ability to measure SO2

  7. Oxidation of CO by SO2: a theoretical study.

    PubMed

    Bacskay, George B; Mackie, John C

    2005-03-10

    The elementary reaction SO(2) + CO --> CO(2) + SO((3)Sigma) (1) and the subsequent reaction SO((3)Sigma) + CO --> CO(2) + S((3)P) (2) have been studied by the application of the Gaussian-3//B3LYP quantum chemical approach to characterize the potential energy surfaces and transition state kinetic analysis to derive rate coefficients. Reaction 1 is found to take place via two transition states (TS), a cis-OSOCO TS and a trans-OSOCO TS. Reaction via the cis-TS is concerted and takes place on a singlet surface. Intersystem crossing to the final products occurs after passage through the barrier on the singlet surface. The trans-TS leads to a very weakly bound singlet OSOCO intermediate that then passes through a second TS (on the triplet surface) to form the products. Reaction 2 takes place on triplet surfaces. There is a concerted reaction through a cis-SOCO TS and a weakly bound trans-SOCO has also been identified. Reaction 2 is analogous to the reaction CO + O(2)((3)Sigma) --> CO(2) + O((3)P) (3), and this reaction has been reinvestigated at a similar level of theory and the rate coefficient derived by quantum chemistry is compared with experiment. The sensitive effects of trace impurities such as H(2), H(2)O, and hydrocarbons on the accurate experimental determination of the rate coefficient of reaction 3 is discussed. Using rate coefficients for reactions 1 and 2 obtained via quantum chemical calculations, we have been unable to model the extent of decomposition of SO(2) measured in a shock tube study of reaction between SO(2) and CO [Bauer, S. H.; Jeffers, P.; Lifshitz, A.; Yadava, B. P. Proc. Combust. Inst. 1971, 13, 417]. In light of the known sensitivity of reaction 3 to trace impurities, we have incorporated trace amounts of H(2), CH(4), or H(2)O, together with our rate coefficients for (1) and (2), in a kinetic model of Alzueta et al. [Combust. Flame 2001, 127, 2234], which is then shown to be able to substantially model the SO(2) data of Bauer et al. In the course of this modeling study we also computed heats of formation for a number of sulfur-containing small molecules: HS, HSO, HSOH, HOSO, HS(2), HSO(2), HOSO(2), HOSOH, and HOSHO. PMID:16833537

  8. Mass transfer in the absorption of SO2 and NO(x) using aqueous euchlorine scrubbing solution.

    PubMed

    Deshwal, Bal-Raj; Lee, Hyung-Keun

    2009-01-01

    Attempts have been made to generate euchlorine gas by chlorate-chloride process and to utilize it further to clean up SO2 and NO(x) from the flue gas in a lab scale bubbling reactor. Preliminary experiments were carried out to determine the gas and liquid phase mass transfer coefficients and their correlation equations have been established. Simultaneous removal of SO2 and NO(x) from the simulated flue gas using aqueous euchlorine scrubbing solution has been investigated. Euchlorine oxidized NO into NO2 completely and the later subsequently absorbed into the scrubbing solution in the form of nitrate. SO2 removal efficiency around 100% and NO(x) removal efficiency around 72% were achieved under optimal conditions. Mass balance has been confirmed by analyzing the sulfate, nitrate, euchlorine and chloride ion using ion chromatograph/auto-titrator and comparing it with their corresponding calculated values. PMID:19402415

  9. Li/SO2 cells and Li/SOCl2 cells: Safe use and testing

    NASA Astrophysics Data System (ADS)

    Wagner, C. G.

    1992-05-01

    Most lithium/sulfur dioxide (Li/SO2) cells and lithium/thionyl chloride (Li/SOCl2)) cells have pressure relief safety devices called vents built into them. These vents are designed to open under conditions of increasing internal cell pressure. The likelihood of cell venting has been reduced to very low levels by optimizing cell designs. If fully developed Li/SO2 cells or Li/SOCl2 cells (or batteries) are discharged within the intended design limits, they are essentially nonhazardous. In addition, the consequences of cell ventings are being minimized by use of appropriate absorbant materials and protective coatings. During battery assembly and test, detection and monitoring equipment is used to sense the presence of vented gases. Tester data analysis techniques have been developed to foresee either an increasing likelihood of a vent or the presence of a vented cell. Standard cleanup procedures have been developed to safely decontaminate the assembly or test area following a cell vent.

  10. Mapping the BrO/SO2 ratio in the plume of Popocatépetl, Mexico with Imaging-DOAS

    NASA Astrophysics Data System (ADS)

    Zielcke, Johannes; Luebcke, Peter; Vogel, Leif; Bobrowski, Nicole; Platt, Ulrich

    2015-04-01

    Differential Optical Absorption Spectroscopy (DOAS) in the ultraviolet and visible wavelength region has become a widespread tool, not only to study the chemistry of trace gases such as sulphur dioxide (SO2) and halogen oxides (e.g. BrO, OClO) in volcanic plumes. It can also be used for volcano monitoring by observing SO2 fluxes and the molar ratio of BrO to SO2, which is a possible precursor for dynamic changes in the shallow part of a volcanic system like other halogen/sulfur ratios. This acquisition of this ratio is convenient as it can be measured with comparatively simple UV DOAS instruments. Imaging-DOAS (IDOAS) utilizes the push-broom or whisk-broom technique to create a hyperspectral image of a section of the sky, then the DOAS evaluation is applied to each pixel to derive trace gas slant column densities (SCDs). Hereby images of the SO2 and BrO distribution can be created, allowing to study the chemistry in different parts of the plume. This is especially interesting for the case of BrO, which is produced in the atmosphere and not directly emitted by volcanoes. Here we present IDOAS measurements carried out at Popocatépetl volcano, Mexico, during April 2010 and 2011. SO2 SCDs of up to 2 - 1018 molecules cm-2 and BrO SCDs of up to 7 - 1013 molecules cm-2 were detected. The determined BrO/SO2 ratios range around 3 - 10-5, comparable to several other volcanoes in the Americas. An increase in the determined BrO/SO2 ratios with distance from the vent, i.e. plume age, can be observed.

  11. Electronegative gases

    SciTech Connect

    Christophorou, L.G.

    1981-01-01

    Recent knowledge on electronegative gases essential for the effective control of the number densities of free electrons in electrically stressed gases is highlighted. This knowledge aided the discovery of new gas dielectrics and the tailoring of gas dielectric mixtures. The role of electron attachment in the choice of unitary gas dielectrics or electronegative components in dielectric gas mixtures, and the role of electron scattering at low energies in the choice of buffer gases for such mixtures is outlined.

  12. Reduction of SO(2) Symmetry for Spatially Extended Dynamical Systems

    NASA Astrophysics Data System (ADS)

    Budanur, Nazmi Burak; Cvitanovi?, Predrag; Davidchack, Ruslan L.; Siminos, Evangelos

    2015-02-01

    Spatially extended systems, such as channel or pipe flows, are often equivariant under continuous symmetry transformations, with each state of the flow having an infinite number of equivalent solutions obtained from it by a translation or a rotation. This multitude of equivalent solutions tends to obscure the dynamics of turbulence. Here we describe the "first Fourier mode slice," a very simple, easy to implement reduction of SO(2) symmetry. While the method exhibits rapid variations in phase velocity whenever the magnitude of the first Fourier mode is nearly vanishing, these near singularities can be regularized by a time-scaling transformation. We show that after application of the method, hitherto unseen global structures, for example, Kuramoto-Sivashinsky relative periodic orbits and unstable manifolds of traveling waves, are uncovered.

  13. Reduction of SO(2) symmetry for spatially extended dynamical systems

    E-print Network

    Nazmi Burak Budanur; Predrag Cvitanovi?; Ruslan L. Davidchack; Evangelos Siminos

    2015-01-16

    Spatially extended systems, such as channel or pipe flows, are often equivariant under continuous symmetry transformations, with each state of the flow having an infinite number of equivalent solutions obtained from it by a translation or a rotation. This multitude of equivalent solutions tends to obscure the dynamics of turbulence. Here we describe the `first Fourier mode slice', a very simple, easy to implement reduction of SO(2) symmetry. While the method exhibits rapid variations in phase velocity whenever the magnitude of the first Fourier mode is nearly vanishing, these near singularities can be regularized by a time-scaling transformation. We show that after application of the method, hitherto unseen global structures, for example Kuramoto-Sivashinsky relative periodic orbits and unstable manifolds of travelling waves, are uncovered.

  14. [NOx and SO2 formation in the sintering process and influence of sintering material composition on NOx emissions].

    PubMed

    Ren, Zhong-Pei; Zhu, Tian-Le; Zhu, Ting-Yu; Lü, Dong

    2014-10-01

    NOx and SO2 formation in the sintering process and the influence of coke powder content, moisture content and adding additives on NO emissions were investigated by the sintering pot experimental method. The results showed that the combustion zone moved downward along the sintering pot after the sintering started. The NOx concentrations of all monitoring points below the combustion zone were basically the same. SO2 generated in the combustion zone was adsorbed and accumulated in the sintering materials below the zone. Then, SO2 was released by pyrolysis, and finally discharged from the outlet of sintering pot. So the significant SO2 couldn't be detected before the burning through point, and the relationship between the SO2 concentration and the sintering time displayed an inverted "V" curve. NOx produced from the sintering process was mainly thermal-NOx, and most of it was NO, the NO2 concentration was very low. Reducing the coke powder and moisture contents, or adding sintering additives could effectively reduce NOx emissions. PMID:25693368

  15. Measurements of HONO, NO, NOy and SO2 in aircraft exhaust plumes at cruise

    NASA Astrophysics Data System (ADS)

    Jurkat, T.; Voigt, C.; Arnold, F.; Schlager, H.; Kleffmann, J.; Aufmhoff, H.; Schäuble, D.; Schaefer, M.; Schumann, U.

    2011-05-01

    Measurements of gaseous nitrogen and sulfur oxide emissions in young aircraft exhaust plumes give insight into chemical oxidation processes inside aircraft engines. Particularly, the OH-induced formation of nitrous acid (HONO) from nitrogen oxide (NO) and sulfuric acid (H2SO4) from sulfur dioxide (SO2) inside the turbine which is highly uncertain, need detailed analysis to address the climate impact of aviation. We report on airborne in situ measurements at cruise altitudes of HONO, NO, NOy, and SO2 in 9 wakes of 8 different types of modern jet airliners, including for the first time also an A380. Measurements of HONO and SO2 were made with an ITCIMS (Ion Trap Chemical Ionization Mass Spectrometer) using a new ion-reaction scheme involving SF5- reagent ions. The measured molar ratios HONO/NO and HONO/NOy with averages of 0.038 ± 0.010 and 0.027 ± 0.005 were found to decrease systematically with increasing NOx emission-index (EI NOx). We calculate an average EI HONO of 0.31 ± 0.12 g NO2 kg-1. Using reliable measurements of HONO and NOy, which are less adhesive than H2SO4 to the inlet walls, we derive the OH-induced conversion fraction of fuel sulfur to sulfuric acid $\\varepsilon$ with an average of 2.2 ± 0.5 %. $\\varepsilon$ also tends to decrease with increasing EI NOx, consistent with earlier model simulations. The lowest HONO/NO, HONO/NOy and $\\varepsilon$ was observed for the largest passenger aircraft A380.

  16. Simple systems for calibrating and auditing SO 2 monitors at remote sites

    NASA Astrophysics Data System (ADS)

    Mitchell, William J.; Hines, Avis P.; Bowen, Jack A.; Dowler, Oscar L.; Barnard, William F.

    Described are compact, lightweight, rugged, and simple-to-operate pollutant generating systems that can be used to calibrate and to audit SO 2 and possibly other ambient air monitors located at inaccessible sites. The field and laboratory experiments done during the development of these systems are also described. The laboratory studies indicated that the systems could also be used for NO 2, but the field tests were inconclusive. The portion of the systems used to generate the dilution air is sufficiently inexpensive and modular that many networks could dedicate one zero (dilution) air system to each field site. The systems use a diaphragm pump, a cartridge containing Purafil/silica gel, a cartridge containing silica gel, a flow measuring system, and a low output permeation tube to generate pollutant concentrations between 1 and 30 ppbv with an accuracy (for SO 2) of better than 2 ppbv. To avoid using a temperature control device such as a bath or oven, the output of the permeation tube as a function of temperature is determined in the laboratory. At the field site, the temperature of the dilution air flowing over the permeation device and the barometric pressure are used to determine the output of the permeation device.

  17. Chemistry of Sulfur Oxides on Transition Metals. III. Oxidation of SO2 and Self-Diffusion of O, SO2, and SO3 on Pt(111)

    E-print Network

    Lin, Xi

    Chemistry of Sulfur Oxides on Transition Metals. III. Oxidation of SO2 and Self-Diffusion of O, SO2 to be an efficient ap- proach to determining the thermodynamics of sulfur oxides on transition metals such as Cu10 to be an effective SO2 oxidation and reduction catalyst. Interest in the chemistry of sulfur oxides on transition

  18. PROCEEDINGS: JOINT SYMPOSIUM ON DRY SO2 AND SIMULTANEOUS SO2/NOX CONTROL TECHNOLOGIES (1ST). VOLUME 1. FUNDAMENTAL RESEARCH AND PROCESS DEVELOPMENT

    EPA Science Inventory

    Forty six papers describing recent advances in dry sorbent injection technologies for SO2 control were presented at the 1st Joint Symposium on Dry SO2 and Simultaneous SO2/NOx Control Technologies. These papers covered the following topics: fundamental research; pilot-scale devel...

  19. Water droplets and ice retrievals in volcanic clouds using multispectral TIR satellite data. Correction procedure for SO2 estimation

    NASA Astrophysics Data System (ADS)

    Corradini, Stefano; Guerrieri, Lorenzo; Merucci, Luca; Pugnaghi, Sergio; Salerno, Giuseppe

    2015-04-01

    Among ash and gases, the volcanic clouds generated from several 2011-2014 Etna (Italy) lava fountains, were characterized by the huge presence of water droplets (wd) and/or ice. In some cases the wd/ice presence totally masked the ash signal and always significantly influenced the SO2 retrievals. Here the MODIS multispectral measurements are used to retrieve the volcanic wd and ice particles by means of two different techniques based on BTD (Brightness Temperature Difference) algorithm and VPR (Volcanic Plume Removal) approach. As test case the MODIS-Aqua images collected on Etna volcano the 10 April 2011 at 12:30 UTC and the 12 August 2011 at 11:15 UTC have been considered. Similarly to volcanic ashes, the wd/ice particles reduce the top of atmosphere radiance in the entire TIR spectral range, including the channels used for the SO2 retrieval. The net effect is a significant SO2 overestimation. Here two procedures for the correction of the wd/ice influence on SO2 retrieval are proposed. The results obtained from the MODIS 10 April 2011 MODIS image have been compared with the measurements collected by the FLAME ground-based network of DOAS instruments deployed on Mt. Etna.

  20. Broadband UV spectroscopy system used for monitoring of SO 2 and NO emissions from thermal power plants

    NASA Astrophysics Data System (ADS)

    Zhang, Y. G.; Wang, H. S.; Somesfalean, G.; Wang, Z. Y.; Lou, X. T.; Wu, S. H.; Zhang, Z. G.; Qin, Y. K.

    2010-11-01

    A gas monitoring system based on broadband absorption spectroscopic techniques in the ultraviolet region is described and tested. The system was employed in real-time continuous concentration measurements of sulfur dioxide (SO 2) and nitric oxide (NO) from a 220-ton h -1 circulating fluidized bed (CFB) boiler in Shandong province, China. The emission coefficients (per kg of coal and per kWh of electricity) and the total emission of the two pollutant gases were evaluated. The measurement results showed that the emission concentrations of SO 2 and NO from the CFB boiler fluctuated in the range of 750-1300 mg m -3 and 100-220 mg m -3, respectively. Compared with the specified emission standards of air pollutants from thermal power plants in China, the values were generally higher for SO 2 and lower for NO. The relatively high emission concentrations of SO 2 were found to mainly depend on the sulfur content of the fuel and the poor desulfurization efficiency. This study indicates that the broadband UV spectroscopy system is suitable for industrial emission monitoring and pollution control.

  1. Empirical models for NO x and SO 2 removal in a double stage flue gas irradiation process

    NASA Astrophysics Data System (ADS)

    Chmielewski, A. G.; Tymi?ski, B.; Dobrowolski, A.; Iller, E.; Zimek, Z.; Licki, J.

    2000-03-01

    A multidimensional regression method has been applied to construct empirical model equations of NO x and SO 2 removal efficiency in e-b process for a two-stage irradiation system based on results achieved for the EPS Kaw ?czyn pilot plant. The influence of different parameters such as dose, temperature, gas humidity and ammonia stoichiometry have been studied. Model equations describe with satisfactory accuracy experimental results. Therefore obtained models equations can be used for prediction of NO x and SO 2 removal efficiency in e-b process during two-stage irradiation of flue gases, particularly in the case of scale-up. The results will be implemented in the industrial electron beam flue gas treatment installation being constructed at EPS Pomorzany, Dolna Odra PS Group SA, Poland (flue gas flow 270,000 N m 3/h, total beam power of applied accelerators 1.2 MW).

  2. Kinetics of the reaction HO2 + NO2 + M yields HO2NO2 + M

    NASA Technical Reports Server (NTRS)

    Sander, S. P.; Peterson, M. E.

    1984-01-01

    The flash photolysis/ultraviolet absorption technique was used to measure the rate constants for the reaction HO2 + NO2 + M yields HO2NO2 + M over the pressure range 50-700 torr and temperature range 229-362 K using He, O2, and N2 as diluent gases. The data were fit to the expression derived by Troe (1979) and co-workers for describing the pressure and temperature dependence of reactions in the falloff region. By combining these data with recent measurements of the rate constant for HO2NO2 thermal decomposition values of 73.8 + or - 2 eu for the standard entropy and -12.6 + or - kcal/mol for the standard enthalpy of formation of HO2NO2 were obtained. A significant enhancement in the rate constant was observed when water vapor was added to the system.

  3. Lichen transplants as biological indicators of SO 2 air pollution in Copenhagen

    Microsoft Academic Search

    Ulrik Sochting; Ib Johnsen

    1978-01-01

    Conclusion It is concluded from the high correlation between visible transplant damage and SO2 levels, that SO2 pollution gradients can be sufficiently described by means of the lichen transplantation method. The transplanted lichen species should be chosenon the basis of its SO2 sensitivity, this being neither too high nor too low in relation to the average SO2 level of the

  4. PROCEEDINGS: JOINT SYMPOSIUM ON DRY SO2 AND SIMULTANEOUS SO2/NOX CONTROL TECHNOLOGIES (1986). VOLUME 1. SORBENTS, PROCESS RESEARCH, AND DISPERSION

    EPA Science Inventory

    The proceedings document the 1986 Joint Symposium on Dry SO2 and Simultaneous SO2/NOx Control Technologies, held in Raleigh, NC, June 2-6, 1986. Fortynine papers were presented by EPA and EPRI staff members representing utility companies, equipment manufacturers, sorbent supplier...

  5. PROCEEDINGS: JOINT SYMPOSIUM ON DRY SO2 AND SIMULTANEOUS SO2/NOX CONTROL TECHNOLOGIES (1986). VOLUME 2. ECONOMICS, POWER PLANT INTERGRATION AND COMMERICAL APPLICATIONS

    EPA Science Inventory

    The proceedings document the 1986 Joint Symposium on Dry SO2 and Simultaneous SO2/NOx Control Technologies, held in Raleigh, NC, June 2-6, 1986. Fortynine papers were presented by EPA and EPRI staff members representing utility companies, equipment manufacturers, sorbent supplier...

  6. PROCEEDINGS: JOINT SYMPOSIUM ON DRY SO2 AND SIMULTANEOUS SO2/NOX CONTROL TECHNOLOGIES (1ST): VOLUME 2. POWER PLANT INTEGRATION, ECONOMICS, AND FULL-SCALE EXPERIENCE

    EPA Science Inventory

    The proceedings document the First Joint Symposium on Dry SO2 and Simultaneous SO2/NOx Control Technologies, held November 13-16, 1984, in San Diego, CA. The symposium, sponsored jointly by EPRI and EPA, was the first meeting of its kind devoted solely to the discussion of emissi...

  7. 40 CFR 96.220 - General CAIR SO 2 Trading Program permit requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 2014-07-01 false General CAIR SO 2 Trading Program permit requirements. 96.220 Section...CONTINUED) AIR PROGRAMS (CONTINUED) NOX BUDGET TRADING PROGRAM AND CAIR NOX AND SO2 TRADING PROGRAMS FOR STATE IMPLEMENTATION PLANS...

  8. 40 CFR 96.220 - General CAIR SO 2 Trading Program permit requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 2013-07-01 false General CAIR SO 2 Trading Program permit requirements. 96.220 Section... AIR PROGRAMS (CONTINUED) NOX BUDGET TRADING PROGRAM AND CAIR NOX AND SO 2 TRADING PROGRAMS FOR STATE IMPLEMENTATION PLANS...

  9. 40 CFR 75.33 - Standard missing data procedures for SO2, NOX, and flow rate.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...2013-07-01 false Standard missing data procedures for SO2, NOX, and flow rate... CONTINUOUS EMISSION MONITORING Missing Data Substitution Procedures § 75.33 Standard missing data procedures for SO2 , NOX , and flow...

  10. 40 CFR 75.33 - Standard missing data procedures for SO2, NOX, and flow rate.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...2012-07-01 false Standard missing data procedures for SO2, NOX, and flow rate... CONTINUOUS EMISSION MONITORING Missing Data Substitution Procedures § 75.33 Standard missing data procedures for SO2 , NOX , and flow...

  11. 40 CFR 75.33 - Standard missing data procedures for SO2, NOX, and flow rate.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...2014-07-01 false Standard missing data procedures for SO2, NOX, and flow rate... CONTINUOUS EMISSION MONITORING Missing Data Substitution Procedures § 75.33 Standard missing data procedures for SO2 , NOX , and flow...

  12. Infrared absorption of CH3SO2 observed upon irradiation of a p-H2 matrix containing CH3I and SO2

    NASA Astrophysics Data System (ADS)

    Lee, Yu-Fang; Lee, Yuan-Pern

    2011-03-01

    Irradiation with a mercury lamp at 254 nm of a p-H2 matrix containing CH3I and SO2 at 3.3 K, followed by annealing of the matrix, produced prominent features at 633.8, 917.5, 1071.1 (1072.2), 1272.5 (1273.0, 1273.6), and 1416.0 cm-1, attributable to ?11 (C-S stretching), ?10 (CH3 wagging), ?8 (SO2 symmetric stretching), ?7 (SO2 antisymmetric stretching), and ?4 (CH2 scissoring) modes of methylsulfonyl radical (CH3SO2), respectively; lines listed in parentheses are weaker lines likely associated with species in a different matrix environment. Further irradiation at 365 nm diminishes these features and produced SO2 and CH3. Additional features at 1150.1 and 1353.1 (1352.7) cm-1 are tentatively assigned to the SO2 symmetric and antisymmetric stretching modes of ISO2. These assignments are based on comparison of observed vibrational wavenumbers and 18O- and 34S-isotopic shifts with those predicted with the B3P86 method. Our results agree with the previous report of transient IR absorption bands of gaseous CH3SO2 at 1280 and 1076 cm-1. These results demonstrate that the cage effect of solid p-H2 is diminished so that CH3 radicals, produced via UV photodissociation of CH3I in situ, might react with SO2 to form CH3SO2 during irradiation and upon annealing. Observation of CH3SO2 but not CH3OSO is consistent with the theoretical predictions that only the former reactions proceed via a barrierless path.

  13. SO 2 and NO selective adsorption properties of coal-based activated carbons

    Microsoft Academic Search

    Tang Qiang; Zhang Zhigang; Zhu Wenpei; Cao Zidong

    2005-01-01

    The aim of this paper is to study binary gas adsorption on the activated carbon in the fixed-bed reactor. Coal-based granular activated carbons can selectively adsorb SO2 and NO. Physically adsorbed NO is replaced and desorbed by SO2. Chemically adsorbed NO can promote the absorption of SO2. The presence of SO2 and NO can enhance the chemical adsorption of NO

  14. Development of an ultra-violet digital camera for volcanic SO 2 imaging

    Microsoft Academic Search

    G. J. S. Bluth; J. M. Shannon; I. M. Watson; A. J. Prata; V. J. Realmuto

    2007-01-01

    In an effort to improve monitoring of passive volcano degassing, we have constructed and tested a digital camera for quantifying the sulfur dioxide (SO2) content of volcanic plumes. The camera utilizes a bandpass filter to collect photons in the ultra-violet (UV) region where SO2 selectively absorbs UV light. SO2 is quantified by imaging calibration cells of known SO2 concentrations.Images of

  15. Development of an ultra-violet digital camera for volcanic SO2 imaging

    Microsoft Academic Search

    G. J. S. Bluth; J. M. Shannon; I. M. Watson; A. J. Prata; V. J. Realmuto

    2007-01-01

    In an effort to improve monitoring of passive volcano degassing, we have constructed and tested a digital camera for quantifying the sulfur dioxide (SO2) content of volcanic plumes. The camera utilizes a bandpass filter to collect photons in the ultra-violet (UV) region where SO2 selectively absorbs UV light. SO2 is quantified by imaging calibration cells of known SO2 concentrations. Images

  16. Synthesis and characterization of the SO(2)N(3)(-), (SO(2))(2)N(3)(-), and SO(3)N(3)(-) anions.

    PubMed

    Christe, Karl O; Boatz, Jerry A; Gerken, Michael; Haiges, Ralf; Schneider, Stefan; Schroer, Thorsten; Tham, Fook S; Vij, Ashwani; Vij, Vandana; Wagner, Ross I; Wilson, William W

    2002-08-12

    SO(2) solutions of azide anions are bright yellow, and their Raman spectra indicate the presence of covalently bound azide. Removal of the solvent at -64 degrees C from CsN(3) or N(CH(3))(4)N(3) solutions produces yellow (SO(2))(2)N(3)(-) salts. Above -64 degrees C, these salts lose 1 mol of SO(2), resulting in white SO(2)N(3)(-) salts that are marginally stable at room temperature and thermally decompose to the corresponding azides and SO(2). These anions were characterized by vibrational and (14)N NMR spectroscopy and theoretical calculations. Slow loss of the solvent by diffusion through the walls of a sealed Teflon tube containing a sample of CsSO(2)N(3) in SO(2) resulted in white and yellowish single crystals that were identified by X-ray diffraction as CsSO(2)N(3).CsSO(3)N(3) with a = 9.542(2) A, b = 6.2189(14) A, c = 10.342(2) A, and beta = 114.958(4) degrees in the monoclinic space group P2(1)/m, Z = 2, and Cs(2)S(2)O(5).Cs(2)S(2)O(7).SO(2), respectively. Pure CsSO(3)N(3) was also prepared and characterized by vibrational spectroscopy. The S-N bond in SO(2)N(3)(-) is much weaker than that in SO(3)N(3)(-), resulting in decreased thermal stability, an increase in the S-N bond distance by 0.23 A, and an increased tendency to undergo rotational disorder. This marked difference is due to SO(3) being a much stronger Lewis acid (pF(-) value of 7.83) than SO(2) (pF(-) value of 3.99), thus forming a stronger S-N bond with the Lewis base N(3)(-). The geometry of the free gaseous SO(2)N(3)(-) anion was calculated at the RHF, MP2, B3LYP, and CCSD(T) levels. The results show that only the correlated methods correctly reproduce the experimentally observed orientation of the SO(2) group. PMID:12160418

  17. 40 CFR 97.286 - Withdrawal from CAIR SO2 Trading Program.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...opt-in unit from the CAIR SO2 Trading Program, the CAIR designated...of entry into the CAIR SO2 Trading Program under § 97.284...submitted no later than 90 days before the requested effective...withdraw from the CAIR SO2 Trading Program and the CAIR...

  18. 40 CFR 96.286 - Withdrawal from CAIR SO 2 Trading Program.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...opt-in unit from the CAIR SO2 Trading Program, the CAIR designated...of entry into the CAIR SO2 Trading Program under § 96.284...submitted no later than 90 days before the requested effective...withdraw from the CAIR SO2 Trading Program and the CAIR...

  19. 40 CFR 97.286 - Withdrawal from CAIR SO2 Trading Program.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...opt-in unit from the CAIR SO2 Trading Program, the CAIR designated...of entry into the CAIR SO2 Trading Program under § 97.284...submitted no later than 90 days before the requested effective...withdraw from the CAIR SO2 Trading Program and the CAIR...

  20. 40 CFR 96.286 - Withdrawal from CAIR SO2 Trading Program.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...opt-in unit from the CAIR SO2 Trading Program, the CAIR designated...of entry into the CAIR SO2 Trading Program under § 96.284...submitted no later than 90 days before the requested effective...withdraw from the CAIR SO2 Trading Program and the CAIR...

  1. 40 CFR 96.286 - Withdrawal from CAIR SO 2 Trading Program.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...opt-in unit from the CAIR SO2 Trading Program, the CAIR designated...of entry into the CAIR SO2 Trading Program under § 96.284...submitted no later than 90 days before the requested effective...withdraw from the CAIR SO2 Trading Program and the CAIR...

  2. 40 CFR 97.286 - Withdrawal from CAIR SO2 Trading Program.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...opt-in unit from the CAIR SO2 Trading Program, the CAIR designated...of entry into the CAIR SO2 Trading Program under § 97.284...submitted no later than 90 days before the requested effective...withdraw from the CAIR SO2 Trading Program and the CAIR...

  3. 40 CFR 96.286 - Withdrawal from CAIR SO2 Trading Program.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...opt-in unit from the CAIR SO2 Trading Program, the CAIR designated...of entry into the CAIR SO2 Trading Program under § 96.284...submitted no later than 90 days before the requested effective...withdraw from the CAIR SO2 Trading Program and the CAIR...

  4. 40 CFR 97.286 - Withdrawal from CAIR SO2 Trading Program.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...opt-in unit from the CAIR SO2 Trading Program, the CAIR designated...of entry into the CAIR SO2 Trading Program under § 97.284...submitted no later than 90 days before the requested effective...withdraw from the CAIR SO2 Trading Program and the CAIR...

  5. 40 CFR 97.286 - Withdrawal from CAIR SO2 Trading Program.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...opt-in unit from the CAIR SO2 Trading Program, the CAIR designated...of entry into the CAIR SO2 Trading Program under § 97.284...submitted no later than 90 days before the requested effective...withdraw from the CAIR SO2 Trading Program and the CAIR...

  6. 40 CFR 96.286 - Withdrawal from CAIR SO2 Trading Program.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...opt-in unit from the CAIR SO2 Trading Program, the CAIR designated...of entry into the CAIR SO2 Trading Program under § 96.284...submitted no later than 90 days before the requested effective...withdraw from the CAIR SO2 Trading Program and the CAIR...

  7. 40 CFR 74.24 - Current allowable SO2 emissions rate.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...2010-07-01 2010-07-01 false Current allowable SO2 emissions rate. 74...Calculations for Combustion Sources § 74.24 Current allowable SO2 emissions rate. The...shall submit the following data: (a) Current allowable SO2 emissions rate...

  8. 40 CFR 74.25 - Current promulgated SO 2 emissions limit.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...2013-07-01 2013-07-01 false Current promulgated SO 2 emissions limit. 74...Calculations for Combustion Sources § 74.25 Current promulgated SO 2 emissions limit...shall submit the following data: (a) Current promulgated SO2 emissions...

  9. 40 CFR 74.24 - Current allowable SO 2 emissions rate.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...2014-07-01 2014-07-01 false Current allowable SO 2 emissions rate. 74...Calculations for Combustion Sources § 74.24 Current allowable SO 2 emissions rate. ...shall submit the following data: (a) Current allowable SO2 emissions rate...

  10. RESEARCH ARTICLE Open Access A 50-year record of NOx and SO2 sources in

    E-print Network

    - 3 ) and sulfur (34 S, SO2- 4 ), as well as NO- 3 and SO2- 4 deposition rates from the late-1940s. The remaining 34 S values were similar to the isotopic composition of coal from southern Wyoming. The 15 N isotope ratios of sulfur in SO2- 4 , expressed as 34 S, were monitored in bulk snowpack samples collected

  11. STRUCTURAL TRANSFORMATIONS IN CA-BASED SORBENTS USED FOR SO2 EMISSION CONTROL

    EPA Science Inventory

    The paper discusses structural transformations in Ca-based sorbents used for SO2 emission control. conomizer temperature injection of Ca-based sorbents is an option for dry control of SO2 emissions from coal-fired boilers. heir reactivity with SO2 was found to be a function of th...

  12. Production of NO2 from Photolysis of Peroxyacetyl Nitrate

    NASA Technical Reports Server (NTRS)

    Mazely, Troy L.; Friedl, Randall R.; Sander, Stanley P.

    1965-01-01

    Peroxyacetyl nitrate (PAN) vapor was photolyzed at 248 nm, and the NO2 photoproduct was detected by laser-induced fluorescence. The quantum yield for the production of NO2 from PAN photolysis was determined by comparison to HNO3 photolysis data taken under identical experimental conditions. The average of data collected over a range of total pressures, precursor concentrations, and buffer gases was 0.83 +/- 0.09 for the NO2 quantum yield, where the statistical uncertainty is 2 standard deviations.

  13. Noble Gases

    NASA Astrophysics Data System (ADS)

    Podosek, F. A.

    2003-12-01

    The noble gases are the group of elements - helium, neon, argon, krypton, xenon - in the rightmost column of the periodic table of the elements, those which have "filled" outermost shells of electrons (two for helium, eight for the others). This configuration of electrons results in a neutral atom that has relatively low electron affinity and relatively high ionization energy. In consequence, in most natural circumstances these elements do not form chemical compounds, whence they are called "noble." Similarly, much more so than other elements in most circumstances, they partition strongly into a gas phase (as monatomic gas), so that they are called the "noble gases" (also, "inert gases"). (It should be noted, of course, that there is a sixth noble gas, radon, but all isotopes of radon are radioactive, with maximum half-life a few days, so that radon occurs in nature only because of recent production in the U-Th decay chains. The factors that govern the distribution of radon isotopes are thus quite different from those for the five gases cited. There are interesting stories about radon, but they are very different from those about the first five noble gases, and are thus outside the scope of this chapter.)In the nuclear fires in which the elements are forged, the creation and destruction of a given nuclear species depends on its nuclear properties, not on whether it will have a filled outermost shell when things cool off and nuclei begin to gather electrons. The numerology of nuclear physics is different from that of chemistry, so that in the cosmos at large there is nothing systematically special about the abundances of the noble gases as compared to other elements. We live in a very nonrepresentative part of the cosmos, however. As is discussed elsewhere in this volume, the outstanding generalization about the geo-/cosmochemistry of the terrestrial planets is that at some point thermodynamic conditions dictated phase separation of solids from gases, and that the Earth and the rest of the inner solar were made by collecting the solids, to the rather efficient exclusion of the gases. In this grand separation the noble gases, because they are noble, were partitioned strongly into the gas phase. The resultant generalization is that the noble gases are very scarce in the materials of the inner solar system, whence their common synonym "rare gases."This scarcity is probably the most important single feature to remember about noble-gas cosmochemistry. As illustration of the absolute quantities, for example, a meteorite that contains xenon at a concentration of order 10 -10 cm3STP g -1 (4×10-15 mol g-1) would be considered relatively rich in xenon. Yet this is only 0.6 ppt (part per trillion, fractional abundance 10-12) by mass. In most circumstances, an element would be considered efficiently excluded from some sample if its abundance, relative to cosmic proportions to some convenient reference element, were depleted by "several" orders of magnitude. But a noble gas would be considered to be present in quite high concentration if it were depleted by only four or five orders of magnitude (in the example above, 10-10 cm3STP g-1 of xenon corresponds to depletion by seven orders of magnitude), and one not uncommonly encounters noble-gas depletion of more than 10 orders of magnitude.The second most important feature to note about noble-gas cosmochemistry is that while a good deal of the attention given to noble gases really is about chemistry, traditionally a good deal of attention is also devoted to nuclear phenomena, much more so than for most other elements. This feature is a corollary of the first feature noted above, namely scarcity. A variety of nuclear transmutation processes - decay of natural radionuclides and energetic particle reactions - lead to the production of new nuclei that are often new elements. Most commonly, the quantity of new nuclei originating in nuclear transmutation is very small compared to the quantity already present in the sample in question,

  14. Abundant SO2 release from the 2014 Holuhraun eruption (Bárðarbunga, Iceland) and its impact on human health

    NASA Astrophysics Data System (ADS)

    Barsotti, Sara; Jóhannsson, Thorsteinn; Hellsing, Vanda Ú.; Pfeffer, Melissa A.; Guðnason, Thórólfur; Stefánsdottir, Gerdur

    2015-04-01

    The ongoing eruption in Holuhraun is significantly rich in gases and its prolonged duration probably makes it one of the largest natural source of SO2 in Iceland since the Laki eruption in 1783-84. Since its beginning, on the 31st of August 2014, the eruption has been releasing into the atmosphere an amount of SO2 at a rate of 400 kg/s with peaks larger than 1,000 kg/s. This quantity already exceeds the SO2 fluxes coming from some well-known degassing volcanoes, such as Masaya (Nicaragua) and Etna (Italy); and it is comparable with the prolonged degassing event at Miyjakejima volcano (Japan) in 2000-2004. Low injection velocities and a predominant buoyant style at the source imply quite low plume heights which have been in average between 2-3 km and never exceeded 5 km above sea level. This fact, together with the high SO2 fluxes, is the reason for the high SO2 concentrations measured at ground level all over Iceland in the last months. The air quality monitoring network, operated by the Environment Agency of Iceland (EAI), has been improved and extended since the beginning of the eruption to allow for a near-real time coverage of SO2 measurements across most of the country. Since then, high values have been recorded in many inhabited locations more than 100 km far from the eruption site. For example on October 26th values up to 21,000 µg/m3 were measured in Höfn in the South-East of Iceland, while in the North the town of Akureyri experienced concentrations higher than 2,000 µg/m3 for about 10 hours on October 31st. Due to the large variability in wind direction and wind speed, typical for the Icelandic meterology, almost every town has been affected by the gas cloud and many locations have exceeded the health safety limit of 350 µg/m3 per hour more than 20 times. Such prolonged exposure and acute short-lived concentrations of SO2 can have adverse effects on human health especially in individuals with underlying pulmonary diseases. In Iceland the Chief Epidemiologist at the Directorate of Health (DoH) is responsible for monitoring the health effects of volcanic activities but yet no severe health effects have been noted due to the SO2 contamination. In addition Civil Protection together with UST, DoH and IMO, has been very active in providing information and recommendations to the public through their websites, official communications and open face-to-face meetings. Here an overview of SO2 ground concentration time series along the duration of the eruption and an evaluation of the potential long-term impact on human health is shown and discussed.

  15. Detection of SO2, HCl and CO2 in Arenal Volcano Eruptive Plume Using MASTER Multispectral Images

    NASA Astrophysics Data System (ADS)

    Bonatti, J.; Berrocal, M.; Malavassi, E.

    2004-12-01

    The Costa Rica Airborne Research and Technology Applications (CARTA) Mission developed in March-April, 2003 was a join effort between the National Program for Airtransported Missions of the National Center for High Technology of Costa Rica formed by the four public universities in Costa Rica, and NASA. This mission took aerial infrared photography and multiespectral images using the MASTER sensor of 70% of the national territory of Costa Rica. Multiespectral images were taken from Arenal volcano at high (13780 m) and at low (3450 m) altitude. The MASTER images have an aperture ranging between 0.44 micrometers in the visible and 13 micrometers in the thermic infrared. In addition, the distribution of the 50 channels of the MASTER sensor, have been arranged to avoid the influence of water vapor, always present in large quantities in the atmosphere and also in volcanic gases. We determined that SO2 is clearly visible between 8.5-9.3 micrometers (LWIR), and CO2, H2S and HCl in a smaller bandwidth 3.5-4.4 micrometers (MWIR). Another gas detected at Arenal volcanic plumes is methane, in a bandwidth between 7.7-8.1 micrometers (LWIR). When both multispectral images were taken, Arenal volcano had an active lava flow descending its NE flank and no significative winds were blowing, so the eruptive plume was rising almost vertically from the active vent. Profiles of gas concentration collected from the above mentioned bands were performed on the image using the software ENVI to detect different species present in volcanic gases. The concentration of volcanic gases in the multiespectral image was largest above the active crater (north vent of Crater C), and lower on the short active lava flow whose blocks were cascading down up to 1 km on the NE flank. Significant amounts of SO2 were measured above the lava flow and the fan of cascading blocks suggesting that the cooling lava continues to release magmatic gases as their cascading blocks move down flank of the volcano. The higher resolution of the low altitude multispectral image assured better results when measuring volcanic gas species.

  16. Hydrophobic task-specific ionic liquids: synthesis, properties and application for the capture of SO2.

    PubMed

    Tian, Shidong; Hou, Yucui; Wu, Weize; Ren, Shuhang; Qian, Jianguo

    2014-08-15

    The capture of SO2 by ionic liquids (ILs) has drawn much attention all over the world. However, ILs can absorb not only SO2 but also water from flue gas. The removal of water from ILs is necessary for reusing the absorbent. In order to reduce the energy costs of removing water, it would be helpful to weaken the interactions between ILs and water. In this work, two kinds of hydrophobic task-specific ILs, 1-(2-diethyl-aminoethyl)-3-methylimidazolium hexafluorophosphate ([Et2NEmim] [PF6]) and 1-(2-diethyl-aminoethyl)-1-methylpyrrolidinium hexafluorophosphate ([Et2NEmpyr][PF6]), were designed and synthesized. Thermal stability and physical properties of the ILs were studied. Furthermore, the application of the ILs for the capture of SO2 and the absorption mechanism were systematically investigated. It has been found that both of the ILs are immiscible with water, and [Et2NEmim][PF6] has much lower viscosity, much higher thermal stability and much higher SO2 absorption rate than [Et2NEmpyr][PF6]. [Et2NEmim][PF6] shows high SO2 absorption capacities up to 2.11 mol SO2 per mole IL (pure SO2) and 0.94 mol SO2 per mole IL (3% SO2) under hydrous conditions at 30 °C. The result suggests that [Et2NEmim][PF6] is a promising recyclable absorbent for the capture of SO2. PMID:24998204

  17. Interaction between SO2 and cold-induced bronchospasm in anesthetized rabbits.

    PubMed

    Barthélemy, P; Badier, M; Jammes, Y

    1988-01-01

    In anesthetized, paralyzed and artificially ventilated rabbits, reflex changes in lung resistance induced by cooling the inspired air from 38 to 15 degrees C were studied before and after 45 min periods of SO2 exposure at two different concentrations (0.5 or 5 ppm). Both concentrations of SO2 induced significant increase in RL in intact animals (+16% and +50%, respectively). The effect of 5 ppm SO2 persisted after vagotomy. The cold-induced bronchospasm was halved after exposure to 0.5 ppm SO2 and was no longer significant after exposure to 5 ppm SO2. In both cases, RL recovered to control values 40 min after the end of SO2 exposure and then, the magnitude of cold-induced bronchospasm also recovered. The reflex bronchoconstrictor response to phenyldiguanide (PDG) i.v. disappeared after exposure to 5 ppm SO2. However, the bronchomotor response to histamine i.v., which involved both reflex and direct actions on airway smooth muscle, was not altered. These results show that (1) prolonged increase in RL measured after SO2 exposure does not result from a vagal reflex; (2) the cold-induced bronchospasm, as well as the bronchomotor response to PDG, are reduced or suppressed during the period where the effect of SO2 persisted. This suggests that 45 min exposure to SO2 induces transient alterations in tracheobronchial wall, which reduce the accessibility to nervous receptors in the airways. PMID:3340810

  18. The effect of wind velocity, air temperature and humidity on NH 3 and SO 2 transfer into bean leaves ( phaseolus vulgaris L.)

    NASA Astrophysics Data System (ADS)

    van Hove, L. W. A.; Vredenberg, W. J.; Adema, E. H.

    The influence of wind velocity, air temperature and vapour pressure deficit of the air (VPD) on NH 3 and SO 2 transfer into bean leaves ( Phaseolus vulgaris L.) was examined using a leaf chamber. The measurements suggested a transition in the properties of the leaf boundary layer at a wind velocity of 0.3-0.4 ms -1 which corresponds to a Recrit value of about 2000. At higher wind velocities the leaf boundary layer resistance ( rb) was 1.5-2 times lower than can be calculated from the theory. Nevertheless, the assessed relationships between rb and wind velocity appeared to be similar to the theoretical derived relationship for rb. The NH 3 flux and in particular the SO 2 flux into the leaf strongly increased at a VPD decline. The increase of the NH 3 flux could be attributed to an increase of the stomatal conductance ( gs). However, the increase of the SO 2 flux could only partly be explained by an increase of gs. An apparent additional uptake was also observed for the NH 3 uptake at a low temperature and VPD. The SO 2 flux was also influenced by air temperature which could be explained by a temperature effect on gs. The results suggest that calculation of the NH 3 and SO 2 flux using data of gs gives a serious understimation of the real flux of these gases into leaves at a low temperature and VPD.

  19. New results concerning the so(2,1) treatment for the hypergeometric Natanzon potentials

    Microsoft Academic Search

    S. Salamó

    2003-01-01

    The $so(2,1)$ analysis for the bound state sector of the hypergeometric Natanzon potentials (HNP) is extended to the scattering sector by considering the continuous series of the $so(2,1)$ algebra. As a result a complete algebraic treatment of the HNP by means of the $so(2,1)$ algebra is achieved. In the bound state sector we discuss a set of satellite potentials which

  20. The influence of reaction conditions on SO2 oxidation in a discharge plasma reactor

    Microsoft Academic Search

    Hyun Ha Kim; Chunxi Wu; Youhei Kinoshita; Kazunori Takashima; Shinji Katsura; Akira Mizuno

    2001-01-01

    In this paper, experimental approaches have been carried out to investigate the removal of sulfur dioxide (SO2) using pulsed discharge nonthermal plasma in the absence of ammonia (NH3). The gas-phase reaction was found to be less attractive due to its large energy cost. The increase in temperature decreased the SO2 removal rate, resulting in large energy cost. SO2 removal was

  1. Comparison of COSPEC and two miniature ultraviolet spectrometer systems for SO 2 measurements using scattered sunlight

    Microsoft Academic Search

    Tamar Elias; A. Jeff Sutton; Clive Oppenheimer; Keith A. Horton; Harold Garbeil; Vitchko Tsanev; Andrew J. S. McGonigle; Glyn Williams-Jones

    2006-01-01

    The correlation spectrometer (COSPEC), the principal tool for remote measurements of volcanic SO2, is rapidly being replaced by low-cost, miniature, ultraviolet (UV) spectrometers. We compared two of these new systems with\\u000a a COSPEC by measuring SO2 column amounts at K?lauea Volcano, Hawaii. The two systems, one calibrated using in-situ SO2 cells, and the other using a calibrated laboratory reference spectrum,

  2. The 2014 Holuhraun volcanic eruption gas emission: a case study of an extreme SO2 concentration event

    NASA Astrophysics Data System (ADS)

    Björk Jónasdóttir, Elín; Nína Petersen, Guðrún; Björnsson, Halldór; Pfeffer, Melissa Anne; Barsotti, Sara; Jóhannsson, Þorsteinn; Dürig, Tobias

    2015-04-01

    The ongoing fissure eruption in Holuhraun associated with the volcanic unrest in Bárðarbunga, is unique among recent eruptions in Iceland for its high emission rates of volcanic gases. The plume is relatively ash free, but predominantly a bent over vapour plume and its height depends mainly on the atmospheric conditions at the eruption site. CO2 and SO2 are abundant in the primarily water vapor plume with lower concentrations of H2S, HCl and HF. During the first month and a half the preliminary SO2 flux was ~400 kg/s with some days greater than 1000 kg/s. The gas is dispersed from the eruption and transported by wind, and can lead to high pollution levels in exposed populated areas in Iceland. During high wind events and when nearby weather systems lead to rapid change in wind directions the local population has not been much affected by the emission, as the gas is transported off land and/or the pollution plume is narrow and moves around. However, during certain conditions, usually light winds and low-level temperature inversions, the concentration of gas builds up at the eruption site and then either flows down from the highlands with katabatic wind or is advected from the eruption site when the synoptic situation changes. Depending on the atmospheric conditions, high concentrations of SO2 can be transported in the boundary layer and have been detected at ground level in populated areas. Here we describe one such event, the event of 26 and 27 October 2014, when the village Höfn, in southeast-Iceland, experienced gas concentrations exceeding 14000 µg/m3, a concentration considered hazardous to health. We describe the weather conditions prior and during the event as well as the gas dispersion.

  3. SO2 Over China Detected With EOS Aura Ozone Monitoring Instrument

    NASA Astrophysics Data System (ADS)

    Krotkov, N. A.; Bhartia, P.; Yang, K.; Carn, S. A.; Krueger, A. J.; Dickerson, R. R.; Hains, J.; Li, C.; Li, Z.; Marufu, L.; Stehr, J.; Levelt, P. F.

    2006-12-01

    The Ozone Monitoring Instrument (OMI) on EOS/Aura offers unprecedented spatial and spectral resolution, coupled with global coverage, for space-based UV measurements of sulfur dioxide (SO2). Publicly released SO2 pollution data are processed with the Band Residual Difference (BRD) algorithm that uses calibrated residuals at SO2 absorption band centers produced by the NASA operational ozone algorithm (OMTO3). By using optimum wavelengths for retrieval of SO2, the retrieval sensitivity is improved over NASA predecessor Total Ozone Mapping Spectrometer (TOMS) by factors of 10 to 20, depending on location. The ground footprint of OMI is 8 times smaller than TOMS. These factors produce a two orders of magnitude improvement in the minimum detectable mass of SO2. The improved sensitivity now permits daily global measurement of heavy anthropogenic SO2 pollution. Anthropogenic SO2 emissions have been measured by OMI over known sources of air pollution, such as eastern China, Eastern Europe, and from individual copper smelters in South America and elsewhere. Here we present data from a case study conducted over Shenyang in NE China as part of EAST-AIRE in April 2005. SO2 observations from instrumented aircraft flights are compared with OMI SO2 maps. The OMI SO2 algorithm was improved to account for the known altitude profile of SO2, and the comparison demonstrates that this algorithm can distinguish between background SO2 conditions and heavy pollution on a daily basis. Between 5 and 7 April 2005 a cold front traveled from continental China, over Korea and on to the Sea of Japan. The satellite-derived measurements of SO2 confirm the in situ aircraft observations of high concentrations of SO2 (ca 4 DU) ahead of the front and lower concentrations behind it and provide evidence for a large-scale impact of pollutant emissions. The BRD algorithm sensitivity does not represent the maximum sensitivity theoretically achievable with OMI, and hence future improvements in instrument calibration and the algorithm should allow even weaker SO2 sources to be monitored routinely. Such measurements are essential given the growing concern over the effects of anthropogenically-forced climate change and intercontinental transport of air pollution. http://www.knmi.nl/omi/research/product/so2/introduction.html

  4. Production of negative ions by dissociative electron attachment to SO2

    NASA Technical Reports Server (NTRS)

    Orient, O. J.; Srivastava, S. K.

    1983-01-01

    Dissociative electron attachment cross section measurements for the production of O(-), S(-), and SO(-) have been performed utilizing a crossed target SO2 molecule beam-electron beam geometry. The relative flow technique is employed to determine the absolute values of cross sections. The attachment energies corresponding to various cross section maxima are: 4.30 and 7.1 eV for O(-)/SO2; 4.0, 7.5, and 8.9 eV for S(-)/SO2, and 4.7 and 7.5 eV for SO(-)/SO2.

  5. Hydrogen Peroxide Enhances Removal of NOx from Flue Gases

    NASA Technical Reports Server (NTRS)

    Collins, Michelle M.

    2005-01-01

    Pilot scale experiments have demonstrated a method of reducing the amounts of oxides of nitrogen (NOx) emitted by industrial boilers and powerplant combustors that involves (1) injection of H2O2 into flue gases and (2) treatment of the flue gases by caustic wet scrubbing like that commonly used to remove SO2 from combustion flue gases. Heretofore, the method most commonly used for removing NOx from flue gases has been selective catalytic reduction (SCR), in which the costs of both installation and operation are very high. After further development, the present method may prove to be an economically attractive alternative to SCR.

  6. OMI measurements of SO2 pollution over Eastern China in 2005-2008

    NASA Astrophysics Data System (ADS)

    Krotkov, N.; Pickering, K.; Witte, J.; Carn, S.; Yang, K.; Carmichael, G.; Streets, D.; Zhang, Q.; Wei, C.

    2009-05-01

    The Ozone Monitoring Instrument (OMI) on NASA Aura satellite makes global daily measurements of the total column of sulfur dioxide (SO2), a short-lived trace gas produced by fossil fuel combustion, smelting, and volcanoes. OMI seasonal to multi-year average images clearly show the world-highest consistent SO2 pollution in northeast China. China is the world's largest SO2 emitter, mostly due to the burning of high-sulfur coal in its many coal-fired power plants, which lack the technology used in many other countries to remove sulfur from smoke stack emissions. China's government has instituted nationwide measures to control SO2 emissions through the adoption of flue-gas desulfurization technology on new power plants; and even greater measures were adopted in the Beijing area in anticipation of the Olympic Games. To study the environmental effects of the emission controls we compared OMI SO2 time series over eastern China for 2005 through 2008. The time series have been done as 7-day running means of the cloud-free daily observations. By mid-March we started to see substantial periods of lower SO2 values in 2008 compared to 2007, and by mid June the 2008 values were consistently lower than 2007 and prior years. The decline is widespread with highest SO2 typically located to the south and southwest of Beijing in regions with large clusters of power plants and also around Shanghai. The decline also lasted beyond the Olympic season. We do not yet know to what extent the economic downturn in China (and reduced industrial production) contributed to lower SO2 levels in the fall of 2008. We have also compared the observed and modeled fields using University of Iowa STEM model for the period June - September 2008. The model provided SO2 vertical distributions as well as aerosol vertical profiles that were used to correct OMI operational SO2 retrievals and improve the comparisons. The OMI SO2 changes in 2008 have also been compared with the estimated changes in SO2 emissions derived from a bottom-up analysis of the SO2 reduction measures put into place for the Olympics. Finally we present our plans to use the OMI SO2 columns to provide a top-down constraint on SO2 regional emissions.

  7. What have we learned about global SO2 pollution with Aura/OMI data?

    NASA Astrophysics Data System (ADS)

    Krotkov, N.; Yang, K.; Bhartia, P. K.; Carn, S.; Krueger, A.; Dickerson, R.; Li, C.

    2008-05-01

    Sulfur Dioxide (SO2) is a short-lived gas produced by volcanoes, power plants, refineries, metal smelting and general burning of fossil fuels. It is one of five EPA criteria pollutants. Emitted SO2 is soon converted to sulfate aerosol, with climate effects that include direct radiative forcing and aerosol-induced changes in cloud microphysics and the hydrological cycle. The Ozone Monitoring Instrument (OMI) launched on NASA Aura satellite in July 2004 offers unprecedented spatial resolution, coupled with contiguous daily global coverage, for space- based UV measurements of volcanic and anthropogenic SO2 emissions. Anthropogenic SO2 emissions in the PBL present challenges, because these typically weak signals need to be separated from the noise in the radiances. Plumes from strong surface sources of SO2 (such as smelters and coal burning power plants) and from strong regional pollution can currently be detected in the operational pixel data. Operational data were evaluated with in-situ aircraft SO2 profiles measured in the lower troposphere over China during the East-AIRE campaign in April 2005. This comparison demonstrates that OMI can distinguish between background SO2 conditions and heavy pollutions on a daily basis, suggesting potential of using OMI SO2 data for the regional pollution monitoring. Chinese SO2 pollution lofting above the PBL and long-range transport over Pacific Ocean was first confirmed using OMI data. Quantification of anthropogenic SO2 emissions requires off-line corrections of the average photon path, characterized by the operational air-mass factor (AMF). The AMF corrections in turn require a-priori information about the altitude of the SO2 plume center of mass, the total ozone, and surface albedo. In addition, aerosols and subpixel clouds affect the AMF in different ways depending on their amounts and vertical distribution. Therefore, ancillary cloud, snow and aerosol information available from near simultaneous A-train sensors is valuable in quantification of the OMI SO2 burdens. As an example the analysis of the effect of the major Chinese snow storm on the OMI SO2 data will be presented.Spatial smoothing and/or time averaging allow significant signal to noise enhancements. Applying these techniques, power plant emissions in Greece, Bulgaria, Turkey, and the US Ohio River valley as well emissions from Persian Gulf refineries, and plumes in an industrial complex near Mexico City can be seen in OMI data - several previously unknown sources have been detected. Using long-term averages, anthropogenic SO2 burdens can be compared directly in different parts of the world. On-going algorithm improvements such as spectral fitting will allow enhanced sensitivity to enable monitoring of a greater number of SO2 sources.

  8. Direct Sulfonation of Methane to Methanesulfonic Acid with SO2 Using Ca Salts as Promoters

    E-print Network

    Bell, Alexis T.

    . There, therefore, is an incentive to identify a direct route for methane sulfonation with SO3 or SO2 initiator to sulfonate methane with SO3 in fuming sulfuric acid. The same approach, however, does not work if SO2 and O2 are used instead of SO3. While Ishii and co-workers have reported success in the vanadium

  9. 40 CFR 97.220 - General CAIR SO2 Trading Program permit requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...2013-07-01 2013-07-01 false General CAIR SO2 Trading Program permit requirements. 97.220 Section...AIR PROGRAMS (CONTINUED) FEDERAL NOX BUDGET TRADING PROGRAM AND CAIR NOX AND SO2 TRADING PROGRAMS Permits § 97.220 General...

  10. 40 CFR 97.220 - General CAIR SO2 Trading Program permit requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...2014-07-01 2014-07-01 false General CAIR SO2 Trading Program permit requirements. 97.220 Section...AIR PROGRAMS (CONTINUED) FEDERAL NOX BUDGET TRADING PROGRAM AND CAIR NOX AND SO2 TRADING PROGRAMS Permits § 97.220 General...

  11. 40 CFR 97.220 - General CAIR SO2 Trading Program permit requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...2012-07-01 2012-07-01 false General CAIR SO2 Trading Program permit requirements. 97.220 Section...AIR PROGRAMS (CONTINUED) FEDERAL NOX BUDGET TRADING PROGRAM AND CAIR NOX AND SO2 TRADING PROGRAMS Permits § 97.220 General...

  12. 40 CFR 96.220 - General CAIR SO2 Trading Program permit requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...2012-07-01 2012-07-01 false General CAIR SO2 Trading Program permit requirements. 96.220 Section...CONTINUED) AIR PROGRAMS (CONTINUED) NOX BUDGET TRADING PROGRAM AND CAIR NOX AND SO2 TRADING PROGRAMS FOR STATE IMPLEMENTATION PLANS...

  13. 76 FR 69051 - Final Response to Petition From New Jersey Regarding SO2

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-07

    ...Final Response to Petition From New Jersey Regarding SO 2 Emissions From...2060-AQ69 Final Response to Petition From New Jersey Regarding SO 2 Emissions From...ambient air quality standard (NAAQS) in New Jersey. This finding is made in...

  14. 76 FR 19661 - Response to Petition From New Jersey Regarding SO2

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-07

    ...40 CFR Part 52 Response to Petition From New Jersey Regarding SO 2 Emissions From...RIN 2060-AQ69 Response to Petition From New Jersey Regarding SO 2 Emissions From...ambient air quality standard (NAAQS) in New Jersey. This finding is proposed in...

  15. FUNDAMENTAL STUDIES OF SORBENT CALCINATION AND SULFATION FOR SO2 CONTROL FROM COAL-FIRED BOILERS

    EPA Science Inventory

    The report gives results of a laboratory-scale investigation of the reactivity of calcium-based sorbents for SO2 capture after calcination at furnace operating temperatures (1200-1950 C). This work was undertaken to provide fundamental information for developing SO2 emission cont...

  16. 40 CFR 97.254 - Compliance with CAIR SO2 emissions limitation.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...a CAIR SO2 source subject to an Acid Rain emissions limitation, the Administrator...CAIR SO2 source not subject to an Acid Rain emissions limitation, the Administrator...if the source is subject to an Acid Rain emissions limitation, the...

  17. 40 CFR 96.254 - Compliance with CAIR SO2 emissions limitation.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...a CAIR SO2 source subject to an Acid Rain emissions limitation, the Administrator...CAIR SO2 source not subject to an Acid Rain emissions limitation, the Administrator...if the source is subject to an Acid Rain emissions limitation, the...

  18. 40 CFR 97.254 - Compliance with CAIR SO2 emissions limitation.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...a CAIR SO2 source subject to an Acid Rain emissions limitation, the Administrator...CAIR SO2 source not subject to an Acid Rain emissions limitation, the Administrator...if the source is subject to an Acid Rain emissions limitation, the...

  19. 40 CFR 96.254 - Compliance with CAIR SO2 emissions limitation.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...a CAIR SO2 source subject to an Acid Rain emissions limitation, the Administrator...CAIR SO2 source not subject to an Acid Rain emissions limitation, the Administrator...if the source is subject to an Acid Rain emissions limitation, the...

  20. CONTROLLING SO2 EMISSIONS: A REVIEW OF TECHNOLOGIES (EPA/600/R-00/093)

    EPA Science Inventory

    Sulfur dioxide (SO2) scrubbers may be used by electricity generating units to meet the requirements of Phase II of the Acid Rain SO2 Reduction Program. Additionally, the use of scrubbers can result in reduction of mercury and particulate matter emissions. It is timely, therefore...

  1. Detection of SO2 on Callisto with the Hubble Space Telescope

    Microsoft Academic Search

    Keith S. Noll; Robert E. Johnson; Melissa A. McGrath; John J. Caldwell

    1997-01-01

    We have detected SO2 in ultraviolet spectra of Callisto obtained with the Hubble Space Telescope's Faint Object Spectrograph. An absorption band centered at 280 nm appears in the spectrum of Callisto's leading hemisphere, but is not apparent in the spectrum of the trailing hemisphere. The band is similar to the SO2 band on Europa's trailing hemisphere. Callisto's leading hemisphere spectrum

  2. Massive Volcanic SO2 Oxidation and Sulphate Aerosol Deposition in Cenozoic North America

    EPA Science Inventory

    Volcanic eruptions release a large amount of sulphur dioxide (SO2) into the atmosphere. SO2 is oxidized to sulphate and can subsequently form sulphate aerosol, which can affect the Earth's radiation balance, biologic productivity and high-altitude ozone co...

  3. Fire at Iraqi sulfur plant emits SO2 clouds detected by Earth Probe TOMS

    Microsoft Academic Search

    S. A. Carn; A. J. Krueger; N. A. Krotkov; M. A. Gray

    2004-01-01

    A fire started at the Al-Mishraq State Sulfur plant near Mosul, Iraq on 24 June 2003 and burned for almost a month. Combustion of elemental sulfur in the fire produced dense clouds of sulfur dioxide (SO2) that were detected from space by the Earth Probe Total Ozone Mapping Spectrometer (EP TOMS) on 18 days. Estimated daily SO2 production from the

  4. 40 CFR 97.254 - Compliance with CAIR SO2 emissions limitation.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...a CAIR SO2 source subject to an Acid Rain emissions limitation, the Administrator...CAIR SO2 source not subject to an Acid Rain emissions limitation, the Administrator...if the source is subject to an Acid Rain emissions limitation, the...

  5. PHYTOTOXICITY OF AIR POLLUTANTS. EVIDENCE FOR THE PHOTODETOXIFICATION OF SO2 BUT NOT O3

    EPA Science Inventory

    Pisum sativum L. cv Alsweet (garden pea) and Lycopersicon esculentum flacca Mill. (tomato) were used to evaluate the phytotoxicity of SO2 and O3 in the light and dark. Plants were grown in controlled environment chambers and exposed to SO2 or O3 in the light or dark at the same e...

  6. LONG-RANGE TRANSPORT AND TRANSFORMATION OF SO2 AND SULFATE

    EPA Science Inventory

    Technical descriptions and computer programs are presented for two models that calculate long-range transport, diffusion, transformation of SO2 to sulfate, and dry and precipitation deposition of initially emitted SO2. One model treats the mixing layer height as constant; the oth...

  7. Improved retrieval of SO2 from Ozone Monitoring Instrument: residual analysis and data noise correction

    NASA Astrophysics Data System (ADS)

    Yan, H.; Chen, L.; Tao, J.; Su, L.; Han, D.

    2012-01-01

    In this study, based on Ozone Monitoring Instrument (OMI) observation data and considering the shortage of current Band Residual Difference algorithm (BRD) algorithm in data noise correction since late 2008, we make a detailed analysis of OMI SO2 main noise sources and determine the best residual adjustment area by analyzing the different residual correction effects. After such modification, the OMI SO2 PBL results noise which use BRD retrieval algorithm is largely reduced, the precision of the SO2 results is improved, and the optimization of the BRD algorithm for data noise is realized. We select China as our study area and compare the results between the optimized results and the OMI SO2 PBL products. Results show that they are consistent with each other in January 2008; however, our modified algorithm results have higher precision and more reliable SO2 spatial distribution in January 2009. Finally, other current retrieval error sources are discussed, and further research is needed on these areas.

  8. Soot and SO2 contribution to the supersites in the MILAGRO campaign from elevated flares in the Tula Refinery

    NASA Astrophysics Data System (ADS)

    Almanza, V. H.; Molina, L. T.; Sosa, G.

    2012-06-01

    This work presents a simulation of the plume emitted by flaring activities of the Miguel Hidalgo Refinery in Mexico. The flame of a representative sour gas flare is modeled with a CFD combustion code in order to estimate emission rates of combustion by-products of interest for air-quality: acetylene, ethylene, nitrogen oxides, carbon monoxide, soot and sulfur dioxide. The emission rates of NO2 and SO2 were compared against measurements obtained at Tula as part of MILAGRO field campaign. The rates of soot, VOCs and CO were compared with estimates obtained by IMP. The emission rates of the species considered were further included in WRF-Chem model to simulate the chemical transport of the plume from 22 March to 27 March of 2006. The model presents reliable performance of the resolved meteorology, with respect to the Mean Absolute Error (MAE), Root Mean Square Error (RMSE), vector RMSE and Index of Agreement (IOA). WRF-Chem outputs of SO2 and soot were compared with surface measurements obtained at the three supersites of MILAGRO campaign. The results suggest a contribution of Tula flaring activities to the total SO2 levels of 23% to 37% at the urban supersite (T0), and of 29% to 39% at the suburban supersite (T1). For soot, the model predicts low contribution at the three supersites, with less than 1% at both T0 and T1; and about 1% at T2. According to the model, the greatest contribution of both pollutants to the three supersites occurred on 23 March, which coincides with the third cold surge event.

  9. Does SO 2 fumigation change the chemical defense of woody plants: The effect of short-term SO 2 fumigation on the metabolism of deciduous Salix myrsinifolia plants

    Microsoft Academic Search

    R. Julkunen-Tiitto; A. Lavola; P. Kainulainen

    1995-01-01

    The effect of a moderate increase in atmospheric sulphur dioxide on the production of phenolic secondary chemicals, soluble sugars and phytomass distribution within plants was investigated in six willow (Salix myrsinifolia Salisb.) clones. The plants were cultivated for 3 weeks under 0.11 ppm of SO2 (300 µg m-3). The production of salicin and chlorogenic acid was significantly reduced under increased

  10. Single photon ionization of van der Waals clusters with a soft x-ray laser: ,,SO2...n and ,,SO2...n,,H2O...m

    E-print Network

    Rocca, Jorge J.

    that return to earth in the form of acid depositions or "acid rain." Acid rain is one of the biggest environmental problems at present. Sulfur dioxide is the major contributor to acid rain and a generator of soot. The process of SO2 and water form- ing acid rain has been studied for some time in order to determine

  11. Evaluation of tropospheric SO2 retrieved from MAX-DOAS measurements in Xianghe, China

    NASA Astrophysics Data System (ADS)

    Wang, Ting; Hendrick, Francois; Wang, Pucai; Tang, Guiqian; Clémer, Katrijn; Yu, Huan; Fayt, Caroline; Hermans, Christian; Gielen, Clio; Pinardi, Gaia; Theys, Nicolas; Brenot, Hugues; Van Roozendael, Michel

    2014-05-01

    Ground-based Multi-Axis Differential Optical Absorption Spectroscopy (MAX-DOAS) measurements of sulfur dioxide (SO2) have been performed at the Xianghe station (39.77°N, 117.0°E) located at ~50 km South-East of Beijing from March 2010 to February 2013. Tropospheric SO2 vertical profiles and corresponding vertical column densities (VCDs), retrieved by applying the Optimal Estimation Method to the MAX-DOAS observations, have been used to study the seasonal and diurnal cycles of SO2, in combination to correlative measurements from in situ instruments, as well as meteorological data. A marked seasonality is observed in both SO2 VCD and surface concentration, with a maximum in winter (February) and a minimum in summer (July). This can be explained by the larger emissions in winter due to the domestic heating and more favorable meteorological conditions for the accumulation of SO2 close to the ground during this period. Wind speed and direction are also found to be two key parameters in controlling the level of the SO2-related pollution at Xianghe. In the case of east or southwest wind, the SO2 concentration rises with the increase of the wind speed, since heavy polluting industries are located to the east and southwest of the station. In contrast, when wind comes from other directions, the stronger the wind, the less SO2 is observed. Regarding the diurnal cycle, the SO2 amount is larger in the early morning and late evening and lower at noon, in line with the diurnal variation of pollutant emissions and atmospheric stability. The observed diurnal cycles of MAX-DOAS SO2 surface concentration are also in very good agreement (correlation coefficient close to 0.9) with those from collocated in-situ data, demonstrating the reliability and robustness of our retrieval.

  12. Evaluation of tropospheric SO2 retrieved from MAX-DOAS measurements in Xianghe, China

    NASA Astrophysics Data System (ADS)

    Wang, T.; Hendrick, F.; Wang, P.; Tang, G.; Clémer, K.; Yu, H.; Fayt, C.; Hermans, C.; Gielen, C.; Pinardi, G.; Theys, N.; Brenot, H.; Van Roozendael, M.

    2014-03-01

    Ground-based Multi-Axis Differential Optical Absorption Spectroscopy (MAX-DOAS) measurements of sulfur dioxide (SO2) have been performed at the Xianghe station (39.75° N, 116.96° E) located at ~50 km southeast of Beijing from March 2010 to February 2013. Tropospheric SO2 vertical profiles and corresponding vertical column densities (VCDs), retrieved by applying the Optimal Estimation Method to the MAX-DOAS observations, have been used to study the seasonal and diurnal cycles of SO2, in combination to correlative measurements from in situ instruments, as well as meteorological data. A marked seasonality was observed in both SO2 VCD and surface concentration, with a maximum in winter (February) and a minimum in summer (July). This can be explained by the larger emissions in winter due to the domestic heating and more favorable meteorological conditions for the accumulation of SO2 close to the ground during this period. Wind speed and direction are also found to be two key factors in controlling the level of the SO2-related pollution at Xianghe. In the case of east or southwest wind, the SO2 concentration rises with the increase of the wind speed, since heavy polluting industries are located to the east and southwest of the station. In contrast, when wind comes from other directions, the stronger the wind, the less SO2 is observed. Regarding the diurnal cycle, the SO2 amount is larger in the early morning and late evening and lower at noon, in line with the diurnal variation of pollutant emissions and atmospheric stability. The observed diurnal cycles of MAX-DOAS SO2 surface concentration are also in very good agreement (correlation coefficient close to 0.9) with those from collocated in-situ data, demonstrating the reliability and robustness of our retrieval.

  13. SO2 plume height retrieval from direct fitting of GOME-2 backscattered radiance measurements

    NASA Astrophysics Data System (ADS)

    van Gent, J.; Spurr, R.; Theys, N.; Lerot, C.; Brenot, H.; Van Roozendael, M.

    2012-04-01

    The use of satellite measurements for SO2 monitoring has become an important aspect in the support of aviation control. Satellite measurements are sometimes the only information available on SO2 concentrations from volcanic eruption events. The detection of SO2 can furthermore serve as a proxy for the presence of volcanic ash that poses a possible hazard to air traffic. In that respect, knowledge of both the total vertical column amount and the effective altitude of the volcanic SO2 plume is valuable information to air traffic control. The Belgian Institute for Space Aeronomy (BIRA-IASB) hosts the ESA-funded Support to Aviation Control Service (SACS). This system provides Volcanic Ash Advisory Centers (VAACs) worldwide with near real-time SO2 and volcanic ash data, derived from measurements from space. We present results from our algorithm for the simultaneous retrieval of total vertical columns of O3 and SO2 and effective SO2 plume height from GOME-2 backscattered radiance measurements. The algorithm is an extension to the GODFIT direct fitting algorithm, initially developed at BIRA-IASB for the derivation of improved total ozone columns from satellite data. The algorithm uses parameterized vertical SO2 profiles which allow for the derivation of the peak height of the SO2 plume, along with the trace gas total column amounts. To illustrate the applicability of the method, we present three case studies on recent volcanic eruptions: Merapi (2010), Grímsvotn (2011), and Nabro (2011). The derived SO2 plume altitude values are validated with the trajectory model FLEXPART and with aerosol altitude estimations from the CALIOP instrument on-board the NASA A-train CALIPSO platform. We find that the effective plume height can be obtained with a precision as fine as 1 km for moderate and strong volcanic events. Since this is valuable information for air traffic, we aim at incorporating the plume height information in the SACS system.

  14. Combining Bayesian methods and aircraft observations to constrain the HO. + NO2 reaction rate

    Microsoft Academic Search

    B. H. Henderson; R. W. Pinder; J. Crooks; R. C. Cohen; A. G. Carlton; H. O. T. Pye; W. Vizuete

    2011-01-01

    Tropospheric ozone is the third strongest greenhouse gas, and has the highest uncertainty in radiative forcing of the top five greenhouse gases. Throughout the troposphere, ozone is produced by radical oxidation of nitrogen oxides (NOx = NO + NO2). In the upper troposphere (8-10 km), current chemical transport models under-estimate nitrogen dioxide (NO2) observations. Improvements to simulated NOx emissions from

  15. Regional differences in Chinese SO2 emission control efficiency and policy implications

    NASA Astrophysics Data System (ADS)

    Zhang, Q. Q.; Wang, Y.; Ma, Q.; Xie, Y.; He, K.

    2015-02-01

    SO2 emission control has been one of the most important air pollution policies in China since 2000. In this study, we assess regional differences in SO2 emission control efficiencies in China through the modeling analysis of four scenarios of SO2 emissions, all of which aim at reducing the national total SO2 emissions by 8% or 2.3 Tg below the 2010 emissions level, the target set by the current 12th FYP (2011-2015), but differ in the spatial implementation. The GEOS-Chem chemical transport model is used to evaluate the efficiency of each scenario on the basis of three impact metrics: surface sulfate concentration, population-weighted sulfate concentration (PWC), and sulfur export flux from China to the Western Pacific. The efficiency of SO2 control (?) is defined as the relative change of each impact metric to a 1% reduction of SO2 emissions from the 2010 baseline. The S1 scenario, which adopts a spatially uniform reduction of SO2 emissions in China, gives a ? of 0.71, 0.83, and 0.67 for sulfate concentration, PWC, and export flux, respectively. By comparison, the S2 scenario, which implements all the SO2 emissions reduction over North China (NC), is found most effective in reducing national-mean surface sulfate concentrations and sulfur export fluxes, with ? being 0.76 and 0.95 respectively. The S3 scenario of implementing all the SO2 emission reduction over South China (SC) has the highest ? in reducing PWC (? = 0.98) because SC has the highest correlation between population density and sulfate concentration. Reducing SO2 emissions over Southwest China (SWC) is found to be least efficient on the national scale, albeit within-region benefit. The difference in ? by scenario is attributable to regional differences in SO2 oxidation pathways and source-receptor relationships. Among the three regions examined here, NC shows the largest proportion of sulfate formation from gas phase oxidation, which is more sensitive to SO2 emission change than aqueous oxidation. In addition, NC makes the largest contribution to inter-regional transport of sulfur within China and to the transport fluxes to Western Pacific. The policy implication is that China needs to carefully design a regionally specific implementation plan of realizing its SO2 emissions reduction target in order to maximize the resulting air quality benefits not only for China but for the downwind regions, with emphasis on reducing emissions from NC.

  16. The vertical distribution of volcanic SO2 plumes measured by IASI

    NASA Astrophysics Data System (ADS)

    Carboni, Elisa; Grainger, Roy; Mather, Tamsin A.; Pyle, David M.; Thomas, Gareth; Siddans, Richard; Smith, Andrew; Dudhia, Anu; Koukouli, MariLiza; Balis, Dimitris

    2015-04-01

    Sulphur dioxide (SO2) is an important atmospheric constituent that plays a crucial role in many atmospheric processes. For example the current hiatus in global warming has been suggested to be caused by low level (< 15 km) volcanic activity (Ridley et al., 2014). Volcanic eruptions are a significant source of atmospheric SO2 and its effects and lifetime depend on the SO2 injection altitude. In the troposphere SO2 injection leads to the acidification of rainfall while in the stratosphere it oxidises to form a stratospheric H2SO4 haze that can affect climate for several years. The Infrared Atmospheric Sounding Instrument (IASI) on the Metop satellite can be used to study volcanic emission of SO2 using high-spectral resolution measurements from 1000 to 1200 cm-1 and from 1300 to 1410 cm-1 (the 7.3 and 8.7 ?m SO2 bands). The scheme described in Carboni et al. (2012) has been applied to measure volcanic SO2 amount and altitude for 14 explosive eruptions from 2008 to 2012. The work includes a comparison with independent measurements: (i) the SO2 column amounts from the 2010 Eyjafjallajökull plumes have been compared with Brewer ground measurements over Europe; (ii) the SO2 plumes heights have been compared with CALIPSO backscatter profile. The results of the comparisons show that IASI SO2 measurements are not affected by underling cloud and are consistent (within the retrieved errors) with the other measurements considered. The series of analysed eruptions (2008 to 2012) show that the biggest contributor of volcanic SO2 was Nabro, followed by Kasatochi and Grímsvötn. Our observations also show a tendency of the volcanic SO2 to be injected to the level of tropopause during many explosive eruptions. For the eruptions observed, this tendency was independent of the maximum amount of SO2 erupted (e.g., 0.2 Tg for Dalafilla compared with 1.6 Tg for Nabro) and of the volcanic explosive index (between 3 and 5).

  17. Dynamics and evolution of SO2 gas condensation around Prometheus-like volcanic plumes on Io as seen by the Near Infrared Mapping Spectrometer

    NASA Astrophysics Data System (ADS)

    Douté, S.; Lopes-Gautier, R.; Smythe, W. D.; Kamp, L. W.; Carlson, R.; Galileo NIMS Team

    2000-12-01

    In October 1999, November 1999 and February 2000, Galileo accomplished three successful flybys (I24, I25, I27) of Io, during which the Near Infrared Mapping Spectrometer (NIMS) made local as well as regional observations. Spectral image cubes of active volcanic centers (e.g. Prometheus, Amirani etc. ) and areas targeted for their unique colorimetry were obtained with variable spatial resolution (from 6 km/pixel-1 to 26 km/pixel-1). Most NIMS spectra (from 1.0 ? m to 4.5 ? m) display two prominent and broad features centered respectively at 1.2 ? m and 4.13 ? m. The latter absorption is attributed to frosts of sulfur dioxide (SO2). In an effort to understand the dynamics and evolution of gas condensation around volcanic plumes, we present maps of SO2 abundance and granularity on the surface around Prometheus and Amirani. Reduction of NIMS spectral sampling (from 408 to 14 wavelengths) during the flybys prevents direct modeling of spectra using a bidirectional reflectance model (Douté et al., 2000). Nevertheless, comparison between an I24 global observation with previous SO2 abundance and granularity maps covering 3/4 of Io's surface indicates good correlation between two spectral ratios: ? ={R}obs}(3.28)/{R}{obs(4.13), ? ={R}obs}(3.28)/{R}{obs(3.56) and, respectively, the areal abundance of the frost fSO{2} and its mean grain size DSO{2}. We use a derivative of a classical reflectance model to quantify these dependencies and to invert the data. As a result, maps of SO2 abundance and granularity are obtained which can be correlated to distinguish four different physical units. The distribution of these SO2 units indicates zones of condensation, metamorphism and sublimation linked with the dynamics of volcanic gases, thermal emission and solar flux. This work is supported by a contract with NASA through the Jupiter System Data Analysis Program.

  18. Studies of proton-irradiated SO2 at low temperatures Implications for Io

    NASA Technical Reports Server (NTRS)

    Moore, M. H.

    1984-01-01

    The infrared absorption spectrum from 3.3 to 27 microns of SO2 ice films has been measured at 20 and 88 K before and after 1-MeV proton irradiation. The radiation flux was chosen to simulate the estimated flux of Jovian magnetospheric 1-MeV protons incident on Io. After irradiation, SO3 is identified as the dominant molecule synthesized in the SO2 ice. This is also the case after irradiation of composite samples of SO2 with sulfur or disulfites. Darkening was observed in irradiated SO2 ice and in irradiated S8 pellets. Photometric and spectral measurements of the thermoluminescence of irradiated SO2 have been made during warming. The spectrum appears as a broad band with a maximum at 4450 A. Analysis of the luminescence data suggests that at Ionian temperatures irradiated SO2 ice would not be a dominant contributor to posteclipse brightening phenomena. After warming to room temperature, a form of SO3 remains along with a sulfate and S8. Based on these experiments, it is reasonable to propose that small amounts of SO3 may exist on the surface of Io as a result of irradiation synthesis in SO2 frosts.

  19. Studies of proton-irradiated SO2 at low temperatures Implications for Io

    SciTech Connect

    Moore, M.H.

    1984-07-01

    The infrared absorption spectrum from 3.3 to 27 microns of SO2 ice films has been measured at 20 and 88 K before and after 1-MeV proton irradiation. The radiation flux was chosen to simulate the estimated flux of Jovian magnetospheric 1-MeV protons incident on Io. After irradiation, SO3 is identified as the dominant molecule synthesized in the SO2 ice. This is also the case after irradiation of composite samples of SO2 with sulfur or disulfites. Darkening was observed in irradiated SO2 ice and in irradiated S8 pellets. Photometric and spectral measurements of the thermoluminescence of irradiated SO2 have been made during warming. The spectrum appears as a broad band with a maximum at 4450 A. Analysis of the luminescence data suggests that at Ionian temperatures irradiated SO2 ice would not be a dominant contributor to posteclipse brightening phenomena. After warming to room temperature, a form of SO3 remains along with a sulfate and S8. Based on these experiments, it is reasonable to propose that small amounts of SO3 may exist on the surface of Io as a result of irradiation synthesis in SO2 frosts. 47 references.

  20. SO2 removal with coal slurry in a double-stirred vessel.

    PubMed

    Sun, Wenshou; Wang, Liang; Liu, Jingchun; Wang, Lichao; Zhang, Ying

    2013-01-01

    In the coal slurry scrubbing process, SO2 can be removed through both the coal pyrite leaching reaction and the oxidation reactions catalysed by Fe2+/Fe3+ produced in situ. In the present study, experiments of SO2 removal with coal slurry (particle size fraction 65-150 microm) were carried out using a double-stirred vessel to investigate the effects of temperature, coal particle size and pulp density on SO2 absorption rate and on the proportion of SO2 removed through the leaching reaction. Results show that the SO2 absorption rate can be increased by decreasing particle size and increasing pulp density, but it is relatively less affected by temperature. Although decreasing coal particle size and pulp density can increase coal pyrite conversion, the effectiveness is limited and the proportion of SO2 removed through the leaching reaction is little affected. Increasing temperature can evidently increase the proportion, but there also exists the problem of energy expenditure; satisfactory coal pyrite conversion during SO2 removal could not be achieved economically by such measures. In addition, the apparent rate constant has a linear relationship with the reciprocal of the coal particle diameter. PMID:24527610

  1. Simultaneous adsorption of SO2 and NO from flue gas over mesoporous alumina.

    PubMed

    Sun, Xin; Tang, Xiaolong; Yi, Honghong; Li, Kai; Ning, Ping; Huang, Bin; Wang, Fang; Yuan, Qin

    2015-03-01

    Mesoporous alumina (MA) with a higher ability to simultaneously remove SO2 and NO was prepared by the evaporation-induced self-assembly process. The adsorption capacities of MA are 1.79 and 0.702?mmol/g for SO2 and NO, respectively. The Brunauer-Emmett-Teller method was used to characterize the adsorbent. Simultaneous adsorption of SO2 and NO from flue gas over MA in different operating conditions had been studied in a fixed bed reactor. The effects of temperature, oxygen concentration and water vapour were investigated. The experimental results showed that the optimum temperature for MA to simultaneously remove SO2 and NO was 90°C. The simultaneous adsorption capacities of SO2 and NO could be enhanced by increasing O2 when its concentration was below 5%. The changes of simultaneous adsorption capacities were not obvious when O2 concentration was above 5%. The increase in relative humidity results in an increase after dropping of SO2 adsorption capacity, whereas the adsorption capacity of NO showed an opposite trend. The results suggest that MA is a great adsorbent for simultaneous removal of SO2 and NO from flue gas. PMID:25189414

  2. Adsorption of SO2 onto oxidized and heat-treated activated carbon fibers (ACFS)

    USGS Publications Warehouse

    Daley, M.A.; Mangun, C.L.; DeBarr, J.A.; Riha, S.; Lizzio, A.A.; Donnals, G.L.; Economy, J.

    1997-01-01

    A series of activated carbon fibers (ACFs) and heat-treated oxidized ACFs prepared from phenolic fiber precursors have been studied to elucidate the role of pore size, pore surface chemistry and pore volume for the adsorption of SO2 and its catalytic conversion to H2SO4. For untreated ACFs, the initial rate of SO2 adsorption from flue gas was shown to be inversely related to pore size. At longer times, the amount of SO2 adsorbed from flue gas was dependent on both the pore size and pore volume. Oxidation of the ACFs, using an aqueous oxidant, decreased their adsorption capacity for SO2 from flue gas due to a decrease in pore volume and repulsion of the SO2 from acidic surface groups. If these samples were heat-treated to desorb the oxygen containing function groups, the amount of SO2 adsorption increased. This increase in adsorption capacity was directly correlated to the amount of CO2 evolved during heat-treatment of the oxidized ACFs. The amount of SO2 adsorbed for these samples was related to the pore size, pore surface chemistry and pore volume. This analysis is explained in more detail in this paper. ?? 1997 Elsevier Science Ltd. All rights reserved.

  3. Emission of SO2, CO2, and H2S from Augustine Volcano, 2002-2008

    USGS Publications Warehouse

    McGee, Kenneth A.; Doukas, Michael P.; McGimsey, Robert G.; Neal, Christina A.; Wessels, Rick L.

    2010-01-01

    Airborne surveillance of gas emissions from Augustine Volcano and other Cook Inlet volcanoes began in 1990 to identify baseline emission levels during noneruptive conditions. Gas measurements at Augustine for SO2, CO2, and H2S showed essentially no evidence of anomalous degassing through spring 2005. Neither did a measurement on May 10, 2005, right after the onset of low level seismicity and inflation. The following measurement, on December 20, 2005, showed Augustine to be degassing about 600 metric tons per day (t/d) of SO2, and by January 4, 2006, only 7 days before the first explosive event, SO2 emissions had climbed to ten times that amount. Maximum emission rates measured during the subsequent eruption were: 8,930 t/d SO2 (February 24, 2006), 1,800 t/d CO2 (March 9, 2006), and 4.3 t/d H2S (January 19, 2006). In total, 45 measurements for SO2 were made from December 2005 through the end of 2008, with 19 each for CO2 and H2S during the same period. Molar CO2/SO2 ratios averaged about 1.6. In general, SO2 emissions appeared to increase during inflation of the volcanic edifice, whereas CO2 emissions were at their highest during the period of deflation associated with the vigorous effusive phase of the eruption in March. High SO2 was probably associated with degassing of shallow magma, whereas high CO2 likely reflected deep (>4 km) magma recharge of the sub-volcanic plumbing system, For the 2005-6 period, the volcano released a total of about 1.5 x 106 tons of CO2 to the atmosphere, a level similar to the annual output of a medium-sized natural-gas-fired powerplant. Augustine also emitted about 8 x 105 tons of SO2, similar to that produced by the 1976 and 1986 eruptions of the volcano.

  4. New results concerning the $so(2,1)$ treatment for the hypergeometric Natanzon potentials

    Microsoft Academic Search

    Sebastian Salamo

    2002-01-01

    The $so(2,1)$ analysis for the bound state sector of the hypergeometric\\u000aNatanzon potentials (HNP) is extended to the scattering sector by considering\\u000athe continuous series of the $so(2,1)$ algebra. As a result a complete\\u000aalgebraic treatment of the HNP by means of the $so(2,1)$ algebra is achieved.\\u000a In the bound state sector we discuss a set of satellite potentials which

  5. SO2 emissions from paroxysmal eruptions at Etna volcano in 2011-12

    NASA Astrophysics Data System (ADS)

    Bonny, E.; Mandon, C.; Carn, S. A.; Prata, F.; Coltelli, M.; Donnadieu, F.

    2013-12-01

    Mt Etna's activity has increased during the last decade with a tendency towards more explosive eruptions that produce paroxysmal lava fountains. From January 2011 to April 2012, 25 lava fountaining episodes took place at Etna's New South-East Crater (NSEC). Improved understanding of the mechanism driving these explosive basaltic eruptions is needed to reduce volcanic hazards and develop models of Etna's plumbing system.. This type of activity produces high sulfur dioxide (SO2) emissions, associated with lava flows and ash fall-out, but to date the SO2 emissions associated with Etna's lava fountains have been poorly constrained. The Ultraviolet (UV) Ozone Monitoring Instrument (OMI) on NASA's Aura satellite and the Atmospheric Infrared Sounder (AIRS) on Aqua were used to measure the SO2 loadings. Ground-based data from the Observatoire de Physique du Globe de Clermont-Ferrand (OPGC) L-band Doppler radar, VOLDORAD 2B, used in collaboration with the Italian National Institute of Geophysics and Volcanology in Catania (INGV-CT), also detected the associated ash plumes, giving precise timing and duration for the lava fountains. This study resulted in the first detailed analysis of the OMI and AIRS SO2 data for Etna's lava fountains during the 2011-2012 eruptive cycle. The HYSPLIT trajectory model is used to constrain the altitude of the observed SO2 clouds, and results show that the SO2 emission usually coincided with the lava fountain peak intensity as detected by VOLDORAD. The UV OMI and IR AIRS SO2 retrievals permit quantification of the SO2 loss rate in the volcanic SO2 clouds, many of which were tracked for several days after emission. Using SO2 loadings corrected for the time of emission, we observe a correlation between SO2 production and inter-paroxysm repose time, suggesting that gas accumulation drives the paroxysms. We therefore suggest that our data set supports the collapsing foam (CF) model [Parfitt (2004) J. Volcanol. Geotherm. Res. 134, 77-107.] as the driving mechanism for the paroxysmal events at the NSEC. Using VOLDORAD-based estimates of the erupted magma mass, we observe a large excess of SO2 in the eruption clouds, confirming the gas-rich composition of the lava fountains.

  6. Measurement of SO2 and SO3 using a tunable diode laser system

    NASA Astrophysics Data System (ADS)

    Berkoff, Timothy A.; Wormhoudt, Joda C.; Miake-Lye, R. C.

    1999-02-01

    We describe the set-up and operation of a mid-infrared (lead- salt) tunable diode laser system used to measure SO2 and SO3 levels in the exhaust plume of an aircraft engine in an altitude test chamber. These measurements were part of an on-going effort to determine the sulfur emission and conversion of SO2 to SO3 in a representative exhaust under different altitudes, power conditions, and fuel sulfur loadings. Results obtained using this set-up demonstrate the ability to measure SO2 concentrations in the low ppmv range and the possibility of detecting SO3 when it is present at similar levels.

  7. Evaluation of tropospheric SO2 retrieved from MAX-DOAS measurements in Xianghe, China

    NASA Astrophysics Data System (ADS)

    Wang, T.; Hendrick, F.; Wang, P.; Tang, G.; Clémer, K.; Yu, H.; Fayt, C.; Hermans, C.; Gielen, C.; Müller, J.-F.; Pinardi, G.; Theys, N.; Brenot, H.; Van Roozendael, M.

    2014-10-01

    Ground-based multi-axis differential optical absorption spectroscopy (MAX-DOAS) measurements of sulfur dioxide (SO2) have been performed at the Xianghe station (39.8° N, 117.0° E) located at ~ 50 km southeast of Beijing from March 2010 to February 2013. Tropospheric SO2 vertical profiles and corresponding vertical column densities (VCDs), retrieved by applying the optimal estimation method to the MAX-DOAS observations, have been used to study the seasonal and diurnal cycles of SO2, in combination with correlative measurements from in situ instruments, as well as meteorological data. A marked seasonality was observed in both SO2 VCD and surface concentration, with a maximum in winter (February) and a minimum in summer (July). This can be explained by the larger emissions in winter due to the domestic heating and, in case of surface concentration, by more favorable meteorological conditions for the accumulation of SO2 close to the ground during this period. Wind speed and direction are also found to be two key factors in controlling the level of the SO2-related pollution at Xianghe. In the case of east or southwest wind, the SO2 concentration does not change significantly with the wind speed, since the city of Tangshan and heavy polluting industries are located to the east and southwest of the station, respectively. In contrast, when wind comes from other directions, the stronger the wind, the less SO2 is observed due to a more effective dispersion. Regarding the diurnal cycle, the SO2 amount is larger in the early morning and late evening and lower at noon, in line with the diurnal variation of pollutant emissions and atmospheric stability. A strong correlation with correlation coefficients between 0.6 and 0.9 is also found between SO2 and aerosols in winter, suggesting that anthropogenic SO2, through the formation of sulfate aerosols, contributes significantly to the total aerosol content during this season. The observed diurnal cycles of MAX-DOAS SO2 surface concentration are also in very good agreement (correlation coefficient close to 0.9) with those from collocated in situ data, indicating the good reliability and robustness of our retrieval.

  8. Effect of SO2 and O3 on Production of Antioxidants in Conifers 1

    PubMed Central

    Mehlhorn, Horst; Seufert, Günther; Schmidt, Arno; Kunert, Karl Josef

    1986-01-01

    Production of antioxidants was investigated in needles of fir (Abies alba Mill.) and spruce (Picea abies (L.) Karst) after exposure to low concentrations of SO2, O3, and a combination of both pollutants. Glutathione reacted most sensitively to pollutants followed by vitamin E and vitamin C. In spruce needles, the overall increase of antioxidants after exposure to air pollutants was lower than in needles of fir. SO2 was more potent than O3. Maximum increase of antioxidants was found in needles after exposure of trees to SO2 + O3. Images Fig. 1 Fig. 2 PMID:16665019

  9. Cl2SO_2 deposits near the Marduk's volcanic center on Io

    NASA Astrophysics Data System (ADS)

    Schmitt, B.; Rodriguez, S.; NIMS/Galileo Team

    2001-11-01

    An absorption feature at 3.92 ? m locally present in NIMS data near Marduk's volcanic center on Io has been tentatively identified by Cl2SO_2 or possibly H2S (Schmitt and Rodriguez 2000: BAAS, 32, 1048). Direct comparison between laboratory spectra and the Marduk NIMS spectrum, coupled with radiative transfer modeling, allows to propose as the surface material producing the 3.92 ? m absorption either: - a (sub-)micron thin layer of pure solid H2S (phase II), (compact or sub-micron particles), at T > 103.6 K condensed on top of SO2 ice or, - a millimeter thick layer of 1% Cl2SO_2 mixed with solid SO2 covering a similar mixture strongly depleted in Cl2SO_2 (< 0.1%). Spectral constraints on the 3.92 ? m band alone, though favoring Cl2SO_2 (better fit), are not able to unambiguously distinguish between these two possible identifications. Unfortunately, both molecules did not possess other bands strong enough to clearly appear in the NIMS data and firmly confirm one of these candidates. On the chemical point of view the volcanic model of Fegley and Zolotov (2000) needs particular physical conditions in the vent to produce more than 10-5 mole fraction of Cl2SO_2, an amount still not enough to account for the intensity of the band. On the other hand, it may produce enough H2S but our spectral modeling set an upper limit of 0.04 for the H2O / H2S abundance ratio in contradiction with the predicted value (about 10). The sublimation rates of Cl2SO_2 and SO2 have been measured in the laboratory at low temperature. We found that the relative volatilities of H2S, Cl2SO_2 and SO2 coupled with their inferred physical states and the surface temperature conditions of Io strongly favor the incorporation of the chlorine molecule in solid SO2 at a concentration about 4 orders of magnitude larger than in the gas. On the other hand, the formation of a thin layer of pure solid H2S seems very improbable, or at least extremely ephemeral at the surface of Io. We conclude on some possible implications on Io's chemistry. We acknowledge CNES and the French Programme National de Planétologie of CNRS (INSU) for their financial supports.

  10. Validation of satellite SO2 observations in northern Finland during the Icelandic Holuhraun fissure eruption

    NASA Astrophysics Data System (ADS)

    Ialongo, Iolanda; Hakkarainen, Janne; Kivi, Rigel; Anttila, Pia; Krotkov, Nickolay; Yang, Kai; Li, Can; Tukiainen, Simo; Hassinen, Seppo; Tamminen, Johanna

    2015-04-01

    This paper shows the validation results of the satellite SO2 observations from OMI (Ozone Monitoring Instrument) and OMPS (Ozone Mapping Profiler Suite) during the Icelandic Holuhraun fissure eruption in September 2014. The volcanic plume reached Finland on several days during the month of September. The SO2 total columns from the Brewer direct sun (DS) measurements in Sodankylä (67.42°N, 26.59°E), northern Finland, are compared to the satellite data. Challenging retrieval conditions at high latitudes (like large solar zenith angle, SZA) are considered in the comparison. The results show that the best agreement can be found for small SZAs, close-to-nadir satellite pixels, cloud fraction below 0.3 and small distance between the station and the centre of the pixel. Under good retrieval conditions, the difference between satellite data and Brewer measurements remains mostly below the uncertainty on the satellite SO2 retrievals (up to about 2 DU at high latitudes). The satellite products assuming a priori profile with SO2 predominantly in the planetary boundary layer give total column values close to the ground-based data, suggesting that the volcanic SO2 plume was located at particularly low altitudes. This is connected to the fact that this was a fissure eruption and most of the SO2 was emitted into the troposphere. The analysis of the SO2 surface concentrations at four air quality stations in northern Finland supports the hypothesis that the volcanic plume coming from Iceland was located very close to the surface. The time evolution of the SO2 concentrations peaks during the same days when large SO2 total column values are measured by the Brewer in Sodankylä and enhanced SO2 signal is visible over northern Finland from the satellite maps. This is an exceptional case because the SO2 volcanic emission directly affect the air quality levels at surface in an otherwise pristine environment like northern Finland. OMI and OMPS SO2 retrievals from direct-broadcast measurements are validated for the first time in this paper.

  11. Economics of an integrated approach to control SO2, NOX, HCl, and particulate emissions from power plants.

    PubMed

    Shemwell, Brooke E; Ergut, Ali; Levendis, Yiannis A

    2002-05-01

    An integrated approach for the simultaneous reduction of major combustion-generated pollutants from power plants is presented along with a simplified economic analysis. With this technology, the synergistic effects of high-temperature sorbent/coal or sorbent/natural gas injection and high-temperature flue gas filtration are exploited. Calcium-based (or Na-based, etc.) sorbents are sprayed in the post-flame zone of a furnace, where they react with S- and Cl-containing gases to form stable salts of Ca (or Na, etc.). The partially reacted sorbent is then collected in a high-temperature ceramic filter, which is placed downstream of the sorbent injection point, where it further reacts for a prolonged period of time. With this technique, both the likelihood of contact and the length of time of contact between the solid sorbent particles and the gaseous pollutants increase, because reaction takes place both in the furnace upstream of the filter and inside the filter itself. Hence, the sorbent utilization increases significantly. Several pollutants, such as SO2, H2S, HCl, and particulate (soot, ash, and tar), may be partially removed from the effluent. The organic content of the sorbents (or blends) also pyrolyzes and reduces NOx. Unburned carbon in the ash may be completely oxidized in the filter. The filter is cleaned periodically with aerodynamic regeneration (back pulsing) without interrupting furnace operation. The effectiveness of this technique has been shown in laboratory-scale experiments using either rather costly carboxylic salts of Ca or low- to moderate-cost blends of limestone, lime, or sodium bicarbonate with coal fines. Injection occurred in the furnace at 1150 degrees C, while the filter was maintained at 600 degrees C. Results showed that 65 or 40% SO2 removal was obtained with calcium formate or a limestone/coal blend, respectively, at an entering calcium-to-sulfur molar ratio of 2. A sodium bicarbonate/coal blend resulted in 78% SO2 removal at a sodium-to-sulfur molar ratio of 2. HCl removal efficiencies have been shown to be higher than those for SO2. NOx reductions of 40% have been observed with a fuel (coal)-to-air equivalence ratio, phi, around 2. The filter has been shown to be 97-99% efficient in removing PM2.5 particulates. Calculations herein show that this integrated sorbent/filter method is cost-effective, in comparison with current technologies, on both capital cost ($/kW) and levelized cost ($/ton pollutant removed) bases, if a limestone/coal mixture is used as the sorbent for fossil fuel plants. Capital costs for the filter/sorbent combination are estimated to be in the range of $61-$105/kW for a new plant. Because current technologies are designed for removing one pollutant at a time, both their cost and space requirements are higher than those of this integrated technique. At the minimum projected removal efficiencies for HCl/SO2/NOx of about 40%, the levelized costs are projected to be $203-$261/ton of combined pollutant SO2/HCl/NOx and particulates removed from coal-fired power plants. PMID:12022692

  12. Regional differences in Chinese SO2 emission control efficiency and policy implications

    NASA Astrophysics Data System (ADS)

    Zhang, Q. Q.; Wang, Y.; Ma, Q.; Yao, Y.; Xie, Y.; He, K.

    2015-06-01

    SO2 emission control has been one of the most important air pollution policies in China since 2000. In this study, we assess regional differences in SO2 emission control efficiencies in China through the modeling analysis of four scenarios of SO2 emissions, all of which aim to reduce the national total SO2 emissions by 8% or 2.3 Tg below the 2010 emissions level, the target set by the current twelfth Five-Year Plan (FYP; 2011-2015), but differ in spatial implementation. The GEOS-Chem chemical transport model is used to evaluate the efficiency of each scenario on the basis of four impact metrics: surface SO2 and sulfate concentrations, population-weighted sulfate concentration (PWC), and sulfur export flux from China to the western Pacific. The efficiency of SO2 control (?) is defined as the relative change of each impact metric to a 1% reduction in SO2 emissions from the 2010 baseline. The S1 scenario, which adopts a spatially uniform reduction in SO2 emissions in China, gives a ? of 0.99, 0.71, 0.83, and 0.67 for SO2 and sulfate concentrations, PWC, and export flux, respectively. By comparison, the S2 scenario, which implements all the SO2 emissions reduction over North China (NC), is found most effective in reducing national mean surface SO2 and sulfate concentrations and sulfur export fluxes, with ? being 1.0, 0.76, and 0.95 respectively. The S3 scenario of implementing all the SO2 emission reduction over South China (SC) has the highest ? in reducing PWC (? = 0.98) because SC has the highest correlation between population density and sulfate concentration. Reducing SO2 emissions over Southwest China (SWC) is found to be least efficient on the national scale, albeit with large benefits within the region. The difference in ? by scenario is attributable to the regional difference in SO2 oxidation pathways and the source-receptor relationship. Among the three regions examined here, NC shows the largest proportion of sulfate formation through gas-phase oxidation, which is more sensitive to SO2 emissions change than aqueous oxidation. In addition, NC makes the largest contribution to inter-regional transport of sulfur within China and to the transport fluxes to the western Pacific. The policy implication of this is that China needs to carefully design a regionally specific implementation plan of realizing its SO2 emissions reduction target in order to maximize the resulting air quality benefits, not only for China but for the downwind regions, with emphasis on reducing emissions from NC, where SO2 emissions have decreased at a slower rate than national total emissions in the previous FYP period.

  13. Mercury, NOx, SO2, and O3 from power plants in the Southeastern U.S. during NOMADSS

    NASA Astrophysics Data System (ADS)

    Ambrose, J. L.; Jaffe, D. A.; Gratz, L.; Jaegle, L.; Selin, N. E.; Shah, V.; Giang, A.; Song, S.; Mauldin, L.; Cantrell, C. A.

    2013-12-01

    The NOMADSS experiment (Nitrogen, Oxidants, Mercury and Aerosols: Deposition, Sources and Sinks) was carried out using the NSF/NCAR C-130 research aircraft during June and July, 2013. The aircraft was outfitted with an extensive suite of instrumentation for mercury (Hg), ozone (O3), nitrogen oxides (NO + NO2), hydrogen oxide radicals (HOx = OH + HO2), nitrous acid (HONO), sulfur dioxide (SO2), sulfuric acid (H2SO4), carbon monoxide (CO), carbon dioxide (CO2), volatile organic compounds (VOCs), aerosols, and other tracers. A primary goal of the experiment was to quantify the Hg emissions from large coal-fired power plants in the Southeastern U.S. We performed flybys in the continental boundary layer of approximately 10 different power plants during the experiment and observed a wide range in both absolute concentrations and relative enhancements of Hg compared with co-emitted pollutants. In the U.S., the power generation sector is a major source of anthropogenic Hg emissions. Power plant Hg emissions have not been regulated until recently, though some emissions reductions have been achieved historically as a co-benefit of regulations on SO2 and aerosols. New rules on power plant emissions of Hg and other pollutants went into force in December, 2011. Coal-fired power plants have until 2015 to comply with these rules by installing scrubbers for Hg. As a consequence of the phase-in of new Hg emissions control technologies, the power plant plumes we sampled during NOMADSS represent a broad distribution of controlled and uncontrolled emission sources. We observed a large range of plume enhancements in Hg, NOx and SO2 (referenced to CO and/or CO2). In at least one case, we identified significant O3 production in a relatively fresh plume. Using CO and CO2 as stable tracers, we can calculate the instantaneous emissions of Hg and other compounds for each source and compare to emissions inventories. We will also examine the photochemical processing of each power plant plume with respect to Hg, NOx, SO2/H2SO4, and O3.

  14. Thermodynamic models of the chemistry of lunar volcanic gases

    NASA Technical Reports Server (NTRS)

    Fegley, Bruce, Jr.

    1991-01-01

    Thermodynamic models and mass-balance arguments are used to constrain the chemistry of lunar volcanic gases. The results predict that lunar gases were dominated by reduced C and S gases such as CO, COS, CS2, S2. The more oxidized gases CO2 and SO2 were also important, but only in limited temperature ranges. Gases such as Cl2, CCl4, and CF4 were more abundant than HF and HCl, which were the two major H compounds in the lunar gases. Chlorides and fluorides were important species for transporting many volatile and ore-forming metals, and the implications for fractionating and concentrating metals into lunar ore-deposits merit further study.

  15. The influence of O 3, NO 2 and SO 2 on growth of Picea abies and Fagus sylvatica in the Carpathian Mountains

    Microsoft Academic Search

    R. M Muzika; R. P Guyette; T Zielonka; A. M Liebhold

    2004-01-01

    At 17 long-term pollution monitoring sites throughout the Carpathian Mountains, tree growth patterns and variation in growth rate were examined to determine relationship of tree growth to specific pollutants. Canopy dominant Picea abies and Fagus sylvatica were selected at each site. Basal area increment (BAI) values were calculated from raw ring widths and used as an estimate of tree growth.

  16. Differential optical absorption spectrometer measurement of NO 2, SO 2, O 3, HCHO and aromatic volatile organics in ambient air of Kaohsiung Petroleum Refinery in Taiwan

    Microsoft Academic Search

    Kong Hwa Chiu; Usha Sree; Sen Hong Tseng; Chien-Hou Wu; Jiunn-Guang Lo

    2005-01-01

    UV-differential optical absorption spectrometer (DOAS) technique is considered as a promising technique to detect gaseous pollutants and was applied to conduct one-week continuous measurements in the Chinese Petroleum (CPC) refinery plant located in Lin Yuan industrial park of Kaohsiung, Southern Taiwan. With the combination of local meteorological information, including solar radiation, wind direction and speed, the results showed that the

  17. The Heidelberg Airborne Imaging DOAS Instrument (HAIDI) - a novel imaging DOAS device for 2-D and 3-D imaging of trace gases and aerosols

    NASA Astrophysics Data System (ADS)

    General, S.; Pöhler, D.; Sihler, H.; Bobrowski, N.; Frieß, U.; Zielcke, J.; Horbanski, M.; Shepson, P. B.; Stirm, B. H.; Simpson, W. R.; Weber, K.; Fischer, C.; Platt, U.

    2014-10-01

    Many relevant processes in tropospheric chemistry take place on rather small scales (e.g., tens to hundreds of meters) but often influence areas of several square kilometer. Thus, measurements of the involved trace gases with high spatial resolution are of great scientific interest. In order to identify individual sources and sinks and ultimately to improve chemical transport models, we developed a new airborne instrument, which is based on the well established Differential Optical Absorption Spectroscopy (DOAS) method. The Heidelberg Airborne Imaging DOAS Instrument (HAIDI) is a passive imaging DOAS spectrometer, which is capable of recording horizontal and vertical trace gas distributions with a resolution of better than 100 m. Observable species include NO2, HCHO, C2H2O2, H2O, O3, O4, SO2, IO, OClO and BrO. Here we give a technical description of the instrument including its custom-built spectrographs and CCD detectors. Also first results from measurements with the new instrument are presented. These comprise spatial resolved SO2 and BrO in volcanic plumes, mapped at Mt. Etna (Sicily, Italy), NO2 emissions in the metropolitan area of Indianapolis (Indiana, USA) as well as BrO and NO2 distributions measured during arctic springtime in context of the BRomine, Ozone, and Mercury EXperiment (BROMEX) campaign, which was performed 2012 in Barrow (Alaska, USA).

  18. The Heidelberg Airborne Imaging DOAS Instrument (HAIDI) - a novel Imaging DOAS device for 2-D and 3-D imaging of trace gases and aerosols

    NASA Astrophysics Data System (ADS)

    General, S.; Pöhler, D.; Sihler, H.; Bobrowski, N.; Frieß, U.; Zielcke, J.; Horbanski, M.; Shepson, P. B.; Stirm, B. H.; Simpson, W. R.; Weber, K.; Fischer, C.; Platt, U.

    2014-03-01

    Many relevant processes in tropospheric chemistry take place on rather small scales (e.g. tens to hundreds of meters) but often influence areas of several square kilometer. Thus, measurements of the involved trace gases with high spatial resolution are of great scientific interest. In order to identify individual sources and sinks and ultimately to improve chemical transport models, we developed a new airborne instrument, which is based on the well established DOAS method. The Heidelberg Airborne Imaging Differential Optical Absorption Spectrometer Instrument (HAIDI) is a passive imaging DOAS spectrometer, which is capable of recording horizontal and vertical trace gas distributions with a resolution of better than 100 m. Observable species include NO2, HCHO, C2H2O2, H2O, O3, O4, SO2, IO, OClO and BrO. Here we report a technical description of the instrument including its custom build spectrographs and CCD detectors. Also first results from measurements with the new instrument are presented. These comprise spatial resolved SO2 and BrO in volcanic plumes, mapped at Mt. Etna (Sicily, Italy), NO2 emissions in the metropolitan area of Indianapolis (Indiana, USA) as well as BrO and NO2 distributions measured during arctic springtime in context of the BROMEX campaign, which was performed 2012 in Barrow (Alaska, USA).

  19. 40 CFR 60.42b - Standard for sulfur dioxide (SO2).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...commenced construction, reconstruction, or modification on or...commenced construction, reconstruction, or modification on or...fuel (without combustion or post-combustion SO2 control...commences construction, reconstruction, or modification...

  20. 40 CFR 60.42b - Standard for sulfur dioxide (SO2).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...commenced construction, reconstruction, or modification on or...commenced construction, reconstruction, or modification on or...fuel (without combustion or post-combustion SO2 control...commences construction, reconstruction, or modification...

  1. 40 CFR 60.42b - Standard for sulfur dioxide (SO2).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...commenced construction, reconstruction, or modification on or...commenced construction, reconstruction, or modification on or...fuel (without combustion or post-combustion SO2 control...commences construction, reconstruction, or modification...

  2. 40 CFR 60.42b - Standard for sulfur dioxide (SO2).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...commenced construction, reconstruction, or modification on or...commenced construction, reconstruction, or modification on or...fuel (without combustion or post-combustion SO2 control...commences construction, reconstruction, or modification...

  3. 40 CFR 60.42b - Standard for sulfur dioxide (SO2).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...commenced construction, reconstruction, or modification on or...commenced construction, reconstruction, or modification on or...fuel (without combustion or post-combustion SO2 control...commences construction, reconstruction, or modification...

  4. FACTORS AFFECTING DRY DEPOSITION OF SO2 ON FORESTS AND GRASSLANDS

    EPA Science Inventory

    Deposition velocities for SO2 over forests and grasslands are derived through a mass conservation approach using established empirical relations descriptive of the atmospheric transport of a gaseous contaminant above and within a vegetational canopy. Of particular interest are si...

  5. Why are allowance prices so low? : an analysis of the SO2 emissions trading program

    E-print Network

    Ellerman, A. Denny

    1996-01-01

    This paper presents an analysis of the reduction in SO2 emissions by electric utilities between 1985 and 1993. We find that emissions have been reduced for reasons largely unrelated to the emission reduction mandate ...

  6. 40 CFR Appendix C to Part 72 - Actual 1985 Yearly SO2 Emissions Calculation

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...in tons) = (yrly wtd. av. fuel sulfur %) × (AP-42 fact.) × (1...yearly fuel burned) For coal, the yearly fuel burned is in...accounts for the ash retention of sulfur in coal), in lbs SO2 ton coal, is...

  7. 40 CFR Appendix C to Part 72 - Actual 1985 Yearly SO2 Emissions Calculation

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...in tons) = (yrly wtd. av. fuel sulfur %) × (AP-42 fact.) × (1...yearly fuel burned) For coal, the yearly fuel burned is in...accounts for the ash retention of sulfur in coal), in lbs SO2 ton coal, is...

  8. 40 CFR Appendix C to Part 72 - Actual 1985 Yearly SO2 Emissions Calculation

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...in tons) = (yrly wtd. av. fuel sulfur %) × (AP-42 fact.) × (1...yearly fuel burned) For coal, the yearly fuel burned is in...accounts for the ash retention of sulfur in coal), in lbs SO2 ton coal, is...

  9. 40 CFR Appendix C to Part 72 - Actual 1985 Yearly SO2 Emissions Calculation

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...in tons) = (yrly wtd. av. fuel sulfur %) × (AP-42 fact.) × (1...yearly fuel burned) For coal, the yearly fuel burned is in...accounts for the ash retention of sulfur in coal), in lbs SO2 ton coal, is...

  10. 40 CFR Appendix C to Part 72 - Actual 1985 Yearly SO2 Emissions Calculation

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...in tons) = (yrly wtd. av. fuel sulfur %) × (AP-42 fact.) × (1...yearly fuel burned) For coal, the yearly fuel burned is in...accounts for the ash retention of sulfur in coal), in lbs SO2 ton coal, is...

  11. LOOKING FOR SO2: A SPECTROSCOPIC STUDY OF MARTIAN UV ALBEDO USING SPICAM.

    E-print Network

    Paris-Sud XI, Université de

    LOOKING FOR SO2: A SPECTROSCOPIC STUDY OF MARTIAN UV ALBEDO USING SPICAM. E. Marcq, LATMOS, 11 Bd d'Alembert, Guyancourt, France (emmanuel.marcq@latmos.ipsl.fr), F. Montmessin, F. Lef`evre, A. Reberac, LATMOS

  12. Changes in SO2 flux degassing regime prior to the 2014 Stromboli eruption

    NASA Astrophysics Data System (ADS)

    Tamburello, Giancarlo; Delle Donne, Dario; Ripepe, Maurizio; Bitetto, Marcello; Cosenza, Paolo; Giudice, Gaetano; Riccobono, Giuseppe; Aiuppa, Alessandro

    2015-04-01

    Volcanic eruptions are often accompanied by release of huge amounts of magmatic SO2. Capturing sizeable precursory SO2 flux variations prior to eruption has revealed far more challenging, instead, in spite of the recent progresses in instrumental gas monitoring. Here, we report on the SO2 fluxes variations we detected at Stromboli volcano prior to the effusive eruption started on the 6th August 2014. The SO2 fluxes were regularly quantified at high-rate (0.5 Hz) using two fully autonomous permanent SO2 camera devices installed - within the framework the ERC-FP7 project "Bridge"- at two sites located at 0.5 km (Roccette) and 1.75 km (Sciara del Fuoco rim) distance from the crater terrace. This system provided sufficient spatial resolution, (~0.4 m) to allow for separate evaluation of gas emissions from the centrals/NE craters (CC and NEC, ~150 t/d on average) and from the northern hornitos (NH, ~15 t/d on average) that was active in summer 2014. Notwithstanding its marginal contribution to the total SO2 flux, the NH was vigorously active before the effusive eruption onset, and produced a large number of ash-free explosions, which individual SO2 output was easily measurable at high sampling rate with the SO2 cameras. From the beginning of June 2014, the NH exhibited a progressive increase of its explosive SO2 release (from ~1 t/d up to ~5 t/d) which culminated in correspondence with a sequence of lava overflows on the beginning of July 2014. A notable correlation between the explosive degassing pattern and co-acquired acoustic pressure and satellite-derived Volcanic Radiative Power was observed. The relative contributions of the individual degassing craters to the total gas emissions varied in response to the displacement of the magma level within the conduits, with the largest SO2 fluxes being observed during lava overflows. Our results here indicate detectable changes in the relative gas contribution from the different craters and in their degassing modes, although in the absence of sizeable pre-eruptive variations of the total SO2 output. Our observations offer new insights for the understanding of degassing dynamics within shallow conduit systems.

  13. Yield response curves of crops exposed to SO 2 time series

    NASA Astrophysics Data System (ADS)

    Male, Larry; Preston, Eric; Neely, Grady

    Six species (alfalfa, onion, lettuce, radish, red clover, Douglas fir) were exposed in field growth chambers to both constant concentration and stochastic SO 2 time series. Yield response curves were generated with median concentrations ranging from 0 to 20 pphm. Constant concentration treatments were found to underestimate yield loss compared with the pollutant time series treatments. An heuristic model of plant assimilation of SO 2 is presented to explain this result.

  14. Direct sulfonation of methane to methanesulfonic acid with SO2 using Ca salts as promoters.

    PubMed

    Mukhopadhyay, Sudip; Bell, Alexis T

    2003-04-16

    Direct liquid-phase sulfonation of methane to methanesulfonic acid (MSA) with SO2 has been achieved in triflic acid using K2S2O8 as the oxidant and a small amount of a Ca salt as the promoter. The effects of reaction conditions on the conversion of SO2 to MSA were examined. Included were the influence of solvent acidity, reaction duration, reaction temperature, amount of K2S2O8, and composition and amount of promoters. PMID:12683795

  15. SO2 interaction with Zn(0001) and ZnO(0001) and the influence of water

    NASA Astrophysics Data System (ADS)

    Önsten, Anneli; Stoltz, Dunja; Palmgren, Pål; Yu, Shun; Claesson, Thomas; Göthelid, Mats; Karlsson, Ulf O.

    2013-02-01

    Photoelectron spectroscopy has been used to study room temperature adsorption of sulfur dioxide on clean and water exposed (0001) surfaces of zinc and zinc oxide. Water has no significant effect either on clean or on SO2 exposed Zn(0001) at the low water pressures used (p < 10- 7 mbar). In the case of the zinc-terminated ZnO(0001) surface, however, water adsorbs dissociatively and OH groups are shown to have a considerable effect on SO2 surface reactions. A strong oxidation reaction occurs between Zn(0001) and SO2 giving various sulfur containing species. On ZnO(0001), SO2 interacts mainly with oxygen sites giving SO3 or SO4 species. It is shown that the ZnO(0001) sample preparation procedure can have large effects on surface chemical and physical properties. Samples cleaned by four different preparation procedures are investigated, namely sputtering only and sputtering followed by annealing at 450 °C, 530 °C and 600-650 °C. Annealing at 600 °C leads to a transition from a partly OH-terminated surface to a triangularly structured surface free from OH groups. Adsorption of SO2 on the latter surface leads to a decreased surface conductivity, which hampers photoemission measurements. Water is shown to block SO2 adsorption sites on both 450 °C and 530 °C annealed samples. On the latter sample, SO2 reduction has been observed to a small extent on the clean surface and to a larger extent when the surface is prehydroxylated. Here, we speculate that water, similar to hydrogen, generates surface zinc clusters on ZnO(0001). Zinc clusters could enable charge transfer to the antibonding LUMO of the SO2 molecule and subsequent dissociation.

  16. SO2 fluorescence from vacuum ultraviolet dissociative excitation of SO3

    SciTech Connect

    Suto, M.; Ye, C.; Ram, R.S.; Lee, L.C.

    1987-06-04

    The absorption and fluorescence excitation spectra of SO3 were measured in the 145-160-nm region with synchrotron radiation as a light source. The fluorescence spectra produced by excitation of SO3 at 147 and 157 nm were dispersed and compared with the laser-induced fluorescence spectrum of SO2, from which the emitter is identified to be the excited SO2*. The photodissociation process of SO3 is discussed in accord with the fluorescence observed.

  17. Optical Emission Detection of SO2 by Microfabricated Inductively Coupled Plasma (mICP)

    Microsoft Academic Search

    Olga Minayeva; Jeffrey Hopwood

    2001-01-01

    In this work a microfabricated ICP is used to optically detect trace amounts of SO_2. An mICP system consists of a planar microfabricated plasma source and miniature aluminum chamber and operates at 1-10 torr pressure and 0.7-3.5 W of 493 MHz RF power. An SO2 fraction as low as 2 ppm was measured using the intensity of atomic sulfur emission

  18. SO2 gas monitoring by DOAS at Sakurajima and Suwanosejima volcanoes

    Microsoft Academic Search

    Takehiko MORI; Kazuhiro ISHIHARA; Junichi HIRABAYASHI; Kouhei KAZAHAYA; Toshiya MORI

    Synopsis We have produced trial instrument for measurement of SO2 emission using differential optical absorption spectrometer (DOAS). Its performance has been tested at several volcanoes in Japan since 2003. The performance of the DOAS and its practice measurement were executed in Sakurajima and Suwanosejima. The SO2 emissions from Sakurajima and Suwanosejima were measured by the DOAS. Sakurajima emitted 500~1000ton\\/day due

  19. Silica-Enhanced Sorbents for Dry Injection Removal of SO2 from Flue Gas

    Microsoft Academic Search

    Wojciech Jozewicz; John C. S. Chang; Charles B. Sedman; Theodore G. Brna

    1988-01-01

    Novel silica-enhanced lime sorbents were tested in a bench-scale sand-bed reactor for their potential for SO2 removal from flue gas. Reactor conditions were 64°C (147°F), relative humidity of 60 percent [corresponding to an approach to saturation temperature of 10°C (18°F)], and inlet SO2 concentration of 500 or 1000 ppm. The sorbents were prepared by pressure hydration of CaO or Ca(OH)2

  20. Computational modeling of furnace sorbent injection for SO 2 removal from coal-fired utility boilers

    Microsoft Academic Search

    Liming Shi; Guisu Liu; Brian S. Higgins; Lewis Benson

    2011-01-01

    Furnace sorbent injection (FSI) is used to remove SO2 formed during coal combustion by injecting sorbent into the high temperature zone of a furnace above the fireball. FSI is cost effective for older coal-fired boilers, especially when space or capital budgets are limited. To optimize the design and performance of FSI, an SO2\\/sorbent modeling scheme that simultaneously considers calcination (or

  1. Sorbent\\/urea slurry injection for simultaneous SO2\\/NOx removal

    Microsoft Academic Search

    Brain K. Gullett; Kevin R. Bruce; Walter F. Hansen; John E. Hofmann

    1992-01-01

    The paper discusses an investigation of the combination of sorbent injection and selective non-catalytic reduction (SNCR) technologies for simultaneous SO2\\/NOx removal. A slurry of a urea-based solution and various Ca-based sorbents was injected at a range of temperatures and reactant\\/pollutant stoichiometries. Testing on a natural-gas pilot-scale reactor with doped pollutants achieved up to 80% reduction of SO2 and NOx at

  2. Effects of carbonaceous particles and heavy metals on mortar-SO 2 reactions

    Microsoft Academic Search

    G. Zappia; C. Sabbioni; G. Gobbi

    1998-01-01

    The effects of carbonaceous particles and heavy metals in the interaction between sulfur dioxide and mortars were investigated\\u000a in a laboratory exposure system. Simulation experiments were carried out in a flow chamber where temperature, relative humidity\\u000a and SO2 concentration were controlled. Samples of lime, pozzolan and cement mortars were exposed for 150 days in air with 3 ppm of\\u000a SO2

  3. SO2 in the Fall in the Arctic: Source Identification Using Sulfur Isotopes

    NASA Astrophysics Data System (ADS)

    Norman, A. L.; Seguin, A.; Rempillo, O. T.

    2011-12-01

    The Arctic atmosphere, although far from industrial sources, has a large anthropogenic SO2 load. Sulfur dioxide can have other sources including from dimethylsulphide (DMS) oxidation. One way to distinguish between these two types of SO2 is through sulfur isotope apportionment. During the Fall seasons of 2007 and 2008 aerosol sulfate and SO2 were measured at two sites in the Arctic. One site was on board the Canadian Coast Guard Ship, The Amundsen, as it traveled throughout the Arctic and the other site was at Alert, Nunavut, Canada. Sulfur dioxide concentrations at Alert varied between 0.02 and 18 nmol/m3 throughout the study with a median of 0.4 nmol/m3. ?34S values ranged between 0 and +11%. Concentrations and ?34S values aboard the Amundsen were much more diverse with concentrations ranging between 0.09 and 134 nmol/m3 (2007 median = 9.4 nmol/m3; 2008 median = 2.0 nmol/m3) and ?34S values ranging between -15 and +18%. High concentrations of SO2 on board the Amundsen were not directly from the Amundsen itself as there was no correlation with peaks in coincident CO2 measurements. Low concentrations of SO2 may, in a few instances, be associated with DMS oxidation. Negative ?34S values were present for samples collected near the Amundsen Gulf and are consistent with a third source of SO2 in the Arctic. This is likely the local source of SO2 from the Smoking Hills in the North West Territories. Distinguishing between these sources of SO2 in the Arctic and the importance of local verses regional sources will be discussed.

  4. Validation of SO2 retrievals from the Ozone Monitoring Instrument over NE China

    Microsoft Academic Search

    Nickolay A. Krotkov; Brittany McClure; Russell R. Dickerson; Simon A. Carn; Pawan K. Bhartia; Kai Yang; Arlin J. Krueger; Zhanqing Li; Pieternel F. Levelt; Hongbin Chen; Pucai Wang; Daren Lu

    2008-01-01

    The Dutch-Finnish Ozone Monitoring Instrument (OMI) launched on the NASA Aura satellite in July 2004 offers unprecedented spatial resolution, coupled with contiguous daily global coverage, for space-based UV measurements of sulfur dioxide (SO2). We present a first validation of the OMI SO2 data with in situ aircraft measurements in NE China in April 2005. The study demonstrates that OMI can

  5. High-sensitivity detection of hazardous SO2 using 266 nm UV laser

    Microsoft Academic Search

    Mohammed A. Gondal; Mohamed A. Dastageer

    2008-01-01

    Pulsed laser resonant photoacoustic spectroscopy was applied for detection of highly toxic SO2 with 266 nm as the excitation source. An extra-cavity longitudinal resonant cell, was designed and fabricated to enhance the sensitivity of the system, which is capable of detecting the trace amount of SO2. As a process of signal-to-noise ratio optimization, the parametric dependence of the PA signal

  6. The role of stomata in sensitivity of Betula papyrifera seedlings to SO 2 at different humidities

    Microsoft Academic Search

    R. J. Norby; T. T. Kozlowski

    1982-01-01

    Stomata of paper birch (Betula papyrifera Marsh.) seedlings were more open at high humidity than at low humidity and responded rapidly to changes in vapor pressure deficit. SO2 at 0.2 or 0.8 µl l-1 caused partial stomatal closure. Seedlings fumigated with SO2 at 0.2 or 0.5 µl l-1 for 30 h or 0.2 µl l-1 for 75 h took up

  7. Global tracking of the SO2 clouds from the June, 1991 Mount Pinatubo eruptions

    Microsoft Academic Search

    Gregg J. S. Bluth; Scott D. Doiron; Charles C. Schnetzler; Arlin J. Krueger; Louis S. Walter

    1992-01-01

    The explosive June 1991 eruptions of Mount Pinatubo produced the largest sulfur dioxide cloud detected by the Total Ozone Mapping Spectrometer (TOMS) during its 13 years of operation: approximately 20 million tons of SO2, predominantly from the cataclysmic June 15th eruption. The SO2 cloud observed by the TOMS encircled the Earth in about 22 days (?21 m\\/s); however, during the

  8. Continuous SO2 Emission Rate Measurements at Kilauea: Capturing Transitory Events

    NASA Astrophysics Data System (ADS)

    Sutton, A. J.; Herd, R.; Elias, T.; Edmonds, M.; Horton, K.; Garbeil, H.; Teves, A.

    2005-12-01

    Kilauea is one of the better studied volcanoes on Earth, and regular SO2 flux measurements over the past 26 years have, along with concurrent geophysical measurements, improved our understanding of eruptive processes. In particular, the temporal pattern of summit SO2 release has served to test the model of Kilauea's summit reservoir as a way station for magma bound for the east rift eruption site. East rift SO2 emissions, on the other hand, are now regularly used to track the overall lava effusion rate. These gas-based eruption rate data confirm concurrent geophysical measurements made by Very Low Frequency (VLF) profiling of master lava tubes. Although data from weekly SO2 measurements clearly track eruptive changes over weeks to months, much of Kilauea's activity varies on a shorter timescale-minutes to days. In order to capture these transients, including complex deflation-inflation events, effusive bursts, and gas pistoning, high sampling rates are required, comparable to those of geophysical instruments. Preliminary results from a continuously recording, fixed-view spectrometer indicated that Kilauea was likely a good location for implementing continuous SO2 emission-rate monitoring. Accordingly, we are now field testing a telemetered scanning spectrometer system that incorporates characteristics from instruments employed at Soufriere Hills Volcano, Stromboli, and Mount Etna, as well as some novel features to improve data quality. The Kilauea SO2 monitoring system is comprised of a pair of Ocean Optics miniature-UV spectrometers interfaced with scanning assemblies, and is linked to the observatory via spread spectrum radio. The temperature-controlled spectrometers undergo in-situ calibration by periodic, automatic insertion of SO2 calibration cells. One goal of this system is to provide emission rates every few minutes throughout the day. The SO2 data are ingested directly into the observatory data stream for near real-time visualization, along with other concurrent geochemical and geophysical data and observations.

  9. Effects of SO2 on Stomatal Metabolism in Pisum sativum L. 1

    PubMed Central

    Rao, I. Madhusudana; Amundson, Robert G.; Alscher-Herman, Ruth; Anderson, Louise E.

    1983-01-01

    Pea (Pisum sativum L. cv `Little Marvel') plants were exposed to SO2 for short term (3 hours) and long term (2 days) at 0.2 and at 0.5 microliter per liter (ppm) levels. The effect of this treatment on the activity of phosphoenolpyruvate carboxylase, NAD- and NADP-malate dehydrogenases, and alanine aminotransferase from epidermis and whole leaves was investigated. Short-term exposure to SO2 at 0.2 or 0.5 ppm decreased the activity of the carboxylase and the dehydrogenases in the epidermis. In contrast, the activity of the same three enzymes increased in whole leaves with either short- or long-term exposure to SO2. Alanine aminotransferase in epidermis or whole leaves was not much affected by short-term exposure, but the epidermal activity was decreased and whole leaf activity was increased with long-term exposure. SO2 exposure which was initiated prior to illumination decreased the free thiol content of both epidermis and of whole leaf. Net photosynthesis was reversibly inhibited by long-term exposure to SO2 at 0.5 ppm. No effect of 0.5 ppm SO2 on stomatal conductance was detectable after 3 hours. Stomatal conductance appeared to decrease after longer exposure times (2 days) at 0.5 ppm. PMID:16663045

  10. Vitamin E protects against lipid peroxidation due to cold-SO2 coexposure in mouse lung.

    PubMed

    Ergonul, Zuhal; Erdem, Ay?en; Balkanci, Zeynep Dicle; Kilinc, Kamer

    2007-02-01

    Exposure to sulfur dioxide (SO2) and cold increases especially in the winter. SO2 or cold exposure destroys the oxidant/antioxidant balance and increases lipid peroxidation. However, the effect of coexistence of both factors has not been studied yet. Therefore, we investigated the effect of SO2 and/or repeated short-term cold exposure on the oxidant-antioxidant status and the possible protective role of vitamin E in the cardiopulmonary tissues of mice. Swiss albino mice of both sexes were assigned to eight groups. Four groups were kept at room temperature, injected either with saline or vitamin E (100 mg/kg) in the presence or absence of SO2 exposure (10 ppm, 1 h/day, 30 days). The remaining four groups received the same protocol but were exposed to cold (4 +/- 1 degrees C, 1 h/days, 30 days) instead of room temperature. On day 30, the lung and heart tissues were removed for biochemical analysis. SO2 and cold coexposure increased lactate level in the lung, and elevated thiobarbituric acid-reactive substance (TBARS) and reduced glutathione levels in both tissues, while vitamin E treatment reversed TBARS increment predominantly in the lung. In conclusion, cold and SO2 coexposure exerts more deleterious effects in the cardiopulmonary tissues, while vitamin E treatment seems to be protective, particularly in the lung. PMID:17169863

  11. SO(2) inhalation induces protein oxidation, DNA-protein crosslinks and apoptosis in rat hippocampus.

    PubMed

    Sang, Nan; Hou, Li; Yun, Yang; Li, Guangke

    2009-03-01

    Previous studies provide evidence for the possible neurotoxicity of SO(2), but little information is available about its mechanisms. In the present study, SO(2) inhalation-induced effects on the protein oxidation, DNA-protein crosslinks and apoptosis in rat hippocampus were studied, by exposing Wistar rats to SO(2) at 14, 28 and 56mg/m(3). The results indicate that the protein carbonyl content, an indicator of protein oxidation, and DNA-protein crosslink coefficient were significantly augmented with concentration-dependent properties. In addition, SO(2) inhalation at all concentrations tested caused the increases of caspase-3 activity and number of TUNEL positive staining neuron and the statistical difference was observed after 28 and 56mg/m(3) exposure, suggesting the occurrence of apoptosis. The results imply that attacking protein, nucleic acids and lipids by free radicals, generated via SO(2) derivatives in vivo, is one of the main mechanisms for SO(2)-induced injuries in central neuronal system. PMID:18722661

  12. Identification of Large Emission Sources of SO2 in Mexico Megacity

    NASA Astrophysics Data System (ADS)

    Garcia-reynoso, J.; Resendiz-Martinez, C.; Delgado Granados, H.

    2011-12-01

    Successful actions for reducing SO2 concentrations in the Mexico Megacity such as changes in fuel composition for industry and cars, closure of large emitters and the setup of a measuring network of criteria pollutants, took place in the last 15 years. Specifically SO2 has been measured systematically since 1986. However there are still some periods of high SO2 concentrations, exceeding the recommended World Health Organization levels. Using a coupled air quality model and back trajectories analysis, it was possible to identify the large SO2 emissions sources that influence the air quality of Mexico Megacity for the years 2007 to 2009. Two large sources were identified in previous studies: The Tula industrial area and the Popocatepetl volcano. However those only explain only around 70% of the high SO2 concentrations modeled episodes. An additional source has been identified to explain this missing contribution. It is the Tuxpan power plant located in the coast of the Gulf of Mexico. This shows that near and distant regional sources should be involved to explain the increment of atmospheric SO2 concentrations for Mexico Megacity and other areas were so far no measurements are available. A control policy should be at a national level

  13. Effect of surface area and chemisorbed oxygen on the SO2 adsorption capacity of activated char

    USGS Publications Warehouse

    Lizzio, A.A.; DeBarr, J.A.

    1996-01-01

    The objective of this study was to determine whether activated char produced from Illinois coal could be used effectively to remove sulfur dioxide from coal combustion flue gas. Chars were prepared from a high-volatile Illinois bituminous coal under a wide range of pyrolysis and activation conditions. A novel char preparation technique was developed to prepare chars with SO2 adsorption capacities significantly greater than that of a commercial activated carbon. In general, there was no correlation between SO2 adsorption capacity and surface area. Temperature-programmed desorption (TPD) was used to determine the nature and extent of carbon-oxygen (C-O) complexes formed on the char surface. TPD data revealed that SO2 adsorption was inversely proportional to the amount of C-O complex. The formation of a stable C-O complex during char preparation may have served only to occupy carbon sites that were otherwise reactive towards SO2 adsorption. A fleeting C(O) complex formed during SO2 adsorption is postulated to be the reaction intermediate necessary for conversion of SO2 to H2SO4. Copyright ?? 1996 Elsevier Science Ltd.

  14. Effect of the volcanic ash type uncertainties on ash and SO2 retrievals from satellite multi-spectral measurements in the TIR spectral range

    NASA Astrophysics Data System (ADS)

    Corradini, Stefano; Merucci, Luca; Campion, Robin; Carboni, Elisa

    2013-04-01

    After the Eyjafjallajokull 2010 eruption the quantitative determination of the volcanic ash present in ash clouds has become more important because of the policy change from the previous zero tolerance to the new ash threshold based approach in the aviation hazard management. Volcanic SO2 has an impact on the environment and when injected at high altitudes can be oxidized to form sulphates capable of reflecting solar radiation then causing surface cooling. Observations of the volcanic degassing also yield insights into the magmatic processes which control volcanic activity during both quiescent and eruptive phases. During volcanic eruptions ash and gases are often emitted simultaneously. The plume ash particles reduce the top of atmosphere radiance in the entire thermal infrared (TIR) spectral range causing a significant SO2 columnar abundance overestimation. The ash optical properties are among the most critical parameters to set, their uncertainties cause meaningful errors on both ash and SO2 retrievals. In this work the effect effect of the volcanic ash type uncertainties on ash and SO2 retrievals from MODIS measurements in the TIR spectral range have been quantified. As test case some events of the 2010 Eyjafjallajokull (Iceland) eruption has been considered. The ash optical properties derive from the ARIA database of the Oxford University, while the MODIS SO2 and ash retrievals strategies are based on the BTD and minimization approaches using the channels centered at 8.7, 11 and 12 micron. The radiative transfer model simulations, needed for the retrievals schemes, are carried out by using MODTRAN [Corradini et al., 2009]. The MODIS SO2 retrievals have been also compared with the retrievals obtained by using IASI hyper-spectral and ASTER high spatial resolution data. The two procedures are considered less sensitive to the ash type: the ASTER retrieval scheme [Campion et al. 2010] consists of adjusting the SO2 column amount until the ratios of radiance simulated on several ASTER bands match the observations, while the IASI retrieval [Carboni et al. 2012] is an optimal estimation scheme that exploit the high resolution spectrometer measurements of the two SO2 absorption bands around 7.3 and 8.7 micron.

  15. Corrections for OMI SO2 BRD retrievals influenced by row anomalies

    NASA Astrophysics Data System (ADS)

    Yan, H.; Chen, L.; Tao, J.; Su, L.; Huang, J.; Han, D.; Yu, C.

    2012-11-01

    Since June 2007, the Ozone Monitoring Instrument (OMI) Earth radiance data at specific viewing angles have been affected by the row anomaly, which causes large biases in sulfur dioxide (SO2) columns retrieved using the band residual difference (BRD) algorithm. To improve global measurements of atmospheric SO2 from OMI, we developed two correction approaches for the row anomaly effects in the northern latitudes and along the full orbit. Firstly the residual correction approach with median residual from a sliding 10° latitude range, and with that near the Equator was used to remove the anomalous high SO2 columns in the northern latitudes. Secondly, in the case of the row anomaly along the full orbit, the SO2 biases caused by the anomalous ozone (O3) column and underestimated Lambertian effective reflectivity (LER) were reduced, respectively, by using unaffected adjacent O3 column and residual correction with median residual from a sliding 10° latitude range. Comparisons with the OMI SO2 columns processed with median residual from a sliding 30° latitude range have illustrated the drastic improvements of our correction approaches under row anomaly conditions. The consistencies among the SO2 columns inside and outside the row anomaly areas have also demonstrated the effectiveness of our correction approaches under row anomaly conditions. The analyses of the underestimation and the errors caused by the O3 column and LER were conducted to understand the limitations of our correction approaches. The proposed approaches for the row anomaly effects can extend the valid range of OMI SO2 Planetary Boundary Layer (PBL) data produced using the BRD algorithm.

  16. Validation of SO2 Retrievals from the Ozone Monitoring Instrument over NE China

    NASA Technical Reports Server (NTRS)

    Krotkov, Nickolay A.; McClure, Brittany; Dickerson, Russell R.; Carn, Simon A.; Li, Can; Bhartia, Pawan K.; Yang, Kai; Krueger, Arlin J.; Li, Zhanqing; Levelt, Pieternel F.; Chen, Hongbin; Wang, Pucai; Lu, Daren

    2008-01-01

    The Dutch-Finnish Ozone Monitoring Instrument (OMI) launched on the NASA Aura satellite in July 2004 offers unprecedented spatial resolution, coupled with contiguous daily global coverage, for space-based UV measurements of sulfur dioxide (SO2). We present a first validation of the OMI SO2 data with in situ aircraft measurements in NE China in April 2005. The study demonstrates that OMI can distinguish between background SO2 conditions and heavy pollution on a daily basis. The noise (expressed as the standard deviation,sigma) is approximately 1.5 DU (Dobson units; 1 DU = 2.69 10 (exp 16) molecules/cm (exp 2)) for instantaneous field of view boundary layer (PBL) SO2 data. Temporal and spatial averaging can reduce the noise to sigma approximetly 0.3 DU over a remote region of the South Pacific; the long-term average over this remote location was within 0.1 DU of zero. Under polluted conditions collection 2 OMI data are higher than aircraft measurements by a factor of two. Improved calibrations of the radiance and irradiance data (collection 3) result in better agreement with aircraft measurements on polluted days. The air mass corrected collection 3 data still show positive bias and sensitivity to UV absorbing aerosols. The difference between the in situ data and the OMI SO2 measurements within 30 km of the aircraft profiles was about 1 DU, equivalent to approximately 5 ppb from 0 to 3000 m altitude. Quantifying the SO2 and aerosol profiles and spectral dependence of aerosol absorption between 310 and 330 nm are critical for an accurate estimate of SO2 from satellite UV measurements.

  17. Applying UV cameras for SO2 detection to distant or optically thick volcanic plumes

    USGS Publications Warehouse

    Kern, Christoph; Werner, Cynthia; Elias, Tamar; Sutton, A. Jeff; Lübcke, Peter

    2013-01-01

    Ultraviolet (UV) camera systems represent an exciting new technology for measuring two dimensional sulfur dioxide (SO2) distributions in volcanic plumes. The high frame rate of the cameras allows the retrieval of SO2 emission rates at time scales of 1 Hz or higher, thus allowing the investigation of high-frequency signals and making integrated and comparative studies with other high-data-rate volcano monitoring techniques possible. One drawback of the technique, however, is the limited spectral information recorded by the imaging systems. Here, a framework for simulating the sensitivity of UV cameras to various SO2 distributions is introduced. Both the wavelength-dependent transmittance of the optical imaging system and the radiative transfer in the atmosphere are modeled. The framework is then applied to study the behavior of different optical setups and used to simulate the response of these instruments to volcanic plumes containing varying SO2 and aerosol abundances located at various distances from the sensor. Results show that UV radiative transfer in and around distant and/or optically thick plumes typically leads to a lower sensitivity to SO2 than expected when assuming a standard Beer–Lambert absorption model. Furthermore, camera response is often non-linear in SO2 and dependent on distance to the plume and plume aerosol optical thickness and single scatter albedo. The model results are compared with camera measurements made at Kilauea Volcano (Hawaii) and a method for integrating moderate resolution differential optical absorption spectroscopy data with UV imagery to retrieve improved SO2 column densities is discussed.

  18. Using Satellite Observations to Evaluate the AeroCOM Volcanic Emissions Inventory and the Dispersal of Volcanic SO2 Clouds in MERRA

    NASA Astrophysics Data System (ADS)

    Hughes, E. J.; Krotkov, N. A.; da Silva, A.; Colarco, P. R.

    2014-12-01

    Simulation of volcanic emissions in climate models requires information that describes the eruption of the emissions into the atmosphere. While the total amount of gases and aerosols released from a volcanic eruption can be readily estimated from satellite observations, information about the source parameters, like injection altitude, eruption time and duration, is often not directly known. The AeroCOM volcanic emissions inventory provides estimates of eruption source parameters and has been used to initialize volcanic emissions in reanalysis projects, like MERRA. The AeroCOM volcanic emission inventory provides an eruption's daily SO2 flux and plume top altitude, yet an eruption can be very short lived, lasting only a few hours, and emit clouds at multiple altitudes. Case studies comparing the satellite observed dispersal of volcanic SO2 clouds to simulations in MERRA have shown mixed results. Some cases show good agreement with observations Okmok (2008), while for other eruptions the observed initial SO2 mass is half of that in the simulations, Sierra Negra (2005). In other cases, the initial SO2 amount agrees with the observations but shows very different dispersal rates, Soufriere Hills (2006). In the aviation hazards community, deriving accurate source terms is crucial for monitoring and short-term forecasting (24-h) of volcanic clouds. Back trajectory methods have been developed which use satellite observations and transport models to estimate the injection altitude, eruption time, and eruption duration of observed volcanic clouds. These methods can provide eruption timing estimates on a 2-hour temporal resolution and estimate the altitude and depth of a volcanic cloud. To better understand the differences between MERRA simulations and volcanic SO2 observations, back trajectory methods are used to estimate the source term parameters for a few volcanic eruptions and compared to their corresponding entry in the AeroCOM volcanic emission inventory. The nature of these mixed results is discussed with respect to the source term estimates.

  19. Polyvinylpyrrolidone/reduced graphene oxide nanocomposites thin films coated on quartz crystal microbalance for NO2 detection at room temperature

    NASA Astrophysics Data System (ADS)

    Huang, Junlong; Xie, Guangzhong; Zhou, Yong; Xie, Tao; Tai, HuiLing; Yang, Guangjin

    2014-08-01

    Polyvinylpyrrolidone (PVP)/reduced graphene oxide (RGO) nanocomposites are sprayed on quartz crystal microbalance (QCM) for NO2 sensing. The thin films are characterized by Fourier transform infrared spectroscopy (FTIR) and ultraviolet-visible spectroscopy (UV-VIS). The experimental results reveal that PVP/RGO sensor exhibits higher sensitivity and shorter recovery time than those of PVP. Besides, the response to 20 ppm NO2 is higher than other gases such as CO, CO2 and NH3 even at 100ppm. When the PVP/RGO sensor is exposed to these gases, the good selectivity to NO2 makes the sensor ideal for NO2 detection.

  20. SO2 photolysis as a source for sulfur mass-independent isotope signatures in stratospehric aerosols

    NASA Astrophysics Data System (ADS)

    Whitehill, A. R.; Jiang, B.; Guo, H.; Ono, S.

    2015-02-01

    Signatures of sulfur isotope mass-independent fractionation (S-MIF) have been observed in stratospheric sulfate aerosols deposited in polar ice. The S-MIF signatures are thought to be associated with stratospheric photochemistry following stratospheric volcanic eruptions, but the exact mechanism responsible for the production and preservation of these signatures is debated. In order to identify the origin and the mechanism of preservation for these signatures, a series of laboratory photochemical experiments were carried out to investigate the effect of temperature and added O2 on the S-MIF produced by two absorption band systems of SO2: photolysis in the 190 to 220 nm region and photoexcitation in the 250 to 350 nm region. The SO2 photolysis (SO2 + h? ? SO + O) experiments showed S-MIF signals with large 34S/34S fractionations, which increases with decreasing temperature. The overall S-MIF pattern observed for photolysis experiments, including high 34S/34S fractionations, positive mass-independent anomalies in 33S, and negative anomalies in 36S, is consistent with a major contribution from optical isotopologue screening effects and data for stratospheric sulfate aerosols. In contrast, SO2 photoexcitation produced products with positive S-MIF anomalies in both 33S and 36S, which is different from stratospheric sulfate aerosols. SO2 photolysis in the presence of O2 produced SO3 with S-MIF signals, suggesting the transfer of the S-MIF anomalies from SO to SO3 by the SO + O2 + M ? SO3 + M reaction. This is supported with energy calculations of stationary points on the SO3 potential energy surfaces, which indicate that this reaction occurs slowly on a single adiabatic surface, but that it can occur more rapidly through intersystem crossing. Based on our experimental results, we estimate a termolecular rate constant on the order of 10-37 cm6 molecule-2 s-1. This rate can explain the preservation of mass independent isotope signatures in stratospheric sulfate aerosols and provides a minor, but important, oxidation pathway for stratospheric SO2. The production and preservation of S-MIF signals requires a high SO2 column density to allow for optical isotopologue screening effects to occur and to generate a large enough signature that it can be preserved. In addition, the SO2 plume must reach an altitude of around 20 to 25 km, where SO2 photolysis becomes a dominant process. These experiments are the first step towards understanding the origin of the sulfur isotope anomalies in stratospheric sulfate aerosols.

  1. Observing the plume of Popocatepetl with a novel SO2-Camera

    NASA Astrophysics Data System (ADS)

    Luebcke, P.; Zielcke, J.; Vogel, L.; Kern, C.; Bobrowski, N.; Platt, U.

    2010-12-01

    Sulfur dioxide flux emission measurements can be an important tool for monitoring volcanoes and eruption risk assessment. For instance hanges in the SO2 flux have been recorded prior to volcanic eruptions. The SO2 camera is a novel technique for the remote sensing of volcanic emissions based on measuring the ultra-violet absorption of SO2 in a narrow wavelength window around 310 nm by employing band-pass interference filters and a 2-D UV-sensitive CCD detector. Solar radiation scattered in the atmosphere is used as a light source for the measurements. The effect of aerosol scattering can be eliminated by additionally measuring the incident radiation around 325 nm where the absorption of SO2 is no longer significant, thus rendering the method applicable to optically opaque plumes. The ability to deliver spatially resolved images of volcanic SO2 distributions at a frame rate on the order of 1 Hz makes the SO2 camera a very promising technique for volcanic monitoring. The high time resolution allows the calculation of the wind-speed directly from the measurements, thus largely eliminating the main error source of flux measurements. Another advantage of the high time resolution is the possibility to correlate the gas flux with other data sets on shorter timescales. Here we present results of a measurement campaign conducted at Popocatepetl, Mexico in April 2010, which were performed with a new prototype of a SO2 camera incorporating an additional Differential Optical Absorption Spectroscopy (DOAS) system. The DOAS system was used to test a new calibration method, besides that it allows to correct for radiative transfer effects. The built in DOAS system carried out point measurements of the volcanic plume in a region that corresponds to the center of the SO2 camera images. This yields column density / apparent absorption pairs that can be used to determine the calibration curve for the SO2 camera images. In order to test and validate this approach simultaneous measurements with an imaging-DOAS, were conducted. The imaging-DOAS two dimensional trace gas distributions were used to verify the camera calibration.

  2. Sulphur dioxide (SO2) emissions during the 2014-15 Fogo eruption, Cape Verde

    NASA Astrophysics Data System (ADS)

    Barrancos, José; Dionis, Samara; Quevedo, Roberto; Fernandes, Paulo; Rodríguez, Fátima; Pérez, Nemesio M.; Silva, Sónia; Cardoso, Nadir; Hernández, Pedro A.; Melián, Gladys V.; Padrón, Eleazar; Padilla, Germán; Asensio-Ramos, María; Calvo, David; Semedo, Helio; Alfama, Vera

    2015-04-01

    A new eruption started at Fogo volcanic island on November 23, 2014, an active stratovolcano, located in the SW of the Cape Verde Archipelago; rising over 6 km from the 4000m deep seafloor to the Pico do Fogo summit at 2829m above sea level (m.a.s.l.). Since settlement in the 15th century, 27 eruptions have been identified through analysis of incomplete written records (Ribeiro, 1960), with average time intervals of 20 yr and average duration of two months. The eruptions were mostly effusive (Hawaiian to Strombolian), with rare occurrences of highly explosive episodes including phreatomagmatic events (Day et al., 1999). This study reports sulphur dioxide (SO2) emission rate variations observed throughout the 2014-15 Fogo eruption, Cape Verde. More than 100 measurements of SO2 emission rate have been carried out in a daily basis by ITER/INVOLCAN/UNICV/OVCV/SNPC research team since November 28, 2014, five days after the eruption onset, by means of a miniDOAS using the traverse method with a car. The daily deviation obtained of the data is around 15%. Estimated SO2 emission rates ranged from 12,476 ± 981 to 492 ± 27 tons/day during the 2014-15 Fogo eruption until January 1, 2015. During this first five days of measurements, the observed SO2 emission rates were high with an average rate of 11,100 tons/day. On December 3, 2014 the SO2 emission rate dropped to values close to 4,000 tons/day, whereas few days later, on December 10, 2014, an increase to values close to 11,000 tons/day was recorded. Since then, SO2 emission rate has shown decrease trend to values close to 1,300 tons/day until December 21, 2014. The average of the observed SO2 emission rate was about 2,000 tons/day from December 21, 2014 to January 1, 2015, without detecting a specific either increasing or decreasing trend of the SO2 emission rate. The objective of this report is to clarify relations between the SO2 emission rate and surface eruptive activity during the 2014-15 Fogo eruption. Day, S. J., Heleno da Silva, S. I. N., and Fonseca, J. F. B. D.: A past giant lateral collapse and present-day flank instability of Fogo, Cape Verde Islands, J. Volcanol. Geotherm. Res., 94, 191-218, 1999. Ribeiro, O.: A ilha do Fogo e as suas erupções, 12a edição, Memórias, Série Geográfica, J. Inv. Ultramar, 1960.

  3. Erosion and modification of SO2 ice by ion bombardment of the surface of Io

    NASA Technical Reports Server (NTRS)

    Johnson, R. E.; Garrett, J. W.; Boring, J. W.; Barton, L. A.; Brown, W. L.

    1984-01-01

    New measurements on the effect of slow ion bombardment of SO2 ice using Ar(+) in the 15-45 keV range are presented. Total yields for loss of SO2 are given along with the energy spectra of the ejected molecules and molecular fragments and information on the chemical changes induced by the ion bombardment. These data are used to estimate that the direct sputter ejection rate of sulfur into the Jovian plasma is of the order of 10 billion atoms/sq cm/s, that the erosion rate of fresh SO2 deposits due to sputtering is of the order of 0.001 cm/yr, and that a significant and possibly observable column density of SO3 can be produced in an SO2 front only for penetrating ion bombardment. Chemical activity occurs even in rather low-temperature SO2 ice bombardment by ions in the nuclear stopping region, and this activity is likely to increase with increasing temperature.

  4. GIS-assisted dispersion of SO2 in the industrial regions.

    PubMed

    Taghizadeh, Mohamad Mehdi; Dehghani, Mansooreh; Rastgoo, Ebrahim

    2014-06-01

    Sulfur dioxide is one of the most important pollutants in urban areas which cause respiratory problems and acid rain. The aim of this research is to study the feasibility of using passive diffusive air sampling and GIS technique to determine the dispersion level of SO2 in the industrialized Zarghan area and assessing the contribution level of generating sources of SO2 in the urban areas. It is also essential to determine the contribution of other sources and dispersion radius of pollutants in the area as well. In this study, we used passive sampling method to measure the concentration of sulfur dioxide at 10 monitoring stations. Interpolation tools in ArcGIS technique create a continuous surface from measured values to predict SO2 concentration in other parts of the city. The concentrations of SO2 around Shiraz oil refinery and Dudej region located at 3 km from the oil refinery were 60 and 19 ?g m(-3), respectively. In conclusion the results indicated that SO2 concentration was not exceeded the standard limit in the residential area and the role of the local highway and industrial park was not significant. PMID:26035958

  5. Observations and Comparison of SO2 Measurements Aboard the NOAA P-3 during ARCPAC

    NASA Astrophysics Data System (ADS)

    Nowak, J. B.; Holloway, J. S.; Neuman, J. A.; Fehsenfeld, F. C.

    2008-12-01

    Instrument inter-comparisons play a crucial role in the successful execution of atmospheric measurement campaigns. The ability to quantify agreement among instruments that measure atmospheric compounds lends credence to the individual measurements and extends the scope of the overall study. One such measurement is that of sulfur dioxide (SO2). SO2 is the predominant anthropogenic sulfur- containing air pollutant. It plays an important role in the atmospheric sulfur cycle through its contribution to acidic aerosol formation, aerosol and cloud droplet modification, and acidic precipitation. Due to its large indirect impact on climate it is important to precisely know its sources, sinks and its atmospheric distribution. A modified TECO 43C-TL pulsed fluorescence instrument and a Chemical Ionization Mass Spectrometer (CIMS), were both deployed aboard the NOAA P-3 aircraft to measure SO2 during the Aerosol, Radiation, and Cloud Processes affecting Arctic Climate (ARCPAC) field program. The detection technique, sampling configuration, and calibration methods of the instruments are described. The performance of each instrument is assessed using ambient data to examine detection sensitivity, background signal, and time response. Lastly, an evaluation of the comparative performance of the two measurements is presented, as are preliminary results examining both the Arctic SO2 distribution observed from the NOAA P-3 and SO2 emissions from the Fairbanks urban area.

  6. High Performance Etching Process for Organic Films using SO2/O2 Plasma

    NASA Astrophysics Data System (ADS)

    Ohkuni, Mitsuhiro; Kugo, Shunsuke; Sasaki, Tomoyuki; Tateiwa, Kenji; Nikoh, Hideo; Matsuo, Takahiro; Kubota, Masafumi

    1998-04-01

    The anisotropic etching of organic films such as anti reflective coating (ARC) and resist for dry development using inductively coupled plasma (ICP) was studied. In ARC etching, the controllability of critical dimension (CD) and the selectivity to underlayers were investigated for O2 based gas chemistries by adding N2, He, CHF3, Cl2, HBr and SO2. The SO2/O2 chemistry has the advantage of both the CD controllability and the selectivity to underlayers. Field emission Auger electron spectroscopy (FE-AES) analysis revealed that the SO2 gas is useful for sidewall protection due to the sulfur deposition. In dry development etching, the controllability of the etched profile was investigated. It was dicovered that the Vpp (peak to peak voltage of RF bias) increases with increasing SO2 flow ratio to O2 so that a recession occurs in the silylated layer due to high ion energy. A vertical profile was obtained for a 0.13 µm pattern of resist and poly-Si optimizing SO2/O2 gas chemistry.

  7. Sulfur tolerance of selective partial oxidation of NO to NO2 in a plasma

    SciTech Connect

    Penetrante, B; Brusasco, R M; Merritt, B T; Vogtlin, G E

    1999-08-24

    Several catalytic aftertreatment technologies rely on the conversion of NO to NO2 to achieve efficient reduction of NOx and particulates in diesel exhaust. These technologies include the use of selective catalytic reduction of NOx with hydrocarbons, NOx adsorption, and continuously regenerated particulate trapping. These technologies require low sulfur fuel because the catalyst component that is active in converting NO to NO2 is also active in converting SO2 to SO3 . The SO3 leads t o increase in particulates and/or poison active sites on the catalyst. A non-thermal plasma can be used for the selective partial oxidation of NO to NO2 in the gas-phase under diesel engine exhaust conditions. This paper discusses how a non-thermal plasma can efficiently oxidize NO to NO2 without oxidizing SO2 to SO3 .

  8. High-precision measurements of (33)S and (34)S fractionation during SO2 oxidation reveal causes of seasonality in SO2 and sulfate isotopic composition.

    PubMed

    Harris, Eliza; Sinha, Bärbel; Hoppe, Peter; Ono, Shuhei

    2013-01-01

    This study presents high-precision isotope ratio-mass spectrometric measurements of isotopic fractionation during oxidation of SO2 by OH radicals in the gas phase and H2O2 and transition metal ion catalysis (TMI-catalysis) in the aqueous phase. Although temperature dependence of fractionation factors was found to be significant for H2O2 and TMI-catalyzed pathways, results from a simple 1D model revealed that changing partitioning between oxidation pathways was the dominant cause of seasonality in the isotopic composition of sulfate relative to SO2. Comparison of modeled seasonality with observations shows the TMI-catalyzed oxidation pathway is underestimated by more than an order of magnitude in all current atmospheric chemistry models. The three reactions showed an approximately mass-dependent relationship between (33)S and (34)S. However, the slope of the mass-dependent line was significantly different to 0.515 for the OH and TMI-catalyzed pathways, reflecting kinetic versus equilibrium control of isotopic fractionation. For the TMI-catalyzed pathway, both temperature dependence and (33)S/(34)S relationship revealed a shift in the rate-limiting reaction step from dissolution at lower temperatures to TMI-sulfite complex formation at higher temperatures. 1D model results showed that although individual reactions could produce ?(33)S values between -0.15 and +0.2‰, seasonal changes in partitioning between oxidation pathways caused average sulfate ?(33)S values of 0‰ throughout the year. PMID:24079753

  9. Abatement of particulate-laden SO(2) in tapered bubble column with internals.

    PubMed

    Bandyopadhyay, Amitava

    2009-09-01

    The performance of particulate-laden SO(2) scrubbing in a modified tapered bubble column with internals is reported in this article. The presence of particles improved the particulate-laden SO(2) removal efficiency to about 15% that was elucidated by the facilitated adsorptive mass transport. Experimentation revealed that nearly 100% removal efficiency of particulate-laden SO(2) was achievable without any additives or pretreatment under certain operating condition of the scrubber. An empirical correlation was developed to predict the performance of the modified tapered scrubber. Experimental values fitted excellently well with the predicted values through the correlation (within +/-5% deviation). The performance of the modified tapered bubble scrubber with column internals has been found to be better than a tapered bubble column without any internals. PMID:19890465

  10. New lava lake at Nyamuragira volcano revealed by combined ASTER and OMI SO2 measurements

    NASA Astrophysics Data System (ADS)

    Campion, Robin

    2014-11-01

    We report recent satellite measurements of the SO2 emissions from the Virunga Volcanic Group (VVG), which comprises the very active Nyamuragira and Nyiragongo volcanoes. Combining high time resolution data from the UV-operating OMI (Ozone Monitoring Instrument) with high ground resolution data from the IR-operating ASTER (Advanced Spaceborne Thermal Emission and Reflection radiometer), we show that (1) the SO2 emissions from the VVG have increased severalfold since the end of the last eruption of Nyamuragira. (2) Nyamuragira, which used to have very low intereruptive emissions of SO2 before this eruption, is now contributing to 60 to 90% of the combined emissions measured by OMI. Considering the eruptive history of Nyamuragira, the evidence from previous research for the existence of a shallow magma chamber, and the detection of isolated thermal anomalies since April 2014, we conclude that a deep-seated lava lake has formed in the N pit of Nyamuragira's caldera.

  11. Investigation of spectral interferences on the accuracy of broadband CW-NIRS tissue SO2 determination

    PubMed Central

    Zou, Fengmei; Jin, Chunguang; Ross, Randy R.; Soller, Babs

    2010-01-01

    An accurate SO2 prediction method for using broadband continuous-wave diffuse reflectance near infrared (NIR) spectroscopy is proposed. The method fitted the NIR spectra to a Taylor expansion attenuation model, and used the simulated annealing method to initialize the nonlinear least squares fit. This paper investigated the effect of potential spectral interferences that are likely to be encountered in clinical use, on SO2 prediction accuracy. The factors include the concentration of hemoglobin in blood, the volume of blood and volume of water in the tissue under the sensor, reduced scattering coefficient, µs', of the muscle, fat thickness and the source-detector spacing. The SO2 prediction method was evaluated on simulated muscle spectra as well as on dual-dye phantoms which simulate the absorbance of oxygenated and deoxygenated hemoglobin. PMID:21258506

  12. SO2 emission cap planning for Chengdu-Chongqing economic zone.

    PubMed

    Yi, Peng; Duan, Ning; Chai, Fahe; Xu, Yaxuan; He, Youjiang

    2012-01-01

    The SO2 emission sources of the Chengdu-Chongqing economic zone were divided into 556 emissions units according to four different categories, which are city, industry, point sources, and area sources. The CALPUFF model was used to calculate the contribution of each unit, and consequently obtain an influence-transferring matrix. To ensure that the SO2 concentrations of 46 cities and counties in the Chengdu-Chongqing economic zone meet air quality standards, an emission optimization model was developed to calculate optimal emissions of each emission unit under different development scenarios. The result showed the optimal emissions of SO2 by different provinces and industries. To achieve the target of restricting and optimizing development, corresponding planning programs were developed for every district. PMID:22783625

  13. CORRELATION OF ABDOMINAL rSO2 WITH SUPERIOR MESENTERIC ARTERY VELOCITIES IN PRETERM INFANTS

    PubMed Central

    Gillam-Krakauer, Maria; Cochran, Caitlin M; Slaughter, James C; Polavarapu, Sruthi; McElroy, Steven J; Hernanz-Schulman, Marta; Engelhardt, Barbara

    2013-01-01

    Objective Near-infrared spectroscopy (NIRS) is used to monitor brain and kidney perfusion in at-risk premature and term neonates. Although NIRS holds potential for bedside monitoring of intestinal perfusion, there is insufficient evidence showing correlation with mesenteric blood flow. To determine if an association exists between abdominal regional oxygen saturation (A-rSO2) and mesenteric blood flow, we compared changes in A-rSO2 to changes in blood flow velocity in the superior mesenteric artery (SMA) before and after feedings in very-low birthweight infants. Study Design A-rSO2 was continuously monitored midline below the umbilicus for 3 days in 18 stable 25–31 week bolus-fed infants (median BW 1203g, median age 5 days). We compared change in SMA velocity from immediately before to 10 minutes and 60–120 minutes after feeding with change in A-rSO2 over the same time. Spearman’s rank correlation was used to ascertain if a significant association existed. Result Change in A-rSO2 was significantly associated with change in systolic, diastolic, and mean SMA velocity from fasting to 60–120 minutes after feeding (p=0.016, 0.021, 0.010) and from 10 minutes after a feed to 60–120 minutes after feeding (p=0.009, 0.035, 0.032). Conclusion In very preterm infants, A-rSO2 reflects blood flow in the SMA and can provide non-invasive continuous monitoring of intestinal perfusion. Further studies are indicated to determine the sensitivity of NIRS to detect early intestinal pathology in this population. PMID:23392317

  14. Effects of reducing SO2 and NOx emission from ships on air quality in Alaska

    NASA Astrophysics Data System (ADS)

    Tran, T. T.; Mölders, N.

    2011-12-01

    We performed simulations with the Alaska-adapted WRF/Chem using the same meteorological conditions of January 2000, but alternatively applying the emissions of 2000 (REF), emissions of 2000 with the ship-emission reductions for the planned North American Emission Contral Area (ECA) for SO2 only (ECA1) and SO2 and NOx (ECA2) that have been proposed by the International Maritime Organization for 2015. The analysis focused on the air quality along the international shipping lanes (ISL), in the ECA and over Alaska (AK). Our goal is to examine how the decreases in ship emissions in the ISL and ECA affect to air quality in Alaska. Our model results show that reducing SO2 and NOx ship-emissions reduces the concentration of sulfur and nitrogen compounds over Alaska despite of no changes in Alaska emissions. The reductions of pollutants over the ISL, ECA and AK stemming from concurrent SO2-NOx ship emission reductions are an order of magnitude of those stemming from SO2 reduction in ship emissions only. Reductions in sulfur compounds reach up to 14km while reductions of nitrogen compounds reach to only about 7km. Reductions of sulfate and nitrate in clouds are highest at the top of the boundary layer. Among the three regions of interest, strongest reductions occur over the ECA and ISL for sulfur and nitrogen compounds, respectively, since the ECA (ISL) has highest reductions of SO2 (NOx). The PM2.5 speciation partitioning over all three regions marginally changes when the ship emissions change. Sulfate is the major component of PM2.5 in all regions. Closer to the land, organic carbon (OC) partitioning is higher indicating the enhancing impacts of inland anthropogenic emissions to total PM2.5 concentrations over land.

  15. Geochemical study on volcanic gases at Sakurajima volcano, Japan

    Microsoft Academic Search

    Jun-ichi Hirabayashi; Joyo Ossaka; Takejiro Ozawa

    1986-01-01

    The chemical composition of volcanic gases from the summit crater of Sakurajima Volcano was observed by a variety of gas collection techniques and analytical methods, and the H2 content in gas from a hot spring was continuously measured by an automatic gas chromatograph. Increases in the molar ratio of HCl to SO2 were found to coincide with, and sometimes to

  16. Remote sensing atmospheric trace gases with infrared imaging spectroscopy

    NASA Astrophysics Data System (ADS)

    Leifer, Ira; Tratt, David M.; Realmuto, Vincent J.; Gerilowski, Konstantin; Burrows, John P.

    2012-12-01

    Atmospheric pollution affects human health, food production, and ecosystem sustainability, causing environmental and climate change. Species of concern include nitrogen oxides, sulfur dioxide (SO2 ), and the greenhouse gases (GHG) methane (CH4 ) and carbon dioxide (CO2 ). Trace gas remote sensing can provide source detection, attribution, monitoring, hazard alerts, and air quality evaluation.

  17. SO2 photolysis as a source for sulfur mass-independent isotope signatures in stratospheric aerosols

    NASA Astrophysics Data System (ADS)

    Whitehill, A. R.; Jiang, B.; Guo, H.; Ono, S.

    2014-09-01

    Signatures of sulfur isotope mass-independent fractionation (S-MIF) have been observed in stratospheric sulfate aerosols deposited in polar ice. The S-MIF signatures are associated with stratospheric photochemistry following stratospheric volcanic eruptions, but the exact mechanism responsible for the production and preservation of these signatures is debated. In order to identify the origin and the mechanism of preservation for these signatures, a series of laboratory photochemical experiments were carried out to investigate the effect of temperature and added O2 on S-MIF produced by the two absorption band systems of SO2 photolysis in the 190 to 220 nm region and photoexcitation in the 250 to 350 nm region. The SO2 photolysis (SO2 + h? ? SO + O) experiments showed S-MIF signals with large 34S / 32S fractionation, which increases with decreasing temperature. The overall S-MIF pattern observed for photolysis experiments, including high 34S / 32S fractionations, positive mass-independent anomalies in 33S, and negative anomalies in 36S, is consistent with a major contribution from optical isotopologue screening effects and measurements for stratospheric sulfate aerosols. SO2 photoexicitation produced products with positive MIF anomalies in both 33S and 36S that is different from stratospheric aerosols. SO2 photolysis in the presence of O2 produced SO3 with S-MIF signals, suggesting the transfer of the MIF signals of SO to SO3 by the SO + O2 + M ? SO3 + M reaction. This is supported with energy calculations of stationary points on the SO3 potential energy surfaces, which indicate that this reaction occurs slowly on a single adiabatic surface, but that it can occur more rapidly through intersystem crossing. The results from our experiments constrain the termolecular reaction rate to between 1.0 × 10-37 cm6 molecule-2 s-1 and 1.0 × 10-36 cm6 molecule-2 s-1. This rate can explain the preservation of mass independent isotope signatures in stratospheric sulfate aerosols and provides a minor, but important, oxidation pathway for stratospheric SO2 above about 25 km altitude. The production and preservation of S-MIF signals in the stratosphere requires a high SO2 column density and an SO2 plume reaching an altitude of 25 km and higher.

  18. Retrieval columns of SO2 in industrial chimneys using DOAS passive in traverse

    NASA Astrophysics Data System (ADS)

    Galicia Mejía, Rubén; de la Rosa Vázquez, José Manuel; Sosa Iglesias, Gustavo

    2011-10-01

    The optical Differential Optical Absorption Spectroscopy (DOAS) is a technique to measure pollutant emissions like SO2, from point sources and total fluxes in the atmosphere. Passive DOAS systems use sunlight like source. Measurements with such systems can be made in situ and in real time. The goal of this work is to report the implementation of hardware and software of a portable system to evaluate the pollutants emitted in the atmosphere by industrial chimneys. We show SO2 measurements obtained around PEMEX refinerys in Tula Hidalgo that enables the identification of their pollution degree with the knowledge of speed wind.

  19. Thiol activated prodrugs of sulfur dioxide (SO2) as MRSA inhibitors.

    PubMed

    Pardeshi, Kundansingh A; Malwal, Satish R; Banerjee, Ankita; Lahiri, Surobhi; Rangarajan, Radha; Chakrapani, Harinath

    2015-07-01

    Drug resistant infections are becoming common worldwide and new strategies for drug development are necessary. Here, we report the synthesis and evaluation of 2,4-dinitrophenylsulfonamides, which are donors of sulfur dioxide (SO2), a reactive sulfur species, as methicillin-resistant Staphylococcus aureus (MRSA) inhibitors. N-(3-Methoxyphenyl)-2,4-dinitro-N-(prop-2-yn-1-yl)benzenesulfonamide (5e) was found to have excellent in vitro MRSA inhibitory potency. This compound is cell permeable and treatment of MRSA cells with 5e depleted intracellular thiols and enhanced oxidative species both results consistent with a mechanism involving thiol activation to produce SO2. PMID:25981687

  20. Infrasound and SO2 Observations of the 2011 Explosive Eruption of Nabro Volcano, Eritrea

    NASA Astrophysics Data System (ADS)

    Fee, D.; Carn, S. A.; Prata, F.

    2011-12-01

    Nabro volcano, Eritrea erupted explosively on 12 June 2011 and produced near continuous emissions and infrasound until mid-July. The eruption disrupted air traffic and severely affected communities in the region. Although the eruption was relatively ash-poor, it produced significant SO2 emissions, including: 1) the highest SO2 column ever retrieved from space (3700 DU), 2) >1.3 Tg SO2 mass on 13 June, and 3) >2 Tg of SO2 for the entire eruption, one of the largest eruptive SO2 masses produced since the 1991 eruption of Mt. Pinatubo. Peak emissions reached well into the stratosphere (~19 km). Although the 12 June eruption was preceded by significant seismicity and clearly detected by satellite sensors, Nabro volcano is an understudied volcano that lies in a remote region with little ground-based monitoring. The Nabro eruption also produced significant infrasound signals that were recorded by two infrasound arrays: I19DJ (Djibouti, 264 km) and I32KE (Kenya, 1708 km). The I19DJ infrasound array detected the eruption with high signal-noise and provides the most detailed eruption chronology available, including eruption onset, duration, changes in intensity, etc. As seen in numerous other studies, sustained low frequency infrasound from Nabro is coincident with high-altitude emissions. Unexpectedly, the eruption also produced hundreds of short-duration, impulsive explosion signals, in addition to the sustained infrasonic jetting signals more typical of subplinian-plinian eruptions. These explosions are variable in amplitude, duration, and often cluster in groups. Here we present: 1) additional analyses, classification, and source estimation of the explosions, 2) infrasound propagation modeling to determine acoustic travel times and propagation paths, 3) detection and characterization of the SO2 emissions using the Ozone Monitoring Instrument (OMI) and Spin Enhanced Visible and Infra-Red Instrument (SEVIRI), and 4) a comparison between the relative infrasound energy and SO2 measurements to investigate the relationship between degassing and infrasound, and to speculate on possible eruption source mechanisms. This example, in addition to other recent work, demonstrates the utility of using regional and global infrasound arrays to characterize explosive volcanic eruptions, particularly in remote and poorly monitored regions. Further, comparison of SO2 emissions and infrasound lends insight into degassing processes and shows the potential to use infrasound as a real-time, remote means to detect hazardous emissions.

  1. Stratospheric Aerosol Simulated by EMAC Using MIPAS SO2 for Estimate of Volcanic Injections and SAGE and OSIRIS Satellite Data for Evaluation in the Period 2002-2011

    NASA Astrophysics Data System (ADS)

    Bruehl, C.; Lelieveld, J.; Hoepfner, M.

    2014-12-01

    Multiyear studies with the chemistry climate model EMAC with the comprehensive aerosol module GMXE for troposphere and stratosphere demonstrate that the sulfur gases COS and SO2, the latter mostly from low-latitude and midlatitude volcanic eruptions, control the formation of stratospheric aerosol. TOMS and OMI satellite data are used to estimate the upper limit of injected SO2-mass and the location of the volcano while the spatial distribution of the SO2 plume some days after the eruption is taken taken from MIPAS on ENVISAT. A comparison of simulated stratospheric optical depth with the timeseries of values observed by SAGE and OSIRIS at different latitudes shows that it is important to include every low latitude volcano that reaches more than about 15km altitude, but also big midlatitude ones where injection heights above about 13km matter for the global stratosphere. Our simulations also show that organic and black carbon from biomass burning contribute significantly to extinction and radiative heating in the lower stratosphere. Despite its optimization for the stratosphere concerning the size distributions, the aerosol module approximately reproduces the observed total optical depth and the distribution of the different aerosol types in the troposphere.This study is part of the SPARC SSIRC activities.

  2. Reduced emissions of CO2, NOx, and SO2 from U.S. power plants owing to switch from coal to natural gas with combined cycle technology

    NASA Astrophysics Data System (ADS)

    de Gouw, J. A.; Parrish, D. D.; Frost, G. J.; Trainer, M.

    2014-02-01

    Since 1997, an increasing fraction of electric power has been generated from natural gas in the United States. Here we use data from continuous emission monitoring systems (CEMS), which measure emissions at the stack of most U.S. electric power generation units, to investigate how this switch affected the emissions of CO2, NOx, and SO2. Per unit of energy produced, natural gas power plants equipped with combined cycle technology emit on an average 44% of the CO2 compared with coal power plants. As a result of the increased use of natural gas, CO2 emissions from U.S. fossil-fuel power plants were 23% lower in 2012 than they would have been if coal had continued to provide the same fraction of electric power as in 1997. In addition, natural gas power plants with combined cycle technology emit less NOx and far less SO2 per unit of energy produced than coal power plants. Therefore, the increased use of natural gas has led to emission reductions of NOx (40%) and SO2 (44%), in addition to those obtained from the implementation of emission control systems on coal power plants. These benefits to air quality and climate should be weighed against the increase in emissions of methane, volatile organic compounds, and other trace gases that are associated with the production, processing, storage, and transport of natural gas.

  3. Validation of SO2 retrievals from the Ozone Monitoring Instrument over NE China

    E-print Network

    Li, Zhanqing

    .5 DU (Dobson units; 1 DU = 2.69 Á 1016 molecules/cm2 ) for instantaneous field of view boundary layer, produced primarily by volcanoes, power plants, refineries, metal smelting and burning of fossil layer (PBL). When SO2 remains near the Earth's surface, it has detrimental health and acidifying effects

  4. First results from the permanent SO2 Camera system at Stromboli

    NASA Astrophysics Data System (ADS)

    Salerno, Giuseppe G.; Burton, Mike; Caltabiano, Tommaso; D'Auria, Luca; Maugeri, Roberto; Mure, Filippo

    2015-04-01

    Since the 1980's volcano monitoring has undergone stunning changes, evolving from descriptive and sparse observations to a systematic-quantitative approach of science and technology. Surveillance of chemical gas composition and their emission rate is a vital part of efforts in interpreting volcanic activity of observatories since their changes are closely linked with seismicity and deformation swings. In this unruly technology progression, volcanic gas sensing observations have also undergone a profound revolution, for example by increasing observation frequency of SO2 flux from a few samples per day to Hz. In May 2013, a permanent-robotic SO2 dual-camera system was installed by the Istituto Nazionale di Geofisica e Vulcanologia at Stromboli as a part of the ultraviolet scanning spectrometers network FLAME, with the intent to underpin the geochemical surveillance and shed light on degassing and volcanic processes. Here, we present the first results of SO2 flux observed by the permanent SO2 camera system in the period between May 2013 and April 2015. Results are corroborated with the well established FLAME ultraviolet scanning network and also compared with VLP signals from the seismic network.

  5. RECOVERY AND RECYCLING OF SO 2 IN A SULFITE PULP MILL

    Microsoft Academic Search

    Leo E. Hakka; David J. Brown

    Previous papers on CANSOLV ® System technology described applications in smelters, acid plants, refineries and sulfur recovery units 1,2,3 . This paper discusses integration of the process to sulfite pulp mills. Ammonia based sulfite pulp mills utilize ammonium bisulfite plus dissolved sulfur dioxide as the chemical reagent to delignify wood in order to produce a cellulose pulp. Unreacted SO 2

  6. Adsorption of O2, SO2, and SO3 on nickel oxide. Mechanism for sulfate formation

    NASA Technical Reports Server (NTRS)

    Mehandru, S. P.; Anderson, A. B.

    1985-01-01

    Calculations based on the atom superposition and electron delocalization molecular orbital (ASED-MO) technique suggest that O2 will adsorb perferentially end-on at an angle 45 deg from normal on a nickel cation site on the (100) surface of NiO. SO2 adsorption is also stronger on the nickel site; SO2 bonds through the sulfur atom is a plane perpendicular to the surface. Adsorption energies for SO3 on the nickel and oxygen sites are comparable in the perferred orientation in which the SO3 plane is parallel to the surface. On activation, SO3 adsorbed to an O2(-) site forms a trigonal pyramidal SO4 species which yields, with a low barrier, a tetrahedral sulfate anion. Subsequently the anion reorients on the surface. Possibilities for alternative mechanisms which require the formation of Ni3(+) or O2(-) are discussed. NiSO4 thus formed leads to the corrosion of Ni at high temperatures in the SO2+O2/SO3 The SO2+O2/SO3 atmosphere, as discussed in the experimental literature.

  7. Adsorption of O2, SO2, and SO3, on nickel oxide - Mechanism for sulfate formation

    NASA Technical Reports Server (NTRS)

    Mehandru, S. P.; Anderson, A. B.

    1986-01-01

    Calculations based on the atom superposition and electron delocalization molecular orbital technique suggest that O2 will adsorb preferentially end-on at an angle 45 deg from normal on a nickel cation site on the (100) surface of NiO. SO2 adsorption is also stronger on the nickel site; SO2 bonds through the sulfur atom in a plane perpendicular to the surface. Adsorption energies for SO3 on the nickel and oxygen sites are comparable in the preferred orientation in which the SO3 plane is parallel to the surface. The calculations suggest that the strength of adsorption varies as O2 greater than SO2 greater than SO3. On activation, SO3 adsorbed to an O(2-) site forms a trigonal pyramidal SO4 species which yields, with a low barrier, a tetrahedral sulfate anion. Subsequently the anion reorients on the surface. Alternative mechanisms which require the formation of Ni(3+) or O(-) are discussed. NiSO4 thus formed may play a passivating role for the corrosion of Ni at low temperatures in the SO2 + O2 + SO3 atmospheres and an active role at high temperatures, as discussed in the experimental literature.

  8. The Different Impacts of SO2 and SO3 on Cu/Zeolite SCR Catalysts

    SciTech Connect

    Cheng, Yisun; Lambert, Christine; Kim, Do Heui; Kwak, Ja Hun; Cho, Sung June; Peden, Charles HF

    2010-06-19

    The different impacts of SO2 and SO3 on Cu/zeolite SCR catalysts were investigated by SCR performance tests and multiple characterization techniques including temperature programmed desorption (TPD), X-ray photoelectron spectroscopy (XPS) and X-ray absorption fine structure (XAFS). The results indicate that a larger amount of highly dispersed CuSO4 formed in the zeolite catalysts (Z-CuSO4) upon SO3 poisoning, explaining the much more significant deactivation of the Cu/zeolite catalysts that were exposed to SO3 compared to poisoning by SO2. This paper provides the first demonstration that active sites of Cu/zeolite SCR catalysts involved in the storage and removal of sulfur can react with SO2 and SO3 in very different ways. In particular, the significant differences in the extent of sulfur uptake account for the considerably different impacts of SO2 and SO3 poisoning on the performance of Cu/zeolite SCR catalysts.

  9. Formation of sulfite-like species on Cr 2O 3 after SO 2 chemisorption

    NASA Astrophysics Data System (ADS)

    Ranea, V. A.; Hernandez, S. N.; Medina, S.; Irurzun, I. M.; Coria, I. D.; Mola, E. E.

    2011-03-01

    The adsorption of sulfur dioxide (SO 2) on polycrystalline Cr 2O was experimentally investigated using temperature-programmed desorption (TPD). The chemisorption of SO 2 on the (0001) surface was also studied using theoretical methods. Different adsorption geometries were explored for SO 2 adsorption on the ?-Cr 2O (0001) surface. Two similar adsorption configurations were found to be the most stable with chemisorption energies of - 3.09 and - 2.79 eV/molecule. In both calculated stable adsorption configurations the appearance of sulfite-like species is predicted on the (0001) surface after adsorption. It is important to emphasize that these results are predicted only within the DFT + U framework. Under these conditions and despite great efforts, no stable sulfate-like geometry was found on this surface. The TPD spectrum exhibit a desorption peak at Tp ? 870 °C with a heating rate of ? ? 0.12 °C/s. The desorption energy calculated by the analysis given by Redhead and Adams, assuming the rate of desorption is given by a Polanyi-Wigner equation, is ? - 3.12 eV. This value is in good agreement with the predicted one using DFT + U calculations. To our knowledge, this is the first theoretical study of SO 2 adsorption on the Cr 2O (0001) surface.

  10. CALCINATION OF CALCIUM-BASED SORBENTS FOR CONTROL OF SO2 EMISSIONS FROM COAL FIRED BOILERS

    EPA Science Inventory

    The paper summarizes the results of an experimental study that focused on the production of high surface area materials from various sorbents. (NOTE: Injecting calcium-based sorbents into coal burning utility boilers to control SO2 emissions is being considered by the EPA as an a...

  11. Interaction of SO2 and CO with the Ti2O3(101¯2) surface

    NASA Astrophysics Data System (ADS)

    Smith, Kevin E.; Henrich, Victor E.

    1985-10-01

    The interaction of sulfur dioxide with the nearly perfect (101¯2) surface of the corundum transition-metal oxide Ti2O3 has been studied using ultraviolet and x-ray photoemission spectroscopies and low-energy electron diffraction. The reaction of SO2 with Ti2O3 is found to be extremely vigorous, with SO2 adsorbing dissociatively and catalyzing the complete oxidation of the surface to TiO2 and TiS2. This result is significant since exposure to large amounts of O2 does not result in the production of large amounts of TiO2 at the Ti2O3 surface. Dissociative adsorption of SO2 continues for exposures up to at least 104 L (1 L=10-6Torr sec). The reaction is accompanied by large scale surface disorder and by an increase in the work function of 1.32 eV. In contrast, CO adsorbs molecularly for exposures >=105 L, with an extramolecular relaxation-polarization shift of 3.0 eV. For CO exposures <=104 L, the chemisorption mechanism is tentatively identified as dissociative adsorption at defect sites. Inclusive of this study, the interaction of four oxygen-containing molecules (SO2, CO, H2O, and O2) with Ti2O3(101¯2) surfaces has been studied, and their behavior is compared and trends isolated with a view to understanding the oxidation of Ti2O3.

  12. STUDY OF AUTOMATIC CONTROL SYSTEM TO MAINTAIN CONSTANT PERCENTAGE SO2 RETENTION IN A PRESSURIZED FBC

    EPA Science Inventory

    The report gives results of an assessment of the feasibility of using automatic controls to maintain a constant percentage SO2 removal in a pressurized fluidized-bed boiler (PFB) system as variations occur; e.g., in coal sulfur content or sorbent reactivity. The Clean Air Act ame...

  13. The attack of Co-Cr alloys by ArSO 2 atmospheres

    Microsoft Academic Search

    P. Singh; N. Birks

    1979-01-01

    Cobalt alloys containing up to 25% chromium have been exposed to Ar-10% SO2 atmospheres at temperatures between 600 and 1000° C. The results show that, although an increase in chromium content leads to a reduction in the reaction rate, even to negligible rates in the cases of the higher chromium contents, all of the alloys are eventually subjected to rapid

  14. Thermally driven diffusion of SO2 within the surface of Io

    NASA Technical Reports Server (NTRS)

    Meade, Paul E.; Jakosky, Bruce M.

    1991-01-01

    The presence of sulfur dioxide (SO2) on Io, together with the fact that the surface layer of Io has extremely high porosity, suggests the possibility of diffusion of this volatile within the surface, as well as exchange between the surface and an atmosphere. The former possibility is investigated through the development of a surface layer thermal model and subsequent calculations of the thermally driven diffusion flux of SO2 within the layer. The major factors affecting the diffusion process are the temperature and temperature gradient in the surface layer throughout the day, and the porosity and grain size in the surface layer. The results indicate that the net transport of SO2 in the near-surface region is downward into the subsurface, causing near-surface depletion of SO2. Near-surface depletion would result in a layer of reduced thermal inertia overlying the bulk of the surface, consistent with thermal eclipse observations of Io. For the present nominal model with 10-micron grains and a porosity of 85 percent, the peak net diurnal downward flux reaches nearly 0.008 g/sq cm per period.

  15. The Atmospheric Sulphur Cycle and the Role of Volcanic SO2

    E-print Network

    -phase oxidation to sulphate aerosol. The models have a horizontal resolution of about 5º and a vertical resolution on average. Figure 3. As Figure 2 but for sulphate aerosol (pptv) SO2 is removed by dry and wet deposition to the surface, and through oxidation to sulphate aerosol, predominantly in the aqueous phase. Deposition

  16. HUMIDIFICATION OF FLUE GAS TO AUGMENT SO2 CAPTURE BY DRY SORBENTS

    EPA Science Inventory

    The report discusses, for a coal-burning power plant, using humidification of the flue gas in a low-temperature duct to increase SO2 removal by dry calcium-based sorbents. In particular, humidification may be a desirable modification of EPA's LIMB process, which is based on injec...

  17. PROCEEDINGS: 1990 SO2 CONTROL SYMPOSIUM - VOLUME 1: SESSIONS 1, 2, 3A, AND 3B

    EPA Science Inventory

    The proceedings document 110 papers presented at the Symposium held in New Orleans, LA, May 8-11, 1990. opics included SO2 control economics, furnace sorbent injection, byproduct utilization, spray dryer technology, wet flue gas desulfurization (FGD) and combined SOx/NOx control ...

  18. PROCEEDINGS: FIRST COMBINED FGD AND DRY SO2 CONTROL SYMPOSIUM. VOLUME 3. SESSIONS 7 AND 8

    EPA Science Inventory

    The proceedings document presentations at the First Combined FGD and Dry SO2 Control Symposium, in St. Louis, MO, October 25-28, 1988. The symposium, jointly sponsored by EPA and EPRI, had as its objective the exchange of technical and regulatory information on sulfur oxide contr...

  19. PROCEEDINGS: 1990 SO2 CONTROL SYMPOSIUM - VOLUME 3: SESSIONS 6A, 6B, 6C

    EPA Science Inventory

    The proceedings document 110 papers presented at the Symposium held in New Orleans, LA, May 8-11, 1990. opics included SO2 control economics, furnace sorbent injection, byproduct utilization, spray dryer technology, wet flue gas desulfurization (FGD) and combined SOx/NOx control ...

  20. PROCEEDINGS: 1990 SO2 CONTROL SYMPOSIUM - VOLUME 4: SESSIONS 7A, 7B, AND POSTERS

    EPA Science Inventory

    The proceedings document 110 papers presented at the Symposium held in New Orleans, LA, May 8-11, 1990. opics included SO2 control economics, furnace sorbent injection, byproduct utilization, spray dryer technology, wet flue gas desulfurization (FGD) and combined SOx/NOx control ...

  1. PROCEEDINGS: FIRST COMBINED FGD AND DRY SO2 CONTROL SYMPOSIUM. VOLUME 2. SESSIONS 5 AND 6

    EPA Science Inventory

    The proceedings document presentations at the First Combined FGD and Dry SO2 Control Symposium, in St. Louis, MO, October 25-28, 1988. The symposium, jointly sponsored by EPA and EPRI, had as its objective the exchange of technical and regulatory information on sulfur oxide contr...

  2. Retention of SO2 Emission of Coal Combustion by Using Lime in Briquetting

    Microsoft Academic Search

    N. Emre Altun; Cahit Hicyilmaz; A. Suat Bagci

    2006-01-01

    In this study, the effect of lime on control of SO2 emissions was investigated by briquetting of coal particles with various lime contents. The influence of the added lime was determined not only from the view of its contribution to environmental aspects but also in terms of effects on the thermal features and reaction kinetics of coal. The extent of

  3. ALARM-LEVEL MONITOR FOR SO2 EMISSIONS FROM STATIONARY SOURCES

    EPA Science Inventory

    A field prototype, alarm-level monitor for SO2 emissions from stationary sources was designed, fabricated and tested. The monitor was designed to be inexpensive, simple to operate and easily maintained. The monitoring system is an extractive type that employs an air aspirator to ...

  4. [Concentration retrieving method of SO2 using differential optical absorption spectroscopy based on statistics].

    PubMed

    Liu, Bin; Sun, Chang-Ku; Zhang, Chi; Zhao, Yu-Mei; Liu, Jun-Ping

    2011-01-01

    A concentration retrieving method using statistics is presented, which is applied in differential optical absorption spectroscopy (DOAS) for measuring the concentration of SO2. The method uses the standard deviation of the differential absorption to represents the gas concentration. Principle component analysis (PCA) method is used to process the differential absorption spectrum. In the method, the basis data for the concentration retrieval of SO2 is the combination of the PCA processing result, the correlation coefficient, and the standard deviation of the differential absorption. The method is applied to a continuous emission monitoring system (CEMS) with optical path length of 0.3 m. Its measuring range for SO2 concentration is 0-5 800 mg x m(-3). The nonlinear calibration and the temperature compensation for the system were executed. The full scale error of the retrieving concentration is less than 0.7% FS. And the measuring result is -4.54 mg x m(-3) when the concentration of SO2 is zero. PMID:21428087

  5. ACTIVATION AND REACTIVITY OF NOVEL CALCIUM-BASED SORBENTS FOR DRY SO2 CONTROL IN BOILERS

    EPA Science Inventory

    Chemically modified calcium hydroxide (Ca(OH)2) sorbents developed in the U.S. Environmental Protection Agency's Air and Energy Engineering Research Laboratory (AEERL) for sulfur dioxide (SO2) control in utility boilers were tested in an electrically heated, bench-scale isotherma...

  6. ASSESSMENT OF SO2 AND NOX EMISSION CONTROL TECHNOLOGY IN EUROPE

    EPA Science Inventory

    The report is a compilation of information on the current status of abatement technology used to control major air pollutants, including SO2 and NOx, in Europe. It focuses on flue gas sulfurization (FGD), combustion modification (CM), and selective catalytic reduction (SCR) of NO...

  7. SHELL NOX/SO2 FLUE GAS TREATMENT PROCESS: INDEPENDENT EVALUATION

    EPA Science Inventory

    The report gives results of an independent evaluation of the Shell Flue Gas Treatment (SFGT) process which simultaneously reduces nitrogen oxide (NOx) and sulfur dioxide (SO2) emissions. NOx emissions from stationary sources may be reduced by 80-90 percent by applying selective c...

  8. SO2 CONCENTRATION ESTIMATES FOR NEW YORK CITY, 1880-1980

    EPA Science Inventory

    The purpose of this investigation was to estimate the yearly ambient concentration of SO2 and SO4 wet deposition from 1880 to 1980 for the greater New York City area. This information was used to reconstruct ambient concentrations at two New York Veterans Administration cemeterie...

  9. DEPOSITION VELOCITIES OF SO2 AND O3 OVER AGRICULTURAL AND FOREST ECOSYSTEMS

    EPA Science Inventory

    The results of field studies that measured the flux and deposition velocity of SO2 and O3 are reported. Three of the studies were over agricultural crops (pasture, corn, and soybean), and two were over forest (a deciduous forest and a mixed coniferous - deciduous forest). In al...

  10. Investigating Errors in Static COSPEC Measurements of Volcanic SO2 Plumes

    Microsoft Academic Search

    J. M. Shannon; I. M. Watson; G. J. Bluth; S. Carn

    2001-01-01

    Correlation spectrometer (COSPEC) measurements of sulfur dioxide (SO2) from active volcanoes are collected using both airborne and ground-based methods. Utilizing both methods for volcano monitoring is useful because a more robust data set is produced, comparisons can be made between the different techniques, and environmental conditions or logistics can inhibit the use of either method. However, a number of errors

  11. SILICA-ENHANCED SORBENTS FOR DRY INJECTION REMOVAL OF SO2 FROM FLUE GAS

    EPA Science Inventory

    The paper gives results of tests of novel silica-enhanced lime sorbents in a bench-scale sand-bed reactor for their potential for SO2 removal from flue gas. Reactor conditions were: 64 C, relative humidity 60% (corresponding to an approach to saturation temperature of 10C), and i...

  12. REACTIVITY STUDY OF SO2 CONTROL WITH ATMOSPHERIC AND PRESSURE HYDRATED SORBENTS

    EPA Science Inventory

    The report gives results of a study to develop an understanding of the factors that control the reactivity of hydrated sorbents toward SO2 in coal fired furnaces. It focused on the impacts of hydrate properties (e.g., particle size, surface area, and chemical composition) and the...

  13. Gravity changes and passive SO2 degassing at the Masaya caldera complex, Nicaragua

    E-print Network

    Williams-Jones, Glyn

    Gravity changes and passive SO2 degassing at the Masaya caldera complex, Nicaragua Glyn Williams (635 m above sea level (a.s.l.)) is a persistently active ba- saltic shield volcano and caldera complex eruptions (8^12 km3 ), Masaya caldera is believed to be underlain by a 10 km3 open-system magma reservoir

  14. CO2 greenhouse in the early martian atmosphere: SO2 inhibits condensation

    NASA Technical Reports Server (NTRS)

    Yung, Y. L.; Nair, H.; Gerstell, M. F.

    1997-01-01

    Many investigators of the early martian climate have suggested that a dense carbon dioxide atmosphere was present and warmed the surface above the melting point of water (J.B. Pollack, J.F. Kasting, S.M. Richardson, and K. Poliakoff 1987. Icarus 71, 203-224). However, J.F. Kasting (1991. Icarus 94, 1-13) pointed out that previous thermal models of the primitive martian atmosphere had not considered the condensation of CO2. When this effect was incorporated, Kasting found that CO2 by itself is inadequate to warm the surface. SO2 absorbs strongly in the near UV region of the solar spectrum. While a small amount of SO2 may have a negligible effect by itself on the surface temperature, it may have significantly warmed the middle atmosphere of early Mars, much as ozone warms the terrestrial stratosphere today. If this region is kept warm enough to inhibit the condensation of CO2, then CO2 remains a viable greenhouse gas. Our preliminary radiative modeling shows that the addition of 0.1 ppmv of SO2 in a 2 bar CO2 atmosphere raises the temperature of the middle atmosphere by approximately 10 degrees, so that the upper atmosphere in a 1 D model remains above the condensation temperature of CO2. In addition, this amount of SO2 in the atmosphere provides an effective UV shield for a hypothetical biosphere on the martian surface.

  15. Performance storage, safety and disposal of Li/SO2 cells

    NASA Technical Reports Server (NTRS)

    Dimasi, G. J.; Christopoulos, J. A.

    1981-01-01

    Cell performance characteristics after storage at room temperature and 71 C as well as some cell failure modes are evaluated. The performance of cells at low temperatures (-30 C) even into voltage reversal is also considered. The correlation of Li/SO2 coulombic ratio with generated free cyanide (CN-) in forced discharged D cells is also included.

  16. Complexes containing CO2 and SO2. Mixed dimers, trimers and tetramers.

    PubMed

    Azofra, Luis Miguel; Scheiner, Steve

    2014-03-21

    Mixed dimers, trimers and tetramers composed of SO2 and CO2 molecules are examined by ab initio calculations to identify all minimum energy structures. While AIM formalism leads to the idea of a pair of C···O bonds in the most stable heterodimer, bound by some 2 kcal mol(-1), NBO analysis describes the bonding in terms of charge transfer from O lone pairs of SO2 to the CO ?* antibonding orbitals. The second minimum on the surface, just slightly less stable, is described by AIM as containing a single O···O chalcogen bond. The NBO picture is that of two transfers in opposite directions: one from a SO2 O lone pair to a ?* antibond of CO2, supplemented by CO2 Olp ? ?*(SO). Decomposition of the interaction energies points to electrostatic attraction and dispersion as the dominant attractive components, in roughly equal measure. The various heterotrimers and tetramers generally retain the dimer structure as a starting point. Cyclic oligomers are favored over linear geometries, with a preference for complexes containing larger numbers of SO2 molecules. PMID:24480872

  17. THE SO2 ALLOWANCE TRADING SYSTEM: THE IRONIC HISTORY OF A GRAND POLICY EXPERIMENT

    E-print Network

    Ford, Andrew

    to curb acid rain, the government did the right thing for the wrong reason. Second, a substantial source-based instruments, cap-and-trade, Clean Air Act amendments of 1990, sulfur dioxide, acid rain JEL Classification that acid precipitation ­ the result of sulfur dioxide (SO2) and, to a lesser extent, nitrogen oxides (NOx

  18. ESTIMATING PERFORMANCE AND COSTS OF RETROFIT SO2 AND NOX CONTROLS FOR ACID RAIN ABATEMENT

    EPA Science Inventory

    The paper gives results from an ongoing National Acid Precipitation Assessment Program (NAPAP) to significantly improve engineering cost estimates currently being used to evaluate the economic effects of applying SO2 and NOx controls to existing coal-fired utility boilers. Initia...

  19. SO2 emissions to the atmosphere from active volcanoes in Guatemala and El Salvador, 19992002

    E-print Network

    Rose, William I.

    SO2 emissions to the atmosphere from active volcanoes in Guatemala and El Salvador, 1999 INSIVUMEH, 7a Avenida 14-57 Zona 13, Ciudad de Guatemala, Guatemala, Central America c Servicio Nacional de-based and aircraft correlation spectrometer (COSPEC) measurements at the principal active volcanoes in Guatemala

  20. The ASTER Urgent Request Protocol: A semi-automated, high resolution SO2 retrieval scheme

    NASA Astrophysics Data System (ADS)

    Thomas, H. E.; Watson, I. M.; Ramsey, M. S.

    2009-04-01

    The ASTER Urgent Request Protocol (URP) aims to provide rapidly returned emergency observations of natural hazards. The protocol will utilise thermal alerts from sensors with a higher temporal and lower spatial resolution (MODIS, GOES, AVHRR) to act as a trigger for an ASTER retrieval. One aspect of the URP is the observation, and ultimately quantification, of climatologically active species; in particular, volcanic SO2. The high spatial resolution of ASTER allows the retrieval of low level, passively degassed SO2where other instruments (e.g. MODIS, SEVIRI) may fail. Here we present a methodology where volcanic SO2 will be rapidly processed using ASTER by a semi-automated procedure. In the first instance a decorrelation stretch will automatically be performed on the MODIS imagery corresponding to the thermal alert. The decorrelation stretch provides visual information about the constituents and relative extent of the plume; sulphur dioxide appears yellow, sulphates and ash are red and ice and water appear blue. The MODIS product will then be used to direct the ASTER request and a decorrelation stretch on ASTER bands 14, 13 and 11 (11.3 m, 10.6 m and 8.6 m) will be automatically generated. From this, viable retrieval scenarios will be selected and processed using the MODTRAN algorithm to produce a quantitative SO2 retrieval.

  1. Mid-Infrared Detection of Large Longitudinal Asymmetries in Io's SO2 Atmosphere

    E-print Network

    Spencer, John

    1 Mid-Infrared Detection of Large Longitudinal Asymmetries in Io's SO2 Atmosphere John R. Spencer1 13th 2005 Accepted, January 28th 2004 Keywords: Io; Atmospheres, Structure; Infrared Observations. These are the first ground-based infrared observations of Io's sunlit atmosphere, and provide a new window

  2. EVALUATION OF SOLIDS DEWATERING FOR A PILOT-SCALE THIOSORBIC LIME SO2 SCRUBBER

    EPA Science Inventory

    The paper gives results of an evaluation of solids dewatering for a pilot-scale thiosorbic lime SO2 scrubber. Pilot plant data showed that the dissolved magnesium in thiosorbic lime caused deterioration of solids dewatering properties. The slurry settling rate increased when the ...

  3. TRANSFERABLE DISCHARGE PERMITS FOR CONTROL OF SO2 EMISSIONS FROM ILLINOIS POWER PLANTS (JOURNAL VERSION)

    EPA Science Inventory

    The paper discusses the use of a large scale simulation model in evaluating various policy alternatives for reducing SO2 emissions from Illinois electric power plants for a broad range of nuclear power capacity addition scenarios. A dynamic simulation of a transferable discharge ...

  4. WALL-FIRED BOILER DESIGN CRITERIA FOR DRY SORBENT SO2 CONTROL WITH LOW NOX BURNERS

    EPA Science Inventory

    The report assesses the impact of Limestone Injection Multistage Burner (LIMB) technology on wall-fired utility boilers for both new and retrofit designs. Recent attention has focused on dry sorbent sulfur dioxide (SO2) control technology which, in conjunction with low-nitrogen-o...

  5. THE EFFECT OF SO2 ON THE UPTAKE OF PARTICLES BY MOUSE BRONCHIAL EPITHELIUM

    EPA Science Inventory

    In three experiments, the authors have explored the uptake and transport of collidal gold (Au) and iron oxide (Fe2O3) by normal and SO2-injured bronchial epithelium. In the first experiment mice were exposed to a 2-hr aerosol of Au; in the second experiment, mice were exposed to ...

  6. Predicting SO2 pollution incidents by means of additive models with optimum variable selection

    NASA Astrophysics Data System (ADS)

    Sestelo, Marta; Roca-Pardiñas, Javier; Ordóñez, Celestino

    2014-10-01

    The aim of this paper is to predict time series of SO2 concentrations emitted by coal-fired power stations in order to estimate in advance emission episodes and analyze the influence of some meteorological variables in the prediction. An emission episode is said to occur when the series of bi-hourly means of SO2 is greater than a specific level. For coal-fired power stations it is essential to predict emission episodes sufficiently in advance so appropriate preventive measures can be taken. We proposed a methodology to predict SO2 emission episodes based on using an additive model and an algorithm for variable selection. The methodology was applied to the estimation of SO2 emissions registered in sampling locations near a coal-fired power station located in Northern Spain. The results obtained indicate a good performance of the model considering only two terms of the time series and that the inclusion of the meteorological variables in the model is not significant.

  7. Limiting of SO2 and NOx emissions in worldwide coal-power production

    Microsoft Academic Search

    William Ellison

    1995-01-01

    A broad overview is offered of both SO2 and NOx emission regulation as well as of diverse available technologies for control and\\/or removal of these stack pollutants in coal firing. The logistics and trends in worldwide supply and use of diverse available steam coal resources are reviewed in relation to the need, environmentally, for continuing restraint and reduction in sulfurous

  8. Limiting of SO 2 and NO x emission in worldwide coal-power production

    Microsoft Academic Search

    William Ellison

    1995-01-01

    A broad overview is offered of both SO2 and NOx emission regulation as well as of diverse available technologies for control and\\/or removal of these stack pollutants in coal firing. The logistics and trends in worldwide supply and use of diverse available steam coal resources are reviewed in relation to the need, environmentally, for continuing restraint and reduction in sulfurous

  9. PROCEEDINGS: 1991 SO2 CONTROL SYMPOSIUM - VOLUME 2. SESSIONS 1-3

    EPA Science Inventory

    The proceedings document the 1991 SO2 Control Symposium, held December 3-6, 1991, in Washington, DC, and jointly sponsored by the Electric Power Research Institute (EPRI), the U. S. Environmental Protection Agency (EPA), and the U.S. Department of Energy (DOE). he symposium focus...

  10. PROCEEDINGS: 1991 SO2 CONTROL SYMPOSIUM - VOLUME 1. OPENING SESSION AND SESSIONS 1-3

    EPA Science Inventory

    The proceedings document the 1991 SO2 Control Symposium, held December 3-6, 1991, in Washington, DC, and jointly sponsored by the Electric Power Research Institute (EPRI), the U. S. Environmental Protection Agency (EPA), and the U.S. Department of Energy (DOE). he symposium focus...

  11. PROCEEDINGS: 1991 SO2 CONTROL SYMPOSIUM - VOLUME 3. SESSIONS 5B AND 6

    EPA Science Inventory

    The proceedings document the 1991 SO2 Control Symposium, held December 3-6, 1991, in Washington, DC, and jointly sponsored by the Electric Power Research Institute (EPRI), the U. S. Environmental Protection Agency (EPA), and the U.S. Department of Energy (DOE). he symposium focus...

  12. PROCEEDINGS: 1993 SO2 CONTROL SYMPOSIUM - VOLUME 3. SESSIONS 5B, 6A, AND 6B

    EPA Science Inventory

    The report documents more than 100 presentations at the 1993 SO2 Control Symposium in Boston, MA, August 24-27, 1993. The presentations covered a wide range of topics: industry's strategies for dealing with Clean Air Act Amendments of 1990, including Phase I strategies, the emiss...

  13. PROCEEDINGS: 1993 SO2 CONTROL SYMPOSIUM - VOLUME 1. SESSIONS 1, 2, 3A, AND 3B

    EPA Science Inventory

    The report documents more than 100 presentations at the 1993 SO2 Control Symposium in Boston, MA, August 24-27, 1993. The presentations covered a wide range of topics: industry's strategies for dealing with Clean Air Act Amendments of 1990, including Phase I strategies, the emiss...

  14. PROCEEDINGS: 1993 SO2 CONTROL SYMPOSIUM - VOLUME 2. SESSIONS 4A, 4B, AND 5A

    EPA Science Inventory

    The report documents more than 100 presentations at the 1993 SO2 Control Symposium in Boston, MA, August 24-27, 1993. The presentations covered a wide range of topics: industry's strategies for dealing with Clean Air Act Amendments of 1990, including Phase I strategies, the emiss...

  15. PROCEEDINGS: 1993 SO2 CONTROL SYMPOSIUM - VOLUME 4. SESSIONS 7, 8A, AND 8B

    EPA Science Inventory

    The report documents more than 100 presentations at the 1993 SO2 Control Symposium in Boston, MA, August 24-27, 1993. The presentations covered a wide range of topics: industry's strategies for dealing with Clean Air Act Amendments of 1990, including Phase I strategies, the emiss...

  16. CO2-SO2 clathrate hydrate formation on early Mars1 Eric Chassefirea,b

    E-print Network

    Boyer, Edmond

    atmosphere was necessary in order to keep28 early Mars warm and wet. However, current models have not been a significant formation of sulfate37 minerals during the Noachian and inhibiting carbonates from forming of episodic warm47 episodes facilitated by the release of SO2 to the atmosphere. These episodes could explain

  17. REGENERATION OF CALCIUM-BASED SO2 SORBENTS FOR FLUIDIZED-BED COMBUSTION: ENGINEERING EVALUATION

    EPA Science Inventory

    The report gives results of an engineering evaluation of regeneration of calcium-based SO2 sorbents (limestone and dolomite) for application in both atmospheric and pressurized fluidized-bed combustion (FBC) processes. Economics of FBC power plants, operated with regeneration, ar...

  18. Direct Effect of SO2 Pollution on the Degree of Opening of Stomata

    Microsoft Academic Search

    Ondrej Majernik; T. A. Mansfield

    1970-01-01

    THE way in which air pollutants damage plants has been investigated several times, but there is still little real information as to how essential processes are affected. This is particularly the case with SO2, the physiological and biochemical effects of which are largely unexplained.

  19. Low to negligible BrO/SO2 ratios at two subduction-zone volcanoes

    NASA Astrophysics Data System (ADS)

    Bobrowski, Nicole; Hörmann, Christoph; Mori, Toshiya; Platt, Ulrich

    2014-05-01

    In July 2013 a measurement campaign took place on Kyushu, Japan, investigating the BrO/SO2 ratio in the plume of Sakurajima and Aso. Multi-Axis-Differential Optical Absorption Spectroscopy (MAX-DOAS) measurements were carried out at four sides on Sakurajima Island, with a maximum distance of about 5 km downwind, and assuming a wind speed of 5 m/s (corresponding to a plume age of about 15 minutes). At Aso measurements took place on the western slope of the active crater and at the crater rim. The MAX-DOAS data of both sites were evaluated for BrO and SO2 slant column densities (SCDs). In the following, BrO/SO2 ratios were calculated to overcome dilution effects and to investigate the BrO formation processes in the ash-laden plume of Sakurajima and the volcanic plume of Aso which is characterized by emissions from a fumarolic area and a mud pool. The BrO/SO2 ratios of the measurement have been below the detection limit for Aso as well as during most of the measurement days at Sakurajima with the only exception on 15th July 2013, when a BrO/SO2 ratio of ~ 1 x 10-5 could be determined. After very high BrO/SO2 ratios at Sakurajima that were reported by C. Lee et al. (2005) our results seem to be unexpected but nevertheless match the general geological settings at both volcanoes. In a recent paper, Shinohara (2013) summarized and compared chlorine emissions from the Japanese volcanic arc with global chlorine emissions from arc volcanoes and pointed out that the volcanic gas emissions in Japan are quite Cl-poor compared to those at other subduction zones. In the recent past it has been found that low chlorine emissions can occur together with nevertheless high bromine emissions (Nyiragongo, Bobrowski et al., 2013). However, looking up Br/Cl ratios (of condensate measurements at fumaroles) of the Japanese arc volcanism summarized in Gerlach, 2004 a comparatively low Br/Cl ratio is added with 6-7 x 10-4 (global arc mean 2 x 10-3) to the already poor chlorine emissions. We will present upper limits of BrO/SO2 ratios and give an estimate on bromine emissions of Aso and Sakurajima for July 2013. To our knowledge these are the so far lowest bromine emission from an arc volcano. Possible reasons will be discussed in the light of today's available literature - pointing out the geological particularities on Eurasian-Philippine plate subduction zone.

  20. Electrical breakdown of gases

    Microsoft Academic Search

    J. M. Meek; J. D. Craggs

    1978-01-01

    A collection of individual works on electrical discharges is presented. Topics covered include: fundamental processes in the electrical breakdown of gases; vacuum breakdown; spark breakdown in uniform fields; corona discharge; spark breakdown in non-uniform fields; breakdown voltage characteristics; irradiation and time lags; high-frequency breakdown of gases; laser-induced electrical breakdown of gases; spark channels; and electrode phenomena. (GHT)

  1. SO2 emissions from persistently active explosive volcanoes: can we estimate their contribution using satellite instruments?

    NASA Astrophysics Data System (ADS)

    Smekens, J.; Clarke, A. B.

    2010-12-01

    The scientific community has long since recognized the importance of sulfur dioxide (SO2) on climate change. The most universally accepted theory is that large amounts of SO2 injected into the atmosphere will react to form sulfate aerosols that reflect sunlight, thereby decreasing global temperature. This cooling effect has been observed after large eruptions throughout the geologic and historic records. The exact effect of SO2 on global climate though is still poorly understood. Estimates of global volcanic SO2 emissions rely primarily on two sets of data: ground-based measurements of SO2 fluxes using COSPEC or DOAS and more recently satellite observations. Both of these usually represent ‘snapshots’ of the gas emissions and at only a few places is continuous monitoring and data acquisition possible. Because continuous data are so rare, many assumptions have to be made when trying to estimate the global volcanic SO2 input to the atmosphere. This is especially true when it comes to frequently exploding volcanoes. Most of their background activity is very low in intensity or the gas plume may simply not reach the stratosphere, both of which make it impossible for satellite instruments to detect it. On the other hand, while individual explosions produce plumes big enough to be detected by satellite instruments, they are often not captured from the ground because no continuous monitoring is in place. Therefore neither satellite nor ground-based data fully represents the total SO2 emissions of these volcanoes. We have analyzed satellite data for several persistently active explosive volcanic centers in an attempt to determine whether their SO2 emissions are detectable and to what extent we can quantify them. We used data from the Ozone Monitoring Instrument (OMI), which operates in the UV spectrum, the Moderate Resolution Imaging Spectroradiometer (MODIS) and, when available, the Advanced Spaceborne Thermal Emission Radiometer (ASTER), both of which operate in the thermal infrared spectrum. OMI and MODIS offer daily coverage of the Earth’s surface but preliminary results indicate that most of the SO2 emissions at persistently active explosive volcanoes (e.g. Semeru, Santiaguito, Sakurajima) are not detectable by these instruments, mostly due to their low spatial resolution. Only the strongest explosions produce plumes large enough to be detected by satellite instruments and even then, their signal is difficult to separate from ambient noise in the data. Some volcanoes that exhibit less frequent but more intense explosive activity (e.g. Soufrière Hills volcano) produce plumes that are clearly identifiable, but their background activity remains inconspicuous. ASTER’s higher spatial resolution theoretically provides a better means to detect small plumes. However its limited spectral resolution and more importantly, the 16-day return period, make it impossible to accurately quantify representative fluxes. Our study demonstrates the difficulty in estimating SO2 fluxes from persistently active explosive volcanoes from satellite data alone, and underlies the need for comprehensive and continuous ground-based measurements at this type of volcanoes.

  2. Health And Economic Impact Of Greenhouse Gas Emissions Reduction In Indonesia: SO2

    NASA Astrophysics Data System (ADS)

    Susandi, A.

    2004-12-01

    The objective of this study is to assess Indonesia's air quality. This comprised an assessment of Indonesia's air pollution levels and their impact on the development of health and the economics. Estimates are given of concentrations of one of the major pollutants: sulfur dioxide (SO2). Emissions are estimated for Indonesian region, based on energy consumption, derived from the MERGE simulation model. The air pollution levels projection for the year 2000 to the year 2100 are based on the IPCC scenarios, extended with some mitigation scenarios for the energy sector. If the Organisation for Economic Co-operation and Development (OECD) countries reduce their emissions, Indonesian oil consumption increases, and the emissions of SO2 are higher than in the baseline scenario. Health problems increase substantially, peaking to the middle of century in the A1B and B1 scenarios, and rising to the end of century in the A2 and B2 scenarios, while the health problem costs will be the highest during the middle of century in the A1B and B1 scenarios and toward the end of century in the A2 and B2 scenarios. With international trade in emission permits, Indonesia would be higher than in the baseline scenario, since more and more oil and coal using in domestic sources of energy, followed by higher of health problem cases and higher of health problem costs. The total cases of health problem are higher 18.5% than in the baseline scenario. If all countries reduce their emission, including Indonesia, the total concentrations of SO2 are lower than previous scenarios. The cases of health problem associated with SO2 are lower than in the baseline scenario and follow by the lower of the health problem costs. The costs of health problem associated with SO2 are to 35% lower than in the baseline scenario during the simulation period.

  3. SO2-induced enhancement of inhalative allergic sensitization: inhibition by anti-inflammatory treatment.

    PubMed

    Riedel, F; Naujukat, S; Rüschoff, J; Petzoldt, S; Rieger, C H

    1992-01-01

    Epidemiological studies have shown a relationship between air pollution and allergic airway disease. In a previous study we have found that exposure to SO2 enhances allergic sensitization to inhaled ovalbumin (OA) in the guinea pig. We have now investigated the influence of pre-treatment with anti-inflammatory drugs on SO2-induced enhancement of allergic sensitization in this model. Four groups of 6 guinea pigs each were exposed to 5 ppm SO2 on 5 consecutive days over 8 h per day with intermittent inhalation of OA, while the air-control group was exposed to clean air and OA. During the period of SO2 exposure and sensitization three experimental groups were treated with indomethacin (group I), methylprednisolone (group M) and nebulized nedocromil sodium (group N), while the control group remained untreated. Guinea pigs were investigated for sensitization to OA by specific bronchial provocation tests using body plethysmographic measurement of compressed air (CA) and by measurement of specific antibody response in serum. While in the SO2-exposed control group 5 of 6 animals reacted to specific bronchial provocation testing (CA median 0.15 ml, range 0-0.175 ml), only 1 animal was sensitized in group M (CA 0 ml, 0-0.125, p < 0.05), whereas no bronchial reactions were seen in groups I and N (CA 0 ml, 0-0.05, p < 0.025). Specific IgG antibody titres increased in the control group (median 43 EU-->85 EU), but not in the treatment groups (medians group I 35 EU-->35 EU, group M 30-->35 EU, group N 64-->50 EU).(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1422266

  4. Modeling of SO2 dispersion from the 2014 Holuhraun eruption in Iceland using WRF-Chem

    NASA Astrophysics Data System (ADS)

    Rognvaldsson, Olafur; Arnason, Gylfi; Palsson, Thorgeir; Eliasson, Jonas; Weber, Konradin; Böhlke, Christoph; Thorsteinsson, Throstur; Tirpitz, Lukas; Platt, Ulrich; Smith, Paul D.; Jones, Roderic L.

    2015-04-01

    The fissure eruption in Holuhraun in central Iceland is the country's largest lava and gas eruption since 1783 but has produced very little volcanic ash. The eruption started in late August 2014 and is still ongoing as of January 2015. The main threat from this event has been atmospheric pollution of SO2 that is carried by wind to all parts of the country and produces elevated concentrations of SO2 that have frequently violated National Air Quality Standards (NAQS) in many population centers. The Volcanic Ash Research (VAR) group in Iceland is focused on airborne measurement of ash contamination to support safe air travel, as well as various gas concentrations. In relation to the Holuhraun eruption the VAR group has organized an investigation campaign including 10 measurement flights and performed measurements of both the source emissions and the plume distribution. SO2 concentrations measured at the source showed clear potential for creating pollution events in the toxic range and contamination of surface waters. The data obtained in the measurement campaign was used for calibration of the WRF-chem model of the dispersion of SO2 and volcanic ash concentration. The model has both been run in operational forecast mode (since mid October) as well as in a dynamical downscaling mode, to estimate the dispersion and fallout of SO2 from the plume. The model results indicate that a large part of the sulphur was precipitated in the Icelandic highlands. The first melt waters during the spring thaw are likely to contain acid sulphur compounds that can be harmful for vegetation, with the highland vegetation being the most vulnerable. These results will be helpful to estimate the pollution load on farmlands and pastures of farmers.

  5. Extraction and quantification of SO2 content in wines using a hollow fiber contactor.

    PubMed

    Plaza, Andrea; Romero, Julio; Silva, Wladimir; Morales, Elizabeth; Torres, Alejandra; Aguirre, María J

    2014-10-01

    Sulfites [Formula: see text] or sulfur dioxide (SO2) is a preservative widely used in fruits and fruit-derived products. This study aims to propose a membrane contactor process for the selective removal and recovery of SO2 from wines in order to obtain its reliable quantification. Currently, the aspiration and Ripper methods offer a difficult quantification of the sulfite content in red wines because they involve evaporation steps of diluted compounds and a colorimetric assay, respectively. Therefore, an inexpensive and accurate methodology is not currently available for continuous monitoring of SO2 in the liquids food industry. Red wine initially acidified at pH?SO2, which is evaporated through the membrane pores filled with gas. Thus, SO2 is trapped in a colorless solution and the membrane contactor controls its transfer, decreasing experimental error induced in classical methods. Experimental results using model solutions with known concentration values of [Formula: see text] show an average extraction percentage of 98.91 after 4 min. On the other hand, two types of Chilean Cabernet Sauvignon wines were analyzed with the same system to quantify the content of free and total sulfites. Results show a good agreement between these methods and the proposed technique, which shows a lower experimental variability. PMID:23897976

  6. 40 CFR 52.1923 - Best Available Retrofit Requirements (BART) for SO2 and Interstate pollutant transport provisions...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...SO2 and Interstate pollutant transport provisions; What are the... and Interstate pollutant transport provisions; What are...apparatus utilized to control emissions of regulated air contaminants...Paragraph (a), above. (d) Emissions limitations —SO2...

  7. 40 CFR 52.1923 - Best Available Retrofit Requirements (BART) for SO2 and Interstate pollutant transport provisions...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...SO2 and Interstate pollutant transport provisions; What are the... and Interstate pollutant transport provisions; What are...apparatus utilized to control emissions of regulated air contaminants...Paragraph (a), above. (d) Emissions Limitations. SO2...

  8. 40 CFR 51.125 - Emissions reporting requirements for SIP revisions relating to budgets for SO2 and NOX emissions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...Control Strategy § 51.125 Emissions reporting requirements for...budgets for SO2 and NOX emissions. (a) For its transport SIP revision under § 51...to EPA SO2 and/or NOX emissions data as described in...

  9. 40 CFR 51.125 - Emissions reporting requirements for SIP revisions relating to budgets for SO2 and NOX emissions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...Control Strategy § 51.125 Emissions reporting requirements for...budgets for SO2 and NOX emissions. (a) For its transport SIP revision under § 51...to EPA SO2 and/or NOX emissions data as described in...

  10. 40 CFR 52.1923 - Best Available Retrofit Requirements (BART) for SO2 and Interstate pollutant transport provisions...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...SO2 and Interstate pollutant transport provisions; What are the... and Interstate pollutant transport provisions; What are the...apparatus utilized to control emissions of regulated air contaminants...of this section. (d) Emissions Limitations. SO2...

  11. Separation of polar gases from nonpolar gases

    DOEpatents

    Kulprathipanja, S.

    1986-08-19

    The separation of polar gases from nonpolar gases may be effected by passing a mixture of nonpolar gases over the face of a multicomponent membrane at separation conditions. The multicomponent membrane which is used to effect the separation will comprise a mixture of a glycol plasticizer having a molecular weight of from about 200 to about 600 and an organic polymer cast on a porous support. The porous support is pretreated prior to casting of the mixture thereon by contact with a polyhydric alcohol whereby the pores of the support are altered, thus adding to the increased permeability of the polar gas.

  12. Implications of Near-Term Coal Power Plant Retirement for SO2 and NOX and Life Cycle GHG Emissions

    E-print Network

    Jaramillo, Paulina

    States *S Supporting Information ABSTRACT: Regulations monitoring SO2, NOX, mercury, and other metal Agency (EPA), such as the Cross-State Air Pollution Rule (CSAPR) regulating SO2 and NOX emissionsImplications of Near-Term Coal Power Plant Retirement for SO2 and NOX and Life Cycle GHG Emissions

  13. Early in-flight detection of SO2 via Differential Optical Absorption Spectroscopy: A feasible aviation safety measure to prevent potential encounters with volcanic plumes

    USGS Publications Warehouse

    Vogel, L.; Galle, B.; Kern, C.; Delgado, Granados H.; Conde, V.; Norman, P.; Arellano, S.; Landgren, O.; Lubcke, P.; Alvarez, Nieves J.M.; Cardenas, Gonzales L.; Platt, U.

    2011-01-01

    Volcanic ash constitutes a risk to aviation, mainly due to its ability tocause jet engines to fail. Other risks include the possibility of abrasion ofwindshields and potentially serious damage to avionic systems. These hazardshave been widely recognized since the early 1980s, when volcanic ash provokedseveral incidents of engine failure in commercial aircraft. In addition tovolcanic ash, volcanic gases also pose a threat. Prolonged and/or cumulativeexposure to sulphur dioxide (SO2) or sulphuric acid (H2SO4)aerosols potentially affects e.g. windows, air frame and may cause permanentdamage to engines. SO2 receives most attention among the gas speciescommonly found in volcanic plumes because its presence above the lowertroposphere is a clear proxy for a volcanic cloud and indicates that fine ashcould also be present. Up to now, remote sensing of SO2 via Differential Optical AbsorptionSpectroscopy (DOAS) in the ultraviolet spectral region has been used tomeasure volcanic clouds from ground based, airborne and satellite platforms.Attention has been given to volcanic emission strength, chemistry insidevolcanic clouds and measurement procedures were adapted accordingly. Here wepresent a set of experimental and model results, highlighting the feasibilityof DOAS to be used as an airborne early detection system of SO2 intwo spatial dimensions. In order to prove our new concept, simultaneousairborne and ground-based measurements of the plume of Popocat??petlvolcano, Mexico, were conducted in April 2010. The plume extended at analtitude around 5250 m above sea level and was approached and traversed at thesame altitude with several forward looking DOAS systems aboard an airplane.These DOAS systems measured SO2 in the flight direction and at?? 40 mrad (2.3??) angles relative to it in both, horizontal andvertical directions. The approaches started at up to 25 km distance to theplume and SO2 was measured at all times well above the detectionlimit. In combination with radiative transfer studies, this study indicatesthat an extended volcanic cloud with a concentration of 1012 molecules cm-3 at typical flight levels of 10 km can be detectedunambiguously at distances of up to 80 km away. This range provides enoughtime (approx. 5 min) for pilots to take action to avoid entering avolcanic cloud in the flight path, suggesting that this technique can be usedas an effective aid to prevent dangerous aircraft encounters with potentiallyash rich volcanic clouds. ?? Author(s) 2011.

  14. Sulfur dioxide (SO2) from MIPAS in the upper troposphere and lower stratosphere 2002-2012

    NASA Astrophysics Data System (ADS)

    Höpfner, M.; Boone, C. D.; Funke, B.; Glatthor, N.; Grabowski, U.; Günther, A.; Kellmann, S.; Kiefer, M.; Linden, A.; Lossow, S.; Pumphrey, H. C.; Read, W. G.; Roiger, A.; Stiller, G.; Schlager, H.; von Clarmann, T.; Wissmüller, K.

    2015-06-01

    Vertically resolved distributions of sulfur dioxide (SO2) with global coverage in the height region from the upper troposphere to ~20 km altitude have been derived from observations by the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) on Envisat for the period July 2002 to April 2012. Retrieved volume mixing ratio profiles representing single measurements are characterized by typical errors in the range of 70-100 pptv and by a vertical resolution ranging from 3 to 5 km. Comparison with observations by the Atmospheric Chemistry Experiment Fourier transform spectrometer (ACE-FTS) revealed a slightly varying bias with altitude of -20 to 50 pptv for the MIPAS data set in case of volcanically enhanced concentrations. For background concentrations the comparison showed a systematic difference between the two major MIPAS observation periods. After debiasing, the difference could be reduced to biases within -10 to 20 pptv in the altitude range of 10-20 km with respect to ACE-FTS. Further comparisons of the debiased MIPAS data set with in situ measurements from various aircraft campaigns showed no obvious inconsistencies within a range of around ±50 pptv. The SO2 emissions of more than 30 volcanic eruptions could be identified in the upper troposphere and lower stratosphere (UTLS). Emitted SO2 masses and lifetimes within different altitude ranges in the UTLS have been derived for a large part of these eruptions. Masses are in most cases within estimations derived from other instruments. From three of the major eruptions within the MIPAS measurement period - Kasatochi in August 2008, Sarychev in June 2009 and Nabro in June 2011 - derived lifetimes of SO2 for the altitude ranges 10-14, 14-18 and 18-22 km are 13.3 ± 2.1, 23.6 ± 1.2 and 32.3 ± 5.5 days respectively. By omitting periods with obvious volcanic influence we have derived background mixing ratio distributions of SO2. At 10 km altitude these indicate an annual cycle at northern mid- and high latitudes with maximum values in summer and an amplitude of about 30 pptv. At higher altitudes of about 16-18 km, enhanced mixing ratios of SO2 can be found in the regions of the Asian and the North American monsoons in summer - a possible connection to an aerosol layer discovered by Vernier et al. (2011b) in that region.

  15. Long range transport and air quality impacts of SO2 emissions from Holuhraun (Bárdarbunga, Iceland)

    NASA Astrophysics Data System (ADS)

    Schmidt, Anja; Witham, Claire; Leadbetter, Susan; Theys, Nicholas; Hort, Matthew; Thordarson, Thorvaldur; Stevenson, John; Shepherd, Janet; Sinnott, Richard; Kenny, Patrick; Barsotti, Sara

    2015-04-01

    Gas emissions from the Holuhraun eruption site in Iceland resulted in increases in observed ground level concentrations of sulphur dioxide (SO2) in the UK and Ireland during two occasions in September 2014. We present data from the Irish and UK monitoring networks along with satellite imagery which describes the temporal and spatial evolution of these pollution episodes. During both events increases in concentration were significant compared to ambient levels. The peaks were short lived, 6-12 hours, and below the World Health Organisation's 10-minute air quality standard for SO2 of 500 µg/m3, but these events show that gas from relatively low altitude volcanic emissions in Iceland can pose a hazard to north west Europe. The two pollution events serve as excellent case studies and observations from the events provide us with a unique dataset for the verification of atmospheric dispersion models. We use the atmospheric dispersion model NAME to simulate the long-range transport, removal and chemical conversion of the volcanic SO2 during September 2014. We evaluate a range of model simulations, using varying model input and physical parameters, against ground based measurements and satellite retrievals of SO2. Simulations demonstrate that the long-range ground concentrations are strongly dependent on the emission flux and the height of emission at source. This relationship is well known from similar studies of other pollution events. However this work also demonstrates a dependence on the model's vertical turbulence parameterisation and the height of the boundary layer determined from the input Numerical Weather Prediction meteorological data. For the pollution events in September 2014, we find that using a mass flux of 40 kilotons per day of SO2 gives best agreement with vertical column retrievals of SO2 from the Ozone Monitoring Instrument, which is in good agreement with initial estimates made by the Icelandic Meteorological Office. "This work is distributed under the Creative Commons Attribution 3.0 Unported License together with an author copyright. This license does not conflict with the regulations of the Crown Copyright."

  16. Sulfur dioxide (SO2) from MIPAS in the upper troposphere and lower stratosphere 2002-2012

    NASA Astrophysics Data System (ADS)

    Höpfner, M.; Boone, C. D.; Funke, B.; Glatthor, N.; Grabowski, U.; Günther, A.; Kellmann, S.; Kiefer, M.; Linden, A.; Lossow, S.; Pumphrey, H. C.; Read, W. G.; Roiger, A.; Stiller, G.; Schlager, H.; von Clarmann, T.; Wissmüller, K.

    2015-02-01

    Vertically resolved distributions of sulfur dioxide (SO2) with global coverage in the height region from the upper troposphere to ~ 20 km altitude have been derived from observations by the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) on Envisat for the period July 2002 to April 2012. Retrieved volume mixing ratio profiles representing single measurements are characterized by typical errors in the range of 70-100 pptv and by a vertical resolution ranging from 3-5 km. Comparison with ACE-FTS observations revealed a slightly varying bias with altitude of -20 to 50 pptv for the MIPAS dataset in case of volcanically enhanced concentrations. For background concentrations the comparison showed a systematic difference between the two major MIPAS observation periods. After debiasing, the difference could be reduced to biases within -10 to 20 pptv in the altitude range of 10-20 km with respect to ACE-FTS. Further comparisons of the debiased MIPAS dataset with in-situ measurements from various aircraft campaigns showed no obvious inconsistencies within a range of around ±50 pptv. The SO2 emissions of more than thirty volcanic eruptions could be identified in the upper troposphere and lower stratosphere (UTLS). Emitted SO2 masses and lifetimes within different altitude ranges in the UTLS have been derived for a large part of these eruptions. Masses are in most cases within estimations derived from other instruments. From three of the major eruptions within the MIPAS measurement period - Kasatochi in August 2008, Sarychev in June 2009 and Nabro in June 2011 - derived lifetimes of SO2 for the altitude ranges 10-14, 14-18, and 18-22 km are 13.3±2.1, 23.6±1.2, and 32.3±5.5 d, respectively. By omitting periods with obvious volcanic influence we have derived background mixing ratio distributions of SO2. At 10 km altitude these indicate an annual cycle at northern mid- and high latitudes with maximum values in summer and an amplitude of about 30 pptv. At higher altitudes of about 16-18 km enhanced mixing ratios of SO2 can be found in the region of the Asian and the North-American monsoon in summer - a possible connection to an aerosol layer discovered by Vernier et al. (2011b) in that region.

  17. Evaluation of the SO(2) and NH(3) gas adsorption properties of CuO/ZnO/Mn(3)O(4) and CuO/ZnO/NiO ternary impregnated activated carbon using combinatorial materials science methods.

    PubMed

    Romero, Jennifer V; Smith, Jock W H; Sullivan, Braden M; Macdonald, Landan; Croll, Lisa M; Dahn, J R

    2013-02-11

    Impregnated activated carbons (IAC) are widely used materials for the removal of toxic gases in personal respiratory protection applications. The combinatorial method has been employed to prepare IACs containing different types of metal oxides in various proportions and evaluate their adsorption performance for low molecular weight gases, such as SO(2) and NH(3), under dry conditions. Among the metal oxides used for the study, Mn(3)O(4) was found to have the highest capacity for retaining SO(2) gas under dry conditions. NiO and ZnO were found to have similar NH(3) adsorption capacities which are higher than the NH(3) capacities observed for the other metal oxide impregnants used in the study. Although Cu- or Zn-based impregnants and their combinations have been extensively studied and used as gas adsorbents, neither Mn(3)O(4) nor NiO have been incorporated in the formulations used. In this study, ternary libraries of IACs with various combinations of CuO/ZnO/Mn(3)O(4) and CuO/ZnO/NiO were studied and evaluated for their adsorption of SO(2) and NH(3) gases. Combinations of CuO, ZnO, and Mn(3)O(4) were found to have the potential to be multigas adsorbents compared to formulations that contain NiO. PMID:23286549

  18. A kinetic study of the CH2OO Criegee intermediate self-reaction, reaction with SO2 and unimolecular reaction using cavity ring-down spectroscopy.

    PubMed

    Chhantyal-Pun, Rabi; Davey, Anthony; Shallcross, Dudley E; Percival, Carl J; Orr-Ewing, Andrew J

    2015-02-01

    Criegee intermediates are important species formed during the ozonolysis of alkenes. Reaction of stabilized Criegee intermediates with various species like SO2 and NO2 may contribute significantly to tropospheric chemistry. In the laboratory, self-reaction can be an important loss pathway for Criegee intermediates and thus needs to be characterized to obtain accurate bimolecular reaction rate coefficients. Cavity ring-down spectroscopy was used to perform kinetic measurements for various reactions of CH2OO at 293 K and under low pressure (7 to 30 Torr) conditions. For the reaction CH2OO + CH2OO (8), a rate coefficient k8 = (7.35 ± 0.63) × 10(-11) cm(3) molecule(-1) s(-1) was derived from the measured CH2OO decay rates, using an absorption cross section value reported previously. A rate coefficient of k4 = (3.80 ± 0.04) × 10(-11) cm(3) molecule(-1) s(-1) was obtained for the CH2OO + SO2 (4) reaction. An upper limit for the unimolecular CH2OO loss rate coefficient of 11.6 ± 8.0 s(-1) was deduced from studies of reaction (4). SO2 catalysed CH2OO isomerization or intersystem crossing is proposed to occur with a rate coefficient of (3.53 ± 0.32) × 10(-11) cm(3) molecule(-1) s(-1). PMID:25553776

  19. Broadband spectroscopic sensor for real-time monitoring of industrial SO(2) emissions.

    PubMed

    Xu, Feng; Zhang, Yungang; Somesfalean, Gabriel; Wang, Huashan; Wu, Shaohua; Zhang, Zhiguo

    2007-05-01

    A spectroscopic system for continuous real-time monitoring of SO(2) concentrations in industrial emissions was developed. The sensor is well suited for field applications due to simple and compact instrumental design, and robust data evaluation based on ultraviolet broadband absorption without the use of any calibration cell. The sensor has a detection limit of 1 ppm, and was employed both for gas-flow simulations with and without suspended particles, and for in situ measurement of SO(2) concentrations in the flue gas emitted from an industrial coal-fired boiler. The price/performance ratio of the instrument is expected to be superior to other comparable real-time monitoring systems. PMID:17429463

  20. Characterization of NOx, SO2, ethene, and propene from industrial emission sources in Houston, Texas

    Microsoft Academic Search

    R. A. Washenfelder; G. J. Frost; T. B. Ryerson; E. L. Atlas; J. A. de Gouw; F. M. Flocke; A. Fried; J. S. Holloway; D. D. Parrish; J. Peischl; D. Richter; S. M. Schauffler; J. G. Walega; C. Warneke; P. Weibring; W. Zheng

    2010-01-01

    The Houston-Galveston-Brazoria urban area contains industrial petrochemical sources that emit volatile organic compounds and nitrogen oxides, resulting in rapid and efficient ozone production downwind. During September to October 2006, the NOAA WP-3D aircraft conducted research flights as part of the second Texas Air Quality Study (TexAQS II). We use measurements of NOx, SO2, and speciated hydrocarbons from industrial sources in

  1. Changes in the chemistry of lakes near Subury, Ontario following reductions of SO 2 emissions

    Microsoft Academic Search

    P. J. Dillon; R. A. Reid; R. Girard

    1986-01-01

    Emissions of SO2 in the Sudbury area declined from an estimated average of 1.41 × 106 tonne yr-1 in 1973–78 to 0.68 × 106 tonne yr-1 in 1979–85. As a result, SO4 concentrations of lakes in the area have decreased, and the pH of each of the acidic lakes that was studied has increased. Aluminum, Cu, Ni and Zn concentrations

  2. Electron impact excitation of SO2 - Differential, integral, and momentum transfer cross sections

    NASA Technical Reports Server (NTRS)

    Vuskovic, L.; Trajmar, S.

    1982-01-01

    Electron impact excitation of the electronic states of SO2 was investigated. Differential, integral, and inelastic momentum transfer cross sections were obtained by normalizing the relative measurements to the elastic cross sections. The cross sections are given for seven spectral ranges of the energy-loss spectra extending from the lowest electronic state to near the first ionization limit. Most of the regions represent the overlap of several electronic transitions. No measurements for these cross sections have been reported previously.

  3. A component time-series model for SO 2 data: Forecasting, interpretation and modification

    Microsoft Academic Search

    Gerd Tetzlaff

    1997-01-01

    A time-series forecasting method is developed to enable advance warning of smog in winter. A component model for the time series of SO2 concentration essentially using a recursive Kalman algorithm is constructed on the basis of spectral analysis. It is found that the smog episodes with low frequencies and time-dependent power spectra are solely represented by the trend component. This

  4. Steam pretreatment of Salix with and without SO 2 impregnation for production of bioethanol

    Microsoft Academic Search

    Per Sassner; Mats Galbe; Guido Zacchi

    2005-01-01

    In the wood-to-ethanol process, pretreatment of the material is necessary prior to enzymatic hydrolysis to obtain high overall\\u000a yields of sugar and ethanol. Steam pretreatment of fast-growing Salix either with or without SO2 impregnation has been investigated by varying different parameters. Overall glucose yields of above 90% and overall xylose\\u000a yields higher than 80% were obtained both with and without

  5. Vibrationally inelastic collision cross sections of He+SO2: Distorted wave approach

    Microsoft Academic Search

    M. M. Novak; G. G. Balint-Kurti; D. C. Clary

    1989-01-01

    Vibrational excitation and relaxation cross sections of He colliding with SO2 molecule are evaluated. The results obtained rely on several approximate methods. The infinite-order-sudden approximation provides the framework for treating the rotational motion, while the vibrational processes are described using both exact close-coupling and approximate distorted wave techniques. The latter scheme permits the computations to be extended to much higher

  6. Comparison of current industrial SO2 emission inventories. Report for May-September 1993

    SciTech Connect

    Battye, R.; Masser, C.C.; Zimmerman, D.

    1993-01-01

    The paper gives results of analyses of 1985 industrial sulfur dioxide (SO2) emissions from two available data sources: the National Acid Precipitation Assessment Program (NAPAP) inventory and the EPA Trends report. These analyses conclude that the two data sources estimate comparable emissions in the aggregate, but estimates for specific categories vary widely. The paper reports some findings on the uncertainty or credibility of these estimates and the potential for improving the data sources.

  7. Mid-infrared detection of large longitudinal asymmetries in Io's SO 2 atmosphere

    Microsoft Academic Search

    John R. Spencer; Emmanuel Lellouch; Matthew J. Richter; Miguel A. López-Valverde; Kandis Lea Jessup; Thomas K. Greathouse; Jean-Marie Flaud

    2005-01-01

    We have observed about 16 absorption lines of the ?2 SO2 vibrational band on Io, in disk-integrated 19-?m spectra taken with the TEXES high spectral resolution mid-infrared spectrograph at the NASA Infrared Telescope Facility in November 2001, December 2002, and January 2004. These are the first ground-based infrared observations of Io's sunlit atmosphere, and provide a new window on the

  8. Emission spectrum and relaxation kinetics of SO 2 induced by 266 nm laser

    Microsoft Academic Search

    Guiyin Zhang; Lianshui Zhang; Yidong Jin

    2010-01-01

    Laser induced fluorescence (LIF) emission spectrum of SO2 in the range of 270.0–470.0nm has been obtained with the quadruple harmonic output (266nm) of a pulsed Nd:YAG laser as excitation source. The spectrum is composed of a continuous envelope in the short wavelength side, while it shows the character of banded structure superimposed on a continuous one in the long wavelength

  9. Structures and reaction rates of the gaseous oxidation of SO2 by an O-

    E-print Network

    Meskhidze, Nicholas

    Structures and reaction rates of the gaseous oxidation of SO2 by an O- 3 (H2O)0-5 cluster - an ab initio study N. Bork, T. Kurt´en, M.B. Enghoff, J.O.P. Pedersen, K.V. Mikkelsen, and H. Svensmark shown in Fig. 7 in the main article. Sulfur (yellow), oxygen (red), hydrogen (white). #12;Table SI-2: T1

  10. Effects of SO 2 and NO x control on energy-efficiency power generation

    Microsoft Academic Search

    W. H. J. Graus; E. Worrell

    2007-01-01

    The aim of this paper is to give an overview of the effects of SO2 and NOx pollution control on the energy efficiency of fossil-fired power generation for the following countries: Australia, China, France, Germany, India, Japan, Nordic countries (Denmark, Finland, Sweden, and Norway aggregated), South Korea, UK and Ireland, and United States. Together these countries generate 65% of fossil-fired

  11. Mass Splitting of Staggered Fermion and $SO(2D)$ Clifford Algebra

    E-print Network

    M. Hatakeyama; H. Sawanaka; H. So

    2006-09-28

    We present a new method to introduce rotationally invariant terms in staggered fermions which is based on an $SO(2D)$ Clifford algebra formulation, where $D$ means the number of space-time dimensions. We have four candidates for improved mass terms that can split the degenerate mass of staggered fermions. Among them, we analyze three types of combinations and find only one case that can identify with the light single Dirac mode.

  12. Numerical Study of the Simultaneous Oxidation of NO and SO2 by Ozone

    PubMed Central

    Li, Bo; Zhao, Jinyang; Lu, Junfu

    2015-01-01

    This study used two kinetic mechanisms to evaluate the oxidation processes of NO and SO2 by ozone. The performance of the two models was assessed by comparisons with experimental results from previous studies. The first kinetic mechanism was a combined model developed by the author that consisted of 50 species and 172 reactions. The second mechanism consisted of 23 species and 63 reactions. Simulation results of both of the two models show under predictions compared with experimental data. The results showed that the optimized reaction temperature for NO with O3 ranged from 100~200 °C. At higher temperatures, O3 decomposed to O2 and O, which resulted in a decrease of the NO conversion rate. When the mole ratio of O3/NO was greater than 1, products with a higher oxidation state (such as NO3, N2O5) were formed. The reactions between O3 and SO2 were weak; as such, it was difficult for O3 to oxidize SO2. PMID:25642689

  13. Heat generation in lithium-thionyl chloride and lithium-SO2 cells

    NASA Astrophysics Data System (ADS)

    Cohen, R.; Melman, A.; Livne, N.; Peled, E.

    1992-09-01

    The effects of current density, temperature, depth of discharge (DOD), and storage on the heat generation rate and faradaic efficiency of Li/Tc and Li/SO2 cells have been determined. Several C-size commercial cells from different manufacturers have been tested. The faradaic efficiency for both systems was found to be very high, typically 96-100 percent even at high current density and high temperatures (55 C). It does not change much with DOD and decreases only slightly with the increase of current density and high temperature (tested up to 4.5 mA/sq cm at 50 percent DOD and 55 C). A performance degradation problem was found for some Li/TC cells. The heat factor, the ratio between the useful electric power and the thermal power generated by the cell, is about the same for fresh Li/TC cells and Li/SO2 cells. However, some Li/TC cells stored for 3 years showed a poor heat factor. It was confirmed that the maximum thermoneutral voltage for the Li/TC and Li/SO2 cells is 3.80 and 3.22 V, respectively.

  14. Rate constant for the reaction SO + BrO yields SO2 + Br

    NASA Technical Reports Server (NTRS)

    Brunning, J.; Stief, L.

    1986-01-01

    The rate of the radical-radical reaction SO + BrO yields SO2 + Br has been determined at 298 K in a discharge flow system near 1 torr pressure with detection of SO and BrO via collision-free sampling mass spectrometry. The rate constant was determined using two different methods: measuring the decay of SO radicals in the presence of an excess of BrO and measuring the decay of BrO radicals in excess SO. The results from the two methods are in reasonable agreement and the simple mean of the two values gives the recommended rate constant at 298 K, k = (5.7 + or - 2.0) x 10 to the -11th cu cm/s. This represents the first determination of this rate constant and it is consistent with a previously derived lower limit based on SO2 formation. Comparison is made with other radical-radical reactions involving SO or BrO. The reaction SO + BrO yields SO2 + Br is of interest for models of the upper atmosphere of the earth and provides a potential coupling between atmospheric sulfur and bromine chemistry.

  15. Aqueous phase oxidation of SO2 by O3 measured at the CERN CLOUD chamber

    NASA Astrophysics Data System (ADS)

    Hoyle, Christopher; Fuchs, Claudia; Gysel, Martin; Troestl, Jasmin; El Haddad, Imad; Frege, Carla; Dommen, Josef; Dias, Antonio; Jaervinen, Emma; Moehler, Ottmar; Baltensperger, Urs

    2015-04-01

    Measurements of aerosol growth due to the oxidation of SO2 by O3 in cloud droplets at temperatures of 10° C and -10° C are presented. Although this reaction has been well studied in bulk solutions at temperatures above 0° C, this is, to the best of our knowledge, the first time the reaction rate has been studied in laboratory formed, super-cooled cloud droplets. These experiments were made possible by utilising the adiabatic expansion system in the 27 m3 CLOUD (Cosmics Leaving Outdoor Droplets) chamber at CERN. Experiments were performed on both acidic (sulphuric acid) and neutral (ammonium sulphate) seed aerosol. During 6 minute cloud cycles, droplets of approximately 10?m diameter were formed, and the growth of the aerosol due to the uptake and oxidation of SO2 was measured with a scanning mobility particle sizer (SMPS). A microphysical model was developed to simulate the cloud droplet activation and growth as well as the aqueous phase chemistry. The ability of the model to accurately represent the observed aerosol growth is assessed, and the implications for the extrapolation of the SO2+O3oxidation rates to sub-zero temperatures are discussed.

  16. SO2 plume height retrieval from UV satellite measurements in support to aviation control

    NASA Astrophysics Data System (ADS)

    van Gent, Jeroen; Brenot, Hugues; Lerot, Christophe; Theys, Nicolas; Van Roozendael, Michel

    2014-05-01

    The Support to Aviation Control Service (SACS), operated at our institute, uses multi-sensor UV-visible and infrared satellite measurements to provide near real-time information on volcanic ash and SO2 concentrations. In case of enhanced SO2 concentrations, notifications are send out to subscribing organisations and individuals, with details regarding the volcanic event. This information may be used by aviation control organisations to judge the risc to air traffic and provide possible alternative routing. One of the latest additions to the system is information on the altitude of SO2 plumes, based on UV measurements of the GOME-2 sensors on the platforms METOP-A and METOP-B. Further improvement of this system is ongoing. This poster shows examples of plume height retrieval from GOME-2 (METOP-A and -B) and OMI (EOS-AURA). Results are shown for a number of recent major volcanic eruptions, each with different characteristics. The applied technique to retrieve altitude information will be discussed, as well as the applicability, quality and limitations of the method.

  17. Airborne emission measurements of SO2, NOx and particles from individual ships using sniffer technique

    NASA Astrophysics Data System (ADS)

    Beecken, J.; Mellqvist, J.; Salo, K.; Ekholm, J.; Jalkanen, J.-P.

    2013-12-01

    A dedicated system for airborne ship emission measurements of SO2, NOx and particles has been developed and used from several small aircrafts. The system has been adapted for fast response measurements at 1 Hz and the use of several of the instruments is unique. The uncertainty of the given data is about 20.3% for SO2 and 23.8% for NOx emission factors. Multiple measurements of 158 ships measured from the air on the Baltic and North Sea during 2011 and 2012 show emission factors of 18.8 ± 6.5 g kgfuel-1, 66.6 ± 23.4 g kgfuel-1, and 1.8 ± 1.3 × 1016 particles kgfuel-1 for SO2, NOx and particle number respectively. The particle size distributions were measured for particle diameters between 15 and 560 nm. The mean sizes of the particles are between 50 and 62 nm dependent on the distance to the source and the number size distribution is mono-modal. Concerning the sulfur fuel content 85% of the ships comply with the IMO limits. The sulfur emission has decreased compared to earlier measurements from 2007 to 2009. The presented method can be implemented for regular ship compliance monitoring.

  18. Including satellite data of SO2 for volcano monitoring: recent results and perspectives.

    NASA Astrophysics Data System (ADS)

    Campion, Robin; Theys, Nicolas; Clarisse, Lieven; Delgado-Granados, Hugo

    2015-04-01

    Measurements of SO2 emission rates have, for about 30 years, been part of the standard toolkit of volcano observatories, initially as occasional measurements with the COSPEC instruments, and, since nearly 10 years, as permanent measurements by automated scanning DOAS. In the mean time, the progress in the performances of satellite has been considerable and some space-based sensors are now able to detect and quantify relatively low emissions of volcanic SO2 by low intensity eruptions and passive degassing. We will review published and unpublished satellite data of SO2 emission over the last 10 years at various volcanoes, (Popocatépetl, Colima, Etna, Turrialba, Nyamuragira, Tungurahua, Kilauea among others), efforts to intercompare and validate these measurements, and detail the insights that we can gain from them for understanding degassing processes. We will highlight the advantages and limitations of using satellites, with an emphasis on their strong complementarity between space and ground-based data. Finally, we will present the perspectives offered by the sensors that are next in the launch pad.

  19. [Effects of temperature on the ultraviolet absorption characteristics of SO2].

    PubMed

    Zheng, Hai-Ming; Jin, Wei-Jia

    2013-03-01

    Absorption spectrum of SO2 is obtained under the condition of room temperature and atmosphere pressure. The spectrum is composed of banded structure superimposed on a continuum. The continuum structure comes from the transition of SO2 molecule from the ground electronic state to the higher dense rovibronic energy levels, and the banded one comes from the transition of B1B1<--X1A1. The symmetric stretch and bend vibration frequencies are obtained from the banded structure. They are omega1 =(665+/-29) cm-1 and omega2 = (448+/-17) cm-1, respectively. Measuring the absorption spectra of SOz at different temperature, it was also found that the configuration of the spectra is similar. But the absorption cross-section decreases with the increase in temperature. The absorption cross-section corresponding to the absorption peaks varies with temperature in the manner of cube. But the rate coefficients are different. So the effect of temperature on the measurement results must be considered when we use the technique of DOAS for the detection of SO2. PMID:23705452

  20. Nitrile-functionalized tertiary amines as highly efficient and reversible SO2 absorbents.

    PubMed

    Hong, Sung Yun; Kim, Heehwan; Kim, Young Jin; Jeong, Junkyo; Cheong, Minserk; Lee, Hyunjoo; Kim, Hoon Sik; Lee, Je Seung

    2014-01-15

    Three different types of nitrile-functionalized amines, including 3-(N,N-diethylamino)propionitrile (DEAPN), 3-(N,N-dibutylamino)propionitrile (DBAPN), and N-methyl-N,N-dipropionitrile amine (MADPN) were synthesized, and their SO2 absorption performances were evaluated and compared with those of hydroxy-functionalized amines such as N,N-diethyl-N-ethanol amine (DEEA), N,N-dibutyl-N-ethanol amine (DBEA), and N-methyl-N,N-diethanol amine (MDEA). Absorption-desorption cycle experiments clearly demonstrate that the nitrile-functionalized amines are more efficient than the hydroxy-functionalized amines in terms of absorption rate and regenerability. Computational calculations with DBEA and DBAPN revealed that DBEA bearing a hydroxyethyl group chemically interacts with SO2 through oxygen atom, forming an ionic compound with a covalently bound OSO2(-) group. On the contrary, DBAPN bearing a nitrile group physically interacts with SO2 through the nitrogen and the hydrogen atoms of the two methylene groups adjacent to the amino and nitrile functionalities. PMID:24291666

  1. Satellite Observations of NO2 Trend over Romania

    PubMed Central

    Voiculescu, Mirela; Georgescu, Lucian

    2013-01-01

    Satellite-based measurements of atmospheric trace gases loading give a realistic image of atmospheric pollution at global, regional, and urban level. The aim of this paper is to investigate the trend of atmospheric NO2 content over Romania for the period 1996–2010 for several regions which are generally characterized by different pollutant loadings, resulting from GOME-1, SCIAMACHY, OMI, and GOME-2 instruments. Satellite results are then compared with ground-based in situ measurements made in industrial and relatively clean areas of one major city in Romania. This twofold approach will help in estimating whether the trend of NO2 obtained by means of data satellite retrievals can be connected with the evolution of national industry and transportation. PMID:24453819

  2. Differences in the BrO/SO2 evolution in the plume of Nyiragongo and Etna

    NASA Astrophysics Data System (ADS)

    Bobrowski, Nicole; von Glasow, Roland; Giuffrida, Giovanni; Tedesco, Dario; Yalire, Mathiew; Arrellano, Santiago; Galle, Bo; Aiuppa, Alessandro; Platt, Ulrich

    2013-04-01

    Studies of bromine monoxide and sulphur dioxide distributions in the plume of Niyragongo have been carried out with the Multi-Axis-Differential Optical Absorption Spectroscopy (MAX-DOAS) technique several times during the last years. The data discussed here are from measurements taken in 2004 and 2007. Niyragongo shows that even if the chlorine abundance might be very low in intraplate volcanism, conclusion from these findings cannot be drawn for other halogens, e.g. bromine. This is also a hint that the potential volcanic bromine source is not only the earth crust, in particular the ocean crust, as often assumed, because Niyragongo is fed by lava originating from a depth > 150 km with nearly no crustal influences (e.g. Chakrabarti et al., 2009). The contribution of halogens and sulphur emitted into the free troposphere by the lava lake of Niyragongo is estimated at about 1300 SO2 t/d, 52 HCl t/d, 2.6 HBr t/d in 2007. Nyiragongo is therefore an unexpectedly large source of inorganic bromine for the free troposphere. Although Niyragongo's plume is relatively poor in filterable chlorine it is richer in bromine than Etna and has an even higher Br/S ratio than the one of Soufriere Hills volcano, which was considered to exhibit the globally highest Br/S ratio (Gerlach, 2004). Although Nyiragongo has the highest so far measured Br/S ratio in its (young) volcanic plume, comparing the BrO/SO2 ratios further downwind leads to the unexpected result of relatively low BrO values in the aged plume of Nyiragongo. In this presentation we compare BrO/SO2 ratios in aging plumes, - the activation of bromine, in the volcanic plume of Nyiragongo, DR Congo and Mt Etna, Italy. Although the Br/S ratio in the plume of Nyiragongo is generally higher than that at Etna, the highest BrO/SO2 ratios of the plume of Nyiragongo are significantly below the ones at Mt Etna. We also show that in the plume of Nyiragongo as well as seen in data taken at Etna, the BrO/SO2 ratio at the largest distance (oldest plume, > 40 minutes) from the emission source is considerable lower than measurements at plume ages between 10 and 40 minutes. We will compare the data with results from a 1D numerical chemistry-transport model that has been used for the investigation of volcanic plumes in the past in order to test whether our current understanding of plume chemistry as implemented in the model is able to reproduce the measurements. We will furthermore present sensitivity studies regarding ambient factors such as humidity.

  3. Nyiragongo and Nyamulagira volcanoes SO2-rich plume: a human health impact on North Kivu population?

    NASA Astrophysics Data System (ADS)

    Michellier, Caroline; Dramaix, Michèle; Wilondja, Jeanpy; Yalire, Matthieu; Bosco Kahindo, Jean; Kervyn, François

    2013-04-01

    Located in the east of the Democratic Republic of Congo (DRC), Nyiragongo and Nyamulagira volcanoes are among the most active of the continent. Nyiragongo (last eruption in January 2002) hosts a sub-permanent lava lake that produces a SO2-rich plume. Its neighbor Nyamulagira makes major contributions to these emissions during its frequent eruptive periods (~2-3 years; last occurred in November 2011). An evaluation of the permanent volcanic plume impact on the population health has not been undertaken to date. It is the objective of this study conducted at two different scales. - 1999-2010 data were extracted from the Health Information System (HIS). Through temporal and spatial analyses (Poisson regression), acute respiratory infection (ARI) cases routinely registered in health centres located under the plume were studied. No strong relationship of the ARI cases number was identified neither with distance to volcanoes, nor with eruptive months. ARI were also statistically compared (cross correlation) to SO2 concentrations (ground level) measured by using Multi-Axis Differential Optical Absorption Spectroscopic (MAX-DOAS) sensors located around Nyiragongo volcano. Correlation between ARI cases number and SO2 concentration values appears to be statistically positive and significant. These last results encouraged us to both study more deeply the health data collected during the 2011 Nyamulagira eruption and to undertake a large scale study. - Following the last Nyamulagira eruption, a field survey was conducted in March 2012. The objective was to collect general population's specific health information. At the same time, passive SO2 filters were distributed throughout the surveyed area. Statistical analyses highlight new correlations between respiratory infection criteria and SO2 ground concentrations. Other impacts, linked either to health or to agriculture, can also be underlined through our results, as well as through field observations. This on-going study aims at determining the magnitude and geographical extent of the impact of volcanic plumes on the population health. This should contributes to define the appropriate sanitation recommendations and lead to effective volcanic impact reduction on human health.

  4. Contributions of Asian SO2 Pollution to the Upper Troposphere and Lower Stratosphere

    NASA Astrophysics Data System (ADS)

    Neely, R. R.; Yu, P.; Rosenlof, K. H.; Toon, O. B.; Daniel, J. S.; Solomon, S.; Miller, H. L.

    2013-12-01

    Recent observations reveal a seasonally occurring layer of aerosol located from 0° to 100°E, 20°N to 45°N and extending vertically from about 13 km to 18 km. Termed the Asian Tropopause Aerosol Layer (ATAL), its existence is closely associated with the Asian monsoonal circulation. Recent observational studies argued that the source of the ATAL must be anthropogenic, as the layer was not observed by satellite prior to 1998. Here we test this hypothesis using a global climate model coupled to an aerosol microphysical model. The model examines the impact of global and regional sulfur dioxide (SO2) sources on the ATAL and the importance of non-sulfate constituents in its composition. We conclude that while the ATAL is of anthropogenic origin, it is not solely due to emissions from Asia. We find that model results of the ATAL match well with current satellite observations of backscatter and extinction, and the vertical distribution of composition agrees with in situ measurements at other locations. Further model experiments indicate that the ATAL is not created solely from emissions near the monsoon region as previously suggested but likely originates from a wider range of source regions. At year 2000 levels, Chinese and Indian SO2 emissions contribute only 30% of the sulfate aerosol extinction in the ATAL during volcanically quiescent periods. This is proportional to the emissions from this region compared to the total global emission of SO2 . The remaining contribution of sulfate aerosol originates from anthropogenic SO2 emissions in other regions. Curiously, we also find that the sulfate in the North American Tropopause Aerosol Layer (NATAL) may have a modest (15%) contribution from Asian emissions. The model results also suggest that sulfates are more important in the stratospheric part of the ATAL than particles coming from other sources, such as BC, SOA and dust, as sulfates make up over 70% of the aerosol extinction burden above the tropopause while the opposite is true in the upper troposphere. Modeled representation of ATAL. Panels a) and b) are the JJA mean 1020 nm extinction ratio averaged from 15 N to 45 N to match the representation of SAGE II observations in Figures 9 and 10 in Thomason and Vernier [2013]. Panel a represents the baseline model run with year 2000 levels of global SO2 emissions. Panel b is the exact same as Panel a) but excludes emissions from China and India. The white line in each panel represents the mean model tropopause over the same region.

  5. RETRIEVAL OF STRATOSPHERIC TRACE GASES FROM SCIAMACHY LIMB MEASUREMENTS

    Microsoft Academic Search

    Sven Kühl; Tim Deutschmann; Walburga Wilms-Grabe; Christoph Friedeburg; Ulrich Platt; Thomas Wagner

    Stratospheric profiles of various trace gases can be retrieved from limb measurements performed by SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY) instrument on the ENVISAT satellite. A two-step method is used to retrieve stratospheric distribution of NO2, BrO and OClO. In the first step, slant column densities (SCDs) of the trace gases are derived from the SCIAMACHY limb spectra

  6. Lyman Alpha Camera for Io's SO2 atmosphere and Europa's water plumes

    NASA Astrophysics Data System (ADS)

    McEwen, Alfred S.; Sandel, Bill; Schneider, Nick

    2014-05-01

    The Student Lyman-Alpha Mapper (SLAM) was conceived for the Io Volcano Observer (IVO) mission proposal (McEwen et al., 2014) to determine the spatial and temporal variations in Io's SO2 atmosphere by recording the H Ly-? reflection over the disk (Feldman et al., 2000; Feaga et al., 2009). SO2 absorbs at H Ly-?, thereby modulating the brightness of sunlight reflected by the surface, and measures the density of the SO2 atmosphere and its variability with volcanic activity and time of day. Recently, enhancements at the Ly-? wavelength (121.57 nm) were seen near the limb of Europa and interpreted as active water plumes ~200 km high (Roth et al., 2014). We have a preliminary design for a very simple camera to image in a single bandpass at Ly-?, analogous to a simplified version of IMAGE EUV (Sandel et al. 2000). Our goal is at least 50 resolution elements across Io and/or Europa (~75 km/pixel), ~3x better than HST STIS, to be acquired at a range where the radiation noise is below 1E-4 hits/pixel/s. This goal is achieved with a Cassegrain-like telescope with a 10-cm aperture. The wavelength selection is achieved using a simple self-filtering mirror in combination with a solar-blind photocathode. A photon-counting detector based on a sealed image intensifier preserves the poisson statistics of the incoming photon flux. The intensifier window is coated with a solar-blind photocathode material (CsI). The location of each photon event is recorded by a position-sensitive anode based on crossed delay-line or wedge-and-strip technology. The sensitivity is 0.01 counts/pixel/sec/R, sufficient to estimate SO2 column abundances ranging from 1E15 to 1E17 per cm2 in a 5 min (300 sec) exposure. Sensitivity requirements to search for and image Europa plumes may be similar. Io's Ly-? brightness of ~3 kR exceeds the 0.8 kR brightness of Europa's plume reported by Roth et al. (2014), but the plume brightness is a direct measurement rather than inferring column abundance from absorption. Also, the radiation-induced noise is lower at Europa, permitting longer exposure times and imaging at closer range. This is a very simple instrument with no moving parts, a mass of 4 kg (plus 1.7 kg radiation shielding), and it needs 4 W power. It has no special accommodation requirements and would simply collect data in ride-along mode during point-and-stare sequences. Feaga, L.M., et al. (2009) Io's dayside SO2 atmosphere, Icarus 201, 570-584 (2009). Feldman, P.D., et al., (2000) Lyman-? imaging of the SO2 distribution on Io, Geophys. Res. Lett., 27, 1787-1790. McEwen, A.S. et al. (2014) Io Volcano Observer (IVO): Budget travel to the outer Solar System. Acta Astronautica 93, 539-544. Roth, L. et al. (2014) Transient water vapor at Europa's south pole. Science 343, 171. Sandel, B., et al. (2000) The Extreme Ultraviolet Imager investigation for the IMAGE mission. Space Sci. Rev. 91, 197-242.

  7. [Studies on laser induced dispersive fluorescence spectroscopy of SO2 molecule excited by two-photon].

    PubMed

    Zhao, Zhan-Long; Li, Ming; Zhang, Lian-Shui; Chen, Si-Yuan; Zhao, Kui-Fang

    2012-11-01

    The processes of excitation and complicated de-excitation of A-symmetric state in the first-excited band of SO2 molecule were studied experimentally with the techniques of two-photon laser induced dispersive fluorescence spectroscopy where a pulsed dye laser (579 nm) was used as excitation sources. The SO2 molecule which were excited from ground state X1A1 to the high vibrational levels of A1 A2 state by absorbing two photons, will realize the repopulation in several vibration-rotational energy levels of A1 A2, B1 B1 and alpha3 B1 states by internal energy conversion and collision relaxation. Because of transitions to the different vibrational levels of ground electronic state X1 A1 from the ground vibrational levels of A1 A2, B1 B1, and alpha3 B1, the fluorescence spectrum envelopes centered at 305 and 425 nm and the regular fluorescence lines centered at 347.2 nm were formed in the fluorescence spectra. In addition, the process of tri-photon excitation X1 A1 --> C1 B2 of SO2 molecule was observed, and the result of the process was the fluorescence spectrum envelope in 200-278 nm and the overlapping fluorescence lines centered at 425 nm. The harmonic frequencies of the symmetry stretch vibration and the bendvibration and the anharmonic constants of stretch vibration mode and the bend vibration mode of related states were calculated from the experimental data. PMID:23387180

  8. Combining Bayesian methods and aircraft observations to constrain the HO. + NO2 reaction rate

    EPA Science Inventory

    Tropospheric ozone is the third strongest greenhouse gas, and has the highest uncertainty in radiative forcing of the top five greenhouse gases. Throughout the troposphere, ozone is produced by radical oxidation of nitrogen oxides (NO,x =NO+NO2). In the uppe...

  9. Reactions of NaCl with gaseous SO3, SO2, and O2

    NASA Technical Reports Server (NTRS)

    Fielder, W. L.; Stearns, C. A.; Kohl, F. J.

    1984-01-01

    Hot corrosion of gas turbine engine components involves deposits of Na2SO4 which are produced by reactions between NaCl and oxides of sulfur. For the present investigation, NaCl single crystals were exposed at 100 to 850 C to gaseous mixtures of SO3, SO2, and O2. The products formed during this exposure depend, primarily, on the temperatures. The four product films were: NaCl-SO3; Na2S2O7; Na2SO4; and NaCl-Na2SO4. The kinetics of the reactions were measured.

  10. Reactions of NaCl with Gaseous SO3, SO2, and O2

    NASA Technical Reports Server (NTRS)

    Fielder, W. L.; Stearns, C. A.; Kohl, F. J.

    1983-01-01

    Hot corrosion of gas turbine engine components involves deposits of Na2SO4 which are produced by reactions between NaCl and oxides of sulfur. For the present investigation, NaCl single crystals were exposed at 100 to 850 C to gaseous mixtures of SO3, SO2, and O2. The products formed during this exposure depend, primarily, on the temperatures. The four product films were: NaCl-SO3; Na2S2O7; Na2SO4; and NaCl-Na2SO4. The kinetics of the reactions were measured.

  11. Comparison of Low Cost Miniature Spectrometers for Volcanic SO2 Emission Measurements

    PubMed Central

    Kantzas, Euripides P.; McGonigle, Andrew J. S.; Bryant, Robert G.

    2009-01-01

    Miniature ultraviolet USB coupled spectrometers have become ubiquitously applied over the last decade for making volcanic SO2 emission rate measurements. The dominantly applied unit has recently been discontinued however, raising the question of which currently available devices should now be implemented. In this paper, we consider, and make recommendations on this matter, by studying a number of inexpensive compact spectrometers in respect of measurement performance and thermal behaviour. Of the studied units, the Avaspec demonstrated the best prospects for the highest time resolution applications, but in the majority of cases, we anticipate users likely preferring the less bulky USB2000+s. PMID:22412310

  12. Synthesis of N-Doped meso-macroporous carbon and its application to SO2 absorption

    NASA Astrophysics Data System (ADS)

    Liu, Chao; Zhang, Lei; Hu, Yongqi; Chen, Aibing; Wang, Xiaojing

    2014-12-01

    N-Doped meso-macroporous carbon materials were synthesized using melamine-formaldehyde resin as carbon precursor and silica spheres as a removable template. The as-synthesized carbon materials with a bimodal pores structure (about 3.9 and ˜50-200 nm) display a high surface nitrogen content of 30 wt %. The macropores of carbon materials can be modulated by changing the diameter of template. The SO2 adsorption experiments demonstrate a high adsorption capacity of 78.6 mg g-1 and a considerable stability even over 9 cycles for the carbon materials.

  13. A novel CO2- and SO2-tolerant dual phase composite membrane for oxygen separation.

    PubMed

    Cheng, S; Søgaard, M; Han, L; Zhang, W; Chen, M; Kaiser, A; Hendriksen, P V

    2015-04-28

    A novel dual phase composite oxygen transport membrane (Al0.02Ga0.02Zn0.96O1.02-Gd0.1Ce0.9O1.95-?) was successfully prepared and tested. This membrane shows chemical stability against CO2 and SO2, and stable oxygen permeation over 300 hours in CO2 was demonstrated. ZnO is cheap and non-toxic and is therefore highly advantageous compared to other common materials used for this purpose. PMID:25807457

  14. High-resolution measurements of the ?2 and 2 ?2- ?2 bands of SO 2

    NASA Astrophysics Data System (ADS)

    Coudert, L.; Maki, A. G.; Olson, Wm. B.

    1987-08-01

    Infrared measurements have been made on SO 2 between 450 and 602 cm -1 with a resolution of 0.005 cm -1. The B-type bands due to the bending mode transitions 010-000 and 020-010 have been assigned and analyzed for the 32S 16O 2 molecule. A total of 3007 transitions were measured and fit for 32S 16O 2 with a standard deviation of 0.0004 cm -1. Ro-vibrational constants are given that fit the current measurements and the pure rotational transitions reported in the literature.

  15. In situ measurements of SO2, NOx, NOy, and O3 in Beijing, China during August 2008.

    PubMed

    Sun, Yang; Wang, Lili; Wang, Yuesi; Quan, Liu; Zirui, Liu

    2011-02-01

    The measurement of SO(2), O(3), NO, NO(2), and NO(y) mixing ratios was conducted from Jul 28, 2008 to Sep 2, 2008 at the Institute of Atmospheric Physics, Chinese Academy of Sciences (IAP, CAS) station, which is 2km southwest to the Beijing National Stadium (Bird's Nest/Olympic Stadium). Photochemical pollution was detected during the measurement on Aug 2, 2008, and the maximum hourly average [O(3)] reached 128ppbv, caused by both the local photochemical reactions and regional transportation of pollutants. The NO(x) Ozone Production Efficiency (OPE (NO(x))) values were 6.9 and 20.2 on Aug 2 and Aug 24, 2008 respectively, which were the two days with highest O(3) pollution. The OPE (NO(x)) of 6.9 on Aug 2 was within a typical range in city area, and it implied that the high O(3) could be due to local sources. While OPE (NO(x)) of 20.2 on Aug 24 was larger than the typical value in the region, but lower than that of the surrounding clean area during 2008 Beijing Olympics Closing Ceremony. It indicated that the pollution was because of regional transportation of pollutants. In addition, 60% of the extent of the Smog Production Model (SPM) data was less than 0.6 and the rest was slightly larger than 0.6, with maximum of 0.78. It indicated that the sensitivity of O(3) generated was volatile organic compounds (VOCs) control during the observation period. The SPM results also implied that O(3) product in high-O(3) day is a transition state from VOCs sensitivity to NO(x) sensitivity. Lastly, the analysis of the wind direction and extent of SPM showed that the photochemical pollution of this region was mostly subject to the influence of southeastern air flow in the summer. PMID:21168899

  16. Hygroscopic properties of the workroom aerosol in aluminium smelter potrooms: a case for transport of HF and SO2 into the lower airways.

    PubMed

    Weinbruch, S; Benker, N; Koch, W; Ebert, M; Drabløs, P A; Skaugset, N P; Ellingsen, D G; Thomassen, Y

    2010-02-01

    The hygroscopic behaviour of individual aerosol particles from workplaces in a primary aluminium smelter was investigated by environmental scanning electron microscopy. At a high relative humidity, comparable with the human respiratory tract, most particles encountered in the Søderberg and Prebake potrooms either undergo partial deliquescence (leading to a water droplet with an insoluble core) or form thin water films at the surface. As gaseous HF and SO(2) are highly soluble in water, the aerosol particles may act as carrier for these two gases into the alveolar region of the lower respiratory tract. Based on a one-dimensional mass balance model, it is estimated that under peak exposure conditions (particle surface area concentration of 10(-4) cm(2) cm(-3)) approximately 10% of the initial gaseous HF may be transferred to the particle phase. For SO(2), this fraction is much lower (approximately 1%). These results indicate that at least HF may penetrate deeper into the lung in the presence of soluble particles or particles that form surface water films compared to HF alone. PMID:20145885

  17. Laser-based sensor for detection of hazardous gases in the air using waveguide CO2 laser.

    PubMed

    Gondal, Mohammed A; Bakhtiari, Imran A; Dastageer, Abdul K

    2007-06-01

    A spectrometer based on the principle of photoacoustic spectroscopy has been developed recently at our laboratory for the detection of hazardous gases such as O3, C2H4, SO2, NO2 and SF6. In most of our earlier works, we employed a mechanical chopper to modulate the laser beam and this chopper modulation has the crucial disadvantage of instability in the chopper frequency. Even a minor shift of about 1 Hz in the modulation frequency could significantly reduce the photoacoustic signal by an order of magnitude at the acoustic resonant mode of the photoacoustic cell. To overcome this problem, we developed a photoacoustic spectrometer where a wave guided CW CO2 laser beam is modulated electronically with the external frequency generator. Our preliminary results show that the electronic modulation of CO2 laser beam improved the sensitivity of our spectrometer by a factor of 6. The parametric dependence of photoacoustic signal on laser power, modulation frequency and trace gas concentration, was investigated and the comparison between the two modulation techniques is presented in this paper for detection of trace gases such as C2H4. PMID:17558767

  18. Molecular interactions of SO2 with carbonate minerals under co-sequestration conditions: a combined experimental and theoretical study

    SciTech Connect

    Glezakou, Vassiliki Alexandra; McGrail, B. Peter; Schaef, Herbert T.

    2012-09-01

    We present a combined experimental and theoretical study investigating the reactivity between selected and morphologically important surfaces of carbonate minerals with supercritical CO2 with co-existing H2O and SO2. Trace amounts of SO2 cause formation of CaSO3 in the form of hannebachite in the initial stages of SO2 adsorption and transformation. Atomistic simulations of these initial steps indicate a somewhat catalytic activity of water, which is enhanced by the presence of Magnesium atoms in the mineral surface. Under co-sequestration conditions, traces of water are not likely to cause carbonate dissolution, however the presence of SO2 greatly stabilizes the sulfite product.

  19. Volcanic Ash and SO2 Monitoring Using Suomi NPP Direct Broadcast OMPS Data

    NASA Astrophysics Data System (ADS)

    Seftor, C. J.; Krotkov, N. A.; McPeters, R. D.; Li, J. Y.; Brentzel, K. W.; Habib, S.; Hassinen, S.; Heinrichs, T. A.; Schneider, D. J.

    2014-12-01

    NASA's Suomi NPP Ozone Science Team, in conjunction with Goddard Space Flight Center's (GSFC's) Direct Readout Laboratory, developed the capability of processing, in real-time, direct readout (DR) data from the Ozone Mapping and Profiler Suite (OMPS) to perform SO2 and Aerosol Index (AI) retrievals. The ability to retrieve this information from real-time processing of DR data was originally developed for the Ozone Monitoring Instrument (OMI) onboard the Aura spacecraft and is used by Volcano Observatories and Volcanic Ash Advisory Centers (VAACs) charged with mapping ash clouds from volcanic eruptions and providing predictions/forecasts about where the ash will go. The resulting real-time SO2 and AI products help to mitigate the effects of eruptions such as the ones from Eyjafjallajokull in Iceland and Puyehue-Cordón Caulle in Chile, which cause massive disruptions to airline flight routes for weeks as airlines struggle to avoid ash clouds that could cause engine failure, deeply pitted windshields impossible to see through, and other catastrophic events. We will discuss the implementation of real-time processing of OMPS DR data by both the Geographic Information Network of Alaska (GINA) and the Finnish Meteorological Institute (FMI), which provide real-time coverage over some of the most congested airspace and over many of the most active volcanoes in the world, and show examples of OMPS DR processing results from recent volcanic eruptions.

  20. The 2011 Nabro eruption, a SO2 plume height analysis using IASI measurements

    NASA Astrophysics Data System (ADS)

    Clarisse, L.; Coheur, P.-F.; Theys, N.; Hurtmans, D.; Clerbaux, C.

    2014-03-01

    In the wake of the June 2011 Nabro eruption, large stratospheric plumes were observed by several instruments up to altitudes of 21 km, much higher than initial reported injection heights. It has been debated whether deep convection associated with the Asian Summer Monsoon anticyclone played a vital role in the vertical transport of the plume. Here we present a new and fast SO2 height retrieval algorithm for observations of the Infrared Atmospheric Sounding Interferometer (IASI). A comprehensive validation with forward trajectories and coincident CALIOP measurements is presented which indicates an accuracy better than 2 km for plumes below 20 km and SO2 columns up to the 1 DU level. We use this new product to analyse the Nabro eruption. Our findings indicate an initial plume located mainly between 15 and 17 km for which the lower parts underwent in succession rapid descent and uplift, within the Asian Monsoon anticyclone circulation, up to the stable thermal tropopause between 16 and 18 km, from where it slowly ascended further into the stratosphere. Evidence is presented that emissions in the first week of the eruption also contributed to the stratospheric sulfur input. This includes a second eruption between 15 and 17 km on the 16th and continuous emissions in the mid-troposphere of which some were also entrained and lifted within the anticyclonic circulation.

  1. The 2011 Nabro eruption, a SO2 plume height analysis using IASI measurements

    NASA Astrophysics Data System (ADS)

    Clarisse, L.; Coheur, P.-F.; Theys, N.; Hurtmans, D.; Clerbaux, C.

    2013-11-01

    In the wake of the June 2011 Nabro eruption, large stratospheric plumes were observed by several instruments up to altitudes of 21 km, much higher than initial reported injection heights. It has been debated whether the anticyclone associated with Asian Summer Monsoon played a vital role in the vertical transport of the plume. Here we present a new and fast SO2 height retrieval algorithm for observations of the Infrared Atmospheric Sounding Interferometer (IASI). A comprehensive validation with forward trajectories and coincident CALIOP measurements is presented which indicates an accuracy better than 2 km for plumes below 20 km and SO2 columns up to the 1 DU level. We use this new product to analyse the Nabro eruption. Our findings indicate an initial plume located mainly between 15 and 17 km for which the lower parts underwent in succession rapid descent and uplift, within the Asian Monsoon anticyclone circulation, up to the stable thermal tropopause between 16 and 18 km, from where it slowly ascended further into the stratosphere. Evidence is presented that emissions in the first week of the eruption also contributed to the stratospheric sulfur input. This includes a second eruption between 15 and 17 km on the 16th and continuous emissions in the mid-troposphere of which some were also entrained and lifted within the anticyclonic circulation.

  2. Noble gases in meteorites

    Microsoft Academic Search

    Donald D. Bogard

    1971-01-01

    The measurement of isotopic abundances of the noble gases in meteorites and other extraterrestrial samples became a large and active field during the past decade, especially within the last four years. The five stable noble gases proved to be excellent keys for unlocking the secrets of past physical events in the solar system and are used in studies of such

  3. Simultaneous SO2 and ash retrievals using the volcanic plume removal (VPR) procedure

    NASA Astrophysics Data System (ADS)

    Merucci, Luca; Corradini, Stefano; Pugnaghi, Sergio; Guerrieri, Lorenzo; Arvani, Barbara

    2013-04-01

    A novel procedure for the simultaneous retrieval of SO2 and ash abundances in a volcanic plume from MODIS thermal infrared (TIR) images is presented. The proposed procedure is simple, extremely fast and requires as inputs only the plume altitude and temperature. Here it is described and applied on two Mt. Etna (Italy) test case eruptions, but can be easily extended and applied to any volcano. The core of the volcanic plume removal (VPR) procedure is the calculation of the background radiance obtained by linear interpolation of the radiance measured in the area surrounding the plume. In this way the absorption effect of the volcanic plume can be removed from the image: the VPR procedure computes the radiances that would have been measured by the sensor if the plume was missing and reconstructs a new image without the plume. The difference of the new image and the original data highlights the plume area and allows the computation of the plume transmittance in three TIR-MODIS bands: 29, 31 and 32 (8.6, 11.0 and 12.0 ?m). The procedure works very well when the surface under the plume is uniform, as it is often the case with plume widths of few tens of kilometers. As a consequence, it has no problems when the plume is above the sea, but still produces fairly good results in more challenging and not easily modeled conditions, such as images with land or uniform cloud layers under the plume. The plume transmittances are derived in two steps: (1) using a simple model with the plume at a fixed altitude and neglecting the layer of atmosphere above it; (2) refining the first result with polynomial relationships adapted for the geographical region. MODIS bands 31 and 32 are SO2 transparent and, from their transmittances, the ash particle effective radius (Re) and the aerosol optical depth at 550 nm (AOD550) are computed. A simple relation between the ash transmittances of bands 31 and 29 is demonstrated for the typical ash of Etna and used for the SO2 columnar content estimation. The parameters of the polynomial relationship have been derived from more than 200 thousands MODTRAN simulations performed to describe the Etna plumes and local situations. The comparison of the VPR procedure results with these more than 200 thousands different cases shows a frequency distribution of the differences saying that: the Re error is less than ±0.5 ?m in more than 60% of the cases; the AOD550 error is less than ±0.125 in 80% of the cases; the SO2 error is less than ±0.5 gm-2 in more than 60% of the considered cases. The VPR procedure has been applied in two case studies of recent eruptions occurred at Mt. Etna volcano and successfully compared with the results obtained with the established SO2 and ash retrievals based on the look-up tables (LUTs) method (Corradini et al., 2009). By re-computing the parameters of the polynomial relationships, the VPR procedure can be applied to different volcanoes as well as extended to other sensors and ash types.

  4. A rapid method to derive horizontal distributions of trace gases and aerosols near the surface using multi-axis differential optical absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Li, A.; Xie, P. H.; Wagner, T.; Chen, H.; Liu, W. Q.; Liu, J. G.

    2014-06-01

    We apply a novel experimental procedure for the rapid measurement of the average volume mixing ratios (VMRs) and horizontal distributions of trace gases such as NO2, SO2, and HCHO in the boundary layer, which was recently suggested by Sinreich et al. (2013). The method is based on two-dimensional scanning multi-axis differential optical absorption spectroscopy (MAX-DOAS). It makes use of two facts (Sinreich et al., 2013): first, the light path for observations at 1° elevation angle traverses mainly air masses located close to the ground (typically < 200 m); second, the light path length can be calculated using the simultaneous measured absorption of the oxygen dimer O4. Thus, the average value of the trace gas VMR in the atmospheric layer between the surface and the particular altitude, for which this observation was sensitive, can be calculated. Compared to the originally proposed method, we introduce several important modifications and improvements: We apply the method only to measurements at 1° elevation angle (besides zenith view), for which the uncertainties of the retrieved values of the VMRs and surface extinctions are especially small. Using only 1° elevation angle for off-axis observation also allows an increased temporal resolution. We determine (and apply) correction factors (and their uncertainties) directly as function of the measured O4 absorption. Finally, the method is extended to trace gases analysed at other wavelengths and also to the retrieval of aerosol extinction. Depending on atmospheric visibility, the typical uncertainty of the results ranges from about 20% to 30%. We apply the rapid method to observations of a newly-developed ground-based multifunctional passive differential optical absorption spectroscopy (GM-DOAS) instrument in the north-west outskirts near Hefei in China. We report NO2, SO2, and HCHO VMRs and aerosol extinction for four azimuth angles and compare these results with those from simultaneous long-path DOAS observations. Good agreement is found (squares of the correlation coefficients for NO2, SO2, and HCHO were 0.92, 0.85, and 0.60, respectively), verifying the reliability of this novel method. Similar agreement is found for the comparison of the aerosol extinction with results from visibility meters. Future studies may conduct measurements using a larger number of azimuth angles to increase the spatial resolution.

  5. Diffusion Tubes for Ambient NO2 Monitoring

    E-print Network

    Short, Daniel

    Diffusion Tubes for Ambient NO2 Monitoring: Practical Guidance for Laboratories and Users Report to Defra and the Devolved Administrations ED48673043 Issue 1a Feb 2008 #12;Diffusion Tubes for Ambient NO2 Monitoring: Practical Guidance AEA/ENV/R/2504 ­ Issue 1a Title Diffusion Tubes for Ambient NO2 Monitoring

  6. 5, 16191646, 2005 NO2 and HCHO

    E-print Network

    Paris-Sud XI, Université de

    ACPD 5, 1619­1646, 2005 NO2 and HCHO photolysis frequencies C. Topaloglou et al. Title Page Discussions NO2 and HCHO photolysis frequencies from irradiance measurements in Thessaloniki, Greece C a Creative Commons License. 1619 #12;ACPD 5, 1619­1646, 2005 NO2 and HCHO photolysis frequencies C

  7. Fractionation of sulfur isotopes during heterogeneous oxidation of SO2 in the atmosphere

    NASA Astrophysics Data System (ADS)

    Harris, E. J.; Sinha, B.; Hoppe, P.; Crowley, J.; Borrmann, S.; Foley, S. F.; Gnauk, T.; Van Pinxteren, D.; Herrmann, H.

    2011-12-01

    Sulfate and sulfur dioxide play an important role in environmental chemistry and climate, particularly through their effect on aerosols. Processing of aerosol through sulfate addition in clouds, which causes both hygroscopicity changes and mass increases, has been shown to modify the cloud condensation nucleus spectrum, leading to important climatological effects (Bower et al. 1997, Hegg et al. 2004). However, the uptake of sulfate and SO2 to aerosol in clouds is not well constrained, nor is it resolved for different particle types and sizes (Kasper-Giebl et al. 2000, Barrie et al. 2001). Measurements of stable sulfur isotopes can be used to investigate the chemistry of SO2 in the environment, providing insight into sources, sinks and oxidation pathways. Typical isotopic compositions for many sources have been measured, and the major current limitation is the lack of reliable fractionation factors - characteristic changes in isotopic composition caused by chemical reactions - with which to interpret the data. Laboratory values of fractionation factors for the major oxidation reactions have been measured in previous work, however there are no measurements or models to represent isotopic fractionation during heterogeneous oxidation on complex atmospheric surfaces. In this work the sulfur isotopic fractionation factors for SO2 oxidation have been measured on Sahara dust, obtained from the Cape Verde Islands, and sea salt aerosol, which was synthesised in the laboratory according to Millero (1974), modified to contain no sulfate. Sulfur dioxide with a known isotopic composition was oxidised on these surfaces under a variety of conditions including irradiation and ozonation, and the sulfur isotopic composition of the product sulfate was measured with the Cameca NanoSIMS 50. These laboratory results were then used to investigate the uptake of sulfur to particles in an orographic cloud during the HCCT campaign. The campaign took place at the Schmücke mountain in Germany and used connected flow conditions between upwind, in-cloud and downwind measurement sites to study the evolution of air masses due to cloud processing. NanoSIMS isotopic analysis was used to constrain the formation and uptake of sulfate in the cloud. Oxidation by a radical chain reaction catalysed by transition metals was seen to be the most important oxidation reaction occurring in two out of three measured cloud events.

  8. Airborne emission measurements of SO2 , NOx and particles from individual ships using a sniffer technique

    NASA Astrophysics Data System (ADS)

    Beecken, J.; Mellqvist, J.; Salo, K.; Ekholm, J.; Jalkanen, J.-P.

    2014-07-01

    A dedicated system for airborne ship emission measurements of SO2, NOx and particles has been developed and used from several small aircraft. The system has been adapted for fast response measurements at 1 Hz, and the use of several of the instruments is unique. The uncertainty of the given data is about 20% for SO2 and 24% for NOx emission factors. The mean values with one standard deviation for multiple measurements of 158 ships measured from the air on the Baltic and North Sea during 2011 and 2012 show emission factors of 18.8 ± 6.5 g kg-1 fuel , 66.6 ± 23.4 g kg-1 fuel and 1.8 ± 1.3 1016 particles kg-1 fuel for SO2, NOx and particle number, respectively. The particle size distributions were measured for particle diameters between 15 and 560 nm. The mean sizes of the particles are between 45 and 54 nm dependent on the distance to the source, and the number size distribution is monomodal. Concerning the sulfur fuel content, around 85% of the monitored ships comply with the International Maritime Organization (IMO) limits. The reduction of the sulfur emission control area (SECA) limit from 1.5 to 1% in 2010 appears to have contributed to reduction of sulfur emissions that were measured in earlier studies from 2007 to 2009. The presented method can be implemented for regular ship compliance monitoring.

  9. [Reaction of SO2 over CaAl mixed oxides derived from hydrotalcites samples].

    PubMed

    Cao, Lin; Wang, Hai-lin; Xie, Qiang

    2013-09-01

    Series of CaAl hydrotalcite-like compounds were synthesized by co-precipitation, and the oxides were obtained after being calcined at 800 degrees C. XRD, BET, DTG and TPD were taken to characterize the physicochemical properties of samples, and reactions of SO2 over samples were studied. Results show that precursors were homogeneous and well crystallographic, and after being calcined with taking off the interlayer hydroxyls, water and anion, forming CaO and (CaO)x(Al2O3)y, and the Ca element enhances the thermal stability, Ca3AI-LDO has the largest surface area, the highest pore volume and the most basic center, the saturation capacity was 0. 29 g x g(-1) at 700 degrees C. PMID:24289015

  10. Comparison of methodologies for SO2 and Ash identification using observations from IASI

    NASA Astrophysics Data System (ADS)

    Athanassiadou, Maria; Francis, Peter; Carboni, Elisa

    2015-04-01

    The multichannel Infrared Atmospheric Sounder Interferometer (IASI) on board the Metop satellites is used to investigate and compare various techniques of SO2 and Ash detection from volcanic eruptions. Many of the differences in the various approaches stem from using different instruments and channel selections, based on availability. Other differences stem from assumptions made in the processing of the data and the different nature of the eruption (tropical, high latitude, explosive high altitude or continuous lower level ones, amount of material released). Often, both of the above (channel selection and assumptions) are intertwined. The high spectral resolution of IASI (8461 channels from 645 cm-1 to 2760 cm-1 every 0.25 cm-1), allows us to better understand differences due to the various approaches, as well as to evaluate the effects of clouds in a consistent way from the same instrument.

  11. SO2-catalyzed steam pretreatment enhances the strength and stability of softwood pellets.

    PubMed

    Tooyserkani, Zahra; Kumar, Linoj; Sokhansanj, Shahab; Saddler, Jack; Bi, Xiaotao T; Lim, C Jim; Lau, Anthony; Melin, Staffan

    2013-02-01

    Densification can partially resolve the logistical challenges encountered when large volumes of biomass are required for bioconversion processes to benefit from economies-of-scale. Despite the higher bulk density of pellets, their lower mechanical strength and sensitivity to moisture are still recurring issues hindering long term transportation and storage. In this study, we have evaluated the potential benefits of SO(2)-catalyzed steam treatment to achieve both the needed size reduction prior to pelletization while improving the stability of the produced pellets. This pretreatment substantially reduced the particle size of the woodchips eliminating any further grinding. The treated pellets had a higher density and exhibited a two-time higher mechanical strength compared to untreated pellets. Despite a higher moisture adsorption capacity, treated pellets remained intact even under highly humid conditions. The high heating values, low ash content and good overall carbohydrate recovery of treated pellets indicated their potential suitability for both biochemical and thermochemical applications. PMID:23347905

  12. Reversible removal of SO2 at low temperature by Bacillus licheniformis immobilized on ?-Al2O3.

    PubMed

    Jia, Lishan; Deng, Renpan; Song, Hao

    2011-01-01

    Bacillus licheniformis R08 biomass was immobilized on ?-Al2O3 and the effects of R08 biomass loading, SO2 concentration, water vapor, oxygen and temperature on removal of SO2 were investigated. The experimental results indicated that SO2 saturation capacity increased with increasing R08 biomass loading and SO2 concentration, but decreased with increasing adsorption temperature. Water vapor activated the adsorbent and promoted SO2 removal. An increase in oxygen concentration from 5 to 10% had little effect on SO2 removal. FTIR analysis revealed that the R08 biomass bound to ?-Al2O3 mainly by forming R-CO-O-Al bonds. X-ray photoelectron spectroscopy analysis indicated that ?-Al2O3 reacted with SO2 and formed aluminum sulfate in the presence of oxygen when R08 biomass loading was 13.8%, but that amido groups of the R08 biomass reacted with SO2 and formed sulfite when biomass loading was 32.4%. Ten continuous adsorption-desorption cycles showed that the adsorbent had an excellent regeneration performance. PMID:20933401

  13. RETROFIT COSTS FOR SO2 AND NOX CONTROL OPTIONS AT 200 COAL-FIRED PLANTS, VOLUME I - INTRODUCTION AND METHODOLOGY

    EPA Science Inventory

    The report gives results of a study, the objective of which was to significantly improve engineering cost estimates currently being used to evaluate the economic effects of applying SO2 and NOx controls at 200 large SO2-emitting coal-fired utility plants. To accomplish the object...

  14. CONTROLLING SO2 EMISSIONS FROM COAL-FIRED STEAM-ELECTRIC GENERATORS: WATER POLLUTION IMPACT. VOLUME I. EXECUTIVE SUMMARY

    EPA Science Inventory

    The report gives results of one task in a comprehensive program to review a New Source Performance Standards (NSPS) for SO2 emissions from coal-fired steam-electric generating plants. The results compare two alternative standard to the existing NSPS (1.2 lb SO2/million Btu of hea...

  15. CONTROLLING SO2 EMISSIONS FROM COAL-FIRED STEAM-ELECTRIC GENERATORS: WATER POLLUTION IMPACT. VOLUME II. TECHNICAL DISCUSSION

    EPA Science Inventory

    The report gives results of one task in a comprehensive program to review the New Source Performance Standard (NSPS) for SO2 emissions from coal-fired steam-electric generating plants. The results compare two alternative standards to the existing NSPS (1.2 lb SO2/million Btu of h...

  16. 40 CFR 75.16 - Special provisions for monitoring emissions from common, bypass, and multiple stacks for SO2...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...and multiple stacks for SO2 emissions and heat input determinations. 75.16 Section...and multiple stacks for SO2 emissions and heat input determinations. (a) [Reserved...emissions are not underestimated. (e) Heat input rate. The owner or operator...

  17. 40 CFR 75.16 - Special provisions for monitoring emissions from common, bypass, and multiple stacks for SO2...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...and multiple stacks for SO2 emissions and heat input determinations. 75.16 Section...and multiple stacks for SO2 emissions and heat input determinations. (a) [Reserved...emissions are not underestimated. (e) Heat input rate. The owner or operator...

  18. DESIGN AND PERFORMANCE OF A FIELD EXPOSURE SYSTEM FOR EVALUATION OF THE ECOLOGICAL EFFECTS OF SO2 ON NATIVE GRASSLAND

    EPA Science Inventory

    The report describes the design and performance of two replicate field exposure systems for evaluating the ecological effects of chronic SO2 exposure on 0.5 ha plots of native Montana grassland. The SO2 was supplied at a constant rate to each plot through a network of 2.5-cm insi...

  19. PILOT-SCALE PARAMETRIC TESTING OF SPRAY DRYER SO2 SCRUBBER FOR LOW-TO-MODERATE SULFUR COAL UTILITY APPLICATIONS

    EPA Science Inventory

    The report gives results of a comprehensive, pilot, dry, SO2 scrubbing test program to determine the effects of process variables on SO2 removal. In the spray dryer, stoichiometric ratio, flue gas temperature approach to adiabatic saturation, and temperature drop across the spray...

  20. Volcanic SO2 fluxes derived from satellite data: a survey using OMI, GOME-2, IASI and MODIS

    NASA Astrophysics Data System (ADS)

    Theys, N.; Campion, R.; Clarisse, L.; Brenot, H.; van Gent, J.; Dils, B.; Corradini, S.; Merucci, L.; Coheur, P.-F.; Van Roozendael, M.; Hurtmans, D.; Clerbaux, C.; Tait, S.; Ferrucci, F.

    2013-06-01

    Sulphur dioxide (SO2) fluxes of active degassing volcanoes are routinely measured with ground-based equipment to characterize and monitor volcanic activity. SO2 of unmonitored volcanoes or from explosive volcanic eruptions, can be measured with satellites. However, remote-sensing methods based on absorption spectroscopy generally provide integrated amounts of already dispersed plumes of SO2 and satellite derived flux estimates are rarely reported. Here we review a number of different techniques to derive volcanic SO2 fluxes using satellite measurements of plumes of SO2 and investigate the temporal evolution of the total emissions of SO2 for three very different volcanic events in 2011: Puyehue-Cordón Caulle (Chile), Nyamulagira (DR Congo) and Nabro (Eritrea). High spectral resolution satellite instruments operating both in the ultraviolet-visible (OMI/Aura and GOME-2/MetOp-A) and thermal infrared (IASI/MetOp-A) spectral ranges, and multispectral satellite instruments operating in the thermal infrared (MODIS/Terra-Aqua) are used. We show that satellite data can provide fluxes with a sampling of a day or less (few hours in the best case). Generally the flux results from the different methods are consistent, and we discuss the advantages and weaknesses of each technique. Although the primary objective of this study is the calculation of SO2 fluxes, it also enables us to assess the consistency of the SO2 products from the different sensors used.

  1. Volcanic SO2 fluxes derived from satellite data: a survey using OMI, GOME-2, IASI and MODIS

    NASA Astrophysics Data System (ADS)

    Theys, N.; Campion, R.; Clarisse, L.; Brenot, H.; van Gent, J.; Dils, B.; Corradini, S.; Merucci, L.; Coheur, P.-F.; Van Roozendael, M.; Hurtmans, D.; Clerbaux, C.; Tait, S.; Ferrucci, F.

    2012-12-01

    Sulphur dioxide (SO2) fluxes of active degassing volcanoes are routinely measured with ground-based equipment to characterize and monitor volcanic activity. SO2 of unmonitored volcanoes or from explosive volcanic eruptions, can be measured with satellites. However, remote-sensing methods based on absorption spectroscopy generally provide integrated amounts of already dispersed plumes of SO2 and satellite derived flux estimates are rarely reported. Here we review a number of different techniques to derive volcanic SO2 fluxes using satellite measurements of dispersed and large-scale plumes of SO2 and investigate the temporal evolution of the total emissions of SO2 for three very different volcanic events in 2011: Puyehue-Cordón Caulle (Chile), Nyamulagira (DR Congo) and Nabro (Eritrea). High spectral resolution satellite instruments operating both in the UV-visible (OMI/Aura and GOME-2/MetOp-A) and thermal infrared (IASI/MetOp-A) spectral ranges, and multispectral satellite instruments operating in the thermal infrared (MODIS/Terra-Aqua) are used. We show that satellite data can provide fluxes with a sampling of a day or less (few hours in the best case). Generally the flux results from the different methods are consistent, and we discuss the advantages and weaknesses of each technique. Although the primary objective of this study is the calculation of SO2 fluxes, it also enables to assess the consistency of the SO2 products from the different sensors used.

  2. A mitochondria-targeted colorimetric and ratiometric fluorescent probe for biological SO2 derivatives in living cells.

    PubMed

    Liu, Yu; Li, Kun; Wu, Ming-Yu; Liu, Yan-Hong; Xie, Yong-Mei; Yu, Xiao-Qi

    2015-06-25

    A ratiometric fluorescent probe for SO2 derivatives based on the conjugate of carbazole and indolium was presented, which could selectively respond to HSO3(-) over other thiol compounds. More importantly, CZ-Id is a novel mitochondria-targeted ratiometric fluorescent probe to image exogenous SO2 derivatives. PMID:26021301

  3. Modification of aerosol mass and size distribution due to aqueous-phase SO2 oxidation in clouds

    E-print Network

    Jacobson, Mark

    Modification of aerosol mass and size distribution due to aqueous-phase SO2 oxidation in clouds] Models of aerosol scavenging and aqueous-phase oxidation of SO2 by H2O2 and O3 in a cloud updraft that explicitly simulate multiple aerosol and drop sizes. All models simulate growth of cloud drops on a lognormal

  4. RETROFIT COSTS OF SO2 AND NOX CONTROL AT 200 U.S. COAL-FIRED POWER PLANTS

    EPA Science Inventory

    The paper gives results of a study to improve engineering applying cost estimates currently being used to evaluate the economic effects of applying SO2 and NOx controls at 200 large SO2 emitting coal-fired utility plants in the U.S. To accomplish this objective, procedures were d...

  5. LONG-RANGE TRANSPORT AND TRANSFORMATION OF SO2 AND SULFATE: REFINEMENT, APPLICATION, AND VERIFICATION OF MODELS

    EPA Science Inventory

    A long-range transport model of SO2 and sulfate for twenty-four-hour concentration distributions was refined and applied to calculate distribution patterns of concentration and deposition of SO2 and sulfate over the area between 35N and 45N and between 75W and 95W for January 25 ...

  6. A New Long Term Data Set Of SO2 Column Amount From Volcanic Eruptions Using TOMS Data

    NASA Astrophysics Data System (ADS)

    Fisher, B. L.; Krotkov, N. A.; Bhartia, P. K.; Haffner, D. P.

    2014-12-01

    Volcanic SO2 is an important trace gas in the atmosphere that affects air quality and which is also a precursor to the production of sulfate aerosols. The Total Ozone Mapping Spectrometer (TOMS) was the first NASA UV instrument to measure daily maps of ozone and volcanic sulfur dioxide globally. It has been flown on four different satellites since its first launch aboard Nimbus 7 in 1978. The instrument provides a unique global long-term record of volcanic SO2, which have been invaluable to study the response of earth's climate system to volcanic eruptions. However, complete TOMS SO2 L2 data has not yet been previously processed and properly archived. As part of the NASA MEaSUREs SO2 Program we updated heritage TOMS SO2 algorithm in preparation to re-processing and archiving TOMS data. We have also applied our TOMS algorithm to the L1B measurements of the hyperspectral UV Ozone Monitoring Instrument (OMI) that has been flown on NASA Aura EOS spacecraft since 2004. Due to its hyperspectral capability and smaller field of view OMI SO2 sensitivity is more than hundred times larger than TOMS. The unique challenge is combining TOMS and OMI SO2 records to create a continuous long-term Climate Data record (CDR) to be released to the research community. This data set will provide researchers with continuous Level 2 estimates of SO2 and will help to validate and expand the current catalog of volcanic activity.

  7. Monitoring passively degassing volcanoes from space: A comparison between ASTER and OMI retrievals of lower tropospheric SO2

    NASA Astrophysics Data System (ADS)

    Henney, L. A.; Watson, M.; Carn, S. A.

    2009-12-01

    Passively degassing volcanoes contribute a climatologically significant quantity of sulfur dioxide (SO2) to the atmosphere. Both the Advanced Thermal Emission and Reflection Radiometer (ASTER) and the Ozone Monitoring Instrument (OMI) are capable of detecting emissions from volcanoes in a non-eruptive state. There are fundamental differences between the sensors that affect their sensitivity to SO2. OMI operates in the ultraviolet with a 13x24 km nadir footprint and a 2600 km swath width, providing daily global coverage and retrievals of SO2 at all altitudes from the planetary boundary layer to the stratosphere (Carn et al, 2008). In contrast, ASTER operates in the infrared (specifically the 8.6 µm region of the thermal infrared for SO2 detection) with 90 m spatial resolution and a 60 km swath width. Hence the temporal resolution and geographic coverage of ASTER is somewhat less than OMI, with one ASTER scene acquired every 5-16 days for a given location. However, the higher spatial resolution of ASTER provides more information on the structure of tropospheric SO2 plumes. Six volcanoes were selected based on their differing climates, altitudes and SO2 emission rates: Mt Etna, Sicily; Pacaya, Guatemala; Masaya, Nicaragua; Popocatepetl, Mexico; Nyiragongo, DR Congo; and Kilauea, Hawaii. These volcanoes are continually active and typically emit in excess of 1000 metric tons per day of SO2. ASTER and OMI data were acquired for each volcano and processed in order to compare the satellite SO2 retrievals under different conditions. Our goal is to determine the optimum conditions for lower tropospheric SO2 retrievals using each instrument, and constrain the lower limit of volcanic SO2 emission rate that can be detected and monitored from space.

  8. Retrieval of near-surface sulfur dioxide (SO2) concentrations at a global scale using IASI satellite observations

    NASA Astrophysics Data System (ADS)

    Bauduin, Sophie; Clarisse, Lieven; Theys, Nicolas; Clerbaux, Cathy; Coheur, Pierre-François

    2015-04-01

    Sulfur dioxide (SO2) is an atmospheric trace gas with both natural and anthropogenic sources. In the troposphere, SO2 released by industrial activities mainly stays close to the ground level. The IASI/MetOp infrared remote sensor has shown over the years good performances for tracking SO2 plumes in the free troposphere. Probing anthropogenic SO2 pollution on the other hand is a challenge due to the generally low sensitivity of infrared measurements to the near-surface atmosphere, itself caused by the weak thermal contrasts between the ground and the air above it. Recent studies, which have focused on local sources (the industrial area of Norilsk and of the North China Plain), have however demonstrated that IASI was able to retrieve SO2 near-surface concentrations in favorable meteorological situations, and in particular in case of large temperature inversions. Expanding on these findings, this work presents new observations of near-surface SO2 at global scale from IASI observations. The method, which includes the determination of the SO2 plume altitude and SO2 boundary layer column, will be briefly presented. Global distributions of anthropogenic pollution will be shown, focusing on the identification of the principal hotspots and of exceptional pollution events. A first assessment of the retrieved columns with correlative measurements will be provided for some local sources. IASI measurements and new OMI SO2 retrievals will be compared. This will highlight the complementarity of these current TIR and UV sounders for measuring SO2 pollution, which could be exploited in the future with IASI-NG and Sentinel-5 instruments.

  9. Photochemistry of biogenic gases

    NASA Technical Reports Server (NTRS)

    Levine, Joel S.

    1989-01-01

    The relationship between the biosphere and the atmosphere is examined, emphasizing the composition and photochemistry and chemistry of the troposphere and stratosphere. The reactions of oxygen, ozone, and hydroxyl are reviewed and the fate of the biogenic gases ammonia, methane, reduced sulfur species, reduced halogen species, carbon monoxide, nitric oxide, nitrous oxide, nitrogen, and carbon dioxide are described. A list is given of the concentration and sources of the various gases.

  10. Variations in Venus' Cloud Top SO2 and SO Gas Density with Latitude and Time of Day

    NASA Astrophysics Data System (ADS)

    Jessup, K.-L.; Mills, F.; Marcq, E.; Berteaux, J.-L.; Roman, T.; Yung, Y.

    2013-09-01

    Venus' upper atmospheric H2SO4 clouds are formed from SO2 gas via the sulfur-oxidation cycle, beginning with SO2 photolysis; followed by the formation of SO3 via photochemical SO2 oxidation, which then reacts with H2O forming H2SO4. Thus, photochemical processing of SO2 is intimately linked to the global-scale cloud and haze layers, which are composed primarily of concentrated sulfuric acid. At the same time, detailed thermochemical modeling of Venus' key atmospheric species suggests that the sulfur dioxide in Venus' atmosphere most likely originates from volcanic outgassing [1], though volcanic activity has yet to be directly observed. The exchange of SO2 from below the cloud deck to above the clouds is not fully understood, but undoubtedly involves convection transport [2, 3] and may also include direct volcanic injection of the SO2 gas [4]. Consequently, observations of sulfur oxides (SO2, SO, OCS, and H2SO4) in Venus' mesosphere are of great interest because they provide important insight into the ongoing chemical evolution of Venus' atmosphere, atmospheric dynamics, and possible volcanism.

  11. Simultaneous SO2, SO3 and NOx removal by the EBA Process

    SciTech Connect

    Hirano, S.; Aoki, S.; Izutsu, M.; Yuki, Y.

    1999-07-01

    The system for electron beam flue gas treatment, the EBA (Electron Beam with Ammonia) Process is an innovative, dry, air pollution control technology that, by ammonia injection and electron beam irradiation, can efficiently remove sulfur oxides, (SOx, i.e., SO2 and SO3), from partially humidified flue gas. This is accompanied by simultaneous nitrogen oxides, (NOx), emission reduction in an amount that is determined, optionally, by site-specific system design. The process operation converts these pollutants as well as gasborne hydrogen chloride into a dry by-product solids consisting principally of ammonium sulfate, ammonium nitrate and ammonium chloride that can be used, worldwide, as a plant nutrient stock in large-scale agriculture. Commercial application of the Process has now been achieved, utilizing engineering data gained over many years of experience in operation of pilot plant facilities (including a process development unit that was field installed in the 1980s under sponsorship by US DOE at a coal-fired powerplant of Indianapolis Power and Light Company). With the co-operation of the Chinese government, EBARA Corporation has in 1997 completed the first commercial EBA Process installation, which is sited at the coal-fired Chengdu Power Station in China. This retrofit facility as a whole in addition to its performance in this high-sulfur bituminous coal service, including the targeted SOx removal efficiency, incidental NOx abatement and the usability of the by-product, were assessed and fully accepted contractually by a diversely structured, Examination Committee established by Chinese government authorities and assisted by an Expert Group. Criteria and considerations of the Chinese officials, in evaluating adequacy of the technology for further commercial application in China, all assessed positively, encompassed design, installation, operation, performance, reliability, environmental impact, cost effectiveness and by-product utilization/marketing. To illustrate attractive process economics for SOx removal in high-sulfur service with only incidental NOx removal, i.e. FGD (flue gas desulfurization) only, evaluation of cost-effectiveness of the Chengdu facility (at its moderate design SO2 removal efficiency) is presented.

  12. Remote Monitoring of Volcanic Gases using Passive Infrared Spectroscopy: Results and Lessons Learned from Diverse Volcanoes

    Microsoft Academic Search

    S. P. Love; F. Goff

    2002-01-01

    Infrared spectroscopy is a powerful tool for remote sensing of gases. With the advent of compact field-portable Fourier transform infrared (FTIR) spectrometers, remote monitoring of a variety of volcanic gases, including HF, HCl, SO2, SiF4, and CO2, has become relatively straightforward. Over the last few years, we have employed ground-based FTIR to monitor gas composition changes at a several volcanoes,

  13. Rates of volcanic CO2 degassing from airborne determinations of SO2 Emission rates and plume CO2SO2: test study at Pu?u ?O?o Cone, Kilauea Volcano, Hawaii

    USGS Publications Warehouse

    Gerlach, Terrence M.; McGee, Kenneth A.; Sutton, A. Jefferson; Elias, Tamar

    1998-01-01

    We present an airborne method that eliminates or minimizes several disadvantages of the customary plume cross-section sampling method for determining volcanic CO2 emission rates. A LI-COR CO2analyzer system (LICOR), a Fourier transform infrared spectrometer system (FTIR), and a correlation spectrometer (COSPEC) were used to constrain the plume CO2/SO2 and the SO2 emission rate. The method yielded a CO2 emission rate of 300 td?1 (metric tons per day) for Pu?u ?O?o cone, Kilauea volcano, on 19 September 1995. The CO2/SO2 of 0.20 determined from airborne LICOR and FTIR plume measurements agreed with the CO2/SO2 of 204 ground-based samples collected from vents over a 14-year period since the Pu?u ?O?o eruption began in January 1983.

  14. From gas-phase oxidation of SO2 by SO4- to the formation of sulfuric acid

    NASA Astrophysics Data System (ADS)

    Tsona, Narcisse; Bork, Nicolai; Vehkamäki, Hanna

    2013-05-01

    One of the difficulties to predict atmospheric nucleation is related to inaccurate measure of the total sulfuric acid concentration. We present a density functional theory investigation of the SO2 gas phase oxidation by SO4-. In the immediate product, SO2.SO4- cluster, SO2 is subsequently oxidized and SO3SO3- is formed at 1.7 × 10-7 s-1 reaction rate. SO3SO3- interacts with O2 molecule to form SO3 and SO5-, which are important species in the gas phase chemistry of sulfur and in the formation mechanism of sulfuric acid.

  15. Primary quantum yields of NO2 photodissociation

    NASA Technical Reports Server (NTRS)

    Gardner, Edward P.; Sperry, Paul D.; Calvert, Jack G.

    1987-01-01

    The quantum yields of formation of NO, O2, and NO2 loss are measured for NO2 vapor at low pressures (0.13-0.30 torr) irradiated at 334-405 nm wavelengths and temperature in the range 273-370 K in order to study the primary quantum efficiencies of NO2 photodecomposition. The temperature and wavelength dependences of the primary quantum efficiencies are examined. It is observed that the primary quantum efficiencies increase rapidly from near zero at 424 nm to near unity for excitation at wavelengths less than 394 nm. The theory of Pitts et al. (1964) that the energy deficiency for photodissociation of NO2 excited at wavelengths greater than 397.9 nm is due to the rotational and vibrational energy of the NO2 molecules is confirmed by the data. Values for the primary quantum yields of NO2 photodecomposition as a function of wavelength are presented.

  16. FLYSPEC: A new Ultraviolet Correlation Spectrometer for the Detection of Volcanic SO2

    NASA Astrophysics Data System (ADS)

    Horton, K.; Williams-Jones, G.; Garbeil, H.; Sutton, A. J.; Elias, T.

    2002-12-01

    A new miniature, lightweight and low cost ultraviolet Correlation Spectrometer, the FLYSPEC, has been developed as a replacement for the COSPEC, which has previously been the mainstay for the monitoring of volcanic SO2 emissions. The total mass of this battery operated prototype system, including computer/PDA, power, cabling, and GPS is less than 2 kg and can be mounted in a 25 x 15 x 10-cm protective case. The FLYSPEC can be used in a similar fashion to the COSPEC (e.g., mounted on a ground vehicle or stationary tripod - a similar instrument, the mini-DOAS, is now being routinely used by the Montserrat Volcano Observatory for near-continuous stationary measurements). Field experiments were conducted at Masaya (Nicaragua), Poás (Costa Rica), Kilauea (USA), Vulcano, Mt Etna, and Stromboli (Italy) volcanoes as well as at industrial stacks in Hawaii. A number of these measurements were made simultaneously with COSPEC and showed statistically identical results. Unlike the COSPEC, the FLYSPEC also has the ability to simultaneously measure and perform real-time analyses of a number of UV-absorbing gas species (e.g., NOx) making it a valuable instrument for environmental monitoring of industrial plumes. Furthermore, the small size and low cost lend the FLYSPEC to novel deployment modes such as hand-held, multi-instrument continuously recording networks, or flown on small Unmanned Aerial Vehicles. This instrument has the potential to revolutionise the manner in which volcanic, industrial, and environmental monitoring is performed.

  17. A component time-series model for SO 2 data: Forecasting, interpretation and modification

    NASA Astrophysics Data System (ADS)

    Schlink, Uwe; Herbarth, Olf; Tetzlaff, Gerd

    A time-series forecasting method is developed to enable advance warning of smog in winter. A component model for the time series of SO 2 concentration essentially using a recursive Kalman algorithm is constructed on the basis of spectral analysis. It is found that the smog episodes with low frequencies and time-dependent power spectra are solely represented by the trend component. This component is therefore investigated in the phase space, where it exhibits a typical trajectory. For forecasting, one part of the data is used to establish the parameters and another part is used to test the extrapolation. The extrapolation and interpolation behaviour of the Kalman filter used is investigated. The trend component is found not to agree with the behaviour of the trajectory in the phase space. A modified method is proposed to extrapolate the time-dependent spectrum of the trend component, namely local harmonic approximation. This method is tested and compared with linear extrapolation and is found to provide a generalisation, producing closer correspondence between the concentration values predicted and those actually observed.

  18. Satellite measurements of the backscattered ultraviolet to determine ozone trends, volcanic SO2, and nitric oxide

    NASA Technical Reports Server (NTRS)

    Mcpeters, Richard

    1993-01-01

    Measurements of the atmospheric backscattered UV albedo have been used from satellites for more than 20 years to measure ozone. The longest continuous record has been from the Solar Backscattered Ultraviolet instrument (SBUV) and TOMS on the Nimbus 7 satellite, which have been in operation since November of 1978. Because of degradation in space of the diffuser plate used to measure extraterrestrial solar flux, it has been necessary to develop new techniques to maintain the calibration of these instruments. Calibration is maintained by requiring that ozone measured by different wavelength pairs be consistent, and by requiring that ozone measured at different solar zenith angles be consistent. This technique of using a geophysical quantity, ozone, as a transfer standard for wavelength calibration is very powerful. The recalibrated data have been used to measure total ozone trends to an accuracy of +/- 1.3 percent 2(sigma) error over ten years. No significant trends are found near the equator, but significant trends larger than predicted by homogeneous chemistry are found at middle to high latitudes in both hemispheres. In addition, UV albedo data have been used to measure SO2 using band structure in the 300-310 nm range, and to measure nitric oxide in the upper stratosphere and mesosphere using the (10) and (02) NO gamma band fluorescence features.

  19. Long-term SO2 dispersion modeling over a coastal region.

    PubMed

    Fisher, A L; Parsons, M C; Roberts, S E; Shea, P J; Khan, F L; Husain, T

    2003-04-01

    Air dispersion modeling over coastal regions has proven to be a remarkable challenge in the field of air quality. Many conventional plume dispersion models, such as ISC2 and HYSPLIT, are unable to model such dispersion with the precision that is necessary to accurately predict ground-level concentrations in coastal areas. Considering this, the present work was carried out with two primary objectives: i) to evaluate the effectiveness of currently available mathematical models in predicting plume dispersion over a coastal region and ii) to study the impact of sulfur dioxide emissions from a petroleum refinery over a different community located in the adjacent area. This study demonstrates that CALPUFF predictions are more reliable compared to those of the other models studied, however the operation of CALPUFF is highly data intensive and in many instances, it is difficult to obtain all required input data. This is a particular problem for regions outside ofthe United States of America where sufficient data is difficult to obtain. In addition, the study concluded that the predicted annual average SO2 concentrations in the nearby communities are well within regulatory limits. PMID:12755441

  20. The flux of sulfur-containing gases to vegetation

    NASA Astrophysics Data System (ADS)

    Taylor, G. E.; McLaughlin, S. B.; Shriner, D. S.; Selvidge, W. J.

    The flux of five sulfur gases to vegetation exposed to each gas individually at an ambient concentration of 0.12 ?l ?-1 (5 ?moles m -3) was assessed using a whole-plant, gaseous exchange system. Total leaf flux of each gas was partitioned into leaf surface (adsorption) and internal (absorption) fractions. Internal flux varied four to sevenfold among gases, and the magnitude of flux was in the following order: sulfur dioxide > hydrogen sulfide > carbonyl sulfide > methyl mercaptan > carbon disulfide. The regression of internal flux on water solubility and molecular size accounted for 73 and 87 % of the variation in Glycine max and Phaseolus vulgaris, respectively. Leaf conductance, which was adjusted for each gas based on their respective diffusivities in air, did not improve the regression significantly. Estimates of internal flux based on the product of leaf conductance and ambient concentration may not be an accurate technique to assess the rate of absorption for all pollutant gases into the leaf interior under daylight conditions. For highly soluble and chemically reactive gases such as SO 2, the latter technique tends to underestimate flux by 50%, which may result from a mean SO 2 diffusive path length that is less than that for water vapor. The relationship between flux and the physicochemical properties of a gas may provide a technique for screening atmospheric emissions for their potential toxicity to vegetation.